Designing dual-plate meteoroid shields: A new analysis
NASA Technical Reports Server (NTRS)
Swift, H. F.; Bamford, R.; Chen, R.
1982-01-01
Physics governing ultrahigh velocity impacts onto dual-plate meteor armor is discussed. Meteoroid shield design methodologies are considered: failure mechanisms, qualitative features of effective meteoroid shield designs, evaluating/processing meteoroid threat models, and quantitative techniques for optimizing effective meteoroid shield designs. Related investigations are included: use of Kevlar cloth/epoxy panels in meteoroid shields for the Halley's Comet intercept vehicle, mirror exposure dynamics, and evaluation of ion fields produced around the Halley Intercept Mission vehicle by meteoroid impacts.
A hydrodynamic mechanism of meteor ablation. The melt-spraying model
NASA Astrophysics Data System (ADS)
Girin, Oleksandr G.
2017-10-01
Context. Hydrodynamic conditions are similar in a molten meteoroid and a liquid drop in a high-speed airflow. Despite the fact that the latter is well-studied, both experimentally and theoretically, hydrodynamic instability theory has not been applied to study the fragmentation of molten meteoroids. Aims: We aim to treat quasi-continuous spraying of meteoroid melt due to hydrodynamic instability as a possible mechanism of ablation. Our objectives are to calculate the time development of particle release, the released particle sizes and their distribution by sizes, as well as the meteoroid mass loss law. Methods: We have applied gradient instability theory to model the behaviour of the meteoroid melt layer and its interaction with the atmosphere. We have assumed a spherical meteoroid and that the meteoroid has a shallow entry angle, such that the density of the air stream interacting with the meteoroid is nearly constant. Results: High-frequency spraying of the molten meteoroid is numerically simulated. The intermediate and final size distributions of released particles are calculated, as well as the meteoroid mass loss law. Fast and slow meteoroids of iron and stone compositions are modelled, resulting in significant differences in the size distribution of melt particles sprayed from each meteoroid. Less viscous iron melt produces finer particles and a denser aerosol wake than a stony one does. Conclusions: Analysis of the critical conditions for the gradient instability mechanism shows that the dynamic pressure of the air-stream at heights up to 100 km is sufficient to overcome surface tension forces and pull out liquid particles from the meteoroid melt by means of unstable disturbances. Hence, the proposed melt-spraying model is able to explain quasi-continuous mode of meteoroid fragmentation at large heights and low dynamic pressures. A closed-form solution of the meteoroid ablation problem is obtained due to the melt-spraying model usage, at the meteoroid composition, initial radius and velocity being given. The movies associated to Figs. 6 and 7 are available at http://www.aanda.org
Meteoroids are Dangerous to Spacecraft
NASA Technical Reports Server (NTRS)
Moorhead, Althea V.
2017-01-01
Meteoroids put dents in Shuttle windows much like bouncing gravel puts dents in your car's windshield. However, meteoroids move at such high speeds that they can partly vaporize the surfaces they strike! A dust particle (smaller than a meteoroid) hit the STEREO spacecraft and produced this fountain of smaller particles. When a meteoroid breaks up, its "shrapnel" can also be dangerous. Even when meteoroids don't damage a spacecraft, they can cause problems. Here, a small meteoroid bumped a camera on the Lunar Reconnaissance Orbiter (LRO), causing wiggles in this scan of the lunar surface. Meteoroids and pieces of space junk create rough edges on the outside of the Space Station that can damage space suits. The astronauts' gloves had to be thickened to help prevent them from ripping.
The Near-Earth Meteoroid Flux, Speed Distribution, and Uncertainty
NASA Technical Reports Server (NTRS)
Moorhead, Althea; Cooke, William J.; Brown, Peter G.; Campbell-Brown, Margaret; Moser, Danielle E.
2016-01-01
Meteoroids are known to pose a threat to spacecraft; they can puncture components, disturb spacecraft attitude, and possibly create secondary electrical effects. Accurate environment models are therefore critical for mitigating meteoroid-related risks. While there are several meteoroid environment models available for assessing spacecraft risk, the uncertainties associated with these models are not well understood. Because meteoroid properties are derived from indirect observations such as meteors and impact craters, the uncertainty in the meteoroid flux is potentially quite large. We combine existing meteoroid flux measurements with new radar and optical meteor data to improve our characterization of the meteoroid flux onto the Earth and its velocity distribution. We use data extracted from the NASA all-sky network, the Canadian Automated Meteor Observatory, and the Canadian Meteor Orbit Radar. We improve our characterization of the observed meteoroid speed distribution by incorporating modern descriptions of the ionization efficiency (e.g., Thomas et al., 2016). We also present estimates of the uncertainties associated with our meteoroid flux distribution. Finally, we discuss the implications for spacecraft. Our model is constrained by the cratering rate on the space-facing surface of LDEF, and thus the risk posed to spacecraft by meteoroid-induced physical damage is the least uncertain component of our model. Other sources of risk, however, may vary. For instance, a lower average meteoroid speed would require a higher meteoroid mass flux in order to match the LDEF crater counts, leading to higher predicted rates of attitude disturbances.
Meteoroid Environment Modeling: the Meteoroid Engineering Model and Shower Forecasting
NASA Technical Reports Server (NTRS)
Moorhead, Althea V.
2017-01-01
INTRODUCTION: The meteoroid environment is often divided conceptually into meteor showers and the sporadic meteor background. It is commonly but incorrectly assumed that meteoroid impacts primarily occur during meteor showers; instead, the vast majority of hazardous meteoroids belong to the sporadic complex. Unlike meteor showers, which persist for a few hours to a few weeks, sporadic meteoroids impact the Earth's atmosphere and spacecraft throughout the year. The Meteoroid Environment Office (MEO) has produced two environment models to handle these cases: the Meteoroid Engineering Model (MEM) and an annual meteor shower forecast. The sporadic complex, despite its year-round activity, is not isotropic in its directionality. Instead, their apparent points of origin, or radiants, are organized into groups called "sources". The speed, directionality, and size distribution of these sporadic sources are modeled by the Meteoroid Engineering Model (MEM), which is currently in its second major release version (MEMR2) [Moorhead et al., 2015]. MEM provides the meteoroid flux relative to a user-provided spacecraft trajectory; it provides the total flux as well as the flux per angular bin, speed interval, and on specific surfaces (ram, wake, etc.). Because the sporadic complex dominates the meteoroid flux, MEM is the most appropriate model to use in spacecraft design. Although showers make up a small fraction of the meteoroid environment, they can produce significant short-term enhancements of the meteoroid flux. Thus, it can be valuable to consider showers when assessing risks associated with vehicle operations that are brief in duration. To assist with such assessments, the MEO issues an annual forecast that reports meteor shower fluxes as a function of time and compares showers with the time-averaged total meteoroid flux. This permits missions to do quick assessments of the increase in risk posed by meteor showers.
NASA Meteoroid Engineering Model Release 2.0
NASA Technical Reports Server (NTRS)
Moorhead, A. V.; Koehler, H. M.; Cooke, W. J.
2015-01-01
The Meteoroid Engineering Model release 2.0 (MEMR2) software is NASA's most current and accurate model of the meteoroid environment. It enables the user to generate a trajectory-specific meteoroid environment for spacecraft traveling within the inner solar system. In addition to the total meteoroid flux, MEMR2 provides the user with meteoroid directionality and velocity information. Users have the ability to make a number of analysis and output choices that tailor the resulting environment to their needs. This Technical Memorandum outlines the history of MEMR2, the meteoroid environment it describes, and makes recommendations for the correct use of the software and interpretation of its results.
NASA Technical Reports Server (NTRS)
Wiegert, P. A.
2011-01-01
Interstellar meteoroids, solid particles arriving from outside our Solar System, are not easily distinguished from local meteoroids. A velocity above the escape velocity of the Sun is often used as an indicator of a possible interstellar origin. We demonstrate that the gravitational slingshot effect, resulting from the passage of local meteoroid near a planet, can produce hyperbolic meteoroids at the Earth s orbit with excess velocities comparable to those expected of interstellar meteoroids.
Meteoroid-Induced Anomalies on Spacecraft
NASA Technical Reports Server (NTRS)
Cooke, Bill
2015-01-01
Sporadic meteoroid background is directional (not isotropic) and accounts for 90 percent of the meteoroid risk to a typical spacecraft. Meteor showers get all the press, but account for only approximately10 percent of spacecraft risk. Bias towards assigning meteoroid cause to anomalies during meteor showers. Vast majority of meteoroids come from comets and have a bulk density of approximately 1 gram per cubic centimeter (ice). High speed meteoroids (approximately 50 kilometers per second) can induce electrical anomalies in spacecraft through discharging of charged surfaces (also EMP (electromagnetic pulse?).
Meteoroid capture cell construction
NASA Technical Reports Server (NTRS)
Zook, H. A.; High, R. W. (Inventor)
1976-01-01
A thin membrane covering the open side of a meteoroid capture cell causes an impacting meteoroid to disintegrate as it penetrates the membrane. The capture cell then contains and holds the meteoroid particles for later analysis.
Formation of Plasma Around a Small Meteoroid: Simulation and Theory
NASA Astrophysics Data System (ADS)
Sugar, G.; Oppenheim, M. M.; Dimant, Y. S.; Close, S.
2018-05-01
High-power large-aperture radars detect meteors by reflecting radio waves off dense plasma that surrounds a hypersonic meteoroid as it ablates in the Earth's atmosphere. If the plasma density profile around the meteoroid is known, the plasma's radar cross section can be used to estimate meteoroid properties such as mass, density, and composition. This paper presents head echo plasma density distributions obtained via two numerical simulations of a small ablating meteoroid and compares the results to an analytical solution found in Dimant and Oppenheim (2017a, https://doi.org/10.1002/2017JA023960, 2017b, https://doi.org/10.1002/2017JA023963). The first simulation allows ablated meteoroid particles to experience only a single collision to match an assumption in the analytical solution, while the second is a more realistic simulation by allowing multiple collisions. The simulation and analytical results exhibit similar plasma density distributions. At distances much less than λT, the average distance an ablated particle travels from the meteoroid before a collision with an atmospheric particle, the plasma density falls off as 1/R, where R is the distance from the meteoroid center. At distances substantially greater than λT, the plasma density profile has an angular dependence, falling off as 1/R2 directly behind the meteoroid, 1/R3 in a plane perpendicular to the meteoroid's path that contains the meteoroid center, and exp[-1.5(R/λT2/3)]/R in front of the meteoroid. When used for calculating meteoroid masses, this new plasma density model can give masses that are orders of magnitude different than masses calculated from a spherically symmetric Gaussian distribution, which has been used to calculate masses in the past.
Meteoroid Environment Modeling: The Meteoroid Engineering Model and Shower Forecasting
NASA Technical Reports Server (NTRS)
Moorhead, Althea V.
2017-01-01
The meteoroid environment is often divided conceptually into meteor showers and the sporadic meteor background. It is commonly but incorrectly assumed that meteoroid impacts primarily occur during meteor showers; instead, the vast majority of hazardous meteoroids belong to the sporadic complex. Unlike meteor showers, which persist for a few hours to a few weeks, sporadic meteoroids impact the Earth's atmosphere and spacecraft throughout the year. The Meteoroid Environment Office (MEO) has produced two environment models to handle these cases: the Meteoroid Engineering Model (MEM) and an annual meteor shower forecast. The sporadic complex, despite its year-round activity, is not isotropic in its directionality. Instead, their apparent points of origin, or radiants, are organized into groups called "sources". The speed, directionality, and size distribution of these sporadic sources are modeled by the Meteoroid Engineering Model (MEM), which is currently in its second major release version (MEMR2) [Moorhead et al., 2015]. MEM provides the meteoroid flux relative to a user-provided spacecraft trajectory; it provides the total flux as well as the flux per angular bin, speed interval, and on specific surfaces (ram, wake, etc.). Because the sporadic complex dominates the meteoroid flux, MEM is the most appropriate model to use in spacecraft design. Although showers make up a small fraction of the meteoroid environment, they can produce significant short-term enhancements of the meteoroid flux. Thus, it can be valuable to consider showers when assessing risks associated with vehicle operations that are brief in duration. To assist with such assessments, the MEO issues an annual forecast that reports meteor shower fluxes as a function of time and compares showers with the time-averaged total meteoroid flux. This permits missions to do quick assessments of the increase in risk posed by meteor showers. Section II describes MEM in more detail and describes our current efforts to improve its characteristics for a future release. Section III describes the annual shower forecast and highlights recent improvements made to its algorithm and inputs.
Density of very small meteoroids
NASA Astrophysics Data System (ADS)
Kikwaya Eluo, Jean-Baptiste
2015-08-01
Knowing the density of meteoroids helps to determine the physical structure and gives insight into the composition of their parent bodies. The density of meteoroids can provide clues to their origins, whether cometary or asteroidal. Density helps also to characterize the risk meteoroids may pose to artificial satellites.Ceplecha (1968) calculated the density of small meteoroids based on a parameter KB (meteoroid beginning height) and classified them in four categories (A,B,C,D) with densities going from 2700 to 180 kgm-3.Babadzhanov(2002) applied a model based on quasi-continuous fragmentation (QCF) on 413 photographic Super-Schmidt meteors by solely fitting their light curves. Their densities range from 400 to 7800 kgm-3. Bellot Rubio et al. (2002) analyzed the same 413 photographic meteors assuming the single body theory based on meteoroid dynamical properties and found densities ranging from 400 to 4800 kgm-3. A thermal erosion model was used by Borovicka et al. (2007) to analyze, simultaneously, the observed decelerations and light curves of six Draconid meteors. The density was found to be 300 kgm-3, consistent with the fact that the Draconid meteors are porous aggregates of grains associated with the Jupiter-family-comet 21P/Giacobini-Zinner (Jacchia, L.G., 1950).We used the Campbell-Brown and Koschny (2004) model of meteoroid ablation to determine the density of faint meteoroids from the analysis of both observed decelerations and light curves of meteoroids (Kikwaya et al., 2009; Kikwaya et al., 2011). Our work was based on a collection of six and ninety-two sporadic meteors. The grain masses used in the modeling ranged from 10-12 Kg to 10-9 Kg. We computed the orbit of each meteoroid and determined its Tisserand parameter. We found that meteoroids with asteroidal orbits have bulk densities ranging from 3000-5000 kgm-3. Meteoroids consistent with HTC/NIC parents have bulk densities from 400 kgm-3 to 1600 kg m-3. JFC meteoroids were found to have surprisingly chondritic-like bulk densities, suggesting either the sintering of the meteoroids through evolutionary processes, or the original radial transportation of chondritic materials up to the Kuiper Belt region.
NASA Astrophysics Data System (ADS)
Subasinghe, Dilini; Campbell-Brown, Margaret
2018-02-01
Luminous efficiency is a necessary parameter for determining meteoroid mass from optical emission. Despite this importance, it is very poorly known, with previous results varying by up to two orders of magnitude for a given speed. We present the most recent study of luminous efficiency values determined with modern high-resolution instruments, by directly comparing dynamic and photometric meteoroid masses. Fifteen non-fragmenting meteoroids were used, with a further five clearly fragmenting events for comparison. Twelve of the fifteen non-fragmenting meteoroids had luminous efficiencies less than 1%, while the fragmenting meteoroids had upper limits of a few tens of per cent. No clear trend with speed was seen, but there was a weak negative trend of luminous efficiency on meteoroid mass, implying that smaller meteoroids radiate more efficiently.
Formation of Dense Plasma around a Small Meteoroid: Kinetic Theory and its Implications
NASA Astrophysics Data System (ADS)
Dimant, Y. S.; Oppenheim, M. M.; Marshall, R.
2016-12-01
Every second, millions of small meteoroids hit the Earth from space, the vast majority too small to observe visually. Radars easily detect the plasma generated during meteoroid ablation and use this data to characterize the meteoroids and the atmosphere in which they disintegrate. Reflections of radar pulses from this plasma produce a signal called a head echo. We have developed a first-principle kinetic theory to describe the behavior of meteoric particles ablated from a fast-moving meteoroid and partially ionized through collisions with the atmosphere. This theory produces analytic expressions describing the ion and neutral density and velocity distributions. This analytical model will allow more accurate quantitative interpretations of head echo radar measurements. These, in turn, will improve our ability to infer meteoroid and atmospheric properties. Figure shows the theoretically predicted spatial distribution of the near-meteoroid plasma. This distribution is axially symmetric with respect to the path of the meteoroid. The plasma density within a collisional mean-free-path length drops in proportion to 1/R where R is the distance from the meteoroid center. Beyond this distance and behind the meteoroid, the density transitions to ∝ 1/R². This behavior makes the near-meteoroid plasma overdense to the propagating radar wave in all cases at locations sufficiently close to the meteoroid. Using the FDTD model of Marshall and Close [2015], we use this plasma density distribution to calculate the radar cross section (RCS) from head echoes. Consistent with the results of Marshall and Close [2015], we find that the RCS is given by the cross-section area of the meteor plasma inside which the plasma is overdense - the "overdense area" - as viewed from the radar. Since the distribution derived here is specified by two parameters, this result suggests that the meteor plasma distribution can be specified with two measurements of RCS at different frequencies, as was done by Close et al [2004]. The specification of the meteor plasma distribution then leads to an improved estimate of the parent meteoroid mass, a critical parameter for understanding the global meteoroid flux and deposition in the atmosphere. Work is supported by NSF Grant AGS-1244842.
Modeling Meteor Flares for Spacecraft Safety
NASA Technical Reports Server (NTRS)
Ehlert, Steven
2017-01-01
NASA's Meteoroid Environment Office (MEO) is tasked with assisting spacecraft operators and engineers in quantifying the threat the meteoroid environment poses to their individual missions. A more complete understanding of the meteoroid environment for this application requires extensive observations. One manner by which the MEO observes meteors is with dedicated video camera systems that operate nightly. Connecting the observational data from these video cameras to the relevant physical properties of the ablating meteoroids, however, is subject to sizable observational and theoretical uncertainties. Arguably the most troublesome theoretical uncertainty in ablation is a model for the structure of meteoroids, as observations clearly show behaviors wholly inconsistent with meteoroids being homogeneous spheres. Further complicating the interpretation of the observations in the context of spacecraft risk is the ubiquitous process of fragmentation and the flares it can produce, which greatly muddles any attempts to estimating initial meteoroid masses. In this talk a method of estimating the mass distribution of fragments in flaring meteors using high resolution video observations will be dis- cussed. Such measurements provide an important step in better understanding of the structure and fragmentation process of the parent meteoroids producing these flares, which in turn may lead to better constraints on meteoroid masses and reduced uncertainties in spacecraft risk.
Enhancement of the Natural Earth Satellite Population Through Meteoroid Aerocapture
NASA Technical Reports Server (NTRS)
Moorhead, Althea V.; Cooke, William J.
2014-01-01
The vast majority of meteoroids either fall to the ground as meteorites or ablate completely in the atmosphere. However, large meteoroids have been observed to pass through the atmosphere and reenter space in a few instances. These atmosphere-grazing meteoroids have been characterized using ground-based observation and satellite-based infrared detection. As these methods become more sensitive, smaller atmospheregrazing meteoroids will likely be detected. In anticipation of this increased detection rate, we compute the frequency with which centimeter-sized meteoroids graze and exit Earth's atmosphere. We characterize the post-atmosphere orbital characteristics of these bodies and conduct numerical simulations of their orbital evolution under the perturbing influence of the Sun and Moon. We find that a small subset of aerocaptured meteoroids are perturbed away from immediate atmospheric reentry and become temporary natural Earth satellites.
Distinct meteoroid families identified on the lunar seismograms
NASA Technical Reports Server (NTRS)
Oberst, Jurgen; Nakamura, Yosio
1987-01-01
The meteoroid impact-seismic activity data recorded by the Apollo lunar seismic network is examined. The study investigates the difference in temporal distribution between large and small impacts, clustering of impacts in a two-dimensional space of the time of the year and the time of the month, and the relationship of these observations with terrestrial observations. Several distinct families of meteoroids impacting the moon are identified. Most meteoroids producing small impact-seismic events, including ones associated with cometary showers, appear to approach from retrograde heliocentric orbits. In contrast, most meteoroids associated with large impact-seismic events appear to approach from prograde orbits; the observation is consistent with a hypothesis that many of them represent stony asteroidal material. It is suggested that the previously reported discrepancy between lunar and terrestrial meteoroid-flux estimates may be due to the differences in lunar and terrestrial detection efficiency among various families of meteoroids.
A Comparison of Results from NASA's Meteoroid Engineering Model to the LDEF Cratering Record
NASA Technical Reports Server (NTRS)
Ehlert, S.; Moorhead, A; Cooke, W. J.
2017-01-01
NASA's Long Duration Exposure Facility (LDEF) has provided an extensive record of the meteoroid environment in low Earth orbit. LDEF's combination of fixed orientation, large collecting area, and long lifetime imposes constraints on the absolute flux of potentially hazardous meteoroids. The relative impact rate on each of LDEF's fourteen surfaces arises from the underlying velocity distribution and directionality of the meteoroid environment. For the first time, we model the meteoroid environment encountered by LDEF over its operational lifetime using NASA's Meteoroid Engineering Model Release 2 (MEMR2) and compare the model results with the observed craters of potentially hazardous meteoroids (i.e. crater diameters larger than approximately 0.75 mm). We discuss the extent to which the observations and model agree and how the impact rates across all of the LDEF surfaces may be utilized to help calibrate future versions of MEM.
A Comparison of Results From NASA's Meteoroid Engineering Model to the LDEF Cratering Record
NASA Technical Reports Server (NTRS)
Ehlert, S.; Moorhead, A.; Cooke, W. J.
2017-01-01
NASA's Long Duration Exposure Facility (LDEF) has provided an extensive record of the meteoroid environment in Low Earth Orbit. LDEF's combination of fixed orientation, large collecting area, and long lifetime imposes constraints on the absolute flux of potentially hazardous meteoroids. The relative impact rate on each of LDEF's fourteen surfaces arises from the underlying velocity distribution and directionality of the meteoroid environment. For the first time, we model the meteoroid environment encountered by LDEF over its operational lifetime using NASA's Meteoroid Engineering Model Release 2 (MEMR2) and compare the model results with the observed craters of potentially hazardous meteoroids (i.e. crater diameters larger than approximately 0.6 mm). We discuss the extent to which the observations and model agree and how the impact rates across all of the LDEF surfaces may suggest improvements to the underlying assumptions that go into future versions of MEM.
Lunar Meteoroid Impact Observations and the Flux of Kilogram-Sized Meteoroids
NASA Technical Reports Server (NTRS)
Suggs, Rob; Cooke, Bill; Koehler, Heather; Moser, Danielle; Suggs, Ron; Swift, Wes
2010-01-01
This slide presentation reviews NASA's program that observes and investigates the impact of meteoroids on the mooon. The meteor showers dominate the environment in the 100g to kilograms range. With a sufficient number of observed impacts the technique outlined can help determine the population index for some of the meteoroid showers.
NASA Astrophysics Data System (ADS)
Moorhead, Althea V.; Blaauw, Rhiannon C.; Moser, Danielle E.; Campbell-Brown, Margaret D.; Brown, Peter G.; Cooke, William J.
2017-12-01
The bulk density of a meteoroid affects its dynamics in space, its ablation in the atmosphere, and the damage it does to spacecraft and lunar or planetary surfaces. Meteoroid bulk densities are also notoriously difficult to measure, and we are typically forced to assume a density or attempt to measure it via a proxy. In this paper, we construct a density distribution for sporadic meteoroids based on existing density measurements. We considered two possible proxies for density: the KB parameter introduced by Ceplecha and Tisserand parameter, TJ. Although KB is frequently cited as a proxy for meteoroid material properties, we find that it is poorly correlated with ablation-model-derived densities. We therefore follow the example of Kikwaya et al. in associating density with the Tisserand parameter. We fit two density distributions to meteoroids originating from Halley-type comets (TJ < 2) and those originating from all other parent bodies (TJ > 2); the resulting two-population density distribution is the most detailed sporadic meteoroid density distribution justified by the available data. Finally, we discuss the implications for meteoroid environment models and spacecraft risk assessments. We find that correcting for density increases the fraction of meteoroid-induced spacecraft damage produced by the helion/antihelion source.
NASA Technical Reports Server (NTRS)
Moorhead, A. V.; Brown, P. G.; Campbell-Brown, M. D.; Moser, D. E.; Blaauw, R. C.; Cooke, W. J.
2017-01-01
Meteoroids are known to damage spacecraft: they can crater or puncture components, disturb a spacecraft's attitude, and potentially create secondary electrical effects. Because the damage done depends on the speed, size, density, and direction of the impactor, accurate environment models are critical for mitigating meteoroid-related risks. Yet because meteoroid properties are derived from indirect observations such as meteors and impact craters, many characteristics of the meteoroid environment are uncertain. In this work, we present recent improvements to the meteoroid speed and density distributions. Our speed distribution is derived from observations made by the Canadian Meteor Orbit Radar. These observations are de-biased using modern descriptions of the ionization efficiency. Our approach yields a slower meteoroid population than previous analyses (see Fig. 1 for an example) and we compute the uncertainties associated with our derived distribution. We adopt a higher fidelity density distribution than that used by many older models. In our distribution, meteoroids with TJ less than 2 are assigned to a low-density population, while those with TJ greater than 2 have higher densities (see Fig. 2). This division and the distributions themselves are derived from the densities reported by Kikwaya et al. These changes have implications for the environment: for instance, the helion/antihelion sporadic sources have lower speeds than the apex and toroidal sources and originate from high-T(sub J) parent bodies. Our on-average slower and denser distributions thus imply that the helion and antihelion sources dominate the meteoroid environment even more completely than previously thought. Finally, for a given near-Earth meteoroid cratering rate, a slower meteoroid population produces a comparatively higher rate of satellite attitude disturbances.
Meteoroids and Meteor Storms: A Threat to Spacecraft
NASA Technical Reports Server (NTRS)
Anderson, B. Jeffrey
1999-01-01
Robust system design is the best protection against meteoroid damage. Impacts by small meteoroids are common on satellite surfaces, but impacts by meteoroids large enough to damage well designed systems are very rare. Estimating the threat from the normal meteoroid environment is difficult. Estimates for the occasional "storm" are even more uncertain. Common sense precautions are in order for the 1999 Leonids, but wide-spread catastrophic damage is highly unlikely. Strong Leonid showers are also expected in 2000 and 2001, but these pose much less threat than 1999.
How useful is the `mean stream' in discussing meteoroid stream evolution?
NASA Astrophysics Data System (ADS)
Williams, I. P.; Jones, D. C.
2007-02-01
The current model for meteoroid formation involves particles being ejected from parent objects, usually comets and sometimes asteroids. The orbital speed of any body in the Solar system is much larger than any potential ejection speed of small particles from the body, hence the initial orbit of any meteoroid is fairly similar to that of the parent. However, with the passage of time the effects of gravitational perturbations from the planets and solar radiation will cause the orbits of the meteoroids to evolve away from the parent's orbit. Initially this may cause a meteor shower to occur, but eventually will lead to the dissipation of the stream. When modelling meteoroid streams, it is usually more convenient to use the average orbital elements of all the meteoroids to study their evolution. In this paper, we consider the evolution of the orbits of several sets of meteoroids comparing the effectiveness of using the mean and median values for a stream when modelling the overall evolution. We conclude that although both mean and median provide a good match to the evolution of the real meteoroids for most of the time interval studied, the mean orbit remains more consistently close to the stream.
Possible Lack of Low-Mass Meteoroids in the Earth's Meteoroid Flux Due to Space Erosion?
NASA Technical Reports Server (NTRS)
Rubincam, David Parry
2017-01-01
The Earth's cumulative meteoroid flux, as found by Halliday et al. (1996), may have a shallower slope for meteoroid masses in the range 0.1-2.5 kg compared to those with masses greater than 2.5 kg when plotted on a log flux vs. log mass graph. This would indicate a lack of low-mass objects. While others such as Ceplecha (1992) find no shallow slope, there may be a reason for a lack of 0.1-2.5 kg meteoroids which supports Halliday et al.'s finding. Simple models show that a few centimeters of space erosion in stony meteoroids can reproduce the bend in Halliday et al.'s curve at approximately 2.5 kg and give the shallower slope.
Modeling of meteoroid streams: The velocity of ejection of meteoroids from comets (a review)
NASA Astrophysics Data System (ADS)
Ryabova, G. O.
2013-05-01
An analytical review of the models of ejection of meteoroids from cometary nuclei is presented. Different formulas for the ejection velocity of meteoroids and the corresponding parameters are discussed and compared with the use of comet Halley and the Geminids meteoroid stream as examples. The ejection velocities obtained from observations of the dust trails of comets are discussed, and the values for comets 2P/Encke, 4P/Faye, 17P/Holmes, 22P/Kopff, and 67P/Churyumov-Gerasimenko are compared to the velocities yielded by Whipple's model. The uncertainty intervals of the results are estimated.
Bulk density of small meteoroids
NASA Astrophysics Data System (ADS)
Kikwaya, J.-B.; Campbell-Brown, M.; Brown, P. G.
2011-06-01
Aims: Here we report on precise metric and photometric observations of 107 optical meteors, which were simultaneously recorded at multiple stations using three different intensified video camera systems. The purpose is to estimate bulk meteoroid density, link small meteoroids to their parent bodies based on dynamical and physical density values expected for different small body populations, to better understand and explain the dynamical evolution of meteoroids after release from their parent bodies. Methods: The video systems used had image sizes ranging from 640 × 480 to 1360 × 1036 pixels, with pixel scales from 0.01° per pixel to 0.05° per pixel, and limiting meteor magnitudes ranging from Mv = +2.5 to +6.0. We find that 78% of our sample show noticeable deceleration, allowing more robust constraints to be placed on density estimates. The density of each meteoroid is estimated by simultaneously fitting the observed deceleration and lightcurve using a model based on thermal fragmentation, conservation of energy and momentum. The entire phase space of the model free parameters is explored for each event to find ranges of parameters which fit the observations within the measurement uncertainty. Results: (a) We have analysed our data by first associating each of our events with one of the five meteoroid classes. The average density of meteoroids whose orbits are asteroidal and chondritic (AC) is 4200 kg m-3 suggesting an asteroidal parentage, possibly related to the high-iron content population. Meteoroids with orbits belonging to Jupiter family comets (JFCs) have an average density of 3100 ± 300 kg m-3. This high density is found for all meteoroids with JFC-like orbits and supports the notion that the refractory material reported from the Stardust measurements of 81P/Wild 2 dust is common among the broader JFC population. This high density is also the average bulk density for the 4 meteoroids with orbits belonging to the Ecliptic shower-type class (ES) also related to JFCs. Both categories we suggest are chondritic based on their high bulk density. Meteoroids of HT (Halley type) orbits have a minimum bulk density value of 360+400-100 kg m-3 and a maximum value of 1510+400-900 kg m-3. This is consistent with many previous works which suggest bulk cometary meteoroid density is low. SA (Sun-approaching)-type meteoroids show a density spread from 1000 kg m-3 to 4000 kg m-3, reflecting multiple origins. (b) We found two different meteor showers in our sample: Perseids (10 meteoroids, ~11% of our sample) with an average bulk density of 620 kg m-3 and Northern Iota Aquariids (4 meteoroids) with an average bulk density of 3200 kg m-3, consistent with the notion that the NIA derive from 2P/Encke.
NASA Technical Reports Server (NTRS)
Mcmaster, L. R.; Peterson, S. T.; Hughes, F. M. (Inventor)
1973-01-01
A meteoroid detector is described which uses, a cold cathode discharge tube with a gas-pressurized cell in space for recording a meteoroid puncture of the cell and for determining the size of the puncture.
NASA Technical Reports Server (NTRS)
Moser, D. E.; Suggs, R. M.; Ehlert, S. R.
2017-01-01
Meteoroids cannot be observed directly because of their small size. In-situ measurements of the meteoroid environment are rare and have very small collecting areas. The Moon, in contrast, has a large collecting area and therefore can be used as a large meteoroid detector for gram-kilogram sized particles. Meteoroids striking the Moon create an impact flash observable by Earth-based telescopes. Their kinetic energy is converted to luminous energy with some unknown luminous efficiency ?(v), which is likely a function of meteoroid velocity (among other factors). This luminous efficiency is imperative to calculating the kinetic energy and mass of the meteoroid, as well as meteoroid fluxes, and it cannot be determined in the laboratory at meteoroid speeds and sizes due to mechanical constraints. Since laboratory simulations fail to resolve the luminous efficiency problem, observations of the impact flash itself must be utilized. Meteoroids associated with specific meteor showers have known speed and direction, which simplifies the determination of the luminous efficiency. NASA has routinely monitored the Moon for impact flashes since early 2006 [1]. During this time, several meteor showers have produced multiple impact flashes on the Moon, yielding a sufficient sample of impact flashes with which to perform a luminous efficiency analysis similar to that outlined in Bellot Rubio et al. [2, 3] and further described by Moser et al. [4], utilizing Earth-based measurements of the shower flux and mass index. The Geminid meteor shower has produced the most impact flashes in the NASA dataset to date with over 80 detections. More than half of these Geminids were recorded in 2015 (locations pictured in Fig. 1), and may represent the largest single-shower impact flash sample known. This work analyzes the 2015 Geminid lunar impacts and calculates their luminous efficiency. The luminous efficiency is then applied to calculate the kinetic energies and mass-es of these shower meteoroids.
Enhanced Breakup of Entering Meteoroids by Internal Air Percolation
NASA Astrophysics Data System (ADS)
Melosh, H.; Tabetah, M.
2017-12-01
It is often observed that meteoroids break up in flight while entering the Earth's atmosphere. The effective strength of such meteoroids can be deduced from their speed and altitude at which breakup occurs. Surprisingly, the resulting strength is typically very low: Only 1 - 5 MPa for the Chelyabinsk meteoroid. This contrasts to the measured crushing strength of about 300 MPa for the recovered fragments. This great difference in strength is usually attributed to a selection effect: The surviving fragments are stronger simply because the weaker materials were eliminated before reaching the ground. We have modeled the entry of meteoroids using a two-material computer code based on the old Los Alamos code KFIX. This code permits us to treat the solid meteoroid and atmospheric gases as two interpenetrating phases that can exchange mass, energy and momentum. Among other advantages of the code, it inherently treats the meteoroid as a porous, permeable solid, in keeping with the modern observation that most asteroids are highly porous. During these simulations we noted that compressed atmospheric gases in the bow shock readily percolate into the body of the meteoroid. This greatly increases the internal pore pressure and leads to a rapid expansion that quickly disperses the meteoroid into small fragments. As is well known from geological and engineering practice, high pore pressures greatly decrease the strength of geologic materials and this factor may thus account for much of the discrepancy between meteoroid strength deduced from breakup and that measured on recovered fragments, although the selection effect certainly plays some role. The percolation of hot, high pressure air into the body of entering meteoroids is a previously unrecognized process that may greatly enhance their fragmentation and dispersion. This phenomenon may explain why the ca. 100 m diameter Tunguska object disintegrated so completely before reaching the surface, and it argues that the Earth's atmosphere may be a better screen against small impacts than previously recognized.
Effects of the Venusian atmosphere on incoming meteoroids and the impact crater population
NASA Technical Reports Server (NTRS)
Herrick, Robert R.; Phillips, Roger J.
1994-01-01
The dense atmosphere on Venus prevents craters smaller than about 2 km in daimater from forming and also causes formation of several crater fields and multiple-floored craters (collectively referred to as multiple impacts). A model has been constructed that simulates the behavior of a meteoroid in a dense planetary atmosphere. This model was then combined with an assumed flux of incoming meteoroids in an effort to reproduce the size-frequency distribution of impact craters and several aspects of the population of the crater fields and multiple-floored craters on Venus. The modeling indicates that it is plausible that the observed rollover in the size-frequency curve for Venus is due entirely to atmospheric effects on incoming meteoroids. However, there must be substantial variation in the density and behavior of incoming meteoroids in the atmosphere. Lower-density meteoroids must be less likely to survive atmospheric passage than simple density differences can account for. Consequently, it is likely that the percentage of craters formed by high-density meteoroids is very high at small crater diameters, and this percentage decreases substantially with increasing crater diameter. Overall, high-density meteoroids created a disproportionately large percentage of the impact craters on Venus. Also, our results indicate that a process such as meteoroid flattening or atmospheric explosion of meteoroids must be invoked to prevent craters smaller than the observed minimum diameter (2 km) from forming. In terms of using the size-frequency distribution to age-date the surface, the model indicates that the observed population has at least 75% of the craters over 32 km in diameter that would be expected on an atmosphereless Venus; thus, this part of the curve is most suitable for comparison with calibrated curves for the Moon.
Results of Lunar Impact Observations During Geminid Meteor Shower Events
NASA Technical Reports Server (NTRS)
Suggs, R. J.; Suggs, R. M.
2015-01-01
Meteoroids are natural particles with origins from comets, asteroids, and planets from within the solar system. On average, 33 metric tons (73,000 lb) of meteoroids hit Earth everyday with velocities ranging between 20 and 72 km/s. However, the vast majority of these meteoroids disintegrate in the atmosphere and never make it to the ground. The Moon also encounters the same meteoroid flux, but has no atmosphere to stop them from striking the surface. At such speeds even a small meteoroid has incredible energy. A meteoroid with a mass of only 5 kg can excavate a crater over 9 m across, hurling 75 metric tons (165,000 lb) of lunar soil and rock on ballistic trajectories above the lunar surface. Meteoroids with particle sizes as small as 100 micrometer (1 Microgram) can do considerable damage to spacecraft in Earth's orbit and beyond. Impacts can damage thermal protection systems, radiators, windows, and pressurized containers. Secondary effects might include partial penetration or pitting, local deformation, and surface degradation that can cause a failure upon reentry. The speed, mass, density, and flux of meteoroids are important factors for design considerations and mitigation during operations. Lunar operations (unmanned and manned) are also adversely affected by the meteoroid flux. Ejecta from meteoroid impacts is also part of the lunar environment and must be characterized. Understanding meteoroid fluxes and the associated risk of meteoroids impacting spacecraft traveling in and beyond Earth's orbit is the objective of the Meteoroid Environment Office (MEO) located at Marshall Space Flight Center (MSFC). One of the MEO's programs is meteoroid impact monitoring of the Moon. The large collecting area of the night side of the lunar disk provides statistically significant counts of meteoroids that can provide useful information about the flux of meteoroids in the hundreds of grams to kilograms size range. This information is not only important for characterizing the lunar environment associated with larger lunar impactors, but also provides statistical data for verification and improving meteoroid prediction models. Current meteoroid models indicate that the Moon is struck by a sporadic meteoroid with a mass greater than 1 kg over 260 times per year. This number is very uncertain since observations for objects in this mass range are few. Factors of several times, higher or lower, are easily possible. Meteor showers are also present to varying degrees at certain times of the year. The Earth experiences meteor showers when encountering the debris left behind by comets, which is also the case with 2 the Moon. During such times, the rate of shower meteoroids can greatly exceed that of the sporadic background rate for larger meteoroids. Looking for meteor shower impacts on the Moon at about the same time as they occur on Earth will yield important data that can be fed into meteor shower forecasting models, which can then be used to predict times of greater meteoroid hazard on the Moon. The Geminids are one such meteor shower of interest. The Geminids are a major meteor shower that occur in December with a peak intensity occurring usually during the 13th and 14th of the month and appearing to come from a radiant in the constellation Gemini. The Geminids are interesting in that the parent body of the debris stream is an asteroid, which along with the Quadrantids, are the only major meteor showers not originating from a comet. The Geminids parent body, 3200 Phaethon, is about 5 km in diameter and has an orbit that has a 22deg inclination which intersects the main asteroid belt and has a perihelion less than half of Mercury's perihelion distance. Thus, its orbit crosses those of Mars, Earth, Venus, and Mercury. The Geminid debris stream is by far the most massive as compared to the others. When the Earth passes through the stream in mid-December, a peak intensity of approx. equal 120 meteors per hour can be seen. Because of the Geminids' relatively large intensity and unique origin, it is important to monitor and gain information about the Geminids so as to improve their forecasts and understand their contribution to the meteoroid environment in Earth's orbit and at the Moon. It is the purpose of this Technical Memorandum (TM) to document two lunar observing periods coinciding with the Geminid meteor showers that occurred in 2006 and 2010.
Modelling of interaction of the large disrupted meteoroid with the Earth atmosphere
NASA Astrophysics Data System (ADS)
Brykina, Irina G.
2018-05-01
The model of atmospheric fragmentation of large meteoroids to the cloud of fragments is proposed. The comparison with similar models used in the literature is made. The approximate analytical solution of meteor physics equations is obtained for the mass loss of the disrupted meteoroid, the energy deposition and for the light curve normalized to the maximum brightness. This solution is applied to modelling of interaction of the Chelyabinsk meteoroid with the atmosphere. The influence of uncertainty of initial parameters of the meteoroid on characteristics of its interaction with the atmosphere is estimated. Comparison of the analytical solution with the observational data is made.
A Comprehensive Model of the Meteoroids Environment Around Mercury
NASA Astrophysics Data System (ADS)
Pokorny, P.; Sarantos, M.; Janches, D.
2018-05-01
We present a comprehensive dynamical model for the meteoroid environment around Mercury comprised of meteoroids originating in asteroids, short and long period comets. Our model is fully calibrated and provides predictions for different values of TAA.
A Brief History of Meteoroid and Orbital Debris Shielding Technology for US Manned Spacecraft
NASA Technical Reports Server (NTRS)
Bjorkman, Michael D.; Hyde, James L.
2008-01-01
Meteoroid and orbital debris shielding has played an important role from the beginning of manned spaceflight. During the early 60 s, meteoroid protection drove requirements for new meteor and micrometeoroid impact science. Meteoroid protection also stimulated advances in the technology of hypervelocity impact launchers and impact damage assessment methodologies. The first phase of meteoroid shielding assessments closed in the early 70 s with the end of the Apollo program. The second phase of meteoroid protection technology began in the early 80 s when it was determined that there is a manmade Earth orbital debris belt that poses a significant risk to LEO manned spacecraft. The severity of the Earth orbital debris environment has dictated changes in Space Shuttle and ISS operations as well as driven advances in shielding technology and assessment methodologies. A timeline of shielding technology and assessment methodology advances is presented along with a summary of risk assessment results.
Meteoroid Bulk Density and Ceplecha Types
NASA Technical Reports Server (NTRS)
Blaauw, R. C.; Moser, D. E.; Moorhead, A. V.
2017-01-01
Determination of asteroid bulk density is an important aspect of NEO characterization, yet difficult to measure. As a fraction of meteoroids originate from asteroids (including some NEOs), a study of meteoroid bulk densities can potentially provide useful insights into the densities of NEOs and PHOs in lieu of mutual perturbations, satellite, or expensive spacecraft missions. NASA's Meteoroid Environment Office characterizes the meteoroid environment for the purpose of spacecraft risk and operations. To accurately determine the risk, a distribution of meteoroid bulk densities are needed. This is not trivial to determine. If the particle survives to the ground the bulk density can be directly measured, however only the most dense particles land on the Earth. The next best approach is to model the meteor's ablation, which is not straightforward. Clear deceleration is necessary to do this and there are discrepancies in results between models. One approach to a distribution of bulk density is to use a measured proxy for the densities, then calibrate the proxy with known densities from meteorite falls, ablation modelling, and other sources. An obvious proxy choice is the Ceplecha type, K(sub B), thought to indicate the strength of a meteoroid. KB is frequented cited as a good proxy for meteoroid densities, but we find it is poorly correlated with density. However, a distinct split by dynamical type was seen with Jovian Tisserand parameter, T(sub J), with meteoroids from Halley Type comets (T(sub J less than 2 ) exhibiting much lower densities than those originating from Jupiter and asteroids (T(sub J greater than 2).
Space vehicle integrated thermal protection/structural/meteoroid protection system, volume 1
NASA Technical Reports Server (NTRS)
Bartlett, D. H.; Zimmerman, D. K.
1973-01-01
A program was conducted to determine the merit of a combined structure/thermal meteoroid protection system for a cryogenic vehicle propulsion module. Structural concepts were evaluated to identify least weight designs. Thermal analyses determined optimum tank arrangements and insulation materials. Meteoroid penetration experiments provided data for design of protection systems. Preliminary designs were made and compared on the basis of payload capability. Thermal performance tests demonstrated heat transfer rates typical for the selected design. Meteoroid impact tests verified the protection characteristics. A mockup was made to demonstrate protection system installation. The best design found combined multilayer insulation with a truss structure vehicle body. The multilayer served as the thermal/meteoroid protection system.
Averaged changes in the orbital elements of meteoroids due to Yarkovsky-Radzievskij force
NASA Astrophysics Data System (ADS)
Ryabova, Galina O.
2014-07-01
Yarkovsky-Radzievskij effect exceeds the Poynting-Robertson effect in the perturbing action on particles larger than 100 μm. We obtained formulae for averaged changes in a meteoroid's Keplerian orbital elements and used them to estimate dispersion in the Geminid meteoroid stream. It was found that dispersion in semi-major axis of the model shower increased nearly three times on condition that meteoroids rotation is fast, and the rotation axis is stable.
NASA Technical Reports Server (NTRS)
Janches, D.; Close, S.; Hormaechea, J. L.; Swarnalingam, N.; Murphy, A.; O'Connor, D.; Vandepeer, B.; Fuller, B.; Fritts, D. C.; Brunini, C.
2015-01-01
We present an initial survey in the southern sky of the sporadic meteoroid orbital environment obtained with the Southern Argentina Agile MEteor Radar (SAAMER) Orbital System (OS), in which over three-quarters of a million orbits of dust particles were determined from 2012 January through 2015 April. SAAMER-OS is located at the southernmost tip of Argentina and is currently the only operational radar with orbit determination capability providing continuous observations of the southern hemisphere. Distributions of the observed meteoroid speed, radiant, and heliocentric orbital parameters are presented, as well as those corrected by the observational biases associated with the SAAMER-OS operating parameters. The results are compared with those reported by three previous surveys performed with the Harvard Radio Meteor Project, the Advanced Meteor Orbit Radar, and the Canadian Meteor Orbit Radar, and they are in agreement with these previous studies. Weighted distributions for meteoroids above the thresholds for meteor trail electron line density, meteoroid mass, and meteoroid kinetic energy are also considered. Finally, the minimum line density and kinetic energy weighting factors are found to be very suitable for meteoroid applications. The outcomes of this work show that, given SAAMERs location, the system is ideal for providing crucial data to continuously study the South Toroidal and South Apex sporadic meteoroid apparent sources.
Meteoroid Environment Modeling: the Meteoroid Engineering Model and Shower Forecasting
NASA Technical Reports Server (NTRS)
Moorhead, Althea V.
2017-01-01
The meteoroid environment is often divided conceptually into meteor showers plus a sporadic background component. The sporadic complex poses the bulk of the risk to spacecraft, but showers can produce significant short-term enhancements of the meteoroid flux. The Meteoroid Environment Office (MEO) has produced two environment models to handle these cases: the Meteoroid Engineering Model (MEM) and an annual meteor shower forecast. Both MEM and the forecast are used by multiple manned spaceflight projects in their meteoroid risk evaluation, and both tools are being revised to incorporate recent meteor velocity, density, and timing measurements. MEM describes the sporadic meteoroid complex and calculates the flux, speed, and directionality of the meteoroid environment relative to a user-supplied spacecraft trajectory, taking the spacecraft's motion into account. MEM is valid in the inner solar system and offers near-Earth and cis-lunar environments. While the current version of MEM offers a nominal meteoroid environment corresponding to a single meteoroid bulk density, the next version of MEMR3 will offer both flux uncertainties and a density distribution in addition to a revised near-Earth environment. We have updated the near-Earth meteor speed distribution and have made the first determination of uncertainty in this distribution. We have also derived a meteor density distribution from the work of Kikwaya et al. (2011). The annual meteor shower forecast takes the form of a report and data tables that can be used in conjunction with an existing MEM assessment. Fluxes are typically quoted to a constant limiting kinetic energy in order to comport with commonly used ballistic limit equations. For the 2017 annual forecast, the MEO substantially revised the list of showers and their characteristics using 14 years of meteor flux measurements from the Canadian Meteor Orbit Radar (CMOR). Defunct or insignificant showers were removed and the temporal profiles of many showers were improved. In 2016 the MEO also adapted the forecast to the cislunar environment for the first time. We plan to make additional improvements to the model in the next two years using optical meteor flux measurements and mass indices.
Dynamical Evolution of Meteoroid Streams, Developments Over the Last 30 Years
NASA Technical Reports Server (NTRS)
Williams, I. P.
2011-01-01
As soon as reliable methods for observationally determining the heliocentric orbits of meteoroids and hence the mean orbit of a meteoroid stream in the 1950s and 60s, astronomers strived to investigate the evolution of the orbit under the effects of gravitational perturbations from the planets. At first, the limitations in the capabilities of computers, both in terms of speed and memory, placed severe restrictions on what was possible to do. As a consequence, secular perturbation methods, where the perturbations are averaged over one orbit became the norm. The most popular of these is the Halphen- Goryachev method which was used extensively until the early 1980s. The main disadvantage of these methods lies in the fact that close encounter can be missed, however they remain useful for performing very long-term integrations. Direct integration methods determine the effects of the perturbing forces at many points on an orbit. This give a better picture of the orbital evolution of an individual meteoroid, but many meteoroids have to be integrated in order to obtain a realistic picture of the evolution of a meteoroid stream. The notion of generating a family of hypothetical meteoroids to represent a stream and directly integrate the motion of each was probably first used by Williams Murray & Hughes (1979), to investigate the Quadrantids. Because of computing limitations, only 10 test meteoroids were used. Only two years later, Hughes et. al. (1981) had increased the number of particles 20-fold to 200 while after a further year, Fox Williams and Hughes used 500 000 test meteoroids to model the Geminid stream. With such a number of meteoroids it was possible for the first time to produce a realistic cross-section of the stream on the ecliptic. From that point on there has been a continued increase in the number of meteoroids, the length of time over which integration is carried out and the frequency with which results can be plotted so that it is now possible to produce moving images of the stream. As a consequence, over recent years, emphasis has moved to considering stream formation and the role fragmentation plays in this.
Small craters on the meteoroid and space debris impact experiment
NASA Technical Reports Server (NTRS)
Humes, Donald H.
1995-01-01
Examination of 9.34 m(exp 2) of thick aluminum plates from the Long Duration Exposure Facility (LDEF) using a 25X microscope revealed 4341 craters that were 0.1 mm in diameter or larger. The largest was 3 mm in diameter. Most were roughly hemispherical with lips that were raised above the original plate surface. The crater diameter measured was the diameter at the top of the raised lips. There was a large variation in the number density of craters around the three-axis gravity-gradient stabilized spacecraft. A model of the near-Earth meteoroid environment is presented which uses a meteoroid size distribution based on the crater size distribution on the space end of the LDEF. An argument is made that nearly all the craters on the space end must have been caused by meteoroids and that very few could have been caused by man-made orbital debris. However, no chemical analysis of impactor residue that will distinguish between meteoroids and man-made debris is yet available. A small area (0.0447 m(exp 2)) of one of the plates on the space end was scanned with a 200X microscope revealing 155 craters between 10 micron and 100 micron in diameter and 3 craters smaller than 10 micron. This data was used to extend the size distribution of meteoroids down to approximately 1 micron. New penetration equations developed by Alan Watts were used to relate crater dimensions to meteoroid size. The equations suggest that meteoroids must have a density near 2.5 g/cm(exp 3) to produce craters of the shape found on the LDEF. The near-Earth meteoroid model suggests that about 80 to 85 percent of the 100 micron to 1 mm diameter craters on the twelve peripheral rows of the LDEF were caused by meteoroids, leaving 15 to 20 percent to be caused by man-made orbital debris.
Reexamination of data from the asteroid/meteoroid detector
NASA Technical Reports Server (NTRS)
Soberman, Robert K.; Dubin, Maurice
1990-01-01
A reexamination of the results of the Pioneer 10 and 11 Asteroid Meteoroid Detector, or Sisyphus, was carried out in the light of a recently derived theory characterizing interplanetary matter and the Zodiacal Light (ZL). Sisyphus measured individual meteoroids from reflected sunlight and ZL between meteoroid events. The results were questioned because meteoroid orbits could not be calculated as intended and the ZL as computed from individual meteoroids did not agree with values determined from the ZL mode and from the other ZL sensor on the spacecraft. It is first shown that, independent of any explanation, the measurements are, with high probability, valid and strongly correlated with the ZL. The model which explains the strange behavior of the Sisyphus instrument also resolves the enigma why the three dust experiments on the Pioneer 10 and 11 spacecraft produced extreme disparate results for the distribution and orbits of meteoric particles and the ZL. The theory based primarily on these measurements requires a population in the inner solar system of cold meteoroid material composed mainly of volatile molecules. These meteoroids in orbits of high eccentricity are called cosmoids. They are impulsively disrupted from solar heating, resulting in order of magnitude increases in optical cross section. The dispersed particles, predominantly micron sized, scatter most of the ZL and supply the polarization. The sublimation time in sunlight for micron sized particles of volatile composition opposes the gravitational flux increase expected in approaching the sun. The other two Pioneer 10/11 dust experiments were: the Imaging Photopolarimeter for the ZL, and the Meteoroid Detection Experiment that measured penetration of 25 micron (Pioneer 10) and 50 micron (Pioneer 11) thick walls of pressurized gas cells.
NASA Technical Reports Server (NTRS)
Malhotra, A.; Mathews, J. D.
2011-01-01
There has been much interest in the meteor physics community recently regarding the form that meteoroid mass flux arrives in the upper atmosphere. Of particular interest are the relative roles of simple ablation, differential ablation, and fragmentation in the meteoroid mass flux observed by the Incoherent Scatter Radars (ISR). We present here the first-ever statistical study showing the relative contribution of the above-mentioned three mechanisms. These are also one of the first meteor results from the newly-operational Resolute Bay ISR. These initial results emphasize that meteoroid disintegration into the upper atmosphere is a complex process in which all the three above-mentioned mechanisms play an important role though fragmentation seems to be the dominant mechanism. These results prove vital in studying how meteoroid mass is deposited in the upper atmosphere which has important implications to the aeronomy of the region and will also contribute in improving current meteoroid disintegration/ablation models.
Large craters on the meteoroid and space debris impact experiment
NASA Technical Reports Server (NTRS)
Humes, Donald H.
1991-01-01
The distribution around the Long Duration Exposure Facility (LDEF) of 532 large craters in the Al plates from the Meteoroid and Space Debris Impact Experiment (S0001) is discussed along with 74 additional large craters in Al plates donated to the Meteoroid and Debris Special Investigation Group by other LDEF experimenters. The craters are 0.5 mm in diameter and larger. Crater shape is discussed. The number of craters and their distribution around the spacecraft are compared with values predicted with models of the meteoroid environment and the manmade orbital debris environment.
Meteoroid Bulk Density and Ceplecha Types
NASA Technical Reports Server (NTRS)
Blaauw, R. C.; Moser, D. E.; Moorhead, A. V.
2017-01-01
The determination of asteroid bulk density is an important aspect of Near Earth Object (NEO) characterization. A fraction of meteoroids originate from asteroids (including some NEOs), thus in lieu of mutual perturbations, satellites, or expensive spacecraft missions, a study of meteoroid bulk densities can potentially provide useful insights into the densities of NEOs and PHOs (Potentially Hazardous Objects). Meteoroid bulk density is still inherently difficult to measure, and is most often determined by modeling the ablation of the meteoroid. One approach towards determining a meteoroid density distribution entails using a more easily measured proxy for the densities, then calibrating the proxy with known densities from meteorite falls, ablation modelling, and other sources. An obvious proxy choice is the Ceplecha type, KB (Ceplecha, 1958), which is thought to indicate the strength of a meteoroid and often correlated to different bulk densities in literature. KB is calculated using the air density at the beginning height of the meteor, the initial velocity, and the zenith angle of the radiant; quantities more readily determined than meteoroid bulk density itself. Numerical values of K(sub B) are sorted into groups (A, B, C, etc.), which have been matched to meteorite falls or meteor showers with known composition such as the porous Draconids. An extensive survey was conducted to establish the strength of the relationship between bulk density and K(sub B), specifically looking at those that additionally determined K(sub B) for the meteors. In examining the modeling of high-resolution meteor data from Kikwaya et al. (2011), the correlation between K(sub B) and bulk density was not as strong as hoped. However, a distinct split by dynamical type was seen with Jovian Tisserand parameter (T(sub J)), with meteoroids from Halley Type comets (T(sub J) < 2) exhibiting much lower bulk densities than those originating from Jupiter Family comets and asteroids (T(sub J) > 2). Therefore, this work indicates that the dynamical classification of a meteoroid is a better indicator of the density than the strength proxy, a somewhat surprising result.
Physical properties of meteoroids based on middle and upper atmosphere radar measurements
NASA Astrophysics Data System (ADS)
Gritsevich, M.; Kero, J.; Virtanen, J.; Szasz, C.; Nakamura, T.; Peltoniemi, J.; Koschny, D.
2014-07-01
We present a novel approach to reliably interpret the meteor head-echo scattering measurements detected by the 46.5 MHz MU radar system near Shigaraki, Japan. A meteor head echo is caused by radio waves scattered from the dense region of plasma surrounding and co-moving with a meteoroid during atmospheric flight. The signal Doppler shift and/or range rate of the target can therefore be used to determine meteoroid velocity. The data reduction steps include determining the exact trajectory of the meteoroids entering the observation volume of the antenna beam and calculating meteoroid mass and velocity as a function of time. The model is built using physically-based parametrization. The considered observation volume is narrow, elongated in the vertical direction, and its area of greatest sensitivity covers a circular area of about 10 km diameter at an altitude of 100 km above the radar. Over 100,000 meteor head echoes have been detected over past years of observations. Most of the events are faint with no alternative to be detected visually or with intensified video (ICCD) cameras. In this study we are focusing on objects which have entered the atmosphere with almost vertical trajectories, to ensure the observed segment of the trajectory to be as complete as possible, without loss of its beginning or end part due to beam-pattern-related loss of signal power. The analysis output parameters are range, altitude, radial velocity, meteoroid velocity, instantaneous target position, Radar Cross Section (RCS), meteor radiant, meteoroid ballistic and ablation coefficients, mass loss parameter and meteoroid mass, with possibility to derive other parameters.
Physical Properties of Meteoroids based on Middle and Upper Atmosphere Radar Measurements
NASA Astrophysics Data System (ADS)
Gritsevich, Maria; Nakamura, Takuji; Kero, Johan; Szasz, Csilla; Virtanen, Jenni; Peltoniemi, Jouni; Koschny, Detlef
We present a novel approach to reliably interpret the meteor head echo scattering measurements detected by the 46.5 MHz MU radar system near Shigaraki, Japan. A meteor head echo is caused by radio waves scattered from the dense region of plasma surrounding and co-moving with a meteoroid during atmospheric flight. The signal Doppler shift and/or range rate of the target can therefore be used to determine meteoroid velocity. The data reduction steps include determining the exact trajectory of the meteoroids entering the observation volume of the antenna beam and calculating meteoroid mass and velocity as a function of time. The model is built using physically based parameterization. The considered observation volume is narrow, elongated in the vertical direction, and its area of greatest sensitivity covers a circular area of about 10 km diameter at an altitude of 100 km above the radar. Over 100000 meteor head echoes have been detected over past years of observations. Most of the events are faint with no alternative to be detected visually or with intensified video (ICCD) cameras. In this study we are focusing on objects which have entered the atmosphere with almost vertical trajectories, to ensure the observed segment of the trajectory to be as complete as possible, without loss of its beginning or end part due to beam-pattern related loss of signal power. The analysis output parameters are range, altitude, radial velocity, meteoroid velocity, instantaneous target position, Radar Cross Section (RCS), meteor radiant, meteoroid ballistic and ablation coefficients, mass loss parameter and meteoroid mass, with possibility to derive other parameters.
International Space Station: Meteoroid/Orbital Debris Survivability and Vulnerability
NASA Technical Reports Server (NTRS)
Graves, Russell
2000-01-01
This slide presentation reviews the surviability and vulnerability of the International Space Station (ISS) from the threat posed by meteoroid and orbital debris. The topics include: (1) Space station natural and induced environments (2) Meteoroid and orbital debris threat definition (3) Requirement definition (4) Assessment methods (5) Shield development and (6) Component vulnerability
Spall, H.
1986-01-01
Many meteoroids are associted with comets; as a comet travels around the sun it leaves a trail of debris behind it and it is this debris which produces meteor showers. Other meteoroids come from the asteroid belt, a zone between Mars and Jupiter filled with thousands of dwarf worlds that failed to coalesce into planets.
Lunar Meteoroid Impact Observations and the Flux of Kilogram-sized Meteoroids
NASA Technical Reports Server (NTRS)
Suggs, Robert M.; Cooke, William J.; Koehler, Heather M.; Moser, Danielle E.; Suggs, Ronnie J.; Swift, Wesley R.
2010-01-01
Lunar impact monitoring provides useful information about the flux of meteoroids in the tens of grams to kilograms size range. The large collecting area of the night side of the lunar disk, approximately 3.4x10(exp 6) sq km in our camera field-of-view, provides statistically significant counts of the meteoroids. Nearly 200 lunar impacts have been observed by our program in roughly 3.5 years. Photometric calibration of the flashes along with the luminous efficiency (determined using meteor showers1,2,3) and assumed velocities provide their sizes. The asymmetry in the flux on the evening and morning hemispheres of the Moon is compared with sporadic and shower sources to determine their most likely origin. The asymmetry between the two hemispheres seen in Figure 1 is due to the impact rate and not to observational bias. Comparison with other measurements of the large meteoroid fluxes is consistent with these measurements as shown in Figure 2. The flux of meteoroids in this size range has important implications for the near-Earth object population and for impact risk for lunar spacecraft
French Meteor Network for High Precision Orbits of Meteoroids
NASA Technical Reports Server (NTRS)
Atreya, P.; Vaubaillon, J.; Colas, F.; Bouley, S.; Gaillard, B.; Sauli, I.; Kwon, M. K.
2011-01-01
There is a lack of precise meteoroids orbit from video observations as most of the meteor stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station meteors and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the meteor position are illustrated.
NASA Astrophysics Data System (ADS)
Narziev, M.
2014-07-01
This paper contains radiants, velocities, masses and densities of 214 meteor showers and associations identified among more than 6100 radar meteors observed in the Gissar Astronomical Observatory during one year cycle 1968-1969. Part of these streams and associations were observed by the radar technique for a very first time. We have determined the masses and densities of the meteoroids which constitute streams and associations. The mean values of masses fall into interval 7x10^{-4}-0.3 g, and densities are in range of 0.3-7 g/cm^{3}. For 76% showers and associations, the mean values of the meteoroid densities concentrate between 1 and 4 g/cm^3. For 11% of showers and associations, the particle densities have mean values from 4 up to 7 g/cm^3, and in the case of remaining 13% the mean densities of the particles proved to be smaller than 1 g/cm^3. For the meteoroids, members of showers and associations, our analysis has shown that, with an increase of the average mass of the particle, its average density decrease. Based on the radar observations the density and the porosity of meteoroid streams of common origin (twin meteoroid streams) have been estimated. It was established that the densities and the structure of meteoroid stream particles of common origin are similar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janches, D.; Swarnalingam, N.; Close, S.
2015-08-10
We present an initial survey in the southern sky of the sporadic meteoroid orbital environment obtained with the Southern Argentina Agile MEteor Radar (SAAMER) Orbital System (OS), in which over three-quarters of a million orbits of dust particles were determined from 2012 January through 2015 April. SAAMER-OS is located at the southernmost tip of Argentina and is currently the only operational radar with orbit determination capability providing continuous observations of the southern hemisphere. Distributions of the observed meteoroid speed, radiant, and heliocentric orbital parameters are presented, as well as those corrected by the observational biases associated with the SAAMER-OS operatingmore » parameters. The results are compared with those reported by three previous surveys performed with the Harvard Radio Meteor Project, the Advanced Meteor Orbit Radar, and the Canadian Meteor Orbit Radar, and they are in agreement with these previous studies. Weighted distributions for meteoroids above the thresholds for meteor trail electron line density, meteoroid mass, and meteoroid kinetic energy are also considered. Finally, the minimum line density and kinetic energy weighting factors are found to be very suitable for meteroid applications. The outcomes of this work show that, given SAAMER’s location, the system is ideal for providing crucial data to continuously study the South Toroidal and South Apex sporadic meteoroid apparent sources.« less
High Resolution Directional Variation And Time Variation Of Sporadic Meteors
NASA Astrophysics Data System (ADS)
Campbell-Brown, Margaret
2007-10-01
The directional dependence of the flux and orbits of sporadic meteoroids is of great importance to understanding the origin and nature of this population of small solar system bodies. The Canadian Meteor Orbit Radar (CMOR) has recorded over 5 million meteoroid orbits from 2002 to the present. This dataset, larger than any previously available, makes it possible to study the sporadic meteor distribution at much greater spatial resolution than previously possible. The rates of meteor orbits with radiants occurring in two degree bins over the whole sky have been calculated from five years of data. The rates have been corrected for observing biases, such as initial trail radius and the collecting area for each radiant, and weighted to a constant limiting mass and a constant limiting energy. The variation of the rates with solar longitude is also examined. The directional variation of geocentric speed, semimajor axis, eccentricity, inclination and other orbital parameters has been calculated, as have the collision probabilities of each meteoroid with the Earth, and the average collisional lifetime for the observed meteoroids. The majority of meteoroids in the mass range observed by CMOR originate in the helion and antihelion sporadic sources. In addition to the north and south apex sources and the north toroidal source, the CMOR data shows a ring of radiants approximately 55 degrees from the apex, with a significant depletion of radiants immediately inside the ring. The depletion of radiants appears to be caused by removal of meteoroids through collisions, as the collisional lifetimes of meteoroids inside the ring are significantly shorter than those observed outside the ring. Further study of the sporadic meteoroid distribution may reveal whether the complex is in a steady state, and the approximate number and orbital characteristics of the parent bodies. Thanks to the NASA MSFC MEO Office.
The mechanics of large meteoroid impacts in the earth's oceans
NASA Technical Reports Server (NTRS)
Melosh, H. J.
1982-01-01
The sequence of events subsequent to the impact of a large meteoroid in an ocean differs in several respects from an impact on land. Even if the meteoroid is large enough to produce a crater on the sea floor (that is, larger than a few km in diameter), the presence of water affects the character of the early-time events. The principal difference between land and oceanic impacts is the expansion of shock-vaporized water following an oceanic impact. A steam explosion follows the meteoroid's deposition of energy in the target. Shocked water expands from an initial pressure of 3 to 6 Mbar for 20-30 km/second impacts, ejecting water vapor and dust from the vaporized meteoroid several hundred km into the atmosphere. The violent vapor plume thus formed may explain how dust with a dominantly meteoritic composition can be dispersed to form a world-wide dust layer, as required by the Alvarez hypothesis.
Lunar Meteoroid Impact Observations and the Flux of Kilogram-sized Meteoroids
NASA Technical Reports Server (NTRS)
Suggs, R. M.; Cooke, W. J.; Koehler, H. M.; Suggs, R. J.; Moser, D. E.; Swift, W. R.
2011-01-01
Lunar impact monitoring provides useful information about the flux of meteoroids in the hundreds of grams to kilograms size range. The large collecting area of the night side of the lunar disk, approximately 3.8 10(exp 6)sq km in our camera field-of-view, provides statistically significant counts of the meteoroids striking the lunar surface. Over 200 lunar impacts have been observed by our program in roughly 4 years. Photometric calibration of the flashes observed in the first 3 years along with the luminous efficiency determined using meteor showers and hypervelocity impact tests (Bellot Rubio et al. 2000; Ortiz et al. 2006; Moser et al. 2010; Swift et al. 2010) provide their impact kinetic energies. The asymmetry in the flux on the evening and morning hemispheres of the Moon is compared with sporadic and shower sources to determine their most likely origin. These measurements are consistent with other observations of large meteoroid fluxes.
NASA Technical Reports Server (NTRS)
Susko, M.
1984-01-01
A review of meteoroid flux measurements and models for low orbital altitudes of the Space Station has been made in order to provide information that may be useful in design studies and laboratory hypervelocity impact tests which simulate micrometeoroids in space for design of the main wall of the Space Station. This report deals with the meteoroid flux mass model, the defocusing and shielding factors that affect the model, the probability of meteoroid penetration of the main wall of a Space Station. Whipple (1947) suggested a meteoroid bumper, a thin shield around the spacecraft at some distance from the wall, as an effective device for reducing penetration, which has been discussed in this report. The equations of the probability of meteoroid penetration, the average annual cumulative total flux, and the equations for the thickness of the main wall and the bumper are presented in this report.
NASA Technical Reports Server (NTRS)
Moser, D. E.; Suggs, R. M.; Ehlert, S. R.
2017-01-01
Since early 2006 the Meteoroid Environment Office (MEO) at NASA's Marshall Space Flight Center has routinely monitored the Moon for impact flashes produced by meteoroids striking the lunar surface. Activity from the Geminid meteor shower (EM) was observed in 2015, resulting in the detection of 45 lunar impact flashes (roughly 10% of the NASA dataset), in about 10 hours of observation with peak R magnitudes ranging from 6.5 to 11. A subset of 30 of these flashes, observed 14-15 December, was analyzed in order to determine the luminous efficiency, the ratio of emitted luminous energy to the meteoroid's kinetic energy. The resulting luminous efficiency, found to range between n = 1.8 x 10(exp -4) and 3.3 x 10(exp -3), depending on the assumed mass index and flux, was than applied to calculate the masses of Geminid meteoroids striking the Moon in 2015.
The formation and early evolution of meteoroid streams
NASA Astrophysics Data System (ADS)
Moorhead, Althea
2018-04-01
Meteor showers occur when the Earth encounters a stream of particles liberated from the surface of a comet or, more rarely, an asteroid. Initially, meteoroids follow a trajectory that is similar to that of their parent comet but modified by both the outward flow of gas from the nucleus and radiation pressure. Sublimating gases impart an “ejection velocity” to solid particles in the coma; this ejection velocity is larger for smaller particles but cannot exceed the speed of the gas itself. Radiation pressure provides a repulsive force that, like gravity, follows an inverse square law, and thus effectively reduces the central potential experienced by small particles. Depending on the optical properties of the particle, the speed of the particle may exceed its effective escape velocity; such particles will be unbound and hence excluded from meteoroid streams and meteor showers. These processes also modify the heliocentric distance at which meteoroid orbits cross the ecliptic plane, and can thus move portions of the stream out of range of the Earth. This talk presents recent work on these components of the early evolution of meteoroid streams and their implications for the meteoroid environment seen at Earth.
Meteoroids: The Smallest Solar System Bodies
NASA Technical Reports Server (NTRS)
Moser, Danielle E. (Compiler); Hardin, B. F. (Compiler); Janches, Diego (Compiler)
2011-01-01
This volume is a compilation of articles reflecting the current state of knowledge on the physics, chemistry, astronomy, and aeronomy of small bodies in the solar system. The articles included here represent the most recent results in meteor, meteoroid, and related research fields and were presented May 24-28, 2010, in Breckenridge, Colorado, USA at Meteoroids 2010: An International Conference on Minor Bodies in the Solar System.
The solution of a model problem of the atmospheric entry of a small meteoroid
NASA Astrophysics Data System (ADS)
Zalogin, G. N.; Kusov, A. L.
2016-03-01
Direct simulation Monte Carlo modeling (DSMC) is used to solve the problem of the entry into the Earth's atmosphere of a small meteoroid. The main aspects of the physical theory of meteors, such as mass loss (ablation) and effects of aerodynamic and thermal shielding, are considered based on the numerical solution of the model problem of the atmospheric entry of an iron meteoroid. The DSMC makes it possible to obtain insight into the structure of the disturbed area around the meteoroid (coma) and trace its evolution depending on entry velocity and height (Knudsen number) in a transitional flow regime where calculation methods used for free molecular and continuum regimes are inapplicable.
Interim Report of the Meteoroid and Debris Special Investigation Group
NASA Technical Reports Server (NTRS)
Zolensky, Michael E.; Zook, Herbert A.; Horz, Fred; Atkinson, Dale R.; Coombs, Cassandra R.; Watts, Alan J.; Dardano, Claire B.; See, Thomas H.; Simon, Charles G.; Kinard, William H.
1992-01-01
The LDEF Meteoroid and Debris Special Investigation Group (hereafter M&D SIG) was formed to maximize the data harvest from LDEF by permitting the characterization of the meteoroid and space debris impact record of the entire satellite. Thus, our work is complementary to that of the various M&D PIs, all of whom are members of the SIG. This presentation will summarize recent results and discussions concerning five critical SIG goals: (1) Classification of impactors based upon composition of residues; (2) Small impact (microimpact) features; (3) Impact cratering and penetration data to derive projectile sizes and masses; (4) Particulate flux estimates in low-Earth orbit; (5) The LDEF Meteoroid and Debris database.
Report of the Meteoroid and Debris Special Investigation Group
NASA Technical Reports Server (NTRS)
Zolensky, Michael E.; Zook, Herbert A.; Horz, Fred; Atkinson, Dale R.; Coombs, Cassandra R.; Watts, Alan J.; Dardano, Claire B.; See, Thomas H.; Simon, Charles G.; Kinard, William H.
1993-01-01
The LDEF Meteoroid and Debris Special Investigation Group (hereafter M&D SIG) was formed to maximize the data harvest from LDEF by permitting the characterization of the meteoroid and space debris impact record of the entire satellite. Thus, our work is complementary to that of the various M&D PI's, all of whom are members of the SIG. This presentation will summarize recent results and discussions concerning five critical SIG goals: (1) classification of impactors based upon composition of residues, (2) small impact (microimpact) features, (3) impact cratering and penetration data to derive projectile sizes and masses, (4) particulate flux estimates in low-Earth orbit, and (5) the LDEF Meteoroid and Debris database.
A Comparison of Damaging Meteoroid and Orbital Debris Fluxes in Earth Orbit
NASA Technical Reports Server (NTRS)
Cooke, William; Matney, Mark; Moorhead, Althea V.; Vavrin, Andrew
2017-01-01
Low Earth orbit is populated with a substantial amount of orbital debris, and it is usually assumed that the flux from these objects contributes to most of the hypervelocity particle risk to spacecraft in this region. The meteoroid flux is known to be dominant at very low altitudes (<300 km), where atmospheric drag rapidly removes debris, and at very high altitudes beyond GEO (geostationary), where debris is practically non-existent. The vagueness of these boundaries has prompted this work, in which we compare the fluxes of meteoroids and orbital debris capable of penetrating a millimeter thick aluminum plate for circular orbits with altitudes ranging from the top of the atmosphere to 100,000 km. The outputs from the latest NASA debris and meteoroid models, ORDEM 3.0 and MEMR2, are combined with the modified Cour-Palais ballistic limit equation to make a realistic evaluation of the damage-capable particle fluxes, thereby establishing the relative contributions of hazardous debris and meteoroids in near Earth space.
NASA Astrophysics Data System (ADS)
Janches, D.; Pokorny, P.; Sarantos, M.; Nesvorny, D.
2017-12-01
Recent observations by the Lunar Dust Experiment (LDEX) on board NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) were perceived to indicate an unbalanced influence of meteoroids impacting from the Helion and the Anti-Helion directions. These observations were interpreted without proper consideration of the dynamical characteristics of the meteoroid environment and its spatio-temporal influence on the Moon's surface. In this work, a dynamical model of meteoroids originating from Jupiter Family Comets is utilized to model the secondary dust ejecta cloud engulfing the Moon. It is shown that the combination of the dynamical properties of these meteoroids, together with the orbital geometry of LADEE, introduce a bias in the observations and causes LADEE LDEX to be more sensitive to the Helion source. This effect must be considered in order to draw accurate conclusions regarding the meteoroid environment and its influence on the Moon's surface.
Photon momentum transfer plane for asteroid, meteoroid, and comet orbit shaping
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W. (Inventor)
2004-01-01
A spacecraft docks with a spinning and/or rotating asteroid, meteoroid, comet, or other space object, utilizing a tether shaped in a loop and utilizing subvehicles appropriately to control loop instabilities. The loop is positioned about a portion of the asteroid and retracted thereby docking the spacecraft to the asteroid, meteoroid, comet, or other space object. A deployable rigidized, photon momentum transfer plane of sufficient thickness may then be inflated and filled with foam. This plane has a reflective surface that assists in generating a larger momentum from impinging photons. This plane may also be moved relative to the spacecraft to alter the forces acting on it, and thus on the asteroid, meteoroid, comet, or other space object to which it is attached. In general, these forces may be utilized, over time, to alter the orbits of asteroids, meteoroids, comets, or other space objects. Sensors and communication equipment may be utilized to allow remote operation of the rigidized, photon momentum transfer plane and tether.
Viewport concept for space station modules
NASA Technical Reports Server (NTRS)
Douglas, F., III
1986-01-01
The generic design of a 20-in. diameter viewport for the space station modules is discussed. It should possess the capabilities of meteoroid/debris protection (with no metallic cover), redundancies in its meteoroid/debris protection, and pressure sealing systems. In addition, it should provide ease of change out for maintenance or repair. The design does not take into account the bumper-shield effect of the outermost panes in the meteoroid/debris analysis.
Hypervelocity impact testing of L-band truss cable meteoroid shielding on Skylab
NASA Technical Reports Server (NTRS)
Jex, D. W.
1973-01-01
A series of tests was performed to determine the protection provided by the L-band truss cable meteoroid shielding installed on Skylab space station at space environment temperatures of minus 180 F. The damage sustained when three test specimens were impacted by spherical projectiles at hypersonic speed was investigated. It is concluded that the L-band truss cable meteoroid shielding provides adequate protection at the indicated temperature.
NASA Technical Reports Server (NTRS)
Rubincam, David Parry
2012-01-01
Less than catastrophic meteoroid impacts over 10(exp 5) years may change the shape of small rubble-pile satellites in binary NEAs, lengthening the average BYORP (binary Yarkovsky-Radzievskii-Paddack) rate of orbital evolution. An estimate of shape-shifting meteoroid fluxes give numbers close enough to causing random walks in the semimajor axis of binary systems to warrant further investigation
Fireball flickering: the case for indirect measurement of meteoroid rotation rates
NASA Astrophysics Data System (ADS)
Beech, Martin; Brown, Peter
2000-08-01
Data collected during the Meteorite Observation and Recovery Program (MORP) indicate that 4% of bright fireballs show a periodic variation or flickering in brightness. The observed flickering frequencies vary from a few Hz to as high as 500 Hz. We interpret the flickering phenomenon in terms of meteoroid rotation. The MORP data does not reveal any apparent correlation between the flickering frequency and the properties of the meteoroid or the atmospheric flow conditions under which ablation is taking place. It is argued that the most likely cause of the flickering phenomenon is the rotational modulation of the cross-section area presented by the meteoroid to the on-coming airflow. A study is made of the Peekskill fireball and it is concluded that the meteoroid was spun-up during its long flight through the Earth's atmosphere, and that its initial brake up was due to rotational bursting. We also argue that the Peekskill event provides the best observational evidence that the flickering phenomenon is truly related to the rotation rate of the impinging meteoroid. We find that the observed rotation rates of the MORP fireballs are clustered just below the allowed limit set by rotational bursting, but argue that this is due to an observational selection effect that mitigates against the detection of low-frequency flickering.
Meteoroid Impact Ejecta Detection by Nanosatellites for Asteroid Surface Characterization
NASA Astrophysics Data System (ADS)
Lee, N.; Close, S.; Goel, A.
2015-12-01
Asteroids are constantly bombarded by much smaller meteoroids at extremely high speeds, which results in erosion of the material on the asteroid surface. Some of this material is vaporized and ionized, forming a plasma that is ejected into the environment around the asteroid where it can be detected by a constellation of closely orbiting nanosatellites. We present a concept to leverage this natural phenomenon and to analyze this excavated material using low-power plasma sensors on nanosatellites in order to determine the composition of the asteroid surface. This concept would enable a constellation of nanosatellites to provide useful data complementing existing techniques such as spectroscopy, which require larger and more power-hungry sensors. Possible mission architectures include precursor exploratory missions using nanosatellites to survey and identify asteroid candidates worthy of further study by a large spacecraft, or simultaneous exploration by a nanosatellite constellation with a larger parent spacecraft to decrease the time required to cover the entire asteroid surface. The use of meteoroid impact plasma to analyze the surface composition of asteroids will not only produce measurements that have not been previously obtained, including the molecular composition of the surface, but will also yield a better measurement of the meteoroid flux in the vicinity of the asteroid. Current meteoroid models are poorly constrained beyond the orbit of Mars, due to scarcity of data. If this technology is used to survey asteroids in the main belt, it will offer a dramatic increase in the availability of meteoroid flux measurements in deep space, identifying previously unknown meteoroid streams and providing additional data to support models of solar system dust dynamics.
Study of the dynamics of meteoroids through the Earth's atmosphere and retrieval of meteorites
NASA Astrophysics Data System (ADS)
Guadalupe Cordero Tercero, Maria; Farah-Simon, Alejandro; Velázquez-Villegas, Fernando
2016-07-01
When a comet , asteroid or meteoroid impact with a planet several things can happen depending on the mass, velocity and composition of the impactor, if the planet or moon has an atmosphere or not, and the angle of impact. On bodies without an atmosphere like Mercury or the Moon, every object that strikes their surfaces produces impact craters with sizes ranging from centimeters to hundreds and even thousands of kilometers across. On bodies with an atmosphere, this encounter can produce impact craters, meteorites, meteors and fragmentation. Each and every one of these phenomena is interesting because they provide information about the surfaces and the geological evolution of solar system bodies. Meteors (shooting stars) are luminous wakes on the sky due to the interaction between the meteoroid and the Earth's atmosphere. A meteoroid is asteroidal or cometary material ranging in size from 2 mm to a few tens of meters. The smallest tend to evaporate at heights between 80 and 120 km. Objects of less than 2 mm are called micrometeorites. If the meteor brightness exceeds the brightness of Venus, the phenomenon is called a bolide or fireball. If a meteoroid, or a fragment of it, survives atmospheric ablation and it can be recovered on the ground, that piece is called a meteorite. Most meteoroids 2 meters long fragment suddenly into the atmosphere, it produces a shock wave that can affect humans and their environment like the Chelyabinsk event occurred on February 15, 2013 an two less energetic events in Mexico in 2010 and 2011. To understand the whole phenomenon, we proposed a video camera network for observing meteors. The objectives of this network are to: a) contribute to the study of the fragmentation of meteoroids in the Earth's atmosphere, b) determine values of important physical parameters; c ) study seismic waves produced by atmospheric shock waves, d) study the dynamics of meteoroids and f ) recover and study meteorites. During this meeting, the academic progress of the project will be presented.
Using the Geminids to Characterize the Surface Response of an Airless Body to Meteoroid Bombardment
NASA Astrophysics Data System (ADS)
Szalay, J.; Pokorny, P.; Jenniskens, P. M. M.; Horanyi, M.
2017-12-01
All airless bodies in the solar system are exposed to the continual bombardment by interplanetary meteoroids. These impacts can eject orders of magnitude more mass than the primary impactors, sustaining bound and/or unbound ejecta clouds that vary both spatially and temporally from changes in impactor fluxes. The dust environment in the vicinity of an airless body provides both a scientific resource and a hazard for exploration. Characterizing the spatial and temporal variability of the dust environment of airless planetary bodies provides a novel way to understand their meteoroid environment by effectively using these objects as large surface area meteoroid detectors. Additionally, were a dust detector with chemical sensing capability to be flown near such a body, it would be able to directly measure the composition of the body without requiring the mission design complexity involved in landing and sampling surface material. Paramount to understanding the current and future impact ejecta measurements is a sufficient understanding of the impact ejecta processes at the surface. In this presentation, we focus on data taken by the Lunar Dust Experiment (LDEX), an impact ionization dust detector onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission, designed to measure impact ejecta around the Moon. We use the Geminids meteoroid shower as a well constrained input function, and via comparison to existing ground-based measurements of this shower, to "calibrate" the response of the lunar surface to meteoroid bombardment. Understanding the response of the lunar surface to meteoroid bombardment can by extension allow us to better understand the ejecta response at other regolith airless bodies in the solar system. Future missions equipped with dust detectors sent to the Moon, large Near Earth Asteroids, the Martian moons Phobos and Deimos, or many other airless bodies in the solar system would greatly improve our knowledge of their local meteoroid environments, characterize their chemical compositions, and improve the safety for future manned and unmanned missions to these bodies.
NASA Astrophysics Data System (ADS)
Cordero Tercero, M. G.; Farah Simon, A.; Velazquez-Villegas, F.
2016-12-01
When a comet , asteroid or meteoroid impact with a planet several things can happen depending on the mass, velocity and composition of the impactor, if the planet or moon has an atmosphere or not, and the angle of impact. On bodies without an atmosphere like Mercury or the Moon, every object that strikes their surfaces produces impact craters with sizes ranging from centimeters to hundreds and even thousands of kilometers across. On bodies with an atmosphere, this encounter can produce impact craters, meteorites, meteors and fragmentation. Each one of these phenomena is interesting because they provide information about the surfaces and the geological evolution of solar system bodies. Meteors are luminous wakes on the sky due to the interaction between the meteoroid and the Earth's atmosphere. A meteoroid is asteroidal or cometary material ranging in size from 2 mm to a few tens of meters. The smallest tend to evaporate at heights between 80 and 120 km. Objects of less than 2 mm are called micrometeorites. If the meteor brightness exceeds the brightness of Venus, the phenomenon is called a bolide or fireball. If a meteoroid, or a fragment of it, survives atmospheric ablation and it can be recovered on the ground, that piece is called a meteorite. Most meteoroids 2 meters long fragment suddenly into the atmosphere, it produces a shock wave that can affect humans and their environment like the Chelyabinsk event occurred on February 15, 2013 an two less energetic events in Mexico in 2010 and 2011. To understand the whole phenomenon, we proposed a video camera network for observing meteors. The objectives of this network are to: a) contribute to the study of the fragmentation of meteoroids in the Earth's atmosphere, b) determine values of important physical parameters; c) study seismic waves produced by atmospheric shock waves, d) study the dynamics of meteoroids and f) recover and study meteorites. During this meeting, the progress of the project will be presented.
Meteoroid Impacts: A Competitor for Yarkovsky and YORP
NASA Astrophysics Data System (ADS)
Wiegert, Paul
2014-11-01
Meteoroids impacting an asteroid transfer linear and angular momentum to the larger body, which may change its orbit and its rotational state. The meteoroid environment of our Solar System may affect small (few meter sizes and smaller) asteroids at a level that is comparable to the Yarkovsky and Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effects.Asteroids orbiting on prograde orbits near the Earth encounter an anisotropic meteoroid environment, including a population of particles on retrograde orbits generally accepted to be material from long-period comets spiralling inwards under Poynting-Robertson drag. High relative speed (60 km/s) impacts by meteoroids provide a small effective drag force that decreases asteroid semimajor axes and which is independent of their rotation pole. This effect may exceed the Yarkovsky drift at sizes near and below one meter.The momentum content of the meteoroids themselves is small enough to neglect, but it is the momentum transport by ejecta that increases the net effective force by two orders of magnitude for impacts into bare rock surfaces: this brings the effect to a level where it is of order that due to Yarkovsky, at least for small bodies. However, the above results are sensitive to the extrapolation of laboratory microcratering experiment results to real meteoroid-asteroid collisions and need further study.Meteoroid impacts may also affect asteroid spins at a level comparable to that of YORP at sizes smaller than tens of meters. However, we conclude that recent measurements of the YORP effect have probably not been compromised, because of the targets' large sizes and because they are known or likely to be regolith-covered rather than bare rock, which decreases the efficiency of ejecta production. However, the effect of impacts increases sharply with decreasing size, and may be important for asteroids smaller than a few tens of meters in radius.
Active Asteroids in the NEO Population
NASA Astrophysics Data System (ADS)
Jenniskens, Peter
2016-01-01
Some main-belt asteroids evolve into near-Earth objects. They can then experience the same meteoroid-producing phenomena as active asteroids in the main belt. If so, they would produce meteoroid streams, some of which evolve to intersect Earth's orbit and produce meteor showers at Earth. Only few of those are known. Meteoroid streams that move in orbits with Tisserand parameter well in excess of 3 are the Geminids and Daytime Sextantids of the Phaethon complex and the lesser known epsilon Pegasids. The observed activity appears to be related to nearly whole scale disintegrations, rather than dust ejection from volatile outgassing as observed in active comets. There is only a small population of asteroids with a main-belt origin that recently disintegrated into meteoroid streams.
Flux of Kilogram-Sized Meteoroids from Lunar Impact Monitoring
NASA Technical Reports Server (NTRS)
Suggs, Robert; Suggs, Ron; Cooke, William; McNamara, Heather; Diekmann, Anne; Moser, Danielle; Swift, Wesley
2008-01-01
Routine lunar impact monitoring has harvested over 110 impacts in 2 years of observations using 0.25, 0.36 and 0.5 m telescopes and low-light-level video cameras. The night side of the lunar surface provides a large collecting area for detecting these impacts and allows estimation of the flux of meteoroids down to a limiting luminous energy. In order to determine the limiting mass for these observations, models of the sporadic meteoroid environment were used to determine the velocity distribution and new measurements of luminous efficiency were made at the Ames Vertical Gun Range. The flux of meteoroids in this size range has implications for Near Earth Object populations as well as for estimating impact ejecta risk for future lunar missions.
Current evolution of meteoroids
NASA Technical Reports Server (NTRS)
Dohnanyi, J. S.
1973-01-01
The observed mass distribution of meteoroids at 1 AU from the sun is briefly reviewed in a survey that ranges over the bulk of the mass spectrum from micrometeoroids to meteorite parent objects. The evolution of meteoroids under the influence of collisions, planetary perturbations, the Poynting-Robertson effect and radiation pressure is then discussed. Most micrometeoroids are expelled from the solar system by radiation pressure shortly after their production as secondary ejecta during impact by larger objects or as dust ejected by comets. Particles that survive will eventually be swept out by the Poynting-Robertson effect. Meteoroids in the radio and photographic ranges are destroyed in collisions faster than they can be replaced by the production of secondary fragments during collisions between larger objects.
The initial flight anomalies of Skylab 1
NASA Astrophysics Data System (ADS)
At approximately 63 seconds into the flight of Skylab 1 on May 14, 1973, an anomaly occurred which resulted in the complete loss of the meteoroid shield around the orbital workshop. This was followed by the loss of one of the two solar array systems on the workshop and a failure of the inter stage adapter to separate from the S-II stage of the Saturn V launch vehicle. The investigation reported herein identified the most probable cause of this flight anomaly to be the breakup and loss of the meteoroid shield due to aerodynamic loads that were not accounted for in its design. The breakup of the meteoroid shield, in turn, broke the tie downs that secured one of the solar array systems to the workshop. Complete loss of this solar array system occurred at 593 seconds when the exhaust plume of the S-II stage retro-rockets impacted the partially deployed solar array system. Falling debris from the meteoroid shield also damaged the S-II inter stage adapter ordnance system in such a manner as to preclude separation. Of several possible failure modes of the meteoroid shield that were identified, the most probable in this particular flight was internal pressurization of its auxiliary tunnel which acted to force the forward end of the meteoroid shield away from the shell of the workshop and into the supersonic air stream. The pressurization of the auxiliary tunnel was due to the existence of several openings in the aft region of the tunnel. Another possible failure mode was the separation of the leading edge of the meteoroid shield from the shell of the workshop (particularly in the region of the folded ordnance panel) of sufficient extent to admit ram air pressures under the shield.
A shower look-up table to trace the dynamics of meteoroid streams and their sources
NASA Astrophysics Data System (ADS)
Jenniskens, Petrus
2018-04-01
Meteor showers are caused by meteoroid streams from comets (and some primitive asteroids). They trace the comet population and its dynamical evolution, warn of dangerous long-period comets that can pass close to Earth's orbit, outline volumes of space with a higher satellite impact probability, and define how meteoroids evolve in the interplanetary medium. Ongoing meteoroid orbit surveys have mapped these showers in recent years, but the surveys are now running up against a more and more complicated scene. The IAU Working List of Meteor Showers has reached 956 entries to be investigated (per March 1, 2018). The picture is even more complicated with the discovery that radar-detected streams are often different, or differently distributed, than video-detected streams. Complicating matters even more, some meteor showers are active over many months, during which their radiant position gradually changes, which makes the use of mean orbits as a proxy for a meteoroid stream's identity meaningless. The dispersion of the stream in space and time is important to that identity and contains much information about its origin and dynamical evolution. To make sense of the meteor shower zoo, a Shower Look-Up Table was created that captures this dispersion. The Shower Look-Up Table has enabled the automated identification of showers in the ongoing CAMS video-based meteoroid orbit survey, results of which are presented now online in near-real time at http://cams.seti.org/FDL/. Visualization tools have been built that depict the streams in a planetarium setting. Examples will be presented that sample the range of meteoroid streams that this look-up table describes. Possibilities for further dynamical studies will be discussed.
Astronomical and physical data for meteoroids recorded by the Altair radar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, P. G.; ReVelle, D. O.
We present preliminary results of orbital and physical measurements of a small selection of meteoroids observed at UHF frequencies by the ALTAIR radar on Kwajalein Island on November 17, 1998. The head echoes observed by ALTAIR allowed precise determination of velocities and decelerations from which orbits and masses of individual meteoroids derived from numerical modelling have been measured. During these observations, the ALTAIR radar detected average head echo rates of 1665 per hour.
Flux of Kilogram-sized Meteoroids from Lunar Impact Monitoring. Supplemental Movies
NASA Technical Reports Server (NTRS)
Suggs, Robert; Cooke, William; Suggs, Ron; McNamara, Heather; Swift, Wesley; Moser, Danielle; Diekmann, Anne
2008-01-01
These videos, and audio accompany the slide presentation "Flux of Kilogram-sized Meteoroids from Lunar Impact Monitoring." The slide presentation reviews the routine lunar impact monitoring that has harvested over 110 impacts in 2 years of observations using telescopes and low-light level video cameras. The night side of the lunar surface provides a large collecting area for detecting these impacts and allows estimation of the flux of meteoroids down to a limiting luminous energy.
A Comparison of Damaging Meteoroid and Orbital Debris Fluxes in Earth Orbit
NASA Technical Reports Server (NTRS)
Cooke, William; Matney, Mark; Moorhead, Althea V.; Vavrin, Andrew
2017-01-01
Low Earth orbit is populated with a substantial amount of orbital debris, and it is usually assumed that the flux from these objects contributes to most of the hypervelocity particle risk to spacecraft in this region. The meteoroid flux is known to be dominant at very low altitudes (less than 300 km), where atmospheric drag rapidly removes debris, and at very high altitudes (beyond geostationary), where debris is practically non-existent. The vagueness of these boundaries and repeated questions from spacecraft projects have prompted this work, in which we compare the fluxes of meteoroids and orbital debris capable of producing a millimeter-deep crater in aluminum for circular orbits with altitudes ranging from the top of the atmosphere to 100,000 km. The outputs from the latest NASA debris and meteoroid models, ORDEM 3.0 and MEMR2, are combined with the modified Cour-Palais ballistic limit equation to make a realistic evaluation of the damage-capable particle fluxes, thereby establishing the relative contributions of hazardous debris and meteoroids throughout near-Earth space.
NASA Technical Reports Server (NTRS)
Mathews, J. D.; Malhorta, A.
2011-01-01
We report recent 46.8/430 MHz (VHF/UHF) radar meteor observations at Arecibo Observatory (AO) that reveal many previously unreported features in the radar meteor return - including flare-trails at both UHF and VHF - that are consistent with meteoroid fragmentation. Signature features of fragmentation include strong intra-pulse and pulse-to-pulse fading as the result of interference between or among multiple meteor head-echo returns and between head-echo and impulsive flare or "point" trail-echoes. That strong interference fading occurs implies that these scatterers exhibit well defined phase centers and are thus small compared with the wavelength. These results are consistent with and offer advances beyond a long history of optical and radar meteoroid fragmentation studies. Further, at AO, fragmenting and flare events are found to be a large fraction of the total events even though these meteoroids are likely the smallest observed by the major radars. Fragmentation is found to be a major though not dominate component of the meteors observed at other HPLA radars that are sensitive to larger meteoroids.
Comparison of Meteoroid Flux Models for Near Earth Space
NASA Technical Reports Server (NTRS)
Drolshagen, G.; Liou, J.-C.; Dikarev, V.; Landgraf, M.; Krag, H.; Kuiper, W.
2007-01-01
Over the last decade several new models for the sporadic interplanetary meteoroid flux have been developed. These include the Meteoroid Engineering Model (MEM), the Divine-Staubach model and the Interplanetary Meteoroid Engineering Model (IMEM). They typically cover mass ranges from 10-12 g (or lower) to 1 g and are applicable for model specific sun distance ranges between 0.2 A.U. and 10 A.U. Near 1 A.U. averaged fluxes (over direction and velocities) for all these models are tuned to the well established interplanetary model by Gr?n et. al. However, in many respects these models differ considerably. Examples are the velocity and directional distributions and the assumed meteoroid sources. In this paper flux predictions by the various models to Earth orbiting spacecraft are compared. Main differences are presented and analysed. The persisting differences even for near Earth space can be seen as surprising in view of the numerous ground based (optical, radar) and in-situ (captured IDPs, in-situ detectors and analysis of retrieved hardware) measurements and simulations. Remaining uncertainties and potential additional studies to overcome the existing model discrepancies are discussed.
NASA Technical Reports Server (NTRS)
Adams, Marc A.; Zwissler, James G.; Hayes, Charles; Fabensky, Beth; Cornelison, Charles; Alexander, Lesley; Bishop, Karen
2005-01-01
A new technology is being developed that can protect spacecraft and satellite components against damage from meteoroid strikes and control the thermal environment of the protected components. This technology, called Foam Core Shield (FCS) systems, has the potential to replace the multi-layer insulation blankets (MLI) that have been used on spacecraft for decades. In order to be an attractive candidate for replacing MLI, FCS systems should not only provide superior protection against meteoroid strikes but also provide an equal or superior ability to control the temperature of the protected component. Properly designed FCS systems can provide these principal functions, meteoroid strike protection and thermal control, with lower system mass and a smaller system envelope than ML.
Meteor Shower Forecasting for Spacecraft Operations
NASA Technical Reports Server (NTRS)
Moorhead, Althea V.; Cooke, William J.; Campbell-Brown, Margaret D.
2017-01-01
Although sporadic meteoroids generally pose a much greater hazard to spacecraft than shower meteoroids, meteor showers can significantly increase the risk of damage over short time periods. Because showers are brief, it is sometimes possible to mitigate the risk operationally, which requires accurate predictions of shower activity. NASA's Meteoroid Environment Office (MEO) generates an annual meteor shower forecast that describes the variations in the near-Earth meteoroid flux produced by meteor showers, and presents the shower flux both in absolute terms and relative to the sporadic flux. The shower forecast incorporates model predictions of annual variations in shower activity and quotes fluxes to several limiting particle kinetic energies. In this work, we describe our forecasting methods and present recent improvements to the temporal profiles based on flux measurements from the Canadian Meteor Orbit Radar (CMOR).
New meteoroid model predictions for directional impacts on LDEF
NASA Technical Reports Server (NTRS)
Divine, Neil; Agueero, Rene C.
1993-01-01
An extensive body of data, from meteors, zodiacal light, spacecraft-borne impact detectors (Helios, Pioneer, Galileo, Ulysses), and other sources, forms the basis of a new numerical model for the distributions of interplanetary meteoroids. For each of the five populations in this model it is possible to evaluate meteoroid concentration and flux for oriented surfaces or detectors having arbitrary position and velocity in interplanetary space. For a spacecraft in geocentric orbit the effects of gravitational focussing and shielding by the Earth have been newly derived with full attention to the directionality of the particles, both on approach (i.e., relative to a massless Earth) and at the target. This modeling approach was exercised to provide an estimate of meteoroid fluence for each of several oriented surfaces on LDEF.
Observations of ejecta clouds produced by impacts onto Saturn's rings.
Tiscareno, Matthew S; Mitchell, Colin J; Murray, Carl D; Di Nino, Daiana; Hedman, Matthew M; Schmidt, Jürgen; Burns, Joseph A; Cuzzi, Jeffrey N; Porco, Carolyn C; Beurle, Kevin; Evans, Michael W
2013-04-26
We report observations of dusty clouds in Saturn's rings, which we interpret as resulting from impacts onto the rings that occurred between 1 and 50 hours before the clouds were observed. The largest of these clouds was observed twice; its brightness and cant angle evolved in a manner consistent with this hypothesis. Several arguments suggest that these clouds cannot be due to the primary impact of one solid meteoroid onto the rings, but rather are due to the impact of a compact stream of Saturn-orbiting material derived from previous breakup of a meteoroid. The responsible interplanetary meteoroids were initially between 1 centimeter and several meters in size, and their influx rate is consistent with the sparse prior knowledge of smaller meteoroids in the outer solar system.
Large craters on the meteoroid and space debris impact experiment
NASA Technical Reports Server (NTRS)
Humes, Donald H.
1992-01-01
Examination of 29.37 sq m of thick aluminum plates from the LDEF, which were exposed to the meteoroid and man-made orbital debris environments for 5.8 years, revealed 606 craters that were 0.5 mm in diameter or larger. Most were nearly hemispherical. There was a large variation in the number density of craters around the three axis gravity gradient stabilized spacecraft. A new model of the near-Earth meteoroid environment gives good agreement with the crater fluxes measured on the fourteen faces of the LDEF. The man-made orbital debris model of Kessler, which predicts that 16 pct. of the craters would be caused by man-made debris, is plausible. No chemical analyses of impactor residue that will distinguish between meteoroids and man-made debris is yet available.
NASA Technical Reports Server (NTRS)
Dateo, Christopher E.
2003-01-01
We develop a reacting flow model to simulate the shock induced chemistry of comets and meteoroids entering planetary atmospheres. Various atmospheric compositions comprising of simpler molecules (i.e., CH4, CO2, H2O, etc.) are investigated to determine the production efficiency of more complex prebiotic molecules as a function of composition, pressure, and entry velocity. The possible role of comets and meteoroids in creating the inventory of prebiotic material necessary for life on Early Earth is considered. Comets and meteoroids can also introduce new materials from the Interstellar Medium (ISM) to planetary atmospheres. The ablation of water from comets, introducing the element oxygen into Titan's atmosphere will also be considered and its implications for the formation of organic and prebiotic material.
Small meteoroids' major contribution to Mercury's exosphere
NASA Astrophysics Data System (ADS)
Grotheer, E. B.; Livi, S. A.
2014-01-01
The contribution of the meteoroid population to the generation of Mercury's exosphere is analyzed to determine which segment contributes most greatly to exospheric refilling via the process of meteoritic impact vaporization. For the meteoroid data, a differential mass distribution based on work by Grün et al. (Grün, E., Zook, H.A., Fechtig, H., Giese, R.H. [1985]. Icarus 62(2), 244-272) and a differential velocity distribution based on the work of Zook (Zook, H.A. [1975]. In: 6th Lunar Science Conference, vol. 2. Pergamon Press, Inc., Houston, TX, pp. 1653-1672) is used. These distributions are then evaluated using the method employed by Cintala (Cintala, M.J. [1992]. J. Geophys. Res. 97(E1), 947-974) to determine impact rates for selected mass and velocity segments of the meteoroid population.
Meteoroid/space debris impacts on MSFC LDEF experiments
NASA Technical Reports Server (NTRS)
Finckenor, Miria
1992-01-01
The many meteoroid and space debris impacts found on A0171, A0034, S1005, and other MSFC experiments are considered. In addition to those impacts found by the meteoroid and debris studies, numerous impacts less than 0.5 mm were found and photographed. The flux and size distribution of impacts is presented as well as EDS analysis of impact residue. Emphasis is on morphology of impacts in the various materials, including graphite/epoxy composites, polymeric materials, optical coatings, thin films, and solar cells.
Meteoroid/space debris impacts on MSFC LDEF experiments
NASA Technical Reports Server (NTRS)
Finckenor, Miria
1991-01-01
The numerous meteoroid and space debris impacts found on AO171, AO034, S0069, and other MSFC experiments are examined. Besides those impacts found by the Meteoroid and Debris Special Investigative Group at KSC, numerous impacts of less than 0.5 mm were found and photographed. The flux and size distribution of impacts are presented as well as EDS analysis of impact residue. Emphasis is on morphology of impacts in the various materials, including graphite/epoxy composites, polymeric materials, optical coatings, thin films, and solar cells.
A Bright Lunar Impact Flash Linked to the Virginid Meteor Complex
NASA Technical Reports Server (NTRS)
Moser, D. E.; Suggs, R. M.; Suggs, R. J.
2015-01-01
On 17 March 2013 at 03:50:54 UTC, NASA detected a bright impact flash on the Moon caused by a meteoroid impacting the lunar surface. There was meteor activity in Earth's atmosphere the same night from the Virginid Meteor Complex. The impact crater associated with the impact flash was found and imaged by Lunar Reconnaissance Orbiter (LRO). Goal: Monitor the Moon for impact flashes produced by meteoroids striking the lunar surface. Determine meteoroid flux in the 10's gram to kilogram size range.
Meteoroid impacts onto asteroids: A competitor for Yarkovsky and YORP
NASA Astrophysics Data System (ADS)
Wiegert, Paul A.
2015-05-01
The impact of a meteoroid onto an asteroid transfers linear and angular momentum to the larger body, which may affect its orbit and its rotational state. Here we show that the meteoroid environment of our Solar System can have an effect on small asteroids that is comparable to the Yarkovsky and Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effects under certain conditions. The momentum content of the meteoroids themselves is expected to generate an effect much smaller than that of the Yarkovsky effect. However, momentum transport by ejecta may increase the net effective force by one order of magnitude for iron or regolith surfaces, and two orders of magnitude for impacts into bare rock surfaces. The result is sensitive to the extrapolation of laboratory microcratering experiment results to real meteoroid-asteroid collisions and needs further study. If this extrapolation holds, then meteoroid impacts are more important to the dynamics of small rocky asteroids than had previously been considered. Asteroids orbiting on prograde orbits near the Earth encounter an anisotropic meteoroid environment, including a population of particles on retrograde orbits generally accepted to be material from long-period comets spiralling inwards under Poynting-Robertson drag. High relative speed (60 km s-1) impacts by meteoroids provide a small effective drag force that decreases asteroid semimajor axes and which is independent of their rotation pole. If small asteroids are bare instead of regolith covered, as is perhaps to be expected given their rapid rotation rates (Harris, A.W., Pravec, P. [2006]. In: Daniela, L., Sylvio Ferraz, M., Angel, F.J. (Eds.), Asteroids, Comets, Meteors. IAU Symposium, vol. 229, pp. 439-447), this effect may exceed the instantaneous Yarkovsky drift at sizes near and below one meter. Since one meter objects are the most abundant meteorite droppers at the Earth, the delivery of these important objects may be controlled by drag against the meteoroid environment. The rate of reorientation of asteroid spins is also substantially increased when momentum transport by ejecta is included. This has an indirect effect on the net Yarkovsky drift, particularly the diurnal variant, as the sign of the drift it creates depends on its rotational state. The net drift of an asteroid towards a resonance under the diurnal Yarkovsky effect can be slowed by more frequent pole reorientations or induced tumbling. This may make the effect of the meteoroid environment more important than the Yarkovsky effect at sizes even above one meter. Meteoroid impacts also affect asteroid spins at a level comparable to that of YORP at sizes smaller than tens of meters. Here the effect comes primarily from a small number of impacts by centimeter size particles. We conclude that recent measurements of the YORP effect have probably not been compromised, because of the targets' large sizes and because they are known or likely to be regolith-covered rather than bare rock. However, the effect of impacts increases sharply with decreasing size, and will likely become important for asteroids smaller than a few tens of meters in radius.
Dust Ejection Induced by Small Meteoroids Impacting Martian Surface
NASA Technical Reports Server (NTRS)
Shuvalov, Valery
2001-01-01
The objective of this study is numerical modeling of meteoroid impact on the martian surface and determination of the resulting dust cloud parameters. Additional information is contained in the original extended abstract.
Effects of meteoroid fragmentation on radar observations of meteor trails
NASA Astrophysics Data System (ADS)
Elford, W. Graham; Campbell, L.
2001-11-01
Radar reflections from meteor trails often differ from the predictions of simple models. There is general consensus that these differences are probably the result of fragmentation of the meteoroid. Several examples taken from different types of meteor radar observations are considered in order to test the validity of the fragmentation hypothesis. The absence of the expected Fresnel oscillations in many observations of transverse scatter from meteor trails is readily explained by assuming a number of ablating fragments spread out along the trails. Observations of amplitude fluctuations in head echoes from "down-the-beam" meteoroids are explained by gross fragmentation of a meteoroid into two or more pieces. Another down-the-beam event is modeled by simulation of the differential retardation of two fragments of different mass, giving reasonable agreement between the observed and predicted radar signals.
New meteoroid model predictions for directional impacts on LDEF
NASA Technical Reports Server (NTRS)
Divine, Neil; Aguero, Rene C.
1992-01-01
An extensive body of data, from meteors, zodiacal light, spacecraft-borne impact detectors (helios, Pioneer, Galileo, and Ulysses), and other sources, forms the basis of a new numerical model for the distributions of interplanetary meteoroids. For each of the five populations in this model it is possible to evaluate meteoroid concentration and flux for oriented surfaces or detectors having arbitrary position and velocity in interplanetary space (Divine, 1992, in preparation). For a spacecraft in geocentric orbit, the effects of gravitational focusing and shielding by the Earth were derived with full attention to the directionality of the particles, both on approach (i.e., relative to a massless Earth) and at the target. This modeling approach was exercised to provide an estimate of meteoroid fluence for each of several oriented surfaces on the Long Duration Exposure Facility (LDEF).
Solar flare activity - Evidence for large-scale changes in the past
NASA Technical Reports Server (NTRS)
Zook, H. A.; Hartung, J. B.; Storzer, D.
1977-01-01
An analysis of radar and photographic meteor data and of spacecraft meteoroid-penetration data indicates that there probably has not been a large increase in meteoroid impact rates in the last 10,000 yr. The solar-flare tracks observed in the glass linings of meteoroid impact pits on lunar rock 15205 are therefore reanalyzed assuming a meteoroid flux that is constant in time. Based on this assumption, the data suggest that the production rate of Fe-group solar-flare tracks may have varied by as much as a factor of 50 on a time scale of about 10,000 yr. No independently obtained data are known to require conflict with this interpretation. Confidence in this conclusion is somewhat qualified by the experimental and analytical uncertainties involved, but the conclusion nevertheless remains the present 'best' explanation for the observed data trends.
NASA Technical Reports Server (NTRS)
Nysmith, C. Robert; Summers, James L.
1961-01-01
Small pyrex glass spheres, representative of stoney meteoroids, were fired into 2024-T3 aluminum alclad multiple-sheet structures at velocities to 11,000 feet per second to evaluate the effectiveness of multisheet hull construction as a means of increasing the resistance of a spacecraft to meteoroid penetrations. The results of these tests indicate that increasing the number of sheets in a structure while keeping the total sheet thickness constant and increasing the spacing between sheets both tend to increase the penetration resistance of a structure of constant weight per unit area. In addition, filling the space between the sheets with a light filler material was found to substantially increase structure penetration resistance with a small increase in weight. An evaluation of the meteoroid hazard to space vehicles is presented in the form of an illustrative-example for two specific lunar mission vehicles, a single-sheet, monocoque hull vehicle and a glass-wool filled, double-sheet hull vehicle. The evaluation is presented in terms of the "best" and the "worst" conditions that might be expected as determined from astronomical and satellite measurements, high-speed impact data, and hypothesized meteoroid structures and compositions. It was observed that the vehicle flight time without penetration can be increased significantly by use of multiple-sheet rather than single-sheet hull construction with no increase in hull weight. Nevertheless, it is evident that a meteoroid hazard exists, even for the vehicle with the selected multiple-sheet hull.
NASA Technical Reports Server (NTRS)
Moser, D. E.
2017-01-01
Most meteoroids are broken up by Earth's atmosphere before they reach the ground. The Moon, however, has little-to-no atmosphere to prevent meteoroids from impacting the lunar surface. Upon impact they excavate a crater and generate a plume of debris. A flash of light at the moment of impact can also be seen. Meteoroids striking the Moon create an impact flash observable by telescopes here on Earth. NASA observers use telescopes at the Automated Lunar and Meteor Observatory (ALaMO) to routinely monitor the Moon for impact flashes each month when the lunar phase is right. Flashes recorded by two telescope simultaneously rule out false signals from cosmic rays and satellites. Over 400 impact flashes have been observed by NASA since 2005. This map shows the location of each flash. No observations are made near the poles or center line. On average, one impact is observed every two hours. The brightest and longest-lasting impact flash was observed in Mare Imbrium on March 17, 2013. The imaging satellite Lunar Reconnaissance Orbiter, in orbit around the Moon, discovered the fresh crater created by this impact. The crater is 60 across and was caused by a meteoroid 9 inches in diameter likely traveling at a speed of 57,000 mph!
On the mechanisms leading to orphan meteoroid streams
NASA Astrophysics Data System (ADS)
Vaubaillon, J.; Lamy, P.; Jorda, L.
2006-08-01
We analyse several mechanisms capable of creating orphan meteoroid streams (OMSs) for which a parent has not been identified. OMSs have been observed as meteor showers since the XIXth century and by the IRAS satellite in the 1980s. We find that the process of close encounters with giant planets (particularly Jupiter) is the most efficient mechanism to create them: only a limited section of the stream is perturbed and follows the parent body on its new orbit, while the majority of the meteoroids remain in their pre-encounter orbit or in an intermediate state, breaking the link with their parent body. Cometary non-gravitational forces can also contribute to the process since they cause the comet to drift away from its stream. However, they are not sufficient by themselves to produce an OMS. Resonances can either split or confine a stream over a long time (>1000 yr). Some meteoroid streams may look like OMSs since their parent comet is dormant or not observable (e.g. long period). Even if new techniques succeed in linking minor objects to meteoroid streams, OMSs will still exist simply because cometary nuclei are subject to complete disruption leading to their disappearance.
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.
2003-01-01
This report provides innovative, low-weight shielding solutions for spacecraft and the ballistic limit equations that define the shield's performance in the meteoroid/debris environment. Analyses and hypervelocity impact testing results are described that have been used in developing the shields and equations. Spacecraft shielding design and operational practices described in this report are used to provide effective spacecraft protection from meteoroid and debris impacts. Specific shield applications for the International Space Station (ISS), Space Shuttle Orbiter and the CONTOUR (Comet Nucleus Tour) space probe are provided. Whipple, Multi-Shock and Stuffed Whipple shield applications are described.
Global Statistics of Bolides in the Terrestrial Atmosphere
NASA Astrophysics Data System (ADS)
Chernogor, L. F.; Shevelyov, M. B.
2017-06-01
Purpose: Evaluation and analysis of distribution of the number of meteoroid (mini asteroid) falls as a function of glow energy, velocity, the region of maximum glow altitude, and geographic coordinates. Design/methodology/approach: The satellite database on the glow of 693 mini asteroids, which were decelerated in the terrestrial atmosphere, has been used for evaluating basic meteoroid statistics. Findings: A rapid decrease in the number of asteroids with increasing of their glow energy is confirmed. The average speed of the celestial bodies is equal to about 17.9 km/s. The altitude of maximum glow most often equals to 30-40 km. The distribution law for a number of meteoroids entering the terrestrial atmosphere in longitude and latitude (after excluding the component in latitudinal dependence due to the geometry) is approximately uniform. Conclusions: Using a large enough database of measurements, the meteoroid (mini asteroid) statistics has been evaluated.
Recent corrections to meteoroid environment models
NASA Astrophysics Data System (ADS)
Moorhead, A.; Brown, P.; Campbell-Brown, M. D.; Moser, D. E.; Blaauw, R. C.; Cooke, W.
2017-12-01
The dynamical and physical characteristics of a meteoroid affects its behavior in the atmosphere and the damage it does to spacecraft surfaces. Accurate environment models must therefore correctly describe the speed, size, density, and direction of meteoroids. However, the measurement of dynamical characteristics such as speed is subject to observational biases, and physical properties such as size and density cannot be directly measured. De-biasing techniques and proxies are needed to overcome these challenges. In this presentation, we discuss several recent improvements to the derivation of the meteoroid velocity, directionality, and bulk density distributions. We derive our speed distribution from observations made by the Canadian Meteor Orbit Radar. These observations are de-biased using modern descriptions of the ionization efficiency and sharpened to remove the effects of measurement uncertainty, and the result is a meteoroid speed distribution that is skewed slower than in previous analyses. We also adopt a higher fidelity density distribution than that used by many older models. In our distribution, meteoroids with TJ < 2 are assigned to a low-density population, while those with TJ > 2 have higher densities. This division and the distributions themselves are derived from the densities reported by Kikwaya et al. (2009, 2011). These changes have implications for the environment. For instance, helion and antihelion meteors have lower speeds and higher densities than apex and toroidal meteors. A slower speed distribution therefore corresponds to a sporadic environment that is more completely dominated by the helion and antihelion sources than in previous models. Finally, assigning these meteors high densities further increases their significance from a spacecraft damage perspective.
NASA Technical Reports Server (NTRS)
Matney, Mark
2017-01-01
Because of the high speeds needed for orbital space flight, hypervelocity impacts with objects in space are a constant risk to spacecraft. This includes natural debris - meteoroids - and the debris remnants of our own activities in space. A number of space surveillance assets are used to measure and track spacecraft, used upper stages, and breakup debris. However, much of the debris and meteoroids encountered by spacecraft in Earth orbit is not easily measured or tracked. For every man-made object that we can track, there are hundreds of small debris that are too small to be tracked but still large enough to damage spacecraft. In addition, even if we knew today's environment with perfect knowledge, the debris environment is dynamic and would change tomorrow. This means that much of the risk from both meteoroids and anthropogenic debris is statistical in nature. NASA uses and maintains a number of instruments to statistically monitor the meteoroid and orbital debris environments, and uses this information to compute statistical models for use by spacecraft designers and operators. Because orbital debris is a result of human activities, NASA has led the US government in formulating national and international strategies that space users can employ to limit the growth of debris in the future. This talk will summarize the history and current state of meteoroid and space debris measurements and modeling, how the environment influences spacecraft design and operations, how we are designing the experiments of tomorrow to improve our knowledge, and how we are working internationally to preserve the space environment for the future.
Recent Corrections to Meteoroid Environment Models
NASA Technical Reports Server (NTRS)
Moorhead, A. V.; Brown, P. G.; Campbell-Brown, M. D.; Moser, D. E.; Blaauw, R. C.; Cooke, W. J.
2017-01-01
The dynamical and physical characteristics of a meteoroid affects its behavior in the atmosphere and the damage it does to spacecraft surfaces. Accurate environment models must therefore correctly describe the speed, size, density, and direction of meteoroids. However, the measurement of dynamical characteristics such as speed is subject to observational biases, and physical properties such as size and density cannot be directly measured. De-biasing techniques and proxies are needed to overcome these challenges. In this presentation, we discuss several recent improvements to the derivation of the meteoroid velocity, directionality, and bulk density distributions. We derive our speed distribution from observations made by the Canadian Meteor Orbit Radar. These observations are de-biased using modern descriptions of the ionization efficiency and sharpened to remove the effects of measurement uncertainty, and the result is a meteoroid speed distribution that is skewed slower than in previous analyses. We also adopt a higher fidelity density distribution than that used by many older models. In our distribution, meteoroids with T(sub J) less than 2 are assigned to a low-density population, while those with T(sub J) greater than 2 have higher densities. This division and the distributions themselves are derived from the densities reported by Kikwaya et al. (2009, 2011). These changes have implications for the environment. For instance, helion and antihelion meteors have lower speeds and higher densities than apex and toroidal meteors. A slower speed distribution therefore corresponds to a sporadic environment that is more completely dominated by the helion and antihelion sources than in previous models. Finally, assigning these meteors high densities further increases their significance from a spacecraft damage perspective.
Observation of Signatures of Meteoroidal Water in the Lunar Exosphere by the LADEE NMS Instrument
NASA Astrophysics Data System (ADS)
Benna, M.; Elphic, R. C.; Hurley, D.; Stubbs, T. J.; Mahaffy, P. R.
2017-12-01
During its seven months in orbit, the Neutral Mass Spectrometer (NMS) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission measured the composition and variability of the tenuous lunar atmosphere. These measurements led to the detection of signatures of water group neutrals (H2O and/or OH) in the exosphere of the Moon. The signature of water has been measured as sporadic, short-lived signal increases above instrument background levels. The NMS data show that the occurrence rate of the high signal water "spikes" is correlated with periods of major annual meteoroid streams. Moreover, the daily water detection rate is in agreement with the expected evolution of the incoming meteoroidal impact flux at the Moon. Monte Carlo modeling of the evolution of vaporized water indicates that the signatures detected by the NMS instrument are commensurate in size and distribution of the energetic fraction of the vapors released by impacts that occurred near the location of the spacecraft. These measurements provide the first direct constraints on the contribution of meteoroid-delivered water to the sequestered ice in the permanently shadow regions of the lunar poles. They also provide a new technique for real-time observations of meteoroid impacts on airless bodies of the solar system through the detection of their associated volatile signatures.
Meteoroid Streams from Sunskirter Comet Breakup
NASA Astrophysics Data System (ADS)
Jenniskens, P. M.
2012-12-01
In its first year of operations, the CAMS project (Cameras for Allsky Meteor Surveillance) has measured 47,000 meteoroid orbits at Earth, including some that pass the Sun as close as 0.008 AU. The population density increases significantly above perihelion distance q = 0.037 AU. Meteoroid streams are known with q about 0.1 AU. The Sun has a profound effect on comets that pass at 0.04-0.16 AU distance, called the sunskirter comets. SOHO and STEREO see families of small comets called the Marsden and Kracht groups. Sunlight is efficiently scattered by small 10-m sized fragments, making those fragments visible even when far from Earth. These comet groups are associated with meteor showers on Earth, in particular the Daytime Arietids and Delta Aquariids. All are related to 96P/Machholz, a highly inclined short-period (5.2 year) Jupiter family comet that comes to within 0.12 AU from the Sun, the smallest perihelion distance known among numbered comets. The proximity of the Sun speeds up the disintegration process, providing us a unique window on this important decay mechanism of Jupiter family comets and creating meteoroid streams. These are not the only sunskirting comets, however. In this presentation, we will present CAMS observations of the complete low-q meteoroid population at Earth and review their association with known parent bodies.
Lunar Impact Flash Locations from NASA's Lunar Impact Monitoring Program
NASA Technical Reports Server (NTRS)
Moser, D. E.; Suggs, R. M.; Kupferschmidt, L.; Feldman, J.
2015-01-01
Meteoroids are small, natural bodies traveling through space, fragments from comets, asteroids, and impact debris from planets. Unlike the Earth, which has an atmosphere that slows, ablates, and disintegrates most meteoroids before they reach the ground, the Moon has little-to-no atmosphere to prevent meteoroids from impacting the lunar surface. Upon impact, the meteoroid's kinetic energy is partitioned into crater excavation, seismic wave production, and the generation of a debris plume. A flash of light associated with the plume is detectable by instruments on Earth. Following the initial observation of a probable Taurid impact flash on the Moon in November 2005,1 the NASA Meteoroid Environment Office (MEO) began a routine monitoring program to observe the Moon for meteoroid impact flashes in early 2006, resulting in the observation of over 330 impacts to date. The main objective of the MEO is to characterize the meteoroid environment for application to spacecraft engineering and operations. The Lunar Impact Monitoring Program provides information about the meteoroid flux in near-Earth space in a size range-tens of grams to a few kilograms-difficult to measure with statistical significance by other means. A bright impact flash detected by the program in March 2013 brought into focus the importance of determining the impact flash location. Prior to this time, the location was estimated to the nearest half-degree by visually comparing the impact imagery to maps of the Moon. Better accuracy was not needed because meteoroid flux calculations did not require high-accuracy impact locations. But such a bright event was thought to have produced a fresh crater detectable from lunar orbit by the NASA spacecraft Lunar Reconnaissance Orbiter (LRO). The idea of linking the observation of an impact flash with its crater was an appealing one, as it would validate NASA photometric calculations and crater scaling laws developed from hypervelocity gun testing. This idea was dependent upon LRO finding a fresh impact crater associated with one of the impact flashes recorded by Earth-based instruments, either the bright event of March 2013 or any other in the database of impact observations. To find the crater, LRO needed an accurate area to search. This Technical Memorandum (TM) describes the geolocation technique developed to accurately determine the impact flash location, and by association, the location of the crater, thought to lie directly beneath the brightest portion of the flash. The workflow and software tools used to geolocate the impact flashes are described in detail, along with sources of error and uncertainty and a case study applying the workflow to the bright impact flash in March 2013. Following the successful geolocation of the March 2013 flash, the technique was applied to all impact flashes detected by the MEO between November 7, 2005, and January 3, 2014.
The σ-Capricornids complex of near-Earth objects
NASA Astrophysics Data System (ADS)
Babadzhanov, P. B.; Kokhirova, G. I.; Khamroev, U. Kh.
2015-04-01
The Earth-crossing asteroids 2008BO16, 2011EC41, and 2013CT36 have very similar orbits according to the Southworth and Hawkins DSH criterion. Their orbits are additionally classified as comet-like based on using the Tisserand parameter which is a standard tool used to distinction between asteroids and comets. The orbital evolution research shows that they cross the Earth's orbit four times over one cycle of the perihelion argument variations. Consequently, a meteoroid stream, possibly associated with them, may produce four meteor showers. Theoretic parameters of the predicted showers were calculated and identified with the observable nighttime σ-Capricornids and χ-Sagittariids, and daytime χ-Capricornids and Capricornids-Sagittariids meteor showers. The similar comet-like orbits and the linkage with the same meteoroid stream producing four active showers provide strong evidence that these asteroids have a common cometary origin. Earlier, it was demonstrated that the Earth-crossing asteroids (2101) Adonis and 1995CS, being a potentially hazardous asteroid (PHA), were recognized as dormant comets because of their linkage with the σ-Capricornids meteoroid stream. Thus, a conclusion was made, that either the considered objects are large pieces of the Adonis, or all five objects are extinct or dormant fragments of a larger comet that was the parent body of the σ-Capricornids meteoroid stream, and whose break-up occurred several tens of thousands years ago. During 2010-2011, three σ-Capricornids fireballs were captured by the Tajikistan fireball network. Taking into account the observations in Canada and the USA, the dynamic and physical properties of the σ-Capricornid meteoroids were identified. According to the estimated meteoroids bulk density a non-homogeneous compound of the σ-Capricornids shower comet-progenitor was suggested.
Using the Shuttle In Situ Window and Radiator Data for Meteoroid Measurements
NASA Technical Reports Server (NTRS)
Matney, Mark
2015-01-01
Every time NASA's Space Shuttle flew in orbit, it was exposed to the natural meteoroid and artificial debris environment. NASA Johnson Space Center maintains a database of impact cratering data of 60 Shuttle missions flown since the mid-1990's that were inspected after flight. These represent a total net exposure time to the space environment of 2 years. Impact damage was recorded on the windows and radiators, and in many cases information on the impactor material was determined by later analysis of the crater residue. This information was used to segregate damage caused by natural meteoroids and artificial space debris. The windows represent a total area of 3.565 sq m, and were capable of resolving craters down to about 10 micrometers in size. The radiators represent a total area of 119.26 sq m, and saw damage from objects up to approximately 1 mm in diameter. These data were used extensively in the development of NASA's ORDEM 3.0 Orbital Debris Environment Model, and gives a continuous picture of the orbital debris environment in material type and size ranging from about 10 micrometers to 1 mm. However, the meteoroid data from the Shuttles have never been fully analyzed. For the orbital debris work, special "as flown" files were created that tracked the pointing of the surface elements and their shadowing by structure (such as the ISS during docking). Unfortunately, such files for the meteoroid environment have not yet been created. This talk will introduce these unique impact data and describe how they were used for orbital debris measurements. We will then discuss some simple first-order analyses of the meteoroid data, and point the way for future analyses.
The PRO-AM Lunar Impact project Exoss
NASA Astrophysics Data System (ADS)
De Cicco, Marcelo
2016-04-01
In order to attain its goals, the Exoss project is now launching the lunar impact project - monitoring meteoroids impacts, using telescope observations of the non-illuminated side of the moon, looking for flashes that could be meteoroids striking the lunar surface, through a remote observatory.
The evolution of the Quarantid meteoroid shower
NASA Astrophysics Data System (ADS)
Babadzhanov, P. B.; Obrubov, Iu. V.; Pushkarev, A. N.
1991-02-01
The Everhart method is used to trace the orbital evolution of 36 model Quadrantid meteoroids over a 5750 yr period. It is found that the Quadrantid shower is responsible for eight related showers. These include the Ursids, the Northern and Southern delta-Aquarids, and the Carinids.
Odd nitrogen production by meteoroids
NASA Technical Reports Server (NTRS)
Park, C.; Menees, G. P.
1978-01-01
The process by which odd nitrogen species (atomic nitrogen and nitric oxide) are formed during atmospheric entry of meteoroids is analyzed theoretically. An ablating meteoroid is assumed to be a point source of mass with a continuum regime evolving in its wake. The amounts of odd nitrogen species, produced by high-temperature reactions of air in the continuum wake, are calculated by numerical integration of chemical rate equations. Flow properties are assumed to be uniform across the wake, and 29 reactions involving five neutral species and five singly ionized species are considered, as well as vibrational and electron temperature nonequilibrium phenomena. The results, when they are summed over the observed mass, velocity, and entry-angle distribution of meteoroids, provide odd-nitrogen-species annual global production rates as functions of altitude. The peak production of nitric oxide is found to occur at an altitude of about 85 km; atomic nitrogen production peaks at about 95 km. The total annual rate for nitric oxide is 40 million kg; for atomic nitrogen it is 170 million kg.
On the Modulation of Meteoroid Falling by Solar Inertial Motion
NASA Astrophysics Data System (ADS)
Velasco Herrera, Victor Manuel; Cordero, Guadalupe; López Hernández, Juan Gabriel
2016-07-01
We present a historical report of falls of meteoroids over the last 400 years. We report here for the first time synchronization between observed meteors and solar barycentric parameters in 19.6 and 13.2 years periodicities using the multiple cross wavelet. These periodicities could be associated with Jupiter periodicities. Bodies falling on Earth can cause from minor damage to level of mass extinctions events. So understanding the modulation on meteoroid falling is important to determine patterns of falling of these objects, and to know when it is more probable to expect the entry of one of these object into the Earth's atmosphere
Could the Geminid meteoroid stream be the result of long-term thermal fracture?
NASA Astrophysics Data System (ADS)
Ryabova, G.
2015-01-01
The previous models by Ryabova have shown that the Geminid meteoroid stream has a cometary origin, so asteroid (3200) Phaethon (the Geminids' parent body) is probably a dead comet. Recently (in 2009 and 2012) some weak activity was observed (Jewitt and Li, 2010, 2013), but it was not a cometary activity. Recurrent brightening of Phaethon at perihelion could be the result of thermal fracture and decomposition. In this study we model the long term dust release from Phaethon based on this mechanism. It is unlikely that the Geminid meteoroid stream (or its low-active wide component) was generated by long-time thermal fracture.
The potentially hazardous asteroid 2007CA19 as the parent of the η-Virginids meteoroid stream
NASA Astrophysics Data System (ADS)
Babadzhanov, P. B.; Kokhirova, G. I.; Obrubov, Yu. V.
2015-07-01
The orbit of the potentially hazardous near-Earth asteroid 2007CA19 is classified as comet-like according to the Tisserand parameter with a value of Tj = 2.8, therefore the object can be empirically considered as an extinct or dormant Jupiter-family comet. If 2007CA19 is really a former comet, it could have formed a meteoroid stream in the past in the period of its cometary activity. Investigation of the asteroid's orbital evolution shows that 2007CA19 is a quadruple-crosser of the Earth's orbit. Consequently, the meteoroid stream that is supposedly associated with the object can produce four meteor showers if, as expected, the perihelia arguments of the meteoroids are very distributed over the orbit. Theoretical radiants of the predicted showers were calculated using elements of the 2007CA19 osculating orbit that correspond to the positions of intersections with the Earth's orbit. A search for the predicted night-time showers has shown that the Northern and Southern η-Virginids can be associated to 2007CA19. Using the MOID IAU database, we identify two other daytime showers that can be associated with this asteroid. Thus, we confirm that 2007CA19 has an associated meteoroid stream that produces four active meteor showers in the Earth's atmosphere. This relationship supports the dynamical classification of the object and also points to the possibility of its cometary origin.
Hypervelocity impact tests on Space Shuttle Orbiter thermal protection material
NASA Technical Reports Server (NTRS)
Humes, D. H.
1977-01-01
Hypervelocity impact tests were conducted to simulate the damage that meteoroids will produce in the Shuttle Orbiter leading edge structural subsystem material. The nature and extent of the damage is reported and the probability of encountering meteoroids with sufficient energy to produce such damage is discussed.
NASA Technical Reports Server (NTRS)
Stubbs, T. J.; Glenar, D. A.; Wang, Y.; Hermalyn, B.; Sarantos, M.; Colaprete, A.; Elphic, R. C.
2015-01-01
The scientific objectives of the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission are: (1) determine the composition of the lunar atmosphere, investigate processes controlling distribution and variability - sources, sinks, and surface interactions; and (2) characterize the lunar exospheric dust environment, measure spatial and temporal variability, and influences on the lunar atmosphere. Impacts on the lunar surface from meteoroid streams encountered by the Earth-Moon system are anticipated to result in enhancements in the both the lunar atmosphere and dust environment. Here we describe the annual meteoroid streams expected to be incident at the Moon during the LADEE mission, and their anticipated effects on the lunar environment.
Predicted and observed directional dependence of meteoroid/debris impacts on LDEF thermal blankets
NASA Technical Reports Server (NTRS)
Drolshagen, Gerhard
1993-01-01
The number of impacts from meteoroids and space debris particles to the various LDEF rows is calculated using ESABASE/DEBRIS, a 3-D numerical analysis tool. It is based on recent reference environment flux models and includes geometrical and directional effects. A comparison of model predictions and actual observations is made for penetrations of the thermal blankets which covered the UHCR experiment. The thermal blankets were located on all LDEF rows, except 3, 9, and 12. Because of their uniform composition and thickness, these blankets allow a direct analysis of the directional dependence of impacts and provide a test case for the latest meteoroid and debris flux models.
MIDAS: Software for the detection and analysis of lunar impact flashes
NASA Astrophysics Data System (ADS)
Madiedo, José M.; Ortiz, José L.; Morales, Nicolás; Cabrera-Caño, Jesús
2015-06-01
Since 2009 we are running a project to identify flashes produced by the impact of meteoroids on the surface of the Moon. For this purpose we are employing small telescopes and high-sensitivity CCD video cameras. To automatically identify these events a software package called MIDAS was developed and tested. This package can also perform the photometric analysis of these flashes and estimate the value of the luminous efficiency. Besides, we have implemented in MIDAS a new method to establish which is the likely source of the meteoroids (known meteoroid stream or sporadic background). The main features of this computer program are analyzed here, and some examples of lunar impact events are presented.
2004-04-15
This image is an artist's conception of the Pegasus, meteoroid detection satellite, in orbit with meteoroid detector extended. The satellite, a payload for Saturn I SA-8, SA-9, and SA-10 missions, was used to obtain data on frequency and penetration of the potentially hazardous micrometeoroids in low Earth orbits and to relay the information back to Earth.
NASA Astrophysics Data System (ADS)
Trigo-Rodríguez, J. M.; Madiedo, J. M.; Williams, I. P.; Castro-Tirado, A. J.; Llorca, J.; Vítek, S.; Jelínek, M.
2009-03-01
A meter-sized meteoroid probably produced during the disintegration of comet C1919Q2 Metcalf was observed producing a -18 magn. bolide (MNRAS, in press).The progenitor meteoroid was sufficiently large and of high enough tensile strength to produce meteorites.
Crustal Rock: Recorder of Oblique Impactor Meteoroid Trajectories
NASA Astrophysics Data System (ADS)
Ahrens, Thomas J.
2005-07-01
Oblique impact experiments in which 2g lead bullets strike samples of San Marcos granite and Bedford limestone at 1.2 km/s induce zones of increased crack density (termed shocked damage) which result in local decreases in bulk and shear moduli that results in maximum decreases of 30-40% in compressional and shear wave velocity (Budianski and O'Connell). Initial computer simulation of oblique impacts of meteorites (Pierazzo and Melosh) demonstrate the congruence of peak shock stress trajectory with the pre-impact meteoroid trajectory. We measure (Ai and Ahrens) via multi-beam (˜ 300) tomographic inversion, the sub-impact surface distribution of damage from the decreases in compressional wave velocity in the 20 x 20 x 15 cm rock target. The damage profiles for oblique impacts are markedly asymmetric (in plane of pre-impact meteoroid pre-impact trajectory) beneath the nearly round excavated craters. Thus, meteorite trajectory information can be recorded in planetary surfaces. Asymmetric sub-surface seismic velocity profiles beneath the Manson (Iowa) and Ries (Germany) impact craters demonstrate that pre-impact meteoroid trajectories records remain accessible for at least ˜ 10 ^ 8 years.
The mass and speed dependence of meteor air plasma temperatures
NASA Technical Reports Server (NTRS)
Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.
2004-01-01
The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.
Featured Image: Experimental Simulation of Melting Meteoroids
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-03-01
Ever wonder what experimental astronomy looks like? Some days, it looks like this piece of rock in a wind tunnel (click for a betterlook!). In this photo, a piece of agrillite (a terrestrial rock) is exposed to conditions in a plasma wind tunnel as a team of scientists led by Stefan Loehle (Stuttgart University) simulate what happens to a meteoroid as it hurtles through Earths atmosphere. With these experiments, the scientists hope to better understand meteoroid ablation the process by which meteoroids are heated, melt, and evaporateas they pass through our atmosphere so that we can learn more from the meteorite fragments that make it to the ground. In the scientists experiment, the rock samples were exposed to plasma flow until they disintegrated, and this process was simultaneously studied via photography, video, high-speed imaging, thermography, and Echelle emission spectroscopy. To find out what the team learned from these experiments, you can check out the original article below.CitationStefan Loehle et al 2017 ApJ 837 112. doi:10.3847/1538-4357/aa5cb5
Near-Earth object 2012XJ112 as a source of bright bolides of achondritic nature
NASA Astrophysics Data System (ADS)
Madiedo, José M.; Trigo-Rodríguez, Josep M.; Williams, Iwan P.; Konovalova, Natalia; Ortiz, José L.; Castro-Tirado, Alberto J.; Pastor, Sensi; de los Reyes, José A.; Cabrera-Caño, Jesús
2014-04-01
We analyse the likely link between the recently discovered near-Earth object 2012XJ112 and a bright fireball observed over the south of Spain on 2012 December 27. The bolide, with an absolute magnitude of -9 ± 1, was simultaneously imaged during the morning twilight from two meteor stations operated by the SPanish Meteor Network (SPMN). It was also observed by several casual witnesses. The emission spectrum produced during the ablation of the meteoroid in the atmosphere was also recorded. From its analysis, the chemical nature of this particle was inferred. Although our orbital association software identified several potential parent bodies for this meteoroid, the analysis of the evolution of the orbital elements performed with the MERCURY 6 symplectic integrator supports the idea that NEO 2012XJ112 is the source of this meteoroid. The implications of this potential association are discussed here. In particular, the meteoroid bulk chemistry is consistent with a basaltic achondrite, and this emphasizes the importance to deduce from future Earth approaches the reflectance spectrum and taxonomic nature of 2012XJ112.
The mass and speed dependence of meteor air plasma temperatures.
Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L
2004-01-01
The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.
Improving The Near-Earth Meteoroid And Orbital Debris Environment Definition With LAD-C
NASA Technical Reports Server (NTRS)
Liou, J.-C.; Giovane, F. J.; Corsaro, R. C.; Burchell, M. J.; Drolshagen, G.; Kawai, H.; Tabata, M.; Stansbery, E. G.; Westphal, A. J.; Yano, H.
2006-01-01
To improve the near-Earth meteoroid and orbital debris environment definition, a large area particle sensor/collector is being developed to be placed on the International Space Station (ISS). This instrument, the Large Area Debris Collector (LAD-C), will attempt to record meteoroid and orbital debris impact flux, and capture the same particles with aerogel. After at least one year of deployment, the whole system will be brought back for additional laboratory analysis of the captured meteoroids and orbital debris. This project is led by the U.S. Naval Research Laboratory (NRL) while the U.S. Department of Defense (DoD) Space Test Program (STP) is responsible for the integration, deployment, and retrieval of the system. Additional contributing team members of the consortium include the NASA Orbital Debris Program Office, JAXA Institute of Space and Astronautical Science (ISAS), Chiba University (Japan), ESA Space Debris Office, University of Kent (UK), and University of California at Berkeley. The deployment of LAD-C on the ISS is planned for 2008, with the system retrieval in late 2009.
The Age of Saturn's Rings Constrained by the Meteoroid Flux Into the System
NASA Astrophysics Data System (ADS)
Kempf, S.; Altobelli, N.; Srama, R.; Cuzzi, J. N.; Estrada, P. R.
2017-12-01
The origin of Saturn's ring is still not known. There is an ongoing argument whether Saturn's ring are rather young or have been formed shortly after Saturn together with its satellites. The water-ice rings contain about 5% rocky material resulting from continuous meteoroid bombardment of the ring material with interplanetary micrometeoroids. Knowledge of the incoming mass flux would allow to estimate the ring's exposure time. Model calculations suggest exposure times of 108 years implying a late ring formation. This scenario is problematic because the tidal disruption of a Mimas-sized moon or of a comet within the planet's Roche zone would lead to a much larger rock content as observed today. Here we report on the measurement of the meteoroid mass flux into the Saturnian system obtained by the charge-sensitive entrance grid system (QP) of the Cosmic Dust Analyser (CDA) on the Cassini spacecraft. Interplanetary dust particles (IDPs) entering Saturn's sphere of gravitational influence are identified through the measurements of their speed vectors. We analyzed the full CDA data set acquired after Cassini's arrival at Saturn in 2004, identified the impact speed vectors of 128 extrinsic micrometeoroids ≥ 2 μm, and determined their orbital elements. On the basis of these measurements we determined the mass flux into the Saturnian system. Our preliminary findings are in support of an old ring. The knowledge of the meteoroids orbital elements allows us for the first time to characterize the meteoroid environment in the outer solar system based on direct measurements.
NASA Technical Reports Server (NTRS)
See, T. (Compiler); Allbrooks, M. (Compiler); Atkinson, D. (Compiler); Simon, C. (Compiler); Zolensky, M. (Compiler)
1990-01-01
The Long Duration Exposure Facility (LDEF) was host to several individual experiments designed to characterize aspects of the meteoroid and space-debris environment in low-Earth orbit. It was realized from the very start, however, that the most complete way to accomplish this goal was to exploit the meteoroid and debris record of the entire LDEF. The Meteoroid and Debris Special Investigation Group (M&D SIG) was organized to achieve this end. Two dominant goals of the M&D SIG are the documentation of the impact record of the entire LDEF, and the dissemination of this information to all interested workers. As a major step towards the accomplishment of these goals, we have prepared this publication describing the M&D SIG observations of impact features made during LDEF deintegration activities at KSC in the spring of 1990. It is hoped that this report will serve as a useful guide for spacecraft designers as well as for meteoroid and space-debris workers, and that it will spur further work on the LDEF impact-laden surfaces collected by the M&D SIG and now available for allocation to qualified investigators. An important aim is to present all data and descriptions of impact features in a form which, though terse, remains comprehensible to the wider community. There is a deliberate minimum of interpretations. Thus, this catalog is intended to serve as a guide to the impact features found on LDEF and is not intended to stand as a definitive interpretive work.
Park Forest (L5) and the asteroidal source of shocked L chondrites
NASA Astrophysics Data System (ADS)
Meier, Matthias M. M.; Welten, Kees C.; Riebe, My E. I.; Caffee, Marc W.; Gritsevich, Maria; Maden, Colin; Busemann, Henner
2017-08-01
The Park Forest (L5) meteorite fell in a suburb of Chicago, Illinois (USA) on March 26, 2003. It is one of the currently 25 meteorites for which photographic documentation of the fireball enabled the reconstruction of the meteoroid orbit. The combination of orbits with pre-atmospheric sizes, cosmic-ray exposure (CRE), and radiogenic gas retention ages ("cosmic histories") is significant because they can be used to constrain the meteoroid's "birth region," and test models of meteoroid delivery. Using He, Ne, Ar, 10Be, and 26Al, as well as a dynamical model, we show that the Park Forest meteoroid had a pre-atmospheric size close to 180 g cm-2, 0-40% porosity, and a pre-atmospheric mass range of 2-6 tons. It has a CRE age of 14 ± 2 Ma, and (U, Th)-He and K-Ar ages of 430 ± 90 and 490 ± 70 Ma, respectively. Of the meteorites with photographic orbits, Park Forest is the second (after Novato) that was shocked during the L chondrite parent body (LCPB) break-up event approximately 470 Ma ago. The suggested association of this event with the formation of the Gefion family of asteroids has recently been challenged and we suggest the Ino family as a potential alternative source for the shocked L chondrites. The location of the LCPB break-up event close to the 5:2 resonance also allows us to put some constraints on the possible orbital migration paths of the Park Forest meteoroid.
Measurement of the meteoroid flux at Mars
NASA Astrophysics Data System (ADS)
Domokos, A.; Bell, J. F.; Brown, P.; Lemmon, M. T.; Suggs, R.; Vaubaillon, J.; Cooke, W.
2007-11-01
In the fall of 2005, a dedicated meteor observing campaign was carried out by the Panoramic Camera (Pancam) onboard the Mars Exploration Rover (MER) Spirit to determine the viability of using MER cameras as meteor detectors and to obtain the first experimental estimate of the meteoroid flux at Mars. Our observing targets included both the sporadic meteoroid background and two predicted martian meteor showers: one associated with 1P/Halley and a potential stream associated with 2001/R1 LONEOS. A total of 353 images covering 2.7 h of net exposure time were analyzed with no conclusive meteor detections. From these data, an upper limit to the background meteoroid flux at Mars is estimated to be <4.4×10 meteoroidskmh for meteoroids with mass larger than 4 g. For comparison, the estimated flux to this mass limit at the Earth is 10 meteoroidskmh [Grün, E., Zook, H.A., Fechtig, H., Giese, R.H., 1985. Icarus 62, 244-272]. This result is qualitatively consistent, within error bounds, with theoretical models predicting martian fluxes of ˜50% that at Earth for meteoroids of mass 10-10 g [Adolfsson, L.G., Gustafson, B.A.S., Murray, C.D., 1996. Icarus 119, 144-152]. The MER cameras, even using the most sensitive mode of operation, should expect to see on average only one coincident meteor on of order 40-150 h of total exposure time based on these same theoretical martian flux estimates. To more meaningfully constrain these flux models, a longer total integrated exposure time or more sensitive camera is needed. Our analysis also suggests that the event reported as the first martian meteor [Selsis, F., Lemmon, M.T., Vaubaillon, J., Bell, J.F., 2005. Nature 435, 581] is more likely a grazing cosmic ray impact, which we show to be a major source of confusion with potential meteors in all Pancam images.
Orbital debris and meteoroid population as estimated from LDEF impact data
NASA Technical Reports Server (NTRS)
Zhang, Jingchang; Kessler, Donald J.
1995-01-01
Examination of LDEF's various surfaces shows numerous craters and holes due to hypervelocity impacts of meteoroids and man-made orbital debris. In this paper, the crater numbers as reported by Humes have been analyzed in an effort to understand the orbital debris and natural meteoroid environment in LEO. To determine the fraction of man-made to natural impacts, the side to top ratio of impacts and results of the Chemistry of Micrometeoroids Experiment are used. For craters in the 100 micron to 500 micron size range, about 25 percent to 30 percent of the impacts on the forward-facing surfaces and about 10 percent of the impacts on the trailing surfaces were estimated due to man-made orbital debris. A technique has been developed to convert crater numbers to particle fluxes, taking the fact into account that the distributions of impact velocity and incidence angle vary over the different surfaces of LDEF, as well as the ratio of the surface area flux to the cross-sectional area flux. Applying this technique, Humes' data concerning craters with limiting lip diameters of 100 micron, 200 micron and 500 micron have been converted into orbital debris and meteoroid fluxes ranging from about 20 micron to 200 micron particle diameter. The results exhibit good agreement with orbital debris model and meteoroid model. The converted meteoroid flux is slightly larger than Grun's model (by 40 to 70 percent). The converted orbital debris flux is slightly lower than Kessler's model for particle diameter smaller than about 30 micron and slightly larger than the model for particle diameter larger than about 40 micron. Taking also into account the IDE data point at about 0.8 micron particle diameter, it suggests to change the slope log (flux) versus log (diameter) of orbital debris flux in the 1 micron to 100 micron particle diameter range from 2.5 to 1.9.
Asteroidal versus cometary meteoroid impacts on the Long Duration Exposure Facility (LDEF)
NASA Technical Reports Server (NTRS)
Zook, Herbert A.
1993-01-01
Meteoroids that enter the Earth's atmosphere at low velocities will tend to impact the apex side (that surface facing the spacecraft direction of motion) of a spacecraft at a very high rate compared to the rate with which they will impact an antapex-facing surface. This ratio--apex to antapex impact rates--will become less as meteoroid entry velocities increase. The measured ration, apex to antapex, for 500 micron diameter impact craters in 6061-T6 aluminum on LDEF seems to be about 20 from the work of the meteoroid SIG group and others, that was presented at the first LDEF symposium. Such a ratio is more consistent with the meteoroid velocity distributions derived by Erickson and by Kessler, than it is with others that have been tested. These meteoroid velocity distributions have mean entry velocities into the Earth's atmosphere of 16.5 to 16.9 km/s. Others have numerically simulated the orbital evolution of small dust grains emitted from asteroids and comets. For those asteroidal grains small enough (below about 100 microns diameter) to drift from the asteroid belt to the orbit of the Earth, under P-R and solar wind drag, without suffering collisional destruction, the following results are found: as the ascending or descending nodes cross the Earth's orbit, their orbital eccentricities and inclinations are quite low (e less than 0.3, i less than 20 deg), and their mean velocity with respect to the Earth is about 5 or 6 km/s. When gravitational acceleration of the Earth is taken into account, the corresponding mean velocities relative to the top of the Earth's atmosphere are 12 to 13 km/s. This means that, at best, these small asteroidal particles cannot comprise more than 50 percent of the particles entering the Earth's atmosphere. When gravitational focusing is considered, they cannot comprise more than a few percent of those in heliocentric orbit at 1 AU. The rest are presumably of cometary origin.
Interplanetary meteoroid debris in LDEF metal craters
NASA Technical Reports Server (NTRS)
Brownlee, D. E.; Joswiak, D.; Bradley, J.; Hoerz, Friedrich
1993-01-01
We have examined craters in Al and Au LDEF surfaces to determine the nature of meteoroid residue in the rare cases where projectile material is abundantly preserved in the crater floor. Typical craters contain only small amounts of residue and we find that less than 10 percent of the craters in Al have retained abundant residue consistent with survival of a significant fraction (greater than 20 percent) of the projectile mass. The residue-rich craters can usually be distinguished optically because their interiors are darker than ones with little or no apparent projectile debris. The character of the meteoroid debris in these craters ranges from thin glass liners, to thick vesicular glass containing unmelted mineral fragments, to debris dominated by unmelted mineral fragments. In the best cases of meteoroid survival, unmelted mineral fragments preserve both information on projectile mineralogy as well as other properties such as nuclear tracks caused by solar flare irradiation. The wide range of the observed abundance and alteration state of projectile residue is most probably due to differences in impact velocity. The crater liners are being studied to determine the composition of meteoroids reaching the Earth. The compositional types most commonly seen in the craters are: (1) chondritic (Mg, Si, S, Fe in approximately solar proportions), (2) Mg silicate. amd (3) iron sulfide. These are also the most common compositional types of extraterrestrial particle types collected in the stratosphere. The correlation between these compositions indicates that vapor fractionation was not a major process influencing residue composition in these craters. Although the biases involved with finding analyzable meteoroid debris in metal craters differ from those for extraterrestrial particles collected in and below the atmosphere, there is a common bias favoring particles with low entry velocity. For craters this is very strong and probably all of the metal craters with abundant residue were caused by asteroidal dust impacting at minimum velocities.
Meteoroidal Impacts, Plasma, Fine Structure of Ringlets and Spokes on Saturn's Ring B
NASA Technical Reports Server (NTRS)
Cook, A. F.; Hunt, G. E.; Barrey, R.
1985-01-01
The role of bombardment of the rings by the dominant size of meteoroids is examined. Also considered are the circumstances which explain the observed presence of spokes on both the illuminated and unilluminated faces of the ring; leading-trailing asymmetry in the behavior of the spokes, and the forward tilt in the spokes.
NASA's Space Environments and Effects (SEE) Program: Meteoroid and Orbital Debris Lesson Plan.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
The study of the natural space environment and its effects on spacecraft is one of the most important and least understood aspects of spacecraft design. The Space Environments and Effects (SEE) Program prepared the Meteoroids and Orbital Debris Lesson Plan, a SEE-focused high school curriculum to engage students in creative activities that will…
Meteoroid/Orbital Debris Shield Engineering Development Practice and Procedure
NASA Technical Reports Server (NTRS)
Zwitter, James G.; Adams, Marc A.
2011-01-01
A document describes a series of models created for the determination of the probability of survival of critical spacecraft components from particle strike damage caused by hypervelocity impact of meteoroids and/or orbital debris. These models were integrated with both shield design and hypervelocity impact testing to develop adequate protection of said components to meet mission survivability requirements.
Activity of the 2013 Geminid meteoroid stream at the Moon
NASA Astrophysics Data System (ADS)
Szalay, Jamey R.; Pokorný, Petr; Jenniskens, Peter; Horányi, Mihály
2018-03-01
The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer mission orbited the Moon from 2013 October to 2014 April and detected impact ejecta generated by the continual bombardment of meteoroids to the lunar surface. While the Moon transited the Geminid meteoroid stream, LDEX observed a large enhancement in the lunar impact ejecta cloud, particularly above the portion of lunar surface normal to the Geminids radiant. Here, we present the LDEX measurements during the Geminids, using the surface density of impact ejecta at the Moon as a proxy for meteoroid activity. We find two peaks during the Geminids, a smaller peak at solar longitude λ⊙ = 261.3° ± 0.12° followed by a larger peak at λ⊙ = 262.2° ± 0.12°, with a surface density ratio of 2.6 between the two. Both peaks coincide with radar observations of shallower mass indices than most of the Geminids, suggesting an enhancement of larger particles during the two peaks. The total duration of the 2013 Geminid meteoroid shower at the Moon measured by LDEX is Δλ⊙ = 1.7° for activity >10 per cent of the peak value, corresponding to a width of 1.9 × 106 km normal to the Geminids velocity vector. The timing of the main observed peak matches ground-based visual observations of meteors with magnitude of -1 to -3 and suggests LDEX is detecting ejecta from primary impactors with radii ˜2 mm to 2 cm during this time.
NASA Astrophysics Data System (ADS)
Kholmogorov, A. A.; Ivanov, V. B.; Gorbachev, O. A.
2018-03-01
The Chelyabinsk meteoroid fall has been used to show that an appropriate ionospheric response can be recorded from signals of satellite radar systems. This can be done using dual-frequency or single-frequency equipment. The recording time of the response commencement has been used to estimate the propagation rate of primary disturbance in the atmosphere.
NASA Technical Reports Server (NTRS)
1973-01-01
A study was conducted to determine the configuration and performance of a space tug. Detailed descriptions of the insulation, meteoroid protection, primary structure, and ground support equipment are presented. Technical assessments leading to the concept selection are analyzed. The tug mass properties, reliability, and safety assessments are included.
Jet-Like Structures and Wake in Mg I (518 nm) Images of 1999 Leonid Storm Meteors
NASA Technical Reports Server (NTRS)
Taylor, M. J.; Murray, I. S.; Jenniskens, P.
2000-01-01
Small meteoric fragments are ejected at significant transverse velocities from some (up to approx. 8%) fast Leonid meteors. We reach this conclusion using low light intensified image measurements obtained during the 1999 Leonid Multi-Instrument Aircraft Campaign. High spatial resolution, narrow band image measurements of the Mg I emission at 518 nm have been used to clearly identify jet-like features in the meteor head that are the same as first observed in white light. We postulate that these unusual structures are caused by tiny meteoroid fragments (containing metallic grains) being rapidly ejected away from the core meteoroid as the constituent glue evaporates. Marked curvature observed in the jet-like filaments suggest that the parent meteoroids are spinning and as the whirling fragments are knocked away by the impinging air molecules, or by grain-grain collisions in the fragment ensemble, they ablate quickly generating an extended area of structured luminosity up to about 1-2 km from the meteoroid center. Fragments with smaller transverse velocity components are thought to be responsible for the associated beading evident in the wake of these unusual Leonid meteors.
Optical and Radar Measurements of the Meteor Speed Distribution
NASA Technical Reports Server (NTRS)
Moorhead, A. V.; Brown, P. G.; Campbell-Brown, M. D.; Kingery, A.; Cooke, W. J.
2016-01-01
The observed meteor speed distribution provides information on the underlying orbital distribution of Earth-intersecting meteoroids. It also affects spacecraft risk assessments; faster meteors do greater damage to spacecraft surfaces. Although radar meteor networks have measured the meteor speed distribution numerous times, the shape of the de-biased speed distribution varies widely from study to study. Optical characterizations of the meteoroid speed distribution are fewer in number, and in some cases the original data is no longer available. Finally, the level of uncertainty in these speed distributions is rarely addressed. In this work, we present the optical meteor speed distribution extracted from the NASA and SOMN allsky networks [1, 2] and from the Canadian Automated Meteor Observatory (CAMO) [3]. We also revisit the radar meteor speed distribution observed by the Canadian Meteor Orbit Radar (CMOR) [4]. Together, these data span the range of meteoroid sizes that can pose a threat to spacecraft. In all cases, we present our bias corrections and incorporate the uncertainty in these corrections into uncertainties in our de-biased speed distribution. Finally, we compare the optical and radar meteor speed distributions and discuss the implications for meteoroid environment models.
Operability of Space Station Freedom's meteoroid/debris protection system
NASA Technical Reports Server (NTRS)
Kahl, Maggie S.; Stokes, Jack W.
1992-01-01
The design of Space Station Freedom's external structure must not only protect the spacecraft from the hazardous environment, but also must be compatible with the extra vehicular activity system for assembly and maintenance. The external procedures for module support are utility connections, external orbital replaceable unit changeout, and maintenance of the meteoroid/debris shields and multilayer insulation. All of these interfaces require proper man-machine engineering to be compatible with the extra vehicular activity and manipulator systems. This paper discusses design solutions, including those provided for human interface, to the Space Station Freedom meteoroid/debris protection system. The system advantages and current access capabilities are illustrated through analysis of its configuration over the Space Station Freedom resource nodes and common modules, with emphasis on the cylindrical sections and endcones.
A Probable Taurid Impact on the Moon
NASA Technical Reports Server (NTRS)
Cooke, William J.; Suggs, R. M.; Swift, Wesley R.
2006-01-01
On November 7, 2005, at 23:41:52 UT, observers located at the Marshall Space Flight Center captured the flash produced by a kilogram-size meteoroid striking the lunar surface. Photometric analysis of the event video, combined with the plausible assumptions of a luminous efficiency of 2x10" and that the meteoroid was a member of the Taurid meteoroid stream, yield a striking power of approximately 640 lbs of TNT and a mass of approximately 3.8 kg. Even though no confirming independent observations are known to exist, there is high confidence in the impact origin of the flash; reasonable attempts have been made to eliminate other possibilities, such as cosmic ray hits on the CCD and glints from satellites that may have crossed the lunar disk near the impact time.
Submillisecond fireball timing using de Bruijn timecodes
NASA Astrophysics Data System (ADS)
Howie, Robert M.; Paxman, Jonathan; Bland, Philip A.; Towner, Martin C.; Sansom, Eleanor K.; Devillepoix, Hadrien A. R.
2017-08-01
Long-exposure fireball photographs have been used to systematically record meteoroid trajectories, calculate heliocentric orbits, and determine meteorite fall positions since the mid-20th century. Periodic shuttering is used to determine meteoroid velocity, but up until this point, a separate method of precisely determining the arrival time of a meteoroid was required. We show it is possible to encode precise arrival times directly into the meteor image by driving the periodic shutter according to a particular pattern—a de Bruijn sequence—and eliminate the need for a separate subsystem to record absolute fireball timing. The Desert Fireball Network has implemented this approach using a microcontroller driven electro-optic shutter synchronized with GNSS UTC time to create small, simple, and cost-effective high-precision fireball observatories with submillisecond timing accuracy.
Large Bodies Associated with Meteoroid Streams
NASA Technical Reports Server (NTRS)
Badadzhanov, P. B.; William, I. P.; Kokhirova, G. I.
2011-01-01
It is now accepted that some near-Earth objects (NEOs) may be dormant or dead comets. One strong indicator of cometary nature is the existence of an associated meteoroid stream with its consequently observed meteor showers. The complexes of NEOs which have very similar orbits and a likely common progenitor have been identified. The theoretical parameters for any meteor shower that may be associated with these complexes were calculated. As a result of a search of existing catalogues of meteor showers, activity has been observed corresponding to each of the theoretically predicted showers was found. We conclude that these asteroid-meteoroid complexes of four NEOs moving within the Piscids stream, three NEOs moving within the Iota Aquariids stream, and six new NEOs added to the Taurid complex are the result of a cometary break-up.
Chemistry of impact events on Mercury
NASA Astrophysics Data System (ADS)
Berezhnoy, Alexey A.
2018-01-01
Based on the equilibrium thermochemical approach and quenching theory, formation of molecules and dust grains in impact-produced clouds formed after collisions between meteoroids and Mercury is considered. Based on observations of Al, Fe, and Mn atoms in the exosphere of Mercury and new results of studies of the elemental composition of the surface of Mercury, quenching temperatures and pressures of main chemical reactions and condensation of dust particles were estimated. The behavior of the main Na-, K-, Ca-, Fe-, Al-, Mn-, Mg-, Si-, Ti, Ni-, Cr-, Co, Zn-, O-, H-, S-, C-, Cl-, N-, and P-containing species delivered to the Hermean exosphere during meteoroid impacts was studied. The importance of meteoroid bombardment as a source of Na, K, Ca, Fe, Al, Mn, Mg, and O atoms in the exosphere of Mercury is discussed.
Evolution of two periodic meteoroid streams: The Perseids and Leonids
NASA Astrophysics Data System (ADS)
Brown, Peter Gordon
Observations and modelling of the Perseid and Leonid meteoroid streams are presented and discussed. The Perseid stream is found to consist of three components: a weak background component, a core component and an outburst component. The particle distribution is identical for the outburst and core populations. Original visual accounts of the Leonid stream from 1832-1997 are analyzed to determine the time and magnitude of the peak for 32 Leonid returns in this interval. Leonid storms are shown to follow a gaussian flux profile, to occur after the perihelion passage of 55P/Tempel-Tuttle and to have a width/particle density relationship consistent with IRAS cometary trail results. Variations in the width of the 1966 Leonid storm as a function of meteoroid mass are as expected based on the Whipple ejection velocity formalism. Four major models of cometary meteoroid ejection are developed and used to simulate plausible starting conditions for the formation of the Perseid and Leonid streams. Initial ejection velocities strongly influence Perseid stream development for the first five revolutions after ejection, at which point planetary perturbations and radiation effects become important for further development. The minimum distance between the osculating orbit of 109P/Swift-Tuttle and the Earth was found to be the principle determinant of any subsequent delivery of meteoroids to Earth. Systematic shifts in the location of the outburst component of the Perseids were shown to be due to the changing age of the primary meteoroid population making up the outbursts. The outburst component is due to distant, direct planetary perturbations from Jupiter and Saturn shifting nodal points inward relative to the comet. The age of the core population of the stream is found to be (25 +/- 10) × 10 3 years while the total age of the stream is in excess of 10 5 years. The primary sinks for the stream are hyperbolic ejection and attainment of sungrazing states due to perturbations from Jupiter and Saturn. Ejection velocities are found to be tens to of order a hundred m/s. Modelling of the Leonid stream has demonstrated that storms from the shower are from meteoroids less than a century in age and are due to trails from Tempel-Tuttle coming within (8 +/- 6) × 10 -4 A.U of the Earth's orbit on average. Trails are perturbed to Earth-intersection through distant, direct perturbations, primarily from Jupiter. The stream decreases in flux by two to three orders of magnitude in the first hundred years of development. Ejection velocities are found to be <20 m/s and average ~ 5 m/s for storm meteoroids. Jupiter controls evolution of the stream after a century; radiation pressure and initial ejection velocities are significant factors only on shorter time- scales. The age of the annual component of the stream is ~ 1000 years.
A Numerical Examination of the Long-Term Coherency of Meteoroid Streams in Near-Earth Orbit
NASA Astrophysics Data System (ADS)
Grazier, K. R.; Lipschutz, M. E.
2000-05-01
The statement that some small bodies in the Solar System--asteroids, comets, meteors (of cometary origin)--travel in co-orbital streams, would be accepted by planetary scientists without argument. After all, streams have been observed of fragments of at least one comet (Scotti and Melosh, 1993; Weaver et al., 1993), asteroids (Drummond, 1991; Rabinowitz et al., 1993; Binzel and Xu, 1993) and meteoroids of asteroidal origin, like Innisfree (Halliday et al., 1990; cf. Drummond, 1991). Whether members of a stream can be recognized from compositional studies of meteorites recovered on Earth and linked to a common source is more controversial since such linkage would imply variations in the Earth's sampling of extraterrestrial material that persist for tens of Myr. The dates of fall of H chondrites show that many - including Clusters in May, 1855-1895, September, 1812-1831 and Sept.-Oct., 1843-1992 -- apparently derive from specific meteoroids (Lipschutz et al., 1997). Contents of highly volatile elements in these 3 Clusters (selected by one criterion, fall circumstances), when analyzed using multivariate statistical techniques demonstrate that members of each Cluster (i.e. stream) are recognizable by a totally different characteristic criterion: a thermal history distinguishable from those of random H chondrite falls (cf. Lipschutz et al., 1997, for specific references). Antarctic H chondrites with terrestrial ages 50 Myr (Michlovich et al., 1995) also show this. Metallographic and thermoluminescence data for these H chondrites also reflect their thermal histories, and support the existence of such meteoroid streams (Sears et al., 1991; Benoit and Sears, 1993), but cosmogenic noble gas contents do not (Loeken et al., 1993; Schultz and Weber, 1996). Important unanswered orbital dynamic questions are how long a meteoroid stream should be recognizable and what dynamic conditions are implied by Clusters, whose members have cosmic ray exposure ages of some Myr. To begin to address these open issues, we simulate the trajectories of several near-Earth meteoroid streams--some with orbital elements corresponding to suspected streams, others randomly chosen. To integrate the trajectories as accurately as possible, we use an error-optimized modified 13th order Störmer integration scheme, capable of handling close planet/meteoroid approaches (Grazier et al., 1998). Using Drummond's (1979) d' criteria to determine stream membership and coherency as a function of time, we find that stream coherency beyond 100 Ky--certainly beyond 1 My--exists but is rare.
NASA Astrophysics Data System (ADS)
Kulikova, N. V.; Chepurova, V. M.
2009-10-01
So far we investigated the nonperturbation dynamics of meteoroid complexes. The numerical integration of the differential equations of motion in the N-body problem by the Everhart algorithm (N=2-6) and introduction of the intermediate hyperbolic orbits build on the base of the generalized problem of two fixed centers permit to take into account some gravitational perturbations.
Antarctic meteor observations using the Davis MST and meteor radars
NASA Astrophysics Data System (ADS)
Holdsworth, David A.; Murphy, Damian J.; Reid, Iain M.; Morris, Ray J.
2008-07-01
This paper presents the meteor observations obtained using two radars installed at Davis (68.6°S, 78.0°E), Antarctica. The Davis MST radar was installed primarily for observation of polar mesosphere summer echoes, with additional transmit and receive antennas installed to allow all-sky interferometric meteor radar observations. The Davis meteor radar performs dedicated all-sky interferometric meteor radar observations. The annual count rate variation for both radars peaks in mid-summer and minimizes in early Spring. The height distribution shows significant annual variation, with minimum (maximum) peak heights and maximum (minimum) height widths in early Spring (mid-summer). Although the meteor radar count rate and height distribution variations are consistent with a similar frequency meteor radar operating at Andenes (69.3°N), the peak heights show a much larger variation than at Andenes, while the count rate maximum-to-minimum ratios show a much smaller variation. Investigation of the effects of the temporal sampling parameters suggests that these differences are consistent with the different temporal sampling strategies used by the Davis and Andenes meteor radars. The new radiant mapping procedure of [Jones, J., Jones, W., Meteor radiant activity mapping using single-station radar observations, Mon. Not. R. Astron. Soc., 367(3), 1050-1056, doi: 10.1111/j.1365-2966.2006.10025.x, 2006] is investigated. The technique is used to detect the Southern delta-Aquarid meteor shower, and a previously unknown weak shower. Meteoroid speeds obtained using the Fresnel transform are presented. The diurnal, annual, and height variation of meteoroid speeds are presented, with the results found to be consistent with those obtained using specular meteor radars. Meteoroid speed estimates for echoes identified as Southern delta-Aquarid and Sextantid meteor candidates show good agreement with the theoretical pre-atmospheric speeds of these showers (41 km s -1 and 32 km s -1, respectively). The meteoroid speeds estimated for these showers show decreasing speed with decreasing height, consistent with the effects of meteoroid deceleration. Finally, we illustrate how the new radiant mapping and meteoroid speed techniques can be combined for unambiguous meteor shower detection, and use these techniques to detect a previously unknown weak shower.
Asteroidal versus cometary meteoroid impacts on the Long Duration Exposure Facility (LDEF)
NASA Technical Reports Server (NTRS)
Zook, Herbert A.
1992-01-01
Meteoroids that enter the Earth's atmosphere at low velocities will tend to impact the apex side (that surface facing the spacecraft direction of motion) of a spacecraft at a very high rate compared to the rate with which they will impact an antapex-facing surface. This ratio -- apex to antapex impact rates -- will become less as meteoroid entry velocities increase. The measured ratio, apex to antapex, for 500 micron diameter impact craters in 6061-T6 aluminum on LDEF seems to be about 20 from the work of the meteoroid SIG group and from the work of Humes that was presented at the first LDEF symposium. Such a ratio is more consistent with the meteoroid velocity distributions derived by Erickson and by Kessler, than it is with others that have been tested. These meteoroid velocity distributions have mean entry velocities into the Earth's atmosphere of 16.5 to 16.9 km/s. Jackson and Zook (in a paper submitted to Icarus) have numerically simulated the orbital evolution of small dust grains emitted from asteroids and comets. For those asteroidal grains small enough (below about 100 microns diameter) to drift from the asteroid belt to the orbit of the Earth, under P-R and solar wind drag, without suffering collisional destruction, the following results are found: as their ascending or descending nodes cross the Earth's orbit (and when they might collide with the Earth), their orbital eccentricities and inclinations are quite low (e less than 0.3, i less than 20 degrees), and their mean velocity with respect to the Earth is about 5 or 6 km/s. When gravitational acceleration of the Earth is taken into account, the corresponding mean velocities relative to the top of the Earth's atmosphere are 12 to 13 km/s. This means that, at best, these small asteroidal particles can not comprise more than 50 percent of the particles entering the Earth's atmosphere. And when gravitational focusing is considered, they cannot comprise more than a few percent of those in heliocentric orbit at 1 AU. The rest are presumably of cometary origin.
Passage of Bolides Through the Atmosphere
NASA Technical Reports Server (NTRS)
Popova, O.
2011-01-01
Different fragmentation models are applied to a number of events, including the entry of TC3 2008 asteroid in order to reproduce existing observational data. Keywords meteoroid entry fragmentation modeling 1 Introduction Fragmentation is a very important phenomenon which occurs during the meteoroid entry into the atmosphere and adds more drastic effects than mere deceleration and ablation. Modeling of bolide fragmentation (100 106 kg in mass) may be divided into several approaches. Detail fitting of observational data (deceleration and/or light curves) allows the determination of some meteoroid parameters (ablation and shape-density coefficients, fragmentation points, amount of mass loss) (Ceplecha et al. 1993; Ceplecha and ReVelle 2005). Observational data with high accuracy are needed for the gross-fragmentation model (Ceplecha et al. 1993), which is used for the analysis of European and Desert bolide networks data. Hydrodynamical models, which describe the entry of the meteoroid including evolution of its material, are applied mainly for large bodies (>106 kg) (Boslough et al. 1994; Svetsov et al. 1995; Shuvalov and Artemieva 2002, and others). Numerous papers were devoted to the application of standard equations for large meteoroid entry in the attempts to reproduce dynamics and/or radiation for different bolides and to predict meteorite falls. These modeling efforts are often supplemented by different fragmentation models (Baldwin and Sheaffer, 1971; Borovi.ka et al. 1998; Artemieva and Shuvalov, 2001; Bland and Artemieva, 2006, and others). The fragmentation may occur in different ways. For example, few large fragments are formed. These pieces initially interact through their shock waves and then continue their flight independently. The progressive fragmentation model suggests that meteoroids are disrupted into fragments, which continue their flight as independent bodies and may be disrupted further. Similar models were suggested in numerous papers, beginning with Levin (1956) and initial interaction of fragments started to be taken into account after the paper by Passey and Melosh (1980). The progressive fragmentation model with lateral spreading of formed fragments is widely used (Artemieva and Shuvalov, 1996; Nemtchinov and Popova, 1997; Borovi.ka et al. 1998; Bland and Artemieva, 2006).
Modeling the Meteoroid Input Function at Mid-Latitude Using Meteor Observations by the MU Radar
NASA Technical Reports Server (NTRS)
Pifko, Steven; Janches, Diego; Close, Sigrid; Sparks, Jonathan; Nakamura, Takuji; Nesvorny, David
2012-01-01
The Meteoroid Input Function (MIF) model has been developed with the purpose of understanding the temporal and spatial variability of the meteoroid impact in the atmosphere. This model includes the assessment of potential observational biases, namely through the use of empirical measurements to characterize the minimum detectable radar cross-section (RCS) for the particular High Power Large Aperture (HPLA) radar utilized. This RCS sensitivity threshold allows for the characterization of the radar system s ability to detect particles at a given mass and velocity. The MIF has been shown to accurately predict the meteor detection rate of several HPLA radar systems, including the Arecibo Observatory (AO) and the Poker Flat Incoherent Scatter Radar (PFISR), as well as the seasonal and diurnal variations of the meteor flux at various geographic locations. In this paper, the MIF model is used to predict several properties of the meteors observed by the Middle and Upper atmosphere (MU) radar, including the distributions of meteor areal density, speed, and radiant location. This study offers new insight into the accuracy of the MIF, as it addresses the ability of the model to predict meteor observations at middle geographic latitudes and for a radar operating frequency in the low VHF band. Furthermore, the interferometry capability of the MU radar allows for the assessment of the model s ability to capture information about the fundamental input parameters of meteoroid source and speed. This paper demonstrates that the MIF is applicable to a wide range of HPLA radar instruments and increases the confidence of using the MIF as a global model, and it shows that the model accurately considers the speed and sporadic source distributions for the portion of the meteoroid population observable by MU.
Cosmic Ray Exposure Ages of Stony Meteorites: Space Erosion or Yarkovsky?
NASA Technical Reports Server (NTRS)
Rubincam, David Parry
2014-01-01
Space erosion from dust impacts may set upper limits on the cosmic ray exposure (CRE) ages of stony meteorites. A meteoroid orbiting within the asteroid belt is bombarded by both cosmic rays and interplanetary dust particles. Galactic cosmic rays penetrate only the first few meters of the meteoroid; deeper regions are shielded. The dust particle impacts create tiny craters on the meteoroid's surface, wearing it away by space erosion (abrasion) at a particular rate. Hence a particular point inside a meteoroid accumulates cosmic ray products only until that point wears away, limiting CRE ages. The results would apply to other regolith-free surfaces in the solar system as well, so that abrasion may set upper CRE age limits which depend on the dusty environment. Calculations based on N. Divine's dust populations and on micrometeoroid cratering indicate that stony meteoroids in circular ecliptic orbits at 2 AU will record 21Ne CRE ages of approx.176 x 10(exp 6) years if dust masses are in the range 10(exp -21) - 10(exp -3) kg. This is in broad agreement with the maximum observed CRE ages of approx. 100 x 10(exp 6) years for stones. High erosion rates in the inner solar system may limit the CRE ages of Near-Earth Asteroids (NEAs) to approx. 120 x 10(exp 6) years. If abrasion should prove to be approx. 6 times quicker than found here, then space erosion may be responsible for many of the measured CRE ages of main belt stony meteorites. In that case the CRE ages may not measure the drift time to the resonances due to the Yarkovsky effects as in the standard scenario, and that for some reason Yarkovsky is ineffective.
Meteors do not break exogenous organic molecules into high yields of diatomics
NASA Technical Reports Server (NTRS)
Jenniskens, Peter; Schaller, Emily L.; Laux, Christophe O.; Wilson, Michael A.; Schmidt, Greg; Rairden, Rick L.
2004-01-01
Meteoroids that dominate the Earth's extraterrestrial mass influx (50-300 microm size range) may have contributed a unique blend of exogenous organic molecules at the time of the origin of life. Such meteoroids are so large that most of their mass is ablated in the Earth's atmosphere. In the process, organic molecules are decomposed and chemically altered to molecules differently from those delivered to the Earth's surface by smaller (<50 microm) micrometeorites and larger (>10 cm) meteorites. The question addressed here is whether the organic matter in these meteoroids is fully decomposed into atoms or diatomic compounds during ablation. If not, then the ablation products made available for prebiotic organic chemistry, and perhaps early biology, might have retained some memory of their astrophysical nature. To test this hypothesis we searched for CN emission in meteor spectra in an airborne experiment during the 2001 Leonid meteor storm. We found that the meteor's light-emitting air plasma, which included products of meteor ablation, contained less than 1 CN molecule for every 30 meteoric iron atoms. This contrasts sharply with the nitrogen/iron ratio of 1:1.2 in the solid matter of comet 1P/Halley. Unless the nitrogen content or the abundance of complex organic matter in the Leonid parent body, comet 55P/Tempel-Tuttle, differs from that in comet 1P/Halley, it appears that very little of that organic nitrogen decomposes into CN molecules during meteor ablation in the rarefied flow conditions that characterize the atmospheric entry of meteoroids approximately 50 microm-10 cm in size. We propose that the organics of such meteoroids survive instead as larger compounds.
CAMSS: A spectroscopic survey of meteoroid elemental abundances
NASA Astrophysics Data System (ADS)
Jenniskens, P.; Gural, P.; Berdeu, A.
2014-07-01
The main element abundances (Mg, Fe, Na, ...) of some Near Earth Objects can be measured by meteor spectroscopy. The Cameras for All-sky Meteor Surveillance (CAMS) Spectrograph project aims to scale up meteor spectroscopy in the same way as CAMS scaled up the measurement of precise meteoroid trajectories from multi-station video observations. Spectra are recorded with sixteen low-light video cameras, each equipped with a high 1379 lines/mm objective transmission grating. The cameras are operated in survey mode and have recorded spectra in the San Francisco Bay Area every clear night since March 12, 2013. An interactive software tool is being developed to calibrate the wavelength alignments projected on the focal plane and extract the meteor spectra. Because the meteoroid trajectory and pre-atmospheric orbit are also independently measured, the absolute abundances of elements in the meteoroid plasma can be calculated as a function of altitude, while the orbital information can tie the meteoroid back to its parent object. % 2007AdSpR..39..538A Berezhnoy, A. A., Borovička, J. 2012, ACM 2012, Abstract 6142 1993A&A...279..627B 1994A&AS..103...83B 2005Icar..174...15B 2011pimo.conf...28G Gural, P. S. 2012, M&PS, 47, 1405 1997ApJ...479..441J 2007AdSpR..39..491J 2011Icar..216...40J Gomez, N., Madiedo, J. M., & Trigo-Rodriguez, J. M. 2013, 44th LPSC, Abstract 1239 2007AdSpR..39..513K 2004AJ....128.2564M 2007AdSpR..39..583R 2007AdSpR..39..517T 2011A&A...526A.126W
Predicted and observed directional dependence of meteoroid/debris impacts on LDEF thermal blankets
NASA Astrophysics Data System (ADS)
Drolshagen, Gerhard
1992-06-01
The number of impacts from meteoroids and space debris particles to the various Long Duration Exposure Facility (LDEF) rows is calculated using ESABASE/DEBRIS, a 3-D numerical analysis tool. It is based on the latest environment flux models and includes geometrical and directional effects. A detailed comparison of model predictions and actual observations is made for impacts on the thermal blankets which covered the USCR experiment. Impact features on these blankets were studied intensively in European laboratories and hypervelocity impacts for calibration were performed. The thermal blankets were located on all LDEF rows, except 3, 9, and 12. Because of their uniform composition and thickness, these blankets allow a direct analysis of the directional dependence of impacts and provide a unique test case for the latest meteoroid and debris flux models.
Approaches to dealing with meteoroid and orbital debris protection on the Space Station
NASA Technical Reports Server (NTRS)
Kessler, Donald J.
1990-01-01
Viewgraphs and discussion on approaches to dealing with meteoroid and orbital debris protection on the space station are presented. The National Space Policy of February, 1988, included the following: 'All sectors will seek to minimize the creation of space debris. Design and operations of space tests, experiments, and systems will strive to minimize or reduce accumulation of space debris consistent with mission requirements and cost effectiveness.' The policy also tasked the National Security Council, which established an Interagency Group, which in turn produced an Interagency Report. NASA and DoD tasks to establish a joint plan to determine techniques to measure the environment, and techniques to reduce the environment are addressed. Topics covered include: orbital debris environment, meteoroids, orbital debris population, cataloged earth satellite population, USSPACECOM cataloged objects, and orbital debris radar program.
Meteoroid and Debris Impact Features Documented on the Long Duration Exposure Facility
1990-08-01
surfaces was very different from the hole production (penetration) mechanism in true thin films; the laminated structure was never actually penetrated...16 METEOROID & DEBRIS SPECIAL INVESTIGATION GROUP Impacts into laminated polymeric films, such as the Kapton test specimens on experiment A0138...several layers of carbon, glass, and/or Kevlar woven fiber cloth laminated together with resin binders. Impact features in these materials were
Meteoroid head echo polarization features studied by numerical electromagnetics modeling
NASA Astrophysics Data System (ADS)
Vertatschitsch, L. E.; Sahr, J. D.; Colestock, P.; Close, S.
2011-12-01
Meteoroid head echoes are radar returns associated with scatter from the dense plasma surrounding meteoroids striking the Earth's atmosphere. Such echoes are detected by high power, large aperture (HPLA) radars. Frequently such detections show large variations in signal strength that suggest constructive and destructive interference. Using the ARPA Long-Range Tracking and Instrumentation Radar (ALTAIR) we can also observe the polarization of the returns. Usually, scatter from head echoes resembles scatter from a small sphere; when transmitting right circular polarization (RC), the received signal consists entirely of left circular polarization (LC). For some detections, power is also received in the RC channel, which indicates the presence of a more complicated scattering process. Radar returns of a fragmenting meteoroid are simulated using a hard-sphere scattering model numerically evaluated in the resonant region of Mie scatter. The cross- and co-polar scattering cross-sections are computed for pairs of spheres lying within a few wavelengths, simulating the earliest stages of fragmentation upon atmospheric impact. The likelihood of detecting this sort of idealized fragmentation event is small, but this demonstrates the measurements that would result from such an event would display RC power comparable to LC power, matching the anomalous data. The resulting computations show that fragmentation is a consistent interpretation for these head echo radar returns.
Meteor Shower Forecast Improvements from a Survey of All-Sky Network Observations
NASA Technical Reports Server (NTRS)
Moorhead, Althea V.; Sugar, Glenn; Brown, Peter G.; Cooke, William J.
2015-01-01
Meteoroid impacts are capable of damaging spacecraft and potentially ending missions. In order to help spacecraft programs mitigate these risks, NASA's Meteoroid Environment Office (MEO) monitors and predicts meteoroid activity. Temporal variations in near-Earth space are described by the MEO's annual meteor shower forecast, which is based on both past shower activity and model predictions. The MEO and the University of Western Ontario operate sister networks of all-sky meteor cameras. These networks have been in operation for more than 7 years and have computed more than 20,000 meteor orbits. Using these data, we conduct a survey of meteor shower activity in the "fireball" size regime using DBSCAN. For each shower detected in our survey, we compute the date of peak activity and characterize the growth and decay of the shower's activity before and after the peak. These parameters are then incorporated into the annual forecast for an improved treatment of annual activity.
A preliminary numerical model of the Geminid meteoroid stream
NASA Astrophysics Data System (ADS)
Ryabova, G. O.
2016-02-01
A pilot numerical model of the Geminid meteoroid stream is presented. This model implies cometary origin of the stream. Ejection of relatively small amount of particles (90 000 test meteoroids with masses 0.02, 0.003 and 0.0003 g) from the asteroid (3200) Phaethon (the parent body) was simulated, and their evolution was followed till the present time. The particles close to the Earth orbit were considered as the `shower'. It was found that the width of the model shower is at least twice less comparatively the real shower. The maximum activity of the model shower is dislocated and occurs about one day late. The most probable reason for both discrepancies is the drastic transformation of the parent body orbit during rapid release of the volatiles in the process of the stream initial formation. The dispersion of the model stream was evaluated in terms of the Southworth-Hawkins D-criterion.
A Southern Hemisphere radar meteor orbit survey
NASA Technical Reports Server (NTRS)
Baggaley, W. Jack; Steel, Duncan I.; Taylor, Andrew D.
1992-01-01
A meteor radar system has been operated on a routine basis near Christchurch, New Zealand, to determine the orbits of Earth-impacting interplanetary dust and meteoroids. The system sensitivity is +13 visual magnitude, corresponding to approximately 100 micron sized meteoroids. With an orbital precision of 2 degrees in angular elements and 10 percent in orbital energy (1/a), the operation yields an average of 1500 orbits daily with a total to date in excess of 10(exp 5). The use of pc's and automated data reduction permit the large orbital data sets we collect to be routinely reduced. Some illustrative examples are presented of the signal formats/processing and the results of data reduction, giving the individual orbital elements and hence the overall distributions. Current studies include the distribution of dust in the inner solar system; the influx of meteoroids associated with near-Earth asteroids; and the orbital structure existing in comet-produced streams.
Comparison of 1998 and 1999 Leonid Light Curve Morphology and Meteoroid Structure
NASA Technical Reports Server (NTRS)
Murray, Ian S.; Beech, Martin; Taylor, Michael J.; Jenniskens, Peter; Hawkes, Robert L.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Photometric low-light level video observations of 1999 Leonid storm meteors have been obtained from airborne platforms during the Leonid multi-instrument aircraft campaign (Leonid MAC). The 1999 Leonid light curves tend to be skewed towards the end point of the trajectory, while the 1998 Leonid light curves were not. The variation in the light curves from 1998 and 1999 can be explained as an overall reduction in the mass distribution index, alpha from approximately 1.95 in 1998 to approximately 1.75 in 1999. We have interpreted this behavior as being either indicative of a gradual loss of the "glue" that keeps the grains together, or the fact that the meteoroids sampled in 1998 had a different morphological structure to those sampled in 1999. The early fragmentation of a dustball meteoroid results in a light curve that peaks sooner than that predicted by classical single body ablation theory.
Parametric analysis: SOC meteoroid and debris protection
NASA Technical Reports Server (NTRS)
Kowalski, R.
1985-01-01
The meteoroid and man made space debris environments of an Earth orbital manned space operations center are discussed. Protective shielding thickness and design configurations for providing given levels of no penetration probability were also calculated. Meteoroid/debris protection consists of a radiator/shield thickness, which is actually an outer skin, separated from the pressure wall, thickness by a distance. An ideal shield thickness, will, upon impact with a particle, cause both the particle and shield to vaporize, allowing a minimum amount of debris to impact the pressure wall itself. A shield which is too thick will crater on the outside, and release small particles of shield from the inside causing damage to the pressure wall. Inversely, if the shield is too thin, it will afford no protection, and the backup must provide all necessary protection. It was concluded that a double wall concept is most effective.
Could the Geminid meteoroid stream be the result of long-term thermal fracture?
NASA Astrophysics Data System (ADS)
Ryabova, G. O.
2018-06-01
The previous models by Ryabova showed that the Geminid meteoroid stream has cometary origin, so the asteroid (3200) Phaethon (the Geminid's parent body) is probably a dead comet. In 2009, 2012, and 2016, some weak activity was observed, but it was not cometary activity (see Jewitt & Li). Recurrent brightening of Phaethon at perihelion could be the result of thermal fracture and decomposition. In this study, we model the long-term (5 000 years) dust release from Phaethon in perihelion with velocities specific for this mechanism. The results of these dust ejections cannot be observed from the Earth now, or even in this century. Only around the year 2260, when the Phaethon descending node should intersect the Earth's orbit, this special component of the Geminid meteoroid stream will also approach the Earth. The perihelion activity should cease in 400 years, when the Phaethon perihelion will move away from the Sun.
Constraints on the Organic Composition of Meteoroids
NASA Technical Reports Server (NTRS)
McKay, Chris P.; Steel, D. I.; Cuzzi, Jeffrey (Technical Monitor)
1996-01-01
One of the major results obtained from the spacecraft experiments at Comet Halley, and subsequent telescopic observations of comets, is the identification of a substantial organic fraction of cometary dust. There are also various meteor observations which indicate that there may also be a significant heavy organic component of small (mm-cm) meteoroids entering the terrestrial atmosphere. Here we describe the results of thermodynamic modelling of idealized meteoroids which was directed towards discovering which volatile species could survive for the (typically) millennia between release from a comet and entry into the atmosphere. We find that the most likely species to survive from plausible volatile constituents axe organic species with carbon numbers greater than -20 (i.e., tarry or kerogen-type chemicals). This result is in accord with recent observations of the heights of ablation of meteors observed using radar techniques, and provides supportive evidence for the idea that organic molecules are continually raining down upon our planet.
The comet Halley meteoroid stream: just one more model
NASA Astrophysics Data System (ADS)
Ryabova, G. O.
2003-05-01
The present attempt to simulate the formation and evolution of the comet Halley meteoroid stream is based on a tentative physical model of dust ejection of large particles from comet Halley. Model streams consisting of 500-5000 test particles have been constructed according to the following ejection scheme. The particles are ejected from the nucleus along the cometary orbit (r < 9 au) within the sunward 70° cone, and the rate of ejection has been taken as proportional to r-4. Two kinds of spherical particles have been considered: 1 and 0.001 g with density equal to 0.25 g cm-3. Ejections have been simulated for 1404 BC, 141 AD and 837 AD. The equations of motion have been numerically integrated using the Everhart procedure. As a result, a complicated fine structure of the comet Halley meteoroid stream, consisting not of filaments but of layers, has been revealed.
Magnetospheric Effects during the Approach of the Chelyabinsk Meteoroid
NASA Astrophysics Data System (ADS)
Chernogor, L. F.
2018-03-01
We have analyzed the observational results for variations in the main geomagnetic field and its fluctuations in the range of periods 1-1000 s that accompanied the approach of the Chelyabinsk space body to the magnetosphere and ionosphere of the Earth. The measurements were conducted with a magnetometerfluxmeter near the city of Kharkiv, as well as with the network of magnetometers located at the observatories of Novosibirsk, Kyiv, Lviv, Almaty, Khabarovsk, Arti, Borok, and Yakutsk. Variations in the main geomagnetic field and its fluctuations approximately 33-47 min prior to the explosion of the Chelyabinsk meteoroid have been discovered; they persisted for 25-35 min and were probably associated with meteoroid passage through the magnetosphere. The amplitude of variations reached 1-6 nT. We have proposed a model of the generation of aperiodic, quasi-periodic, and noise-like variations in the geomagnetic field induced by the approach of a space body.
International Space Station (ISS) Meteoroid/Orbital Debris Shielding
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.
1999-01-01
Design practices to provide protection for International Space Station (ISS) crew and critical equipment from meteoroid and orbital debris (M/OD) Impacts have been developed. Damage modes and failure criteria are defined for each spacecraft system. Hypervolocity Impact -1 - and analyses are used to develop ballistic limit equations (BLEs) for each exposed spacecraft system. BLEs define Impact particle sizes that result in threshold failure of a particular spacecraft system as a function of Impact velocity, angles and particle density. The BUMPER computer code Is used to determine the probability of no penetration (PNP) that falls the spacecraft shielding based on NASA standard meteoroid/debris models, a spacecraft geometry model, and the BLEs. BUMPER results are used to verify spacecraft shielding requirements Low-weight, high-performance shielding alternatives have been developed at the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology Facility (HITF) to meet spacecraft protection requirements.
Meteorite and meteoroid: New comprehensive definitions
Rubin, A.E.; Grossman, J.N.
2010-01-01
Meteorites have traditionally been defined as solid objects that have fallen to Earth from space. This definition, however, is no longer adequate. In recent decades, man-made objects have fallen to Earth from space, meteorites have been identified on the Moon and Mars, and small interplanetary objects have impacted orbiting spacecraft. Taking these facts and other potential complications into consideration, we offer new comprehensive definitions of the terms "meteorite,""meteoroid," and their smaller counterparts: A meteoroid is a 10-??m to 1-m-size natural solid object moving in interplanetary space. A micrometeoroid is a meteoroid 10 ??m to 2 mm in size. A meteorite is a natural, solid object larger than 10 ??m in size, derived from a celestial body, that was transported by natural means from the body on which it formed to a region outside the dominant gravitational influence of that body and that later collided with a natural or artificial body larger than itself (even if it is the same body from which it was launched). Weathering and other secondary processes do not affect an object's status as a meteorite as long as something recognizable remains of its original minerals or structure. An object loses its status as a meteorite if it is incorporated into a larger rock that becomes a meteorite itself. A micrometeorite is a meteorite between 10 ??m and 2 mm in size. Meteorite- "a solid substance or body falling from the high regions of the atmosphere" (Craig 1849); "[a] mass of stone and iron that ha[s] been directly observed to have fallen down to the Earth's surface" (translated from Cohen 1894); "[a] solid bod[y] which came to the earth from space" (Farrington 1915); "A mass of solid matter, too small to be considered an asteroid; either traveling through space as an unattached unit, or having landed on the earth and still retaining its identity" (Nininger 1933); "[a meteoroid] which has reached the surface of the Earth without being vaporized" (1958 International Astronomical Union (IAU) definition, quoted by Millman 1961); "a solid body which has arrived on the Earth from outer space" (Mason 1962); "[a] solid bod[y] which reach[es] the Earth (or the Moon, Mars, etc.) from interplanetary space and [is] large enough to survive passage through the Earth's (or Mars', etc.) atmosphere" (Gomes and Keil 1980); "[a meteoroid] that survive[s] passage through the atmosphere and fall[s] to earth" (Burke 1986); "a recovered fragment of a meteoroid that has survived transit through the earth's atmosphere" (McSween 1987); "[a] solid bod[y] of extraterrestrial material that penetrate[s] the atmosphere and reach[es] the Earth's surface" (Krot et al. 2003). ?? The Meteoritical Society, 2010.
The 2017 Meteor Shower Activity Forecast for Earth Orbit
NASA Technical Reports Server (NTRS)
Moorhead, Althea; Cooke, Bill; Moser, Danielle
2017-01-01
Most meteor showers will display typical activity levels in 2017. Perseid activity is expected to be higher than normal but less than in 2016; rates may reach 80% of the peak ZHR in 2016. Despite this enhancement, the Perseids rank 4th in flux for 0.04-cm-equivalent meteoroids: the Geminids (GEM), Daytime Arietids (ARI), and Southern delta Aquariids (SDA) all produce higher fluxes. Aside from heightened Perseid activity, the 2017 forecast includes a number of changes. In 2016, the Meteoroid Environment Office used 14 years of shower flux data to revisit the activity profiles of meteor showers included in the annual forecast. Both the list of showers and the shape of certain major showers have been revised. The names and three-letter shower codes were updated to match those in the International Astronomical Union (IAU) Meteor Data Center, and a number of defunct or insignificant showers were removed. The most significant of these changes are the increased durations of the Daytime Arietid (ARI) and Geminid (GEM) meteor showers. This document is designed to supplement spacecraft risk assessments that incorporate an annual averaged meteor shower flux (as is the case with all NASA meteor models). Results are presented relative to this baseline and are weighted to a constant kinetic energy. Two showers - the Daytime Arietids (ARI) and the Geminids (GEM) - attain flux levels approaching that of the baseline meteoroid environment for 0.1-cm-equivalent meteoroids. This size is the threshold for structural damage. These two showers, along with the Quadrantids (QUA) and Perseids (PER), exceed the baseline flux for 0.3-cm-equivalent particles, which is near the limit for pressure vessel penetration. Please note, however, that meteor shower fluxes drop dramatically with increasing particle size. As an example, the Arietids contribute a flux of about 5x10(exp -6) meteoroids m(exp -2) hr-1 in the 0.04-cm-equivalent range, but only 1x10(exp -8) meteoroids m(sub -2) hr-1 for the 0.3-cmequivalent and larger size regime. Thus, a PNP risk assessment should use the flux and flux enhancements corresponding to the smallest particle capable of penetrating a component, because the flux at this size will be the dominant contributor to the risk.
Accuracy of meteoroid speeds determined using a Fresnel transform procedure
NASA Astrophysics Data System (ADS)
Campbell, L.; Elford, W. G.
2006-03-01
New methods of determining meteor speeds using radar are giving results with an accuracy of better that 1%. It is anticipated that this degree of precision will allow determinations of pre-atmospheric speeds of shower meteors as well as estimates of the density of the meteoroids. The next step is to determine under what conditions these new measurements are reliable. Errors in meteoroid speeds determined using a Fresnel transform procedure applied to radar meteor data are investigated. The procedure determines the reflectivity of a meteor trail as a function of position, by application of the Fresnel transform to the time series of a radar reflection from the trail observed at a single detection station. It has previously been shown that this procedure can be used to determine the speed of the meteoroid, by finding the assumed speed that gives a reflectivity image that best meets physical expectations. It has also been shown that speeds determined by this method agree with those from the well established "pre-t o phase" method when applied to reflections with a high signal to noise ratio. However, there is a discrepancy between the two methods for weaker reflections. A method to investigate the discrepancy is described and applied, with the finding that the speed determined by using the Fresnel transform procedure is more accurate for weaker reflections than that given by the "pre-t o phase" method.
NASA Technical Reports Server (NTRS)
Levin, George M.; Christiansen, Eric L.
1997-01-01
The pre-flight predictions and postflight assessments carried out in relation to a series of Space Shuttle missions are reviewed, and data are presented for the meteoroid and orbital debris damage observed on the Hubble Space Telescope during the 1994 Hubble repair mission. Pre-flight collision risk analyses are carried out prior to each mission, and in the case of an unacceptable risk, the mission profile is altered until the risk is considered to be acceptable. The NASA's BUMPER code is used to compute the probability of damage from debris and meteoroid particle impacts based on the Poisson statistical model for random events. The penetration probability calculation requires information concerning the geometry of the critical systems, the penetration resistance and mission profile parameters. Following each flight, the orbiter is inspected for meteoroid and space debris damage. The emphasis is on areas such as the radiator panels, the windows and the reinforced carbon-carbon structures on the leading wing edges and on the nose cap. The contents of damage craters are analyzed using a scanning electron microscope to determine the nature and origin of the impactor. Hypervelocity impact tests are often performed to simulate the observed damage and to estimate the nature of the damaging particles. The number and type of damage observed provides information concerning the orbital debris environment.
LAD-C: A large area debris collector on the ISS
NASA Technical Reports Server (NTRS)
Liou, J.-C.; Giovane, F. J.; Corsaro, R. D.; Burchell, M. J.; Drolshagen, G.; Kawai, H.; Stansbery, E. G.; Tabata, M.; Westphal, A. J.; Yano, H.
2006-01-01
The Large Area Debris Collector (LAD-C) is a 10 sq m aerogel and acoustic sensor system under development by the U.S. Naval Research Laboratory (NRL) with main collaboration from the NASA Orbital Debris Program Office at Johnson Space Center, JAXA Institute of Space and Astronautical Science (ISAS), Chiba University (Japan), ESA Space Debris Office, University of California at Berkeley, and University of Kent at Canterbury (UK). The U.S. Department of Defense (DoD) Space Test Program (STP) has assumed the responsibility for having the system manifested and deployed on the International Space Station (ISS), and then having it retrieved and returned to Earth after one to two years. LAD-C will attempt to utilize the ISS as a scientific platform to characterize the near-Earth meteoroid and orbital debris environment in the size regime where little data exist. In addition to meteoroid and orbital debris sample return, the acoustic sensors will record impact time, location, signal strength, and acoustic waveform data of the largest collected samples. A good time-dependent meteoroid and orbital debris flux estimate can be derived. Analysis of the data will also enable potential source identification of some of the collected samples. This dynamical link can be combined with laboratory composition analysis of impact residuals extracted from aerogel to further our understanding of orbital debris population, and the sources of meteoroids, asteroids and comets.
The extra-atmospheric mass of small meteoroids of the Prairie and Canada bolide camera networks
NASA Astrophysics Data System (ADS)
Popelenskaya, N. V.; Stulov, V. P.
2008-04-01
The existing methods for determining the extra-atmospheric mass of meteor bodies from observations of their movement in the atmosphere allow a certain arbitrariness. Active attempts to overcome the discrepancy between the results of calculations based on different approaches often lead to physically incorrect conclusions. A way out is to laboriously accumulate the estimates and computation results and to consistently remove ambiguities. To correctly interpret the observed brightness of a meteor, one should use contemporary methods and the results of physical studies of the emitting gas. In the present work, the extra-atmospheric masses of small meteoroids of the Prairie and Canada bolide camera networks were calculated from the observed braking. It turned out that, in many cases, the conditions of movement of meteor bodies in the atmosphere corresponded to a free molecular airflow about a body. The so-called dynamic mass of the bodies was estimated from the real densities of the meteoroid material, which corresponded to monolithic water ice and stone, and for the proper values of the product of the drag coefficient and shape factor. When producing the trial function for the body trajectories in the "velocity-altitude" variables, we did not allow for fragmentation explicitly, since it is less probable for small meteoroids than for large ones. As before, our estimates differ substantially from the photometric masses published in the corresponding tables.
The 1996 Leonid shower as studied with a potassium lidar: Observations and inferred meteoroid sizes
NASA Astrophysics Data System (ADS)
Höffner, Josef; von Zahn, Ulf; McNeil, William J.; Murad, Edmond
1999-02-01
We report on the observation and analysis of meteor trails that are detected by ground-based lidar tuned to the D1 fine structure line of K. The lidar is located at Kühlungsborn, Germany. The echo profiles are analyzed with a temporal resolution of about 1 s and altitude resolution of 200 m. Identification of meteor trails in the large archive of raw data is performed with help of an automated computer search code. During the peak of the Lenoid meteor shower on the morning of November 17, 1996, we observed seven meteor trails between 0245 and 0445 UT. Their mean altitude was 89.0 km. The duration of observation of individual trails ranges from 3 s to ~30 min. We model the probability of observing a meteor trail by ground-based lidar as a function of both altitude distribution and duration of the trails. These distributions depend on the mass distribution, entry velocity, and entry angle of the meteoroids, on the altitude-dependent chemical and dynamical lifetimes of the released K atom, and on the absolute detection sensitivity of our lidar experiment. From the modeling, we derive the statistical likelihood of detection of trails from meteoroids of a particular size. These bracket quite well the observed trails. The model also gives estimates of the probable size of the meteoroids based on characteristics of individual trails.
Dynamical Behavior of Meteor in AN Atmosphere: Theory vs Observations
NASA Astrophysics Data System (ADS)
Gritsevich, Maria
Up to now the only quantities which directly follow from the available meteor observations are its brightness, the height above sea level, the length along the trajectory, and as a consequence its velocity as a function of time. Other important parameters like meteoroid's mass, its shape, bulk and grain density, temperature remain unknown and should be found based on physical theories and special experiments. In this study I will consider modern methods for evaluating meteoroid parameters from observational data, and some of their applications. The study in particular takes an approach in modelling the meteoroids' mass and other properties from the aerodynamical point of view, e.g. from the rate of body deceleration in the atmosphere as opposed to conventionally used luminosity [1]. An analytical model of the atmospheric entry is calculated for registered meteors using published observational data and evaluating parameters describing drag, ablation and rotation rate of meteoroid along the luminous segment of the trajectory. One of the special features of this approach is the possibility of considering a change in body shape during its motion in the atmosphere. The correct mathematical modelling of meteor events is necessary for further studies of consequences for collisions of cosmic bodies with the Earth [2]. It also helps us to estimate the key parameters of the meteoroids, including deceleration, pre-entry mass, terminal mass, ablation coefficient, effective destruction enthalpy, and heat-transfer coefficient. With this information, one can use models for the dust influx onto Earth to estimate the number of meteors detected by a camera of a given sensitivity. References 1. Gritsevich M. I. Determination of Parameters of Meteor Bodies based on Flight Obser-vational Data // Advances in Space Research, 44, p. 323-334, 2009. 2. Gritsevich M. I., Stulov V. P. and Turchak L. I. Classification of Consequences for Col-lisions of Natural Cosmic Bodies with the Earth // Doklady Physics, 54, p. 499-503, 2009.
Meteoroid Orbits from Observations
NASA Astrophysics Data System (ADS)
Campbell-Brown, Margaret
2018-04-01
Millions of orbits of meteoroids have been measured over the last few decades, and they comprise the largest sample of orbits of solar system bodies which exists. The orbits of these objects can shed light on the distribution and evolution of comets and asteroids in near-Earth space (e.g. Neslusan et al. 2016). If orbits can be measured at sufficiently high resolution, individual meteoroids can be traced back to their parent bodies and, in principle, even to their ejection time (Rudawska et al. 2012). Orbits can be measured with multi-station optical observations or with radar observations.The most fundamental measured quantities are the speed of the meteor and the two angles of the radiant, or point in the sky from which the meteor appears to come. There are many methods used to determine these from observations, but not all produce the most accurate results (Egal et al. 2017). These three measured quantities, along with the time and location of the observation, are sufficient to obtain an orbit (see, e.g., Clark & Wiegert 2011), but the measurements must be corrected for the deceleration of the meteoroid in the atmosphere before it was detected, the rotation of the Earth, and the gravitational attraction of the Earth (including higher order moments if great precision is necessary).Once meteor orbits have been determined, studies of the age and origin of meteor showers (Bruzzone et al., 2015), the parent bodies of sporadic sources (Pokorny et al. 2014), and the dynamics of the meteoroid complex as a whole can be constrained.Bruzzone, J. S., Brown, P., Weryk, R., Campbell-Brown, M., 2015. MNRAS 446, 1625.Clark, D., Wiegert, P., 2011. M&PS 46, 1217.Egal, A., Gural, P., Vaubaillon, J., Colas, F., Thuillot, W., 2017. Icarus 294, 43.Neslusan, L., Vaubaillon, J., Hajdukova, M., 2016. A&A 589, id.A100.Pokorny, P., Vokrouhlicky, D., Nesvorny, D., Campbell-Brown, M., Brown, P., 2014. ApJ 789, id.25.Rudawska, R., Vaubaillon, J., Atreya, P., 2012. A&A 541, id.A2
NASA Technical Reports Server (NTRS)
Blaauw, R.
2016-01-01
The Geminid meteor shower was observed in 2015 using the Western Meteor Physics Group’s Canadian Meteor Orbit Radar (CMOR), Marshall Space Flight Center’s (MSFC) eight wide-field optical cameras, and MSFC’s lunar impact monitoring. These observations allowed Geminid fluxes to be calculated in three unique mass-ranges, from 1.8 (exponent -4) grams to 30 grams. From these fluxes, a mass index of 1.68 plus or minus 0.04 is found, which is in excellent agreement with past Geminid mass indices such as 1.69 found by Blaauw et al using only radar data and 1.7 found by Arlt and Rendtel using visual data. This mass index, however, is found over five orders of magnitude of mass, which allows a higher level of confidence that this mass index holds over a large portion of the stream. Mass indices are an important quantity to be accurately measured for a shower, indicating the distribution of mass in a well-studied stream in which we know the parent body (3200 Phaethon), improving forecasts of the shower activity, and allow fluxes to be scaled to high and low masses. The quantities derived here, along with a profile of the Geminid meteor shower activity in 2015 from CMOR, permit the total Geminid mass the Earth encountered in 2015 to be found, along with a minimum total mass of the Geminid meteoroid stream. Attempts have been made in the past to measure the mass of meteoroid streams using Zenithal Hourly Rate (ZHR) profiles, but here this new and improved treatment uses empirically derived fluxes and measured mass indices for the 2015 encounter with the meteoroid stream. This is to be compared with other meteoroid stream mass estimates including that of the Perseids, caused by comet Swift Tuttle.
The forthcoming EISCAT_3D as an extra-terrestrial matter monitor
NASA Astrophysics Data System (ADS)
Pellinen-Wannberg, Asta; Kero, Johan; Häggström, Ingemar; Mann, Ingrid; Tjulin, Anders
2016-04-01
It is important to monitor the extra-terrestrial dust flux in the Earth's environment and into the atmosphere. Meteoroids threaten the infrastructure in space as hypervelocity hits by micron-sized granules continuously degrade the solar panels and other satellite surfaces. Through their orbital elements meteoroids can be associated to the interplanetary dust cloud, comets, asteroids or the interstellar space. The ablation products of meteoroids participate in many physical and chemical processes at different layers in the atmosphere, many of them occurring in the polar regions. High-power large-aperture (HPLA) radars, such as the tristatic EISCAT UHF together with the EISCAT VHF, have been versatile instruments for studying many properties of the meteoroid population, even though they were not initially designed for this purpose. The future EISCAT_3D will comprise a phased-array transmitter and several phased-array receivers distributed in northern Scandinavia. These will work at 233 MHz centre frequency with power up to 10 MW and run advanced signal processing systems. The facility will in many aspects be superior to its predecessors as the first radar to combine volumetric-, aperture synthesis- and multistatic imaging as well as adaptive experiments. The technical design goals of the radar respond to the scientific requests from the user community. The VHF frequency and the volumetric imaging capacity will increase the collecting volume compared to the earlier UHF, the high transmitter power will increase the sensitivity of the radar, and the interferometry will improve the spatial resolution of the orbit estimates. The facility will be able to observe and define orbits to about 10% of the meteors from the established mass flux distribution that are large or fast enough to produce an ionization mantle around the impacting meteoroid within the collecting volume. The estimated annual mean of about 190 000 orbits per day with EISCAT_3D gives many orders of magnitude higher detected orbit rates than the earlier tristatic UHF radar.
Studies of Transient Meteor Activity
NASA Technical Reports Server (NTRS)
Jenniskens, Peter M. M.
2002-01-01
Meteoroids bombard Earth's atmosphere daily, but occasionally meteor rates increase to unusual high levels when Earth crosses the relatively fresh ejecta of comets. These transient events in meteor activity provide clues about the whereabouts of Earth-threatening long-period comets, the mechanisms of large-grain dust ejection from comets, and the particle composition and size distribution of the cometary ejecta. Observations of these transient events provide important insight in natural processes that determine the large grain dust environment of comets, in natural phenomena that were prevalent during the time of the origin of life, and in processes that determine the hazard of civilizations to large impacts and of man-made satellites to the periodic blizzard of small meteoroids. In this proposal, three tasks form a coherent program aimed at elucidating various aspects of meteor outbursts, with special reference to planetary astronomy and astrobiology. Task 1 was a ground-based effort to observe periods of transient meteor activity. This includes: (1) stereoscopic imaging of meteors during transient meteor events for measurements of particle size distribution, meteoroid orbital dispersions and fluxes; and (2) technical support for Global-MS-Net, a network of amateur-operated automatic counting stations for meteor reflections from commercial VHF radio and TV broadcasting stations, keeping a 24h vigil on the level of meteor activity for the detection of new meteor streams. Task 2 consisted of ground-based and satellite born spectroscopic observations of meteors and meteor trains during transient meteor events for measurements of elemental composition, the presence of organic matter in the meteoroids, and products generated by the interaction of the meteoroid with the atmosphere. Task 3 was an airborne effort to explore the 2000 Leonid meteor outbursts, which are anticipated to be the most significant of transient meteor activity events in the remainder of the agreement period. This includes technical support for a multi-instrument aircraft campaign, Leonid MAC.
Goulds Belt, Interstellar Clouds, and the Eocene-Oligocene Helium-3 Spike
NASA Technical Reports Server (NTRS)
Rubincam, David Parry
2015-01-01
Drag from hydrogen in the interstellar cloud which formed Gould's Belt may have sent small meteoroids with embedded helium to the Earth, perhaps explaining part or all of the (sup 3) He spike seen in the sedimentary record at the Eocene-Oligocene transition. Assuming the Solar System passed through part of the cloud, meteoroids in the asteroid belt up to centimeter size may have been dragged to the resonances, where their orbital eccentricities were pumped up into Earth-crossing orbits.
Groups of meteorite-producing meteoroids containing carbonaceous chondrite meteorites
NASA Astrophysics Data System (ADS)
Konovalova, N. A.; A.. Ibrohimov, A.; Kalashnikova, T. M.
2017-09-01
Proposed probable links of meteorite and meteorite-producing fireballs were been considered. Group associations between meteorite-producing meteoroids and meteorites were been determined for four carbonaceous chondrites Murchison, Maribo, Shutters Mill and Tagish Lake and potentially meteorite-producing bolides on the basis of links of their orbits. In result the several meteorite-producing sporadic slowly fireballs were found as the possible members of groups of four studied carbonaceous chondrite meteorites. One can presume that at present the identified groups may still contain large meteorite-dropping bodies.
Automated systems for the analysis of meteor spectra: The SMART Project
NASA Astrophysics Data System (ADS)
Madiedo, José M.
2017-09-01
This work analyzes a meteor spectroscopy survey called SMART (Spectroscopy of Meteoroids in the Atmosphere by means of Robotic Technologies), which is being conducted since 2006. In total, 55 spectrographs have been deployed at 10 different locations in Spain with the aim to obtain information about the chemical nature of meteoroids ablating in the atmosphere. The main improvements in the hardware and the software developed in the framework of this project are described, and some results obtained by these automatic devices are also discussed.
Could the Geminid meteoroid stream be the result of long-term thermal fracture?
NASA Astrophysics Data System (ADS)
Ryabova, G. O.
2015-10-01
The previous models by Ryabova have shown that the Geminid meteoroid stream has cometary origin, so asteroid (3200) Phaethon (the Geminid's parent body) is probably a dead comet. Recently (in 2009 and 2012) some week activity was observed (see Jewitt & Li, 2010, AJ, 140), but it was not the cometary activity. Recurrent brightening of Phaethon in perihelion could be the result of thermal fracture and decomposition. In this study we model the longterm dust release from Phaethon based on this mechanism.
Meteoroid Protection Methods for Spacecraft Radiators Using Heat Pipes
NASA Technical Reports Server (NTRS)
Ernst, D. M.
1979-01-01
Various aspects of achieving a low mass heat pipe radiator for the nuclear electric propulsion spacecraft were studied. Specific emphasis was placed on a concept applicable to a closed Brayton cycle power sub-system. Three aspects of inter-related problems were examined: (1) the armor for meteoroid protection, (2) emissivity of the radiator surface, and (3) the heat pipe itself. The study revealed several alternatives for the achievement of the stated goal, but a final recommendation for the best design requires further investigation.
NASA Astrophysics Data System (ADS)
Koschny, Detlef; Borovička, Jiří; Janches, Diego; Willliams, Iwan P.
2017-09-01
This Special Issue is the first of two volumes summarizing papers from the Meteoroids 2016 conference, held at ESTEC in the Netherlands from 06 to 10 June 2016. The 'Meteoroids' conference is held every three years and it is the main conference organized by the IAU Commission F1 (Meteors, Meteorites, and Interplanetary Dust). The 2016 conference was the 9th of the series and it brought together over 140 meteor astronomers, both professional and amateurs, who gave a total of 81 presentations and 65 posters of all areas of meteor physics.
Meteoroid rotation and fireball flickering: a case study of the Innisfree fireball
NASA Astrophysics Data System (ADS)
Beech, Martin
2001-09-01
Some 5 per cent of bright meteors show rapid, quasi-periodic brightness variations. It is argued that this effect, observationally known as flickering, is a manifestation of the rotational modulation of surface mass loss through ablation of a non-spherical meteoroid. We develop a set of time-dependent, single-body ablation equations that include the effect of cross-section area modulation. We present a discussion of the effects that the rotation of a non-spherical meteoroid has on the resultant meteor light curve, and we look in depth at the data related to the fireball associated with the fall of the Innisfree meteorite. We find that the parent object to the Innisfree meteorite was spinning at a rotation frequency of 2.5Hz when it encountered the Earth's upper atmosphere. We also find that the Innisfree parent body had an initial mass of about 20kg and that the ratio of its semiminor and semimajor axes was about 0.5.
An Earth-grazing fireball from the Daytime ζ-Perseid shower observed over Spain on 2012 June 10
NASA Astrophysics Data System (ADS)
Madiedo, José M.; Espartero, Francisco; Castro-Tirado, Alberto J.; Pastor, Sensi; de los Reyes, José A.
2016-07-01
On 2012 June 10, an Earth-grazer meteor which lasted over 17 s with an absolute magnitude of -4.0 ± 0.5 was observed over Spain. This work focuses on the analysis of this rare event which is, to our knowledge, the faintest Earth-grazing meteor reported in the scientific literature, but also the first one belonging to a meteor shower. Thus, the orbital parameters show that the parent meteoroid belonged to the Daytime ζ-Perseid meteoroid stream. According to our calculations, the meteor was produced by a meteoroid with an initial mass ranging between 115 and 1.5 kg. During its encounter with Earth, the particle travelled about 510 km in the atmosphere. Around 260 g were destroyed in the atmosphere during the luminous phase of the event as a consequence of the ablation process. The modified orbit of the remaining material, which left our planet with a fusion crust, is also calculated.
Mineralogical Variation of Chelyabinsk with Depth from the Surface of the Parent Meteoroid
NASA Technical Reports Server (NTRS)
Yoshida, S.; Mikouchi, T.; Nagao, K.; Haba, M. K.; Hasegawa, H.; Komatsu, M.; Zolensky, M. E.
2014-01-01
The Chelyabinsk meteorite, which passed over the Chelyabinsk Oblast, Russia on Feb. 15th, 2013, brought serious damage by the shock wave and airburst. The diameter of the parent meteoroid is estimated to be approximately 20 m in diameter [1]. It was reported that the impact by this meteorite shower was 4,000 times as large as the TNT explosive and this was the largest airburst on Earth since the asteroid impact in Tunguska, Russia in 1908. The mineralogy and geochemical study of the recovered samples shows that Chelyabinsk is an LL5 chondrite [1]. In this study we analyzed several fragments of Chelyabinsk whose noble gas compositions have been measured and depths from the surface of the parent meteoroid were estimated [2]. We examined how mineralogical characteristics change with depth from the surface. This kind of study has never been performed and thus may be able to offer significant information about the evolution of meteorite parent bodies.
NASA Technical Reports Server (NTRS)
Moser, D. E.; Suggs, R. M.; Swift, W. R.; Suggs, R. J.; Cooke, W. J.; Diekmann, A. M.; Koehler, H. M.
2010-01-01
Since early 2006 the Meteoroid Environment Office (MEO) at NASA s Marshall Space Flight Center has been consistently monitoring the Moon for impact flashes produced by meteoroids striking the lunar surface. During this time, several meteor showers have produced multiple impact flashes on the Moon. The 2006 Geminids, 2007 Lyrids, and 2008 Taurids were observed with average rates of 5.5, 1.2, and 1.5 meteors/hr, respectively, for a total of 12 Geminid, 12 Lyrid, and 12 Taurid lunar impacts. These showers produced a sufficient, albeit small sample of impact flashes with which to perform a luminous efficiency analysis similar to that outlined in Bellot Rubio et al. (2000) for the 1999 Leonids. An analysis of the Geminid, Lyrid, and Taurid lunar impacts is carried out herein in order to determine the luminous efficiency in the 400-800 nm wavelength range for each shower. Using the luminous efficiency, the kinetic energies and masses of these lunar impactors can be calculated.
Examination of returned solar-max surfaces for impacting orbital debris and meteoroids
NASA Astrophysics Data System (ADS)
Kessler, D. J.; Zook, H. A.; Potter, A. E.; McKay, D. S.; Clanton, U. S.; Warren, J. L.; Watts, L. A.; Schultz, R. A.; Schramm, L. S.; Wentworth, S. J.
1985-11-01
Previous theoretical studies predicted that in certain regions of earth orbit, the man-made earth orbiting debris environment will soon exceed the interplanetary meteoroid environment for sizes smaller than 1 cm. The surfaces returned from the repaired Solar Max Mission (SMM) by STS 41-C on April 12, 1984, offered an excellent opportunity to examine both the debris and meteoroid environments. To date, approximately 0.7 sq. met. of the thermal insulation and 0.05 sq. met of the aluminum louvers have been mapped by optical microscope for crater diameters larger than 40 microns. Craters larger in diameter than about 100 microns found on the initial 75 micron thick Kapton first sheet on the MEB (Main Electronics Box) blanket are actually holes and constitute perforations through that blanket. The following populations have been found to date in impact sites on these blankets: (1) meteoritic material; (2) thermal paint particles; (3) aluminum droplets; and (4) waste particles.
Meteor wake in high frame-rate images--implications for the chemistry of ablated organic compounds
NASA Technical Reports Server (NTRS)
Jenniskens, Peter; Stenbaek-Nielsen, Hans C.
2004-01-01
Extraterrestrial organic matter may have been chemically altered into forms more ameanable for prebiotic chemistry in the wake of a meteor after ablation. We measured the rate of cooling of the plasma in the meteor wake from the intensity decay just behind a meteoroid by freezing its motion in high frame-rate 1000 frames/s video images, with an intensified camera that has a short phosphor decay time. Though the resulting cooling rate was found to be lower than theoretically predicted, our calculations indicated that there would have been insufficient collisions to break apart large organic compounds before most reactive radicals and electrons were lost from the air plasma. Organic molecules delivered from space to the early Earth via meteors might therefore have survived in a chemically altered form. In addition, we discovered that relatively small meteoroids generated far-ultraviolet emission that is absorbed in the immediate environment of the meteoroid, which may chemically alter the atmosphere over a much larger region than previously recognized.
Lunar Meteoroid Impact Observations and the Flux of Kilogram-Size Meteoroids
NASA Technical Reports Server (NTRS)
Suggs, Rob; Cooke, Bill; Koehler, Heather; Moser, Danielle; Suggs, Ron; Swift, Wes
2010-01-01
Meteor showers dominate the environment in this size range and explain the evening/morning flux asymmetry of 1.5:1. With sufficient numbers of impacts, this technique can help determine the population index for some showers. Measured flux of meteoroids in the 100g to kilograms range is consistent with other observations. We have a fruitful observing program underway which has significantly increased the number of lunar impacts observed. Over 200 impacts have been recorded in about 4 years. This analysis reports on the 115 impacts taken under photometric conditions during the first 3 full years of operation. We plan to continue for the foreseeable future as follows: 1) Run detailed model to try explain the concentration near the trailing limb; 2) Build up statistics to better understand the meteor shower environment; 3) Provide support for robotic seismometers and dust missions; and 4) Deploy near-infrared and visible cameras with dichroic beamsplitter to 0.5m telescope in New Mexico.
A comparison of spacecraft penetration hazards due to meteoroids and manmade earth-orbiting objects
NASA Technical Reports Server (NTRS)
Brooks, D. R.
1976-01-01
The ability of a typical double-walled spacecraft structure to protect against penetration by high-velocity incident objects is reviewed. The hazards presented by meteoroids are compared to the current and potential hazards due to manmade orbiting objects. It is shown that the nature of the meteoroid number-mass relationship makes adequate protection for large space facilities a conceptually straightforward structural problem. The present level of manmade orbiting objects (an estimated 10,000 in early 1975) does not pose an unacceptable risk to manned space operations proposed for the near future, but it does produce penetration probabilities in the range of 1-10 percent for a 100-m diameter sphere in orbit for 1,000 days. The number-size distribution of manmade objects is such that adequate protection is difficult to achieve for large permanent space facilities, to the extent that future restrictions on such facilities may result if the growth of orbiting objects continues at its historical rate.
Computational Modeling of Meteor-Generated Ground Pressure Signatures
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.; Brown, Peter G.
2017-01-01
We present a thorough validation of a computational approach to predict infrasonic signatures of centimeter-sized meteoroids. We assume that the energy deposition along the meteor trail is dominated by atmospheric drag and simulate the steady, inviscid flow of air in thermochemical equilibrium to compute the meteoroid's near-body pressure signature. This signature is then propagated through a stratified and windy atmosphere to the ground using a methodology adapted from aircraft sonic-boom analysis. An assessment of the numerical accuracy of the near field and the far field solver is presented. The results show that when the source of the signature is the cylindrical Mach-cone, the simulations closely match the observations. The prediction of the shock rise-time, the zero-peak amplitude of the waveform, and the duration of the positive pressure phase are consistently within 10% of the measurements. Uncertainty in the shape of the meteoroid results in a poorer prediction of the trailing part of the waveform. Overall, our results independently verify energy deposition estimates deduced from optical observations.
NASA Astrophysics Data System (ADS)
Kitazawa, Y.; Matsumoto, H.; Okudaira, O.; Kimoto, Y.; Hanada, T.; Faure, P.; Akahoshi, Y.; Hattori, M.; Karaki, A.; Sakurai, A.; Funakoshi, K.; Yasaka, T.
2013-08-01
The Japan Aerospace Exploration Agency (JAXA) has been conducting R&D into in-situ sensors for measuring micro-meteoroid and small-sized debris (MMSD) since the 1980s. Research into active sensors started with the meteoroid observation experiment conducted using the HITEN (MUSES-A) satellite that ISAS/JAXA launched in 1990. The main purpose behind the start of passive collector research was SOCCER, a late-80s Japan-US mission that was designed to capture cometary dust and then return to the Earth. Although this mission was cancelled, the research outcomes were employed in a JAXA mission for the return of MMSD samples using calibrated aerogel and involving the space shuttle and the International Space Station. Many other important activities have been undertaken as well, and the knowledge they have generated has contributed to JAXA's development of a new type of active dust sensor. This paper reports on the R&D conducted at JAXA into in-situ MMSD measurement sensors.
NASA Astrophysics Data System (ADS)
Grava, C.; Stubbs, T. J.; Glenar, D. A.; Retherford, K. D.; Kaufmann, D. E.
2017-05-01
The Lyman-Alpha Mapping Project (LAMP) UV spectrograph on board the Lunar Reconnaissance Orbiter (LRO) performed a campaign to observe the Moon's nanodust exosphere, evidence for which was provided by the Lunar Atmosphere and Dust Environment Explorer (LADEE) Ultraviolet and Visible Spectrometer (UVS) during the 2014 Quadrantid meteoroid stream. These LADEE/UVS observations were consistent with a nanodust exosphere modulated by meteoroid impacts. LRO performed off-nadir maneuvers around the peak of the 2016 Quadrantids, in order to reproduce, as closely as possible, the active meteoroid environment and observing geometry of LADEE/UVS. We analyzed LAMP spectra to search for sunlight backscattering from nanodust. No brightness enhancement attributable to dust, of any size, was observed. We determine an upper limit for dust column concentration of 105 cm-2 for grains of radius 25 nm, and an upper limit for dust column mass of 10-11 g cm-2, nearly independent of grain size for radii <100 nm.
Examination of returned solar-max surfaces for impacting orbital debris and meteoroids
NASA Technical Reports Server (NTRS)
Kessler, D. J.; Zook, H. A.; Potter, A. E.; Mckay, D. S.; Clanton, U. S.; Warren, J. L.; Watts, L. A.; Schultz, R. A.; Schramm, L. S.; Wentworth, S. J.
1985-01-01
Previous theoretical studies predicted that in certain regions of earth orbit, the man-made earth orbiting debris environment will soon exceed the interplanetary meteoroid environment for sizes smaller than 1 cm. The surfaces returned from the repaired Solar Max Mission (SMM) by STS 41-C on April 12, 1984, offered an excellent opportunity to examine both the debris and meteoroid environments. To date, approximately 0.7 sq. met. of the thermal insulation and 0.05 sq. met of the aluminum louvers have been mapped by optical microscope for crater diameters larger than 40 microns. Craters larger in diameter than about 100 microns found on the initial 75 micron thick Kapton first sheet on the MEB (Main Electronics Box) blanket are actually holes and constitute perforations through that blanket. The following populations have been found to date in impact sites on these blankets: (1) meteoritic material; (2) thermal paint particles; (3) aluminum droplets; and (4) waste particles.
Meteoroid-bumper interactions program
NASA Technical Reports Server (NTRS)
Gough, P. S.
1970-01-01
An investigation has been made of the interaction of meteoroids with shielded structures. The interaction has been simulated by the impact of Lexan cylinders onto lead shields in order to provide the vaporous debris believed to be created by meteoroid impact on a space vehicle. Shock compression data for Lexan was determined. This, in combination with the known shock compression data for the lead shield, has permitted the definition of the initial high pressure states in the impacted projectile and shield. The debris from such impact events has been permitted to interact with aluminum main walls. The walls were chosen to be sufficiently large to be effectively infinite in diameter compared to the loaded area. The thickness of the wall and the spacing from the shield were varied to determine the effect of these parameters. In addition, the effect of having a body of water behind the wall has been assessed. Measurements of the stagnation pressure in the debris cloud have been made and correlated with the response of the main wall.
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W.; Phipps, Claude; Smalley, Larry; Reilly, Jim; Boccis, Dona; Howell, Joe T., Jr. (Technical Monitor)
2002-01-01
Impacting at hypervelocity, an asteroid struck the Earth approximately 65 million years ago in the Yucatan Peninsula area. This triggered the extinction of almost 70% of the species of life on Earth including the dinosaurs. Other impacts prior to this one have caused even greater extinctions. Preventing collisions with the Earth by hypervelocity asteroids, meteoroids, and comets is the most important immediate space challenge facing human civilization. This is the Impact Imperative. We now believe that while there are about 2000 earth orbit crossing rocks greater than 1 kilometer in diameter, there may be as many as 200,000 or more objects in the 100 m size range, Can anything be done about this fundamental existence question facing our civilization? The answer is a resounding yes! By using an intelligent combination of Earth and space based sensors coupled with an infra-structure of high-energy laser stations and other secondary mitigation options, we can deflect inbound asteroids, meteoroids, and comets and prevent them from striking the Earth.
A Search for Meteoroid Lunar Impact Generated Electromagnetic Pulses
NASA Astrophysics Data System (ADS)
Kesaraju, Saiveena; Mathews, John D.; Vierinen, Juha; Perillat, Phil; Meisel, David D.
2016-11-01
Lunar white light flashes associated with meteoroid impacts are now regularly observed using modest optical instrumentation. In this paper, we hypothesize that the developing, optically-dense hot ejecta cloud associated with these hypervelocity impacts also produce an associated complex plasma component that rapidly evolves resulting in a highly-transient electro magnetic pulse (EMP) in the VHF/UHF spectral region. Discovery of the characteristics and event frequency of impact EMPs would prove interesting to meteoroid flux and complex plasma physics studies especially if EMPs from the same event are detected from at least two locations on the Earth with relative delays appropriate to the propagation paths. We describe a prototype observational search, conducted in May 2014, for meteoroid lunar-impact EMPs that was conducted using simultaneous, overlapping-band, UHF radio observations at the Arecibo (AO; Puerto Rico) and Haystack (HO, Massachusetts, USA) Observatories. Monostatic/bistatic lunar radar imaging observations were also performed with HO transmitting and HO/AO receiving to confirm tracking, the net delay, and the pointing/timing ephemeris at both observatories. Signal analysis was performed using time-frequency signal processing techniques. Although, we did not conclusively identify EMP returns, this search detected possible EMPs and we have confirmed the search paradigm and established the sensitivity of the AO-HO system in detecting the hypothesized events. We have also characterized the difficult radio-frequency interference environment surrounding these UHF observations. We discuss the wide range of terrestrial-origin, Moon-bounce signals that were observed which additionally validate the observational technique. Further observations are contemplated.
Spectra and physical properties of Taurid meteoroids
NASA Astrophysics Data System (ADS)
Matlovič, Pavol; Tóth, Juraj; Rudawska, Regina; Kornoš, Leonard
2017-09-01
Taurids are an extensive stream of particles produced by comet 2P/Encke, which can be observed mainly in October and November as a series of meteor showers rich in bright fireballs. Several near-Earth asteroids have also been linked with the meteoroid complex, and recently the orbits of two carbonaceous meteorites were proposed to be related to the stream, raising interesting questions about the origin of the complex and the composition of 2P/Encke. Our aim is to investigate the nature and diversity of Taurid meteoroids by studying their spectral, orbital, and physical properties determined from video meteor observations. Here we analyze 33 Taurid meteor spectra captured during the predicted outburst in November 2015 by stations in Slovakia and Chile, including 14 multi-station observations for which the orbital elements, material strength parameters, dynamic pressures, and mineralogical densities were determined. It was found that while orbits of the 2015 Taurids show similarities with several associated asteroids, the obtained spectral and physical characteristics point towards cometary origin with highly heterogeneous content. Observed spectra exhibited large dispersion of iron content and significant Na intensity in all cases. The determined material strengths are typically cometary in the KB classification, while PE criterion is on average close to values characteristic for carbonaceous bodies. The studied meteoroids were found to break up under low dynamic pressures of 0.02-0.10 MPa, and were characterized by low mineralogical densities of 1.3-2.5 g cm-3. The widest spectral classification of Taurid meteors to date is presented.
Possible Ursid Outburst on December 22, 2000
NASA Technical Reports Server (NTRS)
Jenniskens, Peter; Lyytinen, Esko; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
The Ursid shower has broad Filament-type outbursts around the perihelion passage of parent 8P/Tuttle, but also isolated narrow outbursts at aphelion. We calculated Tuttle's dust trail encounters in the same way as for the Leonid showers. We discovered that it takes 6 centuries to change the orbit enough to bring the meteoroids to Earth's orbit. During that time, the meteoroids and comet separate in mean anomaly by 6 years, thus explaining the unusual aphelion occurrences. We predict enhanced activity on December 22, 2000, at around 7:29 LT.
NASA Technical Reports Server (NTRS)
Oneal, R. L. (Compiler)
1974-01-01
The meteoroid detection experiment has the objective of measuring the population of 10 to the minus 9th power and 10 to the minus 8th power grams mass particles in interplanetary space with emphasis on making these measurements in the Asteroid Belt. The instrument design, which uses the pressurized-cell-penetration detection technique, and the tests involved in obtaining a flight-qualified instrument are described. The successful demonstration of flight-quality penetration detectors to function properly under long-term simulated space environments is also described.
The Flux of Large Meteoroids Observed with Lunar Impact Monitoring
NASA Technical Reports Server (NTRS)
Cooke, W. J.; Suggs, R. M.; Moser, D. E.; Suggs, R. J.
2014-01-01
The flux of large meteoroids is not well determined due to relatively low number statistics, due mainly to the lack of collecting area available to meteor camera systems (10(2)-10(5) km2). Larger collecting areas are needed to provide reasonable statistics for flux calculations. The Moon, with millions of square kilometers of lunar surface, can be used as a detector for observing the population of large meteoroids in the tens of grams to kilogram mass range. This is accomplished by observing the flash of light produced when a meteoroid impacts the lunar surface, converting a portion of its kinetic energy to visible light detectable from Earth. A routine monitoring program at NASA's Marshall Space Flight Center has recorded over 300 impact flashes since early 2006. The program utilizes multiple 0.35 m (14 inch) Schmidt-Cassegrain telescopes, outfitted with video cameras using the 1/2 inch Sony EXview HAD CCDTM chip, to perform simultaneous observations of the earthshine hemisphere of the Moon when the lunar phase is between 0.1 and 0.5. This optical arrangement permits monitoring of approximately 3.8x10(6) km2 of lunar surface. A selection of 126 flashes recorded in 266.88 hours of photometric skies was analyzed, creating the largest and most homogeneous dataset of lunar impact flashes to date. Standard CCD photometric techniques outlined in [1] were applied to the video to determine the luminous energy, kinetic energy, and mass for each impactor, considering a range of luminous efficiencies. The flux to a limiting energy of 2.5x10(-6) kT TNT or 1.05×10(7) J is 1.03×10(-7) km(-2) hr(-1) and the flux to a limiting mass of 30 g is 6.14×10(-10) m(-2) yr(-1). Comparisons made with measurements and models of the meteoroid population indicate that the flux of objects in this size range is slightly lower (but within the error bars) than the power law distribution determined for the near Earth object population by [2].
A seasonal feature in Mercury’s exosphere caused by meteoroids from comet Encke
NASA Astrophysics Data System (ADS)
Christou, Apostolos; Killen, Rosemary M.; Burger, Matthew H.
2015-11-01
The planet Mercury is enveloped in a tenuous atmosphere, the result of a delicate balance between poorly understood sources and sinks (Killen et al, 2007). Meteoroid impacts are a contributing source process (eg Wurz et al, 2010), but their importance compared to other production mechanisms is uncertain.Killen and Hahn (2015) found that seasonal variations in Mercury's calcium exosphere as observed by Mercury Atmospheric, and Surface Composition Spectrometer (MASCS) onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft (Burger et al, 2014) may be attributed to impact vaporization of surface material by the infall of interplanetary dust. However, an additional dust source was required to explain a Ca excess at a True Anomaly Angle (TAA) of 25±5 deg. Killen and Hahn suggested that dust from comet 2P/Encke, crossing Mercury's orbital plane at TAA=45 deg, may be the culprit.We have simulated numerically the stream of meteoroids ejected from Encke in order to identify those particles that impact Mercury at the present epoch and test the Killen and Hahn conjecture. We find that Encke particles evolving solely under the gravity of the major planets and the Sun encounter Mercury at TAA=50-60 deg, well after the peak of the Ca excess emission. This result is independent of the time of ejection. However, the addition of Poynting-Robertson (P-R) drag in our model couples the age and size of the meteoroids to the TAA at encounter, causing smaller, older particles to encounter Mercury progressively earlier in the Hermean year. In particular, mm-sized grains ejected between 10 and 20 kyr ago impact on the nightside hemisphere of Mercury at TAA = 350-30 deg, near the observed peak time of the exospheric feature.During this presentation, we will describe our model results and discuss their implications for the physical mechanism that injects impact-liberated Ca into sunlight as well as the origin and evolution of the Encke stream of meteoroids.Astronomical Research at Armagh Observatory is funded by the Northern Ireland Department of Culture, Arts and Leisure (DCAL).
NASA Astrophysics Data System (ADS)
Povinec, Pavel P.; Laubenstein, Matthias; Jull, A. J. Timothy; FerrièRe, Ludovic; BrandstäTter, Franz; Sýkora, Ivan; Masarik, Jozef; BeåO, Juraj; KováčIk, Andrej; Topa, Dan; Koeberl, Christian
2015-02-01
On February 15, 2013, after the observation of a brilliant fireball and a spectacular airburst over the southern Ural region (Russia), thousands of stones fell and were rapidly recovered, bringing some extremely fresh material for scientific investigations. We undertook a multidisciplinary study of a dozen stones of the Chelyabinsk meteorite, including petrographic and microprobe investigations to unravel intrinsic characteristics of this meteorite. We also study the short and long-lived cosmogenic radionuclides to characterize the initial meteoroid size and exposure age. Petrographic observations, as well as the mineral compositions obtained by electron microprobe analyses, allow us to confirm the classification of the Chelyabinsk meteorite as an LL5 chondrite. The fragments studied, a few of which are impact melt rocks, contain abundant shock melt veins and melt pockets. It is likely that the catastrophic explosion and fragmentation of the Chelyabinsk meteoroid into thousands of stones was in part determined by the initial state of the meteoroid. The radionuclide results obtained show a wide range of concentrations of 14C, 22Na, 26Al, 54Mn, 57Co, 58Co, and 60Co, which indicate that the pre-atmospheric object had a radius >5 m, consistent with other size estimates based on the magnitude of the airburst caused by the atmospheric entry and breakup of the Chelyabinsk meteoroid. Considering the observed 26Al activities of the investigated samples, Monte Carlo simulations, and taking into account the 26Al half-life (0.717 Myr), the cosmic-ray exposure age of the Chelyabinsk meteorite is estimated to be 1.2 ± 0.2 Myr. In contrast to the other radionuclides, 14C showed a very large range only consistent with most samples having been exposed to anthropogenic sources of 14C, which we associate with radioactive contamination of the Chelyabinsk region by past nuclear accidents and waste disposal, which has also been confirmed by elevated levels of anthropogenic 137Cs and primordial 40K in some of the Chelyabinsk fragments.
A Numerical Study of Micrometeoroids Entering Titan's Atmosphere
NASA Technical Reports Server (NTRS)
Templeton, M.; Kress, M. E.
2011-01-01
A study using numerical integration techniques has been performed to analyze the temperature profiles of micrometeors entering the atmosphere of Saturn s moon Titan. Due to Titan's low gravity and dense atmosphere, arriving meteoroids experience a significant cushioning effect compared to those entering the Earth's atmosphere. Temperature profiles are presented as a function of time and altitude for a number of different meteoroid sizes and entry velocities, at an entry angle of 45. Titan's micrometeoroids require several minutes to reach peak heating (ranging from 200 to 1200 K), which occurs at an altitude of about 600 km. Gentle heating may allow for gradual evaporation of volatile components over a wide range of altitudes. Computer simulations have been performed using the Cassini/Huygens atmospheric data for Titan. Keywords micrometeoroid Titan atmosphere 1 Introduction On Earth, incoming micrometeoroids (100 m diameter) are slowed by collisions with air molecules in a relatively compact atmosphere, resulting in extremely rapid deceleration and a short heating pulse, often accompanied by brilliant meteor displays. On Titan, lower gravity leads to an atmospheric scale height that is much larger than on Earth. Thus, deceleration of meteors is less rapid and these particles undergo more gradual heating. This study uses techniques similar to those used for Earth meteoroid studies [1], exchanging Earth s planetary characteristics (e.g., mass and atmospheric profile) for those of Titan. Cassini/Huygens atmospheric data for Titan were obtained from the NASA Planetary Atmospheres Data Node [4]. The objectives of this study were 1) to model atmospheric heating of meteoroids for a range of micrometeor entry velocities for Titan, 2) to determine peak heating temperatures and rates for micrometeoroids entering Titan s atmosphere, and 3) to create a general simulation environment that can be extended to incorporate additional parameters and variables, including different atmospheric, meteoroid and planetary data. The micrometeoroid entry simulations made using Titan atmospheric data assume that, as on Earth, micrometeors are heated by collision with molecules in the atmosphere. Unlike on Earth where heating pulses last a few seconds and reach temperatures sufficient to melt silicates (> 1600 K [1]),
Compositional Evolution of Saturn's Rings Due to Meteoroid Bombardment
NASA Technical Reports Server (NTRS)
Cuzzi, J.; Estrada, P.; Young, Richard E. (Technical Monitor)
1997-01-01
In this paper we address the question of compositional evolution in planetary ring systems subsequent to meteoroid bombardment. The huge surface area to mass ratio of planetary rings ensures that this is an important process, even with current uncertainties on the meteoroid flux. We develop a new model which includes both direct deposition of extrinsic meteoritic "pollutants", and ballistic transport of the increasingly polluted ring material as impact ejecta. Our study includes detailed radiative transfer modeling of ring particle spectral reflectivities based on refractive indices of realistic constituents. Voyager data have shown that the lower optical depth regions in Saturn's rings (the C ring and Cassini Division) have darker and less red particles than the optically thicken A and B rings. These coupled structural-compositional groupings have never been explained; we present and explore the hypothesis that global scale color and compositional differences in the main rings of Saturn arise naturally from extrinsic meteoroid bombardment of a ring system which was initially composed primarily, but not entirely, of water ice. We find that the regional color and albedo differences can be understood if all ring material was initially identical (primarily water ice, based on other data, but colored by tiny amounts of intrinsic reddish, plausibly organic, absorber) and then evolved entirely by addition and mixing of extrinsic, nearly neutrally colored. plausibly carbonaceous material. We further demonstrate that the detailed radial profile of color across the abrupt B ring - C ring boundary can.constrain key unknown parameters in the model. Using new alternates of parameter values, we estimate the duration of the exposure to extrinsic meteoroid flux of this part of the rings, at least, to be on the order of 10(exp 8) years. This conclusion is easily extended by inference to the Cassini Division and its surroundings as well. This geologically young "age" is compatible with timescales estimated elsewhere based on the evolution of ring structure due to ballistic transport, and also with other "short timescales" estimated on the grounds of gravitational torques. However, uncertainty in the flux of interplanetary debris and in the ejects yield may preclude ruling out a ring age as old as the solar system at this time.
Orbital and physical characteristics of meter-scale impactors from airburst observations
NASA Astrophysics Data System (ADS)
Brown, P.; Wiegert, P.; Clark, D.; Tagliaferri, E.
2016-03-01
We have analyzed the orbits and ablation characteristics in the atmosphere of 59 Earth-impacting fireballs, produced by meteoroids 1 m in diameter or larger, described here as meter-scale. Using heights at peak luminosity as a proxy for strength, we determine that there is roughly an order of magnitude spread in strengths of the population of meter-scale impactors at the Earth. We use fireballs producing recovered meteorites and well documented fireballs from ground-based camera networks to calibrate our ablation model interpretation of the observed peak height of luminosity as a function of speed. The orbits and physical strength of these objects are consistent with the majority being asteroidal bodies originating from the inner main asteroid belt. This is in contrast to earlier suggestions by Ceplecha (Ceplecha, Z. [1994]. Astron. Astrophys. 286, 967-970) that the majority of meter-tens of meter sized meteoroids are ;… cometary bodies of the weakest known structure;. We find a lower limit of ∼10-15% of our objects have a possible cometary (Jupiter-Family comet and/or Halley-type comet) origin based on orbital characteristics alone. Only half this number, however, also show evidence for weaker than average structure. Two events, Sumava and USG 20131121, have exceptionally high (relative to the remainder of the population) heights of peak brightness. These are physically most consistent with high microporosity objects, though both were on asteroidal-type orbits. We also find three events, including the Oct 8, 2009 airburst near Sulawesi, Indonesia, which display comparatively low heights of peak brightness, consistent with strong monolithic stones or iron meteoroids. Based on orbital similarity, we find a probable connection among several events in our population with the Taurid meteoroid complex; no other major meteoroid streams show probable linkages to the orbits of our meter-scale population. Our impactors cover almost four orders of magnitude in mass, but no trend in height of peak brightness as a function of mass is evident, suggesting no strong trend in strength with size for meter-scale impactors consistent with the results of Popova et al. (Popova, O.P. et al. [2011]. Meteorit. Planet. Sci. 46, 1525-1550).
The Meteoroid Fluence at Mars Due to Comet C/2013 A1 (Siding Spring)
NASA Technical Reports Server (NTRS)
Moorhead, A.; Wiegert, P.; Blaauw, R.; McCarty, C.; Kingery, A.; Cooke, W.
2014-01-01
Long-period comet C/2013 A1 (Siding Spring) will experience a close encounter with Mars on 2014 Oct 19. A collision between the comet and the planet has been ruled out, but the comet's coma may envelop Mars and its man-made satellites. By the time of the close encounter, five operational spacecraft will be present near Mars. Characterizing the coma is crucial for assessing the risk posed to these satellites by meteoroid impacts. We present an analytic model of cometary comae that describes the spatial and size distributions of cometary dust and meteoroids. This model correctly reproduces, to within an order of magnitude, the number of impacts recorded by Giotto near 1P/Halley [1] and by Stardust near comet 81P/Wild 2 [2]. Applied to Siding Spring, our model predicts a total particle fluence near Mars of 0.02 particles per square meter. In order to determine the degree to which Siding Spring's coma deviates from a sphere, we perform numerical simulations which take into account both gravitational effects and radiative forces. We take the entire dust component of the coma and tail continuum into account by simulating the ejection and evolution of dust particles from comet Siding Spring. The total number of particles simulated is essentially a free parameter and does not provide a check on the total fluence. Instead, these simulations illustrate the degree to which the coma of Siding Spring deviates from the perfect sphere described by our analytic model (see Figure). We conclude that our analytic model sacrifices less than an order of magnitude in accuracy by neglecting particle dynamics and radiation pressure and is thus adequate for order-of-magnitude fluence estimates. Comet properties may change unpredictably and therefore an analytic coma model that enables quick recalculation of the meteoroid fluence is highly desirable. NASA's Meteoroid Environment Office is monitoring comet Siding Spring and taking measurements of cometary brightness and dust production. We will discuss our coma model and nominal fluence taking the latest observations into account.
Sungrazing dust particles against the sporadic meteor background
NASA Astrophysics Data System (ADS)
Golubaev, A. V.
2015-07-01
From the results of the statistical study, the genetic relation between some meteors (from -5 m to +5 m ) of the sporadic background and the comets of the Kreutz, Marsden, and Kracht families has been revealed. The radiants of sporadic meteors are concentrated at the geocentric ecliptic latitudes 7°-10° northward and southward of the ecliptic. The radiants of the sungrazing meteoroids, that were detected on their heliocentric orbits "before" and "after" the perihelion passage, are concentrated in the elongation intervals of approximately 120°-165° and 20°-60° from the Sun, respectively. Each of the specified radiant regions, in its turn, breaks up into two groups. The group of radiants with elongations of about 30° and 155° from the Sun belongs to the Marsden and Kracht cometary families, while the group with 50° and 135°, to the Kreutz cometary family. In the distribution by perihelion distance, a sharp decrease of the number of observed dust particles with q < 0.08 AU was found. This corresponds to the heliocentric distances (20-30 R ⊙), where the production of microscopic dust due to sublimation of cometary nuclei, while approaching the Sun, terminates. The number of sporadic sungrazing meteoroids detected after their passage in the vicinity of the Sun is approximately 20 times smaller than the number of similar particles in the preperihelion part of the trajectory. This result is of special importance for studying the thermodesorption effect of meteoroids (i.e., the change in the content of chemical elements in meteoroids as a function of the perihelion distance).
NASA Astrophysics Data System (ADS)
Guliyev, Ayyub; Nabiyev, Shaig
2017-07-01
This paper presents the results of a statistical analysis of the dynamic parameters of 300 comets that have osculating hyperbolic orbits. It is shown that such comets differ from other comets by their large perihelion distances and by a predominance of retrograde motion. It is shown that the values of i, the inclination of the hyperbolic comets, are in comparative excess over the interval 90-120°. The dominance by q, the perihelion distance, renders it difficult to suggest that the excess hyperbolic velocity of these comets can be the result of physical processes that take place in their nuclei. Aspects of the following working hypothesis, that the hyperbolic excess of parameter e might be formed after comets pass through meteoroid streams, are also studied. To evaluate this hypothesis, the distribution of the orbits of hyperbolic comets relative to the plane of motion of 112 established meteoroid streams are analyzed. The number (N) of orbit nodes for hyperbolic comets with respect to the plane of each stream at various distances is calculated. To determine the degree of redundancy of N, a special computing algorithm was applied that provided the expected value nav as well as the standard deviation σ for the number of cometary nodes at the plane of each stream. A comparative analysis of the N and nav values that take σ into account suggests an excess in 40 stream cases. This implies that the passage of comets through meteoroid streams can lead to an acceleration of the comets' heliocentric velocity.
Algorithms for Lunar Flash Video Search, Measurement, and Archiving
NASA Technical Reports Server (NTRS)
Swift, Wesley; Suggs, Robert; Cooke, Bill
2007-01-01
Lunar meteoroid impact flashes provide a method to estimate the flux of the large meteoroid flux and thus their hazard to spacecraft. Although meteoroid impacts on the Moon have been detected using video methods for over a decade, the difficulty of manually searching hours of video for the rare, extremely brief impact flashes has discouraged the technique's systematic implementation. A prototype has been developed for the purpose of automatically searching lunar video records for impact flashes, eliminating false detections, editing the returned possible flashes, Z and archiving and documenting the results. The theory and organization of the program is discussed with emphasis on the filtering out of several classes of false detections and retaining the brief portions of the raw video necessary for in depth analysis of the flashes detected. Several utilities for measurement, analysis, and location of the flashes on the moon included in the program are demonstrated. Application of the program to a year's worth of lunar observations is discussed along with examples of impact flashes as well as several classes of false impact flashes.
Meteoroid Flux from Lunar Impact Monitoring
NASA Technical Reports Server (NTRS)
Suggs, Robert; Moser, Danielle; Cooke, William; Suggs, Ronnie
2015-01-01
The flux of kilogram-sized meteoroids has been determined from the first 5 years of observations by NASA's Lunar Impact Monitoring Program (Suggs et al. 2014). Telescopic video observations of 126 impact flashes observed during photometric conditions were calibrated and the flux of meteoroids to a limiting mass of 30 g was determined to be 6.14 x 10(exp -10) m(exp -2) yr(exp -1) at the Moon, in agreement with the Grun et al. (1985) model value of 7.5 x 10(exp -10) m(exp -2) yr(exp -1). After accounting for gravitational focusing effects, the flux at the Earth to a limiting impact energy of 3.0 x10(exp -6) kilotons of TNT (1.3 x 10(exp 7) J) was determined to be consistent with the results in Brown et al. (2002). Approximately 62% of the impact flashes were correlated with major meteor showers as cataloged in visual/optical meteor shower databases. These flux measurements, coupled with cratering and ejecta models, can be used to develop impact ejecta engineering environments for use in lunar surface spacecraft design and risk analyses.
Algorithms for Lunar Flash Video Search, Measurement, and Archiving
NASA Technical Reports Server (NTRS)
Swift, Wesley; Suggs, Robert; Cooke, William
2007-01-01
Lunar meteoroid impact flashes provide a method to estimate the flux of the large meteoroid flux and thus their hazard to spacecraft. Although meteoroid impacts on the Moon have been detected using video methods for over a decade, the difficulty of manually searching hours of video for the rare, extremely brief impact flashes has discouraged the technique's systematic implementation. A prototype has been developed for the purpose of automatically searching Lunar video records for impact flashes, eliminating false detections, editing the returned possible flashes, and archiving and documenting the results. The theory and organization of the program is discussed with emphasis on the filtering out of several classes of false detections and retaining the brief portions of the raw video necessary for in depth analysis of the flashes detected. Several utilities for measurement, analysis, and location of the flashes on the moon included in the program are demonstrated. Application of the program to a year's worth of Lunar observations is discussed along with examples of impact flashes as well as several classes of false impact flashes.
Numerical prediction of meteoric infrasound signatures
NASA Astrophysics Data System (ADS)
Nemec, Marian; Aftosmis, Michael J.; Brown, Peter G.
2017-06-01
We present a thorough validation of a computational approach to predict infrasonic signatures of centimeter-sized meteoroids. This is the first direct comparison of computational results with well-calibrated observations that include trajectories, optical masses and ground pressure signatures. We assume that the energy deposition along the meteor trail is dominated by atmospheric drag and simulate a steady, inviscid flow of air in thermochemical equilibrium to compute a near-body pressure signature of the meteoroid. This signature is then propagated through a stratified and windy atmosphere to the ground using a methodology from aircraft sonic-boom analysis. The results show that when the source of the signature is the cylindrical Mach-cone, the simulations closely match the observations. The prediction of the shock rise-time, the zero-peak amplitude of the waveform and the duration of the positive pressure phase are consistently within 10% of the measurements. Uncertainty in primarily the shape of the meteoroid results in a poorer prediction of the trailing part of the waveform. Overall, our results independently verify energy deposition estimates deduced from optical observations.
Thermophysics Issues Relevant to High-Speed Earth Entry of Large Asteroids
NASA Technical Reports Server (NTRS)
Prabhu, D.; Saunders, D.; Agrawal, P.; Allen, G.; Bauschlicher, C.; Brandis, A.; Chen, Y.-K.; Jaffe, R.; Schulz, J.; Stern, E.;
2016-01-01
Physics of atmospheric entry of meteoroids was an active area of research at NASA ARC up to the early 1970s (e.g., the oft-cited work of Baldwin and Sheaffer). However, research in the area seems to have ended with the Apollo program, and any ties with an active international meteor physics community seem to have significantly diminished thereafter. In the decades following the 1970s, the focus of entry physics at NASA ARC has been on improvement of the math models of shock-layer physics (especially in chemical kinetics and radiation) and thermal response of ablative materials used for capsule heatshields. With the overarching objectives of understanding energy deposition into the atmosphere and fragmentation, could these modern analysis tools and processes be applied to the problem of atmospheric entry of meteoroids as well? In the presentation we will explore: (i) the physics of atmospheric entries of meteoroids using our current state-of-the-art tools and processes, (ii) how multiple bodies interact, and (iii) the influence of wall blowing on flow dynamics.
Meteor Entry and Breakup Based on Evolution of NASAs Entry Capsule Design Tools
NASA Technical Reports Server (NTRS)
Prabku, Dinesh K.; Saunders, D.; Stern, E.; Chen, Y.-K.; Allen, G.; Agrawal, P.; Jaffe, R.; White, S.; Tauber, M.; Bauschlicher, C.;
2015-01-01
Physics of atmospheric entry of meteoroids was an active area of research at NASA ARC up to the early 1970s (e.g., the oft-cited work of Baldwin and Sheaffer). However, research in the area seems to have ended with the Apollo program, and any ties with an active international meteor physics community seem to have significantly diminished thereafter. In the decades following the 1970s, the focus of entry physics at NASA ARC has been on improvement of the math models of shock-layer physics (especially in chemical kinetics and radiation) and thermal response of ablative materials used for capsule heatshields. With the overarching objectives of understanding energy deposition into the atmosphere and fragmentation, could these modern analysis tools and processes be applied to the problem of atmospheric entry of meteoroids as well? In the presentation we will explore: (i) the physics of atmospheric entries of meteoroids using our current state-of-the-art tools and processes, (ii) the influence of shape (and shape change) on flow characteristics, and (iii) how multiple bodies interact.
Radiative characteristics of the Chelyabinsk superbolide
NASA Astrophysics Data System (ADS)
Yanagisawa, Masahisa
2015-12-01
On Feb. 15, 2013, a meteoroid with a size of about 19 m plunged into the terrestrial atmosphere at 19 km s-1 and burst at an altitude of about 30 km over the city of Chelyabinsk, Russia. Here we present light curves for the bolide in the red, green, and blue color bands, derived from an analysis of a video that was recorded by a dashboard camera and released on the Internet. Our results demonstrate that the bolide was blue-green in color, which is inconsistent with the Planck spectrum before the meteoroid began to fragment. Fragmentation triggered a flare-up of the bolide and 90% of its radiation energy at optical wavelengths was released within a period of about 2 s after that. During the same period, the brightness ratios among the three bands became consistent with 4000 K blackbody radiation. Based on the peak luminosity, a surface area of several square kilometers would be required for a 4000 K blackbody. It is considered that the radiation source of the bolide was an elongated cloud of vapor and debris produced through severe fragmentation of the meteoroid.
Featured Image: Fireball After a Temporary Capture?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-06-01
This image of a fireball was captured in the Czech Republic by cameras at a digital autonomous observatory in the village of Kunak. This observatory is part of a network of stations known as the European Fireball Network, and this particular meteoroid detection, labeled EN130114, is notable because it has the lowest initial velocity of any natural object ever observed by the network. Led by David Clark (University of Western Ontario), the authors of a recent study speculate that before this meteoroid impacted Earth, it may have been a Temporarily Captured Orbiter (TCO). TCOs are near-Earth objects that make a few orbits of Earth before returning to heliocentric orbits. Only one has ever been observed to date, and though they are thought to make up 0.1% of all meteoroids, EN130114 is the first event ever detected that exhibits conclusive behavior of a TCO. For more information on EN130114 and why TCOs are important to study, check out the paper below!CitationDavid L. Clark et al 2016 AJ 151 135. doi:10.3847/0004-6256/151/6/135
Impact-driven supply of sodium and potassium to the atmosphere of Mercury
NASA Technical Reports Server (NTRS)
Morgan, T. H.; Zook, H. A.; Potter, A. E.
1988-01-01
The Mercury atmosphere is supplied with sodium atoms from both impacting meteoroids and the impacted regolith; the production of vaporized sodium due to such impact varies with the instantaneous distance of Mercury from the sun, in a way that differs from the distance-dependence of those source-and-sink processes driven by solar radiation. Such impact-driven vaporization will yield the Na/K ratio noted in the Mercury atmosphere only if both the meteoroids and the regolith of the planet are deficient in K relative to other solar system objects sampled, other than comets.
NASA Technical Reports Server (NTRS)
Oberst, Jurgen
1989-01-01
The Farmington ordinary L5 chondrite with its uniquely short cosmic-ray exposure age of less than 25,000 years may have been a member of a large meteoroid swarm which was detected by the Apollo seismic network when it encountered the moon in June 1975. The association implies that the parent body of the Farmington meteorite was in an earth-crossing orbit at the time the swarm was formed. This supports the idea that at least some meteorites are derived from the observable population of earth-crossing asteroids.
The 2018 Meteor Shower Activity Forecast for Earth Orbit
NASA Technical Reports Server (NTRS)
Moorhead, Althea; Cooke, Bill; Moser, Danielle
2017-01-01
A number of meteor showers - the Ursids, Perseids, Leonids, eta Aquariids, Orionids, Draconids, and Andromedids - are predicted to exhibit increased rates in 2018. However, no major storms are predicted, and none of these enhanced showers outranks the typical activity of the Arietids, Southern delta Aquariids, and Geminids at small particle sizes. The MSFC stream model1 predicts higher than usual activity for the Ursid meteor shower in December 2018. While we expect an increase in activity, rates will fall short of the shower's historical outbursts in 1945 and 1986 when the zenithal hourly rate (ZHR) exceeded 100. Instead, the expected rate for 2018 is around 70. The Perseids, Leonids, eta Aquariids, and Orionids are expected to show mild enhancements over their baseline activity level in 2018. In the case of the Perseids, we may see an additional peak in activity a few hours before the traditional peak, but we do not expect activity levels as high as those seen in 2016 and 2017. The eta Aquariids and Orionids, which belong to a single meteoroid stream generated by comet 1P/Halley, are thought to have a 12-year activity cycle and are currently increasing in activity from year to year. Finally, we may see minor outbursts of the Draconids and Andromedids in 2018. Both showers have been difficult to model and have produced unexpected outbursts in recent years (the Draconids in 2012 and the Andromedids in 2011 and 2013). The Andromedids may produce two peaks, both of which are listed in Table 2. This document is designed to supplement spacecraft risk assessments that incorporate an annual averaged meteor shower flux (as is the case with all NASA meteoroid models). Results are presented relative to this baseline and are weighted to a constant kinetic energy. Two showers - the Daytime Arietids (ARI) and the Geminids (GEM) - attain flux levels approaching that of the baseline meteoroid environment for 0.1-cm-equivalent meteoroids. This size is the threshold for structural damage. These two showers, along with the Quadrantids (QUA) and Ursids (URS), exceed the baseline flux for 0.3-cm-equivalent particles, which is near the limit for pressure vessel penetration. Please note, however, that meteor shower fluxes drop dramatically with increasing particle size. For example, the Arietids contribute a flux of about 2x10-6 meteoroids m-2 hr-1 in the 0.04-cm-equivalent range, but only 4x10(exp -9) meteoroids sq m/hr for the 0.3-cm-equivalent and larger size regime. Thus, a PNP risk assessment should use the flux and flux enhancements corresponding to the smallest particle capable of penetrating a component, because the flux at this size will be the dominant contributor to the risk.
The Kosice meteorite fall: atmospheric trajectory and fragmentation from videos and radiometers
NASA Astrophysics Data System (ADS)
Borovicka, J.
2012-01-01
On 28 February 2010, 22h24m46s UT, a huge bolide of absolute magnitude -18 appeared over eastern Slovakia. Although this country is covered by the European Fireball Network (EN) and the Slovak Video Network, bad weather prevented direct imaging of the bolide by dedicated meteor cameras. Fortunately, three surveillance video cameras in Hungary recorded, at least partly, the event. These recordings allowed us to reconstruct the trajectory of the bolide and recover the meteorites. In addition, the light curve of the bolide was recorded by several EN camera radiometers, and sonic booms were registered by seismic stations in the region. The meteorites were classified as ordinary chondrites of type H5 (see Meteoritical Bulletin 100). I developed a model of atmospheric meteoroid fragmentation to fit the observed light curve. The model is based on the fact that meteoroid fragmentation leads to a sudden increase of a bolide's brightness, because the total meteoroid surface area increases after the fragmentation. A bright flare is produced if large numbers of small fragments or dust particles are released. I tried to model the whole light curve rigorously by setting up the mass distribution of fragments and/or dust particles released at each fragmentation point. The dust particles were allowed to be released either instantaneously or gradually. The ablation and radiation of individual particles were computed independently, and the summary light curve was computed. The deceleration at the end of the trajectory was taken into account as well. Based on the approximate calibration of the light curve, the initial mass of the meteoroid was estimated to 3500 kg (corresponding to diameter of 1.2 m). The major fragmentation occurred at a height of 39 km. Only few (probably three) large compact fragments of masses 20-100 kg survived this disruption. All of them fragmented again at lower heights below 30 km, producing minor flares on the light curve. In summary, Kosice was a weak meteoroid which fragmented heavily in the atmosphere and produced large numbers of small (under 10 g) meteorites. Nevertheless, some parts of the meteoroid were strong enough, so that a few relatively large (over 1 kg) meteorites exist as well. We were lucky that the three videos and the radiometric curves enabled us to reconstruct the trajectory and atmospheric fragmentation of the Kosice bolide, although the precision is, of course, lower than it would have been from regular meteor cameras. Full details will be published in the paper cited below. I am grateful to many people who collaborated in this work, especially Antal Igaz, Pavel Spurny, Juraj Toth, Pavel Kalenda, Jakub Haloda and Jan Svoren.
Pre-atmospheric parameters and fragment distribution: Case study for the Kosice meteoroid
NASA Astrophysics Data System (ADS)
Gritsevich, M.; Vinnikov, V.; Kuznetsova, D.; Kohout, T.; Pupyrev, Y.; Peltoniemi, J.; Tóth, J.; Britt, D.; Turchak, L.; Virtanen, J.
2014-07-01
We present results on our investigation on the Košice meteorite --- one of the recent falls with a well-derived trajectory and large number of recovered fragments. A fireball appeared over central-eastern Slovakia on February 28, 2010. The bolide reached an absolute magnitude of at least -18, enabling radiometers of the European Fireball Network to track the fireball despite the cloudy and rainy weather. The landing area was successfully computed on the basis of data from the surveillance cameras operating in Hungary and led to a fast meteorite recovery (Borovička et al. 2013). The first reported fragment of the meteorite was located northwest of the city of Košice in eastern Slovakia (Tóth et al. 2014). 218 fragments of the Košice meteorite, with a total mass of 11.285 kg, have been documented with almost 7 kg belonging to the collection of the Comenius University in Bratislava and Astronomical Institute of Slovak Academy of Sciences (Gritsevich et al. 2014). Based on the statistical investigation of the recovered fragments, bimodal Weibull, bimodal Grady, and bimodal lognormal distributions are found to be the most appropriate distributions for describing the Košice fragmentation process. The most probable scenario suggests that the Košice meteoroid, prior to further extensive fragmentation in the lower atmosphere, was initially represented by two independent pieces with cumulative residual masses of approximately 2 kg and 9 kg respectively (Gritsevich et al. 2014). About 1/3 of the recovered Košice fragments were thoroughly studied, including magnetic susceptibility, bulk and grain density measurements reported by Kohout et al. (2014). This analysis revealed that the Košice meteorites are H5 ordinary chondrites that originated from a homogenous parent meteoroid. To estimate the dynamic mass of the main fragment, we studied the first integral of the drag and mass-loss equations, and the geometrical relation along the meteor trajectory in the atmosphere. By matching these equations to the trajectory data obtained by Borovička et al. (2013), we determine key dimensionless parameters responsible for the meteoroid drag and ablation rate along its visual path in the atmosphere. These parameters allow us to estimate the pre-atmospheric mass, which is in good agreement with the photometric estimate derived by Borovička et al. (2013). Throughout this study, we permit changes in meteoroid shape along the trajectory. Additionally, we estimate the initial shape of the Košice meteoroid based on a statistical analysis (Vinnikov et al. 2014). We also conclude that two to three larger Košice fragments of 500-1000g each should exist, but were either not recovered or not reported by illegal meteorite hunters.
NASA Technical Reports Server (NTRS)
Campbell-Brown, M. D.; Braid, D.
2011-01-01
The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to estimate the flux (Love & Brownlee, 1993); here the physical area of the detector is well known, but the masses depend strongly on the unknown velocity distribution. In the same size range, Thomas & Netherway (1989) used the narrow-beam radar at Jindalee to calculate the flux of sporadics. In between these very large and very small sizes, a number of video and photographic observations were reduced by Ceplecha (2001). These fluxes were calculated (details are given in Ceplecha, 1988) taking the Halliday et al. (1984) MORP fireball fluxes, slightly corrected in mass, as a calibration, and adjusting the flux of small cameras to overlap with the number/mass relation from that work.
Orbital and Physical Characteristics of Meter-sized Earth Impactors
NASA Astrophysics Data System (ADS)
Brown, Peter G.; Wiegert, Paul; Clark, David; Tagliaferri, Edward
2015-11-01
We have analysed the orbits and ablation characteristics in the atmosphere of more than 60 earth-impacting meteoroids of one meter in diameter or larger. Using heights at peak luminosity as a proxy for strength, we find that there is roughly an order of magnitude spread in the apparent strength of the population of meter-sized impactors at the Earth. The orbits and physical strength of these objects are consistent with the majority being asteroidal bodies originating from the inner main asteroid belt. We find ~10-15% of our objects have a probable cometary (Jupiter-Family comet and/or Halley-type comet) origin based on orbital characteristics alone. Only half this number, however, show evidence for the expected weaker than average structure compared to asteroidal bodies. Almost all impactors show peak brightness between 20-40 km altitude. Several events have exceptionally high (relative to the remainder of the population) heights of peak brightness. These are physically most consistent with high microporosity objects, though all were on asteroidal-type orbits. We also find three events, including the Oct 8, 2009 airburst near Sulawesi, Indonesia, which display comparatively low heights of peak brightness, consistent with strong monolithic stones or iron meteoroids. Based on orbital similarity, we find a probable connection among several NEOs in our population with the Taurid meteoroid complex. No other major meteoroid streams show linkages with the pre-atmospheric orbits of our meter-class impactors. Our events cover almost four orders of magnitude in mass, but no trend in height of peak brightness is evident, suggesting no strong trend in strength with size for small NEOs, a finding consistent with the results of Popova et al (2011).
Fractal Risk Assessment of ISS Propulsion Module in Meteoroid and Orbital Debris Environments
NASA Technical Reports Server (NTRS)
Mog, Robert A.
2001-01-01
A unique and innovative risk assessment of the International Space Station (ISS) Propulsion Module is conducted using fractal modeling of the Module's response to the meteoroid and orbital debris environments. Both the environment models and structural failure modes due to the resultant hypervelocity impact phenomenology, as well as Module geometry, are investigated for fractal applicability. The fractal risk assessment methodology could produce a greatly simplified alternative to current methodologies, such as BUMPER analyses, while maintaining or increasing the number of complex scenarios that can be assessed. As a minimum, this innovative fractal approach will provide an independent assessment of existing methodologies in a unique way.
Review of amateur meteor research
NASA Astrophysics Data System (ADS)
Rendtel, Jürgen
2017-09-01
Significant amounts of meteor astronomical data are provided by amateurs worldwide, using various methods. This review concentrates on optical data. Long-term meteor shower analyses based on consistent data are possible over decades (Orionids, Geminids, κ-Cygnids) and allow combination with modelling results. Small and weak structures related to individual stream filaments of cometary dust have been analysed in both major and minor showers (Quadrantids, September ε-Perseids), providing feedback to meteoroid ejection and stream evolution processes. Meteoroid orbit determination from video meteor networks contributes to the improvement of the IAU meteor data base. Professional-amateur cooperation also concerns observations and detailed analysis of fireball data, including meteorite ground searches.
NASA Technical Reports Server (NTRS)
Hajdukova, M., Jr.
2011-01-01
Geminid meteoroids, selected from a large set of precisely-reduced meteor orbits from the photographic and radar catalogues of the IAU Meteor Data Center (Lindblad et al. 2003), and from the Japanese TV meteor shower catalogue (SonotaCo 2010), have been analyzed with the aim of determining the orbits distribution in the stream, based on the dispersion of their periods P . The values of the reciprocal semi-major axis 1/a in the stream showed small errors in the velocity measurements. Thus, it was statistically possible to also determine the relation between the observed and the real dispersion of the Geminids.
NASA Technical Reports Server (NTRS)
See, Thomas H.; Warren, Jack L.; Zolensky, Michael E.; Sapp, Clyde A.; Bernhard, Ronald P.; Dardano, Claire B.
1995-01-01
Since the return of the Long Duration Exposure Facility (LDEF) in January, 1990, members of the Meteoroid and Debris Special Investigation Group (M&D SIG) at the Johnson Space Center (JSC) in Houston, Texas have been examining LDEF hardware in an effort to expand the knowledge base regarding the low-Earth orbit (LEO) particulate environment. In addition to the various investigative activities, JSC is also the location of the general Meteoroid & Debris database. This publicly accessible database contains information obtained from the various M&D SIG investigations, as well as limited data obtained by individual LDEF Principal Investigators. LDEF exposed approximately 130 m(exp 2) of surface area to the LEO particulate environment, approximately 15.4 m(exp 2) of which was occupied by structural frame components (i.e., longerons and intercoastals) of the spacecraft. The data reported here was obtained as a result of detailed scans of LDEF intercoastals, 68 of which reside at JSC. The limited amount of data presently available on the A0178 thermal control blankets was reported last year and will not be reiterated here. The data presented here are limited to measurements of crater diameters and their frequency of occurrence (i.e., flux).
Orbits and emission spectra from the 2014 Camelopardalids
NASA Astrophysics Data System (ADS)
Madiedo, José M.; Trigo-Rodríguez, Josep M.; Zamorano, Jaime; Izquierdo, Jaime; de Miguel, Alejandro Sánchez; Ocaña, Francisco; Ortiz, José L.; Espartero, Francisco; Morillas, Lorenzo G.; Cardeñosa, David; Moreno-Ibáñez, Manuel; Urzáiz, Marta
2014-12-01
We have analysed the meteor activity associated with meteoroids of fresh dust trails of Comet 209P/LINEAR, which produced an outburst of the Camelopardalid meteor shower (IAU code #451, CAM) in 2014 May. With this aim, we have employed an array of high-sensitivity CCD video devices and spectrographs deployed at 10 meteor observing stations in Spain in the framework of the Spanish Meteor Network. Additional meteoroid flux data were obtained by means of two forward-scatter radio systems. The observed peak zenithal hourly rate was much lower than expected, of around 20 meteors h-1. Despite of the small meteor flux in the optical range, we have obtained precise atmospheric trajectory, radiant and orbital information for 11 meteor and fireball events associated with this stream. The ablation behaviour and low tensile strength calculated for these particles reveal that Camelopardalid meteoroids are very fragile, mostly pristine aggregates with strength similar to that of the Orionids and the Leonids. The mineral grains seem to be glued together by a volatile phase. We also present and discuss two unique emission spectra produced by two Camelopardalid bright meteors. These suggest a non-chondritic nature for these particles, which exhibit Fe depletion in their composition.
Analysis of identified iron meteoroids: Possible relation with M-type Earth-crossing asteroids?
NASA Astrophysics Data System (ADS)
Revelle, D. O.; Ceplecha, Z.
1994-12-01
We have used two different techniques to analyze the U. S. Prairie Network (PN) fireballs in order to search for possible nickel-iron meteoroids. The first approach used is that of ReVelle and Rajan which is similar to the analysis carried out earlier by Wetherill and ReVelle in a series of papers relating first to the chondrites and later to fireballs of cometary origin. The second approach is a new technique developed by Ceplecha and co-workers that can simultaneously determine the presence and location of gross fragmentation events and also determine an effective ablation parameter during the fireball entry. Using this combined approach we have determined that seven fireballs among the 287 that were analyzed are likely to be iron in composition. Using the method of Ceplecha we have determined that none of these objects experienced any gross fragmentation events during their entry to the atmosphere and most of the meteoroids also exhibited rather large ablation coefficients during entry as well, a feature that is also characteristic of the ReVelle and Rajan approach. For all of these objects for which we currently have available data, we have determined that gross fragmentation events did not occur during the entry.
Dusty plasmas in the lunar exosphere: Effects of meteoroids
NASA Astrophysics Data System (ADS)
Popel, S. I.; Golub', A. P.; Zelenyi, L. M.; Horányi, M.
2018-01-01
A possibility of the formation in the lunar exosphere of dust cloud due to meteoroid impacts onto the lunar surface is studied. The main attention is paid to the high altitudes over the lunar surface including the range of the altitudes between 30 and 110 km where the measurements of dust were performed within the NASA LADEE mission. From the viewpoint of the formation of dust cloud at high altitudes over the Moon, the most important zone formed by the meteoroid impact is the zone of melting of substance. Only the droplets originated from this zone have the speeds between the first and second astronautical velocities (for the Moon). Correspondingly, only such droplets can perform finite movement around the Moon. The liquid droplets harden when rising over the lunar surface. Furthermore, they aquire electric charges due to the action, in particular, of the solar wind electrons and ions, as well as of the solar radiation. Thus dusty plasmas exist in the lunar exosphere with the characteristic number density ≲ 10-2 m-3 of dust particles with the sizes from 300 nm to 1 μm which is in accordance with the results of measurements performed by LADEE.
NASA Astrophysics Data System (ADS)
See, Thomas H.; Warren, Jack L.; Zolensky, Michael E.; Sapp, Clyde A.; Bernhard, Ronald P.; Dardano, Claire B.
1995-02-01
Since the return of the Long Duration Exposure Facility (LDEF) in January, 1990, members of the Meteoroid and Debris Special Investigation Group (M&D SIG) at the Johnson Space Center (JSC) in Houston, Texas have been examining LDEF hardware in an effort to expand the knowledge base regarding the low-Earth orbit (LEO) particulate environment. In addition to the various investigative activities, JSC is also the location of the general Meteoroid & Debris database. This publicly accessible database contains information obtained from the various M&D SIG investigations, as well as limited data obtained by individual LDEF Principal Investigators. LDEF exposed approximately 130 m(exp 2) of surface area to the LEO particulate environment, approximately 15.4 m(exp 2) of which was occupied by structural frame components (i.e., longerons and intercoastals) of the spacecraft. The data reported here was obtained as a result of detailed scans of LDEF intercoastals, 68 of which reside at JSC. The limited amount of data presently available on the A0178 thermal control blankets was reported last year and will not be reiterated here. The data presented here are limited to measurements of crater diameters and their frequency of occurrence (i.e., flux).
Cosmogenic radioisotopes in Gebel Kamil meteorite
NASA Astrophysics Data System (ADS)
Taricco, C.; Colombetti, P.; Bhandari, N.; Sinha, N.; Di Martino, M.; Vivaldo, G.
2012-04-01
Recently a small (45 m in diameter) and very young (< 5,000 years) impact crater was discovered in Egypt (Folco et al., 2010, 2011); it was generated by an iron meteorite named Gebel Kamil (Meteoritical Bulletin No. 98, Weisberg et al. 2010). During systematic searches, many specimens were found in the area surrounding the crater. We present the gamma-activity measurement of a 672 g fragment using a highly selective Ge-NaI spectrometer operating at Monte dei Cappuccini Laboratory (IFSI, INAF) in Torino, Italy. This apparatus allows to reveal the radioisotope activity generated by cosmic rays in the meteoroids as they travel through the interplanetary space before falling on the Earth. From the 26Al activity measurement and its depth production profiles, we infer (i) that the radius of the meteoroid should be about 1 m, constraining to 30-40 ton the range of pre-atmospheric mass previously proposed and (ii) that the fragment should have been located deeply inside the meteoroid, at a depth > 0.7 m. The 44Ti activity is under the detection threshold of the apparatus; using the depth production profiles of this radioisotope and its half-life T1/2 = 59.2 y, we deduce an upper limit to the date of fall.
The Rate of Dielectric Breakdown Weathering of Lunar Regolith in Permanently Shadowed Regions
NASA Technical Reports Server (NTRS)
Jordan, A. P.; Stubbs, T. J.; Wilson, J. K.; Schwadron, N. A.; Spence, H. E.
2016-01-01
Large solar energetic particle events may cause dielectric breakdown in the upper 1 mm of regolith in permanently shadowed regions (PSRs). We estimate how the resulting breakdown weathering compares to meteoroid impact weathering. Although the SEP event rates measured by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO) are too low for breakdown to have significantly affected the regolith over the duration of the LRO mission, regolith gardened by meteoroid impacts has been exposed to SEPs for approx.10(exp 6 yr. Therefore, we estimate that breakdown weathering's production rate of vapor and melt in the coldest PSRs is up to 1.8-3. 5 ×10(exp -7) kg/sq m/yr, which is comparable to that produced by meteoroid impacts. Thus, in PSRs, up to 10-25% of the regolith may have been melted or vaporized by dielectric breakdown. Breakdown weathering could also be consistent with observations of the increased porosity ("fairy castles") of PSR regolith. We also show that it is con- ceivable that breakdown-weathered material is present in Apollo soil samples. Consequently, breakdown weathering could be an important process within PSRs, and it warrants further investigation.
Duplication and analysis of meteoroid damage on LDEF and advanced spacecraft materials
NASA Technical Reports Server (NTRS)
Hill, David C.; Rose, M. Frank
1995-01-01
The analysis of exposed surfaces on LDEF since its retrieval in 1990 has revealed a wide range of meteoroid and debris (M&D) impact features in the sub-micron to millimeter size range, ranging from quasi-infinite target cratering in LDEF metallic structural members (e.g. inter-costals, tray clamps, etc.) to non-marginal perforations in metallic experimental surfaces (e.g. thin foil detectors, etc.). Approximately 34,000 impact features are estimated to exist on the exposed surfaces of LDEF. The vast majority of impact craters in metal substrates exhibit circular footprints, with approximately 50 percent retaining impactor residues in varying states of shock processing. The fundamental goals of this project were to duplicate and analyze meteoroid impact damage on spacecraft metallic materials with a view to quantifying the residue retention and oblique impact morphology characteristics. Using the hypervelocity impact test facility established at Auburn University a series of impact tests (normal and oblique incidence) were executed producing consistently high (11-12 km/s) peak impact velocities, the results of which were subsequently analyzed using Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDXS) facilities at Auburn University.
NASA Astrophysics Data System (ADS)
Kolomiyets, Svitlana V.; Voloshchuk, Yuri I.; Kashcheyev, Boris L.; Slipchenko, Nikolay I.
2005-01-01
The Scientific Educational Center of Radioengineering of the Kharkiv National University of Radioelectronics (KHNURE:
NASA Astrophysics Data System (ADS)
Kolomiyets, Svitlana V.; Voloshchuk, Yuri I.; Kashcheyev, Boris L.; Slipchenko, Nikolay I.
The Scientific Educational Center of Radioengineering of the Kharkiv National University of Radioelectronics (KHNURE:
The rate of dielectric breakdown weathering of lunar regolith in permanently shadowed regions
NASA Astrophysics Data System (ADS)
Jordan, A. P.; Stubbs, T. J.; Wilson, J. K.; Schwadron, N. A.; Spence, H. E.
2017-02-01
Large solar energetic particle events may cause dielectric breakdown in the upper 1 mm of regolith in permanently shadowed regions (PSRs). We estimate how the resulting breakdown weathering compares to meteoroid impact weathering. Although the SEP event rates measured by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO) are too low for breakdown to have significantly affected the regolith over the duration of the LRO mission, regolith gardened by meteoroid impacts has been exposed to SEPs for ∼106 yr. Therefore, we estimate that breakdown weathering's production rate of vapor and melt in the coldest PSRs is up to 1.8 - 3.5 ×10-7 kg m-2 yr-1 , which is comparable to that produced by meteoroid impacts. Thus, in PSRs, up to 10-25% of the regolith may have been melted or vaporized by dielectric breakdown. Breakdown weathering could also be consistent with observations of the increased porosity ("fairy castles") of PSR regolith. We also show that it is conceivable that breakdown-weathered material is present in Apollo soil samples. Consequently, breakdown weathering could be an important process within PSRs, and it warrants further investigation.
A Seasonal Feature in Mercury's Exosphere Caused by Meteoroids from Comet Encke
NASA Astrophysics Data System (ADS)
Burger, M. H.; Christou, A.; Killen, R. M.
2015-12-01
The planet Mercury is enveloped in a tenuous atmosphere, the result of a delicate balance between poorly understood sources and sinks (Killen et al, 2007). Meteoroid impacts are a contributing source process (eg Wurz et al, 2010), but their importance compared to other production mechanisms is uncertain. Killen and Hahn (2015) found that seasonal variations in Mercury's calcium exosphere as observed by the MASCS spectrometer onboard the MESSENGER spacecraft (Burger et al, 2014) may be due to impact vaporization of surface material by the infall of interplanetary dust. However, an additional dust source was required to explain a Ca excess at a True Anomaly Angle (TAA) of 25±5 deg. Killen and Hahn suggested that dust from comet 2P/Encke, crossing Mercury's orbital plane at TAA=45 deg, may be the culprit. We have simulated numerically the stream of meteoroids ejected from Encke to test the Killen and Hahn conjecture. We find that Encke particles evolving solely under the gravity of the major planets and the Sun encounter Mercury at TAA=50-60 deg, well after the peak of the Ca excess emission. However, the addition of Poynting-Robertson (P-R) drag in our model couples the age and size of the meteoroids to the TAA at encounter, causing smaller, older particles to encounter Mercury progressively earlier in the Hermean year. In particular, mm-sized grains ejected between 10 and 20 kyr ago impact on the nightside hemisphere of Mercury at TAA = 350-30 deg, near the observed peak time of the exospheric feature. During this presentation, we will describe our model results and discuss their implications for the physical mechanism that injects impact-liberated Ca into sunlight as well as the origin and evolution of the Encke stream of meteoroids. Astronomical research at the Armagh Observatory is funded by the Northern Ireland Department of Culture, Arts and Leisure (DCAL). RMK was supported by NASA Grant NNX07AR78G-S01 as a Participating Scientist on the NASA MESSENGER mission to Mercury and by STROFIO, a NASA Mission of Opportunity on the BepiColombo mission. AAC acknowledge the SFI/HEA Irish Centre for High-End Computing (ICHEC) as well as the Dublin Institute for Advanced Studies (DIAS) for the provision of computational facilities and support.
NASA Astrophysics Data System (ADS)
Popova, O.; Jenniskens, P.; Shuvalov, V.; Emel'yanenko, V.; Rybnov, Y.; Kharlamov, V.; Kartashova, A.; Biryukov, E.; Khaibrakhmanov, S.
2014-07-01
A review is given about what was learned about the 0.5-Mt Chelyabinsk airburst of 15 February 2013 by field studies, the analysis of recovered meteorites, and numerical models of meteoroid fragmentation and airburst propagation. Previous events with comparable or larger energy in recent times include only the 0.5-Mt -sized 3 August 1963 meteor over the south Atlantic, for which only an infrasound signal was recorded, and the famous Tunguska impact of 1908. Estimates of the initial kinetic energy of the Tunguska impact range from 3 to 50 Mt, due to the lack of good observations at the time. The Chelyabinsk event is much better documented than both, and provides a unique opportunity to calibrate the different approaches used to model meteoroid entry and calculate the damaging effects of a shock wave from a large meteoroid impact. A better understanding of what happened might help future impact hazard mitigation efforts by calibrating models of what might happen under somewhat different circumstances. The initial kinetic energy is estimated from infrasonic signals and the fireball's lightcurve, as well as the extent of the glass damage on the ground. Analysis of video observations of the fireball and the shadow movements provided an impact trajectory and a record of the meteor lightcurve, which describes how that energy was deposited in the atmosphere. Ablation and fragmentation scenarios determine the success of attempts to reproduce the observed meteor lightcurve and deceleration profile by numerical modeling. There was almost no deceleration until peak brightness. Meteoroid fragmentation occurred in different forms, some part of the initial mass broke in well separated fragments, the surviving fragments falling on the ground as meteorites. The specific conditions during energy deposition determined the fraction of surviving mass. The extent of the glass damage was mapped by visiting over 50 villages in the area. A number of numerical simulations were conducted that attempted a more realistic release of energy along the trajectory and these results were compared with observations of blast wave arrival times and the extent of the glass damage. The shape of the damaged area could be explained from the fact that the energy was deposited over a range of altitudes. The study of the recovered meteorites provided insight into why the Chelyabinsk meteoroid broke at a relatively high altitude. Its material properties were determined by events that may date back to the Earth-Moon impact event.
NASA Astrophysics Data System (ADS)
Martin, A. M.; Righter, K.; Treiman, A. H.
2012-05-01
Calcite CaCO3 and anhydrite CaSO4 are two sedimentary components or alteration products of basalts on the Earth, Venus, and Mars. The fate of anhydrite-, calcite-bearing crust during a meteoroid impact must be addressed in order to evaluate: (1) the potential S- and C-gas release to the atmosphere, (2) the formation of S- and C-rich melts, and (3) the crystallization of S- and C-rich minerals which may be recognized by spectral analyses of planetary surfaces. We performed piston-cylinder experiments at 1 GPa, between 1200 and 1750 °C, on a mixture of 70 wt.% tholeiitic basalt + 15 wt.% anhydrite + 15 wt.% calcite. Up to ~ 1440 °C, an ultracalcic (CaO > 19.8 wt.%; CaO/Al2O3 > 1 wt.%) picrobasaltic (SiO2 ~ 39-43 wt.%; Na2O + K2O < 2 wt.%) melt containing up to 5.7 wt.% SO3 and up to 5.1 wt.% CO2 + H2O (calculated by difference) is present in equilibrium with fassaitic clinopyroxene, anhydrite, scapolite, chromian spinel and a gas composed mainly of CO and, occasionally, aliphatic thiols like CH3(CH2)3SH. Hydrogen was incorporated either by contact between the starting material and air or by diffusion through the capsule during the experiments. Above ~ 1440 °C, a CaO-rich (~ 35 wt.%) sulfate-carbonate (SC) melt which contains 41-47 wt.% SO3, 7-12 wt.% CO2 + H2O and a few percent of Na2O, forms in equilibrium with the picrobasaltic melt. This study shows that a meteoroid impact onto an anhydrite- and calcite-bearing basaltic crust is likely to release CO gas to the atmosphere, while S is trapped in solid or liquid phases. Under hydrous conditions, however, the S/C in the gas may increase. The importance of the temperature parameter on the impact phase relations is also demonstrated. In particular, SC melt may form by meteoroid impact, and flow rapidly on a planetary surface. Physical modeling must therefore be combined with high P-high T phase diagrams of complex assemblages similar to planetary lithologies in order to evaluate the effects of a meteoroid impact.
NASA Astrophysics Data System (ADS)
Ocaña, Francisco
2017-05-01
PhD Thesis defended the 5th June 2017. Universidad Complutense de Madrid.This dissertation undertakes the research of the interplanetary matter near the Earth using two different observational approaches.The first one is based on the detection of the sunlight reflected by the bodies. The detection and characterisation of these nearby population require networks of medium-sized telescopes to survey and track them. We design a robotic system (the TBT telescopes) for the European Space Agency as a prototype for a future network. The first unit is already installed in Spain and we present the results of the commissioning. Additionally we evaluate the expected performance of such an instrument using a simulation with a synthetic population. We consider that the system designed is a powerful instrument for nearby asteroid discovery and tracking. It is based on commercial components, and therefore ready for a scalable implementation in a global network.Meanwhile the bodies smaller than asteroids are observed using the atmosphere as a detector. When these particles collide with the atmospheric molecules they are heated, ablated, sublimated, and finally light is emitted by these hot vapours, what we call meteors. We conduct the investigation of these meteors to study the meteoroids. In particular we address two different topics: On one hand we explore the size/mass frequency distribution of meteoroids using flux determination when the collide into the atmosphere. We develop a method to determine this flux using video observations of meteors and analyse the properties of meteors as an optical proxy to meteoroids in order to maximise the detection. It yields three ground-based observational solutions that we transform into instrumental designs. First we design and develop a meteor all-sky detection station for Observatorio UCM and use the Draconids 2011 campaign as a showcase for the flux determination, with successful results. Then we investigate the observation of meteors with instruments in stratospheric balloons, overcoming troposphere handicaps like weather or extinction. On the other hand we design a filter set for narrow-band photometry for meteoroid characterisation, equivalent to low-R spectroscopy. We reproduce the classification of meteors using synthetic photometry over a spectra catalogue. We find the V-R colour to have a significant dependence to meteor speed and meteoroid composition, what implies a significant detection bias for unfiltered or broadband instruments.
NASA Astrophysics Data System (ADS)
Ocaña, Francisco
2017-05-01
PhD Thesis defended the 5th June 2017. Universidad Complutense de Madrid.This dissertation undertakes the research of the interplanetary matter near the Earth using two different observational approaches.The first one is based on the detection of the sunlight reflected by the bodies. The detection and characterisation of these nearby population require networks of medium-sized telescopes to survey and track them. We design a robotic system (the TBT telescopes) for the European Space Agency as a prototype for a future network. The first unit is already installed in Spain and we present the results of the commissioning. Additionally we evaluate the expected performance of such an instrument using a simulation with a synthetic population. We consider that the system designed is a powerful instrument for nearby asteroid discovery and tracking. It is based on commercial components, and therefore ready for a scalable implementation in a global network.Meanwhile the bodies smaller than asteroids are observed using the atmosphere as a detector. When these particles collide with the atmospheric molecules they are heated, ablated, sublimated, and finally light is emitted by these hot vapours, what we call meteors. We conduct the investigation of these meteors to study the meteoroids. In particular we address two different topics: On one hand we explore the size/mass frequency distribution of meteoroids using flux determination when the collide into the atmosphere. We develop a method to determine this flux using video observations of meteors and analyse the properties of meteors as an optical proxy to meteoroids in order to maximise the detection. It yields three ground-based observational solutions that we transform into instrumental designs. First we design and develop a meteor all-sky detection station for Observatorio UCM and use the Draconids 2011 campaign as a showcase for the flux determination, with successful results. Then we investigate the observation of meteors with instruments in stratospheric balloons, overcoming troposphere handicaps like weather or extinction. On the other hand we design a filter set for narrow-band photometry for meteoroid characterisation, equivalent to low-R spectroscopy. We reproduce the classification of meteors using synthetic photometry over a spectra catalogue. We find the V-R colour to have a significant dependence to meteor speed and meteoroid composition, what implies a significant detection bias for unfiltered or broadband instruments.
Near Earth asteroids associated with the Sigma-Capricornids meteoroid stream
NASA Astrophysics Data System (ADS)
Gulchekhra, Kokhirova; Pulat, Babadzhanov; Umed, Khamroev
The Near Earth Asteroids (NEAs) 2008BO16, 2011EC41, and 2013CT36 (http://newton.dm.\\unipi.it/neodys, 2013) have very similar orbits according to the D_{SH} criterion of Southworth, Hawkins (1963). Additionally, their orbits are classed as comet-like by the Tisserand invariant values (Kresak 1982; Kosai 1992). The orbital evolution investigation shows, that during one cycle of variations of the argument of perihelion omega, the asteroids cross the Earth’s orbit four times. Consequently, a developed meteoroid stream, possible associated with them, might produce four meteor showers (Babadzhanov, Obrubov 1992). Theoretical parameters of the predicted showers were calculated and identified with the observable nighttime sigma-Capricornids (Sekanina 1973; Jenniskens 2006) and chi-Sagittarids (Sekanina 1976), and daytime chi-Capricornids (Sekanina 1976) and Capricornids-Sagittarids (Sekanina 1973) meteor showers. The similar and comet-like orbits and association with the meteoroid stream producing four active showers are strong indications that these asteroids have a common cometary origin. Earlier the NEAs (2101) Adonis and 1995CS, which additionally is potentially hazardous asteroid (PHA), were recognized as dormant comets because of their link with the same meteoroid stream (Babadzhanov 2003). So, a conclusion was made, that either the considered NEAs are large sized splinters of the Adonis, or all five objects are fragments of a larger comet that was the parent body of the sigma-Capricornids meteoroid stream, and whose break-up occurred several tens of thousands years ago. During 2010-2011 years three fireballs were photographed by the Tajikistan fireball network (Babadzhanov, Kokhirova 2009), belonging to the sigma-Capricornids meteor shower. Taking into account the observations else six fireballs of this shower in the Canada and USA (Halliday et al. 1996; McCrosky et al. 1978), the mean radiant coordinates, the period of activity, as well as the mean daily radiant drift of the sigma-Capricornids were determined. Further to the PE criterion (Ceplecha, McCrosky 1976), the values of bulk density of the nine fireball producing meteoroids are in the range 0.2-3.5 g cm(-3) that suggests a non-homogeneous compound of the comet-progenitor of the sigma-Capricornids fireball shower. size{ References Babadzhanov, P.B., 2003, A&A,397, 319 Babadzhanov, P.B., Kokhirova, G.I., 2009, Izv. Ak. Nauk Resp. Taj.,2(135),46 Babadzhanov, P.B., Obrubov, Yu.V., 1992, Cel. Mech.& Dyn. Astron., v.54, p.111 Ceplecha, Z., McCrosky, R.E.J., 1976, J. Geophys. Res., 81, 6257 Halliday, I., Griffin, A.A., Blackwell, A.T., 1996, Met.& Planet. Sci., 31, 185 Jenniskens, P., 2006, Meteor showers and their parent comets, New- York: Cambridge Univ. Press, p. 790 Kosai, H., 1992, Cel. Mech. & Dyn. Astron., 54, 237 Kresak, L., 1982, BAC, 33, 104 McCrosky, R.E., Shao, C.Y., Posen, A., 1978, Meteoritika, 37, 44 Sekanina Z., 1973, Icarus, 18, 253 Sekanina Z., 1976, Icarus, 27, 265 Southworth, R.B., Hawkins, G.S., 1963, Smith. Cont. Aph. 7, 261}
NASA Astrophysics Data System (ADS)
Kitazawa, Yukihito; Matsumoto, Haruhisa; Okudaira, Osamu; Kimoto, Yugo; Hanada, Toshiya; Akahoshi, Yasuhiro; Pauline, Faure; Sakurai, Akira; Funakoshi, Kunihiro; Yasaka, Testuo
2015-04-01
The history of Japanese R&D into in-situ sensors for micro-meteoroid and orbital debris (MMOD) measurements is neither particularly long nor short. Research into active sensors started for the meteoroid observation experiment on the HITEN (MUSES-A) satellite of ISAS/JAXA launched in 1990, which had MDC (Munich Dust Counter) on-board sensors for micro meteoroid measurement. This was a collaboration between Technische Universität München and ISAS/JAXA. The main purpose behind the start of passive sensor research was SOCCOR, a late 80's Japan-US mission that planned to capture cometary dust and return to the Earth. Although this mission was canceled, the research outcomes were employed in a JAXA micro debris sample return mission using calibrated aerogel involving the Space Shuttle and the International Space Station. There have been many other important activities apart from the above, and the knowledge generated from them has contributed to JAXA's development of a new type of active dust sensor. JAXA and its partners have been developing a simple in-situ active dust sensor of a new type to detect dust particles ranging from a hundred micrometers to several millimeters. The distribution and flux of the debris in the size range are not well understood and is difficult to measure using ground observations. However, it is important that the risk caused by such debris is assessed. In-situ measurement of debris in this size range is useful for 1) verifying meteoroid and debris environment models, 2) verifying meteoroid and debris environment evolution models, and 3) the real time detection of explosions, collisions and other unexpected orbital events. Multitudes of thin, conductive copper strips are formed at a fine pitch of 100 um on a film 12.5 um thick of nonconductive polyimide. An MMOD particle impact is detected when one or more strips are severed by being perforated by such an impact. This sensor is simple to produce and use and requires almost no calibration as it is essentially a digital system. Based on this sensor technology, the Kyushu Institute of Technology (Kyutech) has designed and developed an educational version of the sensor, which is currently on board the nano-satellite Horyu-II, which was built at Kyutech and launched on May 18, 2012 by JAXA. Although the sensor has a very small sensing area, sensor data were nonetheless successfully received. Moreover, a laboratory version of the sensor fitted on QSAT-EOS ("Tsukushi"), a small satellite, was be launched in November 2014. This version was developed and manufactured by Japan's QPS Institute to evaluate the sensor's capability regarding hypervelocity impact experiments at JAXA. JAXA's flight version, to be employed on satellites and/or the ISS, will be ready soon and a flight demonstration will be conducted on KOUNOTORI (HTV) in 2015. This paper reports on the R&D into in-situ measurement MMOD sensors at JAXA.
NASA Astrophysics Data System (ADS)
Pokorný, Petr; Sarantos, Menelaos; Janches, Diego
2017-06-01
Combining dynamical models of dust from Jupiter-family comets and Halley-type comets, we demonstrate that the seasonal variation of the dust/meteoroid environment at Mercury is responsible for producing the dawn-dusk asymmetry in Mercury’s exosphere observed by the MESSENGER spacecraft. Our latest models, calibrated recently from ground-based and space-borne measurements, provide unprecedented statistics that enable us to study the longitudinal and latitudinal distribution of meteoroids impacting Mercury’s surface. We predict that the micrometeoroid impact vaporization source is expected to undergo significant motion on Mercury’s surface toward the nightside during Mercury’s approach to aphelion and toward the dayside when the planet is approaching the Sun.
The Meteoroid Fluence at Mars Due to Comet Siding Spring
NASA Technical Reports Server (NTRS)
Moorhead, Althea V.
2014-01-01
Long-period comet C/2013 A1 (Siding Spring) is headed for a close encounter with Mars on 2014 Oct 19. A collision between the comet and the planet has been ruled out, but the comets coma may envelop Mars and its man-made satellites. We present an analytic model of the dust component of cometary comae that describes the spatial distribution of cometary dust and meteoroids and their size distribution. If the coma reaches Mars, we estimate a total incident particle fluence on the planet and its satellites of 0.01 particles per square meter. We compare our model with numerical simulations, data from past comet missions, and recent Siding Spring observations.
Energy release estimation for fragmenting meteoroid
NASA Astrophysics Data System (ADS)
Egorova, L. A.; Lokhin, V. V.
2018-05-01
It is known that for the adequate interpretation of fireball observations it is necessary to take into account its fragmentation in the Earth's atmosphere. Various models for large cosmic body destruction in the atmosphere are known. Presented work continues our previous research on the fragmentation of fireballs. Proposing a model for the destruction of a fireball we also submit a model for the transition of its kinetic energy to thermal one. The meteoroid destruction under consideration is similar to the destruction of a solid body during an explosion. The kinetic energy of the moving particles of the crashing meteoric body transform into the thermal energy of the gas volume in which their motion occurs.
Goulds Belt, Interstellar Clouds, and the Eocene Oligocene Helium-3 Enhancement
NASA Technical Reports Server (NTRS)
Rubincam, David Parry
2015-01-01
Drag from hydrogen in the interstellar cloud which formed Gould's Belt may have sent interplanetary dust particle (IDPs) and small meteoroids with embedded helium to the Earth, perhaps explaining part the helium-3 flux increase seen in the sedimentary record near the Eocene-Oligocene transition. Assuming the Solar System passed through part of the cloud, IDPs in the inner Solar System may have been dragged to Earth, while dust and small meteoroids in the asteroid belt up to centimeter size may have been dragged to the resonances, where their orbital eccentricities were pumped up into Earth-crossing orbits; however, this hypotheses does not explain the Popigai and Chesapeake Bay impacts.
NASA Technical Reports Server (NTRS)
Pokorny, Petr; Sarantos, Menelaos; Janches, Diego
2017-01-01
Combining dynamical models of dust from Jupiter-family comets and Halley-type comets, we demonstrate that the seasonal variation of the dust/meteoroid environment at Mercury is responsible for producing the dawn-dusk asymmetry in Mercury's exosphere observed by the MESSENGER spacecraft. Our latest models, calibrated recently from ground-based and space-borne measurements, provide unprecedented statistics that enable us to study the longitudinal and latitudinal distribution of meteoroids impacting Mercury's surface. We predict that the micrometeoroid impact vaporization source is expected to undergo significant motion on Mercury's surface toward the nightside during Mercury's approach to aphelion and toward the dayside when the planet is approaching the Sun.
Thermal Ablation Modeling for Silicate Materials
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq
2016-01-01
A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.
Meteoroid and technogenic particle impact on spacecraft solar panels
NASA Astrophysics Data System (ADS)
Nadiradze, A. B.; Kalaev, M. P.; Semkin, N. D.
2016-09-01
This paper presents calculated models and the results of estimates of meteoroid and technogenic particle impact on spacecraft solar panels. It is shown that optical losses resulting from the formation of microcraters on the surface of protective glasses of semiconductor photoconverters (PC) are negligible (less than 0.01%). Significantly greater losses can occur as a result of shunting the PC p-n junction. In high and medium orbits, these losses are 0.1-0.2%/year for the glass thickness of 150 μm and the area of one PC of 30 cm2. Decreasing the glass thickness up to 100 μm can lead to increasing power losses up to 0.6%/year.
The Interstellar Gas Dust Streams and Seeds of Life
NASA Astrophysics Data System (ADS)
Oleg, Khavroshkin; Vladislav, Tsyplakov
Gas dust Streams from Double Stars & Lunar Seismicity. The time series of seismic events were generated as follows: on the ordinate axis the peak amplitudes of events in standard units, on abscissa axis - seismogram durations of the same moonquakes and subsequent time intervals between them were used. Spectrum of the series disclosed time picks on hidden cosmological periodicities of lunar seismicity. A part of results (picks) presents orbital periods of double stars nearest to the Solar system. The explanation of that results is existing gas-dust streams from binary stars systems and interacting of it with lunar surface. Information content of the Nakamura`s Catalog of moonquakes is very rich: from solar-earth tides to clustering among the meteoroid streams [1, 2]. The histograms from meteoroid impacts seismic data revealed the seismic wave responses of the Moon to solar oscillations and the action on the lunar surface by dust-gas plasma of meteoroid streams [3]. The time series of seismic events were generated as follows: on an axis of ordinates - the peak amplitudes of events in standard units, on an abscissa - seismogram durations of the same moonquakes and subsequent time intervals between them were put aside [4]. Spectrum of the series of meteoroid streams seismicity disclosed time picks on orbital periods some planets and their satellites and solar oscillations [4, 5]. The research of peculiarities of histogram envelopes [3] and comparative common analysis solar bursts data and mass meteoroid distribution are confirmed [3, 4] and revealed Forbush`s effect for gas-dust plasma [6]. Hidden astrophysical periodicities of lunar seismicity were obtained early from an analysis of time series [7] which were similarity to series [4]. The path of results of [7] is presented in the Table where picks presents orbital periods of double stars nearest to the Solar system. Hypothesis for explanation of the Table results is existing gas-dust streams from binary stars near systems solar system and interacting with lunar surface. Characteristic of binary stars systems and picked out periods of lunar seismicity are publish. Genesis of Life. If the solar system is reached by the gas-dust streams from binary stars, then all bodes in space have particles of star dust on their surfaces and/or atmospheres. Solar system has made 8-10 revolutions around galactic center and thus captured dust from many thousands stars. As these stars caught in turn dust particles from other stars too then probably our solar system has mainly dust samples from all objects of our galaxy. The age of galaxy and old stars is approximately more than15 billion years and that of the Earth is only 4, 5 Gyr. Genesis of Life for the Earth has not more than 3 billion years. Thus comparative analysis of simple balance of these times shows that the genesis of Life for Earth is the result of galactic processes/objects and not of the solar system of course. Peculiarity of Genesis. After formation of the solar system all old and new captured dust particles are first accumulated in the Oort cloud and then they are carried by comets to planets. The modern state of the Earth exists for more than 3 billion years, so possibilities for appearing Life were always. These processes had happened a few times during this period of the Earth state. The sizes of the universe and galaxies at t0 < 1 billion years could be much less than modern estimates (for example, up to 15 times in diameter), that implies the existence of a common gas-dust exchange. The density of physical fields and radiations at the moment τ0 was many orders of magnitude higher than the density existing now. Disintegration of neutron substance and nucleus of heavy unstable elements have caused constantly existing streams of left polarized electrons which have determined chirality’s asymmetry of original organic molecules and thus the hilarity of the existing biological world. Some types of radiations functionally could replace enzymes during formation of self-reproducing molecular structures. Man is used only 10 % of the genetic information. It indicates the common total surplus of a genetic material of biosphere of the Earth. Probably, at the moment t0 in unique conditions and with sufficient time for creation the universal galactic gene was created which different elements are capable to create biospheres on planets with the widest set of external conditions and for various stages of development of everyone. If the universal uniform galactic genome exists, this universality will appear as redundancy. The universal model of the gene logically contacts the concept of a prediction and designer, hence, the model of occurrence of life and the Creator is logically more proved. Gas - Dust Streams and Safety of Life Seeds. General rule in this case plays by Gas - Dust Structure (plasma crystals). Seeds of life & Epidemic on the Earth. Discovery existence of strong correlation between appearance comets which fly beside Earth and meteoroids impacts on day surface Earth with people epidemics. Cosmonaut Serebrov dearth and gas dust streams. Why epidemics are being so seldom? References 1. Sadeh D. Possible siderial period for the seismic lunar activity // Nature, 1972. Vol. 240, p.139 2. Oberst J. and Nakamura Y. A Search for Clustering among the Meteoroid Impacts Detected by the Apollo Lunar Seismic Network // ICARUS, Vol. 91, 315-325, 1991; Balazin M. and Zetzsche A. // PHYS.STAT.SOL., Vol.2, ,1962 1670-1674 3. Khavroshkin O.B. and Tsyplakov V.V. Meteoroid stream impacts on the Moon: Information of duration of the seismograms / In: Proceedings of the Conference METEOROID 2001, Swedish Institute of Space Physics, Kiruna, Sweden, 6-10 August 2001 4. Khavroshkin O.B. and Tsyplakov V.V., Temporal Structure of Meteoroid Streams and Lunar Seismicity according to Nakamura's Catalogue / In: Proceedings of the Conference METEOROID 2001, Swedish Institute of Space Physics, Kiruna, Sweden, 6-10 August 2001 5. O.B.Khavroshkin, V.V.Tsyplakov. Moon exogenous seismicity: meteoroid streams, micrometeorites and IDPs, Solar wind // Herald of the DGGGMS RAS: Electr. Sci.-Inf. J., 4(21)’2003 http://www.scgis.ru/russian/cp1251/h_dgggms/1-2003/scpub-3.pdf 6. O.B.Khavroshkin, V.V.Tsyplakov. Peculiarities of envelops of histograms of lunar impact seismogram durations / In: Geophysical research essays. Schmidt United Institute of Physics of the Earth Press, Moscow, 2003. 471 p., (in Russian). 2003, 471a;. 7. O.B.Khavroshkin, V.V.Tsyplakov. Hidden astrophysical periodicities of lunar seismisity // Herald of the DGGGMS RAS: Electr. Sci.-Inf. J., 4(14)` 2000 • http://www.scgis.ru/russian/cp1251/h_dgggms/4-2000/scpub-3.pdf
Plasma distributions in meteor head echoes and implications for radar cross section interpretation
NASA Astrophysics Data System (ADS)
Marshall, Robert A.; Brown, Peter; Close, Sigrid
2017-09-01
The derivation of meteoroid masses from radar measurements requires conversion of the measured radar cross section (RCS) to meteoroid mass. Typically, this conversion passes first through an estimate of the meteor plasma density derived from the RCS. However, the conversion from RCS to meteor plasma density requires assumptions on the radial electron density distribution. We use simultaneous triple-frequency measurements of the RCS for 63 large meteor head echoes to derive estimates of the meteor plasma size and density using five different possible radial electron density distributions. By fitting these distributions to the observed meteor RCS values and estimating the goodness-of-fit, we determine that the best fit to the data is a 1 /r2 plasma distribution, i.e. the electron density decays as 1 /r2 from the center of the meteor plasma. Next, we use the derived plasma distributions to estimate the electron line density q for each meteor using each of the five distributions. We show that depending on the choice of distribution, the line density can vary by a factor of three or more. We thus argue that a best estimate for the radial plasma distribution in a meteor head echo is necessary in order to have any confidence in derived meteoroid masses.
Hazards by meteoroid Impacts onto operational spacecraft
NASA Astrophysics Data System (ADS)
Landgraf, M.; Jehn, R.; Flury, W.
Operational spacecraft in Earth orbit or on interplanetary trajectories are exposed to high-velocity particles that can cause damage to sensitive on-board instrumentation. In general there are two types of hazard: direct destruction of functional elements by impacts, and indirect disturbance of instruments by the generated impact plasma. The latter poses a threat especially for high-voltage instrumentation and electronics. While most meteoroids have sizes in the order of a few micrometre, and typical masses of 10-15 kg, the most dangerous population with sizes in the millimetre and masses in the milligramme range exhibits still substantial impact fluxes in the order of 2 × 10-11 m-2 s-1 . This level of activity can by significantly elevated during passages of the spacecraft through cometary trails, which on Earth cause events like the well-known Leonid and Perseid meteor streams. The total mass flux of micrometeoroids onto Earth is about 107 kg yr-1 , which is about one order of magnitude less than the estimated mass flux of large objects like comets and asteroids with individual masses above 105 kg. In order to protect spacecraft from the advert effects of meteoroid impacts, ESA performs safety operations on its spacecraft during meteor streams, supported by real-time measurements of the meteor activity. A summary of past and future activities is given.
RIO+10 = Concept of synergetic cosmoecology
NASA Astrophysics Data System (ADS)
Alekseev, A. S.; Vedernikov, Y. A.; Dulov, V. G.
The dynamic concept of synergetic ecology of the near space as the Earth's civilization living space is discussed. It is proposed to formulate the scientific problem of protection of the Earth, orbital stations, and flyers from meteoroids and plasmoids of natural and artificial origin. Natural meteoroids intersect the Earth's orbit once in five years, whereas flyers often hit on natural plasmoids, sometimes even once a year. In contrast to nuclear, kinetic, and gravitational actions on threatening meteoroids, free electron lasers are used for protection against plasmoids. Some complementarity between cosmophysics and biology is revealed, and mathematical models of biosphere are constructed. Mathematical-synergetic modeling in the "man-environment" system is performed. Certain ways for improving noosphere on the basis of synergetics are determined. The principles of work of the social Institutes of Cosmic Anthropoecology and the University of Man and Planet Ecology are presented. References 1. A. S. Alekseev, Yu. .A. Vedernikov, I.I. Velichko, and V.A. Volkov, The rocket conception of cumulative impact defense of the Earth against dangerous space objects, Impact Engineering, 1997, V. 20, No. 1-5, 1-12. 2. A.S. Alekseev, Yu.A. Vedernikov et al., Computer Detection and Rocket Interception of Asteroids at an Atmospheric Boundary, 5th Cranfield Conference on Dynamics and Control of Systems and Structures in Space 2002, King's College, Cambridge, 185-193 pp.
NASA Astrophysics Data System (ADS)
Golubaev, A. V.
2015-05-01
A rapid method is proposed for determining a meteoroid's trajectory in the Earth's atmosphere and its height and velocity at individual points. The method is designed for use with video material (regardless of the motion speed of the video recorder) for daytime bolide events. Kinematic parameters are obtained for the superbolide event followed by the Chelyabinsk meteorite shower on February 15, 2013. The (geodetic) azimuth of the meteoroid's trajectory in the Earth's atmosphere is 283.39° ± 1.7° (or 101.09° ± 1.7° toward the radiant). The radiant altitude over the site with observations of the end of the first fragmentation phase is 20.5°. The geodetic coordinates of the beginning of the bolide phenomenon and the point of suspension of the radiating material at the end of the first fragmentation phase are (64°00'02.74″ ± 2.1' east longitude; 54°30'54.66″ ± 3.0' north latitude) and (61°11'01.88″ ± 1.6' east longitude; 54°52'06.68″ ± 3.1' north latitude), respectively. The atmospheric entry velocity is 19.29 ± 0.89 km s-1. The height of the start of the light emission is 102.4 km; those of the main fragmentation phases are 28.0 and 24.4 km. The calculated elements for the heliocentric orbit of the Chelyabinsk meteoroid are: Q = 2.66 ± 1.20 AU, q = 0.73 ± 0.01 AU, a = 1.67 ± 0.10 AU, e = 0.57 ± 0.03, i = 7.07° ± 0.54°, Ω = 326.42°, and ω = 106.28° ± 2.54°. These parameters are compared with the results obtained by other authors.
The unexpected 2012 Draconid meteor storm
NASA Astrophysics Data System (ADS)
Ye, Quanzhi; Wiegert, Paul A.; Brown, Peter G.; Campbell-Brown, Margaret D.; Weryk, Robert J.
2014-02-01
An unexpected intense outburst of the Draconid meteor shower was detected by the Canadian Meteor Orbit Radar on 2012 October 8. The peak flux occurred at ˜16:40 UT on October 8 with a maximum of 2.4 ± 0.3 h-1 km-2 (appropriate to meteoroid mass larger than 10-7 kg), equivalent to a ZHRmax ≈ 9000 ± 1000 using 5-min intervals, using a mass distribution index of s = 1.88 ± 0.01 as determined from the amplitude distribution of underdense Draconid echoes. This makes the outburst among the strongest Draconid returns since 1946 and the highest flux shower since the 1966 Leonid meteor storm, assuming that a constant power-law distribution holds from radar to visual meteoroid sizes. The weighted mean geocentric radiant in the time interval of 15-19 h UT, 2012 October 8, was αg = 262.4° 4 ± 0.1°, δg = 55.7° ± 0.1° (epoch J2000.0). Visual observers also reported increased activity around the peak time, but with a much lower rate (ZHR ˜ 200), suggesting that the magnitude-cumulative number relationship is not a simple power law. Ablation modelling of the observed meteors as a population does not yield a unique solution for the grain size and distribution of Draconid meteoroids, but is consistent with a typical Draconid meteoroid of mtotal between 10-6 and 10-4 kg being composed of 10-100 grains. Dynamical simulations indicate that the outburst was caused by dust particles released during the 1966 perihelion passage of the parent comet, 21P/Giacobini-Zinner, although there are discrepancies between the modelled and observed timing of the encounter, presumably caused by approaches of the comet to Jupiter during 1966-1972. Based on the results of our dynamical simulation, we predict possible increased activity of the Draconid meteor shower in 2018, 2019, 2021 and 2025.
NASA Astrophysics Data System (ADS)
Kenkmann, T.; Artemieva, N. A.; Wünnemann, K.; Poelchau, M. H.; Elbeshausen, D.; Núñez Del Prado, H.
2009-08-01
The recent Carancas meteorite impact event caused a worldwide sensation. An H4-5 chondrite struck the Earth south of Lake Titicaca in Peru on September 15, 2007, and formed a crater 14.2 m across. It is the smallest, youngest, and one of two eye-witnessed impact crater events on Earth. The impact violated the hitherto existing view that stony meteorites below a size of 100 m undergo major disruption and deceleration during their passage through the atmosphere and are not capable of producing craters. Fragmentation occurs if the strength of the meteoroid is less than the aerodynamic stresses that occur in flight. The small fragments that result from a breakup rain down at terminal velocity and are not capable of producing impact craters. The Carancas cratering event, however, demonstrates that meter-sized stony meteoroids indeed can survive the atmospheric passage under specific circumstances. We present results of a detailed geologic survey of the crater and its ejecta. To constrain the possible range of impact parameters we carried out numerical models of crater formation with the iSALE hydrocode in two and three dimensions. Depending on the strength properties of the target, the impact energies range between approximately 100-1000 MJ (0.024- 0.24 t TNT). By modeling the atmospheric traverse we demonstrate that low cosmic velocities (12- 14 kms-1) and shallow entry angles (<20°) are prerequisites to keep aerodynamic stresses low (<10 MPa) and thus to prevent fragmentation of stony meteoroids with standard strength properties. This scenario results in a strong meteoroid deceleration, a deflection of the trajectory to a steeper impact angle (40-60°), and an impact velocity of 350-600 ms-1, which is insufficient to produce a shock wave and significant shock effects in target minerals. Aerodynamic and crater modeling are consistent with field data and our microscopic inspection. However, these data are in conflict with trajectories inferred from the analysis of infrasound signals.
NASA Astrophysics Data System (ADS)
Leya, I.; Lange, H.-J.; Michel, R.; Meltzow, B.; Herpers, U.; Busemann, H.; Wieler, R.; Dittrich-Hannen, B.; Suter, M.; Kubik, P. W.
1995-09-01
By extending and improving earlier model calculations [1-4] of cosmogenic nuclide production by GCR particles in extraterrestrial matter, we can now present a physical model without free parameters for a consistent description of GCR production rates in stony and iron meteoroids. The model takes explicitely into account p and n-induced reactions. GCR 4He particles are considered only approximately. It is based on depth-size and bulk-chemistry-dependent spectra of primary and secondary protons and of secondary neutrons calculated by HET and MORSE codes within the HERMES code system [5] and on the cross sections of the underlying reactions. Comprehensive and reliable sets of proton cross sections from thresholds up to 2.6 GeV exist now for many cosmogenic nuclides (see [6] for a review). For n-induced reactions the situation is not so good. Only a few data at low energies and practically no data at higher energies exist. GCR production of cosmogenic nuclides in stony meteoroids is already dominated by neutron-induced reactions for most meteoroid radii. In iron meteoroids neutrons are even more important because of the high mass numbers of the bulk and of consequently higher multiplicities for production of secondary neutrons. In order to overcome this problem, the necessary excitation functions of neutron-induced reactions were determined from experimental thick-target production rates by least-squares unfolding procedures using the code STAYS'L [7]. The data were produced in laboratory experiments under completely controlled conditions [8-11]. The unfolding procedure starts from guess functions (from threshold up to 900 MeV) based on all available experimental neutron cross sections and on theoretical ones calculated by the AREL [12] code which is a relativistic version of the hybrid model of pre-equilibrium reactions [13]. With the new neutron cross sections it is possible to describe simultanously all data from the simulation experiments with an accuracy of better than 10 % and to calculate consistent cosmogenic nuclide production rates in stony and iron meteoroids. The new model calculations are so far valid for 10Be, 26Al, 36Cl, 41Ca, 53Mn as well as He, Ne and Ar isotopes. The new theoretical production rates are compared with measured depth profiles in stony and iron meteorites and will be discussed with respect to primary GCR spectra and preatmospheric radii and exposure histories of stony and iron meteoroids. Acknowledgement: This work was partially supported by the Deutsche Forschungsgemeinschaft and the Swiss National Science Foundation. References: [1] Michel R. et al. (1991) Meteoritics, 26, 221-242. [2] Michel R. et al. (1995) Planet. Space Sci., in press. [3] Bhandari N. et al. (1993) GCA, 57, 2361-2375. [4] Herpers U. et al. (1995) Planet. Space Sci., in press. [5] Cloth P. et al. (1988) JUEL-2203. [6] Michel R. (1994) in Nuclear Data for Science and Technology (J. K. Dickens, ed.), 337-343, Am. Nucl. Soc., La Grange Park. [7] Perrey F. G. (1977) Code STAYS'L, NEA Data Bank, OECD Paris. [8] Michel R. et al. (1986) Nucl. Instr. Meth. Phys. Res., B16, 61-82. [9] Michel R. et al. (1989) Nucl. Instr. Meth. Phys. Res., B42, 76-100. [10] Michel R. et al. (1993) J. Radioanal. Nucl. Chem., 169, 13-25. [11] Michel R. et al. (1994) in Nuclear Data for Science and Technology (J. K. Dickens, ed.), 377-379, Am. Nucl. Soc., La Grange Park. [12] Blann M. (1994) Code AREL, personal communication to R. Michel. [13] Blann M. (1972) Phys. Rev. Lett., 27, 337-340.
NASA Technical Reports Server (NTRS)
Kyte, F. T.
1977-01-01
Meteor ablation debris was distinguished from unablated interplanetary dust in a collection of extraterrestrial particles collected in the stratosphere using NASA U-2 aircraft. A 62 g sample of the Murchison (C2) meteorite was artificially ablated to characterize ablation debris for comparison with the stratospheric particles. By using proper experimental conditions, artificial ablation debris can be produced that is similar to natural ablation debris. Analyses of natural fusion crusts, artificial fusion crust, and artificial ablation debris of the Murchison meteorite produced criteria for recognizing debris ablated by a primitive meteoroid. Ninety-five percent of the stratospheric particles can be described as either ablation debris from a primitive meteoroid, or as very primitive interplanetary dust.
The cometary and asteroidal origins of meteors
NASA Technical Reports Server (NTRS)
Kresak, L.
1973-01-01
A quantitative examination of the gravitational and nongravitational changes of orbits shows that for larger interplanetary bodies the perturbations by Jupiter strongly predominate over all other effects, which include perturbations by other planets, splitting of comet nuclei and jet effects of cometary ejections. The structure of meteor streams, indicates that the mutual compensation of the changes in individual elements entering the Jacobian integral, which is characteristic for the comets, does not work among the meteoroids. It appears that additional forces of a different kind must exert appreciable influence on the motion of interplanetary particles of meteoroid size. Nevertheless, the distribution of the Jacobian constant in various samples of meteor orbits furnishes some information on the type of their parent bodies and on the relative contribution of individual sources.
Shielding requirements for the Space Station habitability modules
NASA Technical Reports Server (NTRS)
Avans, Sherman L.; Horn, Jennifer R.; Williamsen, Joel E.
1990-01-01
The design, analysis, development, and tests of the total meteoroid/debris protection system for the Space Station Freedom habitability modules, such as the habitation module, the laboratory module, and the node structures, are described. Design requirements are discussed along with development efforts, including a combination of hypervelocity testing and analyses. Computer hydrocode analysis of hypervelocity impact phenomena associated with Space Station habitability structures is covered and the use of optimization techniques, engineering models, and parametric analyses is assessed. Explosive rail gun development efforts and protective capability and damage tolerance of multilayer insulation due to meteoroid/debris impact are considered. It is concluded that anticipated changes in the debris environment definition and requirements will require rescoping the tests and analysis required to develop a protection system.
NASA's Lunar Impact Monitoring Program
NASA Technical Reports Server (NTRS)
Suggs, Robert M.; Cooke, William; Swift, Wesley; Hollon, Nicholas
2007-01-01
NASA's Meteoroid Environment Office nas implemented a program to monitor the Moon for meteoroid impacts from the Marshall Space Flight Center. Using off-the-shelf telescopes and video equipment, the moon is monitored for as many as 10 nights per month, depending on weather. Custom software automatically detects flashes which are confirmed by a second telescope, photometrically calibrated using background stars, and published on a website for correlation with other observations, Hypervelocity impact tests at the Ames Vertical Gun Facility have been performed to determine the luminous efficiency ana ejecta characteristics. The purpose of this research is to define the impact ejecta environment for use by lunar spacecraft designers of the Constellation (manned lunar) Program. The observational techniques and preliminary results will be discussed.
NASA Technical Reports Server (NTRS)
Parker, C. D.
1975-01-01
The Pioneer 10/11 meteoroid detection equipment (MDE) pressure cells were tested at liquid nitrogen (LN2) and liquid helium (LHe) temperatures with the excitation voltage controlled as a parameter. The cells failed by firing because of pressurizing gas condensation as the temperature was lowered from LN2 to LHe temperature and when raised from LHe temperature. A study was conducted to determine cell pressure as a function of temperature, and cell failure was estimated as a function of temperature and excitation voltage. The electronic system was also studied, and a profile of primary spacecraft voltage (nominally 28 Vdc) and temperature corresponding to electronic system failure was determined experimentally.
High-frequency lunar teleseismic events
NASA Technical Reports Server (NTRS)
Nakamura, Y.; Dorman, J.; Duennebier, F.; Ewing, M.; Lammlein, D.; Latham, G.
1974-01-01
A small number of seismic signals, including some of the strongest observed to date, have been identified as representing a fourth principal category of natural lunar seismic events with characteristics distinct from those produced by normal meteoroid impacts, deep moonquakes, and thermal moonquakes. These signals are much richer in high frequencies than other events observed at comparable distances, and display relatively impulsive P- and S-wave beginnings, indicating negligible seismic-wave scattering near the source. Source depths of these events may range between 0 and perhaps 300 km. These and other characteristics could represent either (1) meteoroids impacting upon outcrops of competent lunar crystal rock, (2) rare impacting objects that penetrate to competent rock below a scattering zone, or (3) shallow tectonic moonquakes.
Observations of the new Camelopardalids meteor shower using a 38.9 MHz radar at Mohe, China
NASA Astrophysics Data System (ADS)
Younger, J. P.; Reid, I. M.; Li, G.; Ning, B.; Hu, L.
2015-06-01
The Camelopardalids meteor shower was predicted to occur for the first time on 24 May 2014, based on optical observations of the comet 209P/LINEAR. Using a 38.9 MHz meteor radar located at Mohe, China, we were able to detect approximately 590 shower meteors originating from an average pre-infall radiant of R.A. = 129.1° ± 9.8°, declination = 79.4° ± 1.6° (J2000) with a geocentric velocity of 16.0 ± 1.6 km s-1. Measurements of the shower duration, direction, velocity, and individual meteor detection heights facilitated a detailed analysis of the parent debris stream. Orbital parameters were calculated including a semi-major axis of 2.86 AU, eccentricity of 0.659, and inclination of 21.1°. Combining orbital parameters with the shower activity duration FWHM of 5.09 h, it was found that the stream has a FWHM of at least 211,000 km at 1 AU, as measured perpendicular to the direction of orbital motion. A comparison of shower meteor detection heights and diffusion coefficient estimates with the sporadic background is consistent the prediction of Ye and Wiegert (Ye, Q., Wiegert, P. [2014]. Mon. Not. R. Astron. Soc. 437, 3283-3287) that Camelopardalid meteoroids are biased towards larger sizes or that Cameloppardalid meteoroids are less fragile than sporadic background meteoroids.
Analysis of Regolith Simulant Ejecta Distributions from Normal Incident Hypervelocity Impact
NASA Technical Reports Server (NTRS)
Edwards, David L.; Cooke, William; Suggs, Rob; Moser, Danielle E.
2008-01-01
The National Aeronautics and Space Administration (NASA) has established the Constellation Program. The Constellation Program has defined one of its many goals as long-term lunar habitation. Critical to the design of a lunar habitat is an understanding of the lunar surface environment; of specific importance is the primary meteoroid and subsequent ejecta environment. The document, NASA SP-8013 'Meteoroid Environment Model Near Earth to Lunar Surface', was developed for the Apollo program in 1969 and contains the latest definition of the lunar ejecta environment. There is concern that NASA SP-8013 may over-estimate the lunar ejecta environment. NASA's Meteoroid Environment Office (MEO) has initiated several tasks to improve the accuracy of our understanding of the lunar surface ejecta environment. This paper reports the results of experiments on projectile impact into powdered pumice and unconsolidated JSC-1A Lunar Mare Regolith simulant targets. Projectiles were accelerated to velocities between 2.45 and 5.18 km/s at normal incidence using the Ames Vertical Gun Range (AVGR). The ejected particles were detected by thin aluminum foil targets strategically placed around the impact site and angular ejecta distributions were determined. Assumptions were made to support the analysis which include; assuming ejecta spherical symmetry resulting from normal impact and all ejecta particles were of mean target particle size. This analysis produces a hemispherical flux density distribution of ejecta with sufficient velocity to penetrate the aluminum foil detectors.
NASA Astrophysics Data System (ADS)
Subasinghe, Dilini; Campbell-Brown, Margaret D.; Stokan, Edward
2016-04-01
Optical observations of faint meteors (10-7 < mass < 10-4 kg) were collected by the Canadian Automated Meteor Observatory between 2010 April and 2014 May. These high-resolution (metre scale) observations were combined with two-station light-curve observations and the meteoroid orbit to classify meteors and attempt to answer questions related to meteoroid fragmentation, strength, and light-curve shape. The F parameter was used to classify the meteor light-curve shape; the observed morphology was used to classify the fragmentation mode; and the Tisserand parameter described the origin of the meteoroid. We find that most meteor light curves are symmetric (mean F parameter 0.49), show long distinct trails (continuous fragmentation), and are cometary in origin. Meteors that show no obvious fragmentation (presumably single body objects) show mostly symmetric light curves, surprisingly, and this indicates that light-curve shape is not an indication of fragility or fragmentation behaviour. Approximately 90 per cent of meteors observed with high-resolution video cameras show some form of fragmentation. Our results also show, unexpectedly, that meteors which show negligible fragmentation are more often on high-inclination orbits (I > 60°) than low-inclination ones. We also find that dynamically asteroidal meteors fragment as often as dynamically cometary meteors, which may suggest mixing in the early Solar system, or contamination between the dynamic groups.
1970-01-01
This photograph shows technicians installing the meteoroid shield on the Thruster Attitude Control Subsystem (TACS). At one end of the Orbital Workshop (OWS), the TACS provided short-term control of the attitude of the Skylab.
New aspects in single-body meteor physics
NASA Astrophysics Data System (ADS)
Pecina, P.; Ceplecha, Z.
1983-03-01
An exact analytical solution of the atmospheric meteoroid single-body problem is presented expressing the distance along the trajectory as a function of time, which yields a least-square fit of the observed trajectory, and analytical expressions for the velocity at the point of maximum deceleration are derived. These results are used to determine the ablation coefficient from observations. These methods are applied to 17 Prairie Network fireballs observed below the maximum deceleration point and to the Innisfree fireball, and the results are found to be superior to the ones obtained with the usual interpolation formula. A model of luminous efficiencies for small velocities and for masses up to several hundred grams based on data on Innisfree and on artificial rocketry meteors is proposed and applied to separate the shape-density coefficient from the meteoroid mass.
Space station integrated wall design and penetration damage control
NASA Technical Reports Server (NTRS)
Coronado, A. R.; Gibbins, M. N.; Wright, M. A.; Stern, P. H.
1987-01-01
A methodology was developed to allow a designer to optimize the pressure wall, insulation, and meteoroid/debris shield system of a manned spacecraft for a given spacecraft configuration and threat environment. The threat environment consists of meteoroids and orbital debris, as specified for an arbitrary orbit and expected lifetime. An overall probability of no penetration is calculated, as well as contours of equal threat that take into account spacecraft geometry and orientation. Techniques, tools, and procedures for repairing an impacted and penetrated pressure wall were developed and tested. These techniques are applied from the spacecraft interior and account for the possibility of performing the repair in a vacuum. Hypervelocity impact testing was conducted to: (1) develop and refine appropriate penetration functions, and (2) determine the internal effects of a penetration on personnel and equipment.
Are the stratospheric dust particles meteor ablation debris or interplanetary dust?
NASA Technical Reports Server (NTRS)
Blanchard, M. B.; Kyte, F. T.
1978-01-01
Natural and laboratory created fusion crusts and debris from artificial meteor samples were used to develop criteria for recognizing meteor ablation debris in a collection of 5 to 50 micron particles from the stratosphere. These laboratory studies indicate that meteor ablation debris from nickel-iron meteoroids produce spherules containing taenite, wuestite, magnetite, and hematite. These same studies also indicate that ablation debris from chondritic meteoroids produce spheres and fragmentary debris. The spheres may be either silicate rich, containing zoned olivine, magnetite, and glass, or sulfide rich, containing iron oxides (e.g., magnetite, wuestite) and iron sulfides (e.g., pyrrhotite, pentlandite). The fragmentary debris may be either fine-grained aggregates of olivine, magnetite, pyroxene, and occasionally pyrrhotite (derived from the meteorite matrix) or individual olivine and pyroxene grains (derived from meteorite inclusions).
How Surface Composition and Meteoroid Impacts Mediate Sodium and Potassium in the Lunar Exosphere
NASA Technical Reports Server (NTRS)
Colaprete, A.; Sarantos, M.; Wooden, D. H.; Stubbs, T. J.; Cook, A. M.; Shirley, M.
2016-01-01
Despite being trace constituents of the lunar exosphere, sodium and potassium are the most readily observed species due to their bright line emission. Measurements of these species by the Ultraviolet and Visible Spectrometer (UVS) on the Lunar Atmosphere and Dust Environment Explorer (LADEE) have revealed unambiguous temporal and spatial variations indicative of a strong role for meteoroid bombardment and surface composition in determining the composition and local time dependence of the Moon's exosphere. Observations show distinct lunar day (monthly) cycles for both species as well as an annual cycle for sodium. The first continuous measurements for potassium show a more repeatable variation across lunations and an enhancement over KREEP (Potassium Rare Earth Elements and Phosphorus) surface regions, revealing a strong dependence on surface composition.
NASA Technical Reports Server (NTRS)
Lazarewicz, A. R.; Anderson, D. L.; Anderson, K.; Daonty, A. M.; Duennebier, F. K.; Gains, N. R.; Knight, T. C. D.; Kovach, R. L.; Latham, G. V.; Miller, W. F.
1981-01-01
Efforts were made to determine the seismicity of Mars as well as define its internal structure by detecting vibrations generated by marsquakes and meteoroid impacts. The lack of marsquakes recognized in the Viking data made it impossible to make any direct inferences about the interior of Mars and only allowed the setting of upper bounds on the seismic activity of the planet. After obtaining more than 2100 hours worth of data during the quite periods at rates of one sample per second or higher, the Viking 2 seismometer was turned off as a consequence of a landing system failure. During the periods when adequate data were obtained, one event of possible seismic or meteoroid impact origin was recognized; however, there is a significant probability that this event was generated by a wind gust.
Does the presence of cosmic dust influence the displacement of the Earth's Magnetopause?
NASA Astrophysics Data System (ADS)
Mann, I.; Hamrin, M.
2012-04-01
In a recent paper Treumann and Baumjohann propose that dust particles in interplanetary space occasionally cause large compressions of the magnetopause that, in the absence of coronal mass ejections, are difficult to explain by other mechanisms (R.A. Treumann and W. Baumjohann, Ann. Geophys. 30, 119-130, 2012). They suggest that enhanced dust number density raises the contribution of the dust component to the solar wind dynamical pressure and hence to the pressure balance that determines the extension of the magnetopause. They quantify the influence of the dust component in terms of a variation of the magnetopause stagnation point distance. As a possible event to trigger the compressions they propose the encounters with meteoroid dust streams along Earth's orbit. We investigate the conditions under which these compressions may occur. The estimate by Treumann and Baumjohann of the magnetopause variation presupposes that the dust particles have reached solar wind speed. Acceleration by electromagnetic forces is efficient in the solar wind for dust particles that have a sufficiently large ratio of surface charge to mass (Mann et al. Plasma Phys. Contr. Fusion, Vol. 52, 124012, 2010). This applies to small dust particles that contribute little to the total dust mass in meteoroid streams. The major fraction of dust particles that reach high speed in the solar wind are nanometer-sized dust particles that form and are accelerated in the inner solar system (Czechowski and Mann, ApJ, Vol. 714, 89, 2010). Observations suggest that the flux of these nanodust particles near 1 AU is highly time-variable (Meyer-Vernet, et al. Solar Physics, Vol. 256, 463, 2009). We estimate a possible variation of the magnetopause stagnation point distance caused by these nanodust fluxes and by the dust associated to meteoroid streams. We conclude that the Earth's encounters with meteoroid dust streams are not likely to strongly influence the magnetopause according to the proposed effect. We further use the expression for the magnetopause stagnation point distance used by Treumann and Baumjohann to investigate the possible influence of time-variable nanoddust fluxes on the magnetopause.
Meteor-Shower on Mars Indicates Cometary Activity Far Away From the Sun
NASA Astrophysics Data System (ADS)
Sekhar, Aswin; ASHER, DAVID
2015-08-01
Introduction: The close encounter of Comet C/2013 A1 (Siding Spring) with Mars on 2014 Oct 19 at 1830h (UT) generated a lot of interest and modelling work [1] [2] [3] in the solar system community. A recent (on 2014 Nov 7) press release from NASA implied that a meteor shower was detected on Mars by their space instruments some hours after the comet-Mars close encounter. Various work [4] [5] [6] has suggested that very specific meteoroid sizes and ejection conditions may be required to produce meteor phenomena at Mars at the given times.Stream dynamics: Meteoroid stream modelling and their orbital geometry calculations have gained high precision over the years. In this work, we compute in detail the structure of the cloud of meteoroids released by C/2013 A1, showing its dependence on heliocentric ejection distances, 3-dimensional ejection velocities, and particle sizes. Our calculations using numerical integrator MERCURY, [7], incorporating radiation pressure, [8], show that ejection of particles at large heliocentric distances (about 7 au to 13 au) from C/2013 A1 could lead to evolution of a dense meteoroid cloud which intersects Mars a few hours after the comet-Mars close encounter. Hence this detection of a meteor shower on Mars by space instruments is an indirect confirmation of cometary activity at large distances which has rarely been observed directly by telescopes so far. Furthermore it shows that comprehensive threat estimation needs to be done for satellites orbiting the Earth when dynamically new comets come very close to the Earth in future.References:[1] Vaubaillon J., Macquet L., Soja R. 2014. MNRAS. 439: 3294.[2] Moorhead A. V., Wiegert P. A., Cooke W. J. 2014. Icarus. 231:13.[3] Ye Q.-Z., Hui M.-T., 2014, ApJ, 787: 115.[4] Farnocchia D. et al. 2014. ApJL. 790: 114.[5] Kelley M. S. P. et al. 2014, ApJL, 792: 16.[6] Tricarico P. et al., 2014, ApJL, 787: 35.[7] Chambers J. E. 1999. MNRAS. 304: 793.[8] Burns J. A, Lamy P. L., Soter S. 1979. Icarus. 40: 1.
ScienceCast 100: Comet ISON Meteor Shower
2013-04-19
Sungrazing Comet ISON, expected to become a bright naked-eye object later this year, might dust the Earth with meteoroids in early 2014. Researchers discuss the possibilities in this week's ScienceCast.
Production of lunar fragmental material by meteoroid impact.
NASA Technical Reports Server (NTRS)
Marcus, A. H.
1973-01-01
The rate of production of new fragmental lunar surface material is derived theoretically on the hypothesis that such material is excavated from a bedrock layer by meteoroid impacts. An overlaying regolith effectively shields the bedrock layer from small impacts, reducing the production rate of centimeter-sized and smaller blocks by a large factor. Logarithmic production rate curves for centimeter to motor-sized blocks are nonlinear for any regolith from centimeters to tens of meters in thickness, with small blocks relatively much less frequent for thicker (older) regoliths, suggesting the possibility of a statistical reverse bedding. Modest variations in the exponents of scaling laws for crater depth-diameter ratio and maximum block-diameter to crater diameter ratio are shown to have significant effects on the production rates. The production rate increases slowly with increasing size of the largest crater affecting the region.
Characterizing the 2016 Perseid Meteor Shower Outburst
NASA Technical Reports Server (NTRS)
Blaauw, R. C.; Moser, D. E.; Molau, S.; Schult, C.; Stober, G.
2017-01-01
The Perseid meteor shower has been observed for millennia and is known for its visually spectacular meteors and occasional outbursts. Normal activity displays Zenithal Hourly Rates (ZHRs) of approximately100. The Perseids were expected to outburst in 2016, primarily due to particles released during the 1862 and 1479 revolutions of parent Comet Swift-Tuttle. NASA's Meteoroid Environment Office predicted the timing, strength and duration of the outburst for spacecraft risk using the MSFC Meteoroid Stream Model [1]. A double peak was predicted, with an outburst displaying a ZHR of 210 +/- 50 at 00:30 UTC Aug 12 (139.5deg Solar Longitude), and a traditional peak 12 hours later with rates still heightened from the outburst [2]. Video, visual, and radar observations taken worldwide by various entities were used to characterize the shower and compare to predictions.
Radar and optical observations of small mass meteors at Arecibo
NASA Astrophysics Data System (ADS)
Michell, R.; Janches, D.; DeLuca, M. D.; Samara, M.; Chen, R. Y.
2016-12-01
Optical observations of meteors were conducted over 4 separate nights alongside the Arecibo radar. Meteors were detected in the optical imaging data and with both of the radars at Arecibo. The UHF (430 MHz) radar is the most sensitive and therefore detected the most meteors however the VHF (46.8 MHz) radar detected a higher percentage of meteors in common with the optics, due to the larger beam size and larger mass detectability threshold. The emphasis of this presentation is on meteors that were detected by the optics and one or both radars. The comparisons between the the relative sensitivities of these 3 detecting techniques will improve the meteoroid mass estimates made from the optical intensities. The overall aim would be to develop more accurate and robust methods of calculating meteoroid mass from the radar data alone.
NASA Technical Reports Server (NTRS)
Liu, V. C.
1978-01-01
The hypothesis that a comet was responsible for the Tunguska Meteor Fall is rejected because the hypothesis does not seem to account for the intense terminal spherical shock. A porous meteoroid model is proposed, and an analysis indicates that an entity of this type might produce an aerodynamic heat flux large enough to account for the terminal meteor explosion. It is suggested that the presence of olivine and of highly irregular macrostructure in meteors might indicate the presence of some porosity. For a highly porous meteoroid, it is postulated that during entry into the atmosphere the aerodynamic heat transfer at its external or pore walls would become so intensified as to cause either complete ablation with popping or a solid-liquid-vapor phase transition accompanied by an explosion.
Meteoroids and Orbital Debris: Effects on Spacecraft
NASA Technical Reports Server (NTRS)
Belk, Cynthia A.; Robinson, Jennifer H.; Alexander, Margaret B.; Cooke, William J.; Pavelitz, Steven D.
1997-01-01
The natural space environment is characterized by many complex and subtle phenomena hostile to spacecraft. The effects of these phenomena impact spacecraft design, development, and operations. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of the natural space environment essential to accomplish overall mission objectives, especially in the current climate of better/cheaper/faster. Meteoroids are naturally occurring phenomena in the natural space environment. Orbital debris is manmade space litter accumulated in Earth orbit from the exploration of space. Descriptions are presented of orbital debris source, distribution, size, lifetime, and mitigation measures. This primer is one in a series of NASA Reference Publications currently being developed by the Electromagnetics and Aerospace Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center, National Aeronautics and Space Administration.
NASA Technical Reports Server (NTRS)
Taff, L. G.; Beatty, D. E.; Yakutis, A. J.; Randall, P. M. S.
1985-01-01
The majority of work performed by the Lincoln Laboratory's Space Surveillance Group, at the request of NASA, to define the near-earth population of man-made debris is summarized. Electrooptical devices, each with a 1.2 deg FOV, were employed at the GEODSS facility in New Mexico. Details of the equipment calibration and alignment procedures are discussed, together with implementation of a synchronized time code for computer controlled videotaping of the imagery. Parallax and angular speed data served as bases for distinguishing between man-made debris and meteoroids. The best visibility was obtained in dawn and dusk twilight conditions at elevation ranges of 300-2000 km. Tables are provided of altitudinal density distribution of debris. It is noted that the program also yielded an extensive data base on meteoroid rates.
Colaprete, A; Sarantos, M; Wooden, D H; Stubbs, T J; Cook, A M; Shirley, M
2016-01-15
Despite being trace constituents of the lunar exosphere, sodium and potassium are the most readily observed species due to their bright line emission. Measurements of these species by the Ultraviolet and Visible Spectrometer (UVS) on the Lunar Atmosphere and Dust Environment Explorer (LADEE) have revealed unambiguous temporal and spatial variations indicative of a strong role for meteoroid bombardment and surface composition in determining the composition and local time dependence of the Moon's exosphere. Observations show distinct lunar day (monthly) cycles for both species as well as an annual cycle for sodium. The first continuous measurements for potassium show a more repeatable variation across lunations and an enhancement over KREEP (Potassium Rare Earth Elements and Phosphorus) surface regions, revealing a strong dependence on surface composition. Copyright © 2016, American Association for the Advancement of Science.
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Bean, Alan J.; Darzi, Kent
1991-01-01
All large spacecraft are susceptible to impacts by meteoroids and orbiting space debris. These impacts occur at extremely high speed and can damage flight-critical systems, which can in turn lead to a catastrophic failure of the spacecraft. Therefore, the design of a spacecraft for a long-duration mission must take into account the possibility of such impacts and their effects on the spacecraft structure and on all of its exposed subsystems components. The work performed under the contract consisted of applied research on the effects of meteoroid/space debris impacts on candidate materials, design configurations, and support mechanisms of long term space vehicles. Hypervelocity impact mechanics was used to analyze the damage that occurs when a space vehicle is impacted by a micrometeoroid or a space debris particle. An impact analysis of over 500 test specimens was performed to generate by a hypervelocity impact damage database.
NASA Astrophysics Data System (ADS)
Fedorov, Sergey V.; Selivanov, Victor V.; Veldanov, Vladislav A.
2017-06-01
Accumulation of microdamages as a result of intensive plastic deformation leads to a decrease in the average density of the high-velocity elements that are formed at the explosive collapse of the special shape metal liners. For compaction of such elements in tests of their spacecraft meteoroid protection reliability, the use of magnetic-field action on the produced elements during their movement trajectory before interaction with a target is proposed. On the basis of numerical modeling within the one-dimensional axisymmetric problem of continuum mechanics and electrodynamics, the physical processes occurring in the porous conducting elastoplastic cylinder placed in a magnetic field are investigated. Using this model, the parameters of the magnetic-pulse action necessary for the compaction of the steel and aluminum elements are determined.
Search for Organic Matter in Leonid Meteoroids
NASA Technical Reports Server (NTRS)
Rairden, Richard L.; Jenniskens, Peter; Laux, Christophe O.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Near-ultraviolet 300-410 nm spectra of Leonid meteors were obtained in an effort to measure the strong B to X emission band of the radical CN in Leonid meteor spectra at 387 nm. CN is an expected product of ablation of nitrogen containing organic carbon in the meteoroids as well as a possible product of the aerothermochemistry induced by the kinetic energy of the meteor. A slitless spectrograph with objective grating was deployed on FISTA during the 1999 Leonid Multi-Instrument Aircraft Campaign. Fifteen first-order UV spectra were captured near the 02:00 UT meteor storm peak on November 18. It is found that neutral iron lines dominate the spectrum, with no clear sign of the CN band. The meteor plasma contains less than one CN molecule per three Fe atoms at the observed altitude of about 100 km.
2017-02-07
The dark spots in this enhanced-color infrared image are the recent impact craters that occurred in the Tharsis region between 2008 and 2014. These impact craters were first discovered by the Mars Context Camera (or CTX, also onboard the Mars Reconnaissance Orbiter) as a cluster of dark spots. The meteoroid that formed these craters must have broken up upon atmospheric entry and fragmented into two larger masses along with several smaller fragments, spawning at least twenty or so smaller impact craters. The dark halos around the resulting impact craters are a combination of the light-toned dust being cleared from the impact event and the deposition of the underlying dark toned materials as crater ejecta. The distribution and the pattern of the rayed ejecta suggests that the meteoroid most-likely struck from the south. http://photojournal.jpl.nasa.gov/catalog/PIA11176
Meteorites found on Misfits Flat dry lake, Nevada
NASA Astrophysics Data System (ADS)
Harlan, Scott; Jenniskens, Peter; Zolensky, Michael E.; Yin, Qing-Zhu; Verosub, Kenneth L.; Rowland, Douglas J.; Sanborn, Matthew; Huyskens, Magdalena; Creager, Emily R.; Jull, A. J. Timothy
2016-04-01
Meteorites have been found on the small Misfits Flat dry lakebed near Stagecoach, Nevada (119.382W, +39.348N). Since the first find on Sept. 22, 2013, a total of 58 stones of weathering stage W2/3 with a combined mass of 339 g have been collected in 19 visits to the area. This small (3.3 × 3.6 km) lakebed is now a newly designated dense collection area (DCA). Most meteorites were found in a small 350 × 180 m area along the north shore and most are fragments of several broken individual stones. Three of these fragments were classified as an LL4/5 of shock stage S2, now named Misfits Flat 001, one of which (stone MF33) fell 8.1 ± 1.3 ka ago based on the 14C terrestrial age, assuming it came from a 20-80 cm diameter meteoroid. In addition, a small darkly crusted meteorite MF34, now named Misfits Flat 002, was found 820 m WSW from the main mass. This meteorite is classified as an LL5 ordinary chondrite with shock stage S4/5. The meteorite is saturated in 14C at 63 dpm kg-1, suggesting it originated from the center of a 0.5 m diameter meteoroid, or deep inside a ~1.0 m meteoroid, less than 300 yr ago. Accounts exist of a fireball seen at 13:15 UT on March 2, 1895, that are consistent with the find location of Misfits Flat 002.
Comet 169P/NEAT(=2002 EX12): The Parent Body of the α-Capricornid Meteoroid Stream
NASA Astrophysics Data System (ADS)
Kasuga, Toshihiro; Balam, David D.; Wiegert, Paul A.
2010-12-01
The Jupiter-family comet 169P/NEAT (previously known as asteroid 2002 EX12) has a dynamical association with the α-Capricornid meteoroid stream. In this paper, we present photometric observations of comet 169P/NEAT to further investigate the physical characters of its disintegration state related to the stream. The comet shows a point-like surface brightness profile limiting contamination due to coma emission to ~4% at most, indicating no evidence of outgassing. An upper limit on the fraction of the surface that could be sublimating water ice of <10-4 is obtained with an upper limit to the mass loss of ~10-2 kg s-1. The effective radius of nucleus is found to be 2.3 ± 0.4 km. Red filter photometry yields a rotational period of 8.4096 ± 0.0012 hr, and the range of the amplitude 0.29 ± 0.02 mag is indicative of a moderately spherical shape having a projected axis ratio ~1.3. The comet shows redder colors than the Sun, being compatible with other dead comet candidates. The calculated lost mass per revolution is ~109 kg. If it has sustained this mass loss over the estimated 5000 yr age of the α-Capricornid meteoroid stream, the total mass loss from 169P/NEAT (~1013 kg) is consistent with the reported stream mass (~1013-1015 kg), suggesting that the stream is the product of steady disintegration of the parent at every return.
Contributions of the observatory of New Mexico State University, Volume 1, no. 4, April 4
NASA Technical Reports Server (NTRS)
1976-01-01
Papers are presented dealing with astronomical observations of the Jupiter Red Spot, Corona Borealis Constellation, and Meteoroids. Calibration of instruments and reduction and analysis of data are discussed.
2012-10-17
Jupiter has been suffering more impacts over the last four years than ever previously observed, including this meteoroid impact on Sept. 10, 2012. Right-hand image is an infrared image NASA Infrared Telescope Facility on Mauna Kea, Hawaii.
The recent upgrade and future perspectives of the ESABASE/Debris tool
NASA Astrophysics Data System (ADS)
Bunte, K.; Langwost, A.; Drolshagen, G.
ESABASE is a software tool which provides more than ten applications for space- specific analyses, such as atomic oxygen recession, charging, space debris and meteoroid impacts, outgassing contamination, attitude perturbations, radiation, and others. The proposed paper focuses on the ESABASE/Debris application, which has been upgraded in the course of a recent ESA/ESTEC study. The methods used to calculate the debris and meteoroid flux on, and the related number of failures of a spacecraft surface will be presented. A brief description of the capabilities and features of the program will be given. The main extension of ESABASE/Debris is the implementation of new state-of-the- art particulate flux models. ESA's MASTER 2001 debris model includes the latest findings in the debris research, the considered particle size ranges from 1micron up to 100m. The model covers all orbital altitudes from LEO to GEO, and any target orbit within its altitude range. The user may select or deselect single debris source terms (e.g. fragments, SRM slag particles, NaK droplets). For the first time, the MASTER 2001 model provides realistic population data for historic and future (based on pre- defined debris environment evolution scenario s) epochs. Thus, the ESABASE/Debris user is able to (re-) investigate historic missions (e.g. LDEF), or to assess the risk posed to future missions (e.g. ISS). The Divine-Staubach meteoroid model still represents the best fit to the interplanetary meteoroid environment and its appearance for Earth-bound satellites. Since it is part of the MASTER model, it has been made available for meteoroid analysis within ESABASE/Debris. The most important implementation aspects as well as the general model implementation strategy will be outlined. All new features and capabilities of ESABASE/Debris have been tested and verified by means of pre-defined test cases. Some interesting results of the software verification and validation process will be presented. The upgraded ESABASE/Debris and its new flux models have been applied to the historic LDEF mission. The model results will be discussed by means of a comparison with measured impact data. Additionally, the results of impact flux analyses of a simplified ISS model and of a geostationary satellite will provide an impression of the comprehensive capabilties of ESABASE/Debris. In the near future, some important development steps will significantly facilitate the applicability of the ESABASE tool. It is intended to establish a PC -based version of the complete software including a completely revised graphical user interface. The effort for porting and a simultaneous improvement of ergonomic aspects, and the consideration of the user demands is currently evaluated in an ESA/E TEC study.S The porting activities will also include the establishment of a new spacecraft data model which will allow ESABASE to make use of commonly available software packages for the generation and display of three-dimensional spacecraft models. The presentation of the future development activities will conclude the paper.
Lightweight Shield Against Space Debris
NASA Technical Reports Server (NTRS)
Redmon, John W., Jr.; Lawson, Bobby E.; Miller, Andre E.; Cobb, W. E.
1992-01-01
Report presents concept for lightweight, deployable shield protecting orbiting spacecraft against meteoroids and debris, and functions as barrier to conductive and radiative losses of heat. Shield made in four segments providing 360 degree coverage of cylindrical space-station module.
First night launch of a Saturn I launch vehicle
1965-05-25
First night time launching of a Saturn I launch vehicle took place at 2:35 a.m., May 25, 1965, with the launch of the second Pegasus meteoroid detection satellite from Complex 37, Cape Kennedy, Florida.
An analysis of penetration and ricochet phenomena in oblique hypervelocity impact
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Taylor, Roy A.; Horn, Jennifer R.
1988-01-01
An experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multisheet aluminum structures is described. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to the meteoroid and space debris environment.
Semi-empirical fragmentation model of meteoroid motion and radiation during atmospheric penetration
NASA Astrophysics Data System (ADS)
Revelle, D. O.; Ceplecha, Z.
2002-11-01
A semi-empirical fragmentation model (FM) of meteoroid motion, ablation, and radiation including two types of fragmentation is outlined. The FM was applied to observational data (height as function of time and the light curve) of Lost City, Innisfree and Benešov bolides. For the Lost City bolide we were able to fit the FM to the observed height as function of time with ±13 m and to the observed light curve with ±0.17 magnitude. Corresponding numbers for Innisfree are ±25 m and ±0.14 magnitude, and for Benešov ±46 m and ±0.19 magnitude. We also define apparent and intrinsic values of σ, K, and τ. Using older results and our fit of FM to the Lost City bolide we derived corrections to intrinsic luminous efficiencies expressed as functions of velocity, mass, and normalized air density.
Atmospheric Fragmentation of the Canyon Diablo Meteoroid
NASA Technical Reports Server (NTRS)
Pierazzo, E.; Artemieva, N. A.
2005-01-01
About 50 kyr ago the impact of an iron meteoroid excavated Meteor Crater, Arizona, the first terrestrial structure widely recognized as a meteorite impact crater. Recent studies of ballistically dispersed impact melts from Meteor Crater indicate a compositionally unusually heterogeneous impact melt with high SiO2 and exceptionally high (10 to 25% on average) levels of projectile contamination. These are observations that must be explained by any theoretical modeling of the impact event. Simple atmospheric entry models for an iron meteorite similar to Canyon Diablo indicate that the surface impact speed should have been around 12 km/s [Melosh, personal comm.], not the 15-20 km/s generally assumed in previous impact models. This may help explaining the unusual characteristics of the impact melt at Meteor Crater. We present alternative initial estimates of the motion in the atmosphere of an iron projectile similar to Canyon Diablo, to constraint the initial conditions of the impact event that generated Meteor Crater.
Processing of thermionic power on an electrically propelled spacecraft
NASA Technical Reports Server (NTRS)
Macie, T. W.
1973-01-01
A study to define the power processing equipment required between a thermionic reactor and an array of mercury-ion thrusters for a nuclear electric propulsion system is reported. Observations and recommendations that resulted from this study were: (1) the preferred thermionic-fuel-element source voltages are 23 V or higher; (2) transistor characteristics exert a strong effect on power processor mass; (3) the power processor mass could be considerably reduced should the magnetic materials that exhibit low losses at high frequencies, that have a high Curie point, and that can operate at 15 to 20 kG become avaliable; (4) electrical component packaging on the radiator could reduce the area that is sensitive to meteoroid penetration, thereby reducing the meteoroid shielding mass requirement; (5) an experimental model of the power processor design should be built and tested to verify the efficiencies, masses, and all the automatic operational aspects of the design.
NASA Technical Reports Server (NTRS)
Wasson, John T.; Ouyang, Xinwei; Wang, Jianmin; Jerde, Eric
1989-01-01
Concentrations of 14 elements in the metal of 38 iron meteorites and a pallasite are reported. Three samples are paired with previously classified irons, raising the number of well-classified, independent iron meteorites to 598. Several of the new irons are from Antarctica. Of 24 independent irons from Antarctica, eight are ungrouped, a much higher fraction than that among all classified irons. The difference is probably related to the fact that the median mass of Antarctic irons is about two orders of magnitude smaller than that of non-Antarctic irons. Smaller meteoroids may tend to sample a larger number of asteroidal source regions, perhaps because small meteoroids tend to have higher ejection velocities or because they have random-walked a greater increment of orbital semimajor axis away from that of the parent body.
Meteoroid/orbital debris impact damage predictions for the Russian space station MIR
NASA Technical Reports Server (NTRS)
Christiansen, E. L.; Hyde, J. L.; Lear, D.
1997-01-01
Components of the Mir space station have been exposed to the meteoroid/orbital debris (M/OD) environment for up to 11 years. During this period, no M/OD impact perforation of the pressure shell of the manned modules were reported. The NASA standard M/OD analysis code BUMPER was used to predict the probability of M/OD impact damage to various components of Mir. The analysis indicates a 1 in 2.2 chance that a M/OD impact would have caused a penetration resulting in a pressure leak of the Mir modules since its launch up to the February 1997. For the next five years, the estimated odds become 1 in 3. On an annual basis, penetration risks are 60 percent higher, on the average, in the next five years due to the larger size of Mir and the growth in the orbital debris population.
Repeatability and uncertainty analyses of light gas gun test data
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Cooper, David
1994-01-01
All large spacecraft are susceptible to high-speed impacts by meteoroids and pieces of orbiting space debris which can damage flight-critical systems and in turn lead to catastrophic failure. One way to obtain information on the response of a structure to a meteoroid impact or an orbital debris impact is to simulate the impact conditions of interest in the laboratory and analyze the resulting damage to a target structure. As part of the Phase B and C/D development activities for the Space Station Freedom, 950 impact tests were performed using the NASA/Marshall Space Flight Center (MSFC) light gas gun from 1985-1991. This paper presents the results of impact phenomena repeatability and data uncertainty studies performed using the information obtained from those tests. The results of these studies can be used to assess the utility of individual current and future NASA/MSFC impact test results in the design of long-duration spacecraft.
Foam Core Shielding for Spacecraft
NASA Technical Reports Server (NTRS)
Adams, Marc
2007-01-01
A foam core shield (FCS) system is now being developed to supplant multilayer insulation (MLI) systems heretofore installed on spacecraft for thermal management and protection against meteoroid impacts. A typical FCS system consists of a core sandwiched between a face sheet and a back sheet. The core can consist of any of a variety of low-to-medium-density polymeric or inorganic foams chosen to satisfy application-specific requirements regarding heat transfer and temperature. The face sheet serves to shock and thereby shatter incident meteoroids, and is coated on its outer surface to optimize its absorptance and emittance for regulation of temperature. The back sheet can be dimpled to minimize undesired thermal contact with the underlying spacecraft component and can be metallized on the surface facing the component to optimize its absorptance and emittance. The FCS systems can perform better than do MLI systems, at lower mass and lower cost and with greater volumetric efficiency.
Exterior spacecraft subsystem protective shielding analysis and design
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Taylor, Roy A.
1990-01-01
All spacecraft are susceptible to impacts by meteoroids and pieces of orbiting space debris. An effective mechanism is developed to protect external spacecraft subsystems against damage by ricochet particles formed during such impacts. Equations and design procedures for protective shield panels are developed based on observed ricochet phenomena and calculated ricochet particle sizes and speeds. It is found that the diameter of the most damaging ricochet debris particle can be as large as 40 percent of the original project tile diameter, and can travel at speeds between 24 and 36 percent of the original projectile impact velocity. Panel dimensions are shown to be strongly dependent on their inclination to the impact velocity vector and on their distribution around a spacecraft module. It is concluded that obliquity effects of high-speed impacts must be considered in the design of any structure exposed to the meteoroid and space debris environment.
Optimization techniques applied to passive measures for in-orbit spacecraft survivability
NASA Technical Reports Server (NTRS)
Mog, Robert A.; Price, D. Marvin
1991-01-01
Spacecraft designers have always been concerned about the effects of meteoroid impacts on mission safety. The engineering solution to this problem has generally been to erect a bumper or shield placed outboard from the spacecraft wall to disrupt/deflect the incoming projectiles. Spacecraft designers have a number of tools at their disposal to aid in the design process. These include hypervelocity impact testing, analytic impact predictors, and hydrodynamic codes. Analytic impact predictors generally provide the best quick-look estimate of design tradeoffs. The most complete way to determine the characteristics of an analytic impact predictor is through optimization of the protective structures design problem formulated with the predictor of interest. Space Station Freedom protective structures design insight is provided through the coupling of design/material requirements, hypervelocity impact phenomenology, meteoroid and space debris environment sensitivities, optimization techniques and operations research strategies, and mission scenarios. Major results are presented.
Impact Crater in Coastal Patagonia
NASA Technical Reports Server (NTRS)
D'Antoni, Hector L; Lasta, Carlos A.; Condon, Estelle (Technical Monitor)
2000-01-01
Impact craters are geological structures attributed to the impact of a meteoroid on the Earth's (or other planet's) surface (Koeberl and Sharpton. 1999). The inner planets of the solar system as well as other bodies such as our moon show extensive meteoroid impacts (Gallant 1964, French 1998). Because of its size and gravity, we may assume that the Earth has been heavily bombarded but weathering and erosion have erased or masked most of these features. In the 1920's, a meteor crater (Mark 1987) was identified in Arizona and to this first finding the identification of a large number of impact structures on Earth followed (Hodge 1994). Shock metamorphic effects are associated with meteorite impact craters. Due to extremely high pressures, shatter cones are produced as well as planar features in quartz and feldspar grains, diaplectic glass and high-pressure mineral phases such as stishovite (French 1998).
MMOD Protection and Degradation Effects for Thermal Control Systems
NASA Technical Reports Server (NTRS)
Christiansen, Eric
2014-01-01
Micrometeoroid and orbital debris (MMOD) environment overview Hypervelocity impact effects & MMOD shielding MMOD risk assessment process Requirements & protection techniques - ISS - Shuttle - Orion/Commercial Crew Vehicles MMOD effects on spacecraft systems & improving MMOD protection - Radiators Coatings - Thermal protection system (TPS) for atmospheric entry vehicles Coatings - Windows - Solar arrays - Solar array masts - EVA Handrails - Thermal Blankets Orbital Debris provided by JSC & is the predominate threat in low Earth orbit - ORDEM 3.0 is latest model (released December 2013) - http://orbitaldebris.jsc.nasa.gov/ - Man-made objects in orbit about Earth impacting up to 16 km/s average 9-10 km/s for ISS orbit - High-density debris (steel) is major issue Meteoroid model provided by MSFC - MEM-R2 is latest release - http://www.nasa.gov/offices/meo/home/index.html - Natural particles in orbit about sun Mg-silicates, Ni-Fe, others - Meteoroid environment (MEM): 11-72 km/s Average 22-23 km/s.
LDEF meteoroid and debris database
NASA Technical Reports Server (NTRS)
Dardano, C. B.; See, Thomas H.; Zolensky, Michael E.
1994-01-01
The Long Duration Exposure Facility (LDEF) Meteoroid and Debris Special Investigation Group (M&D SIG) database is maintained at the Johnson Space Center (JSC), Houston, Texas, and consists of five data tables containing information about individual features, digitized images of selected features, and LDEF hardware (i.e., approximately 950 samples) archived at JSC. About 4000 penetrations (greater than 300 micron in diameter) and craters (greater than 500 micron in diameter) were identified and photodocumented during the disassembly of LDEF at the Kennedy Space Center (KSC), while an additional 4500 or so have subsequently been characterized at JSC. The database also contains some data that have been submitted by various PI's, yet the amount of such data is extremely limited in its extent, and investigators are encouraged to submit any and all M&D-type data to JSC for inclusion within the M&D database. Digitized stereo-image pairs are available for approximately 4500 features through the database.
Thermal Ablation Modeling for Silicate Materials
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq
2016-01-01
A thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in ablation simulations of the meteoroid or glassy Thermal Protection Systems for spacecraft. Time-dependent axi-symmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. For model validation, the surface recession of fused amorphous quartz rod is computed, and the recession predictions reasonably agree with available data. The present parametric studies for two groups of meteoroid earth entry conditions indicate that the mass loss through moving molten layer is negligibly small for heat-flux conditions at around 1 MW/cm(exp. 2).
A survey of southern hemisphere meteor showers
NASA Astrophysics Data System (ADS)
Jenniskens, Peter; Baggaley, Jack; Crumpton, Ian; Aldous, Peter; Pokorny, Petr; Janches, Diego; Gural, Peter S.; Samuels, Dave; Albers, Jim; Howell, Andreas; Johannink, Carl; Breukers, Martin; Odeh, Mohammad; Moskovitz, Nicholas; Collison, Jack; Ganju, Siddha
2018-05-01
Results are presented from a video-based meteoroid orbit survey conducted in New Zealand between Sept. 2014 and Dec. 2016, which netted 24,906 orbits from +5 to -5 magnitude meteors. 44 new southern hemisphere meteor showers are identified after combining this data with that of other video-based networks. Results are compared to showers reported from recent radar-based surveys. We find that video cameras and radar often see different showers and sometimes measure different semi-major axis distributions for the same meteoroid stream. For identifying showers in sparse daily orbit data, a shower look-up table of radiant position and speed as a function of time was created. This can replace the commonly used method of identifying showers from a set of mean orbital elements by using a discriminant criterion, which does not fully describe the distribution of meteor shower radiants over time.
NASA Technical Reports Server (NTRS)
Nakamura, Y.
1981-01-01
Information obtained with the Apollo lunar seismic stations is discussed. The four types of natural seismic sources that have been identified are described, viz., thermal moonquakes, deep moonquakes, meteoroid impacts, and shallow moonquakes. It is suggested that: (1) the thermal quakes represent the slow cracking and movement of surface rocks; (2) the deep quakes are induced by the tide-generating force of the earth's gravity; (3) the meteoroids responsible for most of the observed impacts are in the mass range from 1 to 100 kg and are clustered in groups near the earth's orbit; and (4) the shallow quakes are similar to intraplate earthquakes and indicate that the moon is as seismically active as the interior regions of the earth's tectonic plates. The structure of the lunar interior as inferred from seismic signals due to both the last three natural sources and 'artificial' impacts of used spacecraft is examined in detail.
Inflated concepts for the earth science geostationary platform and an associated flight experiment
NASA Technical Reports Server (NTRS)
Friese, G.
1992-01-01
Large parabolic reflectors and solar concentrators are of great interest for microwave transmission, solar powered rockets, and Earth observations. Collector subsystems have been under slow development for a decade. Inflated paraboloids have a great weight and package volume advantage over mechanically erected systems and, therefore, have been receiving greater attention recently. The objective of this program was to produce a 'conceptual definition of an experiment to assess in-space structural damping characteristics and effects of the space meteoroid environment upon structural integrity and service life of large inflatable structures.' The flight experiment was to have been based upon an inflated solar concentration, but much of that was being done on other programs. To avoid redundancy, the Earth Science Geostationary Platform (ESGP) was selected as a focus mission for the experiment. Three major areas were studied: the ESGP reflector configuration; flight experiment; and meteoroids.
Proposal for a Universal Particle Detector Experiment
NASA Technical Reports Server (NTRS)
Lesho, J. C.; Cain, R. P; Uy, O. M.
1993-01-01
The Universal Particle Detector Experiment (UPDE), which consists of parallel planes of two diode laser beams of different wavelengths and a large surface metal oxide semiconductor (MOS) impact detector, is proposed. It will be used to perform real-time monitoring of contamination particles and meteoroids impacting the spacecraft surface with high resolution of time, position, direction, and velocity. The UPDE will discriminate between contaminants and meteoroids, and will determine their velocity and size distribution around the spacecraft environment. With two different color diode lasers, the contaminant and meteroid composition will also be determined based on laboratory calibration with different materials. Secondary particles dislodged from the top aluminum surface of the MOS detector will also be measured to determine the kinetic energy losses during energetic meteoroid impacts. The velocity range of this instrument is 0.1 m/s to more than 14 km/s, while its size sensitivity is from 0.2 microns to millimeter-sized particles. The particulate measurements in space of the kind proposed will be the first simultaneous multipurpose particulate experiment that includes velocities from very slow to hypervelocities, sizes from submicrometer- to pellet-sized diameters, chemical analysis of the particulate composition, and measurements of the kinetic energy losses after energetic impacts of meteroids. The experiment will provide contamination particles and orbital debris data that are critically needed for our present understanding of the space environment. The data will also be used to validate contamination and orbital debris models for predicting optimal configuration of future space sensors and for understanding their effects on sensitive surfaces such as mirrors, lenses, paints, and thermal blankets.
Impact detections of temporarily captured natural satellites
NASA Astrophysics Data System (ADS)
Clark, David; Spurný, Pavel; Wiegert, Paul; Brown, Peter G.; Borovicha, Jiri; Tagliaferri, Ed; Shrbeny, Lukas
2016-10-01
Temporarily Captured Orbiters (TCOs) are Near-Earth Objects (NEOs) which make a few orbits of Earth before returning to heliocentric orbits. Only one TCO has been observed to date, 2006 RH120, captured by Earth for one year before escaping. Detailed modeling predicts capture should occur from the NEO population predominantly through the Sun-Earth L1 and L2 points, with 1% of TCOs impacting Earth and approximately 0.1% of meteoroids being TCOs. Although thousands of meteoroid orbits have been measured, none until now have conclusively exhibited TCO behaviour, largely due to difficulties in measuring initial meteoroid speed with sufficient precision. We report on a precise meteor observation of January 13, 2014 by a new generation of all-sky fireball digital camera systems operated in the Czech Republic as part of the European Fireball Network, providing the lowest natural object entry speed observed in decades long monitoring by networks world-wide. Modeling atmospheric deceleration and fragmentation yields an initial mass of ~5 kg and diameter of 15 cm, with a maximum Earth-relative velocity just over 11.0 km/s. Spectral observations prove its natural origin. Back-integration across observational uncertainties yields a 92 - 98% probability of TCO behaviour, with close lunar dynamical interaction. The capture duration varies across observational uncertainties from 48 days to 5+ years. We also report on two low-speed impacts recorded by US Government sensors, and we examine Prairie Network event PN39078 from 1965 having an extremely low entry speed of 10.9 km/s. In these cases uncertainties in measurement and origin make TCO designation uncertain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasson, J.T.; Ouyang, Xinwei; Wang, Jianmin
1989-03-01
The authors report concentrations of 14 elements in the metal of 38 iron meteorites and a pallasite. The meteorites are classified based on these data and on structural observations. Three samples are paired with previously classified irons; thus, these additional 35 irons raise the number of well-classified, independent iron meteorites to 598. One Yamato iron contains 342 mg/g Ni, the second highest Ni content in an IAB iron after Oktibbeha County. Two small irons from Western Australia appear to be metal nodules from mesosiderites. Several of the new irons are from Antarctica. Of 24 independent irons from Antarctica, 8 aremore » ungrouped. The fraction, 0.333, is much higher than the fraction 0.161 among all 598 classified irons. Statistical tests show that it is highly improbably ({approximately}2.9% probability) that the Antarctic population is a random sample of the larger population. The difference is probably related to the fact that the median mass of Antarctic irons is about two orders of magnitude smaller than that of non-Antarctic irons. It is doubtful that the difference results from fragmentation patterns yielding different size distributions favoring smaller masses among ungrouped irons. More likely is the possibility that smaller meteoroids tend to sample a larger number of asteroidal source regions, perhaps because small meteoroids tend to have higher ejection velocities or because small meteoroids have random-walked a greater increment of orbital semimajor axis away from that of the parent body.« less
Peculiar activity of the September epsilon-Perseids on 2013 September 9
NASA Astrophysics Data System (ADS)
Rendtel, Jürgen; Lyytinen, Esko; Molau, Sirko; Barentsen, Geert
2014-04-01
The September epsilon-Perseids (224 SPE) showed increased activity on 2013 September 9. The outburst was not completely unexpected but was not announced earlier. At the peak position we find a peculiar low population index from video data (r=1.45±0.15), applying a new technique. For calibration we used magnitude data of the shower off the peak (r=2.15±0.25) and of sporadic meteors observed during the same period (r=2.95±0.20). This is significantly lower than the long term average for the September epsilon-Perseids (r=2.50±0.25) and indicates that the meteoroids causing the 2013 outburst deviate from the average particle size distribution of the stream. Due to the very low value of r, the ZHR and meteoroid flux F reached rather moderate values: ZHR=32±8, flux F=2.3±0.6×10^{-3} km^{-2} h^{-1}. The centre of the outburst (fit of the peak profile) was found at sol=167.200° ± 0.005° corresponding to 2013 September 9, 2218 UT with a steeper ascending branch and possible sub-peaks. The duration (FWHM) was 0.034°, i.e. 50 minutes. Model calculations explain the 2013 outburst of the SPE based on the date and radiant of the 2008 outburst. The large number of minor to medium activity showers in September-October are interpreted as a group of meteoroid streams or trails which cause recognizeable rates only on a few occasions and remain below a detection limit over most of the time.
Proposal for a universal particle detector experiment
NASA Astrophysics Data System (ADS)
Lesho, J. C.; Cain, R. P.; Uy, O. M.
The Universal Particle Detector Experiment (UPDE), which consists of parallel planes of two diode laser beams of different wavelengths and a large surface metal oxide semiconductor (MOS) impact detector, is proposed. It will be used to perform real-time monitoring of contamination particles and meteoroids impacting the spacecraft surface with high resolution of time, position, direction, and velocity. The UPDE will discriminate between contaminants and meteoroids, and will determine their velocity and size distribution around the spacecraft environment. With two different color diode lasers, the contaminant and meteroid composition will also be determined based on laboratory calibration with different materials. Secondary particles dislodged from the top aluminum surface of the MOS detector will also be measured to determine the kinetic energy losses during energetic meteoroid impacts. The velocity range of this instrument is 0.1 m/s to more than 14 km/s, while its size sensitivity is from 0.2 microns to millimeter-sized particles. The particulate measurements in space of the kind proposed will be the first simultaneous multipurpose particulate experiment that includes velocities from very slow to hypervelocities, sizes from submicrometer- to pellet-sized diameters, chemical analysis of the particulate composition, and measurements of the kinetic energy losses after energetic impacts of meteroids. The experiment will provide contamination particles and orbital debris data that are critically needed for our present understanding of the space environment. The data will also be used to validate contamination and orbital debris models for predicting optimal configuration of future space sensors and for understanding their effects on sensitive surfaces such as mirrors, lenses, paints, and thermal blankets.
The 2011 Draconid Shower Risk to Earth-Orbiting Satellites
NASA Technical Reports Server (NTRS)
Cooke, William J.; Moser, Danielle E.
2010-01-01
Current meteor shower forecast models project a strong Draconid outburst, possibly a storm, on October 8, 2011, with a duration of approximately 7 hours and peaking between 19 and 21 hours UT. Predicted rates span an order of magnitude, with maximum Zenithal Hourly Rates (ZHRs) ranging from a few tens to several hundred. Calibration of the NASA MSFC Meteoroid Stream Model 1 to radar and optical observations of past apparitions, particularly the 2005 Draconid outburst 2, suggest that the maximum rate will be several hundreds per hour. Given the high spatial density of the Draconid stream, this implies a maximum meteoroid flux of 5-10 Draconids km(exp -2)/hr (to a limiting diameter of 1 mm), some 25-50 times greater than the normal sporadic flux of 0.2 km(exp -2)/ hr for particles of this size. Total outburst fluence, assuming a maximum ZHR of 750, is 15.5 Draconids km(exp -2), resulting in an overall 10x risk increase to spacecraft surfaces vulnerable to hypervelocity impacts by 1 mm particles. It is now established that a significant fraction of spacecraft anomalies produced by shower meteoroids (e.g. OLYMPUS and LandSat 5) are caused by electrostatic discharges produced by meteoroid impacts. In these cases, the charge generated is roughly proportional to v(exp 3.5(4)), giving a Draconid moving at 20 km/s approximately 1/80th the electrical damage potential of a Leonid of the same mass. In other words, a Draconid outburst with a maximum ZHR of 800 presents the same electrical risk as a normal Leonid shower with a ZHR of 15, assuming the mass indices and shower durations are the same. This is supported by the fact that no spacecraft electrical anomalies were reported during the strong Draconid outbursts of 1985 and 1998. However, the lack of past anomalies should not be taken as carte blanche for satellite operators to ignore the 2011 Draconids, as the upcoming outburst will constitute a period of enhanced risk for vehicles in near-Earth space. Each spacecrft is unique, and components have differing damage thresholds; programs are encouraged to conduct analyses to determine whether or not mitigation strategies are necessary for their vehicles.
On the existence of near-Earth-object meteoroid complexes producing meteorites
NASA Astrophysics Data System (ADS)
Trigo-Rodriguez, J.; Madiedo, J.; Williams, I.
2014-07-01
It is generally thought that meteorites are formed as a result of collisions within the main belt of asteroids [1]. They are delivered onto Earth-crossing orbits because of the effects of orbital resonances, primarily with Jupiter. About 15 meteorites are known where their passage through the atmosphere was observed and recorded, allowing the parameters of the pre-encounter orbit to be derived [2]. The cosmic-ray-exposure ages (CREAs) are suggesting that most meteorites have been exposed to cosmic rays for tens of millions of years (Myrs) [3], re-enforcing the belief that the process of modifying the orbit from being near-circular in the main belt to highly elliptical as an Earth-crossing orbit was a gradual process like the effects of resonance. However, there is growing evidence that some meteorite could originate directly from the near-Earth-object (NEO) population. A good example of this is the recent discovery of rare primitive groups in the Antarctic, an example being Elephant Moraine (EET) 96026: a C4/5 carbonaceous chondrite with a measured cosmic ray exposure age of only 0.28 Ma [4]. Here, we focus on recent dynamic links that have been established between meteorite-dropping bolides and NEOs that support the idea of short-life meteoroid streams that can generate meteoroids on Earth. The fact that such streams can exist allows rocky material from potentially-hazardous asteroids (PHA) to be sampled and investigated in the laboratory. The existence of meteoroid streams capable of producing meteorites has been proposed following the determination of accurate meteoroid orbits of fireballs obtained by the Canadian Meteorite Observation and Recovery Project (MORP) [5]. Some asteroids in the Earth's vicinity are undergoing both dynamical and collisional evolution on very short timescales [6]. Many of these objects are crumbly bodies that originated from the collisions between main-belt asteroids during their life-time. An obvious method of forming these complexes is fracturing. Many asteroids are known to be rubble piles and such structures can be unstable during a close approach to a planet due to tidal forces. The irregular shape of many fast-rotators can allow the YORP effect to increase the spin rate, also leading to fracturing [7]. The escape speed from a fragmenting asteroid is considerably smaller than the orbital velocity so a large amount of the initial mass can be ejected. The fragmentation process is likely to produce many metre-sized rocks as well as few tens of meters fragmental asteroids that could form a complex of fragments, all moving on nearly identical orbits. The lifetime of such orbital complexes is quite short (few tens of thousand of years) as consequence of planetary perturbations[8], except perhaps for those cases exhibiting orbits with high inclination, where lifetimes can be considerably higher [9]. Catastrophic disruptions in the main asteroid belt have been extensively studied, but little is known about the relevance of the process in the NEO population. The Spanish Fireball Network (SPMN) regularly monitors the skies and is obtaining evidence that NEO complexes can be a source of meteorites. By performing backward integrations of meteoroid orbits and NEO candidates, previously identified by using our ORAS software to compute several orbital similarity criteria, we have identified several complexes associated with NEOs of chondritic nature [10-12] and even one, 2012 XJ_{112} of likely achondritic nature [13]. Another recent example was probably the Feb 15th, 2013 Chelyabinsk superbolide. The meteorites recovered were shocked to a very high level [14,15], and the ˜19-meter-diameter Chelyabinsk NEA was probably a monolithic single stone produced from its presumable progenitor, the 2.2 km in diameter asteroid (86039) [16]. This association should, however, be tested by performing backward integrations of both orbits.
1970-01-01
This chart describes Skylab's Particle Collection device, a scientific experiment designed to study micro-meteoroid particles in near-Earth space and determine their abundance, mass distribution, composition, and erosive effects. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.
1970-01-01
This photograph shows Skylab's Particle Collection device, a scientific experiment designed to study micro-meteoroid particles in near-Earth space and determine their abundance, mass distribution, composition, and erosive effects. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.
The Košice meteorite fall: Atmospheric trajectory, fragmentation, and orbit
NASA Astrophysics Data System (ADS)
BorovičKa, Jiří; Tóth, Juraj; Igaz, Antal; Spurný, Pavel; Kalenda, Pavel; Haloda, Jakub; Svoreå, Ján; Kornoš, Leonard; Silber, Elizabeth; Brown, Peter; HusáRik, Marek
2013-10-01
The Košice meteorite fall occurred in eastern Slovakia on February 28, 2010, 22:25 UT. The very bright bolide was imaged by three security video cameras from Hungary. Detailed bolide light curves were obtained through clouds by radiometers on seven cameras of the European Fireball Network. Records of sonic waves were found on six seismic and four infrasonic stations. An atmospheric dust cloud was observed the next morning before sunrise. After careful calibration, the video records were used to compute the bolide trajectory and velocity. The meteoroid, of estimated mass of 3500 kg, entered the atmosphere with a velocity of 15 km s-1 on a trajectory with a slope of 60° to the horizontal. The largest fragment ceased to be visible at a height of 17 km, where it was decelerated to 4.5 km s-1. A maximum brightness of absolute stellar magnitude about -18 was reached at a height of 36 km. We developed a detailed model of meteoroid atmospheric fragmentation to fit the observed light curve and deceleration. We found that Košice was a weak meteoroid, which started to fragment under the dynamic pressure of only 0.1 MPa and fragmented heavily under 1 MPa. In total, 78 meteorites were recovered in the predicted fall area during official searches. Other meteorites were found by private collectors. Known meteorite masses ranged from 0.56 g to 2.37 kg. The meteorites were classified as ordinary chondrites of type H5 and shock stage S3. The heliocentric orbit had a relatively large semimajor axis of 2.7 AU and aphelion distance of 4.5 ± 0.5 AU. Backward numerical integration of the preimpact orbit indicates possible large variations of the orbital elements in the past due to resonances with Jupiter.
First Lunar Flashes Observed from Morocco (ILIAD Network): Implications for Lunar Seismology
NASA Astrophysics Data System (ADS)
Ait Moulay Larbi, Mamoun; Daassou, Ahmed; Baratoux, David; Bouley, Sylvain; Benkhaldoun, Zouhair; Lazrek, Mohamed; Garcia, Raphael; Colas, Francois
2015-07-01
We report the detection of two transient luminous events recorded on the lunar surface on February 6, 2013, at 06:29:56.7 UT and April 14, 2013, 20:00:45.4 from the Atlas Golf Marrakech observatory in Morocco. Estimated visual magnitudes are 9.4 ± 0.2 and 7.7 ± 0.2. We show that these events have the typical characteristics of impact flashes generated by meteoroids impacting the lunar surface, despite proof using two different telescopes is not available. Assuming these events were lunar impact flashes, meteoroid masses are 0.3 ± 0.05 and 1.8 ± 0.3 kg, corresponding to diameters of 7-8 and 14-15 cm for a density of 1500 kg m-3. The meteoroids would have produced craters of about 2.6 ± 0.3 and 4.4 ± 0.3 m in diameter. We then present a method based on the identification of lunar features illuminated by the Earthshine to determine the position of the flash. The method does not require any information about the observation geometry or lunar configuration. The coordinates are respectively 08.15° ± 0.15°S 59.1° ± 0.15°E and 26.81° ± 0.15°N 09.10° ± 0.15°W. Further improvement on the determination of the flash position is necessary for seismological applications. This studies demonstrates that permanent lunar impact flashes observation programs may be run in different parts of the globe using mid-sized telescopes. We call for the development of an international lunar impact astronomical detection networks that would represent an opportunity for scientific and cultural developments in countries where astronomy is under-represented.
Searching for Lunar Horizon Glow With the Lunar Orbiter Laser Altimeter (LOLA)
NASA Astrophysics Data System (ADS)
Barker, M. K.; Mazarico, E. M.; McClanahan, T. P.; Sun, X.; Smith, D. E.; Neumann, G. A.; Zuber, M. T.; Head, J. W., III
2017-12-01
The dust environment of the Moon is sensitive to the interplanetary meteoroid population and dust transport processes near the lunar surface, and this affects many aspects of lunar surface science and planetary exploration. The interplanetary meteoroid population poses a significant risk to spacecraft, yet it remains one of the more uncertain constituents of the space environment. Observed and hypothesized lunar dust transport mechanisms have included impact-generated dust plumes, electrostatic levitation, and dynamic lofting. Many details of the impactor flux and impact ejection process are poorly understood, a fact highlighted by recent discrepant estimates of the regolith mixing rate. Apollo-era observations of lunar horizon glow (LHG) were interpreted as sunlight forward-scattered by exospheric dust grains levitating in the top meter above the surface or lofted to tens of kilometers in altitude. However, recent studies have placed limits on the dust density orders of magnitude less than what was originally inferred, raising new questions on the time variability of the dust environment. Motivated by the need to better understand dust transport processes and the meteoroid population, the Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO) is conducting a campaign to search for LHG with the LOLA Laser Ranging (LR) system. Advantages of this LOLA LHG search include: (1) the LOLA-LR telescope can observe arbitrarily close to the Sun at any time during the year without damaging itself or the other instruments, (2) a long temporal baseline with observations both during and outside of meteor streams, which will improve the chances of detecting LHG, and (3) a focus on altitudes < 20 km, the same range as the majority of Apollo 15 LHG measurements. In this contribution, we describe the instrument, methodology, and preliminary results.
Determination of trajectories of fireballs using seismic network data
NASA Astrophysics Data System (ADS)
Ishihara, Y.
2006-12-01
Fireballs, Bolides, which are caused by high velocity passages of meteoroids through the atmosphere, generate shockwaves. Meteor shockwave provide us very important information (arrival time and amplitude) to study meteor physics. The shockwave arrival time data enable us to determine trajectories of the fireballs. On the other hand, the shockwave amplitude tells us size and ablation history of the meteoroid. Infrasound observation is one of the ways of detecting bolide shockwaves. However, we have no infrasound observational networks extends for large area with enough spatial distribution for determination of trajectories and estimate ablation histories. We have only a few infrasound arrays that have three or four elements, in the Japanese islands. Last decade, digital seismic networks are greatly improved for the purpose of monitoring micro earthquakes. Those seismic networks are quite sensitive for detecting micro ground vibration, and then those networks could detect not only seismic wave generated by earthquakes, but also ground oscillations generated by coupling of meteor shockwave with the ground near station. Last years, I analyses this kind of ground motion data recorded by seismic network, as meteor shockwave signals. For example, we estimate some great fireball's aerial path from arrival times of shockwaves (e.g., Ishihara et. al., 2003 Earth Planets, and Space, 2004 Geophysical Research. Letters.; Pujol et al., 2006 Planetary and Space Science), and we estimate sizes and ablation history of some great fireball and a meteorite fall (Ishihara et al., 2004 Meteoroids2004). In Japan, some great fireball falls occurred during 2004 to 2005. In this presentation, I show the trajectories of these fireballs determined from shockwave analysis. Some fireballs trajectories are also determined from photographic records. The trajectories determined from shockwave and that from photos show good agreement.
Looking for a correlation between terrestrial age and noble gas record of H chondrites
NASA Astrophysics Data System (ADS)
Loeken, Th.; Schultz, L.
1994-07-01
On the basis of statistically significant concentration differences of some trace elements, it has been suggested that H chondrites found in Antarctica and Modern Falls represent members of different extraterrestrial populations with different thermal histories. It was also concluded that H chondrites found in Victoria Land (Allan Hills) differ chemically from those found in Queen Maud Land (Yamato Mountains), an effect that could be based on the different terrestrial age distribution of both groups. This would imply a change of the meteoroid flux hitting the Earth on a timescale that is comparable to typical terrestrial ages of Antarctic chondrites. A comparison of the noble gas record of H chondrites from the Allan Hills icefields and Modern Fall shows that the distributions of cosmic-ray exposure ages and the concentrations of radiogenic He-4 and Ar-40 are very similar. In an earlier paper we compared the noble gas measurements of 20 Yamato H contents with meteorites from the Allan Hills region and Modern Falls. Similar distributions were found. The distribution of cosmic-ray exposure ages and radiogenic He-4 and Ar-40 gas contents as a function of the terrestrial age is investigated in these chondrites. The distribution shows the well-known 7-Ma-cluster indicating that about 40% of the H chondrites were excavated from their parent body in a single event. Both populations, Antarctic Meteorites and Modern Falls, exhibit the same characteristic feature: a major meteoroid-producing event about 7 Ma. This indicates that one H-group population delivers H chondrites to Antarctica and the rest of the world. Cosmic-ray exposure ages and thermal-history indicaters like radiogenic noble gases show no evidence of a change in the H chondrite meteoroid population during the last 200,000 years.
NASA Technical Reports Server (NTRS)
Kolomiyets, S. V.
2011-01-01
Some results of the International Heliophysical Year (IHY) Coordinated Investigation Program (CIP) number 65 Meteors in the Earth Atmosphere and Meteoroids in the Solar System are presented. The problem of hyperbolic and near-parabolic orbits is discussed. Some possibilities for the solution of this problem can be obtained from the radar observation of faint meteors. The limiting magnitude of the Kharkov, Ukraine, radar observation program in the 1970 s was +12, resulting in a very large number of meteors being detected. 250,000 orbits down to even fainter limiting magnitude were determined in the 1972-78 period in Kharkov (out of them 7,000 are hyperbolic). The hypothesis of hyperbolic meteors was confirmed. In some radar meteor observations 1 10% of meteors are hyperbolic meteors. Though the Advanced Meteor Orbit Radar (AMOR, New Zealand) and Canadian Meteor Orbit Radar (CMOR, Canada) have accumulated millions of meteor orbits, there are difficulties in comparing the radar observational data obtained from these three sites (New Zealand, Canada, Kharkov). A new global program International Space Weather Initiative (ISWI) has begun in 2010 (http://www.iswi-secretariat.org). Today it is necessary to create the unified radar catalogue of nearparabolic and hyperbolic meteor orbits in the framework of the ISWI, or any other different way, in collaboration of Ukraine, Canada, New Zealand, the USA and, possibly, Japan. Involvement of the Virtual Meteor Observatory (Netherlands) and Meteor Data Centre (Slovakia) is desirable too. International unified radar catalogue of near-parabolic and hyperbolic meteor orbits will aid to a major advance in our understanding of the ecology of meteoroids within the Solar System and beyond.
On a possible cometary origin of the object 2015TB145
NASA Astrophysics Data System (ADS)
Kokhirova, G. I.; Babadzhanov, P. B.; Khamroev, U. H.
2017-09-01
The Earth-crossing asteroid 2015TB145 was discovered on 10 October 2015 and on 31 October 2015 it already approached close to the Earth at the minimal distance. On the base of obtained radio images of the asteroid, the value of an albedo has estimated as p=0.06. Coming from the albedo value and the comet-like orbit, it was suggested, that the object is a dead comet. In order to verify the supposition, the orbital evolution of 2015TB145 was investigated under the perturbing action of major planets for the time interval of 50 kyrs. As a result, it was found that one cycle of variations of the argument of perihelion is equal to nearly 40 kyrs and during this period the object intersects the Earth's orbit eight times, i.e. it is the octuple crosser. Consequently, if the object has a cometary origin, then it can be associated with a meteoroid stream producing eight meteor showers which should be observable on the Earth. Features of the predicted meteor showers, theoretically associated with 2015TB145, were calculated and a search for observable showers identical to predicted ones was realized using all published catalogues. It turned out, that seven of eight predicted showers were identified with the active observable meteor showers. So, comet-like orbit, low value of an albedo and association with the meteoroid stream producing identified showers are strong evidences pointing that 2015TB145 is really inactive comet. A conclusion was made that the potentially hazardous object 2015TB145 is very likely extinct nucleus of a parent comet of the found meteoroid stream.
Characteristics of the dust trail of 67P/Churyumov-Gerasimenko: an application of the IMEX model
NASA Astrophysics Data System (ADS)
Soja, R. H.; Sommer, M.; Herzog, J.; Agarwal, J.; Rodmann, J.; Srama, R.; Vaubaillon, J.; Strub, P.; Hornig, A.; Bausch, L.; Grün, E.
2015-11-01
Context. Here we describe a new model of the dust streams of comet 67P/Churyumov-Gerasimenko that has been developed using the Interplanetary Meteoroid Environment for Exploration (IMEX). This is a new universal model for recently created cometary meteoroid streams in the inner solar system. Aims: The model can be used to investigate characteristics of cometary trails: here we describe the model and apply it to the trail of comet 67P/Churyumov-Gerasimenko to develop our understanding of the trail and assess the reliability of the model. Methods: Our IMEX model provides trajectories for a large number of dust particles released from ~400 short-period comets. We use this to generate optical depth profiles of the dust trail of comet 67P/Churyumov-Gerasimenko and compare these to Spitzer observations of the trail of this comet from 2004 and 2006. Results: We find that our model can match the observed trails if we use very low ejection velocities, a differential size distribution index of α ≈ -3.7, and a dust production rate of 300-500 kg s-1 at perihelion. The trail is dominated by mm-sized particles and can contain a large proportion of dust produced before the most recent apparition. We demonstrate the strength of IMEX in providing time-resolved histories of meteoroid streams. We find that the passage of Mars through the stream in 2062 creates visible gaps. This indicates the utility of this model in providing insight into the dynamical evolution of streams and trails, as well as impact hazard assessment for spacecraft on interplanetary missions. A movie is available in electronic form at http://www.aanda.org
Particle Collections - Skylab Experiment S149
NASA Technical Reports Server (NTRS)
1970-01-01
This photograph shows Skylab's Particle Collection device, a scientific experiment designed to study micro-meteoroid particles in near-Earth space and determine their abundance, mass distribution, composition, and erosive effects. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.
Particle Collection - Skylab Experiment S149
NASA Technical Reports Server (NTRS)
1970-01-01
This chart describes Skylab's Particle Collection device, a scientific experiment designed to study micro-meteoroid particles in near-Earth space and determine their abundance, mass distribution, composition, and erosive effects. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.
1965-02-16
The SA-9 (Saturn I Block II), the eighth Saturn I flight, lifted off on February 16, 1965. This was the first Saturn with an operational payload, the Pegasus I meteoroid detection satellite. SA-9 successfully deployed the Pegasus I, NASA's largest unmarned instrumented satellite, into near Earth orbit.
NASA Technical Reports Server (NTRS)
Pokorny, P.; Janches, D.; Brown, P. G.; Hormaechea, J. L.
2017-01-01
Over a million individually measured meteoroid orbits were collected with the Southern Argentina Agile MEteor Radar (SAAMER) between 2012-2015. This provides a robust statistical database to perform an initial orbital survey of meteor showers in the Southern Hemisphere via the application of a 3D wavelet transform. The method results in a composite year from all 4 years of data, enabling us to obtain an undisturbed year of meteor activity with more than one thousand meteors per day. Our automated meteor shower search methodology identified 58 showers. Of these showers, 24 were associated with previously reported showers from the IAU catalogue while 34 showers are new and not listed in the catalogue. Our searching method combined with our large data sample provides unprecedented accuracy in measuring meteor shower activity and description of shower characteristics in the Southern Hemisphere. Using simple modeling and clustering methods we also propose potential parent bodies for the newly discovered showers.
NASA Astrophysics Data System (ADS)
Pokorný, P.; Janches, D.; Brown, P. G.; Hormaechea, J. L.
2017-07-01
Over a million individually measured meteoroid orbits were collected with the Southern Argentina Agile MEteor Radar (SAAMER) between 2012-2015. This provides a robust statistical database to perform an initial orbital survey of meteor showers in the Southern Hemisphere via the application of a 3D wavelet transform. The method results in a composite year from all 4 years of data, enabling us to obtain an undisturbed year of meteor activity with more than one thousand meteors per day. Our automated meteor shower search methodology identified 58 showers. Of these showers, 24 were associated with previously reported showers from the IAU catalogue while 34 showers are new and not listed in the catalogue. Our searching method combined with our large data sample provides unprecedented accuracy in measuring meteor shower activity and description of shower characteristics in the Southern Hemisphere. Using simple modeling and clustering methods we also propose potential parent bodies for the newly discovered showers.
MST radar observations of Perseid meteor shower 2004
NASA Astrophysics Data System (ADS)
Venkata Phani Kumar, D.; Reddy, K. Chenna; Yellaiah, G.
2006-09-01
There was a special attention for Perseid meteor shower observations in view of the predictions of an intense activity on 11th August 2004 caused by a filament of dust drifting across the Earth's orbit. Results of a systematic study of Perseid meteor shower observations, carried out during 12-15 August 2004 using Indian MST radar are presented. Based on over 27 hours of observing time, we detected 2260 meteor echoes occurring between 80 km and 120 km with a mean height of 103 km. For our observations, the peak activity of the shower occured on 12/13 August, corresponding to solar longitude lambdao = 140.565± 0.16 with an average rate of 250 meteor echoes per hour. The SNR distribution of the echoes observed during the shower indicates that the smaller size meteoroids are more compared to larger size meteoroids in the perseid meteor stream. The three distinct peaks observed in the shower activity is presented and discussed.
Meteoroid stream flux densities and the zenith exponent
NASA Astrophysics Data System (ADS)
Molau, Sirko; Barentsen, Geert
2013-01-01
The MetRec software was recently extended to measure the limiting magnitude in real-time, and to determine meteoroid stream flux densities. This paper gives a short overview of the applied algorithms. We introduce the MetRec Flux Viewer, a web tool to visualize activity profiles on- line. Starting from the Lyrids 2011, high-quality flux density profiles were derived from IMO Video Network observations for every major meteor shower. They are often in good agreement with visual data. Analyzing the 2011 Perseids, we found systematic daily variations in the flux density profile, which can be attributed to a zenith exponent gamma > 1.0. We analyzed a number of meteor showers in detail and found zenith exponent variations from shower to shower in the range between 1.55 and 2.0. The average value over all analyzed showers is gamma = 1.75. In order to determine the zenith exponent precisely, the observations must cover a large altitude range (at least 45 degrees).
Forbidden mass ranges for shower meteoroids
NASA Astrophysics Data System (ADS)
Moorhead, Althea V.
2017-10-01
Burns et al. (1979) use the parameter β to describe the ratio of radiation pressure to gravity for a particle in the Solar System. The central potential that these particles experience is effectively reduced by a factor of (1 - β), which in turn lowers the escape velocity. Burns et al. (1979) derived a simple expression for the value of β at which particles ejected from a comet follow parabolic orbits and thus leave the Solar System; we expand on this to derive an expression for critical β values that takes ejection velocity into account, assuming geometric optics. We use our expression to compute the critical β value and corresponding mass for cometary ejecta leading, trailing, and following the parent comet’s nucleus for 10 major meteor showers. Finally, we numerically solve for critical β values in the case of non-geometric optics. These values determine the mass regimes within which meteoroids are ejected from the Solar System and therefore cannot contribute to meteor showers.
NASA Technical Reports Server (NTRS)
Southworth, R. B.; Mccrosky, R. E.
1970-01-01
An overview of research on radio and radar meteors accomplished during the past decade is presented, and the work of the past year is highlighted. Velocity distribution and mass flux data are obtained for meteors in the range 10 to 0.0001 g, the size believed to be the principal hazard to space missions. The physical characteristics of mass, structure and density, luminosity, and ablation are briefly described, and the formulation of a theory for interactions of ionization and excitation during collision of atomic particles is mentioned. Five classes of meteoroids are identified, including the two of iron and stone meteorites. Stream meteors associated with known comets are Classes A or C, and parent comets of Class B streams are not observed. Class A meteoroids are identified with the core of a cometary nucleus, Class C with less dense surface of the nucleus after sublimation of ices, and Class B with less dense cores of smaller cometary nuclei. Atmospheric meteor phenomena associated with winds and gravity waves, density and temperature, atomic oxygen, and meteor rate changes are mentioned.
Formation of the Aerosol of Space Origin in Earth's Atmosphere
NASA Technical Reports Server (NTRS)
Kozak, P. M.; Kruchynenko, V. G.
2011-01-01
The problem of formation of the aerosol of space origin in Earth s atmosphere is examined. Meteoroids of the mass range of 10-18-10-8 g are considered as a source of its origin. The lower bound of the mass range is chosen according to the data presented in literature, the upper bound is determined in accordance with the theory of Whipple s micrometeorites. Basing on the classical equations of deceleration and heating for small meteor bodies we have determined the maximal temperatures of the particles, and altitudes at which they reach critically low velocities, which can be called as velocities of stopping . As a condition for the transformation of a space particle into an aerosol one we have used the condition of non-reaching melting temperature of the meteoroid. The simplified equation of deceleration without earth gravity and barometric formula for the atmosphere density are used. In the equation of heat balance the energy loss for heating is neglected. The analytical solution of the simplified equations is used for the analysis.
Forbidden Mass Ranges for Shower Meteoroids
NASA Technical Reports Server (NTRS)
Moorhead, Althea V.
2017-01-01
Burns et al. (1979) use the parameter beta to describe the ratio of radiation pressure to gravity for a particle in the Solar System. The central potential that these particles experience is effectively reduced by a factor of (1- beta ), which in turn lowers the escape velocity. Burns et al. (1979) derived a simple expression for the value of beta at which particles ejected from a comet follow parabolic orbits and thus leave the Solar System; we expand on this to derive an expression for critical beta values that takes ejection velocity into account, assuming geometric optics. We use our expression to compute the critical value and corresponding mass for cometary ejecta leading, trailing, and following the parent comet's nucleus for 10 major meteor showers. Finally, we numerically solve for critical beta values in the case of non-geometric optics. These values determine the mass regimes within which meteoroids are ejected from the Solar System and therefore cannot contribute to meteor showers.
NASA Technical Reports Server (NTRS)
Moser, D. E.; Suggs, R. M.; Swift, W. R.; Suggs, R. J.; Cooke, W. J.; Diekmann, A. M.; Koehler, H. M.
2011-01-01
Since early 2006, NASA s Marshall Space Flight Center has been routinely monitoring the Moon for impact flashes produced by meteoroids striking the lunar surface. During this time, several meteor showers have produced multiple impact flashes on the Moon. The 2006 Geminids, 2007 Lyrids, and 2008 Taurids were observed with average rates of 5.5, 1.2, and 1.5 meteors/hr, respectively, for a total of 12 Geminid, 12 Lyrid, and 12 Taurid lunar impacts. These showers produced a sufficient, albeit small sample of impact flashes with which to perform a luminous efficiency analysis similar to that outlined in Bellot Rubio et al. (2000a, b) for the 1999 Leonids. An analysis of the Geminid, Lyrid, and Taurid lunar impacts is carried out herein in order to determine the luminous efficiency in the 400-800 nm wavelength range for each shower. Using the luminous efficiency, the kinetic energies and masses of these lunar impactors can be calculated from the observed flash intensity.
NASA Technical Reports Server (NTRS)
See, Thomas H.; Mack, Kimberly S.; Warren, Jack L.; Zolensky, Michael E.; Zook, Herbert A.
1993-01-01
This report focuses on the data acquired by detailed examination of LDEF intercostals, 68 of which are now in possession of the Meteoroid and Debris Special Investigation Group (M&D SIG) at JSC. In addition, limited data will be presented for several small sections from the A0178 thermal control blankets that were examined/counted prior to being shipped to Principal Investigators (PI's) for scientific study. The data presented here are limited to measurements of crater and penetration-hole diameters and their frequency of occurrence which permits, yet also constrains, more model-dependent, interpretative efforts. Such efforts will focus on the conversion of crater and penetration-hole sizes to projectile diameters (and masses), on absolute particle fluxes, and on the distribution of particle-encounter velocities. These are all complex issues that presently cannot be pursued without making various assumptions which relate, in part, to crater-scaling relationships, and to assumed trajectories of natural and man-made particle populations in LEO that control the initial impact conditions.
Fully correcting the meteor speed distribution for radar observing biases
NASA Astrophysics Data System (ADS)
Moorhead, Althea V.; Brown, Peter G.; Campbell-Brown, Margaret D.; Heynen, Denis; Cooke, William J.
2017-09-01
Meteor radars such as the Canadian Meteor Orbit Radar (CMOR) have the ability to detect millions of meteors, making it possible to study the meteoroid environment in great detail. However, meteor radars also suffer from a number of detection biases; these biases must be fully corrected for in order to derive an accurate description of the meteoroid population. We present a bias correction method for patrol radars that accounts for the full form of ionization efficiency and mass distribution. This is an improvement over previous methods such as that of Taylor (1995), which requires power-law distributions for ionization efficiency and a single mass index. We apply this method to the meteor speed distribution observed by CMOR and find a significant enhancement of slow meteors compared to earlier treatments. However, when the data set is severely restricted to include only meteors with very small uncertainties in speed, the fraction of slow meteors is substantially reduced, indicating that speed uncertainties must be carefully handled.
NASA Technical Reports Server (NTRS)
Carollo, S. F.; Davis, J. M.; Dance, W. E.
1973-01-01
Two types of sensor designs were investigated: (1)a polysulfone dielectric film with vapor-deposited aluminum and gold sensor plates, bonded to a relatively thick aluminum substrate, and (2) an aluminum oxide (A1203) dielectric layer prepared on an aluminum substrate by anodization, with a layer of vapor-deposited aluminum providing one sensor plate and the substrate serving as the other plate. In the first design, specimens were prepared which indicate the state of the art for application of this type of sensor for elements of a meteoroid detection system having an area as large as 10 sq M. Techniques were investigated for casting large-area polysulfone films on the surface of water and for transferring the films from the water. Methods of preparing sensors by layering of films, the deposition of capacitor plates, and sensor film-to-substrate bonding, as well as techniques for making electrical connections to the capacitor plates, were studied.
Optical Meteor Fluxes and Application to the 2015 Perseids
NASA Technical Reports Server (NTRS)
Blaauw, R. C.; Campbell-Brown, M.; Kingery, A.
2016-01-01
This paper outlines new methods to measure optical meteor fluxes for showers and sporadic sources. Many past approaches have found the collecting area of a detector at a fixed 100 km altitude, but this approach considers the full volume, finding the area in two km height intervals based on the position of the shower or sporadic source radiant and the population's velocity. Here, the stellar limiting magnitude is found every 10 minutes during clear periods and converted to a limiting meteor magnitude for the shower or sporadic source having fluxes measured, which is then converted to a limiting mass. The final output is a mass limited flux for meteor showers or sporadic sources. Presented are the results of these flux methods as applied to the 2015 Perseid meteor shower as seen by the Meteoroid Environment Office's eight wide-field cameras. The peak Perseid flux on the night of August 13, 2015, was measured to be 0.002989 meteoroids/km2/hr down to 0.00051 grams, corresponding to a ZHR of 100.7.
An Ongoing Program for Monitoring the Moon for Meteoroid Impacts (Abstract)
NASA Astrophysics Data System (ADS)
Cudnik, B.; Saganti, S.; Ali, F.; Ali, S.; Beharie, T.; Anugwom, B.
2017-12-01
(Abstract only) Lunar meteor impacts are surprisingly frequent phenomena, with well over one hundred observable events occurring each year. Of these a little over half arise from members of annual meteor showers (e.g. Perseids, Leonids, etc.), with the rest being sporadic in origin. Five years ago, I (BC) introduced to the SAS Symposium the idea of observing lunar meteoroid impact phenomena and applying these observations to a space mission (LADEE-Lunar Atmosphere and Dust Environment Explorer) that launched the following year. Now, five years later I revisit and reintroduce the activities of the Association of Lunar and Planetary Observers-Lunar Meteoritic Impact Search (ALPO-LMIS) section and share some of the latest observations that have been received. For over 17 years now, ALPO has hosted the LMIS section, for which I have served as coordinator since its inception. In this paper, I will revisit the main ideas of the earlier paper, share some recent observations of lunar meteors, and provide new initiatives and projects interested persons can participate in.
Orbital debris and meteoroids: Results from retrieved spacecraft surfaces
NASA Astrophysics Data System (ADS)
Mandeville, J. C.
1993-08-01
Near-Earth space contains natural and man-made particles, whose size distribution ranges from submicron sized particles to cm sized objects. This environment causes a grave threat to space missions, mainly for future manned or long duration missions. Several experiments devoted to the study of this environment have been recently retrieved from space. Among them several were located on the NASA Long Duration Exposure Facility (LDEF) and on the Russian MIR Space Station. Evaluation of hypervelocity impact features gives valuable information on size distribution of small dust particles present in low Earth orbit. Chemical identification of projectile remnants is possible in many instances, thus allowing a discrimination between extraterrestrial particles and man-made orbital debris. A preliminary comparison of flight data with current modeling of meteoroids and space debris shows a fair agreement. However impact of particles identified as space debris on the trailing side of LDEF, not predicted by the models, could be the result of space debris in highly excentric orbits, probably associated with GTO objects.
Dynamical Evolution of Asteroids and Meteoroids Using the Yarkovsky Effect
NASA Technical Reports Server (NTRS)
Bottke, William F., Jr.; Vokrouhlicky, David; Rubincam, David P.; Broz, Miroslav; Smith, David E. (Technical Monitor)
2001-01-01
The Yarkovsky effect is a thermal radiation force which causes objects to undergo semimajor axis drift and spin up/down as a function of their spin, orbit, and material properties. This mechanism can be used to (i) deliver asteroids (and meteoroids) with diameter D < 20 km from their parent bodies in the main belt to chaotic resonance zones capable of transporting this material to Earth-crossing orbits, (ii) disperse asteroid families, with drifting bodies jumping or becoming trapped in mean-motion and secular resonances within the main belt, and (iii) modify the rotation rates of asteroids a few km in diameter or smaller enough to explain the excessive number of very fast and very slow rotators among the small asteroids. Accordingly, we suggest that nongravitational forces, which produce small but meaningful effects on asteroid orbits and rotation rates over long timescales, should now be considered as important as collisions and gravitational perturbations to our overall understanding of asteroid evolution.
NASA Technical Reports Server (NTRS)
Jenniskens, Peter S. I.; Packan, D.; Laux, C.; Wilson, Mike; Boyd, I. D.; Kruger, C. H.; Popova, O.; Fonda, M.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
The rarefied and high Mach number (up to 270) of the flow field of a typical meteoroid as it enters the Earth's atmosphere implies conditions of ablation and atmospheric chemistry that have proven to be as difficult to grasp as the proverbial shooting star. An airborne campaign was organized to study these processes during an intense Leonid shower. A probe of molecular band emission now demonstrates that the flash of light from a common meteor originates in the wake of the object rather than in the meteor head. A new theoretical approach using the direct simulation Monte Carlo technique demonstrates that the ablation process is critical in heating the air in that wake. Air molecules impinge on a dense cloud of ablated material in front of the meteoroid head into an extended wake that has the observed excitation temperatures. These processes determine what extraterrestrial materials may have been delivered to Earth at the time of the origin of life.
Asteroids, Comets, Meteors 1991
NASA Technical Reports Server (NTRS)
Harris, Alan W. (Editor); Bowell, Edward (Editor)
1992-01-01
Papers from the conference are presented and cover the following topics with respect to asteroids, comets, and/or meteors: interplanetary dust, cometary atmospheres, atmospheric composition, comet tails, astronomical photometry, chemical composition, meteoroid showers, cometary nuclei, orbital resonance, orbital mechanics, emission spectra, radio astronomy, astronomical spectroscopy, photodissociation, micrometeoroids, cosmochemistry, and interstellar chemistry.
Mass extinctions caused by large bolide impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, L.W.
1987-07-01
Evidence indicates that the collision of Earth and a large piece of Solar System derbris such as a meteoroid, asteroid or comet caused the great extinctions of 65 million years ago, leading to the transition from the age of the dinosaurs to the age of the mammals.
1965-05-25
In this photo, Dr. von Braun anxiously awaits the launch of the Saturn I vehicle (SA-8) in the Launch Complex Control Center at the Kennedy Space Center in Florida on May 25, 1965. The SA-8 mission made the first night launch and deployed the Pegasus II micro meteoroid detection satellite.
NASA Astrophysics Data System (ADS)
Kastinen, D.; Kero, J.
2017-09-01
We present the current status and first results from a Monte Carlo-type simulation toolbox for Solar System small body dynamics. We also present fundamental methods for evaluating the results of this type of simulations using convergence criteria. The calculations consider a body in the Solar System with a mass loss mechanism that generates smaller particles. In our application the body, or parent body, is a comet and the mass loss mechanism is a sublimation process. In order to study mass propagation from parent bodies to Earth, we use the toolbox to sample the uncertainty distributions of relevant comet parameters and to find the resulting Earth influx distributions. The initial distributions considered represent orbital elements, sublimation distance, cometary and meteoroid densities, comet and meteoroid sizes and cometary surface activity. Simulations include perturbations from all major planets, radiation pressure and the Poynting-Robertson effect. In this paper we present the results of an initial software validation performed by producing synthetic versions of the 1933, 1946, 2011 and 2012 October Draconids meteor outbursts and comparing them with observational data and previous models. The synthetic meteor showers were generated by ejecting and propagating material from the recognized parent body of the October Draconids; the comet 21P/Giacobini-Zinner. Material was ejected during 17 perihelion passages between 1866 and 1972. Each perihelion passage was sampled with 50 clones of the parent body, all producing meteoroid streams. The clones were drawn from a multidimensional Gaussian distribution on the orbital elements, with distribution variances proportional to observational uncertainties. In the simulations, each clone ejected 8000 particles. Each particle was assigned an individual weight proportional to the mass loss it represented. This generated a total of 6.7 million test particles, out of which 43 thousand entered the Earth's Hill sphere during 1900-2020 and were considered encounters. The simulation reproduces the predictions and observations of the 1933, 1946, 2011 and 2012 October Draconids, including the unexpected but measured deviation of the meteoroid mass index from a power law in 2012 as compared to 2011. We show that when convergence is sufficient in the simulation, the fraction between two encountered mass distributions is independent of the assumed input mass distribution. Finally, we predict an outburst for the 2018 October Draconids with a peak on October 8-9 that could be up to twice as large as the 2011 and 2012 outbursts.
2007-06-15
particles ( asteroids and meteoroids), energetic charged particles (ions, protons, electrons, etc.), and electromagnetic and ionizing radiation (x-rays...These protocols include a ban on Non-Detectable Fragments; restrictions on the use of Mines , Booby Traps, and Other Devices; prohibitions on certain...
The Relocation of Particulate Contamination During Space Flight
NASA Technical Reports Server (NTRS)
Barengoltz, J.; Edgars, D.
1975-01-01
A computer simulation program to model the redistribution of particulate contaminants on a spacecraft after launch is developed. The component models for particulate adhesion, meteoroid impact, and electrostatic forces are described and intermediate results are presented. The results of a sample calculation show that the recontamination process is important.
The Shock and Vibration Bulletin. Part 3. Skylab, Vibration Testing and Analysis
1973-06-01
Zft- ,Instrument Unit - (Acoustic Test Only) -orward Compartment Crew Ouarters Meteoroid Shield IntertageTACS Spheres (Acoustic Tesi - Radiator...weighs more than the lower floor. You Mru ertes: You hadn’t flown this struc- might feel that since the analysis approach wasconfirmed on the upper floor
Structure duplicating problem with solar array wing number one on Skylab
1973-06-05
S73-27406 (5 June 1973) --- This structure duplicates the current problem with solar array wing number one on Skylab. The wing is being held against the side of the Orbital Workshop by what appears to be a strip of metal from the Meteoroid shield. Photo credit: NASA
Bright Perseids 2007-2012 statistics. Estimation of collision risks in circumterrestrial space
NASA Astrophysics Data System (ADS)
Murtazov, A.
2013-09-01
Bright meteors are of serious hazard for space vehicles. In the Persieds shower these are the meteors brighter than 0m [2]. During 2007-2012 we conducted wide-angle CCD observations of bright Perseids [3-5]. Observations were performed near Ryazan, Russia, (= 54.467 N, λ=39.750 E, H=200 m) using a Watec 902H camera and a Computar T2314FICS lens with the effective FOV of 140×100 arc degrees directed towards the local zenith. The sky control and meteor detection were provided using a Pinnacle Media Center EN or the Contrast as a grabber and an Intel Core.2 CPU processor, 1.83GHz, 500Mb RAM. Our results as compared to the visual meteors total number (IMO) are shown in Fig. 1. The averaged Perseids maximum lies within the solar longitudes 140.00-140.25 and here the average total shower spatial density is (80±6)·10-9km-3. The bright Perseids average spatial density maximum is about (6±2) 10-9km-3. The bright Perseids average percentage in the shower is calculated as the integrals ratio under the curves in Fig. 1 and is equal to 5% for the presented range of solar longitudes. It is natural to expect that the space densities of meteoroids decrease exponentially from the maximum [1]: D = D0exp{-B|λ-λ0|}, (1) where: D0 is the maximum meteor spatial density near the solar longitude λ0 and B - the factor determined empirically from observations. The meteoroid flux F is equal to the number of particles passing through the elementary area per time unit: F(λ) = D(λ)·v, (2) where: v - is the meteor shower velocity. During the Perseids' maximum (D0=6·10-9km-3 and v=59km/s) the bright meteoroid flux was equal to F (3.8±1.1)10-7km-2s-1, which corresponds to the hour rate HR15 for our camera FOV. The collision risk R here amounted to one collision per month on average with a 1 sq. km plane located normal to the meteor shower. An artificial space object rotating around the Earth constantly changes its orientation relative to the meteor shower, the Sun, and a ground-based observer. From time to time, the Earth occults the satellite from meteoroids. The number of collisions between this meteor shower's dangerous meteoroids and the satellite during the time Т of its flight around the Earth is 6]: N = K1·K2·K3·S·F (λ)·T. (3) Here К1 accounts for the Earth's geliocentric position in the current season relative to the meteor shower radiant. К2 accounts for the satellite's plane surfaces relative to the meteor shower radiant. К3 is defined by the satellite's orbit parameters. Calculations are done in the ecliptic reference system (Fig. 2), wherein a satellite can be considered located in the ecliptic plane. In this figure: N is the normal to the satellite's surface; , , Е - directions to the vernal equinoctial point, the Sun and the Earth; λR, λ, - ecliptic longitudes of the meteor radiant and the Sun; λE - the ecliptic satellitecentric Earth longitude; bR and bE - consequent ecliptic latitudes of meteor shower radiant and the Earth.
The Orbital Distribution of Earth-crossing Asteroids and Meteoroids
NASA Astrophysics Data System (ADS)
Benoit, P. H.; Sears, D. W. G.
1993-07-01
The relationship between meteorites and Earth-crossing asteroids and between individual meteorites and meteor showers has been the subject of debate for some time. Recently, links have been claimed between certain meteorites and meteoroid complexes [e.g., 1] and it has been suggested that some meteorites are members of orbital "streams" [2]. It is difficult to evaluate these ideas because of the lack of appropriate measureable properties in the meteorites themselves. Cosmic ray exposure ages provide one approach but most cosmogenic nuclides have large halflives and hence generally reflect the long term radiation exposure of the body rather than the short term orbital evolution leading up to Earth impact. Here we use natural thermoluminescence (TL) data to determine the "average" perihelion of ordinary chondrites among the modern falls over periods of time of less than 10^3-10^5 years prior to Earth impact. The level of natural TL of a meteorite (at a given glow curve temperature) is a function of buildup through radiation dose (which, in turn, is a function of depth or "shielding" and external cosmic ray flux) and decay through thermal draining [3]. The shallow TL vs. depth profile observed in lunar cores [4] can, after correction for irradiation geometry, be used to to calculate TL profiles in meteoroid-sized bodies. Our new calculations indicate a range of natural TL of only about 15% in large meteoroid-sized bodies and an even smaller range in smaller bodies. The "half-life" of TL is far greater than the solar/cosmic ray flux cycle and hence variations in the external flux over time are expected to have only very minor effects. It is thus possible to calculate an "irradiation temperature" for a meteorite using its natural TL level, which can be shown through decay calculations to largely reflect the perihelion of the meteoroid body. The time period over which this irradiation temperature is averaged is a function of the temperature (perihelion); the period is <10^3 years at 0.7 AU, <10^4 years at 0.9 AU, <10^5 years at 1.0 AU and <5 x 10^6 years at >1.2 AU. Conversion of irradiation temperatures to perihelion requires that a value for meteoroid albedo be assumed; in the present analysis we assume such bodies have an albedo of ~0.2. For a collection of H, L, and LL modern falls (Fig. 1) we find a perihelion distribution that is fairly similar to those suggested by other observations. Perihelia for modern falls tend to be concentrated between 0.9 and 1.0 AU. However, our distribution is most similar to that found for ordinary chondrite-like fireballs by Wetherill and ReVelle [5] in that we find a large number of meteorites with perihelia between 0.8 and 0.9 AU. About 10% of modern falls have perihelia <0.7 AU and about 5% of modern falls apparently struck the Earth prior to reaching thermal equilibrium after evolving from orbits with perihelia >1.0 AU and thus have 2 calculated perihelia >1.0 AU. We observe no apparent direct link between any group of meteorites and individual Q asteroids (Fig. 1). Our data support the conclusions of orbital calculations for Lost City [6] and Innisfree, [7] which suggest that Lost City had a perihelion of ~1.0 AU for at least the last 10^5 years and that Innisfree had a perihelion as low as 0.8 AU within the last 10^5 years. Our data do not support a direct link between Farmington (with a TL-derived perihelion of 0.82) and the Taurid meteoroid complex (perihelion of ~0.4) [1]. We also observe a tendency for meteorites with large cosmic ray exposure ages (>35 Ma) to have shallower perihelia, typically close to 0.8 AU, than those with relatively short cosmic ray exposure ages, which tend to have perihelia between 0.85-1.0 AU. In summary, we find that natural TL data can be used to quantitatively derive the perihelia of meteorite falls. These data are free of potential observational biases (such as those present in, for example, time-of-fall data) and assumptions of orbital parameters (which are a problem for orbits calculated from the radiants of observed falls). Potential applications of these data include investigation of possible meteorite "streams" [2] and exploring questions such as whether different types and classes of meteorites have different orbital distributions [8]. References: [1] Steel D. I. et al. (1991) Mon. R. Astron. Soc., 251, 632-648. [2] Wolf S. F. and Lipschutz M. E. (1992) Meteoritics, 27, 308. [3] Benoit P. H. et al. (1991) Icarus, 94, 311-325. [4] Benoit P. H. and Sears D. W. G. (1993) LPS XXIV, 95- 96. [5] Wetherill G. W. and ReVelle D. O. (1981) Icarus, 48, 308- 328. [6] Williams J. G. (1975) JGR, 80, 2914-2916. [7] Galibina I. V. and Terent'eva A. K. (1987) Solar Sys. Res., 21, 160-166. [8] Graf Th. and Marti K. (1991) LPS XXII, 473-474.
Anglin, F. M.; Haddon, R. A. W.
1988-01-01
At 4:20 local time on September 19, 1986, Mrs. Laurie Harder saw a meteor passing across the sky above her home in Yellowknife, N.W.T. She reported her observation to Yellowknife Seismic Station staff who examined the records of the Yellowknife seismic array to see if the associated meteoroid had hit Earth and generated observalbe seismic signals.
Collisional and dynamic evolution of dust from the asteroid belt
NASA Technical Reports Server (NTRS)
Gustafson, Bo A. S.; Gruen, Eberhard; Dermott, Stanley F.; Durda, Daniel D.
1992-01-01
The size and spatial distribution of collisional debris from main belt asteroids is modeled over a 10 million year period. The model dust and meteoroid particles spiral toward the Sun under the action of Poynting-Robertson drag and grind down as they collide with a static background of field particles.
The NASA Fireball Network Database
NASA Technical Reports Server (NTRS)
Moser, Danielle E.
2011-01-01
The NASA Meteoroid Environment Office (MEO) has been operating an automated video fireball network since late-2008. Since that time, over 1,700 multi-station fireballs have been observed. A database containing orbital data and trajectory information on all these events has recently been compiled and is currently being mined for information. Preliminary results are presented here.
A guide to onboard checkout. Volume 6: Structures/mechanics
NASA Technical Reports Server (NTRS)
1971-01-01
The structures and mechanical subsystem of a space station are considered. The subsystem includes basic structure (pressurization, equipment support, meteoroid protection, radiators, insulation, and docking interfaces), the docking mechanisms, spacecraft access (hatches, airlocks, and view ports), and antenna deployment mechanisms. Checkout is discussed in terms of reliability, failure analysis, and maintenance.
Overview Of Recent Enhancements To The Bumper-II Meteoroid and Orbital Debris Risk Assessment Tool
NASA Technical Reports Server (NTRS)
Hyde, James L.; Christiansen, Eric L.; Lear, Dana M.; Prior, Thomas G.
2006-01-01
Discussion includes recent enhancements to the BUMPER-II program and input files in support of Shuttle Return to Flight. Improvements to the mesh definitions of the finite element input model will be presented. A BUMPER-II analysis process that was used to estimate statistical uncertainty is introduced.
1965-02-17
Activities at Green Mountain Tracking Station, Alabama, during lift-off of the Saturn I, SA-9 mission, showing the overall view of instrument panels used in tracking the Pegasus, meteoroid-detection satellite. The satellite was used to obtain data on frequency and penetration of the potentially hazardous micrometeoroids in low Earth orbits and to relay the information back to Earth.
Leak Detection and Location Technology Assessment for Aerospace Applications
NASA Technical Reports Server (NTRS)
Wilson, William C.; Coffey, Neil C.; Madaras, Eric I.
2008-01-01
Micro Meteoroid and Orbital Debris (MMOD) and other impacts can cause leaks in the International Space Station and other aerospace vehicles. The early detection and location of leaks is paramount to astronaut safety. Therefore this document surveys the state of the art in leak detection and location technology for aerospace vehicles.
NASA Technical Reports Server (NTRS)
Kerr, Justin H.; Grosch, Donald
2001-01-01
Engineers at the NASA Johnson Space Center have conducted hypervelocity impact (HVI) performance evaluations of spacecraft meteoroid and orbital debris (M/OD) shields at velocities in excess of 7 km/s. The inhibited shaped charge launcher (ISCL), developed by the Southwest Research Institute, launches hollow, circular, cylindrical jet tips to approximately 11 km/s. Since traditional M/OD shield ballistic limit performance is defined as the diameter of sphere required to just perforate or spall a spacecraft pressure wall, engineers must decide how to compare ISCL derived data with those of the spherical impactor data set. Knowing the mass of the ISCL impactor, an equivalent sphere diameter may be calculated. This approach is conservative since ISCL jet tips are more damaging than equal mass spheres. A total of 12 tests were recently conducted at the Southwest Research Institute (SWRI) on International Space Station M/OD shields. Results of these tests are presented and compared to existing ballistic limit equations. Modification of these equations is suggested based on the results.
Meteoric Magnesium Ions in the Martian Atmosphere
NASA Technical Reports Server (NTRS)
Pesnell, William Dean; Grebowsky, Joseph
1999-01-01
From a thorough modeling of the altitude profile of meteoritic ionization in the Martian atmosphere we deduce that a persistent layer of magnesium ions should exist around an altitude of 70 km. Based on current estimates of the meteoroid mass flux density, a peak ion density of about 10(exp 4) ions/cm is predicted. Allowing for the uncertainties in all of the model parameters, this value is probably within an order of magnitude of the correct density. Of these parameters, the peak density is most sensitive to the meteoroid mass flux density which directly determines the ablated line density into a source function for Mg. Unlike the terrestrial case, where the metallic ion production is dominated by charge-exchange of the deposited neutral Mg with the ambient ions, Mg+ in the Martian atmosphere is produced predominantly by photoionization. The low ultraviolet absorption of the Martian atmosphere makes Mars an excellent laboratory in which to study meteoric ablation. Resonance lines not seen in the spectra of terrestrial meteors may be visible to a surface observatory in the Martian highlands.
Atmospheric Fragmentation of the Gold Basin Meteoroid as Constrained from Cosmogenic Nuclides
NASA Technical Reports Server (NTRS)
Welten, K. C.; Hillegonds, D. J.; Jull, A. J. T.; Kring, D. A.
2005-01-01
Since the discovery of the Gold Basin L4 chondrite shower almost ten years ago in the northwestern corner of Arizona, many thousands of L-chondrite specimens have been recovered from an area of approx.22 km long and approx.10 km wide. Concentrations of cosmogenic 14C and 10Be in a number of these samples indicated a terrestrial age of approx.15,000 years and a large pre-atmospheric size [1]. Additional measurements of cosmogenic Be-10, Al-26, Cl-36, and Ca-41 in the metal and stone fractions of fifteen Gold Basin samples constrained the pre-atmospheric radius to 3-5 m [2]. This implies that Gold Basin is by far the largest stone meteorite in the present meteorite collection, providing us with an opportunity to study the fragmentation process of a large chondritic object during atmospheric entry. Knowledge about the fragmentation process provides information about the mechanical strength of large meteoroids, which is important for the evaluation of future hazards of small asteroid impacts on Earth and possible defensive scenarios to avoid those impacts.
NASA Technical Reports Server (NTRS)
Moser, D. E.; Cooke, W. J.
2004-01-01
The cometary meteoroid ejection models of Jones (1996) and Crifo (1997) were used to simulate ejection from comets 55P/Tempel-Tuttle during the last 12 revolutions, and the 1862, 1737, and 161 0 apparitions of 1 OSP/Swift-Tuttle. Using cometary ephemerides generated by the JPL HORIZONS Solar System Data and Ephemeris Computation Service, ejection was simulated in 1 hour time steps while the comet was within 2.5 AU of the Sun. Also simulated was ejection occurring at the hour of perihelion passage. An RK4 variable step integrator was then used to integrate meteoroid position and velocity forward in time, accounting for the effects of radiation pressure, Poynting-Robertson drag, and the gravitational forces of the planets, which were computed using JPL's DE406 planetary ephemerides. An impact parameter is computed for each particle approaching the Earth, and the results are compared to observations of the 1998-2002 Leonid showers, and the 1993-1 994 Perseids. A prediction for Earth's encounter with the Perseid stream in 2004 is also presented.
The 2014 KCG Meteor Outburst: Clues to a Parent Body
NASA Technical Reports Server (NTRS)
Moorhead, Althea V.; Brown, Peter G.; Spurny, Pavel; Cooke, William J.
2015-01-01
The Kappa Cygnid (KCG) meteor shower exhibited unusually high activity in 2014, producing ten times the typical number of meteors. The shower was detected in both radar and optical systems and meteoroids associated with the outburst spanned at least five decades in mass. In total, the Canadian Meteor Orbit Radar, European Network, and NASA All Sky and Southern Ontario Meteor Network produced thousands of KCG meteor trajectories. Using these data, we have undertaken a new and improved characterization of the dynamics of this little-studied, variable meteor shower. The Cygnids have a di use radiant and a significant spread in orbital characteristics, with multiple resonances appearing to play a role in the shower dynamics. We conducted a new search for parent bodies and found that several known asteroids are orbitally similar to the KCGs. N-body simulations show that the two best parent body candidates readily transfer meteoroids to the Earth in recent centuries, but neither produces an exact match to the KCG radiant, velocity, and solar longitude. We nevertheless identify asteroid 2001 MG1 as a promising parent body candidate.
Results from testing and analysis of solar cells flown on LDEF
NASA Technical Reports Server (NTRS)
Dursch, Harry
1992-01-01
A brief discussion of the solar cell experiments flown on the Long Duration Exposure Facility (LDEF) is provided. The information presented is a collation of results published by the various experimenters. This process of collation and documentation is an ongoing Systems Special Investigation Group (SIG) effort. There are four LEO environments, operating individually and/or synergistically, that cause performance loss in solar cells: meteoroid and space debris, atomic oxygen, ultraviolet radiation, and charged particle radiation. In addition, the effects of contamination caused by outgassing of materials used on the specific spacecraft play a role in decreasing the light being transmitted through the coverglass and adhesive to the solar cell. From the results presented on the solar cells aboard LDEF, the most extensive degradation of the solar cells came from impacts and the resulting cratering. The extent of the damage to the solar cells was largely dependent upon the size and energy of the meteoroids or space debris. The other cause of degradation was reduced light reaching the solar cell. This was caused by contamination, UV degradation of coverglass adhesive, and/or atomic oxygen/UV degradation of antireflection coatings.
Simple Systems for Detecting Spacecraft Meteoroid Punctures
NASA Technical Reports Server (NTRS)
Hall, Stephen B.
2004-01-01
A report describes proposed systems to be installed in spacecraft to detect punctures by impinging meteoroids or debris. Relative to other systems that have been used for this purpose, the proposed systems would be simpler and more adaptable, and would demand less of astronauts attention and of spacecraft power and computing resources. The proposed systems would include a thin, hollow, hermetically sealed panel containing an inert fluid at a pressure above the spacecraft cabin pressure. A transducer would monitor the pressure in the panel. It is assumed that an impinging object that punctures the cabin at the location of the panel would also puncture the panel. Because the volume of the panel would be much smaller than that of the cabin, the panel would lose its elevated pressure much faster than the cabin would lose its lower pressure. The transducer would convert the rapid pressure drop to an electrical signal that could trigger an alarm. Hence, the system would provide an immediate indication of the approximate location of a small impact leak, possibly in time to take corrective action before a large loss of cabin pressure could occur.
Chemistry of cometary meteoroids from video-tape records of meteor spectra
NASA Technical Reports Server (NTRS)
Millman, P. M.
1982-01-01
The chemistry of the cometary meteoroids was studied by closed circuit television observing systems. Vidicon cameras produce basic data on standard video tape and enable the recording of the spectra of faint shower meteors, consequently the chemical study is extended to smaller particles and we have a larger data bank than is available from the more conventional method of recording meteor spectra by photography. The two main problems in using video tape meteor spectrum records are: (1) the video tape recording has a much lower resolution than the photographic technique; (2) video tape is relatively new type of data storage in astronomy and the methods of quantitative photometry have not yet been fully developed in the various fields where video tape is used. The use of the most detailed photographic meteor spectra to calibrate the video tape records and to make positive identification of the more prominent chemical elements appearing in the spectra may solve the low resolution problem. Progress in the development of standard photometric techniques for the analysis of video tape records of meteor spectra is reported.
Resolving LDEF's flux distribution: Orbital (debris?) and natural meteoroid populations
NASA Technical Reports Server (NTRS)
Mcdonnell, J. A. M.
1993-01-01
A consistent methodology for the collation of data from both penetration and perforation experiments and from data in the Meteoroid and Debris Special Investigator Group (M-D SIG) data-base has led to the derivation of the average impact flux over LDEF's exposure history 1984-1990. Data are first presented for LDEF's N,S,E,W and Space faces ('offset' by 8 deg and 'tilted' by 1 deg respectively). A model fit is derived for ballistic limits of penetration from 1 micron to 1mm of aluminium target, corresponding to impactor masses from 10(exp -18) kg (for rho sub p = 2g/cu cm) to 10(exp -10) kg (for rho sub p = 1g/cu cm). A second order harmonic function is fitted to the N,S,E, and W fluxes to establish the angular distribution at regular size intervals; this fit is then used to provide 'corrected' data corresponding to fluxes applicable to true N,S,E,W and Space directions for a LEO 28.5 degree inclination orbit at a mean altitude of 465 km.
Evidence for a meteoritic origin of the September 15, 2007, Carancas crater
NASA Astrophysics Data System (ADS)
Le Pichon, A.; Antier, K.; Cansi, Y.; Hernandez, B.; Minaya, E.; Burgoa, B.; Drob, D.; Evers, L. G.; Vaubaillon, J.
2008-11-01
On September 15th, 2007, around 11:45 local time in Peru, near the Bolivian border, the atmospheric entry of a meteoroid produced bright lights in the sky and intense detonations. Soon after, a crater was discovered south of Lake Titicaca. These events have been detected by the Bolivian seismic network and two infrasound arrays operating for the Comprehensive Nuclear-Test-Ban Treaty Organization, situated at about 80 and 1620 km from the crater. The localization and origin time computed with the seismic records are consistent with the reported impact. The entry elevation and azimuthal angles of the trajectory are estimated from the observed signal time sequences and back-azimuths. From the crater diameter and the airwave amplitudes, the kinetic energy, mass and explosive energy are calculated. Using the estimated velocity of the meteoroid and similarity criteria between orbital elements, an association with possible parent asteroids is attempted. The favorable setting of this event provides a unique opportunity to evaluate physical and kinematic parameters of the object that generated the first actual terrestrial meteorite impact seismically recorded.
Formation and past evolution of the showers of 96P/Machholz complex
NASA Astrophysics Data System (ADS)
Abedin, Abedin; Wiegert, Paul; Janches, Diego; Pokorný, Petr; Brown, Peter; Hormaechea, Jose Luis
2018-01-01
In this work we model the dynamical evolution of meteoroid streams of comet 96P/Machholz, and the largest member of the Marsden sunskirters, comet P/1999 J6. We simultaneously fit the characteristics of eight meteor showers which have been proposed to be linked to the complex, using observations from a range of techniques - visual, video, TV and radar. The aim is to obtain a self-consistent scenario of past capture of a large comet into a short-period orbit, and its subsequent fragmentation history. Moreover, we also aim to constrain the dominant parent of these showers. The fit of our simulated shower characteristics to observations is consistent with the scenario of a capture of a proto-comet 96P/Machholz by Jupiter circa 20000 BCE, and a subsequent major breakup around 100-950 CE which resulted in the formation of the Marsden group of comets. We find that the Marsden group of comets are not the immediate parents of the daytime Arietids and Northern and Southern δ-Aquariids, as previously suggested. In fact, the hypothesis that the Northern δ-Aquariids are related to the Marsden group of comets is not supported by this study. The bulk of the observational characteristics of all eight showers can be explained by meteoroid ejection primarily from comet 96P/Machholz between 10000 BCE and 20000 BCE. Assuming the Marsden group of comets originated between 100 CE-950 CE, we conclude that sunskirting comets contribute mainly to the meteoroid stream near the time of the peak of the daytime Arietids, Southern δ-Aquariids, κ-Velids. Finally, we find that the meteor showers identified by Babadzhanov and Obrubov (1992) as the α-Cetids, the Ursids and Carinids correspond to the daytime λ-Taurids, the November ι-Draconids or December α-Draconids and the θ-Carinids.
Meteoroid stream of 12P/Pons-Brooks, December κ-Draconids, and Northern June Aquilids
NASA Astrophysics Data System (ADS)
Tomko, D.; Neslušan, L.
2016-08-01
Context. It was found that some parent bodies of meteoroid streams can be related to more than one meteor shower observable in the atmosphere of Earth. The orbits of the members of such showers must evolve to the locations, which are far from the orbit of their parent, to cross the orbit of the Earth. An extensive simulation of the stream evolution is necessary to reveal such a complex of showers of the given parent body. Aims: We continue the investigation of the evolution of the theoretical stream originating from the comet 12P/Pons-Brooks to understand its meteor-shower complex in more detail. Methods: We model a theoretical comet stream assuming an ejection of 10 000 particles, representing the meteoroids, from its nucleus in several past perihelion passages. Adding to our previous work, here we also consider the Poynting-Robertson drag in our study of the particles' dynamics. The orbits currently occurring in a vicinity of the Earth's orbit are used to predict the showers associated with comet 12P. Results: Two nighttime and two daytime showers are predicted to originate from 12P. The showers must consist of only relatively large particles, which are influenced to only a small extent by the Poynting-Robertson drag, because in this case, it deflects the particles from the collisional course with the Earth when efficient. The shower predicted to have the most particles is the nighttime shower, which can clearly be identified to the December κ-Draconids, No. 336 in the IAU MDC list. Another predicted nighttime shower has no counterpart in the considered observational data. Some characteristics of this shower are vaguely similar to those of Northern June Aquilids, No. 164. The observed counterparts of two predicted daytime showers were not found in the observational data we used or in the IAU MDC list.
Hydrogen emission in meteors as a potential marker for the exogenous delivery of organics and water
NASA Technical Reports Server (NTRS)
Jenniskens, Peter; Mandell, Avram M.
2004-01-01
We detected hydrogen Balmer-alpha (H(alpha)) emission in the spectra of bright meteors and investigated its potential use as a tracer for exogenous delivery of organic matter. We found that it is critical to observe the meteors with high enough spatial resolution to distinguish the 656.46 nm H(alpha) emission from the 657.46 nm intercombination line of neutral calcium, which was bright in the meteor afterglow. The H(alpha) line peak stayed in constant ratio to the atmospheric emissions of nitrogen during descent of the meteoroid. If all of the hydrogen originates in the Earth's atmosphere, the hydrogen atoms are expected to have been excited at T = 4400 K. In that case, we measured an H(2)O abundance in excess of 150 +/- 20 ppm at 80-90 km altitude (assuming local thermodynamic equilibrium in the air plasma). This compares with an expected <20 ppm from H(2)O in the gas phase. Alternatively, meteoric refractory organic matter (and water bound in meteoroid minerals) could have caused the observed H(alpha) emission, but only if the line is excited in a hot T approximately 10000 K plasma component that is unique to meteoric ablation vapor emissions such as Si(+). Assuming that the Si(+) lines of the Leonid spectrum would need the same hot excitation conditions, and a typical [H]/[C] = 1 in cometary refractory organics, we calculated an abundance ratio [C]/[Si] = 3.9 +/- 1.4 for the dust of comet 55P/Tempel-Tuttle. This range agreed with the value of [C]/[Si] = 4.4 measured for comet 1P/Halley dust. Unless there is 10 times more water vapor in the upper atmosphere than expected, we conclude that a significant fraction of the hydrogen atoms in the observed meteor plasma originated in the meteoroid.
NASA Technical Reports Server (NTRS)
Cooke, William J.
2013-01-01
In the summer of 2008, the NASA Meteoroid Environments Office (MEO) began to establish a video fireball network, based on the following objectives: (1) determine the speed distribution of cm size meteoroids, (2) determine the major sources of cm size meteoroids (showers/sporadic sources), (3) characterize meteor showers (numbers, magnitudes, trajectories, orbits), (4) determine the size at which showers dominate the meteor flux, (5) discriminate between re-entering space debris and meteors, and 6) locate meteorite falls. In order to achieve the above with the limited resources available to the MEO, it was necessary that the network function almost fully autonomously, with very little required from humans in the areas of upkeep or analysis. With this in mind, the camera design and, most importantly, the ASGARD meteor detection software were adopted from the University of Western Ontario's Southern Ontario Meteor Network (SOMN), as NASA has a cooperative agreement with Western's Meteor Physics Group. 15 cameras have been built, and the network now consists of 8 operational cameras, with at least 4 more slated for deployment in calendar year 2013. The goal is to have 15 systems, distributed in two or more groups east of automatic analysis; every morning, this server also automatically generates an email and a web page (http://fireballs.ndc.nasa.gov) containing an automated analysis of the previous night's events. This analysis provides the following for each meteor: UTC date and time, speed, start and end locations (longitude, latitude, altitude), radiant, shower identification, light curve (meteor absolute magnitude as a function of time), photometric mass, orbital elements, and Tisserand parameter. Radiant/orbital plots and various histograms (number versus speed, time, etc) are also produced. After more than four years of operation, over 5,000 multi-station fireballs have been observed, 3 of which potentially dropped meteorites. A database containing data on all these events, including the videos and calibration information, has been developed and is being modified to include data from the SOMN and other camera networks.
Compositional Evolution of Saturn's Ring: Ice, Tholin, and 'CHIRON'-Dust
NASA Technical Reports Server (NTRS)
Cuzzi, Jeffrey N.; Estrada, P. R.; DeVincenzi, Donald L. (Technical Monitor)
1996-01-01
We address compositional evolution in planetary ring systems subsequent to meteoroid bombardment. The huge surface area to mass ratio of planetary rings ensures the importance of this process, given currently expected values of meteoroid flux. We developed a model which includes both direct deposition of extrinsic meteoritic 'pollutants', and ballistic transport of the increasingly polluted ring material as impact ejecta. Certain aspects of the observed regional variations in ring color and albedo can be understood in terms of such a process. We conclude that the regional scale color and albedo differences between the C ring and B ring can be understood if all ring material began with the same composition (primarily water ice, based on other data, but colored by tiny amounts of non-icy, reddish absorber) and then evolved entirely by addition and mixing of extrinsic, neutrally colored, highly absorbing material. This conclusion is readily extended to the Cassini Division and its surroundings as well. Typical silicates are unable to satisfy the ring color, spectroscopic, and microwave absorption constraints either as intrinsic or extrinsic non-icy constituents. However, 'Titan Tholin' provides a satisfactory match for the inferred refractive indices of the 'pre-pollution' nonicy ring material. The extrinsic bombarding material is compatible with the properties of Halley or Chiron, but not with the properties of other 'red' primitive objects such as Pholus. We further demonstrate that the detailed radial profile of color across the abrupt B ring - C ring boundary is quite compatible with such a 'pollution transport' process, and that the shape of the profile can constrain key parameters in the model. We use the model to estimate the 'exposure age' of Saturn's rings to extrinsic meteoroid flux. We obtain a geologically young 'age' which is compatible with timescales estimated independently based on the evolution of ring structure due to ballistic transport, and also with other 'short timescales' estimated on the grounds of gravitational torques.
Optical Meteor Systems Used by the NASA Meteoroid Environment Office
NASA Technical Reports Server (NTRS)
Kingery, A. M.; Blaauw, R. C.; Cooke, W. J.; Moser, D. E.
2015-01-01
The NASA Meteoroid Environment Office (MEO) uses two main meteor camera networks to characterize the meteoroid environment: an all sky system and a wide field system to study cm and mm size meteors respectively. The NASA All Sky Fireball Network consists of fifteen meteor video cameras in the United States, with plans to expand to eighteen cameras by the end of 2015. The camera design and All-Sky Guided and Real-time Detection (ASGARD) meteor detection software [1, 2] were adopted from the University of Western Ontario's Southern Ontario Meteor Network (SOMN). After seven years of operation, the network has detected over 12,000 multi-station meteors, including meteors from at least 53 different meteor showers. The network is used for speed distribution determination, characterization of meteor showers and sporadic sources, and for informing the public on bright meteor events. The NASA Wide Field Meteor Network was established in December of 2012 with two cameras and expanded to eight cameras in December of 2014. The two camera configuration saw 5470 meteors over two years of operation with two cameras, and has detected 3423 meteors in the first five months of operation (Dec 12, 2014 - May 12, 2015) with eight cameras. We expect to see over 10,000 meteors per year with the expanded system. The cameras have a 20 degree field of view and an approximate limiting meteor magnitude of +5. The network's primary goal is determining the nightly shower and sporadic meteor fluxes. Both camera networks function almost fully autonomously with little human interaction required for upkeep and analysis. The cameras send their data to a central server for storage and automatic analysis. Every morning the servers automatically generates an e-mail and web page containing an analysis of the previous night's events. The current status of the networks will be described, alongside with preliminary results. In addition, future projects, CCD photometry and broadband meteor color camera system, will be discussed.
A new approach to compute accurate velocity of meteors
NASA Astrophysics Data System (ADS)
Egal, Auriane; Gural, Peter; Vaubaillon, Jeremie; Colas, Francois; Thuillot, William
2016-10-01
The CABERNET project was designed to push the limits of meteoroid orbit measurements by improving the determination of the meteors' velocities. Indeed, despite of the development of the cameras networks dedicated to the observation of meteors, there is still an important discrepancy between the measured orbits of meteoroids computed and the theoretical results. The gap between the observed and theoretic semi-major axis of the orbits is especially significant; an accurate determination of the orbits of meteoroids therefore largely depends on the computation of the pre-atmospheric velocities. It is then imperative to dig out how to increase the precision of the measurements of the velocity.In this work, we perform an analysis of different methods currently used to compute the velocities and trajectories of the meteors. They are based on the intersecting planes method developed by Ceplecha (1987), the least squares method of Borovicka (1990), and the multi-parameter fitting (MPF) method published by Gural (2012).In order to objectively compare the performances of these techniques, we have simulated realistic meteors ('fakeors') reproducing the different error measurements of many cameras networks. Some fakeors are built following the propagation models studied by Gural (2012), and others created by numerical integrations using the Borovicka et al. 2007 model. Different optimization techniques have also been investigated in order to pick the most suitable one to solve the MPF, and the influence of the geometry of the trajectory on the result is also presented.We will present here the results of an improved implementation of the multi-parameter fitting that allow an accurate orbit computation of meteors with CABERNET. The comparison of different velocities computation seems to show that if the MPF is by far the best method to solve the trajectory and the velocity of a meteor, the ill-conditioning of the costs functions used can lead to large estimate errors for noisy data.
Bumper 3 Update for IADC Protection Manual
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.; Nagy, Kornel; Hyde, Jim
2016-01-01
The Bumper code has been the standard in use by NASA and contractors to perform meteoroid/debris risk assessments since 1990. It has undergone extensive revisions and updates [NASA JSC HITF website; Christiansen et al., 1992, 1997]. NASA Johnson Space Center (JSC) has applied BUMPER to risk assessments for Space Station, Shuttle, Mir, Extravehicular Mobility Units (EMU) space suits, and other spacecraft (e.g., LDEF, Iridium, TDRS, and Hubble Space Telescope). Bumper continues to be updated with changes in the ballistic limit equations describing failure threshold of various spacecraft components, as well as changes in the meteoroid and debris environment models. Significant efforts are expended to validate Bumper and benchmark it to other meteoroid/debris risk assessment codes. Bumper 3 is a refactored version of Bumper II. The structure of the code was extensively modified to improve maintenance, performance and flexibility. The architecture was changed to separate the frequently updated ballistic limit equations from the relatively stable common core functions of the program. These updates allow NASA to produce specific editions of the Bumper 3 that are tailored for specific customer requirements. The core consists of common code necessary to process the Micrometeoroid and Orbital Debris (MMOD) environment models, assess shadowing and calculate MMOD risk. The library of target response subroutines includes a board range of different types of MMOD shield ballistic limit equations as well as equations describing damage to various spacecraft subsystems or hardware (thermal protection materials, windows, radiators, solar arrays, cables, etc.). The core and library of ballistic response subroutines are maintained under configuration control. A change in the core will affect all editions of the code, whereas a change in one or more of the response subroutines will affect all editions of the code that contain the particular response subroutines which are modified. Note that the Bumper II program is no longer maintained or distributed by NASA.
The Updated IAU MDC Catalogue of Photographic Meteor Orbits
NASA Technical Reports Server (NTRS)
Porubcan, V.; Svoren, J.; Neslusan, L.; Schunova, E.
2011-01-01
The database of photographic meteor orbits of the IAU Meteor Data Center at the Astronomical Institute SAS has gradually been updated. To the 2003 version of 4581 photographic orbits compiled from 17 different stations and obtained in the period 1936-1996, additional new 211 orbits compiled from 7 sources have been added. Thus, the updated version of the catalogue contains 4792 photographic orbits (equinox J2000.0) available either in two separate orbital and geophysical data files or a file with the merged data. All the updated files with relevant documentation are available at the web of the IAU Meteor Data Center. Keywords astronomical databases photographic meteor orbits 1 Introduction Meteoroid orbits are a basic tool for investigation of distribution and spatial structure of the meteoroid population in the close surroundings of the Earth s orbit. However, information about them is usually widely scattered in literature and often in publications with limited circulation. Therefore, the IAU Comm. 22 during the 1976 IAU General Assembly proposed to establish a meteor data center for collection of meteor orbits recorded by photographic and radio techniques. The decision was confirmed by the next IAU GA in 1982 and the data center was established (Lindblad, 1987). The purpose of the data center was to acquire, format, check and disseminate information on precise meteoroid orbits obtained by multi-station techniques and the database gradually extended as documented in previous reports on the activity of the Meteor Data Center by Lindblad (1987, 1995, 1999 and 2001) or Lindblad and Steel (1993). Up to present, the database consists of 4581 photographic meteor orbits (Lindblad et al., 2005), 63.330 radar determined orbit: Harvard Meteor Project (1961-1965, 1968-1969), Adelaide (1960-1961, 1968-1969), Kharkov (1975), Obninsk (1967-1968), Mogadish (1969-1970) and 1425 video-recordings (Lindblad, 1999) to which additional 817 video meteors orbits published by Koten el al. (2003) were
Natural environment design requirements for the space tug
NASA Technical Reports Server (NTRS)
West, G. S., Jr.
1973-01-01
The natural environment design requirements for the space tug are presented. Since the Space Tug is carried as cargo to orbital altitudes in the space shuttle bay, orbital environmental impacts and short-period atmospheric density variations are the main concerns. The subjects discussed are: (1) natural environment, (2) neutral environment, (3) charged particles, (4) radiation, and (5) meteoroid hazards.
Cosmic-ray Exposure Ages of Meteorites
NASA Astrophysics Data System (ADS)
Herzog, G. F.
2003-12-01
The classic idea of a cosmic-ray exposure (CRE) age for a meteorite is based on a simple but useful picture of meteorite evolution, the one-stage irradiation model. The precursor rock starts out on a parent body, buried under a mantle of material many meters thick that screens out cosmic rays. At a time ti, a collision excavates a precursor rock - a "meteoroid." The newly liberated meteoroid, now fully exposed to cosmic rays, orbits the Sun until a time tf, when it strikes the Earth, where the overlying blanket of air (and possibly of water or ice) again shuts out almost all cosmic rays (cf. Masarik and Reedy, 1995). The quantity tf-ti is called the CRE age, t. To obtain the CRE age of a meteorite, we measure the concentrations in it of one or more cosmogenic nuclides (Table 1), which are nuclides that cosmic rays produce by inducing nuclear reactions. Many shorter-lived radionuclides excluded from Table 1 such as 22Na (t1/2=2.6 yr) and 60Co (t1/2=5.27 yr) can also furnish valuable information, but can be measured only in meteorites that fell within the last few half-lives of those nuclides (see, e.g., Leya et al. (2001) and references therein). Table 1. Cosmogenic nuclides used for calculating exposure ages NuclideHalf-lifea (Myr) Radionuclides 14C0.005730 59Ni0.076 41Ca0.1034 81Kr0.229 36Cl0.301 26Al0.717 10Be1.51 53Mn3.74 129I15.7 Stable nuclides 3He 21Ne 38Ar 83Kr 126Xe a http://www2.bnl.gov/ton. CRE ages have implications for several interrelated questions. From how many different parent bodies do meteorites come? How well do meteorites represent the population of the asteroid belt? How many distinct collisions on each parent body have created the known meteorites of each type? How often do asteroids collide? How big and how energetic were the collisions that produced meteoroids? What factors control the CRE age of a meteorite and how do meteoroid orbits evolve through time? We will touch on these questions below as we examine the data.By 1975, the CRE ages of hundreds of meteorites had been estimated from noble gas measurements. Histograms of the CRE age distributions pointed to several important observations.(i) The CRE ages of meteorites increase in the order stones
Dust analysis on board the Destiny+ mission to 3200 Phaethon
NASA Astrophysics Data System (ADS)
Krüger, H.; Kobayashi, M.; Arai, T.; Srama, R.; Sarli, B. V.; Kimura, H.; Moragas-Klostermeyer, G.; Soja, R.; Altobelli, N.; Grün, E.
2017-09-01
The Japanese Destiny+ spacecraft will be launched to the active asteroid 3200 Phaethon in 2022. Among the proposed core payload is an in-situ dust instrument based on the Cassini Cosmic Dust Analyzer. We use the ESA Interplanetary Meteoroid Engineering Model (IMEM), to study detection conditions and fluences of interplanetary and interstellar dust with a dust analyzer on board Destiny+.
Particle concentration in the asteroid belt from Pioneer 10
NASA Technical Reports Server (NTRS)
Soberman, R. K.; Neste, S. L.; Lichtenfeld, K.
1974-01-01
The spatial concentration and size distribution for particles measured by the asteroid/meteoroid detector on Pioneer 10 between 2 and 3.5 AU are presented. The size distribution is from about 35 micrometers to 10 centimeters. The exponent of the size dependence varies from approximately -1.7 for the smallest to approximately -3.0 for the largest size measured.
Particle concentration in the asteroid belt from pioneer 10.
Soberman, R K; Neste, S L; Lichtenfeld, K
1974-01-25
The spatial concentration and size distribution for particles measured by the asteroid/meteoroid detector on Pioneer 10 between 2 and 3.5 astronomical units are presented. The size distribution is from about 35 micrometers to 10 centimeters. The exponent of the size dependence varies from approximately -1.7 for the smallest to approximately -3.0 for the largest size measured.
Small Impacts on Mars: Atmospheric Effects
NASA Technical Reports Server (NTRS)
Greeley, Ronald; Nemtchinov, Ivan V.
2002-01-01
The objectives of this investigation were to study the interaction of the atmosphere with the surface of Mars through the impact of small objects that would generate dust and set the dust into motion in the atmosphere. The approach involved numerical simulations of impacts and experiments under controlled conditions. Attachment: Atmospheric disturbances and radiation impulses caused by large-meteoroid impact in the surface of Mars.
1965-01-13
Pegasus-1, meteoroid detection satellite, installed on Saturn I (SA-9 mission) S-IV stage, January 13, 1965. The satellite was used to obtain data on frequency and penetration of the potentially hazardous micrometeoroids in low Earth orbits and to relay the information back to Earth. SA-9 was launched on February 16, 1965 and the Pegasus-1 satellite was the first operational payload for Saturn I.
NASA Technical Reports Server (NTRS)
1974-01-01
The technical aspects of the Skylab-Orbital Workshop are discussed. Original concepts, goals, design philosophy, hardware, and testing are reported. The final flight configuration, overall test program, and mission performance are analyzed. The systems which are examined are: (1) the structural system, (2) the meteoroid shield systems, and (3) the environmental/thermal control subsystem.
Natural environment design criteria for the space station program definition phase
NASA Technical Reports Server (NTRS)
Vaughan, W. W.
1984-01-01
The natural environment design criteria requirements for use in the Space Station and its Elements (SSPE) definition phase studies are presented. The atmospheric dynamic and thermodynamic environments, meteoroids, radiation, physical constants are addressed. It is intended to enable all groups involved in the definition phase studies to proceed with a common and consistent set of natural environment criteria requirements.
NASA Astrophysics Data System (ADS)
Jenniskens, Peter
2017-09-01
Recent work on meteor showers is reviewed. New data is presented on the long duration showers that wander in sun-centered ecliptic coordinates. Since the early days of meteor photography, much progress has been made in mapping visual meteor showers, using low-light video cameras instead. Now, some 820,000 meteoroid orbits have been measured by four orbit surveys during 2007-2015. Mapped in sun-centered ecliptic coordinates in 5° intervals of solar longitude, the data show a number of long duration (>15 days) meteor showers that have drifting radiants and speeds with solar longitude. 18 showers emerge from the antihelion source and follow a drift pattern towards high ecliptic latitudes. 27 Halley-type showers in the apex source move mostly towards lower ecliptic longitudes, but those at high ecliptic latitudes move backwards. Also, 5 low-speed showers appear between the toroidal ring and the apex source, moving towards the antihelion source. Most other showers do not last long, or do not move much in sun-centered ecliptic coordinates. The surveys also detected episodic showers, which mostly document the early stages of meteoroid stream formation. New data on the sporadic background have shed light on the dynamical evolution of the zodiacal cloud.
MSFC Stream Model Preliminary Results: Modeling Recent Leonid and Perseid Encounters
NASA Technical Reports Server (NTRS)
Cooke, William J.; Moser, Danielle E.
2004-01-01
The cometary meteoroid ejection model of Jones and Brown (1996b) was used to simulate ejection from comets 55P/Tempel-Tuttle during the last 12 revolutions, and the last 9 apparitions of 109P/Swift-Tuttle. Using cometary ephemerides generated by the Jet Propulsion Laboratory s (JPL) HORIZONS Solar System Data and Ephemeris Computation Service, two independent ejection schemes were simulated. In the first case, ejection was simulated in 1 hour time steps along the comet s orbit while it was within 2.5 AU of the Sun. In the second case, ejection was simulated to occur at the hour the comet reached perihelion. A 4th order variable step-size Runge-Kutta integrator was then used to integrate meteoroid position and velocity forward in time, accounting for the effects of radiation pressure, Poynting-Robertson drag, and the gravitational forces of the planets, which were computed using JPL s DE406 planetary ephemerides. An impact parameter was computed for each particle approaching the Earth to create a flux profile, and the results compared to observations of the 1998 and 1999 Leonid showers, and the 1993 and 2004 Perseids.
MSFC Stream Model Preliminary Results: Modeling Recent Leonid and Perseid Encounters
NASA Astrophysics Data System (ADS)
Moser, Danielle E.; Cooke, William J.
2004-12-01
The cometary meteoroid ejection model of Jones and Brown [ Physics, Chemistry, and Dynamics of Interplanetary Dust, ASP Conference Series 104 (1996b) 137] was used to simulate ejection from comets 55P/Tempel-Tuttle during the last 12 revolutions, and the last 9 apparitions of 109P/Swift-Tuttle. Using cometary ephemerides generated by the Jet Propulsion Laboratory’s (JPL) HORIZONS Solar System Data and Ephemeris Computation Service, two independent ejection schemes were simulated. In the first case, ejection was simulated in 1 h time steps along the comet’s orbit while it was within 2.5 AU of the Sun. In the second case, ejection was simulated to occur at the hour the comet reached perihelion. A 4th order variable step-size Runge Kutta integrator was then used to integrate meteoroid position and velocity forward in time, accounting for the effects of radiation pressure, Poynting Robertson drag, and the gravitational forces of the planets, which were computed using JPL’s DE406 planetary ephemerides. An impact parameter (IP) was computed for each particle approaching the Earth to create a flux profile, and the results compared to observations of the 1998 and 1999 Leonid showers, and the 1993 and 2004 Perseids.
Filtering Meteoroid Flights Using Multiple Unscented Kalman Filters
NASA Astrophysics Data System (ADS)
Sansom, E. K.; Bland, P. A.; Rutten, M. G.; Paxman, J.; Towner, M. C.
2016-11-01
Estimator algorithms are immensely versatile and powerful tools that can be applied to any problem where a dynamic system can be modeled by a set of equations and where observations are available. A well designed estimator enables system states to be optimally predicted and errors to be rigorously quantified. Unscented Kalman filters (UKFs) and interactive multiple models can be found in methods from satellite tracking to self-driving cars. The luminous trajectory of the Bunburra Rockhole fireball was observed by the Desert Fireball Network in mid-2007. The recorded data set is used in this paper to examine the application of these two techniques as a viable approach to characterizing fireball dynamics. The nonlinear, single-body system of equations, used to model meteoroid entry through the atmosphere, is challenged by gross fragmentation events that may occur. The incorporation of the UKF within an interactive multiple model smoother provides a likely solution for when fragmentation events may occur as well as providing a statistical analysis of the state uncertainties. In addition to these benefits, another advantage of this approach is its automatability for use within an image processing pipeline to facilitate large fireball data analyses and meteorite recoveries.
Meteor Impact Model in the new Space Power Chambers
1962-09-21
S-65 Meteor Impact Model set up in the former Altitude Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center just days after the September 12, 1962 rededication of the facility as the Space Power Chamber. Although larger test chambers would later be constructed, the rapid conversion of the wind tunnel into two space tanks allowed the facility to play a vital role in the early years of the space program. The eastern section of the tunnel, seen here became a vacuum chamber capable of simulating 100 miles altitude. This space tank was envisioned for the study of small satellites like this one. The transfer of the Centaur Program to Lewis one month late, however, permanently changed this mission. NASA was undertaking an in depth study at the time on the effect of micrometeoroids on satellites. Large space radiators were particularly vulnerable to damage from the small particles of space debris. In order to determine the hazard from meteoroids researchers had to define the flux rate relative to the mass and the velocity distribution because the greater the mass or the velocity of a meteoroid the greater the damage.
NASA Astrophysics Data System (ADS)
Kinsman, J. H.; Asher, D. J.
2017-09-01
No firm evidence has existed that the ancient Maya civilization recorded specific occurrences of meteor showers or outbursts in the corpus of Maya hieroglyphic inscriptions. In fact, there has been no evidence of any pre-Hispanic civilization in the Western Hemisphere recording any observations of any meteor showers on any specific dates. The authors numerically integrated meteoroid-sized particles released by Comet Halley as early as 1404 BC to identify years within the Maya Classic Period, AD 250-909, when Eta Aquariid outbursts might have occurred. Outbursts determined by computer model were then compared to specific events in the Maya record to see if any correlation existed between the date of the event and the date of the outburst. The model was validated by successfully explaining several outbursts around the same epoch in the Chinese record. Some outbursts observed by the Maya were due to recent revolutions of Comet Halley, within a few centuries, and some to resonant behavior in older Halley trails, of the order of a thousand years. Examples were found of several different Jovian mean motion resonances as well as the 1:3 Saturnian resonance that have controlled the dynamical evolution of meteoroids in apparently observed outbursts.
Development and Evaluation of the Next Generation of Meteoroid and Orbital Debris Shields
NASA Astrophysics Data System (ADS)
Ryan, Shannon; Christiansen, Eric
2009-06-01
Recent events such as the Chinese anti-satellite missile test in January 2007 and the collision between a Russian Cosmos satellite and US Iridium satellite in February 2009 are responsible for a rapid increase in the population of orbital debris in Low Earth Orbit (LEO). Without active debris removal strategies the debris population in key orbits will continue to increase, requiring enhanced shielding capabilities to maintain allowable penetration risks. One of the more promising developments in recent years for meteoroid and orbital debris shielding (MMOD) is the application of open cell foams. Although shielding onboard the International Space Station is the most capable ever flown, the most proficient configuration (stuffed Whipple shield) requires an additional ˜30% of the shielding mass for non-ballistic requirements (e.g. stiffeners, fasteners, etc.). Open cell foam structures provide similar mechanical performance to more traditional structural components such as honeycomb sandwich panels, as well as improved projectile fragmentation and melting as a result of repeated shocking by foam ligaments. In this paper, the preliminary results of an extensive hypervelocity impact test program on next generation MMOD shielding configurations incorporating open-cell metallic foams are reported.
Development and Evaluation of the Next Generation of Meteoroid and Orbital Debris Shields
NASA Technical Reports Server (NTRS)
Christiansen, E.; Lear, D.; Ryan, S.
2009-01-01
Recent events such as the Chinese anti-satellite missile test in January 2007 and the collision between a Russian Cosmos satellite and US Iridium satellite in February 2009 are responsible for a rapid increase in the population of orbital debris in Low Earth Orbit (LEO). Without active debris removal strategies the debris population in key orbits will continue to increase, requiring enhanced shielding capabilities to maintain allowable penetration risks. One of the more promising developments in recent years for meteoroid and orbital debris shielding (MMOD) is the application of open cell foams. Although shielding onboard the International Space Station is the most capable ever flown, the most proficient configuration (stuffed Whipple shield) requires an additional 30% of the shielding mass for non-ballistic requirements (e.g. stiffeners, fasteners, etc.). Open cell foam structures provide similar mechanical performance to more traditional structural components such as honeycomb sandwich panels, as well as improved projectile fragmentation and melting as a result of repeated shocking by foam ligaments. In this paper, the preliminary results of an extensive hypervelocity impact test program on next generation MMOD shielding configurations incorporating open-cell metallic foams are reported.
Ground-based Efforts to Support a Space-Based Experiment: the Latest LADEE Results
NASA Astrophysics Data System (ADS)
Cudnik, Brian; Rahman, Mahmudur
2014-05-01
The much anticipated launch of the Lunar Atmosphere and Dust Environment Explorer happened flawlessly last October and the satellite has been doing science (and sending a few images) since late November. [the LADEE mission ended with the crash-landing of the spacecraft on the lunar far side on April 17, 2014, capping a successful 140 day mission] .We also have launched our campaign to document lunar meteoroid impact flashes from the ground to supply ground truth to inform of any changes in dust concentration encountered by the spacecraft in orbit around the moon. To date I have received six reports of impact flashes or flash candidates from the group I am coordinating; other groups around the world may have more to add when all is said and done. In addition, plans are underway to prepare a program at Prairie View A&M University to involve our physics majors in lunar meteoroid, asteroid occultation, and other astronomical work through our Center for Astronomical Sciences and Technology. This facility will be a control center to not only involve physics majors, but also to include pre-service teachers and member of the outside community to promote pro-am collaborations.
Effects of the Large June 1975 Meteoroid Storm on Earth's Ionosphere.
Kaufmann, P; Kuntz, V L; Leme, N M; Piazza, L R; Boas, J W; Brecher, K; Crouchley, J
1989-11-10
The June 1975 meteoroid storm detected on the moon by the Apollo seismometers was the largest ever observed. Reexamination of radio data taken at that time showed that the storm also produced pronounced disturbances on Earth, which were recorded as unique phase anomalies on very low frequency (VLF) radio propagation paths in the low terrestrial ionosphere. Persistent effects were observed for the major storm period (20 to 30 June 1975), including reductions in the diurnal phase variation, advances in the nighttime and daytime phase levels, and reductions in the sunset phase delay rate. Large nighttime phase advances, lasting a few hours, were detected on some days at all VLF transmissions, and for the shorter propagation path they were comparable to solar Lyman alpha daytime ionization. Ion production rates attributable to the meteor storm were estimated to be about 0.6 to 3.0 ions per centimeter cubed per second at the E and D regions, respectively. The storm was a sporadic one with a radiant (that is, the point of apparent origin in the sky) located in the Southern Hemisphere, with a right ascension 1 to 2 hours larger than the sun's right ascension.
NASA Astrophysics Data System (ADS)
See, Thomas H.; Leago, Kimberly S.; Warren, Jack L.; Bernhard, Ronald P.; Zolensky, Michael E.
1994-03-01
Fiscal Year 1994 will bring to a close the initial investigative activities associated with the Long Duration Exposure Facility (LDEF). LDEF was a 14-faced spacecraft (i.e., 12-sided cylinder and two ends) which housed 54 different experimental packages in low-Earth orbit (LEO) from Apr. 1984 to Jan. 1990 (i.e., for approx. 5.75 years). Since LDEF's return, the Meteoroid & Debris Special Investigation Group (M&D SIG) has been examining various LDEF components in order to better understand and define the LEO particulate environment. Members of the M&D SIG at JSC in Houston, TX have been contributing to these studies by carefully examining and documenting all impact events found on LDEF's 6061-T6 aluminum Intercostals (i.e., one of the spacecraft's structural frame components). Unlike all other hardware on LDEF, the frame exposed significantly large surface areas of a single homogeneous material in all (i.e., 26) possible LDEF pointing directions. To date, 28 of the 68 Intercostals in the possession of the M&D SIG have been documented. This data, as well as similar information from various LDEF investigators, can be accessed through the M&D SIG Database which is maintained at JSC.
NASA Technical Reports Server (NTRS)
See, Thomas H.; Leago, Kimberly S.; Warren, Jack L.; Bernhard, Ronald P.; Zolensky, Michael E.
1994-01-01
Fiscal Year 1994 will bring to a close the initial investigative activities associated with the Long Duration Exposure Facility (LDEF). LDEF was a 14-faced spacecraft (i.e., 12-sided cylinder and two ends) which housed 54 different experimental packages in low-Earth orbit (LEO) from Apr. 1984 to Jan. 1990 (i.e., for approx. 5.75 years). Since LDEF's return, the Meteoroid & Debris Special Investigation Group (M&D SIG) has been examining various LDEF components in order to better understand and define the LEO particulate environment. Members of the M&D SIG at JSC in Houston, TX have been contributing to these studies by carefully examining and documenting all impact events found on LDEF's 6061-T6 aluminum Intercostals (i.e., one of the spacecraft's structural frame components). Unlike all other hardware on LDEF, the frame exposed significantly large surface areas of a single homogeneous material in all (i.e., 26) possible LDEF pointing directions. To date, 28 of the 68 Intercostals in the possession of the M&D SIG have been documented. This data, as well as similar information from various LDEF investigators, can be accessed through the M&D SIG Database which is maintained at JSC.
The thermal and physical characteristics of the Gao-Guenie (H5) meteorite
NASA Astrophysics Data System (ADS)
Beech, Martin; Coulson, Ian M.; Nie, Wenshuang; McCausland, Phil
2009-06-01
Measurements of the bulk density, grain density, porosity, and magnetic susceptibility of 19 Gao-Guenie H5 chondrite meteorite samples are presented. We find average values of bulk density < ρbulk>=3.46±0.07 g/cm 3, grain density < ρgrain>=3.53±0.08 g/cm 3, porosity < P(%)>=2.46±1.39, and bulk mass magnetic susceptibility
First 3-D simulations of meteor plasma dynamics and turbulence
NASA Astrophysics Data System (ADS)
Oppenheim, Meers M.; Dimant, Yakov S.
2015-02-01
Millions of small but detectable meteors hit the Earth's atmosphere every second, creating trails of hot plasma that turbulently diffuse into the background atmosphere. For over 60 years, radars have detected meteor plasmas and used these signals to infer characteristics of the meteoroid population and upper atmosphere, but, despite the importance of meteor radar measurements, the complex processes by which these plasmas evolve have never been thoroughly explained or modeled. In this paper, we present the first fully 3-D simulations of meteor evolution, showing meteor plasmas developing instabilities, becoming turbulent, and inhomogeneously diffusing into the background ionosphere. These instabilities explain the characteristics and strength of many radar observations, in particular the high-resolution nonspecular echoes made by large radars. The simulations reveal how meteors create strong electric fields that dig out deep plasma channels along the Earth's magnetic fields. They also allow researchers to explore the impacts of the intense winds and wind shears, commonly found at these altitudes, on meteor plasma evolution. This study will allow the development of more sophisticated models of meteor radar signals, enabling the extraction of detailed information about the properties of meteoroid particles and the atmosphere.
Chelyabinsk meteoroid entry and airburst damage
NASA Astrophysics Data System (ADS)
Popova, O.; Jenniskens, P.; Shuvalov, V.; Emel'yanenko, V.; Rybnov, Y.; Kharlamov, V.; Kartashova, A.; Biryukov, E.; Khaibrakhmanov, S.; Glazachev, D.; Trubetskaya, I.
2014-07-01
A field study of the Chelyabinsk Airburst was conducted in the weeks following the event on February 15, 2013. To measure the impact energy, the extent of the glass damage was mapped by visiting over 50 villages in the area. To determine how that energy was deposited in the atmosphere, the most suitable dash-cam and video security camera footage was calibrated by taking star background images at the sites where video was taken. Shadow obstacles in videos taken at Chelyabinsk and Chebarkul were calibrated. To measure the nature of the damaging shockwave, arrival times were measured from the footage of 34 traffic cameras, data saved on a single timed server. To measure the impact of the shockwave, some 150 eyewitnesses were interviewed to ask about their personal experiences, smells, sense of heat, sunburn, etc. Meteorite find locations, shape, and size were documented by interviewing the finders and photographing the collections. Some of these meteorites were analyzed in a consortium study to determine what material properties contributed to the manner in which the meteoroid broke in the atmosphere. The results paint the first detailed picture of an asteroid impact airburst over a populated area. This information may help better prepare for future impact hazard mitigation scenarios.
The Entry of Nano-dust Particles into the Terrestrial Magnetosphere
NASA Astrophysics Data System (ADS)
Horanyi, M.; Juhasz, A.
2016-12-01
Nano-dust particles have been suggested to be responsible for spurious antenna signals on several spacecraft near 1 AU. Most of these tiny motes are generated in the solar vicinity where the collision-rate between larger inward migrating dust particles increases generating copious amounts of smaller dust grains. The vast majority of the dust grains is predicted to be lost to the Sun, but a fraction of them can be expelled by radiation pressure, and the solar wind plasma flow. Particles in the nano-meter size range can be incorporated in the solar wind, and arrive near 1 AU with characteristic speeds of approximately 400 km/s. Larger, but still submicron sized particles, that are expelled by radiation pressure, represent the so-called beta-meteoroid population. Both of these populations of dust particles can be detected by dedicated dust instruments near 1 AU. A fraction of these particles can also penetrate the terrestrial magnetosphere and possibly bombard spacecraft orbiting the Earth. This talk will explore the dynamics of nano-grains and beta-meteoroids entering the magnetosphere, and predict their spatial, mass and speed distributions as function of solar wind conditions.
NASA Astrophysics Data System (ADS)
Neupert, U.; Knauer, M.; Michel, R.; Loeken, Th.; Schultz, L.; Dittrich-Hannen, B.; Suter, M.; Kubik, P. W.; Metzler, K.; Romstedt, J.
1995-09-01
Twenty ordinary chondrites from the 1988/89 meteorite search (ALH 88004, 88008, 88010, 88011, 88013, 88016 to 88021, 88026 to 88031, 88033, 88039, 88042) [1,2] were investigated for 10Be and 26Al, and for He, Ne and Ar by accelerator and rare gas mass spectrometry, respectively. Cosmic ray tracks were measured in samples of ALH 88019. Using theoretical production rates calculated by a physical model [3] the experimental data are interpreted with respect to the reconstruction of the preatmospheric exposure conditions and exposure histories of the meteoroids. Ordinary chondrites are particularly well suited to exemplify the capabilities of an interpretation of many cosmogenic nuclides measured in one sample. Model calculations of GCR production rates were performed for 10Be, 26Al, 3He, 21Ne, 22Ne and 38Ar as reported elsewhere [4,5]. For all meteorites, except for ALH 88019, the cosmogenic nuclide data can be explained by simple one stage exposure histories between 3 Ma and 44 Ma in meteoroids with radii between 5 cm and 85 cm. Exposure ages were derived from cosmogenic 3He, 21Ne and 38Ar on the basis of the theoretical production rates as function of3He/21Ne and 22Ne/21Ne as well as on the empirical ones proposed by Eugster [6]. The average ratios of exposure ages determined from theoretical production rates to those calculated according to Eugster [6] were 1.08+/-0.11, 1.11+/-0.25 and 1.12+/-0.17 in case of 3He, 21Ne and 38Ar, respectively. Repeated measurements of 10Be and 26Al in ALH 88019 resulted in 10.4+/-1.3 dpm/kg and 5.6+/-0.5 dpm/kg, respectively. But, the cosmogenic rare gas concentrations point to a (single stage) exposure age of 39 Ma in a meteoroid. This is in accordance with a measured cosmic ray track density in olivine of 2.8 * 10^6 cm^-2. The samples are from depths betwen 3 cm and 8 cm. Based on the track data we obtain a minimum meteoroid radius of 8 cm. The low 10Be and 26Al cannot be explained by a one stage exposure history and a long terrestrial age. Possible other exposure scenarios are discussed. Using the theoretical 10Be production rates and the 3He/21Ne and 22Ne/21Ne ratios, constraints about the sizes of the meteoroids and about the shielding depths in the samples were derived. 26Al was not used for this purpose since in four meteorites it is evidently affected by SCR production and since, generally, it could be changed due to long terrestrial residence times. However, most of the observed 26Al concentrations which are not affected by SCR production are consistent within experimental uncertainties with the expected GCR production rates. Substantial terrestrial age are proposed for ALH 88008, ALH 88029 and ALH 88030. Pairing among the investigated meteorites is discussed on the basis of rare gas data, 10Be and 26Al, and NTL data by Benoit et al. [7,8]. It can be concluded that the 20 meteorites result from at least 16 different falls. Acknowledgement: This work was supported by the Deutsche Forschungsgemeinschaft and the Swiss National Science Foundation. References: [1] Meteoritical Bulletin (1990) Meteoritics, 25, 237. [2] Meteoritical Bulletin (1991) Meteoritics, 26, 68. [3] Michel R. et al. (1991) Meteoritics, 26, 221-242. [4] Michel R. et al. (1995) Planet. Space Sci., in press. [5] Herpers U. et al. (1995) Planet. Space Sci., in press. [6] Eugster O. (1988) GCA, 52, 1649-1662. [7] Benoit P. H. et al. (1991) Meteoritics, 26, 262. [8] Benoit P. H. et al. (1992) Meteoritics, 27, 110.
How Tiny Collisions Shape Mercury
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-07-01
If space rocks are unpleasant to encounter, space dust isnt much better. Mercurys cratered surface tells of billions of years of meteoroid impacts but its thin atmosphere is what reveals its collisional history with smaller impactors. Now new research is providing a better understanding of what were seeing.Micrometeoroids Ho!The inner solar system is bombarded by micrometeoroids, tiny particles of dust (on the scale of a tenth of a millimeter) emitted by asteroids and comets as they make their closest approach to the Sun. This dust doesnt penetrateEarths layers of atmosphere, but the innermost planet of our solar system, Mercury, doesnt have this convenient cushioning.Just as Mercury is affected by the impacts of large meteoroids, its also shaped by the many smaller-scale impacts it experiences. These tiny collisions are thought to vaporize atoms and molecules from the planets surface, which quickly dissociate. This process adds metals to Mercurys exosphere, the planets extremely tenuous atmosphere.Modeling PopulationsDistribution of the directions from which meteoroids originate before impacting Mercurys surface, as averaged over its entire orbit. Local time of 12 hr corresponds to the Sun-facing side. A significant asymmetry is seen between the dawn (6 hrs) and dusk (18 hrs) rates. [Pokorn et al. 2017]The metal distribution in the exosphere provides a way for us to measure the effect of micrometeoroid impacts on Mercury but this only works if we have accurate models of the process. A team of scientists led by Petr Pokorn (The Catholic University of America and NASA Goddard SFC) has now worked to improve our picture of micrometeoroid impact vaporization on Mercury.Pokorn and collaborators argue that two meteoroid populations Jupiter-family comets (short-period) and Halley-type comets (long-period) contribute the dust for the majority of micrometeoroid impacts on Mercury. The authors model the dynamics and evolution of these two populations, reproducing the distribution of directions from which micrometeoroids strike Mercury during its yearly orbit.Schematic of Mercury in its orbit around the Sun. The dawn side leads the orbital motion, while the dusk side trails it.Geometry of an OrbitMercurys orbit is unique in our solar system: it circles the Sun twice for every three rotations on its own axis so if you were on Mercury, youd see a single day pass over the span of two years. As with all prograde planets, the edge leading the Mercurys orbit marks the dawn terminator, while the edge trailing the planets orbital motion marks the dusk terminator.Pokorn and collaborators find a significant asymmetry in the impact vaporization that occurs on Mercurys dawn side versus its dusk side. This is due to impact geometry (since the dusk side is shielded from impacts in the direction of motion) and seasonal variation of the dust/meteoroid environment around the planet. The authors show that the source of impact vaporization shifts toward the nightside as Mercury approaches aphelion, and toward the dayside when the planet approaches the Sun.Importance of Long-Period CometsSeasonal variations of the relative vaporization rate from the authors model (black line) compared to measurements of Mercurys exospheric abundance of Ca. The contribution of long-period comets is shown by the blue line. [Pokorn et al. 2017]The dawn/dusk asymmetry and the seasonal variations predicted by the model are all nicely consistent NASAs MESSENGER spacecraft observations of the metal distribution in Mercurys exosphere.What makes Pokorn and collaborators model work so well? Their inclusion of the long-period, Halley-type comets is key: the high impact velocity of the micrometeoroids produced by this family play a significant role in shaping the impact vaporization rate of Mercurys surface.This work successfully demonstrates that we can use measurements of Mercurys exosphere as a unique tool to constrain the dust population in the inner solar system.CitationPetr Pokorn et al 2017 ApJL 842 L17. doi:10.3847/2041-8213/aa775d
NASA Technical Reports Server (NTRS)
1972-01-01
The present-day knowledge on Saturn and its environment are described for designers of spacecraft which are to encounter and investigate the planet. The discussion includes physical properties of the planet, gravitational field, magnetic and electric fields, electromagnetic radiation, satellites and meteoroids, the ring system, charged particles, atmospheric composition and structure, and clouds and atmospheric motions. The environmental factors which have pertinence to spacecraft design criteria are also discussed.
How to Do Science From an Engineering Organization
NASA Technical Reports Server (NTRS)
Suggs, Robert M.
2003-01-01
MSFC's Space Environments Team performs engineering support for a number of NASA spaceflight projects by defining the space environment, developing design requirements, supporting the design process, and supporting operations. Examples of this type of support are given including meteoroid environment work for the Jovian Icy Moon Orbiter mission, ionizing radiation support for the Chandra X-Ray Observatory, and astronomicaVgeophysica1 observation planning for International Space Station.
NASA Astrophysics Data System (ADS)
Kessler, D. J.
What is currently known about the orbital debris flux is from a combination of ground based and in-space measurements. These measurements have revealed an increasing population with decreasing size. A summary of measurements is presented for the following sources: the North American Aerospace Defense Command Catalog, the Perimeter Acquisition and Attack Characterization System Radar, ground based optical telescopes, the Explorer 46 Meteoroid Bumper Experiment, spacecraft windows, and Solar Max surfaces.
C/2013 A1 (Siding Spring vs. Mars)
NASA Technical Reports Server (NTRS)
Moorhead, Althea; Cooke, William
2013-01-01
Comet C/2013 A1 (Siding Spring): recently discovered long period comet. Will have close encounter with Mars on October 19, 2014. Collision is extremely unlikely. Passing through the coma and/or tail is likely. Increases risk to Martian spacecraft. Meteoroids (100 microns or larger): approx. or <20% chance of impact per square meter due to coma and tail. Gas may also a ect Martian atmosphere.
NASA Technical Reports Server (NTRS)
Kessler, D. J.
1986-01-01
What is currently known about the orbital debris flux is from a combination of ground based and in-space measurements. These measurements have revealed an increasing population with decreasing size. A summary of measurements is presented for the following sources: the North American Aerospace Defense Command Catalog, the Perimeter Acquisition and Attack Characterization System Radar, ground based optical telescopes, the Explorer 46 Meteoroid Bumper Experiment, spacecraft windows, and Solar Max surfaces.
NASA Technical Reports Server (NTRS)
Welten, K. C.; Nishiizumi, K.; Caffee, M. W.; Masarik, J.; Wieler, R.
2001-01-01
Cosmogenic radionuclides and noble gases in samples of the Gold Basin L-chondrite shower indicate a complex exposure history, with a first stage exposure on the parent body, followed by a second stage of approx. 19 Myr in a meteoroid 3-4 m in radius. Additional information is contained in the original extended abstract.
NASA Technical Reports Server (NTRS)
Pedley, M. D.; Mayeaux, B.
2001-01-01
A viewgraph presentation gives an overview of the materials selection for the TransHab, the habitation module on the International Space Station (ISS). Details are given on the location of TransHab on the ISS, the multilayer inflatable shell that surrounds the module, the materials requirements (including information on the expected thermal environment), the materials selection challenges, the bladder materials requirements and testing, and meteoroid/debris shielding material.
Space environmental considerations for a long-term cryogenic storage vessel
NASA Technical Reports Server (NTRS)
Nakanishi, Shigeo
1987-01-01
Information is given on the kind of protection that is needed against impact and perforation of a long-term cryogenic storage vessel in space by meteoroids and space debris. The long-term effects of the space environment on thermal control surfaces and coatings, and the question of whether the insulation and thermal control surfaces should be encased in a vacuum jacket shell are discussed.
The variability of meteoroid falling
NASA Astrophysics Data System (ADS)
Velasco Herrera, V. M.; Cordero, G.
2016-10-01
We analysed a historical catalogue of meteoroid falling during the last 400 years. We report here for the first time the synchronization between observed meteors and solar barycentric parameters in 19.6 and 13.2 years periodicities using a new multiple cross wavelet. The group of moderated number of meteors is distributed around the positive phase of the solar barycentric periodicity of 13.2 years. While the group of severe number of meteors are distributed on the positive phase of the solar barycentric periodicity of 19.6 years. These periodicities could be associated with Jupiter periodicities. So understanding the modulation of meteoroid falling is important for determining the falling patterns of these objects and for knowing when it is more likely to expect the entry of one of these objects into the Earth's atmosphere, because bodies falling onto the Earth can cause damage from minor impacts to mass-extinctions events. One of the most extreme events was the formation of the Chicxulub impact crater 65,000,000 years ago that caused one of the five major mass extinctions in the last 500,000,000 years. During the 20th and 21st centuries, a series of events demonstrated the importance of collisions between planets and small bodies (comets and asteroids), which included our own planet. In the case of the Earth, we can cite three examples: Tunguska, Curuça and Chelyabinsk. These events invite us to think that perhaps the occurrence of this phenomenon might be more common than we realize, but the lack of communication or people in the area where they happened prevents us from having a complete record. Modern man has not witnessed the impact of large asteroids or comets on our planet, but it has been observed on other planetary bodies. The most spectacular of these events was the collision of fragments of the comet Shoemaker-Levy 9 with Jupiter in 1994. The total energy of the 21 impacts on Jupiter's atmosphere was estimated as the equivalent of tens of millions of megatons of TNT.
NASA Astrophysics Data System (ADS)
Spurný, P.; Borovička, J.; Baumgarten, G.; Haack, H.; Heinlein, D.; Sørensen, A. N.
2017-09-01
A very bright bolide illuminated the sky over Denmark and neighboring countries on February 6th, 2016 at 21:07:18-23UT. It terminated by a multiple meteorite fall in the heavily populated area of the western outskirts of Copenhagen. Several meteorites classified as the H5/6 ordinary chondrites have been found shortly after the fall and total recovered mass reached almost 9 kg (Haack, 2016). Although this spectacular bolide has been reported by many casual witnesses, the instrumental records are very scarce, mainly due to bad weather over Denmark and neighboring countries. Despite it we were able to collect five instrumental records taken from different locations which were useful for the analysis of this event. We used three high resolution digital photographic images taken in Germany, one high resolution radiometric light curve taken by the northernmost Czech automated fireball observatory and one video record taken by a surveillance camera on the Danish west coast where a part of the fireball trajectory was recorded. It allowed us to reliably determine basic parameters defining the luminous trajectory of the bolide in the atmosphere and also heliocentric orbit of the initial meteoroid causing this spectacular meteorite fall. We found that this event was caused by a relatively fragile 50 cm meteoroid with initial mass about 250 kg. It entered the atmosphere with velocity of 14.5 km s-1 and quite steep entry angle of 62°. Its luminous flight started at 85.5 km and after 76 km long trajectory it terminated at 18.3 km. The heliocentric orbit of this meteoroid was of Apollo type with low inclination of 1° and perihelion distance just inside the Earth's orbit. It had a relatively large semimajor axis of 2.8 AU and aphelion distance 4.64 AU. It is the second largest aphelion distance among all meteorites with known orbits and the orbit had the same character as that of the Košice meteorite (H5 ordinary chondrite), which fell on February 28, 2010 (Borovička et al., 2013).
Activities conducted during the definition phase of the outer planets missions program
NASA Technical Reports Server (NTRS)
1972-01-01
The activities are described of the Meteoroid Science Team for the definition phase of the outer planet missions. Studies reported include: (1) combined zodiacal experiment for the Grand Tour Missions of the outer planets, (2) optical transmission of a honeycomb panel and its effectiveness as a particle impact surface, (3) element identification data from the combined zodiacal OPGT experiment and (4) development of lightweight thermally stable mirrors.
The Status of the NASA All Sky Fireball Network
NASA Technical Reports Server (NTRS)
Cooke, William J.; Moser, Danielle E.
2011-01-01
Established by the NASA Meteoroid Environment Office, the NASA All Sky Fireball Network consists of 6 meteor video cameras in the southern United States, with plans to expand to 15 cameras by 2013. As of mid-2011, the network had detected 1796 multi-station meteors, including meteors from 43 different meteor showers. The current status of the NASA All Sky Fireball Network is described, alongside preliminary results.
NASA Technical Reports Server (NTRS)
Smith, R. E. (Editor)
1971-01-01
A consolidation of natural environment data is presented for use as design criteria guidelines in space and planetary exploration vehicle development programs. In addition to information in the disciplinary areas of aeronomy, radiation, geomagnetism, astrodynamic constants, and meteoroids for the earth's environment above 90 kilometers, interplanetary space, and the planetary environments, the upper atmosphere model currently recommended for use at MSFC is discussed in detail.
On the problem of meteor shower's radiants displacement
NASA Astrophysics Data System (ADS)
Tikhomirova, E. N.
2011-06-01
In the context of the perturbed two-body problem a method to evaluate radiant shift for a meteor shower is suggested. We consider the evolution of a meteoroid particle which after every complete revolution "migrates" from one elliptic orbit to another with slightly changed orbital parameters. The obtained analytical solutions of the equations of particle's motion take into account radiation pressure, Poynting-Robertson effect and its corpuscular part.
Spacecraft wall design for increased protection against penetration by space debris impacts
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Tullos, Randy J.
1990-01-01
All orbiting spacecraft are susceptible to impacts by meteoroids and pieces of orbital space debris. These impacts occur at extremely high speeds and can damage flight-critical systems, which can in turn lead to catastrophic failure of the spacecraft. The design of a spacecraft for a long-duration mission into the meteoroid and space debris environment must include adequate protection against perforation of pressurized components by such impacts. This paper presents the results of an investigation into the perforation resistance of dual-wall structural systems fabricated with monolithic bumper plates and with corrugated bumper plates of equal weight. A comparative analysis of the impact damage in dual-wall systems with corrugated bumper specimens and that in dual-wall specimens with monolithic bumpers of similar weight is performed to determine the advantages and disadvantages of employing corrugated bumpers in structural wall systems for long-duration spacecraft. The analysis indicates that a significant increase in perforation protection can be achieved if a monolithic bumper is replaced by a corrugated bumper of equal weight. The parameters of the corrugations in the corrugated bumper plates are optimized in a manner that minimizes the potential for the creation of ricochet debris in the event of an oblique hypervelocity impact. Several design examples using the optimization scheme are presented and discussed.
Cosmic history and a candidate parent asteroid for the quasicrystal-bearing meteorite Khatyrka
NASA Astrophysics Data System (ADS)
Meier, Matthias M. M.; Bindi, Luca; Heck, Philipp R.; Neander, April I.; Spring, Nicole H.; Riebe, My E. I.; Maden, Colin; Baur, Heinrich; Steinhardt, Paul J.; Wieler, Rainer; Busemann, Henner
2018-05-01
The unique CV-type meteorite Khatyrka is the only natural sample in which "quasicrystals" and associated crystalline Cu, Al-alloys, including khatyrkite and cupalite, have been found. They are suspected to have formed in the early Solar System. To better understand the origin of these exotic phases, and the relationship of Khatyrka to other CV chondrites, we have measured He and Ne in six individual, ∼40-μm-sized olivine grains from Khatyrka. We find a cosmic-ray exposure age of about 2-4 Ma (if the meteoroid was <3 m in diameter, more if it was larger). The U, Th-He ages of the olivine grains suggest that Khatyrka experienced a relatively recent (<600 Ma) shock event, which created pressure and temperature conditions sufficient to form both the quasicrystals and the high-pressure phases found in the meteorite. We propose that the parent body of Khatyrka is the large K-type asteroid 89 Julia, based on its peculiar, but matching reflectance spectrum, evidence for an impact/shock event within the last few 100 Ma (which formed the Julia family), and its location close to strong orbital resonances, so that the Khatyrka meteoroid could plausibly have reached Earth within its rather short cosmic-ray exposure age.
Impact craters on Venus: Initial analysis from Magellan
Phillips, R.J.; Arvidson, R. E.; Boyce, J.M.; Campbell, D.B.; Guest, J.E.; Schaber, G.G.; Soderblom, L.A.
1991-01-01
Magellan radar images of 15 percent of the planet show 135 craters of probable impact origin. Craters more than 15 km across tend to contain central peaks, multiple central peaks, and peak rings. Many craters smaller than 15 km exhibit multiple floors or appear in clusters; these phenomena are attributed to atmospheric breakup of incoming meteoroids. Additionally, the atmosphere appears to have prevented the formation of primary impact craters smaller than about 3 km and produced a deficiency in the number of craters smaller than about 25 km across. Ejecta is found at greater distances than that predicted by simple ballistic emplacement, and the distal ends of some ejecta deposits are lobate. These characteristics may represent surface flows of material initially entrained in the atmosphere. Many craters are surrounded by zones of low radar albedo whose origin may have been deformation of the surface by the shock or pressure wave associated with the incoming meteoroid. Craters are absent from several large areas such as a 5 million square kilometer region around Sappho Patera, where the most likely explanation for the dearth of craters is volcanic resurfacing, There is apparently a spectrum of surface ages on Venus ranging approximately from 0 to 800 million years, and therefore Venus must be a geologically active planet.
NASA Technical Reports Server (NTRS)
Edwards, David L.; Cooke, William; Scruggs, Rob; Moser, Danielle E.
2008-01-01
The National Aeronautics and Space Administration (NASA) is progressing toward long-term lunar habitation. Critical to the design of a lunar habitat is an understanding of the lunar surface environment; of specific importance is the primary meteoroid and subsequent ejecta environment. The document, NASA SP-8013, was developed for the Apollo program and is the latest definition of the ejecta environment. There is concern that NASA SP-8013 may over-estimate the lunar ejecta environment. NASA's Meteoroid Environment Office (MEO) has initiated several tasks to improve the accuracy of our understanding of the lunar surface ejecta environment. This paper reports the results of experiments on projectile impact into powered pumice and unconsolidated JSC-1A Lunar Mare Regolith stimulant (JSC-1A) targets. The Ames Vertical Gun Range (AVGR) was used to accelerate projectiles to velocities in excess of 5 km/s and impact the targets at normal incidence. The ejected particles were detected by thin aluminum foil targets placed around the impact site and angular distributions were determined for ejecta. Comparison of ejecta angular distribution with previous works will be presented. A simplistic technique to characterize the ejected particles was formulated and improvements to this technique will be discussed for implementation in future tests.
Ring and plasma - The enigmae of Enceladus
NASA Technical Reports Server (NTRS)
Haff, P. K.; Siscoe, G. L.; Eviatar, A.
1983-01-01
The E ring associated with the Kronian moon Enceladus has a lifetime of only a few thousand years against sputtering by slow corotating O ions. The existence of the ring implies the necessity for a continuous supply of matter. Possible particle source mechanisms on Enceladus include meteoroidal impact ejection and geysering. Estimates of ejection rates of particulate debris following small meteoroid impact are on the order of 3 x 10 to the -18th g/(sq cm sec), more than an order of magnitude too small to sustain the ring. A geyser source would need to generate a droplet supply at a rate of approximately 10 to the -16th g/(sq cm sec) in order to account for a stable ring. Enceladus and the ring particles also directly supply both plasma and vapor to space via sputtering. The absence of a 60 eV plasma at the Voyager 2 Enceladus L-shell crossing, such as might have been expected from sputtering, cannot be explained by absorption and moderation of plasma ions by ring particles, because the ring is too diffuse. Evidently, the effective sputtering yield in the vicinity of Enceladus is on the order of, or smaller than, 0.4, about an order of magnitude less than te calculated value. Small scale surface roughness may account for some of this discrepancy.
The Orbits of Meteorites from Natural Thermoluminescence. Attachment 5
NASA Technical Reports Server (NTRS)
Benoit, P. H.; Sears, D. W. G.
1997-01-01
The natural thermoluminescence (TL) of meteorites reflects their irradiation and thermal histories. Virtually all ordinary chondrites have been irradiated long enough to reach saturation natural TL levels, and thus natural TL levels in these meteorites are determined largely by thermal history. The primary heat source for most meteorites is the Sun, and thus natural TL levels are determined primarily by the closest approach to the Sun, i.e., perihelion. By converting natural TL levels to perihelia, using an assumed albedo typical of meteoroid bodies, it is found that most ordinary chondrites had perihelia of 0.85 to 1.0 AU prior to reaching Earth. This range is similar to that calculated from meteor and fireball observations. All common classes of ordinary chondrites exhibit similar perihelia distributions; however, H and LL chondrites that fell in the local morning differ in their natural TL distribution from those that fell in the local afternoon or evening. This is consistent with earlier suggestions that time of fall reflects orbital distribution. The data also suggest that the orbits of some of the H chondrites cluster and may have come from a debris 'stream' of meteoroids. If meteorites can exist in "orbital groups," significant changes in the types and number of meteorites reaching Earth could occur on the less than 10(exp 5)-year time scale.
Evidence for a Dynamic Nanodust Cloud Enveloping the Moon
NASA Technical Reports Server (NTRS)
Wooden, D. H.; Cook, A. M.; Colaprete, A.; Glenar, D. A.; Stubbs, T. J.; Shirley, M.
2015-01-01
The exospheres that surround airless bodies such as the Moon are tenuous, atmosphere-like layers whose constituent particles rarely collide with one another. Some particles contained within such exospheres are the product of direct interactions between airless bodies and the space environment, and offer insights into space weathering processes. NASAs Lunar Atmosphere and Dust Environment Explorer (LADEE) mission studied the Moons exospheric constituents in situ and detected a permanent dust exosphere1 of particles with radii as small as 300 nm. Here we present evidence from LADEE spectral data for an additional fluctuating nanodust exosphere at the Moon containing a population of particles sufficiently dense to be detectable via scattered sunlight. We compare two anti-Sun spectral observations: one near the peak of the Quadrantidmeteoroid stream, the other during a period of comparativelyweak stream activity. The former shows a negative spectralslope consistent with backscattering of sunlight by nanodustgrains with radii less than 20 to 30 nm; the latter has a flatterspectral slope. We hypothesize that a spatially and temporallyvariable nanodust exosphere may exist at the Moon, and thatit is modulated by changes in meteoroid impact rates, suchas during encounters with meteoroid streams. The findingssuggest that similar nanodust exospheresand the particle ejection and transport processes that form themmay occurat other airless bodies.
Penetration rates over 30 years in the space age
NASA Technical Reports Server (NTRS)
Mcdonnell, J. A. M.; Baron, J. M.
1995-01-01
Experimental data from spacecraft providing impact penetration rates and cratering for metallic targets is reviewed. Data includes NASA Explorers 16 and 23 and the Pegasus series, the second US-UK satellite Ariel 2, Space Shuttle STS-3 (MFE), recovered surfaces on Solar Max Satellite, The Long Duration Exposure Facility (LDEF) and EuReCa TiCCE. Factors concerning exposure to the environment are considered and, especially, material properties which affect the penetration resistance. Reference to a common material, Aluminum alloy 2024-T3, is effected and the data then compared to define firstly an average impact flux over the period. The data is examined, in the context of possible satellite and space debris growth rates, to determine the constancy of the flux. This also provides strong constraints on the current space debris component. It is found that the impact data are consistent with domination by natural meteoroid sources. Growth rates are not evident within the period 1980-1990 and Eureca TiCCE fluxes in 1993, for particles penetrating foils of around 10 microns thickness, supports the constancy of the flux. At larger dimensions the 1993 Eureca TiCCE fluxes show an 8-fold increase but this is considered not inconsistent with the selective exposure to meteoroid streams of a satellite stabilized in heliocentric co-ordinates for an 11 month period.
NASA Astrophysics Data System (ADS)
Wolf, S. F.; Lipschutz, M. E.
1992-07-01
Differences have been observed between meteorite populations with vastly different terrestrial ages, i.e. Antarctic and non-Antarctic meteorite populations (Koeberl and Cassidy, 1991 and references therein). Comparisons of labile trace element contents (Wolf and Lipschutz, 1992) and induced TL parameters (Benoit and Sears, 1992) in samples from Victoria Land and Queen Maud Land, populations which also differ in mean terrestrial age (Nishiizumi et al, 1989), show significant differences consistent with different average thermal histories. These differences are consistent with the proposition that the flux of meteoritic material to Earth varied temporally. Variations in the flux of meteoritic material over time scales of 10^5 10^6 y require the existence of undispersed streams of meteoroids of asteroidal origin which were initially disputed by Wetherill ( 1986) but have since been observed (Olsson-Steele, 1988; Oberst, 1989; Halliday et al. 1990). Orbital evidence for meteoroid and asteroid streams has been independently obtained by others, particularly Halliday et al.(1990) and Drummond (1991). A group of H chondrites of various petrographic types and diverse CRE ages that yielded 16 falls from 1855 until 1895 in the month of May has been proposed to be two co-orbital meteoroid streams with a common source (R. T. Dodd, personal communication). Compositional evidence of a preterrestrial association of the proposed stream members, if it exists, might be observed in the most sensitive indicators of genetic thermal history, the labile trace elements. We report RNAA data for the concentrations of 14 trace elements, mostly labile ones, (Ag, Au, Bi, Cd, Cs, Co, Ga, In, Rb, Sb, Se, Te, Tl, and Zn) in H4-6 ordinary chondrites. Variance of elemental concentrations within a subpopulation, the members of a proposed co-orbital meteorite stream for example, could be expected to be smaller than the variance for the entire population. We utilize multivariate linear regression and logistic regression statistical techniques as tools for discriminant analysis. A randomization-simulation technique can also be used to make distribution-independent comparisons and to verify that any observed differences are not due to insufficient samples or too many independent variables (Lipschutz and Samuels, 1991). These methods allow us to test for the existence of distinct compositional subpopulations in what is supposedly a single meteorite population. At the time of writing this abstract our database consists of 55 H4-6 chondrites (Lingner et al, 1987 and this work). Nine of these meteorites are members of the proposed "cluster 1" co-orbital meteoroid stream. For these 9 samples, linear discriminant analysis based on the concentrations of 10 labile trace elements reveals a difference between the "cluster 1" subpopulation of H chondrite falls and all other H chondrite falls at the <0.03 significance level. Logistic regression reveals a difference at the <0.0001 significance level. Normalization of data to Allende standard meteorite reference standard to eliminate bias conceivably due to different analysts yields results comparable to results from the non-normalized data. Additional evidence for the absence of interanalyst bias is provided by data of samples from Victoria Land, Antarctica: random populations analyzed by the present authors (Wolf and Lipschutz, 1992) are statistically indistinguishable from populations analyzed previously (Dennison and Lipschutz, 1987). A logistic regression validation run also supports the lack of interanalyst bias. Results from linear discriminant analysis, and logistic regression randomization-simulations will be presented in Copenhagen. These results on a limited population, which may be expanded by meeting time demonstrate that the "cluster 1" subpopulation of H chondrite falls are distinguishable from all other H chondrite falls on the basis of their labile trace elements, a result that is consistent with the idea that these meteorites had a common thermal history and were associated preterrestrially in a co-orbital meteoroid stream. Research supported by NASA grant NAG 948, with aid from DOE grant DE-FG07-80ER10725J and NATO grant 0252/89. References: Benoit, P. H. and Sears, D. W. G. (1992) Lunar Planet. Sci. (abstract) 23, 85-86. Dennison, J. E. and Lipschutz, M. E. (1987) Geochim. Cosmochim. Acta 51, 741-754. Drummond, J. D. (1991) Icarus 89, 14-25. Halliday, I., Blackwell, A. T., and Griffen, A. A. (1990) Meteoritics 25, 93-99. Koeberl, C. and Cassidy, W. A. (1991) Geochim. Cosmochim. Acta, 3-18. Lingner, D. W., Huston, T. J., Hutson, M., and Lipschutz, M. E. (1987) Geochim. Cosmochim. Acta 51, 727-739. Lipschutz, M. E. and Samuels, S. M. (1991) Geochim. Cosmochim. Acta 55, 19-34. Nishiizumi, K. Elmore, D. and Kubik, P. W. (1989) Earth Planet. Sci. Lett. 93, 299-313. Oberst, J. (1989) Meteoritics 24, 23-28. Olsson-Steele, D. (1988) Icarus 75, 64-96. Wetherill, G. W. (1986) Nature 319, 357-358. Wolf, S. F. and Lipschutz, M. E. (1992) Lunar Planet. Sci. (abstract) 23, 1545-1546.
A New Analysis of Data from the Meteorite Observation and Recovery Project
NASA Astrophysics Data System (ADS)
Campbell-Brown, M. D.; Hildebrand, A.
2004-11-01
Sixty fireball cameras operated in Western Canada from 1971-1985. Over one thousand fireballs were recorded at more than one station, but only of order 350 were reduced, including that of the Innisfree meteorite. The negatives are being scanned and procedures are being developed which will allow the reduction of the other events. When finished, the MORP archive will be a valuable source of information on meteoroid orbits.
Several twilight bolides over Kiev in 2013-2015 - fragments of comets nuclei
NASA Astrophysics Data System (ADS)
Churyumov, K. I.; Steklov, A. F.; Vidmachenko, A. P.; Dashkiev, G. N.
2016-06-01
During the short period of our observations (from March 2013 to 2015), was fixed falling at least a dozen fragments of cometary nuclei, at least five of sufficiently large and dozens of smaller fragments of meteoroids. The results of our observations also showed that during the morning and evening twilight over Kiev clearly visible the plume of aerosols of technical nature from the plants, factories and other production facilities.
Middle Atmosphere Program. Handbook for MAP, volume 25
NASA Technical Reports Server (NTRS)
Roper, R. G. (Editor)
1987-01-01
GLOBMET (the Global Meteor Observation System) was first proposed by the Soviet Geophysical Committee and was accepted by the Middle Atmosphere Program Steering Committee in 1982. While the atmospheric dynamics data from the system are of primary interest to MAP, GLOBMET also encompasses the astronomical radio and optical observations of meteoroids, and the physics of their interaction with the Earth's atmosphere. These astronomical observations and interactional physics with the Earth's atmosphere are discussed in detail.
Stream Lifetimes Against Planetary Encounters
NASA Technical Reports Server (NTRS)
Valsecchi, G. B.; Lega, E.; Froeschle, Cl.
2011-01-01
We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.
NASA Astrophysics Data System (ADS)
Beech, M.
1989-02-01
The author discusses some of the more recent research on fractal astronomy and results presented in several astronomical studies. First, the large-scale structure of the universe is considered, while in another section one drops in scale to examine some of the smallest bodies in our solar system; the comets and meteoroids. The final section presents some thoughts on what influence the fractal ideology might have on astronomy, focusing particularly on the question recently raised by Kadanoff, "Fractals: where's the physics?"
Hypervelocity Impact (HVI). Volume 1; General Introduction
NASA Technical Reports Server (NTRS)
Gorman, Michael R.; Ziola, Steven M.
2007-01-01
During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. This volume contains an executive summary, overview of the method, brief descriptions of all targets, and highlights of results and conclusions.
1964-11-01
The Saturn I S-I stages for the SA-8 and SA-10 mission in final assembly phase in a manufacturing building at the Michoud Assembly Facility in New Orleans, Louisiana. The SA-8 mission was launched on May 25, 1965 with the first industry-built booster, and deployed the Pegasus II Micrometeoroid Detection satellite. The SA-10 mission was the last Saturn I mission, launched on July 30, 1965, and carried the Pegasus III Meteoroid Detection satellite.
Estimated Environmental Exposures for MISSE-7B
NASA Technical Reports Server (NTRS)
Finckenor, Miria M.; Moore, Chip; Norwood, Joseph K.; Henrie, Ben; DeGroh, Kim
2012-01-01
This paper details the 18-month environmental exposure for Materials International Space Station Experiment 7B (MISSE-7B) ram and wake sides. This includes atomic oxygen, ultraviolet radiation, particulate radiation, thermal cycling, meteoroid/space debris impacts, and observed contamination. Atomic oxygen fluence was determined by measured mass and thickness loss of polymers of known reactivity. Diodes sensitive to ultraviolet light actively measured solar radiation incident on the experiment. Comparisons to earlier MISSE flights are discussed.
New estimate of the micrometeoroids flux at the heliocentric distance of Mercury
NASA Astrophysics Data System (ADS)
Borin, Patrizia; Cremonese, Gabriele; Marzari, Francesco
This work shows preliminary results of a study of the orbital evolution of dust particles originating from the Main Belt in order to obtain a statistical analysis, then to provide an estimate of the flux of particles hitting the Mercury's surface. Meteoritic flux on Mercury really depends on the particle size, because meteoroids of different size follow different dynamical evolution. In this work we consider meteoritic sizes smaller than 1 cm that are particles with a dynamical evolution dominated by the Poynting-Robertson effect. The meteoroid impact mechanism seems to be an important source of neutral atoms contributing to the exosphere and, according to recent papers, mostly due to particles smaller than 1 cm. Unfortunately the dynamical studies and statistics of meteoroids smaller than 1 cm are based on quite old papers and always extrapolated from calculations made for the Earth. This is the reason why we are working on a dynamical model following small dust particles that may hit the surface of Mercury. Up to now we have taken into account only particles coming from the Main Belt. The main effects that determine the distribution of dust in the Solar System are the gravitational attractions of the Sun and planets, Poynting-Robertson drag, solar radiation pressure, solar wind pressure and the effects of different magnetic fields. In order to determine the meteoritic flux at the heliocentric distance of Mercury we utilize the dynamical evolution model of dust particles of Marzari and Vanzani (1994) that numerically solves a (N+1)+M body problem (Sun + N planets + M body with zero mass) with the high-precision integrator RA15 (Everhart 1985). The solar radiation pressure and Poynting-Robertson drag, together with the gravitational interactions of the planets, are taken as major perturbing forces affecting the orbital evolution of the dust particles. We have performed numerical simulations with different initial conditions for the dust particles, depending on the sources, with the aim of estimating to flux of dust on the surface of Mercury. In this work we will report the first interesting estimate of the flux of small particles, and their velocity distribution, hitting the surface of Mercury. We intend also to evaluate a possible asymmetry between the leading and trailing surface of Mercury in terms of impact frequency.
Space Station crew safety alternatives study. Volume 2: Threat development
NASA Technical Reports Server (NTRS)
Raasch, R. F.; Peercy, R. L., Jr.; Rockoff, L. A.
1985-01-01
The first 15 years of accumulated space station concepts for initial operational capability (IOC) during the early 1990's were considered. Twenty-five threats to the space station are identified and selected threats addressed as impacting safety criteria, escape and rescue, and human factors safety concerns. Of the 25 threats identified, eight are discussed including strategy options for threat control: fire, biological or toxic contamination, injury/illness, explosion, loss of pressurization, radiation, meteoroid penetration, and debris.
Space station crew safety alternatives study, volume 1
NASA Technical Reports Server (NTRS)
Peercy, R. L., Jr.; Raasch, R. F.; Rockoff, L. A.
1985-01-01
The first 15 years of accumulated space station concepts for initial operational capability (IOC) during the early 1990's were considered. Twenty-five threats to the space station are identified and selected threats addressed as impacting safety criteria, escape and rescue, and human factors safety concerns. Of the 25 threats identified, eight are discussed including strategy options for threat control: fire, biological or toxic contamination, injury/illness, explosion, loss of pressurization, radiation, meteoroid penetration and debris.
Optimization techniques applied to passive measures for in-orbit spacecraft survivability
NASA Technical Reports Server (NTRS)
Mog, Robert A.; Price, D. Marvin
1987-01-01
Optimization techniques applied to passive measures for in-orbit spacecraft survivability, is a six-month study, designed to evaluate the effectiveness of the geometric programming (GP) optimization technique in determining the optimal design of a meteoroid and space debris protection system for the Space Station Core Module configuration. Geometric Programming was found to be superior to other methods in that it provided maximum protection from impact problems at the lowest weight and cost.
Solar Array Mast Imagery Discussion for ISIW
NASA Technical Reports Server (NTRS)
Kilgo, Gary
2017-01-01
SAW Mast inspection background: In 2012, NASA's Flight Safety Office requested the Micro Meteoroid and Orbital Debris (MMOD) office determine the probability of damage to the Solar Array Wing (SAW) mast based on the exposure over the life time of the ISS program. As part of the risk mitigation of the potential MMOD strikes. ISS Program office along with the Image Science and Analysis Group (ISAG) began developing methods for imaging the structural components of the Mast.
Human safety in the lunar environment
NASA Technical Reports Server (NTRS)
Lewis, Robert H.
1992-01-01
Any attempt to establish a continuously staffed base or permanent settlement on the Moon must safely meet the challenges posed by the Moon's surface environment. This environment is drastically different from the Earth's, and radiation and meteoroids are significant hazards to human safety. These dangers may be mitigated through the use of underground habitats, the piling up of lunar materials as shielding, and the use of teleoperated devices for surface operations. The lunar environment is detailed along with concepts for survival.
External tank space debris considerations
NASA Technical Reports Server (NTRS)
Elfer, N.; Baillif, F.; Robinson, J.
1992-01-01
Orbital debris issues associated with maintaining a Space Shuttle External Tank (ET) on orbit are presented. The first issue is to ensure that the ET does not become a danger to other spacecraft by generating space debris, and the second is to protect the pressurized ET from penetration by space debris or meteoroids. Tests on shield designs for penetration resistance showed that when utilized with an adequate bumper, thermal protection system foam on the ET is effective in preventing penetration.
NASA Technical Reports Server (NTRS)
Suggs, Robert M.; Moser, D. E.
2015-01-01
The MSFC lunar impact monitoring program began in 2006 in support of environment definition for the Constellation (return to Moon) program. Work continued by the Meteoroid Environment Office after Constellation cancellation. Over 330 impacts have been recorded. A paper published in Icarus reported on the first 5 years of observations and 126 calibrated flashes. Icarus: http://www.sciencedirect.com/science/article/pii/S0019103514002243; ArXiv: http://arxiv.org/abs/1404.6458 A NASA Technical Memorandum on flash locations is in press
Recent developments in the BRAMS project
NASA Astrophysics Data System (ADS)
Calders, Stijn; Lamy, Hervé; Gamby, Emmanuel; Ranvier, Sylvain
2014-01-01
In 2009, the Belgian Institute for Space Aeronomy (BIRA-IASB) initiated the development of BRAMS, a Belgian network of radio receiving stations using forward scattering techniques to detect meteors. The primary goals of the project are (1) to collect data and to provide them to the community; (2) to retrieve information about the meteoroid trajectory; and (3) to study the activity profiles of the main meteor showers. In this paper, the work performed since the 2012 International Meteor Conference in La Palma, Canary Islands, Spain, is presented: (1) a software to decode the GPS signal has been developed and added to all BRAMS stations; (2) a workshop about automatic detection of features in radio data was organized in order to discuss about suitable image processing techniques that can be used for radio meteor echoes detection in the BRAMS spectrograms; (3) to assess the quality of such an image processing technique, a big set of manually counted meteors is necessary. A web application has been developed to support this task and facilitate the comparison of counts by different users; (4) to compute the meteoroid flux and for other applications, the radiation pattern of the different antennas must be known. Someone has been hired recently to make simulations of these radiations patterns as well as to carry out measurement campaigns; and (5) detection of solar flares in BRAMS data has been investigated.
The 2011 Draconids: The First European Airborne Meteor Observation Campaign
NASA Astrophysics Data System (ADS)
Vaubaillon, Jeremie; Koten, Pavel; Margonis, Anastasios; Toth, Juraj; Rudawska, Regina; Gritsevich, Maria; Zender, Joe; McAuliffe, Jonathan; Pautet, Pierre-Dominique; Jenniskens, Peter; Koschny, Detlef; Colas, Francois; Bouley, Sylvain; Maquet, Lucie; Leroy, Arnaud; Lecacheux, Jean; Borovicka, Jiri; Watanabe, Junichi; Oberst, Jürgen
2015-02-01
On 8 October 2011, the Draconid meteor shower (IAU, DRA) was predicted to cause two brief outbursts of meteors, visible from locations in Europe. For the first time, a European airborne meteor observation campaign was organized, supported by ground-based observations. Two aircraft were deployed from Kiruna, Sweden, carrying six scientists, 19 cameras and eight crew members. The flight geometry was chosen such that it was possible to obtain double-station observations of many meteors. The instrument setup on the aircraft as well as on the ground is described in full detail. The main peak from 1900-dust ejecta happened at the predicted time and at the predicted rate. The second peak was observed from the earlier flight and from the ground, and was caused most likely by trails ejected in the nineteenth century. A total of 250 meteors were observed, for which light curve data were derived. The trajectory, velocity, deceleration and orbit of 35 double station meteors were measured. The magnitude distribution index was high, as a result of which there was no excess of meteors near the horizon. The light curve proved to be extremely flat on average, which was unexpected. Observations of spectra allowed us to derive the compositional information of the Draconids meteoroids and showed an early release of sodium, usually interpreted as resulting from fragile meteoroids. Lessons learned from this experience are derived for future airborne meteor shower observation campaigns.
The Space Debris Environment for the ISS Orbit
NASA Technical Reports Server (NTRS)
Theall, Jeff; Liou, Jer-Chyi; Matney, Mark; Kessler, Don
2001-01-01
With thirty-five planned missions over the next five years, the International Space Station (ISS) will be the focus for manned space activity. At least 6 different vehicles will transport crew and supplies to and from the nominally 400 km, 51.6 degree orbit. When completed, the ISS will be the largest space structure ever assembled and hence the largest target for space debris. Recent work at the Johnson Space Center has focused on updating the existing space debris models. The Orbital Debris Engineering Model, has been restructured to take advantage of state of the art desktop computing capability and revised with recent measurements from Haystack and Goldstone radars, additional analysis of LDEF and STS impacts, and the most recent SSN catalog. The new model also contains the capability to extrapolate the current environment in time to the year 2030. A revised meteoroid model based on the work of Divine has also been developed, and is called the JSC Meteoroid Model. The new model defines flux on the target per unit angle per unit speed, and for Earth orbit, includes the meteor showers. This paper quantifies the space debris environment for the ISS orbit from natural and anthropogenic sources. Particle flux and velocity distributions as functions of size and angle are be given for particles 10 microns and larger for altitudes from 350 to 450 km. The environment is projected forward in time until 2030.
Effects of High-Density Impacts on Shielding Capability
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.; Lear, Dana M.
2014-01-01
Spacecraft are shielded from micrometeoroids and orbital debris (MMOD) impacts to meet requirements for crew safety and/or mission success. In the past, orbital debris particles have been considered to be composed entirely of aluminum (medium-density material) for the purposes of MMOD shielding design and verification. Meteoroids have been considered to be low-density porous materials, with an average density of 1 g/cu cm. Recently, NASA released a new orbital debris environment model, referred to as ORDEM 3.0, that indicates orbital debris contains a substantial fraction of high-density material for which steel is used in MMOD risk assessments [Ref.1]. Similarly, an update to the meteoroid environment model is also under consideration to include a high-density component of that environment. This paper provides results of hypervelocity impact tests and hydrocode simulations on typical spacecraft MMOD shields using steel projectiles. It was found that previous ballistic limit equations (BLEs) that define the protection capability of the MMOD shields did not predict the results from the steel impact tests and hydrocode simulations (typically, the predictions from these equations were too optimistic). The ballistic limit equations required updates to more accurately represent shield protection capability from the range of densities in the orbital debris environment. Ballistic limit equations were derived from the results of the work and are provided in the paper.
NASA Astrophysics Data System (ADS)
Sternovsky, Z.; DeLuca, M.; Janches, D.; Marshall, R. A.; Munsat, T.; Plane, J. M. C.; Horanyi, M.
2017-12-01
Radars play an important role in characterizing the distribution of meteoroids entering Earth's atmosphere, and they are sensitive to the size range where most of the mass input occurs. The interpretation of meteor radar measurements, however, is handicapped by the incomplete understanding of the microphysical processes relevant to meteoric ablation. A facility has been developed to simulate the ablation of small dust particles in laboratory conditions and to determine the most critical parameters. An electrostatic dust accelerator is used to generate iron, aluminum and meteoric analog particles with velocities of 1-70 km/s. The particles are then introduced into a cell filled with nitrogen, air, oxygen, or carbon dioxide gas with pressures adjustable in the 0.02 - 0.5 Torr range, where partial or complete ablation occurs over a short distance. An array of biased electrodes is used to collect the ionized products with spatial resolution along the ablating particles' path. An optical observation setup using a 64 channel PMT system allows direct observation of the particle and estimating the light output. A new addition to the facility, using pickup tube detectors and precise timing, allows measurement of the drag coefficient of the particle's slowdown, which we find to be significantly higher than commonly used in existing models. Measurements also indicated that the ionization efficiency of iron and aluminum at low velocities is larger than previously expected.
Lunar dust and dusty plasmas: Recent developments, advances, and unsolved problems
NASA Astrophysics Data System (ADS)
Popel, S. I.; Zelenyi, L. M.; Golub', A. P.; Dubinskii, A. Yu.
2018-07-01
A renaissance is being observed currently in investigations of the Moon. The Luna-25 and Luna-27 missions are being prepared in Russia. At the same time, in connection with the future lunar missions, theory investigations of dust and dusty plasmas at the Moon are being carried out by scientists of the Space Research Institute of the Russian Academy of Sciences. Here, the corresponding results are reviewed briefly. We present the main theory results of these investigations concerning the lunar dusty plasmas. We show, in particular, the absence of the dead zone near a lunar latitude of 80° where, as was assumed earlier, dust particles cannot rise over the surface of the Moon. This indicates that there are no significant constraints on the Moon landing sites for future lunar missions that will study dust in the surface layer of the Moon. We demonstrate that the electrostatically ejected dust population can exist in the near-surface layer over the Moon while the dust appearing in the lunar exosphere owing to impacts of meteoroids present everywhere. The calculated values of number densities at high altitudes of the particles formed as a result of the impacts of meteoroids with the lunar surface are in accordance (up to an order of magnitude) with the data obtained by the recent NASA mission LADEE. Finally, we formulate new problems concerning the dusty plasma over the lunar surface.
NASA Astrophysics Data System (ADS)
Gattacceca, Jérome; Krzesińska, Agata M.; Marrocchi, Yves; Meier, Matthias M. M.; Bourot-Denise, Michèle; Lenssen, Rob
2017-11-01
Polymict chondritic breccias—rocks composed of fragments originating from different chondritic parent bodies—are of particular interest because they give insights into the mixing of asteroids in the main asteroid belt (occurrence, encounter velocity, transfer time). We describe Northwest Africa (NWA) 5764, a brecciated LL6 chondrite that contains a >16 cm3 L4 clast. The L clast was incorporated in the breccia through a nondestructive, low-velocity impact. Identical cosmic-ray exposure ages of the L clast and the LL host (36.6 ± 5.8 Myr), suggest a short transfer time of the L meteoroid to the LL parent body of 0.1 ± 8.1 Myr, if that meteoroid was no larger than a few meters. NWA 5764 (together with St. Mesmin, Dimmitt, and Glanerbrug) shows that effective mixing is possible between ordinary chondrite parent bodies. In NWA 5764 this mixing occurred after the peak of thermal metamorphism on the LL parent body, i.e., at least several tens of Myr after the formation of the solar system. The U,Th-He ages of the L clast and LL host, identical at about 2.9 Ga, might date the final assembly of the breccia, indicating relatively young mixing in the main asteroid belt as previously evidenced in St. Mesmin.
NASA Technical Reports Server (NTRS)
Janches, D.; Hormaechea, J. L.; Brunini, C.; Hocking, W.; Fritts, D. C.
2013-01-01
We present in this manuscript a 4 year survey of meteor shower radiants utilizing the Southern Argentina Agile Meteor Radar (SAAMER). SAAMER, which operates at the southern most region of South America, is a new generation SKiYMET system designed with significant differences from typical meteor radars including high transmitted power and an 8-antenna transmitting array enabling large detected rates at low zenith angles. We applied the statistical methodology developed by Jones and Jones (Jones, J., Jones, W. [2006]. Month. Not. R. Astron. Soc. 367, 1050-1056) to the data collected each day and compiled the results into 1 composite representative year at 1 resolution in Solar Longitude. We then search for enhancements in the activity which last for at least 3 days and evolve temporally as is expected from a meteor shower. Using this methodology, we have identified in our data 32 shower radiants, two of which were not part of the IAU commission 22 meteor shower working list. Recently, SAAMER's capabilities were enhanced by adding two remote stations to receive meteor forward scatter signals from meteor trails and thus enable the determination of meteoroid orbital parameters. SAAMER started recording orbits in January 2012 and future surveys will focus on the search for unknown meteor streams, in particular in the southern ecliptic sky.
Micrometeoroids and debris on LDEF comparison with MIR data
NASA Technical Reports Server (NTRS)
Mandeville, Jean-Claude; Berthoud, Lucinda
1995-01-01
Part of the LDEF tray allocated to French experiments (FRECOPA) has been devoted to the study of dust particles. The tray was located on the face of LDEF directly opposed to the velocity vector. Crater size distributions have made possible the evaluation of the incident microparticle flux in the near-Earth environment. Comparisons are made with measurements obtained on the other faces of LDEF (tray clamps), on the leading edge (MAP) and with results of a similar experiment flown on the MIR space station. The geometry of impact craters, depth in particular, provides useful information on the nature of impacting particles and the correlation of geometry with the chemical analysis of projectile remnants inside craters make possible a discrimination between meteoroids and orbital debris. Emphasis has been laid on the size distribution of small craters in order to assess a cut-off in the distribution of particles in LEO. Special attention has been paid to the phenomenon of secondary impacts. A comparison of flight data with current models of meteoroids and space debris shows a fair agreement for LDEF, except for the smaller particles: the possible contribution of orbital debris in GTO orbits to the LDEF trailing edge flux is discussed. For MIR, flight results show differences with current modeling: the possible enhancement of orbital debris could be due to the contaminating presence of a permanently manned space station.
NASA Technical Reports Server (NTRS)
Depois, D.; Ricaud, P.; Lautie, N.; Schneider, N.; Jacq, T.; Biver, N.; Lis, D.; Chamberlain, R.; Phillips, T.; Miller, M.;
2000-01-01
HCN is a minor constituent of the Earth atmosphere, with a typical volume mixing ratio around 10(exp -10) HCN per air molecule. At present, the main source of HCN in the lower atmosphere is expected to be biomass burning. The atmospheric HCN has been observed since 1981, first in the infrared, then at microwave radio frequencies. Globally, above 30 km, HCN measurements are in excess of model predictions based on standard photochemistry and biomass burning as the only HCN source. This excess has been explained by: 1) ion-catalyzed reactions in the entire stratosphere, involving CH.3CN as a precursor and/or 2) a high altitude source as a result of chemical production from the methyl radical CH3, or from injection or production by meteors. HCN is a minor constituent of cometary ices. HCN polymers or copolymers have been suggested as constituents of cometary refractory organic matter, and would thus be present in the incoming meteoroids, if these polymers survived their stay in interplanetary space after ejection. HCN may also be created from the CN radical decomposition product of organic carbon, after reaction with hydrogen-bearing molecules. To test the hypothesis of HCN input by meteoroids or the formation in the upper atmosphere from meteoric ablation products, we decided to monitor the HCN submillimeter lines around a major shower: the Leonids.
CAMS newly detected meteor showers and the sporadic background
NASA Astrophysics Data System (ADS)
Jenniskens, P.; Nénon, Q.; Gural, P. S.; Albers, J.; Haberman, B.; Johnson, B.; Morales, R.; Grigsby, B. J.; Samuels, D.; Johannink, C.
2016-03-01
The Cameras for Allsky Meteor Surveillance (CAMS) video-based meteoroid orbit survey adds 60 newly identified showers to the IAU Working List of Meteor Showers (numbers 427, 445-446, 506-507, and part of 643-750). 28 of these are also detected in the independent SonotaCo survey. In total, 230 meteor showers and shower components are identified in CAMS data, 177 of which are detected in at least two independent surveys. From the power-law size frequency distribution of detected showers, we extrapolate that 36% of all CAMS-observed meteors originated from ∼700 showers above the N = 1 per 110,000 shower limit. 71% of mass falling to Earth from streams arrives on Jupiter-family type orbits. The transient Geminids account for another 15%. All meteoroids not assigned to streams form a sporadic background with highest detected numbers from the apex source, but with 98% of mass falling in from the antihelion source. Even at large ∼7-mm sizes, a Poynting-Robertson drag evolved population is detected, which implies that the Grün et al. collisional lifetimes at these sizes are underestimated by about a factor of 10. While these large grains survive collisions, many fade on a 104-y timescale, possibly because they disintegrate into smaller particles by processes other than collisions, leaving a more resilient population to evolve.
NASA Astrophysics Data System (ADS)
Gudkova, T.; Lognonné, P.; Gagnepain-Beyneix, J.
2010-12-01
Let us consider the source excitation process for an impact. Following [1], we assume a simple model for the seismic source function, namely, a time-dependent force acting downward on the surface of the planet during the impact: f(t)=G g(t)=G g(t)*δ(t),g(t)=1+cosω1t for t in the interval (-π/ω1,π/ω1), g(t)=0 otherwise, where g(t) is the time dependence of the source, G is used to denote the amplitude of the applied force. This takes into account the fact that part of the seismic force could be associated with ejecta material [2]. We introduce the time constant,τ, equal to 2τ/ω1 to denote the time-duration of the excitation process. For SIVB’s and LM impacts we have τ=0.6 sec and 0.45 sec, respectively and a very good fit explaining practically for all the data and a very high quality factor. In contrast, for the seismic force as a point force (without ejecta generation) we find not only an unrealistically low Q values, but, moreover, a much lower variance reduction. The same fit was done for large meteoroids impacts (impacts on day the 13th and the 25th of January and the 14th of November 1976) (τ = 0.7, 0.8 and 1.05 sec, respectively). We get a very good fit explaining practically for all the data with 98% variance reduction and a very high quality factor. In contrast, the results with the seismic force as a point source are not satisfactory. For all these impacts, we have determined the values of the seismic impulse by matching the energy in the observed and modeled waveforms. To get the mass of a meteoroid we should correct for the ejecta effects, which lead to a mv product smaller by a ratio 1.5 to 1.7 as compared to the seismic impulse. This gave estimates on the mass and size of the meteoroids. Current estimates of the size of the meteoroids (diameter of 2-3 meters) indicate that they could create craters of about 50-70 meters in diameter: it might therefore be possible for the NASA Lunar Reconnaissance Orbiter mission to detect these craters. These impacts were insufficient to generate surface waves above the detection threshold of the Apollo seismometer. Future seismometers must have performances at least 10 times better than Apollo in order to get these surface waves from comparable impacts. Such a resolution will also allow the detection of several impacts of low mass (1-10 kg) at a few 10s to hundred km of each station, which might be used to perform local studies of the crust. Acknowledgements. This work was supported by Programme National de Planetologie from INSU, the French Space Agency (R&T program).and Grant No. 09-02-00128 and 09-05-91056 from the Russian Fund for Fundamental Research. References [1] McGarr, A., Latham, G.V., and Gault, D.E. 1969. JGR, Vol.74 (25), pp.5981-5994. [2] Lognonné, Ph., Le Feuvre, M., Johnson, C.L., and Weber, R.C. 2009. JGR, Vol. 114, E12003. [3] Gagnepain-Beyneix, J., Lognonné, P., Chenet, H., Lombardi, D., and Spohn, T. 2006. PEPI, Vol.159, pp.140-166. [4] T.V.Gudkova, Ph. Lognonné, and J. Gagnepain-Beyneix 2010. submitted to Icarus, 2010.
Flying Through Dust From Asteroids
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-11-01
How can we tell what an asteroid is made of? Until now, weve relied on remote spectral observations, though NASAs recently launched OSIRIS-REx mission may soon change this by landing on an asteroid and returning with a sample.But what if we could learn more about the asteroids near Earth without needing to land on each one? It turns out that we can by flying through their dust.The aerogel dust collector of the Stardust mission. [NASA/JPL/Caltech]Ejected CluesWhen an airless body is impacted by the meteoroids prevalent throughout our solar system, ejecta from the body are flung into the space around it. In the case of small objects like asteroids, their gravitational pull is so weak that most of the ejected material escapes, forming a surrounding cloud of dust.By flying a spacecraft through this cloud, we could perform chemical analysis of the dust, thereby determining the asteroids composition. We could even capture some of the dust during a flyby (for example, by using an aerogel collector like in the Stardust mission) and bring it back home to analyze.So whats the best place to fly a dust-analyzing or -collecting spacecraft? To answer this, we need to know what the typical distribution of dust is around a near-Earth asteroid (NEA) a problem that scientists Jamey Szalay (Southwest Research Institute) and Mihly Hornyi (University of Colorado Boulder) address in a recent study.The colors show the density distribution for dust grains larger than 0.3 m around a body with a 10-km radius. The distribution is asymmetric, with higher densities on the apex side, shown here in the +y direction. [Szalay Hornyi 2016]Moon as a LaboratoryTo determine typical dust distributions around NEAs, Szalay and Hornyi first look at the distribution of dust around our own Moon, caused by the same barrage of meteorites wed expect to impact NEAs. The Moons dust cloud was measured in situ in 2013 and 2014 by the Lunar Dust Experiment (LDEX) on board the Lunar Atmosphere and Dust Environment Explorer mission.From LDEXs measurements of the dust distribution around the Moon, Szalay and Hornyi next calculate how this distribution would change for different grain sizes if the body were instead much smaller i.e., a 10-km asteroid instead of the 1700-km Moon.Optimizing the Geometry for an EncounterThe authors find that the dust ejected from asteroids is distributed in an asymmetric shape around the body, with higher dust densities on the side of the asteroid facing its direction of travel. This is because meteoroid impacts arent isotropic: meteoroid showers tend to be directional, and amajority of meteoroids impact the asteroid from this apex side.Total number of impacts per square meter and predicted dust density for a family of potential trajectories for spacecraft flybys of a 10-km asteroid. [Szalay Hornyi 2016]Szalay and Hornyi therefore conclude that dust-analyzing missions would collect many times more dust impacts by transiting the apex side of the body. The authors evaluate a family of trajectories for a transiting spacecraft to determine the density of dust that the spacecraft will encounter and the impact rates expected from the dust particles.This information can help optimize the encounter geometry of a future mission to maximize the science return while minimizing the hazard due to dust impacts.CitationJamey R. Szalay and Mihly Hornyi 2016 ApJL 830 L29. doi:10.3847/2041-8205/830/2/L29
The Meteor and Fireball Network of the Sociedad Malagueña de Astronomía
NASA Astrophysics Data System (ADS)
Aznar, J. C.; Castellón, A.; Gálvez, F.; Martínez, E.; Troughton, B.; Núñez, J. M.; Villalba, F.
2016-12-01
One of the most active fields in which has been dedicated the Málaga Astronomical Society (SMA) is the meteors and meteor showers. Since 2006 the SMA refers parts of visual observations and photographic detections from El Pinillo station (Torremolinos, Spain). In 2013 it was decided to give an extra boost to get a camera network that allowed the calculation of the atmospheric trajectory of a meteoroid and, where possible, obtaining the orbital elements.
Orbit analysis of a bright Southern sigma Sagittariids fireball
NASA Astrophysics Data System (ADS)
Koukal, Jakub
2018-02-01
During twilight on June 14, 2017, CEMeNt network cameras recorded a long and bright fireball with an absolute magnitude of -7.9 ± 0.2m, whose atmospheric path began over the northwest of Romania and ended up above southern Poland. This fireball belongs to the Southern sigma Sagittariids meteor shower and was recorded from 9 cameras of the CEMeNt network. The atmospheric path of the fireball as well as the heliocentric orbit of the meteoroid are analyzed in this article.
Conversations: with Carl Pilcher [interview by Johan Benson].
Pilcher, C
1998-11-01
An interview with Carl Pilcher, science program director for solar system exploration at NASA, examines NASA's past, present, and planned missions to explore the solar system. Specific questions relate to the status of current and planned missions, science results of the Pathfinder mission to Mars, cooperation with the Japanese space agency, the status of the search for extraterrestrial life in solar system meteoroids and asteroids, mission size for more in-depth exploration, reports of water on the moon, and the exploration of near-Earth objects.
Sources of orbital debris and the projected environment for future spacecraft
NASA Technical Reports Server (NTRS)
Kessler, D. J.
1980-01-01
The major source of the nearly 5000 objects currently observed orbiting the earth is from rocket explosions. These explosions have almost certainly produced an even larger unobserved population. If the current trend continues, collisions between orbiting fragments and other space objects could be frequent. By the year 2000 satellite fragmentation by hypervelocity collisions could become the major source of earth orbiting objects, resulting in a self propagating debris belt. The flux within this belt could exceed the meteoroid flux, affecting future spacecraft design.
Phenomena after meteoroid penetration of a bumper plate
NASA Technical Reports Server (NTRS)
Todd, F. C.
1971-01-01
The analysis of hypervelocity impact of particles on a detector in space, with flow and shock penetration through fluid, plastic, and elastic zones was studied. The original paper and computer program on this topic is presented. Improvements in the program for the study of the formation of a cone of debris are discussed. The truncated apex of the cone is at the hole formed by the penetration of an initially spherical rock through a thin plate. A solution for the penetration of the thin plate was sought.
NASA Technical Reports Server (NTRS)
Smith, R. E. (Compiler); West, G. S. (Compiler)
1983-01-01
Guidelines on space and planetary environment criteria for use in space vehicle development are provided. Information is incorporated in the disciplinary areas of atmospheric and ionospheric properties, radiation, geomagnetic field, astrodynamic constants, and meteoroids for the Earth's atmosphere above 90 km, interplanetary space, and the atmosphere and surfaces (when available) of the Moon and the planets (other than Earth) of this solar system. The Sun, Terrestrial Space, the Moon, Mercury, Venus, and Mars are covered.
Sites that Can Produce Left-handed Amino Acids in the Supernova Neutrino Amino Acid Processing Model
NASA Astrophysics Data System (ADS)
Boyd, Richard N.; Famiano, Michael A.; Onaka, Takashi; Kajino, Toshitaka
2018-03-01
The Supernova Neutrino Amino Acid Processing model, which uses electron anti-neutrinos and the magnetic field from a source object such as a supernova to selectively destroy one amino acid chirality, is studied for possible sites that would produce meteoroids with partially left-handed amino acids. Several sites appear to provide the requisite magnetic field intensities and electron anti-neutrino fluxes. These results have obvious implications for the origin of life on Earth.
Space Station crew safety alternatives study. Volume 4: Appendices
NASA Technical Reports Server (NTRS)
Peercy, R. L., Jr.; Raasch, R. F.; Rockoff, L. A.
1985-01-01
The scope of this study considered the first 15 years of accumulated space station concepts for Initial Operational Capability (10C) during the early 1990's. Twenty-five threats to the space station are identified and selected threats addressed as impacting safety criteria, escape and rescue, and human factors safety concerns. Of the 25 threats identified, eight are discussed including strategy options for threat control: fire, biological or toxic contamination, injury/illness, explosion, loss of pressurization, radiation, meteoroid penetration and debris.
Considerations in the design of large space structures
NASA Technical Reports Server (NTRS)
Hedgepeth, J. M.; Macneal, R. H.; Knapp, K.; Macgillivray, C. S.
1981-01-01
Several analytical studies of topics relevant to the design of large space structures are presented. Topics covered are: the types and quantitative evaluation of the disturbances to which large Earth-oriented microwave reflectors would be subjected and the resulting attitude errors of such spacecraft; the influence of errors in the structural geometry of the performance of radiofrequency antennas; the effect of creasing on the flatness of tensioned reflector membrane surface; and an analysis of the statistics of damage to truss-type structures due to meteoroids.
1964-11-01
The Saturn I S-IV stage (second stage) assembly for the SA-9 mission underwent the weight and balance test in the hanger building at Cape Canaveral. The S-IV stage had six RL-10 engines which used liquid hydrogen and liquid oxygen as its propellants arranged in a circle. Each RL-10 engine produced a thrust of 15,000 pounds, a total combined thrust of 90,000 pounds. The SA-9 mission was the first Saturn with operational payload Pegasus I, meteoroid detection satellite, and launched on February 16, 1965.
NASA Technical Reports Server (NTRS)
Alexander, W. M.; Tanner, W. G.; Goad, H. S.
1987-01-01
Initial results from the measurement conducted by the dust particle experiment on the lunar orbiting satellite Lunar Explorer 35 (LE 35) were reported with the data interpreted as indicating that the moon is a significant source of micrometeroids. Primary sporadic and stream meteoroids impacting the surface of the moon at hypervelocity was proposed as the source of micron and submicron particles that leave the lunar craters with velocities sufficient to escape the moon's gravitational sphere of influence. No enhanced flux of lunar ejecta with masses greater than a nanogram was detected by LE 35 or the Lunar Orbiters. Hypervelocity meteoroid simulation experiments concentrating on ejecta production combined with extensive analyses of the orbital dynamics of micron and submicron lunar ejecta in selenocentric, cislunar, and geocentric space have shown that a pulse of these lunar ejecta, with a time correlation relative to the position of the moon relative to the earth, intercepts the earth's magnetopause surface (EMPs). As shown, a strong reason exists for expecting a significant enhancement of submicron dust particles in the region of the magnetosphere between L values of 1.2 and 3.0. This is the basis for the proposal of a series of experiments to investigate the enhancement or even trapping of submicron lunar ejecta in this region. The subsequent interaction of this mass with the upper-lower atmosphere of the earth and possible geophysical effects can then be studied.
Venus - Possible Remnants of a Meteoroid in Lakshmi Region
1996-11-26
This full resolution mosaiced image covers an area of approximately 100 kilometers by 120 kilometers (62 by 74 miles) and is located in the Lakshmi region of Venus at 47 degrees north latitude and 334 east longitude. Due to the dense Venusian atmosphere, primary impact craters of less than a 3 kilometer (2 mile) diameter are nonexistent. The dark circular region and associated central bright feature in this image are thought to be the remnants of a meteoroid smaller than the size necessary to create an impact crater entering the atmosphere at a low velocity (approximately 350 meters/second.) The central bright feature appears to be a cluster of small secondary impacts, ejecta and debris from the original meteor that broke up in the atmosphere. Even though most of the meteorite did not hit the surface, the atmospheric shock wave could be great enough to modify the surrounding region. One explanation for this radar dark circular formation, called dark margins, could be that the shock wave was energetic enough to pulverize the surface (smooth surfaces generally appear radar dark.) Another explanation is that the surface could be blanketed by a fine material that was formed by the original meteor's breakup through the atmosphere. More than half of the impact craters on Venus have associated dark margins, and most of these are prominently located left of center of the crater. This is another effect which could be caused by the dense atmosphere of Venus. http://photojournal.jpl.nasa.gov/catalog/PIA00477
Venus - Possible Remnants of a Meteoroid in Lakshmi Region
NASA Technical Reports Server (NTRS)
1991-01-01
This full resolution mosaiced image covers an area of approximately 100 kilometers by 120 kilometers (62 by 74 miles) and is located in the Lakshmi region of Venus at 47 degrees north latitude and 334 east longitude. Due to the dense Venusian atmosphere, primary impact craters of less than a 3 kilometer (2 mile) diameter are nonexistent. The dark circular region and associated central bright feature in this image are thought to be the remnants of a meteoroid smaller than the size necessary to create an impact crater entering the atmosphere at a low velocity (approximately 350 meters/second.) The central bright feature appears to be a cluster of small secondary impacts, ejecta and debris from the original meteor that broke up in the atmosphere. Even though most of the meteorite did not hit the surface, the atmospheric shock wave could be great enough to modify the surrounding region. One explanation for this radar dark circular formation, called dark margins, could be that the shock wave was energetic enough to pulverize the surface (smooth surfaces generally appear radar dark.) Another explanation is that the surface could be blanketed by a fine material that was formed by the original meteor's breakup through the atmosphere. More than half of the impact craters on Venus have associated dark margins, and most of these are prominently located left of center of the crater. This is another effect which could be caused by the dense atmosphere of Venus.
Ionospheric Effects from the superbolid exploded over the Chelyabinsk area
NASA Astrophysics Data System (ADS)
Ruzhin, Yuri; Smirnov, Vladimir; Kuznetsov, Vladimir; Smirnova, Elena
The Chelyabinsk meteorite fall is undoubtedly the most documented in history. Its passage through the atmosphere was recorded by video and photographers, visual observers, infrasonic microphones, seismographs on the ground, and by satellites in orbit. The data of transionospheric sounding by signals from the GPS cluster satellites carried out in the zone of explosion of the Chelyabinsk meteoroid have been analyzed. The analysis has shown that the explosion had a very weak effect on the ionosphere. The observed ionospheric disturbances were asymmetric with respect to the explosion epicenter. The signals obtained were compared both in shape and in amplitude with the known surface explosions for which the diagnostics of the ionospheric effects had been made by radio techniques. Ionospheric effects in the form of acoustic-gravity waves (AGW) produced by 500-600 tons TNT explosions on the ground are detected with confidence both by vertical sounding and by GPS techniques. This allows us to suggest that the reported equivalent of the meteoroid explosion was obviously overestimated. The experiments on the injection of barium vapor (3.3 kg) carried out under similar conditions in the terminator zone revealed the response of the ionosphere in variations of the critical frequencies of the layer at a distance of 1500-2000 km (AGW with a period of 5-10 min). The absence of such ionospheric effects in the remote zone at 1500-1700 km from the epicenter of the bolide explosion in the case under discussion also makes us feel doubtful about the estimated explosion equivalent.
Sporadic E-Layers and Meteor Activity
NASA Astrophysics Data System (ADS)
Alimov, Obid
2016-07-01
In average width it is difficult to explain variety of particularities of the behavior sporadic layer Es ionospheres without attraction long-lived metallic ion of the meteoric origin. Mass spectrometric measurements of ion composition using rockets indicate the presence of metal ions Fe+, Mg+, Si+, Na+, Ca+, K+, Al+ and others in the E-region of the ionosphere. The most common are the ions Fe+, Mg+, Si+, which are primarily concentrated in the narrow sporadic layers of the ionosphere at altitudes of 90-130 km. The entry of meteoric matter into the Earth's atmosphere is a source of meteor atoms (M) and ions (M +) that later, together with wind shear, produce midlatitude sporadic Es layer of the ionosphere. To establish the link between sporadic Es layer and meteoroid streams, we proceeded from the dependence of the ionization coefficient of meteors b on the velocity of meteor particles in different meteoroid streams. We investigated the dependence of the critical frequency f0Es of sporadic E on the particle velocity V of meteor streams and associations. It was established that the average values of f0Es are directly proportional to the velocity V of meteor streams and associations, with the correlation coefficient of 0.53 < R < 0.74. Thus, the critical frequency of the sporadic layer Es increases with the increase of particle velocity V in meteor streams, which indicates the direct influence of meteor particles on ionization of the lower ionosphere and formation of long-lived metal atoms M and ions M+ of meteoric origin.
Discovery of the February Epsilon Virginids (FEV, IAU#506)
NASA Astrophysics Data System (ADS)
Steakley, Kathryn; Jenniskens, P. M.
2013-01-01
Halley type comets are relatively few, but at Earth they are sampled over a large part of the inner solar system because dust accumulates in comparatively stable orbits. We have detected a new meteor shower with a Halley-type orbit, the February epsilon Virginids (FEV), from video observations with the Cameras for All-Sky Meteor Surveillance (CAMS) and by examining orbits listed in the SonataCo Japanese database. Twenty-two meteors were detected during the period from February 1st through February 9th of 2008 to 2012 that are part of this shower. The FEVs originate from the geocentric radiant of R.A. = 201.66° and Dec = +10.39° with a mean geocentric velocity of 63.01 km/s. The mean orbital elements of these meteoroids are q = (0.488 ± 0.021) AU, 1/a = ( 0.085 ± 0.095) 1/AU, e = 0.958 ± 0.046, i = 138.05° ± 1.28°, ω = 271.15° ± 3.70°, Ω = 315.26 ± 0.86°, and Π = 228.12°. We investigated whether this meteoroid stream could have originated from comets C/1978 T3 (Bradfield), C/1808 F1 (Pons), or C/1939 H1 (Jurlof-Achmarof-Hassel). If the parent body can be identified, we can determine when the comet was first captured into a low perihelion distance orbit. Future examination of the shower will allow us to examine the physical properties of the parent comet.
Earth-viewing satellite perspectives on the Chelyabinsk meteor event.
Miller, Steven D; Straka, William C; Bachmeier, A Scott; Schmit, Timothy J; Partain, Philip T; Noh, Yoo-Jeong
2013-11-05
Large meteors (or superbolides [Ceplecha Z, et al. (1999) Meteoroids 1998:37-54]), although rare in recorded history, give sobering testimony to civilization's inherent vulnerability. A not-so-subtle reminder came on the morning of February 15, 2013, when a large meteoroid hurtled into the Earth's atmosphere, forming a superbolide near the city of Chelyabinsnk, Russia, ∼1,500 km east of Moscow, Russia [Ivanova MA, et al. (2013) Abstracts of the 76th Annual Meeting of the Meteoritical Society, 5366]. The object exploded in the stratosphere, and the ensuing shock wave blasted the city of Chelyabinsk, damaging structures and injuring hundreds. Details of trajectory are important for determining its specific source, the likelihood of future events, and potential mitigation measures. Earth-viewing environmental satellites can assist in these assessments. Here we examine satellite observations of the Chelyabinsk superbolide debris trail, collected within minutes of its entry. Estimates of trajectory are derived from differential views of the significantly parallax-displaced [e.g., Hasler AF (1981) Bull Am Meteor Soc 52:194-212] debris trail. The 282.7 ± 2.3° azimuth of trajectory, 18.5 ± 3.8° slope to the horizontal, and 17.7 ± 0.5 km/s velocity derived from these satellites agree well with parameters inferred from the wealth of surface-based photographs and amateur videos. More importantly, the results demonstrate the general ability of Earth-viewing satellites to provide valuable insight on trajectory reconstruction in the more likely scenario of sparse or nonexistent surface observations.
Comet 169P/NEAT(=2002EX12): More Dead Than Alive
NASA Astrophysics Data System (ADS)
Kasuga, T.; Balam, D. D.; Wiegert, P. A.
2011-10-01
The Jupiter family comet 169P/NEAT (previously known as asteroid 2002 EX12) has a dynamical association with the ?-Capriconid meteoroid stream. In this paper, we present photometric observations of comet 169P/NEAT to further investigate the physical characters of its disintegration state related to the stream. The comet shows a point-like surface brightness profile limiting contamination due to coma emission at ˜ 4% at most, indicating no evidence of outgassing. An upper limit on the fraction of the surface that could be sublimating water ice of <10-4 is obtained with an upper limit to the mass loss of ˜10-2 kg s-1. The effective radius of nucleus is found to be 2.3±0.4 km. Red filter photometry yields a rotational period of 8.4096±0.0012 hr, and the range of the amplitude 0.29±0.02 mag is indicative of a moderately spherical shape having a projected axis ratio ˜1.3. The comet shows a redder colors than the Sun, being compatible with other dead comets candidates. The calculated lost mass per revolution is ˜109 kg. If it has sustained this mass loss over the estimated 5000 yr age of the ?-Capriconid meteoroid stream, the total mass loss from 169P/NEAT (˜1013 kg) is consistent with the reported stream mass (˜ 1013 - 1015 kg), suggesting that the stream is the product of steady disintegration of the parent at every return.
Dust Trails of SP/Tuttle and the Unusual Outbursts of the Ursid Shower
NASA Technical Reports Server (NTRS)
Jenniskens, Peter; Lyytinen, E.; deLignie, M. C.; Johannink, C.; Jobse, K.; Schievink, R.; Langbroek, M.; Koop, M.; Gural, P.; Wilson, M.;
2001-01-01
Halley-type comets tend to have a series of dust trails that remain spatially correlated for extended periods of time, each dating from a specific return of the comet. Encounters with 1 - 9 revolution old individual dust trails of 55P/Tempel-Tuttle have led to well recognized Leonid shower maxim, the peak time of which was well predicted by recent models. Now. we used the same model to calculate the position of dust trails of comet Shuttle, a Halley-type comet in an (approximately) 13.6 year orbit passing just outside of Earth's orbit. We discovered that the meteoroids tend to be trapped in the 14:12 mean motion resonance with Jupiter, while the comet librates in a slightly shorter period orbit around the 13:15 resonance. It takes six centuries to change the orbit enough to intersect Earth's orbit. During that time, the meteoroids and comet separate in mean anomaly by six years. thus explaining the unusual aphelion occurrences of Ursid outbursts. The resonances also prevent dispersion, so that the dust trail encounters (specifically, from dust trails of AD 1378 - 1405) occur only in one year in each orbit. We predicted enhanced activity on December 22, 2000, at around 7:29 and 8:35 UT (universal time) from dust trails dating to the 1405 and 1392 return, respectively. This event was observed from California using video and photographic techniques. At the same time, five Global-MS-Net stations in Finland, Japan and Belgium counted meteors using forward meteor scatter. The outburst peaked at 8:06:07 UT, December 22, at Zenith Hourly Rate (approx.) 90 per hour. The Ursid rates were above half peak intensity during 4.2 hours. This is only the second Halley type comet for which a meteor outburst can be dated to a specific return of the parent comet, and traces their presence back form 9 to at least 45 revolutions of the comet. New orbital elements of Ursid meteoroids are presented. We find that most orbits do scatter around the anticipated positions, confirming the link with comet Shuttle and the epoch of ejection. The 1405 and.1392 dust trails appear to have contributed similar amounts to the activity profile. Some orbits provide a hint of much older debris being present as well. Some of the dispersion in the radiant position may reflect a true variation in inclinations, with two groupings at low and high values, which is not understood at present.
2P/Encke, the Taurid complex NEOs and the Maribo and Sutter's Mill meteorites
NASA Astrophysics Data System (ADS)
Tubiana, C.; Snodgrass, C.; Michelsen, R.; Haack, H.; Böhnhardt, H.; Fitzsimmons, A.; Williams, I. P.
2015-12-01
Aims: 2P/Encke is a short period comet that was discovered in 1786 and has been extensively observed and studied for more than 200 years. The Taurid meteoroid stream has long been linked with 2P/Encke owing to a good match of their orbital elements, even though the comet's activity is not strong enough to explain the number of observed meteors. Various small near-Earth objects (NEOs) have been discovered with orbits that can be linked to 2P/Encke and the Taurid meteoroid stream. Maribo and Sutter's Mill are CM type carbonaceous chondrite that fell in Denmark on January 17, 2009 and April 22, 2012, respectively. Their pre-atmospheric orbits place them in the middle of the Taurid meteoroid stream, which raises the intriguing possibility that comet 2P/Encke could be the parent body of CM chondrites. Methods: To investigate whether a relationship between comet 2P/Encke, the Taurid complex associated NEOs, and CM chondrites exists, we performed photometric and spectroscopic studies of these objects in the visible wavelength range. We observed 2P/Encke and 10 NEOs on August 2, 2011 with the FORS instrument at the 8.2 m Very Large Telescope on Cerro Paranal (Chile). Results: Images in the R filter, used to investigate the possible presence of cometary activity around the nucleus of 2P/Encke and the NEOs, show that no resolved coma is present. None of the FORS spectra show the 700 nm absorption feature due to hydrated minerals that is seen in the CM chondrite meteorites. All objects show featureless spectra with moderate reddening slopes at λ< 800 nm. Apart for 2003 QC10 and 1999 VT25, which show a flatter spectrum, the spectral slope of the observed NEOs is compatible with that of 2P/Encke. However, most of the NEOs show evidence of a silicate absorption in lower S/N data at λ> 800 nm, which is not seen in 2P/Encke, which suggests that they are not related. Conclusions: Despite similar orbits, we find no spectroscopic evidence for a link between 2P/Encke, the Taurid complex NEOs and the Maribo and Sutter's Mill meteorites. However, we cannot rule out a connection to the meteorites either, as the spectral differences may be caused by secondary alteration of the surfaces of the NEOs. Based on observations performed at the European Southern Observatory, Paranal, Chile: Program 087.C-0788(A).
Dynamical Model for the Zodiacal Cloud and Sporadic Meteors
NASA Astrophysics Data System (ADS)
Nesvorný, David; Janches, Diego; Vokrouhlický, David; Pokorný, Petr; Bottke, William F.; Jenniskens, Peter
2011-12-01
The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally destroyed near the Sun, or physically disrupted by collisions. Also, some are swept by the Earth (and other planets), producing meteors. Here we develop a dynamical model for the solar system meteoroids and use it to explain meteor radar observations. We find that the Jupiter Family Comets (JFCs) are the main source of the prominent concentrations of meteors arriving at the Earth from the helion and antihelion directions. To match the radiant and orbit distributions, as measured by the Canadian Meteor Orbit Radar (CMOR) and Advanced Meteor Orbit Radar (AMOR), our model implies that comets, and JFCs in particular, must frequently disintegrate when reaching orbits with low perihelion distance. Also, the collisional lifetimes of millimeter particles may be longer (gsim 105 yr at 1 AU) than postulated in the standard collisional models (~104 yr at 1 AU), perhaps because these chondrule-sized meteoroids are stronger than thought before. Using observations of the Infrared Astronomical Satellite to calibrate the model, we find that the total cross section and mass of small meteoroids in the inner solar system are (1.7-3.5) × 1011 km2 and ~4 × 1019 g, respectively, in a good agreement with previous studies. The mass input required to keep the zodiacal cloud in a steady state is estimated to be ~104-105 kg s-1. The input is up to ~10 times larger than found previously, mainly because particles released closer to the Sun have shorter collisional lifetimes and need to be supplied at a faster rate. The total mass accreted by the Earth in particles between diameters D = 5 μm and 1 cm is found to be ~15,000 tons yr-1 (factor of two uncertainty), which is a large share of the accretion flux measured by the Long Term Duration Facility. The majority of JFC particles plunge into the upper atmosphere at <15 km s-1 speeds, should survive the atmospheric entry, and can produce micrometeorite falls. This could explain the compositional similarity of samples collected in the Antarctic ice and stratosphere, and those brought from comet Wild 2 by the Stardust spacecraft. Meteor radars such as CMOR and AMOR see only a fraction of the accretion flux (~1%-10% and ~10%-50%, respectively), because small particles impacting at low speeds produce ionization levels that are below these radars' detection capabilities.
NASA Astrophysics Data System (ADS)
Cassidy, W. A.; Rancitelli, L. A.
1982-04-01
An abundance of meteorites has been discovered on two sites in the Antarctic which may assist in the study of the origins of meteorites and the history of the solar system. Characteristics particular to those meteorites discovered in this region are explained. These specimens, being well preserved due to the climate, have implications in the study of the cosmic ray flux through time, the meteoroid complex in space, and cosmic ray exposure ages. Implications for the study of the Antarctic, particularly the ice flow, are also discussed. Further discoveries of meteorites in this region are anticipated.
Experimental program to determine long term characteristics of the MDE pressure transducers
NASA Technical Reports Server (NTRS)
Parker, C. D.
1973-01-01
The pressure cell sensors developed for the Pioneer 10/G meteoroid detection experiments (MDE) were investigated to enhance their application and their potential as a sensor in other MDE applications. Their Paschen characteristics were also investigated, and the effects of variations in geometry, Ni-63 platings (for initial ionizations) and sealing pressures were determined. The effects of extensive pre-flight testing and proton and heavy ion space radiation were investigated. Flight-quality pressure panels/cells were committed to long term testing to demonstrate their suitability for the Pioneer 10/G Missions.