NASA Astrophysics Data System (ADS)
Weaver, Robert J.; Taeb, Peyman; Lazarus, Steven; Splitt, Michael; Holman, Bryan P.; Colvin, Jeffrey
2016-12-01
In this study, a four member ensemble of meteorological forcing is generated using the Weather Research and Forecasting (WRF) model in order to simulate a frontal passage event that impacted the Indian River Lagoon (IRL) during March 2015. The WRF model is run to provide high and low, spatial (0.005° and 0.1°) and temporal (30 min and 6 h) input wind and pressure fields. The four member ensemble is used to force the Advanced Circulation model (ADCIRC) coupled with Simulating Waves Nearshore (SWAN) and compute the hydrodynamic and wave response. Results indicate that increasing the spatial resolution of the meteorological forcing has a greater impact on the results than increasing the temporal resolution in coastal systems like the IRL where the length scales are smaller than the resolution of the operational meteorological model being used to generate the forecast. Changes in predicted water elevations are due in part to the upwind and downwind behavior of the input wind forcing. The significant wave height is more sensitive to the meteorological forcing, exhibited by greater ensemble spread throughout the simulation. It is important that the land mask, seen by the meteorological model, is representative of the geography of the coastal estuary as resolved by the hydrodynamic model. As long as the temporal resolution of the wind field captures the bulk characteristics of the frontal passage, computational resources should be focused so as to ensure that the meteorological model resolves the spatial complexities, such as the land-water interface, that drive the land use responsible for dynamic downscaling of the winds.
Operational Reconnaissance: Identifying the Right Problems in a Complex World
2015-05-23
about the activities and resources of an enemy or rival, or to secure data concerning the meteorological , hydrographic, or geographic characteristics of...Information. Kansas City, KS: Hudson -Kimberly Publishing Co., 1896. War Department. Field Manual (FM) 1-20, Army Air Force Field Manual, Tactics and
The Air Force Interactive Meteorological System: A Research Tool for Satellite Meteorology
1992-12-02
NFARnet itself is a subnet to the global computer network INTERNET that links nearly all U.S. government research facilities and universi- ties along...required input to a generalized mathematical solution to the satellite/earth coordinate transform used for earth location of GOES sensor data. A direct...capability also exists to convert absolute coordinates to relative coordinates for transformations associated with gridded fields. 3. Spatial objective
NASA Astrophysics Data System (ADS)
Menut, Laurent; Coll, Isabelle; Cautenet, Sylvie
2005-03-01
During the summer 2001, several photo-oxidant pollution episodes were documented around Marseilles-Fos-Berre in the South of France within the framework of the ESCOMPTE campaign. The site is composed of large cities (Marseilles, Aix, and Toulon), significant factories (Fos-Berre), a dense road network, and extensive rural area. Both biogenic and anthropogenic emissions are thus significative. Located close to the Mediterranean Sea and framed by the Pyrenees and the Alps Mountains, pollutant concentrations are under the influence of strong emissions as well as a complex meteorology. During the whole summer 2001, the chemistry-transport model CHIMERE was used to forecast pollutant concentrations. The ECMWF forecast meteorological fields were used as forcing, with a raw spatial and temporal resolution of 0.5° and 3 h, respectively. It was observed that even if the synoptic dynamic processes were correctly described, the resolution was not always able to detail small-scale dynamics (sea breezes and orographical winds). To estimate the impact of meteorological forcing on the modeled concentration accuracy, an intercomparison exercise has thus been carried out on the same episode but with two sets of meteorological data: ECMWF data (with horizontal and temporal resolution of 0.5° and 3 h) and data from the mesoscale model RAMS (3 km and 1 h). The two sets of meteorological data are compared and discussed in terms of raw differences as a function of time and location, and in terms of induced discrepancies between the modeled and observed ozone concentration fields. It was shown that even if the RAMS model provides a better description of land-sea breezes and nocturnal boundary layer processes, the simulated ozone time series are satisfactory with the two meteorological forcings. In the context of ozone forecast, the scores are better with ECMWF. This is attributed to the diffusive aspect of these data that will more easily catch localized peaks, while a small error in wind speed or direction in RAMS will misplace the ozone plume.
Carbonaceous aerosols and Impacts on regional climate over South Asia
NASA Astrophysics Data System (ADS)
Pathak, B.; Parottil, A.
2017-12-01
A comprehensive assessment on the effects of carbonaceous aerosols over regional climate of South Asia CORDEX Domain is carried out using the ICTP developed Regional climate model version 4 (RegCM 4.4). Five different simulations considering (a) Carbonaceous aerosols with feedback to meteorological field (EXP1), (b) Carbonaceous aerosols without feedback to meteorological field (c) only Black Carbon with feed back to meteorological field (EXP3) and (d) only Black Carbon without feed back to meteorological field (EXP4) and only meteorology simulation (CNTL) are performed. All the five experiments are integrated from 01 January 2008 to 01 January 2012 continuously with a horizontal resolution of 50 km with first one year as spin up time. The simulated meteorology for all the simulations is validated by comparing with observations. The influence of carbonaceous aerosols on Direct Radiative Forcing (DRF) at the top of the atmosphere (TOA) and within the atmosphere (ATM) over the South Asian region with focus on Indian subcontinent is carried out. The contribution of black carbon to the total DRF and its significance is analyzed. Modulation in precipitation and temperature with the aerosol-climate feedback is studied by comparing the meteorological parameters in CNTL with CARB/BC with and without feedback simulations. In general, black carbon is found to reduce the precipitation, wind over the region more strongly than total carbonaceous aerosols. Role of black carbon in warming the surface is investigated by comparing the RegCM simulation considering both biomass burning and anthropogenic emissions with simulations considering only anthropogenic simulations.
Sulfate and Pb-210 Simulated in a Global Model Using Assimilated Meteorological Fields
NASA Technical Reports Server (NTRS)
Chin, Mian; Rood, Richard; Lin, S.-J.; Jacob, Daniel; Muller, Jean-Francois
1999-01-01
This report presents the results of distributions of tropospheric sulfate, Pb-210 and their precursors from a global 3-D model. This model is driven by assimilated meteorological fields generated by the Goddard Data Assimilation Office. Model results are compared with observations from surface sites and from multiplatform field campaigns of Pacific Exploratory Missions (PEM) and Advanced Composition Explorer (ACE). The model generally captures the seasonal variation of sulfate at the surface sites, and reproduces well the short-term in-situ observations. We will discuss the roles of various processes contributing to the sulfate levels in the troposphere, and the roles of sulfate aerosol in regional and global radiative forcing.
NASA Astrophysics Data System (ADS)
Bressan, Lidia; Valentini, Andrea; Paccagnella, Tiziana; Montani, Andrea; Marsigli, Chiara; Stefania Tesini, Maria
2017-04-01
At the Hydro-meteo-climate service of the Regional environmental agency of Emilia-Romagna, Italy (Arpae-SIMC), the oceanographic numerical model AdriaROMS is used in the operational forecasting suite to compute sea level, temperature, salinity and 3-D current fields of the Adriatic Sea (northern Mediterranean Sea). In order to evaluate the performance of the sea-level forecast and to study different configurations of the ROMS model, two marine storms occurred on the Emilia Romagna coast during the winter 2015-2016 are investigated. The main focus of this study is to analyse the sensitivity of the model to the horizontal resolution and to the meteorological forcing. To this end, the model is run with two different configurations and with two horizontal grids at 1 and 2 km resolution. To study the influence of the meteorological forcing, the two storms have been reproduced by running ROMS in ensemble mode, forced by the 16-members of the meteorological ensemble COSMO-LEPS system. Possible optimizations of the model set-up are deduced by the comparison of the different run outputs.
NASA Astrophysics Data System (ADS)
Haupt, Sue Ellen; Beyer-Lout, Anke; Long, Kerrie J.; Young, George S.
Assimilating concentration data into an atmospheric transport and dispersion model can provide information to improve downwind concentration forecasts. The forecast model is typically a one-way coupled set of equations: the meteorological equations impact the concentration, but the concentration does not generally affect the meteorological field. Thus, indirect methods of using concentration data to influence the meteorological variables are required. The problem studied here involves a simple wind field forcing Gaussian dispersion. Two methods of assimilating concentration data to infer the wind direction are demonstrated. The first method is Lagrangian in nature and treats the puff as an entity using feature extraction coupled with nudging. The second method is an Eulerian field approach akin to traditional variational approaches, but minimizes the error by using a genetic algorithm (GA) to directly optimize the match between observations and predictions. Both methods show success at inferring the wind field. The GA-variational method, however, is more accurate but requires more computational time. Dynamic assimilation of a continuous release modeled by a Gaussian plume is also demonstrated using the genetic algorithm approach.
NASA Astrophysics Data System (ADS)
Amicarelli, A.; Gariazzo, C.; Finardi, S.; Pelliccioni, A.; Silibello, C.
2008-05-01
Data assimilation techniques are methods to limit the growth of errors in a dynamical model by allowing observations distributed in space and time to force (nudge) model solutions. They have become common for meteorological model applications in recent years, especially to enhance weather forecast and to support air-quality studies. In order to investigate the influence of different data assimilation techniques on the meteorological fields produced by RAMS model, and to evaluate their effects on the ozone and PM10 concentrations predicted by FARM model, several numeric experiments were conducted over the urban area of Rome, Italy, during a summer episode.
Extended-Range High-Resolution Dynamical Downscaling over a Continental-Scale Domain
NASA Astrophysics Data System (ADS)
Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.
2014-12-01
High-resolution mesoscale simulations, when applied for downscaling meteorological fields over large spatial domains and for extended time periods, can provide valuable information for many practical application scenarios including the weather-dependent renewable energy industry. In the present study, a strategy has been proposed to dynamically downscale coarse-resolution meteorological fields from Environment Canada's regional analyses for a period of multiple years over the entire Canadian territory. The study demonstrates that a continuous mesoscale simulation over the entire domain is the most suitable approach in this regard. Large-scale deviations in the different meteorological fields pose the biggest challenge for extended-range simulations over continental scale domains, and the enforcement of the lateral boundary conditions is not sufficient to restrict such deviations. A scheme has therefore been developed to spectrally nudge the simulated high-resolution meteorological fields at the different model vertical levels towards those embedded in the coarse-resolution driving fields derived from the regional analyses. A series of experiments were carried out to determine the optimal nudging strategy including the appropriate nudging length scales, nudging vertical profile and temporal relaxation. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil-moisture, and snow conditions, towards their expected values obtained from a high-resolution offline surface scheme was also devised to limit any considerable deviation in the evolving surface fields due to extended-range temporal integrations. The study shows that ensuring large-scale atmospheric similarities helps to deliver near-surface statistical scores for temperature, dew point temperature and horizontal wind speed that are better or comparable to the operational regional forecasts issued by Environment Canada. Furthermore, the meteorological fields resulting from the proposed downscaling strategy have significantly improved spatiotemporal variance compared to those from the operational forecasts, and any time series generated from the downscaled fields do not suffer from discontinuities due to switching between the consecutive forecasts.
2. SOUTH FACE OF METEOROLOGICAL SHED (BLDG. 756) WITH METEOROLOGICAL ...
2. SOUTH FACE OF METEOROLOGICAL SHED (BLDG. 756) WITH METEOROLOGICAL DATA ACQUISITION TERMINAL (MDAT) INSIDE BUILDING - Vandenberg Air Force Base, Space Launch Complex 3, Meteorological Shed & Tower, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
NASA Astrophysics Data System (ADS)
Ngan, Fong; Byun, Daewon; Kim, Hyuncheol; Lee, Daegyun; Rappenglück, Bernhard; Pour-Biazar, Arastoo
2012-07-01
To achieve more accurate meteorological inputs than was used in the daily forecast for studying the TexAQS 2006 air quality, retrospective simulations were conducted using objective analysis and 3D/surface analysis nudging with surface and upper observations. Model ozone using the assimilated meteorological fields with improved wind fields shows better agreement with the observation compared to the forecasting results. In the post-frontal conditions, important factors for ozone modeling in terms of wind patterns are the weak easterlies in the morning for bringing in industrial emissions to the city and the subsequent clockwise turning of the wind direction induced by the Coriolis force superimposing the sea breeze, which keeps pollutants in the urban area. Objective analysis and nudging employed in the retrospective simulation minimize the wind bias but are not able to compensate for the general flow pattern biases inherited from large scale inputs. By using an alternative analyses data for initializing the meteorological simulation, the model can re-produce the flow pattern and generate the ozone peak location closer to the reality. The inaccurate simulation of precipitation and cloudiness cause over-prediction of ozone occasionally. Since there are limitations in the meteorological model to simulate precipitation and cloudiness in the fine scale domain (less than 4-km grid), the satellite-based cloud is an alternative way to provide necessary inputs for the retrospective study of air quality.
NASA Astrophysics Data System (ADS)
Mel, Riccardo; Viero, Daniele Pietro; Carniello, Luca; Defina, Andrea; D'Alpaos, Luigi
2014-09-01
Providing reliable and accurate storm surge forecasts is important for a wide range of problems related to coastal environments. In order to adequately support decision-making processes, it also become increasingly important to be able to estimate the uncertainty associated with the storm surge forecast. The procedure commonly adopted to do this uses the results of a hydrodynamic model forced by a set of different meteorological forecasts; however, this approach requires a considerable, if not prohibitive, computational cost for real-time application. In the present paper we present two simplified methods for estimating the uncertainty affecting storm surge prediction with moderate computational effort. In the first approach we use a computationally fast, statistical tidal model instead of a hydrodynamic numerical model to estimate storm surge uncertainty. The second approach is based on the observation that the uncertainty in the sea level forecast mainly stems from the uncertainty affecting the meteorological fields; this has led to the idea to estimate forecast uncertainty via a linear combination of suitable meteorological variances, directly extracted from the meteorological fields. The proposed methods were applied to estimate the uncertainty in the storm surge forecast in the Venice Lagoon. The results clearly show that the uncertainty estimated through a linear combination of suitable meteorological variances nicely matches the one obtained using the deterministic approach and overcomes some intrinsic limitations in the use of a statistical tidal model.
NASA Astrophysics Data System (ADS)
Roustan, Yelva; Duhanyan, Nora; Bocquet, Marc; Winiarek, Victor
2013-04-01
A sensitivity study of the numerical model, as well as, an inverse modelling approach applied to the atmospheric dispersion issues after the Chernobyl disaster are both presented in this paper. On the one hand, the robustness of the source term reconstruction through advanced data assimilation techniques was tested. On the other hand, the classical approaches for sensitivity analysis were enhanced by the use of an optimised forcing field which otherwise is known to be strongly uncertain. The POLYPHEMUS air quality system was used to perform the simulations of radionuclide dispersion. Activity concentrations in air and deposited to the ground of iodine-131, caesium-137 and caesium-134 were considered. The impact of the implemented parameterizations of the physical processes (dry and wet depositions, vertical turbulent diffusion), of the forcing fields (meteorology and source terms) and of the numerical configuration (horizontal resolution) were investigated for the sensitivity study of the model. A four dimensional variational scheme (4D-Var) based on the approximate adjoint of the chemistry transport model was used to invert the source term. The data assimilation is performed with measurements of activity concentrations in air extracted from the Radioactivity Environmental Monitoring (REM) database. For most of the investigated configurations (sensitivity study), the statistics to compare the model results to the field measurements as regards the concentrations in air are clearly improved while using a reconstructed source term. As regards the ground deposited concentrations, an improvement can only be seen in case of satisfactorily modelled episode. Through these studies, the source term and the meteorological fields are proved to have a major impact on the activity concentrations in air. These studies also reinforce the use of reconstructed source term instead of the usual estimated one. A more detailed parameterization of the deposition process seems also to be able to improve the simulation results. For deposited activities the results are more complex probably due to a strong sensitivity to some of the meteorological fields which remain quite uncertain.
Recent Weather Technologies Delivered to America's Space Program by the Applied Meteorology Unit
NASA Technical Reports Server (NTRS)
Bauman, WIlliam, H., III; Crawford, Winifred
2009-01-01
The Applied Meteorology Unit (AMU) is a unique joint venture of NASA, the Air Force and the National Weather Service (NWS) and has been supporting the Space Program for nearly two decades. The AMU acts as a bridge between the meteorological research community and operational forecasters by developing, evaluating and transitioning new technology and techniques to improve weather support to spaceport operations at the Eastern Range (ER) and Kennedy Space Center. Its primary customers are the 45th Weather Squadron at Cape Canaveral Air Force Station (CCAFS), the Spaceflight Meteorology Group at Johnson Space Center and the National Weather Service Office in Melbourne, FL. Its products are used to support NASA's Shuttle and ELV programs as well as Department of Defense and commercial launches from the ER. Shuttle support includes landing sites beyond the ER. The AMU is co-located with the Air Force operational forecasters at CCAFS to facilitate continuous two-way interaction between the AMU and its operational customers. It is operated under a NASA, Air Force, and NWS Memorandum of Understanding (MOU) by a competitively-selected contractor. The contract, which is funded and managed by NASA, provides five full time professionals with degrees in meteorology or related fields, some of whom also have operational experience. NASA provides a Ph.D.- level NASA civil service scientist as Chief of the AMU. The AMU is tasked by its customers through a unique, nationally recognized process. The tasks are limited to development, evaluation and operational transition of technology to improve weather support to spaceport operations and providing expert advice to the customers. The MOU expressly forbids using the AMU resources to conduct operations or do basic research. The presentation will provide a brief overview of the AMU and how it is tasked by its customers to provide high priority products and services. The balance of the presentation will cover a sampling of products delivered over the last 18 years that are currently in operational use. Each example will describe the problem to be solved, the solution provided, and the operational benefits of implementing that solution.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m. Rocket...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m. Rocket...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m. Rocket...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m. Rocket...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m. Rocket...
NASA Astrophysics Data System (ADS)
Badawy, Bakr; Polavarapu, Saroja; Jones, Dylan B. A.; Deng, Feng; Neish, Michael; Melton, Joe R.; Nassar, Ray; Arora, Vivek K.
2018-02-01
The Canadian Land Surface Scheme and the Canadian Terrestrial Ecosystem Model (CLASS-CTEM) together form the land surface component in the family of Canadian Earth system models (CanESMs). Here, CLASS-CTEM is coupled to Environment and Climate Change Canada (ECCC)'s weather and greenhouse gas forecast model (GEM-MACH-GHG) to consistently model atmosphere-land exchange of CO2. The coupling between the land and the atmospheric transport model ensures consistency between meteorological forcing of CO2 fluxes and CO2 transport. The procedure used to spin up carbon pools for CLASS-CTEM for multi-decadal simulations needed to be significantly altered to deal with the limited availability of consistent meteorological information from a constantly changing operational environment in the GEM-MACH-GHG model. Despite the limitations in the spin-up procedure, the simulated fluxes obtained by driving the CLASS-CTEM model with meteorological forcing from GEM-MACH-GHG were comparable to those obtained from CLASS-CTEM when it is driven with standard meteorological forcing from the Climate Research Unit (CRU) combined with reanalysis fields from the National Centers for Environmental Prediction (NCEP) to form CRU-NCEP dataset. This is due to the similarity of the two meteorological datasets in terms of temperature and radiation. However, notable discrepancies in the seasonal variation and spatial patterns of precipitation estimates, especially in the tropics, were reflected in the estimated carbon fluxes, as they significantly affected the magnitude of the vegetation productivity and, to a lesser extent, the seasonal variations in carbon fluxes. Nevertheless, the simulated fluxes based on the meteorological forcing from the GEM-MACH-GHG model are consistent to some extent with other estimates from bottom-up or top-down approaches. Indeed, when simulated fluxes obtained by driving the CLASS-CTEM model with meteorological data from the GEM-MACH-GHG model are used as prior estimates for an atmospheric CO2 inversion analysis using the adjoint of the GEOS-Chem model, the retrieved CO2 flux estimates are comparable to those obtained from other systems in terms of the global budget and the total flux estimates for the northern extratropical regions, which have good observational coverage. In data-poor regions, as expected, differences in the retrieved fluxes due to the prior fluxes become apparent. Coupling CLASS-CTEM into the Environment Canada Carbon Assimilation System (EC-CAS) is considered an important step toward understanding how meteorological uncertainties affect both CO2 flux estimates and modeled atmospheric transport. Ultimately, such an approach will provide more direct feedback to the CLASS-CTEM developers and thus help to improve the performance of CLASS-CTEM by identifying the model limitations based on atmospheric constraints.
NASA Astrophysics Data System (ADS)
Bouet, Christel; Siour, Guillaume; Poulet, David; Bergametti, Gilles; Laurent, Benoit; Brocheton, Fabien; Forêt, Gilles; Xu, Yiwen; Marticorena, Béatrice
2017-04-01
Modelling of the mineral dust cycle is still a challenging issue both at the global and regional scales: during the last decade, several exercises of model intercomparison highlighted the wide variability of the existing dust models to estimate dust emission fluxes and atmospheric load at both scales. For instance, within the framework of the international AEROCOM Project (http://aerocom.met.no/), 15 different global dust models provide a range of possible dust emission fluxes from 400 to 2200 Tg yr-1 for North Africa and from 26 to 526 Tg yr-1 for the Middle East, i.e. still a factor of 5 and 20 respectively (Huneeus et al., 2011). Whatever the scale, a critical aspect for any dust model is the sensitivity to the meteorological fields used to compute dust emission fluxes (external forcing or simulated by the coupled meteorological or climatic model). Indeed, the intensity of dust emission varies as a power 3 of the surface wind speed, and the number of dust emission events is the number of times the surface wind speed exceeds the wind erosion threshold. As a result, the simulations of dust emissions are extremely sensitive to the way the surface wind speeds are accounted for both in global and regional models. In this context, the aim of the DRUMS (DeseRt dUst Modeling: performance and Sensitivity evaluation) project was to investigate the sensitivity of a regional dust model (CHIMERE) to this parameter. This sensitivity study was conducted for 3 years from 2006 to 2008 over the North of Africa (45°N-0°N; 45°W-55°E), where dust emissions are the most intense. Emission fluxes can be simulated there with the most relevant data set of surface properties controlling dust emissions and accounting for the heterogeneity of land surfaces (surface roughness, soil size distribution and texture) of desert regions (Laurent et al., 2008). Meteorological products (forecasts and re-analysis) provided by the most recognized international meteorological centres (US NCEP and ECMWF), and thus the most widely used for the simulations of the mineral dust cycle, were tested. In addition, the benefit provided by the use of the WRF model to downscale the meteorological forcing was evaluated. The estimation of the performance of the CHIMERE model forced by the different meteorological fields was conducted using a unique validation data set compiled during the project by analysing and evaluating (i) the large number of experimental data resulting from the AMMA (African Monsoon Multidisciplinary Analysis) field campaigns, (ii) long-term aerosol monitoring over West Africa (Sahelian Dust Transect) and downwind the Sahara/Sahel region (AERONET), and (iii) recent satellite aerosol products (SeaWIFS AOD). This dataset allowed to validate the main characteristics of the dust cycle (emission, transport, and deposit).
Sensitivity of river discharge to the quality of external meteorological forcings
NASA Astrophysics Data System (ADS)
Materia, S.; Dirmeyer, P.; Guo, Z.; Alessandri, A.; Navarra, A.
2009-09-01
Large-scale river routing models are essential tools to close the hydrological cycle in fully coupled climate models. Moreover, the availability of a realistic routing scheme is a powerful instrument to assess the validity of land surface parameterization, which has been recognized to be a crucial component of the global climate. This study is dedicated to assess the sensitivity of river discharge to the variation of external meteorological forcing. The Land Surface Scheme created at the Center for Ocean, Land and Atmosphere Studies (COLA), the SSiB model, was constrained with different meteorological fields. The resulting surface and sub-surface runoffs were used as forcing data for the HD River Routing Scheme. As expected, river flow is mainly sensitive to precipitation variability, but changes in radiative forcing affect discharge as well, presumably due to the interaction with evaporation. Also, this analysis provided an estimate of the sensitivity of river discharge to precipitation variations. A few areas, like Central and Eastern Asia, Southern and Central Europe and the majority of the US, show a magnified response of river discharge to a given percentage change in precipitation. Hence, an amplified effect of droughts following the reduction in precipitation, as it is indicated by many climate scenarios, may occur in places such as the Mediterranean. Conversely, increasing summer precipitation foreseen in Southern and Eastern Asia may amplify floods in one the poorest and most populated regions in the world. These results can be used for the definition and assessment of new strategies for land use and water management in the near future.
NASA Technical Reports Server (NTRS)
Rui, Hualan; Vollmer, B.; Teng, W.; Beaudoing, H.; Rodell, M.; Silberstein, D.
2015-01-01
GLDAS-2.0 data have been reprocessed with updated Princeton meteorological forcing data within the Land Information System (LIS) Version 7, and temporal coverage have been extended to 1948-2012.Global Land Data Assimilation System Version 2 (GLDAS-2) has two components: GLDAS-2.0: entirely forced with the Princeton meteorological forcing data GLDAS-2.1: forced with atmospheric analysis and observation-based data after 2001In order to create more climatologically consistent data sets, NASA GSFC's Hydrological Sciences Laboratory (HSL) has recently reprocessed the GLDAS-2.0, by using updated Princeton meteorological forcing data within the LIS Version 7.GLDAS-2.0 data and data services are provided at NASA GES DISC Hydrology Data and Information Services Center (HDISC), in collaboration with HSL.
NASA Astrophysics Data System (ADS)
Rodríguez-Rincón, J. P.; Pedrozo-Acuña, A.; Breña-Naranjo, J. A.
2015-07-01
This investigation aims to study the propagation of meteorological uncertainty within a cascade modelling approach to flood prediction. The methodology was comprised of a numerical weather prediction (NWP) model, a distributed rainfall-runoff model and a 2-D hydrodynamic model. The uncertainty evaluation was carried out at the meteorological and hydrological levels of the model chain, which enabled the investigation of how errors that originated in the rainfall prediction interact at a catchment level and propagate to an estimated inundation area and depth. For this, a hindcast scenario is utilised removing non-behavioural ensemble members at each stage, based on the fit with observed data. At the hydrodynamic level, an uncertainty assessment was not incorporated; instead, the model was setup following guidelines for the best possible representation of the case study. The selected extreme event corresponds to a flood that took place in the southeast of Mexico during November 2009, for which field data (e.g. rain gauges; discharge) and satellite imagery were available. Uncertainty in the meteorological model was estimated by means of a multi-physics ensemble technique, which is designed to represent errors from our limited knowledge of the processes generating precipitation. In the hydrological model, a multi-response validation was implemented through the definition of six sets of plausible parameters from past flood events. Precipitation fields from the meteorological model were employed as input in a distributed hydrological model, and resulting flood hydrographs were used as forcing conditions in the 2-D hydrodynamic model. The evolution of skill within the model cascade shows a complex aggregation of errors between models, suggesting that in valley-filling events hydro-meteorological uncertainty has a larger effect on inundation depths than that observed in estimated flood inundation extents.
NASA Astrophysics Data System (ADS)
Réveillet, Marion; Six, Delphine; Vincent, Christian; Rabatel, Antoine; Dumont, Marie; Lafaysse, Matthieu; Morin, Samuel; Vionnet, Vincent; Litt, Maxime
2018-04-01
This study focuses on simulations of the seasonal and annual surface mass balance (SMB) of Saint-Sorlin Glacier (French Alps) for the period 1996-2015 using the detailed SURFEX/ISBA-Crocus snowpack model. The model is forced by SAFRAN meteorological reanalysis data, adjusted with automatic weather station (AWS) measurements to ensure that simulations of all the energy balance components, in particular turbulent fluxes, are accurately represented with respect to the measured energy balance. Results indicate good model performance for the simulation of summer SMB when using meteorological forcing adjusted with in situ measurements. Model performance however strongly decreases without in situ meteorological measurements. The sensitivity of the model to meteorological forcing indicates a strong sensitivity to wind speed, higher than the sensitivity to ice albedo. Compared to an empirical approach, the model exhibited better performance for simulations of snow and firn melting in the accumulation area and similar performance in the ablation area when forced with meteorological data adjusted with nearby AWS measurements. When such measurements were not available close to the glacier, the empirical model performed better. Our results suggest that simulations of the evolution of future mass balance using an energy balance model require very accurate meteorological data. Given the uncertainties in the temporal evolution of the relevant meteorological variables and glacier surface properties in the future, empirical approaches based on temperature and precipitation could be more appropriate for simulations of glaciers in the future.
Sorooshian, Armin; MacDonald, Alexander B; Dadashazar, Hossein; Bates, Kelvin H; Coggon, Matthew M; Craven, Jill S; Crosbie, Ewan; Hersey, Scott P; Hodas, Natasha; Lin, Jack J; Negrón Marty, Arnaldo; Maudlin, Lindsay C; Metcalf, Andrew R; Murphy, Shane M; Padró, Luz T; Prabhakar, Gouri; Rissman, Tracey A; Shingler, Taylor; Varutbangkul, Varuntida; Wang, Zhen; Woods, Roy K; Chuang, Patrick Y; Nenes, Athanasios; Jonsson, Haflidi H; Flagan, Richard C; Seinfeld, John H
2018-02-27
Airborne measurements of meteorological, aerosol, and stratocumulus cloud properties have been harmonized from six field campaigns during July-August months between 2005 and 2016 off the California coast. A consistent set of core instruments was deployed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies Twin Otter for 113 flight days, amounting to 514 flight hours. A unique aspect of the compiled data set is detailed measurements of aerosol microphysical properties (size distribution, composition, bioaerosol detection, hygroscopicity, optical), cloud water composition, and different sampling inlets to distinguish between clear air aerosol, interstitial in-cloud aerosol, and droplet residual particles in cloud. Measurements and data analysis follow documented methods for quality assurance. The data set is suitable for studies associated with aerosol-cloud-precipitation-meteorology-radiation interactions, especially owing to sharp aerosol perturbations from ship traffic and biomass burning. The data set can be used for model initialization and synergistic application with meteorological models and remote sensing data to improve understanding of the very interactions that comprise the largest uncertainty in the effect of anthropogenic emissions on radiative forcing.
Sorooshian, Armin; MacDonald, Alexander B.; Dadashazar, Hossein; Bates, Kelvin H.; Coggon, Matthew M.; Craven, Jill S.; Crosbie, Ewan; Hersey, Scott P.; Hodas, Natasha; Lin, Jack J.; Negrón Marty, Arnaldo; Maudlin, Lindsay C.; Metcalf, Andrew R.; Murphy, Shane M.; Padró, Luz T.; Prabhakar, Gouri; Rissman, Tracey A.; Shingler, Taylor; Varutbangkul, Varuntida; Wang, Zhen; Woods, Roy K.; Chuang, Patrick Y.; Nenes, Athanasios; Jonsson, Haflidi H.; Flagan, Richard C.; Seinfeld, John H.
2018-01-01
Airborne measurements of meteorological, aerosol, and stratocumulus cloud properties have been harmonized from six field campaigns during July-August months between 2005 and 2016 off the California coast. A consistent set of core instruments was deployed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies Twin Otter for 113 flight days, amounting to 514 flight hours. A unique aspect of the compiled data set is detailed measurements of aerosol microphysical properties (size distribution, composition, bioaerosol detection, hygroscopicity, optical), cloud water composition, and different sampling inlets to distinguish between clear air aerosol, interstitial in-cloud aerosol, and droplet residual particles in cloud. Measurements and data analysis follow documented methods for quality assurance. The data set is suitable for studies associated with aerosol-cloud-precipitation-meteorology-radiation interactions, especially owing to sharp aerosol perturbations from ship traffic and biomass burning. The data set can be used for model initialization and synergistic application with meteorological models and remote sensing data to improve understanding of the very interactions that comprise the largest uncertainty in the effect of anthropogenic emissions on radiative forcing. PMID:29485627
NASA Astrophysics Data System (ADS)
Sorooshian, Armin; MacDonald, Alexander B.; Dadashazar, Hossein; Bates, Kelvin H.; Coggon, Matthew M.; Craven, Jill S.; Crosbie, Ewan; Hersey, Scott P.; Hodas, Natasha; Lin, Jack J.; Negrón Marty, Arnaldo; Maudlin, Lindsay C.; Metcalf, Andrew R.; Murphy, Shane M.; Padró, Luz T.; Prabhakar, Gouri; Rissman, Tracey A.; Shingler, Taylor; Varutbangkul, Varuntida; Wang, Zhen; Woods, Roy K.; Chuang, Patrick Y.; Nenes, Athanasios; Jonsson, Haflidi H.; Flagan, Richard C.; Seinfeld, John H.
2018-02-01
Airborne measurements of meteorological, aerosol, and stratocumulus cloud properties have been harmonized from six field campaigns during July-August months between 2005 and 2016 off the California coast. A consistent set of core instruments was deployed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies Twin Otter for 113 flight days, amounting to 514 flight hours. A unique aspect of the compiled data set is detailed measurements of aerosol microphysical properties (size distribution, composition, bioaerosol detection, hygroscopicity, optical), cloud water composition, and different sampling inlets to distinguish between clear air aerosol, interstitial in-cloud aerosol, and droplet residual particles in cloud. Measurements and data analysis follow documented methods for quality assurance. The data set is suitable for studies associated with aerosol-cloud-precipitation-meteorology-radiation interactions, especially owing to sharp aerosol perturbations from ship traffic and biomass burning. The data set can be used for model initialization and synergistic application with meteorological models and remote sensing data to improve understanding of the very interactions that comprise the largest uncertainty in the effect of anthropogenic emissions on radiative forcing.
Final Report for High Latitude Climate Modeling: ARM Takes Us Beyond Case Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Lynn M; Lubin, Dan
2013-06-18
The main thrust of this project was to devise a method by which the majority of North Slope of Alaska (NSA) meteorological and radiometric data, collected on a daily basis, could be used to evaluate and improve global climate model (GCM) simulations and their parameterizations, particularly for cloud microphysics. Although the standard ARM Program sensors for a less complete suite of instruments for cloud and aerosol studies than the instruments on an intensive field program such as the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC), the advantage they offer lies in the long time base and large volume of datamore » that covers a wide range of meteorological and climatological conditions. The challenge has been devising a method to interpret the NSA data in a practical way, so that a wide variety of meteorological conditions in all seasons can be examined with climate models. If successful, climate modelers would have a robust alternative to the usual “case study” approach (i.e., from intensive field programs only) for testing and evaluating their parameterizations’ performance. Understanding climate change on regional scales requires a broad scientific consideration of anthropogenic influences that goes beyond greenhouse gas emissions to also include aerosol-induced changes in cloud properties. For instance, it is now clear that on small scales, human-induced aerosol plumes can exert microclimatic radiative and hydrologic forcing that rivals that of greenhouse gas–forced warming. This project has made significant scientific progress by investigating what causes successive versions of climate models continue to exhibit errors in cloud amount, cloud microphysical and radiative properties, precipitation, and radiation balance, as compared with observations and, in particular, in Arctic regions. To find out what is going wrong, we have tested the models' cloud representation over the full range of meteorological conditions found in the Arctic using the ARM North Slope of Alaska (NSA) data.« less
Space Shuttle interactive meteorological data system study
NASA Technical Reports Server (NTRS)
Young, J. T.; Fox, R. J.; Benson, J. M.; Rueden, J. P.; Oehlkers, R. A.
1985-01-01
Although focused toward the operational meteorological support review and definition of an operational meteorological interactive data display systems (MIDDS) requirements for the Space Meteorology Support Group at NASA/Johnson Space Center, the total operational meteorological support requirements and a systems concept for the MIDDS network integration of NASA and Air Force elements to support the National Space Transportation System are also addressed.
Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes
Paschalis, Athanasios; Fatichi, Simone; Katul, Gabriel G.; ...
2015-08-07
While the importance of ecosystem functioning is undisputed in the context of climate change and Earth system modeling, the role of short-scale temporal variability of hydrometeorological forcing (~1 h) on the related ecosystem processes remains to be fully understood. Additionally, various impacts of meteorological forcing variability on water and carbon fluxes across a range of scales are explored here using numerical simulations. Synthetic meteorological drivers that highlight dynamic features of the short temporal scale in series of precipitation, temperature, and radiation are constructed. These drivers force a mechanistic ecohydrological model that propagates information content into the dynamics of water andmore » carbon fluxes for an ensemble of representative ecosystems. The focus of the analysis is on a cross-scale effect of the short-scale forcing variability on the modeled evapotranspiration and ecosystem carbon assimilation. Interannual variability of water and carbon fluxes is emphasized in the analysis. The main study inferences are summarized as follows: (a) short-scale variability of meteorological input does affect water and carbon fluxes across a wide range of time scales, spanning from the hourly to the annual and longer scales; (b) different ecosystems respond to the various characteristics of the short-scale variability of the climate forcing in various ways, depending on dominant factors limiting system productivity; (c) whenever short-scale variability of meteorological forcing influences primarily fast processes such as photosynthesis, its impact on the slow-scale variability of water and carbon fluxes is small; and (d) whenever short-scale variability of the meteorological forcing impacts slow processes such as movement and storage of water in the soil, the effects of the variability can propagate to annual and longer time scales.« less
Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paschalis, Athanasios; Fatichi, Simone; Katul, Gabriel G.
While the importance of ecosystem functioning is undisputed in the context of climate change and Earth system modeling, the role of short-scale temporal variability of hydrometeorological forcing (~1 h) on the related ecosystem processes remains to be fully understood. Additionally, various impacts of meteorological forcing variability on water and carbon fluxes across a range of scales are explored here using numerical simulations. Synthetic meteorological drivers that highlight dynamic features of the short temporal scale in series of precipitation, temperature, and radiation are constructed. These drivers force a mechanistic ecohydrological model that propagates information content into the dynamics of water andmore » carbon fluxes for an ensemble of representative ecosystems. The focus of the analysis is on a cross-scale effect of the short-scale forcing variability on the modeled evapotranspiration and ecosystem carbon assimilation. Interannual variability of water and carbon fluxes is emphasized in the analysis. The main study inferences are summarized as follows: (a) short-scale variability of meteorological input does affect water and carbon fluxes across a wide range of time scales, spanning from the hourly to the annual and longer scales; (b) different ecosystems respond to the various characteristics of the short-scale variability of the climate forcing in various ways, depending on dominant factors limiting system productivity; (c) whenever short-scale variability of meteorological forcing influences primarily fast processes such as photosynthesis, its impact on the slow-scale variability of water and carbon fluxes is small; and (d) whenever short-scale variability of the meteorological forcing impacts slow processes such as movement and storage of water in the soil, the effects of the variability can propagate to annual and longer time scales.« less
NASA Astrophysics Data System (ADS)
Sirjacobs, D.; Grégoire, M.; Delhez, E.; Nihoul, J.
2003-04-01
Within the context of the EU INCO-COPERNICUS program "Desertification in the Aral Sea Region: A study of the Natural and Anthropogenic Impacts" (Contract IAC2-CT-2000-10023), a large-scale 3D hydrodynamic model was adapted to address specifically the macroscale processes affecting the Aral Sea water circulation and ventilation. The particular goal of this research is to simulate the effect of lasting negative water balance on the 3D seasonal circulation, temperature, salinity and water-mixing fields of the Aral Sea. The original Aral Sea seasonal hydrodynamism is simulated with the average seasonal forcings corresponding to the period from 1956 to 1960. This first investigation concerns a period of relative stability of the water balance, before the beginning of the drying process. The consequences of the drying process on the hydrodynamic of the Sea will be studied by comparing this first results with the simulation representing the average situation for the years 1981 to 1985, a very low river flow period. For both simulation periods, the forcing considered are the seasonal fluctuations of wind fields, precipitation, evaporation, river discharge and salinity, cloud cover, air temperature and humidity. The meteorological forcings were adapted to the common optimum one-month temporal resolution of the available data sets. Monthly mean kinetic energy flux and surface tensions were calculated from daily ECMWF wind data. Monthly in situ precipitation, surface air temperature and humidity fields were interpolated from data obtained from the Russian Hydrological and Meteorological Institute. Monthly water discharge and average salinity of the river water were considered for both Amu Darya and Syr Darya river over each simulation periods. The water mass conservation routines allowed the simulation of a changing coastline by taking into account local drying and flooding events of particular grid points. Preliminary barotropic runs were realised (for the 1951-1960 situation, before drying up began) in order to get a first experience of the behaviour of the hydrodynamic model. These first runs provide results about the evolution of the following state variables: elevation of the sea surface, 3D fields of vertical and horizontal flows, 2D fields of average horizontal flows and finally the 3D fields of turbulent kinetic energy. The mean seasonal salinity and temperature fields (in-situ data gathered by the Russian Hydrological and Meteorological Institute) are available for the two simulated periods and will allow a first validation of the hydrodynamic model. Various satellites products were identified, collected and processed in the frame of this research project and will be used for the validation of the model outputs. Seasonal level changes measurements derived from water table change will serve for water balance validation and sea surface temperature for hydrodynamics validation.
Li, Zhijin; Vogelmann, Andrew M.; Feng, Sha; ...
2015-01-20
We produce fine-resolution, three-dimensional fields of meteorological and other variables for the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Southern Great Plains site. The Community Gridpoint Statistical Interpolation system is implemented in a multiscale data assimilation (MS-DA) framework that is used within the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. The MS-DA algorithm uses existing reanalysis products and constrains fine-scale atmospheric properties by assimilating high-resolution observations. A set of experiments show that the data assimilation analysis realistically reproduces the intensity, structure, and time evolution of clouds and precipitation associated with a mesoscale convective system.more » Evaluations also show that the large-scale forcing derived from the fine-resolution analysis has an overall accuracy comparable to the existing ARM operational product. For enhanced applications, the fine-resolution fields are used to characterize the contribution of subgrid variability to the large-scale forcing and to derive hydrometeor forcing, which are presented in companion papers.« less
NASA Astrophysics Data System (ADS)
Tobin, Cara; Nicotina, Ludovico; Parlange, Marc B.; Berne, Alexis; Rinaldo, Andrea
2011-04-01
SummaryThis paper presents a comparative study on the mapping of temperature and precipitation fields in complex Alpine terrain. Its relevance hinges on the major impact that inadequate interpolations of meteorological forcings bear on the accuracy of hydrologic predictions regardless of the specifics of the models, particularly during flood events. Three flood events measured in the Swiss Alps are analyzed in detail to determine the interpolation methods which best capture the distribution of intense, orographically-induced precipitation. The interpolation techniques comparatively examined include: Inverse Distance Weighting (IDW), Ordinary Kriging (OK), and Kriging with External Drift (KED). Geostatistical methods rely on a robust anisotropic variogram for the definition of the spatial rainfall structure. Results indicate that IDW tends to significantly underestimate rainfall volumes whereas OK and KED methods capture spatial patterns and rainfall volumes induced by storm advection. Using numerical weather forecasts and elevation data as covariates for precipitation, we provide evidence for KED to outperform the other methods. Most significantly, the use of elevation as auxiliary information in KED of temperatures demonstrates minimal errors in estimated instantaneous rainfall volumes and provides instantaneous lapse rates which better capture snow/rainfall partitioning. Incorporation of the temperature and precipitation input fields into a hydrological model used for operational management was found to provide vastly improved outputs with respect to measured discharge volumes and flood peaks, with notable implications for flood modeling.
NASA Astrophysics Data System (ADS)
Ahmadov, R.; McKeen, S. A.; Angevine, W. M.; Frost, G. J.; Roberts, J. M.; De Gouw, J. A.; Warneke, C.; Peischl, J.; Brown, S. S.; Edwards, P. M.; Wild, R. J.; Pichugina, Y. L.; Banta, R. M.; Brewer, A.; Senff, C. J.; Langford, A. O.; Petron, G.; Karion, A.; Sweeney, C.; Schnell, R. C.; Johnson, B.; Zamora, R. J.; Helmig, D.; Park, J.; Evans, J.; Stephens, C. R.; Olson, J. B.; Trainer, M.
2013-12-01
The Uintah Basin Winter Ozone Studies (UBWOS) field campaigns took place during winter of 2012 and 2013 in the Uintah Basin, Utah. The studies were aimed at characterizing meteorology, emissions of atmospheric constituents and air chemistry in a region abundant with oil and gas production, with associated emissions of various volatile organic compounds (VOCs) and NOx. High ozone pollution events were observed throughout the Uintah Basin during the winter of 2013, but not during the winter of 2012. A clear understanding of the processes leading to high ozone events is still lacking. We present here high spatiotemporal resolution simulations of meteorology, tracer transport and gas chemistry over the basin during January-February, 2012 and 2013 using the WRF/Chem regional photochemical model. Correctly characterizing the meteorology poses unique challenges due to complex terrain, cold-pool conditions, and shallow inversion layers observed during the winter of 2013. We discuss the approach taken to adequately simulate the meteorology over the basin and present evaluations of the modeled meteorology using surface, lidar and tethersonde measurements. Initial simulations use a passive tracer within the model as a surrogate for CH4 released from oil and gas wells. These tracer transport simulations show that concentrations of inert, emitted species near the surface in 2013 were 4-8 times higher than 2012 due to much shallower boundary layers and reduced winds in 2013. This is supported by in-situ measurements of CH4 made at the Horse Pool surface station during the field campaigns. Full photochemical simulations are forced by VOC and NOx emissions that are determined in a top-down approach, using observed emission ratios of VOC and NOx relative to CH4, along with available information of active wells, compressors, and processing plants. We focus on differences in meteorology, temperature, and radiation between the two winters in determining ozone concentrations in the basin. The model is then used diagnostically to assess first-order sensitivities of basin-wide ozone to NOx or VOC emissions, and how they depend on the environmental differences between the winters of 2012 and 2013.
METEOROLOGICAL AND TRANSPORT MODELING
Advanced air quality simulation models, such as CMAQ, as well as other transport and dispersion models, require accurate and detailed meteorology fields. These meteorology fields include primary 3-dimensional dynamical and thermodynamical variables (e.g., winds, temperature, mo...
NASA Astrophysics Data System (ADS)
McGinty, A. B.
1982-04-01
Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.
Global meteorological data facility for real-time field experiments support and guidance
NASA Technical Reports Server (NTRS)
Shipham, Mark C.; Shipley, Scott T.; Trepte, Charles R.
1988-01-01
A Global Meteorological Data Facility (GMDF) has been constructed to provide economical real-time meteorological support to atmospheric field experiments. After collection and analysis of meteorological data sets at a central station, tailored meteorological products are transmitted to experiment field sites using conventional ground link or satellite communication techniques. The GMDF supported the Global Tropospheric Experiment Amazon Boundary Layer Experiment (GTE-ABLE II) based in Manaus, Brazil, during July and August 1985; an arctic airborne lidar survey mission for the Polar Stratospheric Clouds (PSC) experiment during January 1986; and the Genesis of Atlantic Lows Experiment (GALE) during January, February and March 1986. GMDF structure is similar to the UNIDATA concept, including meteorological data from the Zephyr Weather Transmission Service, a mode AAA GOES downlink, and dedicated processors for image manipulation, transmission and display. The GMDF improved field experiment operations in general, with the greatest benefits arising from the ability to communicate with field personnel in real time.
NASA Astrophysics Data System (ADS)
Khajehei, S.; Madadgar, S.; Moradkhani, H.
2014-12-01
The reliability and accuracy of hydrological predictions are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model parameters and model structure. To reduce the total uncertainty in hydrological applications, one approach is to reduce the uncertainty in meteorological forcing by using the statistical methods based on the conditional probability density functions (pdf). However, one of the requirements for current methods is to assume the Gaussian distribution for the marginal distribution of the observed and modeled meteorology. Here we propose a Bayesian approach based on Copula functions to develop the conditional distribution of precipitation forecast needed in deriving a hydrologic model for a sub-basin in the Columbia River Basin. Copula functions are introduced as an alternative approach in capturing the uncertainties related to meteorological forcing. Copulas are multivariate joint distribution of univariate marginal distributions, which are capable to model the joint behavior of variables with any level of correlation and dependency. The method is applied to the monthly forecast of CPC with 0.25x0.25 degree resolution to reproduce the PRISM dataset over 1970-2000. Results are compared with Ensemble Pre-Processor approach as a common procedure used by National Weather Service River forecast centers in reproducing observed climatology during a ten-year verification period (2000-2010).
NASA Astrophysics Data System (ADS)
Le Page, Michel; Gosset, Cindy; Oueslati, Ines; Calvez, Roger; Zribi, Mehrez; Lilli Chabaane, Zohra
2015-04-01
Meteorological forcing is essential to hydrological and hydro-geological modeling. In the case of the semi-arid catchment of Merguellil in Tunisia, long term time series are only available in the plain for a SYNOP station. Other meteorological stations have been installed since 2010. Therefore, this study aims at qualifying the reliability of the meteorological forcing necessary for an integrated model conception. We compare the meteorological data from 7 stations (sources: WMO and our own station), inside and around the Merguellil catchment, with daily gridded data at 25*25 km from AGRI4CAST and 50*50km from WFDEI. AGRI4CAST (Biaveti et al, 2008) is an interpolated dataset based on actual weather stations produced by the Joint Research Centre (JRC) for the Monitoring Agricultural Resources Unit (MARS). The WFDEI second version dataset (Weedon et al, 2014) has been generated using the same methodology as the widely used WATCH Forcing Data (WFD) by making use of the ERA-Interim reanalysis data. The studied meteorological variables are Rs, Tmoy, U2, P, RH and ET0, with the scores RMSE, bias and R pearson. Regarding the AGRI4CAST dataset, the scores are established over different periods according to variables based on stepping between the observed and interpolated data. The scores show good correlations between the observed temperatures, but with a spatial variability bound to the stations elevations. The moderate and interpolated radiations also show a good concordance indicating a good reliability. The R pearson score obtained for the values of relative humidity show a good correlation between the observations and the interpolations, however, the short periods of comparisons do not allow obtaining significant information and the RMSE and bias are important. Wind speed has an important negative bias for a majority of stations (positively for only one). Only one station shows concordances between the data. The study of the data indicates that we shall have to adjust the wind speeds and the relative humidity of the air for the implementation of a model. Finally the reference evapotranspiration seems relatively coherent, in spite of the dispersal observed during the meteorological measures, but with biases rather high and RMSE also rather high (> 1.3 mm). After revised the parameter U2 and RH, AGRI4CAST can possibly be corrected by ancillary ground stations. The analysis of the WFDEI dataset is currently under evaluation. (1) Biavetti, I., Karetsos, S., Ceglar, A., Toreti, A., Panagos P. (2014), European meteorological data: contribution to research, development and policy support, Proc. of SPIE Vol. 9229 922907-1 (2) Weedon, G. P., G. Balsamo, N. Bellouin, S. Gomes, M. J. Best, and P. Viterbo (2014), The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data, Water Resour. Res., 50, 7505-7514, doi:10.1002/ 2014WR015638.
NASA Astrophysics Data System (ADS)
Maute, A. I.; Hagan, M. E.; Richmond, A. D.; Liu, H.; Yudin, V. A.
2014-12-01
The ionosphere-thermosphere system is affected by solar and magnetospheric processes and by meteorological variability. Ionospheric observations of total electron content during the current solar cycle have shown that variability associated with meteorological forcing is important during solar minimum, and can have significant ionospheric effects during solar medium to maximum conditions. Numerical models can be used to study the comparative importance of geomagnetic and meterological forcing.This study focuses on the January 2013 Stratospheric Sudden Warming (SSW) period, which is associated with a very disturbed middle atmosphere as well as with moderately disturbed solar geomagntic conditions. We employ the NCAR Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) with a nudging scheme using Whole-Atmosphere-Community-Climate-Model-Extended (WACCM-X)/Goddard Earth Observing System Model, Version 5 (GEOS5) results to simulate the effects of the meteorological and solar wind forcing on the upper atmosphere. The model results are evaluated by comparing with observations e.g., TEC, NmF2, ion drifts. We study the effect of the SSW on the wave spectrum, and the associated changes in the low latitude vertical drifts. These changes are compared to the impact of the moderate geomagnetic forcing on the TI-system during the January 2013 time period by conducting numerical experiments. We will present select highlights from our study and elude to the comparative importance of the forcing from above and below as simulated by the TIME-GCM.
NASA Technical Reports Server (NTRS)
Medvedev, A. S.
1987-01-01
Numerous experiments on the detection of atmospheric waves in the frequency range from acoustic to planetary at meteor heights have revealed that important wave sources are meteorological processes in the troposphere (cyclones, atmospheric fronts, jet streams, etc.). A dynamical theory based on the others work include describing the adaptation of meteorological fields to the geostropic equilibrium state. According to this theory, wave motions appear as a result of constant competition between the maladjustment of the wind and pressure fields due to nonlinear effects and the tendency of the atmosphere to establish a quasi-geostrophic equilibrium of these fields. These meteorological fields are discussed.
NASA Astrophysics Data System (ADS)
Medvedev, A. S.
1987-08-01
Numerous experiments on the detection of atmospheric waves in the frequency range from acoustic to planetary at meteor heights have revealed that important wave sources are meteorological processes in the troposphere (cyclones, atmospheric fronts, jet streams, etc.). A dynamical theory based on the others work include describing the adaptation of meteorological fields to the geostropic equilibrium state. According to this theory, wave motions appear as a result of constant competition between the maladjustment of the wind and pressure fields due to nonlinear effects and the tendency of the atmosphere to establish a quasi-geostrophic equilibrium of these fields. These meteorological fields are discussed.
2013-09-30
forcing through an ensemble-based method. The results of our findings were presented at the 2013 American Meteorological Society (AMS) annual meeting...Forcing to the Existing Satellite Observations, 93rd American Meteorological Society Annual Meeting, Austin, Texas, January 5-10, 2013b...Ceburnis, D., Chang, R., Clarke, A., de Leeuw, G., Deane, G., DeMott, P. J., Elliot, S., Facchini, M. C., Fairall, C. W., Hawkins, L., Hu, Y., Hudson , J
Meteorological Controls on Local and Regional Volcanic Ash Dispersal.
Poulidis, Alexandros P; Phillips, Jeremy C; Renfrew, Ian A; Barclay, Jenni; Hogg, Andrew; Jenkins, Susanna F; Robertson, Richard; Pyle, David M
2018-05-02
Volcanic ash has the capacity to impact human health, livestock, crops and infrastructure, including international air traffic. For recent major eruptions, information on the volcanic ash plume has been combined with relatively coarse-resolution meteorological model output to provide simulations of regional ash dispersal, with reasonable success on the scale of hundreds of kilometres. However, to predict and mitigate these impacts locally, significant improvements in modelling capability are required. Here, we present results from a dynamic meteorological-ash-dispersion model configured with sufficient resolution to represent local topographic and convectively-forced flows. We focus on an archetypal volcanic setting, Soufrière, St Vincent, and use the exceptional historical records of the 1902 and 1979 eruptions to challenge our simulations. We find that the evolution and characteristics of ash deposition on St Vincent and nearby islands can be accurately simulated when the wind shear associated with the trade wind inversion and topographically-forced flows are represented. The wind shear plays a primary role and topographic flows a secondary role on ash distribution on local to regional scales. We propose a new explanation for the downwind ash deposition maxima, commonly observed in volcanic eruptions, as resulting from the detailed forcing of mesoscale meteorology on the ash plume.
NASA Astrophysics Data System (ADS)
Gochis, D. J.; Dugger, A. L.; Karsten, L. R.; Barlage, M. J.; Sampson, K. M.; Yu, W.; Pan, L.; McCreight, J. L.; Howard, K.; Busto, J.; Deems, J. S.
2017-12-01
Hydrometeorological processes vary over comparatively short length scales in regions of complex terrain such as the southern Rocky Mountains. Changes in temperature, precipitation, wind and solar radiation can vary significantly across elevation gradients, terrain landform and land cover conditions throughout the region. Capturing such variability in hydrologic models can necessitate the utilization of so-called `hyper-resolution' spatial meshes with effective element spacings of less than 100m. However, it is often difficult to obtain meteorological forcings of high quality in such regions at those resolutions which can result in significant uncertainty in fundamental in hydrologic model inputs. In this study we examine the comparative influences of meteorological forcing data fidelity and spatial resolution on seasonal simulations of snowpack evolution, runoff and streamflow in a set of high mountain watersheds in southern Colorado. We utilize the operational, NOAA National Water Model configuration of the community WRF-Hydro system as a baseline and compare against it, additional model scenarios with differing specifications of meteorological forcing data, with and without topographic downscaling adjustments applied, with and without experimental high resolution radar derived precipitation estimates and with WRF-Hydro configurations of progressively finer spatial resolution. The results suggest significant influence from and importance of meteorological downscaling techniques in controlling spatial distributions of meltout and runoff timing. The use of radar derived precipitation exhibits clear sensitivity on hydrologic simulation skill compared with the use of coarser resolution, background precipitation analyses. Advantages and disadvantages of the utilization of progressively higher resolution model configurations both in terms of computational requirements and model fidelity are also discussed.
NASA Astrophysics Data System (ADS)
Ridder, Nina; de Vries, Hylke; Drijfhout, Sybren; van den Brink, Henk; van Meijgaard, Erik; de Vries, Hans
2018-02-01
This study shows that storm surge model performance in the North Sea is mostly unaffected by the application of temporal variations of surface drag due to changes in sea state provided the choice of a suitable constant Charnock parameter in the sea-state-independent case. Including essential meteorological features on smaller scales and minimising interpolation errors by increasing forcing data resolution are shown to be more important for the improvement of model performance particularly at the high tail of the probability distribution. This is found in a modelling study using WAQUA/DCSMv5 by evaluating the influence of a realistic air-sea momentum transfer parameterization and comparing it to the influence of changes in the spatial and temporal resolution of the applied forcing fields in an effort to support the improvement of impact and climate analysis studies. Particular attention is given to the representation of extreme water levels over the past decades based on the example of the Netherlands. For this, WAQUA/DCSMv5 is forced with ERA-Interim reanalysis data. Model results are obtained from a set of different forcing fields, which either (i) include a wave-state-dependent Charnock parameter or (ii) apply a constant Charnock parameter ( α C h = 0.032) tuned for young sea states in the North Sea, but differ in their spatial and/or temporal resolution. Increasing forcing field resolution from roughly 79 to 12 km through dynamically downscaling can reduce the modelled low bias, depending on coastal station, by up to 0.25 m for the modelled extreme water levels with a 1-year return period and between 0.1 m and 0.5 m for extreme surge heights.
Owen-Joyce, Sandra J.; Brown, Paul W.
1995-01-01
Data were collected at temporary meteorological stations installed in agricultural fields in Pinal County, Arizona, to evaluate the spatial and temporal variability of point data and to examine how station location affects ground-based meteorological data and the resulting values of evapotranspiration calculated using remotely sensed multispectral data from satellites. Time-specific data were collected to correspond with satellite overpasses from April to October 1989, and June 27-28, 1990. Meteorological data consisting of air temperature, relative humidity, wind speed, solar radiation, and net radiation were collected at each station during all periods of the project. Supplementary measurements of soil temperature, soil heat flux density, and surface or canopy temperature were obtained at some locations during certain periods of the project. Additional data include information on data-collection periods, station positions, instrumentation, sensor heights, and field dimensions. Other data, which correspond to the extensive field measurements made in con- junction with satellite overpasses in 1989 and 1990, include crop type, canopy cover, canopy height, irrigation, cultivation, and orientation of rows. Field boundaries and crop types were mapped in a 2- to 3-square-kilometer area surrounding each meteorological station. Field data are presented in tabular and graphic form. Meteorological and supplementary data are available, upon request, in digital form.
NASA Astrophysics Data System (ADS)
Lenhart, Hermann J.; Radach, Günther; Backhaus, Jan O.; Pohlmann, Thomas
The rationale is given of how the gross physical features of the circulation and the stratification of the North Sea have been aggregated for inclusion in the ecosystem box model ERSEM. As the ecosystem dynamics are to a large extent determined by small-scale physical events, the ecosystem model is forced with the circulation of a specific year rather than using the long-term mean circulation field. Especially the vertical exchange processes have been explicitly included, because the primary production strongly depends on them. Simulations with a general circulation model (GCM), forced by three-hourly meteorological fields, have been utilized to derive daily horizontal transport values driving ERSEM on boxes of sizes of a few 100 km. The daily vertical transports across a fixed 30-m interface provide the necessary short-term event character of the vertical exchange. For the years 1988 and 1989 the properties of the hydrodynamic flow fields are presented in terms of trajectories of the flow, thermocline depths, of water budgets, flushing times and diffusion rates. The results of the standard simulation with ERSEM show that the daily variability of the circulation, being smoothed by the box integration procedure, is transferred to the chemical and biological state variables to a very limited degree only.
The United States Navy Arctic Roadmap for 2014 to 2030
2014-02-01
of the Oceanographer of the Navy; the Chief of Naval Research; Commander, Naval Meteorology and Oceanography Command; Commander, Office of Naval...Q3, FY14 Q3, FY15 FY15-18 FY18 2.3.4: Improve traditional meteorological forecast capability in the polar regions through the...CNE Commander Naval Forces Europe CNIC Commander Navy Installations Command CNMOC Commander Naval Meteorology and Oceanography Command CNO Chief
The climate impacts of absorbing aerosols on and within the Arctic
NASA Astrophysics Data System (ADS)
Rasch, P.; Wang, H.; Ma, P.; Fast, J. D.; Wang, M.; Easter, R. C.; Liu, X.; Qian, Y.; Flanner, M. G.; Ghan, S.; Singh, B.
2011-12-01
Absorbing aerosols are receiving increasing attention as forcing agents in the climate system. By scattering and absorbing light they can reduce planetary albedo, particularly over bright surfaces (clouds, snow and ice). They also act as cloud condensation and/or ice nuclei, influencing the brightness, lifetime and precipitation properties of clouds. Atmospheric stability and primary circulation features respond to the changing vertical and horizontal patterns of heating, cooling, and surface fluxes produced by the aerosols, clouds and surface properties. These changes in meteorology have further impacts on aerosols and clouds producing a complex interplay between transport, forcings, and feedbacks involving absorbing aerosols and climate. The complexity of the processes and the interactions between them make it very challenging to represent aerosols realistically in large scale (global and regional) climate models. Simulations of important features of aerosols still contain easily identifiable biases. I will describe our efforts to identify the processes responsible for some of those biases and the deficiencies in model formulations that impede progress in treating aerosols and understanding their role in polar climate. I plan to summarize some studies performed with the NCAR CESM (global) and WRF-Chem (regional) Community models that examine the simulation sensitivity to treatments of physics, chemistry, and meteorology. Some of these simulations were allowed to evolve freely; others were strongly constrained to agree with observed meteorological fields. We have also altered the formulation of a number of the processes in the model to improve fidelity in the aerosol distributions. The parameterizations used in our global model have also been transferred to the regional model, allowing comparisons to be made between the simpler formulations used in the global model with more elaborate and costly formulations available in the regional model. The regional model can be run at higher resolution in order to explore the resolution dependence of the parameterizations and make comparisons to field experiments more straightforward. Aerosols sources have also been tagged by sector and geographic region to help in attribution and interpretation. The many variations mentioned here help in understanding how aerosols reach the arctic and how they produce changes in radiative forcing and Arctic climate. I will provide a brief overview of these studies, with more detail available in presentations submitted to this session and elsewhere.
NASA Astrophysics Data System (ADS)
Yoshimura, K.; Oki, T.; Ohte, N.; Kanae, S.; Ichiyanagi, K.
2004-12-01
A simple water isotope circulation model on a global scale that includes a Rayleigh equation and the use of _grealistic_h external meteorological forcings estimates short-term variability of precipitation 18O. The results are validated by Global Network of Isotopes in Precipitation (GNIP) monthly observations and by daily observations at three sites in Thailand. This good agreement highlights the importance of large scale transport and mixing of vapor masses as a control factor for spatial and temporal variability of precipitation isotopes, rather than in-cloud micro processes. It also indicates the usefulness of the model and the isotopes observation databases for evaluation of two-dimensional atmospheric water circulation fields in forcing datasets. In this regard, two offline simulations for 1978-1993 with major reanalyses, i.e. NCEP and ERA15, were implemented, and the results show that, over Europe ERA15 better matched observations at both monthly and interannual time scales, mainly owing to better precipitation fields in ERA15, while in the tropics both produced similarly accurate isotopic fields. The isotope analyses diagnose accuracy of two-dimensional water circulation fields in datasets with a particular focus on precipitation processes.
Preliminary validation of WRF model in two Arctic fjords, Hornsund and Porsanger
NASA Astrophysics Data System (ADS)
Aniskiewicz, Paulina; Stramska, Małgorzata
2017-04-01
Our research is focused on development of efficient modeling system for arctic fjords. This tool should include high-resolution meteorological data derived using downscaling approach. In this presentation we have focused on modeling, with high spatial resolution, of the meteorological conditions in two Arctic fjords: Hornsund (H), located in the western part of Svalbard archipelago and Porsanger (P) located in the coastal waters of the Barents Sea. The atmospheric downscaling is based on The Weather Research and Forecasting Model (WRF, www.wrf-model.org) with polar stereographic projection. We have created two parent domains with grid point distances of about 3.2 km (P) and 3.0 km (H) and with nested domains (almost 5 times higher resolution than parent domains). We tested what is the impact of the spatial resolution of the model on derived meteorological quantities. For both fjords the input topography data resolution is 30 sec. To validate the results we have used meteorological data from the Norwegian Meteorological Institute for stations Lakselv (L) and Honningsvåg (Ho) located in the inner and outer parts of the Porsanger fjord as well as from station in the outer part of the Hornsund fjord. We have estimated coefficients of determination (r2), statistical errors (St) and systematic errors (Sy) between measured and modelled air temperature and wind speed at each station. This approach will allow us to create high resolution spatially variable meteorological fields that will serve as forcing for numerical models of the fjords. We will investigate the role of different meteorological quantities (e. g. wind, solar insolation, precipitation) on hydrohraphic processes in fjords. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018. This work was also funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support comes from the Institute of Oceanology (IO PAN).
NASA Astrophysics Data System (ADS)
Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.
2014-12-01
Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal resolution.
Analysis of the US Air Force Defense Meteorological Satellite Program Imagery for Global Lightning
NASA Technical Reports Server (NTRS)
Scharfen, Gregory R.
1999-01-01
The U. S. Air Force operates the Defense Meteorological Satellite Program (DMSP), a system of near-polar orbiting satellites designed for use in operational weather forecasting and other applications. DMSP satellites carry a suite of sensors that provide images of the earth and profiles of the atmosphere. The National Snow and Ice Data Center (NSIDC) at the University of Colorado has been involved with the archival of DMSP data and its use for several research projects since 1979. This report summarizes the portion of this involvement funded by NASA.
Applied Meteorology Unit (AMU) Quarterly Report Third Quarter FY-08
NASA Technical Reports Server (NTRS)
Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Dreher, Joseph
2008-01-01
This report summarizes the Applied Meteorology Unit (AMU) activities for the third quarter of Fiscal Year 2008 (April - June 2008). Tasks reported on are: Peak Wind Tool for User Launch Commit Criteria (LCC), Anvil Forecast Tool in AWIPS Phase II, Completion of the Edward Air Force Base (EAFB) Statistical Guidance Wind Tool, Volume Averaged Height Integ rated Radar Reflectivity (VAHIRR), Impact of Local Sensors, Radar Scan Strategies for the PAFB WSR-74C Replacement, VAHIRR Cost Benefit Analysis, and WRF Wind Sensitivity Study at Edwards Air Force Base
NASA Technical Reports Server (NTRS)
Graves, M. E.; King, R. L.; Brown, S. C.
1973-01-01
Extreme values, median values, and nine percentile values are tabulated for eight meteorological variables at Cape Kennedy, Florida and at Vandenberg Air Force Base, California. The variables are temperature, relative humidity, station pressure, water vapor pressure, water vapor mixing ratio, density, and enthalpy. For each month eight hours are tabulated, namely, 0100, 0400, 0700, 1000, 1300, 1600, 1900, and 2200 local time. These statistics are intended for general use for the space shuttle design trade-off analysis and are not to be used for specific design values.
NASA Astrophysics Data System (ADS)
Nasonova, O. N.; Gusev, Ye. M.; Kovalev, Ye. E.
2009-04-01
Global estimates of the components of terrestrial water balance depend on a technique of estimation and on the global observational data sets used for this purpose. Land surface modelling is an up-to-date and powerful tool for such estimates. However, the results of modelling are affected by the quality of both a model and input information (including meteorological forcing data and model parameters). The latter is based on available global data sets containing meteorological data, land-use information, and soil and vegetation characteristics. Now there are a lot of global data sets, which differ in spatial and temporal resolution, as well as in accuracy and reliability. Evidently, uncertainties in global data sets will influence the results of model simulations, but to which extent? The present work is an attempt to investigate this issue. The work is based on the land surface model SWAP (Soil Water - Atmosphere - Plants) and global 1-degree data sets on meteorological forcing data and the land surface parameters, provided within the framework of the Second Global Soil Wetness Project (GSWP-2). The 3-hourly near-surface meteorological data (for the period from 1 July 1982 to 31 December 1995) are based on reanalyses and gridded observational data used in the International Satellite Land-Surface Climatology Project (ISLSCP) Initiative II. Following the GSWP-2 strategy, we used a number of alternative global forcing data sets to perform different sensitivity experiments (with six alternative versions of precipitation, four versions of radiation, two pure reanalysis products and two fully hybridized products of meteorological data). To reveal the influence of model parameters on simulations, in addition to GSWP-2 parameter data sets, we produced two alternative global data sets with soil parameters on the basis of their relationships with the content of clay and sand in a soil. After this the sensitivity experiments with three different sets of parameters were performed. As a result, 16 variants of global annual estimates of water balance components were obtained. Application of alternative data sets on radiation, precipitation, and soil parameters allowed us to reveal the influence of uncertainties in input data on global estimates of water balance components.
A long-term data set for hydrologic modeling in a snow-dominated mountain catchment
USDA-ARS?s Scientific Manuscript database
An hourly modeling data set is presented for the water years 1984 through 2008 for a snow-dominated headwater catchment. Meteorological forcing data and GIS watershed characteristics are described and provided. The meteorological data are measured at two sites within the catchment, and include pre...
NASA Astrophysics Data System (ADS)
Zhang, Y.; Rong, Z.; Min, M.; Hao, X.; Yang, H.
2017-12-01
Meteorological satellites have become an irreplaceable weather and ocean-observing tool in China. These satellites are used to monitor natural disasters and improve the efficiency of many sectors of Chinese national economy. It is impossible to ignore the space-derived data in the fields of meteorology, hydrology, and agriculture, as well as disaster monitoring in China, a large agricultural country. For this reason, China is making a sustained effort to build and enhance its meteorological observing system and application system. The first Chinese polar-orbiting weather satellite was launched in 1988. Since then China has launched 14 meteorological satellites, 7 of which are sun synchronous and 7 of which are geostationary satellites; China will continue its two types of meteorological satellite programs. In order to achieve the in-orbit absolute radiometric calibration of the operational meteorological satellites' thermal infrared channels, China radiometric calibration sites (CRCS) established a set of in-orbit field absolute radiometric calibration methods (FCM) for thermal infrared channels (TIR) and the uncertainty of this method was evaluated and analyzed based on TERRA/AQUA MODIS observations. Comparisons between the MODIS at pupil brightness temperatures (BTs) and the simulated BTs at the top of atmosphere using radiative transfer model (RTM) based on field measurements showed that the accuracy of the current in-orbit field absolute radiometric calibration methods was better than 1.00K (@300K, K=1) in thermal infrared channels. Therefore, the current CRCS field calibration method for TIR channels applied to Chinese metrological satellites was with favorable calibration accuracy: for 10.5-11.5µm channel was better than 0.75K (@300K, K=1) and for 11.5-12.5µm channel was better than 0.85K (@300K, K=1).
Analysis of Surface Electric Field Measurements from an Array of Electric Field Mills
NASA Astrophysics Data System (ADS)
Lucas, G.; Thayer, J. P.; Deierling, W.
2016-12-01
Kennedy Space Center (KSC) has operated an distributed array of over 30 electric field mills over the past 18 years, providing a unique data set of surface electric field measurements over a very long timespan. In addition to the electric field instruments there are many meteorological towers around KSC that monitor the local meteorological conditions. Utilizing these datasets we have investigated and found unique spatial and temporal signatures in the electric field data that are attributed to local meteorological effects and the global electric circuit. The local and global scale influences on the atmospheric electric field will be discussed including the generation of space charge from the ocean surf, local cloud cover, and a local enhancement in the electric field that is seen at sunrise.
Evaluating Aerosol Process Modules within the Framework of the Aerosol Modeling Testbed
NASA Astrophysics Data System (ADS)
Fast, J. D.; Velu, V.; Gustafson, W. I.; Chapman, E.; Easter, R. C.; Shrivastava, M.; Singh, B.
2012-12-01
Factors that influence predictions of aerosol direct and indirect forcing, such as aerosol mass, composition, size distribution, hygroscopicity, and optical properties, still contain large uncertainties in both regional and global models. New aerosol treatments are usually implemented into a 3-D atmospheric model and evaluated using a limited number of measurements from a specific case study. Under this modeling paradigm, the performance and computational efficiency of several treatments for a specific aerosol process cannot be adequately quantified because many other processes among various modeling studies (e.g. grid configuration, meteorology, emission rates) are different as well. The scientific community needs to know the advantages and disadvantages of specific aerosol treatments when the meteorology, chemistry, and other aerosol processes are identical in order to reduce the uncertainties associated with aerosols predictions. To address these issues, an Aerosol Modeling Testbed (AMT) has been developed that systematically and objectively evaluates new aerosol treatments for use in regional and global models. The AMT consists of the modular Weather Research and Forecasting (WRF) model, a series testbed cases for which extensive in situ and remote sensing measurements of meteorological, trace gas, and aerosol properties are available, and a suite of tools to evaluate the performance of meteorological, chemical, aerosol process modules. WRF contains various parameterizations of meteorological, chemical, and aerosol processes and includes interactive aerosol-cloud-radiation treatments similar to those employed by climate models. In addition, the physics suite from the Community Atmosphere Model version 5 (CAM5) have also been ported to WRF so that they can be tested at various spatial scales and compared directly with field campaign data and other parameterizations commonly used by the mesoscale modeling community. Data from several campaigns, including the 2006 MILAGRO, 2008 ISDAC, 2008 VOCALS, 2010 CARES, and 2010 CalNex campaigns, have been incorporated into the AMT as testbed cases. Data from operational networks (e.g. air quality, meteorology, satellite) are also included in the testbed cases to supplement the field campaign data. The CARES and CalNex testbed cases are used to demonstrate how the AMT can be used to assess the strengths and weaknesses of simple and complex representations of aerosol processes in relation to computational cost. Anticipated enhancements to the AMT and how this type of testbed can be used by the scientific community to foster collaborations and coordinate aerosol modeling research will also be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sellers, P.J.; Collatz, J.; Koster, R.
1996-09-01
A comprehensive series of global datasets for land-atmosphere models has been collected, formatted to a common grid, and released on a set of CD-ROMs. This paper describes the motivation for and the contents of the dataset. In June of 1992, an interdisciplinary earth science workshop was convened in Columbia, Maryland, to assess progress in land-atmosphere research, specifically in the areas of models, satellite data algorithms, and field experiments. At the workshop, representatives of the land-atmosphere modeling community defined a need for global datasets to prescribe boundary conditions, initialize state variables, and provide near-surface meteorological and radiative forcings for their models.more » The International Satellite Land Surface Climatology Project (ISLSCP), a part of the Global Energy and Water Cycle Experiment, worked with the Distributed Active Archive Center of the National Aeronautics and Space Administration Goddard Space Flight Center to bring the required datasets together in a usable format. The data have since been released on a collection of CD-ROMs. The datasets on the CD-ROMs are grouped under the following headings: vegetation; hydrology and soils; snow, ice, and oceans; radiation and clouds; and near-surface meteorology. All datasets cover the period 1987-88, and all but a few are spatially continuous over the earth`s land surface. All have been mapped to a common 1{degree} x 1{degree} equal-angle grid. The temporal frequency for most of the datasets is monthly. A few of the near-surface meteorological parameters are available both as six-hourly values and as monthly means. 26 refs., 8 figs., 2 tabs.« less
Circulation and thermohaline structure of the Aral Sea in the last three years
NASA Astrophysics Data System (ADS)
Izhitskiy, A. S.; Zavialov, P. O.
2012-04-01
The results of the 3 latest expeditions (2009 - 2011) of the Shirshov Institute to the Aral Sea are reported. We analyze the interannual variability of the basin circulation together with the thermohaline structure in order to identify the underlying mechanisms. The study is based on the results of the field surveys of August, 2009, September, 2010, and November, 2011. The vertical profiles of temperature and salinity were obtained using a CTD profiler at 6 stations across the deepest part of the western basin in 2009 and 2010, and 3 stations in 2011. Additionally, during each of the surveys, mooring stations equipped with current meters and pressure gauges were deployed for 3-5 days in the deepest portion of the western basin. A portable automatic meteorological station, continuously recording the wind stress and the principal meteorological parameters, was installed near the mooring sites. The vertical stratification exhibited a 3-layered pattern, with local salinity maxima in the upper mixed layer and near the bottom, while the intermediate layer was characterized by a core of minimum salinity and temperature. Such a pattern persisted throughout the 3 years of observations. Analysis of the current measurements data along with the meteorological data records demonstrated that the mean basin-scale surface circulation of the Large Aral Sea is likely to have remained anticyclonic, whilst the near-bottom circulation appears to be cyclonic. The current velocity and level anomalies responded energetically to winds. Correlation analysis of the velocity and surface level series versus the wind stress allowed to quantify the response of the system to the wind forcing as well as to formulate a conceptual scheme of the lake's response to wind forcing at synoptic temporal scales.
NASA Astrophysics Data System (ADS)
Laiti, L.; Mallucci, S.; Piccolroaz, S.; Bellin, A.; Zardi, D.; Fiori, A.; Nikulin, G.; Majone, B.
2018-03-01
Assessing the accuracy of gridded climate data sets is highly relevant to climate change impact studies, since evaluation, bias correction, and statistical downscaling of climate models commonly use these products as reference. Among all impact studies those addressing hydrological fluxes are the most affected by errors and biases plaguing these data. This paper introduces a framework, coined Hydrological Coherence Test (HyCoT), for assessing the hydrological coherence of gridded data sets with hydrological observations. HyCoT provides a framework for excluding meteorological forcing data sets not complying with observations, as function of the particular goal at hand. The proposed methodology allows falsifying the hypothesis that a given data set is coherent with hydrological observations on the basis of the performance of hydrological modeling measured by a metric selected by the modeler. HyCoT is demonstrated in the Adige catchment (southeastern Alps, Italy) for streamflow analysis, using a distributed hydrological model. The comparison covers the period 1989-2008 and includes five gridded daily meteorological data sets: E-OBS, MSWEP, MESAN, APGD, and ADIGE. The analysis highlights that APGD and ADIGE, the data sets with highest effective resolution, display similar spatiotemporal precipitation patterns and produce the largest hydrological efficiency indices. Lower performances are observed for E-OBS, MESAN, and MSWEP, especially in small catchments. HyCoT reveals deficiencies in the representation of spatiotemporal patterns of gridded climate data sets, which cannot be corrected by simply rescaling the meteorological forcing fields, as often done in bias correction of climate model outputs. We recommend this framework to assess the hydrological coherence of gridded data sets to be used in large-scale hydroclimatic studies.
An Overview of the Applied Meteorology Unit (AMU)
NASA Technical Reports Server (NTRS)
Merceret, Francis; Bauman, William; Lambert, Winifred; Short, David; Barrett, Joe; Watson, Leela
2007-01-01
The Applied Meteorology Unit (AMU) acts as a bridge between research and operations by transitioning technology to improve weather support to the Shuttle and American space program. It is a NASA entity operated under a tri-agency agreement by NASA, the US Air Force, and the National Weather Service (NWS). The AMU contract is managed by NASA, operated by ENSCO, Inc. personnel, and is collocated with Range Weather Operations at Cape Canaveral Air Force Station. The AMU is tasked by its customers in the 45th Weather Squadron, Spaceflight Meteorology Group, and the NWS in Melbourne, FL with projects whose results help improve the weather forecast for launch, landing, and ground operations. This presentation describes the history behind the formation of the AMU, its working relationships and goals, how it is tasked by its customers, and examples of completed tasks.
Evaluation of Transport in the Lower Tropical Stratosphere in a Global Chemistry and Transport Model
NASA Technical Reports Server (NTRS)
Douglass, Anne R.; Schoeberl, Mark R.; Rood, Richard B.; Pawson, Steven; Bhartia, P. K. (Technical Monitor)
2002-01-01
Off-line models of the evolution of stratospheric constituents use meteorological information from a general circulation model (GCM) or from a data assimilation system (DAS). Here we focus on transport in the tropics and between the tropics and middle latitudes. Constituent fields from two simulations are compared with each other and with observations. One simulation uses winds from a GCM and the second uses winds from a DAS that has the same GCM at its core. Comparisons of results from the two simulations with observations from satellite, aircraft, and sondes are used to judge the realism of the tropical transport. Faithful comparisons between simulated fields and observations for O3, CH4, and the age-of-air are found for the simulation using the GCM fields. The same comparisons for the simulation using DAS fields show rapid upward tropical transport and excessive mixing between the tropics and middle latitudes. The unrealistic transport found in the DAS fields may be due to the failure of the GCM used in the assimilation system to represent the quasi-biennial oscillation. The assimilation system accounts for differences between the observations and the GCM by requiring implicit forcing to produce consistency between the GCM and observations. These comparisons suggest that the physical consistency of the GCM fields is more important to transport characteristics in the lower tropical stratosphere than the elimination bias with respect to meteorological observations that is accomplished by the DAS. The comparisons presented here show that GCM fields are more appropriate for long-term calculations to assess the impact of changes in stratospheric composition because the balance between photochemical and transport terms is likely to be represented correctly.
Evaluation of CMAQ and CAMx Ensemble Air Quality Forecasts during the 2015 MAPS-Seoul Field Campaign
NASA Astrophysics Data System (ADS)
Kim, E.; Kim, S.; Bae, C.; Kim, H. C.; Kim, B. U.
2015-12-01
The performance of Air quality forecasts during the 2015 MAPS-Seoul Field Campaign was evaluated. An forecast system has been operated to support the campaign's daily aircraft route decisions for airborne measurements to observe long-range transporting plume. We utilized two real-time ensemble systems based on the Weather Research and Forecasting (WRF)-Sparse Matrix Operator Kernel Emissions (SMOKE)-Comprehensive Air quality Model with extensions (CAMx) modeling framework and WRF-SMOKE- Community Multi_scale Air Quality (CMAQ) framework over northeastern Asia to simulate PM10 concentrations. Global Forecast System (GFS) from National Centers for Environmental Prediction (NCEP) was used to provide meteorological inputs for the forecasts. For an additional set of retrospective simulations, ERA Interim Reanalysis from European Centre for Medium-Range Weather Forecasts (ECMWF) was also utilized to access forecast uncertainties from the meteorological data used. Model Inter-Comparison Study for Asia (MICS-Asia) and National Institute of Environment Research (NIER) Clean Air Policy Support System (CAPSS) emission inventories are used for foreign and domestic emissions, respectively. In the study, we evaluate the CMAQ and CAMx model performance during the campaign by comparing the results to the airborne and surface measurements. Contributions of foreign and domestic emissions are estimated using a brute force method. Analyses on model performance and emissions will be utilized to improve air quality forecasts for the upcoming KORUS-AQ field campaign planned in 2016.
NASA Technical Reports Server (NTRS)
Frost, W.
1985-01-01
The influence of terrain features on wind loading of the space shuttle while on the launch pad, or during early liftoff, was investigated both qualitatively and quantitatively. The climatology and meteorology producing macroscale wind patterns and characteristics for the Vandenburg Air Force Base launch site are described. Field test data are analyzed, and the nature and characteristic of flow disturbances due to the various terrain features, both natural and man-made, are reviewed. The magnitude of these wind loads are estimated. Finally, effects of turbulence are discussed. It is concluded that the influence of complex terrain can create significant wind loading on the vehicle.
NASA Astrophysics Data System (ADS)
Hagan, Maura; Häusler, Kathrin; Lu, Gang; Forbes, Jeffrey; Zhang, Xiaoli; Doornbos, Eelco; Bruinsma, Sean
2014-05-01
We present the results of an investigation of the upper atmosphere during April 2010 when it was disturbed by a fast-moving coronal mass ejection. Our study is based on comparative analysis of observations made by the Gravity field and steady-state Ocean Circulation Explorer (GOCE), Challenging Minisatellite Payload (CHAMP), and Gravity Recovery And Climate Experiment (GRACE) satellites and a set of simulations with the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). We compare and contrast the satellite observations with TIME-GCM results from a realistic simulation based on prevailing meteorological and solar geomagnetic conditions. We diagnose the comparative importance of the upper atmospheric signatures attributable to meteorological forcing with those attributable to storm effects by diagnosing a series of complementary control TIME-GCM simulations. These results also quantify the extent to which lower and middle atmospheric sources of upper atmospheric variability precondition its response to the solar geomagnetic storm.
NASA Astrophysics Data System (ADS)
Sommer, Philipp S.; Kaplan, Jed O.
2017-10-01
While a wide range of Earth system processes occur at daily and even subdaily timescales, many global vegetation and other terrestrial dynamics models historically used monthly meteorological forcing both to reduce computational demand and because global datasets were lacking. Recently, dynamic land surface modeling has moved towards resolving daily and subdaily processes, and global datasets containing daily and subdaily meteorology have become available. These meteorological datasets, however, cover only the instrumental era of the last approximately 120 years at best, are subject to considerable uncertainty, and represent extremely large data files with associated computational costs of data input/output and file transfer. For periods before the recent past or in the future, global meteorological forcing can be provided by climate model output, but the quality of these data at high temporal resolution is low, particularly for daily precipitation frequency and amount. Here, we present GWGEN, a globally applicable statistical weather generator for the temporal downscaling of monthly climatology to daily meteorology. Our weather generator is parameterized using a global meteorological database and simulates daily values of five common variables: minimum and maximum temperature, precipitation, cloud cover, and wind speed. GWGEN is lightweight, modular, and requires a minimal set of monthly mean variables as input. The weather generator may be used in a range of applications, for example, in global vegetation, crop, soil erosion, or hydrological models. While GWGEN does not currently perform spatially autocorrelated multi-point downscaling of daily weather, this additional functionality could be implemented in future versions.
Evaluating meteo marine climatic model inputs for the investigation of coastal hydrodynamics
NASA Astrophysics Data System (ADS)
Bellafiore, D.; Bucchignani, E.; Umgiesser, G.
2010-09-01
One of the major aspects discussed in the recent works on climate change is how to provide information from the global scale to the local one. In fact the influence of sea level rise and changes in the meteorological conditions due to climate change in strategic areas like the coastal zone is at the base of the well known mitigation and risk assessment plans. The investigation of the coastal zone hydrodynamics, from a modeling point of view, has been the field for the connection between hydraulic models and ocean models and, in terms of process studies, finite element models have demonstrated their suitability in the reproduction of complex coastal morphology and in the capability to reproduce different spatial scale hydrodynamic processes. In this work the connection between two different model families, the climate models and the hydrodynamic models usually implemented for process studies, is tested. Together, they can be the most suitable tool for the investigation of climate change on coastal systems. A finite element model, SHYFEM (Shallow water Hydrodynamic Finite Element Model), is implemented on the Adriatic Sea, to investigate the effect of wind forcing datasets produced by different downscaling from global climate models in terms of surge and its coastal effects. The wind datasets are produced by the regional climate model COSMO-CLM (CIRA), and by EBU-POM model (Belgrade University), both downscaling from ECHAM4. As a first step the downscaled wind datasets, that have different spatial resolutions, has been analyzed for the period 1960-1990 to compare what is their capability to reproduce the measured wind statistics in the coastal zone in front of the Venice Lagoon. The particularity of the Adriatic Sea meteo climate is connected with the influence of the orography in the strengthening of winds like Bora, from North-East. The increase in spatial resolution permits the more resolved wind dataset to better reproduce meteorology and to provide a more realistic forcing for hydrodynamic simulations. After this analysis, effects on water level variations, under different wind forcing, has been analyzed to define what is the local effect on sea level changes in the coastal area of the North Adriatic. Surge statistics produced from different climate model forcings for the IPCC A1B scenario have been studied to provide local information on climate change effects on coastal hydrodynamics due to meteorological effect. This typology of application has been considered a suitable tool for coastal management and can be considered a study field that will increase its importance in the more general investigation on scale interaction processes as the effects of global scale climate phenomena on local areas.
NASA Astrophysics Data System (ADS)
Sunwoo, Y.; Park, J.; Kim, S.; Ma, Y.; Chang, I.
2010-12-01
Northeast Asia hosts more than one third of world population and the emission of pollutants trends to increase rapidly, because of economic growth and the increase of the consumption in high energy intensity. In case of air pollutants, especially, its characteristics of emissions and transportation become issued nationally, in terms of not only environmental aspects, but also long-range transboundary transportation. In meteorological characteristics, westerlies area means what air pollutants that emitted from China can be delivered to South Korea. Therefore, considering meteorological factors can be important to understand air pollution phenomena. In this study, we used MM5(Fifth-Generation Mesoscale Model) and WRF(Weather Research and Forecasting Model) to produce the meteorological fields. We analyzed the feature of physics option in each model and the difference due to characteristic of WRF and MM5. We are trying to analyze the uncertainty of source-receptor relationships for total nitrate according to meteorological fields in the Northeast Asia. We produced the each meteorological fields that apply the same domain, same initial and boundary conditions, the best similar physics option. S-R relationships in terms of amount and fractional number for total nitrate (sum of N from HNO3, nitrate and PAN) were calculated by EMEP method 3.
Informing Drought Preparedness and Response with the South Asia Land Data Assimilation System
NASA Astrophysics Data System (ADS)
Zaitchik, B. F.; Ghatak, D.; Matin, M. A.; Qamer, F. M.; Adhikary, B.; Bajracharya, B.; Nelson, J.; Pulla, S. T.; Ellenburg, W. L.
2017-12-01
Decision-relevant drought monitoring in South Asia is a challenge from both a scientific and an institutional perspective. Scientifically, climatic diversity, inconsistent in situ monitoring, complex hydrology, and incomplete knowledge of atmospheric processes mean that monitoring and prediction are fraught with uncertainty. Institutionally, drought monitoring efforts need to align with the information needs and decision-making processes of relevant agencies at national and subnational levels. Here we present first results from an emerging operational drought monitoring and forecast system developed and supported by the NASA SERVIR Hindu-Kush Himalaya hub. The system has been designed in consultation with end users from multiple sectors in South Asian countries to maximize decision-relevant information content in the monitoring and forecast products. Monitoring of meteorological, agricultural, and hydrological drought is accomplished using the South Asia Land Data Assimilation System, a platform that supports multiple land surface models and meteorological forcing datasets to characterize uncertainty, and subseasonal to seasonal hydrological forecasts are produced by driving South Asia LDAS with downscaled meteorological fields drawn from an ensemble of global dynamically-based forecast systems. Results are disseminated to end users through a Tethys online visualization platform and custom communications that provide user oriented, easily accessible, timely, and decision-relevant scientific information.
Weathering Heights: The Emergence of Aeronautical Meteorology as an Infrastructural Science
NASA Astrophysics Data System (ADS)
Turner, Roger
The first half of the 20th century was an era of weathering heights. As the development of powered flight made the free atmosphere militarily and economically relevant, meteorologists encountered new kinds of weather conditions at altitude. Pilots also learned to weather heights, as they struggled to survive in an atmosphere that revealed surprising dangers like squall lines, fog, icing, and turbulence. Aeronautical meteorology evolved out of these encounters, a heterogeneous body of knowledge that included guidelines for routing aircraft, networks for observing the upper air using scientific instruments, and procedures for synthesizing those observations into weather forecasts designed for pilots. As meteorologists worked to make the skies safe for aircraft, they remade their science around the physics of the free atmosphere. The dissertation tracks a small group of Scandinavian meteorologists, the "Bergen School," who came to be the dominant force in world meteorology by forecasting for Arctic exploration flights, designing airline weather services, and training thousands of military weather officers during World War II. After the war, some of these military meteorologists invented the TV weather report (now the most widely consumed genre of popular science) by combining the narrative of the pre-fight weather briefing with the visual style of comic-illustrated training manuals. The dissertation argues that aeronautical meteorology is representative of what I call the "infrastructural sciences," a set of organizationally intensive, purposefully invisible, applied sciences. These sciences enable the reliable operation of large technological systems by integrating theory-derived knowledge with routine environmental observation. The dissertation articulates a set of characteristics for identifying and understanding infrastructural science, and then argues that these culturally modest technical practices play a pervasive role in maintaining industrial lifeways. It concludes by noting that while meteorology successfully helped aviation become a reliable, taken-for-granted part of the transportation system, the interests of aviation created a meteorology that centered on the needs of pilots, to the detriment of fields like agricultural climatology.
NASA Astrophysics Data System (ADS)
Sotiropoulou, R. P.; Meshkhidze, N.; Nenes, A.
2006-12-01
The aerosol indirect forcing is one of the largest sources of uncertainty in assessments of anthropogenic climate change [IPCC, 2001]. Much of this uncertainty arises from the approach used for linking cloud droplet number concentration (CDNC) to precursor aerosol. Global Climate Models (GCM) use a wide range of cloud droplet activation mechanisms ranging from empirical [Boucher and Lohmann, 1995] to detailed physically- based formulations [e.g., Abdul-Razzak and Ghan, 2000; Fountoukis and Nenes, 2005]. The objective of this study is to assess the uncertainties in indirect forcing and autoconversion of cloud water to rain caused by the application of different cloud droplet parameterization mechanisms; this is an important step towards constraining the aerosol indirect effects (AIE). Here we estimate the uncertainty in indirect forcing and autoconversion rate using the NASA Global Model Initiative (GMI). The GMI allows easy interchange of meteorological fields, chemical mechanisms and the aerosol microphysical packages. Therefore, it is an ideal tool for assessing the effect of different parameters on aerosol indirect forcing. The aerosol module includes primary emissions, chemical production of sulfate in clear air and in-cloud aqueous phase, gravitational sedimentation, dry deposition, wet scavenging in and below clouds, and hygroscopic growth. Model inputs include SO2 (fossil fuel and natural), black carbon (BC), organic carbon (OC), mineral dust and sea salt. The meteorological data used in this work were taken from the NASA Data Assimilation Office (DAO) and two different GCMs: the NASA GEOS4 finite volume GCM (FVGCM) and the Goddard Institute for Space Studies version II' (GISS II') GCM. Simulations were carried out for "present day" and "preindustrial" emissions using different meteorological fields (i.e. DAO, FVGCM, GISS II'); cloud droplet number concentration is computed from the correlations of Boucher and Lohmann [1995], Abdul-Razzak and Ghan [2000], Feingold and Heymsfield [1992], Fountoukis and Nenes [2005] and Segal and Khain [2006]. Computed CDNC is used to calculate the cloud optical depth, the autoconversion rate and the mean top-of-the-atmosphere (TOA) short-wave radiative forcing using modified FAST-J algorithm [Meshkhidze et al., 2006]. Autoconversion of cloud water to precipitation is parameterized following the formulation of Khairoutdinov and Kogan [2000]. References Abdul-Razzak, H., and S. J. Ghan (2000), J. Geophys. Res., 105, 6837-6844. Boucher, O., and U. Lohmann (1995), Tellus, Ser. B, 47, 281- 300. Feingold, G. and A. Heymsfield (1992), J. Atmos. Sci., 49, 2325-2342. Fountoukis, C., and A. Nenes (2005), J. Geophys. Res., 110, D11212, doi:10.1029/ 2004JD005591. Intergovernmental Panel on Climate Change - IPCC (2001), Climate Change, The Scientific Basis, Cambridge University Press, UK. Khairoutdinov, M. and Y. Kogan (2000), Mon. Weather Rev., 128 (1), 229-243. Meshkhidze, N., A Nenes, J. Kouatchou, B. Das and J. Rodriguez, 7th International Aerosol Conference, American Association for Aerosol Research (IAC 2006), St. Paul, Minnesota, October 2006 Nenes, A., and J. H. Seinfeld (2003), J. Geophys. Res., 108, 4415, doi:10.1029/ 2002JD002911. Segal, Y., and A. Khain (2006), J. Geophys. Res., 111, D15204, doi:10.1029/2005JD006561.
NASA Astrophysics Data System (ADS)
Mel, Riccardo; Lionello, Piero
2014-05-01
Advantages of an ensemble prediction forecast (EPF) technique that has been used for sea level (SL) prediction at the Northern Adriatic coast are investigated. The aims is to explore whether EPF is more precise than the traditional Deterministic Forecast (DF) and the value of the added information, mainly on forecast uncertainty. Improving the SL forecast for the city of Venice is of paramount importance for the management and maintenance of this historical city and for operating the movable barriers that are presently being built for its protection. The operational practice is simulated for three months from 1st October to 31st December 2010. The EPF is based on the HYPSE model, which is a standard single-layer nonlinear shallow water model, whose equations are derived from the depth averaged momentum equations and predicts the SL. A description of the model is available in the scientific literature. Forcing of HYPSE are provided by three different sets of 3-hourly ECMWF 10m-wind and MSLP fields: the high resolution meteorological forecast (which is used for the deterministic SL forecast, DF), the control run forecast (CRF, that differs from the DF forecast only for it lower meteorological fields resolution) and the 50 ensemble members of the ECMWF EPS (which are used for the SL-EPS. The resolution of DF fields is T1279 and resolution of both CRF and ECMWF EPS fields is T639 resolution. The 10m wind and MSLP fields have been downloaded at 0.125degs (DF) and 0.25degs(CRF and EPS) and linearly interpolated to the HYPSE grid (which is the same for all simulations). The version of HYPSE used in the SR EPS uses a rectangular mesh grid of variable size, which has the minimum grid step (0.03 degrees) in the northern part of the Adriatic Sea, from where grid step increases with a 1.01 factor in both latitude and longitude (In practice, resolution varies in the range from 3.3 to 7km). Results are analyzed considering the EPS spread, the rms of the simulations, the Brier Skill Score and are compared to observations at tide gauges distributed along the Croatian and Italian coast of the Adriatic Sea. It is shown that the ensemble spread is indeed a reliable indicator of the uncertainty of the storm surge prediction. Further, results show how uncertainty depends on the predicted value of sea level and how it increases with the forecast time range. The accuracy of the ensemble mean forecast is actually larger than that of the deterministic forecast, though the latter is produced by meteorological forcings at higher resolution
Trace Gas/Aerosol Interactions and GMI Modeling Support
NASA Technical Reports Server (NTRS)
Penner, Joyce E.; Liu, Xiaohong; Das, Bigyani; Bergmann, Dan; Rodriquez, Jose M.; Strahan, Susan; Wang, Minghuai; Feng, Yan
2005-01-01
Current global aerosol models use different physical and chemical schemes and parameters, different meteorological fields, and often different emission sources. Since the physical and chemical parameterization schemes are often tuned to obtain results that are consistent with observations, it is difficult to assess the true uncertainty due to meteorology alone. Under the framework of the NASA global modeling initiative (GMI), the differences and uncertainties in aerosol simulations (for sulfate, organic carbon, black carbon, dust and sea salt) solely due to different meteorological fields are analyzed and quantified. Three meteorological datasets available from the NASA DAO GCM, the GISS-II' GCM, and the NASA finite volume GCM (FVGCM) are used to drive the same aerosol model. The global sulfate and mineral dust burdens with FVGCM fields are 40% and 20% less than those with DAO and GISS fields, respectively due to its heavier rainfall. Meanwhile, the sea salt burden predicted with FVGCM fields is 56% and 43% higher than those with DAO and GISS, respectively, due to its stronger convection especially over the Southern Hemispheric Ocean. Sulfate concentrations at the surface in the Northern Hemisphere extratropics and in the middle to upper troposphere differ by more than a factor of 3 between the three meteorological datasets. The agreement between model calculated and observed aerosol concentrations in the industrial regions (e.g., North America and Europe) is quite similar for all three meteorological datasets. Away from the source regions, however, the comparisons with observations differ greatly for DAO, FVGCM and GISS, and the performance of the model using different datasets varies largely depending on sites and species. Global annual average aerosol optical depth at 550 nm is 0.120-0.131 for the three meteorological datasets.
NASA Technical Reports Server (NTRS)
Maggioni, V.; Anagnostou, E. N.; Reichle, R. H.
2013-01-01
The contribution of rainfall forcing errors relative to model (structural and parameter) uncertainty in the prediction of soil moisture is investigated by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. Rainfall-forcing uncertainty is introduced using a stochastic error model that generates ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters (representing model parameter uncertainty) or by adding randomly generated noise (representing model structure and parameter uncertainty) to the model prognostic variables. Our findings highlight that the method currently used in the NASA GEOS-5 Land Data Assimilation System to perturb CLSM variables poorly describes the uncertainty in the predicted soil moisture, even when combined with rainfall model perturbations. On the other hand, by adding model parameter perturbations to rainfall forcing perturbations, a better characterization of uncertainty in soil moisture simulations is observed. Specifically, an analysis of the rank histograms shows that the most consistent ensemble of soil moisture is obtained by combining rainfall and model parameter perturbations. When rainfall forcing and model prognostic perturbations are added, the rank histogram shows a U-shape at the domain average scale, which corresponds to a lack of variability in the forecast ensemble. The more accurate estimation of the soil moisture prediction uncertainty obtained by combining rainfall and parameter perturbations is encouraging for the application of this approach in ensemble data assimilation systems.
NASA Technical Reports Server (NTRS)
Rodriquez, J. M.; Yoshida, Y.; Duncan, B. N.; Bucsela, E. J.; Gleason, J. F.; Allen, D.; Pickering, K. E.
2007-01-01
We present simulations of the tropospheric composition for the years 2004 and 2005, carried out by the GMI Combined Stratosphere-Troposphere (Combo) model, at a resolution of 2degx2.5deg. The model includes a new parameterization of lightning sources of NO(x) which is coupled to the cloud mass fluxes in the adopted meteorological fields. These simulations use two different sets of input meteorological fields: a)late-look assimilated fields from the Global Modeling and Assimilation Office (GMAO), GEOS-4 system and b) 12-hour forecast fields initialized with the assimilated data. Comparison of the forecast to the assimilated fields indicates that the forecast fields exhibit less vigorous convection, and yield tropical precipitation fields in better agreement with observations. Since these simulations include a complete representation of the stratosphere, they provide realistic stratosphere-tropospheric fluxes of O3 and NO(y). Furthermore, the stratospheric contribution to total columns of different troposheric species can be subtracted in a consistent fashion, and the lightning production of NO(y) will depend on the adopted meteorological field. We concentrate here on the simulated tropospheric columns of NO2, and compare them to observations by the OM1 instrument for the years 2004 and 2005. The comparison is used to address these questions: a) is there a significant difference in the agreement/disagreement between simulations for these two different meteorological fields, and if so, what causes these differences?; b) how do the simulations compare to OMI observations, and does this comparison indicate an improvement in simulations with the forecast fields? c) what are the implications of these simulations for our understanding of the NO2 emissions over continental polluted regions?
NASA Astrophysics Data System (ADS)
Chen, Ziyue; Cai, Jun; Gao, Bingbo; Xu, Bing; Dai, Shuang; He, Bin; Xie, Xiaoming
2017-01-01
Due to complicated interactions in the atmospheric environment, quantifying the influence of individual meteorological factors on local PM2.5 concentration remains challenging. The Beijing-Tianjin-Hebei (short for Jing-Jin-Ji) region is infamous for its serious air pollution. To improve regional air quality, characteristics and meteorological driving forces for PM2.5 concentration should be better understood. This research examined seasonal variations of PM2.5 concentration within the Jing-Jin-Ji region and extracted meteorological factors strongly correlated with local PM2.5 concentration. Following this, a convergent cross mapping (CCM) method was employed to quantify the causality influence of individual meteorological factors on PM2.5 concentration. The results proved that the CCM method was more likely to detect mirage correlations and reveal quantitative influences of individual meteorological factors on PM2.5 concentration. For the Jing-Jin-Ji region, the higher PM2.5 concentration, the stronger influences meteorological factors exert on PM2.5 concentration. Furthermore, this research suggests that individual meteorological factors can influence local PM2.5 concentration indirectly by interacting with other meteorological factors. Due to the significant influence of local meteorology on PM2.5 concentration, more emphasis should be given on employing meteorological means for improving local air quality.
USAF bioenvironmental noise data handbook. Volume 158: F-106A aircraft, near and far-field noise
NASA Astrophysics Data System (ADS)
Rau, T. H.
1982-05-01
The USAF F-106A is a single seat, all-weather fighter/interceptor aircraft powered by a J75-P-17 turbojet engine. This report provides measured and extrapolated data defining the bioacoustic environments produced by this aircraft operating on a concrete runup pad for five engine-power conditions. Near-field data are reported for five locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise levels, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Far-field data measured at 19 locations are normalized to standard meteorological conditions and extrapolated from 75 - 8000 meters to derive sets of equal-value contours for these same seven acoustic measures as functions of angle and distance from the source.
NASA Astrophysics Data System (ADS)
Rau, T. H.
1982-07-01
Measured and extrapolated data define the bioacoustic environments produced by a gasoline engine driven cabin leakage tester operating outdoors on a concrete apron at normal rated conditions. Near field data are presented for 37 locations at a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Far-field data measured at 36 locations are normalized to standard meteorological conditions and extrapolated from 10 - 1600 meters to derive sets of equal-value contours for these same seven acoustic measures as functions of angle and distance from the source.
A meteorological distribution system for high-resolution terrestrial modeling (MicroMet)
Glen E. Liston; Kelly Elder
2006-01-01
An intermediate-complexity, quasi-physically based, meteorological model (MicroMet) has been developed to produce high-resolution (e.g., 30-m to 1-km horizontal grid increment) atmospheric forcings required to run spatially distributed terrestrial models over a wide variety of landscapes. The following eight variables, required to run most terrestrial models, are...
NASA Astrophysics Data System (ADS)
Saleh, F.; Ramaswamy, V.; Wang, Y.; Georgas, N.; Blumberg, A.; Pullen, J.
2017-12-01
Estuarine regions can experience compound impacts from coastal storm surge and riverine flooding. The challenges in forecasting flooding in such areas are multi-faceted due to uncertainties associated with meteorological drivers and interactions between hydrological and coastal processes. The objective of this work is to evaluate how uncertainties from meteorological predictions propagate through an ensemble-based flood prediction framework and translate into uncertainties in simulated inundation extents. A multi-scale framework, consisting of hydrologic, coastal and hydrodynamic models, was used to simulate two extreme flood events at the confluence of the Passaic and Hackensack rivers and Newark Bay. The events were Hurricane Irene (2011), a combination of inland flooding and coastal storm surge, and Hurricane Sandy (2012) where coastal storm surge was the dominant component. The hydrodynamic component of the framework was first forced with measured streamflow and ocean water level data to establish baseline inundation extents with the best available forcing data. The coastal and hydrologic models were then forced with meteorological predictions from 21 ensemble members of the Global Ensemble Forecast System (GEFS) to retrospectively represent potential future conditions up to 96 hours prior to the events. Inundation extents produced by the hydrodynamic model, forced with the 95th percentile of the ensemble-based coastal and hydrologic boundary conditions, were in good agreement with baseline conditions for both events. The USGS reanalysis of Hurricane Sandy inundation extents was encapsulated between the 50th and 95th percentile of the forecasted inundation extents, and that of Hurricane Irene was similar but with caveats associated with data availability and reliability. This work highlights the importance of accounting for meteorological uncertainty to represent a range of possible future inundation extents at high resolution (∼m).
Processing of DMSP magnetic data and its use in geomagnetic field modeling
NASA Technical Reports Server (NTRS)
Ridgway, J. R.; Sabaka, T. J.; Chinn, D.; Langel, R. A.
1989-01-01
The DMSP F-7 satellite is an operational Air Force meteorological satellite which carried a magnetometer for geophysical measurements. The magnetometer was located within the body of the spacecraft in the presence of large spacecraft fields. In addition to stray magnetic fields, the data have inherent position and time inaccuracies. Algorithms were developed to identify and remove time varying magnetic field noise from the data. Techniques developed for Magsat were then modified and used to attempt determination of the spacecraft fields, of any rotation between the magnetometer axes and the spacecraft axes, and of any scale changes within the magnetometer itself. The corrected data were then used to attempt to model the geomagnetic field. This was done in combination with data from Magsat, from the standard magnetic observatories, from aeromagnetic and other survey data, and from DE-2 spacecraft field data. Future DMSP missions can be upgraded in terms of geomagnetic measurements by upgrading the time and position information furnished with the data, placing the magnetometer at the end of the boom, upgrading the attitude determination at the magnetometer, and increasing the accuracy of the magnetometer.
Air Quality and Meteorological Boundary Conditions during the MCMA-2003 Field Campaign
NASA Astrophysics Data System (ADS)
Sosa, G.; Arriaga, J.; Vega, E.; Magaña, V.; Caetano, E.; de Foy, B.; Molina, L. T.; Molina, M. J.; Ramos, R.; Retama, A.; Zaragoza, J.; Martínez, A. P.; Márquez, C.; Cárdenas, B.; Lamb, B.; Velasco, E.; Allwine, E.; Pressley, S.; Westberg, H.; Reyes, R.
2004-12-01
A comprehensive field campaign to characterize photochemical smog in the Mexico City Metropolitan Area (MCMA) was conducted during April 2003. An important number of equipment was deployed all around the urban core and its surroundings to measure gas and particles composition from the various sources and receptor sites. In addition to air quality measurements, meteorology variables were also taken by regular weather meteorological stations, tethered balloons, radiosondes, sodars and lidars. One important issue with regard to the field campaign was the characterization of the boundary conditions in order to feed meteorological and air quality models. Four boundary sites were selected to measure continuously criteria pollutants, VOC and meteorological variables at surface level. Vertical meteorological profiles were measured at three other sites : radiosondes in Tacubaya site were launched every six hours daily; tethered balloons were launched at CENICA and FES-Cuautitlan sites according to the weather conditions, and one sodar was deployed at UNAM site in the south of the city. Additionally to these measurements, two fixed meteorological monitoring networks deployed along the city were available to complement these measurements. In general, we observed that transport of pollutants from the city to the boundary sites changes every day, according to the coupling between synoptic and local winds. This effect were less important at elevated sites such as Cerro de la Catedral and ININ, where synoptic wind were more dominant during the field campaign. Also, local sources nearby boundary sites hide the influence of pollution coming from the city some days, particularly at the La Reforma site.
What do you want to be in ten years? - Advising meteorology students in the post-Twister era
NASA Astrophysics Data System (ADS)
Snow, J. T.; Hempe, M.
2012-12-01
"What do you want to be in ten years?' This is a question we ask our students, freshmen and transfer, when they first arrive in the College student services center. Often the answer is "I don't know. I just want to be in meteorology." This response leads to a discussion of career opportunities in meteorology and related fields, including what might be called faux-careers, such as professional storm chasing and weather tour operations. (Students often have been misled by what they have seen in television shows.) Many students arrive on our doorstep with their heart set on a degree in meteorology, but lack knowledge of what the field is about or how challenging a meteorology degree program really is. We find ourselves spending a great deal of time convincing students that they need to explore the real opportunities in meteorology and related fields, which are many. Fortunately, because of the concentration of University and federal weather organizations in the National Weather Center and private sector weather companies in adjacent buildings, we are able to show concrete examples of real careers by means of tours, job shadowing, and introductions to alumni employed in these organizations. Also, as the students' progress in their studies, they discover the many opportunities for undergraduate employment, research experiences, and internships in these same organizations, through which they gain an appreciation for what constitutes a real career in modern meteorology. Further, many of today's careers in meteorology require a broad, global perspective. Unfortunately, many meteorology students have not traveled widely, but again have only seen what the media provides about distant lands and peoples. Accordingly, we encourage our undergraduate students to take advantage of our unique opportunities for overseas experiences in meteorology. Through arrangements with the met programs at the University of Reading (England), Monash University (Australia), and University of Hamburg (Germany), we are able to offer a one-semester international experience structured so that there are no delays in a participating student's graduation date. The student who takes advantage of this opportunity gains a broad perspective of the field and learns a great deal about themselves and the world.
Evaluation and uncertainty analysis of regional-scale CLM4.5 net carbon flux estimates
NASA Astrophysics Data System (ADS)
Post, Hanna; Hendricks Franssen, Harrie-Jan; Han, Xujun; Baatz, Roland; Montzka, Carsten; Schmidt, Marius; Vereecken, Harry
2018-01-01
Modeling net ecosystem exchange (NEE) at the regional scale with land surface models (LSMs) is relevant for the estimation of regional carbon balances, but studies on it are very limited. Furthermore, it is essential to better understand and quantify the uncertainty of LSMs in order to improve them. An important key variable in this respect is the prognostic leaf area index (LAI), which is very sensitive to forcing data and strongly affects the modeled NEE. We applied the Community Land Model (CLM4.5-BGC) to the Rur catchment in western Germany and compared estimated and default ecological key parameters for modeling carbon fluxes and LAI. The parameter estimates were previously estimated with the Markov chain Monte Carlo (MCMC) approach DREAM(zs) for four of the most widespread plant functional types in the catchment. It was found that the catchment-scale annual NEE was strongly positive with default parameter values but negative (and closer to observations) with the estimated values. Thus, the estimation of CLM parameters with local NEE observations can be highly relevant when determining regional carbon balances. To obtain a more comprehensive picture of model uncertainty, CLM ensembles were set up with perturbed meteorological input and uncertain initial states in addition to uncertain parameters. C3 grass and C3 crops were particularly sensitive to the perturbed meteorological input, which resulted in a strong increase in the standard deviation of the annual NEE sum (σ
NASA Astrophysics Data System (ADS)
López López, Patricia; Wanders, Niko; Sutanudjaja, Edwin; Renzullo, Luigi; Sterk, Geert; Schellekens, Jaap; Bierkens, Marc
2015-04-01
The coarse spatial resolution of global hydrological models (typically > 0.25o) often limits their ability to resolve key water balance processes for many river basins and thus compromises their suitability for water resources management, especially when compared to locally-tunes river models. A possible solution to the problem may be to drive the coarse resolution models with high-resolution meteorological data as well as to assimilate ground-based and remotely-sensed observations of key water cycle variables. While this would improve the modelling resolution of the global model, the impact of prediction accuracy remains largely an open question. In this study we investigated the impact that assimilating streamflow and satellite soil moisture observations have on global hydrological model estimation, driven by coarse- and high-resolution meteorological observations, for the Murrumbidgee river basin in Australia. The PCR-GLOBWB global hydrological model is forced with downscaled global climatological data (from 0.5o downscaled to 0.1o resolution) obtained from the WATCH Forcing Data (WFDEI) and local high resolution gauging station based gridded datasets (0.05o), sourced from the Australian Bureau of Meteorology. Downscaled satellite derived soil moisture (from 0.5o downscaled to 0.1o resolution) from AMSR-E and streamflow observations collected from 25 gauging stations are assimilated using an ensemble Kalman filter. Several scenarios are analysed to explore the added value of data assimilation considering both local and global climatological data. Results show that the assimilation of streamflow observations result in the largest improvement of the model estimates. The joint assimilation of both streamflow and downscaled soil moisture observations leads to further improved in streamflow simulations (10% reduction in RMSE), mainly in the headwater catchments (up to 10,000 km2). Results also show that the added contribution of data assimilation, for both soil moisture and streamflow, is more pronounced when the global meteorological data are used to force the models. This is caused by the higher uncertainty and coarser resolution of the global forcing. This study demonstrates that it is possible to improve hydrological simulations forced by coarse resolution meteorological data with downscaled satellite soil moisture and streamflow observations and bring them closer to a hydrological model forced with local climatological data. These findings are important in light of the efforts that are currently done to go to global hyper-resolution modelling and can significantly help to advance this research.
Applied Meteorology Unit - Operational Contributions to Spaceport Canaveral
NASA Technical Reports Server (NTRS)
Bauman, William H., III; Roeder, William P.; Lafosse, Richard A.; Sharp, David W.; Merceret, Francis J.
2004-01-01
The Applied Meteorology Unit (AMU) provides technology development, evaluation and transition services to improve operational weather support to the Space Shuttle and the National Space Program. It is established under a Memorandum of Understanding among NASA, the Air Force and the National .Weather Service (NWS). The AMU is funded and managed by NASA and operated by ENSCO, Inc. through a competitively awarded NASA contract. The primary customers are the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS), FL; the Spaceflight Meteorology Group (SMG) at Johnson Space Center (JSC) in Houston, TX; and the NWS office in Melbourne, FL (NWS MLB). This paper will briefly review the AMU's history and describe the three processes through which its work is assigned. Since its inception in 1991 the AMU has completed 72 projects, all of which are listed at the end of this paper. At least one project that highlights each of the three tasking processes will be briefly reviewed. Some of the projects that have been especially beneficial to the space program will also be discussed in more detail, as will projects that developed significant new techniques or science in applied meteorology.
Processing of DMSP magnetic data: Handbook of programs, tapes, and datasets
NASA Technical Reports Server (NTRS)
Langel, R. A.; Sabaka, T. J.; Ridgway, J. R.
1990-01-01
The DMSP F-7 satellite was an operational Air Force meteorological satellite which carried a magnetometer for geophysical measurements. The magnetometer was located within the body of the spacecraft in the presence of large spacecraft fields. In addition to stray magnetic fields, the data have inherent position and time inaccuracies. Algorithms were developed to identify and remove time varying magnetic field noise from the data. These algorithms are embodied in an automated procedure which fits a smooth curve through the data and then identifies outliers and which filters the predominant Fourier component of noise from the data. Techniques developed for Magsat were then modified and used to attempt determination of the spacecraft fields, of any rotation between the magnetometer axes and the spacecraft axes, and of any scale changes within the magnetometer itself. Software setup and usage are documented and program listings are included in the Appendix. The initial and resulting data are archived on magnetic cartridge and the formats are documented.
NASA Astrophysics Data System (ADS)
Kao, S. C.; Naz, B. S.; Gangrade, S.; Ashfaq, M.; Rastogi, D.
2016-12-01
The magnitude and frequency of hydroclimate extremes are projected to increase in the conterminous United States (CONUS) with significant implications for future water resource planning and flood risk management. Nevertheless, apart from the change of natural environment, the choice of model spatial resolution could also artificially influence the features of simulated extremes. To better understand how the spatial resolution of meteorological forcings may affect hydroclimate projections, we test the runoff sensitivity using the Variable Infiltration Capacity (VIC) model that was calibrated for each CONUS 8-digit hydrologic unit (HUC8) at 1/24° ( 4km) grid resolution. The 1980-2012 gridded Daymet and PRISM meteorological observations are used to conduct the 1/24° resolution control simulation. Comparative simulations are achieved by smoothing the 1/24° forcing into 1/12° and 1/8° resolutions which are then used to drive the VIC model for the CONUS. In addition, we also test how the simulated high and low runoff conditions would react to change in precipitation (±10%) and temperature (+1°C). The results are further analyzed for various types of hydroclimate extremes across different watersheds in the CONUS. This work helps us understand the sensitivity of simulated runoff to different spatial resolutions of climate forcings and also its sensitivity to different watershed sizes and characteristics of extreme events in the future climate conditions.
An operational search and rescue model for the Norwegian Sea and the North Sea
NASA Astrophysics Data System (ADS)
Breivik, Øyvind; Allen, Arthur A.
A new operational, ensemble-based search and rescue model for the Norwegian Sea and the North Sea is presented. The stochastic trajectory model computes the net motion of a range of search and rescue objects. A new, robust formulation for the relation between the wind and the motion of the drifting object (termed the leeway of the object) is employed. Empirically derived coefficients for 63 categories of search objects compiled by the US Coast Guard are ingested to estimate the leeway of the drifting objects. A Monte Carlo technique is employed to generate an ensemble that accounts for the uncertainties in forcing fields (wind and current), leeway drift properties, and the initial position of the search object. The ensemble yields an estimate of the time-evolving probability density function of the location of the search object, and its envelope defines the search area. Forcing fields from the operational oceanic and atmospheric forecast system of The Norwegian Meteorological Institute are used as input to the trajectory model. This allows for the first time high-resolution wind and current fields to be used to forecast search areas up to 60 h into the future. A limited set of field exercises show good agreement between model trajectories, search areas, and observed trajectories for life rafts and other search objects. Comparison with older methods shows that search areas expand much more slowly using the new ensemble method with high resolution forcing fields and the new leeway formulation. It is found that going to higher-order stochastic trajectory models will not significantly improve the forecast skill and the rate of expansion of search areas.
NASA Astrophysics Data System (ADS)
Bonavita, M.; Torrisi, L.
2005-03-01
A new data assimilation system has been designed and implemented at the National Center for Aeronautic Meteorology and Climatology of the Italian Air Force (CNMCA) in order to improve its operational numerical weather prediction capabilities and provide more accurate guidance to operational forecasters. The system, which is undergoing testing before operational use, is based on an “observation space” version of the 3D-VAR method for the objective analysis component, and on the High Resolution Regional Model (HRM) of the Deutscher Wetterdienst (DWD) for the prognostic component. Notable features of the system include a completely parallel (MPI+OMP) implementation of the solution of analysis equations by a preconditioned conjugate gradient descent method; correlation functions in spherical geometry with thermal wind constraint between mass and wind field; derivation of the objective analysis parameters from a statistical analysis of the innovation increments.
NASA Astrophysics Data System (ADS)
Petters, J. L.; Jiang, H.; Feingold, G.; Rossiter, D. L.; Khelif, D.; Sloan, L. C.; Chuang, P. Y.
2013-03-01
The impact of changes in aerosol and cloud droplet concentration (Na and Nd) on the radiative forcing of stratocumulus-topped boundary layers (STBLs) has been widely studied. How these impacts compare to those due to variations in meteorological context has not been investigated in a systematic fashion for non-drizzling overcast stratocumulus. In this study we examine the impact of observed variations in meteorological context and aerosol state on daytime, non-drizzling overcast stratiform evolution, and determine how resulting changes in cloud properties compare. Using large-eddy simulation (LES) we create a model base case of daytime southeast Pacific coastal stratocumulus, spanning a portion of the diurnal cycle (early morning to near noon) and constrained by observations taken during the VOCALS (VAMOS Ocean-Atmosphere-Land Study) field campaign. We perturb aerosol and meteorological properties around this base case to investigate the stratocumulus response. We determine perturbations in the cloud top jumps in potential temperature θ and total water mixing ratio qt from ECMWF Re-analysis Interim data, and use a set of Nd values spanning the observable range. To determine the cloud response to these meteorological and aerosol perturbations, we compute changes in liquid water path (LWP), bulk optical depth (τ) and cloud radiative forcing (CRF). We find that realistic variations in the thermodynamic jump properties can elicit a response in the cloud properties of τ and shortwave (SW) CRF that are on the same order of magnitude as the response found due to realistic changes in aerosol state (i.e Nd). In response to increases in Nd, the cloud layer in the base case thinned due to increases in evaporative cooling and entrainment rate. This cloud thinning somewhat mitigates the increase in τ resulting from increases in Nd. On the other hand, variations in θ and qt jumps did not substantially modify Nd. The cloud layer thickens in response to an increase in the θ jump and thins in response to an increase in the qt jump, both resulting in a τ and SW CRF response comparable to those found from perturbations in Nd. Longwave CRF was not substantially altered by the perturbations we tested. We find that realistic variations in meteorological context can elicit a response in CRF and τ on the same order of magnitude as, and at times larger than, that response found due to realistic changes in aerosol state. We estimate the limits on variability of cloud top jump properties required for accurate observation of aerosol SW radiative impacts on stratocumulus, and find strict constraints: less than 1 K and 1 g kg-1 in the early morning hours, and order 0.1 K and 0.1 g kg-1 close to solar noon. These constraints suggest that accurately observing aerosol radiative impacts in stratocumulus may be challenging as co-variation of meteorological properties may obfuscate aerosol-cloud interactions.
NASA Astrophysics Data System (ADS)
Lee, Jangho; Kim, Kwang-Yul
2018-02-01
CSEOF analysis is applied for the springtime (March, April, May) daily PM10 concentrations measured at 23 Ministry of Environment stations in Seoul, Korea for the period of 2003-2012. Six meteorological variables at 12 pressure levels are also acquired from the ERA Interim reanalysis datasets. CSEOF analysis is conducted for each meteorological variable over East Asia. Regression analysis is conducted in CSEOF space between the PM10 concentrations and individual meteorological variables to identify associated atmospheric conditions for each CSEOF mode. By adding the regressed loading vectors with the mean meteorological fields, the daily atmospheric conditions are obtained for the first five CSEOF modes. Then, HYSPLIT model is run with the atmospheric conditions for each CSEOF mode in order to back trace the air parcels and dust reaching Seoul. The K-means clustering algorithm is applied to identify major source regions for each CSEOF mode of the PM10 concentrations in Seoul. Three main source regions identified based on the mean fields are: (1) northern Taklamakan Desert (NTD), (2) Gobi Desert and (GD), and (3) East China industrial area (ECI). The main source regions for the mean meteorological fields are consistent with those of previous study; 41% of the source locations are located in GD followed by ECI (37%) and NTD (21%). Back trajectory calculations based on CSEOF analysis of meteorological variables identify distinct source characteristics associated with each CSEOF mode and greatly facilitate the interpretation of the PM10 variability in Seoul in terms of transportation route and meteorological conditions including the source area.
Final Report: Update of the Glossary of Meteorology, September 1, 1994 - August 3, 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
American Meteorological Society
2000-01-24
The American Meteorological Society has updated the Glossary of Meteorology from the first addition which was published in 1959. The second edition contains over 12,000 entries in meteorology and related fields. The glossary will be made available in both book and CD-ROM formats. DOE was one of six federal agencies that provided support for this project.
Climatological Downscaling and Evaluation of AGRMET Precipitation Analyses Over the Continental U.S.
NASA Astrophysics Data System (ADS)
Garcia, M.; Peters-Lidard, C. D.; Eylander, J. B.; Daly, C.; Tian, Y.; Zeng, J.
2007-05-01
The spatially distributed application of a land surface model (LSM) over a region of interest requires the application of similarly distributed precipitation fields that can be derived from various sources, including surface gauge networks, surface-based radar, and orbital platforms. The spatial variability of precipitation influences the spatial organization of soil temperature and moisture states and, consequently, the spatial variability of land- atmosphere fluxes. The accuracy of spatially-distributed precipitation fields can contribute significantly to the uncertainty of model-based hydrological states and fluxes at the land surface. Collaborations between the Air Force Weather Agency (AFWA), NASA, and Oregon State University have led to improvements in the processing of meteorological forcing inputs for the NASA-GSFC Land Information System (LIS; Kumar et al. 2006), a sophisticated framework for LSM operation and model coupling experiments. Efforts at AFWA toward the production of surface hydrometeorological products are currently in transition from the legacy Agricultural Meteorology modeling system (AGRMET) to use of the LIS framework and procedures. Recent enhancements to meteorological input processing for application to land surface models in LIS include the assimilation of climate-based information for the spatial interpolation and downscaling of precipitation fields. Climatological information included in the LIS-based downscaling procedure for North America is provided by a monthly high-resolution PRISM (Daly et al. 1994, 2002; Daly 2006) dataset based on a 30-year analysis period. The combination of these sources and methods attempts to address the strengths and weaknesses of available legacy products, objective interpolation methods, and the PRISM knowledge-based methodology. All of these efforts are oriented on an operational need for timely estimation of spatial precipitation fields at adequate spatial resolution for customer dissemination and near-real-time simulations in regions of interest. This work focuses on value added to the AGRMET precipitation product by the inclusion of high-quality climatological information on a monthly time scale. The AGRMET method uses microwave-based satellite precipitation estimates from various polar-orbiting platforms (NOAA POES and DMSP), infrared-based estimates from geostationary platforms (GOES, METEOSAT, etc.), related cloud analysis products, and surface gauge observations in a complex and hierarchical blending process. Results from processing of the legacy AGRMET precipitation products over the U.S. using LIS-based methods for downscaling, both with and without climatological factors, are evaluated against high-resolution monthly analyses using the PRISM knowledge- based method (Daly et al. 2002). It is demonstrated that the incorporation of climatological information in a downscaling procedure can significantly enhance the accuracy, and potential utility, of AFWA precipitation products for military and civilian customer applications.
Microbiology and atmospheric processes: an upcoming era of research on bio-meteorology
NASA Astrophysics Data System (ADS)
Morris, C. E.; Sands, D. C.; Bardin, M.; Jaenicke, R.; Vogel, B.; Leyronas, C.; Ariya, P. A.; Psenner, R.
2008-01-01
For the past 200 years, the field of aerobiology has explored the abundance, diversity, survival and transport of micro-organisms in the atmosphere. Micro-organisms have been explored as passive and severely stressed riders of atmospheric transport systems. Recently, an interest in the active roles of these micro-organisms has emerged along with proposals that the atmosphere is a global biome for microbial metabolic activity and perhaps even multiplication. As part of a series of papers on the sources, distribution and roles in atmospheric processes of biological particles in the atmosphere, here we describe the pertinence of questions relating to the potential roles that air-borne micro-organisms might play in meteorological phenomena. For the upcoming era of research on the role of air-borne micro-organisms in meteorological phenomena, one important challenge is to go beyond descriptions of abundance of micro-organisms in the atmosphere toward an understanding of their dynamics in terms of both biological and physico-chemical properties and of the relevant transport processes at different scales. Another challenge is to develop this understanding under contexts pertinent to their potential role in processes related to atmospheric chemistry, the formation of clouds, precipitation and radiative forcing. This will require truly interdisciplinary approaches involving collaborators from the biological and physical sciences, from disciplines as disparate as agronomy, microbial genetics and atmosphere physics, for example.
2. SOUTH FACE OF PYROTECHNIC SHED (BLDG. 757) SHOWING SIGN ...
2. SOUTH FACE OF PYROTECHNIC SHED (BLDG. 757) SHOWING SIGN HOLDER ON LEFT AND ENTRANCE TO TEST CELL. METEOROLOGICAL TOWER AND METEOROLOGICAL SHED (BLDG. 756) IN BACKGROUND ON LEFT; SOUTHEAST CORNER OF GPS AZIMUTH STATION (BLDG. 775) IN BACKGROUND BEHIND AND RIGHT OF PYROTECHNIC SHED. - Vandenberg Air Force Base, Space Launch Complex 3, Pyrotechnic Shed, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
NASA Technical Reports Server (NTRS)
Madura, John T.; Bauman, William H., III; Merceret, Francis J.; Roeder, William P.; Brody, Frank C.; Hagemeyer, Bartlett C.
2011-01-01
The Applied Meteorology Unit (AMU) provides technology development and transition services to improve operational weather support to America's space program . The AMU was founded in 1991 and operates under a triagency Memorandum of Understanding (MOU) between the National Aeronautics and Space Administration (NASA), the United States Air Force (USAF) and the National Weather Service (NWS) (Ernst and Merceret, 1995). It is colocated with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) and funded by the Space Shuttle Program . Its primary customers are the 45WS, the Spaceflight Meteorology Group (SMG) operated for NASA by the NWS at the Johnson Space Center (JSC) in Houston, TX, and the NWS forecast office in Melbourne, FL (MLB). The gap between research and operations is well known. All too frequently, the process of transitioning research to operations fails for various reasons. The mission of the AMU is in essence to bridge this gap for America's space program.
Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.
Kawamura, Yoshiyuki
2016-01-01
The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.
In this study, techniques typically used for future air quality projections are applied to a historical 11-year period to assess the performance of the modeling system when the driving meteorological conditions are obtained using dynamical downscaling of coarse-scale fields witho...
NASA Astrophysics Data System (ADS)
Li, Tao; Zheng, Xiaogu; Dai, Yongjiu; Yang, Chi; Chen, Zhuoqi; Zhang, Shupeng; Wu, Guocan; Wang, Zhonglei; Huang, Chengcheng; Shen, Yan; Liao, Rongwei
2014-09-01
As part of a joint effort to construct an atmospheric forcing dataset for mainland China with high spatiotemporal resolution, a new approach is proposed to construct gridded near-surface temperature, relative humidity, wind speed and surface pressure with a resolution of 1 km×1 km. The approach comprises two steps: (1) fit a partial thin-plate smoothing spline with orography and reanalysis data as explanatory variables to ground-based observations for estimating a trend surface; (2) apply a simple kriging procedure to the residual for trend surface correction. The proposed approach is applied to observations collected at approximately 700 stations over mainland China. The generated forcing fields are compared with the corresponding components of the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis dataset and the Princeton meteorological forcing dataset. The comparison shows that, both within the station network and within the resolutions of the two gridded datasets, the interpolation errors of the proposed approach are markedly smaller than the two gridded datasets.
NASA Astrophysics Data System (ADS)
de Foy, B.; Clappier, A.; Molina, L. T.; Molina, M. J.
2006-04-01
Mexico City lies in a high altitude basin where air quality and pollutant fate is strongly influenced by local winds. The combination of high terrain with weak synoptic forcing leads to weak and variable winds with complex circulation patterns. A gap wind entering the basin in the afternoon leads to very different wind convergence lines over the city depending on the meteorological conditions. Surface and upper-air meteorological observations are analysed during the MCMA-2003 field campaign to establish the meteorological conditions and obtain an index of the strength and timing of the gap wind. A mesoscale meteorological model (MM5) is used in combination with high-resolution satellite data for the land surface parameters and soil moisture maps derived from diurnal ground temperature range. A simple method to map the lines of wind convergence both in the basin and on the regional scale is used to show the different convergence patterns according to episode types. The gap wind is found to occur on most days of the campaign and is the result of a temperature gradient across the southern basin rim which is very similar from day to day. Momentum mixing from winds aloft into the surface layer is much more variable and can determine both the strength of the flow and the pattern of the convergence zones. Northerly flows aloft lead to a weak jet with an east-west convergence line that progresses northwards in the late afternoon and early evening. Westerlies aloft lead to both stronger gap flows due to channelling and winds over the southern and western basin rim. This results in a north-south convergence line through the middle of the basin starting in the early afternoon. Improved understanding of basin meteorology will lead to better air quality forecasts for the city and better understanding of the chemical regimes in the urban atmosphere.
NASA Astrophysics Data System (ADS)
Neumann, Jessica; Arnal, Louise; Magnusson, Linus; Cloke, Hannah
2017-04-01
Seasonal river flow forecasts are important for many aspects of the water sector including flood forecasting, water supply, hydropower generation and navigation. In addition to short term predictions, seasonal forecasts have the potential to realise higher benefits through more optimal and consistent decisions. Their operational use however, remains a challenge due to uncertainties posed by the initial hydrologic conditions (e.g. soil moisture, groundwater levels) and seasonal climate forcings (mainly forecasts of precipitation and temperature), leading to a decrease in skill with increasing lead times. Here we present a stakeholder-led case study for the Thames catchment (UK), currently being undertaken as part of the H2020 IMPREX project. The winter of 2013-14 was the wettest on record in the UK; driven by 12 major Atlantic depressions, the Thames catchment was subject to compound (concurrent) flooding from fluvial and groundwater sources. Focusing on the 2013-14 floods, this study aims to see whether increased skill in meteorological input translates through to more accurate forecasting of compound flood events at seasonal timescales in the Thames catchment. An earlier analysis of the ECMWF System 4 (S4) seasonal meteorological forecasts revealed that it did not skilfully forecast the extreme event of winter 2013-14. This motivated the implementation of an atmospheric experiment by the ECMWF to force the S4 to more accurately represent the low-pressure weather conditions prevailing in winter 2013-14 [1]. Here, we used both the standard and the "improved" S4 seasonal meteorological forecasts to force the EFAS (European Flood Awareness System) LISFLOOD hydrological model. Both hydrological forecasts were started on the 1st of November 2013 and run for 4 months of lead time to capture the peak of the 2013-14 flood event. Comparing the seasonal hydrological forecasts produced with both meteorological forcing data will enable us to assess how the improved meteorology translates into skill in the hydrological forecast for this extreme compound event. As primary stakeholders involved in the study, the Environment Agency and Flood Forecasting Centre are responsible for managing flood risk in the UK. For them, the detection of a potential flood signal weeks or months in advance could be of great value in terms of operational practice, decision-making and early warning. [1] Rodwell, M.J., Ferranti, L., Magnusson, L., Weisheimer, A., Rabier, F. & Richardson, D. (2015) Diagnosis of northern hemispheric regime behaviour during winter 2013/14. ECMWF Technical Memoranda 769.
NASA Astrophysics Data System (ADS)
Garcia, M.; Peters-Lidard, C. D.; Eylander, J. B.; Daly, C.; Gibson, W.; Tian, Y.; Zeng, J.; Kato, H.
2008-05-01
Collaborations between the Air Force Weather Agency (AFWA), the Hydrological Sciences Branch at NASA-GSFC, and the PRISM Group at Oregon State University have led to improvements in the processing of meteorological forcing inputs for the NASA-GSFC Land Information System (LIS; Kumar et al. 2006), a sophisticated framework for LSM operation and model coupling experiments. Efforts at AFWA toward the production of surface hydrometeorological products are currently in transition from the legacy Agricultural Meteorology modeling system (AGRMET) to use of the LIS framework and procedures. Recent enhancements to meteorological input processing for application to land surface models in LIS include the assimilation of climate-based information for the spatial interpolation and downscaling of precipitation fields. Climatological information included in the LIS- based downscaling procedure for North America is provided by a monthly high-resolution PRISM (Daly et al. 1994, 2002; Daly 2006) dataset based on a 30-year analysis period. The combination of these sources and methods attempts to address the strengths and weaknesses of available legacy products, objective interpolation methods, and the PRISM knowledge-based methodology. All of these efforts are oriented on an operational need for timely estimation of spatial precipitation fields at adequate spatial resolution for customer dissemination and near-real-time simulations in regions of interest. This work focuses on value added to the AGRMET precipitation product by the inclusion of high-quality climatological information on a monthly time scale. The AGRMET method uses microwave-based satellite precipitation estimates from various polar-orbiting platforms (NOAA POES and DMSP), infrared-based estimates from geostationary platforms (GOES, METEOSAT, etc.), related cloud analysis products, and surface gauge observations in a complex and hierarchical blending process. Results from processing of the legacy AGRMET precipitation products over the U.S. using LIS-based methods for downscaling, both with and without climatological factors, are evaluated against high-resolution monthly analyses using the PRISM knowledge- based method (Daly et al. 2002) over a 4-year period. It is demonstrated that the incorporation of climatological information in a downscaling procedure can significantly enhance the accuracy, and potential utility, of AFWA precipitation products for customer applications, especially over mountainous terrain as in the western U.S.
NASA Technical Reports Server (NTRS)
Koren, Ilan; Feingold, Graham; Remer, Lorraine A.
2010-01-01
Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case that the aerosol does play a role in invigorating convective clouds.
Adriatic storm surges and related cross-basin sea-level slope
NASA Astrophysics Data System (ADS)
Međugorac, Iva; Orlić, Mirko; Janeković, Ivica; Pasarić, Zoran; Pasarić, Miroslava
2018-05-01
Storm surges pose a severe threat to the northernmost cities of the Adriatic coast, with Venice being most prone to flooding. It has been noted that some flooding episodes cause significantly different effects along the eastern and western Adriatic coasts, with indications that the difference is related to cross-basin sea-level slope. The present study aims to determine specific atmospheric conditions under which the slope develops and to explore connection with increased sea level along the two coastlines. The analysis is based on sea-level time series recorded at Venice and Bakar over the 1984-2014 interval, from which 38 most intensive storm-surge episodes were selected, and their meteorological backgrounds (ERA-Interim) were studied. The obtained sea-level extremes were grouped into three categories according to their cross-basin sea-level slope: storm surges that slope strongly westward (W type), those that slope eastward (E type) and ordinary storm surges (O type). Results show that the slope is controlled by wind action only, specifically, by the wind component towards a particular coast and by the cross-basin shear of along-basin wind. Meteorological fields were used to force an oceanographic numerical model in order to confirm the empirically established connection between the atmospheric forcing and the slope. Finally, it has been found that the intensity of storm surges along a particular Adriatic coast is determined by an interplay of sea-level slopes in the along and cross-basin directions.
NASA Astrophysics Data System (ADS)
Zhou, Feng; Xuan, Jiliang; Huang, Daji; Liu, Chenggang; Sun, Jun
2013-12-01
The development of phytoplankton bloom and its association with physical forcing is examined through an interdisciplinary field-work conducted in the vicinity of the central trough of the southern Yellow Sea during March-April 2009, with the aid of a surface Lagrangian drifter deployed at the bloom site. Bloom patches were detected using an empirical value and two of them were traced by the drifter for a period of several days respectively. Both of them appears as thin-layer subsurface chlorophyll a maximum (SCM) throughout the tracing, although their dominant phytoplankton species are not identical at all. The magnitude as well as the onset of these two blooms is different from each other, but both found to be relevant to local oceanic and meteorological conditions. Both of them demonstrate that the changes in the stability of hydrographical structure, especially at layers around the SCM, take a substantial role in triggering or terminating the blooming processes. Those changes in meteorological conditions, like wind speed and directions, solar radiation, are short and cause daily or synoptic scale variations in phytoplankton concentrations, but the frequency of northerly wind events predating the bloom season has a positive effect on the occurrence of spring blooms. The horizontal advection is another contributing factor indicated by the drifter which accounts for the bloom extinction at the station B20. In addition, due to the weak orbital horizontal movement, the bloom above the central trough persists longer and larger.
NASA Technical Reports Server (NTRS)
Yuan, T.; Remer, L. A.; Yu, H.
2011-01-01
Increased aerosol concentrations can raise planetary albedo not only by reflecting sunlight and increasing cloud albedo, but also by changing cloud amount. However, detecting aerosol effect on cloud amount has been elusive to both observations and modeling due to potential buffering mechanisms and convolution of meteorology. Here through a natural experiment provided by long-tem1 degassing of a low-lying volcano and use of A-Train satellite observations, we show modifications of trade cumulus cloud fields including decreased droplet size, decreased precipitation efficiency and increased cloud amount are associated with volcanic aerosols. In addition we find significantly higher cloud tops for polluted clouds. We demonstrate that the observed microphysical and macrophysical changes cannot be explained by synoptic meteorology or the orographic effect of the Hawaiian Islands. The "total shortwave aerosol forcin", resulting from direct and indirect forcings including both cloud albedo and cloud amount. is almost an order of magnitude higher than aerosol direct forcing alone. Furthermore, the precipitation reduction associated with enhanced aerosol leads to large changes in the energetics of air-sea exchange and trade wind boundary layer. Our results represent the first observational evidence of large-scale increase of cloud amount due to aerosols in a trade cumulus regime, which can be used to constrain the representation of aerosol-cloud interactions in climate models. The findings also have implications for volcano-climate interactions and climate mitigation research.
Structure and Dynamics of Fluid Planets
NASA Astrophysics Data System (ADS)
Houben, H.
2014-12-01
Attention to conservation laws gives a comprehensive picture of the structure and dynamics of gas giants: Atmospheric differential rotation is generated by tidal torques (dependent on tropospheric static stability) and is dragged into the interior by turbulent viscosity. The consequent heat dissipation generates baroclinicity and approximate thermal wind balance, not Taylor-Proudman conditions. Magnetic Lorentz forces have no effect on the zonal wind, but generate a meridional wind approximately parallel to field lines. Thus, magnetic field generation in the interior is dominated by the ω-effect (zonal field wound up by differential rotation), with the α-effect (meridional field generated by turbulence) severely limited by the β-effect (turbulence-enhanced resistivity). The meridional circulation quenches the ω-effect so that a steady state is reached and also limits the magnitude of the non-axisymmetric field under certain circumstances. The stability of the steady state requires further study. The magnetic field travels with the E X B drift, rather than the fluid velocity. Work by the fluid on the magnetic field balances work by the magnetic field on the fluid, so the global heat flux is little changed. In conducting regions the meridional density distribution (and gravity field) is most sensitive to the total pressure (gas + magnetic) and the ω-effect. In nonconducting regions, the gas pressure, centrifugal force, and differential rotation dominate. The differential rotation varies at least as fast as r³, so the gravitational signal is small compared to that for differential rotation on cylinders. The entropy minimum near the tropopause allows meteorology to be dominated by (relatively) long-lived, closed potential temperature surfaces, usually called spots, which conserve potential vorticity. All of the above must be taken into account to properly assimilate any available observational data to further specify the interior properties of fluid planets.
Verification of Meteorological and Oceanographic Ensemble Forecasts in the U.S. Navy
NASA Astrophysics Data System (ADS)
Klotz, S.; Hansen, J.; Pauley, P.; Sestak, M.; Wittmann, P.; Skupniewicz, C.; Nelson, G.
2013-12-01
The Navy Ensemble Forecast Verification System (NEFVS) has been promoted recently to operational status at the U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC). NEFVS processes FNMOC and National Centers for Environmental Prediction (NCEP) meteorological and ocean wave ensemble forecasts, gridded forecast analyses, and innovation (observational) data output by FNMOC's data assimilation system. The NEFVS framework consists of statistical analysis routines, a variety of pre- and post-processing scripts to manage data and plot verification metrics, and a master script to control application workflow. NEFVS computes metrics that include forecast bias, mean-squared error, conditional error, conditional rank probability score, and Brier score. The system also generates reliability and Receiver Operating Characteristic diagrams. In this presentation we describe the operational framework of NEFVS and show examples of verification products computed from ensemble forecasts, meteorological observations, and forecast analyses. The construction and deployment of NEFVS addresses important operational and scientific requirements within Navy Meteorology and Oceanography. These include computational capabilities for assessing the reliability and accuracy of meteorological and ocean wave forecasts in an operational environment, for quantifying effects of changes and potential improvements to the Navy's forecast models, and for comparing the skill of forecasts from different forecast systems. NEFVS also supports the Navy's collaboration with the U.S. Air Force, NCEP, and Environment Canada in the North American Ensemble Forecast System (NAEFS) project and with the Air Force and the National Oceanic and Atmospheric Administration (NOAA) in the National Unified Operational Prediction Capability (NUOPC) program. This program is tasked with eliminating unnecessary duplication within the three agencies, accelerating the transition of new technology, such as multi-model ensemble forecasting, to U.S. Department of Defense use, and creating a superior U.S. global meteorological and oceanographic prediction capability. Forecast verification is an important component of NAEFS and NUOPC. Distribution Statement A: Approved for Public Release; distribution is unlimited
Verification of Meteorological and Oceanographic Ensemble Forecasts in the U.S. Navy
NASA Astrophysics Data System (ADS)
Klotz, S. P.; Hansen, J.; Pauley, P.; Sestak, M.; Wittmann, P.; Skupniewicz, C.; Nelson, G.
2012-12-01
The Navy Ensemble Forecast Verification System (NEFVS) has been promoted recently to operational status at the U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC). NEFVS processes FNMOC and National Centers for Environmental Prediction (NCEP) meteorological and ocean wave ensemble forecasts, gridded forecast analyses, and innovation (observational) data output by FNMOC's data assimilation system. The NEFVS framework consists of statistical analysis routines, a variety of pre- and post-processing scripts to manage data and plot verification metrics, and a master script to control application workflow. NEFVS computes metrics that include forecast bias, mean-squared error, conditional error, conditional rank probability score, and Brier score. The system also generates reliability and Receiver Operating Characteristic diagrams. In this presentation we describe the operational framework of NEFVS and show examples of verification products computed from ensemble forecasts, meteorological observations, and forecast analyses. The construction and deployment of NEFVS addresses important operational and scientific requirements within Navy Meteorology and Oceanography (METOC). These include computational capabilities for assessing the reliability and accuracy of meteorological and ocean wave forecasts in an operational environment, for quantifying effects of changes and potential improvements to the Navy's forecast models, and for comparing the skill of forecasts from different forecast systems. NEFVS also supports the Navy's collaboration with the U.S. Air Force, NCEP, and Environment Canada in the North American Ensemble Forecast System (NAEFS) project and with the Air Force and the National Oceanic and Atmospheric Administration (NOAA) in the National Unified Operational Prediction Capability (NUOPC) program. This program is tasked with eliminating unnecessary duplication within the three agencies, accelerating the transition of new technology, such as multi-model ensemble forecasting, to U.S. Department of Defense use, and creating a superior U.S. global meteorological and oceanographic prediction capability. Forecast verification is an important component of NAEFS and NUOPC.
Diagnostics of sources of tropospheric ozone using data assimilation during the KORUS-AQ campaign
NASA Astrophysics Data System (ADS)
Gaubert, B.; Emmons, L. K.; Miyazaki, K.; Buchholz, R. R.; Tang, W.; Arellano, A. F., Jr.; Tilmes, S.; Barré, J.; Worden, H. M.; Raeder, K.; Anderson, J. L.; Edwards, D. P.
2017-12-01
Atmospheric oxidative capacity plays a crucial role in the fate of greenhouse gases and air pollutants as well as in the formation of secondary pollutants such as tropospheric ozone. The attribution of sources of tropospheric ozone is a difficult task because of biases in input parameters and forcings such as emissions and meteorology in addition to errors in chemical schemes. We assimilate satellite remote sensing observations of ozone precursors such as carbon monoxide (CO) and nitrogen dioxide (NO2) in the global coupled chemistry-transport model: Community Atmosphere Model with Chemistry (CAM-Chem). The assimilation is completed using an Ensemble Adjustment Kalman Filter (EAKF) in the Data Assimilation Research Testbed (DART) framework which allows estimates of unobserved parameters and potential constraints on secondary pollutants and emissions. The ensemble will be constructed using perturbations in chemical kinetics, different emission fields and by assimilating meteorological observations to fully assess uncertainties in the chemical fields of targeted species. We present a set of tools such as emission tags (CO and propane), combined with diagnostic analysis of chemical regimes and perturbation of emissions ratios to estimate a regional budget of primary and secondary pollutants in East Asia and their sensitivity to data assimilation. This study benefits from the large set of aircraft and ozonesonde in-situ observations from the Korea-United States Air Quality (KORUS-AQ) campaign that occurred in South Korea in May-June 2016.
Exploring the Circulation Dynamics of Mississippi Sound and Bight Using the CONCORDE Synthesis Model
NASA Astrophysics Data System (ADS)
Pan, C.; Dinniman, M. S.; Fitzpatrick, P. J.; Lau, Y.; Cambazoglu, M. K.; Parra, S. M.; Hofmann, E. E.; Dzwonkowski, B.; Warner, S. J.; O'Brien, S. J.; Dykstra, S. L.; Wiggert, J. D.
2017-12-01
As part of the modeling effort of the GOMRI (Gulf of Mexico Research Initiative)-funded CONCORDE consortium, a high resolution ( 400 m) regional ocean model is implemented for the Mississippi (MS) Sound and Bight. The model is based on the Coupled Ocean Atmosphere Wave Sediment Transport Modeling System (COAWST), with initial and lateral boundary conditions drawn from data assimilative 3-day forecasts of the 1km-resolution Gulf of Mexico Navy Coastal Ocean Model (GOM-NCOM). The model initiates on 01/01/2014 and runs for 3 years. The model results are validated with available remote sensing data and with CONCORDE's moored and ship-based in-situ observations. Results from a three-year simulation (2014-2016) show that ocean circulation and water properties of the MS Sound and Bight are sensitive to meteorological forcing. A low resolution surface forcing, drawn from the North America Regional Reanalysis (NARR), and a high resolution forcing, called CONCORDE Meteorological Analysis (CMA) ) that resolves the diurnal sea breeze, are used to drive the model to examine the sensitivity of the circulation to surface forcing. The model responses to the low resolution NARR forcing and to the high resolution CMA are compared in detail for the CONCORDE Fall and Spring field campaigns when contemporaneous in situ data are available, with a focus on how simulated exchanges between MS Sound and MS Bight are impacted. In most cases, the model shows higher simulation skill when it is driven by CMA. Freshwater plumes of the MS River, MS Sound and Mobile Bay influence the shelf waters of the MS Bight in terms of material budget and dynamics. Drifters and dye experiments near Mobile Bay demonstrate that material exchanges between Mobile Bay and the Sound, and between the Sound and Bight, are sensitive to the wind strength and direction. A model - data comparison targeting the Mobile Bay plume suggests that under both northerly and southerly wind conditions the model is capable of simulating the variation of the plume in terms of velocity, plume extent, heat and salt budgets.
The role of global cloud climatologies in validating numerical models
NASA Technical Reports Server (NTRS)
HARSHVARDHAN
1992-01-01
Global maps of the monthly mean net upward longwave radiation flux at the ocean surface were obtained for April, July, October 1985 and January 1986. These maps were produced by blending information obtained from a combination of general circulation model cloud radiative forcing fields, the top of the atmosphere cloud radiative forcing from ERBE and TOVS profiles and sea surface temperature on ISCCP C1 tapes. The fields are compatible with known meteorological regimes of atmospheric water vapor content and cloudiness. There is a vast area of high net upward longwave radiation flux (greater than 80/sq Wm) in the eastern Pacific Ocean throughout most of the year. Areas of low net upward longwave radiation flux ((less than 40/sq Wm) are the tropical convective regions and extra tropical regions that tend to have persistent low cloud cover.The technique used relies on General Circulation Model simulations and so is subject to some of the uncertainties associated with the model. However, all input information regarding temperature, moisture, and cloud cover is from satellite data having near global coverage. This feature of the procedure alone warrants its consideration for further use in compiling global maps of longwave radiation.
Simplification of the Kalman filter for meteorological data assimilation
NASA Technical Reports Server (NTRS)
Dee, Dick P.
1991-01-01
The paper proposes a new statistical method of data assimilation that is based on a simplification of the Kalman filter equations. The forecast error covariance evolution is approximated simply by advecting the mass-error covariance field, deriving the remaining covariances geostrophically, and accounting for external model-error forcing only at the end of each forecast cycle. This greatly reduces the cost of computation of the forecast error covariance. In simulations with a linear, one-dimensional shallow-water model and data generated artificially, the performance of the simplified filter is compared with that of the Kalman filter and the optimal interpolation (OI) method. The simplified filter produces analyses that are nearly optimal, and represents a significant improvement over OI.
Applied Meteorology Unit (AMU) Quarterly Report Fourth Quarter FY-14
NASA Technical Reports Server (NTRS)
Bauman, William H.; Crawford, Winifred C.; Watson, Leela R.; Shafer, Jaclyn
2014-01-01
Ms. Crawford completed the final report for the dual-Doppler wind field task. Dr. Bauman completed transitioning the 915-MHz and 50-MHz Doppler Radar Wind Profiler (DRWP) splicing algorithm developed at Marshall Space Flight Center (MSFC) into the AMU Upper Winds Tool. Dr. Watson completed work to assimilate data into model configurations for Wallops Flight Facility (WFF) and Kennedy Space Center/Cape Canaveral Air Force Station (KSC/CCAFS). Ms. Shafer began evaluating the a local high-resolution model she had set up previously for its ability to forecast weather elements that affect launches at KSC/CCAFS. Dr. Watson began a task to optimize the data-assimilated model she just developed to run in real time.
Meteorological data fields 'in perspective'
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Pierce, H.; Morris, K. R.; Dodge, J.
1985-01-01
Perspective display techniques can be applied to meteorological data sets to aid in their interpretation. Examples of a perspective display procedure applied to satellite and aircraft visible and infrared image pairs and to stereo cloud-top height analyses are presented. The procedure uses a sophisticated shading algorithm that produces perspective images with greatly improved comprehensibility when compared with the wire-frame perspective displays that have been used in the past. By changing the 'eye-point' and 'view-point' inputs to the program in a systematic way, movie loops that give the impression of flying over or through the data field have been made. This paper gives examples that show how several kinds of meteorological data fields are more effectively illustrated using the perspective technique.
The MOSO field experiment - Overview of findings
NASA Astrophysics Data System (ADS)
Ólafsson, Haraldur; Jonassen, Marius O.; Ágústsson, Hálfdán; Rögnvaldsson, Ólafur; Hjarðar, Bjarni G. Þ.; Rasol, Dubravka; Reuder, Joachim; Jónsson, Sigurður; Líf Kristinsdóttir, Birta
2013-04-01
In 2009 and 2011, the MOSO I and MOSO II meteorological field experiments took place in SW-Iceland. The main objectives were to describe the low level atmospheric coastal flows in the vicinity of mountains. The observations for the MOSO dataset were made using a large number of automatic weather stations, microbarographs, radiosoundings and a remotely piloted aircraft. The highlights of the findings include a four-dimensional description of the sea-breeze in Iceland, weak downslope acceleration, summer- and winter-time mountain wake flow, transition between wake flow and sea-breeze. The orographic drag force is explored and shown to be not so high most of the time in the predicted high-drag state. The observations from the remotely piloted aircraft have been used successfully to nudge simulations of the flow and are shown to be promising for operational use in numerical prediction of mesoscale coastal and orographic flows.
NASA Astrophysics Data System (ADS)
Wells, Leonard A.
2007-06-01
The intent of this study is to develop a better understanding of the behavior of late spring through early fall marine layer stratus and fog at Vandenberg Air Force Base, which accounts for a majority of aviation forecasting difficulties. The main objective was to use L
USAF Bioenvironmental Noise Data Handbook. Volume 165: MC-1 heater, duct type, portable
NASA Astrophysics Data System (ADS)
Rau, T. H.
1982-06-01
The MC-1 heater is a gasoline-motor driven, portable ground heater used primarily for cockpit and cabin temperature control. This report provides measured and extrapolated data defining the bioacoustic environments produced by this unit operating outdoors on a concrete apron at normal rated conditions. Near-field data are reported for 37 locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise levels, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Far-field data measured at 36 locations are normalized to standard meteorological conditions and extrapolated from 10 1600 meters to derive sets of equal-value contours for these same seven acoustic measures as functions of angle and distance from the source.
USAF bioenvironmental noise data handbook. Volume 163: GPC-28 compressor
NASA Astrophysics Data System (ADS)
Rau, T. H.
1982-05-01
The GPC-28 is a gasoline engine-driven compressor with a 120 volt 60 Hz generator used for general purpose maintenance. This report provides measured and extrapolated data defining the bioacoustic environments produced by this unit operating outdoors on a concrete apron at a normal rated condition. Near-field data are reported for 37 locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Far-field data measured at 36 locations are normalized to standard meteorological conditions and extrapolated from 10 - 1600 meters to derive sets of equal-value contours for these same seven acoustic measures as functions of angle and distance from the source.
USAF bioenvironmental noise data handbook. Volume 161: A/M32A-86 generator set, diesel engine driven
NASA Astrophysics Data System (ADS)
Rau, T. H.
1982-05-01
The A/M32A-86 generator set is a diesel engine driven source of electrical power used for the starting of aircraft, and for ground maintenance. This report provides measured and extrapolated data defining the bioacoustic environments produced by this unit operating outdoors on a concrete apron at normal rated/loaded conditions. Near-field data are reported for 37 locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Far-field data measured at 36 locations are normalized to standard meteorological conditions and extrapolated from 10 - 1600 meters to derive sets of equal-value contours for these same seven acoustic measures as functions of angle and distance from the source.
Modeling Study for Tangier Island Jetties, Tangier Island, Virginia
2015-03-01
meteorological and oceanographic (metocean) inputs used as forcing conditions. CENAO provided survey data available for Tangier Is- land from a...and 5 ft or 1.5 m). Wave direction is meteorological (e.g., direction waves coming from). Figure 55. Ten selected locations (black squares) in Alt...given in the previous sections. The Hud- son equation is well known and has been used for years to determine ar- mor stability ( Hudson 1959; Shore
Superduck Marine Meteorological Experiment Data Summary: Mean Values and Turbulence Parameters.
1988-08-01
number) This report summarizes the Mean values and turbulence parameters Of Meteorological measurements made during an experiment at Duck, NC, during...Sept-Oct 1986. The measure- ments wore made to Calculate wind stress in the nearshore area. Wind stress is a primary forcing function for nearshore waves...measure. Only in recent years has technology made it possible to accurately measure its fluctuations. The krypton hygrometer is a recent development
1980-03-01
Force -- 4 United States Navy -- 1 National Transportation Safety Board -- I PRIVATE SECTOR (43) University and Research -- 12 Georgia Institute of...States Air Force , Aeronautical Systems Division 6 *1 __________________________________________-our_ TABLE 4 IMPROMPTU PRESENTATIONS Clear Air...Propulsion Laboratory 7 concerning the Air New Zealand DC-10 accident at Mt. Erebus, Antarctica; and John Corbin of the U.S. Air Force Aeronautical
Applied Meteorology Unit (AMU)
NASA Technical Reports Server (NTRS)
Bauman, William; Crawford, Winifred; Watson, Leela; Wheeler, Mark
2011-01-01
The AMU Team began four new tasks in this quarter: (1) began work to improve the AMU-developed tool that provides the launch weather officers information on peak wind speeds that helps them assess their launch commit criteria; (2) began updating lightning climatologies for airfields around central Florida. These climatologies help National Weather Service and Air Force forecasters determine the probability of lightning occurrence at these sites; (3) began a study for the 30th Weather Squadron at Vandenberg Air Force Base in California to determine if precursors can be found in weather observations to help the forecasters determine when they will get strong wind gusts in their northern towers; and (4) began work to update the AMU-developed severe weather tool with more data and possibly improve its performance using a new statistical technique. Include is a section of summaries and detail reporting on the quarterly tasks: (1) Peak Wind Tool for user Meteorological Interactive Data Display System (LCC), Phase IV, (2) Situational Lightning climatologies for Central Florida, Phase V, (3) Vandenberg AFB North Base Wind Study and (4) Upgrade Summer Severe Weather Tool Meteorological Interactive Data Display System (MIDDS).
A WRF sensitivity study for summer ozone and winter PM events in California
NASA Astrophysics Data System (ADS)
Zhao, Z.; Chen, J.; Mahmud, A.; Di, P.; Avise, J.; DaMassa, J.; Kaduwela, A. P.
2014-12-01
Elevated summer ozone and winter PM frequently occur in the San Joaquin Valley (SJV) and the South Coast Air Basin (SCAB) in California. Meteorological conditions, such as wind, temperature and planetary boundary layer height (PBLH) play crucial roles in these air pollution events. Therefore, accurate representation of these fields from a meteorological model is necessary to successfully reproduce these air pollution events in subsequent air quality model simulations. California's complex terrain and land-sea interface can make it challenging for meteorological models to replicate the atmospheric conditions over the SJV and SCAB during extreme pollution events. In this study, the performance of the Weather Research and Forecasting Model (WRF) over these two regions for a summer month (July 2012) and a winter month (January 2013) is evaluated with different model configurations and forcing. Different land surface schemes (Pleim-Xiu vs. hybrid scheme), the application of observational and soil nudging, two SST datasets (the Global Ocean Data Assimilation Experiment (GODAE) SST vs. the default SST from North American Regional Reanalysis (NARR) reanalysis), and two land use datasets (the National Land Cover Data (NLCD) 2006 40-category vs. USGS 24-category land use data) have been tested. Model evaluation will focus on both surface and vertical profiles for wind, temperature, relative humidity, as well as PBLH. Sensitivity of the Community Multi-scale Air Quality Model (CMAQ) results to different WRF configurations will also be presented and discussed.
NASA Astrophysics Data System (ADS)
Moran, Michael D.; Pielke, Roger A.
1996-03-01
The Colorado State University mesoscale atmospheric dispersion (MAD) numerical modeling system, which consists of a prognostic mesoscale meteorological model coupled to a mesoscale Lagrangian particle dispersion model, has been used to simulate the transport and diffusion of a perfluorocarbon tracer-gas cloud for one afternoon surface release during the July 1980 Great Plains mesoscale tracer field experiment. Ground-level concentration (GLC) measurements taken along arcs of samplers 100 and 600 km downwind of the release site at Norman, Oklahoma, up to three days after the tracer release were available for comparison. Quantitative measures of a number of significant dispersion characteristics obtained from analysis of the observed tracer cloud's moving GLC `footprint' have been used to evaluate the modeling system's skill in simulating this MAD case.MAD is more dependent upon the spatial and temporal structure of the transport wind field than is short-range atmospheric dispersion. For the Great Plains mesoscale tracer experiment, the observations suggest that the Great Plains nocturnal low-level jet played an important role in transporting and deforming the tracer cloud. A suite of ten two- and three-dimensional numerical meteorological experiments was devised to investigate the relative contributions of topography, other surface inhomogeneities, atmospheric baroclinicity, synoptic-scale flow evolution, and meteorological model initialization time to the structure and evolution of the low-level mesoscale flow field and thus to MAD. Results from the ten mesoscale meteorological simulations are compared in this part of the paper. The predicted wind fields display significant differences, which give rise in turn to significant differences in predicted low-level transport. The presence of an oscillatory ageostrophic component in the observed synoptic low-level winds for this case is shown to complicate initialization of the meteorological model considerably and is the likely cause of directional errors in the predicted mean tracer transport. A companion paper describes the results from the associated dispersion simulations.
NASA Astrophysics Data System (ADS)
Hoover, R. H.; Gaylord, D. R.; Cooper, C. M.
2018-05-01
The St. Anthony Dune Field (SADF) is a 300 km2 expanse of active to stabilized transverse, barchan, barchanoid, and parabolic sand dunes located in a semi-arid climate in southeastern Idaho. The northeastern portion of the SADF, 16 km2, was investigated to examine meteorological influences on dune mobility. Understanding meteorological predictors of sand-dune migration for the SADF informs landscape evolution and impacts assessment of eolian activity on sensitive agricultural lands in the western United States, with implications for semi-arid environments globally. Archival aerial photos from 1954 to 2011 were used to calculate dune migration rates which were subsequently compared to regional meteorological data, including temperature, precipitation and wind speed. Observational analyses based on aerial photo imagery and meteorological data indicate that dune migration is influenced by weather for up to 5-10 years and therefore decadal weather patterns should be taken into account when using dune migration rates as proxies from climate fluctuation. Statistical examination of meteorological variables in this study indicates that 24% of the variation of sand dune migration rates is attributed to temperature, precipitation and wind speed, which is increased to 45% when incorporating lag time.
The Chinese FY-1 Meteorological Satellite Application in Observation on Oceanic Environment
NASA Astrophysics Data System (ADS)
Weimin, S.
meteorological satellite is stated in this paper. exploration of the ocean resources has been a very important question of global strategy in the world. The exploration of the ocean resources includes following items: Making full use of oceanic resources and space, protecting oceanic environment. to observe the ocean is by using of satellite. In 1978, US successfully launched the first ocean observation satellite in the world --- Sea Satellite. It develops ancient oceanography in to advanced space-oceanography. FY-1 B and FY- IC respectively. High quality data were acquired at home and abroad. FY-1 is Chinese meteorological satellite, but with 0.43 ~ 0.48 μm ,0.48 ~ 0.53 μm and 0.53 ~ 0.58 μm three ocean color channels, actually it is a multipurpose remote sensing satellite of meteorology and oceanography. FY-1 satellite's capability of observation on ocean partly, thus the application field is expanded and the value is increased. With the addition of oceanic channels on FY-1, the design of the satellite is changed from the original with meteorological observation as its main purpose into remote sensing satellite possessing capability of observing meteorology and ocean as well. Thus, the social and economic benefit of FY-1 is increased. the social and economic benefit of the development of the satellite is the key technique in the system design of the satellite. technically feasible but also save the funds in researching and manufacturing of the satellite, quicken the tempo of researching and manufacturing satellite. the scanning radiometer for FY-1 is conducted an aviation experiment over Chinese ocean. This experiment was of vital importance to the addition of oceanic observation channel on FY-1. FY-1 oceanic channels design to be correct. detecting ocean color. This is the unique character of Chinese FY-1 meteorological satellite. meteorological remote sensing channel on FY-1 to form detecting capability of three visible channels: red, yellow and blue spectrum bands. Thus FY-1 satellite can be used for observation on ocean color experiment. This experiment is successful, a lot of data were acquired. Good application results were obtained in the field of oceanic science research. Therefore, it makes FY-1 a remote sensing satellite used for observation on meteorology and ocean. This is the unique character of Chinese FY-1 meteorological satellite, it is widely noticed all over the world. Chinese meteorological satellite has been realized the aim of using one satellite for multipurpose applications and brought more and more social and economic benefit. oceanic channel in Chinese meteorological satellites is also foreseen to expand the application field in Chinese meteorological satellites. Key Word : Meteorological Satellite Oceanic Remote Sensing
Small-Scale Tropopause Dynamics and TOMS Total Ozone
NASA Technical Reports Server (NTRS)
Stanford, John L.
2002-01-01
This project used Earth Probe Total Ozone Mapping Spectrometer (EP TOMS) along-track ozone retrievals, in conjunction with ancillary meteorological fields and modeling studies, for high resolution investigations of upper troposphere and lower stratosphere dynamics. Specifically, high resolution along-track (Level 2) EP TOMS data were used to investigate the beautiful fine-scale structure in constituent and meteorological fields prominent in the evolution of highly non-linear baroclinic storm systems. Comparison was made with high resolution meteorological models. The analyses provide internal consistency checks and validation of the EP TOMS data which are vital for monitoring ozone depletion in both polar and midlatitude regions.
NASA Astrophysics Data System (ADS)
Hirose, N.; Takatsuki, Y.; Usui, N.; Wakamatsu, T.; Tanaka, Y.; Toyoda, T.; Nishikawa, S.; Fujii, Y.; Igarashi, H.; Nishikawa, H.; Ishikawa, Y.; Kuragano, T.; Kamachi, M.
2016-12-01
An ocean reanalysis, FORA-WNP30, was produced by the collaborative work of Meteorological Research Institute, Japan Meteorological Agency (JMA/MRI) and Japan Agency for Marine-Earth Science and Technology (JAMSTEC). A state-of-the-art 4-dimensional variational ocean data assimilation system, MOVE-4DVAR (Usui et al., 2015) was used. The calculation for the reanalysis, with the horizontal resolution of 0.1 degree (about 10 km) and the period between 1 January 1982 and 31 December 2014, was carried out on the Earth Simulator with the support of JAMSTEC. The model forcing is derived from the JRA-55 atmospheric reanalysis product. In-situ temperature and salinity profiles above 1500m-depth, satellite-based sea surface temperature (SST) and sea surface height (SSH) data are assimilated in FORA-WNP30.Using the current observations obtained by the Acoustic Doppler Current Profiler (ADCP) installed in two JMA research vessels, we validate the current (velocity) field in FORA-WNP30 and MOVE-3DVAR system, the latter of which is an operational ocean data assimilation system in JMA. The ADCP current data are independent because they are not assimilated in both systems. The current fields at 100-m depth during 2001-2012, in both of FORA-WNP30 and MOVE-3DVAR show high correlation with ADCP observation in the south of Japan, the East China Sea and the Kuroshio extension region, and relatively low correlation in the Japan Sea and the Oyashio region. The correlation coefficients of current speed for FORA-WNP30 are higher than those for MOVE-3DVAR in all regions.FORA-WNP30 successfully reproduces not only the major ocean current such as the Kuroshio and Oyashio, but also the associated meso-scale phenomena such as eddies, fronts, and meanders. In addition, it replicates the Kuroshio large meander events and the strong intrusion event of the Oyashio in 1980s, in spite of no satellite altimeter data for this period. Therefore, FORA-WNP30 is a valuable dataset for use in a variety of oceanographic process study and related fields such as climate study, meteorology, and fisheries.
Lightning Forcing in Global Fire Models: The Importance of Temporal Resolution
NASA Astrophysics Data System (ADS)
Felsberg, A.; Kloster, S.; Wilkenskjeld, S.; Krause, A.; Lasslop, G.
2018-01-01
In global fire models, lightning is typically prescribed from observational data with monthly mean temporal resolution while meteorological forcings, such as precipitation or temperature, are prescribed in a daily resolution. In this study, we investigate the importance of the temporal resolution of the lightning forcing for the simulation of burned area by varying from daily to monthly and annual mean forcing. For this, we utilize the vegetation fire model JSBACH-SPITFIRE to simulate burned area, forced with meteorological and lightning data derived from the general circulation model ECHAM6. On a global scale, differences in burned area caused by lightning forcing applied in coarser temporal resolution stay below 0.55% compared to the use of daily mean forcing. Regionally, however, differences reach up to 100%, depending on the region and season. Monthly averaged lightning forcing as well as the monthly lightning climatology cause differences through an interaction between lightning ignitions and fire prone weather conditions, accounted for by the fire danger index. This interaction leads to decreased burned area in the boreal zone and increased burned area in the Tropics and Subtropics under the coarser temporal resolution. The exclusion of interannual variability, when forced with the lightning climatology, has only a minor impact on the simulated burned area. Annually averaged lightning forcing causes differences as a direct result of the eliminated seasonal characteristics of lightning. Burned area is decreased in summer and increased in winter where fuel is available. Regions with little seasonality, such as the Tropics and Subtropics, experience an increase in burned area.
Tidal and meteorological forcing of sediment transport in tributary mudflat channels.
Ralston, David K; Stacey, Mark T
2007-06-01
Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides.
Tidal and meteorological forcing of sediment transport in tributary mudflat channels
Ralston, David K.; Stacey, Mark T.
2011-01-01
Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides. PMID:21499572
Tropospheric transport differences between models using the same large-scale meteorological fields
NASA Astrophysics Data System (ADS)
Orbe, Clara; Waugh, Darryn W.; Yang, Huang; Lamarque, Jean-Francois; Tilmes, Simone; Kinnison, Douglas E.
2017-01-01
The transport of chemicals is a major uncertainty in the modeling of tropospheric composition. A common approach is to transport gases using the winds from meteorological analyses, either using them directly in a chemical transport model or by constraining the flow in a general circulation model. Here we compare the transport of idealized tracers in several different models that use the same meteorological fields taken from Modern-Era Retrospective analysis for Research and Applications (MERRA). We show that, even though the models use the same meteorological fields, there are substantial differences in their global-scale tropospheric transport related to large differences in parameterized convection between the simulations. Furthermore, we find that the transport differences between simulations constrained with the same-large scale flow are larger than differences between free-running simulations, which have differing large-scale flow but much more similar convective mass fluxes. Our results indicate that more attention needs to be paid to convective parameterizations in order to understand large-scale tropospheric transport in models, particularly in simulations constrained with analyzed winds.
History, Uses, and Effects of Fire in the Appalachians
David H. van Lear; Thomas A. Waldrop
1989-01-01
History of Fire in the Southern Appalachians Ecological and meteorological evidence suggests that lightning-caused fires were a major environmental force shaping the vegetation of the Southeastern United States for millions of years before Indians arrived in America. Lightning served as a mutagenic agent and as a factor in natural selection which forced species to...
Urban Modification of Convection and Rainfall in Complex Terrain
NASA Astrophysics Data System (ADS)
Freitag, B. M.; Nair, U. S.; Niyogi, D.
2018-03-01
Despite a globally growing proportion of cities located in regions of complex terrain, interactions between urbanization and complex terrain and their meteorological impacts are not well understood. We utilize numerical model simulations and satellite data products to investigate such impacts over San Miguel de Tucumán, Argentina. Numerical modeling experiments show urbanization results in 20-30% less precipitation downwind of the city and an eastward shift in precipitation upwind. Our experiments show that changes in surface energy, boundary layer dynamics, and thermodynamics induced by urbanization interact synergistically with the persistent forcing of atmospheric flow by complex terrain. With urbanization increasing in mountainous regions, land-atmosphere feedbacks can exaggerate meteorological forcings leading to weather impacts that require important considerations for sustainable development of urban regions within complex terrain.
Operational seasonal and interannual predictions of ocean conditions
NASA Technical Reports Server (NTRS)
Leetmaa, Ants
1992-01-01
Dr. Leetmaa described current work at the U.S. National Meteorological Center (NMC) on coupled systems leading to a seasonal prediction system. He described the way in which ocean thermal data is quality controlled and used in a four dimensional data assimilation system. This consists of a statistical interpolation scheme, a primitive equation ocean general circulation model, and the atmospheric fluxes that are required to force this. This whole process generated dynamically consist thermohaline and velocity fields for the ocean. Currently routine weekly analyses are performed for the Atlantic and Pacific oceans. These analyses are used for ocean climate diagnostics and as initial conditions for coupled forecast models. Specific examples of output products were shown both in the Pacific and the Atlantic Ocean.
NASA Technical Reports Server (NTRS)
Fuelberg, Henry E.
2003-01-01
The Florida State University (FSU) team participated extensively in the pre-mission planning for TRACE-P through meetings, telephone calls, and e-mails. During Spring 2001, Prof. Fuelberg served as DC-8 Mission Meteorologist during the field campaign. He prepared meteorological guidance for each flight of the DC-8 and flew on each mission. After the field phase, FSU prepared various meteorological products, included backward air trajectories, for each flight of the DC-8 and P-3B. These were posted on the FSU and NASA-GTE web sites for use by all the Science Team. During the two-year post mission period, FSU conducted research relating meteorology to atmospheric chemistry during TRACE-P. This led to three journal articles in the Journal of Geophysical Research. FSU personnel were the lead authors on each of these articles. Abstracts of these articles are attached. In addition, the FSU team collaborated with other members of the TRACE-P Science Team to incorporate meteorological factors into their research. A list of publications resulting from these interactions is included.
NASA Technical Reports Server (NTRS)
Pistone, Kristina; Redemann, Jens; Wood, Rob; Zuidema, Paquita; Flynn, Connor; LeBlanc, Samuel; Noone, David; Podolske, James; Segal Rozenhaimer, Michal; Shinozuka, Yohei;
2017-01-01
The quantification of radiative forcing due to the cumulative effects of aerosols, both directly and on cloud properties, remains the biggest source of uncertainty in our understanding of the physical climate. How the magnitude of these effects may be modified by meteorological conditions is an important aspect of this question. The Southeast Atlantic Ocean (SEA), with seasonal biomass burning (BB) smoke plumes overlying a persistent stratocumulus cloud deck, offers a perfect natural observatory in which to study the complexities of aerosol-cloud interactions. The NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign consists of three field deployments over three years (2016-2018) with the goal of gaining a better understanding of the complex processes (direct and indirect) by which BB aerosols affect clouds. We present results from the first ORACLES field deployment, which took place in September 2016 out of Walvis Bay, Namibia. Two NASA aircraft were flown with a suite of aerosol, cloud, radiation, and meteorological instruments for remote-sensing and in-situ observations. A strong correlation was observed between the aircraft-measured pollution indicators (carbon monoxide and aerosol properties) and atmospheric water vapor content, at all altitudes. Atmospheric reanalysis indicates that convective dynamics over the continent, near likely contribute to this elevated signal. Understanding the mechanisms by which water vapor covaries with plume strength is important to quantifying the magnitude of the aerosol direct and semi-direct effects in the region.
Methodologies for evaluating performance and assessing uncertainty of atmospheric dispersion models
NASA Astrophysics Data System (ADS)
Chang, Joseph C.
This thesis describes methodologies to evaluate the performance and to assess the uncertainty of atmospheric dispersion models, tools that predict the fate of gases and aerosols upon their release into the atmosphere. Because of the large economic and public-health impacts often associated with the use of the dispersion model results, these models should be properly evaluated, and their uncertainty should be properly accounted for and understood. The CALPUFF, HPAC, and VLSTRACK dispersion modeling systems were applied to the Dipole Pride (DP26) field data (˜20 km in scale), in order to demonstrate the evaluation and uncertainty assessment methodologies. Dispersion model performance was found to be strongly dependent on the wind models used to generate gridded wind fields from observed station data. This is because, despite the fact that the test site was a flat area, the observed surface wind fields still showed considerable spatial variability, partly because of the surrounding mountains. It was found that the two components were comparable for the DP26 field data, with variability more important than uncertainty closer to the source, and less important farther away from the source. Therefore, reducing data errors for input meteorology may not necessarily increase model accuracy due to random turbulence. DP26 was a research-grade field experiment, where the source, meteorological, and concentration data were all well-measured. Another typical application of dispersion modeling is a forensic study where the data are usually quite scarce. An example would be the modeling of the alleged releases of chemical warfare agents during the 1991 Persian Gulf War, where the source data had to rely on intelligence reports, and where Iraq had stopped reporting weather data to the World Meteorological Organization since the 1981 Iran-Iraq-war. Therefore the meteorological fields inside Iraq must be estimated by models such as prognostic mesoscale meteorological models, based on observational data from areas outside of Iraq, and using the global fields simulated by the global meteorological models as the initial and boundary conditions for the mesoscale models. It was found that while comparing model predictions to observations in areas outside of Iraq, the predicted surface wind directions had errors between 30 to 90 deg, but the inter-model differences (or uncertainties) in the predicted surface wind directions inside Iraq, where there were no onsite data, were fairly constant at about 70 deg. (Abstract shortened by UMI.)
Meteorological Sensor Array (MSA)-Phase I. Volume 3 (Pre-Field Campaign Sensor Calibration)
2015-07-01
turbulence impact of the WSMR solar array. 4) Designing , developing, testing , and evaluating integrated Data Acquisition System (DAS) hardware and...ARL-TR-7362 ● JULY 2015 US Army Research Laboratory Meteorological Sensor Array (MSA)–Phase I, Volume 3 (Pre-Field Campaign...NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by
Applied Meteorology Unit (AMU)
NASA Technical Reports Server (NTRS)
Bauman, William H., Jr.; Crawford, Winifred; Short, David; Barrett, Joe; Watson, Leela
2008-01-01
This report summarizes the Applied Meteorology Unit (AMU) activities for the second quarter of Fiscal Year 2008 (January - March 2008). Projects described are: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Peak Wind Tool for General Forecasting, (3) Situational Lightning Climatologies for Central Florida. Phase III, (4) Volume Averaged Height Integrated Radar Reflectivity (VAHIRR), (5) Impact of Local Sensors, (6) Radar Scan Strategies for the PAFB WSR-74C Replacement and (7) WRF Wind Sensitivity Study at Edwards Air Force Base.
1984-04-01
Scientific- Architecture 4% 4% Technical Computer Sci 38% 37% Math 40% 40% Meteorology 6% 6% Physics 12 % 13% Nontechnical Quality Freeflow 2/ Quality...Architecture 4 Computer Sci 48 43 40 Math 30 35 38 Meteorology 6 6 6 Physics 12 12 12 Engineer Electrical 40% 50% 50% Aero Group 25 25 30 Other / 35 25 20...with Technical Degrees by Major Weapon System. . . 12 FIGURE 4 - Pilots with Technical Degrees by Category . . . . . . 13 FIGURE 5 - Regression
28. VIEW SOUTH FROM SLC3W MST STATION 63. FOREGROUND LEFT: ...
28. VIEW SOUTH FROM SLC-3W MST STATION 63. FOREGROUND LEFT: THEODOLITE SHELTER (BLDG. 786) CENTER LEFT TO RIGHT: GLOBAL POSITIONING SYSTEM AZIMUTH STATION (BLDG. 775), PYROTECHNIC SHED (BLDG. 757), PORTABLE GUARD SHED, METEOROLOGICAL SHED (BLDG. 756), METEOROLOGICAL TOWER. BACKGROUND CENTER TO RIGHT: STORAGE SHED (BLDG. 776), LIQUID OXYGEN APRON, SLC-3E MST, TOP OF SLC-3E FUEL STORAGE TANK. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Does temperature nudging overwhelm aerosol radiative ...
For over two decades, data assimilation (popularly known as nudging) methods have been used for improving regional weather and climate simulations by reducing model biases in meteorological parameters and processes. Similar practice is also popular in many regional integrated meteorology-air quality models that include aerosol direct and indirect effects. However in such multi-modeling systems, temperature changes due to nudging can compete with temperature changes induced by radiatively active & hygroscopic short-lived tracers leading to interesting dilemmas: From weather and climate prediction’s (retrospective or future) point of view when nudging is continuously applied, is there any real added benefit of using such complex and computationally expensive regional integrated modeling systems? What are the relative sizes of these two competing forces? To address these intriguing questions, we convert temperature changes due to nudging into radiative fluxes (referred to as the pseudo radiative forcing, PRF) at the surface and troposphere, and compare the net PRF with the reported aerosol radiative forcing. Results indicate that the PRF at surface dominates PRF at top of the atmosphere (i.e., the net). Also, the net PRF is about 2-4 times larger than estimated aerosol radiative forcing at regional scales while it is significantly larger at local scales. These results also show large surface forcing errors at many polluted urban sites. Thus, operational c
Forecasting of extreme events in Andes mountain basins using CFSv2
NASA Astrophysics Data System (ADS)
Castro, L.
2017-12-01
As has been shown in several recent studies related with climate change, there has been an increase in heavy daily precipitation events, and this is expected to continue in almost all areas of the globe. In central Chile, where the hydrological regime is influenced by snow accumulation, an increase in temperatures is expected due to CC, which in turn may cause an elevation of the freezing level. The impact on the freezing level increase is also significant because a larger area of the basin will be exposed to liquid precipitation rather than snow, and afterwards will have a strong impact on streamflow. The frequency of extreme precipitation events and freezing level increases have recently affected the north and central parts of Chile. In order to predict the severity of an extreme hydrometeorological event in a mountainous basin affected by rainfall and freezing level variations, this paper pose that it is necessary to know in advance the expected meteorology and the way it will affect the hydrological response of the basin. To achieve this purpose, it will be necessary to have meteorological forecasts of a numerical model for short-term prediction, corrected and disaggregated at local scale. The methodological process is as follows. First, we consider the generation of daily forecasts at local scale using statistical downscaling methods for the forecasts obtained from an NWP model. Second, we pose to improve our knowledge the spatial-temporal distribution of the meteorological forcings using a dense network of meteorological stations in a mountain basin. With the above, the statistical methods used to represent the spatial-temporal variability of the meteorological forcings at basin scale will be evaluated.
1984-08-01
10 31984 . PREPARED FOR UNITED STATES AIR FORCE OCCUPATIONAL AND ENVIRONMENTAL HEALTH LABORATORY BROOKS AIR FORCE BASE, TEXAS 78235 ,,c.’p! ed di...Force August 1984 Occupational and Environmental Health Laboratory I3 NUMBER OF PAGES Aerospace Medical Division (AFSC) 249 total pages• ~~Brooks Air...PROGRAM BACKGROUND i-I 1.2 FACILITY HISTORY 1-3 1.3 DISPOSAL SITE DESCRIPTIONS 1-b 1.4 PROJECT STAFF 1-20 2.0 ENVIRONMENTAL SETTING 2-1 2.1 METEOROLOGY 2-1
Use of Advanced Meteorological Model Output for Coastal Ocean Modeling in Puget Sound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping
2011-06-01
It is a great challenge to specify meteorological forcing in estuarine and coastal circulation modeling using observed data because of the lack of complete datasets. As a result of this limitation, water temperature is often not simulated in estuarine and coastal modeling, with the assumption that density-induced currents are generally dominated by salinity gradients. However, in many situations, temperature gradients could be sufficiently large to influence the baroclinic motion. In this paper, we present an approach to simulate water temperature using outputs from advanced meteorological models. This modeling approach was applied to simulate annual variations of water temperatures of Pugetmore » Sound, a fjordal estuary in the Pacific Northwest of USA. Meteorological parameters from North American Region Re-analysis (NARR) model outputs were evaluated with comparisons to observed data at real-time meteorological stations. Model results demonstrated that NARR outputs can be used to drive coastal ocean models for realistic simulations of long-term water-temperature distributions in Puget Sound. Model results indicated that the net flux from NARR can be further improved with the additional information from real-time observations.« less
Maltese, Antonino; Capodici, Fulvio; Ciraolo, Giuseppe; La Loggia, Goffredo
2015-03-19
Knowledge of soil water content plays a key role in water management efforts to improve irrigation efficiency. Among the indirect estimation methods of soil water content via Earth Observation data is the triangle method, used to analyze optical and thermal features because these are primarily controlled by water content within the near-surface evaporation layer and root zone in bare and vegetated soils. Although the soil-vegetation-atmosphere transfer theory describes the ongoing processes, theoretical models reveal limits for operational use. When applying simplified empirical formulations, meteorological forcing could be replaced with alternative variables when the above-canopy temperature is unknown, to mitigate the effects of calibration inaccuracies or to account for the temporal admittance of the soil. However, if applied over a limited area, a characterization of both dry and wet edges could not be properly achieved; thus, a multi-temporal analysis can be exploited to include outer extremes in soil water content. A diachronic empirical approach introduces the need to assume a constancy of other meteorological forcing variables that control thermal features. Airborne images were acquired on a Sicilian vineyard during most of an entire irrigation period (fruit-set to ripening stages, vintage 2008), during which in situ soil water content was measured to set up the triangle method. Within this framework, we tested the triangle method by employing alternative thermal forcing. The results were inaccurate when air temperature at airborne acquisition was employed. Sonic and aerodynamic air temperatures confirmed and partially explained the limits of simultaneous meteorological forcing, and the use of proxy variables improved model accuracy. The analysis indicates that high spatial resolution does not necessarily imply higher accuracies.
Upper Blue Nile basin water budget from a multi-model perspective
NASA Astrophysics Data System (ADS)
Jung, Hahn Chul; Getirana, Augusto; Policelli, Frederick; McNally, Amy; Arsenault, Kristi R.; Kumar, Sujay; Tadesse, Tsegaye; Peters-Lidard, Christa D.
2017-12-01
Improved understanding of the water balance in the Blue Nile is of critical importance because of increasingly frequent hydroclimatic extremes under a changing climate. The intercomparison and evaluation of multiple land surface models (LSMs) associated with different meteorological forcing and precipitation datasets can offer a moderate range of water budget variable estimates. In this context, two LSMs, Noah version 3.3 (Noah3.3) and Catchment LSM version Fortuna 2.5 (CLSMF2.5) coupled with the Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme are used to produce hydrological estimates over the region. The two LSMs were forced with different combinations of two reanalysis-based meteorological datasets from the Modern-Era Retrospective analysis for Research and Applications datasets (i.e., MERRA-Land and MERRA-2) and three observation-based precipitation datasets, generating a total of 16 experiments. Modeled evapotranspiration (ET), streamflow, and terrestrial water storage estimates were evaluated against the Atmosphere-Land Exchange Inverse (ALEXI) ET, in-situ streamflow observations, and NASA Gravity Recovery and Climate Experiment (GRACE) products, respectively. Results show that CLSMF2.5 provided better representation of the water budget variables than Noah3.3 in terms of Nash-Sutcliffe coefficient when considering all meteorological forcing datasets and precipitation datasets. The model experiments forced with observation-based products, the Climate Hazards group Infrared Precipitation with Stations (CHIRPS) and the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA), outperform those run with MERRA-Land and MERRA-2 precipitation. The results presented in this paper would suggest that the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System incorporate CLSMF2.5 and HyMAP routing scheme to better represent the water balance in this region.
NASA Technical Reports Server (NTRS)
Schubert, S.; Stewart, R.; Wang, H.; Barlow, M.; Berbery, H.; Cai, W.; Hoerling, M.; Kanikicharla, K.; Koster, R.; Lyon, B.;
2016-01-01
Drought affects virtually every region of the world, and potential shifts in its character in a changing climate are a major concern. This article presents a synthesis of current understanding of meteorological drought, with a focus on the large-scale controls on precipitation afforded by sea surface temperature (SST anomalies), land surface feedbacks, and radiative forcings. The synthesis is primarily based on regionally-focused articles submitted to the Global Drought Information System (GDIS) collection together with new results from a suite of atmospheric general circulation model experiments intended to integrate those studies into a coherent view of drought worldwide. On interannual time scales, the preeminence of ENSO as a driver of meteorological drought throughout much of the Americas, eastern Asia, Australia, and the Maritime Continent is now well established, whereas in other regions (e.g., Europe, Africa, and India), the response to ENSO is more ephemeral or nonexistent. Northern Eurasia, central Europe, as well as central and eastern Canada stand out as regions with little SST-forced impacts on precipitation interannual time scales. Decadal changes in SST appear to be a major factor in the occurrence of long-term drought, as highlighted by apparent impacts on precipitation of the late 1990s 'climate shifts' in the Pacific and Atlantic SST. Key remaining research challenges include (i) better quantification of unforced and forced atmospheric variability as well as land/atmosphere feedbacks, (ii) better understanding of the physical basis for the leading modes of climate variability and their predictability, and (iii) quantification of the relative contributions of internal decadal SST variability and forced climate change to long-term drought.
Maltese, Antonino; Capodici, Fulvio; Ciraolo, Giuseppe; La Loggia, Goffredo
2015-01-01
Knowledge of soil water content plays a key role in water management efforts to improve irrigation efficiency. Among the indirect estimation methods of soil water content via Earth Observation data is the triangle method, used to analyze optical and thermal features because these are primarily controlled by water content within the near-surface evaporation layer and root zone in bare and vegetated soils. Although the soil-vegetation-atmosphere transfer theory describes the ongoing processes, theoretical models reveal limits for operational use. When applying simplified empirical formulations, meteorological forcing could be replaced with alternative variables when the above-canopy temperature is unknown, to mitigate the effects of calibration inaccuracies or to account for the temporal admittance of the soil. However, if applied over a limited area, a characterization of both dry and wet edges could not be properly achieved; thus, a multi-temporal analysis can be exploited to include outer extremes in soil water content. A diachronic empirical approach introduces the need to assume a constancy of other meteorological forcing variables that control thermal features. Airborne images were acquired on a Sicilian vineyard during most of an entire irrigation period (fruit-set to ripening stages, vintage 2008), during which in situ soil water content was measured to set up the triangle method. Within this framework, we tested the triangle method by employing alternative thermal forcing. The results were inaccurate when air temperature at airborne acquisition was employed. Sonic and aerodynamic air temperatures confirmed and partially explained the limits of simultaneous meteorological forcing, and the use of proxy variables improved model accuracy. The analysis indicates that high spatial resolution does not necessarily imply higher accuracies. PMID:25808771
Ask the Librarian - Naval Oceanography Portal
section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Oceanography Command, 1100 Balch Blvd, Stennis Space Center, MS 39529 Fleet Forces Command | navy.com | Freedom
New Satellite Constellation Uses Radio Occultation to Monitor Space Weather
NASA Astrophysics Data System (ADS)
Kumar, Mohi
2006-05-01
A constellation of six satellites, expected to enhance space weather research, improve terrestrial meteorology forecasts, and monitor climate change, were launched 15 April from Vandenberg Air Force Base, Calif.
Estimation of Regional Net CO2 Exchange over the Southern Great Plains
NASA Astrophysics Data System (ADS)
Biraud, S. C.; Riley, W. J.; Fischer, M. L.; Torn, M. S.; Cooley, H. S.
2004-12-01
Estimating spatially distributed ecosystem CO2 exchange is an important component of the North American Carbon Program. We describe here a methodology to estimate Net Ecosystem Exchange (NEE) over the Southern Great Plains, using: (1) data from the Department Of Energy's Atmospheric Radiation Measurement (ARM) sites in Oklahoma and Kansas; (2) meteorological forcing data from the Mesonet facilities; (3) soil and vegetation types from 1 km resolution USGS databases; (4) vegetation status (e.g., LAI) from 1 km satellite measurements of surface reflectance (MODIS); (5) a tested land-surface model; and (6) a coupled land-surface and meteorological model (MM5/ISOLSM). This framework allows us to simulate regional surface fluxes in addition to ABL and free troposphere concentrations of CO2 at a continental scale with fine-scale nested grids centered on the ARM central facility. We use the offline land-surface and coupled models to estimate regional NEE, and compare predictions to measurements from the 9 Extended Facility sites with eddy correlation measurements. Site level comparisons to portable ECOR measurements in several crop types are also presented. Our approach also allows us to extend bottom-up estimates to periods and areas where meteorological forcing data are unavailable.
Uncertainties in Past and Future Global Water Availability
NASA Astrophysics Data System (ADS)
Sheffield, J.; Kam, J.
2014-12-01
Understanding how water availability changes on inter-annual to decadal time scales and how it may change in the future under climate change are a key part of understanding future stresses on water and food security. Historic evaluations of water availability on regional to global scales are generally based on large-scale model simulations with their associated uncertainties, in particular for long-term changes. Uncertainties are due to model errors and missing processes, parameter uncertainty, and errors in meteorological forcing data. Recent multi-model inter-comparisons and impact studies have highlighted large differences for past reconstructions, due to different simplifying assumptions in the models or the inclusion of physical processes such as CO2 fertilization. Modeling of direct anthropogenic factors such as water and land management also carry large uncertainties in their physical representation and from lack of socio-economic data. Furthermore, there is little understanding of the impact of uncertainties in the meteorological forcings that underpin these historic simulations. Similarly, future changes in water availability are highly uncertain due to climate model diversity, natural variability and scenario uncertainty, each of which dominates at different time scales. In particular, natural climate variability is expected to dominate any externally forced signal over the next several decades. We present results from multi-land surface model simulations of the historic global availability of water in the context of natural variability (droughts) and long-term changes (drying). The simulations take into account the impact of uncertainties in the meteorological forcings and the incorporation of water management in the form of reservoirs and irrigation. The results indicate that model uncertainty is important for short-term drought events, and forcing uncertainty is particularly important for long-term changes, especially uncertainty in precipitation due to reduced gauge density in recent years. We also discuss uncertainties in future projections from these models as driven by bias-corrected and downscaled CMIP5 climate projections, in the context of the balance between climate model robustness and climate model diversity.
A Multidisciplinary Approach to Assessing the Causal Components of Climate Change
NASA Astrophysics Data System (ADS)
Gosnold, W. D.; Todhunter, P. E.; Dong, X.; Rundquist, B.; Majorowicz, J.; Blackwell, D. D.
2004-05-01
Separation of climate forcing by anthropogenic greenhouse gases from natural radiative climate forcing is difficult because the composite temperature signal in the meteorological and multi-proxy temperature records cannot be resolved directly into radiative forcing components. To address this problem, we have initiated a large-scale, multidisciplinary project to test coherence between ground surface temperatures (GST) reconstructed from borehole T-z profiles, surface air temperatures (SAT), soil temperatures, and solar radiation. Our hypothesis is that radiative heating and heat exchange between the ground and the air directly control the ground surface temperature. Consequently, borehole T-z measurements at multi-year intervals spanning time periods when solar radiation, soil and air temperatures have been recorded should enable comparison of the thermal energy stored in the ground to these quantities. If coherence between energy storage, solar radiation, GST, SAT and multi-proxy temperature data can be discerned for a one or two decade scale, synthesis of GST and multi-proxy data over the past several centuries may enable us to separately determine the anthropogenic and natural forcings of climate change. The data we are acquiring include: (1) New T-z measurements in boreholes previously used in paleoclimate and heat flow research in Canada and the United States from the 1970's to the present. (2) Meteorological data from the US Historical Climatology Network and the Automated Weather Data Network of the High Plains Regional Climate Center, and Environment Canada. (3) Direct and remotely sensed data on land use, environment, and soil properties at selected borehole and meteorological sites for the periods between borehole observations. The project addresses three related questions: What is the coherence between the GST, SAT, soil temperatures and solar radiation? Have microclimate changes at borehole sites and climate stations affected temperature trends? If good coherence is obtained, can the coherence between thermal energy stored in the ground and radiative forcing during the time between T-z measurements be extended several centuries into the past?
NASA Astrophysics Data System (ADS)
Iizumi, Toshichika; Takikawa, Hiroki; Hirabayashi, Yukiko; Hanasaki, Naota; Nishimori, Motoki
2017-08-01
The use of different bias-correction methods and global retrospective meteorological forcing data sets as the reference climatology in the bias correction of general circulation model (GCM) daily data is a known source of uncertainty in projected climate extremes and their impacts. Despite their importance, limited attention has been given to these uncertainty sources. We compare 27 projected temperature and precipitation indices over 22 regions of the world (including the global land area) in the near (2021-2060) and distant future (2061-2100), calculated using four Representative Concentration Pathways (RCPs), five GCMs, two bias-correction methods, and three reference forcing data sets. To widen the variety of forcing data sets, we developed a new forcing data set, S14FD, and incorporated it into this study. The results show that S14FD is more accurate than other forcing data sets in representing the observed temperature and precipitation extremes in recent decades (1961-2000 and 1979-2008). The use of different bias-correction methods and forcing data sets contributes more to the total uncertainty in the projected precipitation index values in both the near and distant future than the use of different GCMs and RCPs. However, GCM appears to be the most dominant uncertainty source for projected temperature index values in the near future, and RCP is the most dominant source in the distant future. Our findings encourage climate risk assessments, especially those related to precipitation extremes, to employ multiple bias-correction methods and forcing data sets in addition to using different GCMs and RCPs.
[Historical overview of medical meteorology - the new horizon in medical prevention].
Boussoussou, Nora; Boussoussou, Melinda; Nemes, Attila
2017-02-01
The aim of this article is to draw attention to the medical meteorology from the perspective of the history of science. Unfortunately medical meteorology is not part of the daily medical practice. The climate change is a new challenge for health care worldwide. It concerns millions of people a higher morbidity and mortality rate. Knowing the effects of the meteorological parameters as risk factors can allow us to create new prevention strategies. These new strategies could help to decrease the negative health effects of the meteorological parameters. Nowadays on the field of the medical prevention the medical meteorology is a new horizon and in the future it could play an important role. Health care professionals have the most important role to fight against the negative effects of the global climate change. Orv. Hetil., 2017, 158(5), 187-191.
Current status of validating operational model forecasts at the DWD site Lindenberg
NASA Astrophysics Data System (ADS)
Beyrich, F.; Heret, C.; Vogel, G.
2009-09-01
Based on long experience in the measurement of atmospheric boundary layer parameters, the Meteorological Observatory Lindenberg / Richard - Aßmann-Observatory is well qualified to validate operational NWP results for this location. The validation activities cover a large range of time periods from single days or months up to several years and include much more quantities than generally used in areal verification techniques. They mainly focus on land surface and boundary layer processes which play an important role in the atmospheric forc-ing from the surface. Versatility and continuity of the database enable a comprehensive evaluation of the model behaviour under different meteorological conditions in order to esti-mate the accuracy of the physical parameterisations and to detect possible deficiencies in the predicted processes. The measurements from the boundary layer field site Falkenberg serve as reference data for various types of validation studies: 1. The operational boundary-layer measurements are used to identify and to document weather situations with large forecast errors which can then be analysed in more de-tail. Results from a case study will be presented where model deficiencies in the cor-rect simulation of the diurnal evolution of near-surface temperature under winter con-ditions over a closed snow cover where diagnosed. 2. Due to the synopsis of the boundary layer quantities based on monthly averaged di-urnal cycles systematic model deficiencies can be detected more clearly. Some dis-tinctive features found in the annual cycle (e.g. near-surface temperatures, turbulent heat fluxes and soil moisture) will be outlined. Further aspects are their different ap-pearance in the COSMO-EU and COSMO-DE models as well as the effects of start-ing time (00 or 12 UTC) on the prediction accuracy. 3. The evaluation of the model behaviour over several years provides additional insight into the impact of changes in the physical parameterisations, data assimilation or nu-merics on the meteorological quantities. The temporal development of the error char-acteristics of some near-surface weather parameters (temperature, dewpoint tem-perature, wind velocity) and of the energy fluxes at the surface will be discussed.
The 1991 International Aerospace and Ground Conference on Lightning and Static Electricity, volume 1
NASA Technical Reports Server (NTRS)
1991-01-01
The proceedings of the 1991 International Aerospace and Ground Conference on Lightning and Static Electricity are reported. Some of the topics covered include: lightning, lightning suppression, aerospace vehicles, aircraft safety, flight safety, aviation meteorology, thunderstorms, atmospheric electricity, warning systems, weather forecasting, electromagnetic coupling, electrical measurement, electrostatics, aircraft hazards, flight hazards, meteorological parameters, cloud (meteorology), ground effect, electric currents, lightning equipment, electric fields, measuring instruments, electrical grounding, and aircraft instruments.
Shen, Xiao-jun; Sun, Jing-sheng; Li, Ming-si; Zhang, Ji-yang; Wang, Jing-lei; Li, Dong-wei
2015-02-01
It is important to improve the real-time irrigation forecasting precision by predicting real-time water consumption of cotton mulched with plastic film under drip irrigation based on meteorological data and cotton growth status. The model parameters for calculating ET0 based on Hargreaves formula were determined using historical meteorological data from 1953 to 2008 in Shihezi reclamation area. According to the field experimental data of growing season in 2009-2010, the model of computing crop coefficient Kc was established based on accumulated temperature. On the basis of crop water requirement (ET0) and Kc, a real-time irrigation forecast model was finally constructed, and it was verified by the field experimental data in 2011. The results showed that the forecast model had high forecasting precision, and the average absolute values of relative error between the predicted value and measured value were about 3.7%, 2.4% and 1.6% during seedling, squaring and blossom-boll forming stages, respectively. The forecast model could be used to modify the predicted values in time according to the real-time meteorological data and to guide the water management in local film-mulched cotton field under drip irrigation.
Representing urban terrain characteristics in mesoscale meteorological and dispersion models is critical to produce accurate predictions of wind flow and temperature fields, air quality, and contaminant transport. A key component of the urban terrain representation is the charac...
Evaluation of Transport in the Lower Tropical Stratosphere in a Global Chemistry and Transport Model
NASA Technical Reports Server (NTRS)
Douglass, Anne R.; Schoeberl, Mark R.; Rood, Richard B.; Pawson, Steven
2002-01-01
A general circulation model (GCM) relies on various physical parameterizations and provides a solution to the atmospheric equations of motion. A data assimilation system (DAS) combines information from observations with a GCM forecast and produces analyzed meteorological fields that represent the observed atmospheric state. An off-line chemistry and transport model (CTM) can use winds and temperatures from a either a GCM or a DAS. The latter application is in common usage for interpretation of observations from various platforms under the assumption that the DAS transport represents the actual atmospheric transport. Here we compare the transport produced by a DAS with that produced by the particular GCM that is combined with observations to produce the analyzed fields. We focus on transport in the tropics and middle latitudes by comparing the age-of-air inferred from observations of SF6 and CO2 with the age-of-air calculated using GCM fields and DAS fields. We also compare observations of ozone, total reactive nitrogen, and methane with results from the two simulations. These comparisons show that DAS fields produce rapid upward tropical transport and excessive mixing between the tropics and middle latitudes. The unrealistic transport produced by the DAS fields may be due to implicit forcing that is required by the assimilation process when there is bias between the GCM forecast and observations that are combined to produce the analyzed fields. For example, the GCM does not produce a quasi-biennial oscillation (QBO). The QBO is present in the analyzed fields because it is present in the observations, and systematic implicit forcing is required by the DAS. Any systematic bias between observations and the GCM forecast used to produce the DAS analysis is likely to corrupt the transport produced by the analyzed fields. Evaluation of transport in the lower tropical stratosphere in a global chemistry and transport model.
NASA Astrophysics Data System (ADS)
Jain, Rahul; Vaughan, Joseph; Heitkamp, Kyle; Ramos, Charleston; Claiborn, Candis; Schreuder, Maarten; Schaaf, Mark; Lamb, Brian
The post-harvest burning of agricultural fields is commonly used to dispose of crop residue and provide other desired services such as pest control. Despite careful regulation of burning, smoke plumes from field burning in the Pacific Northwest commonly degrade air quality, particularly for rural populations. In this paper, ClearSky, a numerical smoke dispersion forecast system for agricultural field burning that was developed to support smoke management in the Inland Pacific Northwest, is described. ClearSky began operation during the summer through fall burn season of 2002 and continues to the present. ClearSky utilizes Mesoscale Meteorological Model version 5 (MM5v3) forecasts from the University of Washington, data on agricultural fields, a web-based user interface for defining burn scenarios, the Lagrangian CALPUFF dispersion model and web-served animations of plume forecasts. The ClearSky system employs a unique hybrid source configuration, which treats the flaming portion of a field as a buoyant line source and the smoldering portion of the field as a buoyant area source. Limited field observations show that this hybrid approach yields reasonable plume rise estimates using source parameters derived from recent field burning emission field studies. The performance of this modeling system was evaluated for 2003 by comparing forecast meteorology against meteorological observations, and comparing model-predicted hourly averaged PM 2.5 concentrations against observations. Examples from this evaluation illustrate that while the ClearSky system can accurately predict PM 2.5 surface concentrations due to field burning, the overall model performance depends strongly on meteorological forecast error. Statistical evaluation of the meteorological forecast at seven surface stations indicates a strong relationship between topographical complexity near the station and absolute wind direction error with wind direction errors increasing from approximately 20° for sites in open areas to 70° or more for sites in very complex terrain. The analysis also showed some days with good forecast meteorology with absolute mean error in wind direction less than 30° when ClearSky correctly predicted PM 2.5 surface concentrations at receptors affected by field burns. On several other days with similar levels of wind direction error the model did not predict apparent plume impacts. In most of these cases, there were no reported burns in the vicinity of the monitor and, thus, it appeared that other, non-reported burns were responsible for the apparent plume impact at the monitoring site. These cases do not provide information on the performance of the model, but rather indicate that further work is needed to identify all burns and to improve burn reports in an accurate and timely manner. There were also a number of days with wind direction errors exceeding 70° when the forecast system did not correctly predict plume behavior.
Meteorological interpretation of transient LOD changes
NASA Astrophysics Data System (ADS)
Masaki, Y.
2008-04-01
The Earth’s spin rate is mainly changed by zonal winds. For example, seasonal changes in global atmospheric circulation and episodic changes accompanied with El Nĩ os are clearly detected n in the Length-of-day (LOD). Sub-global to regional meteorological phenomena can also change the wind field, however, their effects on the LOD are uncertain because such LOD signals are expected to be subtle and transient. In our previous study (Masaki, 2006), we introduced atmospheric pressure gradients in the upper atmosphere in order to obtain a rough picture of the meteorological features that can change the LOD. In this presentation, we compare one-year LOD data with meteorological elements (winds, temperature, pressure, etc.) and make an attempt to link transient LOD changes with sub-global meteorological phenomena.
Validation of the RegCM4-Subgrid module for the high resolution climate simulation over Korea
NASA Astrophysics Data System (ADS)
Lee, C.; Im, E.; Chang, K.; Choi, Y.
2010-12-01
Given the discernable evidences of climate changes due to human activity, there is a growing demand for the reliable climate change scenario in response to future emission forcing. One of the most significant impacts of climate changes can be that on the hydrological process. Changes in the seasonality and the low and high rainfall extremes can influence the water balance of river basin, with several consequences for societies and ecosystems. In fact, recent studies have reported that East Asia including the Korean peninsula is regarded to be a highly vulnerability region under global warming, especially for water resources. As an attempt to accurately assess the impact of climate change over Korea, we developed the dynamical downscaling system using the RegCM4 with a mosaic-type parameterization of subgrid-scale topography and land use (Sub-BATS). The Sub-BATS system is composed of 20 km coarse-grid cell and 4 km sub-grid cell. Before a full climate change simulation is carried out, we performed the simulation spanning the 19-year periods (1989-2007) with the lateral boundary fields obtained from the ERA-Interim reanalysis. The Korean peninsula is characterized by narrow mountain systems surrounded by ocean, and covered by a relatively dense observational network (approximate 400 stations), which provides an excellent dataset to validate a finescale downscaled results over the region. The evaluation of simulated surface variables (e.g. temperature, precipitation, snow, runoff) shows the usefulness of the RegCM4-Subgrid module as a tool to produce fine scale climate information of surface processes for coupling with hydrological model over the Korean peninsula Acknowledgements This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government(MEST) (No. 2009-0085533), and by the "Advanced research on industrial meteorology" and " Development of meteorological resources for green growth." of National Institute of Meteorological Research (NIMR), funded by the Korea Meteorological Administration(KMA).
NASA Technical Reports Server (NTRS)
Merrill, John T.; Rodriguez, Jose M.
1991-01-01
Trajectory and photochemical model calculations based on retrospective meteorological data for the operations areas of the NASA Pacific Exploratory Mission (PEM)-West mission are summarized. The trajectory climatology discussed here is intended to provide guidance for flight planning and initial data interpretation during the field phase of the expedition by indicating the most probable path air parcels are likely to take to reach various points in the area. The photochemical model calculations which are discussed indicate the sensitivity of the chemical environment to various initial chemical concentrations and to conditions along the trajectory. In the post-expedition analysis these calculations will be used to provide a climatological context for the meteorological conditions which are encountered in the field.
NASA Astrophysics Data System (ADS)
Covert, J. M.; Hellstrom, R. A.
2015-12-01
El Niño Southern Oscillation (ENSO) is known to be the primary modulator of inter-annual weather patterns in the Andes, but its impact in the Cordillera Blanca (White Range) is not fully understood. In 2004 an autonomous sensor network (ASN) was installed in the Llanganuco Valley in the Cordillera Blanca, Peru consisting of two automatic weather stations (AWS) located at the base and upper ridge of the valley connected by four air temperature/humidity micro-loggers at equal elevation intervals. The ASN permits high resolution evaluations of the micro-scale meteorology within the valley. Twenty-four hour composites and monthly averages of wind, solar insolation, air temperature profiles, and precipitation obtained from the ASN were analyzed for the historical wet and dry seasons between the years of 2005 and 2015. The evidence suggests that teleconnections exist between eastern equatorial Pacific Ocean sea surface temperatures and meteorological forcing within the Valley. Comparisons between the two AWS units reveal similar ENSO impacts during the wet season that are not replicated in the dry season. We found that warm and cold ENSO create anomalies that appear unique to this region of the outer Tropics. Warm ENSO phases promote wetter than normal dry seasons and dryer than normal wet seasons and visa versa for cold phases of ENSO. Air temperature is strongly positively correlated to warm ENSO phases during the wet season and depends on elevation during the dry season. Insolation is negatively correlated to warm ENSO phases at higher elevations with weak positive correlation at lower elevations. We attribute observed seasonality, in part, to interactions between channeling of synoptic flow and thermally driven winds. Although the sporadic availability of data prevents definitive conclusions at this time, recent improvements in the ASN infrastructure will facilitate deeper understanding of ENSO impacts on meteorological forcing within pro-glacial valleys of the Cordillera Blanca.
Smith, Molly B.; Mahowald, Natalie M.; Albani, Samuel; ...
2017-03-07
Interannual variability in desert dust is widely observed and simulated, yet the sensitivity of these desert dust simulations to a particular meteorological dataset, as well as a particular model construction, is not well known. Here we use version 4 of the Community Atmospheric Model (CAM4) with the Community Earth System Model (CESM) to simulate dust forced by three different reanalysis meteorological datasets for the period 1990–2005. We then contrast the results of these simulations with dust simulated using online winds dynamically generated from sea surface temperatures, as well as with simulations conducted using other modeling frameworks but the same meteorological forcings, in order tomore » determine the sensitivity of climate model output to the specific reanalysis dataset used. For the seven cases considered in our study, the different model configurations are able to simulate the annual mean of the global dust cycle, seasonality and interannual variability approximately equally well (or poorly) at the limited observational sites available. Altogether, aerosol dust-source strength has remained fairly constant during the time period from 1990 to 2005, although there is strong seasonal and some interannual variability simulated in the models and seen in the observations over this time period. Model interannual variability comparisons to observations, as well as comparisons between models, suggest that interannual variability in dust is still difficult to simulate accurately, with averaged correlation coefficients of 0.1 to 0.6. Because of the large variability, at least 1 year of observations at most sites are needed to correctly observe the mean, but in some regions, particularly the remote oceans of the Southern Hemisphere, where interannual variability may be larger than in the Northern Hemisphere, 2–3 years of data are likely to be needed.« less
NASA Astrophysics Data System (ADS)
Dukhovskoy, Dmitry S.; Bourassa, Mark A.; Petersen, Gudrún Nína; Steffen, John
2017-03-01
Ocean surface vector wind fields from reanalysis data sets and scatterometer-derived gridded products are analyzed over the Nordic Seas and the northern North Atlantic for the time period from 2000 to 2009. The data sets include the National Center for Environmental Prediction Reanalysis 2 (NCEPR2), Climate Forecast System Reanalysis (CFSR), Arctic System Reanalysis (ASR), Cross-Calibrated Multiplatform (CCMP) wind product version 1.1 and recently released version 2.0, and QuikSCAT. The goal of the study is to assess discrepancies across the wind vector fields in the data sets and demonstrate possible implications of these differences for ocean modeling. Large-scale and mesoscale characteristics of winds are compared at interannual, seasonal, and synoptic timescales. A cyclone tracking methodology is developed and applied to the wind fields to compare cyclone characteristics in the data sets. Additionally, the winds are evaluated against observations collected from meteorological buoys deployed in the Iceland and Irminger Seas. The agreement among the wind fields is better for longer time and larger spatial scales. The discrepancies are clearly apparent for synoptic timescales and mesoscales. CCMP, ASR, and CFSR show the closest overall agreement with each other. Substantial biases are found in the NCEPR2 winds. Numerical sensitivity experiments are conducted with a coupled ice-ocean model forced by different wind fields. The experiments demonstrate differences in the net surface heat fluxes during storms. In the experiment forced by NCEPR2 winds, there are discrepancies in the large-scale wind-driven ocean dynamics compared to the other experiments.
High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models
NASA Astrophysics Data System (ADS)
Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David
2014-12-01
High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.
A ``Cyber Wind Facility'' for HPC Wind Turbine Field Experiments
NASA Astrophysics Data System (ADS)
Brasseur, James; Paterson, Eric; Schmitz, Sven; Campbell, Robert; Vijayakumar, Ganesh; Lavely, Adam; Jayaraman, Balaji; Nandi, Tarak; Jha, Pankaj; Dunbar, Alex; Motta-Mena, Javier; Craven, Brent; Haupt, Sue
2013-03-01
The Penn State ``Cyber Wind Facility'' (CWF) is a high-fidelity multi-scale high performance computing (HPC) environment in which ``cyber field experiments'' are designed and ``cyber data'' collected from wind turbines operating within the atmospheric boundary layer (ABL) environment. Conceptually the ``facility'' is akin to a high-tech wind tunnel with controlled physical environment, but unlike a wind tunnel it replicates commercial-scale wind turbines operating in the field and forced by true atmospheric turbulence with controlled stability state. The CWF is created from state-of-the-art high-accuracy technology geometry and grid design and numerical methods, and with high-resolution simulation strategies that blend unsteady RANS near the surface with high fidelity large-eddy simulation (LES) in separated boundary layer, blade and rotor wake regions, embedded within high-resolution LES of the ABL. CWF experiments complement physical field facility experiments that can capture wider ranges of meteorological events, but with minimal control over the environment and with very small numbers of sensors at low spatial resolution. I shall report on the first CWF experiments aimed at dynamical interactions between ABL turbulence and space-time wind turbine loadings. Supported by DOE and NSF.
SpaceX Jason-3 Live Launch Broadcast - Part 1 of 4
2016-01-17
At Space Launch Complex 4 at Vandenberg Air Force Base in California, a SpaceX Falcon 9 rocket launches the Jason-3 spacecraft into orbit for NOAA, the National Oceanic and Atmospheric Administration, and EUMETSAT, the European Organization for the Exploitation of Meteorological Satellites. Built by Thales Alenia of France, Jason-3 will measure the topography of the ocean surface for a four-agency international partnership consisting of NOAA, NASA, Centre National d’Etudes Spatiales, France’s space agency, and the European Organization for the Exploitation of Meteorological Satellites.
SpaceX Jason-3 Live Launch Broadcast - Part 4 of 4
2016-01-17
At Space Launch Complex 4 at Vandenberg Air Force Base in California, a SpaceX Falcon 9 rocket launches the Jason-3 spacecraft into orbit for NOAA, the National Oceanic and Atmospheric Administration, and EUMETSAT, the European Organization for the Exploitation of Meteorological Satellites. Built by Thales Alenia of France, Jason-3 will measure the topography of the ocean surface for a four-agency international partnership consisting of NOAA, NASA, Centre National d’Etudes Spatiales, France’s space agency, and the European Organization for the Exploitation of Meteorological Satellites.
SpaceX Jason-3 Live Launch Broadcast - Part 3 of 4
2016-01-17
At Space Launch Complex 4 at Vandenberg Air Force Base in California, a SpaceX Falcon 9 rocket launches the Jason-3 spacecraft into orbit for NOAA, the National Oceanic and Atmospheric Administration, and EUMETSAT, the European Organization for the Exploitation of Meteorological Satellites. Built by Thales Alenia of France, Jason-3 will measure the topography of the ocean surface for a four-agency international partnership consisting of NOAA, NASA, Centre National d’Etudes Spatiales, France’s space agency, and the European Organization for the Exploitation of Meteorological Satellites.
SpaceX Jason-3 Live Launch Broadcast - Part 2 of 4
2016-01-17
At Space Launch Complex 4 at Vandenberg Air Force Base in California, a SpaceX Falcon 9 rocket launches the Jason-3 spacecraft into orbit for NOAA, the National Oceanic and Atmospheric Administration, and EUMETSAT, the European Organization for the Exploitation of Meteorological Satellites. Built by Thales Alenia of France, Jason-3 will measure the topography of the ocean surface for a four-agency international partnership consisting of NOAA, NASA, Centre National d’Etudes Spatiales, France’s space agency, and the European Organization for the Exploitation of Meteorological Satellites.
The meteorological monitoring system for the Kennedy Space Center/Cape Canaveral Air Station
NASA Technical Reports Server (NTRS)
Dianic, Allan V.
1994-01-01
The Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS) are involved in many weather-sensitive operations. Manned and unmanned vehicle launches, which occur several times each year, are obvious example of operations whose success and safety are dependent upon favorable meteorological conditions. Other operations involving NASA, Air Force, and contractor personnel, including daily operations to maintain facilities, refurbish launch structures, prepare vehicles for launch, and handle hazardous materials, are less publicized but are no less weather-sensitive. The Meteorological Monitoring System (MMS) is a computer network which acquires, processes, disseminates, and monitors near real-time and forecast meteorological information to assist operational personnel and weather forecasters with the task of minimizing the risk to personnel, materials, and the surrounding population. CLIPS has been integrated into the MMS to provide quality control analysis and data monitoring. This paper describes aspects of the MMS relevant to CLIPS including requirements, actual implementation details, and results of performance testing.
NASA Astrophysics Data System (ADS)
Chen, Feng; Shapiro, Georgy; Thain, Richard
2013-04-01
The quality of ocean simulations depends on a number of factors such as approximations in governing equations, errors introduced by the numerical scheme, uncertainties in input parameters, and atmospheric forcing. The identification of relations between the uncertainties in input and output data is still a challenge for the development of numerical models. The impacts of ocean variables on ocean models are still not well known (e.g., Kara et al., 2009). Given the considerable importance of the atmospheric forcing to the air-sea interaction, it is essential that researchers in ocean modelling work need a good understanding about how sensitive the atmospheric forcing is to variations of model results, which is beneficial to the development of ocean models. Also, it provides a proper way to choose the atmospheric forcing in ocean modelling applications. Our previous study (Shapiro et al, 2011) has shown that the basin-wide circulation pattern and the temperature structure in the Black Sea produced by the same model is significantly dependent on the source of the meteorological input, giving remarkably different responses. For the purpose of this study we have chosen the Celtic Sea where high resolution meteo data are available from the UK Met office since 2006. The Celtic Sea is tidally dominated water basin, with the tidal stream amplitude varying from 0.25m/s in the southwest to 2 m/s in the Bristol Channel. It is also filled with mesoscale eddies which contribute to the formation of the residual (tidally averaged) circulation pattern (Young et al, 2003). The sea is strongly stratified from April to November, which adds to the formation of density driven currents. In this paper we analyse how sensitive the model output is to variations in the spatial resolution of meteorological using low (1.6°) and high (0.11°) resolution meteo forcing, giving the quantitative relation between variations of met forcing and the resulted differences of model results, as well as identifying the causes. The length scales of most energetic dynamic features in both ocean and atmosphere are defined by the Rossby radius of deformation, which is about 1000 km (a typical size of a cyclone) in the atmosphere while only 10-20 km (a size of a mesoscale eddy) in a shallow sea. However sub-mesoscale atmospheric patterns such as patchiness in the cloud cover could result in smaller scale variations of both the wind and solar radiation hence creating a direct link of these smaller atmospheric features with the ocean mesoscale variability. The simulation has been performed using a version of POLCOMS numerical model (Enriquez et al, 2005). Tidal boundary conditions were taken from the Oregon State University European Shelf Tidal Model (Egbert et al, 2010) and the temperature/ salinity initial fields and boundary conditions were taken from the World Ocean Database (Boyer et al, 2004). The paper discusses what elements of the circulation and water column structure are mostly sensitive to the meteo-fields resolution. References Kara, A.B., Wallcraft, A.J., Hurlburt, H.E., Loh, W.-Y., 2009. Which surface atmospheric variable drives the seasonal cycle of sea surface temperature over the global ocean? Journal of Geophysical Research, Vol. 114, D05101. Boyer, .T, S. Levitus, H. Garcia, R. Locarnini, C. Stephens, and J. Antonov, T. Boyer, S. Levitus, H. Garcia, R. Locarnini, C. Stephens, and J. Antonov, 2004. Objective Analyses of Annual, Seasonal, and Monthly Temperature and Salinity for the World Ocean on a ¼ Grid. International Journal of Climatology, 25, 931-945. Egbert, G. D., S. Y. Erofeeva, and R. D. Ray, 2010. Assimilation of altimetry data for nonlinear shallow-water tides: quarter-diurnal tides of the Northwest European Shelf, Continental Shelf Research, 30, 668-679. Enriquez, C. E., G. I. Shapiro, A. J. Souza, and A. G. Zatsepin, 2005. Hydrodynamic modelling of mesoscale eddies in the Black Sea. Ocean Dyn., 55, 476-489. Georgy Shapiro, Dmitry Aleynik , Andrei Zatsepin , Valentina Khan, Valery Prostakishin , Tatiana Akivis , Vladimir Belokopytov , Anton Sviridov , and Vladimir Piotukh . 2011. Response of water temperature in the Black Sea to atmospheric forcing: the sensitivity study. Geophysical Research Abstracts. Vol. 13, EGU2011-933
NASA Technical Reports Server (NTRS)
1985-01-01
Qualitative analyses (and quantitatively to the extend possible) of the influence of terrain features on wind loading of the space shuttle while on the launch pad, or during early liftoff, are presented. Initially, the climatology and meteorology producing macroscale wind patterns and characteristics fot he Vandenburg Air Force Base (VAFB) launch site are described. Also, limited field test data are analyzed, and then the nature and characteristic of flow disturbances due to the various terrain features, both natural and man-made, are then reviewed. Following this, the magnitude of these wind loads are estimated. Finally, effects of turbulence are discussed. The study concludes that the influence of complex terrain can create significant wind loading on the vehicle. Because of the limited information, it is not possible to quantify the magnitude of these loads.
This paper addresses the need to increase the temporal and spatial resolution of meteorological data currently used in air quality simulation models, AQSMs. ransport and diffusion parameters including mixing heights and stability used in regulatory air quality dispersion models a...
NASA Astrophysics Data System (ADS)
Robles-Morua, A.; Vivoni, E.; Rivera-Fernandez, E. R.; Dominguez, F.; Meixner, T.
2013-05-01
Hydrologic modeling using high spatiotemporal resolution satellite precipitation products in the southwestern United States and northwest Mexico is important given the sparse nature of available rain gauges. In addition, the bimodal distribution of annual precipitation also presents a challenge as differential climate impacts during the winter and summer seasons are not currently well understood. In this work, we focus on hydrological comparisons using rainfall forcing from a satellite-based product, downscaled GCM precipitation estimates and available ground observations. The simulations are being conducted in the Santa Cruz and San Pedro river basins along the Arizona-Sonora border at high spatiotemporal resolutions (~100 m and ~1 hour). We use a distributed hydrologic model, known as the TIN-based Real-time Integrated Basin Simulator (tRIBS), to generate simulated hydrological fields under historical (1991-2000) and climate change (2031-2040) scenarios obtained from an application of the Weather Research and Forecast (WRF) model. Using the distributed model, we transform the meteorological scenarios at 10-km, hourly resolution into predictions of the annual water budget, seasonal land surface fluxes and individual hydrographs of flood and recharge events. We compare the model outputs and rainfall fields of the WRF products against the forcing from the North American Land Data Assimilation System (NLDAS) and available ground observations from the National Climatic Data Center (NCDC) and Arizona Meteorological Network (AZMET). For this contribution, we selected two full years in the historical period and in the future scenario that represent wet and dry conditions for each decade. Given the size of the two basins, we rely on a high performance computing platform and a parallel domain discretization with higher resolutions maintained at experimental catchments in each river basin. Model simulations utilize best-available data across the Arizona-Sonora border on topography, land cover and soils obtained from analysis of remotely-sensed imagery and government databases. In addition, for the historical period, we build confidence in the model simulations through comparisons with streamflow estimates in the region. The model comparisons during the historical and future periods will yield a first-of-its-kind assessment on the impacts of climate change on the hydrology of two large semiarid river basins of the southwestern United States
Synoptic Meteorology during the SNOW-ONE-A Field Experiment.
1983-05-01
AD ,34 888 SYNOPTIC METEOROLOGY DURING tHE SNOW-ONE A FIELD I EXPERIMENTIUP COLD REGIONS RESEARCH AND ENGINEERING LABHANOVER NN M A BILELLO MAY 83...PROGRAM ELEMENT. PROJECT. TASK U. S. Army Cold Regions Research and AREA & WORK UNIT NUMBERS Engineering Laboratory DA Project 4A762730AT42- Hanover, New...Hampshire 03755 B-El-5 It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Office of the Ch ief of Engineers May 1983 Washington, D.C. 20314 13
Agricultural Meteorology in China.
NASA Astrophysics Data System (ADS)
Rosenberg, Norman J.
1982-03-01
During nearly five weeks in China (May-June 1981), the author visited scientific institutions and experiment stations engaged in agricultural meterology and climatology research and teaching. The facilities, studies, and research programs at each institution are described and the scientific work in these fields is evaluated. Agricultural meteorology and climatology are faced with some unique problems and opportunities in China and progress in these fields may be of critical importance to that nation in coming years. The author includes culinary notes and comments on protocol in China.
NASA Technical Reports Server (NTRS)
Chao, B. F.; Au, A. Y.; Johnson, T.; Smith, David E. (Technical Monitor)
2001-01-01
Interannual meteorological oscillations (ENSO, QBO, NAO, etc.) have demonstrable influences on Earth's rotation. Here we study their effects on global gravitational field, whose temporal variations are being studied using SLR (satellite laser ranging) data and in anticipation of the new space mission GRACE. The meteorological oscillation modes are identified using the EOF (empirical orthogonal function)/PC (principal component) decomposition of surface fields (in which we take care of issues associated with the area-weighting and non-zero mean). We examine two fields, one for the global surface pressure field for the atmosphere obtained from the NCEP reanalysis (for the past 40 years), one for the surface topography field for the ocean from the Topex/Poseidon (T/P) data (for the past 8 years). We use monthly maps, and remove the mean-monthly ("climatology") values from each grid point, hence focusing only on non-seasonal signals. The T/P data were first subject to a steric correction where the steric contribution to the ocean surface topography was removed according to output of the numerical POCM model. The respective atmospheric and oceanic contributions to the gravitational variation, in terms of harmonic Stokes coefficients, are then combined mode-by-mode. Since the T/P data already contain the oceanic response to overlying atmospheric pressure, no regards to the inverted-barometer behavior for the ocean need be considered. Results for the lowest-degree Stokes coefficients can then be compared with space geodetic observations including the Earth's rotation and the SLR data mentioned above, to identify the importance of each meteorological oscillations in gravitational variation signals.
Optimal Interpolation scheme to generate reference crop evapotranspiration
NASA Astrophysics Data System (ADS)
Tomas-Burguera, Miquel; Beguería, Santiago; Vicente-Serrano, Sergio; Maneta, Marco
2018-05-01
We used an Optimal Interpolation (OI) scheme to generate a reference crop evapotranspiration (ETo) grid, forcing meteorological variables, and their respective error variance in the Iberian Peninsula for the period 1989-2011. To perform the OI we used observational data from the Spanish Meteorological Agency (AEMET) and outputs from a physically-based climate model. To compute ETo we used five OI schemes to generate grids for the five observed climate variables necessary to compute ETo using the FAO-recommended form of the Penman-Monteith equation (FAO-PM). The granularity of the resulting grids are less sensitive to variations in the density and distribution of the observational network than those generated by other interpolation methods. This is because our implementation of the OI method uses a physically-based climate model as prior background information about the spatial distribution of the climatic variables, which is critical for under-observed regions. This provides temporal consistency in the spatial variability of the climatic fields. We also show that increases in the density and improvements in the distribution of the observational network reduces substantially the uncertainty of the climatic and ETo estimates. Finally, a sensitivity analysis of observational uncertainties and network densification suggests the existence of a trade-off between quantity and quality of observations.
Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime
NASA Astrophysics Data System (ADS)
Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.; Ramanathan, Veerabhadran; Wilcox, Eric M.; Bender, Frida A.-M.
2017-04-01
There are multiple factors which affect the micro- and macrophysical properties of clouds, including the atmospheric vertical structure and dominant meteorological conditions in addition to aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. As bio- and fossil fuel combustion has increased in southeast Asia, corresponding increases in atmospheric aerosol pollution have been seen over the surrounding regions. These emissions notably include black carbon (BC) aerosols, which absorb rather than reflect solar radiation, affecting the atmosphere over the Indian Ocean through direct warming in addition to modifying cloud microphysical properties. The CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign was conducted during the winter monsoon season (February and March) of 2012 in the northern Indian Ocean, a region dominated by trade cumulus clouds. During CARDEX, small unmanned aircraft were deployed, measuring aerosol, radiation, cloud, water vapor fluxes, and meteorological properties while a surface observatory collected continuous measurements of atmospheric precipitable water vapor (PWV), water vapor fluxes, surface and total-column aerosol, and cloud liquid water path (LWP). We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV)
An Introduction to Air Chemistry.
ERIC Educational Resources Information Center
Butcher, Samuel S.; Charlson, Robert J.
Designed for those with no previous experience in the field, this book synthesizes the areas of chemistry and meteorology required to bring into focus some of the complex problems associated with the atmospheric environment. Subject matter moves from a review of the relevant chemical and meteorological principles to a discussion of the general…
The four-dimensional data assimilation (FDDA) technique in the Weather Research and Forecasting (WRF) meteorological model has recently undergone an important update from the original version. Previous evaluation results have demonstrated that the updated FDDA approach in WRF pr...
Since most of the primary atmospheric pollutants are emitted inside the roughness sub-layer (RSL) and consequently the first chemical reactions and dispersion occur in this layer, it is necessary to generate detailed meteorological fields inside the RSL to perform air quality m...
NASA Astrophysics Data System (ADS)
Verfaillie, Deborah; Déqué, Michel; Morin, Samuel; Soubeyroux, Jean-Michel; Lafaysse, Matthieu
2017-04-01
Current and future availability of seasonal snow is a recurring topic in mountain regions such as the Pyrenees, where winter tourism and hydropower production are large contributors to the regional revenues in France, Spain and Andorra. Associated changes in river discharges, their consequences on water storage management, the future vulnerability of Pyrenean ecosystems as well as the occurrence of climate-related hazards such as debris flows and avalanches are also under consideration. However, to generate projections of snow conditions, a traditional dynamical downscaling approach featuring spatial resolutions typically between 10 and 50 km is not sufficient to capture the fine-scale processes and thresholds at play. Indeed, the altitudinal resolution matters, since the phase of precipitation is mainly controlled by the temperature which is altitude-dependent. Moreover, simulations from general circulation models (GCMs) and regional climate models (RCMs) suffer from biases compared to local observations, and often provide outputs at too coarse time resolution to drive impact models. RCM simulations must therefore be adjusted before they can be used to drive specific models such as land surface models. In this study, time series of hourly temperature, precipitation, wind speed, humidity, and short- and longwave radiation were generated over the Pyrenees for the period 1950-2100, by using a new approach (named ADAMONT for ADjustment of RCM outputs to MOuNTain regions) based on quantile mapping applied to daily data, followed by time disaggregation accounting for weather patterns selection. Meteorological observations used for the quantile mapping consist of the regional scale reanalysis SAFRAN, which operates at the scale of homogeneous areas on the order of 1000 km2 within which meteorological conditions vary only with elevation. SAFRAN combines large-scale NWP reanalysis (ERA40, ARPEGE) with in-situ meteorological observations. The SAFRAN reanalysis is available over the entire Pyrenean chain since 1980. Outputs from EURO-CORDEX simulations spanning 6 different RCMs forced by 6 different GCMs under 3 representative concentration pathways scenarios (RCP 2.6, 4.5 and 8.5) over Europe were downscaled at the massif scale and for 300 m elevation bands and statistically adjusted against the SAFRAN reanalysis. These corrected fields were then used to force the SURFEX/ISBA-Crocus land surface model over the Pyrenees. Here we present as an example a reanalysis and future projections (using adjusted EURO-CORDEX data) of meteorological and snow conditions obtained using this method at the site of La Mongie in the French Pyrenees, which we compare to in-situ observations carried out since the 1970s. These results further enable us to identify and apportion the main drivers for changes in snow conditions at the site, and the various uncertainty components at play. This work is a direct contribution of the French GICC ADAMONT project, and of the Interreg project "Clim'Py", aiming to develop the Pyrenean Observatory of Climate Change.
NASA Technical Reports Server (NTRS)
Brenton, J. C.; Barbre, R. E.; Decker, R. K.; Orcutt, J. M.
2018-01-01
The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) Natural Environments Branch (EV44) provides atmospheric databases and analysis in support of space vehicle design and day-of-launch operations for NASA and commercial launch vehicle programs launching from the NASA Kennedy Space Center (KSC), co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station. The ER complex is one of the most heavily instrumented sites in the United States with over 31 towers measuring various atmospheric parameters on a continuous basis. An inherent challenge with large datasets consists of ensuring erroneous data are removed from databases, and thus excluded from launch vehicle design analyses. EV44 has put forth great effort in developing quality control (QC) procedures for individual meteorological instruments, however no standard QC procedures for all databases currently exists resulting in QC databases that have inconsistencies in variables, development methodologies, and periods of record. The goal of this activity is to use the previous efforts to develop a standardized set of QC procedures from which to build meteorological databases from KSC and the ER, while maintaining open communication with end users from the launch community to develop ways to improve, adapt and grow the QC database. Details of the QC procedures will be described. As the rate of launches increases with additional launch vehicle programs, It is becoming more important that weather databases are continually updated and checked for data quality before use in launch vehicle design and certification analyses.
Pattern recognition of satellite cloud imagery for improved weather prediction
NASA Technical Reports Server (NTRS)
Gautier, Catherine; Somerville, Richard C. J.; Volfson, Leonid B.
1986-01-01
The major accomplishment was the successful development of a method for extracting time derivative information from geostationary meteorological satellite imagery. This research is a proof-of-concept study which demonstrates the feasibility of using pattern recognition techniques and a statistical cloud classification method to estimate time rate of change of large-scale meteorological fields from remote sensing data. The cloud classification methodology is based on typical shape function analysis of parameter sets characterizing the cloud fields. The three specific technical objectives, all of which were successfully achieved, are as follows: develop and test a cloud classification technique based on pattern recognition methods, suitable for the analysis of visible and infrared geostationary satellite VISSR imagery; develop and test a methodology for intercomparing successive images using the cloud classification technique, so as to obtain estimates of the time rate of change of meteorological fields; and implement this technique in a testbed system incorporating an interactive graphics terminal to determine the feasibility of extracting time derivative information suitable for comparison with numerical weather prediction products.
Potential sources of precipitation in Lake Baikal basin
NASA Astrophysics Data System (ADS)
Shukurov, K. A.; Mokhov, I. I.
2017-11-01
Based on the data of long-term measurements at 23 meteorological stations in the Russian part of the Lake Baikal basin the probabilities of daily precipitation with different intensity and their contribution to the total precipitation are estimated. Using the trajectory model HYSPLIT_4 for each meteorological station for the period 1948-2016 the 10-day backward trajectories of air parcels, the height of these trajectories and distribution of specific humidity along the trajectories are calculated. The average field of power of potential sources of daily precipitation (less than 10 mm) for all meteorological stations in the Russian part of the Lake Baikal basin was obtained using the CWT (concentration weighted trajectory) method. The areas have been identified from which within 10 days water vapor can be transported to the Lake Baikal basin, as well as regions of the most and least powerful potential sources. The fields of the mean height of air parcels trajectories and the mean specific humidity along the trajectories are compared with the field of mean power of potential sources.
Wave-current interaction: Effect on the wave field in a semi-enclosed basin
NASA Astrophysics Data System (ADS)
Benetazzo, A.; Carniel, S.; Sclavo, M.; Bergamasco, A.
2013-10-01
The effect on waves of the Wave-Current Interaction (WCI) process in the semi-enclosed Gulf of Venice (northern region of the Adriatic Sea) was investigated using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system. COAWST relies on the ocean model ROMS (Regional Ocean Modeling System), the wave model SWAN (Simulating WAves Nearshore), and the CSTMS (Community Sediment Transport Modeling System) routines. The two-way data transfer between circulation and wave models was synchronous via MCT (Model Coupling Toolkit), with ROMS providing: current field, free surface elevation, and bathymetry to SWAN. For coupling, the 3-D current profiles were averaged using a formulation which integrated the near-surface velocity over a depth controlled by the spectral mean wavenumber. COAWST system was implemented on a parent grid (with horizontal resolution of 2.0 km) covering the whole Adriatic Sea with one-way nesting to a child grid resolving the northern area (Gulf of Venice) at a resolution of 0.5 km. The meteorological forcings provided by the operational meteorological model COSMO-I7 (a mesoscale model developed in the framework of the COSMO Consortium) were used to drive the modeling system in the period bracketing September 2010-August 2011. The adopted winds and the simulated waves were compared with observations at the CNR-ISMAR Acqua Alta oceanographic tower, located off the Venice littoral. Wave heights and sea surface winds were also compared with satellite-derived data. The analysis of WCI was performed on the child grid over the winter season (January-March 2011) with particular focus on the waves generated by prevailing and dominant winds blowing on the Adriatic Sea: Bora and Sirocco. Due to the variable wind direction with respect to the ocean current direction different effects on WCI were depicted, showing that within the northern Adriatic Sea the ocean-wave interactions are strongly dependent on the wind forcing direction. Further investigations reveal that, when applied to intense storms, the effect of coupling on waves results in variations of significant wave height up to 0.6 m, with some areas experiencing significant increase/decrease of wave spectral energy for opposite/following currents respectively.
A framework for improving a seasonal hydrological forecasting system using sensitivity analysis
NASA Astrophysics Data System (ADS)
Arnal, Louise; Pappenberger, Florian; Smith, Paul; Cloke, Hannah
2017-04-01
Seasonal streamflow forecasts are of great value for the socio-economic sector, for applications such as navigation, flood and drought mitigation and reservoir management for hydropower generation and water allocation to agriculture and drinking water. However, as we speak, the performance of dynamical seasonal hydrological forecasting systems (systems based on running seasonal meteorological forecasts through a hydrological model to produce seasonal hydrological forecasts) is still limited in space and time. In this context, the ESP (Ensemble Streamflow Prediction) remains an attractive forecasting method for seasonal streamflow forecasting as it relies on forcing a hydrological model (starting from the latest observed or simulated initial hydrological conditions) with historical meteorological observations. This makes it cheaper to run than a standard dynamical seasonal hydrological forecasting system, for which the seasonal meteorological forecasts will first have to be produced, while still producing skilful forecasts. There is thus the need to focus resources and time towards improvements in dynamical seasonal hydrological forecasting systems which will eventually lead to significant improvements in the skill of the streamflow forecasts generated. Sensitivity analyses are a powerful tool that can be used to disentangle the relative contributions of the two main sources of errors in seasonal streamflow forecasts, namely the initial hydrological conditions (IHC; e.g., soil moisture, snow cover, initial streamflow, among others) and the meteorological forcing (MF; i.e., seasonal meteorological forecasts of precipitation and temperature, input to the hydrological model). Sensitivity analyses are however most useful if they inform and change current operational practices. To this end, we propose a method to improve the design of a seasonal hydrological forecasting system. This method is based on sensitivity analyses, informing the forecasters as to which element of the forecasting chain (i.e., IHC or MF) could potentially lead to the highest increase in seasonal hydrological forecasting performance, after each forecast update.
NASA Astrophysics Data System (ADS)
Rockwell, A.; Clark, R. D.; Stevermer, A.
2017-12-01
The National Center for Atmospheric Research Earth Observing Laboratory, Millersville University and The COMET Program are collaborating to produce a series of nine online modules on the the topic of meteorological instrumentation and measurements. These interactive, multimedia educational modules can be integrated into undergraduate and graduate meteorology courses on instrumentation, measurement science, and observing systems to supplement traditional pedagogies and enhance blended instruction. These freely available and open-source training tools are designed to supplement traditional pedagogies and enhance blended instruction. Three of the modules are now available and address the theory and application of Instrument Performance Characteristics, Meteorological Temperature Instrumentation and Measurements, and Meteorological Pressure Instrumentation and Measurements. The content of these modules is of the highest caliber as it has been developed by scientists and engineers who are at the forefront of the field of observational science. Communicating the availability of these unique and influential educational resources with the community is of high priority. These modules will have a profound effect on the atmospheric observational sciences community by fulfilling a need for contemporary, interactive, multimedia guided education and training modules integrating the latest instructional design and assessment tools in observational science. Thousands of undergraduate and graduate students will benefit, while course instructors will value a set of high quality modules to use as supplements to their courses. The modules can serve as an alternative to observational research training and fill the void between field projects or assist those schools that lack the resources to stage a field- or laboratory-based instrumentation experience.
Droegemeier, K.K.; Smith, J.D.; Businger, S.; Doswell, C.; Doyle, J.; Duffy, C.; Foufoula-Georgiou, E.; Graziano, T.; James, L.D.; Krajewski, V.; LeMone, M.; Lettenmaier, D.; Mass, C.; Pielke, R.; Ray, P.; Rutledge, S.; Schaake, J.; Zipser, E.
2000-01-01
Among the many natural disasters that disrupt human and industrial activity in the United States each year, including tornadoes, hurricanes, extreme temperatures, and lightning, floods are among the most devastating and rank second in the loss of life. Indeed, the societal impact of floods has increased during the past few years and shows no sign of abating. Although the scientific questions associated with flooding and its accurate prediction are many and complex, an unprecedented opportunity now exists - in light of new observational and computing systems and infrastructures, a much improved understanding of small-scale meteorological and hydrological processes, and the availability of sophisticated numerical models and data assimilation systems - to attack the flood forecasting problem in a comprehensive manner that will yield significant new scientific insights and corresponding practical benefits. The authors present herein a set of recommendations for advancing our understanding of floods via the creation of natural laboratories situated in a variety of local meteorological and hydrological settings. Emphasis is given to floods caused by convection and cold season events, fronts and extratropical cyclones, orographic forcing, and hurricanes and tropical cyclones following landfall. Although the particular research strategies applied within each laboratory setting will necessarily vary, all will share the following principal elements: (a) exploitation of those couplings important to flooding that exist between meteorological and hydrological processes and models; (b) innovative use of operational radars, research radars, satellites, and rain gauges to provide detailed spatial characterizations of precipitation fields and rates, along with the use of this information in hydrological models and for improving and validating microphysical algorithms in meteorological models; (c) comparisons of quantitative precipitation estimation algorithms from both research (especially multiparameter) and operational radars against gauge data as well as output produced by meso- and storm-scale models; (d) use of data from dense, temporary river gauge networks to trace the fate of rain from its starting location in small basins to the entire stream and river network; and (e) sensitivity testing in the design and implementation of separate as well as coupled meteorological and hydrologic models, the latter designed to better represent those nonlinear feedbacks between the atmosphere and land that are known to play an important role in runoff prediction. Vital to this effort will be the creation of effective and sustained linkages between the historically separate though scientifically related disciplines of meteorology and hydrology, as well as their observational infrastructures and research methodologies.
NASA Astrophysics Data System (ADS)
Droegemeier, K. K.; Smith, J. D.; Businger, S.; Doswell, C., III; Doyle, J.; Duffy, C.; Foufoula-Georgiou, E.; Graziano, T.; James, L. D.; Krajewski, V.; Lemone, M.; Lettenmaier, D.; Mass, C.; Pielke, R., Sr.; Ray, P.; Rutledge, S.; Schaake, J.; Zipser, E.
2000-11-01
Among the many natural disasters that disrupt human and industrial activity in the United States each year, including tornadoes, hurricanes, extreme temperatures, and lightning, floods are among the most devastating and rank second in the loss of life. Indeed, the societal impact of floods has increased during the past few years and shows no sign of abating. Although the scientific questions associated with flooding and its accurate prediction are many and complex, an unprecedented opportunity now exists-in light of new observational and computing systems and infrastructures, a much improved understanding of small-scale meteorological and hydrological processes, and the availability of sophisticated numerical models and data assimilation systems-to attack the flood forecasting problem in a comprehensive manner that will yield significant new scientific insights and corresponding practical benefits. The authors present herein a set of recommendations for advancing our understanding of floods via the creation of natural laboratories situated in a variety of local meteorological and hydrological settings. Emphasis is given to floods caused by convection and cold season events, fronts and extratropical cyclones, orographic forcing, and hurricanes and tropical cyclones following landfall. Although the particular research strategies applied within each laboratory setting will necessarily vary, all will share the following principal elements: (a) exploitation of those couplings important to flooding that exist between meteorological and hydrological processes and models; (b) innovative use of operational radars, research radars, satellites, and rain gauges to provide detailed spatial characterizations of precipitation fields and rates, along with the use of this information in hydrological models and for improving and validating microphysical algorithms in meteorological models; (c) comparisons of quantitative precipitation estimation algorithms from both research (especially multiparameter) and operational radars against gauge data as well as output produced by meso- and storm-scale models; (d) use of data from dense, temporary river gauge networks to trace the fate of rain from its starting location in small basins to the entire stream and river network; and (e) sensitivity testing in the design and implementation of separate as well as coupled meteorological and hydrologic models, the latter designed to better represent those nonlinear feedbacks between the atmosphere and land that are known to play an important role in runoff prediction. Vital to this effort will be the creation of effective and sustained linkages between the historically separate though scientifically related disciplines of meteorology and hydrology, as well as their observational infrastructures and research methodologies.
NASA Astrophysics Data System (ADS)
Haussaire, Jean-Matthieu; Bocquet, Marc
2016-04-01
Atmospheric chemistry models are becoming increasingly complex, with multiphasic chemistry, size-resolved particulate matter, and possibly coupled to numerical weather prediction models. In the meantime, data assimilation methods have also become more sophisticated. Hence, it will become increasingly difficult to disentangle the merits of data assimilation schemes, of models, and of their numerical implementation in a successful high-dimensional data assimilation study. That is why we believe that the increasing variety of problems encountered in the field of atmospheric chemistry data assimilation puts forward the need for simple low-order models, albeit complex enough to capture the relevant dynamics, physics and chemistry that could impact the performance of data assimilation schemes. Following this analysis, we developped a low-order coupled chemistry meteorology model named L95-GRS [1]. The advective wind is simulated by the Lorenz-95 model, while the chemistry is made of 6 reactive species and simulates ozone concentrations. With this model, we carried out data assimilation experiments to estimate the state of the system as well as the forcing parameter of the wind and the emissions of chemical compounds. This model proved to be a powerful playground giving insights on the hardships of online and offline estimation of atmospheric pollution. Building on the results on this low-order model, we test advanced data assimilation methods on a state-of-the-art chemical transport model to check if the conclusions obtained with our low-order model still stand. References [1] Haussaire, J.-M. and Bocquet, M.: A low-order coupled chemistry meteorology model for testing online and offline data assimilation schemes, Geosci. Model Dev. Discuss., 8, 7347-7394, doi:10.5194/gmdd-8-7347-2015, 2015.
Hydrological state of the Large Aral Sea in the fall season of 2013
NASA Astrophysics Data System (ADS)
Izhitskiy, Alexander; Zavialov, Peter
2014-05-01
We report here the results of the latest expedition of the Shirshov Institute to the Aral Sea. The survey encompassed 8 field days in October-November, 2013. Direct measurements of thermohaline characteristics and water currents were conducted in the western basin of the Large Aral Sea during the expedition. Vertical profiles of temperature and salinity were obtained using a CTD profiler at 9 stations, situated on two cross-sections of the western basin. Four mooring stations equipped with current meters, as well as pressure gauges, were deployed for 4-6 days on the slopes of the deepest portion of the western basin. A portable automatic meteorological station, continuously recording the variability of wind and principal meteorological parameters, was installed near the mooring sites. Analysis of the current measurements data along with the meteorological data records demonstrated the current velocity and level anomalies responded energetically to winds. Correlation analysis of the velocity series versus the wind stress allowed to quantify the response of the system to the wind forcing. Together with the similar results of more earlier surveys, recently collected data shows that the mean surface circulation of the western basin remains anti-cyclonic under the predominant winds. Character of the interannual variability of salinity values in the Aral Sea water manifested increase in the surface layer during last 5 years. On the other hand, salinity values in the bottom layer appear to be decreased due to ceasing of the influence of the interbasin water exchange since 2010. Water level of the Large Aral Sea is still falling. Assessment of the on-going changes holds promise to help predicting the subsequent state of the Aral Sea region.
Spatial clustering and meteorological drivers of summer ozone in Europe
NASA Astrophysics Data System (ADS)
Carro-Calvo, Leopoldo; Ordóñez, Carlos; García-Herrera, Ricardo; Schnell, Jordan L.
2017-10-01
We have applied the k-means clustering technique on a maximum daily 8-h running average near-surface ozone (MDA8 O3) gridded dataset over Europe at 1° × 1° resolution for summer 1998-2012. This has resulted in a spatial division of nine regions where ozone presents coherent spatiotemporal patterns. The role of meteorology in the variability of ozone at different time scales has been investigated by using daily meteorological fields from the NCEP-NCAR meteorological reanalysis. In the five regions of central-southern Europe ozone extremes (exceedances of the summer 95th percentile) occur mostly under anticyclonic circulation or weak sea level pressure gradients which trigger elevated temperatures and the recirculation of air masses. In the four northern regions extremes are associated with high-latitude anticyclones that divert the typical westerly flow at those latitudes and cause the advection of aged air masses from the south. The impact of meteorology on the day-to-day variability of ozone has been assessed by means of two different types of multiple linear models. These include as predictors meteorological fields averaged within the regions (;region-based; approach) or synoptic indices indicating the degree of resemblance between the daily meteorological fields over a large domain (25°-70° N, 35° W - 35° E) and their corresponding composites for extreme ozone days (;index-based; approach). With the first approach, a reduced set of variables, always including daily maximum temperature within the region, explains 47-66% of the variability (adjusted R2) in central-southern Europe, while more complex models are needed to explain 27-49% of the variability in the northern regions. The index-based approach yields better results for the regions of northern Europe, with adjusted R2 = 40-57%. Finally, both methodologies have also been applied to reproduce the interannual variability of ozone, with the best models explaining 66-88% of the variance in central-southern Europe and 45-66% in the north. Thus, the regionalisation carried out in this work has allowed establishing clear distinctions between the meteorological drivers of ozone in northern Europe and in the rest of the continent. These drivers are consistent across the different time scales examined (extremes, day-to-day and interannual), which gives confidence in the robustness of the results.
Information of urban morphological features at high resolution is needed to properly model and characterize the meteorological and air quality fields in urban areas. We describe a new project called National Urban Database with Access Portal Tool, (NUDAPT) that addresses this nee...
NASA Technical Reports Server (NTRS)
Susko, M.; Hill, C. K.; Kaufman, J. W.
1974-01-01
The quantitative estimates are presented of pollutant concentrations associated with the emission of the major combustion products (HCl, CO, and Al2O3) to the lower atmosphere during normal launches of the space shuttle. The NASA/MSFC Multilayer Diffusion Model was used to obtain these calculations. Results are presented for nine sets of typical meteorological conditions at Kennedy Space Center, including fall, spring, and a sea-breeze condition, and six sets at Vandenberg AFB. In none of the selected typical meteorological regimes studied was a 10-min limit of 4 ppm exceeded.
Catalog of Air Force Weather Technical Documents 1941-2008
2008-06-19
provided infrared data to a NASA central readout station. High-resolution infrared data (HRIR) recorded on 70mm film is of photographic quality...Monmouth, New Jersey. Authors represented Army, Navy, and Air Force meteorological activities and their contractors, as well as ESSA, NASA , and... NASA , ESSA, USDA, NCAR, several universities, and an airline. Contents: • “Data Gathering Systems of the 70’s—A Survey,” by J. Giraytys, pp 5-31
NASA Astrophysics Data System (ADS)
Fettweis, Michael; Baeye, Matthias; Cardoso, Claudio; Dujardin, Arvid; Lauwaert, Brigitte; Van den Eynde, Dries; Van Hoestenberghe, Thomas; Vanlede, Joris; Van Poucke, Luc; Velez, Carlos; Martens, Chantal
2016-11-01
The amount of sediments to be dredged and disposed depends to a large part on the suspended particulate matter (SPM) concentration. Tidal, meteorological, climatological, and seasonal forcings have an influence on the horizontal and vertical distribution of the SPM in the water column and on the bed and control the inflow of fine-grained sediments towards harbors and navigation channels. About 3 million tons (dry matter) per year of mainly fine-grained sediments is dredged in the port of Zeebrugge and is disposed on a nearby disposal site. The disposed sediments are quickly resuspended and transported away from the site. The hypothesis is that a significant part of the disposed sediments recirculates back to the dredging places and that a relocation of the disposal site to another location at equal distance to the dredging area would reduce this recirculation. In order to validate the hypothesis, a 1-year field study was set up in 2013-2014. During 1 month, the dredged material was disposed at a new site. Variations in SPM concentration were related to tides, storms, seasonal changes, and human impacts. In the high-turbidity Belgian near-shore area, the natural forcings are responsible for the major variability in the SPM concentration signal, while disposal has only a smaller influence. The conclusion from the measurements is that the SPM concentration decreases after relocation of the disposal site but indicate stronger (first half of field experiment) or weaker (second half of field experiment) effects that are, however, supported by the environmental conditions. The results of the field study may have consequences on the management of disposal operations as the effectiveness of the disposal site depends on environmental conditions, which are inherently associated with chaotic behavior.
The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence
NASA Astrophysics Data System (ADS)
Lothon, M.; Lohou, F.; Pino, D.; Couvreux, F.; Pardyjak, E. R.; Reuder, J.; Vilà-Guerau de Arellano, J.; Durand, P.; Hartogensis, O.; Legain, D.; Augustin, P.; Gioli, B.; Lenschow, D. H.; Faloona, I.; Yagüe, C.; Alexander, D. C.; Angevine, W. M.; Bargain, E.; Barrié, J.; Bazile, E.; Bezombes, Y.; Blay-Carreras, E.; van de Boer, A.; Boichard, J. L.; Bourdon, A.; Butet, A.; Campistron, B.; de Coster, O.; Cuxart, J.; Dabas, A.; Darbieu, C.; Deboudt, K.; Delbarre, H.; Derrien, S.; Flament, P.; Fourmentin, M.; Garai, A.; Gibert, F.; Graf, A.; Groebner, J.; Guichard, F.; Jiménez, M. A.; Jonassen, M.; van den Kroonenberg, A.; Magliulo, V.; Martin, S.; Martinez, D.; Mastrorillo, L.; Moene, A. F.; Molinos, F.; Moulin, E.; Pietersen, H. P.; Piguet, B.; Pique, E.; Román-Cascón, C.; Rufin-Soler, C.; Saïd, F.; Sastre-Marugán, M.; Seity, Y.; Steeneveld, G. J.; Toscano, P.; Traullé, O.; Tzanos, D.; Wacker, S.; Wildmann, N.; Zaldei, A.
2014-10-01
Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary layer, still has a number of unanswered scientific questions. This phase of the diurnal cycle is challenging from both modelling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of instrumented platforms including full-size aircraft, remotely piloted aircraft systems, remote-sensing instruments, radiosoundings, tethered balloons, surface flux stations and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observation periods that were conducted from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, such as new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary-layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the previous day's residual layer, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and documented the evolution of the turbulence characteristic length scales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.
The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence
NASA Astrophysics Data System (ADS)
Lothon, M.; Lohou, F.; Pino, D.; Couvreux, F.; Pardyjak, E. R.; Reuder, J.; Vilà-Guerau de Arellano, J.; Durand, P.; Hartogensis, O.; Legain, D.; Augustin, P.; Gioli, B.; Faloona, I.; Yagüe, C.; Alexander, D. C.; Angevine, W. M.; Bargain, E.; Barrié, J.; Bazile, E.; Bezombes, Y.; Blay-Carreras, E.; van de Boer, A.; Boichard, J. L.; Bourdon, A.; Butet, A.; Campistron, B.; de Coster, O.; Cuxart, J.; Dabas, A.; Darbieu, C.; Deboudt, K.; Delbarre, H.; Derrien, S.; Flament, P.; Fourmentin, M.; Garai, A.; Gibert, F.; Graf, A.; Groebner, J.; Guichard, F.; Jimenez Cortes, M. A.; Jonassen, M.; van den Kroonenberg, A.; Lenschow, D. H.; Magliulo, V.; Martin, S.; Martinez, D.; Mastrorillo, L.; Moene, A. F.; Molinos, F.; Moulin, E.; Pietersen, H. P.; Piguet, B.; Pique, E.; Román-Cascón, C.; Rufin-Soler, C.; Saïd, F.; Sastre-Marugán, M.; Seity, Y.; Steeneveld, G. J.; Toscano, P.; Traullé, O.; Tzanos, D.; Wacker, S.; Wildmann, N.; Zaldei, A.
2014-04-01
Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective to the night-time stable boundary layer, still raises several scientific issues. This phase of the diurnal cycle is challenging from both modeling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective regime, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of integrated instrument platforms including full-size aircraft, remotely piloted aircraft systems (RPAS), remote sensing instruments, radiosoundings, tethered balloons, surface flux stations, and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observations from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, like new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the residual layer of the previous day, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and evidenced the evolution of the turbulence characteristic lengthscales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.
NASA Astrophysics Data System (ADS)
Pechlivanidis, Ilias; Crochemore, Louise
2017-04-01
Recent advances in understanding and forecasting of climate have led into skilful seasonal meteorological predictions, which can consequently increase the confidence of hydrological prognosis. The majority of seasonal impact modelling has commonly been conducted at only one or a limited number of basins limiting the potential to understand large systems. Nevertheless, there is a necessity to develop operational seasonal forecasting services at the pan-European scale, capable of addressing the end-user needs. The skill of such forecasting services is subject to a number of sources of uncertainty, i.e. model structure, parameters, and forcing input. In here, we complement the "deep" knowledge from basin based modelling by investigating the relative contributions of initial hydrological conditions (IHCs) and meteorological forcing (MF) to the skill of a seasonal pan-European hydrological forecasting system. We use the Ensemble Streamflow Prediction (ESP) and reverse ESP (revESP) procedure to show a proxy of hydrological forecasting uncertainty due to MF and IHC uncertainties respectively. We further calculate the critical lead time (CLT), as a proxy of the river memory, after which the importance of MFs surpasses the importance of IHCs. We analyze these results in the context of prevailing hydro-climatic conditions for about 35000 European basins. Both model state initialisation (level in surface water, i.e. reservoirs, lakes and wetlands, soil moisture, snow depth) and provision of climatology are based on forcing input derived from the WFDEI product for the period 1981-2010. The analysis shows that the contribution of ICs and MFs to the hydrological forecasting skill varies considerably according to location, season and lead time. This analysis allows clustering of basins in which hydrological forecasting skill may be improved by better estimation of IHCs, e.g. via data assimilation of in-situ and/or satellite observations; whereas in other basins skill improvement depends on better MFs.
Meteorological support to the West German-United States Barium Ion Cloud Project.
NASA Technical Reports Server (NTRS)
Westfall, R. R.; Chamberlain, L. W.
1972-01-01
The objective of the Barium Ion Cloud Project was to study a barium ionized cloud released at an altitude of 5 earth radii. Accurate forecasting of weather conditions to prevail during the experiment period was critical to the project success. Good seeing conditions were required at all optical sites during the experiment. All meteorological support was the responsibility of the National Weather Service at Wallops Station, Virginia. Preliminary results confirm the scientists' theories of the magnetic fields and the existence of electric fields in the magnetosphere.
Latest Data on Thermohaline Structure and Circulation of the Dying Aral Sea
NASA Astrophysics Data System (ADS)
Izhitsky, Alexander; Zavialov, Peter
2010-05-01
The results of the latest expedition of the Shirshov Institute to the Aral Sea are reported. The survey encompassed 15 field days in August, 2009. An interdisciplinary oceanographic study in the western basin of the sea was conducted during the expedition. Vertical profiles of temperature, salinity and fluorescence were obtained using a CTD profiler at 8 stations across the western basin. Two mooring stations equipped with current meters, one at the surface and one in the bottom layer at each station, as well as pressure gauges at the bottom, were deployed for 5 days in the deepest portion of the western basin. One of the stations was installed at the western slope of the basin, while the other one was positioned at the eastern slope. A portable automatic meteorological station, continuously recording the variability of wind and principal meteorological parameters, was installed near the mooring sites. The vertical structure of the themohaline fields exhibited a 3-layered pattern, with local salinity maxima in the upper mixed layer and at the bottom. The intermediate layer was characterized by a core of minimum salinity and temperature, also accompanied by maximum fluorescence. Such a pattern indicates that the signature of the denser, saltier water originating from the eastern basin is still evident, even though the eastern basin itself dried up almost completely during the summer of 2009. The surface salinity was around 136 ppt, which constituted a notable increase for about 20 ppt since the summer of 2008. Over the same period, sea level decreased by 164 cm since the summer of 2008. Analysis of the current measurements data along with the meteorological data records demonstrated that the mean basin-scale surface circulation of the Large Aral Sea is likely to have remained anticyclonic, whilst the near-bottom circulation appears to be cyclonic. The current velocity and level anomalies responded energetically to winds. Correlation analysis of the velocity series versus the wind stress allowed to quantify the response of the system to the wind forcing.
NASA Technical Reports Server (NTRS)
Jones, Alun R; Lewis, William
1949-01-01
Meteorological conditions conducive to aircraft icing are arranged in four classifications: three are associated with cloud structure and the fourth with freezing rain. The range of possible meteorological factors for each classification is discussed and specific values recommended for consideration in the design of ice-prevention equipment for aircraft are selected and tabulated. The values selected are based upon a study of the available observational data and theoretical considerations where observations are lacking. Recommendations for future research in the field are presented.
A review of the meteorological parameters which affect aerial application
NASA Technical Reports Server (NTRS)
Christensen, L. S.; Frost, W.
1979-01-01
The ambient wind field and temperature gradient were found to be the most important parameters. Investigation results indicated that the majority of meteorological parameters affecting dispersion were interdependent and the exact mechanism by which these factors influence the particle dispersion was largely unknown. The types and approximately ranges of instrumented capabilities for a systematic study of the significant meteorological parameters influencing aerial applications were defined. Current mathematical dispersion models were also briefly reviewed. Unfortunately, a rigorous dispersion model which could be applied to aerial application was not available.
On the predictability of land surface fluxes from meteorological variables
NASA Astrophysics Data System (ADS)
Haughton, Ned; Abramowitz, Gab; Pitman, Andy J.
2018-01-01
Previous research has shown that land surface models (LSMs) are performing poorly when compared with relatively simple empirical models over a wide range of metrics and environments. Atmospheric driving data appear to provide information about land surface fluxes that LSMs are not fully utilising. Here, we further quantify the information available in the meteorological forcing data that are used by LSMs for predicting land surface fluxes, by interrogating FLUXNET data, and extending the benchmarking methodology used in previous experiments. We show that substantial performance improvement is possible for empirical models using meteorological data alone, with no explicit vegetation or soil properties, thus setting lower bounds on a priori expectations on LSM performance. The process also identifies key meteorological variables that provide predictive power. We provide an ensemble of empirical benchmarks that are simple to reproduce and provide a range of behaviours and predictive performance, acting as a baseline benchmark set for future studies. We reanalyse previously published LSM simulations and show that there is more diversity between LSMs than previously indicated, although it remains unclear why LSMs are broadly performing so much worse than simple empirical models.
Aircraft measurements of electrified clouds at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Jones, J. J.; Winn, W. P.; Hunyady, S. J.; Moore, C. B.; Bullock, J. W.
1990-01-01
The space-vehicle launch commit criteria for weather and atmospheric electrical conditions in us at Cape Canaveral Air Force Station and Kennedy Space Center (KSC) have been made restrictive because of the past difficulties that have arisen when space vehicles have triggered lightning discharge after their launch during cloudy weather. With the present ground-base instrumentation and our limited knowledge of cloud electrification process over this region of Florida, it has not been possible to provide a quantitative index of safe launching conditions. During the fall of 1988, a Schweizer 845 airplane equipped to measure electric field and other meteorological parameters flew over KSC in a program to study clouds defined in the existing launch restriction criteria. All aspects of this program are addressed including planning, method, and results. A case study on the November 4, 1988 flight is also presented.
Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco
2014-01-01
Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required beacause of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied. PMID:25285917
Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco
2014-01-01
Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required because of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied.
REGIONAL-SCALE WIND FIELD CLASSIFICATION EMPLOYING CLUSTER ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glascoe, L G; Glaser, R E; Chin, H S
2004-06-17
The classification of time-varying multivariate regional-scale wind fields at a specific location can assist event planning as well as consequence and risk analysis. Further, wind field classification involves data transformation and inference techniques that effectively characterize stochastic wind field variation. Such a classification scheme is potentially useful for addressing overall atmospheric transport uncertainty and meteorological parameter sensitivity issues. Different methods to classify wind fields over a location include the principal component analysis of wind data (e.g., Hardy and Walton, 1978) and the use of cluster analysis for wind data (e.g., Green et al., 1992; Kaufmann and Weber, 1996). The goalmore » of this study is to use a clustering method to classify the winds of a gridded data set, i.e, from meteorological simulations generated by a forecast model.« less
An Operational Coastal Forecasting System in Galicia (NW Spain)
NASA Astrophysics Data System (ADS)
Balseiro, C. F.; Carracedo, P.; Pérez, E.; Pérez, V.; Taboada, J.; Venacio, A.; Vilasa, L.
2009-09-01
The Galician coast (NW Iberian Peninsula coast) and mainly the Rias Baixas (southern Galician rias) are one of the most productive ecosystems in the world, supporting a very active fishing and aquiculture industry. This high productivity lives together with a high human pressure and an intense maritime traffic, which means an important environmental risk. Besides that, Harmful Algae Blooms (HAB) are common in this area, producing important economical losses in aquiculture. In this context, the development of an Operational Hydrodynamic Ocean Forecast System is the first step to the development of a more sophisticated Ocean Integrated Decision Support Tool. A regional oceanographic forecasting system in the Galician Coast has been developed by MeteoGalicia (the Galician regional meteorological agency) inside ESEOO project to provide forecasts on currents, sea level, water temperature and salinity. This system is based on hydrodynamic model MOHID, forced with the operational meteorological model WRF, supported daily at MeteoGalicia . Two grid meshes are running nested at different scales, one of ~2km at the shelf scale and the other one with a resolution of 500 m at the rias scale. ESEOAT (Puertos del Estado) model provide salinity and temperature fields which are relaxed at all depth along the open boundary of the regional model (~6km). Temperature and salinity initial fields are also obtained from this application. Freshwater input from main rivers are included as forcing in MOHID model. Monthly mean discharge data from gauge station have been provided by Aguas de Galicia. Nowadays a coupling between an hydrological model (SWAT) and the hydrodynamic one are in development with the aim to verify the impact of the rivers discharges. The system runs operationally daily, providing two days of forecast. First model verifications had been performed against Puertos del Estado buoys and Xunta de Galicia buoys network along the Galician coast. High resolution model results were validated against a CTDs profiles campaign carried out during an oil spill exercise in the Ria de Vigo in April 2007. During EROCIPS INTERREG IIIB and EASY INTERREG IVB projects, a Galician oceanographic observation network were built. Three stations located inside the Rias Baixas allow to collect meteorological and oceanographic data at different depths to calibrate and validate the modelization of the rias. To complete this network and to create a common data platform a new project emerged (RAIA INTERREG IVA). It will provide MeteoGalicia more scientific data to improve the study of the rias. Furthermore, MeteoGalicia is also involved in DRIFTER AMPERA project which allows to improve the capability of modelling and monitoring the trajectory of hazardous substances and inerts.
Assessment and Enhancement of MERRA Land Surface Hydrology Estimates
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; Koster, Randal D.; deLannoy, Gabrielle J. M.; Forman, Barton A.; Liu, Qing; Mahanama, Sarith P. P.; Toure, Ally
2012-01-01
The Modern-Era Retrospective analysis for Research and Applications (MERRA) is a state-ofthe-art reanalysis that provides, in addition to atmospheric fields, global estimates of soil moisture, latent heat flux, snow, and runoff for 1979-present. This study introduces a supplemental and improved set of land surface hydrological fields ("MERRA-Land") generated by re-running a revised version of the land component of the MERRA system. Specifically, the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameter values in the rainfall interception model, changes that effectively correct for known limitations in the MERRA surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ERA-Interim (ERA-I) reanalysis. MERRA-Land and ERA-I root zone soil moisture skills (against in situ observations at 85 US stations) are comparable and significantly greater than that of MERRA. Throughout the northern hemisphere, MERRA and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow observations from 18 US basins) of MERRA and MERRA-Land is typically higher than that of ERA-I. With a few exceptions, the MERRA-Land data appear more accurate than the original MERRA estimates and are thus recommended for those interested in using MERRA output for land surface hydrological studies.
Numerical model of the circulation and dispersion in the east Adriatic coastal waters
NASA Astrophysics Data System (ADS)
Beg Paklar, Gordana; Dzoic, Tomislav; Koracin, Darko; Matijevic, Slavica; Grbec, Branka; Ivatek-Sahdan, Stjepan
2017-04-01
The Regional Ocean Modeling System (ROMS) was implemented to reproduce physical properties of the area around submarine outlet Stobrec in the middle Adriatic coastal area. ROMS model run was forced with realistic atmospheric fields obtained from meteorological model Aladin, climatological river discharges, tides and dynamics of the surrounding area imposed at the open boundaries. Atmospheric forcing included momentum, heat and water fluxes calculated interactively from the Aladin surface fields during ROMS model simulations. Simulated fields from the Adriatic and shelf scale models were used to prescribe the initial and open boundary conditions for fine resolution coastal domain. Model results were compared with available CTD measurements and discussed in the light of the climatological circulation and thermohaline properties of the middle Adriatic coastal area. Variability in the circulation is related to the prevailing atmospheric conditions, changes in the hydrological conditions and water mass exchange at the open boundaries. Basic features of the coastal circulation are well reproduced by the ROMS model, as well as temperatures and salinities which are within corresponding seasonal intervals, although with lower stratification than measured ones. In order to reproduce dispersion of the passive tracer the ROMS model was coupled with Lagrangian dispersion model. Multiyear monitoring of the physical, chemical and biological parameters around the sewage outlet was used to assess the quality of the dispersion model results. Among measured parameters, redox potential of the surface sediment layer was selected to be compared with model results as its negative values are direct consequence of increased organic matter input that can be attributed to the sewage system inflow.
USAF Bioenvironmental Noise Data Handbook. Volume 160: KC-10A aircraft, near and far-field noise
NASA Astrophysics Data System (ADS)
Powell, R. G.
1982-09-01
The USAF KC-10A aircraft is an advanced tanker/cargo aircraft powered by three CF6-50C2 turbofan engines. This report provides measured and extrapolated data defining the bioacoustic environments produced by this aircraft operating on a concrete runup pad for eight engine/power configurations. Near-field data are reported for one location in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference levels, perceived noise levels, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Far-field data measured at 15 locations are normalized to standard meteorological conditions and extrapolated from 75-8000 meters to derive sets of equal-value contours for these same seven acoustic measures as functions of angle and distance from the source. Refer to Volume 1 of this handbook, USAF Bioenvironmental Noise Data Handbook, Vol 1: Organization, Content and Application, AMRL-TR-75-50(1) 1975, for discussion of the objective and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc.
The AFJROTC Program at Hopewell High School
ERIC Educational Resources Information Center
Schultes, Charles R., Jr.
1975-01-01
Describes the textbooks, the curricular, and co-curricular activities in the AFJROTC program at Hopewell High School. Includes a description of a specialized, fourth-year course extension which includes celestial navigation, communicative techniques, computer systems, meteorology, and Air Force Role in National Defense. (MLH)
Monitoring, modeling and mitigating impacts of wind farms on local meteorology
NASA Astrophysics Data System (ADS)
Baidya Roy, Somnath; Traiteur, Justin; Kelley, Neil
2010-05-01
Wind power is one of the fastest growing sources of energy. Most of the growth is in the industrial sector comprising of large utility-scale wind farms. Recent modeling studies have suggested that such wind farms can significantly affect local and regional weather and climate. In this work, we present observational evidence of the impact of wind farms on near-surface air temperatures. Data from perhaps the only meteorological field campaign in an operational wind farm shows that downwind temperatures are lower during the daytime and higher at night compared to the upwind environment. Corresponding radiosonde profiles at the nearby Edwards Air Force Base WMO meteorological station show that the diurnal environment is unstable while the nocturnal environment is stable during the field campaign. This behavior is consistent with the hypothesis proposed by Baidya Roy et al. (JGR 2004) that states that turbulence generated in the wake of rotors enhance vertical mixing leading to a warming/cooling under positive/negative potential temperature lapse rates. We conducted a set of 306 simulations with the Regional Atmospheric Modeling System (RAMS) to test if regional climate models can capture the thermal effects of wind farms. We represented wind turbines with a subgrid parameterization that assumes rotors to be sinks of momentum and sources of turbulence. The simulated wind farms consistently generated a localized warming/cooling under positive/negative lapse rates as hypothesized. We found that these impacts are inversely correlated with background atmospheric boundary layer turbulence. Thus, if the background turbulence is high due to natural processes, the effects of additional turbulence generated by wind turbine rotors are likely to be small. We propose the following strategies to minimize impacts of wind farms: • Engineering solution: design rotors that generate less turbulence in their wakes. Sensitivity simulations show that these turbines also increase the productivity of wind farms and reduce damages to downwind rotors. • Siting solution: develop wind farms in regions where ABL turbulence is naturally high. Since, turbulence data is not widely recorded, we use surface KE dissipation rate as a proxy for ABL turbulence. Indeed, in our simulations, these 2 parameters are strongly positively correlated (P<0.99). Using the JRA25 dataset, comprising of 25-year long 6-hourly global meteorological data, we identify such regions in the world. These regions that include the Midwest and Great Plains as well as large parts of northern Europe and western China are appropriate sites for low-impact wind farms.
Weathering the empire: meteorological research in the early British Straits Settlements.
Williamson, Fiona
2015-09-01
This article explores meteorological interest and experimentation in the early history of the Straits Settlements. It centres on the establishment of an observatory in 1840s Singapore and examines the channels that linked the observatory to a global community of scientists, colonial officers and a reading public. It will argue that, although the value of overseas meteorological investigation was recognized by the British government, investment was piecemeal and progress in the field often relied on the commitment and enthusiasm of individuals. In the Straits Settlements, as elsewhere, these individuals were drawn from military or medical backgrounds, rather than trained as dedicated scientists. Despite this, meteorology was increasingly recognized as of fundamental importance to imperial interests. Thus this article connects meteorology with the history of science and empire more fully and examines how research undertaken in British dependencies is revealing of the operation of transnational networks in the exchange of scientific knowledge.
Mesoscale atmospheric modeling for emergency response
NASA Astrophysics Data System (ADS)
Osteen, B. L.; Fast, J. D.
Atmospheric transport models for emergency response have traditionally utilized meteorological fields interpolated from sparse data to predict contaminant transport. Often these fields are adjusted to satisfy constraints derived from the governing equations of geophysical fluid dynamics, e.g. mass continuity. Gaussian concentration distributions or stochastic models are then used to represent turbulent diffusion of a contaminant in the diagnosed meteorological fields. The popularity of these models derives from their relative simplicity, ability to make reasonable short-term predictions, and, most important, execution speed. The ability to generate a transport prediction for an accidental release from the Savannah River Site in a time frame which will allow protective action to be taken is essential in an emergency response operation.
NASA Technical Reports Server (NTRS)
White, Cary B.; Houser, Paul R.; Arain, Altaf M.; Yang, Zong-Liang; Syed, Kamran; Shuttleworth, W. James
1997-01-01
Meteorological measurements in the Walnut Gulch catchment in Arizona were used to synthesize a distributed, hourly-average time series of data across a 26.9 by 12.5 km area with a grid resolution of 480 m for a continuous 18-month period which included two seasons of monsoonal rainfall. Coupled surface-atmosphere model runs established the acceptability (for modelling purposes) of assuming uniformity in all meteorological variables other than rainfall. Rainfall was interpolated onto the grid from an array of 82 recording rain gauges. These meteorological data were used as forcing variables for an equivalent array of stand-alone Biosphere-Atmosphere Transfer Scheme (BATS) models to describe the evolution of soil moisture and surface energy fluxes in response to the prevalent, heterogeneous pattern of convective precipitation. The calculated area-average behaviour was compared with that given by a single aggregate BATS simulation forced with area-average meteorological data. Heterogeneous rainfall gives rise to significant but partly compensating differences in the transpiration and the intercepted rainfall components of total evaporation during rain storms. However, the calculated area-average surface energy fluxes given by the two simulations in rain-free conditions with strong heterogeneity in soil moisture were always close to identical, a result which is independent of whether default or site-specific vegetation and soil parameters were used. Because the spatial variability in soil moisture throughout the catchment has the same order of magnitude as the amount of rain failing in a typical convective storm (commonly 10% of the vegetation's root zone saturation) in a semi-arid environment, non-linearitv in the relationship between transpiration and the soil moisture available to the vegetation has limited influence on area-average surface fluxes.
Skilful seasonal forecasts of streamflow over Europe?
NASA Astrophysics Data System (ADS)
Arnal, Louise; Cloke, Hannah L.; Stephens, Elisabeth; Wetterhall, Fredrik; Prudhomme, Christel; Neumann, Jessica; Krzeminski, Blazej; Pappenberger, Florian
2018-04-01
This paper considers whether there is any added value in using seasonal climate forecasts instead of historical meteorological observations for forecasting streamflow on seasonal timescales over Europe. A Europe-wide analysis of the skill of the newly operational EFAS (European Flood Awareness System) seasonal streamflow forecasts (produced by forcing the Lisflood model with the ECMWF System 4 seasonal climate forecasts), benchmarked against the ensemble streamflow prediction (ESP) forecasting approach (produced by forcing the Lisflood model with historical meteorological observations), is undertaken. The results suggest that, on average, the System 4 seasonal climate forecasts improve the streamflow predictability over historical meteorological observations for the first month of lead time only (in terms of hindcast accuracy, sharpness and overall performance). However, the predictability varies in space and time and is greater in winter and autumn. Parts of Europe additionally exhibit a longer predictability, up to 7 months of lead time, for certain months within a season. In terms of hindcast reliability, the EFAS seasonal streamflow hindcasts are on average less skilful than the ESP for all lead times. The results also highlight the potential usefulness of the EFAS seasonal streamflow forecasts for decision-making (measured in terms of the hindcast discrimination for the lower and upper terciles of the simulated streamflow). Although the ESP is the most potentially useful forecasting approach in Europe, the EFAS seasonal streamflow forecasts appear more potentially useful than the ESP in some regions and for certain seasons, especially in winter for almost 40 % of Europe. Patterns in the EFAS seasonal streamflow hindcast skill are however not mirrored in the System 4 seasonal climate hindcasts, hinting at the need for a better understanding of the link between hydrological and meteorological variables on seasonal timescales, with the aim of improving climate-model-based seasonal streamflow forecasting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulfmeyer, Volker; Behrendt, Andreas; Kottmeir, Christoph
2011-02-24
Within the frame of the international field campaign COPS (Convective and Orographically-induced Precipitation Study), a large suite of state-of-the-art meteorological instrumentation was operated, partially combined for the first time. The COPS field phase was performed from 01 June - 31 August 2007 in a low-mountain area in southwestern Germany/eastern France covering the Vosges Mountains, the Rhine valley and the Black Forest Mountains. The collected data set covers the entire evolution of convective precipitation events in complex terrain from their initiation, to their development and mature phase up to their decay. 18 Intensive Operation Periods (IOPs) with 34 operation days andmore » 8 additional Special Observation Periods (SOPs) were performed providing a comprehensive data set covering different forcing conditions. In this paper an overview of the COPS scientific strategy, the field phase, and its first accomplishments is given. Some highlights of the campaign are illustrated with several measurement examples. It is demonstrated that COPS provided new insight in key processes leading to convection initiation and to the modification of precipitation by orography, in the improvement of QPF by the assimilation of new observations, and in the performance of ensembles of convection permitting models in complex terrain.« less
NASA Technical Reports Server (NTRS)
Brenton, James C.; Barbre. Robert E., Jr.; Decker, Ryan K.; Orcutt, John M.
2018-01-01
The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) Natural Environments Branch (EV44) has provided atmospheric databases and analysis in support of space vehicle design and day-of-launch operations for NASA and commercial launch vehicle programs launching from the NASA Kennedy Space Center (KSC), co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station. The ER complex is one of the most heavily instrumented sites in the United States with over 31 towers measuring various atmospheric parameters on a continuous basis. An inherent challenge with large sets of data consists of ensuring erroneous data is removed from databases, and thus excluded from launch vehicle design analyses. EV44 has put forth great effort in developing quality control (QC) procedures for individual meteorological instruments, however no standard QC procedures for all databases currently exists resulting in QC databases that have inconsistencies in variables, methodologies, and periods of record. The goal of this activity is to use the previous efforts by EV44 to develop a standardized set of QC procedures from which to build meteorological databases from KSC and the ER, while maintaining open communication with end users from the launch community to develop ways to improve, adapt and grow the QC database. Details of the QC procedures will be described. As the rate of launches increases with additional launch vehicle programs, it is becoming more important that weather databases are continually updated and checked for data quality before use in launch vehicle design and certification analyses.
NASA Astrophysics Data System (ADS)
Khajehei, Sepideh; Moradkhani, Hamid
2015-04-01
Producing reliable and accurate hydrologic ensemble forecasts are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model structure, and model parameters. Producing reliable and skillful precipitation ensemble forecasts is one approach to reduce the total uncertainty in hydrological applications. Currently, National Weather Prediction (NWP) models are developing ensemble forecasts for various temporal ranges. It is proven that raw products from NWP models are biased in mean and spread. Given the above state, there is a need for methods that are able to generate reliable ensemble forecasts for hydrological applications. One of the common techniques is to apply statistical procedures in order to generate ensemble forecast from NWP-generated single-value forecasts. The procedure is based on the bivariate probability distribution between the observation and single-value precipitation forecast. However, one of the assumptions of the current method is fitting Gaussian distribution to the marginal distributions of observed and modeled climate variable. Here, we have described and evaluated a Bayesian approach based on Copula functions to develop an ensemble precipitation forecast from the conditional distribution of single-value precipitation forecasts. Copula functions are known as the multivariate joint distribution of univariate marginal distributions, which are presented as an alternative procedure in capturing the uncertainties related to meteorological forcing. Copulas are capable of modeling the joint distribution of two variables with any level of correlation and dependency. This study is conducted over a sub-basin in the Columbia River Basin in USA using the monthly precipitation forecasts from Climate Forecast System (CFS) with 0.5x0.5 Deg. spatial resolution to reproduce the observations. The verification is conducted on a different period and the superiority of the procedure is compared with Ensemble Pre-Processor approach currently used by National Weather Service River Forecast Centers in USA.
Global Climate Change: Valuable Insights from Concordant and Discordant Ice Core Histories
NASA Astrophysics Data System (ADS)
Mosley-Thompson, E.; Thompson, L. G.; Porter, S. E.; Goodwin, B. P.; Wilson, A. B.
2014-12-01
Earth's ice cover is responding to the ongoing large-scale warming driven in part by anthropogenic forces. The highest tropical and subtropical ice fields are dramatically shrinking and/or thinning and unique climate histories archived therein are now threatened, compromised or lost. Many ice fields in higher latitudes are also experiencing and recording climate system changes although these are often manifested in less evident and spectacular ways. The Antarctic Peninsula (AP) has experienced a rapid, widespread and dramatic warming over the last 60 years. Carefully selected ice fields in the AP allow reconstruction of long histories of key climatic variables. As more proxy climate records are recovered it is clear they reflect a combination of expected and unexpected responses to seemingly similar climate forcings. Recently acquired temperature and precipitation histories from the Bruce Plateau are examined within the context provided by other cores recently collected in the AP. Understanding the differences and similarities among these records provides a better understanding of the forces driving climate variability in the AP over the last century. The Arctic is also rapidly warming. The δ18O records from the Bona-Churchill and Mount Logan ice cores from southeast Alaska and southwest Yukon Territory, respectively, do not record this strong warming. The Aleutian Low strongly influences moisture transport to this geographically complex region, yet its interannual variability is preserved differently in these cores located just 110 km apart. Mount Logan is very sensitive to multi-decadal to multi-centennial climate shifts in the tropical Pacific while low frequency variability on Bona-Churchill is more strongly connected to Western Arctic sea ice extent. There is a natural tendency to focus more strongly on commonalities among records, particularly on regional scales. However, it is also important to investigate seemingly poorly correlated records, particularly those from geographically complex settings that appear to be dominated by similar large-scale climatological processes. Better understanding of the spatially and temporally diverse responses in such regions will expand our understanding of the mechanisms forcing climate variability in meteorologically complex environments.
NASA Astrophysics Data System (ADS)
Pineda-Martinez, Luis F.; Carbajal, Noel
2009-08-01
A series of numerical experiments were carried out to study the effect of meteorological events such as warm and cold air masses on climatic features and variability of a understudied region with strong topographic gradients in the northeastern part of Mexico. We applied the mesoscale model MM5. We investigated the influence of soil moisture availability in the performance of the model under two representative events for winter and summer. The results showed that a better resolution in land use cover improved the agreement among observed and calculated data. The topography induces atmospheric circulation patterns that determine the spatial distribution of climate and seasonal behavior. The numerical experiments reveal regions favorable to forced convection on the eastern side of the mountain chains Eastern Sierra Madre and Sierra de Alvarez. These processes affect the vertical and horizontal structure of the meteorological variables along the topographic gradient.
NASA Technical Reports Server (NTRS)
Brenton, James; Roberts, Barry C.
2017-01-01
The purpose of this document is to provide an overview of instrumentation discussed at the Meteorological Interface Control Working Group (MSICWG), a reference for data formats currently used by members of the group, a summary of proposed formats for future use by the group, an overview of the data networks of the group's members. This document will be updated as new systems are introduced, old systems are retired, and when the MSICWG community necessitates a change to the formats. The MSICWG consists of personnel from the National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC), NASA Marshall Space Flight Center (MSFC), NASA Johnson Space Center (JSC), National Oceanic and Atmospheric Administration National Weather Service Spaceflight Meteorology Group (SMG), and the United States Air Force (USAF) 45th Space Wing and Weather Squadron. The purpose of the group is to coordinate the distribution of weather related data to support NASA space launch related activities.
Uncertainties in Episodic Ozone Modeling Stemming from Uncertainties in the Meteorological Fields.
NASA Astrophysics Data System (ADS)
Biswas, Jhumoor; Trivikrama Rao, S.
2001-02-01
This paper examines the uncertainty associated with photochemical modeling using the Variable-Grid Urban Airshed Model (UAM-V) with two different prognostic meteorological models. The meteorological fields for ozone episodes that occurred during 17-20 June, 12-15 July, and 30 July-2 August in the summer of 1995 were derived from two meteorological models, the Regional Atmospheric Modeling System (RAMS) and the Fifth-Generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5). The simulated ozone concentrations from the two photochemical modeling systems, namely, RAMS/UAM-V and MM5/UAM-V, are compared with each other and with ozone observations from several monitoring sites in the eastern United States. The overall results indicate that neither modeling system performs significantly better than the other in reproducing the observed ozone concentrations. The results reveal that there is a significant variability, about 20% at the 95% level of confidence, in the modeled 1-h ozone concentration maxima from one modeling system to the other for a given episode. The model-to-model variability in the simulated ozone levels is for most part attributable to the unsystematic type of errors. The directionality for emission controls (i.e., NOx versus VOC sensitivity) is also evaluated with UAM-V using hypothetical emission reductions. The results reveal that not only the improvement in ozone but also the VOC-sensitive and NOx-sensitive regimes are influenced by the differences in the meteorological fields. Both modeling systems indicate that a large portion of the eastern United States is NOx limited, but there are model-to-model and episode-to-episode differences at individual grid cells regarding the efficacy of emission reductions.
NASA Astrophysics Data System (ADS)
Bae, Young-Ho; Jo, Jung Hyun; Yim, Hong-Suh; Park, Young-Sik; Park, Sun-Youp; Moon, Hong Kyu; Choi, Young-Jun; Jang, Hyun-Jung; Roh, Dong-Goo; Choi, Jin; Park, Maru; Cho, Sungki; Kim, Myung-Jin; Choi, Eun-Jung; Park, Jang-Hyun
2016-06-01
The correlation between meteorological data collected at the optical wide-field patrol network (OWL-Net) Station No. 1 and the seeing of satellite optical observation data was analyzed. Meteorological data and satellite optical observation data from June 2014 to November 2015 were analyzed. The analyzed meteorological data were the outdoor air temperature, relative humidity, wind speed, and cloud index data, and the analyzed satellite optical observation data were the seeing full-width at half-maximum (FWHM) data. The annual meteorological pattern for Mongolia was analyzed by collecting meteorological data over four seasons, with data collection beginning after the installation and initial set-up of the OWL-Net Station No. 1 in Mongolia. A comparison of the meteorological data and the seeing of the satellite optical observation data showed that the seeing degrades as the wind strength increases and as the cloud cover decreases. This finding is explained by the bias effect, which is caused by the fact that the number of images taken on the less cloudy days was relatively small. The seeing FWHM showed no clear correlation with either temperature or relative humidity.
NASA Astrophysics Data System (ADS)
McDonald, S. E.; Sassi, F.; Tate, J.; McCormack, J.; Kuhl, D. D.; Drob, D. P.; Metzler, C.; Mannucci, A. J.
2018-06-01
The lower atmosphere contributes significantly to the day-to-day variability of the ionosphere, especially during solar minimum conditions. Ionosphere/atmosphere model simulations that incorporate meteorology from data assimilation analysis products can be critically important for elucidating the physical processes that have substantial impact on ionospheric weather. In this study, the NCAR Whole Atmosphere Community Climate Model, extended version with specified dynamics (SD-WACCM-X) is coupled with an ionospheric model (Sami3 is Another Model of the Ionosphere) to study day-to-day variability in the ionosphere during January 2010. Lower atmospheric weather patterns are introduced into the SAMI3/SD-WACCM-X simulations using the 6-h Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS-ALPHA) data assimilation products. The same time period is simulated using the new atmospheric forecast model, the High Altitude Navy Global Environmental Model (HA-NAVGEM), a hybrid 4D-Var prototype data assimilation with the ability to produce meteorological fields at a 3-h cadence. Our study shows that forcing SD-WACCM-X with HA-NAVGEM better resolves the semidiurnal tides and introduces more day-to-day variability into the ionosphere than forcing with NOGAPS-ALPHA. The SAMI3/SD-WACCM-X/HA-NAVGEM simulation also more accurately captures the longitudinal variability associated with non-migrating tides in the equatorial ionization anomaly (EIA) region as compared to total electron content (TEC) maps derived from GPS data. Both the TEC maps and the SAMI3/SD-WACCM-X/HA-NAVGEM simulation show an enhancement in TEC over South America during 17-21 January 2010, which coincides with the commencement of a stratospheric warming event on 19 January 2010. Analysis of the SAMI3/SD-WACCM-X/HA-NAVGEM simulations indicates non-migrating tides (including DW4, DE2 and SW5) played a role during 17-21 January in shifting the phase of the wave-3 pattern in the ionosphere on these days. Constructive interference of wave-3 and wave-4 patterns in the E × B drifts contributed to the enhanced TEC in the South American longitude sector. The results of the study highlight the importance of high fidelity meteorology in understanding the day-to-day variability of the ionosphere.
5. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM ...
5. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM SOUTH FACE OF LAUNCH OPERATIONS BUILDING. MICROWAVE DISH IN FOREGROUND. METEOROLOGICAL TOWER IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
NASA Astrophysics Data System (ADS)
Ryken, A.; Gochis, D.; Carroll, R. W. H.; Bearup, L. A.; Williams, K. H.; Maxwell, R. M.
2017-12-01
The hydrology of high-elevation, mountainous regions is poorly represented in Earth Systems Models (ESMs). In addition to regulating downstream water delivery, these ecosystems play an important role in the storage and land-atmosphere exchange of carbon and water. Water balances are sensitive to the amount of water stored in the snowpack (SWE) and the amount of water leaving the system in the form of evapotranspiration—two pieces of the hydrologic cycle that are difficult to observe and model in heterogeneous mountainous regions due to spatially variant weather patterns. In an effort to resolve this hydrologic gap in ESMs, this study seeks to better understand the interactions between groundwater, carbon flux, and the lower atmosphere in these high-altitude environments through integration of field observations and model simulations. We compare model simulations to field observations to elucidate process performance combined with a sensitivity analysis to better understand parameter uncertainty. Observations from a meteorological station in the East River Basin are used to force an integrated single-column hydrologic model, ParFlow-CLM. This met station is co-located with an eddy covariance tower, which, along with snow surveys, is used to better constrain the water, carbon, and energy fluxes in the coupled land-atmosphere model to increase our understanding of high-altitude headwaters. Preliminary results suggest the model compares well to the eddy covariance tower and field observations, shown through both correct magnitude and timing of peak SWE along with similar magnitudes and diurnal patterns of heat and water fluxes. Initial sensitivity analysis results show that an increase in temperature leads to a decrease in peak SWE as well as an increase in latent heat revealing a sensitivity of the model to air temperature. Further sensitivity analysis will help us understand more parameter uncertainty. Through obtaining more accurate and higher resolution meteorological data and applying it to a coupled hydrologic model, this study can lead to better representation of mountainous environments in all ESMs.
NASA Astrophysics Data System (ADS)
Halenka, T.; Huszar, P.; Belda, M.
2010-09-01
Recent studies show considerable effect of atmospheric chemistry and aerosols on climate on regional and local scale. For the purpose of qualifying and quantifying the magnitude of climate forcing due to atmospheric chemistry/aerosols on regional scale, the development of coupling of regional climate model and chemistry/aerosol model was started on the Department of Meteorology and Environmental Protection, Charles University, Prague, for the EC FP6 Project QUANTIFY and EC FP6 Project CECILIA. For this coupling, existing regional climate model and chemistry transport model have been used at very high resolution of 10km grid. Climate is calculated using RegCM while chemistry is solved by CAMx. The experiments with the couple have been prepared for EC FP7 project MEGAPOLI assessing the impact of the megacities and industrialized areas on climate. Meteorological fields generated by RCM drive CAMx transport, chemistry and a dry/wet deposition. A preprocessor utility was developed for transforming RegCM provided fields to CAMx input fields and format. New domain have been settled for MEGAPOLI purpose in 10km resolution including all the European "megacities" regions, i.e. London metropolitan area, Paris region, industrialized Ruhr area, Po valley etc. There is critical issue of the emission inventories available for 10km resolution including the urban hot-spots, TNO emissions are adopted for this sensitivity study in 10km resolution for comparison of the results with the simulation based on merged TNO emissions, i.e. basically original EMEP emissions at 50 km grid. The sensitivity test to switch on/off Paris area emissions is analysed as well. Preliminary results for year 2005 are presented and discussed to reveal whether the concept of effective emission indices could help to parameterize the urban plume effects in lower resolution models. Interactive coupling is compared to study the potential of possible impact of urban air-pollution to the urban area climate.
NASA Technical Reports Server (NTRS)
Lambert, Winifred; Roeder, William
2007-01-01
This conference presentation describes the improvement of a set of lightning probability forecast equations that are used by the 45th Weather Squadron forecasters for their daily 1100 UTC (0700 EDT) weather briefing during the warm season months of May-September. This information is used for general scheduling of operations at Cape Canaveral Air Force Station and Kennedy Space Center. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts during Shuttle flight operations. Five modifications were made by the Applied Meteorology Unit: increased the period of record from 15 to 17 years, changed the method of calculating the flow regime of the day, calculated a new optimal layer relative humidity, used a new smoothing technique for the daily climatology, and used a new valid area. The test results indicated that the modified equations showed and increase in skill over the current equations, good reliability, and an ability to distinguish between lightning and non-lightning days.
NASA Technical Reports Server (NTRS)
Lambert, Winifred; Roeder, William
2007-01-01
This conference presentation describes the improvement of a set of lightning probability forecast equations that are used by the 45th Weather Squadron forecasters for their daily 1100 UTC (0700 EDT) weather briefing during the warm season months of May- September. This information is used for general scheduling of operations at Cape Canaveral Air Force Station and Kennedy Space Center. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts during Shuttle flight operations. Five modifications were made by the Applied Meteorology Unit: increased the period of record from 15 to 17 years, changed the method of calculating the flow regime of the day, calculated a new optimal layer relative humidity, used a new smoothing technique for the daily climatology, and used a new valid area. The test results indicated that the modified equations showed and increase in skill over the current equations, good reliability, and an ability to distinguish between lightning and non-lightning days.
Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA
NASA Technical Reports Server (NTRS)
Dreher, Joseph G.; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry
2009-01-01
The peak winds near the surface are an important forecast element for space shuttle landings. As defined in the Flight Rules (FR), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings, and is required to issue surface average and 10-minute peak wind speed forecasts. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a PC-based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC; Lambert 2003). However, the shuttle occasionally may land at Edwards Air Force Base (EAFB) in southern California when weather conditions at KSC in Florida are not acceptable, so SMG forecasters requested a similar tool be developed for EAFB.
NASA Technical Reports Server (NTRS)
Lambert, Winifred; Roeder, William
2008-01-01
This conference presentation describes the improvement of a set of lightning probability forecast equations that are used by the 45th Weather Squadron forecasters for their daily 1100 UTC (0700 EDT) weather briefing during the warm season months of May-September. This information is used for general scheduling of operations at Cape Canaveral Air Force Station and Kennedy Space Center. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts during Shuttle flight operations. Five modifications were made by the Applied Meteorology Unit: increased the period of record from 15 to 17 years, changed the method of calculating the flow regime of the day, calculated a new optimal layer relative humidity, used a new smoothing technique for the daily climatology, and used a new valid area. The test results indicated that the modified equaitions showed and increase in skill over the current equations, good reliability, and an ability to distinguish between lightning and non-lightning days.
NASA Technical Reports Server (NTRS)
Lambert, Winifred; Roeder, William
2013-01-01
This conference poster describes the improvement of a set of lightning probability forecast equations that are used by the 45th Weather Squadron forecasters for their daily 1100 UTC (0700 EDT) weather briefing during the warm season months of May-September. This information is used for general scheduling of operations at Cape Canaveral Air Force Station and Kennedy Space Center. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts during Shuttle flight operations. Five modifications were made by the Applied Meteorology Unit: increased the period of record from 15 to 17 years, changed the method of calculating the flow regime of the day, calculated a new optimal layer relative humidity, used a new smoothing technique for the daily climatology, and used a new valid area. The test results indicated that the modified equations showed and increase in skill over the current equations, good reliability and an ability to distinguish between lightning and non-lightning days.
NASA Astrophysics Data System (ADS)
von Hippel, Matthew Hans Benjamin
A novel vehicle concept is introduced and its feasibility as an autonomous, self-propelled weather buoy for use in violent storm systems is analyzed. The vehicle concept is a spar sailboat -- consisting of only a deep keel and a sailing rig; no hull -- a design which is intended to improve longevity in rough seas as well as provide ideal placement opportunities for meteorological sensors. To evaluate the hypothetical locomotive and meteorological observation capabilities of the concept sailing spar in hurricane-like conditions, several relevant oceanographic phenomena are analyzed with the performance of the concept vehicle in mind. Enthalpy transfer from the ocean to the air is noted as the primary driving force of tropical storms and therefore becomes the measuring objective of the sailing spar. A discrete, iterative process for optimizing driving force while achieving equilibrium between the four airfoil surfaces is used to steer the sailing spar towards any objective despite variable and opposing simulated winds. Based on the limitations of sailing theory, logic is developed to autonomously navigate the sailing spar between human-selected waypoints on a digitized geographic map. Due the perceived inability to measure air-sea enthalpy exchange because the nature of tropical storms and due to its small scale, the sailing spar is deemed infeasible as a hurricane-capable meteorological observation platform.
The impact of snow and glaciers on meteorological variables in the Khumbu Valley, Nepalese Himalaya.
NASA Astrophysics Data System (ADS)
Potter, E.; Orr, A.; Willis, I.
2017-12-01
Previous observational studies have suggested that snow and glaciers have a big impact on local meteorological variables in the Himalayas, in particular affecting near surface temperature and the localised wind system. Understanding the impact of changing surface conditions on these systems and is crucial in improving future predictions of glacier melt and precipitation in the Himalayas. However, the mechanisms that control the local meteorology remain poorly understood due to the lack of in-situ data and detailed modelling studies. To investigate these mechanisms, we run the Weather Research and Forecasting (WRF) model at kilometre scale resolution for one month during the monsoon over the Khumbu Valley, Nepalese Himalaya. The model is run with and without snow and glacier coverage at the surface. The impact of adding debris cover into the model is also investigated. In the control run with snow and ice, thermally-driven near-surface winds are found to travel up valley during the day except over the glacier slopes. When the snow and ice is removed from the model, the up valley winds extend over the entire slope. Removal of the snow and ice also results in changes to cloud cover and hydrometeors. A momentum budget approach is used to fully understand the mechanisms that maintain the localised wind system, e.g. to determine the contributions from local forcing or synoptic forcing.
NASA Astrophysics Data System (ADS)
Wu, X.; Shen, Y.; Wang, N.; Pan, X.; Zhang, W.; He, J.; Wang, G.
2017-12-01
Snowmelt water is an important freshwater resource in the Altay Mountains in northwest China, and it is also crucial for local ecological system, economic and social sustainable development; however, warming climate and rapid spring snowmelt can cause floods that endanger both eco-environment and public and personal property and safety. This study simulates snowmelt in the Kayiertesi River catchment using a temperature-index model based on remote sensing coupled with high-resolution meteorological data obtained from NCEP reanalysis fields that were downscaled using Weather Research Forecasting model, then bias-corrected using a statistical downscaled model. Validation of the forcing data revealed that the high-resolution meteorological fields derived from downscaled NCEP reanalysis were reliable for driving the snowmelt model. Parameters of temperature-index model based on remote sensing were calibrated for spring 2014, and model performance was validated using MODIS snow cover and snow observations from spring 2012. The results show that the temperature-index model based on remote sensing performed well, with a simulation mean relative error of 6.7% and a Nash-Sutchliffe efficiency of 0.98 in spring 2012 in the river of Altay Mountains. Based on the reliable distributed snow water equivalent simulation, daily snowmelt runoff was calculated for spring 2012 in the basin. In the study catchment, spring snowmelt runoff accounts for 72% of spring runoff and 21% of annual runoff. Snowmelt is the main source of runoff for the catchment and should be managed and utilized effectively. The results provide a basis for snowmelt runoff predictions, so as to prevent snowmelt-induced floods, and also provide a generalizable approach that can be applied to other remote locations where high-density, long-term observational data is lacking.
NASA Astrophysics Data System (ADS)
Houborg, R.; McCabe, M. F.; Rosas Aguilar, J.; Anderson, M. C.; Hain, C.
2014-12-01
The Middle East and North Africa (MENA) region is an area characterized by limited fresh water resources, an often inefficient use of these, and relatively poor in-situ monitoring as a result of sparse meteorological observations. Enhanced satellite-based monitoring systems are needed for aiding local water resource and agricultural management activities in these data poor arid environments. A multi-sensor and multi-scale land-surface flux monitoring capacity is being implemented over parts of MENA in order to provide meaningful decision support at relevant spatiotemporal scales. The integrated modeling system uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI), and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) in conjunction with model reanalysis data and remotely sensed data from polar orbiting (Landsat and MODIS; MODerate resolution Imaging Spectroradiometer) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate daily estimates of land surface fluxes down to sub-field scale (i.e. 30 m). Within this modeling system, thermal infrared satellite data provide information about the sub-surface moisture status and plant stress, obviating the need for precipitation input and error-prone soil surface characterizations. In this study, the integrated ALEXI-DisALEXI-STARFM framework is applied over an irrigated agricultural region in Saudi Arabia, and the daily estimates of Landsat scale water, energy and carbon fluxes are evaluated against available flux tower observations and other independent in-situ and satellite-based records. The study addresses the challenges associated with time-continuous sub-field scale mapping of land-surface fluxes in a harsh desert environment, and looks into the optimization of model descriptions and parameterizations and meteorological forcing and vegetation inputs for application over these regions.
NASA Astrophysics Data System (ADS)
Rounce, D.; McKinney, D. C.
2013-12-01
Debris cover has a large impact on sub-debris ablation rates and glacier evolution. A thin debris layer may enhance ablation by reducing albedo increasing radiation absorption, while thicker debris insulates the glacier causing ablation to decrease. Debris thickness, thermal conductivity, and meteorological conditions may be measured in the field, but they require extensive fieldwork (Brock et al., 2010; Nicholson and Benn, 2012). This has forced many simplifications and assumptions in models. Satellite imagery combined with an energy balance model has been used with to extract information about debris cover remotely (Nakawo and Rana, 1999; Zhang et al., 2011). The spatial distribution of thermal resistances derived from these studies have agreed well with field values; however, the values were considerably lower than the field values. The difference has been attributed to the mixed pixel effect. Foster et al. (2012) developed an energy balance model that agrees well with debris thickness measured in the field. The model requires knowledge of the thermal conductivity and utilizes a relationship between air and surface temperature to lower sensible heat fluxes. We derive thermal resistances of debris-covered glaciers from satellite imagery in the Everest area. Previous satellite studies have assumed a linear debris temperature gradient, which is valid for time periods of 24 hours or greater (Nicholson and Benn, 2006); however, gradients during the day are nonlinear (Nicholson and Benn, 2006; Reid and Brock, 2010). Landsat 7 imagery is used to account for the non-linear gradient, using the ratio of temperature gradient in the upper 10cm versus the entire debris thickness. These values are derived from temperature profiles on Ngozumpa Glacier (Nicholson, 2004). Meteorological data are obtained from the Pyramid Station. The derived thermal resistances agree well with those found on debris-covered glaciers in the Everest region. Brock, B., Mihalcea, C., Kirkbride, M., Diolaiuti, G., Cutler, M., Smiraglia, C. Meteorology and surface energy fluxes in the 2005-2007 ablation seasons at the Miage debris-covered glacier. J. Geoph. Res., 115, 2010 Foster, L., Brock, B., Cutler, M., Diotri, F. A physically based method for estimating supraglacial debris thickness from thermal band remote-sensing data. J. Glaciol. 58(210):677-691, 2012 Nakawo, M., Rana, B. Estimate of Ablation Rate of Glacier Ice Under a Supraglacial Debris Layer. Geografiska Annaler 81(4):695-701, 1999 Nicholson, L. Modelling melt beneath supraglacial debris: implications for the climatic response of debris-covered glaciers. PhD thesis, Univ. of St Andrews, 2004 Nicholson, L., Benn, D. Calculating ice melt beneath a debris layer using meteorological data. J. Glaciol. 52(178):463-470, 2006 Nicholson, L., Benn, D. Properties of Natural Supraglacial Debris in Relation to Modelling Sub-Debris Ice Ablation. Earth Surf. Proc. and Landforms 38(5):490-501, 2012 Reid, T., Brock, B. An Energy-Balance Model for Debris-Covered Glaciers Including Heat Conduction through the Debris Layer. J. Glaciol. 56(199):903-916, 2010 Zhang, Y., Fujita, K., Liu, S., Liu, Q., Nuimura, T. Distribution of Debris Thickness and its Effect on Ice Melt at Hailuogou Glacier. J. Glaciol. 57(206):1147-1157, 2011
NASA Astrophysics Data System (ADS)
Myles, L.; Heuer, M. W.
2012-12-01
Atmospheric ammonia (NH3) is a reduced form of reactive nitrogen that is primarily emitted from agricultural activities. NH3 volatilizes from animal waste and fertilized land directly into the atmosphere where it can either react with other gases to form fine particulate matter or deposit on surfaces through air-surface exchange processes. Field measurements in different ecosystems and under various conditions are necessary to improve the understanding of the complex relationships between ambient NH3 and meteorological parameters, such as temperature and relative humidity, which influence volatilization rates and ultimately, ambient concentrations near emission sources. However, the measurement of ambient NH3 is challenging. NH3 is hydroscopic and reactive, and measurement techniques are subject to errors caused by sampling artifacts and other interferences. Recent advancements have led to improved techniques that allow real-time measurement of ambient NH3. A cavity ring-down spectrometer was deployed at a cattle research facility in Knoxville, TN during spring 2012 to measure ambient NH3, and meteorological instrumentation was collocated to measure 3-D winds, temperature, relative humidity, precipitation and other parameters (z = 2 m). The study site was rolling pasture typical of the eastern Tennessee Valley and included two large barns and approximately 30-40 cattle. Daytime ambient NH3 averaged 15-20 ppb most days with lows of approximately 7 ppb at night. Higher concentrations (greater than 50 ppb) seemed to correlate with higher temperatures (greater than 27 C), although the data are not consistent. Several instances of 100 ppb concentrations were measured when temperatures were high and winds were from the direction of the barns. Overall, the study shows that ambient NH3 levels near agricultural emission sources may vary greatly with time and a variety of factors, including meteorological conditions. The data support the need for real-time measurements of NH3 to determine how environmental conditions can affect ambient concentrations and therefore, the amount of NH3 available in the atmosphere to form particulate matter or participate in deposition processes.
NASA Astrophysics Data System (ADS)
Leauthaud, Crystele; Cappelaere, Bernard; Demarty, Jérôme; Guichard, Françoise; Velluet, Cécile; Kergoat, Laurent; Vischel, Théo; Grippa, Manuela; Mouhaimouni, Mohammed; Bouzou Moussa, Ibrahim; Mainassara, Ibrahim; Sultan, Benjamin
2017-04-01
The Sahel has experienced strong climate variability in the past decades. Understanding its implications for natural and cultivated ecosystems is pivotal in a context of high population growth and mainly agriculture-based livelihoods. However, efforts to model processes at the land-atmosphere interface are hindered, particularly when the multi-decadal timescale is targeted, as climatic data are scarce, largely incomplete and often unreliable. This study presents the generation of a long-term, high-temporal resolution, multivariate local climatic data set for Niamey, Central Sahel. The continuous series spans the period 1950-2009 at a 30-min timescale and includes ground station-based meteorological variables (precipitation, air temperature, relative and specific humidity, air pressure, wind speed, downwelling long- and short-wave radiation) as well as process-modelled surface fluxes (upwelling long- and short-wave radiation,latent, sensible and soil heat fluxes and surface temperature). A combination of complementary techniques (linear/spline regressions, a multivariate analogue method, artificial neural networks and recursive gap filling) was used to reconstruct missing meteorological data. The complete surface energy budget was then obtained for two dominant land cover types, fallow bush and millet, by applying the meteorological forcing data set to a finely field-calibrated land surface model. Uncertainty in reconstructed data was expressed by means of a stochastic ensemble of plausible historical time series. Climatological statistics were computed at sub-daily to decadal timescales and compared with local, regional and global data sets such as CRU and ERA-Interim. The reconstructed precipitation statistics, ˜1°C increase in mean annual temperature from 1950 to 2009, and mean diurnal and annual cycles for all variables were in good agreement with previous studies. The new data set, denoted NAD (Niamey Airport-derived set) and publicly available, can be used to investigate the water and energy cycles in Central Sahel, while the methodology can be applied to reconstruct series at other stations. The study has been published in Int. J. Climatol. (2016), DOI: 10.1002/joc.4874
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patnaik, P. C.
The SIGMET mesoscale meteorology simulation code represents an extension, in terms of physical modelling detail and numerical approach, of the work of Anthes (1972) and Anthes and Warner (1974). The code utilizes a finite difference technique to solve the so-called primitive equations which describe transient flow in the atmosphere. The SIGMET modelling contains all of the physics required to simulate the time dependent meteorology of a region with description of both the planetary boundary layer and upper level flow as they are affected by synoptic forcing and complex terrain. The mathematical formulation of the SIGMET model and the various physicalmore » effects incorporated into it are summarized.« less
The evaluation of ASOS for the Kennedy Space Center's Shuttle Landing Facility
NASA Technical Reports Server (NTRS)
Yersavich, Ann; Wheeler, Mark; Taylor, Gregory; Schumann, Robin; Manobianco, John
1994-01-01
This report documents the Applied Meteorology Unit's (AMU) evaluation of the effectiveness and utility of the Automated Surface Observing System (ASOS) in terms of spaceflight operations and user requirements. In particular, the evaluation determines which of the Shuttle Landing Facility (SLF) observation requirements can be satisfied by ASOS. This report also includes a summary of ASOS' background, current configuration and specifications, system performance, and the possible concepts of operations for use of ASOS at the SLF. This evaluation stems from a desire by the Air Force to determine if ASOS units could be used to reduce the cost of SLF meteorological observations.
2002-12-05
KENNEDY SPACE CENTER, FLA. - At Weather Station A, Cape Canaveral Air Force Station, Judy Kelley, supervisor of Meteorology Operations, and Stephen Ezell, meteorological systems operator, get ready to release a weather balloon. Such balloons are released twice a day. The package at the bottom is a radio sonde that collects temperature and humidity data as the balloon rises. The data is released to agencies nationwide, including the 45th Space Wing, which uses the data for its daily weather reports. The weather station provides additional data to NASA for launches -- releasing 12 balloons in eight hours prior to liftoff - and landings - releasing 5 balloons in six and a half hours before expected touchdown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamura, Yoshiyuki
The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO{sub 2}) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO{sub 2} gas was directly measured in a laboratory scale, which roughlymore » coincides with meteorologically predicted value.« less
Numerical simulations and observations of surface wave fields under an extreme tropical cyclone
Fan, Y.; Ginis, I.; Hara, T.; Wright, C.W.; Walsh, E.J.
2009-01-01
The performance of the wave model WAVEWATCH III under a very strong, category 5, tropical cyclone wind forcing is investigated with different drag coefficient parameterizations and ocean current inputs. The model results are compared with field observations of the surface wave spectra from an airborne scanning radar altimeter, National Data Buoy Center (NDBC) time series, and satellite altimeter measurements in Hurricane Ivan (2004). The results suggest that the model with the original drag coefficient parameterization tends to overestimate the significant wave height and the dominant wavelength and produces a wave spectrum with narrower directional spreading. When an improved drag parameterization is introduced and the wave-current interaction is included, the model yields an improved forecast of significant wave height, but underestimates the dominant wavelength. When the hurricane moves over a preexisting mesoscale ocean feature, such as the Loop Current in the Gulf of Mexico or a warm-and cold-core ring, the current associated with the feature can accelerate or decelerate the wave propagation and significantly modulate the wave spectrum. ?? 2009 American Meteorological Society.
NASA Astrophysics Data System (ADS)
Rodriguez, Erasmo; Sanchez, Ines; Duque, Nicolas; Lopez, Patricia; Kaune, Alexander; Werner, Micha; Arboleda, Pedro
2017-04-01
The Magdalena Cauca Macrobasin (MCMB) in Colombia, with an area of about 257,000 km2, is the largest and most important water resources system in the country. With almost 80% of the Colombian population (46 million people) settled in the basin, it is the main source of water for demands including human consumption, agriculture, hydropower generation, industrial activities and ecosystems. Despite its importance, the basin has witnessed enormous changes in land-cover and extensive deforestation during the last three decades. To make things more complicated, the MCMB currently lacks a set of tools to support planning and decision making processes at scale of the whole watershed. Considering this, the MCMB has been selected as one of the six different regional case studies in the eartH2Observe research project, in which hydrological and meteorological reanalysis products are being validated for the period 1980-2012. The combined use of the hydrological and meteorological reanalysis data, with local hydrometeorological data (precipitation, temperature and streamflow) provided by the National Hydrometeorological Agency (IDEAM), has given us the opportunity to implement and test three hydrological models (VIC, WFLOW and a Water Balance Model based on the Budyko framework) at the basin scale. Additionally, results from the global models in the eartH2Observe hydrological reanalysis have been used to evaluate their performance against the observed streamflow data. This paper discusses the comparison between streamflow observations and simulations from the global hydrological models forced with the WFDEI data, and regional models forced with a combination of observed and meteorological reanalysis data, in the whole domain of the MCMB. For the three regional models analysed results show good performances for some sub-basins and poor performances for others. This can be due to the smoothing of the precipitation fields, interpolated from point daily rainfall data, the effect of horizontal precipitation (not included in the models) and weaknesses in the models structures; for example the poor performance of the VIC model in base flow dominated basins. In order to improve these simulations a strategy based on a hydrological model ensemble is currently being developed in the case study. Results from the global models, show that these consistently tend to overestimate runoff. This may be due to the coarse resolution used (50 km), biases in the ERA-Interim precipitation forcing, and the different partitioning within the global models of the precipitation into evapotranspiration and runoff. It is expected that within the Tier II hydrological reanalysis, where the models will produce outputs at 25 km resolution, some improvements may be identified.
NASA Astrophysics Data System (ADS)
Fast, J. D.; Ma, P.; Easter, R. C.; Liu, X.; Zaveri, R. A.; Rasch, P.
2012-12-01
Predictions of aerosol radiative forcing in climate models still contain large uncertainties, resulting from a poor understanding of certain aerosol processes, the level of complexity of aerosol processes represented in models, and the ability of models to account for sub-grid scale variability of aerosols and processes affecting them. In addition, comparing the performance and computational efficiency of new aerosol process modules used in various studies is problematic because different studies often employ different grid configurations, meteorology, trace gas chemistry, and emissions that affect the temporal and spatial evolution of aerosols. To address this issue, we have developed an Aerosol Modeling Testbed (AMT) to systematically and objectively evaluate aerosol process modules. The AMT consists of the modular Weather Research and Forecasting (WRF) model, a series of testbed cases for which extensive in situ and remote sensing measurements of meteorological, trace gas, and aerosol properties are available, and a suite of tools to evaluate the performance of meteorological, chemical, aerosol process modules. WRF contains various parameterizations of meteorological, chemical, and aerosol processes and includes interactive aerosol-cloud-radiation treatments similar to those employed by climate models. In addition, the physics suite from a global climate model, Community Atmosphere Model version 5 (CAM5), has also been ported to WRF so that these parameterizations can be tested at various spatial scales and compared directly with field campaign data and other parameterizations commonly used by the mesoscale modeling community. In this study, we evaluate simple and complex treatments of the aerosol size distribution and secondary organic aerosols using the AMT and measurements collected during three field campaigns: the Megacities Initiative Local and Global Observations (MILAGRO) campaign conducted in the vicinity of Mexico City during March 2006, the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted in the vicinity of Sacramento California during June 2010, and the California Nexus (CalNex) campaign conducted in southern California during May and June of 2010. For the aerosol size distribution, we compare the predictions from the GOCART bulk aerosol model, the MADE/SORGAM modal aerosol model, the Modal Aerosol Model (MAM) employed by CAM5, and the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) which uses a sectional representation. For secondary organic aerosols, we compare simple fixed mass yield approaches with the numerically complex volatility basis set approach. All simulations employ the same emissions, meteorology, trace gas chemistry (except for that involving condensable organic species), and initial and boundary conditions. Performance metrics from the AMT are used to assess performance in terms of simulated mass, composition, size distribution (except for GOCART), and aerosol optical properties in relation to computational expense. In addition to statistical measures, qualitative differences among the different aerosol models over the computational domain are presented to examine variations in how aerosols age among the aerosol models.
NASA Astrophysics Data System (ADS)
Mendoza, Pablo A.; Mizukami, Naoki; Ikeda, Kyoko; Clark, Martyn P.; Gutmann, Ethan D.; Arnold, Jeffrey R.; Brekke, Levi D.; Rajagopalan, Balaji
2016-10-01
We examine the effects of regional climate model (RCM) horizontal resolution and forcing scaling (i.e., spatial aggregation of meteorological datasets) on the portrayal of climate change impacts. Specifically, we assess how the above decisions affect: (i) historical simulation of signature measures of hydrologic behavior, and (ii) projected changes in terms of annual water balance and hydrologic signature measures. To this end, we conduct our study in three catchments located in the headwaters of the Colorado River basin. Meteorological forcings for current and a future climate projection are obtained at three spatial resolutions (4-, 12- and 36-km) from dynamical downscaling with the Weather Research and Forecasting (WRF) regional climate model, and hydrologic changes are computed using four different hydrologic model structures. These projected changes are compared to those obtained from running hydrologic simulations with current and future 4-km WRF climate outputs re-scaled to 12- and 36-km. The results show that the horizontal resolution of WRF simulations heavily affects basin-averaged precipitation amounts, propagating into large differences in simulated signature measures across model structures. The implications of re-scaled forcing datasets on historical performance were primarily observed on simulated runoff seasonality. We also found that the effects of WRF grid resolution on projected changes in mean annual runoff and evapotranspiration may be larger than the effects of hydrologic model choice, which surpasses the effects from re-scaled forcings. Scaling effects on projected variations in hydrologic signature measures were found to be generally smaller than those coming from WRF resolution; however, forcing aggregation in many cases reversed the direction of projected changes in hydrologic behavior.
Development and testing of meteorology and air dispersion models for Mexico City
NASA Astrophysics Data System (ADS)
Williams, M. D.; Brown, M. J.; Cruz, X.; Sosa, G.; Streit, G.
Los Alamos National Laboratory and Instituto Mexicano del Petróleo are completing a joint study of options for improving air quality in Mexico City. We have modified a three-dimensional, prognostic, higher-order turbulence model for atmospheric circulation (HOTMAC) and a Monte Carlo dispersion and transport model (RAPTAD) to treat domains that include an urbanized area. We used the meteorological model to drive models which describe the photochemistry and air transport and dispersion. The photochemistry modeling is described in a separate paper. We tested the model against routine measurements and those of a major field program. During the field program, measurements included: (1) lidar measurements of aerosol transport and dispersion, (2) aircraft measurements of winds, turbulence, and chemical species aloft, (3) aircraft measurements of skin temperatures, and (4) Tethersonde measurements of winds and ozone. We modified the meteorological model to include provisions for time-varying synoptic-scale winds, adjustments for local wind effects, and detailed surface-coverage descriptions. We developed a new method to define mixing-layer heights based on model outputs. The meteorology and dispersion models were able to provide reasonable representations of the measurements and to define the sources of some of the major uncertainties in the model-measurement comparisons.
NASA Astrophysics Data System (ADS)
Morris, C. E.; Sands, D. C.; Bardin, M.; Jaenicke, R.; Vogel, B.; Leyronas, C.; Ariya, P. A.; Psenner, R.
2011-01-01
For the past 200 years, the field of aerobiology has explored the abundance, diversity, survival and transport of micro-organisms in the atmosphere. Micro-organisms have been explored as passive and severely stressed riders of atmospheric transport systems. Recently, an interest in the active roles of these micro-organisms has emerged along with proposals that the atmosphere is a global biome for microbial metabolic activity and perhaps even multiplication. As part of a series of papers on the sources, distribution and roles in atmospheric processes of biological particles in the atmosphere, here we describe the pertinence of questions relating to the potential roles that air-borne micro-organisms might play in meteorological phenomena. For the upcoming era of research on the role of air-borne micro-organisms in meteorological phenomena, one important challenge is to go beyond descriptions of abundance of micro-organisms in the atmosphere toward an understanding of their dynamics in terms of both biological and physico-chemical properties and of the relevant transport processes at different scales. Another challenge is to develop this understanding under contexts pertinent to their potential role in processes related to atmospheric chemistry, the formation of clouds, precipitation and radiative forcing. This will require truly interdisciplinary approaches involving collaborators from the biological and physical sciences, from disciplines as disparate as agronomy, microbial genetics and atmosphere physics, for example.
NASA Astrophysics Data System (ADS)
Halsig, Sebastian; Artz, Thomas; Iddink, Andreas; Nothnagel, Axel
2016-12-01
On its way through the atmosphere, radio signals are delayed and affected by bending and attenuation effects relative to a theoretical path in vacuum. In particular, the neutral part of the atmosphere contributes considerably to the error budget of space-geodetic observations. At the same time, space-geodetic techniques become more and more important in the understanding of the Earth's atmosphere, because atmospheric parameters can be linked to the water vapor content in the atmosphere. The tropospheric delay is usually taken into account by applying an adequate model for the hydrostatic component and by additionally estimating zenith wet delays for the highly variable wet component. Sometimes, the Ordinary Least Squares (OLS) approach leads to negative estimates, which would be equivalent to negative water vapor in the atmosphere and does, of course, not reflect meteorological and physical conditions in a plausible way. To cope with this phenomenon, we introduce an Inequality Constrained Least Squares (ICLS) method from the field of convex optimization and use inequality constraints to force the tropospheric parameters to be non-negative allowing for a more realistic tropospheric parameter estimation in a meteorological sense. Because deficiencies in the a priori hydrostatic modeling are almost fully compensated by the tropospheric estimates, the ICLS approach urgently requires suitable a priori hydrostatic delays. In this paper, we briefly describe the ICLS method and validate its impact with regard to station positions.
Severe Weather Forecast Decision Aid
NASA Technical Reports Server (NTRS)
Bauman, William H., III; Wheeler, Mark
2005-01-01
The Applied Meteorology Unit developed a forecast tool that provides an assessment of the likelihood of local convective severe weather for the day in order to enhance protection of personnel and material assets of the 45th Space Wing Cape Canaveral Air Force Station (CCAFS), and Kennedy Space Center (KSC).
Processing of meteorological data with ultrasonic thermoanemometers
NASA Astrophysics Data System (ADS)
Telminov, A. E.; Bogushevich, A. Ya.; Korolkov, V. A.; Botygin, I. A.
2017-11-01
The article describes a software system intended for supporting scientific researches of the atmosphere during the processing of data gathered by multi-level ultrasonic complexes for automated monitoring of meteorological and turbulent parameters in the ground layer of the atmosphere. The system allows to process files containing data sets of temperature instantaneous values, three orthogonal components of wind speed, humidity and pressure. The processing task execution is done in multiple stages. During the first stage, the system executes researcher's query for meteorological parameters. At the second stage, the system computes series of standard statistical meteorological field properties, such as averages, dispersion, standard deviation, asymmetry coefficients, excess, correlation etc. The third stage is necessary to prepare for computing the parameters of atmospheric turbulence. The computation results are displayed to user and stored at hard drive.
2016-07-18
Research Laboratory Space Vehicles Directorate 3550 Aberdeen Avenue SE Kirtland AFB, NM 87117-5776 8. PERFORMING ORGANIZATION REPORT NUMBER AFRL -RV...Satellite Program Space Weather Sensors (1 Dec 2000 – 30 Nov 2014), AFRL -RV-PS-TR-2016-0053, Air Force Research Laboratory, Kirtland AFB, NM, Jan 2015. [2...Archive Listing (1982-2013) and File Formats Descriptions, AFRL -RV-PR-TR-2014-0174, Air Force Research Laboratory, Kirtland AFB, NM, Aug 2014. [3
Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA
NASA Technical Reports Server (NTRS)
Watson, Leela R.; Bauman, William H., III
2008-01-01
NASA prefers to land the space shuttle at Kennedy Space Center (KSC). When weather conditions violate Flight Rules at KSC, NASA will usually divert the shuttle landing to Edwards Air Force Base (EAFB) in Southern California. But forecasting surface winds at EAFB is a challenge for the Spaceflight Meteorology Group (SMG) forecasters due to the complex terrain that surrounds EAFB, One particular phenomena identified by SMG is that makes it difficult to forecast the EAFB surface winds is called "wind cycling". This occurs when wind speeds and directions oscillate among towers near the EAFB runway leading to a challenging deorbit bum forecast for shuttle landings. The large-scale numerical weather prediction models cannot properly resolve the wind field due to their coarse horizontal resolutions, so a properly tuned high-resolution mesoscale model is needed. The Weather Research and Forecasting (WRF) model meets this requirement. The AMU assessed the different WRF model options to determine which configuration best predicted surface wind speed and direction at EAFB, To do so, the AMU compared the WRF model performance using two hot start initializations with the Advanced Research WRF and Non-hydrostatic Mesoscale Model dynamical cores and compared model performance while varying the physics options.
Increased absorption by coarse aerosol particles over the Gangetic–Himalayan region
Manoharan, Vani Starry; Kotamarthi, R.; Feng, Yan; ...
2014-02-03
Each atmospheric aerosol type has distinctive light-absorption characteristics related to its physical/chemical properties. Climate models treat black carbon as the main light-absorbing component of carbonaceous atmospheric aerosols, while absorption by some organic aerosols is also considered, particularly at ultraviolet wavelengths. Most absorbing aerosols are assumed to be < 1 μm in diameter (sub-micron). Here we present results from a recent field study in India, primarily during the post-monsoon season (October–November), suggesting the presence of absorbing aerosols sized 1–10 μm. Absorption due to super-micron-sized particles was nearly 30% greater than that due to smaller particles. Periods of increased absorption by largermore » particles ranged from a week to a month. Radiative forcing calculations under clear-sky conditions show that super-micron particles account for nearly 44% of the total aerosol forcing. The origin of the large aerosols is unknown, but meteorological conditions indicate that they are of local origin. Such economic and habitation conditions exist throughout much of the developing world. Furthermore, large absorbing particles could be an important component of the regional-scale atmospheric energy balance.« less
NASA Astrophysics Data System (ADS)
Karki, S.; Sultan, M.; Elkadiri, R.; Chouinard, K.
2017-12-01
Numerous occurrences of harmful algal blooms (Karenia Brevis) were reported from Southwest Florida along the coast of Charlotte County, Florida. We are developing data-driven (remote sensing, field, and meteorological data) models to accomplish the following: (1) identify the factors controlling bloom development, (2) forecast bloom occurrences, and (3) make recommendations for monitoring variables that are found to be most indicative of algal bloom occurrences and for identifying optimum locations for monitoring stations. To accomplish these three tasks we completed/are working on the following steps. Firstly, we developed an automatic system for downloading and processing of ocean color data acquired through MODIS Terra and MODIS Aqua products using SeaDAS ocean color processing software. Examples of extracted variables include: chlorophyll a (OC3M), chlorophyll a Generalized Inherent Optical Property (GIOP), chlorophyll a Garver-Siegel- Maritorena (GSM), sea surface temperature (SST), Secchi disk depth, euphotic depth, turbidity index, wind direction and speed, colored dissolved organic material (CDOM). Secondly we are developing a GIS database and a web-based GIS to host the generated remote sensing-based products in addition to relevant meteorological and field data. Examples of the meteorological and field inputs include: precipitation amount and rates, concentrations of nitrogen, phosphorous, fecal coliform and Dissolved Oxygen (DO). Thirdly, we are constructing and validating a multivariate regression model and an artificial neural network model to simulate past algal bloom occurrences using the compiled archival remote sensing, meteorological, and field data. The validated model will then be used to predict the timing and location of algal bloom occurrences. The developed system, upon completion, could enhance the decision making process, improve the citizen's quality of life, and strengthen the local economy.
Yerramilli, Anjaneyulu; Srinivas, Challa Venkata; Dasari, Hari Prasad; Tuluri, Francis; White, Loren D.; Baham, Julius M.; Young, John H.; Hughes, Robert; Patrick, Chuck; Hardy, Mark G.; Swanier, Shelton J.
2009-01-01
Atmospheric dispersion calculations are made using the HYSPLIT Particle Dispersion Model for studying the transport and dispersion of air-borne releases from point elevated sources in the Mississippi Gulf coastal region. Simulations are performed separately with three meteorological data sets having different spatial and temporal resolution for a typical summer period in 1–3 June 2006 representing a weak synoptic condition. The first two data are the NCEP global and regional analyses (FNL, EDAS) while the third is a meso-scale simulation generated using the Weather Research and Forecasting model with nested domains at a fine resolution of 4 km. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of the combined influences of the land-sea breeze circulation, the large scale flow field and diurnal alteration in the mixing depth across the coast. The model predicted SO2 concentrations showed that the trajectory and the concentration distribution varied in the three cases of input data. While calculations with FNL data show an overall higher correlation, there is a significant positive bias during daytime and negative bias during night time. Calculations with EDAS fields are significantly below the observations during both daytime and night time though plume behavior follows the coastal circulation. The diurnal plume behavior and its distribution are better simulated using the mesoscale WRF meteorological fields in the coastal environment suggesting its suitability for pollution dispersion impact assessment in the local scale. Results of different cases of simulation, comparison with observations, correlation and bias in each case are presented. PMID:19440433
NASA Technical Reports Server (NTRS)
Waight, Kenneth T., III; Zack, John W.; Karyampudi, V. Mohan
1989-01-01
Initial simulations of the June 28, 1986 Cooperative Huntsville Meteorological Experiment case illustrate the need for mesoscale moisture information in a summertime situation in which deep convection is organized by weak large scale forcing. A methodology is presented for enhancing the initial moisture field from a combination of IR satellite imagery, surface-based cloud observations, and manually digitized radar data. The Mesoscale Atmospheric Simulation Model is utilized to simulate the events of June 28-29. This procedure insures that areas known to have precipitation at the time of initialization will be nearly saturated on the grid scale, which should decrease the time needed by the model to produce the observed Bonnie (a relatively weak hurricane that moved on shore two days before) convection. This method will also result in an initial distribution of model cloudiness (transmissivity) that is very similar to that of the IR satellite image.
NASA Astrophysics Data System (ADS)
Akritidis, D.; Zanis, P.; Katragkou, E.; Schultz, M. G.; Tegoulias, I.; Poupkou, A.; Markakis, K.; Pytharoulis, I.; Karacostas, Th.
2013-12-01
A modeling system based on the air quality model CAMx driven off-line by the regional climate model RegCM3 is used for assessing the impact of chemical lateral boundary conditions (LBCs) on near surface ozone over Europe for the period 1996-2000. The RegCM3 and CAMx simulations were performed on a 50 km × 50 km grid over Europe with RegCM3 driven by the NCEP meteorological reanalysis fields and CAMx with chemical LBCs from ECHAM5/MOZART global model. The recent past period (1996-2000) was simulated in three experiments. The first simulation was forced using time and space invariant LBCs, the second was based on ECHAM5/MOZART chemical LBCs fixed for the year 1996 and the third was based on ECHAM5/MOZART chemical LBCs with interannual variability. Anthropogenic and biogenic emissions were kept identical for the three sensitivity runs.
Evaluation of precipitation nowcasting techniques for the Alpine region
NASA Astrophysics Data System (ADS)
Panziera, L.; Mandapaka, P.; Atencia, A.; Hering, A.; Germann, U.; Gabella, M.; Buzzi, M.
2010-09-01
This study presents a large sample evaluation of different nowcasting systems over the Southern Swiss Alps. Radar observations are taken as a reference against which to assess the performance of the following short-term quantitative precipitation forecasting methods: -Eulerian persistence: the current radar image is taken as forecast. -Lagrangian persistence: precipitation patterns are advected following the field of storm motion (the MAPLE algorithm is used). -NORA: novel nowcasting system which exploits the presence of the orographic forcing; by comparing meteorological predictors estimated in real-time with those from the large historical data set, the events with the highest resemblance are picked to produce the forecast. -COSMO2, the limited area numerical model operationally used at MeteoSwiss -Blending of the aforementioned nowcasting tools precipitation forecasts. The investigation is aimed to set up a probabilistic radar rainfall runoff model experiment for steep Alpine catchments as part of the European research project IMPRINTS.
NASA Astrophysics Data System (ADS)
Alken, P.; Olsen, N.; Finlay, C. C.; Chulliat, A.
2017-12-01
In order to investigate the spatial structure and development of rapid (sub-decadal) changes in the geomagnetic core field, including its secular variation and acceleration, global magnetic measurements from space play a crucial role. With the end of the CHAMP mission in September 2010, there has been a gap in high-quality satellite magnetic field measurements until the Swarm mission was launched in November 2013. Geomagnetic main field models during this period have relied on the global ground observatory network which, due to its sparse spatial configuration, has difficulty in resolving secular variation and acceleration at higher spherical harmonic degrees. In this presentation we will show new results in building main field models during this "gap period", based on vector magnetic measurements from four Defense Meteorological Satellite Program (DMSP) satellites. While the fluxgate instruments onboard DMSP were not designed for high-quality core field modeling, we find that the DMSP dataset can provide valuable information on secular variation and acceleration during the gap period.
NASA Astrophysics Data System (ADS)
Schichtel, B.; Barna, M.; Gebhart, K.; Green, M.
2002-12-01
The Big Bend Regional Aerosol and Visibility Observational Study (BRAVO) was designed to determine the causes of visibility impairment at Big Bend National Park, located in southwestern Texas. As part of BRAVO, an intensive field study was conducted during July-October 1999. Among the features of this study was the release of unique perfluorocarbon tracers from four sites within Texas, representative of industrial/urban locations. These tracers were monitored at 21 sites, throughout Texas. Other measurements collected during the field study included upper-level winds using radar profilers, and speciated fine-particulate mass concentrations. MM5 was used to simulate the regional meteorology during BRAVO, and was run in non-hydrostatic mode using a continental-scale 36km domain with nested 12km and 4km domains. MM5 employed observational nudging by incorporating the available measured wind data from the National Weather Service and data from the radar wind profilers. Meteorological data from the National Weather Service's Eta Data Assimilation System (EDAS), archived at 80km grid spacing, were also available. Several models are being used to evaluate airmass transport to Big Bend, including CMAQ, REMSAD, HYSPLIT and the CAPITA Monte Carlo Model. This combination of tracer data, meteorological data and deployment of four models provides a unique opportunity to assess the ability of the model/wind field combinations to properly simulate the regional scale atmospheric transport and dispersion of trace gases over distances of 100 to 800km. This paper will present the tracer simulations from REMSAD using the 36 and 12 km MM5 wind fields, and results from HYSPLIT and the Monte Carlo model driven by the 36km MM5 and 80km EDAS wind fields. Preliminary results from HYSPLIT and the Monte Carlo model driven by the EDAS wind fields shows that these models are able to account for the primary features of tracer concentrations patterns in the Big Bend area. However, at times the simulated concentration peaks proceeded or followed the actual measured concentrations by about at day and the duration of the simulated tracer impacts were shorter than those measured in the Big Bend area.
NASA Astrophysics Data System (ADS)
Lin, J.
2011-12-01
Nitrogen oxides (NOx ≡ NO + NO2) are important atmospheric constituents affecting the tropospheric chemistry, surface air quality and climatic forcing. They are emitted both from anthropogenic and from natural (soil, lightning, biomass burning, etc.) sources, which can be estimated inversely from satellite remote sensing of the vertical column densities (VCDs) of nitrogen dioxide (NO2) in the troposphere. Based on VCDs of NO2 retrieved from OMI, a novel approach is developed in this study to separate anthropogenic emissions of NOx from natural sources over East China for 2006. It exploits the fact that anthropogenic and natural emissions vary with seasons with distinctive patterns. The global chemical transport model (CTM) GEOS-Chem is used to establish the relationship between VCDs of NO2 and emissions of NOx for individual sources. Derived soil emissions are compared to results from a newly developed bottom-up approach. Effects of uncertainties in model meteorology and chemistry over China, an important source of errors in the emission inversion, are evaluated systematically for the first time. Meteorological measurements from space and the ground are used to analyze errors in meteorological parameters driving the CTM.
NASA Astrophysics Data System (ADS)
McCoy, Isabel; Wood, Robert; Fletcher, Jennifer
Marine low clouds are key influencers of the climate and contribute significantly to uncertainty in model climate sensitivity due to their small scale and complex processes. Many low clouds occur in large-scale cellular patterns, known as open and closed mesoscale cellular convection (MCC), which have significantly different radiative and microphysical properties. Investigating MCC development and meteorological controls will improve our understanding of their impacts on the climate. We conducted an examination of time-varying meteorological conditions associated with satellite-determined open and closed MCC. The spatial and temporal patterns of MCC clouds were compared with key meteorological control variables calculated from ERA-Interim Reanalysis to highlight dependencies and major differences. This illustrated the influence of environmental stability and surface forcing as well as the role of marine cold air outbreaks (MCAO, the movement of cold air from polar-regions across warmer waters) in MCC cloud formation. Such outbreaks are important to open MCC development and may also influence the transition from open to closed MCC. Our results may lead to improvements in the parameterization of cloudiness and advance the simulation of marine low clouds. National Science Foundation Graduate Research Fellowship Grant (DGE-1256082).
Multi-scale modelling to evaluate building energy consumption at the neighbourhood scale.
Mauree, Dasaraden; Coccolo, Silvia; Kaempf, Jérôme; Scartezzini, Jean-Louis
2017-01-01
A new methodology is proposed to couple a meteorological model with a building energy use model. The aim of such a coupling is to improve the boundary conditions of both models with no significant increase in computational time. In the present case, the Canopy Interface Model (CIM) is coupled with CitySim. CitySim provides the geometrical characteristics to CIM, which then calculates a high resolution profile of the meteorological variables. These are in turn used by CitySim to calculate the energy flows in an urban district. We have conducted a series of experiments on the EPFL campus in Lausanne, Switzerland, to show the effectiveness of the coupling strategy. First, measured data from the campus for the year 2015 are used to force CIM and to evaluate its aptitude to reproduce high resolution vertical profiles. Second, we compare the use of local climatic data and data from a meteorological station located outside the urban area, in an evaluation of energy use. In both experiments, we demonstrate the importance of using in building energy software, meteorological variables that account for the urban microclimate. Furthermore, we also show that some building and urban forms are more sensitive to the local environment.
Multi-scale modelling to evaluate building energy consumption at the neighbourhood scale
Coccolo, Silvia; Kaempf, Jérôme; Scartezzini, Jean-Louis
2017-01-01
A new methodology is proposed to couple a meteorological model with a building energy use model. The aim of such a coupling is to improve the boundary conditions of both models with no significant increase in computational time. In the present case, the Canopy Interface Model (CIM) is coupled with CitySim. CitySim provides the geometrical characteristics to CIM, which then calculates a high resolution profile of the meteorological variables. These are in turn used by CitySim to calculate the energy flows in an urban district. We have conducted a series of experiments on the EPFL campus in Lausanne, Switzerland, to show the effectiveness of the coupling strategy. First, measured data from the campus for the year 2015 are used to force CIM and to evaluate its aptitude to reproduce high resolution vertical profiles. Second, we compare the use of local climatic data and data from a meteorological station located outside the urban area, in an evaluation of energy use. In both experiments, we demonstrate the importance of using in building energy software, meteorological variables that account for the urban microclimate. Furthermore, we also show that some building and urban forms are more sensitive to the local environment. PMID:28880883
120. INERTIAL MEASUREMENT UNIT (IMU) NITROGEN PURGE REGULATOR PANEL FOR ...
120. INERTIAL MEASUREMENT UNIT (IMU) NITROGEN PURGE REGULATOR PANEL FOR DEFENSE METEOROLOGICAL SYSTEM PROGRAM (DMSP) PAYLOADS IN SOUTHWEST CORNER OF VEHICLE MECHANICAL SYSTEMS ROOM (111), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, the verification of the spatial and temporal variability of the magnitude and directionality of aerosol radiative forcing has remained challengi...
Time series decomposition methods were applied to meteorological and air quality data and their numerical model estimates. Decomposition techniques express a time series as the sum of a small number of independent modes which hypothetically represent identifiable forcings, thereb...
Jerome D. Fast; Rahul A. Zaveri; Xindi Bian; Elaine G. Chapman; Richard C. Easter
2002-01-01
A new meteorological-chemical model is used to determine the relative contribution of regional-scale transport and local photochemical production on air quality over Philadelphia. The model performance is evaluated using surface and airborne meteorological and chemical measurements made during a 30-day period in July and August of 1999 as part of the Northeast Oxidant...
NASA Astrophysics Data System (ADS)
Roningen, J. M.; Eylander, J. B.
2014-12-01
Groundwater use and management is subject to economic, legal, technical, and informational constraints and incentives at a variety of spatial and temporal scales. Planned and de facto management practices influenced by tax structures, legal frameworks, and agricultural and trade policies that vary at the country scale may have medium- and long-term effects on the ability of a region to support current and projected agricultural and industrial development. USACE is working to explore and develop global-scale, physically-based frameworks to serve as a baseline for hydrologic policy comparisons and consequence assessment, and such frameworks must include a reasonable representation of groundwater systems. To this end, we demonstrate the effects of different subsurface parameterizations, scaling, and meteorological forcings on surface and subsurface components of the Catchment Land Surface Model Fortuna v2.5 (Koster et al. 2000). We use the Land Information System 7 (Kumar et al. 2006) to process model runs using meteorological components of the Air Force Weather Agency's AGRMET forcing data from 2006 through 2011. Seasonal patterns and trends are examined in areas of the Upper Nile basin, northern China, and the Mississippi Valley. We also discuss the relevance of the model's representation of the catchment deficit with respect to local hydrogeologic structures.
Efforts to Overcome Difficulties in a Higher Education Meteorology Department Institution
NASA Astrophysics Data System (ADS)
Mota, G. V.; Souza, J. R.; Ribeiro, J. B.; Souza, E. B.; Gomes, N. V.; Oliveira, R. A.; Ameida, W. G.; Chagas, G. O.; Yoksas, T.; Spangler, T.; Cutrim, E.
2007-05-01
The development of cyberinfrastructure in higher education meteorology departments has become a key requirement to better qualify their students and develop scientific research. The authors present their efforts to overcome low budget, lack of personnel, and other difficulties in the Department of Meteorology, Universidade Federal do Pará (UFPA), to participate in international collaborations for sharing hydro-meteorological data, tools and technological systems. Some important steps towards a consolidated integration of the group with the international partnership are discussed, and three are highlighted: (a) the resources from the Unidata's Equipment Award (supported by the National Science Foundation - NSF) and equipment donated in cooperation with the COMET and Meteoforum projects; (b) the interaction of the local team making its project resources available to the community; and (c) the involvement of students with the programs and the cyberinfrastructure available locally. Some positive results can be observed, such as the ability for students of Synoptic Meteorology II class to not only see static meteorological fields on the web, but actually build themselves regional and real-time synoptic products from the data received through Unidata's Internet Data Distribution (IDD) system. Moreover, the UFPA's group intends to improve its infrastructure to expand the access of real-time data and products to other members of the local meteorological community.
Short perturbations of cosmic ray intensity and electric field in atmosphere
NASA Technical Reports Server (NTRS)
Alexeyenko, V. V.; Chudakov, A. E.; Sborshikov, V. G.; Tizengauzen, V. A.
1985-01-01
Short perturbations of cosmic ray intensity were found to be a common phenomenon. Its meteorological origin and correlation with electric field is established. The phenomenon can be explained by the electric field if the strength of this field at high altitudes is much bigger than the measured one at surface.
NASA Astrophysics Data System (ADS)
Agel, Laurie; Barlow, Mathew; Colby, Frank; Binder, Hanin; Catto, Jennifer L.; Hoell, Andrew; Cohen, Judah
2018-05-01
Previous work has identified six large-scale meteorological patterns (LSMPs) of dynamic tropopause height associated with extreme precipitation over the Northeast US, with extreme precipitation defined as the top 1% of daily station precipitation. Here, we examine the three-dimensional structure of the tropopause LSMPs in terms of circulation and factors relevant to precipitation, including moisture, stability, and synoptic mechanisms associated with lifting. Within each pattern, the link between the different factors and extreme precipitation is further investigated by comparing the relative strength of the factors between days with and without the occurrence of extreme precipitation. The six tropopause LSMPs include two ridge patterns, two eastern US troughs, and two troughs centered over the Ohio Valley, with a strong seasonality associated with each pattern. Extreme precipitation in the ridge patterns is associated with both convective mechanisms (instability combined with moisture transport from the Great Lakes and Western Atlantic) and synoptic forcing related to Great Lakes storm tracks and embedded shortwaves. Extreme precipitation associated with eastern US troughs involves intense southerly moisture transport and strong quasi-geostrophic forcing of vertical velocity. Ohio Valley troughs are associated with warm fronts and intense warm conveyor belts that deliver large amounts of moisture ahead of storms, but little direct quasi-geostrophic forcing. Factors that show the largest difference between days with and without extreme precipitation include integrated moisture transport, low-level moisture convergence, warm conveyor belts, and quasi-geostrophic forcing, with the relative importance varying between patterns.
On the Dome Effect of Flux Radiometers to Radiative Forcing
NASA Technical Reports Server (NTRS)
Tsay, S.-C.; Ji, Q.
1999-01-01
Since the introduction of thermopile, pyranometers (solar, e.g., 0.3-3.0 micrometers) and pyrgeometers (terrestrial, e.g., 4-50 micrometers) have become instruments commonly used for measuring the broadband hemispherical irradiances at the surface in a long-term, monitoring mode for decades. These commercially available radiometers have been manufactured in several countries such as from the United States, Asia, and Europe, and are generally reliable and economical. These worldwide distributions of surface measurements become even more important in the era of Earth remote sensing in studying climate forcing. However, recent studies from field campaigns have pointed out that erroneous factors (e.g., temperature gradients between the filter dome and detector, emissivity of the thermopile) are responsible for the unacceptable level of uncertainty (e.g., 10-20 W m (exp -2)). Using a newly developed instrument of Quantum Well Infrared Photodetector (QWIP), we have characterized the brightness temperature fields of pyranometers and pyrgeometers under various sky conditions. The QWIP is based on the superlattice (GaAs/AlGaAs) technology and has a noise equivalent temperature (NE delta T) less than 0.1 K. The quality of pyranometer and pyrgeometer measurements can be improved largely by applying proper knowledge of the thermal parameters affecting the operation of the thermopile systems. For example, we show a method to determine the "dome factor" (the longwave emission divided by the longwave transmission of a pyrgeometer dome) from field measurements. The results show, and are verified independently by the QWIP, that our dome factors of 0.59 and 0.90 are much smaller than the value of 4.0 assumed by the WMO (World Meteorological Organization). Data correction procedure and algorithm will be presented and discussed.
NASA Technical Reports Server (NTRS)
Reichle, Rolf; Koster, Randal; DeLannoy, Gabrielle; Forman, Barton; Liu, Qing; Mahanama, Sarith; Toure, Ally
2011-01-01
The Modern-Era Retrospective analysis for Research and Applications (MERRA) is a state-of-the-art reanalysis that provides. in addition to atmospheric fields. global estimates of soil moisture, latent heat flux. snow. and runoff for J 979-present. This study introduces a supplemental and improved set of land surface hydrological fields ('MERRA-Land') generated by replaying a revised version of the land component of the MERRA system. Specifically. the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameters in the rainfall interception model, changes that effectively correct for known limitations in the MERRA land surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ERA-Interim reanalysis. MERRA-Land and ERA-Interim root zone soil moisture skills (against in situ observations at 85 US stations) are comparable and significantly greater than that of MERRA. Throughout the northern hemisphere, MERRA and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow observations from 15 basins in the western US) of MERRA and MERRA-Land is typically higher than that of ERA-Interim. With a few exceptions. the MERRA-Land data appear more accurate than the original MERRA estimates and are thus recommended for those interested in using '\\-tERRA output for land surface hydrological studies.
Upper-Tropospheric Winds Derived from Geostationary Satellite Water Vapor Observations
NASA Technical Reports Server (NTRS)
Velden, Christopher S.; Hayden, Christopher M.; Nieman, Steven J.; Menzel, W. Paul; Wanzong, Steven; Goerss, James S.
1997-01-01
The coverage and quality of remotely sensed upper-tropospheric moisture parameters have improved considerably with the deployment of a new generation of operational geostationary meteorological satellites: GOES-8/9 and GMS-5. The GOES-8/9 water vapor imaging capabilities have increased as a result of improved radiometric sensitivity and higher spatial resolution. The addition of a water vapor sensing channel on the latest GMS permits nearly global viewing of upper-tropospheric water vapor (when joined with GOES and Meteosat) and enhances the commonality of geostationary meteorological satellite observing capabilities. Upper-tropospheric motions derived from sequential water vapor imagery provided by these satellites can be objectively extracted by automated techniques. Wind fields can be deduced in both cloudy and cloud-free environments. In addition to the spatially coherent nature of these vector fields, the GOES-8/9 multispectral water vapor sensing capabilities allow for determination of wind fields over multiple tropospheric layers in cloud-free environments. This article provides an update on the latest efforts to extract water vapor motion displacements over meteorological scales ranging from subsynoptic to global. The potential applications of these data to impact operations, numerical assimilation and prediction, and research studies are discussed.
NASA Astrophysics Data System (ADS)
Park, Jeong-Gyun; Jee, Joon-Bum
2017-04-01
Dangerous weather such as severe rain, heavy snow, drought and heat wave caused by climate change make more damage in the urban area that dense populated and industry areas. Urban areas, unlike the rural area, have big population and transportation, dense the buildings and fuel consumption. Anthropogenic factors such as road energy balance, the flow of air in the urban is unique meteorological phenomena. However several researches are in process about prediction of urban meteorology. ASAPS (Advanced Storm-scale Analysis and Prediction System) predicts a severe weather with very short range (prediction with 6 hour) and high resolution (every hour with time and 1 km with space) on Seoul metropolitan area based on KLAPS (Korea Local Analysis and Prediction System) from KMA (Korea Meteorological Administration). This system configured three parts that make a background field (SUF5), analysis field (SU01) with observation and forecast field with high resolution (SUF1). In this study, we improve a high-resolution ASAPS model and perform a sensitivity test for the rainfall case. The improvement of ASAPS include model domain configuration, high resolution topographic data and data assimilation with WISE observation data.
Field gamma-ray spectrometer GS256: measurements stability
NASA Astrophysics Data System (ADS)
Mojzeš, Andrej
2009-01-01
The stability of in situ readings of the portable gamma-ray spectrometer GS256 during the field season of 2006 was studied. The instrument is an impulse detector of gamma rays based on NaI(Tl) 3" × 3" scintillation unit and 256-channel spectral analyzer which allows simultaneous assessment of up to 8 radioisotopes in rocks. It is commonly used in surface geophysical survey for the measurement of natural 40K, 238U and 232Th but also artificial 137Cs quantities. The statistical evaluation is given of both repeated measurements - in the laboratory and at several field control points in different survey areas. The variability of values shows both the instrument stability and also the relative influence of some meteorological factors, mainly rainfalls. The analysis shows an acceptable level of instrument measurements stability, the necessity to avoid measurement under unfavourable meteorological conditions and to keep detailed field book information about time, position and work conditions.
A mesoscale vortex over Halley Station, Antarctica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, J.; Lachlan-Cope, T.A.; Warren, D.E.
1993-05-01
A detailed analysis of the evolution and structure of a mesoscale vortex and associated cloud comma that developed at the eastern edge of the Weddell Sea, Antarctica, during the early part of January 1986 is presented. The system remained quasi-stationary for over three days close to the British research station Halley (75[degrees]36'S, 26'42[degrees]W) and gave severe weather with gale-force winds and prolonged snow. The formation and development of the system were investigated using conventional surface and upper-air meteorological observations taken at Halley, analyses from the U.K. Meteorological Office 15-level model, and satellite imagery and sounder data from the TIROS-N-NOAA seriesmore » of polar orbiting satellites. The thermal structure of the vortex was examined using atmospheric profiles derived from radiance measurements from the TIROS Operational Vertical Sounder. Details of the wind field were examined using cloud motion vectors derived from a sequence of Advanced Very High Resolution Radiometer images. The vortex developed inland of the Brunt Ice Shelf in a strong baroclinic zone separating warm air, which had been advected polewards down the eastern Weddell Sea, and cold air descending from the Antarctic Plateau. The system intensified when cold, continental air associated with an upper-level short-wave trough was advected into the vortex. A frontal cloud band developed when slantwise ascent of warm air took place at the leading edge of the cold-air outbreak. Most of the precipitation associated with the low occurred on this cloud band. The small sea surface-atmospheric temperature differences gave only limited heat fluxes and there was no indication of deep convection associated with the system. The vortex was driven by baroclinic forcing and had some features in common with the baroclinic type of polar lows that occur in the Northern Hemisphere. 25 refs., 14 figs.« less
Characteristics of regional aerosols: Southern Arizona and eastern Pacific Ocean
NASA Astrophysics Data System (ADS)
Prabhakar, Gouri
Atmospheric aerosols impact the quality of our life in many direct and indirect ways. Inhalation of aerosols can have harmful effects on human health. Aerosols also have climatic impacts by absorbing or scattering solar radiation, or more indirectly through their interactions with clouds. Despite a better understanding of several relevant aerosol properties and processes in the past years, they remain the largest uncertainty in the estimate of global radiative forcing. The uncertainties arise because although aerosols are ubiquitous in the Earth's atmosphere they are highly variable in space, time and their physicochemical properties. This makes in-situ measurements of aerosols vital in our effort towards reducing uncertainties in the estimate of global radiative forcing due to aerosols. This study is an effort to characterize atmospheric aerosols at a regional scale, in southern Arizona and eastern Pacific Ocean, based on ground and airborne observations of aerosols. Metals and metalloids in particles with aerodynamic diameter (Dp) smaller than 2.5 μm are found to be ubiquitous in southern Arizona. The major sources of the elements considered in the study are identified to be crustal dust, smelting/mining activities and fuel combustion. The spatial and temporal variability in the mass concentrations of these elements depend both on the source strength and meteorological conditions. Aircraft measurements of aerosol and cloud properties collected during various field campaigns over the eastern Pacific Ocean are used to study the sources of nitrate in stratocumulus cloud water and the relevant processes. The major sources of nitrate in cloud water in the region are emissions from ships and wildfires. Different pathways for nitrate to enter cloud water and the role of meteorology in these processes are examined. Observations of microphysical properties of ambient aerosols in ship plumes are examined. The study shows that there is an enhancement in the number concentration of giant cloud condensation nuclei (Dp > 2 microm) in ship plumes relative to the unperturbed background regions over the ocean.
NASA Technical Reports Server (NTRS)
Martin, S.; Cavalieri, D. J.; Gloersen, P.; Mcnutt, S. L.
1982-01-01
During March 1979, field operations were carried out in the Marginal Ice Zone (MIZ) of the Bering Sea. The field measurements which included oceanographic, meteorological and sea ice observations were made nearly coincident with a number of Nimbus-7 and Tiros-N satellite observations. The results of a comparison between surface and aircraft observations, and images from the Tiros-N satellite, with ice concentrations derived from the microwave radiances of the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) are given. Following a brief discussion of the field operations, including a summary of the meteorological conditions during the experiment, the satellite data is described with emphasis on the Nimbus-7 SMMR and the physical basis of the algorithm used to retrieve ice concentrations.
NASA Astrophysics Data System (ADS)
Storlazzi, C. D.; Cheriton, O. M.; Messina, A. M.; Biggs, T. W.
2018-06-01
Water circulation over coral reefs can determine the degree to which reef organisms are exposed to the overlying waters, so understanding circulation is necessary to interpret spatial patterns in coral health. Because coral reefs often have high geomorphic complexity, circulation patterns and the duration of exposure, or "local residence time" of a water parcel, can vary substantially over small distances. Different meteorologic and oceanographic forcings can further alter residence time patterns over reefs. Here, spatially dense Lagrangian surface current drifters and Eulerian current meters were used to characterize circulation patterns and resulting residence times over different regions of the reefs in Faga'alu Bay, American Samoa, during three distinct forcing periods: calm, strong winds, and large waves. Residence times varied among different geomorphic zones of the reef and were reflected in the spatially varying health of the corals across the embayment. The relatively healthy, seaward fringing reef consistently had the shortest residence times, as it was continually flushed by wave breaking at the reef crest, whereas the degraded, sheltered, leeward fringing reef consistently had the longest residence times, suggesting this area is more exposed to land-based sources of pollution. Strong wind forcing resulted in the longest residence times by pinning the water in the bay, whereas large wave forcing flushed the bay and resulted in the shortest residence times. The effect of these different forcings on residence times was fairly consistent across all reef geomorphic zones, with the shift from wind to wave forcing shortening mean residence times by approximately 50%. Although ecologically significant to the coral organisms in the nearshore reef zones, these shortened residence times were still 2-3 times longer than those associated with the seaward fringing reef across all forcing conditions, demonstrating how the geomorphology of a reef environment sets a first-order control on reef health.
Applications of ISES for meteorology
NASA Technical Reports Server (NTRS)
Try, Paul D.
1990-01-01
The results are summarized from an initial assessment of the potential real-time meteorological requirements for the data from Eos systems. Eos research scientists associated with facility instruments, investigator instruments, and interdisciplinary groups with data related to meteorological support were contacted, along with those from the normal operational user and technique development groups. Two types of activities indicated the greatest need for real-time Eos data: technology transfer groups (e.g., NOAA's Forecasting System Laboratory and the DOD development laboratories), and field testing groups with airborne operations. A special concern was expressed by several non-U.S. participants who desire a direct downlink to be sure of rapid receipt of the data for their area of interest. Several potential experiments or demonstrations are recommended for ISES which include support for hurricane/typhoon forecasting, space shuttle reentry, severe weather forecasting (using microphysical cloud classification techniques), field testing, and quick reaction of instrumented aircraft to measure such events as polar stratospheric clouds and volcanic eruptions.
NASA Astrophysics Data System (ADS)
Jatczak, K.; Linkowska, J.; Rapiejko, P.
2010-09-01
In Poland phenological data is used mainly as a natural indicator of the influence of climate changes on environment. In relation to the growing interest of phenology in scientific research, we substantially extended observation ranges, concentrating mainly on phenophases of selected species that are important for allergology. Phenological data application in complex analysis together with meteorological and aerobiological data, give an opportunity for drawing conclusions on variability of the starting date of pollen season and its dynamics in a meteorological aspect. Species have their regional phenological characteristics, however the characteristics depends on meteorological conditions in a particular year. Therefore, the calculation of pheno-meteorological parameters is important for pollen release prediction. Availability of phenological database can also be useful in the field of preventive health care, through phenological data application in different atmospheric models (NWP models, phenological models, pollen release models) for numerical forecasting of pollen concentration in the air. Genetic conditions, industrial development, increase of air pollution are regarded as the main determinants of allergic diseases. The results of pheno - aero- meteorological analysis enable the estimation of the influence of natural environmental changes on the increasing prevalence of allergic diseases in Poland.
Future directions of meteorology related to air-quality research.
Seaman, Nelson L
2003-06-01
Meteorology is one of the major factors contributing to air-pollution episodes. More accurate representation of meteorological fields has been possible in recent years through the use of remote sensing systems, high-speed computers and fine-mesh meteorological models. Over the next 5-20 years, better meteorological inputs for air quality studies will depend on making better use of a wealth of new remotely sensed observations in more advanced data assimilation systems. However, for fine mesh models to be successful, parameterizations used to represent physical processes must be redesigned to be more precise and better adapted for the scales at which they will be applied. Candidates for significant overhaul include schemes to represent turbulence, deep convection, shallow clouds, and land-surface processes. Improvements in the meteorological observing systems, data assimilation and modeling, coupled with advancements in air-chemistry modeling, will soon lead to operational forecasting of air quality in the US. Predictive capabilities can be expected to grow rapidly over the next decade. This will open the way for a number of valuable new services and strategies, including better warnings of unhealthy atmospheric conditions, event-dependent emissions restrictions, and now casting support for homeland security in the event of toxic releases into the atmosphere.
Short Term Exogenic Climate Change Forcing
NASA Astrophysics Data System (ADS)
Krahenbuhl, Daniel
Several short term exogenic forcings affecting Earth's climate are but recently identified. Lunar nutation periodicity has implications for numerical meteorological prediction. Abrupt shifts in solar wind bulk velocity, particle density, and polarity exhibit correlation with terrestrial hemispheric vorticity changes, cyclonic strengthening and the intensification of baroclinic disturbances. Galactic Cosmic ray induced tropospheric ionization modifies cloud microphysics, and modulates the global electric circuit. This dissertation is constructed around three research questions: (1): What are the biweekly declination effects of lunar gravitation upon the troposphere? (2): How do United States severe weather reports correlate with heliospheric current sheet crossings? and (3): How does cloud cover spatially and temporally vary with galactic cosmic rays? Study 1 findings show spatial consistency concerning lunar declination extremes upon Rossby longwaves. Due to the influence of Rossby longwaves on synoptic scale circulation, our results could theoretically extend numerical meteorological forecasting. Study 2 results indicate a preference for violent tornadoes to occur prior to a HCS crossing. Violent tornadoes (EF3+) are 10% more probable to occur near, and 4% less probable immediately after a HCS crossing. The distribution of hail and damaging wind reports do not mirror this pattern. Polarity is critical for the effect. Study 3 results confirm anticorrelation between solar flux and low-level marine-layer cloud cover, but indicate substantial regional variability between cloud cover altitude and GCRs. Ultimately, this dissertation serves to extend short term meteorological forecasting, enhance climatological modeling and through analysis of severe violent weather and heliospheric events, protect property and save lives.
Annual Proxy Records from Tropical Cloud Forest Trees in the Monteverde Cloud Forest, Costa Rica
NASA Astrophysics Data System (ADS)
Anchukaitis, K. J.; Evans, M. N.; Wheelwright, N. T.; Schrag, D. P.
2005-12-01
The extinction of the Golden Toad (Bufo periglenes) from Costa Rica's Monteverde Cloud Forest prompted research into the causes of ecological change in the montane forests of Costa Rica. Subsequent analysis of meteorological data has suggested that warmer global surface and tropical Pacific sea surface temperatures contribute to an observed decrease in cloud cover at Monteverde. However, while recent studies may have concluded that climate change is already having an effect on cloud forest environments in Costa Rica, without the context provided by long-term climate records, it is difficult to confidently conclude that the observed ecological changes are the result of anthropogenic climate forcing, land clearance in the lowland rainforest, or natural variability in tropical climate. To address this, we develop high-resolution proxy paleoclimate records from trees without annual rings in the Monteverde Cloud Forest in Costa Rica. Calibration of an age model in these trees is a fundamental prerequisite for proxy paleoclimate reconstructions. Our approach exploits the isotopic seasonality in the δ18O of water sources (fog versus rainfall) used by trees over the course of a single year. Ocotea tenera individuals of known age and measured annual growth increments were sampled in long-term monitored plantation sites in order to test this proposed age model. High-resolution (200μm increments) stable isotope measurements on cellulose reveal distinct, coherent δ18O cycles of 6 to 10‰. The calculated growth rates derived from the isotope timeseries match those observed from basal growth increment measurements. Spatial fidelity in the age model and climate signal is examined by using multiple cores from multiple trees and multiple sites. These data support our hypothesis that annual isotope cycles in these trees can be used to provide chronological control in the absence of rings. The ability of trees to record interannual climate variability in local hydrometeorology and remote climate forcing is evaluated using the isotope signal from multiple trees, local meteorological observations, and climate field data for the well-observed 1997-1998 warm El Niño-Southern Oscillation (ENSO) event. The successful calibration of our age model is a necessary step toward the development of long, annually-resolved paleoclimate reconstructions from old trees, even without rings, which will be used to evaluate the cause of recent observed climate change at Monteverde and as proxies for tropical climate field reconstructions.
AIRBORNE BACTERIA IN THE ATMOSPHERIC SURFACE LAYER: TEMPORAL DISTRIBUTION ABOVE A GRASS SEED FIELD
Temporal airborne bacterial concentrations and meteorological conditions were measured above a grass seed field in the Willamette River Valley, near Corvallis, Oregon, in the summer of 1993. he report describes the changes in the atmospheric surface layer over a grass seed field ...
Climatology of meteorological ``bombs'' in the New Zealand region
NASA Astrophysics Data System (ADS)
Leslie, L. M.; Leplastrier, M.; Buckley, B. W.; Qi, L.
2005-06-01
The purpose of this paper is to present a recently developed climatology of explosively developing south eastern Tasman Sea extra-tropical cyclones, or meteorological “bombs”, using a latitude dependent definition for meteorological bombs based on that of Simmonds and Keay (2000a, b), and Lim and Simmonds (2002). These highly transient systems, which have a damaging impact upon New Zealand, are frequently accompanied by destructive winds, flood rains, and coastal storm surges. Two cases are selected from the climatology and briefly described here. The first case study is the major flood and storm force wind event of June 20 to 21, 2002 that affected the Coromandel Peninsula region of the North Island of New Zealand. The second case was a “supercyclone” bomb that developed well to the southwest of New Zealand region during May 29 to 31, 2004, but which could easily have formed in the New Zealand region with catastrophic consequences. It was well-captured by the new high resolution Quikscat scatterometer instrument.
Identification of wind fields for wave modeling near Qatar
NASA Astrophysics Data System (ADS)
Nayak, Sashikant; Balan Sobhana, Sandeepan; Panchang, Vijay
2016-04-01
Due to the development of coastal and offshore infrastructure in and around the Arabian Gulf, a large semi-enclosed sea, knowledge of met-ocean factors like prevailing wind systems, wind generated waves, and currents etc. are of great importance. Primarily it is important to identify the wind fields that are used as forcing functions for wave and circulation models for hindcasting and forecasting purposes. The present study investigates the effects of using two sources of wind-fields on the modeling of wind-waves in the Arabian Gulf, in particular near the coastal regions of Qatar. Two wind sources are considered here, those obtained from ECMWF and those generated by us using the WRF model. The wave model SWAN was first forced with the 6 hourly ERA Interim daily winds (from ECMWF) having spatial resolution of 0.125°. For the second option, wind fields were generated by us using the mesoscale wind model (WRF) with a high spatial resolution (0.1°) at every 30 minute intervals. The simulations were carried out for a period of two months (7th October-7th December, 2015) during which measurements were available from two moored buoys (deployed and operated by the Qatar Meteorological Department), one in the north of Qatar ("Qatar North", in water depth of 58.7 m) and other in the south ("Shiraouh Island", in water depth of 16.64 m). This period included a high-sea event on 11-12th of October, recorded by the two buoys where the significant wave heights (Hs) reached as high as 2.9 m (i.e. max wave height H ~ 5.22 m) and 1.9 (max wave height H ~ 3.4 m) respectively. Model results were compared with the data for this period. The scatter index (SI) of the Hs simulated using the WRF wind fields and the observed Hs was found to be about 30% and 32% for the two buoys (total period). The observed Hs were generally reproduced but there was consistent underestimation. (Maximum 27% for the high-sea event). For the Hs obtained with ERA interim wind fields, the underestimation was of the order of 50% (on average) for the entire duration. The study therefore suggests the use of a mesoscale weather forecasting model such as WRF, for deriving the wind fields for a large but marginal semi-enclosed sea where small scale phenomena dominate, and when used as forcing in the wave model, it provides wave-climate predictions with less error.
Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.
There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV)more » and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m –2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol–LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a northwesterly direction. The source air mass exhibits both higher temperatures and higher humidity in the polluted cases. While the warmer temperatures may be attributable to aerosol absorption of solar radiation over the subcontinent, the factors responsible for the coincident high humidity are less evident: the high-aerosol conditions are observed to disperse with air mass evolution, along with a weakening of the high-temperature anomaly, while the high-humidity condition is observed to strengthen in magnitude as the polluted air mass moves over the ocean toward the site of the CARDEX observations. In conclusion, potential causal mechanisms of the observed correlations, including meteorological or aerosol-induced factors, are explored, though future research will be needed for a more complete and quantitative understanding of the aerosol–humidity relationship.« less
Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime
NASA Astrophysics Data System (ADS)
Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.; Ramanathan, Veerabhadran; Wilcox, Eric M.; Bender, Frida A.-M.
2016-04-01
There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV) and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m-2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol-LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a northwesterly direction. The source air mass exhibits both higher temperatures and higher humidity in the polluted cases. While the warmer temperatures may be attributable to aerosol absorption of solar radiation over the subcontinent, the factors responsible for the coincident high humidity are less evident: the high-aerosol conditions are observed to disperse with air mass evolution, along with a weakening of the high-temperature anomaly, while the high-humidity condition is observed to strengthen in magnitude as the polluted air mass moves over the ocean toward the site of the CARDEX observations. Potential causal mechanisms of the observed correlations, including meteorological or aerosol-induced factors, are explored, though future research will be needed for a more complete and quantitative understanding of the aerosol-humidity relationship.
Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime
Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.; ...
2016-04-27
There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV)more » and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m –2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol–LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a northwesterly direction. The source air mass exhibits both higher temperatures and higher humidity in the polluted cases. While the warmer temperatures may be attributable to aerosol absorption of solar radiation over the subcontinent, the factors responsible for the coincident high humidity are less evident: the high-aerosol conditions are observed to disperse with air mass evolution, along with a weakening of the high-temperature anomaly, while the high-humidity condition is observed to strengthen in magnitude as the polluted air mass moves over the ocean toward the site of the CARDEX observations. In conclusion, potential causal mechanisms of the observed correlations, including meteorological or aerosol-induced factors, are explored, though future research will be needed for a more complete and quantitative understanding of the aerosol–humidity relationship.« less
ERIC Educational Resources Information Center
Kannegieter, Sandy; Wirkler, Linda
Facts and activities related to weather and meteorology are presented in this unit. Separate sections cover the following topics: (1) the water cycle; (2) clouds; (3) the Beaufort Scale for rating the speed and force of wind; (4) the barometer; (5) weather prediction; (6) fall weather in Iowa (sleet, frost, and fog); (7) winter weather in Iowa…
USDA-ARS?s Scientific Manuscript database
The variability of temperature extremes has been the focus of attention during the past few decades, and may exert a great influence on the global hydrologic cycle and energy balance through thermal forcing. Based on daily minimum and maximum temperature observed by the China Meteorological Administ...
Large-scale phenomena, chapter 3, part D
NASA Technical Reports Server (NTRS)
1975-01-01
Oceanic phenomena with horizontal scales from approximately 100 km up to the widths of the oceans themselves are examined. Data include: shape of geoid, quasi-stationary anomalies due to spatial variations in sea density and steady current systems, and the time dependent variations due to tidal and meteorological forces and to varying currents.
A distributed snow-evolution modeling system (SnowModel)
Glen E. Liston; Kelly Elder
2006-01-01
SnowModel is a spatially distributed snow-evolution modeling system designed for application in landscapes, climates, and conditions where snow occurs. It is an aggregation of four submodels: MicroMet defines meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowPack simulates snow depth and water-equivalent evolution, and SnowTran-3D...
2001-04-16
Workers at Astrotech, Titusville, Fla., prepare to open the solar panel on the GOES-M satellite. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is scheduled to launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station
2001-04-16
Workers at Astrotech, Titusville, Fla., check the solar panel on the GOES-M satellite. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is scheduled to launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station
2001-04-12
Workers at Astrotech, Titusville, Fla., work on the GOES-M satellite. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is undergoing testing at Astrotech before its scheduled launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station
2001-04-16
At Astrotech, Titusville, Fla., a worker checks components of the GOES-M satellite. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is scheduled to launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station
NASA Astrophysics Data System (ADS)
Williams, J. E.; van der Swaluw, E.; de Vries, W. J.; Sauter, F. J.; van Pul, W. A. J.; Hoogerbrugge, R.
2015-08-01
We present a parameterization developed to simulate Ammonium particle (NH4+) concentrations in the Operational Priority Substances (OPS) source-receptor model, without the necessity of using a detailed chemical scheme. By using the ratios of the main pre-cursor gases SO2, NO2 and NH3, and utilising calculations performed using a chemical box-model, we show that the parameterization can simulate annual mean NH4+ concentration fields to within ∼15% of measured values at locations throughout the Netherlands. Performing simulations for different decades, we find a strong correlation of simulated NH4+ distributions for both past (1993-1995) and present (2009-2012) time periods. Although the total concentration of NH4+ has decreased over the period, we find that the fraction of NH4+ transported into the Netherlands has increased from around 40% in the past to 50% for present-day. This is due to the variable efficiency of mitigation practises across economic sectors. Performing simulations for the year 2020 using associated emission estimates, we show that there are generally decreases of ∼8-25% compared to present day concentrations. By altering the meteorological fields applied in the future simulations, we show that a significant uncertainty of between ∼50 and 100% exists on this estimated NH4+ distribution as a result of variability in the temperature dependent emission terms and relative humidity. Therefore, any projections of future NH4+ distributions should be performed using well chosen meteorological fields representing recent meteorological situations.
2015-01-31
VANDENBERG AIR FORCE BASE, Calif. – A Delta II rocket lifts off Space Launch Complex 2 at Vandenberg Air Force Base, carrying NASA's Soil Moisture Active Passive satellite, or SMAP, to Earth orbit. Liftoff was at 9:22 a.m. EST. SMAP's measurements will be invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environmental and ecology applications communities. SMAP is designed to produce the highest-resolution maps of soil moisture ever obtained from space. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Danielsen, Edwin F.; Pfister, Leonhard; Hipskind, R. Stephen; Gaines, Steven E.
1990-01-01
The purpose of this task is the acquisition, distribution, archival, and analysis of data collected during and in support of the Upper Atmospheric Research Program (UARP) field experiments. Meteorological and U2 data from the 1984 Stratosphere-Troposphere Exchange Project (STEP) was analyzed to determine characteristics of internal atmospheric waves. CDROM's containing data from the 1987 STEP, 1987 Airborne Antarctic Ozone Expedition (AAOE), and the 1989 Airborne Arctic Stratospheric Expedition (AASE) were produced for archival and distribution of those data sets. The AASE CDROM contains preliminary data and a final release is planned for February 1990. Comparisons of data from the NASA ER-2 Meteorological Measurement System (MMS) with radar tracking and radiosonde data show good agreement. Planning for a Meteorological Support Facility continues. We are investigating existing and proposed hardware and software to receive, manipulate, and display satellite imagery and standard meteorological analyses, forecasts, and radiosonde data.
Latin American Network of students in Atmospheric Sciences and Meteorology
NASA Astrophysics Data System (ADS)
Cuellar-Ramirez, P.
2017-12-01
The Latin American Network of Students in Atmospheric Sciences and Meteorology (RedLAtM) is a civil nonprofit organization, organized by students from Mexico and some Latin- American countries. As a growing organization, providing human resources in the field of meteorology at regional level, the RedLAtM seeks to be a Latin American organization who helps the development of education and research in Atmospheric Sciences and Meteorology in order to engage and promote the integration of young people towards a common and imminent future: Facing the still unstudied various weather and climate events occurring in Latin America. The RedLAtM emerges from the analysis and observation/realization of a limited connection between Latin American countries around research in Atmospheric Sciences and Meteorology. The importance of its creation is based in cooperation, linking, research and development in Latin America and Mexico, in other words, to join efforts and stablish a regional scientific integration who leads to technological progress in the area of Atmospheric Sciences and Meteorology. As ultimate goal the RedLAtM pursuit to develop climatic and meteorological services for those countries unable to have their own programs, as well as projects linked with the governments of Latin American countries and private companies for the improvement of prevention strategies, research and decision making. All this conducing to enhance the quality of life of its inhabitants facing problems such as poverty and inequality.
Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime
NASA Astrophysics Data System (ADS)
Pistone, K.; Praveen, P. S.; Thomas, R. M.; Ramanathan, V.; Wilcox, E.; Bender, F. A.-M.
2015-10-01
There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood, as changes in atmospheric conditions due to aerosol may change the expected magnitude of indirect effects by altering cloud properties in unexpected ways. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season. In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements of atmospheric precipitable water vapor and the liquid water path (LWP) of trade cumulus clouds were made, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol. Here we present evidence of a positive correlation between aerosol and cloud LWP which becomes clear after the data are filtered to control for the natural meteorological variability in the region. We then use the aircraft and ground observatory measurements to explore the mechanisms behind the observed aerosol-LWP correlation. We determine that increased boundary-layer humidity lowering the cloud base is responsible for the observed increase in cloud liquid water. Large-scale analysis indicates that high pollution cases originate with a highly-polluted boundary layer air mass approaching the observatory from a northwesterly direction. This polluted mass exhibits higher temperatures and humidity than the clean case, the former of which may be attributable to heating due to aerosol absorption of solar radiation over the subcontinent. While high temperature conditions dispersed along with the high-aerosol anomaly, the high humidity condition was observed to instead develop along with the polluted air mass. We then explore potential causal mechanisms of the observed correlations, though future research will be needed to more fully describe the aerosol-humidity relationship.
NASA Astrophysics Data System (ADS)
Peng, L.; Sheffield, J.; Verbist, K. M. J.
2016-12-01
Hydrological predictions at regional-to-global scales are often hampered by the lack of meteorological forcing data. The use of large-scale gridded meteorological data is able to overcome this limitation, but these data are subject to regional biases and unrealistic values at local scale. This is especially challenging in regions such as Chile, where climate exhibits high spatial heterogeneity as a result of long latitude span and dramatic elevation changes. However, regional station-based observational datasets are not fully exploited and have the potential of constraining biases and spatial patterns. This study aims at adjusting precipitation and temperature estimates from the Princeton University global meteorological forcing (PGF) gridded dataset to improve hydrological simulations over Chile, by assimilating 982 gauges from the Dirección General de Aguas (DGA). To merge station data with the gridded dataset, we use a state-space estimation method to produce optimal gridded estimates, considering both the error of the station measurements and the gridded PGF product. The PGF daily precipitation, maximum and minimum temperature at 0.25° spatial resolution are adjusted for the period of 1979-2010. Precipitation and temperature gauges with long and continuous records (>70% temporal coverage) are selected, while the remaining stations are used for validation. The leave-one-out cross validation verifies the robustness of this data assimilation approach. The merged dataset is then used to force the Variable Infiltration Capacity (VIC) hydrological model over Chile at daily time step which are compared to the observations of streamflow. Our initial results show that the station-merged PGF precipitation effectively captures drizzle and the spatial pattern of storms. Overall the merged dataset has significant improvements compared to the original PGF with reduced biases and stronger inter-annual variability. The invariant spatial pattern of errors between the station data and the gridded product opens up the possibility of merging real-time satellite and intermittent gauge observations to produce more accurate real-time hydrological predictions.
NASA Technical Reports Server (NTRS)
Brenton, James C.; Barbre, Robert E.; Orcutt, John M.; Decker, Ryan K.
2018-01-01
The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) Natural Environments Branch (EV44) has provided atmospheric databases and analysis in support of space vehicle design and day-of-launch operations for NASA and commercial launch vehicle programs launching from the NASA Kennedy Space Center (KSC), co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station. The ER is one of the most heavily instrumented sites in the United States measuring various atmospheric parameters on a continuous basis. An inherent challenge with the large databases that EV44 receives from the ER consists of ensuring erroneous data are removed from the databases, and thus excluded from launch vehicle design analyses. EV44 has put forth great effort in developing quality control (QC) procedures for individual meteorological instruments; however, no standard QC procedures for all databases currently exist resulting in QC databases that have inconsistencies in variables, methodologies, and periods of record. The goal of this activity is to use the previous efforts by EV44 to develop a standardized set of QC procedures from which to build flags within the meteorological databases from KSC and the ER, while maintaining open communication with end users from the launch community to develop ways to improve, adapt and grow the QC database. Details of the QC checks are described. The flagged data points will be plotted in a graphical user interface (GUI) as part of a manual confirmation that the flagged data do indeed need to be removed from the archive. As the rate of launches increases with additional launch vehicle programs, more emphasis is being placed to continually update and check weather databases for data quality before use in launch vehicle design and certification analyses.
An Investigation of Turbulent Heat Exchange in the Subtropics
2014-09-30
meteorological sensors aboard the research vessel the R/V Revelle during the DYNAMO field program. In situ meteorology and high-rate flux sensors operated...continuously while in the sampling period for DYNAMO Leg 3. This included all sensors operating during Leg 2 with the addition of a closed-path LI...stress; wave data; surface and near surface sea temperatures, salinity and currents; and other key variables specifically requested by DYNAMO /LASP PIs
A climatological description of the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, C.H.
1990-05-22
This report provides a general climatological description of the Savannah River Site. The description provides both regional and local scale climatology. The regional climatology includes a general regional climatic description and presents information on occurrence frequencies of the severe meteorological phenomena that are important considerations in the design and siting of a facility. These phenomena include tornadoes, thunderstorms, hurricanes, and ice/snow storms. Occurrence probabilities given for extreme tornado and non-tornado winds are based on previous site specific studies. Local climatological conditions that are significant with respect to the impact of facility operations on the environment are described using on-site ormore » near-site meteorological data. Summaries of wind speed, wind direction, and atmospheric stability are primarily based on the most recently generated five-year set of data collected from the onsite meteorological tower network (1982--86). Temperature, humidity, and precipitation summaries include data from SRL's standard meteorological instrument shelter and the Augusta National Weather Service office at Bush Field through 1986. A brief description of the onsite meteorological monitoring program is also provided. 24 refs., 15 figs., 22 tabs.« less
THE NEW YORK MIDTOWN DISPERSION STUDY (MID-05) METEOROLOGICAL DATA REPORT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
REYNOLDS,R.M.; SULLIVAN, T.M.; SMITH, S.
2007-01-01
The New York City midtown dispersion program, MID05, examined atmospheric transport in the deep urban canyons near Rockefeller Center. Little is known about air flow and hazardous gas dispersion under such conditions, since previous urban field experiments have focused on small to medium sized cities with much smaller street canyons and examined response over a much larger area. During August, 2005, a series of six gas tracer tests were conducted and sampling was conducted over a 2 km grid. A critical component of understanding gas movement in these studies is detailed wind and meteorological information in the study zone. Tomore » support data interpretation and modeling, several meteorological stations were installed at street level and on roof tops in Manhattan. In addition, meteorological data from airports and other weather instrumentation around New York City were collected. This document describes the meteorological component of the project and provides an outline of data file formats for the different instruments. These data provide enough detail to support highly-resolved computational simulations of gas transport in the study zone.« less
Crowd-sourcing Meteorological Data for Student Field Projects
NASA Astrophysics Data System (ADS)
Bullard, J. E.
2016-12-01
This paper explains how students can rapidly collect large datasets to characterise wind speed and direction under different meteorological conditions. The tools used include a mobile device (tablet or phone), low cost wind speed/direction meters that are plugged in to the mobile device, and an app with online web support for uploading, collating and georeferencing data. Electronic customised data input forms downloaded to the mobile device are used to ensure students collect data using specified protocols which streamlines data management and reduces the likelihood of data entry errors. A key benefit is the rapid collection and quality control of field data that can be promptly disseminated to students for subsequent analysis.
ERIC Educational Resources Information Center
Windschitl, Mark; Dvornich, Karen; Ryken, Amy E.; Tudor, Margaret; Koehler, Gary
2007-01-01
Field investigations are not characterized by randomized and manipulated control group experiments; however, most school science and high-stakes tests recognize only this paradigm of investigation. Scientists in astronomy, genetics, field biology, oceanography, geology, and meteorology routinely select naturally occurring events and conditions and…
Drought propagation and its relation with catchment biophysical characteristics
NASA Astrophysics Data System (ADS)
Alvarez-Garreton, C. D.; Lara, A.; Garreaud, R. D.
2016-12-01
Droughts propagate in the hydrological cycle from meteorological to soil moisture to hydrological droughts. To understand the drivers of this process is of paramount importance since the economic and societal impacts in water resources are directly related with hydrological droughts (and not with meteorological droughts, which have been most studied). This research analyses drought characteristics over a large region and identify its main exogenous (climate forcing) and endogenous (biophysical characteristics such as land cover type and topography) explanatory factors. The study region is Chile, which covers seven major climatic subtypes according to Köppen system, it has unique geographic characteristics, very sharp topography and a wide range of landscapes and vegetation conditions. Meteorological and hydrological droughts (deficit in precipitation and streamflow, respectively) are characterized by their durations and standardized deficit volumes using a variable threshold method, over 300 representative catchments (located between 27°S and 50°S). To quantify the propagation from meteorological to hydrological drought, we propose a novel drought attenuation index (DAI), calculated as the ratio between the meteorological drought severity slope and the hydrological drought severity slope. DAI varies from zero (catchment that attenuates completely a meteorological drought) to one (the meteorological drought is fully propagated through the hydrological cycle). This novel index provides key (and comparable) information about drought propagation over a wide range of different catchments, which has been highlighted as a major research gap. Similar drought indicators across the wide range of catchments are then linked with catchment biophysical characteristics. A thorough compilation of land cover information (including the percentage of native forests, grass land, urban and industrial areas, glaciers, water bodies and no vegetated areas), catchment physical properties, and climatic conditions is done for all the catchments. Data mining techniques are applied to identify the main exogenous and endogenous factors determining drought characteristics and propagation.
OpenDrift v1.0: a generic framework for trajectory modelling
NASA Astrophysics Data System (ADS)
Dagestad, Knut-Frode; Röhrs, Johannes; Breivik, Øyvind; Ådlandsvik, Bjørn
2018-04-01
OpenDrift is an open-source Python-based framework for Lagrangian particle modelling under development at the Norwegian Meteorological Institute with contributions from the wider scientific community. The framework is highly generic and modular, and is designed to be used for any type of drift calculations in the ocean or atmosphere. A specific module within the OpenDrift framework corresponds to a Lagrangian particle model in the traditional sense. A number of modules have already been developed, including an oil drift module, a stochastic search-and-rescue module, a pelagic egg module, and a basic module for atmospheric drift. The framework allows for the ingestion of an unspecified number of forcing fields (scalar and vectorial) from various sources, including Eulerian ocean, atmosphere and wave models, but also measurements or a priori values for the same variables. A basic backtracking mechanism is inherent, using sign reversal of the total displacement vector and negative time stepping. OpenDrift is fast and simple to set up and use on Linux, Mac and Windows environments, and can be used with minimal or no Python experience. It is designed for flexibility, and researchers may easily adapt or write modules for their specific purpose. OpenDrift is also designed for performance, and simulations with millions of particles may be performed on a laptop. Further, OpenDrift is designed for robustness and is in daily operational use for emergency preparedness modelling (oil drift, search and rescue, and drifting ships) at the Norwegian Meteorological Institute.
NASA Astrophysics Data System (ADS)
Awada, H.; Ciraolo, G.; Maltese, A.; Moreno Hidalgo, M. A.; Provenzano, G.; Còrcoles, J. I.
2017-10-01
Satellite imagery provides a dependable basis for computational models that aimed to determine actual evapotranspiration (ET) by surface energy balance. Satellite-based models enables quantifying ET over large areas for a wide range of applications, such as monitoring water distribution, managing irrigation and assessing irrigation systems' performance. With the aim to evaluate the energy and water consumption of a large scale on-turn pressurized irrigation system in the district of Aguas Nuevas, Albacete, Spain, the satellite-based image-processing model SEBAL was used for calculating actual ET. The model has been applied to quantify instantaneous, daily, and seasonal actual ET over high- resolution Landsat images for the peak water demand season (May to September) and for the years 2006 - 2008. The model provided a direct estimation of the distribution of main energy fluxes, at the instant when the satellite overpassed over each field of the district. The image acquisition day Evapotranspiration (ET24) was obtained from instantaneous values by assuming a constant evaporative fraction (Λ) for the entire day of acquisition; then, monthly and seasonal ET were estimated from the daily evapotranspiration (ETdaily) assuming that ET24 varies in proportion to reference ET (ETr) at the meteorological station, thus accounting for day to day variation in meteorological forcing. The comparison between the hydrants water consumption and the actual evapotranspiration, considering an irrigation efficiency of 85%, showed that a considerable amount of water and energy can be saved at district level.
Wave ensemble forecast system for tropical cyclones in the Australian region
NASA Astrophysics Data System (ADS)
Zieger, Stefan; Greenslade, Diana; Kepert, Jeffrey D.
2018-05-01
Forecasting of waves under extreme conditions such as tropical cyclones is vitally important for many offshore industries, but there remain many challenges. For Northwest Western Australia (NW WA), wave forecasts issued by the Australian Bureau of Meteorology have previously been limited to products from deterministic operational wave models forced by deterministic atmospheric models. The wave models are run over global (resolution 1/4∘) and regional (resolution 1/10∘) domains with forecast ranges of + 7 and + 3 day respectively. Because of this relatively coarse resolution (both in the wave models and in the forcing fields), the accuracy of these products is limited under tropical cyclone conditions. Given this limited accuracy, a new ensemble-based wave forecasting system for the NW WA region has been developed. To achieve this, a new dedicated 8-km resolution grid was nested in the global wave model. Over this grid, the wave model is forced with winds from a bias-corrected European Centre for Medium Range Weather Forecast atmospheric ensemble that comprises 51 ensemble members to take into account the uncertainties in location, intensity and structure of a tropical cyclone system. A unique technique is used to select restart files for each wave ensemble member. The system is designed to operate in real time during the cyclone season providing + 10-day forecasts. This paper will describe the wave forecast components of this system and present the verification metrics and skill for specific events.
Local wind forcing of the Monterey Bay area inner shelf
Drake, P.T.; McManus, M.A.; Storlazzi, C.D.
2005-01-01
Wind forcing and the seasonal cycles of temperature and currents were investigated on the inner shelf of the Monterey Bay area of the California coast for 460 days, from June 2001 to September 2002. Temperature measurements spanned an approximate 100 km stretch of coastline from a bluff just north of Monterey Bay south to Point Sur. Inner shelf currents were measured at two sites near the bay's northern shore. Seasonal temperature variations were consistent with previous observations from the central California shelf. During the spring, summer and fall, a seasonal mean alongshore current was observed flowing northwestward in the northern bay, in direct opposition to a southeastward wind stress. A barotropic alongshore pressure gradient, potentially driving the northwestward flow, was needed to balance the alongshore momentum equation. With the exception of the winter season, vertical profiles of mean cross-shore currents were consistent with two-dimensional upwelling and existing observations from upwelling regions with poleward subsurface flow. At periods of 15-60 days, temperature fluctuations were coherent both throughout the domain and with the regional wind field. Remote wind forcing was minimal. During the spring upwelling season, alongshore currents and temperatures in the northern bay were most coherent with winds measured at a nearby land meteorological station. This wind site showed relatively low correlations to offshore buoy wind stations, indicating localized wind effects are important to the circulation along this stretch of Monterey Bay's inner shelf. ?? 2004 Elsevier Ltd. All rights reserved.
Long term, non-anthropogenic groundwater storage changes simulated by a global land surface model
NASA Astrophysics Data System (ADS)
Li, B.; Rodell, M.; Sheffield, J.; Wood, E. F.
2017-12-01
Groundwater is crucial for meeting agricultural, industrial and municipal water needs, especially in arid, semi-arid and drought impacted regions. Yet, knowledge on groundwater response to climate variability is not well understood due to lack of systematic and continuous in situ measurements. In this study, we investigate global non-anthropogenic groundwater storage variations with a land surface model driven by a 67-year (1948-204) meteorological forcing data set. Model estimates were evaluated using in situ groundwater data from the central and northeastern U.S. and terrestrial water storage derived from the Gravity Recovery and Climate Experiment (GRACE) satellites and found to be reasonable. Empirical orthogonal function (EOF) analysis was employed to examine modes of variability of groundwater storage and their relationship with atmospheric effects such as precipitation and evapotranspiration. The result shows that the leading mode in global groundwater storage reflects the influence of the El Niño Southern Oscillation (ENSO). Consistent with the EOF analysis, global total groundwater storage reflected the low frequency variability of ENSO and decreased significantly over 1948-2014 while global ET and precipitation did not exhibit statistically significant trends. This study suggests that while precipitation and ET are the primary drivers of climate related groundwater variability, changes in other forcing fields than precipitation and temperature are also important because of their influence on ET. We discuss the need to improve model physics and to continuously validate model estimates and forcing data for future studies.
Assessing extreme sea levels due to tropical cyclones in the Atlantic basin
NASA Astrophysics Data System (ADS)
Muis, Sanne; Lin, Ning; Verlaan, Martin; Winsemius, Hessel; Vatvani, Deepak; Ward, Philip; Aerts, Jeroen
2017-04-01
Tropical cyclones (TCs), including hurricanes and typhoons, are characterised by high wind speeds and low pressure and cause dangerous storm surges in coastal areas. Over the last 50 years, storm surge incidents in the Atlantic accounted for more than 1,000 deaths in the United Stated. Recent flooding disasters, such as Hurricane Katrina in New Orleans in 2005 and, Hurricane Sandy in New York in 2012, exemplify the significant TC surge risk in the United States. In this contribution, we build on Muis et al. (2016), and present a new modelling framework to simulate TC storm surges and estimate their probabilities for the Atlantic basin. In our framework we simulate the surge levels by forcing the Global Tide and Surge Model (GTSM) with wind and pressure fields from TC events. To test the method, we apply it to historical storms that occurred between 1988 and 2015 in the Atlantic Basin. We obtain high-resolution meteorological forcing by applying a parametric hurricane model (Holland 1980; Lin and Chavas 2012) to the TC extended track data set (Demuth et al. 2006; updated), which describes the position, intensity and size of the historical TCs. Preliminary results show that this framework is capable of accurately reproducing the main surge characteristics during past events, including Sandy and Katrina. While the resolution of GTSM is limited for local areas with a complex bathymetry, the overall performance of the model is satisfactory for the basin-scale application. For an accurate assessment of risk to coastal flooding in the Atlantic basin it is essential to provide reliable estimates of surge probabilities. However, the length of observed TC tracks is too short to accurately estimate the probabilities of extreme TC events. So next steps are to statistically extend the observed record to many thousands of years (e.g., Emanuel et al. 2006), in order to force GTSM with a large number of synthetic storms. Based on these synthetic simulations, we would be able to provide reliable probabilities of surge levels for the entire Atlantic basin. References Demuth, J., DeMaria, M., and Knaff, J.A. (2006). Improvement of advanced microwave sounder unit tropical cyclone intensity and size estimation algorithms. Journal of Applied Meteorology., 45, pp. 1573-1581. Emanuel, K., Ravela, S., Vivant, E. and Risi, C. (2006). A statistical deterministic approach to hurricane risk assessment. Bulletin of the American Meteorological Society, 87(3), pp.299-314. Holland, G.J. (1980). An analytic model of the wind and pressure profiles in hurricanes. Monthly Weather Review, 108(8), pp.1212-1218. Lin, N. and D. Chavas (2012). On hurricane parametric wind and applications in storm surge modeling. Journal of Geophysical Research - Atmospheres. 117. doi:10.1029/2011jd017126. Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H., & Ward, P. J. (2016). A global reanalysis of storm surge and extreme sea levels. Nature Communications, 7(7:11969), 1-11.
A comparison of measured and theoretical predictions for STS ascent and entry sonic booms
NASA Technical Reports Server (NTRS)
Garcia, F., Jr.; Jones, J. H.; Henderson, H. R.
1983-01-01
Sonic boom measurements have been obtained during the flights of STS-1 through 5. During STS-1, 2, and 4, entry sonic boom measurements were obtained and ascent measurements were made on STS-5. The objectives of this measurement program were (1) to define the sonic boom characteristics of the Space Transportation System (STS), (2) provide a realistic assessment of the validity of xisting theoretical prediction techniques, and (3) establish a level of confidence for predicting future STS configuration sonic boom environments. Detail evaluation and reporting of the results of this program are in progress. This paper will address only the significant results, mainly those data obtained during the entry of STS-1 at Edwards Air Force Base (EAFB), and the ascent of STS-5 from Kennedy Space Center (KSC). The theoretical prediction technique employed in this analysis is the so called Thomas Program. This prediction technique is a semi-empirical method that required definition of the near field signatures, detailed trajectory characteristics, and the prevailing meteorological characteristics as an input. This analytical procedure then extrapolates the near field signatures from the flight altitude to an altitude consistent with each measurement location.
The wind sea and swell waves climate in the Nordic seas
NASA Astrophysics Data System (ADS)
Semedo, Alvaro; Vettor, Roberto; Breivik, Øyvind; Sterl, Andreas; Reistad, Magnar; Soares, Carlos Guedes; Lima, Daniela
2015-02-01
A detailed climatology of wind sea and swell waves in the Nordic Seas (North Sea, Norwegian Sea, and Barents Sea), based on the high-resolution reanalysis NORA10, developed by the Norwegian Meteorological Institute, is presented. The higher resolution of the wind forcing fields, and the wave model (10 km in both cases), along with the inclusion of the bottom effect, allowed a better description of the wind sea and swell features, compared to previous global studies. The spatial patterns of the swell-dominated regional wave fields are shown to be different from the open ocean, due to coastal geometry, fetch dimensions, and island sheltering. Nevertheless, swell waves are still more prevalent and carry more energy in the Nordic Seas, with the exception of the North Sea. The influence of the North Atlantic Oscillation on the winter regional wind sea and swell patterns is also presented. The analysis of the decadal trends of wind sea and swell heights during the NORA10 period (1958-2001) shows that the long-term trends of the total significant wave height (SWH) in the Nordic Seas are mostly due to swell and to the wave propagation effect.
NASA Technical Reports Server (NTRS)
Douglass, Anne R.; Stolarski, Richard S.; Steenrod, Steven; Pawson, Steven
2003-01-01
One key application of atmospheric chemistry and transport models is prediction of the response of ozone and other constituents to various natural and anthropogenic perturbations. These include changes in composition, such as the previous rise and recent decline in emission of man-made chlorofluorcarbons, changes in aerosol loading due to volcanic eruption, and changes in solar forcing. Comparisons of hindcast model results for the past few decades with observations are a key element of model evaluation and provide a sense of the reliability of model predictions. The 25 year data set from Total Ozone Mapping Spectrometers is a cornerstone of such model evaluation. Here we report evaluation of three-dimensional multi-decadal simulation of stratospheric composition. Meteorological fields for this off-line calculation are taken from a 50 year simulation of a general circulation model. Model fields are compared with observations from TOMS and also with observations from the Stratospheric Aerosol and Gas Experiment (SAGE), Microwave Limb Sounder (MLS), Cryogenic Limb Array Etalon Spectrometer (CLAES), and the Halogen Occultation Experiment (HALOE). This overall evaluation will emphasize the spatial, seasonal, and interannual variability of the simulation compared with observed atmospheric variability.
Gravity waves generated by a tropical cyclone during the STEP tropical field program - A case study
NASA Technical Reports Server (NTRS)
Pfister, L.; Chan, K. R.; Bui, T. P.; Bowen, S.; Legg, M.; Gary, B.; Kelly, K.; Proffitt, M.; Starr, W.
1993-01-01
Overflights of a tropical cyclone during the Australian winter monsoon field experiment of the Stratosphere-Troposphere Exchange Project (STEP) show the presence of two mesoscale phenomena: a vertically propagating gravity wave with a horizontal wavelength of about 110 km and a feature with a horizontal scale comparable to that of the cyclone's entire cloud shield. The larger feature is fairly steady, though its physical interpretation is ambiguous. The 110-km gravity wave is transient, having maximum amplitude early in the flight and decreasing in amplitude thereafter. Its scale is comparable to that of 100-to 150-km-diameter cells of low satellite brightness temperatures within the overall cyclone cloud shield; these cells have lifetimes of 4.5 to 6 hrs. These cells correspond to regions of enhanced convection, higher cloud altitude, and upwardly displaced potential temperature surfaces. The temporal and spatial distribution of meteorological variables associated with the 110-km gravity wave can be simulated by a slowly moving transient forcing at the anvil top having an amplitude of 400-600 m, a lifetime of 4.5-6 hrs, and a size comparable to the cells of low brightness temperature.
NASA Astrophysics Data System (ADS)
Konstantinov, Pavel; Varentsov, Mikhail; Platonov, Vladimir; Samsonov, Timofey; Zhdanova, Ekaterina; Chubarova, Natalia
2017-04-01
The main goal of this investigation is to develop a kind of "urban reanalysis" - the database of meteorological and radiation fields under Moscow megalopolis for period 1981-2014 with high spatial resolution. Main meteorological fields for Moscow region are reproduced with COSMO_CLM regional model (including urban parameters) with horizontal resolution 1x1 km. Time resolution of output fields is 1 hour. For radiation fields is quite useful to calculate SVF (Sky View Factor) for obtaining losses of UV radiation in complex urban conditions. Usually, the raster-based SVF analysis the shadow-casting algorithm proposed by Richens (1997) is popular (see Ratti and Richens 2004, Gal et al. 2008, for example). SVF image is obtained by combining shadow images obtained from different directions. An alternative is to use raster-based SVF calculation similar to vector approach using digital elevation model of urban relief. Output radiation field includes UV-radiation with horizontal resolution 1x1 km This study was financially supported by the Russian Foundation for Basic Research within the framework of the scientific project no. 15-35-21129 _mol_a_ved and project no 15-35-70006 mol_a_mos References: 1. Gal, T., Lindberg, F., and Unger, J., 2008. Computing continuous sky view factors using 3D urban raster and vector databases: comparison and application to urban climate. Theoretical and applied climatology, 95 (1-2), 111-123. 2. Richens, P., 1997. Image processing for urban scale environmental modelling. In: J.D. Spitler and J.L.M. Hensen, eds. th Intemational IBPSA Conference Building Simulation, Prague. 3. Ratti, C. and Richens, P., 2004. Raster analysis of urban form. Environment and Planning B: Planning and Design, 31 (2), 297-309.
Comparison of Ensemble Mean and Deterministic Forecasts for Long-Range Airlift Fuel Planning
2014-03-27
honors in volleyball . In 2002, she transferred to the University of Oklahoma, where she earned a bachelor’s degree in Meteorology and was com- missioned...instrumental in safely estab- lishing remotely-piloted aircraft operations. She was a member of the Air Force Women’s Volleyball team in 2007, 2009, and 2010, as
2016-04-04
structure. Weather Reconnaissance capability would aid the Guard in gathering meteorological intelligence in preparation for hurricane or tornado domestic...Reserve units by relating it to an emergency response in Missouri. On May 22, 2011, a tornado struck Joplin, killing 158 people and injuring 1,000
1998-09-01
Stenner , 1996.] Figure 2.2. Coastal Mixing and Optics central 3 m discus buoy. [From Baumgartner and Anderson, 1997 (Figure 4).] 12 2.2.2. SoNIC...Meteorology, 78, 247-290. Stenner , R., 1996: Coastal Mixing and Optics Experimental Site (http://wavelet.apl.washington.edu/CMO/CMO_bath.html). Thiermann
2001-04-16
Workers (at left) at Astrotech, Titusville, Fla., observe the inside of the solar panel on the GOES-M satellite. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is scheduled to launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station
2001-04-16
Workers at Astrotech, Titusville, Fla., look at components on the GOES-M satellite after opening the solar panel. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is scheduled to launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station
2001-04-16
Workers at Astrotech, Titusville, Fla., confer about their findings after opening the solar panel on the GOES-M satellite. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is scheduled to launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station
2001-04-16
Workers at Astrotech, Titusville, Fla., observe the solar panel on the GOES-M satellite as they open it. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is scheduled to launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station
Yerramilli, Anjaneyulu; Challa, Venkata Srinivas; Indracanti, Jayakumar; Dasari, Hariprasad; Baham, Julius; Patrick, Chuck; Young, John; Hughes, Robert; White, Lorren D.; Hardy, Mark G.; Swanier, Shelton
2008-01-01
Coastal atmospheric conditions widely vary from those over inland due to the land-sea interface, temperature contrast and the consequent development of local circulations. In this study a field meteorological experiment was conducted to measure vertical structure of boundary layer during the period 25–29 June, 2007 at three locations Seabee base, Harrison and Wiggins sites in the Mississippi coast. A GPS Sonde along with slow ascent helium balloon and automated weather stations equipped with slow and fast response sensors were used in the experiment. GPS sonde were launched at three specific times (0700 LT, 1300 LT and 1800 LT) during the experiment days. The observations indicate shallow boundary layer near the coast which gradually develops inland. The weather research and forecasting (WRF) meso-scale atmospheric model and a Lagrangian particle dispersion model (HYSPLIT) are used to simulate the lower atmospheric flow and dispersion in a range of 100 km from the coast for 28–30 June, 2007. The simulated meteorological parameters were compared with the experimental observations. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of development of sea breeze flow, its coupling with the large scale flow field and the ensuing alteration in the mixing depth across the coast. Simulated ground-level concentrations of SO2 from four elevated point sources located along the coast indicate diurnal variation and impact of the local sea-land breeze on the direction of the plume. Model concentration levels were highest during the stable morning condition and during the sea-breeze time in the afternoon. The highest concentrations were found up to 40 km inland during sea breeze time. The study illustrates the application of field meteorological observations for the validation of WRF which is coupled to HYSPLIT for dispersion assessment in the coastal region. PMID:19151446
NASA Astrophysics Data System (ADS)
Fangmann, Anne; Haberlandt, Uwe
2014-05-01
In the face of climate change, the assessment of future hydrological regimes has become indispensable in the field of water resources management. Investigation of potential change is vital for proper planning, especially with regard to hydrological extremes. Commonly, projection of future streamflow is done applying process-based hydrological models, using climate model data as input, whose complex model structures generally require excessive amounts of time and effort for set-up and computation. This study aims at identifying practical alternatives to the employment of sophisticated models by considering simpler, yet sufficiently accurate methods for modeling rainfall-runoff relations with regard to hydrological extremes. The focus is thereby put on the prediction of low flow periods, which are, in contrast to flood events, characterized by extended durations and spatial dimensions. The models to be established in this study base on indicators, which characterize both meteorological and hydrological conditions within dry periods. This approach makes direct use of the coupling between atmospheric driving forces and streamflow response with the underlying presumption that low-precipitation and high-evaporation periods result in diminished flow, implying that relationships exist between the properties of both meteorological and hydrological events (duration, volume, severity etc.). Eventually, optimal combinations of meteorological indicators are sought that are suitable to predict various low flow characteristics with satisfactory accuracy. Two approaches for model specification are tested: a) multiple linear regression, and b) Fuzzy logic. The data used for this study are daily time series of mean discharge obtained from 294 gauges with variable record length situated in the federal state of Lower Saxony, Germany, as well as interpolated climate variables available for a period from 1951 to 2011. After extraction of a variety of indicators from the available discharge and climate time series on a bi-annual basis, regression and Fuzzy models are fit. Fitting is done in two variations: locally at each of the watersheds in the study area, and regionally, yielding one specific model expression for the entire study area. Models for the individual stations perform well using only the meteorological indicators as predictor variables, while the regional models require the additional input of catchment descriptors to account for the variability of the rainfall-runoff translation processes between the catchments.
NASA Astrophysics Data System (ADS)
Taghavi, M.; Cautenet, S.
2003-04-01
The ESCOMPTE Campaign has been conducted over Southern France (Provence region including the Marseille, Aix and Toulon cities and the Fos-Berre industrial center) in June and July of 2001. In order to study the redistribution of the pollutants emitted by anthropic and biogenic emissions and their impact on the atmospheric chemistry, we used meso-scale modeling (RAMS model, paralleled version 4.3, coupled on line with chemical modules : MOCA2.2 (Poulet et al, 2002) including 29 gaseous species). The hourly high resolution emissions were obtained from ESCOMPTE database (Ponche et al, 2002). The model was coupled with the dry deposition scheme (Walmsley and Weseley,1996). In this particular case of complex circulation (sea breeze associated with topography), the processes involving peaks of pollution were strongly non linear, and the meso scale modeling coupled on line with chemistry module was an essential step for a realistic redistribution of chemical species. Two nested grids satisfactorily describe the synoptic dynamics and the sea breeze circulations. The ECMWF meteorological fields provide the initial and boundary conditions. Different events characterized by various meteorological situations were simulated. Meteorological fields retrieved by modeling, also Modeled ozone, NOx, CO and SO2 concentrations, were compared with balloons, lidars, aircrafts and surface stations measurements. The chemistry regimes were explained according to the distribution of plumes. The stratified layers were examined.
Dispersion Modeling Using Ensemble Forecasts Compared to ETEX Measurements.
NASA Astrophysics Data System (ADS)
Straume, Anne Grete; N'dri Koffi, Ernest; Nodop, Katrin
1998-11-01
Numerous numerical models are developed to predict long-range transport of hazardous air pollution in connection with accidental releases. When evaluating and improving such a model, it is important to detect uncertainties connected to the meteorological input data. A Lagrangian dispersion model, the Severe Nuclear Accident Program, is used here to investigate the effect of errors in the meteorological input data due to analysis error. An ensemble forecast, produced at the European Centre for Medium-Range Weather Forecasts, is then used as model input. The ensemble forecast members are generated by perturbing the initial meteorological fields of the weather forecast. The perturbations are calculated from singular vectors meant to represent possible forecast developments generated by instabilities in the atmospheric flow during the early part of the forecast. The instabilities are generated by errors in the analyzed fields. Puff predictions from the dispersion model, using ensemble forecast input, are compared, and a large spread in the predicted puff evolutions is found. This shows that the quality of the meteorological input data is important for the success of the dispersion model. In order to evaluate the dispersion model, the calculations are compared with measurements from the European Tracer Experiment. The model manages to predict the measured puff evolution concerning shape and time of arrival to a fairly high extent, up to 60 h after the start of the release. The modeled puff is still too narrow in the advection direction.
Refinement and testing of analysis nudging in MPAS-A ...
The Model for Prediction Across Scales - Atmosphere (MPAS-A) is being adapted to serve as the meteorological driver for EPA’s “next-generation” air-quality model. To serve that purpose, it must be able to function in a diagnostic mode where past meteorological conditions are represented in greater detail and accuracy than can be provided by available observational data and meteorological reanalysis products. MPAS-A has been modified to allow four dimensional data assimilation (FDDA) by the nudging of temperature, humidity and wind toward target values predefined on the MPAS-A computational mesh. The technique of “analysis nudging” developed for the Penn State / NCAR Mesoscale Model – Version 4 (MM4), and later applied in the Weather Research and Forecasting model (WRF), is applied here in MPAS-A with adaptations for the unstructured Voronoi mesh used in MPAS-A. Test simulations for the periods of January and July 2013, with and without FDDA, are compared to target fields at various vertical levels and to surface-level meteorological observations. The results show the ability to follow target fields with high fidelity while still maintaining conservation of mass as in the original model. The results also show model errors relative to observations continue to be constrained throughout the simulations using FDDA and even show some error reduction during the first few days that could be attributable to the finer resolution of the 92-25 km computa
NASA Technical Reports Server (NTRS)
Segal, M.; Pielke, R. A.; Mcnider, R. T.; Mcdougal, D. S.
1982-01-01
The mesoscale numerical model of the University of Virginia (UVMM), has been applied to the greater Chesapeake Bay area in order to provide a detailed description of the air pollution meteorology during a typical summer day. This model provides state of the art simulations for land-sea thermally induced circulations. The model-predicted results agree favorably with available observed data. The effects of synoptic flow and sea breeze coupling on air pollution meteorological characteristics in this region, are demonstrated by a spatial and temporal presentation of various model predicted fields. A transport analysis based on predicted wind velocities indicated possible recirculation of pollutants back onto the Atlantic coast due to the sea breeze circulation.
NASA Astrophysics Data System (ADS)
Pirovano, G.; Coll, I.; Bedogni, M.; Alessandrini, S.; Costa, M. P.; Gabusi, V.; Lasry, F.; Menut, L.; Vautard, R.
The modelling reconstruction of the processes determining the transport and mixing of ozone and its precursors in complex terrain areas is a challenging task, particularly when local-scale circulations, such as sea breeze, take place. Within this frame, the ESCOMPTE European campaign took place in the vicinity of Marseille (south-east of France) in summer 2001. The main objectives of the field campaign were to document several photochemical episodes, as well as to constitute a detailed database for chemistry transport models intercomparison. CAMx model has been applied on the largest intense observation periods (IOP) (June 21-26, 2001) in order to evaluate the impacts of two state-of-the-art meteorological models, RAMS and MM5, on chemical model outputs. The meteorological models have been used as best as possible in analysis mode, thus allowing to identify the spread arising in pollutant concentrations as an indication of the intrinsic uncertainty associated to the meteorological input. Simulations have been deeply investigated and compared with a considerable subset of observations both at ground level and along vertical profiles. The analysis has shown that both models were able to reproduce the main circulation features of the IOP. The strongest discrepancies are confined to the Planetary Boundary Layer, consisting of a clear tendency to underestimate or overestimate wind speed over the whole domain. The photochemical simulations showed that variability in circulation intensity was crucial mainly for the representation of the ozone peaks and of the shape of ozone plumes at the ground that have been affected in the same way over the whole domain and all along the simulated period. As a consequence, such differences can be thought of as a possible indicator for the uncertainty related to the definition of meteorological fields in a complex terrain area.
Physical Processes Governing Atmospheric Trace Constituents Measured from an Aircraft on PEM-Tropics
NASA Technical Reports Server (NTRS)
Newell, Reginald E.; Hoell, James M., Jr. (Technical Monitor)
2001-01-01
Before the mission, the PI (principal investigator) was instrumental in securing real-time use of the new 51-level ECMWF (European Centre for Medium Range Weather Forecasts) meteorological data. During the mission, he provided flight planning and execution guidance as meteorologist for the P-3B. Mr. Yong Zhu computed and plotted meteorological forecast maps using the ECMWF data and transmitted them to the field from MIT (Massachusetts Institute of Technology). Dr. John Cho was in the field for the Christmas Island portion to extract data from the on-site NOAA (National Oceanic and Atmospheric Administration) radars for local wind profiles that were used at the flight planning meetings. When the power supply for the VHF radar failed, he assisted the NOAA engineer in its repair. After the mission, Mr. Zhu produced meteorological data memos, which were made available to the PEM (Pacific Exploratory Mission)-Tropics B science team on request. An undergraduate student, Ms. Danielle Morse, wrote memos annotating the cloud conditions seen on the aircraft external monitor video tapes. Dr. Cho and the PI circulated a memo regarding the status (and associated problems) of the meteorological measurement systems on the DC-8 and P-3B to the relevant people on the science team. Several papers by members of our project were completed and accepted by JGR (Journal of Geophysical Research) for the first special section on PEM-Tropics B. These papers included coverage of the following topics: 1) examination of boundary layer data; 2) water vapor transport; 3) tropospheric trace constituent layers; 4) summarizations of the meteorological background and events during PEM-Tropics B; 5) concomitant lidar measurements of ozone, water vapor, and aerosol.
Sampling errors in the estimation of empirical orthogonal functions. [for climatology studies
NASA Technical Reports Server (NTRS)
North, G. R.; Bell, T. L.; Cahalan, R. F.; Moeng, F. J.
1982-01-01
Empirical Orthogonal Functions (EOF's), eigenvectors of the spatial cross-covariance matrix of a meteorological field, are reviewed with special attention given to the necessary weighting factors for gridded data and the sampling errors incurred when too small a sample is available. The geographical shape of an EOF shows large intersample variability when its associated eigenvalue is 'close' to a neighboring one. A rule of thumb indicating when an EOF is likely to be subject to large sampling fluctuations is presented. An explicit example, based on the statistics of the 500 mb geopotential height field, displays large intersample variability in the EOF's for sample sizes of a few hundred independent realizations, a size seldom exceeded by meteorological data sets.
Forecasting European Droughts using the North American Multi-Model Ensemble (NMME)
NASA Astrophysics Data System (ADS)
Thober, Stephan; Kumar, Rohini; Samaniego, Luis; Sheffield, Justin; Schäfer, David; Mai, Juliane
2015-04-01
Soil moisture droughts have the potential to diminish crop yields causing economic damage or even threatening the livelihood of societies. State-of-the-art drought forecasting systems incorporate seasonal meteorological forecasts to estimate future drought conditions. Meteorological forecasting skill (in particular that of precipitation), however, is limited to a few weeks because of the chaotic behaviour of the atmosphere. One of the most important challenges in drought forecasting is to understand how the uncertainty in the atmospheric forcings (e.g., precipitation and temperature) is further propagated into hydrologic variables such as soil moisture. The North American Multi-Model Ensemble (NMME) provides the latest collection of a multi-institutional seasonal forecasting ensemble for precipitation and temperature. In this study, we analyse the skill of NMME forecasts for predicting European drought events. The monthly NMME forecasts are downscaled to daily values to force the mesoscale hydrological model (mHM). The mHM soil moisture forecasts obtained with the forcings of the dynamical models are then compared against those obtained with the Ensemble Streamflow Prediction (ESP) approach. ESP recombines historical meteorological forcings to create a new ensemble forecast. Both forecasts are compared against reference soil moisture conditions obtained using observation based meteorological forcings. The study is conducted for the period from 1982 to 2009 and covers a large part of the Pan-European domain (10°W to 40°E and 35°N to 55°N). Results indicate that NMME forecasts are better at predicting the reference soil moisture variability as compared to ESP. For example, NMME explains 50% of the variability in contrast to only 31% by ESP at a six-month lead time. The Equitable Threat Skill Score (ETS), which combines the hit and false alarm rates, is analysed for drought events using a 0.2 threshold of a soil moisture percentile index. On average, the NMME based ensemble forecasts have consistently higher skill than the ESP based ones (ETS of 13% as compared to 5% at a six-month lead time). Additionally, the ETS ensemble spread of NMME forecasts is considerably narrower than that of ESP; the lower boundary of the NMME ensemble spread coincides most of the time with the ensemble median of ESP. Among the NMME models, NCEP-CFSv2 outperforms the other models in terms of ETS most of the time. Removing the three worst performing models does not deteriorate the ensemble performance (neither in skill nor in spread), but would substantially reduce the computational resources required in an operational forecasting system. For major European drought events (e.g., 1990, 1992, 2003, and 2007), NMME forecasts tend to underestimate area under drought and drought magnitude during times of drought development. During drought recovery, this underestimation is weaker for area under drought or even reversed into an overestimation for drought magnitude. This indicates that the NMME models are too wet during drought development and too dry during drought recovery. In summary, soil moisture drought forecasts by NMME are more skillful than those of an ESP based approach. However, they still show systematic biases in reproducing the observed drought dynamics during drought development and recovery.
Bodner, G; Scholl, P; Loiskandl, W; Kaul, H-P
2013-08-01
Structural porosity is a decisive property for soil productivity and soil environmental functions. Hydraulic properties in the structural range vary over time in response to management and environmental influences. Although this is widely recognized, there are few field studies that determine dominant driving forces underlying hydraulic property dynamics. During a three year field experiment we measured temporal variability of soil hydraulic properties by tension infiltrometry. Soil properties were characterized by hydraulic conductivity, effective macroporosity and Kosugi's lognormal pore size distribution model. Management related influences comprised three soil cover treatment (mustard and rye vs. fallow) and an initial mechanical soil disturbance with a rotary harrow. Environmental driving forces were derived from meteorological and soil moisture data. Soil hydraulic parameters varied over time by around one order of magnitude. The coefficient of variation of soil hydraulic conductivity K(h) decreased from 69.5% at saturation to 42.1% in the more unsaturated range (- 10 cm pressure head). A slight increase in the Kosugi parameter showing pore heterogeneity was observed under the rye cover crop, reflecting an enhanced structural porosity. The other hydraulic parameters were not significantly influenced by the soil cover treatments. Seedbed preparation with a rotary harrow resulted in a fourfold increase in macroporosity and hydraulic conductivity next to saturation, and homogenized the pore radius distribution. Re-consolidation after mechanical loosening lasted over 18 months until the soil returned to its initial state. The post-tillage trend of soil settlement could be approximated by an exponential decay function. Among environmental factors, wetting-drying cycles were identified as dominant driving force explaining short term hydraulic property changes within the season (r 2 = 0.43 to 0.59). Our results suggested that beside considering average management induced changes in soil properties (e.g. cover crop introduction), a dynamic approach to hydrological modeling is required to capture over-seasonal (tillage driven) and short term (environmental driven) variability in hydraulic parameters.
Technical Note: On the use of nudging for aerosol–climate model intercomparison studies
Zhang, K.; Wan, H.; Liu, X.; ...
2014-08-26
Nudging as an assimilation technique has seen increased use in recent years in the development and evaluation of climate models. Constraining the simulated wind and temperature fields using global weather reanalysis facilitates more straightforward comparison between simulation and observation, and reduces uncertainties associated with natural variabilities of the large-scale circulation. On the other hand, the forcing introduced by nudging can be strong enough to change the basic characteristics of the model climate. In the paper we show that for the Community Atmosphere Model version 5 (CAM5), due to the systematic temperature bias in the standard model and the sensitivity ofmore » simulated ice formation to anthropogenic aerosol concentration, nudging towards reanalysis results in substantial reductions in the ice cloud amount and the impact of anthropogenic aerosols on long-wave cloud forcing. In order to reduce discrepancies between the nudged and unconstrained simulations, and meanwhile take the advantages of nudging, two alternative experimentation methods are evaluated. The first one constrains only the horizontal winds. The second method nudges both winds and temperature, but replaces the long-term climatology of the reanalysis by that of the model. Results show that both methods lead to substantially improved agreement with the free-running model in terms of the top-of-atmosphere radiation budget and cloud ice amount. The wind-only nudging is more convenient to apply, and provides higher correlations of the wind fields, geopotential height and specific humidity between simulation and reanalysis. Results from both CAM5 and a second aerosol–climate model ECHAM6-HAM2 also indicate that compared to the wind-and-temperature nudging, constraining only winds leads to better agreement with the free-running model in terms of the estimated shortwave cloud forcing and the simulated convective activities. This suggests nudging the horizontal winds but not temperature is a good strategy for the investigation of aerosol indirect effects since it provides well-constrained meteorology without strongly perturbing the model's mean climate.« less
Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.-P.
2013-01-01
Structural porosity is a decisive property for soil productivity and soil environmental functions. Hydraulic properties in the structural range vary over time in response to management and environmental influences. Although this is widely recognized, there are few field studies that determine dominant driving forces underlying hydraulic property dynamics. During a three year field experiment we measured temporal variability of soil hydraulic properties by tension infiltrometry. Soil properties were characterized by hydraulic conductivity, effective macroporosity and Kosugi's lognormal pore size distribution model. Management related influences comprised three soil cover treatment (mustard and rye vs. fallow) and an initial mechanical soil disturbance with a rotary harrow. Environmental driving forces were derived from meteorological and soil moisture data. Soil hydraulic parameters varied over time by around one order of magnitude. The coefficient of variation of soil hydraulic conductivity K(h) decreased from 69.5% at saturation to 42.1% in the more unsaturated range (− 10 cm pressure head). A slight increase in the Kosugi parameter showing pore heterogeneity was observed under the rye cover crop, reflecting an enhanced structural porosity. The other hydraulic parameters were not significantly influenced by the soil cover treatments. Seedbed preparation with a rotary harrow resulted in a fourfold increase in macroporosity and hydraulic conductivity next to saturation, and homogenized the pore radius distribution. Re-consolidation after mechanical loosening lasted over 18 months until the soil returned to its initial state. The post-tillage trend of soil settlement could be approximated by an exponential decay function. Among environmental factors, wetting-drying cycles were identified as dominant driving force explaining short term hydraulic property changes within the season (r2 = 0.43 to 0.59). Our results suggested that beside considering average management induced changes in soil properties (e.g. cover crop introduction), a dynamic approach to hydrological modeling is required to capture over-seasonal (tillage driven) and short term (environmental driven) variability in hydraulic parameters. PMID:24748683
NASA Astrophysics Data System (ADS)
Lindo-Atichati, D.; Curcic, M.; Paris, C. B.; Buston, P. M.
2016-10-01
The gains from implementing high-resolution versus less costly low-resolution models to describe coastal circulation are not always clear, often lacking statistical evaluation. Here we construct a hierarchy of ocean-atmosphere models operating at multiple scales within a 1 × 1° domain of the Belizean Barrier Reef (BBR). The various components of the atmosphere-ocean models are evaluated with in situ observations of surface drifters, wind and sea surface temperature. First, we compare the dispersion and velocity of 55 surface drifters released in the field in summer 2013 to the dispersion and velocity of simulated drifters under alternative model configurations. Increasing the resolution of the ocean model (from 1/12° to 1/100°, from 1 day to 1 h) and atmosphere model forcing (from 1/2° to 1/100°, from 6 h to 1 h), and incorporating tidal forcing incrementally reduces discrepancy between simulated and observed velocities and dispersion. Next, in trying to understand why the high-resolution models improve prediction, we find that resolving both the diurnal sea-breeze and semi-diurnal tides is key to improving the Lagrangian statistics and transport predictions along the BBR. Notably, the model with the highest ocean-atmosphere resolution and with tidal forcing generates a higher number of looping trajectories and sub-mesoscale coherent structures that are otherwise unresolved. Finally, simulations conducted with this model from June to August of 2013 show an intensification of the velocity fields throughout the summer and reveal a mesoscale anticyclonic circulation around Glovers Reef, and sub-mesoscale cyclonic eddies formed in the vicinity of Columbus Island. This study provides a general framework to assess the best surface transport prediction from alternative ocean-atmosphere models using metrics derived from high frequency drifters' data and meteorological stations.
Technical Note: On the use of nudging for aerosol-climate model intercomparison studies
NASA Astrophysics Data System (ADS)
Zhang, K.; Wan, H.; Liu, X.; Ghan, S. J.; Kooperman, G. J.; Ma, P.-L.; Rasch, P. J.; Neubauer, D.; Lohmann, U.
2014-08-01
Nudging as an assimilation technique has seen increased use in recent years in the development and evaluation of climate models. Constraining the simulated wind and temperature fields using global weather reanalysis facilitates more straightforward comparison between simulation and observation, and reduces uncertainties associated with natural variabilities of the large-scale circulation. On the other hand, the forcing introduced by nudging can be strong enough to change the basic characteristics of the model climate. In the paper we show that for the Community Atmosphere Model version 5 (CAM5), due to the systematic temperature bias in the standard model and the sensitivity of simulated ice formation to anthropogenic aerosol concentration, nudging towards reanalysis results in substantial reductions in the ice cloud amount and the impact of anthropogenic aerosols on long-wave cloud forcing. In order to reduce discrepancies between the nudged and unconstrained simulations, and meanwhile take the advantages of nudging, two alternative experimentation methods are evaluated. The first one constrains only the horizontal winds. The second method nudges both winds and temperature, but replaces the long-term climatology of the reanalysis by that of the model. Results show that both methods lead to substantially improved agreement with the free-running model in terms of the top-of-atmosphere radiation budget and cloud ice amount. The wind-only nudging is more convenient to apply, and provides higher correlations of the wind fields, geopotential height and specific humidity between simulation and reanalysis. Results from both CAM5 and a second aerosol-climate model ECHAM6-HAM2 also indicate that compared to the wind-and-temperature nudging, constraining only winds leads to better agreement with the free-running model in terms of the estimated shortwave cloud forcing and the simulated convective activities. This suggests nudging the horizontal winds but not temperature is a good strategy for the investigation of aerosol indirect effects since it provides well-constrained meteorology without strongly perturbing the model's mean climate.
Coupling of snow and permafrost processes using the Basic Modeling Interface (BMI)
NASA Astrophysics Data System (ADS)
Wang, K.; Overeem, I.; Jafarov, E. E.; Piper, M.; Stewart, S.; Clow, G. D.; Schaefer, K. M.
2017-12-01
We developed a permafrost modeling tool based by implementing the Kudryavtsev empirical permafrost active layer depth model (the so-called "Ku" component). The model is specifically set up to have a basic model interface (BMI), which enhances the potential coupling to other earth surface processes model components. This model is accessible through the Web Modeling Tool in Community Surface Dynamics Modeling System (CSDMS). The Kudryavtsev model has been applied for entire Alaska to model permafrost distribution at high spatial resolution and model predictions have been verified by Circumpolar Active Layer Monitoring (CALM) in-situ observations. The Ku component uses monthly meteorological forcing, including air temperature, snow depth, and snow density, and predicts active layer thickness (ALT) and temperature on the top of permafrost (TTOP), which are important factors in snow-hydrological processes. BMI provides an easy approach to couple the models with each other. Here, we provide a case of coupling the Ku component to snow process components, including the Snow-Degree-Day (SDD) method and Snow-Energy-Balance (SEB) method, which are existing components in the hydrological model TOPOFLOW. The work flow is (1) get variables from meteorology component, set the values to snow process component, and advance the snow process component, (2) get variables from meteorology and snow component, provide these to the Ku component and advance, (3) get variables from snow process component, set the values to meteorology component, and advance the meteorology component. The next phase is to couple the permafrost component with fully BMI-compliant TOPOFLOW hydrological model, which could provide a useful tool to investigate the permafrost hydrological effect.
NASA Technical Reports Server (NTRS)
2002-01-01
ENSCO, Inc., developed the Meteorological and Atmospheric Real-time Safety Support (MARSS) system for real-time assessment of meteorological data displays and toxic material spills. MARSS also provides mock scenarios to guide preparations for emergencies involving meteorological hazards and toxic substances. Developed under a Small Business Innovation Research (SBIR) contract with Kennedy Space Center, MARSS was designed to measure how safe NASA and Air Force range safety personnel are while performing weather sensitive operations around launch pads. The system augments a ground operations safety plan that limits certain work operations to very specific weather conditions. It also provides toxic hazard prediction models to assist safety managers in planning for and reacting to releases of hazardous materials. MARSS can be used in agricultural, industrial, and scientific applications that require weather forecasts and predictions of toxic smoke movement. MARSS is also designed to protect urban areas, seaports, rail facilities, and airports from airborne releases of hazardous chemical substances. The system can integrate with local facility protection units and provide instant threat detection and assessment data that is reportable for local and national distribution.
-7162 Don assists with the installation and maintenance of the NWTC's field test turbines as well as with test article installations and testing in the Structural Testing Laboratory and both dynamometer facilities. He participates in the operation and maintenance of the field test sites and meteorological
Meyer, Swen; Blaschek, Michael; Duttmann, Rainer; Ludwig, Ralf
2016-02-01
According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. These changes are expected to have severe direct impacts on the management of water resources, agricultural productivity and drinking water supply. Current projections of future hydrological change, based on regional climate model results and subsequent hydrological modeling schemes, are very uncertain and poorly validated. The Rio Mannu di San Sperate Basin, located in Sardinia, Italy, is one test site of the CLIMB project. The Water Simulation Model (WaSiM) was set up to model current and future hydrological conditions. The availability of measured meteorological and hydrological data is poor as it is common for many Mediterranean catchments. In this study we conducted a soil sampling campaign in the Rio Mannu catchment. We tested different deterministic and hybrid geostatistical interpolation methods on soil textures and tested the performance of the applied models. We calculated a new soil texture map based on the best prediction method. The soil model in WaSiM was set up with the improved new soil information. The simulation results were compared to standard soil parametrization. WaSiMs was validated with spatial evapotranspiration rates using the triangle method (Jiang and Islam, 1999). WaSiM was driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. The climate change impact was assessed based on differences between reference and future time series. The simulated results show a reduction of all hydrological quantities in the future in the spring season. Furthermore simulation results reveal an earlier onset of dry conditions in the catchment. We show that a solid soil model setup based on short-term field measurements can improve long-term modeling results, which is especially important in ungauged catchments. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pistone, K.; Redemann, J.; Wood, R.; Zuidema, P.; Flynn, C. J.; LeBlanc, S. E.; Noone, D.; Podolske, J. R.; Segal-Rosenhaimer, M.; Shinozuka, Y.; Thornhill, K. L., II
2017-12-01
The quantification of radiative forcing due to the cumulative effects of aerosols, both direct and on cloud properties, remains the biggest source of uncertainty in our understanding of the physical climate. An important factor in understanding this question is how the magnitude of these effects may be modified by meteorological conditions. In the Southeast Atlantic Ocean, seasonal biomass burning smoke plumes are continuously advected over a persistent stratocumulus cloud deck, offering a natural observatory in which to study the complexities of aerosol-cloud interactions. To this end, the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign consists of three field deployments over three years (2016-2018) with the goal of gaining a better understanding of the complex processes (direct and indirect) by which BB aerosols affect clouds. We present results from the first two ORACLES field deployments, which took place in September 2016 out of Walvis Bay, Namibia, and August 2017 out of São Tomé, São Tomé and Príncipe. In observations collected from the NASA P-3 aircraft (from near-surface up to 6-7km), we describe a strong correlation between the in-situ pollution indicators (carbon monoxide and aerosol properties) and atmospheric water vapor content, seen at all altitudes above the boundary layer. This condition is seen to persist over all flights, with minimal detrainment during advection from the continental source. We next explore the potential causal factors behind and implications of this relationship. Meteorological reanalysis indicates that convective dynamics over the continent likely contribute to this elevated signal, but both reanalysis and a trajectory analysis do not fully capture the magnitude and vertical structure of the elevated signal. We finally discuss the radiative implications of the observed correlations: understanding the mechanisms which cause water vapor to covary with plume strength is important to quantifying the radiative effects (direct and semi-direct) of biomass burning aerosol in the region.
NASA Astrophysics Data System (ADS)
Irani Rahaghi, Abolfazl; Lemmin, Ulrich; Bouffard, Damien; Riffler, Michael; Wunderle, Stefan; Barry, Andrew
2017-04-01
Lake surface water temperature (LSWT), which varies spatially and temporarily, reflects meteorological and climatological forcing more than any other physical lake parameter. There are different data sources for LSWT mapping, including remote sensing and in situ measurements. Depending on cloud cover, satellite data can depict large-scale thermal patterns, but not the meso- or small-scale processes. Meso-scale thermography allows complementing (and hence ground-truth) satellite imagery at the sub-pixel scale. A Balloon Launched Imaging and Monitoring Platform (BLIMP) was used to measure the LSWT at the meso-scale. The BLIMP consists of a small balloon tethered to a boat and is equipped with thermal and RGB cameras, as well as other instrumentation for geo-location and communication. A feature matching-based algorithm was implemented to create composite thermal images. Simultaneous ground-truthing of the BLIMP data were achieved using an autonomous craft measuring among other in situ surface/near surface temperatures, radiation and meteorological data. Latent and sensible surface heat fluxes were calculated using the bulk parameterization algorithm based on similarity theory. Results are presented for the day-time stratified low wind speed (up to 3 ms-1) conditions over Lake Geneva for two field campaigns, each of 6 h on 18 March and 19 July 2016. The meso-scale temperature field ( 1-m pixel resolution) had a range and standard deviation of 2.4°C and 0.3°C, respectively, over a 1-km2 area (typical satellite pixel size). Interestingly, at the sub-pixel scale, various temporal and spatial thermal structures are evident - an obvious example being streaks in the along-wind direction during March, which we hypothesize are caused by the steady 3 h wind condition. The results also show that the spatial variability of the estimated total heat flux is due to the corresponding variability of the longwave cooling from the water surface and the latent heat flux.
NASA Astrophysics Data System (ADS)
Ceperley, N. C.; Mande, T.; Barrenetxea, G.; Vetterli, M.; Yacouba, H.; Repetti, A.; Parlange, M. B.
2010-12-01
Small scale rain fed agriculture is the primary livelihood for a large part of the population of Burkina Faso. Regional climate change means that this population is becoming increasingly vulnerable. Additionally, as natural savanna is converted for agriculture, hydrological systems are observed to become less stable as infiltration is decreased and rapid runoff is increased to the detriment of crop productivity, downstream populations and local water sources. The majority of the Singou River Basin, located in South East Burkina Faso is managed by hunting reserves, geared to maintaining high populations of wild game; however, residents surrounding the protected areas have been forced to intensify agriculture that has resulted in soil degradation as well as increases in the frequency and severity of flooding and droughts. Agroforestry, or planting trees in cultivated fields, has been proposed as a solution to help buffer these negative consequences, however the specific hydrologic behavior of the watershed land cover is unknown. We have installed a distributed sensor network of 17 Sensorscope wireless meteorological stations. These stations are dispersed across cultivated rice and millet fields, natural savanna, fallow fields, and around agroforestry fields. Sensorscope routes data through the network of stations to be delivered by a GPRS connection to a main server. This multi hop network allows data to be gathered over a large area and quickly adapts to changes in station performance. Data are available in real time via a website that can be accessed by a mobile phone. The stations are powered autonomously by small photovoltaic panels. This deployment is the first time that these meteorological stations have been used on the African continent. Initial calibration with measures from 2 eddy covariance stations allows us to calculate the energy balance at each of the Sensorscope stations. Thus, we can observe variation in evaporation over the various land cover in the watershed. This research will both contribute to scientific understanding of West African vegetation and inform local reforestation and agricultural management. Concurrent to this scientific research, the community is improving natural resource management efforts including reforestation, a botanical garden and environmental education. Our hope is that the results of our evaporation modeling will inform local farmers and thus help improve their adaption to changing weather patterns and land cover.
Wave ensemble forecast in the Western Mediterranean Sea, application to an early warning system.
NASA Astrophysics Data System (ADS)
Pallares, Elena; Hernandez, Hector; Moré, Jordi; Espino, Manuel; Sairouni, Abdel
2015-04-01
The Western Mediterranean Sea is a highly heterogeneous and variable area, as is reflected on the wind field, the current field, and the waves, mainly in the first kilometers offshore. As a result of this variability, the wave forecast in these regions is quite complicated to perform, usually with some accuracy problems during energetic storm events. Moreover, is in these areas where most of the economic activities take part, including fisheries, sailing, tourism, coastal management and offshore renewal energy platforms. In order to introduce an indicator of the probability of occurrence of the different sea states and give more detailed information of the forecast to the end users, an ensemble wave forecast system is considered. The ensemble prediction systems have already been used in the last decades for the meteorological forecast; to deal with the uncertainties of the initial conditions and the different parametrizations used in the models, which may introduce some errors in the forecast, a bunch of different perturbed meteorological simulations are considered as possible future scenarios and compared with the deterministic forecast. In the present work, the SWAN wave model (v41.01) has been implemented for the Western Mediterranean sea, forced with wind fields produced by the deterministic Global Forecast System (GFS) and Global Ensemble Forecast System (GEFS). The wind fields includes a deterministic forecast (also named control), between 11 and 21 ensemble members, and some intelligent member obtained from the ensemble, as the mean of all the members. Four buoys located in the study area, moored in coastal waters, have been used to validate the results. The outputs include all the time series, with a forecast horizon of 8 days and represented in spaghetti diagrams, the spread of the system and the probability at different thresholds. The main goal of this exercise is to be able to determine the degree of the uncertainty of the wave forecast, meaningful between the 5th and the 8th day of the prediction. The information obtained is then included in an early warning system, designed in the framework of the European project iCoast (ECHO/SUB/2013/661009) with the aim of set alarms in coastal areas depending on the wave conditions, the sea level, the flooding and the run up in the coast.
Current Status of Protein Force Fields for Molecular Dynamics
Lopes, Pedro E.M.; Guvench, Olgun
2015-01-01
Summary The current status of classical force fields for proteins is reviewed. These include additive force fields as well as the latest developments in the Drude and AMOEBA polarizable force fields. Parametrization strategies developed specifically for the Drude force field are described and compared with the additive CHARMM36 force field. Results from molecular simulations of proteins and small peptides are summarized to illustrate the performance of the Drude and AMOEBA force fields. PMID:25330958
Evaluation of low wind modeling approaches for two tall-stack databases.
Paine, Robert; Samani, Olga; Kaplan, Mary; Knipping, Eladio; Kumar, Naresh
2015-11-01
The performance of the AERMOD air dispersion model under low wind speed conditions, especially for applications with only one level of meteorological data and no direct turbulence measurements or vertical temperature gradient observations, is the focus of this study. The analysis documented in this paper addresses evaluations for low wind conditions involving tall stack releases for which multiple years of concurrent emissions, meteorological data, and monitoring data are available. AERMOD was tested on two field-study databases involving several SO2 monitors and hourly emissions data that had sub-hourly meteorological data (e.g., 10-min averages) available using several technical options: default mode, with various low wind speed beta options, and using the available sub-hourly meteorological data. These field study databases included (1) Mercer County, a North Dakota database featuring five SO2 monitors within 10 km of the Dakota Gasification Company's plant and the Antelope Valley Station power plant in an area of both flat and elevated terrain, and (2) a flat-terrain setting database with four SO2 monitors within 6 km of the Gibson Generating Station in southwest Indiana. Both sites featured regionally representative 10-m meteorological databases, with no significant terrain obstacles between the meteorological site and the emission sources. The low wind beta options show improvement in model performance helping to reduce some of the over-prediction biases currently present in AERMOD when run with regulatory default options. The overall findings with the low wind speed testing on these tall stack field-study databases indicate that AERMOD low wind speed options have a minor effect for flat terrain locations, but can have a significant effect for elevated terrain locations. The performance of AERMOD using low wind speed options leads to improved consistency of meteorological conditions associated with the highest observed and predicted concentration events. The available sub-hourly modeling results using the Sub-Hourly AERMOD Run Procedure (SHARP) are relatively unbiased and show that this alternative approach should be seriously considered to address situations dominated by low-wind meander conditions. AERMOD was evaluated with two tall stack databases (in North Dakota and Indiana) in areas of both flat and elevated terrain. AERMOD cases included the regulatory default mode, low wind speed beta options, and use of the Sub-Hourly AERMOD Run Procedure (SHARP). The low wind beta options show improvement in model performance (especially in higher terrain areas), helping to reduce some of the over-prediction biases currently present in regulatory default AERMOD. The SHARP results are relatively unbiased and show that this approach should be seriously considered to address situations dominated by low-wind meander conditions.
1976-03-01
DB DC DCT DDB DET DF DFS DML DMS DMSP DOD DS DSARC DT EDB EDS EG ESSA ETAC EWO Control and Reporting Post Cathode Ray Tube...National and Aviation Meteorological Facsimile Network NC - Network Control NCA - National Command Authority NCAR - National Center for Atmospheric
2001-04-17
Workers at Astrotech, Titusville, Fla., begin deploying the magnetometer boom on the GOES-M satellite. The satellite is undergoing testing at Astrotech. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is scheduled to launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station
2001-04-12
At Astrotech, Titusville, Fla., an overhead crane lifts the GOES-M (Geostationary Operational Environmental Satellite) from the transporter. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite will undergo testing at Astrotech before its scheduled launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station
2001-04-12
At Astrotech, Titusville, Fla., workers look over the GOES-M satellite after removal of its protective cover. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite will undergo testing at Astrotech before its scheduled launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station
2001-04-12
While an overhead crane lifts the GOES-M satellite at Astrotech, Titusville, Fla., workers check the underside. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is undergoing testing at Astrotech before its scheduled launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station
2001-04-12
At Astrotech, Titusville, Fla., the GOES-M satellite is lifted at an angle on a workstand. The satellite is undergoing testing at Astrotech. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is scheduled to launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station
2001-04-12
At Astrotech, Titusville, Fla., a worker (right) turns the GOES-M satellite, bringing its side into view. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is undergoing testing at Astrotech before its scheduled launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station
2001-04-17
Workers at Astrotech, Titusville, Fla., begin deploying the magnetometer boom on the GOES-M satellite. The satellite is undergoing testing at Astrotech. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is scheduled to launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station
2001-04-13
Workers at Astrotech, Titusville, Fla., deploy the magnetometer boom on the GOES-M satellite. The satellite is undergoing testing at Astrotech. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is scheduled to launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station
NASA Technical Reports Server (NTRS)
Drinkwater, Mark R.; Liu, Xiang
2000-01-01
A combination of satellite microwave data sets are used in conjunction with ECMWF (Medium Range Weather Forecasts) and NCEP (National Center for Environment Prediction) meteorological analysis fields to investigate seasonal variability in the circulation and sea-ice dynamics of the Weddell and Ross Seas. Results of sea-ice tracking using SSM/I (Special Sensor Microwave Imager), Scatterometer and SAR images are combined with in-situ data derived from Argos buoys and GPS drifters to validate observed drift patterns. Seasonal 3-month climatologies of ice motion and drift speed variance illustrate the response of the sea-ice system to seasonal forcing. A melt-detection algorithm is used to track the onset of seasonal melt, and to determine the extent and duration of atmospherically-led surface melting during austral summer. Results show that wind-driven drift regulates the seasonal distribution and characteristics of sea-ice and the intensity of the cyclonic Gyre circulation in these two regions.
Hydrologic modeling for monitoring water availability in Eastern and Southern Africa
NASA Astrophysics Data System (ADS)
McNally, A.; Harrison, L.; Shukla, S.; Pricope, N. G.; Peters-Lidard, C. D.
2017-12-01
Severe droughts in 2015, 2016 and 2017 in Ethiopia, Southern Africa, and Somalia have negatively impacted agriculture and municipal water supplies resulting in food and water insecurity. Information from remotely sensed data and field reports indicated that the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation (FLDAS) accurately tracked both the anomalously low soil moisture, evapotranspiration and runoff conditions. This work presents efforts to more precisely monitor how the water balance responds to water availability deficits (i.e. drought) as estimated by the FLDAS with CHIRPS precipitation, MERRA-2 meteorological forcing and the Noah33 land surface model.Preliminary results indicate that FLDAS streamflow estimates are well correlated with observed streamflow where irrigation and other channel modifications are not present; FLDAS evapotranspiration (ET) is well correlated with ET from the Operational Simplified Surface Energy Balance model (SSEBop) in Eastern and Southern Africa. We then use these results to monitor availability, and explore trends in water supply and demand.
Porter, P Steven; Rao, S Trivikrama; Zurbenko, Igor G; Dunker, Alan M; Wolff, George T
2001-02-01
Assessment of regulatory programs aimed at improving ambient O 3 air quality is of considerable interest to the scientific community and to policymakers. Trend detection, the identification of statistically significant long-term changes, and attribution, linking change to specific clima-tological and anthropogenic forcings, are instrumental to this assessment. Detection and attribution are difficult because changes in pollutant concentrations of interest to policymakers may be much smaller than natural variations due to weather and climate. In addition, there are considerable differences in reported trends seemingly based on similar statistical methods and databases. Differences arise from the variety of techniques used to reduce nontrend variation in time series, including mitigating the effects of meteorology and the variety of metrics used to track changes. In this paper, we review the trend assessment techniques being used in the air pollution field and discuss their strengths and limitations in discerning and attributing changes in O 3 to emission control policies.
Ocean Surface Observations of the Diurnal Cycle of Turbulence with ASIP
NASA Astrophysics Data System (ADS)
Ward, Brian; Sutherland, Graig; Reverdin, Gilles; Marie, Louis; Christensen, Kai; Brostrom, Goran; Harcourt, Ramsey; Breivik, Oyvind
2015-04-01
The STRASSE field experiment was conducted in August/September 2012 as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) campaign. The average conditions during STRASSE were low wind and high insolation, which are typical for the generation of near-surface diurnal warming. We deployed the Air-Sea Interaction Profiler (ASIP), an autonomous upwardly-rising microstructure instrument capable of resolving small-scale processes close to the air-sea interface. ASIP provides direct estimates of the dissipation rate of turbulent kinetic energy, temperature, salinity, and PAR at timescales suitable for the study of diurnal processes. In combination with the ASIP data, we had shipboard meteorological data for calculation of atmospheric forcing, and a surface mounted Lagrangian ADCP for determination of the near-surface velocity. There was a strong diurnal cycle of temperature and dissipation (from ASIP) and shear (from an ADCP). As air-sea fluxes are driven by turbulence immediately at the air-sea interface, the presence of this enhanced shear-induced turbulence will enhance fluxes.
Intercomparison and Uncertainty Assessment of Nine Evapotranspiration Estimates Over South America
NASA Astrophysics Data System (ADS)
Sörensson, Anna A.; Ruscica, Romina C.
2018-04-01
This study examines the uncertainties and the representations of anomalies of a set of evapotranspiration products over climatologically distinct regions of South America. The products, coming from land surface models, reanalysis, and remote sensing, are chosen from sources that are readily available to the community of users. The results show that the spatial patterns of maximum uncertainty differ among metrics, with dry regions showing maximum relative uncertainties of annual mean evapotranspiration, while energy-limited regions present maximum uncertainties in the representation of the annual cycle and monsoon regions in the representation of anomalous conditions. Furthermore, it is found that land surface models driven by observed atmospheric fields detect meteorological and agricultural droughts in dry regions unequivocally. The remote sensing products employed do not distinguish all agricultural droughts and this could be attributed to the forcing net radiation. The study also highlights important characteristics of individual data sets and recommends users to include assessments of sensitivity to evapotranspiration data sets in their studies, depending on region and nature of study to be conducted.
Helm, P.J.; Breed, C.S.; Tigges, R.K.; Garcia, P.A.
1995-01-01
The primary purpose of the Desert Winds Project (DWP) is to obtain high-resolution meteorological data and related surface geological and vegetation data for natural (e.g., uncultivated) desert sites where wind is or has been a major erosive or depositional force. The objectives are twofold: (1) to provide the detailed field measurements needed to carry out quantitative studies of wind as an agent of surface geologic change; and (2) to establish a baseline for defining the 'normal' range of climatic conditions that can be expected to occur on a decadal time scale, in areas considered representative of the major American deserts. The Gold Spring locality was selected to represent that part of the Great Basin Desert that extends into northeastern Arizona. The long-term goal for acquiring and analyzing the Desert Winds Project data is to use them to address problems of land resource degradation by wind, whether resulting from climatic variation aridification) or human activities (desertification), or both (see techinfo.doc).
Geomagnetic main field modeling with DMSP
NASA Astrophysics Data System (ADS)
Alken, P.; Maus, S.; Lühr, H.; Redmon, R. J.; Rich, F.; Bowman, B.; O'Malley, S. M.
2014-05-01
The Defense Meteorological Satellite Program (DMSP) launches and maintains a network of satellites to monitor the meteorological, oceanographic, and solar-terrestrial physics environments. In the past decade, geomagnetic field modelers have focused much attention on magnetic measurements from missions such as CHAMP, Ørsted, and SAC-C. With the completion of the CHAMP mission in 2010, there has been a multiyear gap in satellite-based vector magnetic field measurements available for main field modeling. In this study, we calibrate the special sensor magnetometer instrument on board DMSP to create a data set suitable for main field modeling. These vector field measurements are calibrated to compute instrument timing shifts, scale factors, offsets, and nonorthogonality angles of the fluxgate magnetometer cores. Euler angles are then computed to determine the orientation of the vector magnetometer with respect to a local coordinate system. We fit a degree 15 main field model to the data set and compare with the World Magnetic Model and Ørsted scalar measurements. We call this model DMSP-MAG-1, and its coefficients and software are available for download at http://geomag.org/models/dmsp.html. Our results indicate that the DMSP data set will be a valuable source for main field modeling for the years between CHAMP and the recently launched Swarm mission.
Construction of Real-time Forecast System on the Boreal Summer Intraseasonal Oscillation
NASA Astrophysics Data System (ADS)
Kim, H.; Wheeler, M. C.; Lee, J.; Gottschalck, J.
2013-12-01
Hae-Jeong Kim1, Matthew C. Wheeler2, June-Yi Lee3 and Jon C. Gottschalck4 1APEC Climate Center, 12 Centum 7-ro, Haeundae-gu, Busan, 612-020, South Korea 2Centre for Australian Weather and Climate Research Bureau of Meteorology, Melbourne, Australia 3Global Monsoon Climate Laboratory, Pusan National University, Busan, Korea 4Climate Prediction Center, NOAA/National Weather Service, Washington D. C., USA *E-mail : shout@apcc21.org The boreal summer intraseasonal oscillation (BSISO) is one of the dominant mode of variability in the Asian summer monsoon and global monsoon (e.g. Webster et al., 1998; Lee et al., 2013). The BSISO influences summer monsoon onsets (e.g. Wang and Xie, 1997) and interacts with a wide range of atmospheric circulation and associated weather (e.g. Lee et al., 2011; Wang et al., 2012). In addition, the wet and dry spells of the BSISO strongly can influence extreme hydro-meteorological events, major driving forces of natural disasters (Lau and Waliser 2005). Thus, it is important to monitor and predict the BSISO. As the occurrence of and concern over extreme climate events rises, moreover, the provision of high-quality BSISO forecasts will become increasingly relevant. APCC has recently begun to provide the BSISO forecast information service at http://www.apcc21.org/eng/service/bsiso/fore/japcc030601.jsp. The forecast is contributed by the Australian Bureau of Meteorology, the US National Centers for Environmental Prediction, the European Center for Medium Range Weather Forecasts and UK Meteorology Office in cooperation with the CAS/WCRP Working Group on Numerical Experimentation (WGNE) Madden Julian Oscillation (MJO) Task Force. The APCC BSISO forecasts are displayed by newly developed indices proposed by Lee at al. (2013) that are able to overcome the limitation of the RMM index (Wheeler and Hendon, 2004) in terms of representing BSISO activity with northward propagation over off-equatorial monsoon domain. The BSISO forecast information can be useful for coping with extreme climate events and can help mitigate the agricultural and socioeconomic impacts of these natural disasters. This activity is expected to improve our understanding on the model shortcomings and forecast ability of the BSISO by inducing the participation of various model into BSISO metric. Acknowledgement. We would like to gratefully and sincerely thank the forecast contributions to this activity that has been facilitated by a number of individuals including Andrew Marshall, Wanqiu Wang, Ann Shelly and Frederic Vitart. We also thank the member of the MJO Task Force for their cooperation.
NASA Astrophysics Data System (ADS)
Görgen, K.; Pfister, L.
2008-12-01
The anticipated climate change will lead to modified hydro-meteorological regimes that influence discharge behaviour and hydraulics of rivers. This has variable impacts on managed (anthropogenic) and unmanaged (natural) systems, depending on their sensitivity and vulnerability (ecology, economy, infrastructure, transport, energy production, water management, etc.). Decision makers in these contexts need adequate adaptation strategies to minimize adverse effects of climate change, i.e. an improved knowledge on the potential impacts including uncertainties means an extension of the informed options open to users. The goal of the highly applied study presented here is the development of joint, consistent climate and discharge projections for the international Rhine River catchments (Switzerland, France, Germany, Netherlands) in order to assess future changes of hydro-meteorological regimes in the meso- and macroscale Rhine River catchments and to derive and improve the understanding of such impacts on hydrologic and hydraulic processes. The RheinBlick2050 project is an international effort initiated by the International Commission for the Hydrology of the Rhine Basin (CHR) in close cooperation with the International Commission for the Protection of the Rhine. The core experiment design foresees a data-synthesis, multi-model approach where (transient) (bias- corrected) regional climate change projections are used as forcing data for existing calibrated hydrological (and hydraulic) models at a daily temporal resolution over mesoscale catchments of the Rhine River. Mainly for validation purposes, hydro-meteorological observations from national weather services are compiled into a new consistent 5 km x 5 km reference dataset from 1961 to 2005. RCM data are mainly used from the ENSEMBLES project and other existing dynamical downscaling model runs to derive probabilistic ensembles and thereby also access uncertainties on a regional scale. A benchmarking is helping to identify those atmospheric forcing data that ideally suit the needs for the subsequent hydrological model runs with the LARSIM and HBV models and evaluate those simulations too. As a result, usable information and quantifiable statements (e.g. extreme value statistics, uncertainty assessment, validation), that might form the basis for further planning or policy relevant decisions, are to be derived. Our analyses are highly influenced by the requirements of the potential users and stakeholders from government agencies who shall make use of the data and results. Here we present first results of the application of the complete data processing and modelling chain towards discharge projections on a subset of input data, albeit still without any bias correction applied to the meteorological forcing data.
Air-Quality and Climate Coupling in High Resolution for Urban Heat Island Study
NASA Astrophysics Data System (ADS)
Halenka, T.; Huszar, P.; Belda, M.
2012-04-01
Recent studies show considerable effect of atmospheric chemistry and aerosols on climate on regional and local scale. For the purpose of qualifying and quantifying the magnitude of climate forcing due to atmospheric chemistry/aerosols on regional scale and climate change effects on air-quality the regional climate model RegCM and chemistry/aerosol model CAMx was coupled. Climate change impacts on air-quality have been studied in high resolution of 10km with interactive two-way coupling of the effects of air-quality on climate. The experiments with the couple were performed for EC FP7 project MEGAPOLI assessing the impact of the megacities and industrialized areas on climate. New experiments in high resolution are prepared andsimulated for Urban Heat Island studies within the OP Central Europe Project UHI. Meteorological fields generated by RCM drive CAMx transport, chemistry and a dry/wet deposition. A preprocessor utility was developed for transforming RegCM provided fields to CAMx input fields and format. There is critical issue of the emission inventories available for 10km resolution including the urban hot-spots, TNO emissions are adopted for the experiments. Sensitivity tests switching on/off urban areas emissions are analysed as well. The results for year 2005 are presented and discussed, interactive coupling is compared to study the potential of possible impact of urban air-pollution to the urban area climate.
COMPARISON OF SCIENTIFIC FINDINGS FROM MAJOR OZONE FIELD STUDIES IN NORTH AMERICA AND EUROPE
During the past decade, nearly 600 million dollars were invested in more than 30 major field studies in North America and Europe examining tropospheric ozone chemistry, meteorology, precursor emissions, and modeling. Most of these studies were undertaken to provide new or refin...
NASA Astrophysics Data System (ADS)
Jimenez-Guerrero, Pedro; Balzarini, Alessandra; Baró, Rocío; Curci, Gabriele; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; Langer, Matthias; Pérez, Juan L.; Pirovano, Guido; San José, Roberto; Tuccella, Paolo; Werhahn, Johannes; Zabkar, Rahela
2014-05-01
The study of the response of the aerosol levels in the atmosphere to a changing climate and how this affects the radiative budget of the Earth (direct, semi-direct and indirect effects) is an essential topic to build confidence on climate science, since these feedbacks involve the largest uncertainties nowadays. Air quality-climate interactions (AQCI) are, therefore, a key, but uncertain contributor to the anthropogenic forcing that remains poorly understood. To build confidence in the AQCI studies, regional-scale integrated meteorology-atmospheric chemistry models (i.e., models with on-line chemistry) that include detailed treatment of aerosol life cycle and aerosol impacts on radiation (direct effects) and clouds (indirect effects) are in demand. In this context, the main objective of this contribution is the study and definition of the uncertainties in the climate-chemistry-aerosol-cloud-radiation system associated to the direct radiative forcing and the indirect effect caused by aerosols over Europe, using an ensemble of fully-coupled meteorology-chemistry model simulations with the WRF-Chem model run under the umbrella of AQMEII-Phase 2 international initiative. Simulations were performed for Europe for the entire year 2010. According to the common simulation strategy, the year was simulated as a sequence of 2-day time slices. For better comparability, the seven groups applied the same grid spacing of 23 km and shared common processing of initial and boundary conditions as well as anthropogenic and fire emissions. With exception of a simulation with different cloud microphysics, identical physics options were chosen while the chemistry options were varied. Two model set-ups will be considered here: one sub-ensemble of simulations not taking into account any aerosol feedbacks (the baseline case) and another sub-ensemble of simulations which differs from the former by the inclusion of aerosol-radiation feedback. The existing differences for meteorological variables (mainly 2-m temperature and precipitation) and air quality levels (mainly ozone an PM10) between both sub-ensembles of WRF-Chem simulations have been characterized. In the case of ozone and PM10, an increase in solar radiation and temperature has generally resulted in an enhanced photochemical activity and therefore a negative feedback (areas with low aerosol concentrations present more than 50 W m-2 higher global radiation for cloudy conditions). However, simulated feedback effects between aerosol concentrations and meteorological variables and on pollutant distributions strongly depend on the model configuration and the meteorological situation. These results will help providing improved science-based foundations to better assess the impacts of climate variability, support the development of effective climate change policies and optimize private decision-making.
Phenological Versus Meteorological Controls on Land-atmosphere Water and Carbon Fluxes
NASA Technical Reports Server (NTRS)
Puma, Michael J.; Koster, Randal D.; Cook, Benjamin I.
2013-01-01
Phenological dynamics and their related processes strongly constrain land-atmosphere interactions, but their relative importance vis-à-vis meteorological forcing within general circulation models (GCMs) is still uncertain. Using an off-line land surface model, we evaluate leaf area and meteorological controls on gross primary productivity, evapotranspiration, transpiration, and runoff at four North American sites, representing different vegetation types and background climates. Our results demonstrate that compared to meteorological controls, variation in leaf area has a dominant control on gross primary productivity, a comparable but smaller influence on transpiration, a weak influence on total evapotranspiration, and a negligible impact on runoff. Climate regime and characteristic variations in leaf area have important modulating effects on these relative controls, which vary depending on the fluxes and timescales of interest. We find that leaf area in energylimited evaporative regimes tends to exhibit greater control on annual gross primary productivity than in moisture-limited regimes, except when vegetation exhibits little interannual variation in leaf area. For transpiration, leaf area control is somewhat less in energylimited regimes and greater in moisture-limited regimes for maximum pentad and annual fluxes. These modulating effects of climate and leaf area were less clear for other fluxes and at other timescales. Our findings are relevant to land-atmosphere coupling in GCMs, especially considering that leaf area variations are a fundamental element of land use and land cover change simulations.
NASA Technical Reports Server (NTRS)
Schmetz, Johannes; Menzel, W. Paul; Velden, Christopher; Wu, Xiangqian; Vandeberg, Leo; Nieman, Steve; Hayden, Christopher; Holmlund, Kenneth; Geijo, Carlos
1995-01-01
This paper describes the results from a collaborative study between the European Space Operations Center, the European Organization for the Exploitation of Meteorological Satellites, the National Oceanic and Atmospheric Administration, and the Cooperative Institute for Meteorological Satellite Studies investigating the relationship between satellite-derived monthly mean fields of wind and humidity in the upper troposphere for March 1994. Three geostationary meteorological satellites GOES-7, Meteosat-3, and Meteosat-5 are used to cover an area from roughly 160 deg W to 50 deg E. The wind fields are derived from tracking features in successive images of upper-tropospheric water vapor (WV) as depicted in the 6.5-micron absorption band. The upper-tropospheric relative humidity (UTH) is inferred from measured water vapor radiances with a physical retrieval scheme based on radiative forward calculations. Quantitative information on large-scale circulation patterns in the upper-troposphere is possible with the dense spatial coverage of the WV wind vectors. The monthly mean wind field is used to estimate the large-scale divergence; values range between about-5 x 10(exp -6) and 5 x 10(exp 6)/s when averaged over a scale length of about 1000-2000 km. The spatial patterns of the UTH field and the divergence of the wind field closely resemble one another, suggesting that UTH patterns are principally determined by the large-scale circulation. Since the upper-tropospheric humidity absorbs upwelling radiation from lower-tropospheric levels and therefore contributes significantly to the atmospheric greenhouse effect, this work implies that studies on the climate relevance of water vapor should include three-dimensional modeling of the atmospheric dynamics. The fields of UTH and WV winds are useful parameters for a climate-monitoring system based on satellite data. The results from this 1-month analysis suggest the desirability of further GOES and Meteosat studies to characterize the changes in the upper-tropospheric moisture sources and sinks over the past decade.
Selecting Meteorological Input for the Global Modeling Initiative Assessments
NASA Technical Reports Server (NTRS)
Strahan, Susan; Douglass, Anne; Prather, Michael; Coy, Larry; Hall, Tim; Rasch, Phil; Sparling, Lynn
1999-01-01
The Global Modeling Initiative (GMI) science team has developed a three dimensional chemistry and transport model (CTM) to evaluate the impact of the exhaust of supersonic aircraft on the stratosphere. An important goal of the GMI is to test modules for numerical transport, photochemical integration, and model dynamics within a common framework. This work is focussed on the dependence of the overall assessment on the wind and temperature fields used by the CTM. Three meteorological data sets for the stratosphere were available to GMI: the National Center for Atmospheric Research Community Climate Model (CCM2), the Goddard Earth Observing System Data Assimilation System (GEOS-DAS), and the Goddard Institute for Space Studies general circulation model (GISS-2'). Objective criteria were established by the GMI team to evaluate which of these three data sets provided the best representation of trace gases in the stratosphere today. Tracer experiments were devised to test various aspects of model transport. Stratospheric measurements of long-lived trace gases were selected as a test of the CTM transport. This presentation describes the criteria used in grading the meteorological fields and the resulting choice of wind fields to be used in the GMI assessment. This type of objective model evaluation will lead to a higher level of confidence in these assessments. We suggest that the diagnostic tests shown here be used to augment traditional general circulation model evaluation methods.
A GIS Procedure to Monitor PWV During Severe Meteorological Events
NASA Astrophysics Data System (ADS)
Ferrando, I.; Federici, B.; Sguerso, D.
2016-12-01
As widely known, the observation of GNSS signal's delay can improve the knowledge of meteorological phenomena. The local Precipitable Water Vapour (PWV), which can be easily derived from Zenith Total Delay (ZTD), Pressure (P) and Temperature (T) (Bevis et al., 1994), is not a satisfactory parameter to evaluate the occurrence of severe meteorological events. Hence, a GIS procedure, called G4M (GNSS for Meteorology), has been conceived to produce 2D PWV maps with high spatial and temporal resolution (1 km and 6 minutes respectively). The input data are GNSS, P and T observations not necessarily co-located coming from existing infrastructures, combined with a simplified physical model, owned by the research group.On spite of the low density and the different configurations of GNSS, P and T networks, the procedure is capable to detect severe meteorological events with reliable results. The procedure has already been applied in a wide and orographically complex area covering approximately the north-west of Italy and the French-Italian border region, to study two severe meteorological events occurred in Genoa (Italy) and other meteorological alert cases. The P, T and PWV 2D maps obtained by the procedure have been compared with the ones coming from meteorological re-analysis models, used as reference to obtain statistics on the goodness of the procedure in representing these fields. Additionally, the spatial variability of PWV was taken into account as indicator for representing potential critical situations; this index seems promising in highlighting remarkable features that precede intense precipitations. The strength and originality of the procedure lie into the employment of existing infrastructures, the independence from meteorological models, the high adaptability to different networks configurations, and the ability to produce high-resolution 2D PWV maps even from sparse input data. In the next future, the procedure could also be set up for near real-time applications.
Biogeochemical Protocols and Diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP)
NASA Technical Reports Server (NTRS)
Orr, James C.; Najjar, Raymond G.; Aumont, Olivier; Bopp, Laurent; Bullister, John L.; Danabasoglu, Gokhan; Doney, Scott C.; Dunne, John P.; Dutay, Jean-Claude; Graven, Heather;
2017-01-01
The Ocean Model Intercomparison Project (OMIP) focuses on the physics and biogeochemistry of the ocean component of Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations) vs. when integrated within fully coupled Earth system models (CMIP6). Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled to ocean circulation models, initialized with observational data or output from a model spin-up, and forced by repeating the 1948-2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF [subscript] 6) and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen). Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1) will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup) will be initialized instead with BGC fields from a long model spin-up, preferably for 2000 years or more, and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation protocols are founded on those from previous phases of the Ocean Carbon-Cycle Model Intercomparison Project. They have been merged and updated to reflect improvements concerning gas exchange, carbonate chemistry, and new data for initial conditions and atmospheric gas histories. Code is provided to facilitate their implementation.
Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP)
NASA Astrophysics Data System (ADS)
Orr, James C.; Najjar, Raymond G.; Aumont, Olivier; Bopp, Laurent; Bullister, John L.; Danabasoglu, Gokhan; Doney, Scott C.; Dunne, John P.; Dutay, Jean-Claude; Graven, Heather; Griffies, Stephen M.; John, Jasmin G.; Joos, Fortunat; Levin, Ingeborg; Lindsay, Keith; Matear, Richard J.; McKinley, Galen A.; Mouchet, Anne; Oschlies, Andreas; Romanou, Anastasia; Schlitzer, Reiner; Tagliabue, Alessandro; Tanhua, Toste; Yool, Andrew
2017-06-01
The Ocean Model Intercomparison Project (OMIP) focuses on the physics and biogeochemistry of the ocean component of Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations) vs. when integrated within fully coupled Earth system models (CMIP6). Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled to ocean circulation models, initialized with observational data or output from a model spin-up, and forced by repeating the 1948-2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF6) and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen). Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1) will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup) will be initialized instead with BGC fields from a long model spin-up, preferably for 2000 years or more, and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation protocols are founded on those from previous phases of the Ocean Carbon-Cycle Model Intercomparison Project. They have been merged and updated to reflect improvements concerning gas exchange, carbonate chemistry, and new data for initial conditions and atmospheric gas histories. Code is provided to facilitate their implementation.
Applicability of AgMERRA Forcing Dataset to Fill Gaps in Historical in-situ Meteorological Data
NASA Astrophysics Data System (ADS)
Bannayan, M.; Lashkari, A.; Zare, H.; Asadi, S.; Salehnia, N.
2015-12-01
Integrated assessment studies of food production systems use crop models to simulate the effects of climate and socio-economic changes on food security. Climate forcing data is one of those key inputs of crop models. This study evaluated the performance of AgMERRA climate forcing dataset to fill gaps in historical in-situ meteorological data for different climatic regions of Iran. AgMERRA dataset intercompared with in- situ observational dataset for daily maximum and minimum temperature and precipitation during 1980-2010 periods via Root Mean Square error (RMSE), Mean Absolute Error (MAE) and Mean Bias Error (MBE) for 17 stations in four climatic regions included humid and moderate, cold, dry and arid, hot and humid. Moreover, probability distribution function and cumulative distribution function compared between model and observed data. The results of measures of agreement between AgMERRA data and observed data demonstrated that there are small errors in model data for all stations. Except for stations which are located in cold regions, model data in the other stations illustrated under-prediction for daily maximum temperature and precipitation. However, it was not significant. In addition, probability distribution function and cumulative distribution function showed the same trend for all stations between model and observed data. Therefore, the reliability of AgMERRA dataset is high to fill gaps in historical observations in different climatic regions of Iran as well as it could be applied as a basis for future climate scenarios.
Response of South American Ecosystems to Precipitation Variability
NASA Astrophysics Data System (ADS)
Knox, R. G.; Kim, Y.; Longo, M.; Medvigy, D.; Wang, J.; Moorcroft, P. R.; Bras, R. L.
2009-12-01
The Ecosystem Demography Model 2 is a dynamic ecosystem model and land surface energy balance model. ED2 discretizes landscapes of particular terrain and meteorology into fractional areas of unique disturbance history. Each fraction, defined by a shared vertical soil column and canopy air space, contains a stratum of plant groups unique in functional type, size and number density. The result is a vertically distributed representation of energy transfer and plant dynamics (mortality, productivity, recruitment, disturbance, resource competition, etc) that successfully approximates the behaviour of individual-based vegetation models. In previous exercises simulating Amazonian land surface dynamics with ED 2, it was observed that when using grid averaged precipitation as an external forcing the resulting water balance typically over-estimated leaf interception and leaf evaporation while under estimating through-fall and transpiration. To investigate this result, two scenario were conducted in which land surface biophysics and ecosystem demography over the Northern portion of South America are simulated over ~200 years: (1) ED2 is forced with grid averaged values taken from the ERA40 reanalysis meteorological dataset; (2) ED2 is forced with ERA40 reanalysis, but with its precipitation re-sampled to reflect statistical qualities of point precipitation found at rain gauge stations in the region. The findings in this study suggest that the equilibrium moisture states and vegetation demography are co-dependent and show sensitivity to temporal variability in precipitation. These sensitivities will need to be accounted for in future projections of coupled climate-ecosystem changes in South America.
NASA Technical Reports Server (NTRS)
Peters, L. K.; Yamanis, J.
1981-01-01
Objective procedures to analyze data from meteorological and space shuttle observations to validate a three dimensional model were investigated. The transport and chemistry of carbon monoxide and methane in the troposphere were studied. Four aspects were examined: (1) detailed evaluation of the variational calculus procedure, with the equation of continuity as a strong constraint, for adjustment of global tropospheric wind fields; (2) reduction of the National Meteorological Center (NMC) data tapes for data input to the OSTA-1/MAPS Experiment; (3) interpolation of the NMC Data for input to the CH4-CO model; and (4) temporal and spatial interpolation procedures of the CO measurements from the OSTA-1/MAPS Experiment to generate usable contours of the data.
Assessing uncertainty in radar measurements on simplified meteorological scenarios
NASA Astrophysics Data System (ADS)
Molini, L.; Parodi, A.; Rebora, N.; Siccardi, F.
2006-02-01
A three-dimensional radar simulator model (RSM) developed by Haase (1998) is coupled with the nonhydrostatic mesoscale weather forecast model Lokal-Modell (LM). The radar simulator is able to model reflectivity measurements by using the following meteorological fields, generated by Lokal Modell, as inputs: temperature, pressure, water vapour content, cloud water content, cloud ice content, rain sedimentation flux and snow sedimentation flux. This work focuses on the assessment of some uncertainty sources associated with radar measurements: absorption by the atmospheric gases, e.g., molecular oxygen, water vapour, and nitrogen; attenuation due to the presence of a highly reflecting structure between the radar and a "target structure". RSM results for a simplified meteorological scenario, consisting of a humid updraft on a flat surface and four cells placed around it, are presented.
NASA Astrophysics Data System (ADS)
Chen, W.; Li, J.; Ray, J.; Cheng, M.; Chen, J.; Wilson, C. R.
2015-12-01
What maintain(s) the damping Chandler wobble (CW) is still under debate though meteorological excitations are now more preferred. However, controversial results have been obtained: Gross [2000] and Gross et al. [2003] suggested oceanic processes are more efficient to excite the CW than atmospheric ones during 1980 - 2000. Brzezinski and Nastula [2002] concluded that their contributions are almost the same, and they can only provide ~80% of the power needed to maintain the CW observed during 1985 - 1996. Polar motion excitations involve not only the perturbations within the Earth system (namely, mass redistributions and motions of relative to the mantle), but also the Earth's responses to those perturbations (namely, the rheology of the Earth). Chen et al. [2013a] developed an improved theory for polar motion excitation taking into account the Earth's frequency-dependent responses, of which the polar motion transfer functions are ~10% higher than those of previous theories around the CW band. Chen et al. [2013b] compared the geophysical excitations derived from various global atmospheric, oceanic and hydrological models (NCEP, ECCO, ERA40, ERAinterim and ECMWF operational products), and found significant and broad-band discrepancies for models released by different institutes. In addition, the atmosphere, ocean and hydrology models are usually developed in a somewhat independent manner and thus the global (atmospheric, oceanic and hydrological) mass is not conserved [e.g., Yan and Chao, 2012]. Therefore, the matter-term excitations estimated from those models are problematic. In one word, it is unlikely to obtain reliable conclusions on meteorological excitations of CW on the basis of the original meteorological models. Satellite gravimetry can measure mass transportations caused by atmospheric, oceanic and hydrological processes much more accurately than those provided by the original meteorological models, and can force the global (atmospheric, oceanic and hydrological) mass to be conserved. Therefore, it might be promising to obtain better understanding on meteorological excitations of CW by assimilating the time-variable gravity data from GRACE and SLR to improve the matter terms of the meteorological excitations, and adopting the new polar motion theory of Chen et al. [2013a].
Effects of temperature on flood forecasting: analysis of an operative case study in Alpine basins
NASA Astrophysics Data System (ADS)
Ceppi, A.; Ravazzani, G.; Salandin, A.; Rabuffetti, D.; Montani, A.; Borgonovo, E.; Mancini, M.
2013-04-01
In recent years the interest in the forecast and prevention of natural hazards related to hydro-meteorological events has increased the challenge for numerical weather modelling, in particular for limited area models, to improve the quantitative precipitation forecasts (QPF) for hydrological purposes. After the encouraging results obtained in the MAP D-PHASE Project, we decided to devote further analyses to show recent improvements in the operational use of hydro-meteorological chains, and above all to better investigate the key role played by temperature during snowy precipitation. In this study we present a reanalysis simulation of one meteorological event, which occurred in November 2008 in the Piedmont Region. The attention is focused on the key role of air temperature, which is a crucial feature in determining the partitioning of precipitation in solid and liquid phase, influencing the quantitative discharge forecast (QDF) into the Alpine region. This is linked to the basin ipsographic curve and therefore by the total contributing area related to the snow line of the event. In order to assess hydrological predictions affected by meteorological forcing, a sensitivity analysis of the model output was carried out to evaluate different simulation scenarios, considering the forecast effects which can radically modify the discharge forecast. Results show how in real-time systems hydrological forecasters have to consider also the temperature uncertainty in forecasts in order to better understand the snow dynamics and its effect on runoff during a meteorological warning with a crucial snow line over the basin. The hydrological ensemble forecasts are based on the 16 members of the meteorological ensemble system COSMO-LEPS (developed by ARPA-SIMC) based on the non-hydrostatic model COSMO, while the hydrological model used to generate the runoff simulations is the rainfall-runoff distributed FEST-WB model, developed at Politecnico di Milano.
Mishra, Soumya Ranjan; Pradhan, Rudra Pratap; Prusty, B Anjan Kumar; Sahu, Sanjat Kumar
2016-07-01
The ambient air quality (AAQ) assessment was undertaken in Sukinda Valley, the chromite hub of India. The possible correlations of meteorological variables with different air quality parameters (PM10, PM2.5, SO2, NO2 and CO) were examined. Being the fourth most polluted area in the globe, Sukinda Valley has always been under attention of researchers, for hexavalent chromium contamination of water. The monitoring was carried out from December 2013 through May 2014 at six strategic locations in the residential and commercial areas around the mining cluster of Sukinda Valley considering the guidelines of Central Pollution Control Board (CPCB). In addition, meteorological parameters viz., temperature, relative humidity, wind speed, wind direction and rainfall, were also monitored. The air quality data were subjected to a general linear model (GLM) coupled with one-way analysis of variance (ANOVA) test for testing the significant difference in the concentration of various parameters among seasons and stations. Further, a two-tailed Pearson's correlation test helped in understanding the influence of meteorological parameters on dispersion of pollutants in the area. All the monitored air quality parameters varied significantly among the monitoring stations suggesting (i) the distance of sampling location to the mine site and other allied activities, (ii) landscape features and topography and (iii) meteorological parameters to be the forcing functions. The area was highly polluted with particulate matters, and in most of the cases, the PM level exceeded the National Ambient Air Quality Standards (NAAQS). The meteorological parameters seemed to play a major role in the dispersion of pollutants around the mine clusters. The role of wind direction, wind speed and temperature was apparent in dispersion of the particulate matters from their source of generation to the surrounding residential and commercial areas of the mine.
Levitation forces of a bulk YBCO superconductor in gradient varying magnetic fields
NASA Astrophysics Data System (ADS)
Jiang, J.; Gong, Y. M.; Wang, G.; Zhou, D. J.; Zhao, L. F.; Zhang, Y.; Zhao, Y.
2015-09-01
The levitation forces of a bulk YBCO superconductor in gradient varying high and low magnetic fields generated from a superconducting magnet were investigated. The magnetic field intensity of the superconducting magnet was measured when the exciting current was 90 A. The magnetic field gradient and magnetic force field were both calculated. The YBCO bulk was cooled by liquid nitrogen in field-cooling (FC) and zero-field-cooling (ZFC) condition. The results showed that the levitation forces increased with increasing the magnetic field intensity. Moreover, the levitation forces were more dependent on magnetic field gradient and magnetic force field than magnetic field intensity.
NASA Astrophysics Data System (ADS)
Revuelto, J.; Dumont, M.; Tuzet, F.; Vionnet, V.; Lafaysse, M.; Lecourt, G.; Vernay, M.; Morin, S.; Cosme, E.; Six, D.; Rabatel, A.
2017-12-01
Nowadays snowpack models show a good capability in simulating the evolution of snow in mountain areas. However singular deviations of meteorological forcing and shortcomings in the modelling of snow physical processes, when accumulated on time along a snow season, could produce large deviations from real snowpack state. The evaluation of these deviations is usually assessed with on-site observations from automatic weather stations. Nevertheless the location of these stations could strongly influence the results of these evaluations since local topography may have a marked influence on snowpack evolution. Despite the evaluation of snowpack models with automatic weather stations usually reveal good results, there exist a lack of large scale evaluations of simulations results on heterogeneous alpine terrain subjected to local topographic effects.This work firstly presents a complete evaluation of the detailed snowpack model Crocus over an extended mountain area, the Arve upper catchment (western European Alps). This catchment has a wide elevation range with a large area above 2000m a.s.l. and/or glaciated. The evaluation compares results obtained with distributed and semi-distributed simulations (the latter nowadays used on the operational forecasting). Daily observations of the snow covered area from MODIS satellite sensor, seasonal glacier surface mass balance evolution measured in more than 65 locations and the galciers annual equilibrium line altitude from Landsat/Spot/Aster satellites, have been used for model evaluation. Additionally the latest advances in producing ensemble snowpack simulations for assimilating satellite reflectance data over extended areas will be presented. These advances comprises the generation of an ensemble of downscaled high-resolution meteorological forcing from meso-scale meteorological models and the application of a particle filter scheme for assimilating satellite observations. Despite the results are prefatory, they show a good potential improving snowpack forecasting capabilities.
NASA Astrophysics Data System (ADS)
Kumar, Sarvan; Kumar, Sanjay; Kaskaoutis, D. G.; Singh, Ramesh P.; Singh, Rajeev K.; Mishra, Amit K.; Srivastava, Manoj K.; Singh, Abhay K.
2015-06-01
During the pre-monsoon season (April-June), the Indo-Gangetic Basin (IGB) suffers from frequent and intense dust storms originated from the arid and desert regions of southwest Asia (Iran, Afghanistan), Arabia and Thar desert blanketing IGB and Himalayan foothills. The present study examines the columnar and vertical aerosol characteristics and estimates the shortwave (0.25-4.0 μm) aerosol radiative forcing (ARF) and atmospheric heating rates over Kanpur, central IGB, during three intense dust-storm events in the pre-monsoon season of 2010. MODIS images, meteorological and AERONET observations clearly show that all the dust storms either originated from the Thar desert or transported over, under favorable meteorological conditions (low pressure and strong surface winds) affecting nearly the whole IGB and modifying the aerosol loading and characteristics (Ångström exponent, single scattering albedo, size distribution and refractive index). CALIPSO observations reveal the presence of high-altitude (up to 3-5 km) dust plumes that strongly modify the vertical aerosol profile and are transported over Himalayan foothills with serious climate implications (atmospheric warming, enhanced melting of glaciers). Shortwave ARF calculations over Kanpur using SBDART model show large negative forcing values at the surface (-93.27, -101.60 and -66.71 W m-2) during the intense dusty days, associated with planetary (top of atmosphere) cooling (-18.16, -40.95, -29.58 W m-2) and significant atmospheric heating (75.11, 60.65, 37.13 W m-2), which is translated to average heating rates of 1.57, 1.41 and 0.78 K day-1, respectively in the lower atmosphere (below ∼3.5 km). The ARF estimates are in satisfactory agreement with the AERONET ARF retrievals over Kanpur.
NASA Astrophysics Data System (ADS)
Schulz, E.; Grasso, F.; Le Hir, P.; Verney, R.; Thouvenin, B.
2018-01-01
Understanding the sediment dynamics in an estuary is important for its morphodynamic and ecological assessment as well as, in case of an anthropogenically controlled system, for its maintenance. However, the quantification of sediment fluxes and budgets is extremely difficult from in-situ data and requires thoroughly validated numerical models. In the study presented here, sediment fluxes and budgets in the lower Seine Estuary were quantified and investigated from seasonal to annual time scales with respect to realistic hydro- and meteorological conditions. A realistic three-dimensional process-based hydro- and sediment-dynamic model was used to quantify mud and sand fluxes through characteristic estuarine cross-sections. In addition to a reference experiment with typical forcing, three experiments were carried out and analyzed, each differing from the reference experiment in either river discharge or wind and waves so that the effects of these forcings could be separated. Hydro- and meteorological conditions affect the sediment fluxes and budgets in different ways and at different locations. Single storm events induce strong erosion in the lower estuary and can have a significant effect on the sediment fluxes offshore of the Seine Estuary mouth, with the flux direction depending on the wind direction. Spring tides cause significant up-estuary fluxes at the mouth. A high river discharge drives barotropic down-estuary fluxes at the upper cross-sections, but baroclinic up-estuary fluxes at the mouth and offshore so that the lower estuary gains sediment during wet years. This behavior is likely to be observed worldwide in estuaries affected by density gradients and turbidity maximum dynamics.
Numerical Weather Prediction Models on Linux Boxes as tools in meteorological education in Hungary
NASA Astrophysics Data System (ADS)
Gyongyosi, A. Z.; Andre, K.; Salavec, P.; Horanyi, A.; Szepszo, G.; Mille, M.; Tasnadi, P.; Weidiger, T.
2012-04-01
Education of Meteorologist in Hungary - according to the Bologna Process - has three stages: BSc, MSc and PhD, and students graduating at each stage get the respective degree (BSc, MSc and PhD). The three year long base BSc course in Meteorology can be chosen by undergraduate students in the fields of Geosciences, Environmental Sciences and Physics. BasicsFundamentals in Mathematics (Calculus), Physics (General and Theoretical) Physics and Informatics are emphasized during their elementary education. The two year long MSc course - in which about 15 to 25 students are admitted each year - can be studied only at our the Eötvös Loránd uUniversity in the our country. Our aim is to give a basic education in all fields of Meteorology. Main topics are: Climatology, Atmospheric Physics, Atmospheric Chemistry, Dynamic and Synoptic Meteorology, Numerical Weather Prediction, modeling Modeling of surfaceSurface-atmosphere Iinteractions and Cclimate change. Education is performed in two branches: Climate Researcher and Forecaster. Education of Meteorologist in Hungary - according to the Bologna Process - has three stages: BSc, MSc and PhD, and students graduating at each stage get the respective degree. The three year long BSc course in Meteorology can be chosen by undergraduate students in the fields of Geosciences, Environmental Sciences and Physics. Fundamentals in Mathematics (Calculus), (General and Theoretical) Physics and Informatics are emphasized during their elementary education. The two year long MSc course - in which about 15 to 25 students are admitted each year - can be studied only at the Eötvös Loránd University in our country. Our aim is to give a basic education in all fields of Meteorology: Climatology, Atmospheric Physics, Atmospheric Chemistry, Dynamic and Synoptic Meteorology, Numerical Weather Prediction, Modeling of Surface-atmosphere Interactions and Climate change. Education is performed in two branches: Climate Researcher and Forecaster. Numerical modeling became a common tool in the daily practice of weather experts forecasters due to the i) increasing user demands for weather data by the costumers, ii) the growth in computer resources, iii) numerical weather prediction systems available for integration on affordable, off the shelf computers and iv) available input data (from ECMWF or NCEP) for model integrations. Beside learning the theoretical basis, since the last year. Students in their MSc or BSc Thesis Research or in Student's Research ProjectsStudent's Research Projects h have the opportunity to run numerical models and to analyze the outputs for different purposes including wind energy estimation, simulation of the dynamics of a polar low, and subtropical cyclones, analysis of the isentropic potential vorticity field, examination of coupled atmospheric dispersion models, etc. A special course in the application of numerical modeling has been held (is being announced for the upcoming semester) (is being announced for the upcoming semester) for our students in order to improve their skills on this field. Several numerical model (NRIPR ETA and WRF) systems have been adapted in the University and integrated WRF have been tested and used for the geographical region of the Carpathian Basin (NRIPR, ETA and WRF). Recently ALADIN/CHAPEAU the academic version of the ARPEGE ALADIN cy33t1 meso-scale numerical weather prediction model system (which is the operational forecasting tool of our National Weather Service) has been installed at our Institute. ALADIN is the operational forecasting model of the Hungarian Meteorological Service and developed in the framework of the international ALADIN co-operation. Our main objectives are i) the analysis of different typical weather situations, ii) fine tuning of parameterization schemes and the iii) comparison of the ALADIN/CHAPEAU and WRF model outputs based on case studies. The necessary hardware and software innovations has have been done. In the presentation the computer resources needed for the integration of both WRF and ALADIN/CHAPEAU models will be briefly described. The software developments performed for the evaluation and comparison of the different modeling systems will be demonstrated. The main objectives of the education program on the practical numerical weather modeling will be introduced, as well as its detailed thematics and the structure of the labs.
NASA Astrophysics Data System (ADS)
Plumley, William J.
1994-01-01
Before World War II, weather forecasters had little knowledge of upper-air wind patterns above 20000 feet. Data were seldom avai able at these heights, and the need was not great because commercial aircraft seldom flew at these altitudes. The war in the Pacific changed all that. Wind forecasts for 30000 feet plus became urgent to support the XXI Bomber Command in its bombing mission over Japan.The U.S. Army Air Force Pacific Ocean Area (AAFPOA) placed a Weather Central in the Marianas Islands in 1944 (Saipan in 1944 and Guam in 1945) to provide forecasting support for this mission. A forecasting procedure was put into operation that combined the elements known as "single-station forecasting" and an advanced procedure that used "altirmeter corrections" to analyze upper-airdata and make prognoses. Upper-air charts were drawn for constant pressure surfaces rather than constant height surfaces. The constant pressure surfaces were tied together by means of the atmospheric temperature field represented by specific temperature anomalies between pressure surfaces. Wind forecasts over the Marianas-Japan route made use of space cross sections that provided the data to forecast winds at each 5000-ft level to 35000 ft along the mission flight path. The new procedures allowed the forecaster to construct internally consistent meteorological charts in three dimensions in regions of sparse data.Army air force pilots and their crews from the Marianas were among the first to experience the extreme wind conditions now known as the "jet stream". Air force forecasters demonstrated that, with experience, such winds could reasonably be forecast under difficult operational conditions.
A multidisciplinary system for monitoring and forecasting Etna volcanic plumes
NASA Astrophysics Data System (ADS)
Coltelli, Mauro; Prestifilippo, Michele; Spata, Gaetano; Scollo, Simona; Andronico, Daniele
2010-05-01
One of the most active volcanoes in the world is Mt. Etna, in Italy, characterized by frequent explosive activity from the central craters and from fractures opened along the volcano flanks which, during the last years, caused several damages to aviation and forced the closure of the Catania International Airport. To give precise warning to the aviation authorities and air traffic controller and to assist the work of VAACs, a novel system for monitoring and forecasting Etna volcanic plumes, was developed at the Istituto Nazionale di Geofisica e Vulcanologia, sezione di Catania, the managing institution for the surveillance of Etna volcano. Monitoring is carried out using multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation geosynchronous satellite able to track the volcanic plume with a high time resolution, visual and thermal cameras used to monitor the explosive activity, three continuous wave X-band disdrometers which detect ash dispersal and fallout, sounding balloons used to evaluate the atmospheric fields, and finally field data collected after the end of the eruptive event needed to extrapolate important features of explosive activity. Forecasting is carried out daily using automatic procedures which download weather forecast data obtained by meteorological mesoscale models from the Italian Air Force national Meteorological Office and from the hydrometeorological service of ARPA-SIM; run four different tephra dispersal models using input parameters obtained by the analysis of the deposits collected after few hours since the eruptive event similar to 22 July 1998, 21-24 July 2001 and 2002-03 Etna eruptions; plot hazard maps on ground and in air and finally publish them on a web-site dedicated to the Italian Civil Protection. The system has been already tested successfully during several explosive events occurring at Etna in 2006, 2007 and 2008. These events produced eruption columns high up to several kilometers above sea level and, on the basis of parameters such as mass eruption rate and total grain-size distributions, showed different explosive style. The monitoring and forecasting system is going on developing through the installation of new instruments able to detect different features of the volcanic plumes (e.g. the dispersal and sedimentation processes) in order to reduce the uncertainty of the input parameters used in the modeling. This is crucial to perform a reliable forecasting. We show that multidisciplinary approaches can really give useful information on the presence of volcanic ash and consequently to prevent damages and airport disruptions.
NASA Astrophysics Data System (ADS)
Guillod, Benoit P.; Massey, Neil; Otto, Friederike E. L.; Allen, Myles R.; Jones, Richard; Hall, Jim W.
2016-04-01
Droughts and related water scarcity can have large impacts on societies and consist of interactions between a number of natural and human factors. Meteorological conditions are usually the first natural trigger of droughts, and climate change is expected to impact these and thereby the frequency and intensity of the events. However, extreme events such as droughts are, by definition, rare, and accurately quantifying the risk related to such events is therefore difficult. The MaRIUS project (Managing the Risks, Impacts and Uncertainties of drought and water Scarcity) aims at quantifying the risks associated with droughts in the UK under present and future conditions. To do so, a large number of drought events, from climate model simulations downscaled at 25km over Europe, are being fed into hydrological models of various complexity and used for the estimation of drought risk associated with human and natural systems, including impacts on the economy, industry, agriculture, terrestrial and aquatic ecosystems, and socio-cultural aspects. Here, we present the hydro-meteorological drought event set that has been produced by weather@home [1] for MaRIUS. Using idle processor time on volunteers' computers around the world, we have run a very large number (10'000s) of Global Climate Model (GCM) simulations, downscaled at 25km over Europe by a nested Regional Climate Model (RCM). Simulations include the past 100 years as well as two future horizons (2030s and 2080s), and provide a large number of sequences of spatio-temporally consistent weather, which are consistent with the boundary forcing such as the ocean, greenhouse gases and solar forcing. The drought event set for use in impact studies is constructed by extracting sequences of dry conditions from these model runs, leading to several thousand drought events. In addition to describing methodological and validation aspects of the synthetic drought event sets, we provide insights into drought risk in the UK, its meteorological drivers, and how it can be expected to change in the future. Finally, we assess the applicability of this methodology to other regions. [1] Massey, N. et al., 2014, Q. J. R. Meteorol. Soc.
Fine-Scale Comparison of TOMS Total Ozone Data with Model Analysis of an Intense Midwestern Cyclone
NASA Technical Reports Server (NTRS)
Olsen, Mark A.; Gallus, William A., Jr.; Stanford, John L.; Brown, John M.
2000-01-01
High-resolution (approx. 40 km) along-track total column ozone data from the Total Ozone Mapping Spectrometer (TOMS) instrument are compared with a high-resolution mesoscale numerical model analysis of an intense cyclone in the Midwestern United States. Total ozone increased by 100 DU (nearly 38%) as the TOMS instrument passed over the associated tropopause fold region. Complex structure is seen in the meteorological fields and compares well with the total ozone observations. Ozone data support the meteorological analysis showing that stratospheric descent was confined to levels above approx. 600 hPa; significant positive potential vorticity at lower levels is attributable to diabetic processes. Likewise, meteorological fields show that two pronounced ozone streamers extending north and northeastward into Canada at high levels are not bands of stratospheric air feeding into the cyclone; one is a channel of exhaust downstream from the system, and the other apparently previously connected the main cyclonic circulation to a southward intrusion of polar stratospheric air and advected eastward as the cut-off cyclone evolved. Good agreement between small-scale features in the model output and total ozone data underscores the latter's potential usefulness in diagnosing upper tropospheric/lower stratospheric dynamics and kinematics.
Uncertainty in predictions of forest carbon dynamics: separating driver error from model error.
Spadavecchia, L; Williams, M; Law, B E
2011-07-01
We present an analysis of the relative magnitude and contribution of parameter and driver uncertainty to the confidence intervals on estimates of net carbon fluxes. Model parameters may be difficult or impractical to measure, while driver fields are rarely complete, with data gaps due to sensor failure and sparse observational networks. Parameters are generally derived through some optimization method, while driver fields may be interpolated from available data sources. For this study, we used data from a young ponderosa pine stand at Metolius, Central Oregon, and a simple daily model of coupled carbon and water fluxes (DALEC). An ensemble of acceptable parameterizations was generated using an ensemble Kalman filter and eddy covariance measurements of net C exchange. Geostatistical simulations generated an ensemble of meteorological driving variables for the site, consistent with the spatiotemporal autocorrelations inherent in the observational data from 13 local weather stations. Simulated meteorological data were propagated through the model to derive the uncertainty on the CO2 flux resultant from driver uncertainty typical of spatially extensive modeling studies. Furthermore, the model uncertainty was partitioned between temperature and precipitation. With at least one meteorological station within 25 km of the study site, driver uncertainty was relatively small ( 10% of the total net flux), while parameterization uncertainty was larger, 50% of the total net flux. The largest source of driver uncertainty was due to temperature (8% of the total flux). The combined effect of parameter and driver uncertainty was 57% of the total net flux. However, when the nearest meteorological station was > 100 km from the study site, uncertainty in net ecosystem exchange (NEE) predictions introduced by meteorological drivers increased by 88%. Precipitation estimates were a larger source of bias in NEE estimates than were temperature estimates, although the biases partly compensated for each other. The time scales on which precipitation errors occurred in the simulations were shorter than the temporal scales over which drought developed in the model, so drought events were reasonably simulated. The approach outlined here provides a means to assess the uncertainty and bias introduced by meteorological drivers in regional-scale ecological forecasting.
Data for polar-regions research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenne, R.L.
1992-03-01
Datasets available for polar research on global change topics are summarized. Emphasis is given to data that define the large, including rawinsonde data, surface meteorological observations, cloud drift winds, atmospheric analyses, sea ice, planetary radiation, and ocean forcing. Plans are discussed for making improved atmospheric analyses, using existing data. The use of CD-ROMs and DAT technologies for data distribution is discussed and selected CD-ROMs are listed.
2001-04-12
KENNEDY SPACE CENTER, FLA. -- After arrival at Astrotech, Titusville, Fla., the GOES-M (Geostationary Operational Environmental Satellite) is attached to an overhead crane. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite will undergo testing at Astrotech before its scheduled launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station
2001-04-12
With the GOES-M satellite tilted on a workstand at Astrotech, Titusville, Fla, workers check out a part of the underside. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is undergoing testing at Astrotech before its scheduled launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station
NASA Astrophysics Data System (ADS)
Verkade, J. S.; Brown, J. D.; Davids, F.; Reggiani, P.; Weerts, A. H.
2017-12-01
Two statistical post-processing approaches for estimation of predictive hydrological uncertainty are compared: (i) 'dressing' of a deterministic forecast by adding a single, combined estimate of both hydrological and meteorological uncertainty and (ii) 'dressing' of an ensemble streamflow forecast by adding an estimate of hydrological uncertainty to each individual streamflow ensemble member. Both approaches aim to produce an estimate of the 'total uncertainty' that captures both the meteorological and hydrological uncertainties. They differ in the degree to which they make use of statistical post-processing techniques. In the 'lumped' approach, both sources of uncertainty are lumped by post-processing deterministic forecasts using their verifying observations. In the 'source-specific' approach, the meteorological uncertainties are estimated by an ensemble of weather forecasts. These ensemble members are routed through a hydrological model and a realization of the probability distribution of hydrological uncertainties (only) is then added to each ensemble member to arrive at an estimate of the total uncertainty. The techniques are applied to one location in the Meuse basin and three locations in the Rhine basin. Resulting forecasts are assessed for their reliability and sharpness, as well as compared in terms of multiple verification scores including the relative mean error, Brier Skill Score, Mean Continuous Ranked Probability Skill Score, Relative Operating Characteristic Score and Relative Economic Value. The dressed deterministic forecasts are generally more reliable than the dressed ensemble forecasts, but the latter are sharper. On balance, however, they show similar quality across a range of verification metrics, with the dressed ensembles coming out slightly better. Some additional analyses are suggested. Notably, these include statistical post-processing of the meteorological forecasts in order to increase their reliability, thus increasing the reliability of the streamflow forecasts produced with ensemble meteorological forcings.
NASA Technical Reports Server (NTRS)
Yasunari, Teppei J.; Koster, Randal D.; Kau, K. M.; Aoki, Teruo; Sud, Yogesh C.; Yamazaki, Takeshi; Motoyoshi, Hiroki; Kokdama, Yuji
2012-01-01
The website information describing the forcing meteorological data used for the land surface model (LSM) simulation, which were observed at an Automated Meteorological Station CAWS) at the Sapporo District Meteorological Observatory maintained by the Japan Meteorological Agency (JMA), was missing from the text. The 1-hourly data were obtained from the website of Kisyoutoukeijouhou (Information for available JMA-observed meteorological data in the past) on the website of JMA (in Japanese) (available at: http://www.jma.go.jpijmaimenulreport.html). The measurement height information of 59.5 m for the anemometer at the Sapporo Observatory was also obtained from the website of JMA (in Japanese) (available at: http://www.jma.go.jp/jma/menu/report.html). In addition, the converted 10-m wind speed, based on the AWS/JMA data, was further converted to a 2-m wind speed prior to its use with the land model as a usual treatment of off-line Catchment simulation. Please ignore the ice absorption data on the website mentioned in paragraph [15] which was not used for our calculations (but the data on the website was mostly the same as the estimated ice absorption coefficients by the following method because they partially used the same data by Warren [1984]). We calculated the ice absorption coefficients with the method mentioned in the same paragraph, for which some of the refractive index data by Warren [1984] were used and then interpolated between wavelengths, and also mentioned in paragraph [20] for the visible (VIS) and near-infrared (NIR) ranges. The optical data we used were interpolated between wavelengths as necessary.
NASA Astrophysics Data System (ADS)
Orhan, K.; Mayerle, R.
2016-12-01
A methodology comprising of the estimates of power yield, evaluation of the effects of power extraction on flow conditions, and near-field investigations to deliver wake characteritics, recovery and interactions is described and applied to several straits in Indonesia. Site selection is done with high-resolution, three-dimensional flow models providing sufficient spatiotemporal coverage. Much attention has been given to the meteorological forcing, and conditions at the open sea boundaries to adequately capture the density gradients and flow fields. Model verification using tidal records shows excellent agreement. Sites with adequate depth for the energy conversion using horizontal axis tidal turbines, average kinetic power density greater than 0.5 kW/m2, and surface area larger than 0.5km2 are defined as energy hotspots. Spatial variation of the average extractable electric power is determined, and annual tidal energy resource is estimated for the straits in question. The results showed that the potential for tidal power generation in Indonesia is likely to exceed previous predictions reaching around 4,800MW. To assess the impact of the devices, flexible mesh models with higher resolutions have been developed. Effects on flow conditions, and near-field turbine wakes are resolved in greater detail with triangular horizontal grids. The energy is assumed to be removed uniformly by sub-grid scale arrays of turbines, and calculations are made based on velocities at the hub heights of the devices. An additional drag force resulting in dissipation of the pre-existing kinetic power from %10 to %60 within a flow cross-section is introduced to capture the impacts. It was found that the effect of power extraction on water levels and flow speeds in adjacent areas is not significant. Results show the effectivess of the method to capture wake characteritics and recovery reasonably well with low computational cost.
Plume trajectory formation under stack tip self-enveloping
NASA Astrophysics Data System (ADS)
Gribkov, A. M.; Zroichikov, N. A.; Prokhorov, V. B.
2017-10-01
The phenomenon of stack tip self-enveloping and its influence upon the conditions of plume formation and on the trajectory of its motion are considered. Processes are described occurring in the initial part of the plume while the interaction between vertically directed flue gases outflowing from the stack and a horizontally directed moving air flow at high wind velocities that lead to the formation of a flag-like plume. Conditions responsible for the origin and evolution of interaction between these flows are demonstrated. For the first time, a plume formed under these conditions without bifurcation is registered. A photo image thereof is presented. A scheme for the calculation of the motion of a plume trajectory is proposed, the quantitative characteristics of which are obtained based on field observations. The wind velocity and direction, air temperature, and atmospheric turbulence at the level of the initial part of the trajectory have been obtained based on data obtained from an automatic meteorological system (mounted on the outer parts of a 250 m high stack no. 1 at the Naberezhnye Chelny TEPP plant) as well as based on the results of photographing and theodolite sighting of smoke puffs' trajectory taking into account their velocity within its initial part. The calculation scheme is supplemented with a new acting force—the force of self-enveloping. Based on the comparison of the new calculation scheme with the previous one, a significant contribution of this force to the development of the trajectory is revealed. A comparison of the natural full-scale data with the results of the calculation according to the proposed new scheme is made. The proposed calculation scheme has allowed us to extend the application of the existing technique to the range of high wind velocities. This approach would make it possible to simulate and investigate the trajectory and full rising height of the calculated the length above the mouth of flue-pipes, depending on various modal and meteorological parameters under the interrelation between the dynamic and thermal components of the rise as well as to obtain a universal calculation expression for determining the height of the plume rise for different classes of atmospheric stability.
Sorribas, M; Adame, J A; Andrews, E; Yela, M
2017-04-01
A desert dust (DD) event that had its origin in North Africa occurred on the 20th-23rd of February 2016. The dust transport phenomenon was exceptional because of its unusual intensity during the coldest season. A historical dataset (2006-2015) of February meteorological scenarios using ECMWF fields, meteorological parameters, aerosol optical properties, surface O 3 and AOD retrieved from MODIS at the El Arenosillo observatory (southwestern Spain) were analysed and compared with the levels during the DD event to highlight its exceptionality. Associated with a low-pressure system in western North Africa, flows transported air from the Sahel to Algeria and consequently increased temperatures from the surface to 700hPa by up to 7-9°C relative to the last decade. These conditions favoured the formation of a Saharan air layer. Dust was transported to the north and reached the Western Mediterranean Basin and the Iberian Peninsula. The arrival of the DD event at El Arenosillo did not affect the surface weather conditions or ozone but did impact the aerosol radiative forcing at the top of atmosphere (RF TOA ). Aerosol radiative properties did not change relative to historical; however, the particle size and the amount of the aerosol were significantly higher. The DD event caused an increase (in absolute terms) of the mean aerosol RF TOA to a value of -8.1Wm -2 (long-term climatological value ~-1.5Wm -2 ). The aerosol RF TOA was not very large relative other DD episodes; however, our analysis of the historical data concluded that the importance of this DD event lay in the month of occurrence. European phenological datasets related to extreme atmospheric events predominantly reflect changes that are probably associated with climate change. This work is an example of this phenomenon, showing an event that occurred in a hotspot, the Saharan desert, and its impact two thousand km away. Copyright © 2017 Elsevier B.V. All rights reserved.
An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars
NASA Technical Reports Server (NTRS)
Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.
1998-01-01
This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical 'cores' of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. The two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical 'simple physics' parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.
An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars
NASA Technical Reports Server (NTRS)
Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.
1998-01-01
This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Cen- ter and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical "cores" of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. ne two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical "simple physics" parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.
Weather impacts on space operations
NASA Astrophysics Data System (ADS)
Madura, J.; Boyd, B.; Bauman, W.; Wyse, N.; Adams, M.
The efforts of the 45th Weather Squadron of the USAF to provide weather support to Patrick Air Force Base, Cape Canaveral Air Force Station, Eastern Range, and the Kennedy Space Center are discussed. Its weather support to space vehicles, particularly the Space Shuttle, includes resource protection, ground processing, launch, and Ferry Flight, as well as consultations to the Spaceflight Meteorology Group for landing forecasts. Attention is given to prelaunch processing weather, launch support weather, Shuttle launch commit criteria, and range safety weather restrictions. Upper level wind requirements are examined. The frequency of hourly surface observations with thunderstorms at the Shuttle landing facility, and lightning downtime at the Titan launch complexes are illustrated.
Technical Note: On the use of nudging for aerosol-climate model intercomparison studies
Zhang, K.; Wan, H.; Liu, X.; ...
2014-04-24
Nudging is an assimilation technique widely used in the development and evaluation of climate models. Constraining the simulated wind and temperature fields using global weather reanalysis facilitates more straightforward comparison between simulation and observation, and reduces uncertainties associated with natural variabilities of the large-scale circulation. On the other hand, the forcing introduced by nudging can be strong enough to change the basic characteristics of the model climate. In the paper we show that for the Community Atmosphere Model version 5, due to the systematic temperature bias in the standard model and the sensitivity of simulated ice formation to anthropogenic aerosolmore » concentration, nudging towards reanalysis results in substantial reductions in the ice cloud amount and the impact of anthropogenic aerosols on longwave cloud forcing. In order to reduce discrepancies between the nudged and unconstrained simulations and meanwhile take the advantages of nudging, two alternative experimentation methods are evaluated. The first one constrains only the horizontal winds. The second method nudges both winds and temperature, but replaces the long-term climatology of the reanalysis by that of the model. Results show that both methods lead to substantially improved agreement with the free-running model in terms of the top-of-atmosphere radiation budget and cloud ice amount. The wind-only nudging is more convenient to apply, and provides higher correlations of the wind fields, geopotential height and specific humidity between simulation and reanalysis. This suggests nudging the horizontal winds but not temperature is a good strategy for the investigation of aerosol indirect effects through ice clouds, since it provides well-constrained meteorology without strongly perturbing the model's mean climate.« less
NASA Astrophysics Data System (ADS)
Eichhorn, Astrid; Bader, Jürgen
2017-09-01
As many coupled atmosphere-ocean general circulation models, the coupled Earth System Model developed at the Max Planck Institute for Meteorology suffers from severe sea-surface temperature (SST) biases in the tropical Atlantic. We performed a set of SST sensitivity experiments with its atmospheric model component ECHAM6 to understand the impact of tropical Atlantic SST biases on atmospheric circulation and precipitation. The model was forced by a climatology of observed global SSTs to focus on simulated seasonal and annual mean state climate. Through the superposition of varying tropical Atlantic bias patterns extracted from the MPI-ESM on top of the control field, this study investigates the relevance of the seasonal variation and spatial structure of tropical Atlantic biases for the simulated response. Results show that the position and structure of the Intertropical Convergence Zone (ITCZ) across the Atlantic is significantly affected, exhibiting a dynamically forced shift of annual mean precipitation maximum to the east of the Atlantic basin as well as a southward shift of the oceanic rain belt. The SST-induced changes in the ITCZ in turn affect seasonal rainfall over adjacent continents. However not only the ITCZ position but also other effects arising from biases in tropical Atlantic SSTs, e.g. variations in the wind field, change the simulation of precipitation over land. The seasonal variation and spatial pattern of tropical Atlantic SST biases turns out to be crucial for the simulated atmospheric response and is essential for analyzing the contribution of SST biases to coupled model mean state biases. Our experiments show that MPI-ESM mean-state biases in the Atlantic sector are mainly driven by SST biases in the tropical Atlantic while teleconnections from other basins seem to play a minor role.
Technical Note: On the use of nudging for aerosol-climate model intercomparison studies
NASA Astrophysics Data System (ADS)
Zhang, K.; Wan, H.; Liu, X.; Ghan, S. J.; Kooperman, G. J.; Ma, P.-L.; Rasch, P. J.
2014-04-01
Nudging is an assimilation technique widely used in the development and evaluation of climate models. Constraining the simulated wind and temperature fields using global weather reanalysis facilitates more straightforward comparison between simulation and observation, and reduces uncertainties associated with natural variabilities of the large-scale circulation. On the other hand, the forcing introduced by nudging can be strong enough to change the basic characteristics of the model climate. In the paper we show that for the Community Atmosphere Model version 5, due to the systematic temperature bias in the standard model and the sensitivity of simulated ice formation to anthropogenic aerosol concentration, nudging towards reanalysis results in substantial reductions in the ice cloud amount and the impact of anthropogenic aerosols on longwave cloud forcing. In order to reduce discrepancies between the nudged and unconstrained simulations and meanwhile take the advantages of nudging, two alternative experimentation methods are evaluated. The first one constrains only the horizontal winds. The second method nudges both winds and temperature, but replaces the long-term climatology of the reanalysis by that of the model. Results show that both methods lead to substantially improved agreement with the free-running model in terms of the top-of-atmosphere radiation budget and cloud ice amount. The wind-only nudging is more convenient to apply, and provides higher correlations of the wind fields, geopotential height and specific humidity between simulation and reanalysis. This suggests nudging the horizontal winds but not temperature is a good strategy for the investigation of aerosol indirect effects through ice clouds, since it provides well-constrained meteorology without strongly perturbing the model's mean climate.
Artan, G.A.; Verdin, J.P.; Lietzow, R.
2013-01-01
We illustrate the ability to monitor the status of snowpack over large areas by using a~spatially distributed snow accumulation and ablation model in the Upper Colorado Basin. The model was forced with precipitation fields from the National Weather Service (NWS) Multi-sensor Precipitation Estimator (MPE) and the Tropical Rainfall Measuring Mission (TRMM) datasets; remaining meteorological model input data was from NOAA's Global Forecast System (GFS) model output fields. The simulated snow water equivalent (SWE) was compared to SWEs from the Snow Data Assimilation System (SNODAS) and SNOwpack TELemetry system (SNOTEL) over a~region of the Western United States that covers parts of the Upper Colorado Basin. We also compared the SWE product estimated from the Special Sensor Microwave Imager (SSM/I) and Scanning Multichannel Microwave Radiometer (SMMR) to the SNODAS and SNOTEL SWE datasets. Agreement between the spatial distribution of the simulated SWE with both SNODAS and SNOTEL was high for the two model runs for the entire snow accumulation period. Model-simulated SWEs, both with MPE and TRMM, were significantly correlated spatially on average with the SNODAS (r = 0.81 and r = 0.54; d.f. = 543) and the SNOTEL SWE (r = 0.85 and r = 0.55; d.f. = 543), when monthly basinwide simulated average SWE the correlation was also highly significant (r = 0.95 and r = 0.73; d.f. = 12). The SWE estimated from the passive microwave imagery was not correlated either with the SNODAS SWE or (r = 0.14, d.f. = 7) SNOTEL-reported SWE values (r = 0.08, d.f. = 7). The agreement between modeled SWE and the SWE recorded by SNODAS and SNOTEL weakened during the snowmelt period due to an underestimation bias of the air temperature that was used as model input forcing.
Meteorological conditions during the summer 1986 CITE 2 flight series
NASA Technical Reports Server (NTRS)
Shipham, Mark C.; Cahoon, Donald R.; Bachmeier, A. Scott
1990-01-01
An overview of meteorological conditions during the NASA Global Tropospheric Experiment/Chemical Instrumentation Testing and Evaluation (GTE/CITE 2) summer 1986 flight series is presented. Computer-generated isentropic trajectories are used to trace the history of air masses encountered along each aircraft flight path. The synoptic-scale wind fields are depicted based on Montgomery stream function analyses. Time series of aircraft-measured temperature, dew point, ozone, and altitude are shown to depict air mass variability. Observed differences between maritime tropical and maritime polar air masses are discussed.
Homogeneous and heterogeneous chemistry along air parcel trajectories
NASA Technical Reports Server (NTRS)
Jones, R. L.; Mckenna, D. L.; Poole, L. R.; Solomon, S.
1990-01-01
The study of coupled heterogeneous and homogeneous chemistry due to polar stratospheric clouds (PSC's) using Lagrangian parcel trajectories for interpretation of the Airborne Arctic Stratosphere Experiment (AASE) is discussed. This approach represents an attempt to quantitatively model the physical and chemical perturbation to stratospheric composition due to formation of PSC's using the fullest possible representation of the relevant processes. Further, the meteorological fields from the United Kingdom Meteorological office global model were used to deduce potential vorticity and inferred regions of PSC's as an input to flight planning during AASE.
A graphics package for meteorological data, version 1.5
NASA Technical Reports Server (NTRS)
Moorthi, Shrinivas; Suarez, Max; Phillips, Bill; Schemm, Jae-Kyung; Schubert, Siegfried
1989-01-01
A plotting package has been developed to simplify the task of plotting meteorological data. The calling sequences and examples of high level yet flexible routines which allow contouring, vectors and shading of cylindrical, polar, orthographic and Mollweide (egg) projections are given. Routines are also included for contouring pressure-latitude and pressure-longitude fields with linear or log scales in pressure (interpolation to fixed grid interval is done automatically). Also included is a fairly general line plotting routine. The present version (1.5) produces plots on WMS laser printers and uses graphics primitives from WOLFPLOT.
ON ESTIMATING FORCE-FREENESS BASED ON OBSERVED MAGNETOGRAMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X. M.; Zhang, M.; Su, J. T., E-mail: xmzhang@nao.cas.cn
It is a common practice in the solar physics community to test whether or not measured photospheric or chromospheric vector magnetograms are force-free, using the Maxwell stress as a measure. Some previous studies have suggested that magnetic fields of active regions in the solar chromosphere are close to being force-free whereas there is no consistency among previous studies on whether magnetic fields of active regions in the solar photosphere are force-free or not. Here we use three kinds of representative magnetic fields (analytical force-free solutions, modeled solar-like force-free fields, and observed non-force-free fields) to discuss how measurement issues such asmore » limited field of view (FOV), instrument sensitivity, and measurement error could affect the estimation of force-freeness based on observed magnetograms. Unlike previous studies that focus on discussing the effect of limited FOV or instrument sensitivity, our calculation shows that just measurement error alone can significantly influence the results of estimates of force-freeness, due to the fact that measurement errors in horizontal magnetic fields are usually ten times larger than those in vertical fields. This property of measurement errors, interacting with the particular form of a formula for estimating force-freeness, would result in wrong judgments of the force-freeness: a truly force-free field may be mistakenly estimated as being non-force-free and a truly non-force-free field may be estimated as being force-free. Our analysis calls for caution when interpreting estimates of force-freeness based on measured magnetograms, and also suggests that the true photospheric magnetic field may be further away from being force-free than it currently appears to be.« less
NASA Astrophysics Data System (ADS)
Swenson, J.; Byerley, L. G.; Bogoev, I.; Hinckley, A.; Beasley, W. H.
2003-12-01
The atmospheric electric field is a unique indicator of locally disturbed weather, local thunderstorms and local atmospheric electrical hazards. Yet, surprisingly, routine observations of ambient electric field have never been included in the canonical suite of measured meteorological variables. This notable omission may be a result of the historically high costs to acquire, install, and maintain conventional electric-field mills. To reduce costs and overcome limitations of traditional field meters, Campbell Scientific, Inc. has developed an electric-field meter (patent pending) with a reciprocating shutter that eliminates the problem of making electrical contact with a rotating shaft. The reciprocating action is under microprocessor control, so the sample rate can be varied in response to measured conditions. Between samples of electric field, the shutter can even be left open indefinitely, allowing the instrument to function as a field-change antenna. Since the shutter is closed before and after each measurement in field-meter mode, it is relatively easy to account for drift and offsets automatically, so that measurements can be made even if the electrode insulator becomes degraded by conductive deposits of the types likely to be encountered in severe outdoor environments. Because the motor is energized for only a small fraction of each measurement cycle, average power consumption is exceptionally low, making the new field meter especially suitable for solar-powered applications such as automated remote meteorological stations. Some preliminary observations demonstrate the capabilities of the instrument.
NASA Astrophysics Data System (ADS)
Hayes, P.; Trigg, J. L.; Stauffer, D.; Hunter, G.; McQueen, J.
2006-05-01
Consequence assessment (CA) operations are those processes that attempt to mitigate negative impacts of incidents involving hazardous materials such as chemical, biological, radiological, nuclear, and high explosive (CBRNE) agents, facilities, weapons, or transportation. Incident types range from accidental spillage of chemicals at/en route to/from a manufacturing plant, to the deliberate use of radiological or chemical material as a weapon in a crowded city. The impacts of these incidents are highly variable, from little or no impact to catastrophic loss of life and property. Local and regional scale atmospheric conditions strongly influence atmospheric transport and dispersion processes in the boundary layer, and the extent and scope of the spread of dangerous materials in the lower levels of the atmosphere. Therefore, CA personnel charged with managing the consequences of CBRNE incidents must have detailed knowledge of current and future weather conditions to accurately model potential effects. A meteorology team was established at the U.S. Defense Threat Reduction Agency (DTRA) to provide weather support to CA personnel operating DTRA's CA tools, such as the Hazard Prediction and Assessment Capability (HPAC) tool. The meteorology team performs three main functions: 1) regular provision of meteorological data for use by personnel using HPAC, 2) determination of the best performing medium-range model forecast for the 12 - 48 hour timeframe and 3) provision of real-time help-desk support to users regarding acquisition and use of weather in HPAC CA applications. The normal meteorology team operations were expanded during a recent modeling project which took place during the 2006 Winter Olympic Games. The meteorology team took advantage of special weather observation datasets available in the domain of the Winter Olympic venues and undertook a project to improve weather modeling at high resolution. The varied and complex terrain provided a special challenge to the modelers on the meteorology team. Some of the Olympic venues were located in the mountains to the west of Torino, while the rest were located on the relatively flat plain in and around the cities of Pinerolo and Torino to the east. DTRA partners at Pennsylvania State University (PSU) and the U.S. National Center for Atmospheric Research (NCAR) established data collection and assimilation, and forecast modeling processes that used special weather station observations provided by the Area Previsione e Monitoraggio Ambientale of Italy's ARPA Piemonte. At PSU a version of the MM5 was especially prepared to use observation data to forecast weather in a four-nest configuration. Two other DTRA partners provided independent weather forecast models against which the PSU model data were compared. The U.S. Air Force Weather Agency provided its MM5 forecast model data and the U.S. National Oceanic and Atmospheric Administration's National Centers for Environmental Prediction provided data from a special version of their WRF model. The project produced many opportunities to improve the modeling and forecasting capability at DTRA. DTRA and its partners plan to expand upon this experience during upcoming field tests, and to further improve and expand the capability to provide accurate high-resolution weather forecast information to hazard and consequence assessment operations.
Roehl, Edwin A.; Conrads, Paul; Bernhardt, Christopher
2012-01-01
Soil cores provide valuable data on historical changes in vegetation and hydrologic conditions. Empirical models were developed to quantify the effect of meteorological and hydrologic forcing on plant species distributions over a 110-year period in Water Conservation Area 1 (WCA1) in the Florida Everglades, also known as the Arthur R. Marshall Loxahatchee National Wildlife Refuge. Empirical models that predict plant species distributions at sites within WCA1 were developed by linking temporally sparse seed bank data from soil cores with continuous multi-decadal daily meteorological and hydrologic time series data. The meteorological data included rainfall and maximum daily temperatures that spanned the entire study period of 110 years. The hydrologic data included stage data from two gages in WCA1 established in 1954. These stage data were hindcasted to be concurrent with the meteorological data by using correlation models that fit measured stages as a function of the meteorological parameters. The historical plant species data came from seven peat cores from WCA1. Different depths from each core were carbon-dated and assayed for relative percentages of 83 plant species using pollen counts. The oldest dates were more than 1,000 years old; however, only core data that overlapped the study period were used, for a total of 67 assays among the seven cores. Twenty-three of the species had ratios of at least 5 percent for one or more of the 67 assays, hereafter referred to as the "top23". Using the assays as input vectors, the top23 were grouped using the k-means clustering into four plant classes that represented the extent to which the various species have historically appeared together. This reduced the modeling problem to one of predicting the relative ratios of the four plant classes from the hindcasted stage time-series data. A separate empirical model was developed for each class using a multi-layer perceptron artificial neural network, which provides multivariate, nonlinear curve fitting. The models predicted the relative ratios of the classes, and the sums of the predictions are near 1. The coefficient of determination (R2) of the models varied from 0.87 to 0.96, indicating that the relative ratios of the plant classes are predictable, and therefore controllable, from stage forcing. Similar soil cores are available for the Coastal Plain of North Carolina and are planned for the Congaree National Park in South Carolina.
Radicals and Reservoirs in the GMI Chemistry and Transport Model: Comparison to Measurements
NASA Technical Reports Server (NTRS)
Douglass, Anne R.; Stolarski, Richard S.; Strahan, Susan E.; Connell, Peter S.
2004-01-01
We have used a three-dimensional chemistry and transport model (CTM), developed under the Global Modeling Initiative (GMI), to carry out two simulations of the composition of the stratosphere under changing halogen loading for 1995 through 2030. The two simulations differ only in that one uses meteorological fields from a general circulation model while the other uses meteorological fields from a data assimilation system. A single year's winds and temperatures are repeated for each 36-year simulation. We compare results from these two simulations with an extensive collection of data from satellite and ground-based measurements for 1993-2000. Comparisons of simulated fields with observations of radical and reservoir species for some of the major ozone-destroying compounds are of similar quality for both simulations. Differences in the upper stratosphere, caused by transport of total reactive nitrogen and methane, impact the balance among the ozone loss processes and the sensitivity of the two simulations to the change in composition.
NASA Technical Reports Server (NTRS)
North, G. R.; Bell, T. L.; Cahalan, R. F.; Moeng, F. J.
1982-01-01
Geometric characteristics of the spherical earth are shown to be responsible for the increase of variance with latitude of zonally averaged meteorological statistics. An analytic model is constructed to display the effect of a spherical geometry on zonal averages, employing a sphere labeled with radial unit vectors in a real, stochastic field expanded in complex spherical harmonics. The variance of a zonally averaged field is found to be expressible in terms of the spectrum of the vector field of the spherical harmonics. A maximum variance is then located at the poles, and the ratio of the variance to the zonally averaged grid-point variance, weighted by the cosine of the latitude, yields the zonal correlation typical of the latitude. An example is provided for the 500 mb level in the Northern Hemisphere compared to 15 years of data. Variance is determined to increase north of 60 deg latitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Jenny; Nikolich, George; Shadel, Craig
In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective ofmore » the monitoring effort is to determine if wind blowing across the Clean Slate sites is transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites.« less
Enhancement of wind stress evaluation method under storm conditions
NASA Astrophysics Data System (ADS)
Chen, Yingjian; Yu, Xiping
2016-12-01
Wind stress is an important driving force for many meteorological and oceanographical processes. However, most of the existing methods for evaluation of the wind stress, including various bulk formulas in terms of the wind speed at a given height and formulas relating the roughness height of the sea surface with wind conditions, predict an ever-increasing tendency of the wind stress coefficient as the wind speed increases, which is inconsistent with the field observations under storm conditions. The wave boundary layer model, which is based on the momentum and energy conservation, has the advantage to take into account the physical details of the air-sea interaction process, but is still invalid under storm conditions without a modification. By including the energy dissipation due to the presence of sea spray, which is speculated to be an important aspect of the air-sea interaction under storm conditions, the wave boundary layer model is improved in this study. The improved model is employed to estimate the wind stress caused by an idealized tropical cyclone motion. The computational results show that the wind stress coefficient reaches its maximal value at a wind speed of about 40 m/s and decreases as the wind speed further increases. This is in fairly good agreement with the field data.
CHARMM additive and polarizable force fields for biophysics and computer-aided drug design
Vanommeslaeghe, K.
2014-01-01
Background Molecular Mechanics (MM) is the method of choice for computational studies of biomolecular systems owing to its modest computational cost, which makes it possible to routinely perform molecular dynamics (MD) simulations on chemical systems of biophysical and biomedical relevance. Scope of Review As one of the main factors limiting the accuracy of MD results is the empirical force field used, the present paper offers a review of recent developments in the CHARMM additive force field, one of the most popular bimolecular force fields. Additionally, we present a detailed discussion of the CHARMM Drude polarizable force field, anticipating a growth in the importance and utilization of polarizable force fields in the near future. Throughout the discussion emphasis is placed on the force fields’ parametrization philosophy and methodology. Major Conclusions Recent improvements in the CHARMM additive force field are mostly related to newly found weaknesses in the previous generation of additive force fields. Beyond the additive approximation is the newly available CHARMM Drude polarizable force field, which allows for MD simulations of up to 1 microsecond on proteins, DNA, lipids and carbohydrates. General Significance Addressing the limitations ensures the reliability of the new CHARMM36 additive force field for the types of calculations that are presently coming into routine computational reach while the availability of the Drude polarizable force fields offers a model that is an inherently more accurate model of the underlying physical forces driving macromolecular structures and dynamics. PMID:25149274
The astrological roots of mesmerism.
Schaffer, Simon
2010-06-01
Franz Anton Mesmer's 1766 thesis on the influence of the planets on the human body, in which he first publicly presented his account of the harmonic forces at work in the microcosm, was substantially copied from the London physician Richard Mead's early eighteenth century tract on solar and lunar effects on the body. The relation between the two texts poses intriguing problems for the historiography of medical astrology: Mesmer's use of Mead has been taken as a sign of the Vienna physician's enlightened modernity while Mead's use of astro-meteorology has been seen as evidence of the survival of antiquated astral medicine in the eighteenth century. Two aspects of this problem are discussed. First, French critics of mesmerism in the 1780s found precedents for animal magnetism in the work of Paracelsus, Fludd and other early modern writers; in so doing, they began to develop a sophisticated history for astrology and astro-meteorology. Second, the close relations between astro-meteorology and Mead's project illustrate how the environmental medical programmes emerged. The making of a history for astrology accompanied the construction of various models of the relation between occult knowledge and its contexts in the enlightenment.
NASA Astrophysics Data System (ADS)
Bellier, Joseph; Bontron, Guillaume; Zin, Isabella
2017-12-01
Meteorological ensemble forecasts are nowadays widely used as input of hydrological models for probabilistic streamflow forecasting. These forcings are frequently biased and have to be statistically postprocessed, using most of the time univariate techniques that apply independently to individual locations, lead times and weather variables. Postprocessed ensemble forecasts therefore need to be reordered so as to reconstruct suitable multivariate dependence structures. The Schaake shuffle and ensemble copula coupling are the two most popular methods for this purpose. This paper proposes two adaptations of them that make use of meteorological analogues for reconstructing spatiotemporal dependence structures of precipitation forecasts. Performances of the original and adapted techniques are compared through a multistep verification experiment using real forecasts from the European Centre for Medium-Range Weather Forecasts. This experiment evaluates not only multivariate precipitation forecasts but also the corresponding streamflow forecasts that derive from hydrological modeling. Results show that the relative performances of the different reordering methods vary depending on the verification step. In particular, the standard Schaake shuffle is found to perform poorly when evaluated on streamflow. This emphasizes the crucial role of the precipitation spatiotemporal dependence structure in hydrological ensemble forecasting.
CHARMM additive and polarizable force fields for biophysics and computer-aided drug design.
Vanommeslaeghe, K; MacKerell, A D
2015-05-01
Molecular Mechanics (MM) is the method of choice for computational studies of biomolecular systems owing to its modest computational cost, which makes it possible to routinely perform molecular dynamics (MD) simulations on chemical systems of biophysical and biomedical relevance. As one of the main factors limiting the accuracy of MD results is the empirical force field used, the present paper offers a review of recent developments in the CHARMM additive force field, one of the most popular biomolecular force fields. Additionally, we present a detailed discussion of the CHARMM Drude polarizable force field, anticipating a growth in the importance and utilization of polarizable force fields in the near future. Throughout the discussion emphasis is placed on the force fields' parametrization philosophy and methodology. Recent improvements in the CHARMM additive force field are mostly related to newly found weaknesses in the previous generation of additive force fields. Beyond the additive approximation is the newly available CHARMM Drude polarizable force field, which allows for MD simulations of up to 1μs on proteins, DNA, lipids and carbohydrates. Addressing the limitations ensures the reliability of the new CHARMM36 additive force field for the types of calculations that are presently coming into routine computational reach while the availability of the Drude polarizable force fields offers an inherently more accurate model of the underlying physical forces driving macromolecular structures and dynamics. This article is part of a Special Issue entitled "Recent developments of molecular dynamics". Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Randles, C. A.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Buchard, V.; Govindaraju, R.; Chen, G.; Hair, J. W.; Russell, P. B.; Shinozuka, Y.; Wagner, N.; Lack, D.
2014-12-01
The NASA Goddard Earth Observing System version 5 (GEOS-5) Earth system model, which includes an online aerosol module, provided chemical and weather forecasts during the SEAC4RS field campaign. For post-mission analysis, we have produced a high resolution (25 km) meteorological and aerosol reanalysis for the entire campaign period. In addition to the full meteorological observing system used for routine NWP, we assimilate 550 nm aerosol optical depth (AOD) derived from MODIS (both Aqua and Terra satellites), ground-based AERONET sun photometers, and the MISR instrument (over bright surfaces only). Daily biomass burning emissions of CO, CO2, SO2, and aerosols are derived from MODIS fire radiative power retrievals. We have also introduced novel smoke "age" tracers, which provide, for a given time, a snapshot histogram of the age of simulated smoke aerosol. Because GEOS-5 assimilates remotely sensed AOD data, it generally reproduces observed (column) AOD compared to, for example, the airborne 4-STAR instrument. Constraining AOD, however, does not imply a good representation of either the vertical profile or the aerosol microphysical properties (e.g., composition, absorption). We do find a reasonable vertical structure for aerosols is attained in the model, provided actual smoke injection heights are not much above the planetary boundary layer, as verified with observations from DIAL/HRSL aboard the DC8. The translation of the simulated aerosol microphysical properties to total column AOD, needed in the aerosol assimilation step, is based on prescribed mass extinction efficiencies that depend on wavelength, composition, and relative humidity. Here we also evaluate the performance of the simulated aerosol speciation by examining in situ retrievals of aerosol absorption/single scattering albedo and scattering growth factor (f(RH)) from the LARGE and AOP suite of instruments. Putting these comparisons in the context of smoke age as diagnosed by the model helps us to revise assumed aerosol optical properties for an improved representation of aerosol radiative forcing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubin, D; Bromwich, DH; Russell, LM
West Antarctica is one of the most rapidly warming regions on Earth, and this warming is closely connected with global sea level rise. The discovery of rapid climate change on the West Antarctic Ice Sheet (WAIS) has challenged previous explanations of Antarctic climate change that focused on strengthening of circumpolar westerlies in response to the positive polarity trend in the Southern Annular Mode. West Antarctic warming does not yet have a comprehensive explanation: dynamical mechanisms may vary from one season to the next, and these mechanisms very likely involve complex teleconnections with subtropical and tropical latitudes. The prime motivation formore » this proposal is that there has been no substantial atmospheric science or climatological field work on West Antarctica since the 1957 International Geophysical Year and that research continued for only a few years. Direct meteorological information on the WAIS has been limited to a few automatic weather stations for several decades, yet satellite imagery and meteorological reanalyses indicate that West Antarctica is highly susceptible to advection of warm and moist maritime air with related cloud cover, depending on the location and strength of low pressure cells in the Amundsen, Ross, and Bellingshausen Seas. There is a need to quantify the role of these changing air masses on the surface energy balance, including all surface energy components and cloud-radiative forcing. More generally, global climate model simulations are known to perform poorly over the Antarctic and Southern Oceans, and the marked scarcity of cloud information at southern high latitudes has so far inhibited significant progress. Fortunately, McMurdo Station, where the Atmospheric Radiation Measurement Facility’s (ARM’s) most advanced cloud and aerosol instrumentation is situated, has a meteorological relationship with the WAIS via circulation patterns in the Ross and Amundsen Seas. We can therefore gather sophisticated data with cloud radars and high spectral resolution lidar and a complete aerosol suite at McMurdo that have relevance to the WAIS as well. At the same time, we will send basic radiometric, surface energy balance, and upper air equipment directly to the WAIS to make the first well calibrated climatological suite of measurements seen in this extremely remote but globally critical region in more than 40 years.« less
NASA Technical Reports Server (NTRS)
Robock, Alan; Vinnikov, Konstantin YA.; Schlosser, C. Adam; Speranskaya, Nina A.; Xue, Yongkang
1995-01-01
Soil moisture observations in sites with natural vegetation were made for several decades in the former Soviet Union at hundreds of stations. In this paper, the authors use data from six of these stations from different climatic regimes, along with ancillary meteorological and actinometric data, to demonstrate a method to validate soil moisture simulations with biosphere and bucket models. Some early and current general circulation models (GCMs) use bucket models for soil hydrology calculations. More recently, the Simple Biosphere Model (SiB) was developed to incorporate the effects of vegetation on fluxes of moisture, momentum, and energy at the earth's surface into soil hydrology models. Until now, the bucket and SiB have been verified by comparison with actual soil moisture data only on a limited basis. In this study, a Simplified SiB (SSiB) soil hydrology model and a 15-cm bucket model are forced by observed meteorological and actinometric data every 3 h for 6-yr simulations at the six stations. The model calculations of soil moisture are compared to observations of soil moisture, literally 'ground truth,' snow cover, surface albedo, and net radiation, and with each other. For three of the stations, the SSiB and 15-cm bucket models produce good simulations of seasonal cycles and interannual variations of soil moisture. For the other three stations, there are large errors in the simulations by both models. Inconsistencies in specification of field capacity may be partly responsible. There is no evidence that the SSiB simulations are superior in simulating soil moisture variations. In fact, the models are quite similar since SSiB implicitly has a bucket embedded in it. One of the main differences between the models is in the treatment of runoff due to melting snow in the spring -- SSiB incorrectly puts all the snowmelt into runoff. While producing similar soil moisture simulations, the models produce very different surface latent and sensible heat fluxes, which would have large effects on GCM simulations.
Choosing Meteorological Input for the Global Modeling Initiative Assessment of High Speed Aircraft
NASA Technical Reports Server (NTRS)
Douglas, A. R.; Prather, M. P.; Hall, T. M.; Strahan, S. E.; Rasch, P. J.; Sparling, L. C.; Coy, L.; Rodriquez, J. M.
1998-01-01
The Global Modeling Initiative (GMI) science team is developing a three dimensional chemistry and transport model (CTM) to be used in assessment of the atmospheric effects of aviation. Requirements are that this model be documented, be validated against observations, use a realistic atmospheric circulation, and contain numerical transport and photochemical modules representing atmospheric processes. The model must also retain computational efficiency to be tractable to use for multiple scenarios and sensitivity studies. To meet these requirements, a facility model concept was developed in which the different components of the CTM are evaluated separately. The first use of the GMI model will be to evaluate the impact of the exhaust of supersonic aircraft on the stratosphere. The assessment calculations will depend strongly on the wind and temperature fields used by the CTM. Three meteorological data sets for the stratosphere are available to GMI: the National Center for Atmospheric Research Community Climate Model (CCM2), the Goddard Earth Observing System Data Assimilation System (GEOS DAS), and the Goddard Institute for Space Studies general circulation model (GISS). Objective criteria were established by the GMI team to identify the data set which provides the best representation of the stratosphere. Simulations of gases with simple chemical control were chosen to test various aspects of model transport. The three meteorological data sets were evaluated and graded based on their ability to simulate these aspects of stratospheric measurements. This paper describes the criteria used in grading the meteorological fields. The meteorological data set which has the highest score and therefore was selected for GMI is CCM2. This type of objective model evaluation establishes a physical basis for interpretation of differences between models and observations. Further, the method provides a quantitative basis for defining model errors, for discriminating between different models, and for ready re-evaluation of improved models. These in turn will lead to a higher level of confidence in assessment calculations.
Long Island Sound Tropospheric Ozone Study (LISTOS) Fact Sheet
EPA scientists are collaborating on a multi-agency field study to investigate the complex interaction of emissions, chemistry and meteorological factors contributing to elevated ozone levels along the Long Island Sound shoreline.
Assimilation of water temperature and discharge data for ensemble water temperature forecasting
NASA Astrophysics Data System (ADS)
Ouellet-Proulx, Sébastien; Chimi Chiadjeu, Olivier; Boucher, Marie-Amélie; St-Hilaire, André
2017-11-01
Recent work demonstrated the value of water temperature forecasts to improve water resources allocation and highlighted the importance of quantifying their uncertainty adequately. In this study, we perform a multisite cascading ensemble assimilation of discharge and water temperature on the Nechako River (Canada) using particle filters. Hydrological and thermal initial conditions were provided to a rainfall-runoff model, coupled to a thermal module, using ensemble meteorological forecasts as inputs to produce 5 day ensemble thermal forecasts. Results show good performances of the particle filters with improvements of the accuracy of initial conditions by more than 65% compared to simulations without data assimilation for both the hydrological and the thermal component. All thermal forecasts returned continuous ranked probability scores under 0.8 °C when using a set of 40 initial conditions and meteorological forecasts comprising 20 members. A greater contribution of the initial conditions to the total uncertainty of the system for 1-dayforecasts is observed (mean ensemble spread = 1.1 °C) compared to meteorological forcings (mean ensemble spread = 0.6 °C). The inclusion of meteorological uncertainty is critical to maintain reliable forecasts and proper ensemble spread for lead times of 2 days and more. This work demonstrates the ability of the particle filters to properly update the initial conditions of a coupled hydrological and thermal model and offers insights regarding the contribution of two major sources of uncertainty to the overall uncertainty in thermal forecasts.
Enviro-HIRLAM Applicability for Black Carbon Studies in Arctic
NASA Astrophysics Data System (ADS)
Nuterman, Roman; Mahura, Alexander; Baklanov, Alexander; Kurganskiy, Alexander; Amstrup, Bjarne; Kaas, Eigil
2015-04-01
One of the main aims of the Nordic CarboNord project ("Impact of black carbon on air quality and climate in Northern Europe and Arctic") is focused on providing new information on distribution and effects of black carbon in Northern Europe and Arctic. It can be done through assessing robustness of model predictions of long-range black carbon distribution and its relation to climate change and forcing. In our study, the online integrated meteorology-chemistry/aerosols model - Enviro-HIRLAM (Environment - HIgh Resolution Limited Area Model) - is used. This study, at first, is focused on adaptation (model setup, domain for the Northern Hemisphere and Arctic region, emissions, boundary conditions, refining aerosols microphysics and chemistry, cloud-aerosol interaction processes) of Enviro-HIRLAM model and selection of most unfavorable weather and air pollution episodes for the Arctic region. Simulations of interactions between black carbon and meteorological processes in northern conditions for selected episodes will be performed (at DMI's supercomputer HPC CRAY-XT5), and then long-term simulations at regional scale for selected winter vs. summer months. Modelling results will be compared on a diurnal cycle and monthly basis against observations for key meteorological parameters (such as air temperature, wind speed, relative humidity, and precipitation) as well as aerosol concentration. Finally, evaluation of black carbon atmospheric transport, dispersion, and deposition patterns at different spatio-temporal scales; physical-chemical processes and transformations of black carbon containing aerosols; and interactions and effects between black carbon and meteorological processes in Arctic weather conditions will be done.
NASA Astrophysics Data System (ADS)
Sommer, Philipp; Kaplan, Jed
2016-04-01
Accurate modelling of large-scale vegetation dynamics, hydrology, and other environmental processes requires meteorological forcing on daily timescales. While meteorological data with high temporal resolution is becoming increasingly available, simulations for the future or distant past are limited by lack of data and poor performance of climate models, e.g., in simulating daily precipitation. To overcome these limitations, we may temporally downscale monthly summary data to a daily time step using a weather generator. Parameterization of such statistical models has traditionally been based on a limited number of observations. Recent developments in the archiving, distribution, and analysis of "big data" datasets provide new opportunities for the parameterization of a temporal downscaling model that is applicable over a wide range of climates. Here we parameterize a WGEN-type weather generator using more than 50 million individual daily meteorological observations, from over 10'000 stations covering all continents, based on the Global Historical Climatology Network (GHCN) and Synoptic Cloud Reports (EECRA) databases. Using the resulting "universal" parameterization and driven by monthly summaries, we downscale mean temperature (minimum and maximum), cloud cover, and total precipitation, to daily estimates. We apply a hybrid gamma-generalized Pareto distribution to calculate daily precipitation amounts, which overcomes much of the inability of earlier weather generators to simulate high amounts of daily precipitation. Our globally parameterized weather generator has numerous applications, including vegetation and crop modelling for paleoenvironmental studies.
Improvement of fog predictability in a coupled system of PAFOG and WRF
NASA Astrophysics Data System (ADS)
Kim, Wonheung; Yum, Seong Soo; Kim, Chang Ki
2017-04-01
Fog is difficult to predict because of the multi-scale nature of its formation mechanism: not only the synoptic conditions but also the local meteorological conditions crucially influence fog formation. Coarse vertical resolution and parameterization errors in fog prediction models are also critical reasons for low predictability. In this study, we use a coupled model system of a 3D mesoscale model (WRF) and a single column model with a fine vertical resolution (PAFOG, PArameterized FOG) to simulate fogs formed over the southern coastal region of the Korean Peninsula, where National Center for Intensive Observation of Severe Weather (NCIO) is located. NCIO is unique in that it has a 300 m meteorological tower built at the location to measure basic meteorological variables (temperature, dew point temperature and winds) at eleven different altitudes, and comprehensive atmospheric physics measurements are made with the various remote sensing instruments such as visibility meter, cloud radar, wind profiler, microwave radiometer, and ceilometer. These measurement data are used as input data to the model system and for evaluating the results. Particularly the data for initial and external forcings, which are tightly connected to the predictability of coupled model system, are derived from the tower measurement. This study aims at finding out the most important factors that influence fog predictability of the coupled system for NCIO. Nudging of meteorological tower data and soil moisture variability are found to be critically influencing fog predictability. Detailed results will be discussed at the conference.
NASA Astrophysics Data System (ADS)
Crosman, E.; Horel, J.; Blaylock, B. K.; Foster, C.
2014-12-01
High wintertime ozone concentrations in rural areas associated with oil and gas development and high particulate concentrations in urban areas have become topics of increasing concern in the Western United States, as both primary and secondary pollutants become trapped within stable wintertime boundary layers. While persistent cold air pools that enable such poor wintertime air quality are typically associated with high pressure aloft and light winds, the complex physical processes that contribute to the formation, maintenance, and decay of persistent wintertime temperature inversions are only partially understood. In addition, obtaining sufficiently accurate numerical weather forecasts and meteorological simulations of cold air pools for input into chemical models remains a challenge. This study examines the meteorological processes associated with several wintertime pollution episodes in Utah's Uintah and Salt Lake Basins using numerical Weather Research and Forecasting model simulations and observations collected from the Persistent Cold Air Pool and Uintah Basin Ozone Studies. The temperature, vertical structure, and winds within these cold air pools was found to vary as a function of snow cover, snow albedo, land use, cloud cover, large-scale synoptic flow, and episode duration. We evaluate the sensitivity of key atmospheric features such as stability, planetary boundary layer depth, local wind flow patterns and transport mechanisms to variations in surface forcing, clouds, and synoptic flow. Finally, noted deficiencies in the meteorological models of cold air pools and modifications to the model snow and microphysics treatment that have resulted in improved cold pool simulations will be presented.
Helicity in dynamic atmospheric processes
NASA Astrophysics Data System (ADS)
Kurgansky, M. V.
2017-03-01
An overview on the helicity of the velocity field and the role played by this concept in modern research in the field of geophysical fluid dynamics and dynamic meteorology is given. Different (both previously known in the literature and first presented) formulations of the equation of helicity balance in atmospheric motions (including those with allowance for effects of air compressibility and Earth's rotation) are brought together. Equations and relationships are given which are valid in different approximations accepted in dynamic meteorology: Boussinesq approximation, quasi-static approximation, and quasi-geostrophic approximation. Emphasis is placed on the analysis of helicity budget in large-scale quasi-geostrophic systems of motion; a formula for the helicity flux across the upper boundary of the nonlinear Ekman boundary layer is given, and this flux is shown to be exactly compensated for by the helicity destruction inside the Ekman boundary layer.
Satellite data based approach for the estimation of anthropogenic heat flux over urban areas
NASA Astrophysics Data System (ADS)
Nitis, Theodoros; Tsegas, George; Moussiopoulos, Nicolas; Gounaridis, Dimitrios; Bliziotis, Dimitrios
2017-09-01
Anthropogenic effects in urban areas influence the thermal conditions in the environment and cause an increase of the atmospheric temperature. The cities are sources of heat and pollution, affecting the thermal structure of the atmosphere above them which results to the urban heat island effect. In order to analyze the urban heat island mechanism, it is important to estimate the anthropogenic heat flux which has a considerable impact on the urban energy budget. The anthropogenic heat flux is the result of man-made activities (i.e. traffic, industrial processes, heating/cooling) and thermal releases from the human body. Many studies have underlined the importance of the Anthropogenic Heat Flux to the calculation of the urban energy budget and subsequently, the estimation of mesoscale meteorological fields over urban areas. Therefore, spatially disaggregated anthropogenic heat flux data, at local and city scales, are of major importance for mesoscale meteorological models. The main objectives of the present work are to improve the quality of such data used as input for mesoscale meteorological models simulations and to enhance the application potential of GIS and remote sensing in the fields of climatology and meteorology. For this reason, the Urban Energy Budget concept is proposed as the foundation for an accurate determination of the anthropogenic heat discharge as a residual term in the surface energy balance. The methodology is applied to the cities of Athens and Paris using the Landsat ETM+ remote sensing data. The results will help to improve our knowledge on Anthropogenic Heat Flux, while the potential for further improvement of the methodology is also discussed.
Impact of shade on outdoor thermal comfort—a seasonal field study in Tempe, Arizona
NASA Astrophysics Data System (ADS)
Middel, Ariane; Selover, Nancy; Hagen, Björn; Chhetri, Nalini
2016-12-01
Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1 year, on selected clear calm days representative of each season, we conducted hourly meteorological transects from 7:00 a.m. to 6:00 p.m. and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on a semantic differential 9-point scale, increasing thermal comfort in all seasons except winter. Shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shades are equally efficient in hot dry climates. Globe temperature explained 51 % of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors included adaptation, thermal comfort vote, thermal preference, gender, season, and time of day. A regression of subjective thermal sensation on physiological equivalent temperature yielded a neutral temperature of 28.6 °C. The acceptable comfort range was 19.1 °C-38.1 °C with a preferred temperature of 20.8 °C. Respondents exposed to above neutral temperature felt more comfortable if they had been in air-conditioning 5 min prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas to reduce thermal stress.
Stuntebeck, Todd D.; Komiskey, Matthew J.; Owens, David W.; Hall, David W.
2008-01-01
The University of Wisconsin (UW)-Madison Discovery Farms (Discovery Farms) and UW-Platteville Pioneer Farm (Pioneer Farm) programs were created in 2000 to help Wisconsin farmers meet environmental and economic challenges. As a partner with each program, and in cooperation with the Wisconsin Department of Natural Resources and the Sand County Foundation, the U.S. Geological Survey (USGS) Wisconsin Water Science Center (WWSC) installed, maintained, and operated equipment to collect water-quantity and water-quality data from 25 edge-offield, 6 streamgaging, and 5 subsurface-tile stations at 7 Discovery Farms and Pioneer Farm. The farms are located in the southern half of Wisconsin and represent a variety of landscape settings and crop- and animal-production enterprises common to Wisconsin agriculture. Meteorological stations were established at most farms to measure precipitation, wind speed and direction, air and soil temperature (in profile), relative humidity, solar radiation, and soil moisture (in profile). Data collection began in September 2001 and is continuing through the present (2008). This report describes methods used by USGS WWSC personnel to collect, process, and analyze water-quantity, water-quality, and meteorological data for edge-of-field, streamgaging, subsurface-tile, and meteorological stations at Discovery Farms and Pioneer Farm from September 2001 through October 2007. Information presented includes equipment used; event-monitoring and samplecollection procedures; station maintenance; sample handling and processing procedures; water-quantity, waterquality, and precipitation data analyses; and procedures for determining estimated constituent concentrations for unsampled runoff events.
Objective high Resolution Analysis over Complex Terrain with VERA
NASA Astrophysics Data System (ADS)
Mayer, D.; Steinacker, R.; Steiner, A.
2012-04-01
VERA (Vienna Enhanced Resolution Analysis) is a model independent, high resolution objective analysis of meteorological fields over complex terrain. This system consists of a special developed quality control procedure and a combination of an interpolation and a downscaling technique. Whereas the so called VERA-QC is presented at this conference in the contribution titled "VERA-QC, an approved Data Quality Control based on Self-Consistency" by Andrea Steiner, this presentation will focus on the method and the characteristics of the VERA interpolation scheme which enables one to compute grid point values of a meteorological field based on irregularly distributed observations and topography related aprior knowledge. Over a complex topography meteorological fields are not smooth in general. The roughness which is induced by the topography can be explained physically. The knowledge about this behavior is used to define the so called Fingerprints (e.g. a thermal Fingerprint reproducing heating or cooling over mountainous terrain or a dynamical Fingerprint reproducing positive pressure perturbation on the windward side of a ridge) under idealized conditions. If the VERA algorithm recognizes patterns of one or more Fingerprints at a few observation points, the corresponding patterns are used to downscale the meteorological information in a greater surrounding. This technique allows to achieve an analysis with a resolution much higher than the one of the observational network. The interpolation of irregularly distributed stations to a regular grid (in space and time) is based on a variational principle applied to first and second order spatial and temporal derivatives. Mathematically, this can be formulated as a cost function that is equivalent to the penalty function of a thin plate smoothing spline. After the analysis field has been divided into the Fingerprint components and the unexplained part respectively, the requirement of a smooth distribution is applied to the latter component only (the Fingerprint field is rough by definition). In order to obtain the final analysis field, the unexplained component has to be combined with the weighted Fingerprint patterns. Operationally, VERA is carried out at our Department on an hourly basis analyzing temperature measurements, pressure, wind and precipitation observations for several domains of the whole world. VERA analyses are used for nowcasting purposes, for establishing climate databases and model verification. Furthermore, VERA can be interesting for everyone who possesses a PC but does not have access to a complex data assimilation system which is in general only available at numerical weather prediction centers.
How do I know if my forecasts are better? Using benchmarks in hydrological ensemble prediction
NASA Astrophysics Data System (ADS)
Pappenberger, F.; Ramos, M. H.; Cloke, H. L.; Wetterhall, F.; Alfieri, L.; Bogner, K.; Mueller, A.; Salamon, P.
2015-03-01
The skill of a forecast can be assessed by comparing the relative proximity of both the forecast and a benchmark to the observations. Example benchmarks include climatology or a naïve forecast. Hydrological ensemble prediction systems (HEPS) are currently transforming the hydrological forecasting environment but in this new field there is little information to guide researchers and operational forecasters on how benchmarks can be best used to evaluate their probabilistic forecasts. In this study, it is identified that the forecast skill calculated can vary depending on the benchmark selected and that the selection of a benchmark for determining forecasting system skill is sensitive to a number of hydrological and system factors. A benchmark intercomparison experiment is then undertaken using the continuous ranked probability score (CRPS), a reference forecasting system and a suite of 23 different methods to derive benchmarks. The benchmarks are assessed within the operational set-up of the European Flood Awareness System (EFAS) to determine those that are 'toughest to beat' and so give the most robust discrimination of forecast skill, particularly for the spatial average fields that EFAS relies upon. Evaluating against an observed discharge proxy the benchmark that has most utility for EFAS and avoids the most naïve skill across different hydrological situations is found to be meteorological persistency. This benchmark uses the latest meteorological observations of precipitation and temperature to drive the hydrological model. Hydrological long term average benchmarks, which are currently used in EFAS, are very easily beaten by the forecasting system and the use of these produces much naïve skill. When decomposed into seasons, the advanced meteorological benchmarks, which make use of meteorological observations from the past 20 years at the same calendar date, have the most skill discrimination. They are also good at discriminating skill in low flows and for all catchment sizes. Simpler meteorological benchmarks are particularly useful for high flows. Recommendations for EFAS are to move to routine use of meteorological persistency, an advanced meteorological benchmark and a simple meteorological benchmark in order to provide a robust evaluation of forecast skill. This work provides the first comprehensive evidence on how benchmarks can be used in evaluation of skill in probabilistic hydrological forecasts and which benchmarks are most useful for skill discrimination and avoidance of naïve skill in a large scale HEPS. It is recommended that all HEPS use the evidence and methodology provided here to evaluate which benchmarks to employ; so forecasters can have trust in their skill evaluation and will have confidence that their forecasts are indeed better.
USDA-ARS?s Scientific Manuscript database
Biophysical models intended for routine applications at a range of scales should attempt to balance the competing demands of generality and simplicity and be capable of realistically simulating the response of CO2 and energy fluxes to environmental and physiological forcings. At the same time they m...
Temperature Calculations in the Coastal Modeling System
2017-04-01
tide) and river discharge at model boundaries, wave radiation stress, and wind forcing over a model computational domain. Physical processes calculated...calculated in the CMS using the following meteorological parameters: solar radiation, cloud cover, air temperature, wind speed, and surface water temperature...during a clear (i.e., cloudless) sky (Wm-2); CLDC is the cloud cover fraction (0-1.0); SWR is the surface reflection coefficient; and SHDf is the
Innovations in Basic Flight Training for the Indonesian Air Force
1990-12-01
microeconomic theory that could approximate the optimum mix of training hours between an aircraft and simulator, and therefore improve cost effectiveness...The microeconomic theory being used is normally employed when showing production with two variable inputs. An example of variable inputs would be labor...NAS Corpus Christi, Texas, Aerodynamics of the T-34C, 1989. 26. Naval Air Training Command, NAS Corpus Christi, Texas, Meteorological Theory Workbook
1976-11-01
protec- tion and will require additional measures, such as the application of conductive filter-loaded plastic resins to each joint connection...Lawrence Liver- more Laboratory, Livermore CA, 1974 31. Whitson, A. L., "DCA HEMP Hardness Certification Methodology Status", Stanford Research...of Chief of Engineers, Depot of the Army, December 1971 34. "Development of HEMP Assessment Methodology for Satellite Terminals", Intelcom Rad Tech
2001-04-12
At Astrotech, Titusville, Fla., the GOES-M (Geostationary Operational Environmental Satellite) satellite is tilted on a workstand so that workers can remove part of the protective cover. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite will undergo testing at Astrotech before its scheduled launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station
NASA Astrophysics Data System (ADS)
Mohlman, H. T.
1983-04-01
The Air Force community noise prediction model (NOISEMAP) is used to describe the aircraft noise exposure around airbases and thereby aid airbase planners to minimize exposure and prevent community encroachment which could limit mission effectiveness of the installation. This report documents two computer programs (OMEGA 10 and OMEGA 11) which were developed to prepare aircraft flight and ground runup noise data for input to NOISEMAP. OMEGA 10 is for flight operations and OMEGA 11 is for aircraft ground runups. All routines in each program are documented at a level useful to a programmer working with the code or a reader interested in a general overview of what happens within a specific subroutine. Both programs input normalized, reference aircraft noise data; i.e., data at a standard reference distance from the aircraft, for several fixed engine power settings, a reference airspeed and standard day meteorological conditions. Both programs operate on these normalized, reference data in accordance with user-defined, non-reference conditions to derive single-event noise data for 22 distances (200 to 25,000 feet) in a variety of physical and psycho-acoustic metrics. These outputs are in formats ready for input to NOISEMAP.
Zhang, Hao; Yuan, Haiou; Liu, Xiaohui; Yu, Junyi; Jiao, Yongli
2018-06-15
North China Plain area (NCP) is one of the most densely populated and heavily polluted regions in the world. In the last five years, frequently happened fine particulate matter (PM 2.5 ) serious pollution events were one of the top environmental concerns in China. As PM 2.5 concentrations are highly influenced by synoptic flow patterns and local meteorological conditions, a two-stage hierarchical clustering method based on dynamic principal component analysis (DPCA) and standard k-means clustering algorithm was employed to classify synoptic wind fields into 6 patterns over the NCP area using the data of 5 PM 2.5 seasons (Sept. 15th-Apr. 15th) from 2013 to 2017. Among the six identified synoptic patterns, pattern of uniform pressure field (U) and that of zonal high pressure (Z H ) accounted for 78.21%, 65.55%, 63.56%, 57.11%, 59.13% and 58.27% studied heavy smog pollution events in Beijing, Tianjin, Tangshan, Baoding, Shijiazhuang and Xingtai city. The two particular patterns were associated with uniform pressure field and sparsely latitudinal isobar in 850 hPa level, respectively. They were also characterized by high relative humidity, low temperature, low-speed northerly wind in Tianjin and Tangshan, and southerly wind in the other cities. Under the continuous control of pattern Z H , the values of 24 h-average PM 2.5 were found to increase at a rate of 31.78 μg/m 3 per day. To evaluate the contribution of meteorological factors and precursors to PM 2.5 levels, linear mixed-effects models (LMMs) were applied to establish relations among 24 h-average PM 2.5 concentrations, concentrations of main precursors, local meteorological factors and synoptic patterns. Results show that the variations of precursors, local meteorological factors and synoptic flow patterns can explain 51.67%, 19.15% and 14.01% changes of the 24 h-average PM 2.5 concentrations, respectively. This study illustrates that dense precursor emissions are still the main cause for heavy haze pollution events, although meteorological conditions play almost equal roles sometimes. Copyright © 2018 Elsevier B.V. All rights reserved.
Recent Developments and Applications of the CHARMM force fields
Zhu, Xiao; Lopes, Pedro E.M.; MacKerell, Alexander D.
2011-01-01
Empirical force fields commonly used to describe the condensed phase properties of complex systems such as biological macromolecules are continuously being updated. Improvements in quantum mechanical (QM) methods used to generate target data, availability of new experimental target data, incorporation of new classes of compounds and new theoretical developments (eg. polarizable methods) make force-field development a dynamic domain of research. Accordingly, a number of improvements and extensions of the CHARMM force fields have occurred over the years. The objective of the present review is to provide an up-to-date overview of the CHARMM force fields. A limited presentation on the historical aspects of force fields will be given, including underlying methodologies and principles, along with a brief description of the strategies used for parameter development. This is followed by information on the CHARMM additive and polarizable force fields, including examples of recent applications of those force fields. PMID:23066428
Access to MISR Aerosol Data and Imagery for the GoMACCS Field Study
NASA Astrophysics Data System (ADS)
Ritchey, N.; Watkinson, T.; Davis, J.; Walter, J.; Protack, S.; Matthews, J.; Smyth, M.; Rheingans, B.; Gaitley, B.; Ferebee, M.; Haberer, S.
2006-12-01
NASA Langley Atmospheric Science Data Center (ASDC) and NASA Jet Propulsion Laboratory (JPL) Multi- angle Imaging SpectroRadiometer (MISR) teams collaborated to provide special data products and images in an innovative approach for the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) field campaign. GoMACCS was an intensive field study focused on providing a better understanding of the sources and atmospheric processes responsible for the formation and distribution of ozone and aerosols in the atmosphere and the influence that these species have on the radiative forcing of regional and global climate, as well as their impact on human health and regional haze. The study area encompassed Texas and the northwestern Gulf of Mexico. Numerous U. S. Government agencies, universities and commercial entities participated in the field campaign which occurred August through September 2006. Aerosol and meteorological measurements were provided by a network of instruments on land, buoys and ships, by airborne in situ and remote instruments, and by satellite retrievals. MISR's role in GoMACCS was to provide satellite retrievals of aerosols and cloud properties and imagery as quickly as possible after data acquisition. The diverse group of scientific participants created unique opportunities for ASDC and MISR to develop special data products and images that were easily accessible by all participants. Examples of the data products, images and access methods as well as the data and imagery flow will be presented. Additional information about ASDC and MISR is available from the following web sites, http://eosweb.larc.nasa.gov and http://www-misr.jpl.nasa.gov/.
NASA Technical Reports Server (NTRS)
Short, David
2008-01-01
The 45th Weather Squadron (45 WS) is replacing the Weather Surveillance Radar, Model 74C (WSR-74C) at Patrick Air Force Base (PAFB), with a Doppler, dual polarization radar, the Radtec 43/250. A new scan strategy is needed for the Radtec 43/250, to provide high vertical resolution data over the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) launch pads, while taking advantage of the new radar's advanced capabilities for detecting severe weather phenomena associated with convection within the 45 WS area of responsibility. The Applied Meteorology Unit (AMU) developed several scan strategies customized for the operational needs of the 45 WS. The AMU also developed a plan for evaluating the scan strategies in the period prior to operational acceptance, currently scheduled for November 2008.
Schubert, Michael; Musolff, Andreas; Weiss, Holger
2018-06-13
Elevated indoor radon concentrations ( 222 Rn) in dwellings pose generally a potential health risk to the inhabitants. During the last decades a considerable number of studies discussed both the different sources of indoor radon and the drivers for diurnal and multi day variations of its concentration. While the potential sources are undisputed, controversial opinions exist regarding their individual relevance and regarding the driving influences that control varying radon indoor concentrations. These drivers include (i) cyclic forced ventilation of dwellings, (ii) the temporal variance of the radon exhalation from soil and building materials due to e.g. a varying moisture content and (iii) diurnal and multi day temperature and pressure patterns. The presented study discusses the influences of last-mentioned temporal meteorological parameters by effectively excluding the influences of forced ventilation and undefined radon exhalation. The results reveal the continuous variation of the indoor/outdoor pressure gradient as key driver for a constant "breathing" of any interior space, which affects the indoor radon concentration with both diurnal and multi day patterns. The diurnally recurring variation of the pressure gradient is predominantly triggered by the day/night cycle of the indoor temperature that is associated with an expansion/contraction of the indoor air volume. Multi day patterns, on the other hand, are mainly due to periods of negative air pressure indoors that is triggered by periods of elevated wind speeds as a result of Bernoulli's principle. Copyright © 2018 Elsevier Ltd. All rights reserved.
Enhancing the USDA Global Crop Assessment Decision Support System Using SMAP Soil Moisture Data
NASA Astrophysics Data System (ADS)
Bolten, J. D.; Mladenova, I. E.; Crow, W. T.; Reynolds, C. A.
2016-12-01
The Foreign Agricultural Services (FAS) is a subdivision of U.S. Department of Agriculture (USDA) that is in charge with providing information on current and expected crop supply and demand estimates. Knowledge of the amount of water in the root zone is an essential source of information for the crop analysts as it governs the crop development and crop growth, which in turn determine the end-of-season yields. USDA FAS currently relies on root zone soil moisture (RZSM) estimates generated using the modified two-layer Palmer Model (PM). PM is a simple water-balance hydrologic model that is driven by daily precipitation observations and minimum and maximum temperature data. These forcing data are based on ground meteorological station measurements from the World Meteorological Organization (WMO), and gridded weather data from the former U.S. Air Force Weather Agency (AFWA), currently called U.S. Air Force 557th Weather Wing. The PM was extended by adding a data assimilation (DA) unit that provides the opportunity to routinely ingest satellite-based soil moisture observations. This allows us to adjust for precipitation-related inaccuracies and enhance the quality of the PM soil moisture estimates. The current operational DA system is based on a 1-D Ensample Kalman Filter approach and relies on observations obtained from the Soil Moisture Ocean Salinity Mission (SMOS). Our talk will demonstrate the value of assimilating two satellite products (i.e. a passive and active) and discuss work that is done in preparation for ingesting soil moisture observations from the Soil Moisture Active Passive (SMAP) mission.
Karniel, Amir; Nisky, Ilana
2015-01-01
During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain. PMID:25717155
Leib, Raz; Karniel, Amir; Nisky, Ilana
2015-05-01
During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain. Copyright © 2015 the American Physiological Society.
Stereo Measurements from Satellites
NASA Technical Reports Server (NTRS)
Adler, R.
1982-01-01
The papers in this presentation include: 1) 'Stereographic Observations from Geosynchronous Satellites: An Important New Tool for the Atmospheric Sciences'; 2) 'Thunderstorm Cloud Top Ascent Rates Determined from Stereoscopic Satellite Observations'; 3) 'Artificial Stereo Presentation of Meteorological Data Fields'.
A rocket borne instrument to measure electric fields inside electrified clouds
NASA Technical Reports Server (NTRS)
Ruhnke, L. H.
1971-01-01
The development of a rocket borne instrument to measure electric fields in thunderstorms is described. Corona currents from a sharp needle atop a small rocket are used to sense the electric field. A high ohm resistor in series with the corona needle linearizes the relationship between corona current and electric field. The corona current feeds a relaxation oscillator, whose pulses trigger a transmitter which operates in the 395 to 410 MHz meteorological band. The instrument senses fields between 5 kV/m and 100 kV/m.
Meteorological and air pollution modeling for an urban airport
NASA Technical Reports Server (NTRS)
Swan, P. R.; Lee, I. Y.
1980-01-01
Results are presented of numerical experiments modeling meteorology, multiple pollutant sources, and nonlinear photochemical reactions for the case of an airport in a large urban area with complex terrain. A planetary boundary-layer model which predicts the mixing depth and generates wind, moisture, and temperature fields was used; it utilizes only surface and synoptic boundary conditions as input data. A version of the Hecht-Seinfeld-Dodge chemical kinetics model is integrated with a new, rapid numerical technique; both the San Francisco Bay Area Air Quality Management District source inventory and the San Jose Airport aircraft inventory are utilized. The air quality model results are presented in contour plots; the combined results illustrate that the highly nonlinear interactions which are present require that the chemistry and meteorology be considered simultaneously to make a valid assessment of the effects of individual sources on regional air quality.
The Influence of Urban Planning Affected Static and Stable Meteorological Field on Air Pollution
NASA Astrophysics Data System (ADS)
Zhang, Yue; Zhang, Liyuan; Zhang, Yunwei
2018-02-01
Accompany with the rapid urbanized and industrialized process, the built-up area and the number of high-rise buildings increased fast. Urban air quality is facing with the challenge caused by the rapid increase in energy consumption, motor vehicles owned, and the city construction. Long term high precision analysis on Beijing-Tianjin-Hebei region has been conducted in this article, so as to explore the influence of rapid increase in urban size and tall building amount on occurrence frequency of urban static and stable meteorological conditions as well as the contribution to urban PM2.5 pollution.
NASA Technical Reports Server (NTRS)
Deloach, R.; Morris, A. L.; Mcbeth, R. B.
1976-01-01
A portable boundary-layer meteorological data-acquisition and analysis system is described which employs a small tethered balloon and a programmable calculator. The system is capable of measuring pressure, wet- and dry-bulb temperature, wind speed, and temperature fluctuations as a function of height and time. Other quantities, which can be calculated in terms of these, can also be made available in real time. All quantities, measured and calculated, can be printed, plotted, and stored on magnetic tape in the field during the data-acquisition phase of an experiment.
A field study of air flow and turbulent features of advection fog
NASA Technical Reports Server (NTRS)
Connell, J. D.
1979-01-01
The setup and initial operation of a set of specialized meteorological data collection hardware are described. To study the life cycle of advection fogs at a lake test site, turbulence levels in the fog are identified, and correlated with the temperature gradients and mean wind profiles. A meteorological tower was instrumented to allow multiple-level measurements of wind and temperature on a continuous basis. Additional instrumentation was: (1)hydrothermograph, (2)microbarograph, (3)transmissometers, and (4)a boundary layer profiler. Two types of fogs were identified, and important differences in the turbulence scales were noted.
NASA Astrophysics Data System (ADS)
Stauffer, R. M.; Thompson, A. M.
2017-12-01
Previous studies employing the self-organizing map (SOM) clustering technique to US ozonesonde data proved valuable for quantifying UT/LS O3 variability, and linking meteorological and chemical drivers to the shape of the ozone (O3) profile from the troposphere to the lower stratosphere. Focus has thus far been limited to specific geographical regions, but SOM has demonstrated the advantages of clustering over monthly climatological O3 averages, which mask day-to-day variability in the O3 profile and the correspondence between O3 and meteorology. We expand SOM to a global set of ozonesonde profiles, mostly from WOUDC, spanning 1980-present from 30 sites to evaluate global O3 climatologies and quantify links to geophysical processes for various meteorological regimes. Four clusters of O3 mixing ratio profiles are generated for each site, which show dominant profile shapes that correspond to site latitude. Offsets among O3 profile clusters and monthly O3 climatologies are 100s of ppbv in the UT/LS at higher latitude sites with active dynamics. Examination of meteorological reanalyses reveals a clear relationship among SOM clusters and covarying meteorological fields (geopotential height, potential vorticity, and tropopause height) for most sites. Tropical SOM clusters show marked dependence on velocity potential anomalies calculated from reanalysis winds, with low UT/LS O3 amounts corresponding to enhanced upper-level divergence, and vice versa. In addition to creating SOM cluster-based O3 climatologies, these results are meant to inform future approaches to validation of chemical transport models and satellite retrievals, which often struggle in the UT/LS region.
Yildirim, Ilyas; Stern, Harry A; Kennedy, Scott D; Tubbs, Jason D; Turner, Douglas H
2010-05-11
A reparameterization of the torsional parameters for the glycosidic dihedral angle, chi, for the AMBER99 force field in RNA nucleosides is used to provide a modified force field, AMBER99chi. Molecular dynamics simulations of cytidine, uridine, adenosine, and guanosine in aqueous solution using the AMBER99 and AMBER99chi force fields are compared with NMR results. For each nucleoside and force field, 10 individual molecular dynamics simulations of 30 ns each were run. For cytidine with AMBER99chi force field, each molecular dynamics simulation time was extended to 120 ns for convergence purposes. Nuclear magnetic resonance (NMR) spectroscopy, including one-dimensional (1D) (1)H, steady-state 1D (1)H nuclear Overhauser effect (NOE), and transient 1D (1)H NOE, was used to determine the sugar puckering and preferred base orientation with respect to the ribose of cytidine and uridine. The AMBER99 force field overestimates the population of syn conformations of the base orientation and of C2'-endo sugar puckering of the pyrimidines, while the AMBER99chi force field's predictions are more consistent with NMR results. Moreover, the AMBER99 force field prefers high anti conformations with glycosidic dihedral angles around 310 degrees for the base orientation of purines. The AMBER99chi force field prefers anti conformations around 185 degrees , which is more consistent with the quantum mechanical calculations and known 3D structures of folded ribonucleic acids (RNAs). Evidently, the AMBER99chi force field predicts the structural characteristics of ribonucleosides better than the AMBER99 force field and should improve structural and thermodynamic predictions of RNA structures.
Correlation between isotopic and meteorological parameters in Italian wines: a local-scale approach.
Aghemo, Costanza; Albertino, Andrea; Gobetto, Roberto; Spanna, Federico
2011-08-30
Since the beginning of the 1980s deuterium nuclear magnetic resonance and carbon-13 mass spectrometry have proved to be reliable techniques for detecting adulteration and for classifying natural products by their geographic origin. Scientific literature has so far mainly focused on data acquired at regional level where isotopic parameters are correlated to climatic mean data relative to large territories. Nebbiolo and Barbera wine samples of various vintages and from different areas within the Piedmont region (northern Italy) were analysed using SNIF-NMR and GC-C-IRMS and a large set of meteorological parameters were recorded by means of weather stations placed in fields where the grapes were grown. Correlations between isotopic ((2)H and (13)C) data and several climatic parameters at a local level (mean temperature, total rainfall, mean humidity and thermal sums) were attempted and some linear correlations were found. Mean temperature and total rainfall were found to be correlated to isotopic ((2)H and (13)C) abundance in linear direct and inverse proportions respectively. Lower or no correlations between deuterium and carbon-13 abundances and other meteorological parameters such as mean humidity and thermal sums were found. Moreover, wines produced from different grape varieties in the same grape field showed significantly different isotopic values. Copyright © 2011 Society of Chemical Industry.
Meteorological satellite products support for project COHMEX
NASA Technical Reports Server (NTRS)
Velden, Christopher S.; Goodman, Brian M.; Smith, William L.
1988-01-01
The first year effort focussed on real-time support and satellite data collection during the field phase of COHMEX. Work efforts following the field phase of COHMEX concentrated on post-processing of the real-time data sets, and generation of enhanced, research-quality satellite data sets for selected COHMEX core days. These satellite-derived data sets will augment the special COHMEX conventional data base with high horizontal and temporal resolution information. The data sets will be examined for their usefulness in delineating important elements in the meteorological environment leading to convective activity. In addition, a limited research effort was conducted using the Cooperative Institute for Meteorological Satellite Studies (CIMSS) 4-d data assimilation system in conjunction with evaluating VISSR Atmospheric Sounder (VAS) and His-resolution Interferometer Sounder (HIS) data. The need to address the characteristics of the data types, and the problems they introduce into 4-d assimilation procedures is evident. The HIS instrument was flown aboard an ER-2 aircraft on several occasions during COHMEX. One of the flights was chosen for further study. Processed VAS soundings and COHMEX radiosonde data were also collected for this day. The case study included an evaluation of the HIS and VAS data and an impact study of the data on the assimilation system analysis.
Objective Lightning Probability Forecast Tool Phase II
NASA Technical Reports Server (NTRS)
Lambert, Winnie
2007-01-01
This presentation describes the improvement of a set of lightning probability forecast equations that are used by the 45th Weather Squadron forecasters for their daily 1100 UTC (0700 EDT) weather briefing during the warm season months of May-September. This information is used for general scheduling of operations at Cape Canaveral Air Force Station and Kennedy Space Center. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts during Shuttle flight operations. Five modifications were made by the Applied Meteorology Unit: increased the period of record from 15 to 17 years, changed the method of calculating the flow regime of the day, calculated a new optimal layer relative humidity, used a new smoothing technique for the daily climatology, and used a new valid area. The test results indicated that the modified equations showed and increase in skill over the current equations, good reliability, and an ability to distinguish between lightning and non-lightning days.
Šepić, Jadranka; Vilibić, Ivica; Rabinovich, Alexander B; Monserrat, Sebastian
2015-06-29
A series of tsunami-like waves of non-seismic origin struck several southern European countries during the period of 23 to 27 June 2014. The event caused considerable damage from Spain to Ukraine. Here, we show that these waves were long-period ocean oscillations known as meteorological tsunamis which are generated by intense small-scale air pressure disturbances. An unique atmospheric synoptic pattern was tracked propagating eastward over the Mediterranean and the Black seas in synchrony with onset times of observed tsunami waves. This pattern favoured generation and propagation of atmospheric gravity waves that induced pronounced tsunami-like waves through the Proudman resonance mechanism. This is the first documented case of a chain of destructive meteorological tsunamis occurring over a distance of thousands of kilometres. Our findings further demonstrate that these events represent potentially dangerous regional phenomena and should be included in tsunami warning systems.
Šepić, Jadranka; Vilibić, Ivica; Rabinovich, Alexander B.; Monserrat, Sebastian
2015-01-01
A series of tsunami-like waves of non-seismic origin struck several southern European countries during the period of 23 to 27 June 2014. The event caused considerable damage from Spain to Ukraine. Here, we show that these waves were long-period ocean oscillations known as meteorological tsunamis which are generated by intense small-scale air pressure disturbances. An unique atmospheric synoptic pattern was tracked propagating eastward over the Mediterranean and the Black seas in synchrony with onset times of observed tsunami waves. This pattern favoured generation and propagation of atmospheric gravity waves that induced pronounced tsunami-like waves through the Proudman resonance mechanism. This is the first documented case of a chain of destructive meteorological tsunamis occurring over a distance of thousands of kilometres. Our findings further demonstrate that these events represent potentially dangerous regional phenomena and should be included in tsunami warning systems. PMID:26119833
Applied Meteorology Unit (AMU) Quarterly Report First Quarter FY-14
NASA Technical Reports Server (NTRS)
Bauman, William Henry; Crawford, Winifred C.; Shafer, Jaclyn A.; Watson, Leela R.; Huddleston, Lisa L.; Decker, Ryan K.
2014-01-01
NASA's LSP and other programs at Vandenberg Air Force Base (VAFB) use wind forecasts issued by the 30th Operational Support Squadron (30 OSS) to determine if they need to limit activities or protect property such as a launch vehicle due to the occurrence of warning level winds at VAFB in California. The 30 OSS tasked the AMU to provide a wind forecasting capability to improve wind warning forecasts and enhance the safety of their customers' operations. This would allow 30 OSS forecasters to evaluate pressure gradient thresholds between pairs of regional observing stations to help determine the onset and duration of warning category winds. Development of such a tool will require that solid relationships exist between wind speed and the pressure gradient of one or more station pairs. As part of this task, the AMU will also create a statistical climatology of meteorological observations from the VAFB wind towers.
Validating empirical force fields for molecular-level simulation of cellulose dissolution
USDA-ARS?s Scientific Manuscript database
The calculations presented here, which include dynamics simulations using analytical force fields and first principles studies, indicate that the COMPASS force field is preferred over the Dreiding and Universal force fields for studying dissolution of large cellulose structures. The validity of thes...
Hierarchical atom type definitions and extensible all-atom force fields.
Jin, Zhao; Yang, Chunwei; Cao, Fenglei; Li, Feng; Jing, Zhifeng; Chen, Long; Shen, Zhe; Xin, Liang; Tong, Sijia; Sun, Huai
2016-03-15
The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom-type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Craig B. Clements; Neil P. Lareau; Daisuke Seto; Jonathan Contezac; Braniff Davis; Casey Teske; Thomas J. Zajkowski; Andrew T. Hudak; Benjamin C. Bright; Matthew B. Dickinson; Bret W. Butler; Daniel Jimenez; J. Kevin Hiers
2016-01-01
The role of fire-atmosphere coupling on fire behaviour is not well established, and to date few field observations have been made to investigate the interactions between fire spread and fire-induced winds. Therefore, comprehensive field observations are needed to better understand micrometeorological aspects of fire spread. To address this need, meteorological...