Science.gov

Sample records for meteor crater arizona

  1. Barringer Meteor Crater, Arizona

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Barringer Crater, also known as 'Meteor Crater,' is a 1,300-meter (0.8 mile) diameter, 174-meter (570-feet) deep hole in the flat-lying desert sandstones 30 kilometers (18.6 miles) west of Winslow, Arizona. Since the 1890s geologic studies here played a leading role in developing an understanding of impact processes on the Earth, the moon and elsewhere in the solar system.

    This view was acquired by the Landsat 4 satellite on December 14, 1982. It shows the crater much as a lunar crater might appear through a telescope. Morning sun illumination is from the southeast (lower right). The prominent gully meandering across the scene is known as Canyon Diablo. It drains northward toward the Little Colorado River and eventually to the Grand Canyon. The Interstate 40 highway crosses and nearly parallels the northern edge of the scene.

    The ejecta blanket around the crater appears somewhat lighter than the surrounding terrain, perhaps in part due to its altered mineralogic content. However, foot traffic at this interesting site may have scarred and lightened the terrain too. Also, the roughened surface here catches the sunlight on the southerly slopes and protects a highly reflective patchy snow cover in shaded northerly slopes, further lightening the terrain as viewed from space on this date.

  2. Impact mechanics at Meteor Crater, Arizona

    USGS Publications Warehouse

    Shoemaker, Eugene Merle

    1959-01-01

    Meteor Crator is a bowl-shaped depression encompassed by a rim composed chiefly of debris stacked in layers of different composition. Original bedrock stratigraphy is preserved, inverted, in the debris. The debris rests on older disturbed strata, which are turned up at moderate to steep angles in the wall of the crater and are locally overturned near the contact with the debris. These features of Meteor Crater correspond closely to those of a crater produced by nuclear explosion where depth of burial of the device was about 1/5 the diameter of the resultant crater. Studies of craters formed by detonation of nuclear devices show that structures of the crater rims are sensitive to the depth of explosion scaled to the yield of the device. The structure of Meteor Crater is such as would be produced by a very strong shock originating about at the level of the present crater floor, 400 feet below the original surface. At supersonic to hypersonic velocity an impacting meteorite penetrates the ground by a complex mechanism that includes compression of the target rocks and the meteorite by shock as well as hydrodynamic flow of the compressed material under high pressure and temperature. The depth of penetration of the meteorite, before it loses its integrity as a single body, is a function primarily of the velocity and shape of the meteorite and the densities and equations of state of the meteorite and target. The intensely compressed material then becomes dispersed in a large volume of breccia formed in the expanding shock wave. An impact velocity of about 15 km/sec is consonant with the geology of Meteor Crater in light of the experimental equation of state of iron and inferred compressibility of the target rocks. The kinetic energy of the meteorite is estimated by scaling to have been from 1.4 to 1.7 megatons TNT equivalent.

  3. Meteor Crater (Barringer Meteorite Crater), Arizona: Summary of Impact Conditions

    NASA Astrophysics Data System (ADS)

    Roddy, D. J.; Shoemaker, E. M.

    1995-09-01

    Meteor Crater in northern Arizona represents the most abundant type of impact feature in our Solar System, i.e., the simple bowl-shaped crater. Excellent exposures and preservation of this large crater and its ejecta blanket have made it a critical data set in both terrestrial and planetary cratering research. Recognition of the value of the crater was initiated in the early 1900's by Daniel Moreau Barringer, whose 27 years of exploration championed its impact origin [1]. In 1960, Shoemaker presented information that conclusively demonstrated that Meteor Crater was formed by hypervelocity impact [2]. This led the U.S. Geological Survey to use the crater extensively in the 1960-70's as a prime training site for the Apollo astronauts. Today, Meteor Crater continues to serve as an important research site for the international science community, as well as an educational site for over 300,000 visitors per year. Since the late 1950's, studies of this crater have presented an increasingly clearer view of this impact and its effects and have provided an improved view of impact cratering in general. To expand on this data set, we are preparing an upgraded summary on the Meteor Crater event following the format in [3], including information and interpretations on: 1) Inferred origin and age of the impacting body, 2) Inferred ablation and deceleration history in Earth's atmosphere, 3) Estimated speed, trajectory, angle of impact, and bow shock conditions, 4) Estimated coherence, density, size, and mass of impacting body, 5) Composition of impacting body (Canyon Diablo meteorite), 6) Estimated kinetic energy coupled to target rocks and atmosphere, 7) Terrain conditions at time of impact and age of impact, 8) Estimated impact dynamics, such as pressures in air, meteorite, and rocks, 9) Inferred and estimated material partitioning into vapor, melt, and fragments, 10) Crater and near-field ejecta parameters, 11) Rock unit distributions in ejecta blanket, 12) Estimated far

  4. NMR spectroscopic examination of shocked sandstone from Meteor Crater, Arizona

    SciTech Connect

    Cygan, R.T.; Boslough, M.B.; Kirkpatrick, R.J.

    1993-08-01

    Solid state silicon-29 nuclear magnetic resonance (NMR) spectroscopy has been used to characterize the formation of high pressure silica polymorphs and amorphous material associated with the shocked Coconino Sandstone from Meteor Crater, Arizona. Five samples of the sandstone were obtained from several locations at the crater to represent a range of shock conditions associated with the hypervelocity impact of a 30 m-diameter meteorite. The NMR spectra for these powdered materials exhibit peaks assigned to quartz, coesite, stishovite, and glass. A new resonance in two of the moderately shocked samples is also observed. This resonance has been identified as a densified form of amorphous silica with silicon in tetrahedra with one hydroxyl group. Such a phase is evidence for a shock-induced reaction between quartz and steam under high pressure conditions.

  5. NMR spectroscopic examination of shocked sandstone from meteor crater, Arizona

    SciTech Connect

    Cygan, R.T.; Boslough, M.B. ); Kirkpatrick, R.J. )

    1994-07-10

    Solid state silicon-29 nuclear magnetic resonance (NMR) spectroscopy has been used to characterize the formation of high pressure silica polymorphs and amorphous material associated with the shocked Coconino Sandstone from Meteor Crater, Arizona. Five samples of the sandstone were obtained from several locations at the crater to represent a range of shock conditions associated with the hypervelocity impact of a 30 m-diameter meteorite. The NMR spectra for these powdered materials exhibit peaks assigned to quartz, coesite, stishovite, and glass. A new resonance in two of the moderately shocked samples is also observed. This resonance has been identified as a densified form of amorphous silica with silicon in tetrahedra with one hydroxyl group. Such a phase is evidence for a shock-induced reaction between quartz and steam under high pressure conditions. [copyright] 1994 American Institute of Physics

  6. In situ 10Be-26Al exposure ages at Meteor Crater, Arizona

    USGS Publications Warehouse

    Nishiizumi, K.; Kohl, C.P.; Shoemaker, E.M.; Arnold, J.R.; Klein, J.; Fink, D.; Middleton, R.

    1991-01-01

    A new method of dating the surface exposure of rocks from in situ production of 10Be and 26Al has been applied to determine the age of Meteor Crater, Arizona. A lower bound on the crater age of 49,200 ?? 1,700 years has been obtained by this method. ?? 1991.

  7. Martian Meteor Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    20 February 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a fairly young meteor impact crater on Mars that is about the same size ( 1 kilometer; 0.62 miles) as the famous Meteor Crater in northern Arizona, U.S.A. Like the Arizona crater, boulders of ejected bedrock can be seen on the crater's ejecta blanket and in the crater itself. This crater is located in the Aethiopis region of Mars near 4.7oN, 224.1oW. Sunlight illuminates the scene from the lower left.

  8. Erosional modification and gully formation at Meteor Crater, Arizona: Insights into crater degradation processes on Mars

    NASA Astrophysics Data System (ADS)

    Kumar, P. Senthil; Head, James W.; Kring, David A.

    2010-08-01

    Hydrogeological modification of Meteor Crater produced a spectacular set of gullies throughout the interior wall in response to rainwater precipitation, snow melting, and possible groundwater discharge. The crater wall has an exceptionally well-developed centripetal drainage pattern consisting of individual alcoves, channels, and fans. Some of the gullies originate from the rim crest and others from the middle crater wall where a lithologic transition occurs; broad gullies occur along the crater corner radial faults. Deeply incised alcoves are well developed on the soft Coconino Sandstone exposed on the middle crater wall, beneath overlying dolomite. In general, the gully locations are along crater wall radial fractures and faults, which are favorable locales of erosion due to preferential rock breakup from faulting, and groundwater flow/discharge; these structural discontinuities are also the locales where the surface runoff from rain precipitation and snow melting can preferentially flow, causing erosion and crater degradation. Channels are well developed on the talus deposits and alluvial fans on the periphery of the crater floor. Caves exposed on the lower crater level point to percolation of surface runoff and selective discharge through fractures on the crater wall. In addition, lake sediments on the crater floor provide significant evidence of a past pluvial climate, when the water table was higher, and groundwater may have seeped from springs on the crater wall. Although these hydrological processes continue at Meteor Crater today, conditions at the crater are much more arid than they were soon after impact, reflecting a climatic shift. This climate shift and the hydrological modifications observed at Meteor Crater provide insights for landscape sculpturing on Mars during various parts of its history.

  9. Computer code simulations of the formation of Meteor Crater, Arizona - Calculations MC-1 and MC-2

    NASA Technical Reports Server (NTRS)

    Roddy, D. J.; Schuster, S. H.; Kreyenhagen, K. N.; Orphal, D. L.

    1980-01-01

    It has been widely accepted that hypervelocity impact processes play a major role in the evolution of the terrestrial planets and satellites. In connection with the development of quantitative methods for the description of impact cratering, it was found that the results provided by two-dimensional finite difference, computer codes is greatly improved when initial impact conditions can be defined and when the numerical results can be tested against field and laboratory data. In order to address this problem, a numerical code study of the formation of Meteor (Barringer) Crater, Arizona, has been undertaken. A description is presented of the major results from the first two code calculations, MC-1 and MC-2, that have been completed for Meteor Crater. Both calculations used an iron meteorite with a kinetic energy of 3.8 Megatons. Calculation MC-1 had an impact velocity of 25 km/sec and MC-2 had an impact velocity of 15 km/sec.

  10. Airflow analyses using thermal imaging in Arizona's Meteor Crater as part of METCRAX II

    NASA Astrophysics Data System (ADS)

    Grudzielanek, A. Martina; Vogt, Roland; Cermak, Jan; Maric, Mateja; Feigenwinter, Iris; Whiteman, C. David; Lehner, Manuela; Hoch, Sebastian W.; Krauß, Matthias G.; Bernhofer, Christian; Pitacco, Andrea

    2016-04-01

    In October 2013 the second Meteor Crater Experiment (METCRAX II) took place at the Barringer Meteorite Crater (aka Meteor Crater) in north central Arizona, USA. Downslope-windstorm-type flows (DWF), the main research objective of METCRAX II, were measured by a comprehensive set of meteorological sensors deployed in and around the crater. During two weeks of METCRAX II five infrared (IR) time lapse cameras (VarioCAM® hr research & VarioCAM® High Definition, InfraTec) were installed at various locations on the crater rim to record high-resolution images of the surface temperatures within the crater from different viewpoints. Changes of surface temperature are indicative of air temperature changes induced by flow dynamics inside the crater, including the DWF. By correlating thermal IR surface temperature data with meteorological sensor data during intensive observational periods the applicability of the IR method of representing flow dynamics can be assessed. We present evaluation results and draw conclusions relative to the application of this method for observing air flow dynamics in the crater. In addition we show the potential of the IR method for METCRAX II in 1) visualizing airflow processes to improve understanding of these flows, and 2) analyzing cold-air flows and cold-air pooling.

  11. Major Element Analysis of the Target Rocks at Meteor Crater, Arizona

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Hoerz, Friedrich; Mittlefehldt, David W.; Varley, Laura; Mertzman, Stan; Roddy, David

    2002-01-01

    We collected approximately 400 rock chips in continuous vertical profile at Meteor Crater, Arizona, representing, from bottom to top, the Coconino, Toroweap, Kaibab, and Moenkopi Formations to support ongoing compositional analyses of the impact melts and their stratigraphic source depth(s) and other studies at Meteor Crater that depend on the composition of the target rocks. These rock chips were subsequently pooled into 23 samples for compositional analysis by XRF (x ray fluorescence) methods, each sample reflecting a specific stratigraphic "subsection" approximately 5-10 in thick. We determined the modal abundance of quartz, dolomite, and calcite for the entire Kaibab Formation at vertical resolutions of 1-2 meters. The Coconino Formation composes the lower half of the crater cavity. It is an exceptionally pure sandstone. The Toroweap is only two inches thick and compositionally similar to Coconino, therefore, it is not a good compositional marker horizon. The Kaibab Formation is approximately 80 in thick. XRD (x ray diffraction) studies show that the Kaibab Formation is dominated by dolomite and quartz, albeit in highly variable proportions; calcite is a minor phase at best. The Kaibab at Meteor Crater is therefore a sandy dolomite rather than a limestone, consistent with pronounced facies changes in the Permian of SE Arizona over short vertical and horizontal distances. The Moenkopi forms the 12 in thick cap rock and has the highest Al2O3 and FeO concentrations of all target rocks. With several examples, we illustrate how this systematic compositional and modal characterization of the target ideologies may contribute to an understanding of Meteor Crater, such as the depth of its melt zone, and to impact cratering in general, such as the liberation of CO2 from shocked carbonates.

  12. Stable Ni isotopes and Be-10 and Al-26 in metallic spheroids from Meteor Crater, Arizona

    NASA Astrophysics Data System (ADS)

    Xue, S.; Herzog, G. F.; Hall, G. S.; Klein, J.; Middleton, R.; Juenemann, D.

    1993-03-01

    The Canyon Diablo spheroids, which are found around Meteor Crater, Arizona, are nickel-enriched objects with diameters from less than 0.1 to several mm. Previous studies have suggested that the enrichment of nickel resulted either from shock-melting of S-rich areas followed by solidification of the liquids under strongly non-equilibrium conditions at rapid cooling rates during flight outward from the crater or from the selective oxidation of iron. Isotopic studies are an effective tool for constraining the degree of open-system evaporation experienced by a system. The purpose of this study was to see whether Ni isotopes had been fractionated by volatilization during spheroid formation. In addition, the cosmogenic nuclides Be-10 and Al-26 were measured to try to estimate the depths in the parent meteorite from which the spheroids came.

  13. Systematic Collection and Analysis of Meteoritic Materials from Meteor Crater, Arizona

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Coffin, P.; Kraft, M.; Lewis, J. S.; Moore, C.; Roddy, D.; Shoemaker, E. M.; Wittke, J. H.

    1996-03-01

    We have started a systematic collection and analysis of meteoritic materials from Meteor Crater, Arizona. Since our earlier report (Kargel, J.S., Kraft, M.D., Roddy, D.J., Wittke, J.H., and Lewis, J.S., 1995, Eos, v. 76, p. F337), we have found 47 small fragments of the Canyon Diablo iron meteorite. We also have collected impactite lapilli; oxidized meteorite fragments; and materials we call amalgamated meteoritic/lithic fragments (AMLs), which consist of target rocks fused with and impregnated by oxidized meteoritic iron. The composition of the impactite lapilli is consistent with admixture of about 3 parts Kaibab Formation (siliceous dolomitic limestone) and 1 part oxidized meteorite. In addition, the lapilli contain microscopic spherules of Ni-rich metal (up to 90% Ni), which can only be explained by partial oxidation of Canyon Diablo metal. Our interpretation of the lapilli is that the impact event melted and devolatilized rocks of the Kaibab Formation (siliceous limestone and dolomite), which mixed with molten meteoritic metal. If impact heated metal droplets or vapor condensates attained about 3500 K, then CO2 released from the Kaibab Formation may have thermally decomposed to CO and O2 and caused partial oxidation of the metal.

  14. A seismic refraction technique used for subsurface investigations at Meteor Crater, Arizona

    NASA Technical Reports Server (NTRS)

    Ackermann, H. D.; Godson, R. H.; Watkins, J. S.

    1975-01-01

    A seismic refraction technique for interpreting the subsurface shape and velocity distribution of an anomalous surface feature such as an impact crater is described. The method requires the existence of a relatively deep refracting horizon and combines data obtained from both standard shallow refraction spreads and distant offset shots by using the deep refractor as a source of initial arrivals. Results obtained from applying the technique to Meteor crater generally agree with the known structure of the crater deduced by other investigators and provide new data on an extensive fractured zone surrounding the crater. The breccia lens is computed to extend roughly 190 m below the crater floor, about 30 m less than the value deduced from early drilling data. Rocks around the crater are fractured as distant as 900 m from the rim crest and to a depth of at least 800 m beneath the crater floor.

  15. Age and geomorphic history of Meteor Crater, Arizona, from cosmogenic 36Cl and 14C in rock varnish

    USGS Publications Warehouse

    Phillips, F.M.; Zreda, M.G.; Smith, S.S.; Elmore, D.; Kubik, P.W.; Dorn, R.I.; Roddy, D.J.

    1991-01-01

    Using cosmogenic 36Cl buildup and rock varnish radiocarbon, we have measured the exposure age of rock surfaces at Meteor Crater, Arizona. Our 36Cl measurements on four dolomite boulders ejected from the crater by the impact yield a mean age of 49.7 ?? 0.85 ka, which is in excellent agreement with an average age of 49 ?? 3 ka obtained from thermoluminescence studies on shock-metamorphosed dolomite and quartz. These ages are supported by undetectably low 14C in the oldest rock varnish sample. ?? 1991.

  16. Zhamanshin meteor crater

    NASA Technical Reports Server (NTRS)

    Florenskiy, P. V.; Dabizha, A. I.

    1987-01-01

    A historical survey and geographic, geologic and geophysical characteristics, the results of many years of study of the Zhamanshin meteor crater in the Northern Aral region, are reported. From this data the likely initial configuration and cause of formation of the crater are reconstructed. Petrographic and mineralogical analyses are given of the brecciated and remelted rocks, of the zhamanshinites and irgizite tektites in particular. The impact melting, dispersion and quenching processes resulting in tektite formation are discussed.

  17. Si-29 NMR spectroscopy of naturally-shocked quartz from Meteor Crater, Arizona: Correlation to Kieffer's classification scheme

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.; Cygan, R. T.; Kirkpatrick, R. J.

    1993-01-01

    We have applied solid state Si-29 nuclear magnetic resonance (NMR) spectroscopy to five naturally-shocked Coconino Sandstone samples from Meteor Crater, Arizona, with the goal of examining possible correlations between NMR spectral characteristics and shock level. This work follows our observation of a strong correlation between the width of a Si-29 resonance and peak shock pressure for experimentally shocked quartz powders. The peak width increase is due to the shock-induced formation of amorphous silica, which increases as a function of shock pressure over the range that we studied (7.5 to 22 GPa). The Coconino Sandstone spectra are in excellent agreement with the classification scheme of Kieffer in terms of presence and approximate abundances of quartz, coesite, stishovite, and glass. We also observe a new resonance in two moderately shocked samples that we have tentatively identified with silicon in tetrahedra with one hydroxyl group in a densified form of amorphous silica.

  18. Meteor Crater, AZ

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Barringer Meteorite Crater (also known as 'Meteor Crater') is a gigantic hole in the middle of the arid sandstone of the Arizona desert. A rim of smashed and jumbled boulders, some of them the size of small houses, rises 50 m above the level of the surrounding plain. The crater itself is nearly a 1500 m wide, and 180 m deep. When Europeans first discovered the crater, the plain around it was covered with chunks of meteoritic iron - over 30 tons of it, scattered over an area 12 to 15 km in diameter. Scientists now believe that the crater was created approximately 50,000 years ago. The meteorite which made it was composed almost entirely of nickel-iron, suggesting that it may have originated in the interior of a small planet. It was 50 m across, weighed roughly 300,000 tons, and was traveling at a speed of 65,000 km per hour. This ASTER 3-D perspective view was created by draping an ASTER bands 3-2-1image over a digital elevation model from the US Geological Survey National Elevation Dataset.

    This image was acquired on May 17, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along

  19. Stable nickel isotopes and cosmogenic berellium-b and aluniinum-26 in metallic spheroids from Meteor Crater, Arizona

    NASA Astrophysics Data System (ADS)

    Xue, S.; Herzog, G. F.; Hall, G. S.; Klein, J.; Middleton, R.; Juenemann, D.

    1995-05-01

    The isotopic abundances of Ni in 17 metallic spheroids from Meteor Crater, Arizona, were determined by inductively coupled plasma mass spectrometry (ICP-MS). Sixteen spheroids have normal isotopic abundances. A 17th shows a marginally detectable mass fractionation of 0.40±0.14%/AMU in favor of the heavier isotopes. The general absence of mass fractionation indicates that open system evaporation caused little loss of Ni. Variable activities of the cosmogenic radionuclides 10Be and 26Al were measured by accelerator mass spectrometry in separate suites of spheroids. Activities of 26Al in most samples and of 10Be in metal cores separated from spheroids indicate that they either (1) come from greater depths in the parent meteoroid than do hand specimens, or (2) lost Al and Be during the process of spheroid formation. One individual spheroid has 10Be and 26Al activities comparable to those of bulk specimens. This result suggests that spheroid formation may occasionally include material from the outermost meter or so of the impactor. Relatively high activities of 10Be, ˜3 dpm/kg, in the siliceous shells of Canyon Diablo spheroids very likely have a meteoric origin.

  20. Ground Penetrating Radar Field Studies of Lunar-Analog Geologic Settings and Processes: Barringer Meteor Crater and Northern Arizona Volcanics

    NASA Astrophysics Data System (ADS)

    Russell, P. S.; Grant, J. A.; Williams, K. K.; Bussey, B.

    2010-12-01

    Ground-Penetrating Radar (GPR) data from terrestrial analog environments can help constrain models for evolution of the lunar surface, aid in interpretation of orbital SAR data, and help predict what might be encountered in the subsurface during future, landed, scientific or engineering operations on the Moon. GPR can yield insight into the physical properties, clast-size distribution, and layering of the subsurface, granting a unique view of the processes affecting an area over geologic time. The purpose of our work is to demonstrate these capabilities at sites at which geologic processes, settings, and/or materials are similar to those that may be encountered on the moon, especially lava flows, impact-crater ejecta, and layered materials with varying properties. We present results from transects obtained at Barringer Meteor Crater, SP Volcano cinder cone, and Sunset Crater Volcano National Monument, all in northern Arizona. Transects were taken at several sites on the ejecta of Meteor Crater, all within a crater radius (~400 m) of the crater rim. Those taken across ejecta lobes or mounds reveal the subsurface contact of the ejecta upper surface and overlying, embaying sediments deposited by later alluvial, colluvial, and/or aeolian processes. Existing mine shafts and pits on the south side of the crater provide cross sections of the subsurface against which we compare adjacent GPR transects. The ‘actual’ number, size, and depth of clasts in the top 1-2 m of the subsurface are estimated from photos of the exposed cross sections. In GPR radargrams, reflections attributed to blocks in the top 2-5 m of the subsurface are counted, and their depth distribution noted. Taking GPR measurements along a transect at two frequencies (200 and 400 MHz) and to various depths, we obtain the ratio of the actual number of blocks in the subsurface to the number detectable with GPR, as well as an assessment of how GPR detections in ejecta decline with depth and depend on antenna

  1. Ejecta patterns of Meteor Crater, Arizona derived from the linear un-mixing of TIMS data and laboratory thermal emission spectra

    NASA Technical Reports Server (NTRS)

    Ramsey, Michael S.; Christensen, Philip R.

    1992-01-01

    Accurate interpretation of thermal infrared data depends upon the understanding and removal of complicating effects. These effects may include physical mixing of various mineralogies and particle sizes, atmospheric absorption and emission, surficial coatings, geometry effects, and differential surface temperatures. The focus is the examination of the linear spectral mixing of individual mineral or endmember spectra. Linear addition of spectra, for particles larger than the wavelength, allows for a straight-forward method of deconvolving the observed spectra, predicting a volume percent of each endmember. The 'forward analysis' of linear mixing (comparing the spectra of physical mixtures to numerical mixtures) has received much attention. The reverse approach of un-mixing thermal emission spectra was examined with remotely sensed data, but no laboratory verification exists. Understanding of the effects of spectral mixing on high resolution laboratory spectra allows for the extrapolation to lower resolution, and often more complicated, remotely gathered data. Thermal Infrared Multispectral Scanner (TIMS) data for Meteor Crater, Arizona were acquired in Sep. 1987. The spectral un-mixing of these data gives a unique test of the laboratory results. Meteor Crater (1.2 km in diameter and 180 m deep) is located in north-central Arizona, west of Canyon Diablo. The arid environment, paucity of vegetation, and low relief make the region ideal for remote data acquisition. Within the horizontal sedimentary sequence that forms the upper Colorado Plateau, the oldest unit sampled by the impact crater was the Permian Coconino Sandstone. A thin bed of the Toroweap Formation, also of Permian age, conformably overlays the Coconino. Above the Toroweap lies the Permian Kiabab Limestone which, in turn, is covered by a thin veneer of the Moenkopi Formation. The Moenkopi is Triassic in age and has two distinct sub-units in the vicinity of the crater. The lower Wupatki member is a fine

  2. Planetary science: Meteor Crater formed by low-velocity impact.

    PubMed

    Melosh, H J; Collins, G S

    2005-03-10

    Meteor Crater in Arizona was the first terrestrial structure to be widely recognized as a meteorite impact scar and has probably been more intensively studied than any other impact crater on Earth. We have discovered something surprising about its mode of formation--namely that the surface-impact velocity of the iron meteorite that created Meteor Crater was only about 12 km s(-1). This is close to the 9.4 km s(-1) minimum originally proposed but far short of the 15-20 km s(-1) that has been widely assumed--a realization that clears up a long-standing puzzle about why the crater does not contain large volumes of rock melted by the impact.

  3. Harvey Nininger's 1948 attempt to nationalize Meteor Crater.

    NASA Astrophysics Data System (ADS)

    Plotkin, H.; Clarke, R. S., Jr.

    2008-10-01

    Harvey Nininger successfully petitioned the American Astronomical Society to pass a motion in support of nationalizing Meteor Crater, Arizona, at its June 1948 meeting. He alleged that the Barringer family, who held title to the crater, was depriving American citizens of its scenic beauty and scientific value. He then reportedly went on to make the unauthorized—and false—claim that the family would be receptive to a fair purchase offer for the crater. The Barringers, who had not been given advance warning of the petition and were not present at the meeting, felt ambushed. They quickly and forcefully rebutted Nininger’s allegations, made it clear they had no intention of relinquishing their title to the crater, and terminated his exploration rights. What led Nininger to such a curious and self-defeating act? Based on our reading of his voluminous personal correspondence, we conclude that it was rooted primarily in his complex relationship with Frederick Leonard and Lincoln LaPaz, and his desire to establish a national institute for meteoritical research—with them, originally, but after a serious falling out, on his own. Prevented from moving his American Meteorite Museum to the crater rim, Nininger wondered what would happen if the crater was nationalized and made into a public park, with an accompanying tourist center and museum. With characteristic élan, he could picture himself at its head, with a secure salary and adequate space to exhibit his meteorite collection.

  4. Strawberry Crater Roadless Areas, Arizona

    SciTech Connect

    Wolfe, E.W.; Light, T.D.

    1984-01-01

    The results of a mineral survey conducted in 1980 in the Strawberry Crater Roadless Areas, Arizona, indicate little promise for the occurrence of metallic mineral or fossil fuel resources in the area. The area contains deposits of cinder, useful for the production of aggregate block, and for deposits of decorative stone; however, similar deposits occur in great abundance throughout the San Francisco volcanic field outside the roadless areas. There is a possibility that the Strawberry Crater Roadless Areas may overlie part of a crustal magma chamber or still warm pluton related to the San Francisco Mountain stratovolcano or to basaltic vents of late Pleistocene or Holocene age. Such a magma chamber or pluton beneath the Strawberry Crater Roadless Areas might be an energy source from which a hot-, dry-rock geothermal energy system could be developed, and a probable geothermal resource potential is therefore assigned to these areas.

  5. STRAWBERRY CRATER ROADLESS AREAS, ARIZONA.

    USGS Publications Warehouse

    Wolfe, Edward W.; Light, Thomas D.

    1984-01-01

    The results of a mineral survey conducted in the Strawberry Crater Roadless Areas, Arizona, indicate little promise for the occurrence of metallic mineral or fossil fuel resources in the area. The area contains deposits of cinder, useful for the production of aggregate block, and for deposits of decorative stone; however, similar deposits occur in great abundance throughout the San Francisco volcanic field outside the roadless areas. There is a possibility that the Strawberry Crater Roadless Areas may overlie part of a crustal magma chamber or still warm pluton related to the San Francisco Mountain stratovolcano or to basaltic vents of late Pleistocene or Holocene age. Such a magma chamber or pluton beneath the Strawberry Crater Roadless Areas might be an energy source from which a hot-, dry-rock geothermal energy system could be developed, and a probable geothermal resource potential is therefore assigned to these areas. 9 refs.

  6. Siderophile element fractionation in meteor crater impact glasses and metallic spherules

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; See, T. H.; Scott, E. R. D.

    1993-01-01

    Meteor Crater, Arizona provides an opportunity to study, in detail, elemental fractionation processes occurring during impacts through the study of target rocks, meteorite projectile and several types of impact products. We have performed EMPA and INAA on target rocks, two types of impact glass and metallic spherules from Meteor Crater. Using literature data for the well studied Canyon Diablo iron we can show that different siderophite element fractionations affected the impact glasses than affected the metallic spherules. The impact glasses primarily lost Au, while the metallic spherules lost Fe relative to other siderophile elements.

  7. Siderophile element fractionation in meteor crater impact glasses and metallic spherules

    NASA Astrophysics Data System (ADS)

    Mittlefehldt, David W.; See, T. H.; Scott, E. R. D.

    1993-03-01

    Meteor Crater, Arizona provides an opportunity to study, in detail, elemental fractionation processes occurring during impacts through the study of target rocks, meteorite projectile and several types of impact products. We have performed EMPA and INAA on target rocks, two types of impact glass and metallic spherules from Meteor Crater. Using literature data for the well studied Canyon Diablo iron we can show that different siderophite element fractionations affected the impact glasses than affected the metallic spherules. The impact glasses primarily lost Au, while the metallic spherules lost Fe relative to other siderophile elements.

  8. NASA Meteor Cam Video of June 2, 2016 Arizona Fireball

    NASA Video Gallery

    Video obtained from the NASA meteor camera situated at the MMT Observatory on the site of the Fred Lawrence Whipple Observatory, located on Mount Hopkins, Arizona, in the Santa Rita Mountains. Cred...

  9. Meteor Crater: An Analog for Using Landforms to Reconstruct Past Hydrologic Conditions

    NASA Astrophysics Data System (ADS)

    Palucis, M. C.; Dietrich, W. E.; Howard, A. D.; Nishiizumi, K.; Caffee, M. W.; Kring, D. A.

    2015-12-01

    Recent work suggests that debris flow activity has occurred on Mars in the last few million years during high orbital obliquities, but estimating the amount and frequency of liquid water needed to generate these types of flows is still poorly constrained. While it is relatively common to estimate water amounts needed to produce landforms on Mars, such as gullies or alluvial fans, this is something rarely done on Earth. Consequently, there is little field data on the linkage between climate (snowmelt or rainfall events) and the amount of runoff needed to produce specific volumes of sediment in a landform. Here, we present field and modeling data from Meteor Crater, which is a ~50,000 year old impact crater in northern Arizona (USA). Though it is very well preserved, it has developed gullies along its inner wall, similar in form to many gullies on Mars. Meteor Crater, similar to many Martian craters, has also gone through a change in a climate based on the ~30 m of lake sediments on its now dry floor, and what has eroded from its walls has deposited on its floor, making it a closed system. We show using LiDAR-derived topographic data and field observations that debris flows, likely generated by runoff entrainment into talus bordering bedrock cliffs of the crater walls, drove erosion and deposition processes at Meteor Crater. Cosmogenic dating of levee deposits indicates that debris flows ceased in the early Holocene, synchronous with regional drying. For a water-to-rock ratio of 0.3 at the time of transport, which is based on data from rotating drum experiments, it would have taken ~150,000 m3 of water to transport the estimated ~500,000 m3 of debris flow deposits found at the surface of the crater floor. This extensive erosion would require less than 0.4 m of total runoff over the 0.35 km2 upslope source area of the crater, or ~26 mm of runoff per debris flow event. Much more runoff did occur however, as evidenced by lake deposits on the crater floor and Holocene

  10. Meteor Crater: Energy of formation - Implications of centrifuge scaling

    NASA Technical Reports Server (NTRS)

    Schmidt, R. M.

    1980-01-01

    Recent work on explosive cratering has demonstrated the utility of performing subscale experiments on a geotechnic centrifuge to develop scaling rules for very large energy events. The present investigation is concerned with an extension of this technique to impact cratering. Experiments have been performed using a projectile gun mounted directly on the centrifuge rotor to launch projectiles into a suitable soil container undergoing centripetal accelerations in excess of 500 G. The pump tube of a two-stage light-gas gun was used to attain impact velocities of approximately 2 km/sec. The results of the experiments indicate that the energy of formation of any large impact crater depends upon the impact velocity. This dependence, shown for the case of Meteor Crater, is consistent with analogous results for the specific energy dependence of explosives and is expected to persist to impact velocities in excess of 25 km/sec.

  11. Creation of High Resolution Terrain Models of Barringer Meteorite Crater (Meteor Crater) Using Photogrammetry and Terrestrial Laser Scanning Methods

    NASA Technical Reports Server (NTRS)

    Brown, Richard B.; Navard, Andrew R.; Holland, Donald E.; McKellip, Rodney D.; Brannon, David P.

    2010-01-01

    Barringer Meteorite Crater or Meteor Crater, AZ, has been a site of high interest for lunar and Mars analog crater and terrain studies since the early days of the Apollo-Saturn program. It continues to be a site of exceptional interest to lunar, Mars, and other planetary crater and impact analog studies because of its relatively young age (est. 50 thousand years) and well-preserved structure. High resolution (2 meter to 1 decimeter) digital terrain models of Meteor Crater in whole or in part were created at NASA Stennis Space Center to support several lunar surface analog modeling activities using photogrammetric and ground based laser scanning techniques. The dataset created by this activity provides new and highly accurate 3D models of the inside slope of the crater as well as the downslope rock distribution of the western ejecta field. The data are presented to the science community for possible use in furthering studies of Meteor Crater and impact craters in general as well as its current near term lunar exploration use in providing a beneficial test model for lunar surface analog modeling and surface operation studies.

  12. Formation of the central uplift in meteoric craters

    NASA Technical Reports Server (NTRS)

    Ivanov, B. A.; Bazilevskiy, A. T.; Sazonova, L. V.

    1986-01-01

    Data are presented on the sizes of impact craters with central uplifts on the earth, moon, and terrestrial planets. It is proposed that the central uplift of the Kara crater in the USSR was formed by impact metamorphism of rocks along a crater having a depth of about 600 meters. A theoretical analysis of the mechanics of hypervelocity impact cratering is used to investigate the features of shock-wave attenuation in the depths of the target and the amount of impact melt formed during this process. An attempt is made to determine the velocity of rock motion during the formation of central uplifts in terrestrial craters.

  13. Williston basin. Milestone test renews interest in Red Wing Creek field's meteor crater

    SciTech Connect

    Rountree, R.

    1983-04-01

    New drilling in the vicinity of Red Wing Creek field in McKenzie County, North Dakota has renewed interest in an area that has intrigued geologists for a number of years. Red Wing Creek was discovered in 1972 by True Oil Co. and has demonstrated better per-acre oil recovery than any other oil field in the Williston Basin. Fully developed several years ago, the field produces from what has been described as the central peak of an astrobleme, within a meteor crater. The current test by Milestone Petroleum Inc. is permitted to 14,200 ft and is being drilled on the rim of the crater, in SW SW 35-148n-101w, approx. a mile south of Red Wing production. The primary objective is the Ordovician Red River; but plans call for drilling deeper, through the Winnipeg, to below the Mississippian sediments that produce at Red Wing Creek field. At least 3 unsuccessful Red River tests have been drilled in or near the field in earlier years, but not in the area where Milestone is drilling. Production at Red Wing has come from porosity zones in a Mississippian oil column that measured 2600 ft in the original well; the better wells are in the heart of the field, on a rebound cone in the center of the crater.

  14. Ground penetrating radar geologic field studies of the ejecta of Barringer Meteorite Crater, Arizona, as a planetary analog

    NASA Astrophysics Data System (ADS)

    Russell, Patrick S.; Grant, John A.; Williams, Kevin K.; Carter, Lynn M.; Brent Garry, W.; Daubar, Ingrid J.

    2013-09-01

    penetrating radar (GPR) has been a useful geophysical tool in investigating a variety of shallow subsurface geological environments on Earth. Here we investigate the capabilities of GPR to provide useful geologic information in one of the most common geologic settings of planetary surfaces, impact crater ejecta. Three types of ejecta are surveyed with GPR at two wavelengths (400 MHz, 200 MHz) at Meteor Crater, Arizona, with the goal of capturing the GPR signature of the subsurface rock population. In order to "ground truth" the GPR characterization, subsurface rocks are visually counted and measured in preexisting subsurface exposures immediately adjacent to and below the GPR transect. The rock size-frequency distribution from 10 to 50 cm based on visual counts is well described by both power law and exponential functions, the former slightly better, reflecting the control of fragmentation processes during the impact-ejection event. GPR counts are found to overestimate the number of subsurface rocks in the upper meter (by a factor of 2-3x) and underestimate in the second meter of depth (0.6-1.0x), results attributable to the highly scattering nature of blocky ejecta. Overturned ejecta that is fractured yet in which fragments are minimally displaced from their complement fragments produces fewer GPR returns than well-mixed ejecta. The use of two wavelengths and division of results into multiple depth zones provides multiple aspects by which to characterize the ejecta block population. Remote GPR measurement of subsurface ejecta in future planetary situations with no subsurface exposure can be used to characterize those rock populations relative to that of Meteor Crater.

  15. Impact melt- and projectile-bearing ejecta at Barringer Crater, Arizona

    NASA Astrophysics Data System (ADS)

    Osinski, Gordon R.; Bunch, Ted E.; Flemming, Roberta L.; Buitenhuis, Eric; Wittke, James H.

    2015-12-01

    Our understanding of the impact cratering process continues to evolve and, even at well-known and well-studied structures, there is still much to be learned. Here, we present the results of a study on impact-generated melt phases within ejecta at Barringer Crater, Arizona, one of the first impact craters on Earth to be recognized and arguably the most famous. We report on previously unknown impact melt-bearing breccias that contain dispersed fragments of the projectile as well as impact glasses that contain a high proportion of projectile material - higher than any other glasses previously reported from this site. These glasses are distinctly different from so-called "melt beads" that are found as a lag deposit on the present-day erosion surface and that we also study. It is proposed that the melts in these impact breccias were derived from a more constrained sub-region of the melt zone that was very shallow and that also had a larger projectile contribution. In addition to low- and high-Fe melt beads documented previously, we document Ca-Mg-rich glasses and calcite globules within silicate glass that provide definitive evidence that carbonates underwent melting during the formation of Barringer Crater. We propose that the melting of dolomite produces Ca-Mg-rich melts from which calcite is the dominant liquidus phase. This explains the perhaps surprising finding that despite dolomite being the dominant rock type at many impact sites, including Barringer Crater, calcite is the dominant melt product. When taken together with our estimate for the amount of impact melt products dispersed on, and just below, the present-day erosional surface, it is clear that the amount of melt produced at Barringer Crater is higher than previously estimated and is more consistent with recent numerical modeling studies. This work adds to the growing recognition that sedimentary rocks melt during hypervelocity impact and do not just decompose and/or devolatilize as was previously thought

  16. Impact Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    Today marks the 45th anniversary of the dawn of the Space Age (October 4, 1957). On this date the former Soviet Union launched the world's first satellite, Sputnik 1. Sputnik means fellow traveler. For comparison Sputnik 1 weighed only 83.6 kg (184 pounds) while Mars Odyssey weighs in at 758 kg (1,671 pounds).

    This scene shows several interesting geologic features associated with impact craters on Mars. The continuous lobes of material that make up the ejecta blanket of the large impact crater are evidence that the crater ejecta were fluidized upon impact of the meteor that formed the crater. Volatiles within the surface mixed with the ejecta upon impact thus creating the fluidized form. Several smaller impact craters are also observed within the ejecta blanket of the larger impact crater giving a relative timing of events. Layering of geologic units is also observed within the large impact crater walls and floor and may represent different compositional units that erode at variable rates. Cliff faces, dissected gullies, and heavily eroded impact craters are observed in the bottom half of the image at the terminus of a flat-topped plateau.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS

  17. Measurement of airborne particle concentrations near the Sunset Crater volcano, Arizona.

    PubMed

    Benke, Roland R; Hooper, Donald M; Durham, James S; Bannon, Donald R; Compton, Keith L; Necsoiu, Marius; McGinnis, Ronald N

    2009-02-01

    Direct measurements of airborne particle mass concentrations or mass loads are often used to estimate health effects from the inhalation of resuspended contaminated soil. Airborne particle mass concentrations were measured using a personal sampler under a variety of surface-disturbing activities within different depositional environments at both volcanic and nonvolcanic sites near the Sunset Crater volcano in northern Arizona. Focused field investigations were performed at this analog site to improve the understanding of natural and human-induced processes at Yucca Mountain, Nevada. The level of surface-disturbing activity was found to be the most influential factor affecting the measured airborne particle concentrations, which increased over three orders of magnitude relative to ambient conditions. As the surface-disturbing activity level increased, the particle size distribution and the majority of airborne particle mass shifted from particles with aerodynamic diameters less than 10 mum (0.00039 in) to particles with aerodynamic diameters greater than 10 mum (0.00039 in). Under ambient conditions, above average wind speeds tended to increase airborne particle concentrations. In contrast, stronger winds tended to decrease airborne particle concentrations in the breathing zone during light and heavy surface-disturbing conditions. A slight increase in the average airborne particle concentration during ambient conditions was found above older nonvolcanic deposits, which tended to be finer grained than the Sunset Crater tephra deposits. An increased airborne particle concentration was realized when walking on an extremely fine-grained deposit, but the sensitivity of airborne particle concentrations to the resuspendible fraction of near-surface grain mass was not conclusive in the field setting when human activities disturbed the bulk of near-surface material. Although the limited sample size precluded detailed statistical analysis, the differences in airborne particle

  18. Salt-bearing fumarole deposits in the summit crater of Oldoinyo Lengai, Northern Tanzania: interactions between natrocarbonatite lava and meteoric water

    NASA Astrophysics Data System (ADS)

    Genge, M. J.; Balme, M.; Jones, A. P.

    2001-04-01

    Oldoinyo Lengai in the Northern Tanzania rift is the only active nephelinite-carbonatite stratovolcano. We report the discovery of thermonatrite, aphthitalite, halite and sylvite fumarole deposits on recent natrocarbonatite lava flows erupted in the summit crater during the wet season. These salt deposits occur as delicate, concave fringes or tubes that line the cooling cracks in the lava flows and consist of intergrowths of euhedral crystals. The presence of a dark altered zone, depleted in halides and alkalies, adjacent to cooling cracks and observations of steam fumaroles emanating from the fractures suggest that the salts are formed by sublimation from saturated vapours generated by the extrusion of lavas over meteoric water. The crystallisation sequence recorded in the salts suggests that mixing between meteoric steam and magmatic CO 2 and H 2S occurs at high temperatures resulting in the sublimation of carbonates and sulphates. At lower temperatures the vapours are dominated by meteoric steam and sublimate halides. The high solubility of the fumarole salts within meteoric water and their formation only during the wet season implies that these are ephemeral deposits that are unlikely to be preserved in the geological record.

  19. Tephra Blanket Record of a Violent Strombolian Eruption, Sunset Crater, Arizona

    NASA Astrophysics Data System (ADS)

    Wagner, K. D.; Ort, M. H.

    2015-12-01

    New fieldwork provides a detailed description of the widespread tephra of the ~1085 CE Sunset Crater eruption in the San Francisco Volcanic Field, Arizona, and refines interpretation of the eruptive sequence. The basal fine-lapilli tephra-fall-units I-IV are considered in detail. Units I and II are massive, with Unit I composed of angular to spiny clasts and II composed of more equant, oxidized clasts. Units III and IV have inversely graded bases and massive tops and are composed of angular to spiny iridescent and mixed iridescent and oxidized angular clasts, respectively. Xenoliths are rare in all units (<0.1%): sedimentary xenoliths are consistent with the known shallow country rock (Moenkopi and Kaibab Fms); magmatic xenoliths are pumiceous rhyolite mingled with basalt. Unit II is less sideromelane rich (20%) than Units I, III, and IV (60-80%). Above these units are at least two more coarse tephra-fall units. Variably preserved ash and fine-lapilli laminae cap the tephra blanket. This deposit is highly susceptible to reworking, and likely experienced both syn- and post-eruptive aeolian redistribution. It appears as either well sorted, alternating planar-parallel beds of ash and fine lapilli with rare wavy beds, or as cross- or planar-bedded ash. The tephra blanket as a whole is stratigraphically underlain by a fissure-fed lava flow and lapilli-fall units are intercalated with two larger flows. Mean grain size is coarsest in Unit I but coarsens in Units II-IV. Units I, III, and IV are moderately to poorly sorted with no skew. Unit II is better sorted and more coarse-skewed. Units I and III are slightly more platykurtic than II and IV. Without considering possible spatial effects introduced by dispersion patterns, bootstrap ANOVA confidence intervals suggest at least Unit II sorting and skewness are from distinct populations. Isopachs indicate Units I and II were associated with a 10-km-long fissure source. After or during Unit II's deposition, activity localized

  20. Degradation of selected terrestrial and Martian impact craters

    NASA Astrophysics Data System (ADS)

    Grant, J. A.; Schultz, P. H.

    1993-06-01

    The history of degradation of 50,000-yr-old 1.2-km-diam Meteor Crater in Arizona is defined using field mapping, and the degradation states of the progressively more degraded 68,000-yr-old 1.8-km-diam Lonar Crater in Indiana and 0.5-3.0 Myr old 1.75-km-diam Talemzane Crater in Algeria are assessed using air photos. The results on these terrestrial craters are then compared with the gradational morphology associated with craters in southern Ismenius Lacus on Mars, in order to develop first-order constraints on gradational activity. Common degradation signatures associated with craters on both planets are described. These signatures are used to assemble a first-order degradational sequence for the terrestrial craters that is then compared with the Martian degradational signatures to infer past processes and climate.

  1. Impact Crater in Coastal Patagonia

    NASA Technical Reports Server (NTRS)

    D'Antoni, Hector L; Lasta, Carlos A.; Condon, Estelle (Technical Monitor)

    2000-01-01

    Impact craters are geological structures attributed to the impact of a meteoroid on the Earth's (or other planet's) surface (Koeberl and Sharpton. 1999). The inner planets of the solar system as well as other bodies such as our moon show extensive meteoroid impacts (Gallant 1964, French 1998). Because of its size and gravity, we may assume that the Earth has been heavily bombarded but weathering and erosion have erased or masked most of these features. In the 1920's, a meteor crater (Mark 1987) was identified in Arizona and to this first finding the identification of a large number of impact structures on Earth followed (Hodge 1994). Shock metamorphic effects are associated with meteorite impact craters. Due to extremely high pressures, shatter cones are produced as well as planar features in quartz and feldspar grains, diaplectic glass and high-pressure mineral phases such as stishovite (French 1998).

  2. Meteor Showers.

    ERIC Educational Resources Information Center

    Kronk, Gary W.

    1988-01-01

    Described are the history, formation, and observing techniques of meteors and comets. Provided are several pictures, diagrams, meteor organizations and publications, and meteor shower observation tables. (YP)

  3. Ground Water in the Wapatki and Sunset Crater National Monuments, Coconino County, Arizona

    USGS Publications Warehouse

    Cosner, Oliver J.

    1962-01-01

    The Wupatki and Sunset Crater National Monuments are 15 and 30 miles, respectively, northeast of Flagstaff on the San Francisco Plateau. They are in the eastern part of the San Francisco volcanic field and on the southwest flank of the Black Mesa basin. The Supai formation, Coconino sandstone, Kaibab limestone, Moenkopi formation, and Chinle formation are overlain in parts of the area by volcanic rocks and alluvium. The regional water table occurs chiefly in the Coconino sandstone at altitudes of about 5,000 feet at Sunset Crater, about 4,075 feet near Wupatki Ruin, and about 4,100 feet near Citadel Ruin. The general movement of the ground water is northeastward. Small supplies of perched water occur in the Moenkopi formation and in the alluvium, and perched water may be present locally in the volcanic rocks. The results of the field investigation indicated that adequate ground-water supplies were available from the Coconino sandstone to meet the needs of the National Monuments, and a well was drilled at the Wupatki Monument headquarters in 1958 to a total depth of 904 feet. It produced 50 gpm (gallons per minute) of water with 45 feet of drawdown from a static water level of 780 feet below land surface.

  4. Geochemical and C, O, Sr, and U-series isotopic evidence for the meteoric origin of calcrete at Solitario Wash, Crater Flat, Nevada, USA

    USGS Publications Warehouse

    Neymark, L.A.; Paces, J.B.; Marshall, B.D.; Peterman, Z.E.; Whelan, J.F.

    2005-01-01

    Calcite-rich soils (calcrete) in alluvium and colluvium at Solitario Wash, Crater Flat, Nevada, USA, contain pedogenic calcite and opaline silica similar to soils present elsewhere in the semi-arid southwestern United States. Nevertheless, a ground-water discharge origin for the Solitario Wash soil deposits was proposed in a series of publications proposing elevation-dependent variations of carbon and oxygen isotopes in calcrete samples. Discharge of ground water in the past would raise the possibility of future flooding in the unsaturated zone at Yucca Mountain, Nevada, site of a proposed high-level nuclear waste repository. New geochemical and carbon, oxygen, strontium, and uranium-series isotopic data disprove the presence of systematic elevation-isotopic composition relations, which are the main justification given for a proposed ground-water discharge origin of the calcrete deposits at Solitario Wash. Values of ??13C (-4.1 to -7.8 per mil [???]), ??18O (23.8-17.2???), 87Sr/ 86Sr (0.71270-0.71146), and initial 234U/238U activity ratios of about 1.6 in the new calcrete samples are within ranges previously observed in pedogenic carbonate deposits at Yucca Mountain and are incompatible with a ground-water origin for the calcrete. Variations in carbon and oxygen isotopes in Solitario Wash calcrete likely are caused by pedogenic deposition from meteoric water under varying Quaternary climatic conditions over hundreds of thousands of years. ?? Springer-Verlag 2005.

  5. Geochemical and C, O, Sr, and U-series isotopic evidence for the meteoric origin of calcrete at Solitario Wash, Crater Flat, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Neymark, L. A.; Paces, J. B.; Marshall, B. D.; Peterman, Z. E.; Whelan, J. F.

    2005-08-01

    Calcite-rich soils (calcrete) in alluvium and colluvium at Solitario Wash, Crater Flat, Nevada, USA, contain pedogenic calcite and opaline silica similar to soils present elsewhere in the semi-arid southwestern United States. Nevertheless, a ground-water discharge origin for the Solitario Wash soil deposits was proposed in a series of publications proposing elevation-dependent variations of carbon and oxygen isotopes in calcrete samples. Discharge of ground water in the past would raise the possibility of future flooding in the unsaturated zone at Yucca Mountain, Nevada, site of a proposed high-level nuclear waste repository. New geochemical and carbon, oxygen, strontium, and uranium-series isotopic data disprove the presence of systematic elevation-isotopic composition relations, which are the main justification given for a proposed ground-water discharge origin of the calcrete deposits at Solitario Wash. Values of δ13C (-4.1 to -7.8 per mil [‰]), δ18O (23.8-17.2‰), 87Sr/86Sr (0.71270-0.71146), and initial 234U/238U activity ratios of about 1.6 in the new calcrete samples are within ranges previously observed in pedogenic carbonate deposits at Yucca Mountain and are incompatible with a ground-water origin for the calcrete. Variations in carbon and oxygen isotopes in Solitario Wash calcrete likely are caused by pedogenic deposition from meteoric water under varying Quaternary climatic conditions over hundreds of thousands of years.

  6. Craters Filling Craters

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    In today's image the large crater retains its original bowl shaped interior and the radial surface pattern on the ejecta. Just to the south is a crater that has been infilled by ejecta from the larger crater. The overlapping of ejecta blankets can be used to get relative age relationships, in this case the smaller crater to the south formed first, and the larger crater formed sometime later.

    Image information: VIS instrument. Latitude 29.6, Longitude 96.3 East (263.7 West). 37 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Big Crater as Viewed by Pathfinder Lander

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The 'Big Crater' is actually a relatively small Martian crater to the southeast of the Mars Pathfinder landing site. It is 1500 meters (4900 feet) in diameter, or about the same size as Meteor Crater in Arizona. Superimposed on the rim of Big Crater (the central part of the rim as seen here) is a smaller crater nicknamed 'Rimshot Crater.' The distance to this smaller crater, and the nearest portion of the rim of Big Crater, is 2200 meters (7200 feet). To the right of Big Crater, south from the spacecraft, almost lost in the atmospheric dust 'haze,' is the large streamlined mountain nicknamed 'Far Knob.' This mountain is over 450 meters (1480 feet) tall, and is over 30 kilometers (19 miles) from the spacecraft. Another, smaller and closer knob, nicknamed 'Southeast Knob' can be seen as a triangular peak to the left of the flanks of the Big Crater rim. This knob is 21 kilometers (13 miles) southeast from the spacecraft.

    The larger features visible in this scene - Big Crater, Far Knob, and Southeast Knob - were discovered on the first panoramas taken by the IMP camera on the 4th of July, 1997, and subsequently identified in Viking Orbiter images taken over 20 years ago. The scene includes rocky ridges and swales or 'hummocks' of flood debris that range from a few tens of meters away from the lander to the distance of South Twin Peak. The largest rock in the nearfield, just left of center in the foreground, nicknamed 'Otter', is about 1.5 meters (4.9 feet) long and 10 meters (33 feet) from the spacecraft.

    This view of Big Crater was produced by combining 6 individual 'Superpan' scenes from the left and right eyes of the IMP camera. Each frame consists of 8 individual frames (left eye) and 7 frames (right eye) taken with different color filters that were enlarged by 500% and then co-added using Adobe Photoshop to produce, in effect, a super-resolution panchromatic frame that is sharper than an individual frame would be.

    Mars Pathfinder is the second in NASA

  8. Henry Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    Located in Arabia Terra, the crater shown here is known as Henry Crater. Like many other craters on Mars, the interior of Henry Crater is filled with a layered deposit. These materials were brought into the crater sometime after the impact formed the crater. The fine scale of layering can be seen in the right- center portion of the image.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Partially-Exhumed Crater in Northern Terra Meridiani: Stereo Anaglyph of overlapping coverage in

    NASA Technical Reports Server (NTRS)

    2002-01-01

    MGS MOC Release No. MOC2-316, 8 August 2002 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images have shown time and again that the geology and history of Mars is complex. These two pictures show different views of a circular feature in northern Terra Meridiani at 2.3oN, 356.6oW. The first is a mosaic of 3 MOC narrow angle images acquired in August 1999, November 2000, and June 2002. The black area is a gap in coverage resulting from data lost after transmission from Mars to Earth. The second picture is a stereo ('3-D') anaglyph of a portion of the same circular feature. It has been rotated 90o clockwise to show the stereo effect that results from combining the August 1999 image, which was taken while the spacecraft was pointed nadir (straight down) and the June 2002 image, taken with the spacecraft pointing backwards about 16o (i.e., MGS Relay-16 orientation). The anaglyph should be viewed with '3-D' glasses (red in left eye, blue in the right). The circular feature was once an impact crater. The crater was 2.6 km (1.6 mi) across, about 2.6 times larger than the famous Meteor Crater in northern Arizona. Terra Meridiani, like northern Arizona, is a region of vast exposures of layered sedimentary rock. Like the crater in Arizona, this one was formed by a meteor that impacted a layered rock substrate. Later, this crater was filled and completely buried under more than 100 m (more than 327 ft) of additional layered sediment. The sediment hardened to become rock. Later still, the rock was eroded away--by processes unknown (perhaps wind)--to re-expose the buried crater. The crater today remains mostly filled with sediment, its present rim standing only about 40 m (130 ft) above its surroundings.

  10. Secrets of the Wabar craters

    USGS Publications Warehouse

    Wynn, Jeffrey C.; Shoemaker, Eugene M.

    1997-01-01

    Focuses on the existence of craters in the Empty Quarter of Saudi Arabia created by the impact of meteors in early times. Mars Pathfinder and Mars Global Surveyor's encounter with impact craters; Elimination of craters in the Earth's surface by the action of natural elements; Impact sites' demand for careful scientific inspections; Location of the impact sites.

  11. Crater Comparison

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    These two craters show the two types of crater interiors found on Mars -- original and modified. The crater on the right has its original bowl shape. The crater of the left has had its interior modified by an infilling of lava.

    Image information: VIS instrument. Latitude 27.6, Longitude 194.5 East (165.5 West). 37 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Meteor44 Video Meteor Photometry

    NASA Technical Reports Server (NTRS)

    Swift, Wesley R.; Suggs, Robert M.; Cooke, William J.

    2004-01-01

    Meteor44 is a software system developed at MSFC for the calibration and analysis of video meteor data. The dynamic range of the (8bit) video data is extended by approximately 4 magnitudes for both meteors and stellar images using saturation compensation. Camera and lens specific saturation compensation coefficients are derived from artificial variable star laboratory measurements. Saturation compensation significantly increases the number of meteors with measured intensity and improves the estimation of meteoroid mass distribution. Astrometry is automated to determine each image's plate coefficient using appropriate star catalogs. The images are simultaneously intensity calibrated from the contained stars to determine the photon sensitivity and the saturation level referenced above the atmosphere. The camera s spectral response is used to compensate for stellar color index and typical meteor spectra in order to report meteor light curves in traditional visual magnitude units. Recent efforts include improved camera calibration procedures, long focal length 'streak' meteor photometry and two-station track determination. Meteor44 has been used to analyze data from the 2001, 2002 and 2003 MSFC Leonid observational campaigns as well as several lesser showers. The software is interactive and can be demonstrated using data from recent Leonid campaigns.

  13. Meteor44 Video Meteor Photometry

    NASA Technical Reports Server (NTRS)

    Swift, Wesley R.; Suggs, Robert M.; Cooke, William J.

    2004-01-01

    Meteor44 is a software system developed at MSFC for the calibration and analysis of video meteor data. The dynamic range of the (8bit) video data is extended by approximately 4 magnitudes for both meteors and stellar images using saturation compensation. Camera and lens specific saturation compensation coefficients are derived from artificial variable star laboratory measurements. Saturation compensation significantly increases the number of meteors with measured intensity and improves the estimation of meteoroid mass distribution. Astrometry is automated to determine each image s plate coefficient using appropriate star catalogs. The images are simultaneously intensity calibrated from the contained stars to determine the photon sensitivity and the saturation level referenced above the atmosphere. The camera s spectral response is used to compensate for stellar color index and typical meteor spectra in order to report meteor light curves in traditional visual magnitude units. Recent efforts include improved camera calibration procedures, long focal length "streak" meteor photome&y and two-station track determination. Meteor44 has been used to analyze data from the 2001.2002 and 2003 MSFC Leonid observational campaigns as well as several lesser showers. The software is interactive and can be demonstrated using data from recent Leonid campaigns.

  14. Crater Landslide

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA06088 Crater Landslide

    This landslide occurs in an unnamed crater southeast of Millochau Crater.

    Image information: VIS instrument. Latitude -24.4N, Longitude 87.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Crater Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA06085 Crater Clouds

    The crater on the right side of this image is affecting the local wind regime. Note the bright line of clouds streaming off the north rim of the crater.

    Image information: VIS instrument. Latitude -78.8N, Longitude 320.0E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Cydonia Craters

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Eroded mesas and secondary craters dot the landscape in this area of the Cydonia Mensae region. The single oval-shaped crater displays a 'butterfly' ejecta pattern, indicating that the crater formed from a low-angle impact.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 32.9, Longitude 343.8 East (16.2 West). 19 meter/pixel resolution.

  17. Video Meteor Fluxes

    NASA Technical Reports Server (NTRS)

    Campbell-Brown, M. D.; Braid, D.

    2011-01-01

    The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to

  18. Gora Konder Crater, Yakutsk, CIS

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Gora Konder Crater, Yakutsk, CIS (57.5N,134.5E) is located in a very remote region of the Republic of Yakutsk, CIS where little ground survey work has been done. It is not known for certain wether Gora Konder crater is the extinct caldera of an ancient volcano or an impact crater from a meteor strike since both occurrences may often exhibit similar visual appearances and only a ground survey can make a positive determination.

  19. Palos Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    Palos Crater has been suggested as a future landing site for Mars Missions. This crater has a channel called Tinto Vallis, which enters from the south. This site was suggested as a landing site because it may contain lake deposits. Palos Crater is named in honor of the port city in Spain from which Christopher Columbus sailed on his way to the New World in August of 1492. The floor of Palos Crater appears to be layered in places providing further evidence that this site may in fact have been the location of an ancient lake.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Scaling craters in carbonates: Electron paramagnetic resonance analysis of shock damage

    NASA Technical Reports Server (NTRS)

    Polanskey, Carol A.; Ahrens, Thomas J.

    1994-01-01

    prehistoric shock damage. This is demonstrated by our study of shocked Kaibab limestone from the 49,000-year-old Meteor (Barringer) Crater Arizona.

  1. Exhuming South Polar Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    7 February 2004 The large, circular feature in this image is an old meteor impact crater. The crater is larger than the 3 kilometers-wide (1.9 miles-wide) Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, thus only part of the crater is seen. The bright mesas full of pits and holes--in some areas resembling swiss cheese--are composed of frozen carbon dioxide. In this summertime view, the mesa slopes and pit walls are darkened as sunlight causes some of the ice to sublime away. At one time in the past, the crater shown here may have been completely covered with carbon dioxide ice, but, over time, it has been exhumed as the ice sublimes a little bit more each summer. The crater is located near 86.8oS, 111.6oW. Sunlight illuminates this scene from the upper left.

  2. Buried Craters of Utopia

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-365, 19 May 2003

    Beneath the northern plains of Mars are numerous buried meteor impact craters. One of the most heavily-cratered areas, although buried, occurs in Utopia Planitia, as shown in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. The history of Mars is complex; impact craters provide a tool by which to understand some of that history. In this case, a very ancient, cratered surface was thinly-buried by younger material that is not cratered at all. This area is near 48.1oN, 228.2oW; less than 180 km (112 mi) west of the Viking 2 lander site. Sunlight illuminates the scene from the lower left.

  3. Abstracts for the International Conference on Asteroids, Comets, Meteors 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics addressed include: chemical abundances; asteroidal belt evolution; sources of meteors and meteorites; cometary spectroscopy; gas diffusion; mathematical models; cometary nuclei; cratering records; imaging techniques; cometary composition; asteroid classification; radio telescopes and spectroscopy; magnetic fields; cosmogony; IUE observations; orbital distribution of asteroids, comets, and meteors; solar wind effects; computerized simulation; infrared remote sensing; optical properties; and orbital evolution.

  4. Cutting Craters

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 12 November 2003

    The rims of two old and degraded impact craters are intersected by a graben in this THEMIS image taken near Mangala Fossa. Yardangs and low-albedo wind streaks are observed at the top of the image as well as interesting small grooves on the crater floor. The origin of these enigmatic grooves may be the result of mud or lava and volatile interactions. Variable surface textures observed in the bottom crater floor are the result of different aged lava flows.

    Image information: VIS instrument. Latitude -15.2, Longitude 219.2 East (140.8 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Crater studies: Part A: lunar crater morphometry

    USGS Publications Warehouse

    Pike, Richard J.

    1973-01-01

    Morphometry, the quantitative study of shape, complements the visual observation and photointerpretation in analyzing the most outstanding landforms of the Moon, its craters (refs. 32-1 and 32-2). All three of these interpretative tools, which were developed throughout the long history of telescopic lunar study preceding the Apollo Program, will continue to be applicable to crater analysis until detailed field work becomes possible. Although no large (>17.5 km diameter) craters were examined in situ on any of the Apollo landings, the photographs acquired from the command modules will markedly strengthen results of less direct investigations of the craters. For morphometry, the most useful materials are the orbital metric and panoramic photographs from the final three Apollo missions. These photographs permit preparation of contour maps, topographic profiles, and other numerical data that accurately portray for the first time the surface geometry of lunar craters of all sizes. Interpretations of craters no longer need be compromised by inadequate topographic data. In the pre-Apollo era, hypotheses for the genesis of lunar craters usually were constructed without any numerical descriptive data. Such speculations will have little credibility unless supported by accurate, quantitative data, especially those generated from Apollo orbital photographs. This paper presents a general study of the surface geometry of 25 far-side craters and a more detailed study of rim-crest evenness for 15 near-side and far-side craters. Analysis of this preliminary sample of Apollo 15 and 17 data, which includes craters between 1.5 and 275 km in diameter, suggests that most genetic interpretations of craters made from pre-Apollo topographic measurements may require no drastic revision. All measurements were made from topographic profiles generated on a stereoplotter at the Photogrammetric Unit of the U.S. Geological Survey, Center of Astrogeology, Flagstaff, Arizona.

  6. Asteroids, Comets, Meteors 2014

    NASA Astrophysics Data System (ADS)

    Muinonen, K.; Penttilä, A.; Granvik, M.; Virkki, A.; Fedorets, G.; Wilkman, O.; Kohout, T.

    2014-08-01

    Asteroids, Comets, Meteors focuses on the research of small Solar System bodies. Small bodies are the key to understanding the formation and evolution of the Solar System, carrying signals from pre-solar times. Understanding the evolution of the Solar System helps unveil the evolution of extrasolar planetary systems. Societally, small bodies will be important future resources of minerals. The near-Earth population of small bodies continues to pose an impact hazard, whether it be small pieces of falling meteorites or larger asteroids or cometary nuclei capable of causing global environmental effects. The conference series entitled ''Asteroids, Comets, Meteors'' constitutes the leading international series in the field of small Solar System bodies. The first three conferences took place in Uppsala, Sweden in 1983, 1985, and 1989. The conference is now returning to Nordic countries after a quarter of a century. After the Uppsala conferences, the conference has taken place in Flagstaff, Arizona, U.S.A. in 1991, Belgirate, Italy in 1993, Paris, France in 1996, Ithaca, New York, U.S.A. in 1999, in Berlin, Germany in 2002, in Rio de Janeiro, Brazil in 2005, in Baltimore, Maryland, U.S.A. in 2008, and in Niigata, Japan in 2012. ACM in Helsinki, Finland in 2014 will be the 12th conference in the series.

  7. Evidence for Recent Liquid Water on Mars: Channeled Aprons in a Small Crater within Newton Crater

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site]

    Newton Crater is a large basin formed by an asteroid impact that probably occurred more than 3 billion years ago. It is approximately 287 kilometers (178 miles) across. The picture shown here (top) highlights the north wall of a specific, smaller crater located in the southwestern quarter of Newton Crater (above). The crater of interest was also formed by an impact; it is about 7 km (4.4 mi) across, which is about 7 times bigger than the famous Meteor Crater in northern Arizona in North America.

    The north wall of the small crater has many narrow gullies eroded into it. These are hypothesized to have been formed by flowing water and debris flows. Debris transported with the water created lobed and finger-like deposits at the base of the crater wall where it intersects the floor (bottom center top image). Many of the finger-like deposits have small channels indicating that a liquid--most likely water--flowed in these areas. Hundreds of individual water and debris flow events might have occurred to create the scene shown here. Each outburst of water from higher upon the crater slopes would have constituted a competition between evaporation, freezing, and gravity.

    The individual deposits at the ends of channels in this MOC image mosaic were used to get a rough estimate of the minimum amount of water that might be involved in each flow event. This is done first by assuming that the deposits are like debris flows on Earth. In a debris flow, no less than about 10% (and no more than 30%) of their volume is water. Second, the volume of an apron deposit is estimated by measuring the area covered in the MOC image and multiplying it by a conservative estimate of thickness, 2 meters (6.5 feet). For a flow containing only 10% water, these estimates conservatively suggest that about 2.5 million liters (660,000 gallons) of water are involved in each event; this is enough to fill about 7 community-sized swimming pools or

  8. Fresh, Rayed Impact Crater

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-416, 9 July 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a fresh, young meteor impact crater on the martian surface. It is less than 400 meters (less than 400 yards) across. While there is no way to know the exact age of this or any other martian surface feature, the rays are very well preserved. On a planet where wind can modify surface features at the present time, a crater with rayed ejecta patterns must be very young indeed. Despite its apparent youth, the crater could still be many hundreds of thousands, if not several million, of years old. This impact scar is located within the much larger Crommelin Crater, near 5.6oN, 10.0oW. Sunlight illuminates the scene from the left.

  9. The history of meteors and meteor showers

    NASA Astrophysics Data System (ADS)

    Hughes, David W.

    The history of meteors and meteor showers can effectively start with the work of Edmond Halley who overcome the Aristotelean view of meteors as being an upper atmospheric phenomenon and introduced their extraterrestrial nature. Halley also estimated their height and velocity. The observations of the Leonids in 1799, 1833 and 1866 established meteoroids as cometary debris. Two red herrings were caught — fixed radiants and hyperbolic velocities. But the 1890 to 1950 period with two-station meteor photography, meteor spectroscopy and the radar detection of meteors saw the subject well established.

  10. Crater Copernicus

    NASA Technical Reports Server (NTRS)

    1999-01-01

    HUBBLE SHOOTS THE MOON in a change of venue from peering at the distant universe, NASA's Hubble Space Telescope has taken a look at Earth's closest neighbor in space, the Moon. Hubble was aimed at one of the Moon's most dramatic and photogenic targets, the 58 mile-wide (93 km) impact crater Copernicus. The image was taken while the Space Telescope Imaging Spectrograph(STIS) was aimed at a different part of the moon to measure the colors of sunlight reflected off the Moon. Hubble cannot look at the Sun directly and so must use reflected light to make measurements of the Sun's spectrum. Once calibrated by measuring the Sun's spectrum, the STIS can be used to study how the planets both absorb and reflect sunlight.(upper left)The Moon is so close to Earth that Hubble would need to take a mosaic of 130 pictures to cover the entire disk. This ground-based picture from Lick Observatory shows the area covered in Hubble's photomosaic with the WideField Planetary Camera 2..(center)Hubble's crisp bird's-eye view clearly shows the ray pattern of bright dust ejected out of the crater over one billion years ago, when an asteroid larger than a mile across slammed into the Moon. Hubble can resolve features as small as 600 feet across in the terraced walls of the crater, and the hummock-like blanket of material blasted out by the meteor impact.(lower right)A close-up view of Copernicus' terraced walls. Hubble can resolve features as small as 280 feet across.

  11. Crater in Arabia

    NASA Technical Reports Server (NTRS)

    2004-01-01

    28 October 2004 This high resolution Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small meteor impact crater with bouldery ejecta in the Arabia Terra region of Mars. The image is located near 11.9oN, 342.2oW. The 300 meter scale bar is about 328 yards long. Sunlight illuminates the scene from the upper left.

  12. Cracked Plain, Buried Craters

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a cracked plain in western Utopia Planitia. The three circular crack patterns indicate the location of three buried meteor impact craters. These landforms are located near 41.9oN, 275.9oW. The image covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates this scene from the lower left.

  13. Meteor Beliefs Project: ``Year of Meteors''

    NASA Astrophysics Data System (ADS)

    McBeath, Alastair; Drobnock, George J.; Gheorghe, Andrei Dorian

    2011-10-01

    We present a discussion linking ideas from a modern music album by Laura Veirs back to a turbulent time in American history 150 years ago, which inspired poet Walt Whitman to compose his poem "Year of Meteors", and the meteor beliefs of the period around 1859-1860, when collection of facts was giving way to analyses and theoretical explanations in meteor science.

  14. Holden Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    Ripple bedforms fill large fractures near the southern rim of Holden Crater.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Becquerel Crater

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03676 Linear Clouds

    This interesting deposit is located on the floor of Becquerel Crater.

    Image information: VIS instrument. Latitude 21.3N, Longitude 352.2E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Crater Rim

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The late afternoon sun casts a shadow over a 700 meter-high rim of Huygens Crater.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude -15.2, Longitude 51.6 East (308.4 West). 19 meter/pixel resolution.

  17. Impact Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    The irregularly shaped rim of this bowl shaped impact crater is most likely due to erosion and the subsequent infilling of sediment.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Rampart Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    Rampart crater in Utopia Planitia west of the Viking 2 landing site.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. The Meteor Meter.

    ERIC Educational Resources Information Center

    Eggensperger, Martin B.

    2000-01-01

    Introduces the Meteor Scatter Project (MSP) in which high school students build an automated meteor observatory and learn to monitor meteor activity. Involves students in activities such as radio frequency survey, antenna design, antenna construction, manual meteor counts, and computer board configuration and installation. (YDS)

  20. Big Crater as Viewed by Pathfinder Lander - Anaglyph

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The 'Big Crater' is actually a relatively small Martian crater to the southeast of the Mars Pathfinder landing site. It is 1500 meters (4900 feet) in diameter, or about the same size as Meteor Crater in Arizona. Superimposed on the rim of Big Crater (the central part of the rim as seen here) is a smaller crater nicknamed 'Rimshot Crater.' The distance to this smaller crater, and the nearest portion of the rim of Big Crater, is 2200 meters (7200 feet). To the right of Big Crater, south from the spacecraft, almost lost in the atmospheric dust 'haze,' is the large streamlined mountain nicknamed 'Far Knob.' This mountain is over 450 meters (1480 feet) tall, and is over 30 kilometers (19 miles) from the spacecraft. Another, smaller and closer knob, nicknamed 'Southeast Knob' can be seen as a triangular peak to the left of the flanks of the Big Crater rim. This knob is 21 kilometers (13 miles) southeast from the spacecraft.

    The larger features visible in this scene - Big Crater, Far Knob, and Southeast Knob - were discovered on the first panoramas taken by the IMP camera on the 4th of July, 1997, and subsequently identified in Viking Orbiter images taken over 20 years ago. The scene includes rocky ridges and swales or 'hummocks' of flood debris that range from a few tens of meters away from the lander to the distance of South Twin Peak. The largest rock in the nearfield, just left of center in the foreground, nicknamed 'Otter', is about 1.5 meters (4.9 feet) long and 10 meters (33 feet) from the spacecraft.

    This view of Big Crater was produced by combining 6 individual 'Superpan' scenes from the left and right eyes of the IMP camera. Each frame consists of 8 individual frames (left eye) and 7 frames (right eye) taken with different color filters that were enlarged by 500% and then co-added using Adobe Photoshop to produce, in effect, a super-resolution panchromatic frame that is sharper than an individual frame would be.

    The anaglyph view of Big Crater was

  1. Stripped Crater Floor

    NASA Technical Reports Server (NTRS)

    2004-01-01

    10 February 2004 This full-resolution Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows details on the floor of an ancient meteor crater in the northeastern part of Noachis Terra. After the crater formed, layers of material--perhaps sediment--were deposited in the crater. These materials became somewhat solidified, but later were eroded to form the patterns shown here. Many windblown ripples in the scene indicate the presence of coarse-grained sediment that was not completely stripped away by wind. The picture is located near 22.1oS, 307.0oW. Sunlight illuminates this scene from the left/upper left; the image covers an area 3 km (1.9 mi) wide.

  2. SEC Vidicon spectra of Geminid meteors, 1972

    NASA Technical Reports Server (NTRS)

    Millman, P. M.; Clifton, K. S.

    1975-01-01

    The SEC Vidicon, a low light level closed circuit television system, was used to obtain 137 spectrographic records of meteors at Mt. Hopkins, Arizona, during the Geminid meteor shower in December 1972. Seven of the best Geminid meteor spectra are studied here in detail. The near infrared, out to wavelengths near 9000 A, is recorded for the first time for Geminids. The spectra, in general, exhibit the elements previously found in photographic records of this shower but show a surprising frequency of occurrence of the forbidden green line of O I at 5577 A. This line is normally absent from meteors moving as slowly as the Geminids (36 km/sec) and its presence in these records may be due to the added sensitivity available with the SEC Vidicon. The average green line duration in Geminid meteors with a luminosity near zero absolute visual magnitude is 0.73 sec at a mean height of 95 km, 11 km lower than the green line peak in Perseid meteors of the same luminosity.

  3. Huygens Crater

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 15 July 2003

    The floor of the 450 km diameter crater named after Dutch astronomer Christian Huygens (1629-1695) shows an unusual texture. Smooth-topped mesas are scattered across a more rugged surface. The mesas are testament to a former smooth layer of material that is in the process of eroding away.

    Image information: VIS instrument. Latitude -16.2, Longitude 54.5 East (305.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Quadrantid Meteor, 2013

    NASA Video Gallery

    An allsky camera in New Mexico captured a brief video of this Quadrantid fireball meteor on Jan. 3, 2013 at 2:04 a.m. EST. The Quadrantid meteor shower occurs each January and derives its name from...

  5. Catalogue of representative meteor spectra

    NASA Astrophysics Data System (ADS)

    Vojáček, V.; Borovička, J.; Koten, P.; Spurný, P.; Štork, R.

    2016-01-01

    We present a library of low-resolution meteor spectra that includes sporadic meteors, members of minor meteor showers, and major meteor showers. These meteors are in the magnitude range from +2 to ‑3, corresponding to meteoroid sizes from 1 mm to10 mm. This catalogue is available online at the CDS for those interested in video meteor spectra.

  6. Catalogue of representative meteor spectra

    NASA Astrophysics Data System (ADS)

    Vojáček, V.; Borovička, J.; Koten, P.; Spurný, P.; Štork, R.

    2016-01-01

    We present a library of low-resolution meteor spectra that includes sporadic meteors, members of minor meteor showers, and major meteor showers. These meteors are in the magnitude range from +2 to -3, corresponding to meteoroid sizes from 1 mm to10 mm. This catalogue is available online at the CDS for those interested in video meteor spectra.

  7. Northern Plains 'Crater'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    10 December 2004 The lower left (southwest) corner of this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the location of a somewhat filled and buried meteor impact crater on the northern plains of Mars. The dark dots are boulders. A portion of a similar feature is seen in the upper right (northeast) corner of the image. This picture, showing landforms (including the odd mound north/northeast of the crater) that are typical of the martian northern lowland plains, was obtained as part of the MGS MOC effort to support the search for a landing site for the Phoenix Mars Scout lander. Phoenix will launch in 2007 and land on the northern plains in 2008. This image is located near 68.0oN, 227.4oW, and covers an area approximately 3 km (1.9 mi) wide. The scene is illuminated by sunlight from the lower left.

  8. Iturralde Crater, Bolivia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA scientists will venture into an isolated part of the Bolivian Amazon to try and uncover the origin of a 5 mile (8 kilometer) diameter crater there known as the Iturralde Crater. Traveling to this inhospitable forest setting, the Iturralde Crater Expedition 2002 will seek to determine if the unusual circular crater was created by a meteor or comet. Organized by Dr. Peter Wasilewski of NASA's Goddard Space Flight Center, Greenbelt, Md., the Iturralde Crater Expedition 2002 will be led by Dr. Tim Killeen of Conservation International, which is based in Bolivia. Killeen will be assisted by Dr. Compton Tucker of Goddard. The team intends to collect and analyze rocks and soil, look for glass particles that develop from meteor impacts and study magnetic properties in the area to determine if the Iturralde site was indeed created by a meteor.

    This image was acquired on June 29, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation

  9. Impact Crater with Peak

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 14 June 2002) The Science This THEMIS visible image shows a classic example of a martian impact crater with a central peak. Central peaks are common in large, fresh craters on both Mars and the Moon. This peak formed during the extremely high-energy impact cratering event. In many martian craters the central peak has been either eroded or buried by later sedimentary processes, so the presence of a peak in this crater indicates that the crater is relatively young and has experienced little degradation. Observations of large craters on the Earth and the Moon, as well as computer modeling of the impact process, show that the central peak contains material brought from deep beneath the surface. The material exposed in these peaks will provide an excellent opportunity to study the composition of the martian interior using THEMIS multi-spectral infrared observations. The ejecta material around the crater can is well preserved, again indicating relatively little modification of this landform since its initial creation. The inner walls of this approximately 18 km diameter crater show complex slumping that likely occurred during the impact event. Since that time there has been some downslope movement of material to form the small chutes and gullies that can be seen on the inner crater wall. Small (50-100 m) mega-ripples composed of mobile material can be seen on the floor of the crater. Much of this material may have come from the walls of the crater itself, or may have been blown into the crater by the wind. The Story When a meteor smacked into the surface of Mars with extremely high energy, pow! Not only did it punch an 11-mile-wide crater in the smoother terrain, it created a central peak in the middle of the crater. This peak forms kind of on the 'rebound.' You can see this same effect if you drop a single drop of milk into a glass of milk. With craters, in the heat and fury of the impact, some of the land material can even liquefy. Central peaks like the one

  10. Crater Wall and Floor

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    3D Projection onto MOLA data [figure removed for brevity, see original site]

    The impact crater observed in this THEMIS image taken in Terra Cimmeria suggests sediments have filled the crater due to the flat and smooth nature of the floor compared to rougher surfaces at higher elevations. The abundance of several smaller impact craters on the floor of the larger crater indicate however that the flat surface has been exposed for an extended period of time. The smooth surface of the crater floor and rougher surfaces at higher elevations are observed in the 3-D THEMIS image that is draped over MOLA topography (2X vertical exaggeration).

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude -22.9, Longitude 155.7 East (204.3 West). 19 meter/pixel resolution.

  11. Apparatus for photographing meteors

    NASA Technical Reports Server (NTRS)

    Harvey, G. A. (Inventor)

    1973-01-01

    Apparatus for photographing meteors in a selected area of the sky is described. A photomultiplier is pointed in the direction of the area. When a meteor passes through the area the signal output of the photomultiplier increases. Means are provided that activate a camera, pointed at the area, in response to an increased signal from the photomultiplier. Hence, the camera photographs the selected are only while meteors are likely to be passing through the area.

  12. Practical Meteor Stream Forecasting

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; Suggs, Robert M.

    2003-01-01

    Inspired by the recent Leonid meteor storms, researchers have made great strides in our ability to predict enhanced meteor activity. However, the necessary calibration of the meteor stream models with Earth-based ZHRs (Zenith Hourly Rates) has placed emphasis on the terran observer and meteor activity predictions are published in such a manner to reflect this emphasis. As a consequence, many predictions are often unusable by the satellite community, which has the most at stake and the greatest interest in meteor forecasting. This paper suggests that stream modelers need to pay more attention to the needs of this community and publish not just durations and times of maxima for Earth, but everything needed to characterize the meteor stream in and out of the plane of the ecliptic, which, at a minimum, consists of the location of maximum stream density (ZHR) and the functional form of the density decay with distance from this point. It is also suggested that some of the terminology associated with meteor showers may need to be more strictly defined in order to eliminate the perception of crying wolf by meteor scientists. An outburst is especially problematic, as it usually denotes an enhancement by a factor of 2 or more to researchers, but conveys the notion of a sky filled with meteors to satellite operators and the public. Experience has also taught that predicted ZHRs often lead to public disappointment, as these values vastly overestimate what is seen.

  13. Terra Cimmeria Crater Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The landslide in this VIS image is located inside an impact crater in the Terra Cimmeria region of Mars. The unnamed crater hosting this image is just east of Molesworth Crater.

    Image information: VIS instrument. Latitude -27.7, Longitude 152 East (208 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. Isidis Crater Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The landslide in this VIS image is located inside an impact crater located south of the Isidis Planitia region of Mars. As with the previous unnamed crater landslide, this one formed due to slope failure of the inner crater rim.

    Image information: VIS instrument. Latitude -2.9, Longitude 90.8 East (269.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Mare Chromium Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This crater, located in Mare Chromium, shows evidence of exterior modification, with little interior modification. While the rim is still visible, the ejecta blanket has been removed or covered. There is some material at the bottom of the crater, but the interior retains the bowl shape from the initial formation of the crater.

    Image information: VIS instrument. Latitude -34.4, Longitude 174.4 East (185.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Cratering mechanics

    NASA Technical Reports Server (NTRS)

    Ivanov, B. A.

    1986-01-01

    Main concepts and theoretical models which are used for studying the mechanics of cratering are discussed. Numerical two-dimensional calculations are made of explosions near a surface and high-speed impact. Models are given for the motion of a medium during cratering. Data from laboratory modeling are given. The effect of gravitational force and scales of cratering phenomena is analyzed.

  17. Rare Double Quadrantid Meteor Sighting

    NASA Video Gallery

    The wide-field meteor camera at NASA's Marshall Space Flight Center recorded these two simultaneous Quadrantid meteors on Jan. 4 at approximately 5 a.m. EST. Moving at 92,000 mph, the meteors flash...

  18. Meteor Beliefs Project: Introduction

    NASA Astrophysics Data System (ADS)

    McBeath, A.; Gheorghe, A. D.

    2003-05-01

    A new project to investigate beliefs in meteors and meteoric phenomena in past and present times using chiefly folklore, mythology, prose and poetic literature, is described. Some initial examples are given, along with a bibliography of relevant items already in print in IMO publications.

  19. Layered Rocks in Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    19 June 2004 Exposures of layered, sedimentary rock are common on Mars. From the rock outcrops examined by the Mars Exploration Rover, Opportunity, in Meridiani Planum to the sequence in Gale Crater's central mound that is twice the thickness of of the sedimentary rocks exposed by Arizona's Grand Canyon, Mars presents a world of sediment to study. This unusual example, imaged by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), shows eroded layer outcrops in a crater in Terra Tyrrhena near 15.4oS, 270.5oW. Sedimentary rocks provide a record of past climates and events. Perhaps someday the story told by the rocks in this image will be known via careful field work. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the left.

  20. Trouvelot Crater Deposit

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    Like many of the craters in the Oxia Palus region of Mars, Trouvelot Crater hosts an eroded, light-toned, sedimentary deposit on its floor. Compared with the much larger example in Becquerel Crater to the NE, the Trouvelot deposit has been so eroded by the scouring action of dark, wind-blown sand that very little of it remains. Tiny outliers of bright material separated from the main mass attest to the once, more really extensive coverage by the deposit. A similar observation can be made for White Rock, the best known example of a bright, crater interior deposit. The origin of the sediments in these deposits remains enigmatic but they are likely the result of fallout from ash or dust carried by the thin martian atmosphere.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Meteor Researches at Khnure

    NASA Astrophysics Data System (ADS)

    Kolomiyets, Svitlana V.; Voloshchuk, Yuri I.; Kashcheyev, Boris L.; Slipchenko, Nikolay I.

    The Scientific Educational Center of Radioengineering of the Kharkiv National University of Radioelectronics (KHNURE: ) is one of the oldest radar meteor centers which was founded by B. L. Kashcheyev in 1958. The first automatic meteor radar system in Ukraine “MARS” is connected with our University. There are long-term observational series of meteor rates and orbital data in the Center. Fields of the KHNURE researches are: a structure of meteor showers a determination of meteoroid orbits an influx of cosmic rubbish in the Earth atmosphere search of parental bodies of meteoroids a statistic analysis of measurement results of radiometeors an estimation of errors of meteor radar measurements a search for real hyperbolic orbits and interstellar meteoroids. KHNURE disposes a unique electronic orbital catalogue. This catalogue contains the primary information velocities radiants and orbits of nearly 250000 radiometeoroids with masses from 0.001 to 0.000001 g. The “MARS” registered these data during observations of 1972 1978. From these data 5160 meteor streams are singled out. New classification of streams is made in view of their structure. The study of meteor stream orbits from the KHNURE data bank allow to predict orbits of a big number of undiscovered “dangerous” NEOs

  2. Meteor researches at KHNURE

    NASA Astrophysics Data System (ADS)

    Kolomiyets, Svitlana V.; Voloshchuk, Yuri I.; Kashcheyev, Boris L.; Slipchenko, Nikolay I.

    2005-01-01

    The Scientific Educational Center of Radioengineering of the Kharkiv National University of Radioelectronics (KHNURE: ) is one of the oldest radar meteor centers which was founded by B. L. Kashcheyev in 1958. The first automatic meteor radar system in Ukraine “MARS” is connected with our University. There are long-term observational series of meteor rates and orbital data in the Center. Fields of the KHNURE researches are: a structure of meteor showers a determination of meteoroid orbits an influx of cosmic rubbish in the Earth atmosphere search of parental bodies of meteoroids a statistic analysis of measurement results of radiometeors an estimation of errors of meteor radar measurements a search for real hyperbolic orbits and interstellar meteoroids. KHNURE disposes a unique electronic orbital catalogue. This catalogue contains the primary information velocities radiants and orbits of nearly 250000 radiometeoroids with masses from 0.001 to 0.000001 g. The “MARS” registered these data during observations of 1972 1978. From these data 5160 meteor streams are singled out. New classification of streams is made in view of their structure. The study of meteor stream orbits from the KHNURE data bank allow to predict orbits of a big number of undiscovered “dangerous” NEOs.

  3. Meteors and meteorites spectra

    NASA Astrophysics Data System (ADS)

    Koukal, J.; Srba, J.; Gorková, S.; Lenža, L.; Ferus, M.; Civiš, S.; Knížek, A.; Kubelík, P.; Kaiserová, T.; Váňa, P.

    2016-01-01

    The main goal of our meteor spectroscopy project is to better understand the physical and chemical properties of meteoroids. Astrometric and spectral observations of real meteors are obtained via spectroscopic CCD video systems. Processed meteor data are inserted to the EDMOND database (European viDeo MeteOr Network Database) together with spectral information. The fully analyzed atmospheric trajectory, orbit and also spectra of a Leonid meteor/meteoroid captured in November 2015 are presented as an example. At the same time, our target is the systematization of spectroscopic emission lines for the comparative analysis of meteor spectra. Meteoroid plasma was simulated in a laboratory by laser ablation of meteorites samples using an (ArF) excimer laser and the LIDB (Laser Induced Dielectric Breakdown) in a low pressure atmosphere and various gases. The induced plasma emissions were simultaneously observed with the Echelle Spectrograph and the same CCD video spectral camera as used for real meteor registration. Measurements and analysis results for few selected meteorite samples are presented and discussed.

  4. Dynamics of meteor streams

    NASA Technical Reports Server (NTRS)

    Babadjanov, P. B.; Obrubov, Yu. U.

    1987-01-01

    The overwhelming majority of meteor streams are generally assumed to be formed due to the decay of comets. The most effective process of the release of solid particles from a cometary nucleus is their ejection by sublimating gases when the comet approaches the Sun. The results of investigation of the Geminids and Quadrantids meteor stream evolution show that under the influence of planetary perturbations, the stream may originally be flat but then thicken depending on the variation range of orbital inclinations. Eventually, due to planetary perturbations, a meteor stream may take such a shape as to cause the start of several active showers at different solar longitudes.

  5. Minor meteor shower activity

    NASA Astrophysics Data System (ADS)

    Rendtel, J.

    2016-01-01

    Video meteor observations provide us with data to analyze structures in minor meteor showers or weak features in flux profiles. Samples obtained independently by other techniques allow to calibrate the data sets and to improve the confidence of results as demonstrated with a few results. Both, the confirmation of events predicted by model calculation and the input of observational data to improve the modelling results may help to better understand meteoroid stream evolution processes. Furthermore, calibrated data series can be used for studies of the long-term evolution of meteor shower activity.

  6. Arizona Wildfire

    Atmospheric Science Data Center

    2013-04-23

    article title:  Wildfire in Arizona     View larger image ... plume on June 3, 2011 from the wildfires currently raging in Arizona. It is overlaid on an image captured by the Moderate Resolution Imaging ...

  7. Optical electronics for meteor observations

    NASA Technical Reports Server (NTRS)

    Shafiev, R. I.; Mukhamednazarov, S.; Atamas, I. A.

    1987-01-01

    Spectral observations of meteors have been carried out for several years using an optical electronics facility. Interest has centered on faint meteors and their trails in the period of intensive meteor showers. Over 800 meteors were registered during the observation period, with spectrograms obtained for 170 of these. A total of 86 meteors were photographed from two sites and for 25 of these spectrograms of the meteors as well as their trails were obtained. All meteors have undergone routine processing in order to determine atmospheric characteristics. Results are discussed.

  8. Current trends in meteor spectroscopy

    NASA Technical Reports Server (NTRS)

    Millman, P. M.

    1982-01-01

    The history of progress over more than a century in meteor spectroscopy is summarized. The observational data were originally visual records, but in the beginning of the 20th century photography of meteor spectra was undertaken. In the forties, 60 meteor spectra were photographed. Interest in the upper atmosphere led to the development of more efficient meteor cameras which employ replica gratings, and electronic image intensification systems recordings on video tape which resulted in the availability of several thousand meteor spectra.

  9. Meteor Beliefs Project: Musical Meteors, meteoric imagery as used in near-contemporary song lyrics

    NASA Astrophysics Data System (ADS)

    McBeath, Alastair; Gheorghe, Andrei Dorian

    2010-01-01

    Items collected from contemporary song lyrics featuring meteoric imagery, or inspired by meteors, are given, with some discussion. While not a major part of the Meteor Beliefs Project, there are points of interest in how such usage may become passed into popular beliefs about meteors.

  10. Meteoric Head Echoes

    NASA Astrophysics Data System (ADS)

    Hajduk, A.; Galád, A.

    1995-01-01

    Results of the analysis of 3261 radar meteor head echoes observed during the Orionid and Lyrid periods by the high-power radar of the Springhill Meteor Observatory are given. Dependence of the occurence of head echoes on the geometrical factors and physical properties of the meteoroids has been studied. Increas of the head echo rates with the elevation of the shower radiant and with the velocity of meteoroids has been observed.

  11. Holden Crater Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03192 Holden Crater Dunes

    These dunes occur on the floor of Holden Crater.

    Image information: VIS instrument. Latitude 25.8S, Longitude 326.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Holden Crater Delta

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03694 Holden Crater Delta

    This fan-shaped delta deposit is located in Holden Crater.

    Image information: VIS instrument. Latitude -27.3N, Longitude 324.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Landslide in a Crater

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The landslide in this VIS image is located inside an impact crater in the Elysium region of Mars. The unnamed crater is located at the margin of the volcanic flows from the Elysium Mons complex.

    Image information: VIS instrument. Latitude 1.2, Longitude 134 East (226 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. Meteorite craters

    NASA Technical Reports Server (NTRS)

    Ivanov, B. A.; Bazilevskiy, A. T.

    1986-01-01

    The origin and formation of various types of craters, both on the Earth and on other planetary bodies, are discussed. Various models are utilized to depict various potential causes of the types and forms of meteorite craters in our solar system, and the geological structures are also discussed.

  15. Using quantitative topographic analysis to understand the role of water on transport and deposition processes on crater walls

    NASA Astrophysics Data System (ADS)

    Palucis, Marisa Christina

    The amount of water runoff need to evolve landscapes is rarely assessed. Empirical studies correlate erosion rate to runoff or mean annual precipitation, but rarely is the full history of a landscape known such that it is possible to assess how much water was required to produce it. While this may not seem to be of primary importance on Earth where water is commonly plentiful, on Mars the amount of water to drive landscape evolution is a key question. Here we tackle this question through a series of five chapters, one devoted to field work at Meteor Crater, another to laboratory experiments about controlling processes, and then two chapters on analysis of landforms and implications of water runoff on Mars (associated with the Mars Science Laboratory mission to Gale Crater), and then we complete this effort with a consideration of how we can reliably assign relative timing between events resulting in small depositional features. What follows below is a summary of what is found in each chapter. Meteor Crater, a 4.5 km2 impact crater that formed ˜50,000 years ago in northern Arizona, has prominent gully features on its steep walls that appear similar to some gullies found on Mars. At the crater bottom, there are over 30 meters of lake sediments from a lake that disappeared ˜10,000 to 11,000 years ago, indicating the transition from the Pleistocene to the current, drier climate. A combination of fieldwork, cosmogenic dating, and topographic analysis of LiDAR data show that debris flows, not seepage erosion and fluvial processes as previously suggested in the literature, drove gully incision during their formation period of ˜40,000 years before the onset of the Holocene. Runoff from bare bedrock source areas high on the crater wall cut into lower debris mantled slopes, where the runoff bulked up and transformed into debris flows that carried boulders down to ˜5 to 8 degree slopes, leaving distinct boulder lined levees and lobate tongues of terminal debris deposits

  16. Gale Crater Mound

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The eroded, layered deposit in Gale Crater is a mound of material rising 3 km above the crater floor. It has been sculpted by wind and possibly water to produce the dramatic landforms seen today. The origin of the sedimentary material that composes the mound remains a contested issue: was it produced from sedimentation in an ancient crater lake or by airfall onto dry land?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude -5.1, Longitude 137.5 East (222.5 West). 19 meter/pixel resolution.

  17. Bizarre Crater Mound

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 5 June 2003

    The height of the interior mound of sediment inside this crater exceeds the crater rim heights by 900 meters (3,000 ft). This is a confounding problem. How does all this material get inside this crater and actually rise higher than its holding chamber? What is this material? Where did it come from? Why is it still here? It is exactly these kinds of enigmas that makes Mars so very interesting.

    Image information: VIS instrument. Latitude 12.2, Longitude 26.3 East (333.7 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Proctor Crater Dunes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This image, located near 30E and 47.5S, displays sand dunes within Proctor Crater. These dunes are composed of basaltic sand that has collected in the bottom of the crater. The topographic depression of the crater forms a sand trap that prevents the sand from escaping. Dune fields are common in the bottoms of craters on Mars and appear as dark splotches that lean up against the downwind walls of the craters. Dunes are useful for studying both the geology and meteorology of Mars. The sand forms by erosion of larger rocks, but it is unclear when and where this erosion took place on Mars or how such large volumes of sand could be formed. The dunes also indicate the local wind directions by their morphology. In this case, there are few clear slipfaces that would indicate the downwind direction. The crests of the dunes also typically run north-south in the image. This dune form indicates that there are probably two prevailing wind directions that run east and west (left to right and right to left).

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project

  19. EISCAT meteor observations

    NASA Astrophysics Data System (ADS)

    Häggström, Ingemar; Pellinen-Wannberg, Asta; Westman, Assar; Vierinen, Juha; Brosch, Noah

    2010-05-01

    We present preliminary results from a 24-hour run to observe meteors conducted at EISCAT (Tromsø, Norway) on 17-18 December 2009, when no strong meteor showers were active. These pertain to the single-beam echoes detected at zenith by the Tromsø VHF and UHF systems and are compared with similar results obtained in 2008 during the peak of the Geminid meteor shower (Brosch et al. 2009). We present statistics of the echoes and concentrate, in particular, on the population of high-altitude echoes defined as being at 150-km altitude or higher, and on decelerating meteors. We also report on the character of tristatic echoes detected during the same period around 100-km altitude using the UHF receiver stations at Kiruna (Sweden) and Sodankylä (Finland), and on some low-altitude trails detected during this run. References: Brosch, N., Häggström, I., Pellinen-Wannberg, A., Westman, A. "Unusual features in high statistics radar meteor studies at EISCAT" Monthly Notices of the Royal Astronomical Society, 2009.

  20. Meteor Beliefs Project: A Goodly Gallerye - William Fulke's "Meteors"

    NASA Astrophysics Data System (ADS)

    McBeath, Alastair; Gheorghe, Andrei Dorian

    2007-02-01

    An examination is presented of meteorically-relevant material from Englishman William Fulke's treatise on meteors from 1563, which encompassed much more than would modernly fall into this category, and which remained continually in print for over a century.

  1. Shackleton Crater

    NASA Video Gallery

    This visualization, created using Lunar Reconnaissance Orbiter laser altimeter data, offers a view of Shackleton Crater located in the south pole of the moon. Thanks to these measurements, we now h...

  2. METEORIC-HYDROTHERMAL SYSTEMS.

    USGS Publications Warehouse

    Criss, Robert E.; Taylor, Hugh P.

    1986-01-01

    This paper summarizes the salient characteristics of meteoric-hydrothermal systems, emphasing the isotopic systematics. Discussions of permeable-medium fluid dynamics and the geology and geochemistry of modern geothermal systems are also provided, because they are essential to any understanding of hydrothermal circulation. The main focus of the paper is on regions of ancient meteoric-hydrothermal activity, which give us information about the presently inaccessible, deep-level parts of modern geothermal systems. It is shown oxygen and hydrogen isotopes provide a powerful method to discover and map fossil hydrothermal systems and to investigate diverse associated aspects of rock alteration and ore deposition.

  3. Locating the K/T boundary impact crater(s)

    NASA Astrophysics Data System (ADS)

    Bush, Susan M.

    Stratigraphic, mineralogical, chemical and isotopic evidence have led to the large (˜10-km) asteroid or comet impact theory as the cause of the Cretaceous period coming to an end. However, a suitable crater has not yet been found. Although the crater may have been destroyed because half of what was then the ocean floor has since been subducted, researchers are still hot on the trail of the impact site(s).A. R. Hildebrand and W. V. Boynton, Department of Planetary Sciences, University of Arizona, Tucson, believe that locating the original crater(s) would resolve the volcanism versus impact debate over what ended the Cretaceous period. Based on a large concentration of shocked mineral grains and the largest grains occurring in North America, and impact-wave deposits at the K/T boundary only from the Caribbean and southern North America, they suggest that the K/T boundary impact occurred between North and South America. They suggest the 300-km-diameter buried basement structure in the Columbia Basin as a possible K/T impact crater. The location of impact-wave deposits and possibly seismically triggered slumps also helped the two decide that impact(s) musthave occurred in the Caribbean region.

  4. A Tale of 3 Craters

    NASA Technical Reports Server (NTRS)

    2004-01-01

    11 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image captures some of the complexity of the martian upper crust. Mars does not simply have an impact-cratered surface, it's upper crust is a cratered volume. Over time, older craters on Mars have been eroded, filled, buried, and in some cases exhumed and re-exposed at the martian surface. The crust of Mars is layered to depths of 10 or more kilometers, and mixed in with the layered bedrock are a variety of ancient craters with diameters ranging from a few tens of meters (a few tens of yards) to several hundred kilometers (more than one or two hundred miles).

    The picture shown here captures some of the essence of the layered, cratered volume of the upper crust of Mars in a very simple form. The image shows three distinct circular features. The smallest, in the lower right quarter of the image, is a meteor crater surrounded by a mound of material. This small crater formed within a layer of bedrock that once covered the entire scene, but today is found only in this small remnant adjacent to the crater. The intermediate-sized crater, west (left) of the small one, formed either in the next layer down--that is, below the layer in which the small crater formed--or it formed in some layers that are now removed, but was big enough to penetrate deeply into the rock that is near the surface today. The largest circular feature in the image, in the upper right quarter of the image, is still largely buried. It formed in layers of rock that are below the present surface. Erosion has brought traces of its rim back to the surface of Mars. This picture is located near 50.0oS, 77.8oW, and covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates this October 2004 image from the upper left.

  5. Oudemans Crater

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of the interior of Oudemans Crater was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 1800 UTC (1:00 p.m. EDT) on October 2, 2006, near 9.8 degrees south latitude, 268.5 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 20 meters (66 feet) across.

    Oudemans Crater is located at the extreme western end of Valles Marineris in the Sinai Planum region of Mars. The crater measures some 124 kilometers (77 miles) across and sports a large central peak.

    Complex craters like Oudemans are formed when an object, such as an asteroid or comet, impacts the planet. The size, speed and angle at which the object hits all determine the type of crater that forms. The initial impact creates a bowl-shaped crater and flings material (known as ejecta) out in all directions along and beyond the margins of the bowl forming an ejecta blanket. As the initial crater cavity succumbs to gravity, it rebounds to form a central peak while material along the bowl's rim slumps back into the crater forming terraces along the inner wall. If the force of the impact is strong enough, a central peak forms and begins to collapse back into the crater basin, forming a central peak ring.

    The uppermost image in the montage above shows the location of CRISM data on a mosaic taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). The CRISM data was taken inside the crater, on the northeast slope of the central peak.

    The lower left image is an infrared false-color image that reveals several distinctive deposits. The center of the image holds a ruddy-brown deposit that appears to correlates with a ridge running southwest to northeast. Lighter, buff-colored deposits occupy low areas interspersed within the ruddy-brown deposit. The southeast corner holds small hills that form part of the central peak complex.

    The lower right image shows spectral

  6. Asteroids, Comets, Meteors 1991

    NASA Technical Reports Server (NTRS)

    Harris, Alan W. (Editor); Bowell, Edward (Editor)

    1992-01-01

    Papers from the conference are presented and cover the following topics with respect to asteroids, comets, and/or meteors: interplanetary dust, cometary atmospheres, atmospheric composition, comet tails, astronomical photometry, chemical composition, meteoroid showers, cometary nuclei, orbital resonance, orbital mechanics, emission spectra, radio astronomy, astronomical spectroscopy, photodissociation, micrometeoroids, cosmochemistry, and interstellar chemistry.

  7. Martian Meteor Ionization Layers

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Pesnell, W. D.

    1999-01-01

    Small interplanetary grains bombard Mars, like all the solar system planets, and, like all the planets with atmospheres, meteoric ion and atom layers form in the upper atmosphere. We have developed a comprehensive one-dimensional model of the Martian meteoric ionization layer including a full chemical scheme. A persistent layer of magnesium ions should exist around an altitude of 70 km. Unlike the terrestrial case, where the metallic ions are formed via charge-exchange with the ambient ions, Mg(+) in the Martian atmosphere is produced by photoionization. Nevertheless, the predicted metal layer peak densities for Earth and Mars are similar. Diffusion solutions, such as those presented here, should be a good approximation of the metallic ions in regions where the magnetic field is negligible and may provide a significant contribution to the nightside ionosphere. The low ultraviolet absorption of the Martian atmosphere may make Mars an excellent laboratory in which to study meteoric ablation. Resonance lines not seen in the spectra of terrestrial meteors may be visible to a surface observatory in the Martian highlands.

  8. Holden Crater Dune Field

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    A common location for dune fields on Mars is in the basin of large craters. This dune field is located in Holden Crater at 25 degrees South atitude.

    Image information: VIS instrument. Latitude -25.5, Longitude 326.8 East (33.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Tikhonravov Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located within a small crater inside Tikhonravov Crater.

    Image information: VIS instrument. Latitude 12.6, Longitude 37.1 East (322.9 West). 36 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Kaiser Crater DCS

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released July 29, 2004 This image shows two representations of the same infra-red image covering a portion of Kaiser Crater. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations.

    In this image, the basaltic sand dunes in bottom of Kaiser crater are colored a bright pink/magenta. The spectral features are clean and prominent on these dust-free surfaces and the dark color of the basaltic dunes helps them to absorb sunlight and produces higher surface temperatures, which also contributes to the image colors.

    Image information: IR instrument. Latitude -46.5, Longitude 20.3 East (339.7 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin

  11. Studies of Transient Meteor Activity

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter M. M.

    2002-01-01

    Meteoroids bombard Earth's atmosphere daily, but occasionally meteor rates increase to unusual high levels when Earth crosses the relatively fresh ejecta of comets. These transient events in meteor activity provide clues about the whereabouts of Earth-threatening long-period comets, the mechanisms of large-grain dust ejection from comets, and the particle composition and size distribution of the cometary ejecta. Observations of these transient events provide important insight in natural processes that determine the large grain dust environment of comets, in natural phenomena that were prevalent during the time of the origin of life, and in processes that determine the hazard of civilizations to large impacts and of man-made satellites to the periodic blizzard of small meteoroids. In this proposal, three tasks form a coherent program aimed at elucidating various aspects of meteor outbursts, with special reference to planetary astronomy and astrobiology. Task 1 was a ground-based effort to observe periods of transient meteor activity. This includes: (1) stereoscopic imaging of meteors during transient meteor events for measurements of particle size distribution, meteoroid orbital dispersions and fluxes; and (2) technical support for Global-MS-Net, a network of amateur-operated automatic counting stations for meteor reflections from commercial VHF radio and TV broadcasting stations, keeping a 24h vigil on the level of meteor activity for the detection of new meteor streams. Task 2 consisted of ground-based and satellite born spectroscopic observations of meteors and meteor trains during transient meteor events for measurements of elemental composition, the presence of organic matter in the meteoroids, and products generated by the interaction of the meteoroid with the atmosphere. Task 3 was an airborne effort to explore the 2000 Leonid meteor outbursts, which are anticipated to be the most significant of transient meteor activity events in the remainder of the

  12. [Fecal fermentation in meteorism].

    PubMed

    León-Barúa, R; Zapata-Solari, C

    1977-12-01

    An old test to investigate fecal fermentation was modified with the purpose of changing it from qualitative to quantitative. The modified test consists in placing in stove, at 37 degrees C for 24 hours, 5 grams of feces, suspended in water. The fermentable alimentary residues, present in the feces, suffer the action of bacteria, also there present, yielding gas that is collected and measured. Using the test, fecal fermentation was determined in 3 groups of individuals: a) 40 patients with meteorism that had persisted or improved only slightly or fairly with treatment; b) 28 apparently healthy subjects; and c) 6 patients with meteorism that had disappeared or become minimal with treatment. In the group of 28 apparently healthy subject, the obtained results varied from 0.1 to 1.1 ml gas/24 h., with a mean +/- s.d. of 0.55 +/- 0.29 ml. gas/24 h. When a distribution curve was made with the results obtained in the group of 40 patients with meteorism, these results separated into 2 subgroups: one subgroup with 28 patients, in whom results varied from 1.0 to 13.3 ml. gas/24 h., with a mean of 4.8 gas/24 h. (only) in 1 of these 28 patients a normal result of 1.0 ml. gas/24 h. was obtained, while in the remaining 27 patients results of 1.5 or more ml. gas/24 h. were obtained); and the other subgroup with 12 patients, in whom results varied from 0.0 to 0.9 ml. gas/24 h., with a mean of 0.29 ml. gas/24 h. Finally, in the group of 6 patients with successfully treated meteorism, results were from 0.1 to 0.9 ml. gas/24 h., with a mean of 0.4 ml. gas/24 h. The above mentioned results strongly suggest the existence of a relationship between meteorism and exagerated fecal fermentation. The nature of this relationship has not yet been completely clarified. However, the test used to determine fecal fermentation already promises to be very helpful for a better understanding and management of meteorism.

  13. Elemental abundance determinations for meteors by spectroscopy.

    NASA Technical Reports Server (NTRS)

    Harvey, G. A.

    1973-01-01

    Relative elemental abundance determinations for meteors by spectroscopy are discussed. Relative abundances of spectroscopically accessible elements of four major shower meteors and one sporadic meteor are presented. A sporadic meteor with dominant sodium radiation and an iron-deficient sporadic meteor are analyzed. Empirical and theoretical tests for self-absorption in optical meteor plasmas have been conducted. Both ionization and incomplete dissociation are found to severely deplete certain neutral atoms from meteor plasmas.

  14. Stop Sign Crater

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    With its rim eroded off by catastrophic floods in Tiu Vallis and its strangely angular shape, this 12 km diameter crater looks vaguely like a stop sign.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 8.6, Longitude 329.2 East (30.8 West). 19 meter/pixel resolution.

  15. Meteor signature interpretation

    SciTech Connect

    Canavan, G.H.

    1997-01-01

    Meteor signatures contain information about the constituents of space debris and present potential false alarms to early warnings systems. Better models could both extract the maximum scientific information possible and reduce their danger. Accurate predictions can be produced by models of modest complexity, which can be inverted to predict the sizes, compositions, and trajectories of object from their signatures for most objects of interest and concern.

  16. Optical fluxes and meteor properties of the camelopardalid meteor shower

    NASA Astrophysics Data System (ADS)

    Campbell-Brown, M. D.; Blaauw, R.; Kingery, A.

    2016-10-01

    Observations of the Camelopardalid meteor shower in May 2014 were obtained with six different sets of cameras, with limiting meteor magnitudes varying from -2M to +7M. Shower fluxes were calculated for each of the systems, from which the mass index of the shower was found to be 2.17 ± 0.04. Faint meteors in the shower were found to be stronger than average, ablating at lower altitudes than meteors at the same speed recorded with the same system, while the brightest meteors had higher ablation heights and were therefore weaker than typical meteors. These findings can be explained if large Camelopardalids are weak agglomerations of more refractory grains, which are easily disrupted in space and keep the shower supplied with small material and depleted in large material.

  17. Crater Appeal

    ERIC Educational Resources Information Center

    Mueller, Michael P.; Valderrama, Paige

    2006-01-01

    For many years, the planet Mars was nothing more than a little red dot in a sea of stars and a blur in many science classrooms. Recent focus on the planet, however, has led to incredible teaching opportunities, such as the Mars Student Imaging Project (MSIP) facilitated by Arizona State University's Mars Education Program. The MSIP curriculum…

  18. Kuiper Crater

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Mariner 10 Television-Science Team has proposed the name 'Kuiper' for this very conspicuous bright Mercury crater (top center) on the rim of a larger older crater. Prof. Gerard P. Kuiper, a pioneer in planetary astronomy and a member of the Mariner 10 TV team, died December 23, 1973, while the spacecraft was enroute to Venus and Mercury. Mariner took this picture (FDS 27304) from 88,450 kilometers (55,000 miles) some 2 1/2 hours before it passed Mercury on March 29. The bright-floored crater, 41 kilometers (25 miles) in diameter, is the center of a very large bright are which could be seen in pictures sent from Mariner 10 while Mercury was more than two million miles distant. The larger crater is 80 kilometers (50 miles) across.

    The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    Image Credit: NASA/JPL/Northwestern University

  19. Light curves of faint meteors

    NASA Astrophysics Data System (ADS)

    Koten, Pavel; Borovička, Jiří

    2001-11-01

    The results of the light curves analysis of 234 meteors observed and recorded within the double-station image intensifier observations at the Ondřejov observatory are presented. Double-station observations allow to compute the meteor trajectory in the solar system and in the atmosphere as well as to determinate the absolute magnitude of meteor and its mass. Light curves and heights data of all major meteor showers - Lyrids, η-Aquarids, Perseids, Orionids, Leonids, Geminids as well as many sporadic meteors - were analysed. The differences between individual showers were found, e.g. Perseids appear to be more compact than Leonids. There is also difference between 1998 and 1999 Leonids. This suggests different composition or structure of parent bodies. Our data show that the beginning heights of Perseids, Orionids and Leonids are weakly dependent on meteor mass, although the dust-ball theory assumes they should be mass independent.

  20. Meteors in Australian Aboriginal Dreamings

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.; Norris, Ray P.

    2010-06-01

    We present a comprehensive analysis of Australian Aboriginal accounts of meteors. The data used were taken from anthropological and ethnographic literature describing oral traditions, ceremonies, and Dreamings of 97 Aboriginal groups representing all states of modern Australia. This revealed common themes in the way meteors were viewed between Aboriginal groups, focusing on supernatural events, death, omens, and war. The presence of such themes around Australia was probably due to the unpredictable nature of meteors in an otherwise well-ordered cosmos.

  1. Galle Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 19 June 2002) The Science This image is of part of Galle Crater, located at 51.9S, 29.5W. This image was taken far enough south and late enough into the southern hemisphere fall to catch observe water ice clouds partially obscuring the surface. The most striking aspect of the surface is the dissected layered unit to the left in the image. Other areas also appear to have layering, but they are either more obscured by clouds or are less well defined on the surface. The layers appear to be mostly flat lying and layer boundaries appear as topographic lines would on a map, but there are a few areas where it appears that these layers have been deformed to some level. Other areas of the image contain rugged, mountainous terrain as well as a separate pitted terrain where the surface appears to be a separate unit from the mountains and the layered terrain. The Story Galle Crater is officially named after a German astronomer who, in 1846, was the first to observe the planet Neptune. It is better known, however, as the 'Happy Face Crater.' The image above focuses on too small an area of the crater to see its beguiling grin, but you can catch the rocky line of a 'half-smile' in the context image to the right (to the left of the red box). While water ice clouds make some of the surface harder to see, nothing detracts from the fabulous layering at the center left-hand edge of the image. If you click on the above image, the scalloped layers almost look as if a giant knife has swirled through a landscape of cake frosting. These layers, the rugged, mountains near them, and pits on the surface (upper to middle section of the image on the right-hand side) all create varying textures on the crater floor. With such different features in the same place, geologists have a lot to study to figure out what has happened in the crater since it formed.

  2. Centrifuge impact cratering experiment 5

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Transient crates motions, cratering flow fields, crates dynamics, determining impact conditions from total crater welt, centrifuge quarter-space cratering, and impact cratering mechanics research is documented.

  3. Meteor Beliefs Project: Meteoric references in Ovid's Metamorphoses

    NASA Astrophysics Data System (ADS)

    Gheorghe, A. D.; McBeath, A.

    2003-10-01

    Three sections of Ovid's Metamorphoses are examined, providing further information on meteoric beliefs in ancient Roman times. These include meteoric imagery among the portents associated with the death of Julius Caesar, which we mentioned previously from the works of William Shakespeare (McBeath and Gheorghe, 2003b).

  4. James Joule and meteors

    NASA Astrophysics Data System (ADS)

    Hughes, David W.

    1989 was the hundredth anniversary of the death of James Prescott Joule, the Prescott being his mother's family name and the Joule, rhyming with cool, originating from the Derbyshire village of Youlgreave. Joule is rightly famous for his experimental efforts to establish the law of conservation of energy, and for the fact that J, the symbol known as the mechanical equivalent of heat, is named after him. Astronomically his "light has been hidden under a bushel". James Joule had a major influence on the physics of meteors.

  5. Meteor fireball sounds identified

    NASA Technical Reports Server (NTRS)

    Keay, Colin

    1992-01-01

    Sounds heard simultaneously with the flight of large meteor fireballs are electrical in origin. Confirmation that Extra/Very Low Frequency (ELF/VLF) electromagnetic radiation is produced by the fireball was obtained by Japanese researchers. Although the generation mechanism is not fully understood, studies of the Meteorite Observation and Recovery Project (MORP) and other fireball data indicate that interaction with the atmosphere is definitely responsible and the cut-off magnitude of -9 found for sustained electrophonic sounds is supported by theory. Brief bursts of ELF/VLF radiation may accompany flares or explosions of smaller fireballs, producing transient sounds near favorably placed observers. Laboratory studies show that mundane physical objects can respond to electrical excitation and produce audible sounds. Reports of electrophonic sounds should no longer be discarded. A catalog of over 300 reports relating to electrophonic phenomena associated with meteor fireballs, aurorae, and lightning was assembled. Many other reports have been cataloged in Russian. These may assist the full solution of the similar long-standing and contentious mystery of audible auroral displays.

  6. Radar Meteor Observations in Australia

    NASA Astrophysics Data System (ADS)

    Elford, W. G.

    1993-01-01

    During the last decade extensive meteor studies have been carried out in Australia using radio systems operating at frequencies between 2 and 30 MHz. Part of this program has been a deliberate effort to detect meteors above the "echo ceiling" of about 105 km associated with radars operating above 30 MHz. In fact the echo ceiling has been raised to 140 km with a dramatic increase in meteor flux [1]. The other aspect of these studies has been the use a low frequency (6-30MHz) surveillance radar to detect and record meteors over the horizon, using backscatter via ionospheric F-region. The power of the radar is such that the micrometeoroid limit is being approached [2]. The surveillance radar has confirmed the new estimates of meteor flux and extended to a mass limit of 0.2 microgram.

  7. Computational Physics of Small Meteors

    NASA Astrophysics Data System (ADS)

    Surzhikov, S. T.

    2015-10-01

    This paper is dedicated to application of the modern computational aero physical models, which were developed for mathematical modeling of aerothermodynamics and radiative gasdynamics of space vehicles, for investigation of meteoric phenomena. Short analysis of modern problems of meteoric physics is presented. The typical chemical compositions of meteoric bodies are discussed. Considerable attention is given to investigation of the non-equilibrium physical-chemical processes accompanying a meteor with relatively small size at altitude of 70 km, in the conditions, when the vibrational relaxation zone exceeds the size of meteoric body. Two-dimensional numerical simulation radiative gas dynamics model of physically and chemically nonequilibrium flow field around the meteoroid bodies entering Earth atmosphere is presented.

  8. Dividing Arizona

    ERIC Educational Resources Information Center

    Finkel, Ed

    2010-01-01

    Amid all the national attention on Arizona these past few months, largely due to Senate Bill 1070 empowering police to take "reasonable" steps to verify the immigration status of criminal suspects, the state's K12 district administrators have been wrestling with a unique segregation issue, as well. Over the past two years, all districts have…

  9. Buried Craters

    NASA Technical Reports Server (NTRS)

    2005-01-01

    26 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows two circular features on the plains of northern Utopia. A common sight on the martian northern plains, these rings indicate the locations of buried impact craters.

    Location near: 65.1oN, 261.2oW Image width: 2 km (1.2 mi) Illumination from: lower left Season: Northern Summer

  10. The Chelyabinsk meteor

    NASA Astrophysics Data System (ADS)

    Popova, O.; Jenniskens, P.; Shuvalov, V.; Emel'yanenko, V.; Rybnov, Y.; Kharlamov, V.; Kartashova, A.; Biryukov, E.; Khaibrakhmanov, S.

    2014-07-01

    A review is given about what was learned about the 0.5-Mt Chelyabinsk airburst of 15 February 2013 by field studies, the analysis of recovered meteorites, and numerical models of meteoroid fragmentation and airburst propagation. Previous events with comparable or larger energy in recent times include only the 0.5-Mt -sized 3 August 1963 meteor over the south Atlantic, for which only an infrasound signal was recorded, and the famous Tunguska impact of 1908. Estimates of the initial kinetic energy of the Tunguska impact range from 3 to 50 Mt, due to the lack of good observations at the time. The Chelyabinsk event is much better documented than both, and provides a unique opportunity to calibrate the different approaches used to model meteoroid entry and calculate the damaging effects of a shock wave from a large meteoroid impact. A better understanding of what happened might help future impact hazard mitigation efforts by calibrating models of what might happen under somewhat different circumstances. The initial kinetic energy is estimated from infrasonic signals and the fireball's lightcurve, as well as the extent of the glass damage on the ground. Analysis of video observations of the fireball and the shadow movements provided an impact trajectory and a record of the meteor lightcurve, which describes how that energy was deposited in the atmosphere. Ablation and fragmentation scenarios determine the success of attempts to reproduce the observed meteor lightcurve and deceleration profile by numerical modeling. There was almost no deceleration until peak brightness. Meteoroid fragmentation occurred in different forms, some part of the initial mass broke in well separated fragments, the surviving fragments falling on the ground as meteorites. The specific conditions during energy deposition determined the fraction of surviving mass. The extent of the glass damage was mapped by visiting over 50 villages in the area. A number of numerical simulations were conducted that

  11. Dunes in a Crater Floor

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 6 August 2003

    This image shows the floor of a crater just north of the Argyre basin in the southern hemisphere. Dark dunes have been pushed up against the northeastern interior rim of the crater, indicating that the prevailing winds blow from the southwest.

    Image information: VIS instrument. Latitude -35.7, Longitude 324.1 East (35.9 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Young Channel, Old Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 18 March 2004

    The Odyssey spacecraft has completed a full Mars year of observations of the red planet. For the next several weeks the Image of the Day will look back over this first mars year. It will focus on four themes: 1) the poles - with the seasonal changes seen in the retreat and expansion of the caps; 2) craters - with a variety of morphologies relating to impact materials and later alteration, both infilling and exhumation; 3) channels - the clues to liquid surface flow; and 4) volcanic flow features. While some images have helped answer questions about the history of Mars, many have raised new questions that are still being investigated as Odyssey continues collecting data as it orbits Mars.

    Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    This daytime IR image was collected on February 3, 2003 during the northern summer season. This image shows a younger channel cutting through an older crater.

    Image information: IR instrument. Latitude 30.8, Longitude 19 East (341 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System

  13. Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located in a small canyon within a crater rim northeast of Naktong Vallis.

    Image information: VIS instrument. Latitude 7.1, Longitude 34.7 East (325.3 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    This region of dust avalanches is located in and around a crater to the west of yesterday's image.

    Image information: VIS instrument. Latitude 14.7, Longitude 32.7 East (327.3 West). 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Chipped Paint Crater

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 9 April 2003

    In the high northern latitudes NW of Alba Patera, a smooth mantle of material that covers the landscape appears chipped away from the rim of a large crater. The prominent scarp that has formed from the retreat of the mantle lacks the rounded appearance of other ice-rich mantles found in the mid-latitudes. The nature of this mantling layer therefore is more enigmatic.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 62.9, Longitude 226.2 East (133.8 West). 19 meter/pixel resolution.

  16. Crater Floor Dune Field

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    Our final dune image shows a small dune field inside an unnamed crater south of Nili Fossae.

    Image information: VIS instrument. Latitude 20.6, Longitude 79 East (281 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. Maunder Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 24 May 2002) The Science This image is of a portion of Maunder Crater located at about 49 S and 358 W (2 E). There are a number of interesting features in this image. The lower left portion of the image shows a series of barchan dunes that are traveling from right to left. The sand does not always form dunes as can be seen in the dark and diffuse areas surrounding the dune field. The other interesting item in this image are the gullies that can be seen streaming down from just beneath a number of sharp ridgelines in the upper portion of the image. These gullies were first seen by the MOC camera on the MGS spacecraft and it is though that they formed by groundwater leaking out of the rock layers on the walls of craters. The water runs down the slope and forms the fluvial features seen in the image. Other researchers think that these features could be formed by other fluids, such as CO2. These features are typically seen on south facing slopes in the southern hemisphere, though this image has gullies on north facing slopes as well. The Story Little black squigglies seem to worm their way down the left-hand side of this image. These land features are called barchan (crescent-shaped) dunes. Barchan dunes are found in sandy deserts on Earth, so it's no surprise the Martian wind makes them a common site on the red planet too. They were first named by a Russian scientist named Alexander von Middendorf, who studied the inland desert dunes of Turkistan. The barchan dunes in this image occur in the basin of Maunder crater on Mars, and are traveling from right to left. The sand does not always form dunes, though, as can be seen in the dark areas of scattered sand surrounding the dune field. Look for the streaming gullies that appear just beneath a number of sharp ridgelines in the upper portion of the image. These gullies were first discovered by the Mars Orbital Camera on the Mars Global Surveyor spacecraft. While most crater gullies are found on south

  18. Catalogue of representative meteor spectra

    NASA Astrophysics Data System (ADS)

    Vojáček, V.; Borovička, J.; Koten, P.; Spurný, P.; Štork, R.

    2015-08-01

    Aims: We present a library of low-resolution meteor spectra that includes sporadic meteors, members of minor meteor showers, and major meteor showers. These meteors are in the magnitude range from +2 to -3, corresponding to meteoroid sizes from 1 mm to 10 mm. Methods: Parallel double-station video observations allowed us to compute heliocentric orbits for all meteors. Most observations were performed during the periods of activity of major meteor showers in the years between 2006 and 2012. Spectra are classified according to relative intensities of the low-temperature emission lines of Mg, Na, and Fe. Results: Shower meteors were found to be of normal composition, except for Southern δ Aquariids and some members of the Geminid shower, neither of which have Na in the meteor spectra. Variations in Na content are typical for the Geminid shower. Three populations of Na-free mereoroids were identified. The first population are iron meteorites, which have an asteroidal-chondritic origin, but one meteoroid with low perihelion (0.11 AU) was found among the iron meteorites. The second population were Sun-approaching meteoroids in which sodium is depleted by thermal desorption. The third population were Na-free meteoroids of cometary origin. Long exposure to cosmic rays on the surface of comets in the Oort cloud and disintegration of this crust might be the origin of this population of meteoroids. Spectra (Figs. 17-30) are only, Tables 4-6 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A67

  19. Buried Mid-Latitude Craters

    NASA Technical Reports Server (NTRS)

    2004-01-01

    MGS MOC Release No. MOC2-577, 17 December 2003

    This September 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows six circular features, three of which exhibit concentric, or 'bullseye,' patterns within them. Each circular feature is the remains of a partly-buried, partly-eroded, and partly-filled meteor impact crater. These occur in northeastern Arabia Terra. Areas such as this, located near the middle latitudes of Mars, commonly have a 'scabby' or roughened appearance. The cause of this 'terrain roughening' texture is unknown, although some scientists have speculated that it might result from the erosion and removal (by way of sublimation) of ground ice. This idea remains highly speculative. These features are located near 28.4oN, 317.5oW. The image covers an area 3 km (1.9 mi) wide; sunlight illuminates the scene from the lower left.

  20. Map showing the Elko crater field, Elko County, Nevada

    USGS Publications Warehouse

    Ketner, Keith B.; Roddy, David J.

    1980-01-01

    The Elko crater field consists of two arrays of rimmed craters in the valleys of Dorsey, Susie, and McClellan Creeks, 30 to 50 km north of Elko, Nevada. In the principal array, more the 165 craters are scattered irregularly in an area 3 km wide and 20 km long. Most of the the craters are circular but some, formed by overlap, are oval or irregular. They range from 5 m to 250 m in diameter and the relief of the largest ones, from the sedimentary floor of the cater to the top of the rim, is at least 6 m. The surficial material of the rims is principally gravel similar to that in the surrounding terrane. The surficial material inside the craters is primarily silt, probably blown in by the wind, and pebbles, apparently washed in from the rims. There is also a later of volcanic ash at a depth of about 2 m. This ash was identified by its physical and mineralogical composition as the Mazama ash (R. E. Wilcox, oral commun., 1976), a ±6600 year old ash bed also present in the alluvium of Dorsey and Susie Creeks. The craters are presently interpreted as having been formed by a meteor shower although no meteor material has been discovered. Investigation is continuing.

  1. Artificial meteor test towards: On-demand meteor shower

    NASA Astrophysics Data System (ADS)

    Abe, S.; Okajima, L.; Sahara, H.; Watanabe, T.; Nojiri, Y.; Nishizono, T.

    2016-01-01

    An arc-heated wind tunnel is widely used for ground-based experiments to simulate environments of the planetary atmospheric entry under hypersonic and high-temperature conditions. In order to understand details of a meteor ablation such as temperature, composition ratio and fragmentation processes, the artificial meteor test was carried out using a JAXA/ISAS arc-heated wind tunnel. High-heating rate around 30 MW/m2 and High-enthalpy conditions, 10000 K arc-heated flow at velocity around 6 km/s were provided. Newly developed artificial metallic meteoroids and real meteorites such as Chelyabinsk were used for the ablation test. The data obtained by near-ultraviolet and visible spectrograph (200 and 1100nm) and high-speed camera (50 μs) have been examined to develop more efficient artificial meteor materials. We will test artificial meteors from a small satellite in 2018.

  2. A Crater Split In Two

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 23 September 2003

    A 22 km-diameter crater has been sliced by the tectonic forces that produced the rift known as Sirenum Fossae. The orientation of this rift is roughly radial to the great Tharsis volcano Arsia Mons, probably indicating a link between the formation of the rift and the volcano. Note how the rift cuts through a jumble of mounds on the floor of the crater. This indicates a sequence of events beginning with the formation of the crater followed by an infilling of material that was then eroded into the mounds and ultimately split open by the shifting martian crust.

    Image information: VIS instrument. Latitude -29.7, Longitude 211.7 East (148.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Recent meteor observing activities in Japan

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.

    2005-02-01

    The meteor train observation (METRO) campaign is described as an example of recent meteor observing activity in Japan. Other topics of meteor observing activities in Japan, including Ham-band radio meteor observation, the ``Japan Fireball Network'', the automatic video-capture software ``UFOCapture'', and the Astro-classroom programme are also briefly introduced.

  4. Letter - Reply: Meteors in Australian Aboriginal Dreamings

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.

    2011-06-01

    In response to the letter by Gorelli (2010) about Hamacher & Norris (2010), he is quite right about Aboriginal people witnessing impact events in Australia. There are several oral traditions regarding impact sites, some of which were probably witnessed, as Gorelli pointed out. The Henbury craters he mentions, with a young age of only ∼ 4200 years, have oral traditions that seem to describe a cosmic impact, including an aversion to drinking water that collects in the craters in fear that the fire-devil (which came from the sun, according to an Elder) would rain iron in them again. Other impact sites, such as Gosse's Bluff crater (Tnorala in the Arrernte language) and Wolfe Creek crater (Kandimalal in the Djaru language) have associated impact stories, despite their old ages (142 Ma and ∼0.3 Ma, respectively). In addition, many fireball and airburst events are described in Aboriginal oral traditions, a number of which seem to indicate impact events that are unknown to Western science. I have published a full treatise of meteorite falls and impact events in Australian Aboriginal culture that I would like to bring to the attention of Gorelli and WGN readers (Hamacher & Norris, 2009). Although our paper was published in the 2009 volume of Archaeoastronomy, it did not appear in print until just recently, which is probably why it has gone unnoticed. Recent papers describing the association between meteorites and Aboriginal cosmology (Hamacher, 2011) and comets in Aboriginal culture (Hamacher & Norris, 2011) have also been published, and would likely be of interest to WGN readers. I heartily agree with Gorelli that oral traditions are fast disappearing, taking with them a wealth of information about not only that peoples' culture, but also about past geologic and astronomical events, such as meteorite falls and cosmic impacts (a branch of the growing field of Geomythology). There is an old saying that "when a man dies, a library goes with him". This is certainly the

  5. Concentric Crater Floor Deposits in Daedalia Planum

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 3 September 2003

    Concentric crater floor deposits in Daedalia Planum. Lava flows appear to be converging on this crater from the northeast as well as on the crater floor. The concentric floor deposits may be the result of exposed and eroded layers of sediment that make up the crater floor.

    Image information: VIS instrument. Latitude -22.3, Longitude 221.5 East (138.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Signs of Landscape Modifications at Martian Crater

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] Click on the image for larger version

    The lower portion of this image from the Thermal Emission Imaging System camera (THEMIS) on NASA's Mars Odyssey orbiter shows a crater about 16 kilometers (10 miles) in diameter with features studied as evidence of deposition or erosion. The crater is centered at 40.32 degrees south latitude and 132.5 degrees east longitude, in the eastern portion of the Hellas basin on Mars. It has gullies and arcuate ridges on its north, pole-facing interior wall. This crater is in the center of a larger (60-kilometer or 37-mile diameter) crater with lobate flows on its north, interior wall. The image, number V07798008 in the THEMIS catalog, covers a swath of ground 17.4 kilometers (10.8 miles) wide.

    NASA's Jet Propulsion Laboratory manages the Mars Odyssey mission for NASA's Office of Space Science. THEMIS was developed by Arizona State University in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Meteor Beliefs Project: Seven years and counting

    NASA Astrophysics Data System (ADS)

    McBeath, A.; Drobnock, G. J.; Gheorghe, A. D.

    2010-04-01

    The Meteor Beliefs Project's seventh anniversary is celebrated with an eclectic mixture of meteor beliefs from the 1799 Leonids in Britain, the folkloric link between meteors and wishing in some Anglo-American sources, how a meteoric omen came to feature in Nathaniel Hawthorne's 1850 novel The Scarlet Letter, and a humorous item from the satirical magazine Punch in 1861, all helping to show how meteor beliefs can be transformed by different parts of society.

  8. On the interaction meteor complex

    NASA Astrophysics Data System (ADS)

    Rajchl, J.

    An approach to the problem of a meteoric complex called the interaction meteor complex (IMC) is applied and discussed, generalizing the idea of the interaction layer (Rajchl 1969). The role of an extended interaction of meteoroids is emphasized, both with planet surfaces and/or their satellites and with planet atmospheres, elastic or inelastic in form. The dissipation and related formative aspect are joined in one complex and compared with a topological compact. Examples of these types of interaction are presented.

  9. Crater chains on Mercury

    NASA Astrophysics Data System (ADS)

    Shevchenko, V.; Skobeleva, T.

    After discovery of disruption comet Shoemaker-Levy 9 into fragment train before it's collision with Jupiter there was proposed that linear crater chains on the large satellites of Jupiter and on the Moon are impact scars of past tidally disrupted comets.It's known that radar images have revealed the possible presence of water ice deposits in polar regions of Mercury. Impacts by a few large comets seem to provide the best explanation for both the amount and cleanliness of the ice deposits on Mercury because they have a larger volatile content that others external sources, for example, asteroid. A number of crater chains on the surface of Mercury are most likely the impact tracks of "fragment trains" of comets tidally disrupted by Sun or by Mercury and are not secondary craters. Mariner 10 image set (the three Mariner 10 flybys in 1974-1975) was used to recognize the crater chains these did not associate with secondary crater ejecta from observed impact structures. As example, it can be shown such crater chain located near crater Imhotep and crater Ibsen (The Kuiper Quadrangle of Mercury). Resolution of the Mariner 10 image is about 0.54 km/pixel. The crater chain is about 50 km long. It was found a similar crater chain inside large crater Sophocles (The Tolstoj Quadrangle of Mercury). The image resolution is about 1.46 km/pixel. The chain about 50 km long is located in northen part of the crater. Image resolution limits possibility to examine the form of craters strongly. It seems the craters in chains have roughly flat floor and smooth form. Most chain craters are approximately circular. It was examined many images from the Mariner 10 set and there were identified a total 15 crater chains and were unable to link any of these directly to any specific large crater associated with ejecta deposits. Chain craters are remarkably aligned. All distinguished crater chains are superposed on preexisting formations. A total of 127 craters were identified in the 15 recognized

  10. Meteors and showers a millennium ago

    NASA Astrophysics Data System (ADS)

    Ahn, Sang-Hyeon

    2003-08-01

    Meteors can be classified into either sporadic meteors or showery meteors. We compile the meteor records in the astronomical archives in the chronicle of the Koryo dynasty (918-1392), and investigate the spatial distribution of meteor streams along the orbit of the Earth from the 10th to the 14th century. We see that meteors from meteor streams signalize themselves over noisy sporadic meteors, and that the seasonal activity of sporadic meteors is apparently regular. We discover the presence of a few meteor streams by analysing about 700 meteors in the Koryo period. We also compile the records of meteor showers and storms in the chronicles of Korea, Japan, China, Arabia and Europe, and compare their appearance dates with those of showers obtained in our analysis, as well as with the modern observations. We confirm that the three sets of data are in agreement with each other. The representative meteor showers are the Perseids, the Leonids, and the η Aquarids/Orionids pair formed by Halley's comet. The other weak or relic meteor streams are also observable but uncertain. Hence we witness the regularity of meteor activity, which is seen to persist for a millennium.

  11. Coded continuous wave meteor radar

    NASA Astrophysics Data System (ADS)

    Vierinen, Juha; Chau, Jorge L.; Pfeffer, Nico; Clahsen, Matthias; Stober, Gunter

    2016-03-01

    The concept of a coded continuous wave specular meteor radar (SMR) is described. The radar uses a continuously transmitted pseudorandom phase-modulated waveform, which has several advantages compared to conventional pulsed SMRs. The coding avoids range and Doppler aliasing, which are in some cases problematic with pulsed radars. Continuous transmissions maximize pulse compression gain, allowing operation at lower peak power than a pulsed system. With continuous coding, the temporal and spectral resolution are not dependent on the transmit waveform and they can be fairly flexibly changed after performing a measurement. The low signal-to-noise ratio before pulse compression, combined with independent pseudorandom transmit waveforms, allows multiple geographically separated transmitters to be used in the same frequency band simultaneously without significantly interfering with each other. Because the same frequency band can be used by multiple transmitters, the same interferometric receiver antennas can be used to receive multiple transmitters at the same time. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large-scale multi-static network of meteor radar transmitters and receivers. Such a system would be useful for increasing the number of meteor detections to obtain improved meteor radar data products.

  12. A Bright Lunar Impact Flash Linked to the Virginid Meteor Complex

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Suggs, R. J.

    2015-01-01

    On 17 March 2013 at 03:50:54 UTC, NASA detected a bright impact flash on the Moon caused by a meteoroid impacting the lunar surface. There was meteor activity in Earth's atmosphere the same night from the Virginid Meteor Complex. The impact crater associated with the impact flash was found and imaged by Lunar Reconnaissance Orbiter (LRO). Goal: Monitor the Moon for impact flashes produced by meteoroids striking the lunar surface. Determine meteoroid flux in the 10's gram to kilogram size range.

  13. Geologic map of the eastern quarter of the Flagstaff 30’ x 60’ quadrangle, Coconino County, northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Block, Debra; Hiza-Redsteer, Margaret

    2014-01-01

    The eastern quarter of the Flagstaff 30′ x 60′ quadrangle includes eight USGS 1:24,000-scale quadrangles in Coconino County, northern Arizona (fig. 1, map sheet): Anderson Canyon, Babbitt Wash, Canyon Diablo, Grand Falls, Grand Falls SE, Grand Falls SW, Grand Falls NE, and Meteor Crater. The map is bounded by lat 35° to 35°30′ N. and long 111° to 111°15′ W. and is on the southern part of the Colorado Plateaus geologic province (herein Colorado Plateau). Elevations range from 4,320 ft (1,317 m) at the Little Colorado River in the northwest corner of the map area to about 6,832 ft (2,082 m) at the southwest corner of the map. This geologic map provides an updated geologic framework for the eastern quarter of the Flagstaff 30′ x 60′ quadrangle and is adjacent to two other recent geologic maps, the Cameron and Winslow 30′ x 60′ quadrangles (Billingsley and others, 2007, 2013). This geologic map is the product of a cooperative effort between the U.S. Geological Survey (USGS) and the Navajo Nation. It provides geologic information for resource management officials of the U.S. Forest Service, the Arizona Game and Fish Department, and the Navajo Nation Reservation (herein the Navajo Nation). Funding for the map was provided by the USGS geologic mapping program, Reston, Virginia. Field work on the Navajo Nation was conducted under a permit from the Navajo Nation Minerals Department. Any persons wishing to conduct geologic investigations on the Navajo Nation must first apply for, and receive, a permit from the Navajo Nation Minerals Department, P.O. Box 1910, Window Rock, Arizona 86515, telephone (928) 871-6587.

  14. Database of Properties of Meteors

    NASA Technical Reports Server (NTRS)

    Suggs, Rob; Anthea, Coster

    2006-01-01

    A database of properties of meteors, and software that provides access to the database, are being developed as a contribution to continuing efforts to model the characteristics of meteors with increasing accuracy. Such modeling is necessary for evaluation of the risk of penetration of spacecraft by meteors. For each meteor in the database, the record will include an identification, date and time, radiant properties, ballistic coefficient, radar cross section, size, density, and orbital elements. The property of primary interest in the present case is density, and one of the primary goals in this case is to derive densities of meteors from their atmospheric decelerations. The database and software are expected to be valid anywhere in the solar system. The database will incorporate new data plus results of meteoroid analyses that, heretofore, have not been readily available to the aerospace community. Taken together, the database and software constitute a model that is expected to provide improved estimates of densities and to result in improved risk analyses for interplanetary spacecraft. It is planned to distribute the database and software on a compact disk.

  15. Coded continuous wave meteor radar

    NASA Astrophysics Data System (ADS)

    Vierinen, J.; Chau, J. L.; Pfeffer, N.; Clahsen, M.; Stober, G.

    2015-07-01

    The concept of coded continuous wave meteor radar is introduced. The radar uses a continuously transmitted pseudo-random waveform, which has several advantages: coding avoids range aliased echoes, which are often seen with commonly used pulsed specular meteor radars (SMRs); continuous transmissions maximize pulse compression gain, allowing operation with significantly lower peak transmit power; the temporal resolution can be changed after performing a measurement, as it does not depend on pulse spacing; and the low signal to noise ratio allows multiple geographically separated transmitters to be used in the same frequency band without significantly interfering with each other. The latter allows the same receiver antennas to be used to receive multiple transmitters. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large scale multi-static network of meteor radar transmitters and receivers. This would, for example, provide higher spatio-temporal resolution for mesospheric wind field measurements.

  16. A Bright Lunar Impact Flash Linked to the Virginid Meteor Complex

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Suggs, R. J.

    2015-01-01

    Since early 2006, NASA's Marshall Space Flight Center (MSFC) has observed over 330 impact flashes on the Moon, produced by meteoroids striking the lunar surface. On 17 March 2013 at 03:50:54.312 UTC, the brightest flash of a 9-year routine observing campaign was observed by two 0.35 m telescopes at MSFC. The camera onboard the Lunar Reconnaissance Orbiter (LRO), a NASA spacecraft mapping the Moon from lunar orbit, discovered the fresh crater associated with this impact [1] approximately 3 km from the location predicted by a newly developed geolocation technique [2]. The meteoroid impactor responsible for this event may have been part of a stream of large particles encountered by the Earth/Moon associated with the Virginid Meteor Complex, as evidenced by a cluster of five fireballs seen in Earth's atmosphere on the same night by the NASA All Sky Fireball Network [3] and the Southern Ontario Meteor Network [4]. Crater size calculations based on assumptions derived from fireball measurements yielded an estimated crater diameter of 10-23 m rim-to-rim using the Holsapple [5] and Gault [6] models, a result consistent with the observed crater measured to be 18 m across. This is the first time a lunar impact flash has been associated with fireballs in Earth's atmosphere and an observed crater.

  17. A fast meteor detection algorithm

    NASA Astrophysics Data System (ADS)

    Gural, P.

    2016-01-01

    A low latency meteor detection algorithm for use with fast steering mirrors had been previously developed to track and telescopically follow meteors in real-time (Gural, 2007). It has been rewritten as a generic clustering and tracking software module for meteor detection that meets both the demanding throughput requirements of a Raspberry Pi while also maintaining a high probability of detection. The software interface is generalized to work with various forms of front-end video pre-processing approaches and provides a rich product set of parameterized line detection metrics. Discussion will include the Maximum Temporal Pixel (MTP) compression technique as a fast thresholding option for feeding the detection module, the detection algorithm trade for maximum processing throughput, details on the clustering and tracking methodology, processing products, performance metrics, and a general interface description.

  18. Leonid meteors, 2001 November 18

    NASA Astrophysics Data System (ADS)

    McGee, H. W.; Mobberley, M. P.

    2002-02-01

    Leonid meteors photographed from Palau, Micronesia, on 2001 November 18. Clockwise from top right: 3 meteors in Corvus, 19.18-19.20 UT; brilliant fireball in Orion, 18.48.30 UT; bright Leonid in Hydra, 19.06 UT. 50mm f/1.8 lens, 1600 ISO Fuji Superia film; M.P. Mobberley. Top left: Composite of three 5-minute exposures between 19.15 and 19.36 UT. 28mm f2.8 lens, 800 ISO Kodak Gold film; H.W. McGee.

  19. Wake in faint television meteors

    NASA Technical Reports Server (NTRS)

    Robertson, M. C.; Hawkes, Robert L.

    1992-01-01

    The two component dustball model was used in numerical lag computation. Detached grain lag is typically less than 2 km, with expected wakes of a few hundred meters. True wake in television meteors is masked by apparent wake due to the combined effects of image persistence and blooming. To partially circumvent this problem, we modified a dual MCP intensified CID video system by addition of a rotating shutter to reduce the effective exposure time to about 2.0 ms. Preliminary observations showed that only 2 of 27 analyzed meteors displayed statistically significant wake.

  20. Momentum loss for antimatter meteors

    NASA Astrophysics Data System (ADS)

    Papaelias, P. M.

    1991-02-01

    The momentum loss for a possible antimatter meteor entrance can be described by the combination of two terms. One which can be characterized by the mechanism of annihilation and a second one, the well known mechanism which is common for all koinomatter (ordinary) meteors. That is, the momentum loss caused by the air molecules swept up by the moving object. This paper discusses the contribution of the rocket effect caused by the action of the secondaries which can be produced by the annihilation interactions of the antiatoms with the air molecules.

  1. The making of meteor astronomy: part V.

    NASA Astrophysics Data System (ADS)

    Beech, M.

    1993-12-01

    The first true comparisons between the observations and the "rising vapors" hypothesis of meteor origins were made in the early eighteenth century. One of the key figures in the new meteoric dialogue was Edmond Halley.

  2. Global Variation of Meteor Trail Plasma Turbulence

    NASA Technical Reports Server (NTRS)

    Dyrud, L. P.; Hinrichs, J.; Urbina, J.

    2011-01-01

    We present the first global simulations on the occurrence of meteor trail plasma irregularities. These results seek to answer the following questions: when a meteoroid disintegrates in the atmosphere will the resulting trail become plasma turbulent, what are the factors influencing the development of turbulence, and how do they vary on a global scale. Understanding meteor trail plasma turbulence is important because turbulent meteor trails are visible as non-specular trails to coherent radars, and turbulence influences the evolution of specular radar meteor trails, particularly regarding the inference of mesospheric temperatures from trail diffusion rates, and their usage for meteor burst communication. We provide evidence of the significant effect that neutral atmospheric winds and density, and ionospheric plasma density have on the variability of meteor trail evolution and the observation of nonspecular meteor trails, and demonstrate that trails are far less likely to become and remain turbulent in daylight, explaining several observational trends using non-specular and specular meteor trails.

  3. Meteor Shower Identification and Characterization with Python

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea

    2015-01-01

    The short development time associated with Python and the number of astronomical packages available have led to increased usage within NASA. The Meteoroid Environment Office in particular uses the Python language for a number of applications, including daily meteor shower activity reporting, searches for potential parent bodies of meteor showers, and short dynamical simulations. We present our development of a meteor shower identification code that identifies statistically significant groups of meteors on similar orbits. This code overcomes several challenging characteristics of meteor showers such as drastic differences in uncertainties between meteors and between the orbital elements of a single meteor, and the variation of shower characteristics such as duration with age or planetary perturbations. This code has been proven to successfully and quickly identify unusual meteor activity such as the 2014 kappa Cygnid outburst. We present our algorithm along with these successes and discuss our plans for further code development.

  4. Automated Crater Delineation

    NASA Astrophysics Data System (ADS)

    Marques, J. S.; Pina, P.

    2015-05-01

    An algorithm to delineate impact craters based on Edge Maps and Dynamic Programming is presented. The global performance obtained on 1045 craters from Mars (5 m to about 200 km in diameter), achieved 96% of correct contour delineations.

  5. David Levy's Guide to Observing Meteor Showers

    NASA Astrophysics Data System (ADS)

    Levy, David H.

    2007-11-01

    Preface; 1. July 4, 1956; 2. What is a meteor?; 3. Some historical notes; 4. Small rocks and dust in space; 5. Observing meteors; 6. Recording meteors; 7. Quadrantids; 8. Lyrids; 9. The Eta Aquarids; 10. The Omicron Draconids; 11. Delta Aquarids; 12. Perseids; 13. The Gamma Pavonids; 14. Orionids; 15. Taurids; 16. Leonids; 17. Geminids; 18. Ursids; 19. Meteor showers throughout the year; Appendix.

  6. Note on the 1972 Giacobinid meteor shower.

    NASA Technical Reports Server (NTRS)

    Harvey, G. A.

    1973-01-01

    It is shown that the 1972 Giacobinid meteor shower was extremely weak with a peak activity of two to three visual meteors per hour. Only two meteor spectra were obtained from the 17 slitless spectrograph systems operated by the Langley Research Center. The largely unexpected, essentially null results of the 1972 Giacobinid meteor shower observations are indicative of the present limited understanding and predictability of cosmic dust storms.

  7. The new July meteor shower

    NASA Astrophysics Data System (ADS)

    Zoladek, Przemyslaw; Wisniewski, Mariusz

    2012-12-01

    A new meteor stream was found after an activity outburst observed on 2005 July 15. The radiant was located five degrees west of the possible early Perseid radiant, close to the star Zeta Cassiopeiae. Numerous bright meteors and fireballs were observed during this maximum. Analysis of the IMO Video Database and the SonotaCo orbital database revealed an annual stream which is active just before the appearance of the first Perseids, with a clearly visible maximum at solar longitude 113°1. Activity of the stream was estimated as two times higher than activity of the Alpha Capricornids at the same time. The activity period extends from July 12 to 17, during maximum the radiant is visible at coordinates alpha = 5°9, delta = +50°5, and observed meteors are fast, with Vg = 57.4 km/s. The shower was reported to the IAU Meteor Data Center and recognized as a new discovery. According to IAU nomenclature the new stream should be named the Zeta Cassiopeiids (ZCS). %z Arlt R. (1992). WGN, Journal of the IMO, 20:2, 62-69. Drummond J. D. (1981). Icarus, 45, 545-553. Kiraga M. and Olech A. (2001). In Arlt R., Triglav M., and Trayner C., editors, Proceedings of the International Meteor Conference, Pucioasa, Romania, 21-24 September 2000, pages 45-51. IMO. Molau S. (2007). In Bettonvil F. and Kac J., editors, Proceedings of the International Meteor Conference, Roden, The Netherlands, 14-17 September 2006, pages 38-55. IMO. Molau S. and Rendtel J. (2009). WGN, Journal of the IMO, 37:4, 98-121. Olech A., Zoladek P., Wisniewski M., Krasnowski M., Kwinta M., Fajfer T., Fietkiewicz K., Dorosz D., Kowalski L., Olejnik J., Mularczyk K., and Zloczewski K. (2006). In Bastiaens L., Verbert J., Wislez J.-M., and Verbeeck C., editors, Proceedings of the International Meteor Conference, Oostmalle, Belgium, 15-18 September 2005, pages 53-62. IMO. Poleski R. and Szaruga K. (2006). In Bastiaens L., Verbert J., Wislez J.-M., and Verbeeck C., editors, Proceedings of the International Meteor

  8. The Merna, Nebraska Meteorite Crater

    NASA Astrophysics Data System (ADS)

    Povenmire, H.

    1995-09-01

    significant raised rim. The nature of contour plowing would reduce any present rim by pulling the raised portion down into the crater. The crater has an average diameter of 5400 feet at the 2950 ft. elevation contour. The crater is elliptical with an eccentricity of approximately 0.71. It is oriented with the major axis at an azimuth of 45 degrees. The minimum age for this crater is approximately 3000 years as determined by one Carbon 14 sample [2]. This was probably a witnessed event as Pawnee Indian legends are rich in phenomena which may relate to this event. In the area surrounding the crater for several km are at least 12 secondary craters. Some of these have a diameter of 550 m. These are distinct from the eolian features by their circular shape and distribution from the primary crater. A 6.8 kg (H4) chondrite was found in the proximity [3]. It has a specific gravity of 3.5. Several magnetic spherules of probable extraterrestrial origin and large quantities of glass flakes have been found in the crater area. Approximately 60 quartz grains were examined by polarizing microscope and about half showed some shocking. There is an active search program for more meteorites in the area. A bore hole to search for breccia and shatter cones is planned. The "IMPACI" software was developed to simulate and model this projectile using the "average" entry velocity of Near Earth Asteroids of 21.8 km per second. The best solutions suggest an approximately 195 m diameter NEA entering the atmosphere and creating an air blast at approximately 8 km altitude. The kinetic energy would have been equivalent to 180 megatons of TNT of which approximately 50 percent would have been absorbed by the atmosphere [4] [5]. References: [1] Dort W. et al. (1992) GSA, 24, 196. [2] Dort W. (1993) personal communication. [3] Graham A. et al. (1985) Catalogue of Meteorites, 4th edition, p. 82, Univ. of Arizona. [4] Chyba C. et al. (1993) Nature, 361, 40-44. [5] Hills J. and Goda M. (1993) Astrophys. J., 105

  9. Meteor radiant mapping with MU radar

    NASA Technical Reports Server (NTRS)

    Watanabe, Jun-Ichi; Nakamura, Tsuko; Tsuda, T.; Tsutsumi, M.; Miyashita, A.; Yoshikawa, M.

    1992-01-01

    The radiant point mapping of meteor showers with the MU radar by using a modified mapping method originally proposed by Morton and Jones (1982) was carried out. The modification is that each meteor echo was weighted by using the beam pattern of the radar system. A preliminary result of the radiant point mapping of the Geminids meteor shower in 1989 is presented.

  10. Croatian Meteor Network: Ongoing work 2015 - 2016

    NASA Astrophysics Data System (ADS)

    Šegon, D.; Vida, D.; Korlević, K.; Andreić, Ž.

    2016-01-01

    Ongoing work of the Croatian Meteor Network (CMN) between the 2015 and 2016 International Meteor Conferences is presented. The current sky coverage is considered, software updates and updates of orbit catalogues are described. Furthermore, the work done on meteor shower searches, international collaborations as well as new fields of research are discussed. Finally, the educational efforts made by the CMN are described.

  11. New trends in meteor radio receivers

    NASA Astrophysics Data System (ADS)

    Rault, Jean-Louis

    2014-01-01

    Recent progresses in low cost—but performing—SDR (software defined radio) technology presents a major breakthrough in the domain of meteor radio observations. Their performances are now good enough for meteor work and should therefore encourage newcomers to join the meteor radio community.

  12. Meteor Beliefs Project: Meteors in the Maori astronomical traditions of New Zealand

    NASA Astrophysics Data System (ADS)

    Britton, Tui R.; Hamacher, Duane W.

    2014-02-01

    We review the literature for perceptions of meteors in the Maori culture of Aotearoa or New Zealand. We examine representations of meteors in religion, story, and ceremony. We find that meteors are sometimes personified as gods or children, or are seen as omens of death and destruction. The stories we found highlight the broad perception of meteors found throughout the Maori culture, and note that some early scholars conflated the terms comet and meteor.

  13. Chasing Meteors With a Microscope.

    ERIC Educational Resources Information Center

    Jones, Richard C.

    1993-01-01

    Describes types of meteors and micrometeorites that enter the Earth's atmosphere. Presents an activity where students collect micrometeorites with a strip of tape in an undisturbed outdoor area. After 24 hours, they examine the tape by sandwiching it between 2 glass slides and view through a microscope at 100X. (PR)

  14. Degraded Crater Rim

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 3 May 2002) The Science The eastern rim of this unnamed crater in Southern Arabia Terra is very degraded (beaten up). This indicates that this crater is very ancient and has been subjected to erosion and subsequent bombardment from other impactors such as asteroids and comets. One of these later (younger) craters is seen in the upper right of this image superimposed upon the older crater rim material. Note that this smaller younger crater rim is sharper and more intact than the older crater rim. This region is also mantled with a blanket of dust. This dust mantle causes the underlying topography to take on a more subdued appearance. The Story When you think of Arabia, you probably think of hot deserts and a lot of profitable oil reserves. On Mars, however, Southern Arabia Terra is a cold place of cratered terrain. This almost frothy-looking image is the badly battered edge of an ancient crater, which has suffered both erosion and bombardment from asteroids, comets, or other impacting bodies over the long course of its existence. A blanket of dust has also settled over the region, which gives the otherwise rugged landscape a soft and more subdued appearance. The small, round crater (upper left) seems almost gemlike in its setting against the larger crater ring. But this companionship is no easy romance. Whatever formed the small crater clearly whammed into the larger crater rim at some point, obliterating part of its edge. You can tell the small crater was formed after the first and more devastating impact, because it is laid over the other larger crater. How much younger is the small one? Well, its rim is also much sharper and more intact, which gives a sense that it is probably far more youthful than the very degraded, ancient crater.

  15. Impact craters on Titan

    USGS Publications Warehouse

    Wood, C.A.; Lorenz, R.; Kirk, R.; Lopes, R.; Mitchell, Ken; Stofan, E.

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles. ?? 2009 Elsevier Inc.

  16. Impact craters on Titan

    USGS Publications Warehouse

    Wood, Charles A.; Lorenz, Ralph; Kirk, Randy; Lopes, Rosaly; Mitchell, Karl; Stofan, Ellen; ,

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles.

  17. San Francisco Volcanic Field, Arizona, as AN Analog for Lunar and Martian Surface Exploration

    NASA Astrophysics Data System (ADS)

    Young, K. E.; Hodges, K.; Eppler, D.; Horz, F.; Lofgren, G. E.; Hurtado, J. M.; Desert Rats Science Team

    2010-12-01

    Terrestrial analog sites are an important tool that planetary geologists and engineers can use to examine both the geologic processes that shape other planetary surfaces as well as to develop and test technologies that are needed for the exploration of planetary surfaces. During the Apollo era, sites like Meteor Crater, Arizona, were used to train astronauts in the protocols and practices of field geology so that their lunar surface activities would be more geologically productive and efficient. As we enter a new period of planetary surface exploration, analogs will be increasingly important in preparing the next generation of both human and robotic planetary explorers. No single analog will be representative of another planetary surface, but testing technologies in a variety of settings will provide NASA and other space agencies with the operational knowledge needed to launch exploratory missions. The site we present here is one of many that can be used to explore surface operations on other planetary surfaces. The San Francisco Volcanic Field (SFVF), containing both SP Crater and Black Point Lava Flow (BPLF), Arizona, is currently being used as the test site for the Desert Research and Technology Studies (D-RATS) field test, coordinated by Johnson Space Center (JSC) and involving several other NASA centers. During the 2010 test, two habitat rovers (Space Exploration Vehicles, or SEVs) operated simultaneously, each with one astronaut crewmember and one geologist crewmember. The mission lasted 14 days and traversed some 150 km. The geologic setting of SFVF includes a series of ~2 Ma basaltic lava flows overlying Triassic sedimentary rocks, both among the predominant rock types that are found primarily on Mars. SFVF has also been identified as an analog to the Marius Hills on the Moon, a Constellation site of interest. In addition, D-RATS 2010 is simulating operational scenarios based on notional traverses near the Malapert Massif on the lunar surface. While SFVF is

  18. Video spectra of Leonids and other meteors

    NASA Astrophysics Data System (ADS)

    Borovička, Jiří

    2001-11-01

    Video spectra of 33 meteors of medium brightness (+1 to -1 mag) were compared. The intensity of the main meteoric emissions of Mg, Na, Fe, and atmospheric emissions of N2, O, N were studied. The Na/Mg ratio is different in different meteors, showing variations in Na abundance. Moreover, much earlier ablation of Na during the atmospheric entry than of other elements observed in some Leonids and one Orionid, Quadrantid and Leo Minorid evidences fragile structure of those meteoroids. One sporadic meteor was completely deficient in sodium. The strength of atmospheric emission increases with increasing meteor velocity. Taurids are notable by the near-absence of O and N emissions.

  19. Recent Advances in Video Meteor Photometry

    NASA Technical Reports Server (NTRS)

    Swift, Wesley R.; Suggs, Robert M.; Meachem, Terry; Cooke, William J.

    2003-01-01

    One of the most common (and obvious) problems with video meteor data involves the saturation of the output signal produced by bright meteors, resulting in the elimination of such meteors from photometric determinations. It is important to realize that a "bright" meteor recorded by intensified meteor camera is not what would be considered "bright" by a visual observer - indeed, many Generation II or III camera systems are saturated by meteors with a visual magnitude of 3, barely even noticeable to the untrained eye. As the relatively small fields of view (approx.30 ) of the camera systems captures at best modest numbers of meteors, even during storm peaks, the loss of meteors brighter than +3 renders the determination of shower population indices from video observations even more difficult. Considerable effort has been devoted by the authors to the study of the meteor camera systems employed during the Marshall Space Flight Center s Leonid ground-based campaigns, and a calibration scheme has been devised which can extend the useful dynamic range of such systems by approximately 4 magnitudes. The calibration setup involves only simple equipment, available to amateur and professional, and it is hoped that use of this technique will make for better meteor photometry, and move video meteor analysis beyond the realm of simple counts.

  20. Determination of the Meteor Limiting Magnitude

    NASA Technical Reports Server (NTRS)

    Kingery, A.; Blaauw, R.; Cooke, W. J.

    2016-01-01

    The limiting meteor magnitude of a meteor camera system will depend on the camera hardware and software, sky conditions, and the location of the meteor radiant. Some of these factors are constants for a given meteor camera system, but many change between meteor shower or sporadic source and on both long and short timescales. Since the limiting meteor magnitude ultimately gets used to calculate the limiting meteor mass for a given data set, it is important to have an understanding of these factors and to monitor how they change throughout the night, as a 0.5 magnitude uncertainty in limiting magnitude translates to a uncertainty in limiting mass by a factor of two.

  1. Extraterrestrial meteors: a martian meteor and its parent comet.

    PubMed

    Selsis, Franck; Lemmon, Mark T; Vaubaillon, Jérémie; Bell, James F

    2005-06-01

    Regular meteor showers occur when a planet approaches the orbit of a periodic comet--for example, the Leonid shower is evident around 17 November every year as Earth skims past the dusty trail of comet Tempel-Tuttle. Such showers are expected to occur on Mars as well, and on 7 March last year, the panoramic camera of Spirit, the Mars Exploration Rover, revealed a curious streak across the martian sky. Here we show that the timing and orientation of this streak, and the shape of its light curve, are consistent with the existence of a regular meteor shower associated with the comet Wiseman-Skiff, which could be characterized as martian Cepheids. PMID:15931208

  2. Extraterrestrial meteors: a martian meteor and its parent comet.

    PubMed

    Selsis, Franck; Lemmon, Mark T; Vaubaillon, Jérémie; Bell, James F

    2005-06-01

    Regular meteor showers occur when a planet approaches the orbit of a periodic comet--for example, the Leonid shower is evident around 17 November every year as Earth skims past the dusty trail of comet Tempel-Tuttle. Such showers are expected to occur on Mars as well, and on 7 March last year, the panoramic camera of Spirit, the Mars Exploration Rover, revealed a curious streak across the martian sky. Here we show that the timing and orientation of this streak, and the shape of its light curve, are consistent with the existence of a regular meteor shower associated with the comet Wiseman-Skiff, which could be characterized as martian Cepheids.

  3. Simulated Craters on Venus

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    The thick atmosphere of Venus prevents all but the largest impactors from cratering the surface. The number of small craters on Venus provides an interesting, and statistically significant test of models for the disruption and deceleration of impacting bodies. Here we compare Monte Carlo simulated crater distributions to the observed crater distribution on Venus. The simulation assumes: (1) a power law mass distribution for impactors of the form N(sub cum) alpha m (exp-b) where b=0.8; (2) isotropic incidence angles; (3) velocity at the top of the atmosphere of 20 kilometers per second (more realistic velocity distributions are also considered); (4) Schmidt-Housen crater scaling, modified such that only the normal component of the impact velocity contributes to cratering, and using crater slumping as parameterized (5) and modern populations (60% carbonaceous, 40% stone, 3% iron) and fluxes of asteroids. We use our previously developed model for the disruption and deceleration of large bodies striking thick planetary atmospheres to calculate the impact velocity at the surface as a function of impactor mass, incident velocity, and incident angle. We use a drag coefficient c(sub d) =1; other parameters are as described in Chyba et al. We set a low velocity cutoff of 500 meters per second on crater-forming impacts. Venus's craters are nicely matched by the simulated craters produced by 700 million years of striking asteroids. Shown for comparison are the simulated craters produced by incident comets over the same period, where for comets we have assumed b=0.7 and a flux at 10(exp 14) g 30% that of asteroids. Systematic uncertainties in crater scaling and crater slumping may make the surface age uncertain by a factor of two.

  4. High temperature condensates among meteors

    NASA Technical Reports Server (NTRS)

    Wilkening, L. L.

    1975-01-01

    It is noted that two meteors which exhibited no lines of iron or sodium in their spectra have been tentatively attributed to aubrites in order to explain their lack of iron. It is shown, however, that no meteorites, including aubrites, have simultaneously low abundances of iron and sodium and that possible parent materials other than aubrites must be considered for the observed meteors. Other possible parent materials considered in this letter include melilite and diopside, two minerals containing both Ca and Mg but neither Fe nor Na. It is suggested that meteoroids rich in Ca and Mg but lacking Fe and Na might form a reservoir for the so-called 'lost' elements (Ca, Mg, Al, Ti, the lanthanides, and other refractory elements) which are depleted in ordinary and enstatite chondrites relative to cosmic abundances.

  5. Meteors in the Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Murad, Edmond; Williams, Iwan P.

    2002-09-01

    1. Introduction Iwan Williams and Edmond Murad; 2. The evolution of meteoroid streams Iwan Williams; 3. Space dust measurements Eberhard Grun, Valeri Dikarev, Harald Kruger and Markus Landgraf; 4. Extraterrestrial dust in the near-Earth environment George Flynn; 5. Detection and analysis procedures for visual photographic and image intensified CCD meteor observations Robert Hawkes; 6. Radar observations W. Jack Baggaley; 7. Meteor trails as observed by Lidar Ulf von Zahn, J. Hoffner and William McNeil; 8. In situ measurements of meteoritic ions Joseph Grebowsky and Arthur Aikin; 9. Collected extraterrestrial materials: interplanetary dust particles, micrometeorites, meteorites, and meteoritic dust Frans Rietmeijer; 10. Meteoroid impacts on spacecraft; Luigi Foschini; 11. Models of meteoritic metals in the atmosphere William McNeil, Edmond Murad and John Plane; 12. Laboratory studies of meteoritic metal chemistry John Plane; 13. Summary and future outlook Edmond Murad and Iwan Williams.

  6. The ALTAIR Meteor Measurements Program

    NASA Technical Reports Server (NTRS)

    Cooke, William J.

    2007-01-01

    Established in late 2006, the Meteor Measurements Program is in the process of using the ALTAIR radar located on Kwajelein Atoll to obtain radar observations of sporadic and shower meteoroids. The goals are to determine meteoroid masses, orbits, ballistic coefficients and densities, which shall be provided to the Meteoroid Environment Office (MEO) at Marshall Space Flight Center. These data and analyses shall then be used by the MEO to 1) Add a realistic density distribution to the new Meteoroid Engineering Model (MEM), which is the specified environment for vehicle design in the NASA Constellation (return to Moon) program. This program is the implementation of President Bush's Vision for Space Exploration (VSE). 2) Investigate the meteoroid velocity distribution at smaller masses. 3) Strive to understand the differences (biases) in meteoroid observations produced by systems like ALTAIR and those of the meteor patrol radars, such as the University of Western Ontario's CMOR system. This paper outlines the program details and its progress.

  7. Meteor observations under the INASAN supervision

    NASA Astrophysics Data System (ADS)

    Kartashova, A. P.; Bagrov, A. V.

    2012-09-01

    Meteor observations have the specific property: we do not know in advance neither area on the celestial sphere, not the time when the event occurs. Besides that, a meteor flash in the atmosphere has duration few seconds or less, and it is hard problem to gather enough photons from it to register a faint or fast meteor. There are a number of tasks in meteor astronomy for solution of which not only a simple registration of meteors in the optical range is required, but a high spatial and time resolution as well. Television method is the most acceptable for such a case and is widely used in the practice of meteor observations. Television meteor observations in Russia are carried out under the Institute of Astronomy of the Russian Academy of Sciences (INASAN) supervision in different regions of Russia: Moscow region, Irkutsk, Ryazan and North Caucasus. The TV system PatrolCa designed for observations in the wide field of view (the ordinary for most of meteor cameras), consists of the following components: the high resolution cameras Watec LCL-902HS, the wide-angle photograph objectives Canon 6/0.8 (F=6 mm, the aperture 1:0.8). The cameras have fields of view of 50°x40° and have a limiting magnitude (for meteors) of +4 m ÷ +5 m. The FAVOR (FAst Variability Optical Registrator) camera is used for observations of faint meteors at the North Caucasus [1]. The basic components of this camera are the following: the high-aperture lense objective with the aperture 150 mm and the focal length 180mm (the aperture 1:1.2), the image intensifier, the objective reversal, CCD receiver "Videoscan" VS-СTT285 2001. The CCD "Sony" ICX285 has format 1380 х 1024 pixels. The camera has a field of view of 18 ° х 20°, and has a limiting magnitude of above +10m (for meteors). The two cameras similar to FAVOR (named SMAC) were designed for double-station observations of faint meteors. The results of observations at these cameras are presented. The observations were held by both methods

  8. Kharkiv Meteor Radar System (the XX Age)

    NASA Astrophysics Data System (ADS)

    Kolomiyets, S. V.

    2012-09-01

    Kharkiv meteor radar research are of historic value (Kolomiyets and Sidorov 2007). Kharkiv radar observations of meteors proved internationally as the best in the world, it was noted at the IAU General Assembly in 1958. In the 1970s Kharkiv meteor automated radar system (MARS) was recommended at the international level as a successful prototype for wide distribution. Until now, this radar system is one of the most sensitive instruments of meteor radars in the world for astronomical observations. In 2004 Kharkiv meteor radar system is included in the list of objects which compose the national property of Ukraine. Kharkiv meteor radar system has acquired the status of the important historical astronomical instrument in world history. Meteor Centre for researching meteors in Kharkiv is a analogue of the observatory and performs the same functions of a generator and a battery of special knowledge and skills (the world-famous studio). Kharkiv and the location of the instrument were brand points on the globe, as the place where the world-class meteor radar studies were carried out. They are inscribed in the history of meteor astronomy, in large letters and should be immortalized on a world-wide level.

  9. SPA Meteor Section Results: 2006

    NASA Astrophysics Data System (ADS)

    McBeath, Alastair

    2010-12-01

    A summary of the main analyzed results and other information provided to the SPA Meteor Section from 2006 is presented and discussed. Events covered include: the radio Quadrantid maximum on January 3/4; an impressive fireball seen from parts of England, Belgium and the Netherlands at 22h53m51s UT on July 18, which was imaged from three EFN stations as well; the Southern delta-Aquarid and alpha-Capricornid activity from late July and early August; the radio Perseid maxima on August 12/13; confirmation that the October 5/6 video-meteor outburst was not observed by radio; visual and radio findings from the strong, bright-meteor, Orionid return in October; another impressive UK-observed fireball on November 1/2, with an oil painting of the event as seen from London; the Leonids, which produced a strong visual maximum around 04h-05h UT on November 18/19 that was recorded much less clearly by radio; radio and visual reports from the Geminids, with a note regarding NASA-observed Geminid lunar impact flashes; and the Ursid outburst recorded by various techniques on December 22.

  10. Impact craters on Venus

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.

    1991-01-01

    Compared with volcanism and tectonism, impact cratering on Venus has played an overall minor role in sculpting the present-day landscape. The study of Venus impact craters is vital to help place the chronology of the geologic features on the surface in the context of the planet's geological evolution. The degradation of impact craters also provides information on surface and interior processes, particularly alteration by tectonism and volcanism. Through orbit 1422, Magellan mapped about 450 impact craters, with diameters ranging from 2 to 275 km, within an area of about 226 million sq km, or 49 percent of the planet's surface. These craters and their associated deposits show surprisingly little evidence of degradation at the 75 m/pixel resolution of the Magellan SAR. Remarkably few craters in the Magellan images appear to be in the process of being buried by volcanic deposits or destroyed by tectonic activity.

  11. Craters Without Ejecta

    NASA Technical Reports Server (NTRS)

    Housen, Kevin R.; Holsapple, Keith A.

    2012-01-01

    A significant portion of the Solar System's population of minor bodies may be quite porous. A unique aspect of crater formation in porous bodies is that large craters may form without the ejecta deposits that are associated with craters on less porous bodies. In this paper. laboratory experiments and scaling theories are used to identify the conditions under which ejecta deposits are suppressed. The results are consistent with the interpretation that large craters on asteroid Mathilde (porosity approx. 50%) and Saturn's moon Hyperion (porosity >40%) apparently formed without producing Significant ejecta deposits. while smaller bodies do have notable regoliths.

  12. Venus - Stein Triplet Crater

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Magellan synthetic aperture radar (SAR) imaged this unique 'triplet crater,' or 'crater field' during orbits 418-421 on 21 September 1990. These craters are 14 kilometers, 11 kilometers, and 9 kilometers in diameter, respectively, and are centered at latitude -30.1 degrees south and longitude 345.5 degrees east. The Magellan Science Team has proposed the name Stein for this crater field after the American author, Gertrude Stein. This name has not yet been approved by the International Astronomical Union. The crater field was formed on highly fractured plains. The impacts generated a considerable amount of low viscosity 'flows' thought to consist largely of shock-melted target material along with fragmented debris from the crater. The three craters appear to have relatively steep walls based on the distortion in the image of the near and far walls of the craters in the Magellan radar look direction (from the left). The flow deposits from the three craters extend dominantly to the northeast (upper right).

  13. Cratering reservoir potential by impact cratering

    SciTech Connect

    Schultz, P.H.

    1996-12-31

    Impact craters are gaining increasing acceptance and value as sites for potential hydrocarbon reservoirs. Nevertheless, such structures are often difficult to interpret and assess because their physical expressions from physical data have few exposed terrestrial analogs for comparison. Observational, theoretical, and experimental studies directed - toward understanding the nature of well-preserved craters on other planets, however, establish a two-dimensional template for understanding and interpreting the three-dimensional view, critical or assessing hydrocarbon potentials. But terminology often used in describing an impact structure needs to be placed in a process context. Impact craters are not produced instantaneously but evolve through time. The process occurs in three different stages of formation corresponding to the transfer of kinetic energy: compression, excavation, and modification. The compression stage roughly corresponds to the time required for transfer of energy from impactor to target and is reflected in the formation of a central penetration zone in smaller craters and the central uplift in larger craters often called the {open_quotes}central plug, diapir, brecciated core, or distributed zone{close_quotes}. The excavation stage occurs as the cratering flow field draws material downward near the center and outward from the cavity. Traps are created stratigraphically inside (shock-disrupted rock and depositional capping) or outside (inverted stratigraphy, fractured/fault target, porous ejecta) as well as structurally inside (uplift, wall terraces) or outside (concentric listric faults or seismically triggered failure). Larger complex craters create greater potential traps. Consequently, potential reserve can be created during each stage but the most important criteria remains the realtors motto: location, location, location!

  14. Cratering reservoir potential by impact cratering

    SciTech Connect

    Schultz, P.H. )

    1996-01-01

    Impact craters are gaining increasing acceptance and value as sites for potential hydrocarbon reservoirs. Nevertheless, such structures are often difficult to interpret and assess because their physical expressions from physical data have few exposed terrestrial analogs for comparison. Observational, theoretical, and experimental studies directed - toward understanding the nature of well-preserved craters on other planets, however, establish a two-dimensional template for understanding and interpreting the three-dimensional view, critical or assessing hydrocarbon potentials. But terminology often used in describing an impact structure needs to be placed in a process context. Impact craters are not produced instantaneously but evolve through time. The process occurs in three different stages of formation corresponding to the transfer of kinetic energy: compression, excavation, and modification. The compression stage roughly corresponds to the time required for transfer of energy from impactor to target and is reflected in the formation of a central penetration zone in smaller craters and the central uplift in larger craters often called the [open quotes]central plug, diapir, brecciated core, or distributed zone[close quotes]. The excavation stage occurs as the cratering flow field draws material downward near the center and outward from the cavity. Traps are created stratigraphically inside (shock-disrupted rock and depositional capping) or outside (inverted stratigraphy, fractured/fault target, porous ejecta) as well as structurally inside (uplift, wall terraces) or outside (concentric listric faults or seismically triggered failure). Larger complex craters create greater potential traps. Consequently, potential reserve can be created during each stage but the most important criteria remains the realtors motto: location, location, location

  15. Big data era in meteor science

    NASA Astrophysics Data System (ADS)

    Vinković, D.; Gritsevich, M.; Srećković, V.; Pečnik, B.; Szabó, G.; Debattista, V.; Škoda, P.; Mahabal, A.; Peltoniemi, J.; Mönkölä, S.; Mickaelian, A.; Turunen, E.; Kákona, J.; Koskinen, J.; Grokhovsky, V.

    2016-01-01

    Over the last couple of decades technological advancements in observational techniques in meteor science have yielded drastic improvements in the quality, quantity and diversity of meteor data, while even more ambitious instruments are about to become operational. This empowers meteor science to boost its experimental and theoretical horizons and seek more advanced science goals. We review some of the developments that push meteor science into the big data era that requires more complex methodological approaches through interdisciplinary collaborations with other branches of physics and computer science. We argue that meteor science should become an integral part of large surveys in astronomy, aeronomy and space physics, and tackle the complexity of micro-physics of meteor plasma and its interaction with the atmosphere.

  16. Meteor Beliefs Project: Meteoric Imagery in SF, Part V: This Island Earth

    NASA Astrophysics Data System (ADS)

    McBeath, Alastair; Gheorghe, Andrei Dorian

    2007-04-01

    The classic 1950s science fiction film This Island Earth is discussed for its meteoric elements, along with a more recent movie which pokes fun at it, by way of celebrating the Meteor Beliefs Project's fourth anniversary.

  17. Bi-telescopic, deep, simultaneous meteor observations

    NASA Technical Reports Server (NTRS)

    Taff, L. G.

    1986-01-01

    A statistical summary is presented of 10 hours of observing sporadic meteors and two meteor showers using the Experimental Test System of the Lincoln Laboratory. The observatory is briefly described along with the real-time and post-processing hardware, the analysis, and the data reduction. The principal observational results are given for the sporadic meteor zenithal hourly rates. The unique properties of the observatory include twin telescopes to allow the discrimination of meteors by parallax, deep limiting magnitude, good time resolution, and sophisticated real-time and post-observing video processing.

  18. The 25th International Meteor Conference

    NASA Astrophysics Data System (ADS)

    Roggemans, Paul

    2006-08-01

    Since the founding of the International Meteor Organization, the International Meteor Conferences guaranteed the vital personal contacts between its members. In recent years IMCs were sometimes assumed to have started with IMO. However, the IMCs grew out of a much older initiative, the Meteor Seminars that started in 1979, later also called International Meteor Weekends. These events played a crucial role in the making of the IMO. The 2006 IMC in Roden, the Netherlands later this year is in fact a jubilee edition as it is the 25th edition since the very beginning in 1979!

  19. Impact and cratering rates onto Pluto

    NASA Astrophysics Data System (ADS)

    Greenstreet, Sarah; Gladman, Brett; McKinnon, William B.

    2015-09-01

    The New Horizons spacecraft fly-through of the Pluto system in July 2015 will provide humanity's first data for the crater populations on Pluto and its binary companion, Charon. In principle, these surfaces could be dated in an absolute sense, using the observed surface crater density (# craters/km2 larger than some threshold crater diameter D). Success, however, requires an understanding of both the cratering physics and absolute impactor flux. The Canada-France Ecliptic Plane Survey (CFEPS) L7 synthetic model of classical and resonant Kuiper belt populations (Petit, J.M. et al. [2011]. Astron. J. 142, 131-155; Gladman, B. et al. [2012]. Astron. J. 144, 23-47) and the scattering object model of Kaib et al. (Kaib, N., Roškar, R., Quinn, T. [2011]. Icarus 215, 491-507) calibrated by Shankman et al. (Shankman, C. et al. [2013]. Astrophys. J. 764, L2-L5) provide such impact fluxes and thus current primary cratering rates for each dynamical sub-population. We find that four sub-populations (the q < 42AU hot and stirred main classicals, the classical outers, and the plutinos) dominate Pluto's impact flux, each providing ≈ 15-25 % of the total rate. Due to the uncertainty in how the well-characterized size distribution for Kuiper belt objects (with impactor diameter d > 100km) connects to smaller projectiles, we compute cratering rates using five model impactor size distributions: a single power-law, a power-law with a knee, a power-law with a divot, as well as the "wavy" size distributions described in Minton et al. (Minton, D.A. et al. [2012]. Asteroids Comets Meteors Conf. 1667, 6348) and Schlichting et al. (Schlichting, H.E., Fuentes, C.I., Trilling, D.E. [2013]. Astron. J. 146, 36-42). We find that there is only a small chance that Pluto has been hit in the past 4 Gyr by even one impactor with a diameter larger than the known break in the projectile size distribution (d ≈ 100km) which would create a basin on Pluto (D ⩾ 400km in diameter). We show that due to

  20. Basaltic Crater in Color IR

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released August 6, 2004 This image shows two representations of the same infra-red image near Nili Fosse in the the Isidis region of Mars. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations. In many cases craters trap sand in their topographic depressions, interrupting the sand's migration across the Martian surface. This image is particularly interesting because there appears to be more than 1 type of sand in the bottom of this crater and in the hummocky terrain near the bottom of the image. The pink/magenta areas are characteristic of a basaltic composition, but there are also orange areas that are likely caused by the presence of andesite. These two compositions, basalt and andesite, are some of the most common found on Mars.

    Image information: IR instrument. Latitude 24, Longitude 80.7 East (297.3 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip

  1. Collapse Pits in Bernard Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in serveral ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire ediface to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These pits occur in the floor of Bernard Crater. These collapse pits were likely formed by the release of volatiles from the materials deposited in the crater floor.

    Image information: VIS instrument. Latitude -24, Longitude 205.5 East (154.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission

  2. Sand Sheet on Crater Floor

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    As with yesterday's image, this dune field is located inside a crater, in this case an unnamed crater at 26 degrees North latitude. In this VIS image the dunes are coalescing into a sand sheet, note the lack of dune forms to the north of the small hills. The presence of ridges and hills in the area is affecting the dune shapes.

    Image information: VIS instrument. Latitude 26.4, Longitude 62.7 East (297.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology

  3. Gale Crater in IR Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released August 4, 2004 This image shows two representations of the same infra-red image of Gale Crater. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations.

    In the bottom of the crater, surrounding the central mound, there are extensive basaltic sand deposits. The basaltic sand spectral signature combined with the warm surface (due to the low albedo of basaltic sand) produces a very strong pink/magenta color. This color signature contrasts with the green/yellow color of soil and dust in the top of the image, and the cyan color due to the presence of water ice clouds at the bottom of the image. This migrating sand may be producing the erosional features seen on the central mound.

    Image information: IR instrument. Latitude -4.4, Longitude 137.4 East (222.6 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University

  4. A Tale of Two Craters

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    In western Acidalia, two craters of similar size (a few km's) dramatically display the effects of geologic activity. The younger one on the left has been left relatively well preserved, retaining a sharp rim crest, a classic bowl shape, and a clearly defined ejecta blanket. The older one on the right likely has experienced a flood of lava that covered over the ejecta and filled in the bowl (note the breach in the rim). Its rim crest has been worn down by a multitude of subsequent impacts.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 35.9, Longitude 311.1 East (48.9 West). 19 meter/pixel resolution.

  5. 'Endurance Crater' Overview

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This overview of 'Endurance Crater' traces the path of the Mars Exploration Rover Opportunity from sol 94 (April 29, 2004) to sol 205 (August 21, 2004). The route charted to enter the crater was a bit circuitous, but well worth the extra care engineers took to ensure the rover's safety. On sol 94, Opportunity sat on the edge of this impressive, football field-sized crater while rover team members assessed the scene. After traversing around the 'Karatepe' region and past 'Burns Cliff,' the rover engineering team assessed the possibility of entering the crater. Careful analysis of the angles Opportunity would face, including testing an Earth-bound model on simulated martian terrain, led the team to decide against entering the crater at that particular place. Opportunity then backed up before finally dipping into the crater on its 130th sol (June 5, 2004). The rover has since made its way down the crater's inner slope, grinding, trenching and examining fascinating rocks and soil targets along the way. The rover nearly made it to the intriguing dunes at the bottom of the crater, but when it got close, the terrain did not look safe enough to cross.

  6. Investigating the effects of target heterogeneity on the cratering process.

    NASA Astrophysics Data System (ADS)

    Barnouin, O. S.

    2012-12-01

    Pre-existing target structures are known to influence the dynamics and morphologies of many terrestrial and planetary impact craters. Good examples include the Chesapeake and Ries craters, which both possess an inverted sombrero structure as a result of a weaker sedimentary surface layer overlying a stronger crystalline basement. But beyond such horizontal layering, closer analyses of the subsurface geology present in these and other planetary craters indicate that vertical heterogeneity in the strength and geochemistry of a target are also often present. These may influence the formation and subsequent modification of terrestrial craters. Evidence indicates that at Meteor crater, for example, pre-existing vertical jointing of the target gives this crater its square appearance, either by confining and re-directing the shock and subsequent rarefraction waves, or by allowing preferential weathering zones of weakness along the joints. In this study, we present a series of laboratory investigations and 2- and 3-dimensional numerical calculations of crater formation in a conceptually simple but physically complex target: a box of randomly distributed quartz spheres of identical size. These investigations provide constraints on how all types of target heterogeneity influence the cratering process. In both the laboratory and numerical studies, we measure the rate of crater growth, the transient crater shape, and in some instances the velocity of individual ejecta. These investigations vary the ratio of the impact shock thickness to target grain size by altering the impact velocity, projectile size, and target grain size. The laboratory data were collected at the NASA Ames vertical gun range, the NASA Johnson Space Center vertical gun range, and the University of Tokyo vertical gun range using non-intrusive diagonistic techniques. The numerical investigations were performed using the CTH hydrocode that solves the equations of motion, while conserving mass, energy, and

  7. Centrifuge Impact Cratering Experiments

    NASA Technical Reports Server (NTRS)

    Schmidt, R. M.; Housen, K. R.; Bjorkman, M. D.

    1985-01-01

    The kinematics of crater growth, impact induced target flow fields and the generation of impact melt were determined. The feasibility of using scaling relationships for impact melt and crater dimensions to determine impactor size and velocity was studied. It is concluded that a coupling parameter determines both the quantity of melt and the crater dimensions for impact velocities greater than 10km/s. As a result impactor radius, a, or velocity, U cannot be determined individually, but only as a product in the form of a coupling parameter, delta U micron. The melt volume and crater volume scaling relations were applied to Brent crater. The transport of melt and the validity of the melt volume scaling relations are examined.

  8. Uncertainties in MARS Meteor Orbit Radar Data

    NASA Astrophysics Data System (ADS)

    Kolomiyets, S. V.

    2015-03-01

    The uncertainties in meteor radar data and the problem of hyperbolic meteors are interconnected. Meteor orbital data, obtained by the Meteor Automatic Radar System (MARS) at the Kharkiv Institute of Radio Electronics, Ukraine, was used to develop the algorithm to determine the uncertainties of the orbital elements obtained by radar systems such as MARS. We have constructed the empirical model of the distribution of uncertainties in the orbital elements of meteor radar data. MARS had a high effective sensitivity (the limiting magnitude of observed meteors was close to 12 ^ M) and was capable to carry out comprehensive geophysical and astronomical studies of meteors. When we register meteor numbers, radiants, meteoroid velocities, we can talk about astronomical observations. The main objective of meteor astronomy research is to determine the orbit of the meteoroid, in other words, to study a meteoroid as an astronomical object of the Solar System. Sometimes meteoroids may have an interstellar origin. Such meteoroids usually have hyperbolic orbits (i.e. with eccentricities e>1). However, hyperbolic orbits of meteoroids may have another origin, e.g. arise due to errors of observations (primarily due to the errors of eccentricities - σe). To correctly interpret the astronomical data, it is necessary to know how the errors are calculated. In this paper, we estimated the uncertainties in the Kharkiv meteor radar data (the average σe ~0.2) and discussed their connection to the problem of hyperbolic meteors. We obtained ~0.8% of total number of meteoroid orbits in 1975, which we named "real" hyperboles, i.e. with eccentricities more or equal 1+2σe.

  9. Crater in the Mangala Valles Region

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 26 May 2003

    Just south of the 2 km high main mass of the Medusae Fossae Formation, in a region dissected by channels, lies an unnamed crater that may have been filled by mud. A channel spills into this crater on its eastern side and may have delivered the material that now covers the floor of the crater. The subdued ridges may be wrinkle ridges in a preexisting lava flow that are now covered by a layer of sediment. The cracked surface is evidence for the subsequent deposition of mud.

    Image information: VIS instrument. Latitude -6, Longitude 206.7 East (153.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. 1. VIEW OF ARIZONA FALLS ON THE ARIZONA CANAL, PRIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF ARIZONA FALLS ON THE ARIZONA CANAL, PRIOR TO CONSTRUCTION OF POWER PLANT IN 1901, FACING EAST Photographer: unknown. No date. - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  11. Croatian Meteor Network: ongoing work 2014 - 2015

    NASA Astrophysics Data System (ADS)

    Šegon, D.; Andreić, Ž.; Korlević, K.; Vida, D.

    2015-01-01

    Ongoing work mainly between 2014-2015 International Meteor Conferences (IMC) has been presented. Current sky coverage, software updates, orbit catalogues updates, shower search updates, international collaboration as well as new fields of research and educational efforts made by the Croatian Meteor Network are described.

  12. The Makings of Meteor Astronomy: Part XIII

    NASA Astrophysics Data System (ADS)

    Beech, M.

    1996-10-01

    In 1848, Sir John Lubbock advanced the hypothesis that meteors shine by reflected sunlight. He developed a set of equations describing the geometry of meteor encounters, and for a decade or so, his idea was at least marginally supported by other observers.

  13. Models of sporadic meteor body distributions

    NASA Technical Reports Server (NTRS)

    Andreev, V. V.; Belkovich, O. I.

    1987-01-01

    The distribution of orbital elements and flux density over the celestial sphere are the most common forms of representation of the meteor body distribution in the vicinity of the Earth's orbit. The determination of flux density distribution of sporadic meteor bodies was worked out. The method and its results are discussed.

  14. Effects of Pre-Existing Target Structure on the Formation of Large Craters

    NASA Technical Reports Server (NTRS)

    Barnouin-Jha, O. S.; Cintala, M. J.; Crawford, D. A.

    2003-01-01

    The shapes of large-scale craters and the mechanics responsible for melt generation are influenced by broad and small-scale structures present in a target prior to impact. For example, well-developed systems of fractures often create craters that appear square in outline, good examples being Meteor Crater, AZ and the square craters of 433 Eros. Pre-broken target material also affects melt generation. Kieffer has shown how the shock wave generated in Coconino sandstone at Meteor crater created reverberations which, in combination with the natural target heterogeneity present, created peaks and troughs in pressure and compressed density as individual grains collided to produce a range of shock mineralogies and melts within neighboring samples. In this study, we further explore how pre-existing target structure influences various aspects of the cratering process. We combine experimental and numerical techniques to explore the connection between the scales of the impact generated shock wave and the pre-existing target structure. We focus on the propagation of shock waves in coarse, granular media, emphasizing its consequences on excavation, crater growth, ejecta production, cratering efficiency, melt generation, and crater shape. As a baseline, we present a first series of results for idealized targets where the particles are all identical in size and possess the same shock impedance. We will also present a few results, whereby we increase the complexities of the target properties by varying the grain size, strength, impedance and frictional properties. In addition, we investigate the origin and implications of reverberations that are created by the presence of physical and chemical heterogeneity in a target.

  15. Bigger Crater Farther South of 'Victoria' on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Annotated version

    The team operating NASA's Mars Exploration Rover Opportunity has chosen southeast as the direction for the rover's next extended journey, toward a crater more than 20 times wider than 'Victoria Crater.' Opportunity exited Victoria Crater on Aug. 28, 2008, after nearly a year investigating the interior.

    The crater to the southeast is about 22 kilometers (13.7 miles) in diameter and about 300 meters (1,000 feet) deep, exposing a much thicker stack of rock layers than those examined in Victoria Crater.

    The rover team informally calls the bigger crater 'Endeavour' and emphasizes that Opportunity may well never reach it. The rover has already operated more than 18 times longer than originally planned, and the distance to the big crater, about 12 kilometers (7 miles) matches the total distance Opportunity has driven since landing in early 2004. Driving southeastward is expected to take Opportunity to exposures of younger rock layers than is has previously seen and to provide access to rocks on the plain that were thrown long distances by impacts that excavated even deeper, more distant craters.

    The crater that Opportunity will drive toward dominates this orbital view from the Thermal Emission Imaging System (THEMIS) camera on NASA's Mars Odyssey orbiter. The much smaller Victoria Crater is the most prominent circle near the upper left corner of the image. This view is a mosaic of about 50 separate visible-light images taken by THEMIS.

    NASA's Jet Propulsion Laboratory manages the Mars Odyssey and Mars Exploration Rover missions for the NASA Science Mission Directorate, Washington, D.C. THEMIS was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the

  16. Report of centimeter-sized tektites in Pima County, Arizona, cannot be verified

    NASA Technical Reports Server (NTRS)

    Kring, David A.; Hildebrand, Alan R.; Drake, Michael J.; Melosh, H. Jay; Vickery, Ann M.

    1995-01-01

    Glassy objects reportedly found in Pima County, Arizona, have been identified as tektites. A field survey of the area where they were said to occur, however, did not produce any other tektites, nor did it reveal any other geologic features that might indicate a nearby impact crater. The major-, minor-, and trace-element composition of one specimen is similar to those measured in indochinites, which suggests the objects reportedly from Pima County were instead transported to southern Arizona from Indochina by people.

  17. The geology and mechanics of formation of the Fort Rock Dome, Yavapai County, Arizona

    USGS Publications Warehouse

    Fuis, Gary S.

    1996-01-01

    The Fort Rock Dome, a craterlike structure in northern Arizona, is the erosional product of a circular domal uplift associated with a Precambrian shear zone exposed within the crater and with Tertiary volcanism. A section of Precambrian to Quaternary rocks is described, and two Tertiary units, the Crater Pasture Formation and the Fort Rock Creek Rhyodacite, are named. A mathematical model of the doming process is developed that is consistent with the history of the Fort Rock Dome.

  18. Activity of the Lyrid meteor stream

    NASA Technical Reports Server (NTRS)

    Lindblad, Bertil A.; Porubcan, V.

    1992-01-01

    The activity of the Lyrid meteor stream is in most years fairly low with a visual rate at maximum (21-22 April) of 5-10 meteors per hour. Short bursts of very high Lyrid activity, with visual hourly rates of 100 or more, have sometimes been reported. These observations generally refer to faint visual meteors. The reported bursts of high activity have occurred in a very narrow interval of solar longitudes (deg 31.24 to 31.38 equinox 1950.0), while the recurrent or 'normal' maximum for bright meteors occurs at solar longitude deg 31.6, or slightly later. A mass separation of the meteors in the shower is thus indicated.

  19. Venus - Mead Crater

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Magellan image mosaic shows the largest (275 kilometers in diameter [170 miles]) impact crater known to exist on Venus at this point in the Magellan mission. The crater is located north of Aphrodite Terra and east of Eistla Regio at latitude 12.5 degrees north and longitude 57.4 degrees east, and was imaged during Magellan orbit 804 on November 12, 1990. The Magellan science team has proposed to name this crater Mead, after Margaret Mead, the American Anthropologist (1901- 1978). All Magellan-based names of features on Venus are, of course, only proposed until final approval is given by the International Astronomical Union-Commission on Planetary Nomenclature. Mead is classified as a multi-ring crater with its innermost, concentric scarp being interpreted as the rim of the original crater cavity. No inner peak-ring of mountain massifs is observed on Mead. The presence of hummocky, radar-bright crater ejecta crossing the radar-dark floor terrace and adjacent outer rim scarp suggests that the floor terrace is probably a giant rotated block that is concentric to, but lies outside of, the original crater cavity. The flat, somewhat brighter inner floor of Mead is interpreted to result from considerable infilling of the original crater cavity by impact melt and/or by volcanic lavas. To the southeast of the crater rim, emplacement of hummocky ejecta appears to have been impeded by the topography of preexisting ridges, thus suggesting a very low ground-hugging mode of deposition for this material. Radar illumination on this and all other Magellan image products is from the left to the right in the scene.

  20. Craters on comets

    NASA Astrophysics Data System (ADS)

    Vincent, Jean-Baptiste; Oklay, Nilda; Marchi, Simone; Höfner, Sebastian; Sierks, Holger

    2015-03-01

    This paper reviews the observations of crater-like features on cometary nuclei. We compare potential crater sizes and morphologies, and we discuss the probability of impacts between small asteroids in the Main Belt and a comet crossing this region of the Solar System. Finally, we investigate the fate of the impactor and its chances of survival on the nucleus. We find that comets do undergo impacts although the rapid evolution of the surface erases most of the features and make craters difficult to detect. In the case of a collision between a rocky body and a highly porous cometary nucleus, two specific crater morphologies can be formed: a central pit surrounded by a shallow depression, or a pit, deeper than typical craters observed on rocky surfaces. After the impact, it is likely that a significant fraction of the projectile will remain in the crater. During its two years long escort of comet 67P/Churyumov-Gerasimenko, ESA's mission Rosetta should be able to detect specific silicates signatures at the bottom of craters or crater-like features, as evidence of this contamination. For large craters, structural changes in the impacted region, in particular compaction of material, will affect the local activity. The increase of tensile strength can extinct the activity by preventing the gas from lifting up dust grains. On the other hand, material compaction can help the heat flux to travel deeper in the nucleus, potentially reaching unexposed pockets of volatiles, and therefore increasing the activity. Ground truth data from Rosetta will help us infer the relative importance of those two effects.

  1. 'Mazatzal' Rock on Crater Rim

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Spirit took this navigation camera image of the 2-meter-wide (6.6-foot-wide) rock called 'Mazatzal' on sol 76, March 21, 2004. Scientists intend to aggressively analyze this target with Spirit's microscopic imager, Moessbauer spectrometer and alpha particle X-ray spectrometer before brushing and 'digging in' with the rock abrasion tool on upcoming sols.

    Mazatzal stood out to scientists because of its large size, light tone and sugary surface texture. It is the largest rock the team has seen at the rim of the crater informally named 'Bonneville.' It is lighter-toned than previous rock targets Adirondack and Humphrey. Its scalloped pattern may be a result of wind sculpting, a very slow process in which wind-transported silt and sand abrade the rock's surface, creating depressions. This leads scientists to believe that Mazatzal may have been exposed to the wind in this location for an extremely long time.

    The name 'Mazatzal' comes from a mountain range and rock formation that was deposited around 1.2 billion years ago in the Four Peaks area of Arizona.

  2. Northern Arizona Volcanoes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Northern Arizona is best known for the Grand Canyon. Less widely known are the hundreds of geologically young volcanoes, at least one of which buried the homes of local residents. San Francisco Mtn., a truncated stratovolcano at 3887 meters, was once a much taller structure (about 4900 meters) before it exploded some 400,000 years ago a la Mt. St. Helens. The young cinder cone field to its east includes Sunset Crater, that erupted in 1064 and buried Native American homes. This ASTER perspective was created by draping ASTER image data over topographic data from the U.S. Geological Survey National Elevation Data.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 20.4 by 24.6 kilometers (12.6 by 15.2 miles) Location: 35.3 degrees North latitude, 111

  3. Venus - Crater Aurelia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This Magellan image shows a complex crater, 31.9 kilometers (20 miles) in diameter with a circular rim, terraced walls, and central peaks, located at 20.3 degrees north latitude and 331.8 degrees east longitude. Several unusual features are evidenced in this image: large dark surface up range from the crater; lobate flows emanating from crater ejecta, and very radar-bright ejecta and floor. Aurelia has been proposed to the International Astronomical Union, Subcommittee of Planetary Nomenclature as a candidate name. Aurelia is the mother of Julius Caesar.

  4. Crater in Utopia

    NASA Technical Reports Server (NTRS)

    2004-01-01

    23 March 2004 Craters of the martian northern plains tend to be somewhat shallow because material has filled them in. Their ejecta blankets, too, are often covered by younger materials. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example--a crater in Utopia Planitia near 43.7oN, 227.3oW. Erosion has roughened some of the surfaces of the material that filled the crater and covered its ejecta deposit. The picture covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

  5. One View, Two Craters

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This cylindrical projection was constructed from a sequence of four images taken by the navigation camera onboard the Mars Exploration Rover Opportunity.

    The images were acquired on sol 85 of Opportunity's mission to Meridiani Planum. The camera acquired the images at approximately 14:28 local solar time, or around 6:30 a.m. Pacific Daylight Time, on April 20, 2004.

    The view is from the rover's new location, a region dubbed 'Fram Crater' located some 450 meters (.3 miles) from 'Eagle Crater' and roughly 250 meters (820 feet) from 'Endurance Crater' (upper right).

  6. Sporadic E-Layers and Meteor Activity

    NASA Astrophysics Data System (ADS)

    Alimov, Obid

    2016-07-01

    In average width it is difficult to explain variety of particularities of the behavior sporadic layer Es ionospheres without attraction long-lived metallic ion of the meteoric origin. Mass spectrometric measurements of ion composition using rockets indicate the presence of metal ions Fe+, Mg+, Si+, Na+, Ca+, K+, Al+ and others in the E-region of the ionosphere. The most common are the ions Fe+, Mg+, Si+, which are primarily concentrated in the narrow sporadic layers of the ionosphere at altitudes of 90-130 km. The entry of meteoric matter into the Earth's atmosphere is a source of meteor atoms (M) and ions (M +) that later, together with wind shear, produce midlatitude sporadic Es layer of the ionosphere. To establish the link between sporadic Es layer and meteoroid streams, we proceeded from the dependence of the ionization coefficient of meteors b on the velocity of meteor particles in different meteoroid streams. We investigated the dependence of the critical frequency f0Es of sporadic E on the particle velocity V of meteor streams and associations. It was established that the average values of f0Es are directly proportional to the velocity V of meteor streams and associations, with the correlation coefficient of 0.53 < R < 0.74. Thus, the critical frequency of the sporadic layer Es increases with the increase of particle velocity V in meteor streams, which indicates the direct influence of meteor particles on ionization of the lower ionosphere and formation of long-lived metal atoms M and ions M+ of meteoric origin.

  7. Cratering on Small Bodies: Lessons from Eros

    NASA Astrophysics Data System (ADS)

    Chapman, C. R.

    2003-01-01

    Cratering and regolith processes on small bodies happen continuously as interplanetary debris rains down on asteroids, comets, and planetary satellites. Butthey are very poorly observed and not well understood. On the one hand, we have laboratory experimentation at small scales and we have examination of large impact craters (e.g. Meteor Crater on Earth and imaging of abundant craters on terrestrial planets and outer planet moons). Understanding cratering on bodies of intermediate scales, tens of meters to hundreds of km in size, involves either extrapolation from our understanding of cratering phenomena at very different scales or reliance on very preliminary, incomplete examination of the observational data we now have for a few small bodies. I review the latter information here. It has been generally understood that the role of gravity is greatly diminished for smaller bodies, so a lot of cratering phenomena studied for larger bodies is less applicable. But it would be a mistake to imagine that laboratory experiments on gravitationless rocks (usually at 1 g) are directly applicable, except perhaps to those monolithic Near Earth Asteroids (NEAs) some tens of meters in size that spin very rapidly and can be assumed to be "large bare rocks" with "negative gravity". Whereas it had once been assumed that asteroids smaller than some tens of km diameter would retain little regolith, it is increasingly apparent that regolith and megoregolith processes extend down to bodies only hundreds of meters in size, perhaps smaller. Yet these processes are very different from those that pertain to the Moon, which is our chief prototype of regolith processes. The NEAR Shoemaker spacecraft's studies of Eros provide the best evidence to date about small-body cratering processes, as well as a warning that our theoretical understanding requires anchoring by direct observations. Eros: "Ponds", Paucity of Small Craters, and Other Mysteries. Although Eros is currently largely detached

  8. 10Be content in clasts from fallout suevitic breccia in drill cores from the Bosumtwi impact crater, Ghana: Clues to preimpact target distribution

    NASA Astrophysics Data System (ADS)

    Losiak, Anna; Wild, Eva Maria; Michlmayr, Leonard; Koeberl, Christian

    2014-03-01

    Rocks from drill cores LB-07A (crater fill) and LB-08A (central uplift) into the Bosumtwi impact crater, Ghana, were analyzed for the presence of the cosmogenic radionuclide 10Be. The aim of the study was to determine the extent to which target rocks of various depths were mixed during the formation of the crater-filling breccia, and also to detect meteoric water infiltration within the impactite layer. 10Be abundances above background were found in two (out of 24) samples from the LB-07A core, and in none of five samples from the LB-08A core. After excluding other possible explanations for an elevated 10Be signal, we conclude that it is most probably due to a preimpact origin of those clasts from target rocks close to the surface. Our results suggest that in-crater breccias were well mixed during the impact cratering process. In addition, the lack of a 10Be signal within the rocks located very close to the lake sediment-impactite boundary suggests that infiltration of meteoric water below the postimpact crater floor was limited. This may suggest that the infiltration of the meteoric water within the crater takes place not through the aerial pore-space, but rather through a localized system of fractures.

  9. Craters in the Classroom.

    ERIC Educational Resources Information Center

    McArdle, Heather K.

    1997-01-01

    Details an activity in which students create and study miniature impact craters in the classroom. Engages students in making detailed, meaningful observations, drawing inferences, reaching conclusions based on scientific evidence, and designing experiments to test selected variables. (DDR)

  10. Shackleton Crater Illumination

    NASA Video Gallery

    Simulated illumination conditions near the lunar South Pole. The 30km x 30km region highlights the Shackleton crater. The movie runs for 28 days, centered on the LCROSS impact date on October 9th, ...

  11. Clouds Near Mie Crater

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-572, 12 December 2003

    Mie Crater, a large basin formed by asteroid or comet impact in Utopia Planitia, lies at the center of this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) red wide angle image. The crater is approximately 104 km (65 mi) across. To the east and southeast (toward the lower right) of Mie, in this 5 December 2003 view, are clouds of dust and water ice kicked up by local dust storm activity. It is mid-winter in the northern hemisphere of Mars, a time when passing storms are common on the northern plains of the red planet. Sunlight illuminates this image from the lower left; Mie Crater is located at 48.5oN, 220.3oW. Viking 2 landed west/southwest of Mie Crater, off the left edge of this image, in September 1976.

  12. SPA Meteor Section Results: 2007

    NASA Astrophysics Data System (ADS)

    McBeath, Alastair

    2013-08-01

    Information extracted from analyses carried out by the SPA Meteor Section from 2007 is presented and discussed. Events covered include: the radio Quadrantid maximum on January 4; a bright fireball seen from parts of England and imaged from the Netherlands at 19h56m UT on February 6, for which an approximate trajectory was established; radio results from the Lyrids in late April; the Perseid near-peak activity from August and a note on some daylight Perseid observing from Britain using thermal imagers; the radio α-Aurigid maximum on September 1; the Orionid return, which again provided enhanced activity over several consecutive dates in October for visual and radio observers; the radio Leonids, although the probably main peak found visually on November 19 was not recorded thus due to its timing; the typically protracted Geminid maximum period around December 13-15 as observed visually and by radio; and the Ursid outburst, primarily as detected by radio on December 22.

  13. Har Crater on Callisto

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows a heavily cratered region near Callisto's equator. It was taken by the Galileo spacecraft Solid State Imaging (CCD) system on its ninth orbit around Jupiter. North is to the top of the image. The 50 kilometer (30 mile) double ring crater in the center of the image is named Har. Har displays an unusual rounded mound on its floor. The origin of the mound is unclear but probably involves uplift of ice-rich materials from below, either as a 'rebound' immediately following the impact that formed the crater or as a later process. Har is older than the prominent 20 kilometer (12 mile) crater superposed on its western rim. The large crater partially visible in the northeast corner of the image is called Tindr. Chains of secondary craters (craters formed from the impact of materials thrown out of the main crater during an impact) originating from Tindr crosscut the eastern rim of Har.

    The image, centered at 3.3 degrees south latitude and 357.9 degrees west longitude, covers an area of 120 kilometers by 115 kilometers (75 miles by 70 miles). The sun illuminates the scene from the west (left). The smallest distinguishable features in the image are about 294 meters (973 feet) across. This image was obtained on June 25, 1997, when Galileo was 14,080 kilometers (8,590 miles) from Callisto.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  14. Named Venusian craters

    NASA Astrophysics Data System (ADS)

    Russell, Joel F.; Schaber, Gerald G.

    1993-03-01

    Schaber et al. compiled a database of 841 craters on Venus, based on Magellan coverage of 89 percent of the planet's surface. That database, derived from coverage of approximately 98 percent of Venus' surface, has been expanded to 912 craters, ranging in diameter from 1.5 to 280 km. About 150 of the larger craters were previously identified by Pioneer Venus and Soviet Venera projects and subsequently formally named by the International Astronomical Union (IAU). Altogether, the crater names submitted to the IAU for approval to date number about 550, a little more than half of the number of craters identified on Magellan images. The IAU will consider more names as they are submitted for approval. Anyone--planetary scientist or layman--may submit names; however, candidate names must conform to IAU rules. The person to be honored must be deceased for at least three years, must not be a religious figure or a military or political figure of the 19th or 20th century, and, for Venus, must be a woman. All formally and provisionally approved names for Venusian impact craters, along with their latitude, longitude, size, and origin of their name, will be presented at LPSC and will be available as handouts.

  15. Meteoroids and impact craters

    USGS Publications Warehouse

    Spall, H.

    1986-01-01

    Many meteoroids are associted with comets; as a comet travels around the sun it leaves a trail of debris behind it and it is this debris which produces meteor showers. Other meteoroids come from the asteroid belt, a zone between Mars and Jupiter filled with thousands of dwarf worlds that failed to coalesce into planets. 

  16. Radio Meteors Observations Techniques at RI NAO

    NASA Astrophysics Data System (ADS)

    Vovk, Vasyl; Kaliuzhnyi, Mykola

    2016-07-01

    The Solar system is inhabited with large number of celestial bodies. Some of them are well studied, such as planets and vast majority of big asteroids and comets. There is one group of objects which has received little attention. That is meteoroids with related to them meteors. Nowadays enough low-technology high-efficiency radio-technical solutions are appeared which allow to observe meteors daily. At RI NAO three methodologies for meteor observation are developed: single-station method using FM-receiver, correlation method using FM-receiver and Internet resources, and single-station method using low-cost SDR-receiver.

  17. Diffusion of long-period meteor streams

    NASA Astrophysics Data System (ADS)

    Emel'Ianenko, V. V.

    1992-10-01

    The diffusion of long-period meteor streams is considered on the basis of mappings for the description of planetary perturbations. Formulas for the dispersion of orbital elements under the conditions of limiting stochasticity are obtained. A statistical study of the evolution of meteor streams in the orbits of the Comets Thatcher, P/Swift-Tuttle, P/Halley, and P/Tempel-Tuttle is carried out. It is shown that the dispersion of orbital elements exhibits complex behavior due to the random distribution of meteor particles in the resonant zones.

  18. The 2014 May Camelopardalid Meteor Shower

    NASA Technical Reports Server (NTRS)

    Cooke, Bill; Moser, Danielle

    2014-01-01

    On May 24, 2014 Earth will encounter multiple streams of debris laid down by Comet 209P LINEAR. This will likely produce a new meteor shower, never before seen. Rates predicted to be from 100 to 1000 meteors per hour between 2 and 4 AM EDT, so we are dealing with a meteor outburst, potentially a storm. Peak rate of 200 per hour best current estimate. Difficult to calibrate models due to lack of past observations. Models indicate mm size particles in stream, so potential risk to Earth orbiting spacecraft.

  19. Visual data of minor meteor showers limits of the method

    NASA Technical Reports Server (NTRS)

    Rendtel, Jurgen; Koschack, R.

    1992-01-01

    Visual meteor observations are carried out on a regular basis by many experienced observers worldwide, thus supplying information about activity of meteor showers. The limits of the method are determined by the accuracy of the detection of the meteor trail. This study shows that visual meteor observations provide reliable data for an observable hourly rate of greater than or equal to 3.

  20. The First Confirmed Videorecordings of Lunar Meteor Impacts

    NASA Technical Reports Server (NTRS)

    Dunham, D. W.; Cudnik, B.; Palmer, D. M.; Sada, P. V.; Melosh, J.; Beech, M.; Pellerin, L.; Asher, D.; Frankenberger R.; Venable R.

    2000-01-01

    North American observers recorded at least six meteors striking the Moon's surface during the Leonid meteor shower on 1999 Nov. 18. Each meteor produced a flash that was recorded from at least two separate locations, marking the first confirmed lunar meteor impacts.

  1. Construction of a meteor orbit calculation system for comprehensive meteor observation

    NASA Astrophysics Data System (ADS)

    Mizumoto, S.; Madkour, W.; Yamamoto, M.

    2016-01-01

    At Kochi University of Technology (KUT), the development of an HRO (Ham-band Radio meteor Observation) -Interferometer (IF) was started in 2003, and we realized the meteor orbit calculation system by multiple-site radio observation with GPS time-keeping combining with the 5 channel (5ch) HRO-IF in 2012. Here, we introduce a future plan of comprehensive meteor observation by Radio, Optical and Infrasound observation.

  2. Tritium concentrations in the active Pu'u O'o crater, Kilauea volcano, Hawaii: implications for cold fusion in the Earth's interior

    USGS Publications Warehouse

    Quick, J.E.; Hinkley, T.K.; Reimer, G.M.; Hedge, C.E.

    1991-01-01

    The assertion that deuterium-deuterium fusion may occur at low temperature suggests a potential new source of geothermal heat. If a cold-fusion-like process occurs within the Earth, then a test for its existence would be a search for anomalous tritium in volcanic emissions. The Pu'u O'o crater is the first point at which large amounts of water are degassed from the magma that feeds the Kilauea system. The magma is probably not contaminated by meteoric-source ground water prior to degassing at Pu'u O'o, although mixing of meteoric and magmatic H2O occurs within the crater. Tritium contents of samples from within the crater are lower than in samples taken simultaneously from the nearby upwind crater rim. These results provide no evidence in support of a cold-fusion-like process in the Earth's interior. ?? 1991.

  3. Impact Cratering Calculations

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    2002-01-01

    Many Martian craters are surrounded by ejecta blankets which appear to have been fluidized forming lobate and layered deposits terminated by one or more continuous distal scarps, or ramparts. One of the first hypotheses for the formation of so-called rampart ejecta features was shock-melting of subsurface ice, entrainment of liquid water into the ejecta blanket, and subsequent fluidized flow. Our work quantifies this concept. Rampart ejecta found on all but the youngest volcanic and polar regions, and the different rampart ejecta morphologies are correlated with crater size and terrain. In addition, the minimum diameter of craters with rampart features decreases with increasing latitude indicating that ice laden crust resides closer to the surface as one goes poleward on Mars. Our second goal in was to determine what strength model(s) reproduce the faults and complex features found in large scale gravity driven craters. Collapse features found in large scale craters require that the rock strength weaken as a result of the shock processing of rock and the later cratering shear flows. In addition to the presence of molten silicate in the intensely shocked region, the presence of water, either ambient, or the result of shock melting of ice weakens rock. There are several other mechanisms for the reduction of strength in geologic materials including dynamic tensile and shear induced fracturing. Fracturing is a mechanism for large reductions in strength. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting in the atmosphere produce final crater profiles having the major features found in the field measurements (central uplifts, inner ring, terracing and faulting). This was accomplished with undamaged surface strengths (0.1 GPa) and in depth strengths (1.0 GPa).

  4. Crater Lake revealed

    USGS Publications Warehouse

    Ramsey, David W.; Dartnell, Peter; Bacon, Charles R.; Robinson, Joel E.; Gardner, James V.

    2003-01-01

    Around 500,000 people each year visit Crater Lake National Park in the Cascade Range of southern Oregon. Volcanic peaks, evergreen forests, and Crater Lake’s incredibly blue water are the park’s main attractions. Crater Lake partially fills the caldera that formed approximately 7,700 years ago by the eruption and subsequent collapse of a 12,000-foot volcano called Mount Mazama. The caldera-forming or climactic eruption of Mount Mazama drastically changed the landscape all around the volcano and spread a blanket of volcanic ash at least as far away as southern Canada. Prior to the climactic event, Mount Mazama had a 400,000 year history of cone building activity like that of other Cascade volcanoes such as Mount Shasta. Since the climactic eruption, there have been several less violent, smaller postcaldera eruptions within the caldera itself. However, relatively little was known about the specifics of these eruptions because their products were obscured beneath Crater Lake’s surface. As the Crater Lake region is still potentially volcanically active, understanding past eruptive events is important to understanding future eruptions, which could threaten facilities and people at Crater Lake National Park and the major transportation corridor east of the Cascades. Recently, the lake bottom was mapped with a high-resolution multibeam echo sounder. The new bathymetric survey provides a 2m/pixel view of the lake floor from its deepest basins virtually to the shoreline. Using Geographic Information Systems (GIS) applications, the bathymetry data can be visualized and analyzed to shed light on the geology, geomorphology, and geologic history of Crater Lake.

  5. The KUT meteor radar: An educational low cost meteor observation system by radio forward scattering

    NASA Astrophysics Data System (ADS)

    Madkour, W.; Yamamoto, M.

    2016-01-01

    The Kochi University of Technology (KUT) meteor radar is an educational low cost observation system built at Kochi, Japan by successive graduate students since 2004. The system takes advantage of the continuous VHF- band beacon signal emitted from Fukui National College of Technology (FNCT) for scientific usage all over Japan by receiving the forward scattered signals. The system uses the classical forward scattering setup similar to the setup described by the international meteor organization (IMO), gradually developed from the most basic single antenna setup to the multi-site meteor path determination setup. The primary objective is to automate the observation of the meteor parameters continuously to provide amounts of data sufficient for statistical analysis. The developed software system automates the observation of the astronomical meteor parameters such as meteor direction, velocity and trajectory. Also, automated counting of meteor echoes and their durations are used to observe mesospheric ozone concentration by analyzing the duration distribution of different meteor showers. The meteor parameters observed and the methodology used for each are briefly summarized.

  6. Meteor radar response function: Application to the interpretation of meteor backscatter at medium frequency

    NASA Astrophysics Data System (ADS)

    Cervera, M. A.; Holdsworth, D. A.; Reid, I. M.; Tsutsumi, M.

    2004-11-01

    Recently, Cervera and Elford (2004) extended earlier work on the development of the meteor radar response function (Elford, 1964; Thomas et al., 1988) to include a nonuniform meteor ionization profile. This approach has the advantage that the height distribution of meteors expected to be observed by a radar meteor system is able to be accurately modeled and insights into the meteoroid chemistry to be gained. The meteor radar response function is also an important tool with regard to the interpretation of meteor backscatter in other areas, e.g., modeling the expected diurnal variation of sporadic meteors, investigating the expected echo distribution over the sky, and the calculation of the expected rate curves of meteor showers. We exemplify each of these techniques from the analysis of meteor data collected by the Buckland Park 2 MHz system during October 1997. In addition, we show that the response function may be used to quantify the echo rate of a given shower relative to the sporadic background and thus determine if that shower is able to be detected by the radar.

  7. SAGE III/Meteor - 3M

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Full view of the SAGE III Bench Checkout Unit, Collimated Source Bench (CSB), Portable Image Generator (PIG) on tripod, and Stratospheric Aerosol Gastropheric Experiment (SAGE)/Meteor - 3M flight instrument. Photographed in building 1250, 40 foot clean room.

  8. SAGE III/Meteor - 3M

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Back view of the SAGE III Bench Checkout Unit, Portable Image Generator (PIG) on tripod, and the Stratospheric Aerosol Gastropheric Experiment (SAGE)/Meteor - 3M flight instrument. Photographed in building 1250, 40 foot clean room.

  9. SAGE III/Meteor - 3M

    NASA Technical Reports Server (NTRS)

    1999-01-01

    From left to right: Richard Rawls, Chip Holloway, and Art Hayhurst standing next to the Stratospheric Aerosol Gastropheric Experiment (SAGE)/Meteor - 3M flight instrument. Photographed in building 1250, 40 foot clean room.

  10. Meteor showers associated with 2003EH1

    NASA Astrophysics Data System (ADS)

    Babadzhanov, P. B.; Williams, I. P.; Kokhirova, G. I.

    2008-06-01

    Using the Everhart RADAU19 numerical integration method, the orbital evolution of the near-Earth asteroid 2003EH1 is investigated. This asteroid belongs to the Amor group and is moving on a comet-like orbit. The integrations are performed over one cycle of variation of the perihelion argument ω. Over such a cycle, the orbit intersect that of the Earth at eight different values of ω. The orbital parameters are different at each of these intersections and so a meteoroid stream surrounding such an orbit can produce eight different meteor showers, one at each crossing. The geocentric radiants and velocities of the eight theoretical meteor showers associated with these crossing points are determined. Using published data, observed meteor showers are identified with each of the theoretically predicted showers. The character of the orbit and the existence of observed meteor showers associated with 2003EH1 confirm the supposition that this object is an extinct comet.

  11. Monte Carlo modeling and meteor showers

    NASA Technical Reports Server (NTRS)

    Kulikova, N. V.

    1987-01-01

    Prediction of short lived increases in the cosmic dust influx, the concentration in lower thermosphere of atoms and ions of meteor origin and the determination of the frequency of micrometeor impacts on spacecraft are all of scientific and practical interest and all require adequate models of meteor showers at an early stage of their existence. A Monte Carlo model of meteor matter ejection from a parent body at any point of space was worked out by other researchers. This scheme is described. According to the scheme, the formation of ten well known meteor streams was simulated and the possibility of genetic affinity of each of them with the most probable parent comet was analyzed. Some of the results are presented.

  12. Man-Sized Meteor Over Macon

    NASA Video Gallery

    Astronomers at NASA's Marshall Space Flight Center have recorded the brightest meteor ever seen by their network. On May 20, 2011, six-foot diameter fragment of an unknown comet entered the atmosph...

  13. Large Meteor Tracked over Northeast Alabama

    NASA Video Gallery

    On the evening of May 18, NASA all-sky meteor cameras located at NASA’s Marshall Space Flight Center and at the Walker County Science Center near Chickamauga, Ga. tracked the entry of a large meteo...

  14. Comparison with Russian analyses of meteor impact

    SciTech Connect

    Canavan, G.H.

    1997-06-01

    The inversion model for meteor impacts is used to discuss Russian analyses and compare principal results. For common input parameters, the models produce consistent estimates of impactor parameters. Directions for future research are discussed and prioritized.

  15. Analysis of ALTAIR 1998 Meteor Radar Data

    NASA Technical Reports Server (NTRS)

    Zinn, J.; Close, S.; Colestock, P. L.; MacDonell, A.; Loveland, R.

    2011-01-01

    We describe a new analysis of a set of 32 UHF meteor radar traces recorded with the 422 MHz ALTAIR radar facility in November 1998. Emphasis is on the velocity measurements, and on inferences that can be drawn from them regarding the meteor masses and mass densities. We find that the velocity vs altitude data can be fitted as quadratic functions of the path integrals of the atmospheric densities vs distance, and deceleration rates derived from those fits all show the expected behavior of increasing with decreasing altitude. We also describe a computer model of the coupled processes of collisional heating, radiative cooling, evaporative cooling and ablation, and deceleration - for meteors composed of defined mixtures of mineral constituents. For each of the cases in the data set we ran the model starting with the measured initial velocity and trajectory inclination, and with various trial values of the quantity mPs 2 (the initial mass times the mass density squared), and then compared the computed deceleration vs altitude curves vs the measured ones. In this way we arrived at the best-fit values of the mPs 2 for each of the measured meteor traces. Then further, assuming various trial values of the density Ps, we compared the computed mass vs altitude curves with similar curves for the same set of meteors determined previously from the measured radar cross sections and an electrostatic scattering model. In this way we arrived at estimates of the best-fit mass densities Ps for each of the cases. Keywords meteor ALTAIR radar analysis 1 Introduction This paper describes a new analysis of a set of 422 MHz meteor scatter radar data recorded with the ALTAIR High-Power-Large-Aperture radar facility at Kwajalein Atoll on 18 November 1998. The exceptional accuracy/precision of the ALTAIR tracking data allow us to determine quite accurate meteor trajectories, velocities and deceleration rates. The measurements and velocity/deceleration data analysis are described in Sections

  16. Lomonosov Crater, Day and Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 16 June 2004 This pair of images shows part of Lomonosov Crater.

    Day/Night Infrared Pairs

    The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top.

    Infrared image interpretation

    Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images.

    Image information: IR instrument. Latitude 64.9, Longitude 350.7 East (9.3 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through

  17. Flyover Animation of Becquerel Crater on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] View the Movie Click on image to view the movie

    This simulated flyover shows rhythmic layers of sedimentary rock inside Becquerel crater on Mars. The animation uses three-dimensional modeling based on a stereo pair of images from the High Resolution Imaging Science Experiment (HiRISE) on NASA's Mars Reconnaissance Orbiter.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace & Technologies Corp., Boulder, Colo.

  18. Diatremes and craters attributed to natural explosions

    USGS Publications Warehouse

    Shoemaker, Eugene Merle

    1956-01-01

    Diatremes - volcanic pipes attributed to explosion - and craters have been studied to infer the ultimate causes and physical conditions attending natural explosive processes. Initial piercement of diatremes on the Navajo reservation, Arizona was probably along a fracture propagated by a high-pressure aqueous fluid. Gas rising at high velocity along the fracture would become converted to a gas-solid fluidized system by entrainment of wall- rock fragments. The first stages of widening of the vent are probably accomplished mainly by simple abrasion of the high-velocity fluidized system on the walls of the fracture. As the vent widens, its enlargement may be accelerated by inward spalling of the walls. The inferred mechanics of the Navajo-Hopi diatremes is used to illustrate the possibility of diatreme formation over a molten salt mass.

  19. Meteoric Ions in Planetary Ionospheres

    NASA Technical Reports Server (NTRS)

    Pesnell, W. D.; Grebowsky, Joseph M.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Solar system debris, in the form of meteoroids, impacts every planet. The flux, relative composition and speed of the debris at each planet depends on the planet's size and location in the solar system. Ablation in the atmosphere evaporates the meteoric material and leaves behind metal atoms. During the ablation process metallic ions are formed by impact ionization. For small inner solar system planets, including Earth, this source of ionization is typically small compared to either photoionization or charge exchange with ambient molecular ions. For Earth, the atmosphere above the main deposition region absorbs the spectral lines capable of ionizing the major metallic atoms (Fe and Mg) so that charge exchange with ambient ions is the dominant source. Within the carbon dioxide atmosphere of Mars (and possibly Venus), photoionization is important in determining the ion density. For a heavy planet like Jupiter, far from the sun, impact ionization of ablated neutral atoms by impacts with molecules becomes a prominent source of ionization due to the gravitational acceleration to high incident speeds. We will describe the processes and location and extent of metal ion layers for Mars, Earth and Jupiter, concentrating on flagging the uncertainties in the models at the present time. This is an important problem, because low altitude ionosphere layers for the planets, particularly at night, probably consist predominantly of metallic ions. Comparisons with Earth will be used to illustrate the differing processes in the three planetary atmospheres.

  20. January and February Meteor Showers Detected by CAMS: the Cameras for Allsky Meteor Surveillance

    NASA Astrophysics Data System (ADS)

    Johnson, Beth; Jenniskens, P. M.

    2014-01-01

    Many meteor showers are in need of validation. Of 493 meteor showers listed in the IAU Working List of Mete-or Showers, only 95 are established. Of the rest, it is uncertain whether they exist or not. The goal of the Cameras for Allsky Meteor Surveillance (CAMS) project in California is to validate or remove the remaining 325 showers. CAMS scales up the use of low-light-level video for meteor triangulation, by deploying 60 video cameras spread over three sites. Once the video data has been analyzed, showers can be confirmed by comparing arrival time, direc-tion of the radiant, and speed of the individual meteors. Once established, showers can be linked to their parent bod-ies and meteoroid streams. The CAMS stations are located in Sunnyvale, at Fremont Peak Observatory, and at Lick Observatory, to the south and east of Sunnyvale, respectively. Each station contains 20 low-light-level security cameras arrayed to view the entire sky above 30°. During the night, the video data from the cameras is written to disk and analysed in day-time with the MeteorScan software package to find moving objects. Eight-second video sequences are saved for all detections. The video sequences are combined at the SETI Institute, where astrometric calibration files are generated and meteors detected from at least two stations simultaneously are found interactively using the Coincidence program. Coincidence also calculates the radiant and velocity of each meteor. Here, we discuss results obtained in January and February 2013. Over 7,500 meteor orbits were cataloged in this period. This outcome doubled the detection rate from the previous two years of CAMS data.We will present graphs of the detected meteor showers and discuss their parent body sources.

  1. Double Ring Craters

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A faint double ring crater is seen at upper right in this picture of Mercury (FDS 166601) taken one hour and 40 minutes before Mariner 10's second rendezvous with the planet September 21. Located 35 degrees S. Lat. The outer ring is 170 kilometers (10 miles) across. Double ring craters are common features on Mercury. This particular feature and the bright rayed crater to its left were seen from a different viewing angle in pictures taken by Mariner 10 during its first Mercury flyby last March 29.

    The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    Image Credit: NASA/JPL/Northwestern University

  2. Small Impact Crater

    NASA Technical Reports Server (NTRS)

    2005-01-01

    22 June 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small impact crater with a 'butterfly' ejecta pattern. The butterfly pattern results from an oblique impact. Not all oblique impacts result in an elliptical crater, but they can result in a non-radial pattern of ejecta distribution. The two-toned nature of the ejecta -- with dark material near the crater and brighter material further away -- might indicate the nature of subsurface materials. Below the surface, there may be a layer of lighter-toned material, underlain by a layer of darker material. The impact throws these materials out in a pattern that reflects the nature of the underlying layers.

    Location near: 3.7oN, 348.2oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  3. Polygons on Crater Floor

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-357, 11 May 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows a pattern of polygons on the floor of a northern plains impact crater. These landforms are common on crater floors at high latitudes on Mars. Similar polygons occur in the arctic and antarctic regions of Earth, where they indicate the presence and freeze-thaw cycling of ground ice. Whether the polygons on Mars also indicate water ice in the ground is uncertain. The image is located in a crater at 64.8oN, 292.7oW. Sunlight illuminates the scene from the lower left.

  4. Craters! A Multi-Science Approach to Cratering and Impacts.

    ERIC Educational Resources Information Center

    Hartmann, William K.; Cain, Joe

    This book provides a complete Scope Sequence and Coordination teaching module. First, craters are introduced as a generally observable phenomena. Then, by making craters and by investigating the results, students gain close-up, hands-on experience with impact events and their products. Real crater examples from the Moon and elsewhere are included…

  5. Craters and Grabens: Circles and Lines

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 7 August 2003

    Large grooves indicating tectonic faulting cross this image from the upper right to the lower left. This image is located not too far south of the Tharsis Montes, which probably produced the faulting seen here as they erupted and uplifted the terrain. Many craters are apparent on the surface here, some of which have impacted on the grabens (grooves), indicating that they are younger than the faults. The crater in the center of the image appears to have been breached, allowing material (perhaps a mudslide) to spill to the west. Could this flow be caused by an earthquake that occurred when the faults moved, or did it happen much later?

    Image information: VIS instrument. Latitude -35.7, Longitude 324.1 East (35.9 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Results of Lunar Impact Observations During Geminid Meteor Shower Events

    NASA Technical Reports Server (NTRS)

    Suggs, R. J.; Suggs, R. M.

    2015-01-01

    Meteoroids are natural particles with origins from comets, asteroids, and planets from within the solar system. On average, 33 metric tons (73,000 lb) of meteoroids hit Earth everyday with velocities ranging between 20 and 72 km/s. However, the vast majority of these meteoroids disintegrate in the atmosphere and never make it to the ground. The Moon also encounters the same meteoroid flux, but has no atmosphere to stop them from striking the surface. At such speeds even a small meteoroid has incredible energy. A meteoroid with a mass of only 5 kg can excavate a crater over 9 m across, hurling 75 metric tons (165,000 lb) of lunar soil and rock on ballistic trajectories above the lunar surface. Meteoroids with particle sizes as small as 100 micrometer (1 Microgram) can do considerable damage to spacecraft in Earth's orbit and beyond. Impacts can damage thermal protection systems, radiators, windows, and pressurized containers. Secondary effects might include partial penetration or pitting, local deformation, and surface degradation that can cause a failure upon reentry. The speed, mass, density, and flux of meteoroids are important factors for design considerations and mitigation during operations. Lunar operations (unmanned and manned) are also adversely affected by the meteoroid flux. Ejecta from meteoroid impacts is also part of the lunar environment and must be characterized. Understanding meteoroid fluxes and the associated risk of meteoroids impacting spacecraft traveling in and beyond Earth's orbit is the objective of the Meteoroid Environment Office (MEO) located at Marshall Space Flight Center (MSFC). One of the MEO's programs is meteoroid impact monitoring of the Moon. The large collecting area of the night side of the lunar disk provides statistically significant counts of meteoroids that can provide useful information about the flux of meteoroids in the hundreds of grams to kilograms size range. This information is not only important for characterizing

  7. Khensu Crater on Ganymede

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The dark-floored crater, Khensu, is the target of this image of Ganymede. The solid state imaging camera on NASA's Galileo spacecraft imaged this region as it passed Ganymede during its second orbit through the Jovian system. Khensu is located at 2 degrees latitude and 153 degrees longitude in a region of bright terrain known as Uruk Sulcus, and is about 13 kilometers (8 miles) in diameter. Like some other craters on Ganymede, it possesses an unusually dark floor and a bright ejecta blanket. The dark component may be residual material from the impactor that formed the crater. Another possibility is that the impactor may have punched through the bright surface to reveal a dark layer beneath.

    Another large crater named El is partly visible in the top-right corner of the image. This crater is 54 kilometers (34 miles) in diameter and has a small 'pit' in its center. Craters with such a 'central pit' are common across Ganymede and are especially intriguing since they may reveal secrets about the structure of the satellite's shallow subsurface.

    North is to the top-left of the picture and the sun illuminates the surface from nearly overhead. The image covers an area about 100 kilometers (62 miles) by 86 kilometers (54 miles) across at a resolution of 111 meters (370 feet) per picture element. The image was taken on September 6, 1996 by the solid state imaging (CCD) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  8. Crater Floor Yardangs

    NASA Technical Reports Server (NTRS)

    2004-01-01

    1 December 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a group of semi-parallel ridges--yardangs--etched by wind into layered sedimentary rock on the floor of an unnamed crater in Terra Cimmeria. Many craters on Mars have been the sites of sedimentation. Over time, these sediments have become lithified. This picture is located near 31.3oS, 214.6oW. The image covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates the scene from the left/upper left.

  9. Concentric Crater Floor

    NASA Technical Reports Server (NTRS)

    2004-01-01

    8 July 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the interior of a typical crater in northern Acidalia Planitia. The floor is covered by material that forms an almost concentric pattern. In this case, the semi-concentric rings might be an expression of eroded layered material, although this interpretation is uncertain. The crater is located near 44.0oN, 27.7oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  10. Clayheads in Arizona.

    ERIC Educational Resources Information Center

    Schubert, Thorne Erwin

    1990-01-01

    Describes how junior high school students in Arizona combine what they have learned in ceramic history class with ceramic production skills to create their own personal ceramic heads in their images. (KM)

  11. Mesospheric temperature estimation from meteor decay times during Geminids meteor shower

    NASA Astrophysics Data System (ADS)

    Kozlovsky, Alexander; Lukianova, Renata; Shalimov, Sergey; Lester, Mark

    2016-02-01

    Meteor radar observations at the Sodankylä Geophysical Observatory (67° 22'N, 26° 38'E, Finland) indicate that the mesospheric temperature derived from meteor decay times is systematically underestimated by 20-50 K during the Geminids meteor shower which has peak on 13 December. A very good coincidence of the minimum of routinely calculated temperature and maximum of meteor flux (the number of meteors detected per day) was observed regularly on that day in December 2008-2014. These observations are for a specific height-lifetime distribution of the Geminids meteor trails and indicate a larger percentage of overdense trails compared to that for sporadic meteors. A consequence of this is that the routine estimates of mesospheric temperature during the Geminids are in fact underestimates. The observations do, however, indicate unusual properties (e.g., mass, speed, or chemical composition) of the Geminids meteoroids. Similar properties were found also for Quadrantids in January 2009-2015, which like the Geminids has as a parent body an asteroid, but not for other meteor showers.

  12. The Southern Argentine Agile Meteor Radar (SAAMER)

    NASA Astrophysics Data System (ADS)

    Janches, Diego

    2014-11-01

    The Southern Argentina Agile Meteor Radar (SAAMER) is a new generation system deployed in Rio Grande, Tierra del Fuego, Argentina (53 S) in May 2008. SAAMER transmits 10 times more power than regular meteor radars, and uses a newly developed transmitting array, which focuses power upward instead of the traditional single-antenna-all-sky configuration. The system is configured such that the transmitter array can also be utilized as a receiver. The new design greatly increases the sensitivity of the radar enabling the detection of large number of particles at low zenith angles. The more concentrated transmitted power enables additional meteor studies besides those typical of these systems based on the detection of specular reflections, such as routine detections of head echoes and non-specular trails, previously only possible with High Power and Large Aperture radars. In August 2010, SAAMER was upgraded to a system capable to determine meteoroid orbital parameters. This was achieved by adding two remote receiving stations approximately 10 km away from the main site in near perpendicular directions. The upgrade significantly expands the science that is achieved with this new radar enabling us to study the orbital properties of the interplanetary dust environment. Because of the unique geographical location, SAAMER allows for additional inter-hemispheric comparison with measurements from Canadian Meteor Orbit Radar, which is geographically conjugate. Initial surveys show, for example, that SAAMER observes a very strong contribution of the South Toroidal Sporadic meteor source, of which limited observational data is available. In addition, SAAMER offers similar unique capabilities for meteor showers and streams studies given the range of ecliptic latitudes that the system enables detailed study of showers at high southern latitudes (e.g July Phoenicids or Puppids complex). Finally, SAAMER is ideal for the deployment of complementary instrumentation in both, permanent

  13. Selenographic distribution of apparent crater depth

    NASA Astrophysics Data System (ADS)

    de Hon, R. A.

    If apparent crater depth is a function of crater diameter, then the frequencies of crater depth and diameter should be similar and the distribution of apparent depths of craters on the lunar surface should be random. Apparent depths of complex craters, which range from 0.2 to 4.3 km on the moon, exhibit little correlation with crater diameters. Crater frequency decreases at increasing diameters, but apparent crater depth displays a Gaussian distribution. The average crater depth for all young craters is 1.8 km. The mean depth of craters on the maria is 1.3 km, and the mean depth of craters on the highlands is 2.1 km. A contour map of apparent crater depths exhibits sufficient organization to suggest that the apparent crater depth is correlated to major lunar provinces. In general, regions of shallow craters are associated with basin interiors. Greater apparent depths are associated with highland terrains.

  14. Rim of Henry Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 02 April 2002) This portion of the rim of Henry Crater has numerous dark streaks located on the slopes of the inner crater wall. These dark slope streaks have been suggested to have formed when the relatively bright dust that mantles the slopes slides downhill, either exposing a dust-free darker surface or creating a darker surface by increasing its roughness. The topography in this region appears muted, indicating the presence of regional dust mantling. The materials on floor of the crater (middle to lower left) are layered, with differing degrees of hardness and resistance to erosion producing cliffs (resistant layers) and ledges (easily eroded layers). These layered materials may have been originally deposited in water, although deposition by other means, such as windblown dust and sand, is also possible. Henry Crater, named after a 19th Century French astronomer, is 170 km in diameter and is located at 10.9o N, 336.7o W (23.3o E) in a region called Arabia Terra.

  15. Reading 'Endurance Crater'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    This image shows the area inside 'Endurance Crater' that the Mars Exploration Rover Opportunity has been examining. The rover is investigating the distinct layers of rock that make up this region. Each layer is defined by subtle color and texture variations and represents a separate chapter in Mars' history. The deeper the layer, the further back in time the rocks were formed. Scientists are 'reading' this history book by systematically studying each layer with the rover's scientific instruments. So far, data from the rover indicate that the top layers are sulfate-rich, like the rocks observed in 'Eagle Crater.' This implies that water processes were involved in forming the materials that make up these rocks.

    In figure 1, the layer labeled 'A' in this picture contains broken-up rocks that most closely resemble those of 'Eagle Crater.' Layers 'B,C and D' appear less broken up and more finely laminated. Layer 'E,' on the other hand, looks more like 'A.' At present, the rover is examining layer 'D.'

    So far, data from the rover indicates that the first four layers consist of sulfate-rich, jarosite-containing rocks like those observed in Eagle Crater. This implies that water processes were involved in forming the materials that make up these rocks, though the materials themselves may have been laid down by wind.

    This image was taken by Opportunity's navigation camera on sol 134 (June 9, 2004).

  16. Lunar Regolith Maturity Controlled By Ilmenite Content And Micro-Meteor Flux Variability

    NASA Astrophysics Data System (ADS)

    Schmitt, H. H.

    2013-12-01

    Synthesis of Is/FeO maturity indexes for Apollo 17 regolith samples in the valley of Taurus-Littrow on the Moon indicate that high levels of ilmenite in the samples significantly reduces the level of this indicator of space exposure. The analysis, along with consideration of regolith glass characteristics, also discloses that micro-meteor fluxes vary over geologic time, presumably in response to significant impact events in the Asteroid Belt. Surface samples of ilmenite-poor, silicate-rich regolith have about 80-90% higher maturity indexes than surface samples of ilmenite-rich, basaltic regolith of comparable exposure. For comparison of the history of various regolith exposures to the space environment, Taurus-Littrow's light mantle avalanche deposit, the youngest large area stratigraphic unit, provides a specific time horizon. For at least the last ~110 million years, the currently estimated age of the light mantle avalanche, most near surface (upper 1-5cm) regolith has had approximately the same exposure to micro-meteors. The surface of the largely ilmenite-rich basalt fill in the valley has been exposed to space at least as long or possibly 30 million years longer than the light mantle, based on exposure ages for large boulder ejecta in the Camelot cluster of craters. High apparent maturity (Is/FeO >80), however, exists only on three types of regolith surfaces: (1) the North Massif apron (e.g., 77431), (2) the light mantle avalanche deposit (e.g., 72161), and (3) low ilmenite basalt (e.g., 72150). Only intermediate to low maturity (Is/FeO <60) has developed in surface regolith overlying high titanium basalt (e.g., 70181). TiO2/TiO2+FeO ratios provide a good measure of original ilmenite content, ilmenite being the only quantitatively significant titanium-bearing mineral in the regolith. Those ratios for samples showing high and intermediate apparent maturity are about 0.35 and 0.25, respectively. A well documented, 3.5 billion year old basaltic regolith (77240

  17. Impact Cratering Calculations

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    1997-01-01

    Understanding the physical processes of impact cratering on planetary surfaces and atmospheres as well as collisions of finite-size self-gravitating objects is vitally important to planetary science. The observation has often been made that craters are the most ubiquitous landform on the solid planets and the satellites. The density of craters is used to date surfaces on planets and satellites. For large ringed basin craters (e.g. Chicxulub), the issue of identification of exactly what 'diameter' transient crater is associated with this structure is exemplified by the arguments of Sharpton et al. (1993) versus those of Hildebrand et al. (1995). The size of a transient crater, such as the K/T extinction crater at Yucatan, Mexico, which is thought to be the source of SO,-induced sulfuric acid aerosol that globally acidified surface waters as the result of massive vaporization of CASO, in the target rock, is addressed by our present project. The impact process excavates samples of planetary interiors. The degree to which this occurs (e.g. how deeply does excavation occur for a given crater diameter) has been of interest, both with regard to exposing mantle rocks in crater floors, as well as launching samples into space which become part of the terrestrial meteorite collection (e.g. lunar meteorites, SNC's from Mars). Only in the case of the Earth can we test calculations in the laboratory and field. Previous calculations predict, independent of diameter, that the depth of excavation, normalized by crater diameter, is d(sub ex)/D = 0.085 (O'Keefe and Ahrens, 1993). For Comet Shoemaker-Levy 9 (SL9) fragments impacting Jupiter, predicted excavation depths of different gas-rich layers in the atmosphere, were much larger. The trajectory and fate of highly shocked material from a large impact on the Earth, such as the K/T bolide is of interest. Melosh et al. (1990) proposed that the condensed material from the impact upon reentering the Earth's atmosphere induced. radiative

  18. Discovery that secondary craters dominate Europa's small crater population

    NASA Astrophysics Data System (ADS)

    Bierhaus, Edward B.

    2004-08-01

    This thesis presents data and analysis that demonstrate secondary craters (craters formed by material ejected from a primary impactor) dominate the small-crater (<1 km) population on Europa. Of the 17,000+ impact craters I measured in high-resolution images that cover only 0.2% of Europa's surface, 90% are clustered. I applied three spatial analysis techniques, including a novel hybrid of Monte Carlo and hierarchical clustering algorithms, to identify the clustered population. Additional analysis suggests that many unclustered craters are also secondaries; the true percentage of secondary craters is at least 95%. Least-squares, non-linear power-law fits to the differential (dN = kDb dD) size-distributions demonstrate that the secondaries have “steep” exponents, typically b < -4. Because the regions examined are at least hundreds of km away from any large primary crater, this is the first robust study of far- field secondary craters (those formed by material ejected at hundreds of m/s to over 1 km/s). I also measured 7,000+ near-field (only several parent crater radii distant) secondaries around Tyre, a 44 km primary crater on Europa, and measured 1,000+ near-field secondaries in a smaller area around Pwyll, a 26 km primary. The Pwyll data indicate a peak size for the near-field secondaries; the size-distribution at diameters larger than the peak size has very steep exponents, -6.3 to -7.8. The combined measurements of near- and far-field secondaries demonstrate that primary cratering events are extraordinarily efficient in generating ejecta for both populations. This research is the first to demonstrate that, at least on Europa, distant secondary craters overwhelm the small primary craters. Among the many potential implications of my research, two are profound: (1)the population of objects (now known to be ecliptic comets) that hits Europa to form primary craters must have a shallow (b > -2) size- distribution for objects <100 m diameter; and (2)to the degree

  19. Europa's Pwyll Crater

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This view of the Pwyll impact crater on Jupiter's moon Europa taken by NASA's Galileo spacecraft shows the interior structure and surrounding ejecta deposits. Pwyll's location is shown in the background global view taken by Galileo's camera on December 16, 1997. Bright rays seen radiating from Pwyll in the global image indicate that this crater is geologically young. The rim of Pwyll is about 26 kilometers (16 miles) in diameter, and a halo of dark material excavated from below the surface extends a few kilometers beyond the rim. Beyond this dark halo, the surface is bright and numerous secondary craters can be seen. The closeup view of Pwyll, which combines imaging data gathered during the December flyby and the flyby of February 20, 1997, indicates that unlike most fresh impact craters, which have much deeper floors, Pwyll's crater floor is at approximately the same level as the surrounding background terrain.

    North is to the top of the picture and the sun illuminates the surface from the northeast. This closeup image, centered at approximately 26 degrees south latitude and 271 degrees west longitude, covers an area approximately 125 by 75 kilometers (75 by 45 miles). The finest details that can be discerned in this picture are about 250 meters (800 feet) across. This image was taken on at a range of 12,400 kilometers (7,400 miles), with the green filter of Galileo's solid state imaging system.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  20. Asteroid 1620 Geographos: II. Associated Meteor Streams

    NASA Astrophysics Data System (ADS)

    Ryabova, G. O.

    2002-05-01

    This study attempts to answer the following questions. Are there meteor streams genetically related to asteroid 1620 Geographos? When and how were they generated? Can we find any of them in the catalogs of orbits of meteors that have been observed? Numerous model streams, varying in particle-ejection scheme and in the moment of generation, have been considered. It has been found that the meteor streams observed from the Earth were most likely produced as a result of a collision with a small body. However, the generation of the meteor stream under the combined effect of rotation and tidal forces during the asteroid's close approach to the Earth cannot also be ruled out. Meteoroid streams formed at high ejection velocities (up to 1 km/s) can approach the Earth's orbit twice per orbital period: once before perihelion (in February-March) and once after perihelion (in August). The 44 orbits close to the model ones were found in the catalogs of meteoroid orbits. A taxonomic structure has been built for them. The distribution of ejection velocities for the models of Earth-approaching meteoroids points to the impact of an overtaking body, but the moment of collision remains unknown. Thus, it is quite possible that asteroid Geographos is the parent body for twin meteor showers observed at the Earth: Spring and Autumn Geographids.

  1. CAMS confirmation of previously reported meteor showers

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Nénon, Q.; Gural, P. S.; Albers, J.; Haberman, B.; Johnson, B.; Holman, D.; Morales, R.; Grigsby, B. J.; Samuels, D.; Johannink, C.

    2016-03-01

    Leading up to the 2015 IAU General Assembly, the International Astronomical Union's Working List of Meteor Showers included 486 unconfirmed showers, showers that are not certain to exist. If confirmed, each shower would provide a record of past comet or asteroid activity. Now, we report that 41 of these are detected in the Cameras for Allsky Meteor Surveillance (CAMS) video-based meteor shower survey. They manifest as meteoroids arriving at Earth from a similar direction and orbit, after removing the daily radiant drift due to Earth's motion around the Sun. These showers do exist and, therefore, can be moved to the IAU List of Established Meteor Showers. This adds to 31 previously confirmed showers from CAMS data. For each shower, finding charts are presented based on 230,000 meteors observed up to March of 2015, calculated by re-projecting the drift-corrected Sun-centered ecliptic coordinates into more familiar equatorial coordinates. Showers that are not detected, but should have, and duplicate showers that project to the same Sun-centered ecliptic coordinates, are recommended for removal from the Working List.

  2. BRAMS: The Belgian RAdio Meteor Stations

    NASA Technical Reports Server (NTRS)

    Lamy, H.; Ranvier, S.; De Keyser, J.; Calders, S.; Gamby, E.; Verbeeck, C.

    2011-01-01

    In the last months, the Belgian Institute for Space Aeronomy has been developing a Belgian network for observing radio meteors using forward scattering technique. This network is called BRAMS for Belgian RAdio Meteor Stations. Two beacons emitting a circularly polarized pure sine wave toward the zenith act as the transmitters at frequencies of 49.97 and 49.99 MHz. The first one located in Dourbes (Southern Belgium) emits a constant power of 150 Watts while the one located in Ieper (Western Belgium) emits a constant power of 50 Watts. The receiving network consists of about 20 stations hosted mainly by radio amateurs. Two stations have crossed-Yagi antennas measuring horizontal and vertical polarizations of the waves reflected off meteor trails. This will enable a detailed analysis of the meteor power profiles from which physical parameters of the meteoroids can be obtained. An interferometer consisting of 5 Yagi-antennas will be installed at the site of Humain in order to determine the angular detection of one reflection point, allowing us to determine meteoroid trajectories. We describe this new meteor observing facility and present the goals we expect to achieve with the network.

  3. Optical Meteor Systems Used by the NASA Meteoroid Environment Office

    NASA Technical Reports Server (NTRS)

    Kingery, A. M.; Blaauw, R. C.; Cooke, W. J.; Moser, D. E.

    2015-01-01

    The NASA Meteoroid Environment Office (MEO) uses two main meteor camera networks to characterize the meteoroid environment: an all sky system and a wide field system to study cm and mm size meteors respectively. The NASA All Sky Fireball Network consists of fifteen meteor video cameras in the United States, with plans to expand to eighteen cameras by the end of 2015. The camera design and All-Sky Guided and Real-time Detection (ASGARD) meteor detection software [1, 2] were adopted from the University of Western Ontario's Southern Ontario Meteor Network (SOMN). After seven years of operation, the network has detected over 12,000 multi-station meteors, including meteors from at least 53 different meteor showers. The network is used for speed distribution determination, characterization of meteor showers and sporadic sources, and for informing the public on bright meteor events. The NASA Wide Field Meteor Network was established in December of 2012 with two cameras and expanded to eight cameras in December of 2014. The two camera configuration saw 5470 meteors over two years of operation with two cameras, and has detected 3423 meteors in the first five months of operation (Dec 12, 2014 - May 12, 2015) with eight cameras. We expect to see over 10,000 meteors per year with the expanded system. The cameras have a 20 degree field of view and an approximate limiting meteor magnitude of +5. The network's primary goal is determining the nightly shower and sporadic meteor fluxes. Both camera networks function almost fully autonomously with little human interaction required for upkeep and analysis. The cameras send their data to a central server for storage and automatic analysis. Every morning the servers automatically generates an e-mail and web page containing an analysis of the previous night's events. The current status of the networks will be described, alongside with preliminary results. In addition, future projects, CCD photometry and broadband meteor color camera

  4. Atmospheric trajectories and light curves of shower meteors

    NASA Astrophysics Data System (ADS)

    Koten, P.; Borovička, J.; Spurný, P.; Betlem, H.; Evans, S.

    2004-12-01

    Double station data on 496 meteors belonging to several meteor showers were obtained within the program of the video meteor observations during years 1998-2001. Analyzed meteors cover a range of photometric masses from 10-7 to 10-4 kg with a corresponding range of maximum brightness from +4.7 to -2.1 absolute magnitude. Atmospheric trajectories of Perseid, Orionid and Leonid meteors are analysed. These typical cometary high velocity meteors are compared to Geminid meteors with probable asteroidal origin and Taurid meteors - another cometary shower with significantly lower entry velocity. The light curves of the studied meteors vary widely, but generally are nearly symmetrical with the point of maximum brightness located close the to middle of the luminous trajectory. Small differences between showers are reported. We found that the height data are in good agreement with the dust-ball model predictions. The only difference is the beginning height behaviour. The beginning heights of cometary meteors increase with increasing photometric mass. These meteoroids probably contain a volatile part which starts to ablate before we are able to detect the meteors. The Geminid meteors are a different case. They start to ablate suddenly and their beginning height is almost constant in the whole range of studied meteoroid masses. In this case we observe real beginnings of meteor ablation.

  5. ROAN Remote radio meteor detection sensor

    NASA Astrophysics Data System (ADS)

    Lesanu, C. E.

    2016-01-01

    Only few meteor enthusiasts across the world today, approaches systematically the radio meteor detection technique, one of the reasons being the difficulty to build and install proper permanent antennas, especially when low-VHF frequency opportunity transmitters are used as illuminators. Other reasons were in the past the relatively high cost of the entire system, receivers and computers, and not ultimately the high power consumption of the system in a 24/7 operation, when using regular personal computers. The situation changed in the recent years with the advent of the low cost software defined radio SDR receivers and low consumption/cost single board computers SBC. A commercial off-the-shelf hardware based remote radio meteor detection sensor is presented.

  6. Observation of meteors by MST radar

    NASA Technical Reports Server (NTRS)

    Jones, William; Kingsley, S. P.

    1992-01-01

    The observation of meteor trails by a vertical mesosphere - stratosphere - troposphere (MST) radar beam has the advantage of good height resolution and an approximate knowledge of the zenith angle since the trails are horizontal or near-horizontal. An extension of the ablation theory of meteors was developed for near horizontal trails which takes into account the curvature of the earth. Observations of the Geminid meteor shower by MST radar reveal the 'diffusion heights' to be in fair agreement with the true height, but with some discrepancies that can amount to 4 km. The true heights are almost entirely confined to the range 87-91 km, although the upper limit is attributed to the coherent integration time of the existing MST radar processing.

  7. Various meteor scenes I: the perception and the conception of a 'meteor shower'

    NASA Astrophysics Data System (ADS)

    Koseki, Masahiro

    2014-10-01

    Not all 'established showers' are recognisable by every method. Some might be lost ('dead') or have recurrent (periodic) nature and are not observable annually. Some are dominated by faint meteors and not observable visually but by radar systems. Other showers are rich in fireballs and their low meteor rates make them a good target for video and photographic observations, while visual observers may not notice their activity because of the low rates. The perception limit in magnitude differs between the observing methods on the one hand, but depends on the magnitude ratios of shower meteors on the other hand. Differences in the definition of a 'meteor shower'/'meteoroid stream' work important roles composing the shower list and we need to know how much various researchers' definitions differ. Depending whether we use observational raw data of the visible meteor shower or orbital elements of the meteoroid stream this may lead to either an obvious meteor showers or an undetectable stream. This paper (paper I) describes the reasons why we can see a meteor shower and why not, Paper II proves the condition by the example of Cygnid-Draconid complex, especially for the κ-Cygnids, and Paper III looks at the different views of several minor showers from the different kind observations.

  8. All-sky Meteor Orbit System AMOS and preliminary analysis of three unusual meteor showers

    NASA Astrophysics Data System (ADS)

    Tóth, Juraj; Kornoš, Leonard; Zigo, Pavol; Gajdoš, Štefan; Kalmančok, Dušan; Világi, Jozef; Šimon, Jaroslav; Vereš, Peter; Šilha, Jiří; Buček, Marek; Galád, Adrián; Rusňák, Patrik; Hrábek, Peter; Ďuriš, František; Rudawska, Regina

    2015-12-01

    All-sky Meteor Orbit System (AMOS) is a semi-autonomous video observatory for detection of transient events on the sky, mostly the meteors. Its hardware and software development and permanent placement on several locations in Slovakia allowed the establishment of Slovak Video Meteor Network (SVMN) monitoring meteor activity above the Central Europe. The data reduction, orbital determination and additional results from AMOS cameras - the SVMN database - as well as from observational expeditions on Canary Islands and in Canada provided dynamical and physical data for better understanding of mutual connections between parent bodies of asteroids and comets and their meteoroid streams. We present preliminary results on exceptional and rare meteor streams such as September ɛ Perseids (SPE) originated from unknown long periodic comet on a retrograde orbit, suspected asteroidal meteor stream of April α Comae Berenicids (ACO) in the orbit of meteorites Příbram and Neuschwanstein and newly observed meteor stream Camelopardalids (CAM) originated from Jupiter family comet 209P/Linear.

  9. Analysis of historical meteor and meteor shower records: Korea, China, and Japan

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Jin; Park, Changbom; Park, Myeong-Gu

    2005-05-01

    We have compiled and analyzed historical Korean meteor and meteor shower records in three Korean official history books, Samguksagi which covers the three Kingdoms period (57 B.C.-A.D. 935), Goryeosa of Goryeo dynasty (A.D. 918-1392), and Joseonwangjosillok of Joseon dynasty (A.D. 1392-1910). We have found 3861 meteor and 31 meteor shower records. We have confirmed the peaks of Perseids and an excess due to the mixture of Orionids, north-Taurids, or Leonids through the Monte Carlo test. The peaks persist from the period of Goryeo dynasty to that of Joseon dynasty, for almost one thousand years. Korean records show a decrease of Perseids activity and an increase of Orionids/north-Taurids/Leonids activity. We have also analyzed seasonal variation of sporadic meteors from Korean records. We confirm the seasonal variation of sporadic meteors from the records of Joseon dynasty with the maximum number of events being roughly 1.7 times the minimum. The Korean records are compared with Chinese and Japanese records for the same periods. Major features in Chinese meteor shower records are quite consistent with those of Korean records, particularly for the last millennium. Japanese records also show Perseids feature and Orionids/north-Taurids/Leonids feature, although they are less prominent compared to those of Korean or Chinese records.

  10. The First Year of Croatian Meteor Network

    NASA Astrophysics Data System (ADS)

    Andreic, Zeljko; Segon, Damir

    2010-08-01

    The idea and a short history of Croatian Meteor Network (CMN) is described. Based on use of cheap surveillance cameras, standard PC-TV cards and old PCs, the Network allows schools, amateur societies and individuals to participate in photographic meteor patrol program. The network has a strong educational component and many cameras are located at or around teaching facilities. Data obtained by these cameras are collected and processed by the scientific team of the network. Currently 14 cameras are operable, covering a large part of the croatian sky, data gathering is fully functional, and data reduction software is in testing phase.

  11. Electrophonic sounds from large meteor fireballs

    NASA Astrophysics Data System (ADS)

    Keay, Colin S. L.

    1992-06-01

    Anomalous sounds from large meteor fireballs, anomalous because they are audible simultaneously with the sighting, have been a matter for debate for over two centuries. Only a minority of observers perceive them. Ten years ago a viable physical explanation was developed (Keay, 1980) which accounts for the phenomenon in terms of ELF/VLF radiation from the fireball plasma being transduced into acoustic waves whenever appropriate objects happen to be in the vicinity of an observer. This explanation has now been verified observationally and supported by other evidence including the study of meteor fireball light curves reported here.

  12. An Investigation of Meteors in Early April

    NASA Astrophysics Data System (ADS)

    Arter, Terrance R.; Williams, Iwan P.

    1995-01-01

    In conducting a search through the IAU Meteor Catalogue at Lund, a peak in activity on April 8th, not corresponding to any known shower was discovered. Analysis of the orbit shows that a subset of those meteors originated on very coherent orbits. It is suggested that there could either represent a hither to unidentified stream or that they are meteoroids which, like the April Lyrids, were ejected from Comet Thatcher but have arrived onto their current orbits as a consequence primarily of Poynting - Robertson drag.

  13. Antarctic ozone - Meteoric control of HNO3

    NASA Astrophysics Data System (ADS)

    Prather, Michael J.; Rodriguez, Jose M.

    1988-01-01

    Atmospheric circulation leads to an accumulation of debris from meteors in the Antarctic stratosphere at the beginning of austral spring. The major component of meteoric material is alkaline, comprised predominantly of the oxides of magnesium and iron. These metals may neutralize the natural acidity of stratospheric aerosols, remove nitric acid from the gas phase, and bond it as metal nitrates in the aerosol phase. Removal of nitric acid vapor has been previously shown to be a critical link in the photochemical depletion of ozone in the Antarctic spring, by allowing for increased catalytic loss from chlorine and bromine.

  14. Meteor spectra from AMOS video system

    NASA Astrophysics Data System (ADS)

    Gajdoš, Š.; Tóth, J.; Kornoš, L.

    2015-01-01

    We present a report on the observation of enhanced activity from the Ursids meteor shower using the all-sky camera, at the AGO Modra, on Dec. 22-23, 2014. The time of maximum is in good accordance with the predictions of some authors. We derived a single-station meteor radiant, RA = 217.9° ± 0.1°, DEC = +76.4° ± 0.1° at solar longitude S.L. = 270.9°, along with the activity profile of the Ursid outburst with the maximum occurring at Dec. 23th, 00h40m UT ± 30 min.

  15. Meteor spectra from AMOS video system

    NASA Astrophysics Data System (ADS)

    Rudawska, Regina; Tóth, Juraj; Kalmančok, Dušan; Zigo, Pavol; Matlovič, Pavol

    2016-04-01

    Here we demonstrate the capability of the updated All-Sky Meteor Orbit System (AMOS) (called AMOS-Spec) to measure the main element abundances of meteors. The AMOS-Spec program has been created with the intention of carrying out regular systematic spectroscopic observations. At the same time, the meteoroid trajectory and pre-atmospheric orbit are independently measured from data collected by the AMOS camera network. This, together with spectral information, allows us to find the link between the meteoroid and its parent body, from both dynamical and physical consideration. Here we report results for 35 selected cases.

  16. In Situ Measurements of Meteoric Ions

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Aiken, Arthur C.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Extraterrestrial material is the source of metal ions in the Earth's atmosphere, Each year approx. 10(exp 8) kg of material is intercepted by the Earth. The origin of this material is predominantly solar orbiting interplanetary debris from comets or asteroids that crosses the Earth's orbit. It contains a very small amount of interstellar material. On occasion the Earth passes through enhanced amounts of debris associated with the orbit of a decaying comet. This leads to enhanced meteor shower displays for up to several days. The number flux of shower material is typically several times the average sporadic background influx of material. Meteoric material is some of the earliest material formed in the solar system. By studying the relative elemental abundances of atmospheric metal ions, information can be gained on the chemical composition of cometary debris and the chemical makeup of the early solar system. Using in situ sampling with rocket-borne ion mass spectrometers; there have been approximately 50 flights that made measurements of the metal ion abundances at attitudes between 80 and 130 km. It is this altitude range where incoming meteoric particles am ablated, the larger ones giving rise to visible meteor. displays. In several rocket measurements isotopic ratios of different atomic ion mass components and metal molecular ion concentrations have been determined and used to identify unambiguously the measured species and to investigate the processes controlling the metal ion distributions The composition of the Earth's ionosphere was first sampled by an ion mass spectrometer flown an a rocket in 1956. In 1958 a rocket-borne ion spectrometer identified, fbr the first time, a layer of metal ions near 95 km. These data were interpreted as evidence of an extraterrestrial rather than a terrestrial source. Istomin predicted: "It seems probable that with some improvement in the method that analysis of the ion composition in the E-region may be used for determining

  17. The Radio Meteor Zoo: a citizen science project

    NASA Astrophysics Data System (ADS)

    Calders, S.; Verbeeck, C.; Lamy, H.; Martínez Picar, A.

    2016-01-01

    Scientists from the BRAMS radio meteor network have started a citizen science project called Radio Meteor Zoo in collaboration with Zooniverse in order to identify meteor reflections in BRAMS spectrograms. First, a small-scale version of the Radio Meteor Zoo was carried out with a sample of meteor identifications in 12 spectrograms by 35 volunteers. Results are presented here and allowed us to define a method that reliably detects meteor reflections based on the identifications by the volunteers. It turns out that, if each spectrogram is inspected by 10 volunteers, hit and false detection percentages of 95% respectively 6% are expected. The Radio Meteor Zoo is online at https://www.zooniverse.org/projects/zooniverse/radio-meteor-zoo. Citizen scientists are kindly invited to inspect spectrograms.

  18. Exploring the relationship between meteor parameters based on photographic data

    NASA Astrophysics Data System (ADS)

    Yancheva, Y.; Hristova, S.; Bojurova, E.

    2016-01-01

    The paper presents an attempt to investigate the relationship between the luminosity and the linear length of the meteors, based on photographic observations of the Geminid meteor shower during the night of maximum in December 2015.

  19. Independent identification of meteor showers in EDMOND database

    NASA Astrophysics Data System (ADS)

    Rudawska, R.; Matlovič, P.; Tóth, J.; Kornoš, L.

    2015-12-01

    Cooperation and data sharing among national networks and International Meteor Organization Video Meteor Database (IMO VMDB) resulted in European viDeo MeteOr Network Database (EDMOND). The current version of the database (EDMOND 5.0) contains 144 749 orbits collected from 2001 to 2014. This paper presents the results obtained by a proposed new independent method of meteor showers identification, which is applied to the current version of the database (EDMOND 5.0). In the first step of the survey we used the DSH criterion to find groups around each meteor within the similarity threshold. Mean parameters of the groups were calculated and compared using a new function DX based on geocentric parameters (λ⊙, α, δ, and Vg). Similar groups were merged into final clusters (representing meteor showers), and compared with the IAU Meteor Data Center list of meteor showers.

  20. The LCROSS cratering experiment.

    PubMed

    Schultz, Peter H; Hermalyn, Brendan; Colaprete, Anthony; Ennico, Kimberly; Shirley, Mark; Marshall, William S

    2010-10-22

    As its detached upper-stage launch vehicle collided with the surface, instruments on the trailing Lunar Crater Observation and Sensing Satellite (LCROSS) Shepherding Spacecraft monitored the impact and ejecta. The faint impact flash in visible wavelengths and thermal signature imaged in the mid-infrared together indicate a low-density surface layer. The evolving spectra reveal not only OH within sunlit ejecta but also other volatile species. As the Shepherding Spacecraft approached the surface, it imaged a 25- to-30-meter-diameter crater and evidence of a high-angle ballistic ejecta plume still in the process of returning to the surface--an evolution attributed to the nature of the impactor.

  1. Layers in Terby Crater

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-407, 30 June 2003

    Whether on Earth or Mars, sedimentary rocks provide a record of past environments. Of course, it is difficult to read that record without being able to visit the site. However, the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) has revealed hundreds of locales on Mars at which sedimentary rocks are exposed at the surface. Terby Crater exhibits hundreds of layers of similar thickness and physical properties--some have speculated these may be the record of an ancient lake or sea. This MOC image shows some of the layer outcrops in Terby Crater. Fans of debris have eroded from the steep, layered slopes in some places. This picture covers an area 3 km (1.9 mi) wide near 27.5oS, 285.7oW. The image is illuminated from the upper left and was obtained in June 2003.

  2. Optical studies of meteors at Mount Hopkins Observatory

    NASA Technical Reports Server (NTRS)

    Weekes, T. C.; Williams, J. T.

    1974-01-01

    The 10-m optical reflector and an array of phototubes are used to extend the optical measurements beyond the present limit achieved by the Vidicon system. The first detection of optical meteors with M sub v = + 12 is reported. It is hoped that this system can be used to determine intermediate points in the meteor frequency mass curve for sporadic meteors and to study in detail the faint components of meteor showers. Preliminary observations made on three nights in September 1974 are presented.

  3. On associations of Apollo asteroids with meteor streams

    NASA Technical Reports Server (NTRS)

    Porubcan, V.; Stohl, Jan; Vana, R.

    1992-01-01

    Potential associations of Apollo asteroids with meteor streams are searched on the basis of the orbital parameters comparison. From all Apollo asteroids discovered through 1991 June those are only selected for further analysis whose orbits approach to less than 0.1 AU to the Earth's orbit. Their orbits are compared with precise photographic orbits of individual meteors from the Meteor Data Center in Lund. Results on the associations of asteroids with meteor streams are presented and discussed.

  4. Callisto Crater Chain Mosaic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This mosaic of three images shows an area within the Valhalla region on Jupiter's moon, Callisto. North is to the top of the mosaic and the Sun illuminates the surface from the left. The smallest details that can be discerned in this picture are knobs and small impact craters about 160 meters (175 yards) across. The mosaic covers an area approximately 45 kilometers (28 miles) across. It shows part of a prominent crater chain located on the northern part of the Valhalla ring structure.

    Crater chains can form from the impact of material ejected from large impacts (forming secondary chains) or by the impact of a fragmented projectile, perhaps similar to the Shoemaker-Levy 9 cometary impacts into Jupiter in July 1994. It is believed this crater chain was formed by the impact of a fragmented projectile. The images which form this mosaic were obtained by the solid state imaging system aboard NASA's Galileo spacecraft on Nov. 4, 1996 (Universal Time).

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http:// www.jpl.nasa.gov/galileo/sepo.

  5. Meteor Search by Spirit, Sol 668

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Annotated Meteor Search by Spirit, Sol 668

    The panoramic cameras on NASA's Mars Exploration Rovers are about as sensitive as the human eye at night. The cameras can see the same bright stars that we can see from Earth, and the same patterns of constellations dot the night sky. Scientists on the rover team have been taking images of some of these bright stars as part of several different projects. One project is designed to try to capture 'shooting stars,' or meteors, in the martian night sky. 'Meteoroids' are small pieces of comets and asteroids that travel through space and eventually run into a planet. On Earth, we can sometimes see meteoroids become brilliant, long 'meteors' streaking across the night sky as they burn up from the friction in our atmosphere. Some of these meteors survive their fiery flight and land on the surface (or in the ocean) where, if found, they are called 'meteorites.' The same thing happens in the martian atmosphere, and Spirit even accidentally discovered a meteor while attempting to obtain images of Earth in the pre-dawn sky back in March, 2004 (see http://marsrovers.jpl.nasa.gov/gallery/press/spirit/20040311a.html, and Selsis et al. (2005) Nature, vol 435, p. 581). On Earth, some meteors come in 'storms' or 'showers' at predictable times of the year, like the famous Perseid meteor shower in August or the Leonid meteor shower in November. These 'storms' happen when Earth passes through the same parts of space where comets sometimes pass. The meteors we see at these times are from leftover debris that was shed off of these comets.

    The same kind of thing is predicted for Mars, as well. Inspired by calculations about Martian meteor storms by meteor scientists from the University of Western Ontario in Canada and the Centre de Recherche en Astrophysique de Lyon in France, and also aided by other meteor research colleagues from NASA's Marshall Space Flight Center, scientists on

  6. Impact Cratering Calculations

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    2001-01-01

    We examined the von Mises and Mohr-Coulomb strength models with and without damage effects and developed a model for dilatancy. The models and results are given in O'Keefe et al. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting with the bolide in the atmosphere produce final crater profiles having the major features found in the field measurements. These features included a central uplift, an inner ring, circular terracing and faulting. This was accomplished with undamaged surface strengths of approximately 0.1 GPa and at depth strengths of approximately 1.0 GPa. We modeled the damage in geologic materials using a phenomenological approach, which coupled the Johnson-Cook damage model with the CTH code geologic strength model. The objective here was not to determine the distribution of fragment sizes, but rather to determine the effect of brecciated and comminuted material on the crater evolution, fault production, ejecta distribution, and final crater morphology.

  7. Fractured Craters on Ganymede

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Two highly fractured craters are visible in this high resolution image of Jupiter's moon, Ganymede. NASA's Galileo spacecraft imaged this region as it passed Ganymede during its second orbit through the Jovian system. North is to the top of the picture and the sun illuminates the surface from the southeast. The two craters in the center of the image lie in the ancient dark terrain of Marius Regio, at 40 degrees latitude and 201 degrees longitude, at the border of a region of bright grooved terrain known as Byblus Sulcus (the eastern portion of which is visible on the left of this image). Pervasive fracturing has occurred in this area that has completely disrupted these craters and destroyed their southern and western walls. Such intense fracturing has occurred over much of Ganymede's surface and has commonly destroyed older features. The image covers an area approximately 26 kilometers (16 miles) by 18 kilometers (11 miles) across at a resolution of 86 meters (287 feet) per picture element. The image was taken on September 6, 1996 by the solid state imaging (CCD) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  8. Crater gradation in Gusev crater and Meridiani Planum, Mars

    USGS Publications Warehouse

    Grant, J. A.; Arvidson, R. E.; Crumpler, L.S.; Golombek, M.P.; Hahn, B.; Haldemann, A.F.C.; Li, R.; Soderblom, L.A.; Squyres, S. W.; Wright, S.P.; Watters, W.A.

    2006-01-01

    The Mars Exploration Rovers investigated numerous craters in Gusev crater and Meridiani Planum during the first ???400 sols of their missions. Craters vary in size and preservation state but are mostly due to secondary impacts at Gusev and primary impacts at Meridiani. Craters at both locations are modified primarily by eolian erosion and infilling and lack evidence for modification by aqueous processes. Effects of gradation on crater form are dependent on size, local lithology, slopes, and availability of mobile sediments. At Gusev, impacts into basaltic rubble create shallow craters and ejecta composed of resistant rocks. Ejecta initially experience eolian stripping, which becomes weathering-limited as lags develop on ejecta surfaces and sediments are trapped within craters. Subsequent eolian gradation depends on the slow production of fines by weathering and impacts and is accompanied by minor mass wasting. At Meridiani the sulfate-rich bedrock is more susceptible to eolian erosion, and exposed crater rims, walls, and ejecta are eroded, while lower interiors and low-relief surfaces are increasingly infilled and buried by mostly basaltic sediments. Eolian processes outpace early mass wasting, often produce meters of erosion, and mantle some surfaces. Some small craters were likely completely eroded/buried. Craters >100 m in diameter on the Hesperian-aged floor of Gusev are generally more pristine than on the Amazonian-aged Meridiani plains. This conclusion contradicts interpretations from orbital views, which do not readily distinguish crater gradation state at Meridiani and reveal apparently subdued crater forms at Gusev that may suggest more gradation than has occurred. Copyright 2006 by the American Geophysical Union.

  9. Young Martian crater Gratteri and its secondary craters

    NASA Astrophysics Data System (ADS)

    Quantin, Cathy; Popova, Olga; Hartmann, William K.; Werner, Stephanie C.

    2016-07-01

    In response to questions that have been raised about formation and effects of secondary craters on crater chronometry techniques, we studied properties of the secondary crater field around the young Martian primary ray crater Gratteri (diameter 7 km). The crater has an estimated age of 1 to 20 Myr, based on counts of small craters on flat interior surface, consistent with a likely age for a young crater its size (Hartmann et al., 2010). The following are among our findings: (1) We identify an unusual class of craters we call "rampart secondaries" which may suggest low-angle impacts. (2) We measure size distributions of secondaries as a function of distance from Gratteri and used these data to reconstruct the mass-velocity distribution of ejecta blasted out of Gratteri. Our data suggest that crater density in rays tends to peak around 120-230 km from Gratteri (roughly 20-30D) and reaches roughly 30-70 times the interray crater density. (3) Comparable total numbers of secondaries form inside rays and outside rays, and about half are concentrated in clusters in 2% of the area around Gratteri, with the others scattered over 98% of the area out to 400 km away from Gratteri. (4) In the old Noachian plains around Gratteri, secondaries have minimal effect on crater chronometry. These results, along with recently reported direct measurements of the rate of formation of 10 m to 20 m primaries on Mars (Daubar et al., 2013), tend to negate suggestions that the numbers and/or clustering of secondaries destroy the effectiveness of crater counting as a chronometric tool.

  10. Scaling multiblast craters: General approach and application to volcanic craters

    NASA Astrophysics Data System (ADS)

    Sonder, I.; Graettinger, A. H.; Valentine, G. A.

    2015-09-01

    Most volcanic explosions leave a crater in the surface around the center of the explosions. Such craters differ from products of single events like meteorite impacts or those produced by military testing because they typically result from multiple, rather than single, explosions. Here we analyze the evolution of experimental craters that were created by several detonations of chemical explosives in layered aggregates. An empirical relationship for the scaled crater radius as a function of scaled explosion depth for single blasts in flat test beds is derived from experimental data, which differs from existing relations and has better applicability for deep blasts. A method to calculate an effective explosion depth for nonflat topography (e.g., for explosions below existing craters) is derived, showing how multiblast crater sizes differ from the single-blast case: Sizes of natural caters (radii and volumes) are not characteristic of the number of explosions, nor therefore of the total acting energy, that formed a crater. Also, the crater size is not simply related to the largest explosion in a sequence but depends upon that explosion and the energy of that single blast and on the cumulative energy of all blasts that formed a crater. The two energies can be combined to form an effective number of explosions that is characteristic for the crater evolution. The multiblast crater size evolution has implications on the estimates of volcanic eruption energies, indicating that it is not correct to estimate explosion energy from crater size using previously published relationships that were derived for single-blast cases.

  11. Results of the IMO Video Meteor Network - June 2015

    NASA Astrophysics Data System (ADS)

    Molau, Sirko; Kac, Javor; Crivello, Stefano; Stomeo, Enrico; Barentsen, Geert; Goncalves, Rui; Saraiva, Carlos; Maciejewski, Maciej; Maslov, Mikhail

    2015-10-01

    Observations of the IMO Video Meteor Network are presented for 2015 June. Activity profile is presented for the Daytime Arietids, based on 28 shower meteors. The meteor rate of the Daytime Arietids between June 5 and 11, normalized for the limiting magnitude and angular velocity, is found to be about one quarter of that of the eta-Aquariids during their maximum.

  12. Determination of meteor flux distribution over the celestial sphere

    NASA Technical Reports Server (NTRS)

    Andreev, V. V.; Belkovich, O. I.; Filimonova, T. K.; Sidorov, V. V.

    1992-01-01

    A new method of determination of meteor flux density distribution over the celestial sphere is discussed. The flux density was derived from observations by radar together with measurements of angles of arrival of radio waves reflected from meteor trails. The role of small meteor showers over the sporadic background is shown.

  13. Results of the IMO Video Meteor Network - October 2014

    NASA Astrophysics Data System (ADS)

    Molau, Sirko; Kac, Javor; Crivello, Stefano; Stomeo, Enrico; Barentsen, Geert; Goncalves, Rui; Saraiva, Carlos; Maciewski, Maciej; Maslov, Mikhail

    2015-02-01

    A record number of 86 cameras of the IMO Video Meteor Network collected over 11 000 hours worth of data in 2014 October, recording almost 52 000 meteors. Yearly flux density profiles are presented for the Orionids, Leonis Minorids, October Camelopardalids, and October Ursae Majorids, covering the period from 2011 to 2014. Population indexes are calculated for all four meteor showers.

  14. Easy way to estimate meteor brightness on TV frames

    NASA Astrophysics Data System (ADS)

    Leonov, V. A.; Bagrov, A. V.

    2016-01-01

    The traditional method of the meteor brightness measurements claims that the meteor brightness is equal to the stellar magnitude of a star that looks like a meteor in the brightest point of its track. This rule was convenient for the comparison of meteor observations by different observers and for the analysis of the brightness distributions of meteors from observed showers. This traditional method suffers from systematic errors, particularly those that arise from using stellar brightness measured in specific spectral wave bands different from the observer's ones, but mainly due to neglecting the influence of the meteor angular velocity on the real meteor brightness. To get a proper estimate of the meteor brightness that is a measure of the ground meteor illumination in the non-systematic units, an observer must take into account that the effective exposition of a meteor image in any resolution element of its track is a few times shorter than the corresponding exposition of a star image in the same frame. We propose a very simple method for improved estimations of meteor brightness by applying a correction to the meteor stellar magnitude obtained within the traditional framework.

  15. The activity of autumn meteor showers in 2006-2008

    NASA Astrophysics Data System (ADS)

    Kartashova, Anna

    2015-03-01

    The purpose of meteor observations in INASAN is the study of meteor showers, as the elements of the migrant substance of the Solar System, and estimation of risk of hazardous collisions of spacecrafts with the particles of streams. Therefore we need to analyze the meteor events with brightness of up to 8 m, which stay in meteoroid streams for a long time and can be a hazardous for the spacecraft. The results of our single station TV observations of autumn meteor showers for the period from 2006 to 2008 are presented. The high-sensitive hybrid camera (the system with coupled of the Image Intensifier) FAVOR with limiting magnitude for meteors about 9m. . .10m in the field of view 20 × 18 was used for observations. In 2006-2008 from October to November more than 3 thousand of meteors were detected, 65% from them have the brightness from 6m to 9m. The identification with autumn meteor showers (Orionids, Taurids, Draconids, Leonids) was carried out. In order to estimate the density of the influx of meteor matter to the Earth for these meteor showers the Index of meteor activity (IMA) was calculated. The IMA distribution for the period 2006 - 2008 is given. The distributions of autumn meteor showers (the meteors with brightness of up to 8 m) by stellar magnitude from 2006 to 2008 are also presented.

  16. 47 CFR 90.250 - Meteor burst communications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject...

  17. 47 CFR 90.250 - Meteor burst communications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject...

  18. 47 CFR 90.250 - Meteor burst communications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject...

  19. 47 CFR 90.250 - Meteor burst communications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject...

  20. 47 CFR 90.250 - Meteor burst communications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject...

  1. What can we learn about impact mechanics from large craters on Venus?

    NASA Technical Reports Server (NTRS)

    Mckinnon, William B.; Alexopoulos, J. S.

    1992-01-01

    More than 50 unequivocal peak-ring craters and multiringed impact basins have been identified on Venus from Earth-based Arecibo, Venera 15/16, and Magellan radar images. These ringed craters are relatively pristine, and so serve as an important new dataset that will further understanding of the structural and rheological properties of the venusian surface and of impact mechanics in general. They are also the most direct analogues for craters formed on the Earth in Phanerozoic time. Finite-element simulations of basin collapse and ring formation were undertaken in collaboration with V. J. Hillgren (University of Arizona). These calculations used an axisymmetric version of the viscoelastic finite element code TECTON, modeled structures on the scale of Klenova or Meitner, and demonstrated two major points. First, viscous flow and ring formation are possible on the timescale of crater collapse for the sizes of multiringed basins seen on Venus and heat flows appropriate to the plant. Second, an elastic lithosphere overlying a Newtonian viscous asthenosphere results mainly in uplift beneath the crater. Inward asthenospheric flow mainly occurs at deeper levels. Lithospheric response is dominantly vertical and flexural. Tensional stress maxima occur and ring formation by normal faulting is predicted in some cases, but these predicted rings occur too far out to explain observed ring spacings on Venus (or on the Moon). Overall, these estimates and models suggest that multiringed basin formation is indeed possible at the scales observed on Venus. Furthermore, due to the strong inverse dependence of solid-state viscosity on stress, the absence of Cordilleran-style ring faulting in craters smaller than Meitner or Klenova makes sense. The apparent increase in viscosity of shock-fluidized rock with crater diameter, greater interior temperatures accessed by larger, deeper craters, and decreased non-Newtonian viscosity associated with larger craters may conspire to make the

  2. Mannann'an Crater

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This composite view taken by NASA's Galileo spacecraft shows the rim and interior of the impact crater, Mannann'an, on Jupiter's moon, Europa. A high resolution image (20 meters per picture element) was combined with lower resolution (80 meters per picture element) color images taken through violet, green and near-infrared filters, to produce this synthetic color composite image. The color data can be used to distinguish between regions of purer (clean) and more contaminated (dirty) ice on the surface, and also offers information on the size of the ice grains. The reddish brown material is thought to be dirty ice, while the bluish areas inside the crater are purer ice. The crater rim is on the left at the boundary between the reddish brown material and the gray material.

    The high resolution data show small features inside the crater, including concentric fractures and a spider-like set of fractures near the right (east) edge of the image. For a more regional perspective, the Mannann'an crater can be seen as a large circular feature with bright rays in the lower left corner of a regional image from Galileo's first orbit of Jupiter in June 1996.

    North is to the top of the picture and the Sun illuminates the scene from the east (right). The image, centered at 3 degrees north latitude and 240 degrees west longitude, covers an area approximately 18 by 4 kilometers (11 by 2.5 miles). The finest details that can be discerned in this picture are about 40 meters (44 yards) across. The images were taken by the spacecraft's onboard solid state imaging camera when Galileo flew by Europa on March 29th, 1998 at a distance of 1,934 kilometers (1,200 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo

  3. Meteor Shower Activity Derived from "Meteor Watching Public-Campaign" in Japan

    NASA Technical Reports Server (NTRS)

    Sato, M.; Watanabe, J.

    2011-01-01

    We tried to analyze activities of meteor showers from accumulated data collected by public campaigns for meteor showers which were performed as outreach programs. The analyzed campaigns are Geminids (in 2007 and 2009), Perseids (in 2008 and 2009), Quadrantids (in 2009) and Orionids (in 2009). Thanks to the huge number of reports, the derived time variations of the activities of meteor showers is very similar to those obtained by skilled visual observers. The values of hourly rates are about one-fifth (Geminids 2007) or about one-fourth (Perseids 2008) compared with the data of skilled observers, mainly due to poor observational sites such as large cities and urban areas, together with the immature skill of participants in the campaign. It was shown to be highly possible to estimate time variation in the meteor shower activity from our campaign.

  4. Oblique View of Eros' Crater

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image, showing an oblique view of Eros' large central crater, was taken at a resolution of about 20 meters (65 feet) per pixel. The brightness or albedo patterns on the walls of this crater are clearly visible, with the brighter materials near the tops of the walls and darker materials on the lower walls. Boulders are seen inside this crater and the smaller nearby craters. The higher density of craters to the left of the large crater implies that this region is older than the smoother area seen associated with the saddle region on the opposite side of the asteroid.

    Built and managed by The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, NEAR was the first spacecraft launched in NASA's Discovery Program of low-cost, small-scale planetary missions. See the NEAR web page at http://near.jhuapl.edu for more details.

  5. Automated Meteor Fluxes with a Wide-Field Meteor Camera Network

    NASA Technical Reports Server (NTRS)

    Blaauw, R. C.; Campbell-Brown, M. D.; Cooke, W.; Weryk, R. J.; Gill, J.; Musci, R.

    2013-01-01

    Within NASA, the Meteoroid Environment Office (MEO) is charged to monitor the meteoroid environment in near ]earth space for the protection of satellites and spacecraft. The MEO has recently established a two ]station system to calculate automated meteor fluxes in the millimeter ]size ]range. The cameras each consist of a 17 mm focal length Schneider lens on a Watec 902H2 Ultimate CCD video camera, producing a 21.7 x 16.3 degree field of view. This configuration has a red ]sensitive limiting meteor magnitude of about +5. The stations are located in the South Eastern USA, 31.8 kilometers apart, and are aimed at a location 90 km above a point 50 km equidistant from each station, which optimizes the common volume. Both single station and double station fluxes are found, each having benefits; more meteors will be detected in a single camera than will be seen in both cameras, producing a better determined flux, but double station detections allow for non ]ambiguous shower associations and permit speed/orbit determinations. Video from the cameras are fed into Linux computers running the ASGARD (All Sky and Guided Automatic Real ]time Detection) software, created by Rob Weryk of the University of Western Ontario Meteor Physics Group. ASGARD performs the meteor detection/photometry, and invokes the MILIG and MORB codes to determine the trajectory, speed, and orbit of the meteor. A subroutine in ASGARD allows for the approximate shower identification in single station meteors. The ASGARD output is used in routines to calculate the flux in units of #/sq km/hour. The flux algorithm employed here differs from others currently in use in that it does not assume a single height for all meteors observed in the common camera volume. In the MEO system, the volume is broken up into a set of height intervals, with the collecting areas determined by the radiant of active shower or sporadic source. The flux per height interval is summed to obtain the total meteor flux. As ASGARD also

  6. Meteor Search by Spirit, Sol 668

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Annotated Meteor Search by Spirit, Sol 668

    The panoramic cameras on NASA's Mars Exploration Rovers are about as sensitive as the human eye at night. The cameras can see the same bright stars that we can see from Earth, and the same patterns of constellations dot the night sky. Scientists on the rover team have been taking images of some of these bright stars as part of several different projects. One project is designed to try to capture 'shooting stars,' or meteors, in the martian night sky. 'Meteoroids' are small pieces of comets and asteroids that travel through space and eventually run into a planet. On Earth, we can sometimes see meteoroids become brilliant, long 'meteors' streaking across the night sky as they burn up from the friction in our atmosphere. Some of these meteors survive their fiery flight and land on the surface (or in the ocean) where, if found, they are called 'meteorites.' The same thing happens in the martian atmosphere, and Spirit even accidentally discovered a meteor while attempting to obtain images of Earth in the pre-dawn sky back in March, 2004 (see http://marsrovers.jpl.nasa.gov/gallery/press/spirit/20040311a.html, and Selsis et al. (2005) Nature, vol 435, p. 581). On Earth, some meteors come in 'storms' or 'showers' at predictable times of the year, like the famous Perseid meteor shower in August or the Leonid meteor shower in November. These 'storms' happen when Earth passes through the same parts of space where comets sometimes pass. The meteors we see at these times are from leftover debris that was shed off of these comets.

    The same kind of thing is predicted for Mars, as well. Inspired by calculations about Martian meteor storms by meteor scientists from the University of Western Ontario in Canada and the Centre de Recherche en Astrophysique de Lyon in France, and also aided by other meteor research colleagues from NASA's Marshall Space Flight Center, scientists on

  7. Bright Meteor Lights Up Atlanta Skies

    NASA Video Gallery

    This video shows a very bright meteor that streaked over the skies of Atlanta, Ga., on the night of Aug. 28, 2011. The view is from an all sky camera in Cartersville, Ga., operated by NASA’s Mars...

  8. Lake Erie Fireball Meteor, Tavistock View

    NASA Video Gallery

    This brief video shows a view of the Aug 8 fireball meteor that entered the atmosphere 54 miles above Lake Erie and moved SSE at 25 km/s, or 55,900 mph. This view is from the all sky camera in Tavi...

  9. Lake Erie Fireball Meteor, Orangeville View

    NASA Video Gallery

    This brief video shows a view of the Aug 8 fireball meteor that entered the atmosphere 54 miles above Lake Erie and moved SSE at 25 km/s, or 55,900 mph. This view is from the all sky camera in Oran...

  10. The radiant distribution of AMOR radar meteors

    NASA Astrophysics Data System (ADS)

    Galligan, D. P.; Baggaley, W. J.

    2005-05-01

    A large data set provided by the highly sensitive Advanced Meteor Orbit Radar (AMOR) facility is used to investigate the structure of the sporadic meteor complex. The helion, antihelion and apex apparent sources are clearly found. Observational bias is then removed to reveal the true source distributions as observed on Earth. A long-standing problem in meteor science has been the difference in observed meteor flux between the helion and antihelion source directions. Consideration of the effects of atmospheric interference and Faraday rotation is found to lead to a closer balance between these. The orbital distributions present within the different regions are also discussed. The apex region is found to have a strong retrograde component and a weaker prograde component that exists at high southerly latitudes and that contains orbits with particularly high inclinations. The retrograde component reduces substantially after inclusion of observational bias corrections. Care should be taken in comparing the results presented here with those from other radar systems: AMOR is sensitive to dust as small in diameter as ~40μm, while the limiting sensitivity of most contemporary systems is an order of magnitude larger.

  11. Lake Erie Fireball Meteor, Mcmaster View

    NASA Video Gallery

    This brief video shows a view of the Aug 8 fireball meteor that entered the atmosphere 54 miles above Lake Erie and moved SSE at 25 km/s, or 55,900 mph. This view is from the all sky camera in Mcma...

  12. Floor of Baldet Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 13 June 2002) The Science This THEMIS visible image shows a remarkable array of dunes on the floor of a large impact crater named Baldet located near 22.8o N. Many of the dunes in this region are isolated features, with large, sand-free 'interdune' surfaces between the individual dunes. These isolated dunes typically occur in regions where there is a limited supply of sand. Any sand that is present moves rapidly across the interdune surfaces, which in many cases are hardened surfaces over which the sand can easily bounce, or 'saltate.' When this loose sand lands on a dune it cannot travel as quickly and is trapped within the dune. In some areas within this sand mass the dunes have grown together to form crescent dunes and dune ridges. The dunes in this image are likely active today, slowly migrating across the crater floor. THEMIS will re-image this and other dunes throughout the Mars Odyssey mission to search for any evidence of dune motion over time. Based on the asymmetrical shape of the dunes, the wind direction over much of the dune field appears to be from the right (west) or upper right (northwest). However, the topography of the crater floor apparently produces complex wind patterns within the dune field, as can be seen by the different orientations of the dunes. For example the dunes in the lower portion of the image appear to be somewhat symmetrical and aligned east-west, suggesting that the wind in this region blows from both the north (top) and south (bottom). The Story A fuzzy 'carpet' of sand dunes covers the floor of a large impact crater, which you can see almost in full in the context image to the right. While the dunes give this area a plush, tufted look, there actually isn't a lot of sand in this area. How can you tell? Large, sand-free spaces exist in between the dunes, and those usually occur when sand particles are sparse. You can see these 'interdune spaces' better if you click on the image for the more detailed view. The sand that

  13. Crater Count Ages of Young Martian Ray Craters: a Successful Test of the Crater Chronometry System

    NASA Astrophysics Data System (ADS)

    Hartmann, William K.; Quantin, C.; Werner, S. C.; Popova, O.

    2008-09-01

    McEwen et al. (2005) developed a useful test of crater-count chronometry systems [1]. They argued that fresh-looking, Zunil-style Martian ray craters are the youngest or near-youngest craters in their size ranges. The "McEwen et al. test" is that crater-count ages from small craters (D 10-25 m), superimposed on these "Zunils," should be comparable to the expected formation intervals of these host Zunil-style primaries themselves, typically 1 to a few My. McEwen et al., however, found few or no small superposed craters in MOC frames, and concluded that crater chronometry systems are in error by factors of 700 to 2000. Since then, Malin et al. discovered that 10-25m craters form at essentially the rate we used in our isochron system [2,3,4]. Thus, 10-25m craters should be usable for dating these "Zunils." We re-evaluate the "McEwen et al. test" with HiRise images, studying three young craters they discussed, and five others. In every case we found small-crater populations, giving approximately the expected ages. We conclude that the alleged large errors are incorrect. The semi-independent crater count systems of Neukum and of Hartmann agree with the Malin cratering rate, are internally consistent, and appear to give valid age information within about a factor 2 to 4. We thank the International Space Science Institute (ISSI), Bern, for hosting our working group. [1] McEwen et al. 2005 Icarus,176, 351-381. [2] Malin, M. et al. 2006 Science 314, 1573-1557. [3] Hartmann, W.K. 2007 Icarus, 189, 274-278. [4] Kreslavsky, M.A. 2007 7th Internatl. Conf. on Mars, Abstract 3325.

  14. Early Fracturing and Impact Residue Emplacement: Can Modeling Help to Predict Their Location in Major Craters?

    NASA Astrophysics Data System (ADS)

    Kearsley, A. T.; Graham, G. A.; McDonnell, J. A. M.; Bland, P. A.; Hough, R. M.; Helps, P. A.

    2003-01-01

    The nature of the extraterrestrial bodies that created some terrestrial impact craters has been determined by collection of disrupted and shocked impactor fragments (e.g. the well-known iron meteorite Canyon Diablo from the vicinity of Barringer Crater, Arizona). In other cases, finding sufficient chemical residue from the bolide for diagnostic analysis has proven more difficult, yet modern trace-element and particularly isotopic analyses have been successfully employed, e.g. The big question is often: "In a limited field investigation, where should we look?"

  15. 'Victoria Crater' from 'Duck Bay'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's Mars rover Opportunity edged 3.7 meters (12 feet) closer to the top of the 'Duck Bay' alcove along the rim of 'Victoria Crater' during the rover's 952nd Martian day, or sol (overnight Sept. 27 to Sept. 28), and gained this vista of the crater. The rover's navigation camera took the seven exposures combined into this mosaic view of the crater's interior. This crater has been the mission's long-term destination for the past 21 Earth months.

    The far side of the crater is about 800 meters (one-half mile) away. The rim of the crater is composed of alternating promontories, rocky points towering approximately 70 meters (230 feet) above the crater floor, and recessed alcoves, such as Duck Bay. The bottom of the crater is covered by sand that has been shaped into ripples by the Martian wind. The rocky cliffs in the foreground have been informally named 'Cape Verde,' on the left, and 'Cabo Frio,' on the right.

    Victoria Crater is about five times wider than 'Endurance Crater,' which Opportunity spent six months examining in 2004, and about 40 times wider than 'Eagle Crater,' where Opportunity first landed. The great lure of Victoria is an expectation that the thick stack of geological layers exposed in the crater walls could reveal the record of past environmental conditions over a much greater span of time than Opportunity has read from rocks examined earlier in the mission.

    This view is presented as a cylindrical projection with geometric seam correction.

  16. Indians of Arizona.

    ERIC Educational Resources Information Center

    Bureau of Indian Affairs (Dept. of Interior), Washington, DC.

    Brief descriptions of the historical and cultural background of the Navajo, Apache, Hopi, Pima, Papago, Yuma, Maricopa, Mohave, Cocopah, Havasupai, Hualapai, Yavapai, and Paiute Indian tribes of Arizona are presented. Further information is given concerning the educational, housing, employment, and economic development taking place on the…

  17. Arizona's Application Service Provider.

    ERIC Educational Resources Information Center

    Jordan, Darla

    2002-01-01

    Describes the U.S.'s first statewide K-12 application service provider (ASP). The ASP, implemented by the Arizona School Facilities Board, provides access to productivity, communications, and education software programs from any Internet-enabled device, whether in the classroom or home. (EV)

  18. Arizona's Florence Project.

    ERIC Educational Resources Information Center

    Dallam, Elizabeth

    2001-01-01

    Describes the Florence Immigrant and Refugee Rights Project (Florence, Arizona) in which lawyers help individuals who are being detained in Florence. Explains that the project offers service to individuals at the detention center, helps children without guardians, and provides information to immigrant communities on their rights when arrested.…

  19. Workforce Brief: Arizona

    ERIC Educational Resources Information Center

    Western Interstate Commission for Higher Education, 2006

    2006-01-01

    In Arizona, one of the country's fastest growing states, the demand for well-educated employees will only increase over the next several years. In the decade leading up to 2013, healthcare occupations will see growth of 50 percent. Almost 1,800 dentists will need to be hired to fill new posts and to cover retirement, for example. Teachers will be…

  20. Arizona's School Asbestos Program.

    ERIC Educational Resources Information Center

    Charette, Mike L.

    1982-01-01

    The state of Arizona Department of Education operates a successful program to remove asbestos-containing building materials from schools, drawing from the expertise of the Department of Health Services, Bureau of Environmental Hygiene and Sanitation, Bureau of Waste Control, and eliciting cooperation of school officials. Includes an asbestos…

  1. Indians of Arizona.

    ERIC Educational Resources Information Center

    Bureau of Indian Affairs (Dept. of Interior), Washington, DC.

    Briefly describing each tribe within Arizona's four major American Indian groups, this handbook presents information relative to the cultural background and socioeconomic development of the following tribes: (1) Athapascan Tribes (Navajos and Apaches); (2) Pueblo Indians (Hopis); (3) Desert Rancheria Tribes (Pimas, Yumas, Papagos, Maricopas,…

  2. Arizona Academic Standards: Kindergarten

    ERIC Educational Resources Information Center

    Arizona Department of Education, 2009

    2009-01-01

    This publication contains Arizona public schools' academic standards for kindergarten. The contents of this document include the following: (1) The Arts Standard 2006--Kindergarten; (2) Comprehensive Health Education/Physical Activity Standards 1997--Readiness (Kindergarten); (3) Foreign and Native Language Standards 1997--Readiness…

  3. Identification of craters on Moon using Crater Density Parameter

    NASA Astrophysics Data System (ADS)

    Vandana, Vandana

    2016-07-01

    Lunar craters are the most noticeable features on the face of the moon. They take up 40.96% of the lunar surface and, their accumulated area is approximately three times as much as the lunar surface area. There are many myths about the moon. Some says moon is made of cheese. The moon and the sun chase each other across the sky etc. but scientifically the moon are closest and are only natural satellite of earth. The orbit plane of the moon is tilted by 5° and orbit period around the earth is 27-3 days. There are two eclipse i.e. lunar eclipse and solar eclipse which always comes in pair. Moon surface has 3 parts i.e. highland, Maria, and crater. For crater diagnostic crater density parameter is one of the means for measuring distance can be easily identity the density between two craters. Crater size frequency distribution (CSFD) is being computed for lunar surface using TMC and MiniSAR image data and hence, also the age for the selected test sites of mars is also determined. The GIS-based program uses the density and orientation of individual craters within LCCs (as vector points) to identify potential source craters through a series of cluster identification and ejection modeling analyses. JMars software is also recommended and operated only the time when connected with server but work can be done in Arc GIS with the help of Arc Objects and Model Builder. The study plays a vital role to determine the lunar surface based on crater (shape, size and density) and exploring affected craters on the basis of height, weight and velocity. Keywords: Moon; Crater; MiniSAR.

  4. The Temporary factor in the Physical theory of meteor

    NASA Astrophysics Data System (ADS)

    Smirnov, V. A.

    The physical processes accompanying development of the meteor phenomenon, proceed in various temporary scales. For example, frequently meeting double final flares at meteors of a flow Perseid's occur in time, smaller 0,05 seconds. However, care of heat at the expense of energy of a driven meteor 1 gramme of substance for his evaporation needs time, on the order greater. Thus is explained significant inertness in movement of meteors and independence of light flares of meteor plasma of mechanical changes of structure of meteoroid's.

  5. Why do complex impact craters have elevated crater rims?

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas; Sturm, Sebastian; Krueger, Tim

    2014-05-01

    Most of the complex impact craters on the Moon and on Mars have elevated crater rims like their simple counterparts. The raised rim of simple craters is the result of (i) the deposition of a coherent proximal ejecta blanket at the edge of the transient cavity (overturned flap) and (ii) a structural uplift of the pre-impact surface near the transient cavity rim during the excavation stage of cratering [1]. The latter occurs either by plastic thickening or localized buckling of target rocks, as well as by the emplacement of interthrust wedges [2] or by the injection of dike material. Ejecta and the structural uplift contribute equally to the total elevation of simple crater rims. The cause of elevated crater rims of large complex craters [3] is less obvious, but still, the rim height scales with the final crater diameter. Depending on crater size, gravity, and target rheology, the final crater rim of complex craters can be situated up to 1.5-2.0 transient crater radii distance from the crater center. Here the thickness of the ejecta blanket is only a fraction of that occurring at the rim of simple craters, e.g. [4], and thus cannot account for a strong elevation. Likewise, plastic thickening including dike injection of the underlying target may not play a significant role at this distance any more. We started to systematically investigate the structural uplift and ejecta thickness along the rim of complex impact craters to understand the cause of their elevation. Our studies of two lunar craters (Bessel, 16 km diameter and Euler, 28 km diameter) [5] and one unnamed complex martian crater (16 km diameter) [6] showed that the structural uplift at the final crater rim makes 56-67% of the total rim elevation while the ejecta thickness contributes 33-44%. Thus with increasing distance from the transient cavity rim, the structural uplift seems to dominate. As dike injection and plastic thickening are unlikely at such a distance from the transient cavity, we propose that

  6. Comparison of TV magnitudes and visual magnitudes of meteors

    NASA Astrophysics Data System (ADS)

    Shigeno, Yoshihiko; Toda, Masayuki

    2008-08-01

    The generally accepted belief is that a meteor, with a large amount of infrared rays, can be captured brighter than it actually is by infrared-sensitive image intensifiers (I.I.) or CCD. We conducted observations of meteors using three methodologies: 1) I.I. with an attached filter that has the same spectral response as the human eye at night vision, 2) I.I. without the filter and 3) visually to determine meteor magnitudes. A total of 31 members of the astronomical club at Meiji University observed 50 Perseid meteors, 19 Geminid meteors as well as 44 sporadic meteors and the results were tabulated. The results helped us understand that on average I.I. can record meteors as brighter than visual observation by the magnitude equivalent of 0.5 for Perseids, 1.0 for Geminids and 0.5 for sporadic meteors. For I.I. with a filter that has the same spectral response the human eye at night vision, it turned out that we could obtain almost the same magnitude with observation by the human eye. We learned that a bright meteor with negative magnitude can be observed by I.I. brighter than the human eye. From several examples, we found I.I. could record a meteor with about -1 visual magnitude as brighter by about three magnitudes. We could probably do so because a bright meteor with negative magnitude may contain more infrared rays and the brightness could be amplified.

  7. Crater Highlands, Tanzania

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The Shuttle Radar Topography Mission (SRTM), flown aboard Space Shuttle Endeavour in February 2000, acquired elevation measurements for nearly all of Earth's landmass between 60oN and 56oS latitudes. For many areas of the world SRTM data provide the first detailed three-dimensional observation of landforms at regional scales. SRTM data were used to generate this view of the Crater Highlands along the East African Rift in Tanzania. Landforms are depicted with colored height and shaded relief, using a vertical exaggeration of 2X and a southwestwardly look direction.

    Lake Eyasi is depicted in blue at the top of the image, and a smaller lake occurs in Ngorongoro Crater. Near the image center, elevations peak at 3648 meters (11,968 feet) at Mount Loolmalasin, which is south of Ela Naibori Crater. Kitumbeine (left) and Gelai (right) are the two broad mountains rising from the rift lowlands. Mount Longido is seen in the lower left, and the Meto Hills are in the right foreground.

    Tectonics, volcanism, landslides, erosion and deposition -- and their interactions -- are all very evident in this view. The East African Rift is a zone of spreading between the African (on the west) and Somali (on the east) crustal plates. Two branches of the rift intersect here in Tanzania, resulting in distinctive and prominent landforms. One branch trends nearly parallel the view and includes Lake Eyasi and the very wide Ngorongoro Crater. The other branch is well defined by the lowlands that trend left-right across the image (below center, in green). Volcanoes are often associated with spreading zones where magma, rising to fill the gaps, reaches the surface and builds cones. Craters form if a volcano explodes or collapses. Later spreading can fracture the volcanoes, which is especially evident on Kitumbeine and Gelai Mountains (left and right, respectively, lower center).

    The Crater Highlands rise far above the adjacent savannas, capture moisture from passing air masses

  8. Physical and dynamical studies of meteors. [radar observation of fragmentation

    NASA Technical Reports Server (NTRS)

    Southworth, R. B.; Sekanina, Z.

    1974-01-01

    Distribution of meteors in streams detected in the synoptic-year meteor sample plus a study of the fragmentation characteristics of the synoptic-year meteor sample are presented. Population coefficients and dispersion coefficients were determined for each meteor stream. These two parameters serve to determine the number of definite members of the stream in the sample used, and to estimate the actual space density of meteor streams. From results of the fragmentation study, it appears that the main body of most radar meteors does not ablate fragments layer by layer, but collapses rather suddenly under dynamic pressures on the order of 0,0002 dynes/cm. Furthermore, it is believed that fragmentation does not cause a serious selection effect in the radar meteor data.

  9. Impactites from Popigai Crater

    NASA Technical Reports Server (NTRS)

    Masaitis, V. L.

    1992-01-01

    Impactites (tagamites and suevites) from Popigai impact crater, whose diameter is about 100 km, are distributed over an area of 5000 sq km. The continuous sheet of suevite overlies the allogenic polymict breccia and partly authogenic breccia, and may also be observed in lenses or irregular bodies. The thickness of suevites in the central part of the crater is more than 100 m. Suevites may be distinguished by content of vitroclasts, lithoclasts, and crystalloclasts, by their dimensions, and by type of cementation, which reflects the facial settings of ejection of crushed and molten material, its sedimentation and lithification. Tagamites (impact melt rocks) are distributed on the surface predominantly in the western sector of the crater. The most characteristic are thick sheetlike bodies overlying the allogenic breccia and occurring in suevites where minor irregular bodies are widespread. The maximal thickness of separate tagamite sheets is up to 600 m. Tagamites, whose matrix is crystallized to a different degree, include fragments of minerals and gneiss blocks, among them shocked and thermally metamorphosed ones. Tagamite sheets have a complex inner structure; separate horizontal zones distinguish in crystallinity and fragment saturation. Differentiation in the impact melt in situ was not observed. The average chemical compositions of tagamites and suevites are similar, and correspond to the composition of biotite-garnet gneisses of the basement. According to the content of supplied Ir, Ni, and other siderophiles, impact melt was contaminated by 5 percent cosmic matter of collided body, probably ordinary chondrite. The total volume of remaining products of chilled impact melt is about 1750 cu km. Half this amount is represented by tagamite bodies. Though impact melt was in general well homogenized, the trend analysis showed that the concentric zonation is distribution of SiO2, MgO, and Na2O and the bandlike distribution of FeO and Al2O3 content testifies to a

  10. Becquerel Crater Deposit

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 28 May 2002) The finely layered deposit in Becquerel crater, seen in the center of this THEMIS image, is slowly being eroded away by the action of windblown sand. Dark sand from a source north of the bright deposit is collecting along its northern edge, forming impressive barchan style dunes. These vaguely boomerang-shaped dunes form with their two points extending in the downwind direction, demonstrating that the winds capable of moving sand grains come from the north. Grains that leave the dunes climb the eroding stair-stepped layers, collecting along the cliff faces before reaching the crest of the deposit. Once there, the sand grains are unimpeded and continue down the south side of the deposit without any significant accumulation until they fall off the steep cliffs of the southern margin. The boat-hull shaped mounds and ridges of bright material called yardangs form in response to the scouring action of the migrating sand. To the west, the deposit has thinned enough that the barchan dunes extend well into the deeply eroded north-south trending canyons. Sand that reaches the south side collects and reforms barchan dunes with the same orientation as those on the north side of the deposit. Note the abrupt transition between the bright material and the dark crater floor on the southern margin. Steep cliffs are present with no indication of rubble from the obvious erosion that produced them. The lack of debris at the base of the cliffs is evidence that the bright material is readily broken up into particles that can be transported away by the wind. The geological processes that are destroying the Becquerel crater deposit appear active today. But it is also possible that they are dormant, awaiting a particular set of climatic conditions that produces the right winds and perhaps even temperatures to allow the erosion to continue.

  11. Gullies in Crater Wall

    NASA Technical Reports Server (NTRS)

    2004-01-01

    6 April 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows gullies in the wall of a large impact crater in Newton Basin near 41.9oS, 158.1oW. Such gullies may have formed by downslope movement of wet debris--i.e., water. Unfortunately, because the responsible fluid (if there was one) is no longer present today, only the geomorphology of the channels and debris aprons can be used to deduce that water might have been involved. The image covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left.

  12. Crater Floor Bands

    NASA Technical Reports Server (NTRS)

    2004-01-01

    12 February 2004 The somewhat concentric bands in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image may be an expression of eroded layered material. The crater in which these occur is found at middle southern latitude near the west rim of the giant Hellas impact basin. The picture is located near 36.6oS, 321.2oW. Sunlight illuminates the scene from the upper left; the image covers an area 3 km (1.9 mi) wide.

  13. The Virtual Arizona Experience

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Davis, R.; Conway, F. M.; Bellasai, R.

    2012-12-01

    To commemorate the once-in-a-lifetime event of Arizona's hundredth birthday, the Centennial Commission and the Governor of Arizona envisioned a museum and companion website that would capture the state's history, celebrate its people, and embrace its future. Working with world-renowned museum designers, the state began to seek ideas from across Arizona to create plans for a journey of discovery through science and the humanities. The museum would introduce visitors to some of the people who nurtured the state through its early years and others who are innovating its tomorrows. Showcases would include the resources and experiences that shaped the state's history and are transforming its present day, highlighting the ingenuity that tamed the wild frontier and is envisioning Arizona's next frontiers through science and technology. The Arizona Experience (www.arizonaexperience.org) was initially intended to serve as the web presence for the physical museum, but as delays occurred with the physical museum, the site has quickly developed an identify of its own as an interactive, multimedia experience, reaching a wider audience with functions that would be difficult or expensive to produce in a museum. As leaders in scientific and technological innovation in the state, the Arizona Geological Survey was tasked with designing and creating the Arizona Experience site. The general themes remain the same; however, the site has added content and applications that are better suited to the online environment in order to create a rich, dynamic supplement to a physical museum experience. The website offers the features and displays of the future museum with the interactive nature and learning environment of the web. This provides an encyclopedic overview of the State of Arizona by subject matter experts in a manner that is free and open to the public and erases socio-economic, political, and physical boundaries. Over the Centennial Year of 2012 the site will release a new theme and

  14. Dune-filled Crater in Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 4 May 2004 This daytime visible color image was collected on October 16, 2003 during the Southern Summer season of a crater within Molesworth Crater.

    This daytime visible color image was collected on September 4, 2002 during the Northern Spring season in Vastitas Borealis. The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -27.4, Longitude 149.6 East (210.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in

  15. Interferometric Meteor Head Echo Observations using the Southern Argentina Agile Meteor Radar (SAAMER)

    NASA Technical Reports Server (NTRS)

    Janches, D.; Hocking, W.; Pifko, S.; Hormaechea, J. L.; Fritts, D. C.; Brunini, C; Michell, R.; Samara, M.

    2013-01-01

    A radar meteor echo is the radar scattering signature from the free-electrons in a plasma trail generated by entry of extraterrestrial particles into the atmosphere. Three categories of scattering mechanisms exist: specular, nonspecular trails, and head-echoes. Generally, there are two types of radars utilized to detect meteors. Traditional VHF meteor radars (often called all-sky1radars) primarily detect the specular reflection of meteor trails traveling perpendicular to the line of sight of the scattering trail, while High Power and Large Aperture (HPLA) radars efficiently detect meteor head-echoes and, in some cases, non-specular trails. The fact that head-echo measurements can be performed only with HPLA radars limits these studies in several ways. HPLA radars are very sensitive instruments constraining the studies to the lower masses, and these observations cannot be performed continuously because they take place at national observatories with limited allocated observing time. These drawbacks can be addressed by developing head echo observing techniques with modified all-sky meteor radars. In addition, the fact that the simultaneous detection of all different scattering mechanisms can be made with the same instrument, rather than requiring assorted different classes of radars, can help clarify observed differences between the different methodologies. In this study, we demonstrate that such concurrent observations are now possible, enabled by the enhanced design of the Southern Argentina Agile Meteor Radar (SAAMER) deployed at the Estacion Astronomica Rio Grande (EARG) in Tierra del Fuego, Argentina. The results presented here are derived from observations performed over a period of 12 days in August 2011, and include meteoroid dynamical parameter distributions, radiants and estimated masses. Overall, the SAAMER's head echo detections appear to be produced by larger particles than those which have been studied thus far using this technique.

  16. CAMS: Cameras for Allsky Meteor Surveillance to establish minor meteor showers

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Gural, P. S.; Dynneson, L.; Grigsby, B. J.; Newman, K. E.; Borden, M.; Koop, M.; Holman, D.

    2011-11-01

    First results are presented from a newly developed meteoroid orbit survey, called CAMS - Cameras for Allsky Meteor Surveillance, which combines meteor detection algorithms for low-light video observations with traditional video surveillance tools. Sixty video cameras at three stations monitor the sky above 31° elevation. Goal of CAMS is to verify meteor showers in search of their parent comets among newly discovered near-Earth objects. This paper outlines the concept of operations, the hardware, and software methods used during operation and in the data reduction pipeline, and accompanies the data release of the first batch of meteoroid orbits. During the month of November 2010, 2169 precisely reduced meteoroid trajectories from 17 nights have an error in the apparent radiant of the trajectory <2° and error in speed <10%. Median values of the error are 0.31° and 0.53 km/s, respectively, sufficient to resolve the intrinsic dispersion of annual meteor showers and resolve minor showers from the sporadic background. The limiting visual magnitude of the cameras is +5.4, recording meteors of +4 magnitude and brighter, bright enough to stand out from the mostly fainter sporadic meteors detected as under dense radar echoes. CAMS readily detected all established showers (6) active during the clear nights in November. Of the showers that needed confirmation, we confirm the theta Aurigids (THA, IAU#390), the chi Taurids (CTA, IAU#388), and the omicron Eridanids (OER, IAU#338). We conclude that the iota November Aurigids (IAR, IAU#248) are in fact the combined activity of the theta Aurigids and chi Taurids, and this shower should be dismissed from the list. Finally, there is also a clustering consistent with the zeta Cancrids (ZCN, IAU#243), but we cannot exclude that this is lower perihelion dust belonging to the Orionid shower. Data are submitted to the IAU Meteor Data Center on a semi-regular basis, and can be accessed also at http://cams.seti.org.

  17. Aniakchak Crater, Alaska Peninsula

    USGS Publications Warehouse

    Smith, Walter R.

    1925-01-01

    The discovery of a gigantic crater northwest of Aniakchak Bay (see fig. 11) closes what had been thought to be a wide gap in the extensive series of volcanoes occurring at irregular intervals for nearly 600 miles along the axial line of the Alaska Peninsula and the Aleutian Islands. In this belt there are more active and recently active volcanoes than in all the rest of North America. Exclusive of those on the west side of Cook Inlet, which, however, belong to the same group, this belt contains at least 42 active or well-preserved volcanoes and about half as many mountains suspected or reported to be volcanoes. The locations of some of these mountains and the hot springs on the Alaska Peninsula and the Aleutian Islands are shown on a map prepared by G. A. Waring. Attention has been called to these volcanoes for nearly two centuries, but a record of their activity since the discovery of Alaska is far from being complete, and an adequate description of them as a group has never been written. Owing to their recent activity or unusual scenic beauty, some of the best known of the group are Mounts Katmai, Bogoslof, and Shishaldin, but there are many other beautiful and interesting cones and craters.

  18. Eastern Floor of Holden Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 15 April 2002) The Science Today's THEMIS image covers territory on the eastern floor of Holden Crater, which is located in region of the southern hemisphere called Noachis Terra. Holden Crater is 154 km in diameter and named after American Astronomer Edward Holden (1846-1914). This image shows a mottled surface with channels, hills, ridges and impact craters. The largest crater seen in this image is 5 km in diameter. This crater has gullies and what appears to be horizontal layers in its walls. The Story With its beautiful symmetry and gullies radially streaming down to the floor, the dominant crater in this image is an impressive focal point. Yet, it is really just a small crater within a much larger one named Holden Crater. Take a look at the context image to the right to see just how much bigger Holden Crater is. Then come back to the image strip that shows the mottled surface of Holden Crater's eastern floor in greater detail, and count how many hills, ridges, channels, and small impact craters can be seen. No perfectly smooth terrain abounds there, that's for sure. The textured terrain of Holden Crater has been particularly intriguing ever since the Mars Orbital Camera on the Mars Global Surveyor spacecraft found evidence of sedimentary rock layers there that might have formed in lakes or shallow seas in Mars' ancient past. This finding suggests that Mars may have been more like Earth long ago, with water on its surface. Holden Crater might even have held a lake long ago. No one knows for sure, but it's an exciting possibility. Why? If water was once on the surface of Mars long enough to form sedimentary materials, maybe it was there long enough for microbial life to have developed too. (Life as we know it just isn't possible without the long-term presence of liquid water.) The question of life on the red planet is certainly tantalizing, but scientists will need to engage in a huge amount of further investigation to begin to know the answer. That

  19. Meteor detection on ST (MST) radars

    NASA Technical Reports Server (NTRS)

    Avery, S. K.

    1987-01-01

    The ability to detect radar echoes from backscatter due to turbulent irregularities of the radio refractive index in the clear atmosphere has lead to an increasing number of established mesosphere - stratosphere - troposphere (MST or ST) radars. Humidity and temperature variations are responsible for the echo in the troposphere and stratosphere and turbulence acting on electron density gradients provides the echo in the mesosphere. The MST radar and its smaller version, the ST radar, are pulsed Doppler radars operating in the VHF - UHF frequency range. These echoes can be used to determine upper atmosphere winds at little extra cost to the ST radar configuration. In addition, the meteor echoes can supplement mesospheric data from an MST radar. The detection techniques required on the ST radar for delineating meteor echo returns are described.

  20. The cometary and asteroidal origins of meteors

    NASA Technical Reports Server (NTRS)

    Kresak, L.

    1973-01-01

    A quantitative examination of the gravitational and nongravitational changes of orbits shows that for larger interplanetary bodies the perturbations by Jupiter strongly predominate over all other effects, which include perturbations by other planets, splitting of comet nuclei and jet effects of cometary ejections. The structure of meteor streams, indicates that the mutual compensation of the changes in individual elements entering the Jacobian integral, which is characteristic for the comets, does not work among the meteoroids. It appears that additional forces of a different kind must exert appreciable influence on the motion of interplanetary particles of meteoroid size. Nevertheless, the distribution of the Jacobian constant in various samples of meteor orbits furnishes some information on the type of their parent bodies and on the relative contribution of individual sources.

  1. The Swedish Allsky Meteor Network: first results

    NASA Astrophysics Data System (ADS)

    Stempels, E.; Kero, E.

    2016-01-01

    The Swedish Allsky Meteor Network started operations with two cameras in early 2014 and has since grown steadily. Currently, seven stations are active and several more will come online in the near future. The network to a large degree relies on low-cost stations run by private individuals or small societies of amateur astronomers. Originally based on the Danish meteor network Stjerneskud, the central node of Uppsala University provides the network with the necessary infrastructure, such as a continually updated software distribution and automatic processing of data from all stations. Although covering a very large land mass with relatively low resources is challenging, there have up to now been several well-observed events, often in collaboration with observations from neighboring countries. We give a short overview of the network's current status, chosen technical solutions, and some results.

  2. Data processing of records of meteoric echoes

    NASA Astrophysics Data System (ADS)

    Dolinský, P.

    2016-01-01

    The data obtained in the period from 4 November 2014 to 31 July 2014 by our receiving and recording system was statistically processed. The system records meteoric echoes from the TV transmitter Lviv 49.739583 MHz (N49.8480° E24.0369°, Ukraine) using a 4-element Yagi antenna with horizontal polarization (elevation of 0° and azimuth of 60°), receiver ICOM R-75 in the CW mode, and a computer with a recording using HROFFT v1.0.0f. The main goal was to identify weak showers in these data. Mayor or strong showers are visible without processing (referred at IMC2015, Mistelbach). To find or to identify weaker showers is more difficult. Not all echoes are meteoric echoes, but also ionospheric echoes or lightning disturbances are present.

  3. Degradation of Victoria crater, Mars

    USGS Publications Warehouse

    Grant, J. A.; Wilson, S.A.; Cohen, B. A.; Golombek, M.P.; Geissler, P.E.; Sullivan, R.J.; Kirk, R.L.; Parker, T.J.

    2008-01-01

    The ???750 m diameter and ???75 m deep Victoria crater in Meridiani Planum, Mars, is a degraded primary impact structure retaining a ???5 m raised rim consisting of 1-2 m of uplifted rocks overlain by ???3 m of ejecta at the rim crest. The rim is 120-220 m wide and is surrounded by a dark annulus reaching an average of 590 m beyond the raised rim. Comparison between observed morphology and that expected for pristine craters 500-750 m across indicates that the original, pristine crater was close to 600 m in diameter. Hence, the crater has been erosionally widened by ???150 m and infilled by ???50 m of sediments. Eolian processes are responsible for most crater modification, but lesser mass wasting or gully activity contributions cannot be ruled out. Erosion by prevailing winds is most significant along the exposed rim and upper walls and accounts for ???50 m widening across a WNW-ESE diameter. The volume of material eroded from the crater walls and rim is ???20% less than the volume of sediments partially filling the crater, indicating eolian infilling from sources outside the crater over time. The annulus formed when ???1 m deflation of the ejecta created a lag of more resistant hematite spherules that trapped <10-20 cm of darker, regional basaltic sands. Greater relief along the rim enabled meters of erosion. Comparison between Victoria and regional craters leads to definition of a crater degradation sequence dominated by eolian erosion and infilling over time. Copyright 2008 by the American Geophysical Union.

  4. RATTLESNAKE ROADLESS AREA, ARIZONA.

    USGS Publications Warehouse

    Karlstrom, Thor N.V.; McColly, Robert

    1984-01-01

    There is little promise for the occurrence of mineral or energy resources in the Rattlesnake Roadless Area, Arizona, as judged from field studies. Significant concentrations of minerals within the roadless area are not indicated by geologic mapping, geochemical sampling, or aeromagnetic studies. Basalt, volcanic cinders, sand and gravel, and sandstone that may be suitable for construction materials occur in the area, but are more readily accessible outside the roadless area boundary.

  5. The World's Most Famous Meteor Shower Picture

    NASA Astrophysics Data System (ADS)

    Hughes, David W.

    1995-01-01

    The world's most famous meteor shower picture (Fig. 1) is of the storm that took place in the early morning of Wednesday, 13 November 1833. The picture was, however, produce 54 years after the event, being first published in April 1888. It had a biblical origin and was only taken over by the astronomers in the mid 1920s. The artist was the Swiss painter Karl Jauslin and the engraver was Adolf Völlmy.

  6. Elementary process and meteor train spectra

    NASA Technical Reports Server (NTRS)

    Ovezgeldyev, O. G.

    1987-01-01

    Mechanisms of excitation of individual spectral line radiation were studied experimentally and theoretically and it was demonstrated that such processes as oxidation, resonant charge exchange, dissociative recombination and others play an important part in the chemistry of excited particles. The foundation was laid toward simulating the elementary processes of meteor physics. Having a number of advantages and possibilities, this method is sure to find a wide use in the future.

  7. A global atmospheric model of meteoric iron

    NASA Astrophysics Data System (ADS)

    Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Höffner, Josef; Yi, Fan; Plane, John M. C.

    2013-08-01

    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.

  8. SPA Meteor Section results: September - October, 1995.

    NASA Astrophysics Data System (ADS)

    McBeath, A.

    1996-04-01

    A compilation of visual, photographic and radio results submitted to the SPA Meteor Section from September and October is given. Although September was not an especially good month for observers, October brought a quite well-viewed Orionid return, enabling some magnitude and train details to be derived for the shower, and another brilliant fireball occurred at 2h28mUT on October 31.

  9. Structural peculiarities of the Quadrantid meteor shower

    NASA Technical Reports Server (NTRS)

    Isamutdinov, Sh. O.; Chebotarev, R. P.

    1987-01-01

    Systematic radio observations to investigate the Quadrantid meteor shower structure are regularly carried out. They have now been conducted annually in the period of its maximum activity, January 1 to 6, since 1966. The latest results of these investigations are presented, on the basis of 1981 to 1984 data obtained using new equipment with a limiting sensitivity of +7.7 sup m which make it possible to draw some conclusions on the Quadrantids shower structure both for transverse and lengthwise directions.

  10. A Global Atmospheric Model of Meteoric Iron

    NASA Technical Reports Server (NTRS)

    Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Hoffner, Josef; Yi, Fan; Plane, John M. C.

    2013-01-01

    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+ concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.

  11. Radar and Meteors: Controversy over the Origin of Meteors in Postwar Astronomy

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T., III

    2006-12-01

    After World War II radio physicists and engineers discovered that radar reflections were readily obtained off the ionized trails left by meteors. The group led by Bernard Lovell at the Jodrell Bank Experimental Station of Manchester University, England, led the effort to design radar transmitters, receivers, and antenna systems that could better understand these reflections. First, an entire suite of daytime meteor showers was found to accompany the familiar nighttime showers. Next, associating with meteor astronomers such as Fred Whipple, Ernst Öpik, and Cuno Hoffmeister, Lovell found that his radar data could contribute to a longstanding controversy in the field: was there any portion of the meteors whose speeds indicated that they were on hyperbolic orbits and therefore of interstellar origin (i.e., >72 km/s), or did all meteoroids originate within the solar system? By 1953 the Jodrell Bank radar astronomers’ huge samples of echoes and measured speeds of meteors indicated that there were in fact no interstellar interlopers. This settled the question for most workers in the field, although Opik and Hoffmeister did not give in.

  12. Long-Period Meteor Streams and the Dispersion of Semimajor Axes of Meteor Orbits

    NASA Astrophysics Data System (ADS)

    Hajduková, Mária, Jr.

    2013-06-01

    The present work is based on an analysis of a large statistical sample of meteor orbits collected in the Japanese shower catalogue (SonotaCo 2009, WGN, 37, 55) of 114280 video observed meteors. The shower meteor data were selected and analysed with the aim of determining the orbits' distribution in major meteor streams with heliocentric velocities close to the parabolic limit, in which the errors in the velocity determination correspond to large differences in the reciprocal semimajor axis, 1/a. The contribution of the real dispersion of the semimajor axes, a, can be deduced from the high proportion of hyperbolic orbits in the analysed streams, where an excess over the parabolic value can be regarded as being entirely due to measurement errors. The orbital dispersion described by the median absolute deviation in terms of 1/a was found to be ±0.083 AU-1 for the Leonids and ±0.080 AU-1 for the Orionids, and slightly smaller for the Perseid and Lyrid meteor streams (±0.055 and ±0.047 AU-1). The proximity of the parabolic limit caused a strong influence of observational effects; however, a significant contribution of the real dispersion is involved.

  13. Floor-fractured crater models for igneous crater modification on Venus

    NASA Technical Reports Server (NTRS)

    Wichman, R. W.; Schultz, P. H.

    1992-01-01

    Although crater modification on the Earth, Moon, and Mars results from surface erosion and crater infilling, a significant number of craters on the Moon also exhibit distinctive patterns of crater-centered fracturing and volcanism that can be modeled as the result of igneous crater modification. Here, we consider the possible effects of Venus surface conditions on this model, describe two examples of such crater modification, and then briefly discuss the constraints these craters place on conditions at depth.

  14. Cratering experiments into curved surfaces and their implication for craters on small satellites

    NASA Astrophysics Data System (ADS)

    Fujiwara, Akira; Kadono, Toshihiko; Nakamura, Akiko

    1993-10-01

    The effect of curvature on the shape of large craters on the surfaces of small satellites is here investigated in view of experimental impact craters on cylindrical, spherical, and plane surface mortar targets. Generally, increasing target surface curvature flattens crater cross-section and increases crater diameter and ejecta mass. Crater shape is noted to change rapidly as crater radius becomes comparable to the target surface curvature radius. A large crater on Phobos is compared with these cross-sectional shapes.

  15. An FDTD model of scattering from meteor head plasma

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Close, S.

    2015-07-01

    We have developed a three-dimensional finite difference time domain (FDTD) model of scattering of radar waves from meteor head plasma. The model treats the meteor head plasma as a cold, collisional, and magnetized plasma, and solves Maxwell's equations and the Langevin equation simultaneously and self-consistently in and around the plasma. We use this model to investigate scattering of radar waves from a meteor head (the "head echo") under a range of plasma densities, meteor scale sizes, and wave frequencies. In this way we relate the radar cross section (RCS) to these variable parameters. We find that computed RCS disagrees with previous analytical theory at certain meteor sizes and densities, in some cases by over an order of magnitude. We find that the calculated meteor head RCS is monotonically related to the "overdense area" of the meteor, defined as the cross-section area of the part of the meteor where the plasma frequency exceeds the wave frequency. These results provides a physical measure of the meteor size and density that can be inferred from measured RCS values from ground-based radars. Meteoroid mass can then be inferred from the meteor plasma distribution using established methods.

  16. Secondary craters on Europa and implications for cratered surfaces.

    PubMed

    Bierhaus, Edward B; Chapman, Clark R; Merline, William J

    2005-10-20

    For several decades, most planetary researchers have regarded the impact crater populations on solid-surfaced planets and smaller bodies as predominantly reflecting the direct ('primary') impacts of asteroids and comets. Estimates of the relative and absolute ages of geological units on these objects have been based on this assumption. Here we present an analysis of the comparatively sparse crater population on Jupiter's icy moon Europa and suggest that this assumption is incorrect for small craters. We find that 'secondaries' (craters formed by material ejected from large primary impact craters) comprise about 95 per cent of the small craters (diameters less than 1 km) on Europa. We therefore conclude that large primary impacts into a solid surface (for example, ice or rock) produce far more secondaries than previously believed, implying that the small crater populations on the Moon, Mars and other large bodies must be dominated by secondaries. Moreover, our results indicate that there have been few small comets (less than 100 m diameter) passing through the jovian system in recent times, consistent with dynamical simulations.

  17. From Crater to Graph: Manual and Automated Crater Counting Techniques

    NASA Astrophysics Data System (ADS)

    Plesko, C. S.; Werner, S. C.; Brumby, S. P.; Foing, B. H.; Asphaug, E.; Neukum, G.; Team, H.; Team, I.

    2005-12-01

    Impact craters are some of the most abundant, and most interesting features on Mars. They hold a wealth of information about Martian geology, providing clues to the relative age, local composition and erosional history of the surface. A great deal of effort has been expended to count and understand the nature of planetary crater populations (Hartman and Neukum, 2001). Highly trained experts have developed personal methods for conducting manual crater surveys. In addition, several efforts are underway to automate this process in order to keep up with the rapid increase in planetary surface image data. These efforts make use of a variety of methods, including the direct application of traditional image processing algorithms such as the Hough transform, and recent developments in genetic programming, an artificial intelligence-based technique, in which manual crater surveys are used as examples to `grow' or `evolve' crater counting algorithms. (Plesko, C. S. et al., LPSC 2005, Kim, J. R. et al., LPSC 2001, Michael, G. G. P&SS 2003, Earl, J. et al, LPSC 2005) In this study we examine automated crater counting techniques, and compare them with traditional manual techniques on MOC imagery, and demonstrate capabilities for the analysis of multi-spectral and HRSC Digital Terrain Model data as well. Techniques are compared and discussed to define and develop a robust automated crater detection strategy.

  18. Secondary craters on Europa and implications for cratered surfaces.

    PubMed

    Bierhaus, Edward B; Chapman, Clark R; Merline, William J

    2005-10-20

    For several decades, most planetary researchers have regarded the impact crater populations on solid-surfaced planets and smaller bodies as predominantly reflecting the direct ('primary') impacts of asteroids and comets. Estimates of the relative and absolute ages of geological units on these objects have been based on this assumption. Here we present an analysis of the comparatively sparse crater population on Jupiter's icy moon Europa and suggest that this assumption is incorrect for small craters. We find that 'secondaries' (craters formed by material ejected from large primary impact craters) comprise about 95 per cent of the small craters (diameters less than 1 km) on Europa. We therefore conclude that large primary impacts into a solid surface (for example, ice or rock) produce far more secondaries than previously believed, implying that the small crater populations on the Moon, Mars and other large bodies must be dominated by secondaries. Moreover, our results indicate that there have been few small comets (less than 100 m diameter) passing through the jovian system in recent times, consistent with dynamical simulations. PMID:16237437

  19. Photometric stellar catalogue for TV meteor astronomy

    NASA Astrophysics Data System (ADS)

    Leonov, V. A.; Bagrov, A. V.

    2016-01-01

    Photometry for ordinary astrophysics was carefully developed for its own purposes. As stars radiation is very similar to the blackbody radiation, astronomers measure star illumination in wide or narrow calibrated spectral bands. This is enough for star photometry with precise accuracy and for measuring their light flux in these bands in energetic units. Meteors are moving objects and do not allow collection of more photons then they emit. So meteor observers use the whole spectral band that can be covered by sensitivity of their light sensors. This is why measurements of stellar magnitudes of background stars by these sensors are not the same as catalogued star brightness in standard photometric spectral bands. Here we present a special photometric catalogue of 93 bright non-variable stars of the northern hemisphere, that can be used by meteor observers of standard background whose brightness are calculated in energetic units as well as in non-systematic stellar magnitudes in spectral wavelength of the WATEC 902 sensitivity.

  20. Comet outbursts and the meteor showers

    NASA Astrophysics Data System (ADS)

    Guliyev, A. S.; Kokhirova, G. I.; Poladova, U. D.

    2014-07-01

    The features of 116 comets that have shown an outbursts in their brightness, are considered in the paper. The hypothesis on that the outburst in activity of comets are caused by their passing through meteoroid streams is studied. For this purpose the orbital elements of such comets relative to the planes of motion of 68 meteor showers from Cook's catalogue are analyzed. It was found that four of the nearest and distant nodes of comet orbits relative to the planes of motion of nine meteor showers exceeds the average statistical background with confidence probability from 0.90 to 0.95, and more than 0.95, respectively. The October Draconids, Aurigids, kappa-Serpentids, delta-Draconids, sigma-Hydrids}, Coma Berenicids, Leonids, Leo Minorids, and Perseids showers are the most effective. The results of calculation show that often, the comets outbursts may be caused by collisions of comets with meteoroids under the passing through the meteoroid streams that are producing listed meteor showers as well as solar activity.

  1. JEM-EUSO: Meteor and nuclearite observations

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    Meteor and fireball observations are key to the derivation of both the inventory and physical characterization of small solar system bodies orbiting in the vicinity of the Earth. For several decades, observation of these phenomena has only been possible via ground-based instruments. The proposed JEM-EUSO mission has the potential to become the first operational space-based platform to share this capability. In comparison to the observation of extremely energetic cosmic ray events, which is the primary objective of JEM-EUSO, meteor phenomena are very slow, since their typical speeds are of the order of a few tens of km/sec (whereas cosmic rays travel at light speed). The observing strategy developed to detect meteors may also be applied to the detection of nuclearites, which have higher velocities, a wider range of possible trajectories, but move well below the speed of light and can therefore be considered as slow events for JEM-EUSO. The possible detection of nuclearites greatly enhances the scientific rationale behind the JEM-EUSO mission.

  2. Radar observations of the Volantids meteor shower

    NASA Astrophysics Data System (ADS)

    Younger, J.; Reid, I.; Murphy, D.

    2016-01-01

    A new meteor shower occurring for the first time on 31 December 2015 in the constellation Volans was identified by the CAMS meteor video network in New Zealand. Data from two VHF meteor radars located in Australia and Antarctica have been analyzed using the great circle method to search for Volantids activity. The new shower was found to be active for at least three days over the period 31 December 2015 - 2 January 2016, peaking at an apparent radiant of R.A. = 119.3 ± 3.7, dec. = -74.5 ± 1.9 on January 1st. Measurements of meteoroid velocity were made using the Fresnel transform technique, yielding a geocentric shower velocity of 28.1 ± 1.8 km s-1. The orbital parameters for the parent stream are estimated to be a = 2.11 AU, e = 0.568, i = 47.2°, with a perihelion distance of q = 0.970 AU.

  3. Geology of five small Australian impact craters

    USGS Publications Warehouse

    Shoemaker, E.M.; Macdonald, F.A.; Shoemaker, C.S.

    2005-01-01

    Here we present detailed geological maps and cross-sections of Liverpool, Wolfe Creek, Boxhole, Veevers and Dalgaranga craters. Liverpool crater and Wolfe Creek Meteorite Crater are classic bowlshaped, Barringer-type craters, Liverpool was likely formed during the Neoproterozoic and was filled and covered with sediments soon thereafter. In the Cenozoic, this cover was exhumed exposing the crater's brecciated wall rocks. Wolfe Creek Meteorite Crater displays many striking features, including well-bedded ejecta units, crater-floor faults and sinkholes, a ringed aeromagnetic anomaly, rim-skirting dunes, and numerous iron-rich shale balls. Boxhole Meteorite Crater, Veevers Meteorite Crater and Dalgaranga crater are smaller, Odessa-type craters without fully developed, steep, overturned rims. Boxhole and Dalgaranga craters are developed in highly follated Precambrian basement rocks with a veneer of Holocene colluvium. The pre-existing structure at these two sites complicates structural analyses of the craters, and may have influenced target deformation during impact. Veevers Meteorite Crater is formed in Cenozoic laterites, and is one of the best-preserved impact craters on Earth. The craters discussed herein were formed in different target materials, ranging from crystalline rocks to loosely consolidated sediments, containing evidence that the impactors struck at an array of angles and velocities. This facilitates a comparative study of the influence of these factors on the structural and topographic form of small impact craters. ?? Geological Society of Australia.

  4. Analysis of Historical Meteor and Meteor shower Records: Korea, China and Japan

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Jin; Park, Changbom; Park, Myeong-Gu

    2015-03-01

    We have compiled and analyzed historical meter and meteor shower records in Korean, Chinese, and Japanese chronicles. We have confirmed the peaks of Perseids and an excess due to the mixture of Orionids, north-Taurids, or Leonids through the Monte-Carlo test from the Korean records. The peaks persist for almost one thousand years. We have also analyzed seasonal variation of sporadic meteors from Korean records. Major features in Chinese meteor shower records are quite consistent with those of Korean records, particularly for the last millennium. Japanese records also show Perseids feature and Orionids/north-Taurids/Leonids feature, although they are less prominent compared to those of Korean or Chinese records.

  5. Cratered Isidis Plain

    NASA Technical Reports Server (NTRS)

    2005-01-01

    25 April 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows terrain in eastern Isidis Planitia that is very heavily peppered with impact craters of diameters of a few hundred meters (a few hundred yards) or less. One aim of the MGS MOC Picture of the Day series is to showcase the rich variety of martian surfaces; this one should be compared with other Pictures of the Day in recent weeks, as most of these are shown covering an area of about the same width, approximately 3 kilometers (1.9 miles).

    Location near: 17.5oN, 263.1oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer

  6. Clouds Over Crater Rim

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Clouds above the rim of 'Endurance Crater' in this image from NASA's Mars Exploration Rover Opportunity can remind the viewer that Mars, our celestial neighbor, is subject to weather. On Earth, clouds like these would be referred to as 'cirrus' or the aptly nicknamed 'mares' tails.' These clouds occur in a region of strong vertical shear. The cloud particles (ice in this martian case) fall out, and get dragged along away from the location where they originally condensed, forming characteristic streamers. Opportunity took this picture with its navigation camera during the rover's 269th martian day (Oct. 26, 2004).

    The mission's atmospheric science team is studying cloud observations to deduce seasonal and time-of-day behavior of the clouds. This helps them gain a better understanding of processes that control cloud formation.

  7. Pollack Crater's White Rock

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of White Rock in Pollack crater was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on February 3, 2007 at 1750 UTC (12:50 p.m. EST), near 8 degrees south latitude, 25 degrees east longitude. The CRISM image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The region covered is roughly 20 kilometers (12 miles) long and 10 kilometers (6 miles) wide at its narrowest point.

    First imaged by the Mariner 9 spacecraft in 1972, the enigmatic group of wind-eroded ridges known as White Rock has been the subject of many subsequent investigations. White Rock is located on the floor of Pollack Crater in the Sinus Sabaeus region of Mars. It measures some 15 by 18 kilometers (9 by 11 miles) and was named for its light-colored appearance. In contrast-enhanced images, the feature's higher albedo or reflectivity compared with the darker material on the floor of the crater makes it appear white. In reality, White Rock has a dull, reddish color more akin to Martian dust. This higher albedo as well as its location in a topographic low suggested to some researchers that White Rock may be an eroded remnant of an ancient lake deposit. As water in a desert lake on Earth evaporates, it leaves behind white-colored salts that it leached or dissolved out of the surrounding terrain. These salt deposits may include carbonates, sulfates, and chlorides.

    In 2001, the Thermal Emission Spectrometer (TES) on NASA's Mars Global Surveyor measured White Rock and found no obvious signature of carbonates or sulfates, or any other indication that White Rock holds evaporite minerals. Instead, it found Martian dust.

    CRISM's challenge was to obtain greater detail of White Rock's mineralogical composition and how it formed. The instrument operates at a different wavelength range than TES, giving it greater sensitivity to carbonate, sulfate and phyllosilicate (clay-like) minerals. It also

  8. Meteor radar signal processing and error analysis

    NASA Astrophysics Data System (ADS)

    Kang, Chunmei

    Meteor wind radar systems are a powerful tool for study of the horizontal wind field in the mesosphere and lower thermosphere (MLT). While such systems have been operated for many years, virtually no literature has focused on radar system error analysis. The instrumental error may prevent scientists from getting correct conclusions on geophysical variability. The radar system instrumental error comes from different sources, including hardware, software, algorithms and etc. Radar signal processing plays an important role in radar system and advanced signal processing algorithms may dramatically reduce the radar system errors. In this dissertation, radar system error propagation is analyzed and several advanced signal processing algorithms are proposed to optimize the performance of radar system without increasing the instrument costs. The first part of this dissertation is the development of a time-frequency waveform detector, which is invariant to noise level and stable to a wide range of decay rates. This detector is proposed to discriminate the underdense meteor echoes from the background white Gaussian noise. The performance of this detector is examined using Monte Carlo simulations. The resulting probability of detection is shown to outperform the often used power and energy detectors for the same probability of false alarm. Secondly, estimators to determine the Doppler shift, the decay rate and direction of arrival (DOA) of meteors are proposed and evaluated. The performance of these estimators is compared with the analytically derived Cramer-Rao bound (CRB). The results show that the fast maximum likelihood (FML) estimator for determination of the Doppler shift and decay rate and the spatial spectral method for determination of the DOAs perform best among the estimators commonly used on other radar systems. For most cases, the mean square error (MSE) of the estimator meets the CRB above a 10dB SNR. Thus meteor echoes with an estimated SNR below 10dB are

  9. Interferometric meteor head echo observations using the Southern Argentina Agile Meteor Radar

    NASA Astrophysics Data System (ADS)

    Janches, D.; Hocking, W.; Pifko, S.; Hormaechea, J. L.; Fritts, D. C.; Brunini, C.; Michell, R.; Samara, M.

    2014-03-01

    A radar meteor echo is the radar scattering signature from the free electrons generated by the entry of extraterrestrial particles into the atmosphere. Three categories of scattering mechanisms exist: specular, nonspecular trails, and head echoes. Generally, there are two types of radars utilized to detect meteors. Traditional VHF all-sky meteor radars primarily detect the specular trails, while high-power, large-aperture (HPLA) radars efficiently detect meteor head echoes and, in some cases, nonspecular trails. The fact that head echo measurements can be performed only with HPLA radars limits these studies in several ways. HPLA radars are sensitive instruments constraining the studies to the lower masses, and these observations cannot be performed continuously because they take place at national observatories with limited allocated observing time. These drawbacks can be addressed by developing head echo observing techniques with modified all-sky meteor radars. Such systems would also permit simultaneous detection of all different scattering mechanisms using the same instrument, rather than requiring assorted different classes of radars, which can help clarify observed differences between the different methodologies. In this study, we demonstrate that such concurrent observations are now possible, enabled by the enhanced design of the Southern Argentina Agile Meteor Radar (SAAMER). The results presented here are derived from observations performed over a period of 12 days in August 2011 and include meteoroid dynamical parameter distributions, radiants, and estimated masses. Overall, the SAAMER's head echo detections appear to be produced by larger particles than those which have been studied thus far using this technique.

  10. Pwyll Crater on Europa

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This enhanced color image of the region surrounding the young impact crater Pwyll on Jupiter's moon Europa was produced by combining low resolution color data with a higher resolution mosaic of images obtained on December 19, 1996 by the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. This region is on the trailing hemisphere of the satellite, centered at 11 degrees South and 276 degrees West, and is about 1240 kilometers across. North is toward the top of the image, and the sun illuminates the surface from the east.

    The 26 kilometer diameter impact crater Pwyll, just below the center of the image, is thought to be one of the youngest features on the surface of Europa. The diameter of the central dark spot, ejecta blasted from beneath Europa's surface, is approximately 40 kilometers, and bright white rays extend for over a thousand kilometers in all directions from the impact site. These rays cross over many different terrain types, indicating that they are younger than anything they cross. Their bright white color may indicate that they are composed of fresh, fine water ice particles, as opposed to the blue and brown tints of older materials elsewhere in the image.

    Also visible in this image are a number of the dark lineaments which are called 'triple bands' because they have a bright central stripe surrounded by darker material. Scientists can use the order in which these bands cross each other to determine their relative ages, as they attempt to reconstruct the geologic history of Europa.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  11. Meteoric water in metamorphic core complexes

    NASA Astrophysics Data System (ADS)

    Teyssier, Christian; Mulch, Andreas

    2015-04-01

    The trace of surface water has been found in all detachment shear zones that bound the Cordilleran metamorphic core complexes of North America. DeltaD values of mica fish in detachment mylonites demonstrate that these synkinematic minerals grew in the presence of meteoric water. Typically deltaD values are very negative (-120 to -160 per mil) corresponding to deltaD values of water that are < -100 per mil given the temperature of water-mica isotopic equilibration (300-500C). From British Columbia (Canada) to Nevada (USA) detachment systems bound a series of core complexes: the Thor-Odin, Valhalla, Kettle-Okanogan, Bitterroot -Anaconda, Pioneer, Raft River, Ruby Mountain, and Snake Range. The bounding shear zones range in thickness from ~100 m to ~1 km, and within the shear zones, meteoric water signature is recognized over 10s to 100s of meters beneath the detachment fault. The age of shearing ranges generally from Eocene in the N (~50-45 Ma) to Oligo-Miocene in the S (25-15 Ma). DeltaD water values derived from mica fish in shear zones are consistent with supradetachment basin records of the same age brackets and can be used for paleoaltimetry if coeval isotopic records from near sea level are available. Results show that a wave of topography (typically 4000-5000 m) developed from N to S along the Cordillera belt from Eocene to Miocene, accompanied by the propagation of extensional deformation and volcanic activity. In addition, each detachment system informs a particular extensional detachment process. For example, the thick Thor-Odin detachment shear zone provides sufficient age resolution to indicate the downward propagation of shearing and the progressive incorporation of footwall rocks into the hanging wall. The Kettle detachment provides a clear illustration of the dependence of fluid circulation on dynamic recrystallization processes. The Raft River system consists of a thick Eocene shear zone that was overprinted by Miocene shearing; channels of meteoric

  12. King of the Crater Ledge

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows a screenshot from software used by engineers to drive the Mars Exploration Rover Spirit up toward the rim of the crater dubbed 'Bonneville.' The software simulates the rover's movements across the martian terrain, helping to plot a safe course. The virtual 3-D world around the rover is built from images taken by Spirit's stereo navigation cameras. Regions for which the rover has not yet acquired 3-D data are represented in beige.

    In this picture, the rover is seen in its projected final position at the rim of the crater. Later today, Spirit will travel 16 more meters (52 feet) to reach the crater ledge.

  13. Largest impact craters on Venus

    NASA Technical Reports Server (NTRS)

    Ivanov, B. A.; Weitz, C. M.; Basilevsky, A. T.

    1992-01-01

    High-resolution radar images from the Magellan spacecraft have allowed us to perform a detailed study on 25 large impact craters on Venus with diameters from 70 to 280 km. The dimension of these large craters is comparable with the characteristic thickness of the venusian lithosphere and the atmospheric scale height. Some physical parameters for the largest impact craters on Venus (LICV), such as depth, ring/diameter ratio, and range of ballistic ejecta deposits, have been obtained from the SAR images and the altimetry dataset produced by MIT. Data related to each of these parameters is discussed.

  14. Mesospheric observations by a forward scattering meteor radar basic setup

    NASA Astrophysics Data System (ADS)

    Madkour, Waleed; Yamamoto, Masa-yuki

    2016-08-01

    The durations of radio echo signals scattered from meteor ionized trails might not show a consistent increase corresponding to higher density trails due to the rapid removal of meteor ions at certain heights. Several studies have concluded the dominant role of the secondary ozone layer over diffusion in the removal of the meteor trails below 95 km through chemical oxidization of the meteor ions. Using a basic setup configuration of a forward scattering receiver, a trial to observe the mesospheric ozone concentration was performed by analyzing the meteor echo duration distributions. The forward scattered meteor echoes have the advantage of long durations that can enable observing the transition from the diffusion-removal regime to the chemistry-removal regime. The cumulative meteor echo duration distribution of two meteor showers, the Perseids and the Geminids, were analyzed over 10 years and the chemistry-removal regime in each shower was observed. The knee duration position at which a drop in the number of long overdense meteor echoes starts differed by around 30 seconds between the two showers. As the secondary ozone concentration is inversely related to the solar activity level, the Geminids 2011 corresponding to a high solar activity level showed a significant higher counts of long duration echoes compared to the Geminids 2006 during a low activity level, with the knee position shifted to longer duration. The knee positions obtained during the two distinct meteor showers and the two half solar cycle points are generally in agreement with the mesospheric ozone conditions expected in each case. However, continuous data record is required for the other meteor showers and the sporadic meteors at different heights to observe the mesospheric ozone concentration vertically and the full 11-years solar cycle.

  15. On the origin of ringing irregularities - A meteor hypothesis

    NASA Technical Reports Server (NTRS)

    Deshpande, M. R.; Vats, H. O.; Trivedi, A. I.

    1978-01-01

    Isolated ionospheric irregularities produce oscillating diffraction patterns on the ground. In the present study typical physical properties such as density, size, etc. of these irregularities are estimated on the basis of diffraction pattern characteristics. These properties agree well with those of meteor trail ionization and it has been found that most of these oscillating irregularities occur on meteor shower days. It is therefore suggested that the oscillating irregularities are caused by meteor showers.

  16. Multi-Year CMOR Observations of the Geminid Meteor Shower

    NASA Technical Reports Server (NTRS)

    Webster, A. R.; Jones, J.

    2011-01-01

    The three-station Canadian Meteor Orbit Radar (CMOR) is used here to examine the Geminid meteor shower with respect to variation in the stream properties including the flux and orbital elements over the period of activity in each of the consecutive years 2005 2008 and the variability from year to year. Attention is given to the appropriate choice and use of the D-criterion in the separating the shower meteors from the sporadic background.

  17. Optical and Radar Measurements of the Meteor Speed Distribution

    NASA Technical Reports Server (NTRS)

    Moorhead, A. V.; Brown, P. G.; Campbell-Brown, M. D.; Kingery, A.; Cooke, W. J.

    2016-01-01

    The observed meteor speed distribution provides information on the underlying orbital distribution of Earth-intersecting meteoroids. It also affects spacecraft risk assessments; faster meteors do greater damage to spacecraft surfaces. Although radar meteor networks have measured the meteor speed distribution numerous times, the shape of the de-biased speed distribution varies widely from study to study. Optical characterizations of the meteoroid speed distribution are fewer in number, and in some cases the original data is no longer available. Finally, the level of uncertainty in these speed distributions is rarely addressed. In this work, we present the optical meteor speed distribution extracted from the NASA and SOMN allsky networks [1, 2] and from the Canadian Automated Meteor Observatory (CAMO) [3]. We also revisit the radar meteor speed distribution observed by the Canadian Meteor Orbit Radar (CMOR) [4]. Together, these data span the range of meteoroid sizes that can pose a threat to spacecraft. In all cases, we present our bias corrections and incorporate the uncertainty in these corrections into uncertainties in our de-biased speed distribution. Finally, we compare the optical and radar meteor speed distributions and discuss the implications for meteoroid environment models.

  18. Influence of the meteoric stream on weather conditions: preliminary consideration

    NASA Astrophysics Data System (ADS)

    Granitskii, Lev V.; Borisevich, A. N.

    2000-12-01

    By the some estimation, about 150 tons of the meteoric matter are fall on the Earth every day. Some researchers note coincidence of the periods of activity of the most powerful meteoric stream with the periods of intensive falling of atmospheric precipitation. The unique meteoric stream Leonids represents the great interest as an example of possible correlation between meteors and power precipitation. The comet produced this stream is well known as Tempel-Tuttl comet, its orbital period is 33.3 years. With the same periodicity, the sharp strengthening of activity of a stream, which is called meteoric shower, is observed. Such meteoric stream during a night could cover the average monthly norm of fall of meteoric bodies at once in tens time. The analysis of meteorological data shows, that the winters of 1933, 1966, 1998 and 1999 years of a maximum Leonids activity are characterized by huge amount of snow. These anomalies have resulted in disasters in some of region. Under our suggestions, the anomaly rate of falling precipitation can be explained by the meteoric dust, which plays the role of the nucleuses of condensation. Thus, taking in to account the dada of regular meteoric stream, it's possible to make long term weather forecasting with the more preciseness.

  19. The Orionid Meteor Shower Observed Over 70 Years

    NASA Astrophysics Data System (ADS)

    Rendtel, Jürgen

    2008-06-01

    Visual Orionid meteor data dating back to 1944 were transformed into the standard format of the Visual Meteor Data Base (VMDB) of the International Meteor Organization (IMO) for systematic analysis. The strong 2006 Orionid return with a very low population index ( r = 1.6) and a peak ZHR of 60 (about 2.5 of the average peak strength) resembled meteor showers connected with the returns of resonant meteoroids. An investigation of data dating back to 1928 yielded similar rate enhancements in 1936, further supporting the assumption that meteoroids trapped in the 1:6 resonance with Jupiter caused the unusual 2006 Orionid return.

  20. Results of the IMO Video Meteor Network - December 2014

    NASA Astrophysics Data System (ADS)

    Molau, Sirko; Kac, Javor; Crivello, Stefano; Stomeo, Enrico; Barentsen, Geert; Goncalves, Rui; Saraiva, Carlos; Maciewski, Maciej; Maslov, Mikhail

    2015-04-01

    In 2014 December, 85 cameras of the IMO Video Meteor Network recorded almost 45 000 meteors in over 9 300 hours of observing time. The flux density profile is presented for the Geminids, as well as the population index profile around the maximum. A short-lasting outburst of the Ursids occurred on 2014 December 23 at 0h UT that reached a flux density of 60 meteoroids per 1 000 km^2 per hour in a 30-minute interval. The annual summary of the 2014 IMO Video Meteor Network observations is presented. More than 367 000 meteors were recorded in almost 100 000 hours of observing time.

  1. Results of the IMO Video Meteor Network - December 2015

    NASA Astrophysics Data System (ADS)

    Molau, S.; Crivello, S.; Goncalves, R.; Saraiva, C.; Stomeo, E.; Kac, J.

    2016-04-01

    In 2015 December, 80 cameras of the IMO Video Meteor Network recorded over 60 000 meteors in more than 10 600 hours of observing time. The flux density profile is presented for the Geminids and compared to previous years. The population index profile of the Geminids is also presented. The activity of the Ursids was slightly enhanced again. The flux density profile is presented and compared to profiles since 2011. The annual summary of the 2015 IMO Video Meteor Network observations is presented. More than 480 000 meteors were recorded in almost 122 000 hours of observing time.

  2. Spectral analysis of a high-velocity meteor

    NASA Technical Reports Server (NTRS)

    Harvey, G. A.

    1977-01-01

    A spectrogram of a fast optical meteor was reduced and analyzed, and 60 features were identified in the spectrum. Air and ionized elements in this meteor radiate throughout the spectrum from 3000 A to 6800 A. A mass of 9 mg and an effective radiation temperature of approximately 5700 K were computed for the meteor. Weight ratios of Ca:Fe, and Mg:Fe, and Na:Fe were computed. A plasma particle velocity distribution for meteors was derived, and the average collision speed obtained from this distribution was compared with the relative collision speed of a Fe-N2 gas mixture at 5700 K.

  3. METEOR - an artificial intelligence system for convective storm forecasting

    SciTech Connect

    Elio, R.; De haan, J.; Strong, G.S.

    1987-03-01

    An AI system called METEOR, which uses the meteorologist's heuristics, strategies, and statistical tools to forecast severe hailstorms in Alberta, is described, emphasizing the information and knowledge that METEOR uses to mimic the forecasting procedure of an expert meteorologist. METEOR is then discussed as an AI system, emphasizing the ways in which it is qualitatively different from algorithmic or statistical approaches to prediction. Some features of METEOR's design and the AI techniques for representing meteorological knowledge and for reasoning and inference are presented. Finally, some observations on designing and implementing intelligent consultants for meteorological applications are made. 7 references.

  4. The Daytime Craterids, a radar-detected meteor shower outburst from hyperbolic comet C/2007 W1 (Boattini)

    NASA Astrophysics Data System (ADS)

    Wiegert, P. A.; Brown, P. G.; Weryk, R. J.; Wong, D. K.

    2011-06-01

    We report a new daytime meteor shower detected with the Canadian Meteor Orbit Radar (CMOR). This shower has a radiant in the southern constellation Crater. The Daytime Craterid shower was observed in 2003 and 2008 but not in any of the other years in the 2002-09 interval. The strength of this shower in the years observed is equivalent to a daily averaged zenithal hourly rate (ZHR) over 30, with a peak ZHR likely much higher at the time of the outburst. The orbital elements of the shower closely match those of Comet C/2007 W1 (Boattini), which passed perihelion in 2007. The orbit of C/2007 W1 is nominally hyperbolic orbit making this the first meteor shower detected from a clearly unbound comet. The 2003 outburst of the Daytime Craterid shower indicates that this comet must have recently been transferred to an unbound orbit from a bound one, likely through a close encounter with a giant planet. As a result we conclude that this shower provides us with one of the few examples of showers originating from the population of nearly isotropic comets. The stream is difficult to model owing to its proximity to the orbits of Jupiter, Saturn and the Earth. However, the intermittent nature of the shower can be largely understood from numerical simulations. No outbursts of similar strength are expected in the next decade, with the possible exception of 2015.

  5. Thalenite from Arizona.

    USGS Publications Warehouse

    Fitzpatrick, J.; Pabst, A.

    1986-01-01

    Thalenite occurs as a minor constituent of a single small pegmatite within an extensive area of granite a few miles S of Kingman, Arizona. Partly crystalline and partly metamict, this thalenite has composition Y3(Si3O10)(OH), with extensive substitution of Y by REE, especially Dy, Er and Yb. Upon heating, even at moderate T, both the crystalline and the metamict thalenite are converted to a phase with a structure corresponding with that of thortveitite, Sc2Si2O7.-J.A.Z.

  6. LRO/LOLA - Counting Craters

    NASA Video Gallery

    Using the Lunar Reconnaissance Orbiter’s Lunar Orbiter Laser Altimeter (LOLA), NASA scientists have created the first-ever comprehensive catalog of large craters on the moon. In this animation, lun...

  7. Hourly Illumination of Shackleton Crater

    NASA Video Gallery

    Illumination of Shackleton crater, a 21-km-diameter (12.5 mile-diameter) structure situated adjacent to the Moon’s south pole. The resolution is 30 meters (approximately 100 feet) per pixel. Fra...

  8. Arizona Conserve Water Educators Guide

    ERIC Educational Resources Information Center

    Project WET Foundation, 2007

    2007-01-01

    This award-winning, 350-page, full-color book provides a thorough study of Arizona water resources from a water conservation perspective. Its background section contains maps, graphs, diagrams and photos that facilitate the teaching of 15 interactive, multi-disciplinary lessons to K-12 students. In addition, 10 Arizona case studies are highlighted…

  9. Arizona Learning Systems Business Plan.

    ERIC Educational Resources Information Center

    Arizona State Board of Directors for Community Colleges, Phoenix.

    This paper describes Arizona Learning Systems (ALS), an alliance of Arizona community colleges developed in response to a state legislative appropriation for technology assisted learning. The appointed task force was to address the needed telecommunications connectivity between community college districts, and among community college districts,…

  10. Impact cratering through geologic time

    USGS Publications Warehouse

    Shoemaker, E.M.; Shoemaker, C.S.

    1998-01-01

    New data on lunar craters and recent discoveries about craters on Earth permit a reassessment of the bombardment history of Earth over the last 3.2 billion years. The combined lunar and terrestrial crater records suggest that the long-term average rate of production of craters larger than 20 km in diameter has increased, perhaps by as much as 60%, in the last 100 to 200 million years. Production of craters larger than 70 km in diameter may have increased, in the same time interval, by a factor of five or more over the average for the preceding three billion years. A large increase in the flux of long-period comets appears to be the most likely explanation for such a long-term increase in the cratering rate. Two large craters, in particular, appear to be associated with a comet shower that occurred about 35.5 million years ago. The infall of cosmic dust, as traced by 3He in deep sea sediments, and the ages of large craters, impact glass horizons, and other stratigraphic markers of large impacts seem to be approximately correlated with the estimated times of passage of the Sun through the galactic plane, at least for the last 65 million years. Those are predicted times for an increased near-Earth flux of comets from the Oort Cloud induced by the combined effects of galactic tidal perturbations and encounters of the Sun with passing stars. Long-term changes in the average comet flux may be related to changes in the amplitude of the z-motion of the Sun perpendicular to the galactic plane or to stripping of the outer Oort cloud by encounters with large passing stars, followed by restoration from the inner Oort cloud reservoir.

  11. Limb of Copernicus Impact Crater

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Copernicus is 93 km wide and is located within the Mare Imbrium Basin, northern nearside of the Moon (10 degrees N., 20 degrees W.). Image shows crater floor, floor mounds, rim, and rayed ejecta. Rays from the ejecta are superposed on all other surrounding terrains which places the crater in its namesake age group: the Copernican system, established as the youngest assemblage of rocks on the Moon (Shoemaker and Hackman, 1962, The Moon: London, Academic Press, p.289- 300).

  12. Psychedelic Crater Rim

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Crater Floor in Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. A Global Model of Meteoric Sodium

    NASA Technical Reports Server (NTRS)

    Marsh, Daniel R.; Janches, Diego; Feng, Wuhu; Plane, John M. C.

    2013-01-01

    A global model of sodium in the mesosphere and lower thermosphere has been developed within the framework of the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM). The standard fully interactive WACCM chemistry module has been augmented with a chemistry scheme that includes nine neutral and ionized sodium species. Meteoric ablation provides the source of sodium in the model and is represented as a combination of a meteoroid input function (MIF) and a parameterized ablation model. The MIF provides the seasonally and latitudinally varying meteoric flux which is modeled taking into consideration the astronomical origins of sporadic meteors and considers variations in particle entry angle, velocity, mass, and the differential ablation of the chemical constituents. WACCM simulations show large variations in the sodium constituents over time scales from days to months. Seasonality of sodium constituents is strongly affected by variations in the MIF and transport via the mean meridional wind. In particular, the summer to winter hemisphere flow leads to the highest sodium species concentrations and loss rates occurring over the winter pole. In the Northern Hemisphere, this winter maximum can be dramatically affected by stratospheric sudden warmings. Simulations of the January 2009 major warming event show that it caused a short-term decrease in the sodium column over the polar cap that was followed by a factor of 3 increase in the following weeks. Overall, the modeled distribution of atomic sodium in WACCM agrees well with both ground-based and satellite observations. Given the strong sensitivity of the sodium layer to dynamical motions, reproducing its variability provides a stringent test of global models and should help to constrain key atmospheric variables in this poorly sampled region of the atmosphere.

  15. Meteor orbit determination with improved accuracy

    NASA Astrophysics Data System (ADS)

    Dmitriev, Vasily; Lupovla, Valery; Gritsevich, Maria

    2015-08-01

    Modern observational techniques make it possible to retrive meteor trajectory and its velocity with high accuracy. There has been a rapid rise in high quality observational data accumulating yearly. This fact creates new challenges for solving the problem of meteor orbit determination. Currently, traditional technique based on including corrections to zenith distance and apparent velocity using well-known Schiaparelli formula is widely used. Alternative approach relies on meteoroid trajectory correction using numerical integration of equation of motion (Clark & Wiegert, 2011; Zuluaga et al., 2013). In our work we suggest technique of meteor orbit determination based on strict coordinate transformation and integration of differential equation of motion. We demonstrate advantage of this method in comparison with traditional technique. We provide results of calculations by different methods for real, recently occurred fireballs, as well as for simulated cases with a priori known retrieval parameters. Simulated data were used to demonstrate the condition, when application of more complex technique is necessary. It was found, that for several low velocity meteoroids application of traditional technique may lead to dramatically delusion of orbit precision (first of all, due to errors in Ω, because this parameter has a highest potential accuracy). Our results are complemented by analysis of sources of perturbations allowing to quantitatively indicate which factors have to be considered in orbit determination. In addition, the developed method includes analysis of observational error propagation based on strict covariance transition, which is also presented.Acknowledgements. This work was carried out at MIIGAiK and supported by the Russian Science Foundation, project No. 14-22-00197.References:Clark, D. L., & Wiegert, P. A. (2011). A numerical comparison with the Ceplecha analytical meteoroid orbit determination method. Meteoritics & Planetary Science, 46(8), pp. 1217

  16. Meteor Beliefs Project: Classical beliefs connecting meteors with life and death

    NASA Astrophysics Data System (ADS)

    McBeath, Alastair; Gheorghe, Andrei Dorian

    2006-10-01

    Details concerning meteors as indicators of life and death, extracted from ancient Greek and Latin sources between the circa 5th century BC to the circa 5th century AD, are presented. Some relevant material concerning souls as resident in stars in a similar vein is given too.

  17. Meteor Beliefs Project: some meteoric imagery in the works of William Shakespeare

    NASA Astrophysics Data System (ADS)

    McBeath, A.; Gheorghe, A. D.

    2003-08-01

    Passages from three of William Shakespeare's plays are presented, illustrating some of the beliefs in meteors in 16th-17th century England. They also reflect earlier beliefs and information which it is known Shakespeare drew on in constructing his works.

  18. Meteor Beliefs Project: Meteoric imagery associated with the death of John Brown in 1859

    NASA Astrophysics Data System (ADS)

    Drobnock, G. J.; McBeath, A.; Gheorghe, A. D.

    2009-12-01

    An examination is made of metaphorical meteor imagery used in conjunction with the death of American anti-slavery activist John Brown, who was executed in December 1859. Such imagery continues to be used in this regard into the 21st century.

  19. Present State and Prospects for the Meteor Research in Ukraine

    NASA Astrophysics Data System (ADS)

    Shulga, O.; Voloshchuk, Y.; Kolomiyets, S.; Cherkas, Y.; Kimakovskay, I.; Kimakovsky, S.; Knyazkova, E.; Kozyryev, Y.; Sybiryakova, Y.; Gorbanev, Y.; Stogneeva, I.; Shestopalov, V.; Kozak, P.; Rozhilo, O.; Taranukha, Y.

    2015-03-01

    ODESSA. Systematical study of the meteor events are being carried out since 1953. In 2003 complete modernization of the observing technique was performed, and TV gmeteor patrolh on the base of WATEC LCL902 cameras was created. @ wide variety of mounts and objectives are used: from Schmidt telescope F = 540 mm, F/D = 2.25 (field of view FOV = (0.68x0.51) deg, star limiting magnitude SLM = 13.5 mag, star astrometric accuracy 1-2 arcsec) up to Fisheye lenses F = 8 mm, F/D = 3.5 (FOV = (36x49) deg, SLM = 7 mag). The database of observations that was collected between 2003 and 2012 consists of 6176 registered meteor events. Observational programs on basis and non-basis observations in Odessa (Kryzhanovka station) and Zmeiny island are presented. Software suite of 12 programs was created for processing of meteor TV observations. It enables one to carry out the whole cycle of data processing: from image preprocessing up to orbital elements determination. Major meteor particles research directions: statistic, areas of streams, precise stream radiant, orbit elements, phenomena physics, flare appearance, wakes, afterglow, chemistry and density. KYIV. The group of meteor investigations has been functioning more than twenty years. The observations are carried out simultaneously from two points placed at the distance of 54 km. Super-isocon low light camera tubes are used with photo lens: F = 50mm, F/D = 1.5 (FOV = (23.5 x 19.0) deg, SLM = 9.5 mag), or F = 85, F/D = 1.5 (FOV = (13x11) deg, SLM = 11.5 mag). Astrometry, photometry, calculation of meteor trajectory in Earth atmosphere and computation of heliocentric orbit are realized in developed gFalling Starh software. KHARKOV. Meteor radio-observations have begun in 1957. In 1972, the radiolocation system MARS designed for automatic meteor registration was recognized as being the most sensitive system in the world. With the help of this system 250 000 faint meteors (up to 12 mag) were registered between 1972 and 1978 (frequency

  20. Geology of Lofn Crater, Callisto

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Heiner, Sarah; Klemaszewski, James E.

    2001-01-01

    Lofn crater is a 180-km-diameter impact structure in the southern cratered plains of Callisto and is among the youngest features seen on the surface. The Lofn area was imaged by the Galileo spacecraft at regional-scale resolutions (875 m/pixel), which enable the general geology to be investigated. The morphology of Lofn crater suggests that (1) it is a class of impact structure intermediate between complex craters and palimpsests or (2) it formed by the impact of a projectile which fragmented before reaching the surface, resulting in a shallow crater (even for Callisto). The asymmetric pattern of the rim and ejecta deposits suggests that the impactor entered at a low angle from the northwest. The albedo and other characteristics of the ejecta deposits from Lofn also provide insight into the properties of the icy lithosphere and subsurface configuration at the time of impact. The "target" for the Lofn impact is inferred to have included layered materials associated with the Adlinda multiring structure northwest of Loh and ejecta deposits from the Heimdall crater area to the southeast. The Lofn impact might have penetrated through these materials into a viscous substrate of ductile ice or possibly liquid water. This interpretation is consistent with models of the current interior of Callisto based on geophysical information obtained from the Galileo spacecraft.

  1. The meteor complex of P/Encke

    NASA Astrophysics Data System (ADS)

    Porubcan, V.; Stohl, J.

    The Taurid meteor complex associated with P/Encke is studied on the basis of relevant photographic and radar orbits. Orbital characteristics, radiants and durations of the postperihelion showers are compared with corresponding theoretical values derived from the observations of the preperihelion Taurids. The validity of the proposed associations of minor showers with the Taurid complex and the total duration of its activity are evaluated and discussed. Some of the associated showers (the Northern and Southern Chi Orionids, Northern Piscids and Southern Arietids) are confirmed to be in fact, parts of the Taurid shower itself.

  2. Aging comets and their meteor showers

    NASA Astrophysics Data System (ADS)

    Ye, Quan-Zhi

    2016-10-01

    Comets are thought to be responsible for the terrestrial accretion of water and organic materials. The aging of comets is one of the most critical yet poorly understood problems in planetary astronomy. Here we attack this problem by examining different parts of the cometary aging spectrum of Jupiter-family comets (JFCs), a group of comets that dominates the cometary influx in the near-Earth space, using both telescopic and meteor observations.We examine two representative JFCs and the population of dormant comets. At the younger end of the aging spectrum, we examine a moderately active JFC, 15P/Finlay, and review the puzzle of the non-detection of the associated Finlayid meteor shower. We find that, although having been behaved like a dying comet in the past several 102 years, 15P/Finlay does possess ability for energetic outbursts without a clear reason. Towards the more aged end of the spectrum, we examine a weakly active JFC, 209P/LINEAR. By bridging telescopic observations at visible and infrared wavelength, meteor observations and dynamical investigations, we find that 209P/LINEAR is indeed likely an aged yet long-lived comet. At the other end of the spectrum, we examine the population of dormant near-Earth comets, by conducting a comprehensive meteor-based survey looking for dormant comets that have recently been active. We find the lower limit of the dormant comet fraction in the near-Earth object (NEO) population to be 2.0 ± 1.7%. This number is at the lower end of the numbers found using dynamical and telescopic techniques, which may imply that a significant fraction of comets in the true JFC population are weakly active and are not yet detected.These results have revealed interesting diversities in dying or dead comets, both in their behaviors as well as their natures. An immediate quest in the understanding of cometary aging would be to examine a large number of dying or dead comets and understand their general characteristics.

  3. Analysis of photometric spectra of 17 meteors

    NASA Technical Reports Server (NTRS)

    Millman, P. M.

    1982-01-01

    The initial phase of the photometry which involved 17 meteor spectra consisting of eight Geminid spectra, six Orionid spectra and three Eta Aquarid spectra is discussed. Among these 17 spectra it is found that the Geminid spectra are of the best quality and are used for the identification of the atomic lines and molecular bands that normally appear on video tape spectra. The data from the Geminid records are used for developing calibration techniques in photometry. The Orionid and Eta Aquarid spectra are chosen for early analysis because of the current interest in all physical and chemical data relating to Comet Halley.

  4. The Southern Argentina Agile Meteor Radar (SAAMER): Platform for comprehensive meteor radar observations and studies

    NASA Astrophysics Data System (ADS)

    Janches, D.; Hormaechea, J.; Pifko, S.; Hocking, W.; Fritts, D.; Brunini, C.; Close, S.; Michell, R.; Samara, M.

    2014-07-01

    The Southern Argentina Agile Meteor Radar (SAAMER) is a new generation system deployed in Rio Grande, Tierra del Fuego, Argentina (53^oS) in May 2008 (Janches et al., 2013,2014). SAAMER transmits 10 times more power than regular meteor radars, and uses a newly developed transmitting array, which focuses power upward instead of the traditional single-antenna-all-sky configuration. The system is configured such that the transmitter array can also be utilized as a receiver. The new design greatly increases the sensitivity of the radar enabling the detection of large numbers of particles at low zenith angles. The more concentrated transmitted power enables additional meteor studies besides those typical of these systems based on the detection of specular reflections, such as routine detections of head echoes and non-specular trails, previously only possible with High Power and Large Aperture radars (Janches et al., 2014). In August 2010, SAAMER was upgraded to a system capable to determine meteoroid orbital parameters. This was achieved by adding two remote receiving stations approximately 10 km away from the main site in near perpendicular directions (Pifko et al., 2014). The upgrade significantly expands the science that is achieved with this new radar enabling us to study the orbital properties of the interplanetary dust environment. Because of the unique geographical location, the SAAMER allows for additional inter-hemispheric comparison with measurements from Canadian Meteor Orbit Radar, which is geographically conjugate. Initial surveys show, for example, that SAAMER observes a very strong contribution of the South Toroidal Sporadic meteor source (Pifko et al., 2014), of which limited observational data is available. In addition, SAAMER offers similar unique capabilities for meteor showers and streams studies given the range of ecliptic latitudes that the system enables to survey (Janches et al., 2013). It can effectively observe radiants from the ecliptic south

  5. Arizona land use experiment

    NASA Technical Reports Server (NTRS)

    Winikka, C. C.; Schumann, H. H.

    1975-01-01

    Utilization of new sources of statewide remote sensing data, taken from high-altitude aircraft and from spacecraft is discussed along with incorporation of information extracted from these sources into on-going land and resources management programs in Arizona. Statewide cartographic applications of remote sensor data taken by NASA high-altitude aircraft include the development of a statewide semi-analytic control network, the production of nearly 1900 orthophotoquads (image maps) that are coincident in scale and area with the U.S. Geological Survey (USGS) 7. 5 minute topographic quadrangle map series, and satellite image maps of Arizona produced from LANDSAt multispectral scanner imagery. These cartographic products are utilized for a wide variety of experimental and operational earth resources applications. Applications of the imagery, image maps, and derived information discussed include: soils and geologic mapping projects, water resources investigations, land use inventories, environmental impact studies, highway route locations and mapping, vegetation cover mapping, wildlife habitat studies, power plant siting studies, statewide delineation of irrigation cropland, position determination of drilling sites, pictorial geographic bases for thematic mapping, and court exhibits.

  6. The origin of lunar concentric craters

    NASA Astrophysics Data System (ADS)

    Trang, David; Gillis-Davis, Jeffrey J.; Hawke, B. Ray

    2016-11-01

    Lunar concentric craters are a unique class of impact craters because the interior of the craters contains a concentric ridge, but their formation mechanism is unknown. In order to determine the origin of concentric craters, we examined multiple working hypotheses, which include eight impact-related and endogenic processes. We analyzed data sets that originated from instruments onboard Clementine, Kaguya, and the Lunar Reconnaissance Orbiter to characterize the morphology, spatial distribution, composition, and absolute model ages of 114 concentric craters. Concentric craters contain five key properties: (1) a concentric ridge, (2) anomalously shallow floors, (3) their occurrence is concentrated near mare margins and in mare pond regions (4) the concentric ridge composition is similar to the surrounding area and (5) concentric crater ages are Eratosthenian and older. These five key properties served as constraints for testing impact-related and endogenic mechanisms of formation. We find that most impact-related hypotheses cannot explain the spatial and age distribution of concentric craters. As for endogenic hypotheses, we deduce that igneous intrusions are the likely mechanism that formed concentric craters because of the close relationship between concentric craters and floor-fractured craters and the concentration of both features near mare-highland boundaries and in mare ponds. Furthermore, we observe that floor-fractured craters are common at crater diameters > 15 km, whereas concentric craters are common at crater diameters < 15 km. We suggest that igneous intrusions underneath small craters (<15 km) are likely to form concentric craters, whereas intrusions under large craters (>15 km) produce floor-fractured craters.

  7. Reuyl Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 13 May 2002) The Science The rugged, arcuate rim of the 90 km crater Reuyl dominates this THEMIS image. Reuyl crater is at the southern edge of a region known to be blanketed in thick dust based on its high albedo (brightness) and low thermal inertia values. This thick mantle of dust creates the appearance of snow covered mountains in the image. Like snow accumulation on Earth, Martian dust can become so thick that it eventually slides down the face of steep slopes, creating runaway avalanches of dust. In the center of this image about 1/3 of the way down is evidence of this phenomenon. A few dozen dark streaks can be seen on the bright, sunlit slopes of the crater rim. The narrow streaks extend downslope following the local topography in a manner very similar to snow avalanches on Earth. But unlike their terrestrial counterparts, no accumulation occurs at the bottom. The dust particles are so small that they are easily launched into the thin atmosphere where they remain suspended and ultimately blow away. The apparent darkness of the avalanche scars is due to the presence of relatively dark underlying material that becomes exposed following the passage of the avalanche. Over time, new dust deposition occurs, brightening the scars until they fade into the background. Although dark slope streaks had been observed in Viking mission images, a clear understanding of this dynamic phenomenon wasn't possible until the much higher resolution images from the Mars Global Surveyor MOC camera revealed the details. MOC images also showed that new avalanches have occurred during the time MGS has been in orbit. THEMIS images will allow additional mapping of their distribution and frequency, contributing new insights about Martian dust avalanches. The Story The stiff peaks in this image might remind you of the Alps here on Earth, but they really outline the choppy edge of a large Martian crater over 50 miles wide (seen in the context image at right). While these aren

  8. Ecoregions of Arizona (poster)

    USGS Publications Warehouse

    Griffith, Glenn E.; Omernik, James M.; Johnson, Colleen Burch; Turner, Dale S.

    2014-01-01

    Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources; they are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. By recognizing the spatial differences in the capacities and potentials of ecosystems, ecoregions stratify the environment by its probable response to disturbance. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The Arizona ecoregion map was compiled at a scale of 1:250,000. It revises and subdivides an earlier national ecoregion map that was originally compiled at a smaller scale. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of the spatial patterns and the composition of biotic and abiotic phenomena that affect or reflect differences in ecosystem quality and integrity. These phenomena include geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another regardless of the hierarchical level. A Roman numeral hierarchical scheme has been adopted for different levels of ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions. At level III, the continental United States contains 105 ecoregions and the conterminous United States has 85 ecoregions. Level IV is a further subdivision of level III ecoregions. Arizona contains arid deserts and canyonlands, semiarid shrub- and grass-covered plains, woodland- and shrubland-covered hills, lava fields and volcanic plateaus, forested mountains, glaciated

  9. Arizona's Youth--Arizona's Jobs. An Introduction to School-to-Work Transitions in Arizona.

    ERIC Educational Resources Information Center

    Vandegrift, Judith A.; And Others

    This report provides a formative analysis of youth demographics and employment and training issues in the state of Arizona. The report clarifies issues of workforce supply and demand--as they pertain specifically to Arizona's youth--and explores the match between work force demand and training programs. It is based on information gathered and…

  10. Evidence for Recent Liquid Water on Mars: Channels and Aprons in East Gorgonum Crater

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site] Warning!This link leads to a very large image that may be too long for some web browsers (in these cases, you must save the link to your desktop and view with other software) [figure removed for brevity, see original site]

    This suite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) pictures provides a vista of martian gullies on the northern wall of a 12 kilometer-(7.4 mile)-wide meteor impact crater east of the Gorgonum Chaos region on the red planet.

    The first picture (above left) is a composite of three different high resolution MOC views obtained in 1999 and 2000. The second picture (above right)shows the location of the high resolution views relative to the whole crater as it appeared in the highest resolution image previously acquired of the area, taken by the Viking 1 orbiter in 1978. The release image (top) shows a close-up of one of the channels and debris aprons found in the northwestern quarter of the impact crater.

    Some of the channels in this crater are deeply-entrenched and cut into lighter-toned deposits. The numerous channels and apron deposits indicate that many tens to hundreds of individual events involving the flow of water and debris have occurred here. The channels and aprons have very crisp, sharp relief and there are no small meteor impact craters on them, suggesting that these features are extremely young relative to the 4.5 billion year history of Mars. It is possible that these landforms are still being created by water seeping from the layered rock in the crater wall today.

    The crater has no name and it is located near 37.4oS, 168.0oW. The composite view in (above left) includes a picture taken by MOC on September 10, 1999, a picture obtained April 26, 2000, and another on May 22, 2000. The scene from left to right (including the dark gap between photos) covers an area approximately 7.6 kilometers (4.7 miles) wide by 18 km (11.1 mi) long. Sunlight illuminates the scene

  11. Very Precise Orbits of 1998 Leonid Meteors

    NASA Technical Reports Server (NTRS)

    Betlem, Hans; Jenniskens, Peter; vantLeven, Jaap; terKuile, Casper; Johannink, Carl; Zhao, Hai-Bin; Lei, Chen-Ming; Li, Guan-You; Zhu, Jin; Evans, Steve; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    Seventy-five orbits of Leonid meteors obtained during the 1998 outburst are presented. Thirty-eight are precise enough to recognize significant dispersion in orbital elements. Results from the nights of 1998 November 16/17 and 17/18 differ, in agreement with the dominant presence of different dust components. The shower rate profile of 1998 November 16/17 was dominated by a broad component, rich in bright meteors. The radiant distribution is compact. The semimajor axis is confined to values close to that of the parent comet, whereas the distribution of inclination has a central condensation in a narrow range. On the other hand, 1998 November 17/18 was dominated by dust responsible for a more narrow secondary peak in the flux curve. The declination of the radiant and the inclination of the orbit are more widely dispersed. The argument of perihelion, inclination, and the perihelion distance are displaced. These data substantiate the hypothesis that trapping in orbital resonances is important for the dynamical evolution of the broad component.

  12. Meteoric Magnesium Ions in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean; Grebowsky, Joseph

    1999-01-01

    From a thorough modeling of the altitude profile of meteoritic ionization in the Martian atmosphere we deduce that a persistent layer of magnesium ions should exist around an altitude of 70 km. Based on current estimates of the meteoroid mass flux density, a peak ion density of about 10(exp 4) ions/cm is predicted. Allowing for the uncertainties in all of the model parameters, this value is probably within an order of magnitude of the correct density. Of these parameters, the peak density is most sensitive to the meteoroid mass flux density which directly determines the ablated line density into a source function for Mg. Unlike the terrestrial case, where the metallic ion production is dominated by charge-exchange of the deposited neutral Mg with the ambient ions, Mg+ in the Martian atmosphere is produced predominantly by photoionization. The low ultraviolet absorption of the Martian atmosphere makes Mars an excellent laboratory in which to study meteoric ablation. Resonance lines not seen in the spectra of terrestrial meteors may be visible to a surface observatory in the Martian highlands.

  13. Investigation of meteor shower parent bodies using various metrics

    NASA Astrophysics Data System (ADS)

    Dumitru, B. A.; Birlan, M.; Nedelcu, A.; Popescu, M.

    2016-01-01

    The present knowledge of meteor showers identifies the small bodies of our Solar System as supply sources for meteor streams. Both comets and asteroids are considered as the origin of meteor showers. The new paradigm of "active asteroids" opens up a large field of investigation regarding the relationships between asteroids and meteors. Processes like ejection and disaggregation at impacts, rotational instabilities, electrostatic repulsion, radiation pressure, dehydration stress followed by thermal fractures, sublimation of ices are sources of matter loss from asteroids. Our objective is to find genetic relationships between asteroids and meteor showers using metrics based on orbital elements. For this objective we selected three metrics (Southworth and Hawkins, 1963; Asher et al. 1993, and Jopek, 1993, respectively), the recent MPC database and the more recent IAU meteor shower database. From our analysis, 41 of the meteor showers have probabilities of being produced (or to be fueled) by asteroids. Our sample of asteroids contains more than 1000 objects, all of them belonging to the Near-Earth Asteroid population. The systematic approach performed, based on the physical properties of our sample, reinforced the link between asteroids and their associated meteor shower.

  14. The motion of radio meteor reflection point of Geminids

    NASA Astrophysics Data System (ADS)

    Ohnishi, Kouji; Ishikawa, Toshiyuki; Hattori, Shinobu; Nishimura, Osamu; Miyazawa, Akiko; Yanagisawa, Masatoshi; Endo, Makoto; Kawamura, Masaki; Maruyama, Toshiyuki; Hosayama, Kai; Tokunaga, Mai; Maegawa, Kimio; Abe, Shinsuke

    2001-11-01

    Ham-band Radio Observation (HRO) is one of the observational techniques for the forward scatter observation of meteors. We observe the meteor echo with two-element loop antennas (F/B ratio is 10 dB) at the Nagano National College of Technology (Nagano, Japan) using the continuous transmission of beacon signals for meteor observations at 53.750 MHz, 50W from Fukui National College of Technology (Fukui, Japan). To prove that the radio echo is really the echo due to meteor, we have constructed the direction determination system using the paired antennas that can detect the direction roughly where the radio echo come from. The direction of one of this paired antennas was West toward Sabae and the other was East which has proved to be the most sensitive for this research. Using this system, we detected the change of the direction of reflection point of meteor radio signal of Geminids in 2000; from the westward to eastward before and after the culmination of the radiant which is consistent the formula of reflection point of meteors. At the same time, we detected the change of an intensity and a trend of the Doppler shift of meteor echoes. This result is consistent of the meteor wind data of MU Rader of Radio Science Center for Space & Atmosphere (RASC), Kyoto University.

  15. Don Quixote - a possible parent body of a meteor shower

    NASA Astrophysics Data System (ADS)

    Rudawska, Regina; Vaubaillon, Jérémie

    2014-02-01

    Here we are interested in whether the meteoroid stream of (3552) Don Quixote can generate some observed meteor showers. We have showed that particles originating from Don Quixote particles produce two meteor showers at Earth: Kappa Lyrids and August Mu Draconids.

  16. Meteor trails observed by the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Cikota, A.; Bektešević, D.; Cikota, S.; Weaver, B.; Jevremović, D.; Vinković, D.

    2014-07-01

    Scientific observation of meteors is not simple because they have large angular size and random appearance in time and position on the sky. Bright meteors can be easily observed by naked eye or by video cameras in low resolution, but the luminosity distribution of meteors at their fainter end, the actual column diameter of the radiating zone, meteor fragmentation and the microstructure of lightcurves (especially when a meteor is detected through several color filters, as it happened in SDSS) is not well investigated. However, wide-field surveys, such as SDSS or the future LSST, with long time coverage over a significant fraction of sky might be helpful in collecting a scientifically relevant sample of low-brightness meteors. We used a custom designed Python script to detect linear features in SDSS images. The detection is performed in two steps: 1) we detect stars with Source Extractor [1] and blend them out; 2) we define a threshold so as to analyze 10000 points over the threshold; 3) we apply RANSAC [2] to detect points forming a line. We detected trails in over 15000 calibrated and sky-subtracted ''frame'' images in two filters so far. The drift scan in imaging survey mode of SDSS enables simple distinction between "apparently fast" meteors and other "slow" linear features caused by satellites and space debris, so that around 4000 frames could be eliminated as obvious satellites. Here we discuss the detection method, show some interesting preliminary results of the analysis of detected meteors, and discuss implications for other surveys.

  17. Goals, technique and equipment of meteor study in Russia

    NASA Astrophysics Data System (ADS)

    Kartashova, A.; Bagrov, A. V.; Bolgova, G. T.; Kruchkov, S. V.; Leonov, V. A.; Mazurov, V. A.

    2013-09-01

    Institute of Astronomy RAS is one of the science institutes in the Russian Federation providing systematic optical meteor observations and supervises several meteor groups in our country. The main tasks of our investigations are dedicated to study meteoroid nature as well as meteoroid streams and meteoroid population in the Solar System. In the XXI century we in Russia carry out the reconstruction of our meteor astronomy due to possibilities of new meteor observation equipment (more powerful than were used before as visual and photographic methods) had made possible to select more interesting goals. First of our task is investigation of meteoroid streams crossing the Earth's orbit, and character of meteoroid distributions along of them. The multi stations meteor monitoring from located in the both hemispheres of the Earth can help in this study. According to the analysis of the evolution of meteor orbits, the compact and long lived meteoroid streams consist mainly from large particles. The observation equipment (cheap TV-cameras) with low limiting magnitude we use for gathering observational data. On the other hand, the observations of weak meteors are needed for new meteor shower indication (or confirmation of known meteor shower). The more effective way to do it is comparison of individual meteor orbits parameters (then calculation of radiants of meteor showers). The observations of space debris (as the meteors with low velocity - less 11.2 km/s) can be taking up within this task. The combination of high sensitive TV-cameras WATEC and super-fast lenses COMPUTAR are widely used for meteor TV-monitoring. The TVsystems for round-year meteor observations are fixed and are permanently oriented to the zenith area (the patrol camera - PatrolCa). The mobile TV-cameras (MobileCa) are used for double station observations (if it is possible) and located not far from main cameras PatrolCa (20-30 km). The mobile TVcameras observe 90% of main PatrolCa cameras FOV at altitudes

  18. Quetelet and the Discovery of the First Meteor Showers

    NASA Astrophysics Data System (ADS)

    Sauval, J.

    1997-02-01

    The contribution of Adolphe Quetelet to meteor astronomy is important. In 1836 he predicted the return of the Perseids and in 1837 he published the first catalogue of meteors. He was also an independent co-discoverer of the Orionids and the Quadrantids in 1839.

  19. Meteor Showers of the Earth-crossing Asteroids

    NASA Astrophysics Data System (ADS)

    Pulat, Babadzhanov; Gulchekhra, Kokhirova

    2015-03-01

    The results of search for meteor showers associated with the asteroids crossing the Earthfs orbit and moving on comet-like orbits are given. It was shown that among 2872 asteroids discovered till 1.01.2005 and belonging to the Apollo and Amor groups, 130 asteroids have associated meteor showers and, therefore, are the extinct cometary nuclei.

  20. EISCAT observations of meteors from the sporadic complex

    NASA Astrophysics Data System (ADS)

    Brosch, Noah; Häggström, Ingemar; Pellinen-Wannberg, Asta

    2013-10-01

    We report meteor observation with the European Incoherent Scatter Scientific Association (EISCAT) radars obtained during a continuous 24-h period in 2009 December. The period, just after the Geminid meteor shower, was selected to have no strong meteor shower activity to allow a comparison with our previous observations collected during the 2008 Geminid shower. During the 2009 run, we used the very high frequency (VHF) and ultrahigh frequency systems, but most of the results presented here were derived from the VHF data. We discuss the statistical properties of the radar echoes, their Doppler velocity and altitude distributions, their radar cross-section, etc. We concentrate, as in our previous paper, on the population of high-altitude echoes, which we clearly detect, and discuss these specifically. We recognize a few echoes with positive Doppler velocities as produced by meteoroids that presumably entered the atmosphere at ˜grazing incidence angles and were leaving it when detected by radar. We detect meteor echoes with essentially zero Doppler velocity, reported here for the first time, which we interpret as meteoroids moving almost perpendicular to the beam and producing specular reflections off the meteor trail. We discuss meteors detected with tristatic measurements for which we find bunching in azimuth and depression angle that depends on the time of the day. Finally, we report again of the lack of extreme velocity meteors, a fact that weakens significantly the claim of the existence and abundance of interstellar meteors.

  1. Comets and meteors in the beliefs of ancient mayas

    NASA Astrophysics Data System (ADS)

    Yershova, G. G.

    2001-12-01

    Data concerning the Mayan approach to comets and meteors have till now been available mostly from ethnographical and folklore sources which dealt, as a rule, with various beliefs and tokens. The studies of hieroglyphic texts of the Classic Period (AD 600-900) have proved that comets and meteors were undoubtedly known in this culture through astronomical observations and their periodicity.

  2. THE RETURN OF THE ANDROMEDIDS METEOR SHOWER

    SciTech Connect

    Wiegert, Paul A.; Brown, Peter G.; Weryk, Robert J.; Wong, Daniel K.

    2013-03-15

    The Andromedid meteor shower underwent spectacular outbursts in 1872 and 1885, producing thousands of visual meteors per hour and described as ''stars fell like rain'' in Chinese records of the time. The shower originates from comet 3D/Biela whose disintegration in the mid-1800's is linked to the outbursts, but the shower has been weak or absent since the late 19th century. This shower returned in 2011 December with a zenithal hourly rate of approximately 50, the strongest return in over a hundred years. Some 122 probable Andromedid orbits were detected by the Canadian Meteor Orbit Radar while one possible brighter Andromedid member was detected by the Southern Ontario Meteor Network and several single station possible Andromedids by the Canadian Automated Meteor Observatory. The shower outburst occurred during 2011 December 3-5. The radiant at R.A. +18 Degree-Sign and decl. +56 Degree-Sign is typical of the ''classical'' Andromedids of the early 1800s, whose radiant was actually in Cassiopeia. Numerical simulations of the shower were necessary to identify it with the Andromedids, as the observed radiant differs markedly from the current radiant associated with that shower. The shower's orbital elements indicate that the material involved was released before 3D/Biela's breakup prior to 1846. The observed shower in 2011 had a slow geocentric speed (V{sub G} = 16 km s{sup -1}) and was comprised of small particles: the mean measured mass from the radar is {approx}5 Multiplication-Sign 10{sup -7} kg, corresponding to radii of 0.5 mm at a bulk density of 1000 kg m{sup -3}. Numerical simulations of the parent comet indicate that the meteoroids of the 2011 return of the Andromedids shower were primarily ejected during 3D/Biela's 1649 perihelion passage. The orbital characteristics, radiant, and timing as well as the absence of large particles in the streamlet are all broadly consistent with simulations. However, simulations of the 1649 perihelion passage necessitate going

  3. 'Lyell' Panorama inside Victoria Crater

    NASA Technical Reports Server (NTRS)

    2008-01-01

    During four months prior to the fourth anniversary of its landing on Mars, NASA's Mars Exploration Rover Opportunity examined rocks inside an alcove called 'Duck Bay' in the western portion of Victoria Crater. The main body of the crater appears in the upper right of this stereo panorama, with the far side of the crater lying about 800 meters (half a mile) away. Bracketing that part of the view are two promontories on the crater's rim at either side of Duck Bay. They are 'Cape Verde,' about 6 meters (20 feet) tall, on the left, and 'Cabo Frio,' about 15 meters (50 feet) tall, on the right. The rest of the image, other than sky and portions of the rover, is ground within Duck Bay.

    Opportunity's targets of study during the last quarter of 2007 were rock layers within a band exposed around the interior of the crater, about 6 meters (20 feet) from the rim. Bright rocks within the band are visible in the foreground of the panorama. The rover science team assigned informal names to three subdivisions of the band: 'Steno,' 'Smith,' and 'Lyell.'

    This view combines many images taken by Opportunity's panoramic camera (Pancam) from the 1,332nd through 1,379th Martian days, or sols, of the mission (Oct. 23 to Dec. 11, 2007). Images taken through Pancam filters centered on wavelengths of 753 nanometers, 535 nanometers and 432 nanometers were mixed to produce an approximately true-color panorama. Some visible patterns in dark and light tones are the result of combining frames that were affected by dust on the front sapphire window of the rover's camera.

    Opportunity landed on Jan. 25, 2004, Universal Time, (Jan. 24, Pacific Time) inside a much smaller crater about 6 kilometers (4 miles) north of Victoria Crater, to begin a surface mission designed to last 3 months and drive about 600 meters (0.4 mile).

  4. Diurnal variation of overdense meteor echo duration and ozone

    NASA Technical Reports Server (NTRS)

    Simek, Milos

    1992-01-01

    The diurnal variation of the median duration of overdense sporadic radar meteor echoes is examined. The meteors recorded in August, December, and January by the Ondrejov meteor radar during the period 1958-1990 were used for the analysis. A maximum median echo duration 1-3 hours after the time of local sunrise in the meteor region confirms the already known sunrise effect. Minimum echo duration occurring at the time of sunset seems to be the most important point of diurnal variation of the echo duration, when ozone is no longer dissociated by solar UV radiation. The effect of diurnal changes of the echo duration should be considered when the mass distribution of meteor showers is analyzed.

  5. Determination of the structure of meteor showers from radar observations.

    NASA Astrophysics Data System (ADS)

    Kolomiets, S. V.; Milyutchenko, I. A.

    1995-08-01

    A method for the determination of the parameter s for meteor mass distribution and meteor shower number density from radar measurements of meteor quantities during shower activities is considered. The data from radar observations of η Aquarids and Orionids in Khar'kov in 1986 are analyzed with this method. For the duration of both showers, the maximum activity of the parameter s is found to be equal to 1.65. The dependencies of the number densities of the meteor showers and of the parameter s on the solar longitude and the time of observation are also derived. The mean number density of meteor bodies with M ≥ 10-3g is equal to 2.9×10-11m-2s-1 for the η Aquarids and 2.5×10-11m-2s-1 for the Orionids.

  6. Multi-station Video Orbits of Minor Meteor Showers

    NASA Astrophysics Data System (ADS)

    Madiedo, José M.; Trigo-Rodríguez, Josep M.

    2008-06-01

    During 2006 the SPanish Meteor Network (SPMN) set up three automated video stations in Andalusia for increasing the atmospheric coverage of the already existing low-scan-rate all-sky CCD systems. Despite their initially thought complementary nature, sensitive video cameras have been employed to setup an automatic meteor detection system that provides valuable real-time information on unusual meteor activity, and remarkable fireball events. In fact, during 2006 SPMN video stations participated in the detection of two unexpected meteor outbursts: Orionids and Comae Berenicids. The three new SPMN stations guarantee almost a continuous monitoring of meteor and fireball activity in Andalusia (Spain) and also increase the chance of future meteorite recoveries. A description of the main characteristics of these new observing video stations and some examples of the trajectory, radiant and orbital data obtained so far are presented here.

  7. Meteor showers of comet C/1917 F1 Mellish

    NASA Astrophysics Data System (ADS)

    Vereš, P.; Kornoš, L.; Tóth, J.

    2011-03-01

    December Monocerotids and November Orionids are weak but established annual meteor showers active throughout November and December. Analysis of a high quality orbits subset of the SonotaCo video meteor data base shows that the distribution of orbital elements, geocentric velocity and also the orbital evolution of the meteors and potential parent body may imply a common origin for these meteors coming from the parent comet C/1917 F1 Mellish. This is also confirmed by the physical properties and activity of these shower meteors. An assumed release of meteoroids at the perihelion of the comet in the past and the sky-plane radiant distribution reveal that the December Monocerotid stream might be younger than the November Orionids. A meteoroid transversal component of ejection velocity at the perihelion must be larger than 100 m s-1. A few authors have also associated December Canis Minorids with the comet C/1917 F1 Mellish. However, we did not find any connection.

  8. A processing method and results of meteor shower radar observations

    NASA Technical Reports Server (NTRS)

    Belkovich, O. I.; Suleimanov, N. I.; Tokhtasjev, V. S.

    1987-01-01

    Studies of meteor showers permit the solving of some principal problems of meteor astronomy: to obtain the structure of a stream in cross section and along its orbits; to retrace the evolution of particle orbits of the stream taking into account gravitational and nongravitational forces and to discover the orbital elements of its parent body; to find out the total mass of solid particles ejected from the parent body taking into account physical and chemical evolution of meteor bodies; and to use meteor streams as natural probes for investigation of the average characteristics of the meteor complex in the solar system. A simple and effective method of determining the flux density and mass exponent parameter was worked out. This method and its results are discussed.

  9. First results on video meteors from Crete, Greece

    NASA Astrophysics Data System (ADS)

    Maravelias, G.

    2012-01-01

    This work presents the first systematic video meteor observations from a, forthcoming permanent, station in Crete, Greece, operating as the first official node within the International Meteor Organization's Video Network. It consists of a Watec 902 H2 Ultimate camera equipped with a Panasonic WV-LA1208 (focal length 12mm, f/0.8) lens running MetRec. The system operated for 42 nights during 2011 (August 19-December 30, 2011) recording 1905 meteors. It is significantly more performant than a previous system used by the author during the Perseids 2010 (DMK camera 21AF04.AS by The Imaging Source, CCTV lens of focal length 2.8 mm, UFO Capture v2.22), which operated for 17 nights (August 4-22, 2010) recording 32 meteors. Differences - according to the author's experience - between the two softwares (MetRec, UFO Capture) are discussed along with a small guide to video meteor hardware.

  10. Fresh Crater in Center of Older Crater Basin

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A fresh new crater in the center of an older crater basin is shown in this picture (FDS27459) of the surface of Mercury taken March 29, by Mariner 10. The newer crater (almost centered in the photo) is about 12 kilometers (7 1/2 miles) across. The picture, which covers an area 130 by 170 kilometers (90 by 105 miles), was taken from a distance of about 20,700 kilometers (12,860 miles) a half-hour before Mariner 10 made its closest flyby of Mercury.

    The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    Image Credit: NASA/JPL/Northwestern University

  11. The Updated IAU MDC Catalogue of Photographic Meteor Orbits

    NASA Technical Reports Server (NTRS)

    Porubcan, V.; Svoren, J.; Neslusan, L.; Schunova, E.

    2011-01-01

    The database of photographic meteor orbits of the IAU Meteor Data Center at the Astronomical Institute SAS has gradually been updated. To the 2003 version of 4581 photographic orbits compiled from 17 different stations and obtained in the period 1936-1996, additional new 211 orbits compiled from 7 sources have been added. Thus, the updated version of the catalogue contains 4792 photographic orbits (equinox J2000.0) available either in two separate orbital and geophysical data files or a file with the merged data. All the updated files with relevant documentation are available at the web of the IAU Meteor Data Center. Keywords astronomical databases photographic meteor orbits 1 Introduction Meteoroid orbits are a basic tool for investigation of distribution and spatial structure of the meteoroid population in the close surroundings of the Earth s orbit. However, information about them is usually widely scattered in literature and often in publications with limited circulation. Therefore, the IAU Comm. 22 during the 1976 IAU General Assembly proposed to establish a meteor data center for collection of meteor orbits recorded by photographic and radio techniques. The decision was confirmed by the next IAU GA in 1982 and the data center was established (Lindblad, 1987). The purpose of the data center was to acquire, format, check and disseminate information on precise meteoroid orbits obtained by multi-station techniques and the database gradually extended as documented in previous reports on the activity of the Meteor Data Center by Lindblad (1987, 1995, 1999 and 2001) or Lindblad and Steel (1993). Up to present, the database consists of 4581 photographic meteor orbits (Lindblad et al., 2005), 63.330 radar determined orbit: Harvard Meteor Project (1961-1965, 1968-1969), Adelaide (1960-1961, 1968-1969), Kharkov (1975), Obninsk (1967-1968), Mogadish (1969-1970) and 1425 video-recordings (Lindblad, 1999) to which additional 817 video meteors orbits published by Koten el

  12. How old is Autolycus crater?

    NASA Astrophysics Data System (ADS)

    Hiesinger, Harald; Pasckert, Jan Henrik; van der Bogert, Carolyn H.; Robinson, Mark S.

    2016-04-01

    Accurately determining the lunar cratering chronology is prerequisite for deriving absolute model ages (AMAs) across the lunar surface and throughout the Solar System [e.g., 1]. However, the lunar chronology is only constrained by a few data points over the last 1 Ga and there are no calibration data available between 1 and 3 Ga and beyond 3.9 Ga [2]. Rays from Autolycus and Aristillus cross the Apollo 15 landing site and presumably transported material to this location [3]. [4] proposed that at the Apollo 15 landing site about 32% of any exotic material would come from Autolycus crater and 25% would come from Aristillus crater. [5,6] proposed that the 39Ar-40Ar age of 2.1 Ga derived from three petrologically distinct, shocked Apollo 15 KREEP basalt samples, date Autolycus crater. Grier et al. [7] reported that the optical maturity (OMAT) characteristics of these craters are indistinguishable from the background values despite the fact that both craters exhibit rays that were used to infer relatively young, i.e., Copernican ages [8,9]. Thus, both OMAT characteristics and radiometric ages of 2.1 Ga and 1.29 Ga for Autolycus and Aristillus, respectively, suggest that these two craters are not Copernican in age. [10] interpreted newer U-Pb ages of 1.4 and 1.9 Ga from sample 15405 as the formation ages of Aristillus and Autolycus. If Autolycus is indeed the source of the dated exotic material collected at the Apollo 15 landing site, than performing crater size frequency distribution (CSFD) measurements for Autolycus offers the possibility to add a new calibration point to the lunar chronology, particularly in an age range that was previously unconstrained. We used calibrated and map-projected LRO NAC images to perform CSFD measurements within ArcGIS, using CraterTools [11]. CSFDs were then plotted with CraterStats [12], using the production and chronology functions of [13]. We determined ages of 3.72 and 3.85 Ga for the interior (Ai1) and ejecta area Ae3, which we

  13. WHETSTONE ROADLESS AREA, ARIZONA.

    USGS Publications Warehouse

    Wrucke, Chester T.; McColly, Robert A.

    1984-01-01

    A mineral survey conducted has shown that areas in and adjacent to the Whetstone Roadless Area, Arizona have a substantiated resource potential for copper, lead, gold, silver, and quartz, and a probable mineral-resource potential for copper silver, lead, gold, molybdenum, tungsten, uranium, and gypsum. Copper and silver occur in a small vein deposit in the southwestern part of the roadless area. Copper, lead, silver, gold, and molybdenum are known in veins associated with a porphyry copper deposit in a reentrant near the southern border of the roadless area. Vein deposits of tungsten and uranium are possible in the northeast part of the roadless area near areas of known production of these commodities. Demonstrated resources of quartz for smelter flux extend into the roadless area from the Ricketts mine. Areas of probable potential for gypsum resources also occur within the roadless area. No potential for fossil fuel resources was identified in the study.

  14. SUPERSTITION WILDERNESS, ARIZONA.

    USGS Publications Warehouse

    Peterson, Donald W.; Jinks, Jimmie E.

    1984-01-01

    On the basis of geologic studies and mineral evaluations most of the Superstition Wilderness and adjoining areas are judged to have little promise for occurrence of mineral resources. However, two areas in an east-trending zone near the southern margin of the area, marked by spotty occurrences of mineralized rock, prospect pits, and a band of geochemical anomalies that coincides with aligned magnetic anomalies, are considered to have probable mineral-resource potential. This zone lies within about 6 mi of two productive mines in Arizona's great copper belt, and the trend of the zone is parallel to many of the significant mineralized structures of this belt. A small isolated uranium anomaly was found in the northeastern part of the wilderness, but no evidence of other energy resources, such as petroleum, coal, or geothermal, was found.

  15. Meteoric ion layers in the ionospheres of venus and mars: Early observations and consideration of the role of meteor showers

    NASA Astrophysics Data System (ADS)

    Withers, Paul; Christou, A. A.; Vaubaillon, J.

    2013-10-01

    Layers of metal ions produced by meteoroid ablation have been known in Earth's ionosphere for decades, but have only recently been discovered at Venus and Mars. Here we report the results of a search for meteoric layers in earlier datasets from Venus and Mars. We find 13 candidates at Venus in Mariner 10, Venera 9/10, and Pioneer Venus Orbiter data that augment the 18 previously identified in Venus Express data. We find 8 candidates at Mars in Mariner 7 and Mariner 9 data that augment the 71 and 10 previously identified in Mars Global Surveyor and Mars Express data, respectively. These new findings extend the ranges of conditions under which meteoric layers have been observed, support studies of the temporal variability of meteoric layers, and (for Venus) independently confirm the existence of meteoric layers. One of the proposed causes of temporal variations in the occurrence rate of meteoric layers is meteor showers. This possibility is controversial, since meteor showers have minimal observed effect on meteoric layers in Earth's ionosphere. In order to aid progress towards a resolution of this issue, we present a series of tests for this hypothesis.

  16. Crater Ejecta by Day and Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 24 June 2004 This pair of images shows a crater and its ejecta.

    Day/Night Infrared Pairs

    The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top.

    Infrared image interpretation

    Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images.

    Image information: IR instrument. Latitude -9, Longitude 164.2 East (195.8 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through

  17. Meridiani Crater in Day and Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 14 June 2004 This pair of images shows crater ejecta in the Terra Meridiani region.

    Day/Night Infrared Pairs

    The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top.

    Infrared image interpretation

    Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images.

    Image information: IR instrument. Latitude -1.6, Longitude 4.1 East (355.9 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will

  18. Gusev Crater by Day and Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 23 June 2004 This pair of images shows part of Gusev Crater.

    Day/Night Infrared Pairs

    The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top.

    Infrared image interpretation

    Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images.

    Image information: IR instrument. Latitude -14.5, Longitude 175.5 East (184.5 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through

  19. A study of meteor spectroscopy and physics from earth-orbit: A preliminary survey into ultraviolet meteor spectra

    NASA Technical Reports Server (NTRS)

    Meisel, D. D.

    1976-01-01

    Preliminary data required to extrapolate available meteor physics information (obtained in the photographic, visual and near ultraviolet spectral regions) into the middle and far ultraviolet are presented. Wavelength tables, telluric attenuation factors, meteor rates, and telluric airglow data are summarized in the context of near-earth observation vehicle parameters using moderate to low spectral resolution instrumentation. Considerable attenuation is given to the problem of meteor excitation temperatures since these are required to predict the strength of UV features. Relative line intensities are computed for an assumed chondritic composition. Features of greatest predicted intensities, the major problems in meteor physics, detectability of UV meteor events, complications of spacecraft motion, and UV instrumentation options are summarized.

  20. Self-Secondary Crater Populations on Copernican Continuous Ejecta Blankets

    NASA Astrophysics Data System (ADS)

    Zanetti, M.; Jolliff, B.; van der Bogert, C. H.; Hiesinger, H.; Plescia, J.; Artemieva, N.

    2016-05-01

    Self-secondary craters (a population of craters formed on continuous ejecta deposits by fragments from the parent crater) may account for melt/ejecta CSFD discrepancies, and may imply inner Solar System cratering flux estimates are overestimated.

  1. Young Craters on Smooth Plains

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Young craters (the largest of which is about 100 kilometers in diameter) superposed on smooth plains. Larger young craters have central peaks, flat floors, terraced walls, radial ejecta deposits, and surrounding fields of secondary craters. Smooth plains have well-developed ridges extending NW and NE. This image (FDS 167), acquired during the spacecraft's first encounter with Mercury, is located approximately 60 degrees N, 175 degrees W.

    The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    Image Credit: NASA/JPL/Northwestern University

  2. Venus - Lavinia Region Impact Craters

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Three large meteorite impact craters, with diameters that range from 37 to 50 kilometers (23 to 31 miles), are seen in this image of the Lavinia region of Venus. The image is centered at 27 degrees south latitude and 339 degrees east longitude (longitude on Venus is measured from 0 degrees to 360 degrees east), and covers an area 550 kilometers (342 miles) wide by about 500 kilometers (311 miles) long. Situated in a region of fractured plains, the craters show many features typical of meteorite impact craters, including rough (bright) material around the rim, terraced inner walls and central peaks. Numerous domes, probably caused by volcanic activity, are seen in the southeastern corner of the mosaic. The domes range in diameter from 1 to 12 kilometers (0.6 to 7 miles). Some of the domes have central pits that are typical of some types of volcanoes. North is at the top of the image.

  3. Degradation of Endeavour Crater, Mars

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Crumpler, L. S.; Parker, T. J.; Golombek, M. P.; Wilson, S. A.; Mittlefehldt, D. W.

    2015-01-01

    The Opportunity rover has traversed portions of two western rim segments of Endeavour, a 22 km-diameter crater in Meridiani Planum, for the past three years. The resultant data enables the evaluation of the geologic expression and degradation state of the crater. Endeavour is Noa-chian-aged, complex in morphology, and originally may have appeared broadly similar to the more pristine 20.5 km-diameter Santa Fe complex crater in Lunae Palus (19.5degN, 312.0degE). By contrast, Endeavour is considerably subdued and largely buried by younger sulfate-rich plains. Exposed rim segments dubbed Cape York (CY) and Solander Point/Murray Ridge/Pillinger Point (MR) located approximately1500 m to the south reveal breccias interpreted as remnants of the ejecta deposit, dubbed the Shoemaker Formation. At CY, the Shoemaker Formation overlies the pre-impact rocks, dubbed the Matijevic Formation.

  4. Comet Machholz and the Quadrantid meteor stream

    NASA Astrophysics Data System (ADS)

    Jones, J.; Jones, W.

    1993-04-01

    Until quite recently, the Quadrantid meteor stream was considered to be an 'orphan'. Because of the difficulty in accounting for the large difference in the longitudes of the ascending nodes, McIntosh (1990) suggested that Comet Machholz and the stream have a sibling rather than a parent-child relationship. Gonczi et al. (1992) proposed that gravitational perturbations by Jupiter may be amplified sufficiently by the 2:1 resonance of the stream with Jupiter to explain the difference in the longitudes of ascending nodes if the stream was born when the comet's perihelion distance was last at its minimum about 4000 yr ago. In this paper, we show by computer simulations that, if the comet was captured at its last close approach with Jupiter about 2200 yr ago, there has been sufficient time for the resulting stream to produce most of the features of the presently observed Quadrantid/Arietid/Southern Delta-Aquarid complex.

  5. Asteroids in the Eccentrids meteor system

    NASA Astrophysics Data System (ADS)

    Terentjeva, A. K.; Barabanov, S. I.

    2016-09-01

    Among 11 673 of near-Earth objects (NEOs), 52 asteroids are identified, which, together with the Eccentrids meteor system, comprise a single population of small bodies of the Solar System with the smallest orbits of high eccentricity. Some features of this unique system of bodies are discussed in this paper. The distribution of perihelion longitudes is studied for the given group of asteroids and compared to that of the Aten asteroids, which are the most similar to the Eccentrids. The dependence is obtained of the character of perihelion longitude distribution on the eccentricities of the NEO orbits. Eight asteroid stream of the Eccentrids are found. The Eccentrids asteroids approaching the Earth's orbit along its whole length in their aphelia can pose a certain hazard for the Earth.

  6. Crowdsourcing, the great meteor storm of 1833, and the founding of meteor science.

    PubMed

    Littmann, Mark; Suomela, Todd

    2014-06-01

    Yale science professor Denison Olmsted used crowdsourcing to gather observations from across the United States of the unexpected deluge of meteors on 13 November 1833--more than 72,000/h. He used these observations (and newspaper accounts and correspondence from scientists) to make a commendably accurate interpretation of the meteor storm, overturning 2100 years of erroneous teachings about shooting stars and establishing meteor science as a new branch of astronomy. Olmsted's success was substantially based on his use of newspapers and their practice of news pooling to solicit observations from throughout the country by lay and expert observers professionally unaffiliated with Yale College and him. In today's parlance, Olmsted was a remarkably successful early practitioner of scientific crowdsourcing, also known as citizen science. He may have been the first to use mass media for crowdsourcing in science. He pioneered many of the citizen-science crowdsourcing practices that are still in use today: an open call for citizen participation, a clearly defined task, a large geographical distribution for gathering data and a rapid response to opportunistic events. Olmsted's achievement is not just that he used crowdsourcing in 1833 but that crowdsourcing helped him to advance science significantly. PMID:24917173

  7. Meteoric Metal Layer in Mars' Atmosphere: Steady-state Flux and Meteor Showers

    NASA Astrophysics Data System (ADS)

    Crismani, Matteo; Schneider, Nicholas; Jain, Sonal; Plane, John; Diego Carrillo-Sanchez, Juan; Deighan, Justin; Stevens, Michael; Evans, Scott; Chaffin, Michael; Stewart, Ian; Jakosky, Bruce

    2016-04-01

    We report on a steady state metal ion layer at Mars produced by meteoric ablation in the upper atmosphere as observed by the Imaging Ultraviolet Spectrograph (IUVS) on MAVEN. The response of the Martian atmosphere to meteoroid influx constrains cometary activity, dust dynamics, ionospheric production at Mars and meteoric smoke may represent a site of nucleation for high altitude clouds. Using observations that span more than an Earth year, we find this layer is global and steady state, contrary to previous observations, but in accordance with predictions. IUVS observations cover a range of observation conditions, which allows us to determine the variability of the Mg+ layer seasonally and geographically. In December 2015, Mars encountered three predicted meteor showers, and analysis of these events will determine whether Mars' atmosphere responds to such events dramatically, as was the case with comet Siding Spring, or more similarly to Earth. Mg is also detected, but Mg/Mg+ less than predicted by factor >3, indicative of undetermined chemical processes in the Mars atmosphere.

  8. Crowdsourcing, the great meteor storm of 1833, and the founding of meteor science.

    PubMed

    Littmann, Mark; Suomela, Todd

    2014-06-01

    Yale science professor Denison Olmsted used crowdsourcing to gather observations from across the United States of the unexpected deluge of meteors on 13 November 1833--more than 72,000/h. He used these observations (and newspaper accounts and correspondence from scientists) to make a commendably accurate interpretation of the meteor storm, overturning 2100 years of erroneous teachings about shooting stars and establishing meteor science as a new branch of astronomy. Olmsted's success was substantially based on his use of newspapers and their practice of news pooling to solicit observations from throughout the country by lay and expert observers professionally unaffiliated with Yale College and him. In today's parlance, Olmsted was a remarkably successful early practitioner of scientific crowdsourcing, also known as citizen science. He may have been the first to use mass media for crowdsourcing in science. He pioneered many of the citizen-science crowdsourcing practices that are still in use today: an open call for citizen participation, a clearly defined task, a large geographical distribution for gathering data and a rapid response to opportunistic events. Olmsted's achievement is not just that he used crowdsourcing in 1833 but that crowdsourcing helped him to advance science significantly.

  9. Automated and Manual Rocket Crater Measurement Software

    NASA Technical Reports Server (NTRS)

    Metzger, Philip; Immer, Christopher

    2012-01-01

    An update has been performed to software designed to do very rapid automated measurements of craters created in sandy substrates by rocket exhaust on liftoff. The previous software was optimized for pristine lab geometry and lighting conditions. This software has been enhanced to include a section for manual measurements of crater parameters; namely, crater depth, crater full width at half max, and estimated crater volume. The tools provide a very rapid method to measure these manual parameters to ease the burden of analyzing large data sets. This software allows for rapid quantization of the rocket crater parameters where automated methods may not work. The progress of spreadsheet data is continuously saved so that data is never lost, and data can be copied to clipboards and pasted to other software for analysis. The volume estimation of a crater is based on the central max depth axis line, and the polygonal shape of the crater is integrated around that axis.

  10. Crater Ejecta Deposition on Ceres

    NASA Astrophysics Data System (ADS)

    Schmedemann, Nico; Otto, Katharina; Schulzeck, Franziska; Krohn, Katrin; Gathen, Isabell v. d.; Kneissl, Thomas; Neesemann, Adrian; Jaumann, Ralf; Raymond, Carol; Russell, Christopher T.

    2016-10-01

    Since March 6 2015 the Dawn spacecraft (Russell et al., 2012) is orbiting the dwarf planet Ceres inside the asteroid main belt. Color ratio data of the Framing Camera instrument show distinct bluish characteristics of recently exposed materials such as impact ejecta of young craters. Besides the common radial pattern of proximal ejecta, the distribution of remote ejecta is heavily affected by the relatively fast rotation of Ceres. We compare results from n-body simulations of impact ejecta with specific patterns in the color ratio data of the Dawn Framing Camera. Results of this work can also be used in order to predict prominent regions and patterns of secondary cratering.

  11. Crater Lake: blue through time

    USGS Publications Warehouse

    Larson, Gary L.; Buktenica, Mark; Collier, Robert

    2003-01-01

    Blue is the color of constancy, hence the term true blue. The unearthly blueness of Crater Lake reflects its pristine character and gives scientists a focal point for studying human impacts on aquatic environments over long periods of time. Scientists with the U.S. Geological Survey (USGS), National Park Service, and Oregon State University have systematically studied the lake for the last two decades. Long-term monitoring of this lake is a priority of Crater Lake National Park and will continue far into the future.

  12. Meteor stream survey in the southern hemisphere using SAAMER

    NASA Astrophysics Data System (ADS)

    Janches, D.; da Silva, D.; Pifko, S.; Hormaechea, J.; Hocking, W.; Brunini, C.; Close, S.; Fritts, D.

    2014-07-01

    We present in this manuscript two meteor shower surveys in the Southern Hemisphere utilizing the Southern Argentina Agile Meteor Radar (SAAMER). SAAMER, which operates at the southern most region of South America, is a new generation SKiYMET system designed with significant differences from typical meteor radars including high transmitted power and an 8-antenna transmitting array enabling large detected rates at low zenith angles. For the first survey, we applied the statistical methodology developed by Jones and Jones (2006) to the data collected each day during 4 years and compiled the results into 1 composite representative year at 1-degree resolution in Solar Longitude. We then search for enhancements in the activity, which last for at least 3 days and evolve temporally as is expected for a meteor shower. Using this methodology, we have identified in our data 32 shower radiants, two of which were not part of the IAU commission 22 meteor shower working list (Janches et al., 2014). Recently, SAAMER's capabilities were enhanced by adding two remote stations to receive meteor forward scatter signals from meteor trails and thus enable the determination of meteoroid orbital parameters. SAAMER started recording orbits in January 2012. We also present a 1-year survey using a wavelet-transform approach (Galligan and Baggaley, 2002ab; Brown et al., 2008) of this new orbital dataset to isolate enhancements in radiant density in geocentric coordinates resulting in not only radiant information but shower orbital properties.

  13. eMeteorNews: website and PDF journal

    NASA Astrophysics Data System (ADS)

    Roggemans, P.; Kacerek, R.; Koukal, J.; Miskotte, K.; Piffl, R.

    2016-01-01

    Amateur meteor workers have always been interested to exchange information and experience. In the past this was only possible via personal contacts by letter or by specialized journals. With internet a much faster medium became available and plenty of websites, mailing lists, Facebook groups, etc., have been created in order to communicate about meteors. Today there is a wealth of meteor data circulating on internet, but the information is very scattered and not directly available to everyone. The authors have been considering how to organize an easy access to the many different meteor related publications. The best solution for the current needs of amateur meteor observers proved to be a dedicated website combined with a PDF journal, both being free available without any subscription fee or registration requirement. The authors decided to start with this project and in March 2016 the website meteornews.org has been created. A first issue of eMeteorNews was prepared in April 2016. The year 2016 will be a test period for this project. The mission statement of this project is: "Minimizing overhead and editorial constraints to assure a swift exchange of information dedicated to all fields of active amateur meteor work."

  14. Moon - 'Ghost' craters formed during Mare filling.

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Hartmann, W. K.; Wood, C. A.

    1973-01-01

    This paper discusses formation of 'pathological' cases of crater morphology due to interaction of craters with molten lavas. Terrestrial observations of such a process are discussed. In lunar maria, a number of small impact craters (D less than 10 km) may have been covered by thin layers of fluid lavas, or formed in molten lava. Some specific lunar examples are discussed, including unusual shallow rings resembling experimental craters deformed by isostatic filling.

  15. Holden Crater/Uzboi Valles

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 17 April 2002) The Science This image, located near 27.0S and 35.5W (324.5E), displays the intersection of Holden Crater with Uzboi Valles. This region of Mars contains a number of features that could be related to liquid water on the surface in the Martian past. Holden Crater contains finely layered sedimentary units that have been subsequently dissected. The hummucky terrain in the bottom half of the image is the remnants of this terrain, though the fine layers are not visible in this image at this resolution. The sedimentary units could have formed through deposition of material in a lacustrine type environment. Alternately, these layers could also be volcanic ash deposits. Uzboi Valles, which enters the crater from the southwest, is a catastrophic outflow channel that formed in the Martian past. The streamlined nature of the topographic features at the intersection of the crater with Uzboi Valles record the erosional pattern of flowing liquid water on the surface of Mars during the episodic outflow event. The Story Mars doesn't have a shortage of rugged terrain, and this area is no exception. While things look pretty quiet now, this cratered region was once the scene of some tremendous action. Long ago in Martian history, an incoming meteoroid probably smashed into the planet and produced a giant impact crater named Holden Crater, which stretches 88 miles across the Martian surface. The history of the area around Holden Crater doesn?t stop there. At some point, a catastrophic flood burst forth on the surface, forming an impressive outflow channel called Uzboi Valles. No one knows exactly how that happened, or whether the water might even have rushed into Holden Crater at some point, forming a long-ago lake. What we do know is that there is a lot of sedimentary material that could have formed in two hypothesized ways: in an ancient lake environment or as volcanic-ash deposits. Scientists are searching for the answers by studying the region where Uzboi

  16. The self-secondary crater population of the Hokusai crater on Mercury

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyong; Prieur, Nils C.; Werner, Stephanie C.

    2016-07-01

    Whether or not self-secondaries dominate small crater populations on continuous ejecta deposits and floors of fresh impact craters has long been a controversy. This issue potentially affects the age determination technique using crater statistics. Here the self-secondary crater population on the continuous ejecta deposits of the Hokusai crater on Mercury is unambiguously recognized. Superposition relationships show that this population was emplaced after both the ballistic sedimentation of excavation flows and the subsequent veneering of impact melt, but it predated the settlement and solidification of melt pools on the crater floor. Fragments that formed self-secondaries were launched via impact spallation with large angles. Complex craters on the Moon, Mercury, and Mars probably all have formed self-secondaries populations. Dating young craters using crater statistics on their continuous ejecta deposits can be misleading. Impact melt pools are less affected by self-secondaries. Overprint by subsequent crater populations with time reduces the predominance of self-secondaries.

  17. A decadal survey of the Daytime Arietid meteor shower using the Canadian Meteor Orbit Radar

    NASA Astrophysics Data System (ADS)

    Bruzzone, J. S.; Brown, P.; Weryk, R. J.; Campbell-Brown, M. D.

    2015-01-01

    We present results from a 12 year survey of the Daytime Arietid meteor shower using the Canadian Meteor Orbit Radar, a VHF backscattering orbital meteor radar, covering the interval 2002-2013. This survey recorded more than 2 × 104 Daytime Arietid orbits having representative masses of 8 × 10-8 kg and sizes of ≈0.4 mm. The core activity for the Arietids is found in the range 73.5° ≤ λ⊙ ≤ 84.5° and shows a broad 4-d maximum centred near λ⊙ = 80.5° of 0.04 meteoroids km-2 h-1 producing meteors of equivalent radio magnitude of +6.5 from a mean radiant at αg = 44.9° ± 1.1°, δg = 25.5° ± 1 .0°. During the plateau of shower peak activity, the mass index of the stream reaches a minimum with s = 1.6-1.7. Contamination from another nearby shower (likely the Daytime Zeta Perseids) and/or sub-streams showing different orbits compared to the core of the stream is evident in the interval 60.5° ≤ λ⊙ ≤ 71.5°. Similar contamination beyond λ⊙ = 84.5° may be due to the Helion sporadic source. We also characterized the deceleration profiles for Daytime Arietid meteor echoes using several independent speed techniques including Fresnel pre-t0, Fresnel amplitude oscillation and time-of-flight speeds which together with modelling produced a best estimate for the stream's out-of-atmosphere speed of v∞ = 40.5 ± 0.7 km s-1. The mean radar orbit from our study is noticeably smaller in semi-major axis and eccentricity than is found for larger Arietids measured with optical systems, a difference which if real indicates a particle-size sorting of the stream orbit. The broad activity maximum, long duration of activity and particle-size dependence of the orbital elements suggest the stream is too old to have been solely formed during the breakup of the parent comet of the Marsden sunskirters about a millennium ago as proposed by Sekanina & Chodas.

  18. Venus - Oblique View of Crater Riley

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This Magellan full resolution radar mosaic centered at 14 degrees north latitude, 72 degrees east longitude, shows an oblique view of the impact crater Riley, named for Margaretta Riley, a 19th Century botanist. This view was prepared from two left-looking Magellan radar images acquired with different incidence angles. Because the relief displacements of the two images are different, depths from the crater rim to the crater floor and heights of the crater rim and flanks above the surrounding plains can be measured. The crater is 25 kilometers (15.5 miles) in diameter. The floor of the crater is 580 meters (1,914 feet) below the plains surrounding the crater. The crater's rim rises 620 meters (2,046 feet) above the plains and 1,200 meters (3,960 feet) above the crater floor. The crater's central peak is 536 meters (1,769 feet) high. The crater's diameter is 40 times the depth resulting in a relatively shallow appearance. The topography is exaggerated by 22 times to emphasize the crater's features. This oblique view was produced from two left-looking radar stereo image mosaics utilizing photogrammetric software developed by the Solar System Visualization Project and the Digital Image Animation Laboratory at JPL's Multimission Image Processing Laboratory.

  19. Data processing of solar EUV instruments on the METEOR satellite

    NASA Technical Reports Server (NTRS)

    Brown, Hipook

    1995-01-01

    The Multiple Experiment Transporter into Earth Orbit and Return-Solar EUV Experiment (METEOR-SEE) project will take daily extreme ultraviolet (EUV) irradiance spectra starting in the summer of 1995. The METEOR-SEE package consists of an EUV grating spectrograph (EGS) and a cluster of 5 soft x-ray photometers (XP's). Both these instruments have flown previously on NASA sounding rockets. Because of the scope of the project, new data processing algorithms had to be developed for the SEE instruments onboard the METEOR satellite. An overview of the data flow describes how satellite data are collected and processed. Detailed descriptions of specific routines will show what data processing entails.

  20. [Pathogenetic basis and therapeutic management of meteorism (author's transl)].

    PubMed

    Hafter, E

    1980-09-01

    Meteorism might be a symptom of organic intestinal obstruction, which needs surgical treatment in most cases. However it is often a functional phenomenon. It may be produced by aerophagy, followed by sonor, non fetid flatulence. Large amounts of gas are produced by the contact of gastric acidity with alcaline pancreatic secretion and by enzymatic digestion of food. Most of these gases are absorbed by the intestine and exhaled. In the colon bacterial fermentation and putrefaction produce fetid gas which is expulsed as flatus. Overeating, bacterial invasion of the small intestin, inflammatory and circulatory disturbances of the small bowel and obstipation favour meteorism. The treatment depends of the origin of meteorism.