Sample records for methacholine compounds

  1. Muscarinic inhibition of [3H]-noradrenaline release on rabbit iris in vitro: effects of stimulation conditions on intrinsic activity of methacholine and pilocarpine.

    PubMed Central

    Bognar, I. T.; Pallas, S.; Fuder, H.; Muscholl, E.

    1988-01-01

    1. Rabbit isolated irides were loaded with [3H]-noradrenaline and superfused with Tyrode solution. The inhibition by the muscarinic agonists (+/-)-methacholine and pilocarpine of the [3H]-noradrenaline overflow into the superfusate evoked by field stimulation (pulses of 1 ms duration, 75 mA) was measured as an index of activation of presynaptic muscarinic receptors. 2. The fractional rate of release per pulse during the first stimulation period (S1) was low with 360 pulses at 3 Hz, intermediate with 360 pulses at 10 Hz and high with 1200 pulses at 10 Hz. Upon repetitive stimulation (7 periods at 20 min intervals), the fractional rates of release per pulse during S7 no longer differed, suggesting a 'long-term' regulation of [3H]-noradrenaline release depending on the stimulation conditions. 3. The evoked [3H]-noradrenaline overflow was depressed by (+/-)-methacholine in a concentration-dependent manner. The EC50 ranged from 0.29 to 0.42 microM. Methacholine nearly abolished the transmitter release evoked at 3 Hz but reduced that induced at 10 Hz by only 50%. Under the latter condition the methacholine concentration-inhibition curve was bell-shaped and no muscarinic inhibition was observed in the presence of methacholine 30 microM. After washout of methacholine the evoked [3H]-noradrenaline release was temporarily enhanced. 4. Atropine 0.1 microM enhanced the [3H]-noradrenaline overflow (evoked by stimulation with 360 or 1200 pulses at 10 Hz), probably antagonizing a presynaptic inhibition by endogenous acetylcholine. The inhibition by methacholine was competitively antagonized by atropine 0.1 microM (apparent -log KB = 8.5-9.0). 5. Depending on the concentration, pilocarpine reduced the [3H]-noradrenaline overflow evoked by 360 pulses at 3 Hz up to 63%. However, at 10 Hz stimulation frequency the compound was inactive as an agonist but competitively antagonized the presynaptic inhibition induced by methacholine. The KB under the latter condition (0.95 microM) was very close to the EC50 value determined at 3 Hz (0.85 microM). 6. The results demonstrate a muscarinic inhibition of noradrenaline release from the rabbit isolated iris. The activation by pilocarpine of the presynaptic receptors provides an alternative explanation for the miosis induced in the rabbit in vivo, which might be the result of a decreased sympathetic tone in the iris dilator muscle. PMID:3052680

  2. The PDE4 inhibitor CHF-6001 and LAMAs inhibit bronchoconstriction-induced remodeling in lung slices.

    PubMed

    Kistemaker, Loes E M; Oenema, Tjitske A; Baarsma, Hoeke A; Bos, I Sophie T; Schmidt, Martina; Facchinetti, Fabrizio; Civelli, Maurizio; Villetti, Gino; Gosens, Reinoud

    2017-09-01

    Combination therapy of PDE4 inhibitors and anticholinergics induces bronchoprotection in COPD. Mechanical forces that arise during bronchoconstriction may contribute to airway remodeling. Therefore, we investigated the impact of PDE4 inhibitors and anticholinergics on bronchoconstriction-induced remodeling. Because of the different mechanism of action of PDE4 inhibitors and anticholinergics, we hypothesized functional interactions of these two drug classes. Guinea pig precision-cut lung slices were preincubated with the PDE4 inhibitors CHF-6001 or roflumilast and/or the anticholinergics tiotropium or glycopyorrolate, followed by stimulation with methacholine (10 μM) or TGF-β 1 (2 ng/ml) for 48 h. The inhibitory effects on airway smooth muscle remodeling, airway contraction, and TGF-β release were investigated. Methacholine-induced protein expression of smooth muscle-myosin was fully inhibited by CHF-6001 (0.3-100 nM), whereas roflumilast (1 µM) had smaller effects. Tiotropium and glycopyrrolate fully inhibited methacholine-induced airway remodeling (0.1-30 nM). The combination of CHF-6001 and tiotropium or glycopyrrolate, in concentrations partially effective by themselves, fully inhibited methacholine-induced remodeling in combination. CHF-6001 did not affect airway closure and had limited effects on TGF-β 1 -induced remodeling, but rather, it inhibited methacholine-induced TGF-β release. The PDE4 inhibitor CHF-6001, and to a lesser extent roflumilast, and the LAMAs tiotropium and glycopyrrolate inhibit bronchoconstriction-induced remodeling. The combination of CHF-6001 and anticholinergics was more effective than the individual compounds. This cooperativity might be explained by the distinct mechanisms of action inhibiting TGF-β release and bronchoconstriction. Copyright © 2017 the American Physiological Society.

  3. Bronchodilatory and Anti-Inflammatory Effects of ASM-024, a Nicotinic Receptor Ligand, Developed for the Treatment of Asthma

    PubMed Central

    Assayag, Evelyne Israël; Beaulieu, Marie-Josée; Cormier, Yvon

    2014-01-01

    Conventional asthma and COPD treatments include the use of bronchodilators, mainly β2-adrenergic agonists, muscarinic receptor antagonists and corticosteroids or leukotriene antagonists as anti-inflammatory agents. These active drugs are administered either separately or given as a fixed-dose combination medication into a single inhaler. ASM-024, a homopiperazinium compound, derived from the structural modification of diphenylmethylpiperazinium (DMPP), has been developed to offer an alternative mechanism of action that could provide symptomatic control through combined anti-inflammatory and bronchodilator properties in a single entity. A dose-dependent inhibition of cellular inflammation in bronchoalveolar lavage fluid was observed in ovalbumin-sensitized mice, subsequently treated for 3 days by nose-only exposure with aerosolized ASM-024 at doses up to 3.8 mg/kg (ED50 = 0.03 mg/kg). The methacholine ED250 values indicated that airway hyperresponsivenness (AHR) to methacholine decreased following ASM-024 administration by inhalation at a dose of 1.5 mg/kg, with a value of 0.145±0.032 mg/kg for ASM 024-treated group as compared to 0.088±0.023 mg/kg for untreated mice. In in vitro isometric studies, ASM-024 elicited dose-dependent relaxation of isolated mouse tracheal, human, and dog bronchial preparations contracted with methacholine and guinea pig tracheas contracted with histamine. ASM-024 showed also a dose and time dependant protective effect on methacholine-induced contraction. Overall, with its combined anti-inflammatory, bronchodilating and bronchoprotective properties, ASM-024 may represent a new class of drugs with a novel pharmacological approach that could prove useful for the chronic maintenance treatment of asthma and, possibly, COPD. PMID:24465890

  4. Bronchodilatory and anti-inflammatory effects of ASM-024, a nicotinic receptor ligand, developed for the treatment of asthma.

    PubMed

    Assayag, Evelyne Israël; Beaulieu, Marie-Josée; Cormier, Yvon

    2014-01-01

    Conventional asthma and COPD treatments include the use of bronchodilators, mainly β2-adrenergic agonists, muscarinic receptor antagonists and corticosteroids or leukotriene antagonists as anti-inflammatory agents. These active drugs are administered either separately or given as a fixed-dose combination medication into a single inhaler. ASM-024, a homopiperazinium compound, derived from the structural modification of diphenylmethylpiperazinium (DMPP), has been developed to offer an alternative mechanism of action that could provide symptomatic control through combined anti-inflammatory and bronchodilator properties in a single entity. A dose-dependent inhibition of cellular inflammation in bronchoalveolar lavage fluid was observed in ovalbumin-sensitized mice, subsequently treated for 3 days by nose-only exposure with aerosolized ASM-024 at doses up to 3.8 mg/kg (ED50 = 0.03 mg/kg). The methacholine ED250 values indicated that airway hyperresponsivenness (AHR) to methacholine decreased following ASM-024 administration by inhalation at a dose of 1.5 mg/kg, with a value of 0.145 ± 0.032 mg/kg for ASM 024-treated group as compared to 0.088 ± 0.023 mg/kg for untreated mice. In in vitro isometric studies, ASM-024 elicited dose-dependent relaxation of isolated mouse tracheal, human, and dog bronchial preparations contracted with methacholine and guinea pig tracheas contracted with histamine. ASM-024 showed also a dose and time dependant protective effect on methacholine-induced contraction. Overall, with its combined anti-inflammatory, bronchodilating and bronchoprotective properties, ASM-024 may represent a new class of drugs with a novel pharmacological approach that could prove useful for the chronic maintenance treatment of asthma and, possibly, COPD.

  5. Changes in the highest frequency of breath sounds without wheezing during methacholine inhalation challenge in children.

    PubMed

    Habukawa, Chizu; Murakami, Katsumi; Mochizuki, Hiroyuki; Takami, Satoru; Muramatsu, Reiko; Tadaki, Hiromi; Hagiwara, Satomi; Mizuno, Takahisa; Arakawa, Hirokazu; Nagasaka, Yukio

    2010-04-01

    It is difficult for clinicians to identify changes in breath sounds caused by bronchoconstriction when wheezing is not audible. A breath sound analyser can identify changes in the frequency of breath sounds caused by bronchoconstriction. The present study aimed to identify the changes in the frequency of breath sounds during bronchoconstriction and bronchodilatation using a breath sound analyser. Thirty-six children (8.2 +/- 3.7 years; males : females, 22 : 14) underwent spirometry, methacholine inhalation challenge and breath sound analysis. Methacholine inhalation challenge was performed and baseline respiratory resistance, minimum dose of methacholine (bronchial sensitivity) and speed of bronchoconstriction in response to methacholine (Sm: bronchial reactivity) were calculated. The highest frequency of inspiratory breath sounds (HFI), the highest frequency of expiratory breath sounds (HFE) and the percentage change in HFI and HFE were determined. The HFI and HFE were compared before methacholine inhalation (pre-HFI and pre-HFE), when respiratory resistance reached double the baseline value (max HFI and max HFE), and after bronchodilator inhalation (post-HFI and post-HFE). Breath sounds increased during methacholine-induced bronchoconstriction. Max HFI was significantly greater than pre-HFI (P < 0.001), and decreased to the basal level after bronchodilator inhalation. Post-HFI was significantly lower than max HFI (P < 0.001). HFI and HFE were also significantly changed (P < 0.001). The percentage change in HFI showed a significant correlation with the speed of bronchoconstriction in response to methacholine (P = 0.007). Methacholine-induced bronchoconstriction significantly increased HFI, and the increase in HFI was correlated with bronchial reactivity.

  6. Airway Hyperresponsiveness in Children With Sickle Cell Anemia

    PubMed Central

    Field, Joshua J.; Stocks, Janet; Kirkham, Fenella J.; Rosen, Carol L.; Dietzen, Dennis J.; Semon, Trisha; Kirkby, Jane; Bates, Pamela; Seicean, Sinziana; DeBaun, Michael R.; Redline, Susan

    2011-01-01

    Background: The high prevalence of airway hyperresponsiveness (AHR) among children with sickle cell anemia (SCA) remains unexplained. Methods: To determine the relationship between AHR, features of asthma, and clinical characteristics of SCA, we conducted a multicenter, prospective cohort study of children with SCA. Dose response slope (DRS) was calculated to describe methacholine responsiveness, because 30% of participants did not achieve a 20% decrease in FEV1 after inhalation of the highest methacholine concentration, 25 mg/mL. Multiple linear regression analysis was done to identify independent predictors of DRS. Results: Methacholine challenge was performed in 99 children with SCA aged 5.6 to 19.9 years (median, 12.8 years). Fifty-four (55%) children had a provocative concentration of methacholine producing a 20% decrease in FEV1 < 4 mg/mL. In a multivariate analysis, independent associations were found between increased methacholine responsiveness and age (P < .001), IgE (P = .009), and lactate dehydrogenase (LDH) levels (P = .005). There was no association between methacholine responsiveness and a parent report of a doctor diagnosis of asthma (P = .986). Other characteristics of asthma were not associated with methacholine responsiveness, including positive skin tests to aeroallergens, exhaled nitric oxide, peripheral blood eosinophil count, and pulmonary function measures indicating airflow obstruction. Conclusions: In children with SCA, AHR to methacholine is prevalent. Younger age, serum IgE concentration, and LDH level, a marker of hemolysis, are associated with AHR. With the exception of serum IgE, no signs or symptoms of an allergic diathesis are associated with AHR. Although the relationship between methacholine responsiveness and LDH suggests that factors related to SCA may contribute to AHR, these results will need to be validated in future studies. PMID:20724735

  7. Stability of methacholine chloride in isotonic sodium chloride using a capillary electrophoresis assay.

    PubMed

    Henn, S; Monfort, P; Vigneron, J H; Hoffman, M A; Hoffman, M

    1999-10-01

    To investigate the stability of methacholine chloride in 0.9% sodium chloride solutions. Methacholine powder was mixed with diluent to a final concentration of 5 and 10 mg/ml. Duplicates of each admixture were divided and stored in glass vials at 25 degrees C, 4 degrees C and -20 degrees C for 12 months. At appropriate times intervals, samples were removed from solutions and analysed. Methacholine concentrations were measured using a high performance capillary electrophoresis assay. No colour or other visual changes were seen in any sample. However, an additional peak was observed in some samples. Methacholine chloride solutions 5 mg/ml were stable in isotonic sodium chloride after refrigeration or freezing over a period of one year; methacholine chloride solutions 10 mg/ml were stable for one year after freezing. The solutions stored at ambient temperature were stable for 35 days and for less than 14 days, respectively, for the 5 and the 10 mg/ml solutions.

  8. Relationship between airway reactivity induced by methacholine or ultrasonically nebulized distilled cold water and BAL fluid cellular constituents in patients with sulfur mustard gas-induced asthma.

    PubMed

    Emad, Ali; Emad, Yasaman

    2007-01-01

    The objective of this article was to evaluate the relationship between the bronchial reactivity to methacholine and distilled cold water and inflammatory bronchial alveolar lavage (BAL) cells in mustard gas-induced asthma. This was a randomized, crossover clinical study set in a university hospital. The patients were 17 veterans with mustard gas-induced asthma and 17 normal veterans as a control group. Inhalation challenges with ultrasonically nebulized distilled water and methacholine and BAL via bronchoscopy and were performed in all patients and subjects. All patients did sustain a 20% fall in FEV(1) after methacholine, whereas two of them did not with distilled cold water. The patients were sensitive to distilled cold water with a median PD20 of 8.44 +/- 6.55 mL and sensitive to methacholine with the median PC20 of 4.88 +/- 4.22 mg/mL. Significant correlation was found between PC20 of methacholine and PD20 of distilled cold water (r = -0.74, p = 0.005). The proportion of BAL macrophages was significantly lower in patients with asthma than in the control group (p = 0.001). The proportions of lymphocytes and neutrophils were similar in the two groups. The percentage of eosinophils was higher in BAL fluid from the asthmatics compared with that in BAL fluid from the control group (p < 0.001). The percentage of the BAL eosinophils significantly correlated with both PC20 of methacholine (r = - 0.58, p = 0.01) and PD20 of distilled cold water (r = -0.81, p = 0.002). No relationship between PC20 of methacholine or PD20 of distilled cold water was found for other inflammatory BAL cells. This study showed that in patients with mustard gas-induced asthma, the degree of airway responsiveness to both methacholine and distilled water was associated with the percentage of BAL eosinophils.

  9. Respiratory symptoms and bronchial responsiveness in competitive swimmers.

    PubMed

    Stadelmann, Katrin; Stensrud, Trine; Carlsen, Kai-Haakon

    2011-03-01

    A high prevalence of bronchial hyperresponsiveness (BHR) and respiratory symptoms has been reported among competitive swimmers. From the 2002 Winter Olympics, BHR measurements or bronchodilator reversibility have been required for approved use of β2-agonists in sports. The first aim of this study was to evaluate the relationship among respiratory symptoms in young elite swimmers, eucapnic voluntary hyperpnea (EVH), and the inhaled dose of methacholine, causing a 20% decrease in forced expiratory volume in 1 s (FEV1; PD(20 methacholine)). The second aim of this study was to assess the repeatability of the EVH test. For this study, 15 male and 9 female adolescent elite swimmers, aged 15 to 25 yr, performed one PD(20 methacholine) test and two EVH tests in a randomized order. Dry air containing 5% CO2 was inhaled for 6 min with a target ventilation of ≥85% of maximum voluntary ventilation (minimum = 65%). PD(20 methacholine) ≤2 μmol and EVH with FEV1 reduction ≥10% were considered positive. Respiratory symptoms and medication were reported in the modified AQUA2008 questionnaire. Twenty swimmers (83%) reported respiratory symptoms, 13 (65%) of them had a positive provocation test. Fourteen (58%) had at least one positive test to either EVH or PD(20 methacholine); three had only one positive EVH test. One athlete had BHR without symptoms. The sensitivity of PD(20 methacholine) ≤2 μmol for respiratory symptoms was 50% versus 60% and 47.37% for the two EVH tests, respectively, and 75% for PD(20 methacholine) ≤4 μmol. The Bland-Altman plot of the two EVH tests showed a consistent distribution, with only one subject outside the limits of agreement. BHR was frequently found among adolescent competitive swimmers. PD(20 methacholine) ≤2 μmol and EVH ≥ 10% compared well, but PD(20 methacholine) ≤4 μmol had the highest sensitivity for respiratory symptoms. The EVH test has high repeatability but is very expensive and uncomfortable to perform.

  10. Bronchodilator responses after methacholine and adenosine 5'-monophosphate (AMP) challenges in children with asthma: their relationships with eosinophil markers.

    PubMed

    Yoo, Young; Seo, Sung Chul; Kim, Young Il; Chung, Bo Hyun; Song, Dae Jin; Choung, Ji Tae

    2012-09-01

    Bronchodilator responsiveness (BDR) and eosinophilic inflammation are characteristic features of asthma. Objective. The aim of this study was to compare the relationships of BDR after methacholine challenge or adenosine 5'-monophosphate (AMP) challenge to blood eosinophil markers in children with asthma. Methacholine and AMP challenges were performed on 69 children with mild intermittent to moderate persistent asthma. BDR was calculated as the change in forced expiratory volume in 1 second, expressed as percentage change of the value immediately after the each challenge and the value after inhalation of salbutamol. Serum total IgE levels, blood eosinophil counts, and serum eosinophil cationic protein (ECP) levels were determined for each subject. A positive relationship between serum total IgE levels and BDR was found only after the AMP challenge (R(2) = 0.345, p = .001) rather than after the methacholine challenge (R(2) = 0.007, p = .495). Peripheral blood eosinophil counts correlated more significantly with BDR after AMP challenge (R(2) = 0.212, p = .001) than BDR after methacholine challenge (R(2) = 0.002, p = .724). Both BDR after methacholine challenge (R(2) = 0.063, p = .038) and BDR after AMP challenge (R(2) = 0.192, p = .001) were significantly correlated with serum ECP levels. BDR after AMP challenge may be more closely related to eosinophilic inflammation, compared with that after methacholine challenge.

  11. Modifications in forced vital capacity during adenosine monophosphate-induced bronchoconstriction in asthma: relationship with the response to methacholine and the effect of inhaled corticosteroids.

    PubMed

    Prieto, Luis; López, Victoria; Catalan, Pablo; Barato, Desiree; Marín, Julio

    2009-05-01

    The effect of adenosine monophosphate (AMP) on forced vital capacity (FVC) has never been systematically investigated. To compare methacholine- and AMP-induced changes in FVC, as a marker of air trapping, in asthmatic patients treated and not treated with inhaled corticosteroids (ICSs). Airway responsiveness to equipotent concentrations of AMP and methacholine was obtained in asthmatic patients treated (n = 32) and not treated (n = 18) with ICSs. The response was expressed by the provocation concentration of agonist that caused a decrease in forced expiratory volume in 1 second (FEV1) of 20% (PC20) and by the slope of the FVC values recorded at each step of the challenge against the corresponding FEV1 values (sFVC). Although methacholine and AMP PC20 values were similar in patients treated and not treated with ICSs, the mean (95% confidence interval) methacholine sFVC (but not AMP sFVC) was higher in those treated with ICSs (0.91; 0.77-1.06) than in those not taking ICSs (0.69; 0.57-0.81; P = .03). No significant correlation was found between sFVC and PC20 values obtained with either methacholine or AMP. Methacholine and AMP sFVC values were significantly related, but only in the group treated with ICSs (r = 0.60, P < .001). Although the AMP-induced decline in FVC in asthmatic patients is similar to that observed with equipotent concentrations of methacholine, the apparently different effect of ICSs on changes in FVC induced by each agonist suggests that the information provided by the 2 bronchoconstrictor agents is not interchangeable and that the information generated by the analysis of the effect of each agonist on FEV1 and FVC may be complementary.

  12. Bronchial hyperresponsiveness to methacholine and adenosine monophosphate and the degree of atopy in children with allergic rhinitis.

    PubMed

    Kim, Chang Keun; Choi, Soo Jeon; Lee, Ju Kyung; Suh, Dong In; Koh, Young Yull

    2011-01-01

    nonasthmatic patients with allergic rhinitis often have bronchial hyperresponsiveness (BHR). Not only the presence but also the degree of atopy are important factors in BHR of patients with asthma. BHR is commonly evaluated by bronchial challenges using direct or indirect stimuli. to assess BHR to methacholine (direct) and to adenosine monophosphate (AMP) (indirect) in children with allergic rhinitis and to compare their relationships with the degree of atopy. methacholine and AMP challenges were performed in 88 children with allergic rhinitis, and a provocative concentration causing a 20% decrease in forced expiratory volume in 1 second (PC(20)) was calculated for each challenge. The degree of atopy was measured using serum total IgE levels, number of positive skin prick test results, and atopic scores (sum of graded wheal size). BHR to methacholine (PC(20) <8 mg/mL) and to AMP (PC(20) <200 mg/mL) was observed in 22 (25%) and 30 (34%) patients, respectively. No association was found between BHR to methacholine and any atopy parameter. In contrast, serum total IgE levels and atopic scores were higher in the group with BHR to AMP than in the group without BHR to AMP. Furthermore, a significant association was found between the degree of these 2 parameters and BHR to AMP (score for trend, P < .001 and P = .03, respectively). both BHR to methacholine and BHR to AMP were detected in a significant proportion of children with allergic rhinitis. The degree of atopy seems to be an important factor in BHR to AMP but not in BHR to methacholine.

  13. Methacholine and adenosine 5'-monophosphate (AMP) responsiveness, and the presence and degree of atopy in children with asthma.

    PubMed

    Suh, Dong I; Lee, Ju K; Kim, Chang K; Koh, Young Y

    2011-02-01

    The relationship between atopy and bronchial hyperresponsiveness (BHR), both key features of asthma, remains to be clarified. BHR is commonly evaluated by bronchial challenges using direct and indirect stimuli. The aim of this study was to investigate the degree of BHR to methacholine (direct stimulus) and adenosine 5'-monophosphate (AMP) (indirect stimulus) according to the presence and degree of atopy in children with asthma. We performed a retrospective analysis of data from 120 children presenting with a diagnosis of asthma. These children were characterized by skin-prick tests (SPTs), spirometry and bronchial challenges with methacholine and AMP. Atopy was defined by at least one positive reaction to SPTs, and its degree was measured using serum total IgE levels, number of positive SPTs and atopic scores (sum of graded wheal size). A provocative concentration causing a 20% decline in FEV(1) (PC(20) ) was determined for each challenge. Patients with atopy(n=94) had a significantly lower AMP PC(20) than non-atopic patients (n=26), whereas methacholine PC(20) was not different between the two groups. Among the patients with atopy, there was no association between methacholine PC(20) and any atopy parameter. In contrast, a significant association was found between AMP PC(20) and the degree of atopy reflected in serum total IgE, number of positive SPTs and atopic scores (anova trend test, p=0.002, 0.001, 0.003, respectively). AMP responsiveness was associated with the presence and degree of atopy, whereas such a relationship was not observed for methacholine responsiveness. These findings suggest that atopic status may be better reflected by bronchial responsiveness assessed by AMP than by methacholine. © 2011 John Wiley & Sons A/S.

  14. Diagnostic properties of the methacholine and mannitol bronchial challenge tests: a comparison study.

    PubMed

    Kim, Min-Hye; Song, Woo-Jung; Kim, Tae-Wan; Jin, Hyun-Jung; Sin, You-Seob; Ye, Young-Min; Kim, Sang-Heon; Park, Heung-Woo; Lee, Byung-Jae; Park, Hae-Sim; Yoon, Ho-Joo; Choi, Dong-Chull; Min, Kyung-Up; Cho, Sang-Heon

    2014-08-01

    Airway hyperresponsiveness is a common feature of asthma. Methacholine and mannitol are two representative agonists for bronchial challenge. They have theoretically different mechanisms of action, and may have different diagnostic properties. However, their difference has not been directly evaluated among Korean adults. In this study, we compare the diagnostic properties of methacholine and mannitol bronchial provocation tests. Asthmatic patients and non-asthmatic controls were recruited prospectively from four referral hospitals in Korea. Participants were challenged with each of methacholine and mannitol inhalation on different days. Their diagnostic utility was evaluated by calculating their sensitivity and specificity for asthma diagnosis. Response-dose ratio was also compared. A total of 50 asthmatic adults and 54 controls were enrolled (mean age 43.8 years). The sensitivity and specificity of mannitol challenge (defined by a PD15 of <635 mg) were 48.0% and 92.6%, respectively, whereas those of methacholine (defined by a PC20 of <16 mg/mL) were 42.0% and 98.1%, respectively. Twenty asthmatic participants (24%) showed positive response to a single agonist only. In the receiver operating curve analyses using response-dose ratio values, area under the curve was 0.77 (95% confidence interval (CI): 0.68-0.86) for mannitol, and 0.89 (95% CI: 0.83-0.95) for methacholine. The correlations between log- transformed mannitol and methacholine response-dose ratios were significant but moderate (r = 0.683, P < 0.001). The present study demonstrated overall similar diagnostic properties of two diagnostic tests, but also suggested their intercomplementary roles for asthma. The clinical trial registration number at ClinicalTrial.gov is NCT02104284. © 2014 Asian Pacific Society of Respirology.

  15. Relationships of methacholine and adenosine 5'-monophosphate (AMP) responsiveness to the postbronchodilator FEV₁/FVC ratio in children with asthma.

    PubMed

    Suh, Dong In; Choi, Sun Hee; Lee, Ju Kyung; Kim, Jin-Tack; Koh, Young Yull

    2011-05-01

    Airway remodeling has been assumed to cause bronchial hyperresponsiveness (BHR). A low postbronchodilator FEV₁/FVC ratio has been suggested to be a functional surrogate marker of airway remodeling in asthma. BHR is commonly assessed by bronchial challenges using direct or indirect stimuli. The aim of this study was to compare BHR to methacholine and adenosine 5'-monophosphate (AMP) with regard to their relationship with a marker of airway remodeling in children with asthma. Methacholine and AMP challenge tests were performed in 129 children with asthma, aged 12 years, and a provocative concentration causing a 20% fall in FEV₁ (PC₂₀) was calculated for each challenge. All subjects also underwent pre- and postbronchodilator spirometry. A postbronchodilator FEV₁/FVC ratio below the lower limits of normal was used as a marker of airway remodeling. A low postbronchodilator FEV₁/FVC ratio was found in 17 subjects (13.2%). These subjects had a significantly lower methacholine PC₂₀ (geometric mean: 0.63 mg/mL, range of 1 SD: 0.17-2.29) than those (n = 112) with a normal postbronchodilator FEV₁/FVC ratio (2.42 mg/mL, 0.57-10.32, p = .000), whereas AMP PC₂₀ was similar between the two groups (22.1 mg/mL, 3.9-125.9 vs. 27.7 mg/mL, 4.2-183.5, p = .231). In the whole group of subjects, methacholine PC₂₀, but not AMP PC₂₀, correlated significantly with the postbronchodilator FEV₁/FVC ratio (r = 0.340, p = .000, and r = 0.056, p = .526, respectively). Our results provide evidence, though indirect, that BHR to methacholine is related to airway remodeling in children with asthma and suggest that BHR to methacholine may be a better marker of airway remodeling than BHR to AMP.

  16. Cyclooxygenase inhibition does not alter methacholine-induced sweating

    PubMed Central

    Fujii, Naoto; McGinn, Ryan; Paull, Gabrielle; Stapleton, Jill M.; Meade, Robert D.

    2014-01-01

    Cholinergic agents (e.g., methacholine) induce cutaneous vasodilation and sweating. Reports indicate that either nitric oxide (NO), cyclooxygenase (COX), or both can contribute to cholinergic cutaneous vasodilation. Also, NO is reportedly involved in cholinergic sweating; however, whether COX contributes to cholinergic sweating is unclear. Forearm sweat rate (ventilated capsule) and cutaneous vascular conductance (CVC, laser-Doppler perfusion units/mean arterial pressure) were evaluated in 10 healthy young (24 ± 4 yr) adults (7 men, 3 women) at four skin sites that were continuously perfused via intradermal microdialysis with 1) lactated Ringer (control), 2) 10 mM ketorolac (a nonselective COX inhibitor), 3) 10 mM NG-nitro-l-arginine methyl ester (l-NAME, a nonselective NO synthase inhibitor), or 4) a combination of 10 mM ketorolac + 10 mM l-NAME. At the four skin sites, methacholine was simultaneously infused in a dose-dependent manner (1, 10, 100, 1,000, 2,000 mM). Relative to the control site, forearm CVC was not influenced by ketorolac throughout the protocol (all P > 0.05), whereas l-NAME and ketorolac + l-NAME reduced forearm CVC at and above 10 mM methacholine (all P < 0.05). Conversely, there was no main effect of treatment site (P = 0.488) and no interaction of methacholine dose and treatment site (P = 0.711) on forearm sweating. Thus forearm sweating (in mg·min−1·cm−2) from baseline up to the maximal dose of methacholine was not different between the four sites (at 2,000 mM, control 0.50 ± 0.23, ketorolac 0.44 ± 0.23, l-NAME 0.51 ± 0.22, and ketorolac + l-NAME 0.51 ± 0.23). We show that both NO synthase and COX inhibition do not influence cholinergic sweating induced by 1–2,000 mM methacholine. PMID:25213633

  17. Relationships of methacholine and adenosine monophosphate responsiveness with serum vascular endothelial growth factor in children with asthma.

    PubMed

    Yoo, Young; Choi, Ic Sun; Byeon, Jung Hye; Lee, Seung Min; La, Kyong Suk; Choi, Byung Min; Park, Sang Hee; Choung, Ji Tae

    2010-01-01

    Airway hyperresponsiveness, which is a characteristic feature of asthma, is usually measured by means of bronchial challenge with direct or indirect stimuli. Vascular endothelial growth factor (VEGF) increases vascular permeability and angiogenesis, leads to mucosal edema, narrows the airway diameter, and reduces airway flow. To examine the relationships between serum VEGF level and airway responsiveness to methacholine and adenosine monophosphate (AMP) in children with asthma. Peripheral blood eosinophil counts, serum eosinophil cationic protein (ECP) concentrations, and serum VEGF concentrations were measured in 31 asthmatic children and 26 control subjects. Methacholine and AMP bronchial challenges were performed on children with asthma. Children with asthma had a significantly higher mean (SD) level of VEGF than controls (361.2 [212.0] vs 102.7 [50.0] pg/mL; P < .001). Blood eosinophil counts and serum ECP levels significantly correlated inversely with AMP provocation concentration that caused a decrease in forced expiratory volume in 1 second of 20% (PC20) (r = -0.474, P =.01; r = -0.442, P =.03, respectively), but not with methacholine PC20 (r = -0.228, P = .26; r = -0.338, P =.10, respectively). Serum VEGF levels significantly correlated with airway responsiveness to AMP (r = -0.462; P = .009) but not to methacholine (r = -0.243; P = .19). Serum VEGF levels were increased in children with asthma and were related to airway responsiveness to AMP but not to methacholine. Increased VEGF levels in asthmatic children may result in increased airway responsiveness by mechanisms related to airway inflammation or increased permeability of airway vasculature.

  18. Weight Loss Decreases Inherent and Allergic Methacholine Hyperresponsiveness in Mouse Models of Diet-Induced Obese Asthma

    PubMed Central

    Ather, Jennifer L.; Chung, Michael; Hoyt, Laura R.; Randall, Matthew J.; Georgsdottir, Anna; Daphtary, Nirav A.; Aliyeva, Minara I.; Suratt, Benjamin T.; Bates, Jason H. T.; Irvin, Charles G.; Russell, Sheila R.; Forgione, Patrick M.; Dixon, Anne E.

    2016-01-01

    Obese asthma presents with inherent hyperresponsiveness to methacholine or augmented allergen-driven allergic asthma, with an even greater magnitude of methacholine hyperresponsiveness. These physiologic parameters and accompanying obese asthma symptoms can be reduced by successful weight loss, yet the underlying mechanisms remain incompletely understood. We implemented mouse models of diet-induced obesity, dietary and surgical weight loss, and environmental allergen exposure to examine the mechanisms and mediators of inherent and allergic obese asthma. We report that the methacholine hyperresponsiveness in these models of inherent obese asthma and obese allergic asthma manifests in distinct anatomical compartments but that both are amenable to interventions that induce substantial weight loss. The inherent obese asthma phenotype, with characteristic increases in distal airspace tissue resistance and tissue elastance, is associated with elevated proinflammatory cytokines that are reduced with dietary weight loss. Surprisingly, bariatric surgery–induced weight loss further elevates these cytokines while reducing methacholine responsiveness to levels similar to those in lean mice or in formerly obese mice rendered lean through dietary intervention. In contrast, the obese allergic asthma phenotype, with characteristic increases in central airway resistance, is not associated with increased adaptive immune responses, yet diet-induced weight loss reduces methacholine hyperresponsiveness without altering immunological variables. Diet-induced weight loss is effective in models of both inherent and allergic obese asthma, and our examination of the fecal microbiome revealed that the obesogenic Firmicutes/Bacteroidetes ratio was normalized after diet-induced weight loss. Our results suggest that structural, immunological, and microbiological factors contribute to the manifold presentations of obese asthma. PMID:27064658

  19. The relationship between bronchial hyperresponsiveness to methacholine and airway smooth muscle structure and reactivity.

    PubMed

    Armour, C L; Black, J L; Berend, N; Woolcock, A J

    1984-11-01

    The airway responsiveness of a group of 25 patients scheduled for lung resection was studied. 10 of 25 patients had a greater than or equal to 20% fall in FEV1 in response to inhaled methacholine (responders), with PD20 FEV1 values ranging from 0.6 to 7.3 mumol. Methacholine did not induce a 20% fall in FEV1 in 15 patients (non-responders). The sensitivity to carbachol and histamine of the bronchial smooth muscle resected from these patients was similar in tissue from responders and non-responders. There was no correlation between in vivo responsiveness to methacholine and in vitro sensitivity to carbachol or histamine. The volume of smooth muscle in some of these airway preparations was quantitated. There was a significant correlation between the maximum tension change in response to histamine and the volume of smooth muscle in each airway. There was no similar correlation for carbachol. The in vivo responsiveness to methacholine and in vitro sensitivity to histamine or carbachol was not related to the degree of inflammation in the airways studied. It is concluded that in vivo responsiveness cannot be explained in terms of smooth muscle sensitivity and that there may be differences between histamine and carbachol in the mechanism of contraction of airway smooth muscle.

  20. Effect of toluene diisocyanate on homeostasis of intracellular-free calcium in human neuroblastoma SH-SY5Y Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, P.-S.; Chiung, Y.-M.; Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan

    2006-03-01

    The mechanisms of TDI (2,4-toluene diisocyanate)-induced occupational asthma are not fully established. Previous studies have indicated that TDI induces non-specific bronchial hyperreactivity to methacholine and induces contraction of smooth muscle tissue by activating 'capsaicin-sensitive' nerves resulting asthma. Cytosolic-free calcium ion concentrations ([Ca{sup 2+}]{sub c}) are elevated when either capsaicin acts at vanilloid receptors, or methacholine at muscarinic receptors. This study therefore investigated the effects of TDI on Ca{sup 2+} mobilization in human neuroblastoma SH-SY5Y cells. TDI was found to elevate [Ca{sup 2+}]{sub c} by releasing Ca{sup 2+} from the intracellular stores and extracellular Ca{sup 2+} influx. 500 {mu}M TDI inducedmore » a net [Ca{sup 2+}]{sub c} increase of 112 {+-} 8 and 78 {+-} 6 nM in the presence and absence of extracellular Ca{sup 2+}, respectively. In Ca{sup 2+}-free buffer, TDI induced Ca{sup 2+} release from internal stores to reduce their Ca{sup 2+} content and this reduction was evidenced by a suppression occurring on the [Ca{sup 2+}]{sub c} rise induced by thapsigargin, ionomycin, and methacholine after TDI incubation. In the presence of extracellular Ca{sup 2+}, simultaneous exposure to TDI and methacholine led a higher level of [Ca{sup 2+}]{sub c} compared to single methacholine stimulation, that might explain that TDI induces bronchial hyperreactivity to methacholine. We conclude that TDI is capable of interfering the [Ca{sup 2+}]{sub c} homeostasis including releasing Ca{sup 2+} from internal stores and inducing extracellular Ca{sup 2+} influx. The interaction of this novel character and bronchial hyperreactivity need further investigation.« less

  1. Comparison of diagnostic validity of mannitol and methacholine challenges and relationship to clinical status and airway inflammation in steroid-naïve asthmatic patients.

    PubMed

    Porpodis, Konstantinos; Domvri, Kalliopi; Kontakiotis, Theodoros; Fouka, Evangelia; Kontakioti, Eirini; Zarogoulidis, Konstantinos; Papakosta, Despina

    2017-06-01

    The purpose of this study was to demonstrate and compare the diagnostic validity of two bronchial challenges and to investigate their correlation with patient clinical status, atopy and inflammation markers. Eighty-eight patients, 47 women and 41 men, mean age 38.56 ± 16.73 years who presented with asthma related symptoms and were not on any anti-asthma medication, were challenged with mannitol and methacholine on separate days. Medical history regarding asthmatic symptoms, physical examination, skin prick tests and FeNO levels were also assessed. The clinical diagnosis of asthma was based on bronchodilator reversibility test. Sixty-seven patients were diagnosed with asthma and 21 without asthma. Both methacholine (P < 0.014) and mannitol (P < 0.000) challenges were significant in diagnosing asthma. The positive/negative predictive value was 93.33%/41.86% for methacholine, 97.72%/45.45% for mannitol and 97.05%/45.45%. for both methods assessed together. Worthy of note that 22% of asthmatics had both tests negative. There was a negative correlation between PC20 of methacholine and the FeNO level P < 0.001, and positive with the PD15 of mannitol P < 0.001 and the pre-test FEV 1 % pred P < 0.005, whereas PD15 of mannitol was negatively correlated with the FeNO level P < 0.001. Furthermore, dyspnea was the only asthmatic symptom associated with FeNO level P < 0.035 and the positivity of mannitol P < 0.014 and methacholine P < 0.04. Both challenge tests were equivalent in diagnosing asthma. Nevertheless, specificity appeared to be slightly higher in mannitol challenge.

  2. ERS technical standard on bronchial challenge testing: general considerations and performance of methacholine challenge tests.

    PubMed

    Coates, Allan L; Wanger, Jack; Cockcroft, Donald W; Culver, Bruce H; Diamant, Zuzana; Gauvreau, Gail; Hall, Graham L; Hallstrand, Teal S; Horvath, Ildiko; de Jongh, Frans H C; Joos, Guy; Kaminsky, David A; Laube, Beth L; Leuppi, Joerg D; Sterk, Peter J

    2017-05-01

    This international task force report updates general considerations for bronchial challenge testing and the performance of the methacholine challenge test. There are notable changes from prior recommendations in order to accommodate newer delivery devices. Rather than basing the test result upon a methacholine concentration (provocative concentration (PC 20 ) causing a 20% fall in forced expiratory volume in 1 s (FEV 1 )), the new recommendations base the result upon the delivered dose of methacholine causing a 20% fall in FEV 1 (provocative dose (PD 20 )). This end-point allows comparable results from different devices or protocols, thus any suitable nebuliser or dosimeter may be used, so long as the delivery characteristics are known. Inhalation may be by tidal breathing using a breath-actuated or continuous nebuliser for 1 min (or more), or by a dosimeter with a suitable breath count. Tests requiring maximal inhalations to total lung capacity are not recommended because the bronchoprotective effect of a deep breath reduces the sensitivity of the test. Copyright ©ERS 2017.

  3. In vitro functional interactions of acetylcholine esterase inhibitors and muscarinic receptor antagonists in the urinary bladder of the rat.

    PubMed

    Killi, Uday K; Wsol, Vladimir; Soukup, Ondrej; Kuca, Kamil; Winder, Michael; Tobin, Gunnar

    2014-02-01

    Obidoxime, a weak acetylcholine-esterase (AChE) inhibitor, exerts muscarinic receptor antagonism with a significant muscarinic M2 receptor selective profile. The current examinations aimed to determine the functional significance of muscarinic M2 receptors in the state of AChE inhibition, elucidating muscarinic M2 and M3 receptor interaction. In the in vitro examinations, methacholine evoked concentration-dependent bladder contractile and atrial frequency inhibitory responses. Although atropine abolished both, methoctramine (1 μmol/L) only affected the cholinergic response in the atrial preparations. However, in the presence of methoctramine, physostigmine, an AChE inhibitor, increased the basal tension of the bladder strip preparations (+68%), as well as the contractile responses to low concentrations of methacholine (< 5 μmol/L; +90-290%). In contrast to physostigmine, obidoxime alone raised the basal tension (+58%) and the responses to low concentrations of methacholine (< 5 μmol/L; +80-450%). Physostigmine concentration-dependently increased methacholine-evoked responses, similarly to obidoxime at low concentrations. However, at large concentrations (> 5 μmol/L), obidoxime, because of its unselective muscarinic receptor antagonism, inhibited the methacholine bladder responses. In conclusion, the current results show that muscarinic M2 receptors inhibit muscarinic M3 receptor-evoked contractile responses to low concentrations of acetylcholine in the synaptic cleft. The muscarinic M2 and M3 receptor crosstalk could be a counteracting mechanism in the treatment of AChE inhibition when using reactivators, such as obidoxime. © 2013 Wiley Publishing Asia Pty Ltd.

  4. Effect of Perinatal secondhand tobacco smoke exposure on in vivo and intrinsic airway structure/function in non-human primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joad, Jesse P.; Kott, Kayleen S.; Bric, John M.

    Infants exposed to second hand smoke (SHS) experience more problems with wheezing. This study was designed to determine if perinatal SHS exposure increases intrinsic and/or in vivo airway responsiveness to methacholine and whether potential structural/cellular alterations in the airway might explain the change in responsiveness. Pregnant rhesus monkeys were exposed to filtered air (FA) or SHS (1 mg/m{sup 3} total suspended particulates) for 6 h/day, 5 days/week starting at 50 days gestational age. The mother/infant pairs continued the SHS exposures postnatally. At 3 months of age each infant: 1) had in vivo lung function measurements in response to inhaled methacholine,more » or 2) the right accessory lobe filled with agarose, precision-cut to 600 {mu}m slices, and bathed in increasing concentrations of methacholine. The lumenal area of the central airway was determined using videomicrometry followed by fixation and histology with morphometry. In vivo tests showed that perinatal SHS increases baseline respiratory rate and decreases responsiveness to methacholine. Perinatal SHS did not alter intrinsic airway responsiveness in the bronchi. However in respiratory bronchioles, SHS exposure increased airway responsiveness at lower methacholine concentrations but decreased it at higher concentrations. Perinatal SHS did not change eosinophil profiles, epithelial volume, smooth muscle volume, or mucin volume. However it did increase the number of alveolar attachments in bronchi and respiratory bronchioles. In general, as mucin increased, airway responsiveness decreased. We conclude that perinatal SHS exposure alters in vivo and intrinsic airway responsiveness, and alveolar attachments.« less

  5. Relationship between the baseline alveolar volume-to-total lung capacity ratio and airway responsiveness.

    PubMed

    Kaminsky, David A; Daud, Anees; Chapman, David G

    2014-10-01

    Ventilation heterogeneity (VH) has been linked to airway responsiveness (AR) based on various measures of VH involving inert gas washout, forced oscillation and lung imaging. We explore whether VH at baseline, as measured by the simple ratio of single breath alveolar volume to plethysmographically determined total lung capacity (VA/TLC), would correlate with AR as measured by methacholine challenge testing. We analysed data from spirometry, lung volumes, diffusing capacity and methacholine challenge to derive the VA/TLC and the dose-response slope (DRS) of forced expiratory volume in 1 s (DRS-FEV1) during methacholine challenge from 136 patients. We separated out airway closure versus narrowing by examining the DRS for forced vital capacity (DRS-FVC) and the DRS for FEV1/FVC (DRS-FEV1/FVC), respectively. Similarly, we calculated the DRS for sGaw (DRS-sGaw) as another measure of airway narrowing. We performed statistical analysis using Spearman rank correlation and multifactor linear regression using a backward stepwise modelling procedure. We found that the DRS-FEV1 correlated with baseline VA/TLC (rho = -0.26, P < 0.01), and VA/TLC and FEV1 were independently associated with DRS-FEV1 (R(2)  = 0.14, P = 0.01). In addition, VA/TLC was associated with both airway narrowing and closure in response to methacholine. These results confirm that baseline VA/TLC is associated with AR, and reflects both airway closure and airway narrowing following methacholine challenge. © 2014 Asian Pacific Society of Respirology.

  6. Nonspecific airway hyperreactivity in nonsmoking bituminous coal miners demonstrated by quantitative methacholine inhalation challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudgel, D.W.; Roe, R.

    Because nonsmoking underground bituminous coal miners often have symptoms of chronic bronchitis and because a high proportion of patients with chronic bronchitis have nonspecific airway hyperreactivity, we hypothesized that coal miners would have a higher prevalence of nonspecific airway hyperreactivity than nonminer nonsmoking control subjects. By use of a quantitative methacholine provocative inhalation challenge test, we evaluated 22 underground bituminous coal miners and 41 nonminer age- and sex-matched control subjects from the same community. We found that a significantly higher proportion of miners had reactivity to inhalation of 100 mg/ml or less of methacholine, X2 = 6.19, p less thanmore » 0.02. The slope of phase III of the single-breath nitrogen washout test was higher in the reactive miners than in the nonreactive miners and reactive control subjects, even though the reactive miners had only been working underground 8 +/- 3 (SEM) years. Within the reactive miner subgroup, the higher the reactivity to methacholine, the more abnormal the slope of phase III of the single-breath nitrogen test, r = 0.79. Miners had more symptoms than controls; the presence of methacholine reactivity was not associated with increased symptoms. We conclude that the bituminous coal miners in our study had an increased prevalence of nonspecific airway hyperreactivity and that within the reactive miner subgroup there was evidence of early airways disease. We speculate that the nonspecific airway hyperreactivity may be related to, and also be an indicator of, lung injury in coal miners.« less

  7. Airway reactivity in chronic obstructive pulmonary disease. Failure of in vivo methacholine responsiveness to correlate with cholinergic, adrenergic, or nonadrenergic responses in vitro.

    PubMed

    Taylor, S M; Paré, P D; Armour, C L; Hogg, J C; Schellenberg, R R

    1985-07-01

    This study aimed to determine whether in vivo airways hyperreactivity was manifested by either enhanced bronchial smooth muscle responses to contractile stimuli or by deficient responses to relaxant stimuli in vitro. Quantitative responses to nebulized methacholine were obtained in 12 human subjects prior to pulmonary resection. The provocative concentration of methacholine producing a 20% reduction in FEV1 (PC20) was calculated, and these values were compared with in vitro responses of bronchial smooth muscle strips from the surgical specimens. Both contractile cholinergic responses and relaxant nonadrenergic noncholinergic dose-response data were obtained for the in vitro bronchial specimens by electrical field stimulation. In addition, cumulative dose responses were obtained to exogenously added methacholine, the beta-adrenergic agonist salbutamol, and the adenylate cyclase activator forskolin. Despite a wide range of PC20 values, the in vivo airway responsiveness did not correlate with any of the in vitro responses examined, suggesting that airway reactivity is not due solely to the responsiveness of smooth muscle to contractile agonists nor to a localized deficiency in the nonadrenergic inhibitory system, beta-adrenergic inhibition, or abnormal cyclic-AMP-mediated pathways of relaxation.

  8. Maximal degree of airway narrowing induced by methacholine and adenosine monophosphate: relationship with the decrease in forced vital capacity.

    PubMed

    Prieto, Luis; Lopez, Victoria; Perez-Frances, Carmen; Marin, Julio

    2010-12-01

    Changes in forced vital capacity (FVC) may represent an indirect method for the detection of plateau in response to inhaled bronchoconstrictor agents. To determine the relationship between the level of plateau obtained with either methacholine or adenosine monophosphate (AMP) and the decrease in FVC induced by each bronchoconstrictor agent. Airway responsiveness to high concentrations of methacholine and AMP was determined in patients with intermittent asthma (n = 41) or allergic rhinitis (n = 26). Furthermore, allergen-induced changes in the response to each bronchoconstrictor agent were investigated in 18 pollen-sensitive patients. Concentration-response curves were characterized by the slope of the FVC values recorded at each step of the challenge against the corresponding forced expiratory volume in 1 second (FEV1) values and, if possible, by the level of plateau. The slope FVC vs FEV1 was similar in patients with plateau and in those without plateau. In patients with pollen allergy, the mean (95% confidence interval) for the level of plateau detected with methacholine increased from 16.8% (11.8%-22.0%) before the pollen season to 21.7% (14.8%-28.6%, P = .008) during the pollen season, whereas pollen-induced changes in the slope FVC vs FEV1 were not significant. Similar results were obtained with AMP. In patients with allergic rhinitis or intermittent asthma, methacholine or AMP-induced changes in FVC are not significantly related to the presence or level of plateau. Furthermore, these 2 constituents of the concentration-response curve can be modified independently by a proinflammatory stimulus. These results suggest that the bronchoconstrictor-induced change in FVC cannot be used as a surrogate estimation of the level of plateau. Copyright © 2010 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. Use of tracheal auscultation for the assessment of bronchial responsiveness in asthmatic children.

    PubMed Central

    Sprikkelman, A. B.; Grol, M. H.; Lourens, M. S.; Gerritsen, J.; Heymans, H. S.; van Aalderen, W. M.

    1996-01-01

    BACKGROUND: It can be difficult to assess bronchial responsiveness in children because of their inability to perform spirometric tests reliably. In bronchial challenges lung sounds could be used to detect the required 20% fall in the forced expiratory volume in one second (FEV1). A study was undertaken to determine whether a change in lung sounds corresponded with a 20% fall in FEV1 after methacholine challenge, and whether the occurrence of wheeze was the most important change. METHODS: Fifteen children with asthma (eight boys) of mean age 10.8 years (range 8-15) were studied. All had normal chest auscultation before the methacholine challenge test. Lung sounds were recorded over the trachea for one minute and stored on tape. They were analysed directly and also scored blindly from the tape recording by a second investigator. Wheeze, cough, increase in respiratory rate, and prolonged expiration were assessed. RESULTS: The total cumulative methacholine dose causing a fall in FEV1 of 20% or more (PD20) was detected in 12 children by a change in lung sounds - in four by wheeze and in eight by cough, increased respiratory rate, and/or prolonged expiration. In two subjects altered lung sounds were detectable one dose step before PD20 was reached. In three cases in whom no fall in FEV1 occurred, no change in lung sounds could be detected at the highest methacholine dose. CONCLUSION: Changes in lung sounds correspond well with a 20% fall in FEV1 after methacholine challenge. Wheeze is an insensitive indicator for assessing bronchial responsiveness. Cough, increase in respiratory rate, and prolonged expiration occurs more frequently. PMID:8779140

  10. Secondary Metabolites in Allergic Plant Pollen Samples Modulate Afferent Neurons and Murine Tracheal Rings.

    PubMed

    Božičević, Alen; De Mieri, Maria; Nassenstein, Christina; Wiegand, Silke; Hamburger, Matthias

    2017-11-22

    Plant pollens are strong airborne elicitors of asthma. Their proteinaceous allergens have been studied intensively, but little is known about a possible contribution of pollen secondary metabolites to the nonallergic exacerbation of asthma. Pollen samples originating from 30 plant species were analyzed by HPLC coupled to PDA, ESIMS, and ELSD detectors and off-line NMR spectroscopy. Polyamine conjugates, flavonoids, and sesquiterpene lactones were identified. Polyamine conjugates were characteristic of all Asteraceae species. The presence of sesquiterpene lactones in Asteraceae pollen varied between species and pollen lots. All plant pollen, including those from non-Asteraceae species, contained to some extent electrophiles as determined by their reaction with N-acetyl-l-cysteine. Selected pollen extracts and pure compounds were tested in murine afferent neurons and in murine tracheal preparations. Tetrahydrofuran extracts of Ambrosia artemisiifolia and Ambrosia psilostachya pollen and a mixture of sesquiterpene lactones coronopilin/parthenin increased the intracellular Ca 2+ concentration in 15%, 32%, and 37% of cinnamaldehyde-responsive neurons, respectively. In organ bath experiments, only the sesquiterpene lactones tested induced a weak dilatation of naïve tracheas and strongly lowered the maximal methacholine-induced tracheal constriction. A tetrahydrofuran extract of A. psilostachya and coronopilin/parthenin led to a time-dependent relaxation of the methacholine-preconstricted trachea. These results provide the first evidence for a potential role of pollen secondary metabolites in the modulation of the tracheal tone.

  11. Changes in cross-sectional airway areas induced by methacholine, histamine, and LTC4 in asthmatic subjects.

    PubMed

    Molfino, N A; Slutsky, A S; Hoffstein, V; McClean, P A; Rebuck, A S; Drazen, J M; Zamel, N

    1992-09-01

    To examine whether leukotrienes, histamine, and methacholine have different sites of bronchoconstrictor action, we studied 8 stable asthmatic subjects (mean age +/- SD, 26 +/- 5 yr) on 3 different days. On each day, a randomized challenge with LTC4, methacholine, or histamine was performed until the dose that provoked a fall of 20% in FEV1 (PC20) was obtained. Complete and partial flow-volume curves as well as area-distance profiles generated by the acoustic reflection technique (ART) at a fixed lung volume were obtained in all subjects before and after each inhalation challenge. No significant differences were found in pulmonary function or baseline cross-sectional airway areas for the different study days. The three agonists provoked significant (p less than 0.05) bronchoconstriction at the level of the main bronchi when identical falls of FEV1 were achieved. Similarly, equal reductions of V30p were elicited by the three agonists. However, LTC4 and methacholine induced additional tracheal constriction but histamine inhalation did not. These differences in the degree of tracheal constriction were statistically significant (p less than 0.05; ANOVA). These results may be explained by distinct pharmacologic properties of the agents used and may have relevance in the understanding of the pathophysiology of asthma.

  12. Vardenafil inhibiting parasympathetic function of tracheal smooth muscle.

    PubMed

    Lee, Fei-Peng; Chao, Pin-Zhir; Wang, Hsing-Won

    2018-07-01

    Levitra, a phosphodiesterase-5 (PDE5) inhibitor, is the trade name of vardenafil. Nowadays, it is applied to treatment of erectile dysfunction. PDE5 inhibitors are employed to induce dilatation of the vascular smooth muscle. The effect of Levitra on impotency is well known; however, its effect on the tracheal smooth muscle has rarely been explored. When administered for sexual symptoms via oral intake or inhalation, Levitra might affect the trachea. This study assessed the effects of Levitra on isolated rat tracheal smooth muscle by examining its effect on resting tension of tracheal smooth muscle, contraction caused by 10 -6  M methacholine as a parasympathetic mimetic, and electrically induced tracheal smooth muscle contractions. The results showed that adding methacholine to the incubation medium caused the trachea to contract in a dose-dependent manner. Addition of Levitra at doses of 10 -5  M or above elicited a significant relaxation response to 10 -6  M methacholine-induced contraction. Levitra could inhibit electrical field stimulation-induced spike contraction. It alone had minimal effect on the basal tension of the trachea as the concentration increased. High concentrations of Levitra could inhibit parasympathetic function of the trachea. Levitra when administered via oral intake might reduce asthma attacks in impotent patients because it might inhibit parasympathetic function and reduce methacholine-induced contraction of the tracheal smooth muscle. Copyright © 2018. Published by Elsevier Taiwan LLC.

  13. Low-Renin Hypertension With Relative Aldosterone Excess Is Associated With Impaired NO-Mediated Vasodilation

    PubMed Central

    Duffy, Stephen J.; Biegelsen, Elizabeth S.; Eberhardt, Robert T.; Kahn, David F.; Kingwell, Bronwyn A.; Vita, Joseph A.

    2009-01-01

    Recent studies suggest that hypertension associated with low renin status and hyperaldosteronism is associated with increased risk for end-organ damage and cardiovascular events compared with other forms of hypertension. Additionally, experimental studies have demonstrated impaired nitric oxide-mediated bioactivity in these states. To investigate the relation between renin/aldosterone status and resistance vessel function, we examined plasma renin activity, serum aldosterone level, and forearm blood flow responses to the endothelium-dependent vasodilator methacholine and the endothelium-independent vasodilators sodium nitroprusside and verapamil using venous occlusion plethysmography in 130 volunteers (43 hypertensive, 87 normotensive). Low renin status was associated with impaired responses to methacholine and nitroprusside in patients with hypertension. Peak methacholine response was 8.7±5.6 mL/min per dL in the lowest renin quartile (0.1 to 0.3 ng/mL per hour) versus 14.3±7.3 mL/min per dL in the highest 3 renin quartiles combined (0.4 to 4.6 ng/mL per hour; P<0.001). Peak nitroprusside response was 5.6±2.3 mL/min per dL in the lowest renin quartile versus 13.3±4.1 mL/min per dL in the highest 3 renin quartiles combined (P<0.001). Blood pressure and other clinical characteristics were similar in all 4 quartiles. Vasodilator responses to verapamil did not relate to renin activity. Methacholine and nitroprusside responses did not relate to renin status in normotensive controls (P=0.34). Importantly, hypertensive patients with a high aldosterone/renin ratio also had impaired responses to methacholine. This study demonstrates that low-renin hypertension is associated with marked impairment of nitric oxide-mediated vasodilation of resistance vessels in the forearm vasculature of humans. This impairment could contribute to adverse outcomes in patients with low-renin hypertension and relative aldosterone excess. PMID:16172426

  14. Detection of smoothly distributed spatial outliers, with applications to identifying the distribution of parenchymal hyperinflation following an airway challenge in asthmatics.

    PubMed

    Thurman, Andrew L; Choi, Jiwoong; Choi, Sanghun; Lin, Ching-Long; Hoffman, Eric A; Lee, Chang Hyun; Chan, Kung-Sik

    2017-05-10

    Methacholine challenge tests are used to measure changes in pulmonary function that indicate symptoms of asthma. In addition to pulmonary function tests, which measure global changes in pulmonary function, computed tomography images taken at full inspiration before and after administration of methacholine provide local air volume changes (hyper-inflation post methacholine) at individual acinar units, indicating local airway hyperresponsiveness. Some of the acini may have extreme air volume changes relative to the global average, indicating hyperresponsiveness, and those extreme values may occur in clusters. We propose a Gaussian mixture model with a spatial smoothness penalty to improve prediction of hyperresponsive locations that occur in spatial clusters. A simulation study provides evidence that the spatial smoothness penalty improves prediction under different data-generating mechanisms. We apply this method to computed tomography data from Seoul National University Hospital on five healthy and ten asthmatic subjects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Responses of equine trachealis and lung parenchyma to methacholine, histamine, serotonin, prostanoids, and leukotrienes in vitro.

    PubMed

    Doucet, M Y; Jones, T R; Ford-Hutchinson, A W

    1990-03-01

    The responses of equine trachealis and lung parenchymal strips to a range of contractile agonists were studied. Equine trachealis responded to methacholine greater than histamine greater than serotonin as shown by the maximal responses but failed to respond to either leukotrienes (LT), prostaglandin F2 alpha, or U-44069. Equine parenchymal strips showed considerable tonal activity and responded to LTD4 congruent to LTC4 greater than U-44069 = LTE4 greater than methacholine congruent to histamine congruent to serotonin greater than prostaglandin F2 alpha as determined through pD2 values. Neither the concentration response curve to LTD4 nor the intrinsic tonal activity of the preparations was modified by pretreatment with either atropine or indomethacin, although the maximal response to LTD4 was reversed by addition of the LTD4 receptor antagonist, MK-571. Thus arachidonic acid metabolites, including LTs, must be considered potential mediators of equine small airway disease, a potential model of human bronchial asthma.

  16. Molecular phenotyping of severe asthma using pattern recognition of bronchoalveolar lavage-derived cytokines.

    PubMed

    Brasier, Allan R; Victor, Sundar; Boetticher, Gary; Ju, Hyunsu; Lee, Chang; Bleecker, Eugene R; Castro, Mario; Busse, William W; Calhoun, William J

    2008-01-01

    Asthma is a heterogeneous clinical disorder. Methods for objective identification of disease subtypes will focus on clinical interventions and help identify causative pathways. Few studies have explored phenotypes at a molecular level. We sought to discriminate asthma phenotypes on the basis of cytokine profiles in bronchoalveolar lavage (BAL) samples from patients with mild-moderate and severe asthma. Twenty-five cytokines were measured in BAL samples of 84 patients (41 severe, 43 mild-moderate) using bead-based multiplex immunoassays. The normalized data were subjected to statistical and informatics analysis. Four groups of asthmatic profiles could be identified on the basis of unsupervised analysis (hierarchical clustering) that were independent of treatment. One group, enriched in patients with severe asthma, showed differences in BAL cellular content, reductions in baseline pulmonary function, and enhanced response to methacholine provocation. Ten cytokines were identified that accurately predicted this group. Classification methods for predicting methacholine sensitivity were developed. The best model analysis predicted hyperresponders with 88% accuracy in 10 trials by using a 10-fold cross-validation. The cytokines that contributed to this model were IL-2, IL-4, and IL-5. On the basis of this classifier, 3 distinct hyperresponder classes were identified that varied in BAL eosinophil count and PC20 methacholine. Cytokine expression patterns in BAL can be used to identify distinct types of asthma and identify distinct subsets of methacholine hyperresponders. Further biomarker discovery in BAL may be informative.

  17. The Association of Lung Function, Bronchial Hyperresponsiveness, and Exhaled Nitric Oxide Differs Between Atopic and Non-atopic Asthma in Children

    PubMed Central

    Shim, Eunhee; Lee, Eun; Yang, Song-I; Jung, Young-Ho; Park, Geun Mi; Kim, Hyung Young; Seo, Ju-Hee

    2015-01-01

    Purpose Although many previous studies have attempted to identify differences between atopic asthma (AA) and non-atopic asthma (NAA), they have mainly focused on the difference of each variable of lung function and airway inflammation. The aim of this study was to evaluate relationships between lung function, bronchial hyperresponsiveness (BHR), and the exhaled nitric oxide (eNO) levels in children with AA and NAA. Methods One hundred and thirty six asthmatic children aged 5-15 years and 40 normal controls were recruited. Asthma cases were classified as AA (n=100) or NAA (n=36) from skin prick test results. Lung function, BHR to methacholine and adenosine-5'-monophosphate (AMP), eNO, blood eosinophils, and serum total IgE were measured. Results The AA and NAA cases shared common features including a reduced small airway function and increased BHR to methacholine. However, children with AA showed higher BHR to AMP and eNO levels than those with NAA. When the relationships among these variables in the AA and NAA cases were evaluated, the AA group showed significant relationships between lung function, BHR to AMP or methacholine and eNO levels. However, the children in the NAA group showed an association between small airway function and BHR to methacholine only. Conclusions These findings suggest that the pathogenesis of NAA may differ from that of AA during childhood in terms of the relationship between lung function, airway inflammation and BHR. PMID:25749776

  18. The effects of nedocromil sodium on the response to grain dust in West Australian grain workers.

    PubMed Central

    Blainey, A D; Musk, A W; Ryan, G; Phillips, M J; Buccilli, C; Troon, S; Kidd, G

    1990-01-01

    Seasonal grain workers in Western Australia who develop respiratory symptoms after exposure to grain dust develop concomitant changes in lung function and bronchial responsiveness to methacholine. The mechanisms underlying these changes are not known. A detailed study was undertaken of seasonal grain workers in Western Australia to evaluate the effect of nedocromil sodium (Fisons, United Kingdom) on these changes to see if they could be prevented by this drug. Forty seven subjects participated. Symptoms and forced expiratory volume in one second (FEV1) were recorded before the study and before, during, and after each working shift, and bronchial responsiveness to methacholine was measured at the beginning and end of the study. Twenty three subjects received nedocromil and 22 received a placebo in a double blind design; there was no difference in baseline characteristics between the two groups. At the end of the study, no differences were found between the nedocromil and placebo groups in the prevalence of symptoms or development of new symptoms during the study. The drug had no effect on changes in methacholine PD20 or FEV1. As in previous studies, new symptoms developing during the season were more common in atopic subjects and were associated with a fall in methacholine PD20. It is concluded that nedocromil has no effect on the development of new symptoms in grain workers. The mechanisms underlying these symptoms require further study. PMID:2171630

  19. Plethysmography Phenotype QTL in Mice Before and After Allergen Sensitization and Challenge.

    PubMed

    Kelada, Samir N P

    2016-09-08

    Allergic asthma is common airway disease that is characterized in part by enhanced airway constriction in response to nonspecific stimuli. Genome-wide association studies have identified multiple loci associated with asthma risk in humans, but these studies have not accounted for gene-environment interactions, which are thought to be important factors in asthma. To identify quantitative trait loci (QTL) that regulate responses to a common human allergen, we applied a house dust mite mouse (HDM) model of allergic airway disease (AAD) to 146 incipient lines of the Collaborative Cross (CC) and the CC founder strains. We employed a longitudinal study design in which mice were phenotyped for response to the bronchoconstrictor methacholine both before and after HDM sensitization and challenge using whole body plethysmography (WBP). There was significant variation in methacholine responsiveness due to both strain and HDM treatment, as reflected by changes in the WBP parameter enhanced pause. We also found that distinct QTL regulate baseline [chromosome (Chr) 18] and post-HDM (Chr 19) methacholine responsiveness and that post-HDM airway responsiveness was correlated with other features of AAD. Finally, using invasive measurements of airway mechanics, we tested whether the Chr 19 QTL affects lung resistance per se using C57BL/6J mice and a consomic strain but found that QTL haplotype did not affect lung resistance. We conclude that aspects of baseline and allergen-induced methacholine responsiveness are associated with genetic variation, and that robust detection of airway resistance QTL in genetically diverse mice will be facilitated by direct measurement of airway mechanics. Copyright © 2016 Kelada.

  20. Plethysmography Phenotype QTL in Mice Before and After Allergen Sensitization and Challenge

    DOE PAGES

    Kelada, Samir N. P.

    2016-07-22

    Allergic asthma is common airway disease that is characterized in part by enhanced airway constriction in response to nonspecific stimuli. Genome-wide association studies have identified multiple loci associated with asthma risk in humans, but these studies have not accounted for gene–environment interactions, which are thought to be important factors in asthma. To identify quantitative trait loci (QTL) that regulate responses to a common human allergen, we applied a house dust mite mouse (HDM) model of allergic airway disease (AAD) to 146 incipient lines of the Collaborative Cross (CC) and the CC founder strains. We employed a longitudinal study design inmore » which mice were phenotyped for response to the bronchoconstrictor methacholine both before and after HDM sensitization and challenge using whole body plethysmography (WBP). There was significant variation in methacholine responsiveness due to both strain and HDM treatment, as reflected by changes in the WBP parameter enhanced pause. We also found that distinct QTL regulate baseline [chromosome (Chr) 18] and post-HDM (Chr 19) methacholine responsiveness and that post-HDM airway responsiveness was correlated with other features of AAD. Finally, using invasive measurements of airway mechanics, we tested whether the Chr 19 QTL affects lung resistance per se using C57BL/6J mice and a consomic strain but found that QTL haplotype did not affect lung resistance. We conclude that aspects of baseline and allergen-induced methacholine responsiveness are associated with genetic variation, and that robust detection of airway resistance QTL in genetically diverse mice will be facilitated by direct measurement of airway mechanics.« less

  1. Peri-adolescent asthma symptoms cause adult anxiety-related behavior and neurobiological processes in mice

    PubMed Central

    Caulfield, Jasmine I.; Caruso, Michael J.; Michael, Kerry C.; Bourne, Rebecca A.; Chirichella, Nicole R.; Klein, Laura C.; Craig, Timothy; Bonneau, Robert H.; August, Avery; Cavigelli, Sonia A.

    2017-01-01

    Human and animal studies have shown that physical challenges and stressors during adolescence can have significant influences on behavioral and neurobiological development associated with internalizing disorders such as anxiety and depression. Given the prevalence of asthma during adolescence and increased rates of internalizing disorders in humans with asthma, we used a mouse model to test if and which symptoms of adolescent allergic asthma (airway inflammation or labored breathing) cause adult anxiety- and depression-related behavior and brain function. To mimic symptoms of allergic asthma in young BALB/cJ mice (postnatal days [P] 7–57; N=98), we induced lung inflammation with repeated intranasal administration of house dust mite extract (most common aeroallergen for humans) and bronchoconstriction with aerosolized methacholine (non-selective muscarinic receptor agonist). Three experimental groups, in addition to a control group, included: (1) “Airway inflammation only”, allergen exposure 3 times/week, (2) “Labored breathing only”, methacholine exposure once/week, and (3) “Airway inflammation + Labored breathing”, allergen and methacholine exposure. Compared to controls, mice that experienced methacholine-induced labored breathing during adolescence displayed a ~20% decrease in time on open arms of the elevated plus maze in early adulthood (P60), a ~30% decrease in brainstem serotonin transporter (SERT) mRNA expression and a ~50% increase in hippocampal serotonin receptor 1a (5Htr1a) and corticotropin releasing hormone receptor 1 (Crhr1) expression in adulthood (P75). This is the first evidence that experimentally-induced clinical symptoms of adolescent asthma alter adult anxiety-related behavior and brain function several weeks after completion of asthma manipulations. PMID:28284954

  2. Plethysmography Phenotype QTL in Mice Before and After Allergen Sensitization and Challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelada, Samir N. P.

    Allergic asthma is common airway disease that is characterized in part by enhanced airway constriction in response to nonspecific stimuli. Genome-wide association studies have identified multiple loci associated with asthma risk in humans, but these studies have not accounted for gene–environment interactions, which are thought to be important factors in asthma. To identify quantitative trait loci (QTL) that regulate responses to a common human allergen, we applied a house dust mite mouse (HDM) model of allergic airway disease (AAD) to 146 incipient lines of the Collaborative Cross (CC) and the CC founder strains. We employed a longitudinal study design inmore » which mice were phenotyped for response to the bronchoconstrictor methacholine both before and after HDM sensitization and challenge using whole body plethysmography (WBP). There was significant variation in methacholine responsiveness due to both strain and HDM treatment, as reflected by changes in the WBP parameter enhanced pause. We also found that distinct QTL regulate baseline [chromosome (Chr) 18] and post-HDM (Chr 19) methacholine responsiveness and that post-HDM airway responsiveness was correlated with other features of AAD. Finally, using invasive measurements of airway mechanics, we tested whether the Chr 19 QTL affects lung resistance per se using C57BL/6J mice and a consomic strain but found that QTL haplotype did not affect lung resistance. We conclude that aspects of baseline and allergen-induced methacholine responsiveness are associated with genetic variation, and that robust detection of airway resistance QTL in genetically diverse mice will be facilitated by direct measurement of airway mechanics.« less

  3. Airway responsiveness to mannitol 24 h after allergen challenge in atopic asthmatics.

    PubMed

    Davis, B E; Amakye, D O; Cockcroft, D W

    2015-06-01

    Airway responsiveness to indirect stimuli correlates positively with airway inflammation. In atopic asthmatics, allergen inhalation is associated with an influx of inflammatory cells and increased responsiveness to the direct-acting stimuli methacholine at 3 and 24 h after exposure. We have shown mannitol responsiveness decreases 3 h after allergen inhalation. The current investigation assessed mannitol responsiveness 24 h after allergen challenge. Eleven mild atopic asthmatics completed allergen challenges on two separate occasions. In random order, methacholine or mannitol challenges were performed 24 h pre- and post-allergen challenge. Levels of fractional exhaled nitric oxide were also measured. Allergen challenge increased airway responsiveness to methacholine 24 h postchallenge; the geometric mean (95% CI) methacholine PC20 decreased from 5.9 mg/ml (1.8-19.4) to 2.2 mg/ml (0.81-5.89); P = 0.01. This coincided with a significant increase (P = 0.02) in FeNO levels. Conversely, allergen challenge decreased airway responsiveness to mannitol; geometric mean (95% CI) dose-response ratio was significantly higher after allergen exposure (57 mg/% FEV1 fall [27-121] to 147 mg/% FEV1 fall [57-379]; P = 0.03), and FeNO levels were not significantly increased (P = 0.054). Allergen-induced changes in airway responsiveness to direct and indirect stimuli are markedly different. The loss in responsiveness to mannitol is likely not explainable by a refractory state. The effect(s) of allergen exposure on airway responsiveness to indirect-acting stimuli require further investigation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Peri-adolescent asthma symptoms cause adult anxiety-related behavior and neurobiological processes in mice.

    PubMed

    Caulfield, Jasmine I; Caruso, Michael J; Michael, Kerry C; Bourne, Rebecca A; Chirichella, Nicole R; Klein, Laura C; Craig, Timothy; Bonneau, Robert H; August, Avery; Cavigelli, Sonia A

    2017-05-30

    Human and animal studies have shown that physical challenges and stressors during adolescence can have significant influences on behavioral and neurobiological development associated with internalizing disorders such as anxiety and depression. Given the prevalence of asthma during adolescence and increased rates of internalizing disorders in humans with asthma, we used a mouse model to test if and which symptoms of adolescent allergic asthma (airway inflammation or labored breathing) cause adult anxiety- and depression-related behavior and brain function. To mimic symptoms of allergic asthma in young BALB/cJ mice (postnatal days [P] 7-57; N=98), we induced lung inflammation with repeated intranasal administration of house dust mite extract (most common aeroallergen for humans) and bronchoconstriction with aerosolized methacholine (non-selective muscarinic receptor agonist). Three experimental groups, in addition to a control group, included: (1) "Airway inflammation only", allergen exposure 3 times/week, (2) "Labored breathing only", methacholine exposure once/week, and (3) "Airway inflammation+Labored breathing", allergen and methacholine exposure. Compared to controls, mice that experienced methacholine-induced labored breathing during adolescence displayed a ∼20% decrease in time on open arms of the elevated plus maze in early adulthood (P60), a ∼30% decrease in brainstem serotonin transporter (SERT) mRNA expression and a ∼50% increase in hippocampal serotonin receptor 1a (5Htr1a) and corticotropin releasing hormone receptor 1 (Crhr1) expression in adulthood (P75). This is the first evidence that experimentally-induced clinical symptoms of adolescent asthma alter adult anxiety-related behavior and brain function several weeks after completion of asthma manipulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The effect of an inhaled neutral endopeptidase inhibitor, thiorphan, on airway responses to neurokinin A in normal humans in vivo.

    PubMed

    Cheung, D; Bel, E H; Den Hartigh, J; Dijkman, J H; Sterk, P J

    1992-06-01

    Neuropeptides such as neurokinin A (NKA) have been proposed as important mediators of bronchoconstriction and airway hyperresponsiveness in asthma. Inhaled NKA causes bronchoconstriction in patients with asthma, but not in normal subjects. This is possibly due to the activity of an endogenous neuropeptide-degrading enzyme: neutral endopeptidase (NEP). We investigated whether a NEP-inhibitor, thiorphan, reveals bronchoconstriction to NKA or NKA-induced changes in airway responsiveness to methacholine in normal humans in vivo. Eight normal male subjects participated in a double-blind crossover study, using thiorphan as pretreatment to NKA challenge. Dose-response curves to inhaled NKA (8 to 1,000 micrograms/ml, 0.5 ml/dose) were recorded on 2 randomized days 1 wk apart, and methacholine tests were performed 48 h before and 24 h after the NKA challenge. Ten minutes prior to NKA challenge the subjects inhaled either thiorphan (2.5 mg/ml, 0.5 ml) or placebo. To detect a possible nonspecific effect of thiorphan, we investigated the effect of the same pretreatment with thiorphan or placebo on the dose-response curve to methacholine in a separate set of experiments. The response was measured by the flow from standardized partial expiratory flow-volume curves (V40p), expressed in percent fall from baseline. NKA log dose-response curves were analyzed using the area under the curve (AUC) and the response to the highest dose of 1,000 micrograms/ml (V40p,1000). The methacholine dose-response curves were characterized by their position (PC40V40p) and the maximal-response plateau (MV40p). Baseline V40p was not affected by either pretreatment (p greater than 0.15).(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Endogenous osteopontin promotes ozone-induced neutrophil recruitment to the lungs and airway hyperresponsiveness to methacholine

    PubMed Central

    Barreno, Ramon X.; Richards, Jeremy B.; Schneider, Daniel J.; Cromar, Kevin R.; Nadas, Arthur J.; Hernandez, Christopher B.; Hallberg, Lance M.; Price, Roger E.; Hashmi, Syed S.; Blackburn, Michael R.; Haque, Ikram U.

    2013-01-01

    Inhalation of ozone (O3), a common environmental pollutant, causes pulmonary injury, pulmonary inflammation, and airway hyperresponsiveness (AHR) in healthy individuals and exacerbates many of these same sequelae in individuals with preexisting lung disease. However, the mechanisms underlying these phenomena are poorly understood. Consequently, we sought to determine the contribution of osteopontin (OPN), a hormone and a pleiotropic cytokine, to the development of O3-induced pulmonary injury, pulmonary inflammation, and AHR. To that end, we examined indices of these aforementioned sequelae in mice genetically deficient in OPN and in wild-type, C57BL/6 mice 24 h following the cessation of an acute (3 h) exposure to filtered room air (air) or O3 (2 parts/million). In wild-type mice, O3 exposure increased bronchoalveolar lavage fluid (BALF) OPN, whereas immunohistochemical analysis demonstrated that there were no differences in the number of OPN-positive alveolar macrophages between air- and O3-exposed wild-type mice. O3 exposure also increased BALF epithelial cells, protein, and neutrophils in wild-type and OPN-deficient mice compared with genotype-matched, air-exposed controls. However, following O3 exposure, BALF neutrophils were significantly reduced in OPN-deficient compared with wild-type mice. When airway responsiveness to inhaled acetyl-β-methylcholine chloride (methacholine) was assessed using the forced oscillation technique, O3 exposure caused hyperresponsiveness to methacholine in the airways and lung parenchyma of wild-type mice, but not OPN-deficient mice. These results demonstrate that OPN is increased in the air spaces following acute exposure to O3 and functionally contributes to the development of O3-induced pulmonary inflammation and airway and lung parenchymal hyperresponsiveness to methacholine. PMID:23666750

  7. Airway hyperresponsiveness to methacholine in 7-year-old children: sensitivity and specificity for pediatric allergist-diagnosed asthma.

    PubMed

    Carlsten, Chris; Dimich-Ward, Helen; Ferguson, Alexander; Becker, Allan; Dybuncio, Anne; Chan-Yeung, Moira

    2011-02-01

    The operating characteristics of PC(20) values used as cut-offs to define airway hyperresponsiveness, as it informs the diagnosis of asthma in children, are poorly understood. We examine data from a unique cohort to inform this concern. Determine the sensitivity and specificity of incremental PC(20) cut-offs for allergist-diagnosed asthma. Airway reactivity at age 7 was assessed in children within a birth cohort at high risk for asthma; PC(20) for methacholine was determined by standard technique including interpolation. The diagnosis of asthma was considered by the pediatric allergist without knowledge of the methacholine challenge results. Sensitivity and specificity were calculated using a cross-tabulation of asthma diagnosis with incremental PC(20) cut-off values, from 1.0 to 8.0 mg/ml, and plotted as receiver operator characteristic (ROC) curves. The "optimal" cut-off was defined as that PC(20) conferring maximal value for sensitivity plus specificity while the "balanced" cut-off was defined as that PC(20) at which sensitivity and specificity were most equal. 70/348 children (20.1%) were diagnosed with asthma. The optimal and balanced PC(20) cut-offs, both for all children and for females alone, were respectively 3 mg/ml (sensitivity 80.0%, specificity 49.1%) and 2 mg/ml (sensitivity 63.1%, specificity 64.7%). For males alone, the "optimal" and "balanced" PC(20) cut-offs were both 2 mg/ml. For this cohort of 7-year olds at high risk for asthma, methacholine challenge testing using a cut-off value of PC(20) 3 mg/ml conferred the maximal sum of specificity plus sensitivity. For contexts in which higher sensitivity or specificity is desired, other cut-offs may be preferred. Copyright © 2011 Wiley-Liss, Inc.

  8. Effects of cigarette smoke on methacholine- and AMP-induced air trapping in asthmatics.

    PubMed

    Prieto, Luis; Palop, Julio; Llusar, Ruth; Herrera, Susana; Perez-Frances, Carmen; Lanuza, Amparo; Aguilar, Daniela

    2015-02-01

    Abstract Objective: No information is available on the effect of cigarette smoke on bronchoconstrictor-induced air trapping in asthma. The aim of this study was to evaluate the additional influence of smoking on methacholine- and adenosine 5'-monophosphate (AMP)-induced air trapping in subjects with asthma. Airway responsiveness to methacholine and AMP, bronchial (J'awNO) and alveolar (CANO) nitric oxide (NO) and exhaled breath condensate pH were measured in 68 adults (23 current smokers with asthma, 23 non-smokers with asthma and 22 current or former smokers with chronic obstructive pulmonary disease; COPD). The degree of air trapping induced by each bronchoconstrictor agent was expressed by the percent fall in forced vital capacity (FVC) at a 20% fall in forced expiratory volume in 1 s relative to FVC after saline inhalation (ΔFVC%). The ΔFVC% for AMP was higher in both smokers with asthma and patients with COPD than in non-smokers with asthma (p<0.001). By contrast, ΔFVC% for methacholine was similar in the three groups of subjects (p=0.69). In smokers with asthma, but not in the other two groups, there was a correlation between the residual volume/total lung capacity at baseline and the ΔFVC% induced by each bronchoconstrictor agent. Mean values for J'awNO were higher in non-smokers with asthma than in the other two groups (p<0.05). The results of this study suggest that factors underlying bronchoconstriction induced by indirect agonists are different in smokers and non-smokers with asthma. These observations might be clinically relevant, because triggers that frequently induce bronchial obstruction in the real world act by an indirect mechanism.

  9. Comparing the cardiovascular therapeutic indices of glycopyrronium and tiotropium in an integrated rat pharmacokinetic, pharmacodynamic and safety model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trifilieff, Alexandre; Ethell, Brian T.; Sykes, David A.

    Long acting inhaled muscarinic receptor antagonists, such as tiotropium, are widely used as bronchodilator therapy for chronic obstructive pulmonary disease (COPD). Although this class of compounds is generally considered to be safe and well tolerated in COPD patients the cardiovascular safety of tiotropium has recently been questioned. We describe a rat in vivo model that allows the concurrent assessment of muscarinic antagonist potency, bronchodilator efficacy and a potential for side effects, and we use this model to compare tiotropium with NVA237 (glycopyrronium bromide), a recently approved inhaled muscarinic antagonist for COPD. Anaesthetized Brown Norway rats were dosed intratracheally at 1more » or 6 h prior to receiving increasing doses of intravenous methacholine. Changes in airway resistance and cardiovascular function were recorded and therapeutic indices were calculated against the ED{sub 50} values for the inhibition of methacholine-induced bronchoconstriction. At both time points studied, greater therapeutic indices for hypotension and bradycardia were observed with glycopyrronium (19.5 and 28.5 fold at 1 h; > 200 fold at 6 h) than with tiotropium (1.5 and 4.2 fold at 1 h; 4.6 and 5.5 fold at 6 h). Pharmacokinetic, protein plasma binding and rat muscarinic receptor binding properties for both compounds were determined and used to generate an integrated model of systemic M{sub 2} muscarinic receptor occupancy, which predicted significantly higher M{sub 2} receptor blockade at ED{sub 50} doses with tiotropium than with glycopyrronium. In our preclinical model there was an improved safety profile for glycopyrronium when compared with tiotropium. - Highlights: • We use an in vivo rat model to study CV safety of inhaled muscarinic antagonists. • We integrate protein and receptor binding and PK of tiotropium and glycopyrrolate. • At ED{sub 50} doses for bronchoprotection we model systemic M{sub 2} receptor occupancy. • Glycopyrrolate demonstrates lower M{sub 2} occupancy at bronchoprotective doses. • Glycopyrrolate demonstrates an improved CV safety profile, versus tiotropium.« less

  10. Effect of alpha 2-adrenoceptor agonists on gastric pepsin and acid secretion in the rat.

    PubMed Central

    Tazi-Saad, K.; Chariot, J.; Del Tacca, M.; Rozé, C.

    1992-01-01

    1. The purpose of the present study was to analyze the effects of the alpha 2-adrenoceptor agonists clonidine, guanabenz, detomidine and medetomidine on pepsin secretion in conscious rats provided with gastric chronic fistula and to compare this with acid secretion. 2. Basal interdigestive gastric secretion, which is mainly neurally driven in the rat, and the secretion directly stimulated by the two main stimulants of chief cells, cholecystokinin octapeptide (CCK8) and methacholine, were studied. 3. Basal secretion of pepsin and acid was inhibited by all four drugs with comparable EC50S. 4. CCK-stimulated pepsin and acid secretion was less sensitive than basal pepsin and acid secretion to alpha 2-adrenoceptor inhibition. 5. Methacholine-stimulated pepsin and acid secretion was not changed by clonidine and guanabenz; methacholine-stimulated acid was even marginally increased by clonidine. 6. These results do not favour the presence of alpha 2-receptors on chief cells in the rat stomach. They rather suggest that pepsin inhibition by alpha 2-adrenoceptor agonists is indirect and due to central or peripheral inhibition of the discharge of nerve fibres activating pepsin secretion. PMID:1356566

  11. The association between reflux esophagitis and airway hyper-reactivity in patients with gastro-esophageal reflux.

    PubMed

    Karbasi, Ashraf; Ardestani, Mohammad Emami; Ghanei, Mostafa; Harandi, Ali Amini

    2013-06-01

    The association of gastro-esophageal reflux (GER) with a wide variety of pulmonary disorders was recognized. We aimed to evaluate the effect of GER-induced esophagitis on airway hyper-reactivity (AHR) in patients and the response to treatment. In this cohort study, 30 patients attending the gastrointestinal clinic of a university hospital with acid reflux symptoms were included. All patients were evaluated endoscopically and divided into case group with esophagitis and control group without any evidence of esophagitis. Spirometry and methacholine test were done in all patients before and after treatment of GER with pantoprazole 40 mg daily for six months. There was a significant difference in the rate of positive methacholine test between the cases (40%) and the controls (6.7%) prior to anti-acid therapy (P < 0.0001). After six months of treatment, the frequency of positive methacholine test diminished from 40 to 13.3% in the case group (P < 0.05) but did not change in the controls (P = 0.15). The presence of esophagitis due to GER would increase the AHR and treatment with pantoperazole would decrease AHR in patients with proved esophagitis and no previous history of asthma after six months.

  12. Cross-reactivity of Halogenated Platinum Salts | Science ...

    EPA Pesticide Factsheets

    Halogenated platinum (Pt) salts are well-known respiratory sensitizers associated with the development of asthma. People may be exposed to a variety of platinum compounds in different contexts (e.g. occupationally, automobile exhaust). Published reports suggest that sensitization to one Pt compound may result in hypersensitivity reactions to other Pt compounds. We investigated the potential for this type of cross-reactivity using a mouse model of Pt hypersensitivity. Mice were sensitized through application of 100 µL 1% ammonium hexachloroplatinate (AHCP) in DMSO to the shaved back on days 0, 5 and 19, and 25 µl to each ear on days 10, 11 and 12. Unsensitized mice received vehicle. On day 24, mice were challenged by intratracheal aspiration (IA) with saline or 100 µg AHCP or 100 g ammonium tetrachloroplatinate (ATCP) in saline. Before and immediately after dosing, airway responses were assessed using whole body plethysmography (WBP). On day 26, changes in ventilatory responses to methacholine (Mch) aerosol were assessed by WBP. All mice dosed with AHCP demonstrated significant increases in total serum IgE, suggesting the animals were sensitized. An immediate airway response (IAR) was observed in mice sensitized and challenged with AHCP. Dose-dependent increases in Mch responsiveness occurred in mice sensitized and challenged with AHCP. Bronchoalveolar lavage fluid (BALF) harvested from mice sensitized and challenged with AHCP contained an avera

  13. The association between reflux esophagitis and airway hyper-reactivity in patients with gastro-esophageal reflux

    PubMed Central

    Karbasi, Ashraf; Ardestani, Mohammad Emami; Ghanei, Mostafa; Harandi, Ali Amini

    2013-01-01

    Background: The association of gastro-esophageal reflux (GER) with a wide variety of pulmonary disorders was recognized. We aimed to evaluate the effect of GER-induced esophagitis on airway hyper-reactivity (AHR) in patients and the response to treatment. Materials and Methods: In this cohort study, 30 patients attending the gastrointestinal clinic of a university hospital with acid reflux symptoms were included. All patients were evaluated endoscopically and divided into case group with esophagitis and control group without any evidence of esophagitis. Spirometry and methacholine test were done in all patients before and after treatment of GER with pantoprazole 40 mg daily for six months. Results: There was a significant difference in the rate of positive methacholine test between the cases (40%) and the controls (6.7%) prior to anti-acid therapy (P < 0.0001). After six months of treatment, the frequency of positive methacholine test diminished from 40 to 13.3% in the case group (P < 0.05) but did not change in the controls (P = 0.15). Conclusion: The presence of esophagitis due to GER would increase the AHR and treatment with pantoperazole would decrease AHR in patients with proved esophagitis and no previous history of asthma after six months. PMID:24250694

  14. Increased airway reactivity in a neonatal mouse model of Continuous Positive Airway Pressure (CPAP)

    PubMed Central

    Mayer, Catherine A.; Martin, Richard J.; MacFarlane, Peter M.

    2015-01-01

    Background Continuous positive airway pressure (CPAP) is a primary form of respiratory support used in the intensive care of preterm infants, but its long-term effects on airway (AW) function are unknown. Methods We developed a neonatal mouse model of CPAP treatment to determine whether it modifies later AW reactivity. Un-anesthetized spontaneously breathing mice were fitted with a mask to deliver CPAP (6cmH2O, 3hrs/day) for 7 consecutive days starting at postnatal day 1. Airway reactivity to methacholine was assessed using the in vitro living lung slice preparation. Results One week of CPAP increased AW responsiveness to methacholine in male, but not female mice, compared to untreated control animals. The AW hyper-reactivity of male mice persisted for 2 weeks (at P21) after CPAP treatment ended. 4 days of CPAP, however, did not significantly increase AW reactivity. Females also exhibited AW hyper-reactivity at P21, suggesting a delayed response to early (7 days) CPAP treatment. The effects of 7 days of CPAP on hyper-reactivity to methacholine were unique to smaller AWs whereas larger ones were relatively unaffected. Conclusion These data may be important to our understanding of the potential long-term consequences of neonatal CPAP therapy used in the intensive care of preterm infants. PMID:25950451

  15. Bronchoprotection in conscious guinea pigs by budesonide and the NO-donating analogue, TPI 1020, alone and combined with tiotropium or formoterol

    PubMed Central

    Turner, DL; Ferrari, N; Ford, WR; Kidd, EJ; Nevin, B; Paquet, L; Renzi, P; Broadley, KJ

    2012-01-01

    BACKGROUND AND PURPOSE Inhaled corticosteroids, anticholinergics and β2-adrenoceptor agonists are frequently combined for treating chronic respiratory diseases. We examine the corticosteroid, budesonide, and novel NO-donating derivative, TPI 1020, against histamine- and methacholine-induced bronchoconstriction and whether they enhance the β2-adrenoceptor agonist formoterol or muscarinic antagonist tiotropium in conscious guinea pigs. EXPERIMENTAL APPROACH Dunkin-Hartley guinea pigs received inhaled histamine (3 mM) or methacholine (1.5 mM) and specific airway conductance (sGaw) was measured before and 15 or 75 min after treatment with budesonide, TPI 1020, tiotropium or formoterol alone or in combinations. KEY RESULTS Formoterol (0.7–10 µM) and budesonide (0.11–0.7 mM) inhibited histamine-induced bronchoconstriction and tiotropium (2–20 µM) inhibited methacholine-induced bronchoconstriction by up to 70.8 ± 16.6%, 34.9 ± 4.4% and 85.1 ± 14.3%, respectively. Formoterol (2.5 µM) or tiotropium (2 µM) alone exerted small non-significant bronchoprotection. However, when co-administered with TPI 1020 0.11 mM, which alone had no significant effect, there was significant inhibition of the bronchoconstriction (45.7 ± 12.2% and 79.7 ± 21.4%, respectively). Co-administering budesonide (0.11 mM) with tiotropium (2 µM), which alone had no effect, also significantly inhibited the methacholine bronchoconstriction (36.5 ± 13.0%), but there was no potentiation of formoterol against histamine. The NO scavenger, CPTIO, prevented the bronchoprotection by SNAPand TPI 1020. CONCLUSIONS AND IMPLICATIONS TPI 1020 potentiated the bronchoprotection by formoterol and tiotropium. Budesonide also enhanced the effects of tiotropium but not formoterol. Combination of TPI 1020 with a long-acting β2-adrenoceptor agonist or muscarinic receptor antagonist may therefore be a more potent therapeutic approach for treatment of chronic respiratory diseases. PMID:22563753

  16. Sulforaphane inhibits the Th2 immune response in ovalbumin-induced asthma.

    PubMed

    Park, Jun Ho; Kim, Jong Won; Lee, Chang-Min; Kim, Yeong Dae; Chung, Sung Woon; Jung, In Duk; Noh, Kyung Tae; Park, Jin Wook; Heo, Deok Rim; Shin, Yong Kyoo; Seo, Jong Keun; Park, Yeong-Min

    2012-05-01

    Sulforaphane (1-isothiocyanato-4-(methylsulfinyl)-butane), belonging to a family of natural compounds that are abundant in broccoli, has received significant therapeutic interest in recent years. However, the molecular basis of its effects remains to be elucidated. In this study, we attempt to determine whether sulforaphane regulates the inflammatory response in an ovalbumin (OVA)-induced murine asthma model. Mice were sensitized with OVA, treated with sulforaphane, and then challenged with OVA. Sulforaphane administration significantly alleviated the OVA-induced airway hyperresponsiveness to inhaled methacholine. Additionally, sulforaphane suppressed the increase in the levels of SOCS-3 and GATA-3 and IL-4 expression in the OVA-challenged mice. Collectively, our results demonstrate that sulforaphane regulates Th2 immune responses. This sutdy provides novel insights into the regulatory role of sulforaphane in allergen-induced Th2 inflammation and airway responses, which indicates its therapeutic potential for asthma and other allergic diseases.

  17. Effects of fenoterol on beta-adrenoceptor and muscarinic M2 receptor function in bovine tracheal smooth muscle.

    PubMed

    De Vries, B; Roffel, A F; Kooistra, J M; Meurs, H; Zaagsma, J

    2001-05-11

    Prolonged (18 h) incubation of isolated bovine tracheal smooth muscle with the beta2-adrenoceptor agonist fenoterol (10 microM) induced desensitization of isoprenaline-induced adenylyl cyclase activity in bovine tracheal smooth muscle membranes, characterized by a 25% decrease in maximal effect (Emax) (P < 0.05), while the sensitivity to the agonist (pEC50) was unchanged. The Emax value of isoprenaline-induced smooth muscle relaxation of submaximal methacholine-induced contractile tones was similarly reduced by about 25% (P < 0.001), while the pEC50 value was diminished by 1.0 log unit (P < 0.001). As determined by 30 microM gallamine-induced muscarinic M2 receptor antagonism and pertussis toxin-induced inactivation of G(i alpha), muscarinic M2 receptor-mediated functional antagonism did not play a role in isoprenaline-induced relaxation of bovine tracheal smooth muscle contracted by methacholine, both in control and in 18-h fenoterol-treated tissue. In line with these observations, we found no enhanced muscarinic M2 receptor-mediated inhibition of 1 microM forskolin-stimulated adenylyl cyclase activity after 18-h fenoterol treatment. These data indicate that 18-h fenoterol treatment of bovine tracheal smooth muscle induces beta2-adrenoceptor desensitization and reduced functional antagonism of methacholine-induced contraction by beta-adrenoceptor agonists, without a change of muscarinic M2 receptor function.

  18. Maternal asthma and idiopathic preterm labor.

    PubMed

    Kramer, M S; Coates, A L; Michoud, M C; Dagenais, S; Moshonas, D; Davis, G M; Hamilton, E F; Nuwayhid, B; Joshi, A K; Papageorgiou, A

    1995-11-15

    Previous studies suggest that women with asthma are at increased risk of preterm birth. Moreover, drugs (especially beta-agonists) used to treat asthma are also used to treat preterm labor. The authors carried out a case-control study of 555 women from three hospital centers with idiopathic preterm labor (< 37 weeks), including two overlapping (i.e., non-mutually exclusive) subsamples: cases with early idiopathic preterm labor (< 34 weeks) and cases with idiopathic recurrent preterm labor (< 37 weeks plus a previous history of preterm delivery or second-trimester miscarriage). Controls were matched to cases according to race and smoking history prior to and during pregnancy. All subjects responded in person to questions about atopic, respiratory, obstetric, and sociodemographic histories. Subjects in the early and recurrent preterm labor subsamples were also asked to undergo spirometric testing with methacholine challenge 6-12 weeks after delivery. Cases were significantly more likely to report histories of asthma symptoms and physician-diagnosed asthma (matched odds ratios of 2-3) than controls, particularly those cases with recurrent preterm labor. No significant associations were observed, however, with methacholine responsiveness. These results could not be explained by residual confounding by smoking or other variables, nor by selective recall of asthma symptoms and histories by cases. Women with asthma are at increased risk of idiopathic preterm labor. The fact that no such association was seen with methacholine responsiveness suggests that nonatopic, noncholinergic mechanisms may link bronchial and uterine smooth muscle lability.

  19. Smooth muscle in human bronchi is disposed to resist airway distension.

    PubMed

    Gazzola, Morgan; Henry, Cyndi; Couture, Christian; Marsolais, David; King, Gregory G; Fredberg, Jeffrey J; Bossé, Ynuk

    2016-07-15

    Studying airway smooth muscle (ASM) in conditions that emulate the in vivo environment within which the bronchi normally operate may provide important clues regarding its elusive physiological function. The present study examines the effect of lengthening and shortening of ASM on tension development in human bronchial segments. ASM from each bronchial segment was set at a length approximating in situ length (Linsitu). Bronchial tension was then measured during a slow cyclical strain (0.004Hz, from 0.7Linsitu to 1.3Linsitu) in the relaxed state and at graded levels of activation by methacholine. In all cases, tension was greater at longer ASM lengths, and greater during lengthening than shortening. The threshold of methacholine concentration that was required for ASM to account for bronchial tension across the entire range of ASM lengths tested was on average smaller by 2.8 logs during lengthening than during shortening. The length-dependency of ASM tension, together with this lower threshold of methacholine concentration during lengthening versus shortening, suggest that ASM has a greater ability to resist airway dilation during lung inflation than to narrow the airways during lung deflation. More than serving to narrow the airway, as has long been thought, these data suggest that the main function of ASM contraction is to limit airway wall distension during lung inflation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effects of tidal volume and methacholine on low-frequency total respiratory impedance in dogs.

    PubMed

    Lutchen, K R; Jackson, A C

    1990-05-01

    The frequency dependence of respiratory impedance (Zrs) from 0.125 to 4 Hz (Hantos et al., J. Appl. Physiol. 60: 123-132, 1986) may reflect inhomogeneous parallel time constants or the inherent viscoelastic properties of the respiratory tissues. However, studies on the lung alone or chest wall alone indicate that their impedance features are also dependent on the tidal volumes (VT) of the forced oscillations. The goals of this study were 1) to identify how total Zrs at lower frequencies measured with random noise (RN) compared with that measure with larger VT, 2) to identify how Zrs measured with RN is affected by bronchoconstriction, and 3) to identify the impact of using linear models for analyzing such data. We measured Zrs in six healthy dogs by use of a RN technique from 0.125 to 4 Hz or with a ventilator from 0.125 to 0.75 Hz with VT from 50 to 250 ml. Then methacholine was administered and the RN was repeated. Two linear models were fit to each separate set of data. Both models assume uniform airways leading to viscoelastic tissues. For healthy dogs, the respiratory resistance (Rrs) decreased with frequency, with most of the decrease occurring from 0.125 to 0.375 Hz. Significant VT dependence of Rrs was seen only at these lower frequencies, with Rrs higher as VT decreased. The respiratory compliance (Crs) was dependent on VT in a similar fashion at all frequencies, with Crs decreasing as VT decreased. Both linear models fit the data well at all VT, but the viscoelastic parameters of each model were very sensitive to VT. After methacholine, the minimum Rrs increased as did the total drop with frequency. Nevertheless the same models fit the data well, and both the airways and tissue parameters were altered after methacholine. We conclude that inferences based only on low-frequency Zrs data are problematic because of the effects of VT on such data (and subsequent linear modeling of it) and the apparent inability of such data to differentiate parallel inhomogeneities from normal viscoelastic properties of the respiratory tissues.

  1. Effects of methacholine infusion on desflurane pharmacokinetics in piglets☆

    PubMed Central

    Kozian, Alf; Kretzschmar, Moritz; Baumgardner, James E.; Schreiber, Jens; Hedenstierna, Göran; Larsson, Anders; Hachenberg, Thomas; Schilling, Thomas

    2015-01-01

    The data of a corresponding animal experiment demonstrates that nebulized methacholine (MCh) induced severe bronchoconstriction and significant inhomogeneous ventilation and pulmonary perfusion (V̇A/Q̇) distribution in pigs, which is similar to findings in human asthma. The inhalation of MCh induced bronchoconstriction and delayed both uptake and elimination of desflurane (Kretzschmar et al., 2015) [1]. The objective of the present data is to determine V̇A/Q̇ matching by Multiple Inert Gas Elimination Technique (MIGET) in piglets before and during methacholine- (MCh-) induced bronchoconstriction, induced by MCh infusion, and to assess the blood concentration profiles for desflurane (DES) by Micropore Membrane Inlet Mass Spectrometry (MMIMS). Healthy piglets (n=4) under general anesthesia were instrumented with arterial, central venous, and pulmonary artery lines. The airway was secured via median tracheostomy with an endotracheal tube, and animals were mechanically ventilated with intermittent positive pressure ventilation (IPPV) with a FiO2 of 0.4, tidal volume (VT)=10 ml/kg and PEEP of 5cmH2O using an open system. The determination of V.A/Q. was done by MIGET: before desflurane application and at plateau in both healthy state and during MCh infusion. Arterial blood was sampled at 0, 1, 2, 5, 10, 20, and 30 min during wash-in and washout, respectively. Bronchoconstriction was established by MCH infusion aiming at doubling the peak airway pressure, after which wash-in and washout of the anesthetic gas was repeated. Anesthesia gas concentrations were measured by MMIMS. Data were analyzed by ANOVA, paired t-test, and by nonparametric Friedman׳s test and Wilcoxon׳s matched pairs test. We measured airway pressures, pulmonary resistance, and mean paO2 as well as hemodynamic variables in all pigs before desflurane application and at plateau in both healthy state and during methacholine administration by infusion. By MIGET, fractional alveolar ventilation and pulmonary perfusion in relation to the V.A/Q. compartments, data of logSDQ̇ and logSDV̇ (the second moments describing global dispersion, i.e. heterogeneity of distribution) were estimated prior to and after MCh infusion. The uptake and elimination of desflurane was determined by MMIMS. PMID:26702425

  2. Pharmacological enhancement of leg and muscle microvascular blood flow does not augment anabolic responses in skeletal muscle of young men under fed conditions.

    PubMed

    Phillips, Bethan E; Atherton, Philip J; Varadhan, Krishna; Wilkinson, Daniel J; Limb, Marie; Selby, Anna L; Rennie, Michael J; Smith, Kenneth; Williams, John P

    2014-01-15

    Skeletal muscle anabolism associated with postprandial plasma aminoacidemia and insulinemia is contingent upon amino acids (AA) and insulin crossing the microcirculation-myocyte interface. In this study, we hypothesized that increasing muscle microvascular blood volume (flow) would enhance fed-state anabolic responses in muscle protein turnover. We studied 10 young men (23.2 ± 2.1 yr) under postabsorptive and fed [iv Glamin (∼10 g AA), glucose ∼7.5 mmol/l] conditions. Methacholine was infused into the femoral artery of one leg to determine, via bilateral comparison, the effects of feeding alone vs. feeding plus pharmacological vasodilation. We measured leg blood flow (LBF; femoral artery) by Doppler ultrasound, muscle microvascular blood volume (MBV) by contrast-enhanced ultrasound (CEUS), muscle protein synthesis (MPS) and breakdown (MPB; a-v balance modeling), and net protein balance (NPB) using [1,2-(13)C2]leucine and [(2)H5]phenylalanine tracers via gas chromatography-mass spectrometry (GC-MS). Indexes of anabolic signaling/endothelial activation (e.g., Akt/mTORC1/NOS) were assessed using immunoblotting techniques. Under fed conditions, LBF (+12 ± 5%, P < 0.05), MBV (+25 ± 10%, P < 0.05), and MPS (+129 ± 33%, P < 0.05) increased. Infusion of methacholine further enhanced LBF (+126 ± 12%, P < 0.05) and MBV (+79 ± 30%, P < 0.05). Despite these radically different blood flow conditions, neither increases in MPS in response to feeding (0.04 ± 0.004 vs. 0.08 ± 0.01%/h, P < 0.05) nor improvements in NPB (-4.4 ± 2.4 vs. 16.4 ± 5.7 nmol Phe·100 ml leg(-1)·min(-1), P < 0.05) were affected by methacholine infusion (MPS 0.07 ± 0.01%/h; NPB 24.0 ± 7.7 nmol Phe·100 ml leg(-1)·min(-1)), whereas MPB was unaltered by either feeding or infusion of methacholine. Thus, enhancing LBF/MBV above that occurring naturally with feeding alone does not improve muscle anabolism.

  3. Biogenic-Anthropogenic Interactions in Secondary Organic Aerosol Formation and Health Effects of Atmospheric Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Ye, Jianhuai

    Secondary organic aerosol (SOA) formed from oxidation of volatile organic compounds (VOCs), comprises a major fraction of atmospheric submicron particulate matter, which is crucial for global climate change and human health. While biogenic VOCs are naturally emitted and cannot be directly controlled, field measurements and satellite observations have shown that biogenic SOA (BSOA) formation correlates well with anthropogenic pollutants and may be anthropogenically controlled. In this work, the formation of the "anthropogenically controllable BSOA" was examined. BSOA from alpha-pinene ozonolysis was investigated in the presence of laboratory-generated or ambient organic aerosol such as Toronto ambient particles. It is shown that SOA was not equally miscible with all organic species. Aerosol mixing thermodynamics in the atmosphere is composition dependent. Based on laboratory observations, an empirical framework using bulk elemental ratios was developed to predict atmospheric organic miscibility and SOA yield enhancements. Besides organic aerosol, interactions between BSOA formation and SO2 was also examined. Synergistic effects were observed between BSOA formation and SO2 oxidation through Criegee and peroxide chemistry under atmospherically relevant RH conditions. In addition to the physicochemical properties of SOA, health impacts of SOA were examined. An atmospheric simulation reactor (ASR) was developed to investigate the health effects of air pollutants by permitting controlled chronic in vivo exposure of mice to combine particulate and gaseous pollutants at 'real-life' concentrations. Results show that daily exposure to SOA from naphthalene photooxidation led to increased airway hyperresponsiveness (AHR) to methacholine in a dose-dependent manner. Multi-pollutant exposures with ozone and/or NO2 in conjunction with a sub-toxic concentration of SOA resulted in additive effects on AHR to methacholine. Inflammatory cell recruitment to the airways was not observed in any of the exposure conditions, indicating the increased AHR was not associated with airway inflammation and may occur through other mechanisms.

  4. Effects of ASM-024, a modulator of acetylcholine receptor function, on airway responsiveness and allergen-induced responses in patients with mild asthma.

    PubMed

    Boulet, Louis-Philippe; Gauvreau, Gail M; Cockcroft, Donald W; Davis, Beth; Vachon, Luc; Cormier, Yvon; O'Byrne, Paul M

    2015-01-01

    To evaluate the safety, tolerability and clinical activity of ASM-024, a new cholinergic compound with dual nicotinic and muscarinic activity, in mild allergic asthma. The present study involved 24 stable, mild allergic asthmatic subjects. In a cross-over design, ASM-024 (50 mg or 200 mg) or placebo were administered once daily by nebulization over three periods of nine consecutive days separated by a three-week washout. The effect of each treatment on the forced expiratory volume in 1 s (FEV1), provocative concentration of methacholine causing a 20% decline in FEV1 (PC20), early and late asthmatic responses, and allergen-induced inflammation were measured. Seventeen subjects completed the study. During treatment with ASM-024 at 50 mg or 200 mg, the PC20 value increased respectively from a mean (± SD) 2.56±3.86 mg/mL to 4.11 mg/mL (P=0.007), and from 3.12±4.37 mg/mL to 5.23 mg/mL (P=0.005) (no change with placebo). On day 7 (day preceding allergen challenge), postdosing FEV1 increased by 2.0% with 50 mg (P=0.005) and 1.9% with 200 mg (P=0.008) (placebo -1.1%). ASM-24 had no inhibitory effect on early and late asthmatic responses, nor on sputum eosinophil or neutrophil levels. ASM-024 induced no serious adverse events, but caused cough in 22% and 48% of the subjects with 50 mg and 200 mg, respectively, compared with 10% who were on placebo. ASM-024 did not inhibit allergen-induced asthmatic response and related airway inflammation, but reduced methacholine airway responsiveness and slightly improved lung function. The mechanism by which ASM-024 improves these outcomes requires further study.

  5. Methacholine challenge test: diagnostic characteristics in asthmatic patients receiving controller medications.

    PubMed

    Sumino, Kaharu; Sugar, Elizabeth A; Irvin, Charles G; Kaminsky, David A; Shade, Dave; Wei, Christine Y; Holbrook, Janet T; Wise, Robert A; Castro, Mario

    2012-07-01

    The methacholine challenge test (MCT) is commonly used to assess airway hyperresponsiveness, but the diagnostic characteristics have not been well studied in asthmatic patients receiving controller medications after the use of high-potency inhaled corticosteroids became common. We investigated the ability of the MCT to differentiate participants with a physician's diagnosis of asthma from nonasthmatic participants. We conducted a cohort-control study in asthmatic participants (n= 126) who were receiving regular controller medications and nonasthmatic control participants (n= 93) to evaluate the sensitivity and specificity of the MCT. The overall sensitivity was 77% and the specificity was 96% with a threshold PC(20) (the provocative concentration of methacholine that results in a 20% drop in FEV(1)) of 8 mg/mL. The sensitivity was significantly lower in white than in African American participants (69% vs 95%, P= .015) and higher in atopic compared with nonatopic (82% vs 52%, P= .005). Increasing the PC(20) threshold from 8 to 16 mg/mL did not noticeably improve the performance characteristics of the test. African American race, presence of atopy, and lower percent predicted FEV(1) were associated with a positive test result. The utility of the MCT to rule out a diagnosis of asthma depends on racial and atopic characteristics. Clinicians should take into account the reduced sensitivity of the MCT in white and nonatopic asthmatic patients when using this test for the diagnosis of asthma. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  6. Clinical Implications of Oscillatory Lung Function during Methacholine Bronchoprovocation Testing of Preschool Children

    PubMed Central

    Choi, Sun Hee; Sheen, Youn Ho; Kim, Mi Ae; Baek, Ji Hyeon; Baek, Hey Sung; Lee, Seung Jin; Yoon, Jung Won; Rha, Yeong Ho

    2017-01-01

    Objective To investigate the repeatability and safety of measuring impulse oscillation system (IOS) parameters and the point of wheezing during bronchoprovocation testing of preschool children. Methods Two sets of methacholine challenge were conducted in 36 asthma children. The test was discontinued if there was a significant change in reactance (Xrs5) and resistance (Rrs5) at 5 Hz (Condition 1) or respiratory distress due to airway obstruction (Condition 2). The repeatability of PC80_Xrs5, PC30_Rrs5, and wheezing (PCw) was assessed. The changes in Z-scores and SD-indexes from prebaseline (before testing) to postbaseline (after bronchodilator) were determined. Results For PC30_Rrs5, PC80_Xrs5, and PCw for subjects, PC80_Xrs5 showed the highest repeatability. Fifteen of 70 tests met Condition 2. The changes from pre- and postbaseline values varied significantly for Rrs5 and Xrs5. Excluding subjects with Z-scores higher than 2SD, we were able to detect 97.1% of bronchial hyperresponsiveness during methacholine challenge based on the change in Rrs5 or Xrs5. A change in IOS parameters was associated with wheezing at all frequencies. Conclusion Xrs5 and Rrs5 have repeatability comparable with FEV1, and Xrs5 is more reliable than Rrs5. Clinicians can safely perform a challenge test by measuring the changes in Rrs5, Xrs5, and Z-scores from the prebaseline values. PMID:28740854

  7. Airway responsiveness to methacholine, respiratory symptoms, and dust exposure levels in grain and flour mill workers in eastern France.

    PubMed

    Massin, N; Bohadana, A B; Wild, P; Kolopp-Sarda, M N; Toamain, J P

    1995-06-01

    Our goal was to assess the relation between dust exposure levels and the respiratory health status of workers in grain and flour mills in eastern France. We studied 118 male workers from 11 mills and 164 unexposed male controls. Dust concentration was measured by personal sampling methods. Outcome variables included respiratory symptoms, routine pulmonary function tests, and indices of airway responsiveness to methacholine. A great within- and between-area variability of inhalable dust concentration was found in all mills. A dose-response relationship was observed between dust exposure levels and chronic respiratory symptoms, suggesting that exposure to grain and flour dust may lead to chronic bronchitis. A significant relation was found between dust exposure and airway hyper-responsiveness; this finding is important since it has been hypothesized that the latter abnormality may lead to or be a predisposing factor in subsequent chronic, irreversible airflow obstruction.

  8. Structural and functional localization of airway effects from episodic exposure of infant monkeys to allergen and/or ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joad, Jesse P.; Kott, Kayleen S.; Bric, John M.

    2006-08-01

    Both allergen and ozone exposure increase asthma symptoms and airway responsiveness in children. Little is known about how these inhalants may differentially modify airway responsiveness in large proximal as compared to small distal airways. We evaluated whether bronchi and respiratory bronchioles from infant monkeys exposed episodically to allergen and/or ozone differentially develop intrinsic hyperresponsiveness to methacholine and whether eosinophils and/or pulmonary neuroendocrine cells play a role. Infant monkeys were exposed episodically for 5 months to: (1) filtered air, (2) aerosolized house dust mite allergen, (3) ozone 0.5 ppm, or (4) house dust mite allergen + ozone. Studying the function/structure relationshipmore » of the same lung slices, we evaluated methacholine airway responsiveness and histology of bronchi and respiratory bronchioles. In bronchi, intrinsic responsiveness was increased by allergen exposure, an effect reduced by bombesin antagonist. In respiratory bronchioles, intrinsic airway responsiveness was increased by allergen + ozone exposure. Eosinophils were increased by allergen and allergen + ozone exposure in bronchi and by allergen exposure in respiratory bronchioles. In both airways, exposure to allergen + ozone resulted in fewer tissue eosinophils than did allergen exposure alone. In bronchi, but not in respiratory bronchioles, the number of eosinophils and neuroendocrine cells correlated with airway responsiveness. We conclude that episodically exposing infant monkeys to house dust mite allergen with or without ozone increased intrinsic airway responsiveness to methacholine in bronchi differently than in respiratory bronchioles. In bronchi, eosinophils and neuroendocrine cells may play a role in the development of airway hyperresponsiveness.« less

  9. Cardiorespiratory screening in elite endurance sports athletes: the Quebec study.

    PubMed

    Turmel, Julie; Poirier, Paul; Bougault, Valérie; Blouin, Evelyne; Belzile, Mireille; Boulet, Louis-Philippe

    2012-09-01

    Cardiorespiratory disorders are common in athletes. However, these conditions are often underdiagnosed, which potentially results in impaired performance and increased health risks. The aim of this study was to evaluate, in a research setting, the prevalence of cardiorespiratory disorders in athletes in order to determine the potential value of a screening program. One hundred thirty-three athletes were studied. Each subject underwent a physical examination. A eucapnic voluntary hyperventilation (EVH) test and a methacholine inhalation test were performed to confirm the diagnosis of asthma. A cardiovascular evaluation was also performed, including maximal exercise test with electrocardiogram, 24-hour ambulatory blood pressure monitoring, 24-hour Holter monitoring, and blood sampling. Seventy-four (56%) athletes had airway hyperresponsiveness to EVH or the methacholine inhalation test. Among those with airway hyperresponsiveness, 45 (61%) athletes were only hyperresponsive to EVH, and 10 (14%) were only hyperresponsive to the methacholine inhalation test (using the criteria of a PC20 ≤ 4 mg/mL). Thirty-two (24%) athletes had a known diagnosis of asthma, while 34 (26%) athletes received a new asthma diagnosis. Ninety-seven (73%) athletes were sensitized to common airborne allergens. Forty-seven (35%) athletes completed the cardiovascular evaluation. Three (6%) and 7 (15%) athletes had a previous or new diagnosis of cardiovascular disease, respectively. Resting systemic hypertension was documented in 2 (4%) athletes and exaggerated blood pressure response to exercise was found in 12 (26%) athletes. This cardiorespiratory screening data set in athletes showed a high prevalence of exercise-induced asthma and exercise hypertension, which in many cases were not previously diagnosed.

  10. Symptoms, airway responsiveness, and exposure to dust in beech and oak wood workers

    PubMed Central

    Bohadana, A.; Massin, N.; Wild, P.; Toamain, J.; Engel, S.; Goutet, P.

    2000-01-01

    OBJECTIVES—To investigate the relation between levels of cumulative exposure to wood dust and respiratory symptoms and the occurrence of bronchial hyperresponsiveness among beech and oak workers.
METHODS—114 Male woodworkers from five furniture factories and 13 male unexposed controls were examined. The unexposed control group was supplemented by 200 male historical controls. Statistical analyses were performed excluding and including the historical controls. Dust concentration was measured by personal sampling methods. Cumulative exposure to dust was calculated for each woodworker by multiplying the duration of the work by the intensity of exposure (years.mg/m3). Bronchial hyperresponsiveness was assessed by the methacholine bronchial challenge test. Subjects were labelled methacholine bronchial challenge positive if forced expiratory volume in 1 second (FEV1) fell by ⩾20%. The linear dose-response slope was calculated as the last dose divided by the total dose given.
RESULTS—443 Dust samples were collected. The median cumulative exposure to dust was 110 years.mg/m3 with lower and upper quartiles at 70 and 160 years.mg/m3 Overall, no declines in FEV1 and forced vital capacity (FVC) were found with increasing exposures. A dose-response relation was found between intensity of exposure on the one hand, and sore throat, increased prevalence of positive methacholine bronchial challenge tests, and steeper dose-response slope, on the other.
CONCLUSION—Exposure to oak and beech dust may lead to the development of sore throat and bronchial hyperresponsiveness.


Keywords: bronchial hyperresponsiveness; wood dust; beech; oak PMID:10810114

  11. Airway hyperresponsiveness, peak flow variability and inflammatory markers in non-asthmatic subjects with respiratory infections.

    PubMed

    Björnsson, Eythór; Lúdvíksdóttir, Dóra; Hedenström, Hans; Eriksson, Britt-Marie; Högman, Marieann; Venge, Per; Janson, Christer

    2007-07-01

    The aim of this study was to characterise non-asthmatic subjects with asthma-like symptoms during a common cold, particularly in relation to airway hyperresponsiveness (AHR). Subjects with acute respiratory infections and a group of controls (n = 20 + 20), age 20-65 years, underwent bronchial provocations with methacholine, adenosine and cold air. All were non-smokers and had no history of asthma or heart disease. Those with infection had asthma-like symptoms (>2). Measurements of exhaled nitric oxide (eNO), serum levels of eosinophil cationic protein (ECP), eosinophil peroxidase, myeloperoxidase and human neutrophil lipocalin were made at each provocation. A 17-day symptom and peak flow diary was calculated. No differences between the two groups were found, regarding responsiveness to methacholine, adenosine or cold air challenge, as well as the inflammatory markers measured. In the infected group, the mean (standard deviation) ECP was higher in those with AHR to methacholine or cold air [15.7 (6.5) and 11.4 (4.2) microg/L, respectively; P < 0.05]; furthermore, eNO was higher in the infected group [116 (54) and 88 (52) nL/min, respectively; P = 0.055]. The infected group had, at all times, more symptoms and higher peak flow, with a decrease in the symptoms (P = 0.02) and a tendency to change in peak flow variation (P = 0.06). AHR does not seem to be the main cause of asthma-like symptoms in adults with infectious wheezing. Peak flow variation and symptom prevalence during the post-infection period may imply airway pathology different from AHR.

  12. Fractal Geometry Enables Classification of Different Lung Morphologies in a Model of Experimental Asthma

    NASA Astrophysics Data System (ADS)

    Obert, Martin; Hagner, Stefanie; Krombach, Gabriele A.; Inan, Selcuk; Renz, Harald

    2015-06-01

    Animal models represent the basis of our current understanding of the pathophysiology of asthma and are of central importance in the preclinical development of drug therapies. The characterization of irregular lung shapes is a major issue in radiological imaging of mice in these models. The aim of this study was to find out whether differences in lung morphology can be described by fractal geometry. Healthy and asthmatic mouse groups, before and after an acute asthma attack induced by methacholine, were studied. In vivo flat-panel-based high-resolution Computed Tomography (CT) was used for mice's thorax imaging. The digital image data of the mice's lungs were segmented from the surrounding tissue. After that, the lungs were divided by image gray-level thresholds into two additional subsets. One subset contained basically the air transporting bronchial system. The other subset corresponds mainly to the blood vessel system. We estimated the fractal dimension of all sets of the different mouse groups using the mass radius relation (mrr). We found that the air transporting subset of the bronchial lung tissue enables a complete and significant differentiation between all four mouse groups (mean D of control mice before methacholine treatment: 2.64 ± 0.06; after treatment: 2.76 ± 0.03; asthma mice before methacholine treatment: 2.37 ± 0.16; after treatment: 2.71 ± 0.03; p < 0.05). We conclude that the concept of fractal geometry allows a well-defined, quantitative numerical and objective differentiation of lung shapes — applicable most likely also in human asthma diagnostics.

  13. Ocimum basilicum affects tracheal responsiveness, lung inflammatory cells and oxidant-antioxidant biomarkers in sensitized rats.

    PubMed

    Eftekhar, Naeima; Moghimi, Ali; Hossein Boskabady, Mohammad; Kaveh, Mahsa; Shakeri, Farzaneh

    2018-04-23

    The anti-inflammatory and antioxidant effects of Ocimum basilicum (O. basilicum) was shown previously. In the present study, the effect of O. basilicum on tracheal responsiveness (TR) to methacholine and ovalbumin (OVA), bronchoalveolar lavage fluid (BALF) levels of oxidant-antioxidant biomarkers as well as total and differential white blood cell (WBC) in sensitized rats was examined. Six groups of rats including control (group C), sensitized rats to OVA (group S), S groups treated with three concentrations of O. basilicum (0.75, 1.50, and 3.00 mg/ml) and one concentration of dexamethasone (1.25 μg/ml) (n = 8 for all groups) were studied. TR to methacholine and OVA, total WBC count, percentages of eosinophils, monocytes, neutrophils, and levels of oxidant biomarkers were significantly increased but other measured parameters were significantly decreased in group S compared to group C. TR to methacholine and OVA, percentages of eosinophils, monocytes, neutrophils, and levels of oxidant biomarkers were significantly decreased but lymphocytes and antioxidant biomarkers were significantly increased in S groups treated with dexamethasone and at least two higher concentrations of the extract compared to group S. Total WBC count was also decreased in treated S groups with dexamethasone and high extract concentration. The effect of extract on most measured parameters was significantly lower than dexamethasone treatment. The effects of two higher concentrations of the extract on most variables were significantly higher than the effect of low extract concentration. These results showed the concentration-dependent effect of O. basilicum on tracheal responses, lung inflammatory cells, and oxidant-antioxidant parameters in sensitized rats.

  14. Evaluation of impulse oscillometry during bronchial challenge testing in children.

    PubMed

    Bailly, Carole; Crenesse, Dominique; Albertini, Marc

    2011-12-01

    The impulse oscillation system (IOS) allows easy measurement of respiratory system impedance (Zrs). The aim of this retrospective study was to evaluate the accuracy of IOS parameters obtained during methacholine challenge by comparison with "the gold standard" forced expiratory volume in the first second (FEV1). Measurements of FEV1 and resistances at 5 and 20 Hz, reactance at 5 Hz, impedance at 5 Hz and resonant frequency were performed in 227 children with suspected asthma, before and during methacholine challenge. Data were analyzed in the overall population and in three subgroups according to the final diagnosis: asthma (n = 72), chronic cough and nonspecific respiratory symptoms (n = 122), allergic rhinitis (n = 33). All IOS parameters changed significantly during the tests but only changes in X5 were significantly different between responders and nonresponders. Moreover, changes in IOS parameters were not correlated with changes in FEV1 apart from a weak correlation for X5. The receiver operating characteristic (ROC) curve for changes in X5 (to predict a 20% decrease in FEV1 showed a best decision level for a 50% decrease in X5 with a sensitivity of 36% and a specificity of 85%. Results were not different in the asthma group. The accuracy of measurements by IOS during methacholine bronchial challenge in children was not suitable when compared with FEV1 . It could be assumed that spirometry and IOS, while both providing indirect indices of airway patency, are exploring different mechanisms, each with its own methodological potentials and limitations. Copyright © 2011 Wiley Periodicals, Inc.

  15. Effect of interleukin 13 on bronchial hyperresponsiveness and the bronchoprotective effect of beta-adrenergic bronchodilators and corticosteroids.

    PubMed

    Townley, Robert G; Gendapodi, Pradeep R; Qutna, Nidal; Evans, Joseph; Romero, Francisco A; Abel, Peter

    2009-03-01

    Fluticasone affects airway bronchial hyperresponsiveness (BHR) and enhances bronchodilation and bronchoprotection induced by beta-adrenergic agonists. Interleukin 13 (IL-13), however, induces BHR. To test the hypotheses that fluticasone inhibits BHR after either allergen sensitization or IL-13 administration and that fluticasone restores the bronchodilation and bronchoprotective effects of beta-agonists. The BHR to methacholine induced by IL-13 or ovalbumin was determined in BALB/c mice, and the provocation concentration of methacholine that caused an increase in enhanced pause in expiration of 200% (PC200) was calculated. We compared this response to methacholine in control mice with the response after treatment with IL-13 receptor alpha 2-IgGFc fusion protein (IL-13R alpha 2) (an IL-13 blocker), fluticasone, albuterol, salmeterol, fluticasone-albuterol, and fluticasone-salmeterol. IL-13R alpha 2 (PC200, 17.59) completely blocks the BHR-induced effects of IL-13 (PC200, 7.28; P < .005). After IL-13 therapy (PC200, 5.90; P < .005), 1 mg/mL of albuterol (PC200, 3.38; P = .33), fluticasone (PC200, 4.59; P = .40), or fluticasone plus 50 microg/mL of salmeterol (PC200, 5.59; P = .11) showed no significant bronchoprotection. In nonsensitized mice, fluticasone plus 0.25 microg/mL of salmeterol (PC200, 25.90; P < .005) showed significantly greater bronchoprotection than did salmeterol alone (PC200, 11.08; P = .26). Fluticasone plus 0.3 mg/mL of albuterol and fluticasone plus 1 mg/mL of albuterol were significantly more protective than was fluticasone or albuterol alone in ovalbumin-sensitized mice. The protective effects of fluticasone, beta-agonists, and fluticasone plus beta-agonists are significantly less in IL-13-treated mice than in nonsensitized or ovalbumin-sensitized mice.

  16. Differences and similarities between bronchopulmonary dysplasia and asthma in schoolchildren.

    PubMed

    Nordlund, Björn; James, Anna; Ebersjö, Christina; Hedlin, Gunilla; Broström, Eva B

    2017-09-01

    The long-term respiratory characteristics of ex-preterm children with bronchopulmonary dysplasia (BPD) are not established. The objective of this study was to describe hallmarks of BPD at school age in comparison to children with atopic asthma. This study was a cross-sectional descriptive comparative study in a hospital-based setting. Thirty schoolchildren diagnosed with BPD (10.4 years/born at 26.6 weeks' gestation) and 30 age- and sex-matched children with asthma and sensitized to airborne allergens (IgE >0.35 kU A /L) were analyzed. Measurements included fraction of exhaled nitric oxide (FENO, ppb), dynamic and static lung function, and bronchial provocation with methacholine (PD:20) and mannitol (PD:15), as well as an evaluation of respiratory symptoms using the asthma control test (C-ACT). Lung function measures (FEV1% 77 vs 84, FEV1/FVC% 85 vs 91, FEF50% 61 vs 80) and carbon monoxide diffusion capacity (DLCO%, 81 vs 88) were all reduced in children with BPD compared to asthma (P values <0.042). FENO values were also significantly lower in children with BPD (12 vs 23, P = 0.019). The proportion of positive methacholine tests (74% vs 93%, P = 0.14) was comparable between BPD and asthma. However, less responsiveness towards mannitol (19% vs 61%, P = 0.007) and fewer self-reported symptoms (C-ACT, median 26 vs 24, P = 0.003) were found in the BPD group. Respiratory hallmarks of BPD at school-age were reduced lung function, limited responsiveness towards indirectly acting mannitol but hyper-responsiveness towards direct acting methacholine and impairment in diffusion capacity. Children with BPD displayed less evidence of airway inflammation compared with atopic asthma. © 2017 Wiley Periodicals, Inc.

  17. The relationship between wheezing and lung mechanics during methacholine-induced bronchoconstriction in asthmatic subjects.

    PubMed

    Spence, D P; Graham, D R; Jamieson, G; Cheetham, B M; Calverley, P M; Earis, J E

    1996-08-01

    Wheeze is a classic sign of airflow obstruction but relatively little is known of its mechanism of production or its relationship to the development of airflow obstruction. We studied eight asthmatic subjects age (mean +/- 5D) 42 +/- 5 yr, FEV1 2.46 +/- 0.36 L during an extended, symptom-limited methacholine challenge test. Breath sounds were detected by a microphone over the right upper anterior chest. Spectral analysis was by a fast Fourier transform algorithm. Mean FEV1 fell by 51 +/- 14% to 1.28 +/- 0.61 L during the challenge and airways resistance increased by 119 +/- 50%. There were no consistent changes in breathing pattern or tidal volume during the challenge. Wheeze occurred late in the challenge at the highest concentration of methacholine administered and only after expiratory tidal flow limitation had been reached. Five subjects developed wheeze on tidal breathing, the remaining three only wheezed on deep breathing. Wheezing sounds were reproducible between breaths, coefficient of variation of starting sound frequency was 4.2% and ending frequency 12%. Mean frequency of expiratory wheezes was 669 +/- 100 Hz and inspiratory wheezes 710 +/- 76 Hz. Expiratory wheeze fell in pitch during a breath (mean fall in sound frequency 187 +/- 43 Hz) but inspiratory wheezes were more variable. Expiratory wheezes occurred late in the respiratory cycle at a mean of 58% of the maximal tidal expiratory flow, whereas inspiratory wheezes occurred around maximal tidal inspiratory flows, suggesting that the mechanisms of production of inspiratory and expiratory wheezes may be different. In this model, the presence of wheeze during tidal breathing was a sign of severe airflow limitation.

  18. Comparison of the effects of esomeprazole and fundoplication on airway responsiveness in patients with gastro-oesophageal reflux disease.

    PubMed

    Kiljander, Toni; Rantanen, Tuomo; Kellokumpu, Ilmo; Kööbi, Tiit; Lammi, Lauri; Nieminen, Markku; Poussa, Tuija; Ranta, Arto; Saarelainen, Seppo; Salminen, Paulina

    2013-07-01

    Gastro-oesophageal reflux disease (GORD) is suggested to cause or aggravate several respiratory conditions. Studies with proton pump inhibitors have resulted in only minor improvements in pulmonary outcomes in patients with GORD. It has been speculated that operative treatment of GORD might be more efficient as it also diminishes non-acidic reflux. To compare the effects of esomeprazole 40 mg bid and fundoplication on airway responsiveness, forced expiratory volume in 1 s (FEV1), exhaled nitric oxide (NO) and respiratory symptoms in patients with moderate-to-severe GORD. Sixty-nine GORD patients had methacholine inhalation challenge performed on them, and FEV1, exhaled NO and respiratory symptoms were measured at baseline, after a 3-month treatment with esomeprazole and 3 months after fundoplication. Primary outcome variable was dose-response slope (DRS), i.e. decline in FEV1 during methacholine challenge divided with the amount of methacholine administered (%/μmol). Pre-defined subgroup analysis was performed among those with concomitant asthma (n = 12). There was no improvement in DRS, FEV1 or exhaled NO after esomeprazole treatment or fundoplication. Cough and dyspnoea measured with visual analog scale improved with esomeprazole treatment (P < 0.001), and further after fundoplication (P < 0.001). Among those with concomitant asthma, significant improvements in St George Respiratory Questionnaire (SGRQ) scores could be seen after fundoplication. Neither esomeprazole treatment nor fundoplication diminishes airway responsiveness or exhaled NO, or improves FEV1 in patients with GORD. Improvements in respiratory symptoms and SGRQ scores after GORD treatments could be detected. However, as this was not a placebo-controlled study, the findings in these secondary endpoints should not be emphasised. ClinicalTrials.cov: NCT00994708. © 2012 John Wiley & Sons Ltd.

  19. {beta}-Catenin regulates airway smooth muscle contraction.

    PubMed

    Jansen, Sepp R; Van Ziel, Anna M; Baarsma, Hoeke A; Gosens, Reinoud

    2010-08-01

    beta-Catenin is an 88-kDa member of the armadillo family of proteins that is associated with the cadherin-catenin complex in the plasma membrane. This complex interacts dynamically with the actin cytoskeleton to stabilize adherens junctions, which play a central role in force transmission by smooth muscle cells. Therefore, in the present study, we hypothesized a role for beta-catenin in the regulation of smooth muscle force production. beta-Catenin colocalized with smooth muscle alpha-actin (sm-alpha-actin) and N-cadherin in plasma membrane fractions and coimmunoprecipitated with sm-alpha-actin and N-cadherin in lysates of bovine tracheal smooth muscle (BTSM) strips. Moreover, immunocytochemistry of cultured BTSM cells revealed clear and specific colocalization of sm-alpha-actin and beta-catenin at the sites of cell-cell contact. Treatment of BTSM strips with the pharmacological beta-catenin/T cell factor-4 (TCF4) inhibitor PKF115-584 (100 nM) reduced beta-catenin expression in BTSM whole tissue lysates and in plasma membrane fractions and reduced maximal KCl- and methacholine-induced force production. These changes in force production were not accompanied by changes in the expression of sm-alpha-actin or sm-myosin heavy chain (MHC). Likewise, small interfering RNA (siRNA) knockdown of beta-catenin in BTSM strips reduced beta-catenin expression and attenuated maximal KCl- and methacholine-induced contractions without affecting sm-alpha-actin or sm-MHC expression. Conversely, pharmacological (SB-216763, LiCl) or insulin-induced inhibition of glycogen synthase kinase-3 (GSK-3) enhanced the expression of beta-catenin and augmented maximal KCl- and methacholine-induced contractions. We conclude that beta-catenin is a plasma membrane-associated protein in airway smooth muscle that regulates active tension development, presumably by stabilizing cell-cell contacts and thereby supporting force transmission between neighboring cells.

  20. Heightened bronchial hyperresponsiveness in the absence of heightened atopy in children with current wheezing and low income status.

    PubMed

    Mallol, J; Castro-Rodriguez, J A; Cortez, E; Aguirre, V; Aguilar, P; Barrueto, L

    2008-02-01

    Although global studies such as the International Study of Asthma and Allergies in Childhood (ISAAC) have provided valuable data on the prevalence of asthma in children in Latin America, there is little information on the relationship between asthma symptoms, pulmonary function, bronchial hyperresponsiveness (BHR) and atopy in the region. This study examined the relationship between self-reported wheezing in the past 12 months, pulmonary function, airway responsiveness and atopy in children from a low income population in a neighbourhood of Santiago, Chile. Two random samples (100 each) of children aged 13-14 years who participated in ISAAC phase I were selected according to whether or not they reported wheezing in the past 12 months. Spirometry, the methacholine bronchial challenge test and the prick test were performed in all individuals. Children who reported current wheezing had significantly higher BHR to methacholine compared with those without wheezing (71.6% vs 52.6%; p = 0.007) and no significant difference was found in forced expiratory volume in 1 s (116.7 (12.3)% vs 120.3 (14.5%); p = 0.11). The prevalence of atopy was not significantly different between those children who reported wheezing compared with those who did not (44.2% vs 42.3%; p = 0.89). Multiple regression analysis showed that only BHR to methacholine (OR 2.72, 95% CI 1.25 to 4.13; p = 0.01) and maternal asthma (OR 3.1, 95% CI 1.2 to 8.3, p = 0.03) were significant risk factors for current wheezing. Our results support previous findings suggesting that in adolescents from underprivileged populations, self-reported current wheezing is related to BHR but not to atopy.

  1. Effects of inhaled fluticasone and oral prednisolone on clinical and inflammatory parameters in patients with asthma

    PubMed Central

    Meijer, R; Kerstjens, H; Arends, L; Kauffman, H; Koeter, G; Postma, D

    1999-01-01

    BACKGROUND—Guidelines state that oral and inhaled corticosteroids are the cornerstone of asthma treatment. The effect of both types of treatment can be assessed by measuring lung and systemic parameters. Treatment for two weeks with either oral prednisolone (30 mg/day), high dose fluticasone propionate (2000 µg/day, FP2000), or lower dose FP (500 µg/day, FP500), both given by a dry powder inhaler, were compared.
METHODS—One hundred and twenty patients with asthma were treated for two weeks in a double blind parallel group design. Lung function, asthma symptoms, airway hyperresponsiveness (PC20 methacholine and adenosine-5'-monophosphate), sputum eosinophil and eosinophilic cationic protein (ECP) levels were measured as lung parameters. In addition, morning serum blood cortisol, blood eosinophil, and serum ECP levels were measured as systemic parameters.
RESULTS—PC20 methacholine and adenosine-5'-monophosphate showed significantly greater improvement with FP2000 (1.99 and 4.04 doubling concentrations (DC), respectively) than prednisolone (0.90 DC, p = 0.02; 2.15 DC, p = 0.05) and marginally more than with FP500 (1.69 and 3.54 DC). Changes in sputum eosinophil and ECP concentrations showed similar trends; the decrease in ECP was significantly greater with FP2000 than with FP500. In contrast, the systemic parameters of steroid activity (cortisol, peripheral blood eosinophils, and serum ECP) decreased to a similar extent with FP2000 and prednisolone but significantly less with FP500.
CONCLUSIONS—Oral prednisolone (30 mg/day) was inferior to FP2000 in improving airway hyperresponsiveness to both methacholine and AMP, with similar trends in forced expiratory volume in one second (FEV1), sputum eosinophil and ECP concentrations. Systemic effects were similar with prednisolone and FP2000 and less with FP500.

 PMID:10491451

  2. Rhinovirus exacerbates house-dust-mite induced lung disease in adult mice.

    PubMed

    Phan, Jennifer A; Kicic, Anthony; Berry, Luke J; Fernandes, Lynette B; Zosky, Graeme R; Sly, Peter D; Larcombe, Alexander N

    2014-01-01

    Human rhinovirus is a key viral trigger for asthma exacerbations. To date, murine studies investigating rhinovirus-induced exacerbation of allergic airways disease have employed systemic sensitisation/intranasal challenge with ovalbumin. In this study, we combined human-rhinovirus infection with a clinically relevant mouse model of aero-allergen exposure using house-dust-mite in an attempt to more accurately understand the links between human-rhinovirus infection and exacerbations of asthma. Adult BALB/c mice were intranasally exposed to low-dose house-dust-mite (or vehicle) daily for 10 days. On day 9, mice were inoculated with human-rhinovirus-1B (or UV-inactivated human-rhinovirus-1B). Forty-eight hours after inoculation, we assessed bronchoalveolar cellular inflammation, levels of relevant cytokines/serum antibodies, lung function and responsiveness/sensitivity to methacholine. House-dust-mite exposure did not result in a classical TH2-driven response, but was more representative of noneosinophilic asthma. However, there were significant effects of house-dust-mite exposure on most of the parameters measured including increased cellular inflammation (primarily macrophages and neutrophils), increased total IgE and house-dust-mite-specific IgG1 and increased responsiveness/sensitivity to methacholine. There were limited effects of human-rhinovirus-1B infection alone, and the combination of the two insults resulted in additive increases in neutrophil levels and lung parenchymal responses to methacholine (tissue elastance). We conclude that acute rhinovirus infection exacerbates house-dust-mite-induced lung disease in adult mice. The similarity of our results using the naturally occurring allergen house-dust-mite, to previous studies using ovalbumin, suggests that the exacerbation of allergic airways disease by rhinovirus infection could act via multiple or conserved mechanisms.

  3. Vagotomy Reverses Established Allergen-Induced Airway Hyperreactivity to Methacholine in the Mouse

    EPA Science Inventory

    We evaluated the role of vagal reflexes in a mouse model of allergen-induced airway hyperreactivity. Mice were actively sensitized to ovalbumin then exposed to the allergen via inhalation. Prior to ovalbumin inhalation, mice also received intratracheally-instilled particulate ma...

  4. AGONIST-MEDIATED AIRWAY CHALLENGE: CARDIOPULMONARY INTERACTIONS MODULATE GAS EXCHANGE AND RECOVERY

    EPA Science Inventory

    ABSTRACT
    To better understand the early phase response (0-60 minutes) to airway challenge, we examined cardiopulmonary reactions during ovalbumin (OVA), histamine, and methacholine aerosol challenge tests in guinea pigs. Propranolol and 100% O2 were used to modify the reacti...

  5. Bronchial hyper-reactivity in migraine without aura: is it a new clue for inflammation?

    PubMed

    Kaleagasi, Hakan; Özgür, Eylem; Özge, Cengiz; Özge, Aynur

    2011-03-01

    We attempted to investigate the relationship between migraine without aura (MwoA) and bronchial hyper-reactivity to postulate inflammation as an underlying mechanism in migraine. Comorbidity of migraine and atopic diseases such as asthma has been an argument for suspected immune system dysfunction in migraineurs. Twenty patients with MwoA and 5 control subjects without history of atophy and asthma were included in study. Subjects with abnormal physical examination and chest radiographs were excluded. After a normal spirometry, methacholine bronchoprovocation test was performed in all subjects and controls according to 5 breath dosimeter methods. Sixteen of 20 patients and 2 of 5 control subjects were women. Mean ages were 37.5 (19-56) and 33.8 (26-43) years, respectively. Methacholine bronchoprovocation test was positive in 3 patients (15%) but was normal in all controls (0%). The relationship between MwoA and bronchial hyper-reactivity may help to postulate the inflammation in migraine as an underlying mechanism. © 2010 American Headache Society.

  6. Pharmacological and ionic characterizations of the muscarinic receptors modulating (/sup 3/H)acetylcholine release from rat cortical synaptosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, E.M.; Otero, D.H.

    The muscarinic receptors that modulate acetylcholine release from rat cortical synaptosomes were characterized with respect to sensitivity to drugs that act selectively at M1 or M2 receptor subtypes, as well as to changes in ionic strength and membrane potential. The modulatory receptors appear to be of the M2 type, since they are activated by carbachol, acetylcholine, methacholine, oxotremorine, and bethanechol, but not by pilocarpine, and are blocked by atropine, scopolamine, and gallamine (at high concentrations), but not by pirenzepine or dicyclomine. The ED50S for carbachol, acetylcholine, and oxotremorine are less than 10 microM, suggesting that the high affinity state ofmore » the receptor is functional. High ionic strength induced by raising the NaCl concentration has no effect on agonist (oxotremorine) potency, but increases the efficacy of this compound, which disagrees with receptor-binding studies. On the other hand, depolarization with either KCl or with veratridine (20 microM) reduces agonist potencies by approximately an order of magnitude, suggesting a potential mechanism for receptor regulation.« less

  7. Lymphocyte Gene Expression Characteristic of Immediate Airway Responses (IAR) and Methacholine (MCH) Hyperresponsiveness in Mice Sensitized and Challenged with Isocyanates

    EPA Science Inventory

    Exposure to isocyanates has been associated with occupational airway diseases, including asthma. Previously we reported on respiratory and immune responses following dermal sensitization and intranasal challenge of BALB/c mice with 6 different isocyanates. The purpose of this st...

  8. Variability of methacholine bronchoprovocation and the effect of inhaled corticosteroids in mild asthma

    PubMed Central

    Sumino, Kaharu; Sugar, Elizabeth A.; Irvin, Charles G.; Kaminsky, David A.; Shade, Dave; Wei, Christine Y.; Holbrook, Janet T.; Wise, Robert A.; Castro, Mario

    2014-01-01

    Background The methacholine challenge test quantifies airway hyper-responsiveness, which is measured by the provocative concentration of methacholine causing a 20% decrease in forced expiration volume in 1 second (PC20). The dose–response effect of inhaled corticosteroids (ICS) on PC20 has been inconsistent and within-patient variability of PC20 is not well established. Objectives To determine the effect of high- vs low-dose ICS on PC20 and within-patient variability in those with repeated measurements of PC20. Methods A randomized, double-masked, crossover trial was conducted in patients with asthma on controller medications with PC20 of 8 mg/mL or lower (n = 64) to evaluate the effect of high-dose (1,000 μg/d) vs low-dose (250 μg/d) fluticasone for 4 weeks on PC20. In addition, the variability of PC20 was assessed in participants who underwent 2 or 3 PC20 measurements on the same dose of ICS (n = 27) over a 4-week interval. Results Because there was a significant period effect, dose comparison of the change in PC20 was assessed in the first treatment period. There was no significant difference in the change in PC20 for high- vs low-dose ICS (39% vs 30% increase, respectively; P = .87). The within- and between-participant variances for log PC20 were 0.84 and 0.96, respectively, with an intra-class correlation of 0.53, and 37% of participants had more than 2 doubling dose changes in PC20 in those with repeated measurements. Conclusion The effect of ICS on PC20 is not dose dependent at fluticasone levels of 250 and 1,000 μg/d. Interpersonal variability for PC20 is large. A lack of precise measurements should be taken into account when interpreting any change in PC20. PMID:24507830

  9. Tracheal wheezes during methacholine airway challenge (MAC) in workers exposed to occupational hazards.

    PubMed

    Bohadana, A B; Massin, N; Teculescu, D; Peslin, R

    1994-09-01

    Methacholine airway challenge (MAC) is a simple and useful means to assess bronchial hyperreactivity in workers exposed to various occupational hazards. Recently, wheeze detection by tracheal auscultation has been proposed as an indicator of bronchial responsiveness during bronchial provocation test in children. Our aim was to examine the relationship between the appearance of wheezes and the concurrent changes in forced expiratory volume in one second (FEV1) observed during MAC test in adults. Three cumulative doses of a methacholine solution (100 micrograms, 500 micrograms and 1500 micrograms) were inhaled by 45 workers with occupational exposure to flour dust. Spirometry was done using an electronic spirometer. Tracheal sounds were recorded with an electronic stethoscope placed over the anterior cervical triangle, 2 cm above the sternal notch. The amplified sounds were stored on magnetic tape, band-pass filtered (50-2000 Hz), and digitized at a sampling rate of 4096 Hz into a GenRad Vibration Control System. Wheezes were detected by fast Fourier transform (FFT) analysis and their presence compared to a 20% fall in FEV1. A positive MAC test by spirometry was found in 12 subjects whereas wheezes were identified in 14 subjects. Among the wheezing subjects, nine had a positive MAC test (range of fall in FEV1 = 20.6 to 42.3%) and five had a negative one (range of fall in FEV1 = 3.6 to 16.9%). Moreover, no wheezes were found in the remaining three subjects with a positive MAC test (range of fall in FEV1 = 20.7 to 27.4%). Taking a 20% fall in FEV1 as reference, wheezes were 75% sensitive and 84.8% specific to detect airflow obstruction. In conclusion, since it carries a significant although small false-negative rate, the acoustic technique based upon wheeze detection cannot, at the present time, fully replace spirometry during airway challenge testing in subjects with suspected asthma.

  10. Pharmacokinetic and pharmacodynamic comparison of hydrofluoroalkane and chlorofluorocarbon formulations of budesonide

    PubMed Central

    Clearie, Karine L; Williamson, Peter A; Meldrum, Karen; Gillen, Michael; Carlsson, Lars-Goran; Carlholm, Marie; Ekelund, Jan; Lipworth, Brian J

    2011-01-01

    AIMS A hydrofluoroalkane formulation of budesonide pressurized metered-dose inhaler has been developed to replace the existing chlorofluorocarbon one. The aim of this study was to evaluate the pharmacokinetic and pharmacodynamic characteristics of both formulations. METHODS Systemic bioavailability and bioactivity of both hydrofluoroalkane and chlorofluorocarbon pressurized metered-dose inhaler formulations at 800 µg twice daily was determined during a randomized crossover systemic pharmacokinetic/pharmacodynamic study at steady state in healthy volunteers. Measurements included the following: plasma cortisol AUC24h[area under the concentration-time curve (0–24 h)], budesonide AUC0–12h and Cmax. Clinical efficacy was determined during a randomized crossover pharmacodynamic study in asthmatic patients receiving 200 µg followed by 800 µg budesonide via chlorofluorocarbon or hydrofluoroalkane pressurized metered-dose inhaler each for 4 weeks. Methacholine PC20 (primary outcome), exhaled nitric oxide, spirometry, peak expiratory flow and symptoms were evaluated. RESULTS In the pharmacokinetic study, there were no differences in cortisol, AUC0–12h[area under the concentration-time curve (0–12 h)], Tmax (time to maximum concentration) or Cmax (peak serum concentration) between the hydrofluoroalkane and chlorofluorocarbon pressurized metered-dose inhaler. The ratio of budesonide hydrofluoroalkane vs. chlorofluorocarbon pressurized metered-dose inhaler for cortisol AUC24h was 1.02 (95% confidence interval 0.93–1.11) and budesonide AUC0–12h was 1.03 (90% confidence interval 0.9–1.18). In the asthma pharmacodynamic study, there was a significant dose response (P < 0.0001) for methacholine PC20 (provocative concentration of methacholine needed to produce a 20% fall in FEV1) with a relative potency ratio of 1.10 (95% confidence interval 0.49–2.66), and no difference at either dose. No significant differences between formulations were seen with the secondary outcome variables. CONCLUSIONS Hydrofluoroalkane and chlorofluorocarbon formulations of budesonide were therapeutically equivalent in terms of relative lung bioavailability, airway efficacy and systemic effects. PMID:21395643

  11. Quantitative skin prick and bronchial provocation tests with platinum salt.

    PubMed Central

    Merget, R; Schultze-Werninghaus, G; Bode, F; Bergmann, E M; Zachgo, W; Meier-Sydow, J

    1991-01-01

    Occupational asthma due to platinum salts is a frequent disease in platinum refineries. The diagnosis is based upon a history of work related symptoms and a positive skin prick test with platinum salts. Bronchial provocation tests have not been performed in epidemiological studies because the skin test is believed to be highly specific and sensitive. As no reliable data about this issue currently exist, this study assesses the use of skin prick and bronchial provocation tests with methacholine and platinum salt in platinum refinery workers. Twenty seven of 35 workers, who were referred to our clinic with work related symptoms and nine control subjects with bronchial hyperreactivity underwent a skin prick test and bronchial provocation with methacholine and platinum salt. For skin prick and bronchial provocation tests with platinum salt a 10(-2)-10(-8) mol/l hexachloroplatinic acid solution, in 10-fold dilutions was used. Four of the 27 subjects and all controls showed neither a bronchial reaction nor a skin reaction. Twenty three subjects were considered allergic to platinum salt; 22 of these showed a fall of 50% or more in specific airway conductance after inhalation of the platinum salt solution. Four workers experienced a positive bronchial reaction despite a negative skin prick test. No correlation of responsiveness to methacholine with responsiveness to platinum salt was found, but the skin prick test correlated with the bronchial reaction to platinum salt (rs = 0.50, p less than 0.023, n = 22). One dual reaction was seen in bronchial provocation tests. Side effects of both skin tests and bronchial provocation tests with platinum salt were rare and were not encountered in workers without a skin reaction to platinum salt. It is concluded that bronchial provocation tests with platinum salts should be performed on workers with work related symptoms but negative skin tests with platinum salts. PMID:1772797

  12. Effect of once daily and twice daily sustained release theophylline formulations on daytime variation of bronchial hyperresponsiveness in asthmatic patients

    PubMed Central

    Ferrari, M.; Olivieri, M.; Lampronti, G.; Bonazza, L.; Biasin, C.; Nacci, P.; Talamini, G.; Lo, C

    1997-01-01

    BACKGROUND: Previous studies evaluating spirometric values and symptoms have shown that once daily theophylline administered in the evening produces greater stabilisation of the airway function in asthmatic patients than the prototype theophylline given twice a day. The aim of this study was to compare the effects on bronchial responsiveness to methacholine of an ultrasustained release theophylline formulation (Diffumal-24, Malesci, Florence, Italy) administered once a day, a sustained release theophylline formulation (Theo-Dur, Recordati, Milan, Italy) administered twice a day, and placebo. METHODS: The study was performed in 12 adult patients with asthma using a randomised, double blind, three phase, cross-over design. Each phase lasted seven days and was followed or preceded by at least three days of theophylline washout. Diffumal-24 was administered once a day at 20.00 hours whereas Theo-Dur was given twice a day at 08.00 hours and 20.00 hours. In each patient the total daily dose of theophylline was the same during both phases. The dose of the two active preparations was titrated to individual needs before the beginning of the study and then given in divided or once daily doses. At 08.00, 14.00, and 20.00 hours on day 7 of each phase serum theophylline concentrations were measured and spirometric tests (FEV1) and bronchial challenge with methacholine were also performed. RESULTS: When the administration of Diffumal-24 was compared with that of Theo-Dur, a higher serum theophylline concentration of the former was seen in the morning whereas at 20.00 hours the reverse was true. Compared with placebo, at 08.00 hours Diffumal-24 improved FEV1 whereas Theo-Dur did not (difference between treatments 0.29 1, 95% CI 0.12 to 0.45). At 08.00 hours Diffumal-24 decreased bronchial sensitivity to methacholine, expressed as a natural logarithm of PD20, to a greater extent than Theo-Dur (difference between treatments 0.54 log units, 95% CI 0.016 to 1.08). The morning advantage observed with Diffumal-24 administration was not associated with a deterioration in the state of the airway during the daytime, the protective activity against methacholine during the 12 hours of the monitoring period being constant. Furthermore there was no difference in the mean FEV1 between the two treatments at 14.00 and 20.00 hours. CONCLUSIONS: In adults with stable bronchial asthma treatment with a single dose of Diffumal-24 administered in the evening improved airflow obstruction and reduced bronchial hyperresponsiveness. 




 PMID:9487345

  13. Recordings of mucociliary activity in vivo: benefit of fast Fourier transformation of the photoelectric signal.

    PubMed

    Lindberg, S; Cervin, A; Runer, T; Thomasson, L

    1996-09-01

    Investigations of mucociliary activity in vivo are based on photoelectric recordings of light reflections from the mucosa. The alterations in light intensity produced by the beating cilia are picked up by a photodetector and converted to photoelectric signals. The optimal processing of these signals is not known, but in vitro recordings have been reported to benefit from fast Fourier transformation (FFT) of the signal. The aim of the investigation was to study the effect of FFT for frequency analysis of photoelectric signals originating from an artificial light source simulating mucociliary activity or from sinus or nasal mucosa in vivo, as compared to a conventional method of calculating mucociliary wave frequency, in which each peak in the signal is interpreted as a beat (old method). In the experiments with the artificial light source, the FFT system was superior to the conventional method by a factor of 50 in detecting weak signals. By using FFT signal processing, frequency could be correctly calculated in experiments with a compound signal. In experiments in the rabbit maxillary sinus, the spontaneous variations were greater when signals were processed by FFT. The correlation between the two methods was excellent: r = .92. The increase in mucociliary activity in response to the ciliary stimulant methacholine at a dosage of 0.5 microgram/kg was greater measured with the FFT than with the old method (55.3% +/- 8.3% versus 43.0% +/- 8.2%, p < .05, N = 8), and only with the FFT system could a significant effect of a threshold dose (0.05 microgram/kg) of methacholine be detected. In the human nose, recordings from aluminum foil placed on the nasal dorsum and from the nasal septa mucosa displayed some similarities in the lower frequency spectrum (< 5 Hz) attributable to artifacts. The predominant cause of these artifacts was the pulse beat, whereas in the frequency spectrum above 5 Hz, results differed for the two sources of reflected light, the mean frequency in seven healthy volunteers being 7.8 +/- 1.6 Hz for the human nasal mucosa. It is concluded that the FFT system has greater sensitivity in detecting photoelectric signals derived from the mucociliary system, and that it is also a useful tool for analyzing the contributions of artifacts to the signal.

  14. Indoor risk factors for cough and their relation to wheeze and sensitization in Chilean young adults.

    PubMed

    Potts, James F; Rona, Roberto J; Oyarzun, Manuel J; Amigo, Hugo; Bustos, Patricia

    2008-04-01

    We assessed the effects of indoor risk factors, including smoking, on different types of cough and on cough and wheeze in combination. Our sample was composed of 1232 men and women residing in a semirural area of Chile. We used a standardized questionnaire, sensitization to 8 allergens, and bronchial hyperresponsiveness to methacholine to assess cough and wheeze characteristics. Information was gathered on dampness, mold, ventilation, heating, housing quality, smoking, and environmental tobacco smoke exposure. Most exposures were associated with cough alone or cough in combination with wheeze. Smoking, past smoking, and environmental tobacco smoke exposure were strongly associated with dry cough and wheeze. The use of coal for heating was associated with dry cough. Leaks, mold, and lack of kitchen ventilation were associated with cough and wheeze. Nocturnal cough and productive cough were associated with specific types of sensitization, but dry cough was not. Productive cough was associated with hyperresponsiveness to methacholine. Several different types of indoor exposures, including environmental tobacco smoke exposure, are important contributors to morbidity associated with cough and wheeze. A vigorous preventive strategy designed to lower exposures to indoor risk factors would lower rates of respiratory morbidity.

  15. Immunotherapy with the storage mite lepidoglyphus destructor.

    PubMed

    Armentia-Medina, A; Tapias, J A; Martín, J F; Ventas, P; Fernández, A

    1995-01-01

    We carried out a double-blind clinical trial of immunotherapy on 35 patients sensitized to the storage mite Lepidoglyphus destructor (Ld). Before and after 12 months of specific hyposensitization (Abelló Lab., Spain) we performed in vivo (skin tests with Ld, methacholine and challenge tests), and in vitro tests (specific IgE, IgG, IgG1 and IgG4 to Ld and specific IgE, IgG, IgG1 and IgG4 to their major allergen Lep dI). We also monitored the efficacy and safety of the immunotherapy with clinical and analytical controls (symptoms and medication score, detection of immune complexes). After therapy we found a significant decrease in specific skin reactivity, dose of positive challenge tests, and hyperresponsiveness to methacholine. Sputum eosinophilia decreased. Specific IgE to Ld was increased and we also observed an increase in specific IgG1 and IgG4 to Ld and Lep DI. The placebo group showed no changes in these variables. There were no severe secondary reactions after treatment with the extract. Patients-self-evaluation was favourable and their labour absence decreased. No development of circulating immune complexes was associated with this immunotherapy.

  16. Indoor risk factors for cough and their relation to wheeze and sensitization in Chilean young adults

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potts, J.F.; Rona, R.J.; Oyarzun, M.J.

    2008-04-15

    We assessed the effects of indoor risk factors, including smoking, on different types of cough and on cough and wheeze in combination. Our sample was composed of 1232 men and women residing in a semi-rural area of Chile. We used a standardized questionnaire, sensitization to 8 allergens, and bronchial hyperresponsiveness to methacholine to assess cough and wheeze characteristics. Information was gathered on dampness, mold, ventilation, heating, housing quality, smoking, and environmental tobacco smoke exposure. Most exposures were associated with cough alone or cough in combination with wheeze. Smoking, past smoking, and environmental tobacco smoke exposure were strongly associated with drymore » cough and wheeze. The use of coal for heating was associated with dry cough. Leaks, mold, and lack of kitchen ventilation were associated with cough and wheeze. Nocturnal cough and productive cough were associated with specific types of sensitization, but dry cough was not. Productive cough was associated with hyperresponsiveness to methacholine. Several different types of indoor exposures, including environmental tobacco smoke exposure, are important contributors to morbidity associated with cough and wheeze. A vigorous preventive strategy designed to lower exposures to indoor risk factors would lower rates of respiratory morbidity.« less

  17. Substance P-induced bronchoconstriction in the guinea pig. Enhancement by inhibitors of neutral metalloendopeptidase and angiotensin-converting enzyme.

    PubMed

    Shore, S A; Stimler-Gerard, N P; Coats, S R; Drazen, J M

    1988-02-01

    We tested the effects of the neutral metalloendopeptidase (NEP) inhibitor, thiorphan (0.17, 0.5, and 1.7 mg i.v), and the angiotensin-converting enzyme (ACE) inhibitor, captopril (0.5, 1.7, and 5.0 mg i.v.), on the bronchoconstrictor response to rapid intravenous infusions of substance P (0.1 to 30 nmol/kg) in anesthetized, mechanically ventilated guinea pigs. The decreases in pulmonary conductance and dynamic compliance caused by substance P were greater in animals treated with either thiorphan or captopril than in control animals. Thiorphan (0.5 mg) had no effect on airway responsiveness to intravenously administered methacholine, whereas captopril (1.7 mg) caused a small increase in methacholine responsiveness. Both drugs significantly increased the recovery of immunoreactive substance P in arterial plasma after exogenous administration of the peptide. We conclude that degradation of substance P by both NEP and ACE is important for determining the magnitude of the bronchoconstriction caused by intravenous administration of this neuropeptide. These data suggest that conditions associated with diminished peptidase activity could result in enhanced responses to stimuli which cause the release of endogenous substance P.

  18. Bronchoconstriction-triggered cough in atopic cough: A retrospective study.

    PubMed

    Ohkura, Noriyuki; Hara, Johsuke; Sakai, Tamami; Okazaki, Akihito; Abo, Miki; Kasahara, Kazuo; Fujimura, Masaki

    2016-06-01

    Atopic cough (AC) and cough variant asthma (CVA) were identified as major causes of chronic non-productive cough in a Japanese study. A characteristic feature of CVA is the presence of a heightened cough response to bronchoconstriction. On the other hand, the cough response to bronchoconstriction in AC remains unclear. Methacholine (Mch)-induced cough in AC was measured and compared with that in CVA. Diagnoses of AC and CVA were made based on patient history, physical examination, response to bronchodilator therapy, cough reflex sensitivity to capsaicin, spirometry, and airway responsiveness to methacholine. Thirteen AC patients and 12 CVA patients in whom the criteria were met were recruited to the study. After inhalation of Mch at PC35-PEF40 that means milder bronchoconstriction than PC20-FEV1, cough was triggered a few times in AC. [cough number: 1/ 32 min (0-40)]. Conversely, significantly greater number of coughs was provoked in CVA, compared with AC [cough number: 35.5/ 32 min (25-125), p < 0.05]. The cough response to bronchoconstriction is reduced in AC compared to CVA. This feature may be useful in the diagnosis of chronic cough.

  19. Role of M2 Muscarinic Receptor in the Airway Response to Methacholine of Mice Selected for Minimal or Maximal Acute Inflammatory Response

    PubMed Central

    Castro, Juciane Maria de Andrade; Resende, Rodrigo R.; Florsheim, Esther; Albuquerque, Layra Lucy; Lino-dos-Santos-Franco, Adriana; Gomes, Eliane; Tavares de Lima, Wothan; de Franco, Marcelo; Ribeiro, Orlando Garcia

    2013-01-01

    Airway smooth muscle constriction induced by cholinergic agonists such as methacholine (MCh), which is typically increased in asthmatic patients, is regulated mainly by muscle muscarinic M3 receptors and negatively by vagal muscarinic M2 receptors. Here we evaluated basal (intrinsic) and allergen-induced (extrinsic) airway responses to MCh. We used two mouse lines selected to respond maximally (AIRmax) or minimally (AIRmin) to innate inflammatory stimuli. We found that in basal condition AIRmin mice responded more vigorously to MCh than AIRmax. Treatment with a specific M2 antagonist increased airway response of AIRmax but not of AIRmin mice. The expression of M2 receptors in the lung was significantly lower in AIRmin compared to AIRmax animals. AIRmax mice developed a more intense allergic inflammation than AIRmin, and both allergic mouse lines increased airway responses to MCh. However, gallamine treatment of allergic groups did not affect the responses to MCh. Our results confirm that low or dysfunctional M2 receptor activity is associated with increased airway responsiveness to MCh and that this trait was inherited during the selective breeding of AIRmin mice and was acquired by AIRmax mice during allergic lung inflammation. PMID:23691511

  20. Teaching the Modes of Ca[superscript 2+] Transport between the Plasma Membrane and Endoplasmic Reticulum Using a Classic Paper by Kwan et al.

    ERIC Educational Resources Information Center

    Liang, Willmann

    2009-01-01

    This teaching article uses the report by Kwan et al., "Effects of methacholine, thapsigargin, and La[superscript 3+] on plasmalemmal and intracellular Ca[superscript 2+] transport in lacrimal acinar cells," where the effects of Ca[superscript 2+]-mobilizing agents in regulating Ca[superscript 2+] fluxes were examined under various conditions.…

  1. The protective effect of a beta 2 agonist against excessive airway narrowing in response to bronchoconstrictor stimuli in asthma and chronic obstructive lung disease.

    PubMed Central

    Bel, E. H.; Zwinderman, A. H.; Timmers, M. C.; Dijkman, J. H.; Sterk, P. J.

    1991-01-01

    Beta 2 agonists reduce airway hypersensitivity to bronchoconstrictor stimuli acutely in patients with asthma and chronic obstructive lung disease. To determine whether these drugs also protect against excessive airway narrowing, the effect of inhaled salbutamol on the position and shape of the dose-response curves for histamine or methacholine was investigated in 12 patients with asthma and 11 with chronic obstructive lung disease. After pretreatment with salbutamol (200 or 400 micrograms) or placebo in a double blind manner dose-response curves for inhaled histamine and methacholine were obtained by a standard method on six days in random order. Airway sensitivity was defined as the concentration of histamine or methacholine causing a 20% fall in FEV1 (PC20). A maximal response plateau on the log dose-response curve was considered to be present if two or more data points for FEV1 fell within a 5% response range. In the absence of a plateau, the test was continued until a predetermined level of severe bronchoconstriction was reached. Salbutamol caused an acute increase in FEV1 (mean increase 11.5% predicted in asthma, 7.2% in chronic obstructive lung disease), and increase in PC20 (mean 15 fold in asthma, fivefold in chronic obstructive lung disease), and an increase in the slope of the dose-response curves in both groups. In subjects in whom a plateau of FEV1 response could be measured salbutamol did not change the level of the plateau. In subjects without a plateau salbutamol did not lead to the development of a plateau, despite achieving a median FEV1 of 44% predicted in asthma and 39% in chronic obstructive lung disease. These results show that, although beta 2 agonists acutely reduce the airway response to a given strength of bronchoconstrictor stimulus, they do not protect against excessive airflow obstruction if there is exposure to relatively strong stimuli. This, together with the steepening of the dose-response curve, could be a disadvantage of beta 2 agonists in the treatment of moderate and severe asthma or chronic obstructive lung disease. PMID:1871705

  2. Post Chlorine gas exposure administration of nitrite prevents lung injury: effect of administration modality

    PubMed Central

    Samal, Andrey A.; Honavar, Jaideep; Brandon, Angela; Bradley, Kelley M.; Doran, Stephen; Liu, Yanping; Dunaway, Chad; Steele, Chad; Postlethwait, Edward M.; Squadrito, Giuseppe L.; Fanucchi, Michelle V.; Matalon, Sadis; Patel, Rakesh P.

    2012-01-01

    Cl2 gas toxicity is complex and occurs during, and post exposure leading to acute lung injury (ALI) and reactive airway syndrome (RAS). Moreover, Cl2 exposure can occur in diverse situations encompassing mass casualty scenarios underscoring the need for post-exposure therapies that are efficacious and amenable to rapid and easy administration. In this study, we compared the efficacy of a single dose, post (30min) Cl2 exposure administration of nitrite (1mg/kg) via intraperitoneal (IP) or intramuscular (IM) injection in rats, to decrease ALI. Exposure of rats to Cl2 gas (400ppm, 30min) significantly increased ALI and caused RAS 6–24h post exposure as indexed by BAL sampling of lung surface protein, PMN and increased airway resistance and elastance prior to and post methacholine challenge. IP nitrite decreased Cl2 - dependent increases in BAL protein but not PMN. In contrast IM nitrite decreased BAL PMN levels without decreasing BAL protein in a xanthine oxidoreductase independent manner. Histological evaluation of airways 6h post exposure showed significant bronchial epithelium exfoliation and inflammatory injury in Cl2 exposed rats. Both IP and IM nitrite improved airway histology compared to Cl2 gas alone, but more coverage of the airway by cuboidal or columnar epithelium was observed with IM compared to IP nitrite. Airways were rendered more sensitive to methacholine induced resistance and elastance after Cl2 gas exposure. Interestingly, IM nitrite, but not IP nitrite, significantly decreased airway sensitivity to methacholine challenge. Further evaluation and comparison of IM and IP therapy showed a two-fold increase in circulating nitrite levels with the former, which was associated with reversal of post-Cl2 exposure dependent increases in circulating leukocytes. Halving the IM nitrite dose resulted in no effect in PMN accumulation but significant reduction of of BAL protein levels indicating distinct nitrite dose dependence for inhibition of Cl2 dependent lung permeability and inflammation. These data highlight the potential for nitrite as a post-exposure therapeutic for Cl2 gas induced lung injury and also suggest that administration modality is a key consideration in nitrite therapeutics. PMID:22917977

  3. Value of a negative aeroallergen skin-prick test result in the diagnosis of asthma in young adults: correlative study with methacholine challenge testing.

    PubMed

    Graif, Yael; Yigla, Mordechai; Tov, Naveh; Kramer, Mordechai R

    2002-09-01

    None of the existing tests for the diagnosis of asthma are considered to be definitive. Certain circumstances require prompt diagnosis, and a test able to predict the absence of asthma would be very useful. To evaluate the contribution of a skin-prick test (SPT) to the diagnostic workup of subjects with suspected asthma. The study included three groups of subjects aged 18 to 24 years: group A, asthmatic patients (n = 175); group B, control subjects (n = 100); and group C, subjects with suspected asthma (n = 150) with normal spirometry findings and a negative exercise challenge test result. All underwent an SPT to a battery of common aeroallergens, and group C underwent a methacholine challenge test (MCT) in addition. The sensitivity, specificity, positive predictive value, and negative predictive values (NPV) of the SPT were calculated using provocative concentrations of methacholine causing a 20% fall in FEV(1) (PC(20)) of < 4 mg/mL and < 8 mg/mL as diagnostic cutoff values for asthma in the MCT. Bayes' formula was used to determine posttest probabilities of having asthma, both for positive and negative SPT results. A positive SPT result to at least one allergen was found in 95.5%, 54%, and 69% of patients in the three groups, respectively. The sensitivity, specificity, and NPV of the SPT were 90.7%, 52.0%, and 84.8%, respectively, with a cutoff value of PC(20) < 8 mg/mL. The lower cutoff, PC(20) < 4 mg/mL, increased the sensitivity and NPV to 98.2% and 97.8%, respectively. A negative SPT result decreased the probability of having asthma by 10-fold to 20-fold in subjects whose pretest probability was low to moderate. Incorporating an SPT into the workup of subjects with suspected asthma can reduce the cost of this process significantly. The SPT may be used as a simple, fast, safe, inexpensive, and reliable method to predict the absence of asthma in young adults.

  4. Asthmatic symptoms and volatile organic compounds, formaldehyde, and carbon dioxide in dwellings.

    PubMed Central

    Norbäck, D; Björnsson, E; Janson, C; Widström, J; Boman, G

    1995-01-01

    OBJECTIVES--As a part of the worldwide European Community respiratory health survey, possible relations between symptoms of asthma, building characteristics, and indoor concentration of volatile organic compounds (VOCs) in dwellings were studied. METHODS--The study comprised 88 subjects, aged 20-45 years, from the general population in Uppsala, a mid-Swedish urban community, selected by stratified random sampling. Room temperature, air humidity, respirable dust, carbon dioxide (CO2), VOCs, formaldehyde, and house dust mites were measured in the homes of the subjects. They underwent a structured interview, spirometry, peak expiratory flow (PEF) measurements at home, methacholine provocation test for bronchial hyperresponsiveness, and skin prick tests. In addition, serum concentration of eosinophilic cationic protein (S-ECP), blood eosinophil count, and total immunoglobulin E (S-IgE) were measured. RESULTS--Symptoms related to asthma were more common in dwellings with house dust mites, and visible signs of dampness or microbial growth in the building. Significant relations were also found between nocturnal breathlessness and presence of wall to wall carpets, and indoor concentration of CO2, formaldehyde, and VOCs. The formaldehyde concentration exceeded the Swedish limit value for dwellings (100 micrograms/m3) in one building, and CO2 exceeded the recommended limit value of 1000 ppm in 26% of the dwellings, showing insufficient outdoor air supply. Bronchial hyperresponsiveness was related to indoor concentration of limonene, the most prevalent terpene. Variability in PEF was related to two other terpenes; alpha-pinen and delta-karen. CONCLUSION--Our results suggest that indoor VOCs and formaldehyde may cause asthma-like symptoms. There is a need to increase the outdoor air supply in many dwelling, and wall to wall carpeting and dampness in the building should be avoided. Improved indoor environment can also be achieved by selecting building materials, building construction, and indoor activities on the principle that the emission of volatile organic compounds should be as low as reasonably achievable, to minimise symptoms related to asthma due to indoor air pollution. PMID:7627316

  5. In utero and postnatal exposure to arsenic alters pulmonary structure and function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, R. Clark; Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ 85721; BIO5 Institute, University of Arizona, Tucson, AZ 85721

    2009-02-15

    In addition to cancer endpoints, arsenic exposures can also lead to non-cancerous chronic lung disease. Exposures during sensitive developmental time points can contribute to the adult disease. Using a mouse model, in utero and early postnatal exposures to arsenic (100 ppb or less in drinking water) were found to alter airway reactivity to methacholine challenge in 28 day old pups. Removal of mice from arsenic exposure 28 days after birth did not reverse the alterations in sensitivity to methacholine. In addition, adult mice exposed to similar levels of arsenic in drinking water did not show alterations. Therefore, alterations in airwaymore » reactivity were irreversible and specific to exposures during lung development. These functional changes correlated with protein and gene expression changes as well as morphological structural changes around the airways. Arsenic increased the whole lung levels of smooth muscle actin in a dose dependent manner. The level of smooth muscle mass around airways was increased with arsenic exposure, especially around airways smaller than 100 {mu}m in diameter. This increase in smooth muscle was associated with alterations in extracellular matrix (collagen, elastin) expression. This model system demonstrates that in utero and postnatal exposure to environmentally relevant levels of arsenic can irreversibly alter pulmonary structure and function in the adults.« less

  6. Inhaled beclomethasone dipropionate improves acoustic measures of voice in patients with asthma.

    PubMed

    Balter, M S; Adams, S G; Chapman, K R

    2001-12-01

    Inhaled corticosteroids have the potential to produce upper-airway side effects such as hoarseness. As new compounds and delivery devices are developed and compared, it is difficult to quantify their adverse upper-airway effects. We undertook the following study to test the ability of an acoustic analysis technique to quantify changes in vocal function in steroid-naive patients with asthma who receive inhaled beclomethasone dipropionate (BDP), 1,000 microg/d for 4 months. Patients self-administered one of four regimens of inhaled BDP. Group 1 patients received one 250-microg puff qid via metered-dose inhaler (MDI); group 2 patients received one 250-microg puff qid via MDI with a holding chamber; group 3 patients received two 250-microg puffs bid via MDI; and group 4 patients received two 250-microg puffs bid via MDI with a holding chamber. A smaller cohort of nonsmoking asthmatic patients was managed without steroid intervention for 4 months. At baseline and again at 8 weeks and 16 weeks after the initiation of BDP treatment, patients underwent spirometry and methacholine challenge. At baseline and again at 2, 4, 8, 12, and 16 weeks, patients underwent voice recording for analysis of voice parameters. The recorded vowels were low-pass filtered (10 KHz), digitized (22 KHz), and analyzed by software to obtain two acoustic measures: (1) jitter, the cycle-to-cycle variation in the time period of the voice signal; and (2) shimmer, the cycle-to-cycle variation in voice signal amplitude. We recruited 77 patients for randomization to inhaled steroid therapy and 10 patients who continued to receive only occasional inhaled bronchodilator therapy. In all active treatment groups, FEV(1), FVC, and provocative concentration of methacholine causing a 20% fall in FEV(1) improved significantly after BDP treatment. Mean jitter scores, a measurement of variation in voice pitch, were not significantly influenced by BDP treatment. However, mean shimmer scores, a reflection of perturbation in vocal amplitude, fell significantly (p < 0.05) in the active treatment groups. These reductions in shimmer scores were not significantly different in the active treatment groups. Shimmer scores in the bronchodilator-treated group were unchanged during the 16 weeks of follow-up. Our data show that a simple and noninvasive acoustic analysis of voice is sensitive to subclinical changes associated with inhaled corticosteroid therapy. We have shown that 1,000 microg/d of inhaled BDP actually improves specific acoustic measures of voice in patients with inadequately controlled asthma. These improvements were uninfluenced by dosing schedule and whether a spacing chamber was used.

  7. Muscarinic receptors, nitric oxide formation and cyclooxygenase pathway involved in tracheal smooth muscle relaxant effect of hydro-ethanolic extract of Lavandula angustifolia flowers.

    PubMed

    Naghdi, Farzaneh; Gholamnezhad, Zahra; Boskabady, Mohammad Hossein; Bakhshesh, Morteza

    2018-06-01

    Lavandula angustifolia (L. angustifolia) Mill. (Common name Lavender) is used in traditional and folk medicines for the treatment of various diseases including respiratory disorders worldwide. The relaxant effect of the plant on the smooth muscle of some tissues was shown previously. The present study has investigated the role of different receptors and pathways in the relaxant effect of L. angustifolia on tracheal smooth muscle. Cumulative concentrations of the hydro-ethanolic extract of L. angustifolia flowers (0.5, 1, 2 and 4 mg/ml) were added on pre-contracted tracheal smooth muscle by methacholine (10 μM) or KCl (60 mM) on non-preincubated or preincubated tissues with atropine, chlorpheniramine, propranolol, diltiazem, glibenclamide, indomethacin, ω-nitro-L-arginine methyl ester (L-NAME) and papaverine. The results compared with of theophylline (0.2, 0.4, 0.6 and 0.8 mM) as positive control and saline (1 ml) as negative control. The extract showed concentration-dependent relaxant effects in non-preincubated tracheal smooth muscle contracted by KCl and methacholine (p < 0.05 to p < 0.001). The relaxant effect ofL. angustifolia was not significantly different between non-preincubated and preincubated tissues with chlorpheniramine, propranolol, diltiazem, glibenclamide, and papaverine. However, two higher concentrations of L. angustifolia in preincubated tissues with L-NAME (p < 0.01), indomethacin (p < 0.05 to p < 0.001) and atropine (p < 0.05) showed significantly lower relaxant effects than non-preincubated tissues. The EC 50 values of L. angustifolia in tissues preincubated with indomethacin was significantly higher than non-preincubated trachea (p < 0.05). The effects of three first concentrations of the extract on KCl and methacholine-induced muscle contraction were significantly lower than those of theophylline (p < 0.05 to p < 0.001). These results indicated a relatively potent relaxant effect ofL. angustifolia that was lower than the effect of theophylline. The possible mechanisms of relaxant effect of this plant on tracheal smooth muscle are muscarinic receptors blockade, inhibition of cyclooxygenase pathways and/or involvement of nitric oxide production. Its clinical applications should be investigated in further studies. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. N-acetylcysteine does not influence the activity of endothelium-derived relaxing factor in vivo.

    PubMed

    Creager, M A; Roddy, M A; Boles, K; Stamler, J S

    1997-02-01

    Nitric oxide forms complexes with an array of biomolecular carriers that retain biological activity. This reactivity of nitric oxide in physiological systems has led to some dispute as to whether endothelium-derived relaxing factors nitric oxide or a closely related adduct thereof, such as a nitrosothiol. In vitro bioassays used to address this question are limited by the exclusion of biological thiols that are requisite for nitrosothiol formation. Thus, the purpose of this study was to obtain insight into the identity of endothelium-derived relaxing factor in vivo. We reasoned that if endothelium-derived relaxing factor in nitric oxide, infusion of physiological concentrations of thiol would potentiate its bioactivity by analogy with effects seen in vitro, whereas nitrosothiol would be resistant to such modulation. We used venous-occlusion plethysmography to study forearm blood flow in normal subjects. Methacholine (0.3 to 10 micrograms/min) and nitroglycerin (1 to 30 micrograms/min) were infused via the brachial artery to elicit endothelium-dependent and endothelium-independent vasodilation, respectively. Dose-response determinations were made for each drug before and after an intra-arterial infusion of the reduced thiol, N-acetylcysteine, at rates estimated to achieve a physiological concentration of 1 mmol/L. Methacholine increased forearm blood flow in a dose-dependent manner. Infusion of N-acetylcysteine did not change the sensitivity (ED50, 1.7 versus 1.7 micrograms/min, P = NS) or maximal response to methacholine. In contrast, thiol increased the sensitivity to nitroglycerin (ED50, 4.7 versus 2.8 micrograms/min, P < .01). Thus, conflicting with reports in vitro, thiol does not modulate endothelium-derived relaxing factor responses in vivo. These data indicate that sulfhydryl groups are not a limiting factor for endothelium-derived relaxing factor responses in forearm resistance vessels in normal humans and are in keeping with reports that nitrosothiol contributes to endothelium-derived relaxing factor bioactivity in plasma and vascular smooth muscle. Potentiation of the effects of nitroglycerin by N-acetylcysteine can be attributed to its enhanced biotransformation to an endothelium-derived relaxing factor equivalent, such as nitrosothiol. These observations support the notion of an equilibrium between nitric oxide and nitrosothiol in biological systems that may be influenced by redox state.

  9. Effects of Diet-Induced Mild Obesity on Airway Hyperreactivity and Lung Inflammation in Mice

    PubMed Central

    Jung, Sun Hee; Kwon, Jang-Mi; Shim, Jae Won; Kim, Deok Soo; Jung, Hye Lim; Park, Moon Soo; Park, Soo-Hee; Lee, Jinmi; Lee, Won-Young

    2013-01-01

    Purpose Obesity has been suggested to be linked to asthma. However, it is not yet known whether obesity directly leads to airway hyperreactivity (AHR) or obesity-induced airway inflammation associated with asthma. We investigated obesity-related changes in adipokines, AHR, and lung inflammation in a murine model of asthma and obesity. Materials and Methods We developed mouse models of chronic asthma via ovalbumin (OVA)-challenge and of obesity by feeding a high-fat diet, and then performed the methacholine bronchial provocation test, and real-time PCR for leptin, leptin receptor, adiponectin, adiponectin receptor (adipor1 and 2), vascular endothelial growth factor (VEGF), transforming growth factor (TGF) β, and tumor necrosis factor (TNF) α in lung tissue. We also measured cell counts in bronchoalveolar lavage fluid. Results Both obese and lean mice chronically exposed to OVA developed eosinophilic lung inflammation and AHR to methacholine. However, obese mice without OVA challenge did not develop AHR or eosinophilic inflammation in lung tissue. In obese mice, lung mRNA expressions of leptin, leptin receptor, VEGF, TGF, and TNF were enhanced, and adipor1 and 2 expressions were decreased compared to mice in the control group. On the other hand, there were no differences between obese mice with or without OVA challenge. Conclusion Diet-induced mild obesity may not augment AHR or eosinophilic lung inflammation in asthma. PMID:24142648

  10. Treatment of asthma patients with herbal medicine TJ-96: a randomized controlled trial.

    PubMed

    Urata, Y; Yoshida, S; Irie, Y; Tanigawa, T; Amayasu, H; Nakabayashi, M; Akahori, K

    2002-06-01

    Alternative medicine use has increased at a remarkable pace all over the world in recent years. Although herbal medicine for the treatment of asthma is becoming the focus of public attention, randomized studies had not been performed, even in Eastern countries including Japan. This study was designed to investigate whether one of the Japanese government approved herbal complexes Saiboku-to (TJ-96) is effective for the treatment of atopic asthma, and to investigate whether this protective activity is associated with a reduction in eosinophilic inflammation. A double-blind, randomized, crossover design was used. Subjects received 2.5 g of TJ-96 or placebo orally 3 times daily for 4 weeks and then, after a washout period of at least 4 weeks, crossed over to receive the alternative treatment. We assessed the effects of pretreatment with TJ-96 on bronchoconstriction precipitated by inhalation of methacholine. Furthermore, eosinophil counts and measurement of eosinophilic cationic protein (ECP) were performed. After 4 weeks of treatment with TJ-96, values of PC20 -methacholine significantly improved in the treatment with TJ-96. Also, patients' symptoms, blood eosinophils, serum ECP, sputum eosinophils, and sputum ECP were significantly decreased. Our results suggest that TJ-96 has an antiinflammatory effect on bronchial eosinophilic infiltration. This study raises further interesting therapeutic possibilities and argues for further trials of new approaches to the treatment of asthma.

  11. Long-term effects of recurrent intermittent hypoxia and hyperoxia on respiratory system mechanics in neonatal mice.

    PubMed

    Dylag, Andrew M; Mayer, Catherine A; Raffay, Thomas M; Martin, Richard J; Jafri, Anjum; MacFarlane, Peter M

    2017-04-01

    Premature infants are at increased risk for wheezing disorders. Clinically, these neonates experience recurrent episodes of apnea and desaturation often treated by increasing the fraction of inspired oxygen (FIO 2 ). We developed a novel paradigm of neonatal intermittent hypoxia with subsequent hyperoxia overshoots (CIH O/E ) and hypothesized that CIH O/E elicits long-term changes on pulmonary mechanics in mice. Neonatal C57BL/6 mice received CIH O/E , which consisted of 10% O2 (1 min) followed by a transient exposure to 50% FIO 2 , on 10-min repeating cycles 24 h/d from birth to P7. Baseline respiratory mechanics, methacholine challenge, RT-PCR for pro and antioxidants, radial alveolar counts, and airway smooth muscle actin were assessed at P21 after 2-wk room air recovery. Control groups were mice exposed to normoxia, chronic intermittent hyperoxia (CIH E ), and chronic intermittent hypoxia (CIH O ). CIH O/E and CIH E increased airway resistance at higher doses of methacholine and decreased baseline compliance compared with normoxia mice. Lung mRNA for NOX2 was increased by CIH O/E . Radial alveolar counts and airway smooth muscle actin was not different between groups. Neonatal intermittent hypoxia/hyperoxia exposure results in long-term changes in respiratory mechanics. We speculate that recurrent desaturation with hyperoxia overshoot may increase oxidative stress and contribute to wheezing in former preterm infants.

  12. Development of a Novel Simulation Reactor for Chronic Exposure to Atmospheric Particulate Matter

    NASA Astrophysics Data System (ADS)

    Ye, Jianhuai; Salehi, Sepehr; North, Michelle L.; Portelli, Anjelica M.; Chow, Chung-Wai; Chan, Arthur W. H.

    2017-02-01

    Epidemiological studies have shown that air pollution is associated with the morbidity and mortality from cardiopulmonary diseases. Currently, limited experimental models are available to evaluate the physiological and cellular pathways activated by chronic multi-pollutant exposures. This manuscript describes an atmospheric simulation reactor (ASR) that was developed to investigate the health effects of air pollutants by permitting controlled chronic in vivo exposure of mice to combined particulate and gaseous pollutants. BALB/c mice were exposed for 1 hr/day for 3 consecutive days to secondary organic aerosol (SOA, a common particulate air pollutant) at 10-150 μg/m3, SOA (30 μg/m3) + ozone (65 ppb) or SOA + ozone (65 ppb) + nitrogen dioxide (NO2; 100 ppb). Daily exposure to SOA alone led to increased airway hyperresponsiveness (AHR) to methacholine with increasing SOA concentrations. Multi-pollutant exposure with ozone and/or NO2 in conjunction with a sub-toxic concentration of SOA resulted in additive effects on AHR to methacholine. Inflammatory cell recruitment to the airways was not observed in any of the exposure conditions. The ASR developed in this study allows us to evaluate the chronic health effects of relevant multi-pollutant exposures at ‘real-life’ levels under controlled conditions and permits repeated-exposure studies.

  13. Effect of beta2-adrenergic receptor polymorphism on response to longacting beta2 agonist in asthma (LARGE trial): a genotype-stratified, randomised, placebo-controlled, crossover trial.

    PubMed

    Wechsler, Michael E; Kunselman, Susan J; Chinchilli, Vernon M; Bleecker, Eugene; Boushey, Homer A; Calhoun, William J; Ameredes, Bill T; Castro, Mario; Craig, Timothy J; Denlinger, Loren; Fahy, John V; Jarjour, Nizar; Kazani, Shamsah; Kim, Sophia; Kraft, Monica; Lazarus, Stephen C; Lemanske, Robert F; Markezich, Amy; Martin, Richard J; Permaul, Perdita; Peters, Stephen P; Ramsdell, Joe; Sorkness, Christine A; Sutherland, E Rand; Szefler, Stanley J; Walter, Michael J; Wasserman, Stephen I; Israel, Elliot

    2009-11-21

    Some studies suggest that patients with asthma who are homozygous for arginine at the 16th amino acid position of the beta2-adrenergic receptor (B16 Arg/Arg) benefit less from treatment with longacting beta2 agonists and inhaled corticosteroids than do those homozygous for glycine (B16 Gly/Gly). We investigated whether there is a genotype-specific response to treatment with a longacting beta2 agonist in combination with inhaled corticosteroid. In this multicentre, randomised, double-blind, placebo-controlled trial, adult patients with moderate asthma were enrolled in pairs matched for forced expiratory volume in 1 s and ethnic origin, according to whether they had the B16 Arg/Arg (n=42) or B16 Gly/Gly (n=45) genotype. Individuals in a matched pair were randomly assigned by computer-generated randomisation sequence to receive inhaled longacting beta2 agonist (salmeterol 50 microg twice a day) or placebo given in a double-blind, crossover design for two 18-week periods. Open-label inhaled corticosteroid (hydrofluoroalkane beclometasone 240 microg twice a day) was given to all participants during the treatment periods. The primary endpoint was morning peak expiratory flow (PEF). Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00200967. After 18 weeks of treatment, mean morning PEF in Arg/Arg participants was 21.4 L/min (95% CI 11.8-31.1) higher when participants were assigned to receive salmeterol than when assigned to receive placebo (p<0.0001). In Gly/Gly participants, morning PEF was 21.5 L/min (11.0-32.1) higher when participants were assigned to receive salmeterol than when assigned to receive placebo (p<0.0001). The improvement in PEF did not differ between genotypes (difference [Arg/Arg-Gly/Gly] -0.1, -14.4 to 14.2; p=0.99). In Gly/Gly participants, methacholine PC20 (20% reduction in forced expiratory volume in 1 s; a prespecified secondary outcome) was 2.4 times higher when participants were assigned to salmeterol than when assigned to placebo (p<0.0001). Responsiveness to methacholine did not differ between salmeterol and placebo in Arg/Arg participants (p=0.87). The 2.5 times higher genotype-specific difference in responsiveness to methacholine was significant (1.32 doubling dose difference between genotypes, 0.43-2.21, p=0.0038). Seven Arg/Arg participants (placebo, n=5; salmeterol, n=2) and six Gly/Gly participants (placebo, n=3; salmeterol, n=3) had an asthma exacerbation. Five serious adverse events were reported, one each during the pre-match and run-in phases on open-label inhaled corticosteroid, two during double-blind treatment with salmeterol/inhaled corticosteroid, and one during double-blind treatment with placebo/inhaled corticosteroid. None of the serious events was asthma-related or related to study drugs or procedures. In asthma patients with B16 Arg/Arg and B16 Gly/Gly genotypes, combination treatment with salmeterol and inhaled corticosteroid improved airway function when compared with inhaled corticosteroid therapy alone. These findings suggest that patients should continue to be treated with longacting beta2 agonists plus moderate-dose inhaled corticosteroids irrespective of B16 genotype. Further investigation is needed to establish the importance of the genotype-specific difference in responsiveness to methacholine. National Institutes of Health.

  14. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide

    PubMed Central

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F.; Hoyle, Gary W.

    2013-01-01

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1 h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6 h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. PMID:23800689

  15. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide.

    PubMed

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F; Hoyle, Gary W

    2013-10-15

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. © 2013.

  16. Ozone-induced airway hyperresponsiveness in patients with asthma: role of neutrophil-derived serine proteinases.

    PubMed

    Hiltermann, T J; Peters, E A; Alberts, B; Kwikkers, K; Borggreven, P A; Hiemstra, P S; Dijkman, J H; van Bree, L A; Stolk, J

    1998-04-01

    Proteinase inhibitors may be of potential therapeutic value in the treatment of respiratory diseases such as chronic obstructive pulmonary disease (COPD) or asthma. Our aim was to study the role of neutrophils, and neutrophil-derived serine proteinases in an acute model in patients with asthma. Exposure to ozone induces an acute neutrophilic inflammatory reaction accompanied by an increase in airway hyperresponsiveness. It is thought that these two effects of ozone are linked, and that neutrophil-derived serine proteinases (i.e. elastase) may play a role in the ozone-induced airway hyperresponsiveness. Therefore, we examined the effect of recombinant antileukoprotease (rALP), one of the major serine proteinase inhibitors in the lung, on ozone-induced changes in airway hyperresponsiveness in this model. We observed that 16 h after exposure to ozone, airway hyperresponsiveness to methacholine was increased both following placebo and rALP treatment. There was no significant difference between placebo and rALP treatment (change in area under the dose-response curve to methacholine: 117.3+/-59.0 vs 193.6+/-59.6 % fall x DD; p=.12). Moreover, the immediate decrease in FEV1 after ozone exposure was not significantly different between the two groups (placebo: -29.6+/-6.7%; rALP: -20.9+/-3.8%; p=.11). In addition, no significant differences were observed in plasma levels of fibrinogen degradation products generated by neutrophil serine proteinases before and after exposure to ozone. We conclude that neutrophil-derived serine proteinases are not important mediators for ozone-induced hyperresponsiveness.

  17. 4-D segmentation and normalization of 3He MR images for intrasubject assessment of ventilated lung volumes

    NASA Astrophysics Data System (ADS)

    Contrella, Benjamin; Tustison, Nicholas J.; Altes, Talissa A.; Avants, Brian B.; Mugler, John P., III; de Lange, Eduard E.

    2012-03-01

    Although 3He MRI permits compelling visualization of the pulmonary air spaces, quantitation of absolute ventilation is difficult due to confounds such as field inhomogeneity and relative intensity differences between image acquisition; the latter complicating longitudinal investigations of ventilation variation with respiratory alterations. To address these potential difficulties, we present a 4-D segmentation and normalization approach for intra-subject quantitative analysis of lung hyperpolarized 3He MRI. After normalization, which combines bias correction and relative intensity scaling between longitudinal data, partitioning of the lung volume time series is performed by iterating between modeling of the combined intensity histogram as a Gaussian mixture model and modulating the spatial heterogeneity tissue class assignments through Markov random field modeling. Evaluation of the algorithm was retrospectively applied to a cohort of 10 asthmatics between 19-25 years old in which spirometry and 3He MR ventilation images were acquired both before and after respiratory exacerbation by a bronchoconstricting agent (methacholine). Acquisition was repeated under the same conditions from 7 to 467 days (mean +/- standard deviation: 185 +/- 37.2) later. Several techniques were evaluated for matching intensities between the pre and post-methacholine images with the 95th percentile value histogram matching demonstrating superior correlations with spirometry measures. Subsequent analysis evaluated segmentation parameters for assessing ventilation change in this cohort. Current findings also support previous research that areas of poor ventilation in response to bronchoconstriction are relatively consistent over time.

  18. Occupational asthma in the furniture industry: is it due to styrene?

    PubMed

    Oner, Ferda; Mungan, Dilşad; Numanoglu, Numan; Demirel, Yavuz

    2004-01-01

    Styrene, a volatile monomer, has been reported as a cause of occupational asthma in a few case reports. The aim of this study was to investigate the risk for asthma in relation to exposure to styrene in a large number of workers. A total of 47 workers with a history of exposure to styrene were included in the study. To establish whether asthma was present, each patient underwent a clinical interview, pulmonary function testing and bronchial challenge with methacholine. Specific bronchial challenges with styrene and serial peak expiratory flow (PEF) measurement at home and at work were carried out in subjects with a diagnosis of asthma to evaluate the relationship between their asthma and exposure to styrene in the workplace. Among the 47 subjects, 5 workers had given a history of work-related symptoms, and 3 of them had a positive methacholine challenge test. Specific bronchial challenges with styrene and serial PEF measurement were subsequently carried out in these 3 subjects. Although provocation tests with styrene were negative in the 3 workers, 1 worker had PEF rate records compatible with occupational asthma. We established one patient with occupational asthma from a group of people who have excessive styrene exposure. This finding may be suggestive but is not conclusive about the causative role of styrene in occupational asthma. Since styrene is a frequently used substance in the furniture industry, it is worth performing further studies to investigate the relationship between styrene and occupational asthma. Copyright 2004 S. Karger AG, Basel

  19. The effect of smoke inhalation on lung function and airway responsiveness in wildland fire fighters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, D.; Tager, I.B.; Balmes, J.R.

    1992-12-01

    The current study was undertaken to evaluate the effect of smoke on forced expiratory volumes and airway responsiveness in wildland fire fighters during a season of active fire fighting. Sixty-three seasonal and full-time wildland fire fighters from five U.S. Department of Agriculture Forest Service (USDAFS) Hotshot crews in Northern California and Montana completed questionnaires, spirometry, and methacholine challenge testing before and after an active season of fire fighting in 1989. There were significant mean individual declines of 0.09, 0.15, and 0.44 L/s in postseason values of FVC, FEV1, and FEF25-75, respectively, compared with preseason values. There were no consistent significantmore » relationships between mean individual declines of the spirometric parameters and the covariates: sex, smoking history, history of asthma or allergies, years as a fire fighter, upper/lower respiratory symptoms, or membership in a particular Hotshot crew. There was a statistically significant increase in airway responsiveness when comparing preseason methacholine dose-response slopes (DRS) with postseason dose-response slopes (p = 0.02). The increase in airway responsiveness appeared to be greatest in fire fighters with a history of lower respiratory symptoms or asthma, but it was not related to smoking history. These data suggest that wildland fire fighting is associated with decreases in lung function and increases in airway responsiveness independent of a history of cigarette smoking. Our findings are consistent with the results of previous studies of municipal fire fighters.« less

  20. Parainfluenza virus type 3 induced alterations in tachykinin NK1 receptors, substance P levels and respiratory functions in guinea pig airways.

    PubMed

    Kudlacz, E M; Shatzer, S A; Farrell, A M; Baugh, L E

    1994-08-03

    We have investigated the effects of parainfluenza virus type 3 (PI-3) on sensory neuropeptide levels, tachykinin receptors and their functions in guinea pig airways during the course of respiratory viral infection. PI-3 infected guinea pigs were hyperresponsive to methacholine and substance P aerosols as determined by earlier onset of dyspnea in these animals as compared with control on post-inoculation day (PID) 7 but not 19. In addition, plasma protein extravasation produced in response to the tachykinin was increased in infected airways during the first week post inoculation. Infected guinea pig trachea did not respond any differently to methacholine when smooth muscle contraction and [3H]inositol phosphate accumulation were measured although the magnitude of substance P effects using in vitro tests was significantly greater than control on post-inoculation day 7 but not 19. Trachea from PI-3 infected animals were characterized by reductions in substance P-like immunoreactivity, tachykinin NK1 receptor number and agonist affinity during the first post-inoculation week. Substance P levels or tachykinin NK1 receptor numbers or affinity were not altered in trachea of guinea pigs 4 days after treatment with lipopolysaccharide. These data suggest substance P release occurs during critical periods of respiratory viral infection which are temporally correlated with airway hyperresponsiveness. Despite apparent down-regulation of tachykinin NK1 receptors, substance P-mediated functions remained enhanced suggesting some alterations in post-receptor mechanisms.

  1. Interpretation of positive results of a methacholine inhalation challenge and 1 week of inhaled bronchodilator use in diagnosing and treating cough-variant asthma.

    PubMed

    Irwin, R S; French, C T; Smyrnios, N A; Curley, F J

    1997-09-22

    In diagnosing cough due to asthma, methacholine chloride inhalation challenge (MIC) interpreted in a traditional fashion has been shown to have positive predictive values from 60% to 82%. To determine whether any features of positive results of an MIC or the results of a 1-week trial of inhaled beta-agonist therapy were helpful in predicting when the cough was due to asthma. The study design was a prospective, randomized, double-blind, placebo-controlled, crossover format performed in adult, nonsmoking subjects, who were referred for diagnosis and treatment of chronic cough. The subjects had no other respiratory complaints or medical conditions for which they were taking medications, the results of baseline spirometry and chest roentgenograms were normal, and the results of MIC were positive. After obtaining baseline data, including MICs on 2 separate days, objective cough counting, and self-assessment of cough severity using a visual analog scale, subjects were randomized to receive 2 inhalations (1.3 mg) of metaproterenol sulfate or placebo by metered dose inhaler attached to a spacer device every 4 hours while awake. At 1 week, data identical to baseline were collected, and subjects received the other metered dose inhaler for 7 days. At 1 week, data identical to baseline were collected. After completion of the protocol, subjects were followed up in the clinic to observe the final response of the cough to specific therapy. Based on the disappearance of the cough with specific therapy, the cough was due to asthma in 9 of 15 subjects and nonasthma in 6 of 15 subjects. Baseline data were similar between groups. With respect to MICs, there were no significant differences between groups in the cumulative dose of methacholine that provoked a 20% decrease in forced expiratory volume in 1 second from the postsaline baseline value (PD20 values), slopes of dose-response curves, and maximal-response plateaus. Cough severity significantly improved after 1 week of metaproterenol use compared with the severity of the cough at baseline (P = .03) and with placebo (P = .02) only in subjects with asthma. No matter how the results are analyzed, positive MIC results, without observing response to therapy, are only consistent with asthma as the cause of the cough. The results are only diagnostic of asthma when they are followed by a favorable response to asthma therapy. After 1 week of inhaled beta-agonist, only the cough due to cough-variant asthma is significantly better.

  2. Pulmonary neutrophil recruitment and bronchial reactivity in formaldehyde-exposed rats are modulated by mast cells and differentially by neuropeptides and nitric oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lino dos Santos Franco, Adriana; Damazo, Amilcar Sabino; Post-Graduation in Morphology, UNIFESP, EPM, Sao Paulo

    2006-07-01

    We have used a pharmacological approach to study the mechanisms underlying the rat lung injury and the airway reactivity changes induced by inhalation of formaldehyde (FA) (1% formalin solution, 90 min once a day, 4 days). The reactivity of isolated tracheae and intrapulmonary bronchi were assessed in dose-response curves to methacholine (MCh). Local and systemic inflammatory phenomena were evaluated in terms of leukocyte countings in bronchoalveolar lavage (BAL) fluid, blood, bone marrow lavage and spleen. Whereas the tracheal reactivity to MCh did not change, a significant bronchial hyporesponsiveness (BHR) was found after FA inhalation as compared with naive rats. Also,more » FA exposure significantly increased the total cell numbers in BAL, in peripheral blood and in the spleen, but did not modify the counts in bone marrow. Capsaicin hindered the increase of leukocyte number recovered in BAL fluid after FA exposure. Both compound 48/80 and indomethacin were able to prevent the lung neutrophil influx after FA, but indomethacin had no effect on that of mononuclear cells. Following FA inhalation, the treatment with sodium cromoglycate (SCG), but not with the nitric oxide (NO) synthase inhibitor L-NAME, significantly reduced the total cell number in BAL. Compound 48/80, L-NAME and SCG significantly prevented BHR to MCh after FA inhalation, whereas capsaicin was inactive in this regard. On the other hand, indomethacin exacerbated BHR. These data suggest that after FA inhalation, the resulting lung leukocyte influx and BHR may involve nitric oxide, airway sensory fibers and mast cell-derived mediators. The effect of NO seemed to be largely restricted to the bronchial tonus, whereas neuropeptides appeared to be linked to the inflammatory response, therefore indicating that the mechanisms responsible for the changes of airway responsiveness caused by FA may be separate from those underlying its inflammatory lung effects.« less

  3. A novel method for detecting airway narrowing using breath sound spectrum analysis in children.

    PubMed

    Tabata, Hideyuki; Hirayama, Mariko; Enseki, Mayumi; Nukaga, Mariko; Hirai, Kota; Furuya, Hiroyuki; Mochizuki, Hiroyuki

    2016-01-01

    Using a breath sound analyzer, we investigated new clinical parameters that are rarely affected by airflow in young children. A total of 65 children with asthma participated in this study (mean age 9.6 years). In Study 1, the intra- and inter-observer variability was measured. Common breath sound parameters, frequency at 99%, 75%, and 50% of the maximum frequency (F99, F75, and F50) and the highest frequency of inspiratory breath sounds were calculated. In addition, new parameters obtained using the ratio of sound spectra parameters, i.e., the spectrum curve indexes including the ratio of the third and fourth area to the total area and the ratio of power and frequency at F75 and F50, were calculated. In Study 2, 51 children underwent breath sound analyses. In Study 3, breath sounds were studied before and after methacholine inhalation. In Study 1, the data showed good inter- and intra-observer reliability. In Study 2, there were significant relationships between the airflow rate, age, height, and spirometric and common breath sound parameters. However, there were no significant relationships between the airflow rate and the spectrum curve indexes. Moreover, the spectrum curve indexes showed no relationships with age, height, or spirometric parameters. In Study 3, all parameters significantly changed after methacholine inhalation. Some spectrum curve indexes are not significantly affected by the airflow rate at the mouth, although they successfully indicate airway narrowing. These parameters may play a role in the assessment of bronchoconstriction in children. Copyright © 2015 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  4. Effect of fenoterol-induced constitutive beta(2)-adrenoceptor activity on contractile receptor function in airway smooth muscle.

    PubMed

    de Vries, B; Roffel, A F; Zaagsma, J; Meurs, H

    2001-11-23

    In the present study, we investigated the effect of fenoterol-induced constitutive beta(2)-adrenoceptor activity on muscarinic receptor agonist- and histamine-induced bovine tracheal smooth muscle contractions. Bovine tracheal smooth muscle strips were incubated with 10 microM fenoterol or vehicle for various periods of time (5, 30 min, 18 h) at 37 degrees C. After extensive washout (3 h, 37 degrees C), isometric contractions were measured to the full muscarinic receptor agonist methacholine, the partial muscarinic receptor agonist 4-(m-chlorophenyl-carbamoyloxy)-2-butynyltrimethylammonium (McN-A-343) and histamine. Fenoterol treatment significantly reduced the sensitivity (pEC(50)) to methacholine in a time-dependent manner, without affecting maximal contraction (E(max)). Fenoterol treatment similarly reduced the pEC(50) of McN-A-343 and histamine; however, E(max) values were also reduced, to approximately 70% of control after 18-h treatment. The inverse agonist timolol, having no effect on control preparations, consistently restored the reduced pEC(50) and E(max) values of the contractile agonists. Remarkably, in the presence of timolol the pEC(50) values of McN-A-343 and histamine in fenoterol-treated airways were significantly enhanced compared to controls. In conclusion, fenoterol-induced constitutive beta(2)-adrenoceptor activity reduces muscarinic receptor agonist- and histamine-induced contractions of bovine tracheal smooth muscle, which can be reversed by the inverse agonist timolol. Moreover, after beta(2)-adrenoceptor agonist treatment, inverse agonism by beta-adrenoceptor antagonists may cause enhanced airway reactivity to contractile mediators.

  5. Smooth muscle in the maintenance of increased airway resistance elicited by methacholine in humans.

    PubMed

    Chapman, David G; Pascoe, Chris D; Lee-Gosselin, Audrey; Couture, Christian; Seow, Chun Y; Paré, Peter D; Salome, Cheryl M; King, Gregory G; Bossé, Ynuk

    2014-10-15

    Airway narrowing is maintained for a prolonged period after acute bronchoconstriction in humans in the absence of deep inspirations (DIs). To determine whether maintenance of airway smooth muscle (ASM) shortening is responsible for the persistence of airway narrowing in healthy subjects following transient methacholine (MCh)-induced bronchoconstriction. On two separate visits, five healthy subjects underwent MCh challenges until respiratory system resistance (Rrs) had increased by approximately 1.5 cm H2O/L/s. Subjects took a DI either immediately after or 30 minutes after the last dose. The extent of renarrowing following the bronchodilator effect of DI was used to assess the continued action of MCh (calculated as percent change in Rrs from the pre-DI Rrs). We then used human bronchial rings to determine whether ASM can maintain shortening during a progressive decrease of carbachol concentration. The increased Rrs induced by MCh was maintained for 30 minutes despite waning of MCh concentration over that period, measured as attenuated renarrowing when the DI was taken 30 minutes after compared with immediately after the last dose (7 min post-DI, -36.2 ± 11.8 vs. 14.4 ± 13.2%; 12 min post-DI, -39.5 ± 9.8 vs. 15.2 ± 17.8%). Ex vivo, ASM shortening was largely maintained during a progressive decrease of carbachol concentration, even down to concentrations that would not be expected to induce shortening. The maintenance of airway narrowing despite MCh clearance in humans is attributed to an intrinsic ability of ASM to maintain shortening during a progressive decrease of contractile stimulation.

  6. Clinical and functional characteristics of patients two years after being affected by the soybean asthma epidemic in Barcelona.

    PubMed Central

    Sabrià, J.; Antó, J. M.; Sunyer, J.; Roca, J.; Morell, F.; Rodríguez-Roisín, R.; Rodrigo, M. J.; Codina, R.

    1994-01-01

    BACKGROUND--Patients affected during the asthma outbreaks caused by soybean dust inhalation in Barcelona presented with sudden onset of severe asthma followed by the rapid relief of symptoms after treatment. Two years after the epidemics ended, a case-control study was conducted in which the clinical, functional, and immunological characteristics of these asthma patients (a randomised sample of asthmatic patients admitted as emergency cases on epidemic days, n = 213) were compared with those of a control group (a random sample of asthmatic patients admitted as emergency cases for attacks of asthma on non-epidemic days, n = 170). METHODS--The study included the administration of the ATS-DLD78 standardised respiratory questionnaire, the measurement of atopy, and performance of spirometric tests and a methacholine inhalation test. RESULTS--Patients with epidemic asthma reported fewer symptoms of asthma, had attended emergency departments less frequently during the previous year for acute attacks of asthma, were taking fewer inhaled corticosteroids at the time of the study, and attended medical follow up less frequently than did the patients with non-epidemic asthma. However, the cases and controls showed no differences in ventilatory capacity or reactivity to the methacholine bronchoprovocation test. CONCLUSIONS--Two years after the end of the soybean epidemics, people affected by epidemic asthma had a favourable prognosis. This finding contrasts with a higher risk of life threatening asthma and death during the epidemics. This paradox could be the result of a complex interaction between host and conditions of exposure. Images PMID:7940432

  7. Ozone-Induced Injury and Oxidative Stress in Bronchiolar Epithelium Are Associated with Altered Pulmonary Mechanics

    PubMed Central

    Sunil, Vasanthi R.

    2013-01-01

    In these studies, we analyzed the effects of ozone on bronchiolar epithelium. Exposure of rats to ozone (2 ppm, 3h) resulted in rapid (within 3h) and persistent (up to 72h) histological changes in the bronchiolar epithelium, including hypercellularity, loss of cilia, and necrotizing bronchiolitis. Perivascular edema and vascular congestion were also evident, along with a decrease in Clara cell secretory protein in bronchoalveolar lavage, which was maximal 24h post-exposure. Ozone also induced the appearance of 8-hydroxy-2′-deoxyguanosine, Ym1, and heme oxygenase-1 in the bronchiolar epithelium. This was associated with increased expression of cleaved caspase-9 and beclin-1, indicating initiation of apoptosis and autophagy. A rapid and persistent increase in galectin-3, a regulator of epithelial cell apoptosis, was also observed. Following ozone exposure (3–24h), increased expression of cyclooxygenase-2, inducible nitric oxide synthase, and arginase-1 was noted in bronchiolar epithelium. Ozone-induced injury and oxidative stress in bronchiolar epithelium were linked to methacholine-induced alterations in pulmonary mechanics. Thus, significant increases in lung resistance and elastance, along with decreases in lung compliance and end tidal volume, were observed at higher doses of methacholine. This indicates that ozone causes an increase in effective stiffness of the lung as a consequence of changes in the conducting airways. Collectively, these studies demonstrate that bronchiolar epithelium is highly susceptible to injury and oxidative stress induced by acute exposure to ozone; moreover, this is accompanied by altered lung functioning. PMID:23492811

  8. Impulse oscillometry: a measure for airway obstruction.

    PubMed

    Vink, Geraldine R; Arets, Hubertus G M; van der Laag, Johan; van der Ent, Cornelis K

    2003-03-01

    The impulse oscillometry system (IOS) was introduced as a new technique to assess airflow obstruction in patients who are not able to perform forced breathing maneuvers, e.g., subjects with cerebral palsy or severe mental retardation, and young children. This study evaluates the sensitivity and specificity of IOS parameters to quantify changes in airflow obstruction in comparison with forced expiratory volume in the first second (FEV(1)) and peak expiratory flow (PEF) measurements. Measurements of FEV(1), PEF, and resistance (R) and reactance (X) at frequencies of 5-35 Hz were performed in 19 children with asthma before, during, and after methacholine challenge and subsequent bronchodilatation. All parameters changed significantly during tests. Values of R5 and R10 correlated with FEV(1) (r = -0.71 and -0.73, respectively, P < 0.001), as did values of X5 and X10 (r = 0.52 and 0.57, respectively, P < 0.01). Changes in R preceded changes in PEF and FEV(1) during methacholine challenge. The area under the receiver operating characteristic (ROC) curve to predict a 15% fall in FEV(1) showed better sensitivity and specificity for R5 (area under the curve, 0.85) compared to PEF (0.79) or R10 (0.73). We conclude that IOS parameters can be easily used as an indirect measure of airflow obstruction. This might be helpful in patients who are not able to perform forced breathing maneuvers. In individual subjects, R values measured at 5 Hz showed to be superior to PEF measurements in the detection of a 15% fall in FEV(1). Copyright 2003 Wiley-Liss, Inc.

  9. Plasma substance P levels in patients with persistent cough.

    PubMed

    Otsuka, Kojiro; Niimi, Akio; Matsumoto, Hisako; Ito, Isao; Yamaguchi, Masafumi; Matsuoka, Hirofumi; Jinnai, Makiko; Oguma, Tsuyoshi; Takeda, Tomoshi; Nakaji, Hitoshi; Chin, Kazuo; Sasaki, Kazuhiko; Aoyama, Norihito; Mishima, Michiaki

    2011-01-01

    Substance P (SP) is involved in the pathogenesis of cough in animal models. However, few studies in humans have been reported and the roles of SP in clinical cough remain obscure. To clarify the relevance of plasma levels of SP in patients with persistent cough. We studied 82 patients with cough persisting for at least 3 weeks and 15 healthy controls. Patients were classified as having asthmatic cough (cough-variant asthma and cough-predominant asthma; n = 61) or nonasthmatic cough (n = 21; postinfectious cough, n = 6; gastroesophageal reflux disease, n = 5; idiopathic cough, n = 5, and others, n = 5). Correlations were evaluated between plasma SP levels as measured with ELISA and methacholine airway hyperresponsiveness (airway sensitivity and airway reactivity), capsaicin cough sensitivity, sputum eosinophil and neutrophil counts, and pulmonary function. Plasma SP levels were significantly elevated in patients with both asthmatic and nonasthmatic cough compared with controls [31.1 pg/ml (range 18.0-52.2) and 30.0 pg/ml (range 15.1-50.3) vs. 15.4 pg/ml (range 11.3-23.7); p = 0.003 and p = 0.038, respectively] but did not differ between the two patient groups (p = 0.90). Plasma SP levels correlated with airway sensitivity (threshold dose of methacholine) in the patients with asthmatic cough (r = -0.37, p = 0.005) but not with airway reactivity, cough sensitivity, FEV1 values, or sputum eosinophil and neutrophil counts in either group. Increased levels of SP in plasma are associated with persistent cough in humans and might be related to airway sensitivity in asthmatic cough. Copyright © 2011 S. Karger AG, Basel.

  10. Novel Small Airway Bronchodilator Responses to Rosiglitazone in Mouse Lung Slices

    PubMed Central

    Bai, Yan; Donovan, Chantal; Esposito, James G.; Tan, Xiahui; Sanderson, Michael J.

    2014-01-01

    There is a need to identify novel agents that elicit small airway relaxation when β2-adrenoceptor agonists become ineffective in difficult-to-treat asthma. Because chronic treatment with the synthetic peroxisome proliferator activated receptor (PPAR)γ agonist rosiglitazone (RGZ) inhibits airway hyperresponsiveness in mouse models of allergic airways disease, we tested the hypothesis that RGZ causes acute airway relaxation by measuring changes in small airway size in mouse lung slices. Whereas the β-adrenoceptor agonists albuterol (ALB) and isoproterenol induced partial airway relaxation, RGZ reversed submaximal and maximal contraction to methacholine (MCh) and was similarly effective after precontraction with serotonin or endothelin-1. Concentration-dependent relaxation to RGZ was not altered by the β-adrenoceptor antagonist propranolol and was enhanced by ALB. RGZ-induced relaxation was mimicked by other synthetic PPARγ agonists but not by the putative endogenous agonist 15-deoxy-PGJ2 and was not prevented by the PPARγ antagonist GW9662. To induce airway relaxation, RGZ inhibited the amplitude and frequency of MCh-induced Ca2+ oscillations of airway smooth muscle cells (ASMCs). In addition, RGZ reduced MCh-induced Ca2+ sensitivity of the ASMCs. Collectively, these findings demonstrate that acute bronchodilator responses induced by RGZ are PPARγ independent, additive with ALB, and occur by the inhibition of ASMC Ca2+ signaling and Ca2+ sensitivity. Because RGZ continues to elicit relaxation when β-adrenoceptor agonists have a limited effect, RGZ or related compounds may have potential as bronchodilators for the treatment of difficult asthma. PMID:24188042

  11. Changes in functional properties of the caffeine-sensitive Ca2+ store during differentiation of human SH-SY5Y neuroblastoma cells.

    PubMed

    Riddoch, Fiona C; Brown, Anna M; Rowbotham, Sophie E; Redfern, Christopher P F; Cheek, Timothy R

    2007-03-01

    We have used single cell fluorescence imaging techniques to examine how functional properties of the caffeine-sensitive Ca(2+) store change during differentiation of a sub-population of caffeine-sensitive SH-SY5Y cells. Application of caffeine (30 mM) 1-10.5 min after a 'priming' depolarisation pulse of 55 mM K(+) revealed that the caffeine-sensitive store in undifferentiated cells remained replete, whereas that in 9-cis retinoic acid (9cRA)-differentiated cells spontaneously dissipated with a t(1/2) of 2.8 min, and was essentially completely depleted approximately 10 min after priming. In 9cRA-differentiated cells that were stimulated with methacholine (10 microM) 1 min after priming, the amplitude, rate of rise and propagation velocity of the Ca(2+) wave in the neurites were all constant, whereas these kinetic parameters all progressively decreased as the wave travelled along the neurites in cells that were stimulated 10 min after priming. Use-dependent block with ryanodine inhibited the global Ca(2+) signal in 9cRA-differentiated cells stimulated with methacholine 1 min after priming (71+/-8%) but not 10 min after priming. Depolarisation was more effective at priming the caffeine-sensitive Ca(2+) store in 9cRA-differentiated cells, which lack a functional store-operated Ca(2+) entry pathway. We conclude that differentiation of caffeine-sensitive SH-SY5Y cells is accompanied by an increase in lability of the caffeine-sensitive Ca(2+) store, and that spontaneous dissipation of Ca(2+) from the store limits the time course of its molecular 'memory' during which it can amplify the hormone-induced Ca(2+) signal by Ca(2+)-induced Ca(2+) release.

  12. Effect of vitamin D and inhaled corticosteroid treatment on lung function in children.

    PubMed

    Wu, Ann Chen; Tantisira, Kelan; Li, Lingling; Fuhlbrigge, Anne L; Weiss, Scott T; Litonjua, Augusto

    2012-09-15

    Low vitamin D levels are associated with asthma and decreased airway responsiveness. Treatment with inhaled corticosteroids improves airway responsiveness and asthma control. To assess the effect of vitamin D levels on prebronchodilator FEV(1), bronchodilator response, and responsiveness to methacholine (PC(20), provocative concentration of methacholine producing a 20% decline in FEV(1)) in patients with asthma treated with inhaled corticosteroids. We measured 25-hydroxyvitamin D levels in the serum of children with persistent asthma at the time of enrollment in the Childhood Asthma Management Program. We divided subjects into the vitamin D sufficiency (>30 ng/ml), insufficiency (20-30 ng/ml), and deficiency (<20 ng/ml) groups. Covariates included age, treatment, sex, body mass index, race, history of emergency department visits, hospitalizations, and season that vitamin D specimen was drawn. Our main outcome measures were change in prebronchodilator FEV(1), bronchodilator response, and PC(20) from enrollment to 8-12 months. Of the 1,024 subjects, 663 (65%) were vitamin D sufficient, 260 (25%) were insufficient, and 101 (10%) were deficient. Vitamin D-deficient subjects were more likely to be older, African American, and have a higher body mass index compared with the vitamin D-sufficient and insufficient subjects. In the inhaled corticosteroid treatment group, prebronchodilator FEV(1) increased from randomization to 12 months by 140 ml in the vitamin D-deficient group and prebronchodilator FEV(1) increased by 330 ml in the vitamin D insufficiency group and by 290 ml in the vitamin D sufficiency group (P = 0.0072), in adjusted models. In children with asthma treated with inhaled corticosteroids, vitamin D deficiency is associated with poorer lung function than in children with vitamin D insufficiency or sufficiency.

  13. Case report of asthma associated with 3D printing.

    PubMed

    House, R; Rajaram, N; Tarlo, S M

    2017-12-02

    Three-dimensional (3D) printing is being increasingly used in manufacturing and by small business entrepreneurs and home hobbyists. Exposure to airborne emissions during 3D printing raises the issue of whether there may be adverse health effects associated with these emissions. We present a case of a worker who developed asthma while using 3D printers, which illustrates that respiratory problems may be associated with 3D printer emissions. The patient was a 28-year-old self-employed businessman with a past history of asthma in childhood, which had resolved completely by the age of eight. He started using 10 fused deposition modelling 3D printers with acrylonitrile-butadiene-styrene filaments in a small work area of approximately 3000 cubic feet. Ten days later, he began to experience recurrent chest tightness, shortness of breath and coughing at work. After 3 months, his work environment was modified by reducing the number of printers, changing to polylactic acid filaments and using an air purifier with an high-efficiency particulate air filter and organic cartridge. His symptoms improved gradually, although he still needed periodic treatment with a salbutamol inhaler. While still symptomatic, a methacholine challenge indicated a provocation concentration causing a 20% fall in FEV1 (PC20) of 4 mg/ml, consistent with mild asthma. Eventually, his symptoms resolved completely and a second methacholine challenge after symptom resolution was normal (PC20 > 16 mg/ml). This case indicates that workers may develop respiratory problems, including asthma when using 3D printers. Further investigation of the specific airborne emissions and health problems from 3D printing is warranted. © The Author 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. Primary Prevention of Asthma: Age and Sex Influence Sensitivity to Allergen-Induced Airway Inflammation and Contribute to Asthma Heterogeneity in Guinea Pigs

    PubMed Central

    Regal, Jean F.; Regal, Ronald R.; Meehan, Jessica L.; Mohrman, Margaret E.

    2010-01-01

    Background Limiting allergen exposure in the sensitization phase has been proposed as a means of primary prevention of asthma, but its effectiveness is debated. Hypothesis Primary prevention of asthma is more effective in limiting asthma symptoms in young guinea pigs compared with adults, whether males or females. Methods The following experimental groups were used: young/young, sensitized and challenged before sexual maturity; young/adult, sensitized young and challenged after sexual maturity; adult/adult, sensitized and challenged after sexual maturity. Males and females were sensitized intraperitoneally with varying doses of ovalbumin (OVA) and challenged intratracheally with a constant OVA dose. Cellular infiltration into lung and lavage fluid as well as airway hyperresponsiveness to intravenous methacholine was determined 24 h later. Results In unsensitized animals, density of resident inflammatory cells as well as baseline pulmonary function differed with age and sex. Maximum OVA-induced eosinophilia in females occurred at a lower sensitizing dose of OVA than in males, and the slopes of the dose-response relationship differed significantly between sexes. Young females had more pronounced increases in eosinophils compared with some adult treatment groups. The concentrations of OVA-specific antibodies were not directly related to differences in cellular infiltration. Airway hyperresponsiveness to methacholine challenge was observed in all treatment groups. Conclusion Young animals require major reductions in allergen exposure compared with adults to effectively limit airway inflammation in primary prevention. Heterogeneity of asthma symptoms seen with age and sex suggests that primary prevention by limiting allergen exposure or treatment with anti-inflammatory or bronchodilator drugs may be more effective strategies for specific age and gender populations. PMID:16931886

  15. Exposure to Aedes aegypti Bites Induces a Mixed-Type Allergic Response following Salivary Antigens Challenge in Mice

    PubMed Central

    Barros, Michele S.; Gomes, Eliane; Gueroni, Daniele I.; Ramos, Anderson D.; Mirotti, Luciana; Florsheim, Esther; Bizzarro, Bruna; Lino, Ciro N. R.; Maciel, Ceres; Lino-Dos-Santos-Franco, Adriana; Tavares-de-Lima, Wothan; Capurro, Margareth L.; Russo, Momtchilo

    2016-01-01

    Classical studies have shown that Aedes aegypti salivary secretion is responsible for the sensitization to mosquito bites and many of the components present in saliva are immunogenic and capable of inducing an intense immune response. Therefore, we have characterized a murine model of adjuvant-free systemic allergy induced by natural exposure to mosquito bites. BALB/c mice were sensitized by exposure to A. aegypti mosquito bites and intranasally challenged with phosphate-buffered saline only or the mosquito’s salivary gland extract (SGE). Blood, bronchoalveolar lavage (BAL) and lung were collected and evaluated for cellularity, histopathological analyses, cytokines and antibody determination. Respiratory pattern was analyzed by Penh measurements and tracheal segments were obtained to study in vitro reactivity to methacholine. BAL recovered from sensitized mice following challenge with SGE showed an increased number of eosinophils and Th2 cytokines such as IL-4, IL-5 and IL-13. Peribronchoalveolar eosinophil infiltration, mucus and collagen were also observed in lung parenchyma of sensitized mice, suggesting the development of a typical Th2 response. However, the antibody profile in serum of these mice evidenced a mixed-type response with presence of both, IgG1/IgE (Th2-related) and IgG2a (Th1-related) isotypes. In addition, changes in breathing pattern and tracheal reactivity to methacholine were not found. Taken together, our results show that A. aegypti bites trigger an atypical allergic reaction, with some classical cellular and soluble Th2 components in the lung, but also systemic Th1 and Th2 antibody isotypes and no change in either the respiratory pattern or the trachea responsiveness to agonist. PMID:27203689

  16. A 2-year step-down withdrawal from inhaled corticosteroids in asthmatic children receiving immunotherapy.

    PubMed

    He, Chun-Hui; Li, Xing; Lin, Jun-Hong; Xiao, Qiang; Yu, Jia-Lu; Liu, Ying-Fen; Jiang, Wen-Hui; Chen, Chen; Deng, Li; Zhou, Jie

    2017-12-01

    Inhaled corticosteroids (ICSs) for treating asthma are controversial because of their negative effects on the growth of asthmatic children and without clearly defined withdrawal strategy. A 2-year ICS step-down and withdrawal strategy has been developed for asthmatic children receiving 3-year subcutaneous immunotherapy (SCIT). Eleven children were included into the SCIT group and 13 children into the ICS group. ICSs were discontinued when children met the following criteria: requiring only 1 puffper day, with good control, for at least 6 months; having a forced expiratory volume in 1 second (FEV 1 )/forced vital capacity ≥80%; and SCIT discontinued for ≥24 months. The main endpoints were the results of both the childhood asthma control test (C-CAT) and the methacholine bronchial provocation test. In the SCIT group, all the 11 children had ICS discontinued, with one child developed asthma attack after pneumonia and received ICS again after completion of SCIT. In the ICS group, five children discontinued ICS and developed asthma attacks later and received ICS again; the other eight children developed severe symptoms during ICS step-down. Thus, the discontinuation of ICS was only achieved in the SCIT group. The dose of methacholine that caused a decrease of 20% in FEV 1 continued to improve after discontinuation of ICS for the SCIT group and presented better results than the ICS group (P=0.050). After completion of SCIT, the C-CAT had improved significantly after 30 months of treatment compared with the ICS group (P<0.05). In the present study, we developed a 2-year step-down and withdrawal strategy from ICSs strategy for allergic asthma children receiving SCIT; the strategy was efficacious and safe.

  17. The effect of methacholine-induced acute airway narrowing on lung sounds in normal and asthmatic subjects.

    PubMed

    Schreur, H J; Vanderschoot, J; Zwinderman, A H; Dijkman, J H; Sterk, P J

    1995-02-01

    The association between lung sound alterations and airways obstruction has long been recognized in clinical practice, but the precise pathophysiological mechanisms of this relationship have not been determined. Therefore, we examined the changes in lung sounds at well-defined levels of methacholine-induced airway narrowing in eight normal and nine asthmatic subjects with normal baseline lung function. All subjects underwent phonopneumography at baseline condition and at > or = 20% fall in forced expiratory volume in one second (FEV1), and in asthmatic subjects also at > or = 40% fall in FEV1. Lung sounds were recorded at three locations on the chest wall during standardized quiet breathing, and during maximal forced breathing. Airflow-dependent power spectra were computed using fast Fourier transform. For each spectrum, we determined the intensity and frequency content of lung sounds, together with the extent of wheezing. The results were analysed using analysis of variance (ANOVA). During acute airway narrowing, the intensity and frequency content of the recorded sounds, as well as the extent of wheezing, were higher than at baseline in both groups of subjects. At similar levels of obstruction, both the pitch and the change in sound intensity with airflow were higher in asthmatics than in normal subjects. Wheezing, being nondiscriminative between the subject groups at baseline, was more prominent in asthmatics than in normal subjects at 20% fall in FEV1. We conclude that, at given levels of acute airway narrowing, lung sounds differ between asthmatics and normal subjects. This suggests that airflow-standardized phonopneumography is a sensitive method for detecting abnormalities in airway dynamics in asthma.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Smooth muscle myosin isoform expression and LC20 phosphorylation in innate rat airway hyperresponsiveness.

    PubMed

    Gil, Fulvio R; Zitouni, Nedjma B; Azoulay, Eric; Maghni, Karim; Lauzon, Anne-Marie

    2006-11-01

    Four smooth muscle myosin heavy chain (SMMHC) isoforms are generated by alternative mRNA splicing of a single gene. Two of these isoforms differ by the presence [(+)insert] or absence [(-)insert] of a 7-amino acid insert in the motor domain. The rate of actin filament propulsion of the (+)insert SMMHC isoform, as measured in the in vitro motility assay, is twofold greater than that of the (-)insert isoform. We hypothesized that a greater expression of the (+)insert SMMHC isoform and greater regulatory light chain (LC(20)) phosphorylation contribute to airway hyperresponsiveness. We measured airway responsiveness to methacholine in Fischer hyperresponsive and Lewis normoresponsive rats and determined SMMHC isoform mRNA and protein expression, as well as essential light chain (LC(17)) isoforms, h-caldesmon, and alpha-actin protein expression in their tracheae. We also measured tracheal muscle strip contractility in response to methacholine and corresponding LC(20) phosphorylation. We found Fischer rats have more (+)insert mRNA (69.4 +/- 2.0%) (mean +/- SE) than Lewis rats (53.0 +/- 2.4%; P < 0.05) and a 44% greater content of (+)insert isoform relative to total myosin protein. No difference was found for LC(17) isoform, h-caldesmon, and alpha-actin expression. The contractility experiments revealed a greater isometric force for Fischer trachealis segments (4.2 +/- 0.8 mN) than Lewis (1.9 +/- 0.4 mN; P < 0.05) and greater LC(20) phosphorylation level in Fischer (55.1 +/- 6.4) than in Lewis (41.4 +/- 6.1; P < 0.05) rats. These results further support the contention that innate airway hyperresponsiveness is a multifactorial disorder in which increased expression of the fast (+)insert SMMHC isoform and greater activation of LC(20) lead to smooth muscle hypercontractility.

  19. Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure

    PubMed Central

    Razvi, Shehla S.; Richards, Jeremy B.; Malik, Farhan; Cromar, Kevin R.; Price, Roger E.; Bell, Cynthia S.; Weng, Tingting; Atkins, Constance L.; Spencer, Chantal Y.; Cockerill, Katherine J.; Alexander, Amy L.; Blackburn, Michael R.; Alcorn, Joseph L.; Haque, Ikram U.

    2015-01-01

    Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines—including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)—promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology. PMID:26386120

  20. [Interpretation and use of routine pulmonary function tests: Spirometry, static lung volumes, lung diffusion, arterial blood gas, methacholine challenge test and 6-minute walk test].

    PubMed

    Bokov, P; Delclaux, C

    2016-02-01

    Resting pulmonary function tests (PFT) include the assessment of ventilatory capacity: spirometry (forced expiratory flows and mobilisable volumes) and static volume assessment, notably using body plethysmography. Spirometry allows the potential definition of obstructive defect, while static volume assessment allows the potential definition of restrictive defect (decrease in total lung capacity) and thoracic hyperinflation (increase in static volumes). It must be kept in mind that this evaluation is incomplete and that an assessment of ventilatory demand is often warranted, especially when facing dyspnoea: evaluation of arterial blood gas (searching for respiratory insufficiency) and measurement of the transfer coefficient of the lung, allowing with the measurement of alveolar volume to calculate the diffusing capacity of the lung for CO (DLCO: assessment of alveolar-capillary wall and capillary blood volume). All these pulmonary function tests have been the subject of an Americano-European Task force (standardisation of lung function testing) published in 2005, and translated in French in 2007. Interpretative strategies for lung function tests have been recommended, which define abnormal lung function tests using the 5th and 95th percentiles of predicted values (lower and upper limits of normal values). Thus, these recommendations need to be implemented in all pulmonary function test units. A methacholine challenge test will only be performed in the presence of an intermediate pre-test probability for asthma (diagnostic uncertainty), which is an infrequent setting. The most convenient exertional test is the 6-minute walk test that allows the assessment of walking performance, the search for arterial desaturation and the quantification of dyspnoea complaint. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  1. Adrenergic responsiveness: FEV1 and symptom differences in Whites and African Americans with mild asthma.

    PubMed

    Hardie, Grace E; Brown, James K; Gold, Warren M

    2007-10-01

    Decision-making about inhaler use is, in part, determined by the ability of asthmatic patients to compare their symptoms over time and to recall the previous response to the bronchodilator during an episode of asthma. The perception of airway symptoms across varied ethnic and cultural groups are poorly understood. Study purpose was (1) to determine if African Americans and Whites with mild asthma could accurately perceive bronchodilation and (2) to identify the word descriptors they used to describe their breathing. Sixteen African American and 16 White patients (34.5 +/- 9.7 years old, mean+/-SD) with mild atopic asthma (FEV1 > or =70% predicted normal) were given increasing doses of an inhaled bronchodilator (Albuterol) after a methacholine challenge. Albuterol (180 microg) was given, by spacer, at 15 min intervals until the FEV1 increased < 5%. Borg, VAS, and Word Descriptors were collected at baseline and after each dose of Albuterol. Baseline FEV1 after Methacholine provocation was 1.94 +/- .39 L for African Americans and 2.13 +/- .70 L for Whites. After 180 microg and again after 360 microg Albuterol, FEV1 increased to 2.88 +/- 0.48 L for African Americans and 3.37 +/- 0.91 L for Whites. But after 540 microg Albuterol, FEV1 decreased significantly (16%) to 2.42 +/- 1.19 L for African Americans while increasing only slightly to 3.47 +/- 0.95 L for Whites. After this dose, 10/16 African Americans felt "tight at the base of throat" (p < 0.01); 7/16 felt "speech-voice-tight" (p < 0.03) suggesting persistent airway discomfort despite marked improvement in FEV1, Borg and VAS scores compared with baseline values. Word descriptors by African Americans' are a more reliable measure of airway symptoms compared to FEV1, Borg or VAS.

  2. Airway responses of healthy farmers and nonfarmers to exposure in a swine confinement building.

    PubMed

    Palmberg, Lena; Larssson, Brit-Marie; Malmberg, Per; Larsson, Kjell

    2002-08-01

    The objective of the study was to determine whether swine farmers continuously exposed to the farming environment react differently to acute exposure than previously unexposed nonfarmers. Nine healthy nonfarmers, not previously exposed to a farming environment, and eight swine farmers were exposed in a swine confinement building for 3 hours while weighing pigs. Lung function measurements, methacholine challenge tests, and nasal lavages were performed before and after the exposure. Blood samples were drawn repeatedly during the exposure day. Differential cell counts and cytokine levels were analyzed in the nasal lavage fluid and blood. The exposure levels were the same in both groups. Bronchial responsiveness to methacholine increased by a median of 4.0 (25th-75th percentiles 2.2-10.1 among the nonfarmers) and 0.7 (25th-75th percentiles 0.01-3.5 among the farmers) doubled concentration steps. The median serum levels of interleukin-6 increased from 3.8 (25th-75th percentiles <3-5.8) ng/l to 23.7 (25th-75th percentiles 11.6-41.6) ng/l among the nonfarmers and from <3 to 3.8 (25th-75th percentiles 3.1-11.6) ng/l among the swine farmers after the exposure. Swine dust exposure induced a ninefold increase in the total cell counts in the nasal lavage fluid of the nonfarmers, but no significant increase among the swine farmers. The exposure altered lung function and bronchial responsiveness, as well as cell number and cytokines in blood and nasal lavage fluid in previously unexposed nonfarming subjects, whereas only minor alterations were found in the farmers. This finding suggests possible adaptation mechanisms in chronically exposed swine farmers.

  3. Nitric oxide and vasoactive intestinal peptide as co-transmitters of airway smooth-muscle relaxation: analysis in neuronal nitric oxide synthase knockout mice.

    PubMed

    Hasaneen, Nadia A; Foda, Hussein D; Said, Sami I

    2003-09-01

    Both vasoactive intestinal peptide (VIP) and nitric oxide (NO) relax airway smooth muscle and are potential co-transmitters of neurogenic airway relaxation. The availability of neuronal NO synthase (nNOS) knockout mice (nNOS-/-) provides a unique opportunity for evaluating NO. To evaluate the relative importance of NO, especially that generated by nNOS, and VIP as transmitters of the inhibitory nonadrenergic, noncholinergic (NANC) system. In this study, we compared the neurogenic (tetrodotoxin-sensitive) NANC relaxation of tracheal segments from nNOS-/- mice and control wild-type mice (nNOS(+/+)), induced by electrical field stimulation (EFS). We also examined the tracheal contractile response to methacholine and its relaxant response to VIP. EFS (at 60 V for 2 ms, at 10, 15, or 20 Hz) dose-dependently reduced tracheal tension, and the relaxations were consistently smaller (approximately 40%) in trachea from nNOS-/- mice than from control wild-type mice (p < 0.001). VIP (10(- 8) to 10(-6) mol/L) induced concentration-dependent relaxations that were approximately 50% smaller in nNOS-/- tracheas than in control tracheas. Methacholine induced concentration-dependent contractions that were consistently higher in the nNOS-/- tracheas relative to wild-type mice tracheas (p > 0.05). Our data suggest that, in mouse trachea, NO is probably responsible for mediating a large (approximately 60%) component of neurogenic NANC relaxation, and a similar (approximately 50%) component of the relaxant effect of VIP. The results imply that NO contributes significantly to neurogenic relaxation of mouse airway smooth muscle, whether due to neurogenic stimulation or to the neuropeptide VIP.

  4. Respiratory response to toluene diisocyanate depends on prior frequency and concentration of dermal sensitization in mice.

    PubMed

    Vanoirbeek, Jeroen A J; Tarkowski, Maciej; Ceuppens, Jan L; Verbeken, Erik K; Nemery, Benoit; Hoet, Peter H M

    2004-08-01

    Occupational asthma is the principal cause of work-related respiratory disease in the industrial world. In the absence of satisfactory models for predicting the potential of low molecular weight chemicals to cause asthma, we verified that dermal sensitization prior to intranasal challenge influences the respiratory response using toluene diisocyanate (TDI), a known respiratory sensitizer. BALB/c mice received TDI or vehicle (acetone/olive oil) on each ear on three consecutive days (days 1, 2, and 3; 0.3 or 3% TDI) or only once (day 1, 1% TDI). On day 7, the mice received similar dermal applications of vehicle or the same concentration of TDI as before ("boost"). On day 10, they received an intranasal dose of TDI (0.1%) or vehicle. Ventilatory function was monitored by whole body plethysmography for 40 min after intranasal application, and reactivity to inhaled methacholine was assessed 24 h later. Pulmonary inflammation was assessed by bronchoalveolar lavage and histology. Mice that received an intranasal dose of TDI without having received a prior dermal application of TDI did not exhibit any ventilatory response or inflammatory changes compared to vehicle controls. In contrast, mice that had received prior application(s) of TDI, even if only on day 7, exhibited the following: ventilatory responses, compatible with bronchoconstriction, immediately after intranasal application with TDI; enhanced methacholine responsiveness 24 h later; and pulmonary inflammation characterized by neutrophils. This was, however, not the case in mice that received the highest dermal amount of TDI (3% on days 1, 2, and 3). These findings suggest that respiratory response to TDI depends on prior frequency and concentration of dermal sensitization in mice.

  5. New insight into the assessment of asthma using xenon ventilation computed tomography.

    PubMed

    Jung, Jae-Woo; Kwon, Jae-Woo; Kim, Tae-Wan; Lee, So-Hee; Kim, Kyung-Mook; Kang, Hye-Ryun; Park, Heung-Woo; Lee, Chang-Hyun; Goo, Jin-Mo; Min, Kyung-Up; Cho, Sang-Heon

    2013-08-01

    Image analyses include computed tomography (CT), magnetic resonance imaging, and xenon ventilation CT, which is new modality to evaluate pulmonary functional imaging. To examine the usefulness of dual-energy xenon ventilation CT in asthmatic patients. A total of 43 patients 18 years or older who were nonsmokers were included in the study. Xenon CT images in wash-in and wash-out phases were obtained at baseline and after inhalation of methacholine and salbutamol. The degrees of ventilation defects and xenon trappings were evaluated through visual analysis. Ventilation defects and xenon trapping were significantly increased and decreased after methacholine challenge and salbutamol inhalation, respectively (P < .005). The ventilation abnormalities were not significantly related to the percentage of forced expiratory volume in 1 second (FEV1) or the ratio of FEV1 to forced vital capacity. Xenon trappings after salbutamol inhalation were negatively related to the scores of the asthma control test, wheezing, or night symptoms, with statistical significance (P < .05), whereas, FEV1 showed no significant correlation with symptom scores. Baseline FEV1 was significantly lower and dyspnea and wheezing were more severe in the non-full reversal group than in the full reversal group after salbutamol inhalation in xenon CT (P < .05). The degree of ventilation defects were positively correlated with FEV1 improvement after 3 months of treatment (P = .02). The results of this study suggest that xenon ventilation CT can be used as a new method to assess ventilation abnormalities in asthma, and these ventilation abnormalities can be used as novel parameters that reflect the status of asthma control and symptom severity. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  6. EC-18, a synthetic monoacetyldiglyceride (1-palmitoyl-2-linoleoyl-3-acetylglycerol), attenuates the asthmatic response in an aluminum hydroxide/ovalbumin-induced model of asthma.

    PubMed

    Shin, In-Sik; Shin, Na-Rae; Jeon, Chan-Mi; Kwon, Ok-Kyoung; Sohn, Ki-Young; Lee, Tae-Suk; Kim, Jae-Wha; Ahn, Kyung-Seop; Oh, Sei-Ryang

    2014-01-01

    EC-18 is a synthetic monoacetyldiaglyceride that is a major constituent in antlers of Sika deer (Cervus nippon Temmenick). In this study, we evaluated the protective effects of EC-18 on Th2-type cytokines, eosinophil infiltration, and other factors in an aluminum hydroxide/ovalbumin (OVA)-induced murine asthma model. Mice were sensitized on days 0 and 14 by intraperitoneal injection of OVA with aluminum hydroxide. On days 21, 22 and 23 after the initial sensitization, the mice received an airway challenge with OVA for 1h using an ultrasonic nebulizer. EC-18 was administered to mice by oral gavage at doses of 30mg/kg and 60mg/kg once daily from day 18 to 23. Methacholine responsiveness was measured 24h after the final OVA challenge, and the bronchoalveolar lavage fluid (BALF) was collected 48h after the final OVA challenge. EC-18 significantly reduced methacholine responsiveness, T helper type 2 (Th2) cytokines, eotaxin-1, immunoglobulin (Ig) E, IgG, and the number of inflammatory cells. In addition, EC-18-treated mice exhibited the reduction in the expression of inducible nitric oxide synthase (iNOS) in lung tissue. In the histological analysis using hematoxylin-eosin stain and periodic acid-Schiff stain, EC-18 attenuated the infiltration of inflammatory cells into the airway and reduced the level of mucus production. Our results showed that EC-18 effectively suppressed the asthmatic response induced by OVA challenge. These effects were considered to be associated with iNOS suppression. In conclusion, this study suggests that EC-18 may be a therapeutic agent for allergic asthma. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Military small arms fire in association with acute decrements in lung function.

    PubMed

    Borander, Anne Katrine; Voie, Øyvind Albert; Longva, Kjetil; Danielsen, Tor Erik; Grahnstedt, Svein; Sandvik, Leiv; Kongerud, Johny; Sikkeland, Liv Ingunn Bjoner

    2017-09-01

    After introduction of unleaded ammunition, Norwegian Armed Forces received reports of acute respiratory symptoms in soldiers after exposure to fumes from firing the standard weapon, HK416. The aim of the present study was to examine lung function before and after exposure to fumes from HK416 in a double-blinded standardised study design using three different types of ammunition. Fifty-four healthy, non-smoking male volunteers (19-62 years) fired the weapons for 60 min with either leaded, unleaded or 'modified' unleaded ammunition. Gaseous and particulate emissions were monitored. Spirometry and exhaled nitric oxide (eNO) were performed within 14 days before (T0), shortly after (T1) and 24 hours after (T2) shooting. Methacholine provocation and diffusing capacity of carbon monoxide (DLCO) were carried out at T0 and T2. The mean forced expiratory volume in 1 s on a group level was significantly reduced both at T1 and T2 compared with T0, with means and 95% CI of 226 mL (158 to 294 mL) and 285 mL (218 to 351 mL), respectively. The same significant pattern was seen for DLCO, forced vital capacity and eNO. The methacholine test indicated a slight increase in bronchial hyper-reactivity. However, there were no significant differences between types of ammunition used. Exposure to fumes from military weapons might be a respiratory hazard for soldiers who do live-fire training regularly or are in a closed combat environment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F.

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-inducedmore » neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1 h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6 h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Corticosteroids may inhibit lung injury through their anti-inflammatory actions. • Corticosteroids inhibited chlorine-induced pneumonitis and pulmonary edema. • Mometasone and budesonide are potential rescue treatments for chlorine lung injury.« less

  9. Pulmonary anti-inflammatory effects and spasmolytic properties of Costa Rican noni juice (Morinda citrifolia L.).

    PubMed

    Dussossoy, Emilie; Bichon, Florence; Bony, Emilie; Portet, Karine; Brat, Pierre; Vaillant, Fabrice; Michel, Alain; Poucheret, Patrick

    2016-11-04

    Morinda citrifolia L. (Noni) is a medicinal plant used in Polynesia for many properties such as anti-inflammatory, anti-diabetic and antineoplastic effects. Recent studies showed that noni juice have anti-oxidant and acute anti-inflammatory activities likely due to polyphenols, iridoids and vitamin C content. The present study was undertaken to evaluate chronic anti-inflammatory and spasmolytic effects of noni juice. Therefore, we evaluated the effect of oral or intraperitoneal administrations of noni juice in vivo on the lung inflammation in ovalbumin (OVA) sensitized Brown Norway rat (with prednisolone 10mg/kg intraperitoneously as reference compound) and the ex vivo effect of noni juice on BaCl 2 (calcium signal) or methacholine (cholinergic signal) induced spasms in jejunum segments. We found that noni juice (intraperitoneously 2.17mL/kg and orally 4.55mL/kg) reduced the inflammation in OVA-sensitized Brown Norway rat with regard to the decreased number of inflammatory cells in lung (macrophages minus 20-26%, lymphocytes minus 58-34%, eosinophils minus 53-30%, neutrophils minus 70-28% respectively). Noni juice demonstrated a dose-dependent NO scavenging effect up to 8.1nmol of nitrites for 50µL of noni juice. In addition noni juice inhibited (up to 90%) calcium and cholinergic induced spasms on the jejunum segments model with a rightward shift of the concentration response curve. We describe for the first time that noni juice demonstrate (1) a chronic anti-inflammatory activity on sensitized lungs along with (2) a spasmolytic effect integrating a calcium channel blocker activity component. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Evaluation of pharmacological relaxation effect of the natural product naringin on in vitro cultured airway smooth muscle cells and in vivo ovalbumin-induced asthma Balb/c mice

    PubMed Central

    Wang, Yue; Lu, Yun; Luo, Mingzhi; Shi, Xiaohao; Pan, Yan; Zeng, Huilong; Deng, Linhong

    2016-01-01

    Asthma has become a common chronic respiratory disease worldwide and its prevalence is predicted to continue increasing in the next decade, particularly in developing countries. A key component in asthma therapy is to alleviate the excessive bronchial airway narrowing ultimately due to airway smooth muscle contraction, which is often facilitated by a smooth muscle relaxant, such as the β2-adrenergic agonists. Recently, bitter taste receptor (TAS2R) agonists, including saccharin and chloroquine, have been found to potently relax the airway smooth muscle cells (ASMCs) via intracellular Ca2+ signaling. This inspires a great interest in screening the vast resource of natural bitter substances for potential bronchodilatory drugs. In the present study, the relaxation effect of naringin, a compound extracted from common grapefruit, on ASMCs cultured in vitro or bronchial airways of Balb/c mice in vivo was evaluated. The results demonstrated that, when exposed to increasing doses of naringin (0.125, 0.25, 0.5 and 1.0 mM), the traction force generated by the cultured ASMCs decreased progressively, while the intracellular calcium flux signaling in the ASMCs increased. When inhaled at increasing doses (15, 30 and 60 µg), naringin also dose-dependently reduced the bronchial airway resistance of the normal and ovalbumin-induced asthma Balb/c mice in response to challenge with methacholine. In conclusion, these findings indicate that naringin was able to effectively relax murine ASMCs in vitro and in vivo, thus suggesting that it is a promising drug agent to be further investigated in the development of novel bronchodilators for the treatment of asthma. PMID:28101344

  11. Intracellular interactions of umeclidinium and vilanterol in human airway smooth muscle.

    PubMed

    Shaikh, Nooreen; Johnson, Malcolm; Hall, David A; Chung, Kian Fan; Riley, John H; Worsley, Sally; Bhavsar, Pankaj K

    2017-01-01

    Intracellular mechanisms of action of umeclidinium (UMEC), a long-acting muscarinic receptor antagonist, and vilanterol (VI), a long-acting β 2 -adrenoceptor (β 2 R) agonist, were investigated in target cells: human airway smooth-muscle cells (ASMCs). ASMCs from tracheas of healthy lung-transplant donors were treated with VI, UMEC, UMEC and VI combined, or control compounds (salmeterol, propranolol, ICI 118.551, or methacholine [MCh]). Cyclic adenosine monophosphate (cAMP) was measured using an enzyme-linked immunosorbent assay, intracellular free calcium ([Ca 2+ ] i ) using a fluorescence assay, and regulator of G-protein signaling 2 (RGS2) messenger RNA using real-time quantitative polymerase chain reaction. VI and salmeterol (10 -12 -10 -6 M) induced cAMP production from ASMCs in a concentration-dependent manner, which was greater for VI at all concentrations. β 2 R antagonism by propranolol or ICI 118.551 (10 -12 -10 -4 M) resulted in concentration-dependent inhibition of VI-induced cAMP production, and ICI 118.551 was more potent. MCh (5×10 -6 M, 30 minutes) attenuated VI-induced cAMP production ( P <0.05), whereas pretreatment with UMEC (10 -8 M, 1 hour) restored the magnitude of VI-induced cAMP production. ASMC stimulation with MCh (10 -11 -5×10 -6 M) resulted in a concentration-dependent increase in [Ca 2+ ] i , which was attenuated with UMEC pretreatment. Reduction of MCh-induced [Ca 2+ ] i release was greater with UMEC + VI versus UMEC. UMEC enhanced VI-induced RGS2 messenger RNA expression. These data indicate that UMEC reverses cholinergic inhibition of VI-induced cAMP production, and is a more potent muscarinic receptor antagonist when in combination with VI versus either alone.

  12. Bitter tasting compounds dilate airways by inhibiting airway smooth muscle calcium oscillations and calcium sensitivity

    PubMed Central

    Tan, Xiahui; Sanderson, Michael J

    2014-01-01

    Background and Purpose While selective, bitter tasting, TAS2R agonists can relax agonist-contracted airway smooth muscle (ASM), their mechanism of action is unclear. However, ASM contraction is regulated by Ca2+ signalling and Ca2+ sensitivity. We have therefore investigated how the TAS2R10 agonists chloroquine, quinine and denotonium regulate contractile agonist-induced Ca2+ signalling and sensitivity. Experimental Approach Airways in mouse lung slices were contracted with either methacholine (MCh) or 5HT and bronchodilation assessed using phase-contrast microscopy. Ca2+ signalling was measured with 2-photon fluorescence microscopy of ASM cells loaded with Oregon Green, a Ca2+-sensitive indicator (with or without caged-IP3). Effects on Ca2+ sensitivity were assessed on lung slices treated with caffeine and ryanodine to permeabilize ASM cells to Ca2+. Key Results The TAS2R10 agonists dilated airways constricted by either MCh or 5HT, accompanied by inhibition of agonist-induced Ca2+ oscillations. However, in non-contracted airways, TAS2R10 agonists, at concentrations that maximally dilated constricted airways, did not evoke Ca2+ signals in ASM cells. Ca2+ increases mediated by the photolysis of caged-IP3 were also attenuated by chloroquine, quinine and denotonium. In Ca2+-permeabilized ASM cells, the TAS2R10 agonists dilated MCh- and 5HT-constricted airways. Conclusions and Implications TAS2R10 agonists reversed bronchoconstriction by inhibiting agonist-induced Ca2+ oscillations while simultaneously reducing the Ca2+ sensitivity of ASM cells. Reduction of Ca2+ oscillations may be due to inhibition of Ca2+ release through IP3 receptors. Further characterization of bronchodilatory TAS2R agonists may lead to the development of novel therapies for the treatment of bronchoconstrictive conditions. PMID:24117140

  13. Effects of Ginger and Its Constituents on Airway Smooth Muscle Relaxation and Calcium Regulation

    PubMed Central

    Siviski, Matthew E.; Zhang, Yi; Xu, Carrie; Hoonjan, Bhupinder; Emala, Charles W.

    2013-01-01

    The prevalence of asthma has increased in recent years, and is characterized by airway hyperresponsiveness and inflammation. Many patients report using alternative therapies to self-treat asthma symptoms as adjuncts to short-acting and long-acting β-agonists and inhaled corticosteroids (ICS). As many as 40% of patients with asthma use herbal therapies to manage asthma symptoms, often without proven efficacy or known mechanisms of action. Therefore, investigations of both the therapeutic and possible detrimental effects of isolated components of herbal treatments on the airway are important. We hypothesized that ginger and its active components induce bronchodilation by modulating intracellular calcium ([Ca2+]i) in airway smooth muscle (ASM). In isolated human ASM, ginger caused significant and rapid relaxation. Four purified constituents of ginger were subsequently tested for ASM relaxant properties in both guinea pig and human tracheas: [6]-gingerol, [8]-gingerol, and [6]-shogaol induced rapid relaxation of precontracted ASM (100–300 μM), whereas [10]-gingerol failed to induce relaxation. In human ASM cells, exposure to [6]-gingerol, [8]-gingerol, and [6]-shogaol, but not [10]-gingerol (100 μM), blunted subsequent Ca2+ responses to bradykinin (10 μM) and S-(−)-Bay K 8644 (10 μM). In A/J mice, the nebulization of [8]-gingerol (100 μM), 15 minutes before methacholine challenge, significantly attenuated airway resistance, compared with vehicle. Taken together, these novel data show that ginger and its isolated active components, [6]-gingerol, [8]-gingerol, and [6]-shogaol, relax ASM, and [8]-gingerol attenuates airway hyperresponsiveness, in part by altering [Ca2+]i regulation. These purified compounds may provide a therapeutic option alone or in combination with accepted therapeutics, including β2-agonists, in airway diseases such as asthma. PMID:23065130

  14. Popcorn worker's lung: in vitro exposure to diacetyl, an ingredient in microwave popcorn butter flavoring, increases reactivity to methacholine.

    PubMed

    Fedan, J S; Dowdy, J A; Fedan, K B; Hubbs, A F

    2006-08-15

    Workers who inhale microwave popcorn butter flavorings experience decrements in lung function and can develop clinical bronchiolitis obliterans, i.e., "popcorn worker's lung" (Kreiss, K., Gomaa, A., Kullman, G., Fedan, K., Simoes, E.J., Enright, P.L., 2002. Clinical bronchiolitis obliterans in workers at a microwave-popcorn plant. N. Engl. J. Med. 347, 330-338.). In a rat inhalation model, vapors of an artificial butter flavoring damaged the epithelium of the upper and lower airways (Hubbs, A.F., Battelli, L.A., Goldsmith, W.T., Porter, D.W., Frazer, D., Friend, S., Schwegler-Berry, D., Mercer, R.R., Reynolds, J.S., Grote, A., Castranova, V., Kullman, G., Fedan, J.S., Dowdy, J., Jones, W.G., 2002. Necrosis of nasal and airway epithelium in rats inhaling vapors of artificial butter flavoring. Toxicol. Appl. Pharmacol. 185, 128-135.). Diacetyl, a butter flavoring component, is a major volatile ketone in the popcorn-processing workplace. We investigated the effects of diacetyl on epithelium of guinea pig isolated airway preparations and the effects of diacetyl in vitro on reactivity to bronchoactive agents. In the isolated, perfused trachea preparation, diacetyl added to the intraluminal (mucosal) bath elicited responses that began with contraction (threshold ca. 3 mM) and ended with relaxation. After a 4-h incubation with intraluminal diacetyl (3 mM), contractions to extraluminal (serosal) methacholine (MCh) were slightly increased; however, sensitivity to intraluminally (mucosally) applied MCh was increased by 10-fold. Relaxation responses of MCh (3 x 10(-7) M)-contracted tracheas to extraluminally applied terbutaline and intraluminally applied 120 mM KCl, to evoke epithelium-derived relaxing factor release, were unaffected by diacetyl. Exposure of the tracheal epithelium in Ussing chambers to diacetyl decreased transepithelial potential difference and resistance. These findings suggest that diacetyl exposure compromised epithelial barrier function, leading to hyperreactivity to mucosally applied MCh. The respiratory epithelium appears to serve as an initial target for the toxic effects of diacetyl in the airways.

  15. Airway responsiveness to methacholine and incidence of COPD: an international prospective cohort study.

    PubMed

    Marcon, Alessandro; Locatelli, Francesca; Keidel, Dirk; Beckmeyer-Borowko, Anna B; Cerveri, Isa; Dharmage, Shyamali C; Fuertes, Elaine; Garcia-Aymerich, Judith; Heinrich, Joachim; Imboden, Medea; Janson, Christer; Johannessen, Ane; Leynaert, Bénédicte; Pascual Erquicia, Silvia; Pesce, Giancarlo; Schaffner, Emmanuel; Svanes, Cecilie; Urrutia, Isabel; Jarvis, Deborah; Probst-Hensch, Nicole M; Accordini, Simone

    2018-05-02

    It has been debated, but not yet established, whether increased airway responsiveness can predict COPD. Recognising this link may help in identifying subjects at risk. We studied prospectively whether airway responsiveness is associated with the risk of developing COPD. We pooled data from two multicentre cohort studies that collected data from three time points using similar methods (European Community Respiratory Health Survey and Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults). We classified subjects (median age 37 years, 1st-3rd quartiles: 29-44) by their level of airway responsiveness using quintiles of methacholine dose-response slope at the first examination (1991-1994). Then, we excluded subjects with airflow obstruction at the second examination (1999-2003) and analysed incidence of COPD (postbronchodilator FEV 1 /FVC below the lower limit of normal) at the third examination (2010-2014) as a function of responsiveness, adjusting for sex, age, education, body mass index, history of asthma, smoking, occupational exposures and indicators of airway calibre. We observed 108 new cases of COPD among 4205 subjects during a median time of 9 years. Compared with the least responsive group (incidence rate 0.6 per 1000/year), adjusted incidence rate ratios for COPD ranged from 1.79 (95% CI 0.52 to 6.13) to 8.91 (95% CI 3.67 to 21.66) for increasing airway responsiveness. Similar dose-response associations were observed between smokers and non-smokers, and stronger associations were found among subjects without a history of asthma or asthma-like symptoms. Our study suggests that increased airway responsiveness is an independent risk factor for COPD. Further research should clarify whether early treatment in patients with high responsiveness can slow down disease progression. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Reduced vital capacity after methacholine challenge in early childhood--is it due to trapped air or loss of motivation.

    PubMed

    Vilozni, Daphna; Hakim, Fahed; Adler, Adi; Livnat, Galit; Bar-Yishay, Ephraim; Bentur, Lea

    2009-01-01

    In a previous study we assessed the feasibility of measuring bronchial-reactivity (BHR) in young asthmatic children by the determination of PC(20)-FEV(1) along with clinical end-of-test criteria during a methacholine challenge test (MCT). The end-point was associated with a significant reduction in both flow and vital capacity values. The findings could be due to the children's loss of motivation, which may preclude use of this test. Alternatively, if it reflects air trapping during airway obstruction, it might reinforce its applicability in preschool age children. To elucidate the mechanism of low vital capacity at PC(20)-FEV(1) in preschool age children. Twenty-eight children (3.3-6.9 years) with recurrent respiratory symptoms. An MCT was carried out using tripling doses (0.06-13.9 mg/ml) delivered by a dosimeter. Spirometry was measured at baseline and after each inhalation in duplicate sets. Whole body plethysmography was measured at baseline and at end-of-test (defined by clinical criteria) according to the recommendations for older populations. Plethysmography was reliably performed by 20 children before and after MCT. At baseline, lung function was within the healthy range. At end-of-test (PC(20)-FEV(1)=4.02+/-3.47 mg/ml), the spirometry parameters and specific conductance values were markedly reduced in correlation with a significant increase in residual volume and resistance. The study shows that diminished vital capacity is due to the increase in FRC at end-of-test. Our findings support the use of PC(20)-FEV(1) during BHR in young children and suggest that lung volume measurement by a plethysmograph may be feasible in early childhood. Larger studies should be performed to establish the clinical applicability of PC20-FEV1 determination in the preschool age.

  17. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13–Suppressed Elastin in Airway Fibroblasts in Asthma

    PubMed Central

    Slade, David; Church, Tony D.; Francisco, Dave; Heck, Karissa; Sigmon, R. Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L.; Que, Loretta; Sunday, Mary E.; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert’s resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13–induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13–induced suppression of ELN expression in airway fibroblasts. PMID:26074138

  18. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13-Suppressed Elastin in Airway Fibroblasts in Asthma.

    PubMed

    Ingram, Jennifer L; Slade, David; Church, Tony D; Francisco, Dave; Heck, Karissa; Sigmon, R Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L; Que, Loretta; Sunday, Mary E; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert's resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13-induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13-induced suppression of ELN expression in airway fibroblasts.

  19. Speed of onset of bronchodilator response to salbutamol inhaled via different devices in asthmatics: a bioassay based on functional antagonism

    PubMed Central

    Lavorini, Federico; Geri, Pietro; Mariani, Laura; Marmai, Cecilia; Maluccio, Nazzarena Maria; Pistolesi, Massimo; Fontana, Giovanni A

    2006-01-01

    Aims To evaluate the speed of onset of bronchodilation following salbutamol administered via a metered-dose inhaler with a spacer (pMDI + Volumatic) and a dry-powder inhaler (Diskus), as well as the relative potencies of these devices in asthmatic patients with methacholine-induced bronchoconstriction. Methods Eighteen patients inhaled methacholine (MCh) until FEV1 decreased by 35% of control. Following administration of placebo, 200 µg salbutamol or 400 µg salbutamol through the pMDI + Volumatic or the Diskus, we calculated the time elapsed from drug administration and the appearance of a 90% increase in post-MCh forced vital capacity (FVC), FEV1 and volume-adjusted mid-expiratory flow (recovery times). The salbutamol doses to be delivered by the two inhalation devices to achieve similar recovery times and the relative potencies of the devices were calculated by using the 2-by-2 Finney parallel regression method. Results For all functional variables, recovery times were significantly (P < 0.01) shorter in pMDI + Volumatic than Diskus trials. The salbutamol doses to be delivered by the Diskus to achieve recovery times for FVC, FEV1 and volume-adjusted mid-expiratory flow similar to those obtained with 200 µg salbutamol administered via the pMDI + Volumatic were 558 (95% CI 537, 579) µg, 395 (95% CI 388, 404) µg and 404 (95% CI 393, 415) µg, respectively, and corresponded to relative potencies of 2.79 (95% CI 2.68, 2.90), 1.98 (95% CI 1.94, 2.02), and 2.02 (95% CI 1.96, 2.07). Conclusions Administration of salbutamol via the pMDI + Volumatic provides faster reversal of induced bronchoconstriction than via the Diskus. The salbutamol dose targeting the lungs with the pMDI + Volumatic is approximately twice that with the Diskus. PMID:16995861

  20. Fluticasone propionate in clinically suspected asthma patients with negative methacholine challenge test.

    PubMed

    Peiman, Soheil; Abtahi, Hamidreza; Akhondzadeh, Shahin; Safavi, Enayat; Moin, Mostafa; Rahimi Foroushani, Abbas

    2017-07-01

    Despite reports of response to steroid inhaler in some clinically suspected asthma patients with negative methacholine challenge test (CSA/MCT-), treatment in these patients has not been prospectively studied. We studied the role of a 12 week high dose inhaled fluticasone trial in CSA/MCT- patients. After a 2 week run-in period, CSA/MCT-patients were treated with 12 weeks of Fluticasone propionate 1000 µg/day. The Asthma Control Test (ACT), numeric cough score (NCS) and bronchodilator use were compared with their pretreatment values. Thirty-four of 42 CSA/MCT-patients completed the study. Mean pretreatment ACT score (pACT) was significantly increased after treatment (14.7 ± 3.37 to 20.9 ± 3.1, P < 0.001). Posttreatment values of daytime (1.0 ± 1.0) and night-time (0.6 ± 0.9) NCS decreased compared to their pretreatment values (2.8 ± 1.1 and 1.9 ± 1.3, respectively; P < 0.001). ACT score change (ΔACT) were significantly greater in those with pACT < 15 than in those ≥15 (P < 0.001) . Fifteen of 21 patients with ΔACT > 5 did not need to use bronchodilator for their symptom relief. Wheeze disappeared in all six patients with ΔACT > 5 after the trial. Six months after the study, steroid inhaler continued to be used by 72.2% of patients. A significant portion of CSA/MCT- (especially those with pretreatment ACT score <15) respond to high dose fluticasone inhaler in terms of symptoms relief, disappearance of wheeze and need to bronchodilator use. ΔACT could not be predicted with any individual symptoms or signs before MCT, % FEV1 decline or symptoms during MCT and exhaled nitric oxide. © 2015 John Wiley & Sons Ltd.

  1. Occupational allergy to aquarium fish food: red midge larva, freshwater shrimp, and earthworm. A clinical and immunological study.

    PubMed

    Meseguer Arce, J; Villajos, I M Sánchez-Guerrero; Iraola, V; Carnés, J; Fernández Caldas, E

    2013-01-01

    Chironomids seem to be the main cause of occupational allergy to aquarium fish food. The aim of this study was to investigate the pattern of occupational sensitization to 3 different arthropod species used as components of aquarium fish food. The study sample comprised 8 workers from a fish food packing department. The control group comprised 40 atopic patients (20 of whom were allergic to mites). We performed prick tests with extracts of red midge larva (Chironomus thummi), freshwater shrimp (Gammarus species), earthworm (Tubifex species), and other arthropod species and a battery of common inhalant allergens. We measured peak expiratory flow rate (PEFR) and specific immunoglobulin (Ig) E and performed a methacholine challenge test, nasal challenge test, and immunoblotting. Cross-reactivity analyses were completed using immunoblotting and CAP inhibition. Prick test results were positive to red midge larvae in 7 patients (87.5%), Gammarus in 5 (62.5%), Tubifex in 3 (37.5%), and mites in 6 (75%). In the mite-allergic controls, 30% had positive prick test results to red midge larvae. PEFR decreased > or = 20% during the packing process in all patients, and in 1 patient it indicated a dual asthmatic response. Methacholine challenge test results were positive in all participants. Nasal challenge tests were performed in 4 patients, and the results were positive. Specific IgE to red midge larvae was detected in 62.5%, Gammarus in 50%, and Tubifex in 16%. Bands of approximately 14-15 kDa and 31 kDa were observed in Gammarus and red midge larvae extracts. Cross-reactivity assays demonstrated that Gammarus totally inhibited red midge larvae, while Tubifex did so partially. Dermatophagoides pteronyssinus showed very low inhibitory capacity. Aquarium fish food arthropods are potent allergens with an elevated prevalence of sensitization and variable degree of crossreactivity. This is the first report of occupational allergy to Tubifex. More data are necessary to identify and characterize the responsible allergens.

  2. Assessment of airway hyperreactivity: comparison of forced spirometry and body plethysmography for methacholine challenge tests

    PubMed Central

    2009-01-01

    Introduction Bronchial challenge tests by inhalation of aerosolized methacholine (MCH) are commonly used in the clinical diagnosis of airway hyperresponsiveness (AHR). While the detection of airway narrowing relies on the patient's cooperation performing forced spirometry, body plethysmographic measurements of airway resistance are less depending on the patient's cooperation and do not alter the respiratory tract by maximal maneuvers. Hence we compared both methods concerning their clinical value and correlation during MCH challenges in patients with asthma. Materials and Methods Cumulative MCH challenges test, consisting of up to 5 steps, evaluated with body plethysmography on each step were performed in 155 patients with bronchial asthma. Airway responses were recorded at each step of MCH application (Master-Screen Body, Cardinal Health, Höchberg). At the baseline test and after crossing the provocation dose (PD) threshold in body plethysmography (PD+100 sReff), forced expirations were performed and FEV1, FVC, and FEV1 %FVC were measured. Using regression analysis of the airway parameters and taking the MCH dose as the covariate, we could extrapolate to missing spirometric values and interpolate the estimated MCH dose when crossing the PD threshold (PD-20 FEV1) between two consecutive measurements. The administered PD+100 MCH doses for specific airway resistance, sRtot, and sReff were compared with resistance parameters Rtot and Reff, and to PD-20 of FEV1 and FEV1 %FVC. Results Regarding sReff we found a mild, moderate, or severe AHR in 114 patients (75%), but only 50 (32%) according to FEV1. A statistical analysis showed strongly linear correlated parameters of airway resistance, but no significant correlation between the results of body plethysmography and forced spirometry Conclusions Using MCH challenges, we found specific airway resistance to be the most sensitive parameter to detect AHR. Raw is largely independent of height and gender facilitating the interpretation of measurements carried out longitudinally. PMID:20156751

  3. Differential effects of low and high dose folic acid on endothelial dysfunction in a murine model of mild hyperhomocysteinaemia.

    PubMed

    Clarke, Zoe L; Moat, Stuart J; Miller, Alastair L; Randall, Michael D; Lewis, Malcolm J; Lang, Derek

    2006-12-03

    The exact mechanism(s) by which hyperhomocysteinaemia promotes vascular disease remains unclear. Moreover, recent evidence suggests that the beneficial effect of folic acid on endothelial function is independent of homocysteine-lowering. In the present study the effect of a low (400 microg/70 kg/day) and high (5 mg/70 kg/day) dose folic acid supplement on endothelium-dependent relaxation in the isolated perfused mesenteric bed of heterozygous cystathionine beta-synthase deficient mice was investigated. Elevated total plasma homocysteine and impaired relaxation responses to methacholine were observed in heterozygous mice. In the presence of N(G)-nitro-L-arginine methyl ester relaxation responses in wild-type tissues were reduced, but in heterozygous tissues were abolished. Clotrimazole and 18alpha-glycyrrhetinic acid, both inhibitors of non-nitric oxide/non-prostanoid-induced endothelium-dependent relaxation, reduced responses to methacholine in wild-type but not heterozygous tissues. The combination of N(G)-nitro-L-arginine methyl ester and either clotrimazole or 18alpha-glycyrrhetinic acid completely inhibited relaxation responses in wild-type tissues. Both low and high dose folic acid increased plasma folate, reduced total plasma homocysteine and reversed endothelial dysfunction in heterozygous mice. A greater increase in plasma folate in the high dose group was accompanied by a more significant effect on endothelial function. In the presence of N(G)-nitro-L-arginine methyl ester, a significant residual relaxation response was evident in tissues from low and high dose folic acid treated heterozygous mice. These data suggest that the impaired mesenteric relaxation in heterozygous mice is largely due to loss of the non-nitric oxide/non-prostanoid component. While low dose folic acid may restore this response in a homocysteine-dependent manner, the higher dose has an additional effect on nitric oxide-mediated relaxation that would appear to be independent of homocysteine lowering.

  4. Thymoquinone, the main constituent of Nigella sativa, affects adenosine receptors in asthmatic guinea pigs

    PubMed Central

    Pejman, Laleh; Omrani, Hasan; Mirzamohammadi, Zahra; Keyhanmanesh, Rana

    2014-01-01

    Objective(s): For determining the mechanism of anti-asthmatic effect of thymoquinone, this investigation evaluated the effect of thymoquinone in the presence of selective A2A and A2B adenosine receptor antagonists (ZM241385 and MRS1706, respectively). Materials and Methods: Seventy guinea pigs were randomly divided to 7 groups; control (C), sensitized with ovalbumin (S), sensitized groups pretreated with thymoquinone (S+TQ), ZM241385 (S+Anta A2A), MRS1706 (S+Anta A2B), thymoquinone and antagonists (S+Anta A2A+TQ and S+Anta A2B+TQ). Thymoquinone and each of these antagonists with 3 mg/kg dose were injected i.p. on 10th day of sensitization protocol. Tracheal responsiveness (TR) to methacholine and ovalbumin (OA), and total and differential cell count in lung lavage fluid (LLF) in different groups were measured. Results: Increased EC50 and LLF neutrophil count and decreased TR to methacholine and OA, LLF eosinophil and basophil counts were observed in S+TQ group compared to S group (P<0.001 to P<0.05). Significant decrease in EC50 (P<0.01), LLF neutrophil, lymphocyte and monocyte count (P<0.001 for all) and significant increase in TR to OA (P<0.01), LLF total WBC (P<0.01) and eosinophil count (P<0.001) were observed in S+A2A group compared to S+TQ group. There was significant increase in LLF eosinophil and monocyte counts in S+Anta A2B group compared with S+TQ group (P<0.001 for both). In S+TQ+Anta A2A group, there was significant increase in LLF eosinophil (P<0.001) and significant decrease in LLF neutrophil (P<0.01) and monocyte (P<0.001) counts compared with S+TQ group. Conclusion: Thymoquinone affects adenosine receptors, which suggest that some of its anti-inflammatory effects may be mediated by these receptors. PMID:25859306

  5. Bronchial hyperresponsiveness in women with chronic obstructive pulmonary disease related to wood smoke

    PubMed Central

    González-García, Mauricio; Torres-Duque, Carlos A; Bustos, Adriana; Jaramillo, Claudia; Maldonado, Darío

    2012-01-01

    Purpose Chronic obstructive pulmonary disease (COPD) related to wood smoke exposure is characterized by important inflammation of the central and peripheral airways without significant emphysema. The objective of this study is to describe the bronchial hyperresponsiveness (BHR) level in women with COPD related to wood smoke exposure and to compare it with the BHR in women with COPD related to tobacco smoking. Materials and methods Two groups of women with stable COPD were studied: (1) wood smoke exposed (WS-COPD); and (2) tobacco smoke exposed (TS-COPD). A methacholine challenge test (MCT) was performed in all patients according to American Thoracic Society criteria. BHR levels were compared using the methacholine concentration, which caused a 20% fall in the FEV1 (PC20). Results Thirty-one patients, 19 with WS-COPD and 12 with TS-COPD, were included. There were no significant differences between the groups in baseline FVC, FEV1, IC, FEF25–75, and FEF25–75/FVC. All 31 patients had a positive MCT (PC20 < 16 mg/mL) and the fall in the FEV1 and IC was similar in both groups. The severity of BHR was significantly higher in the WS-COPD patients (PC20: 0.39 mg/mL) than in the TS-COPD patients (PC20: 1.24 mg/mL) (P = 0.028). The presence of cough, phlegm, and dyspnea during the test were similar in both groups. Conclusion We found moderate to severe BHR in women with WS-COPD, which was more severe than in the TS-COPD women with similar age and airflow obstruction. This paper suggests that the structural and inflammatory changes induced by the chronic exposure to wood smoke, described in other studies, can explain the differences with TS-COPD patients. Future studies may clarify our understanding of the impact of BHR on COPD physiopathology, phenotypes, and treatment strategies. PMID:22791990

  6. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Young-Il; Kim, Seung Hyun; Ju, Jung Won

    Highlights: {yields} Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. {yields} Induction of CD4{sup +}CD25{sup +}Foxp3{sup +} T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. {yields} C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct ofmore » humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical relationship between the allergic immune response and helminth infection.« less

  7. KIT Inhibition by Imatinib in Patients with Severe Refractory Asthma

    PubMed Central

    Cahill, Katherine N.; Katz, Howard R.; Cui, Jing; Lai, Juying; Kazani, Shamsah; Crosby-Thompson, Allison; Garofalo, Denise; Castro, Mario; Jarjour, Nizar; DiMango, Emily; Erzurum, Serpil; Trevor, Jennifer L.; Shenoy, Kartik; Chinchilli, Vernon M.; Wechsler, Michael E.; Laidlaw, Tanya M.; Boyce, Joshua A.; Israel, Elliot

    2017-01-01

    BACKGROUND Mast cells are present in the airways of patients who have severe asthma despite glucocorticoid treatment; these cells are associated with disease characteristics including poor quality of life and inadequate asthma control. Stem cell factor and its receptor, KIT, are central to mast-cell homeostasis. We conducted a proof-of-principle trial to evaluate the effect of imatinib, a KIT inhibitor, on airway hyper-responsiveness, a physiological marker of severe asthma, as well as on airway mast-cell numbers and activation in patients with severe asthma. METHODS We conducted a randomized, double-blind, placebo-controlled, 24-week trial of imatinib in patients with poorly controlled severe asthma who had airway hyperresponsiveness despite receiving maximal medical therapy. The primary end point was the change in airway hyperresponsiveness, measured as the concentration of methacholine required to decrease the forced expiratory volume in 1 second by 20% (PC20). Patients also underwent bronchoscopy. RESULTS Among the 62 patients who underwent randomization, imatinib treatment reduced airway hyperresponsiveness to a greater extent than did placebo. At 6 months, the methacholine PC20 increased by a mean (±SD) of 1.73±0.60 doubling doses in the imatinib group, as compared with 1.07±0.60 doubling doses in the placebo group (P = 0.048). Imatinib also reduced levels of serum tryptase, a marker of mast-cell activation, to a greater extent than did placebo (decrease of 2.02±2.32 vs. 0.56±1.39 ng per milliliter, P = 0.02). Airway mast-cell counts declined in both groups. Muscle cramps and hypophosphatemia were more common in the imatinib group than in the placebo group. CONCLUSIONS In patients with severe asthma, imatinib decreased airway hyperresponsiveness, mast-cell counts, and tryptase release. These results suggest that KIT-dependent processes and mast cells contribute to the pathobiologic basis of severe asthma. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT01097694.) PMID:28514613

  8. High levels of physical activity are associated with poorer asthma control in young females but not in males.

    PubMed

    Lövström, Ludvig; Emtner, Margareta; Alving, Kjell; Nordvall, Lennart; Borres, Magnus P; Janson, Christer; Malinovschi, Andrei

    2016-01-01

    Earlier studies on the levels of physical activity in asthma patients compared with controls have yielded varying results. We have previously reported that high versus moderate levels of physical activity were associated with higher prevalence of wheezing, especially in females. Here we studied the levels of physical activity in young patients with asthma and healthy subjects and their effect on asthma control. Four hundred eight physician-diagnosed patients with asthma and 118 controls (10-34 years) answered questions concerning frequency and/or duration of physical activity and undertook the Asthma Control Test (ACT), spirometry, methacholine challenges and exhaled nitric oxide measurements. Asthma patients were more frequently physically active (P = 0.01) and for longer durations (P = 0.002) than controls. Highly versus moderately physically active patients with asthma had a higher prevalence of not well-controlled asthma (ACT < 20) when physical activity was assessed by frequency (40.6% vs 24.1%, P = 0.001) or duration (39.0% vs 21.7%, P < 0.001). This was only seen in females who had reduced ACT items (P < 0.05). Frequently versus moderately active females had an odds ratio of 4.81 (2.43, 9.51) to have ACT < 20, while no such effect was found in males (OR 1.18 (0.61, 2.30)) and this interaction was statistically significantly associated with gender (P = 0.003). No differences in fraction of exhaled nitric oxide or methacholine reactivity were found between moderately and highly physically active females with asthma. Young asthma patients were more active than controls. High levels of physical activity were associated with poor asthma control as judged by the ACT in females, but not in males, and this appears unrelated to airway inflammation or responsiveness. © 2015 Asian Pacific Society of Respirology.

  9. Effect of budesonide and azelastine on histamine signaling regulation in human nasal epithelial cells.

    PubMed

    Liu, Shao-Cheng; Lin, Chun-Shu; Chen, Shyi-Gen; Chu, Yueng-Hsiang; Lee, Fei-Peng; Lu, Hsuan-Hsuan; Wang, Hsing-Won

    2017-02-01

    Both glucocorticoids and H1-antihistamines are widely used on patients with airway diseases. However, their direct effects on airway epithelial cells are not fully explored. Therefore, we use the primary culture of human nasal epithelial cells (HNEpC) to delineate in vitro mucosal responses to above two drugs. HNEpC cells were cultured with/without budesonide and azelastine. The growth rate at each group was recorded and measured as population double time (PDT). The histamine1-receptor (H1R), muscarinic1-receptor (M1R) and M3R were measured using immunocytochemistry and western blotting after 7-days treatment. Then, we used histamine and methacholine to stimulate the mucus secretion from HNEpC and observed the MUC5AC expression in culture supernatants. Concentration-dependent treatment-induced inhibition of HNEpC growth rate was observed. Cells incubated with azelastine proliferated significantly slower than that with budesonide and the combined use of those drugs led to significant PDT prolong. The immunocytochemistry showed the H1R, M1R and M3R were obviously located in the cell membrane without apparent difference after treatment. However, western blotting showed that budesonide can significantly up-regulate the H1R, M1R and M3R level while azelastine had opposite effects. Histamine and methacholine stimulated MUC5AC secretion was greater in cells treated with budesonide but was lesser in those treated with azelastine, as compared to controls. Our data suggest that both budesonide and azelastine can significantly inhibit HNEpC proliferation, and therefore, be helpful in against airway remodeling. Long-term use of budesonide might amplify histamine signaling and result in airway hyperreactivity to stimulants by enhancing H1R, M1R and M3R expression while azelastine can oppose this effect. Therefore, combined use of those two drugs in patients with chronic inflammatory airway diseases may be an ideal option.

  10. Beta 2 adrenergic receptor gene restriction fragment length polymorphism and bronchial asthma.

    PubMed Central

    Ohe, M.; Munakata, M.; Hizawa, N.; Itoh, A.; Doi, I.; Yamaguchi, E.; Homma, Y.; Kawakami, Y.

    1995-01-01

    BACKGROUND--Beta 2 adrenergic dysfunction may be one of the underlying mechanisms responsible for atopy and bronchial asthma. The gene encoding the human beta 2 adrenergic receptor (beta 2ADR) has recently been isolated and sequenced. In addition, a two allele polymorphism of this receptor gene has been identified in white people. A study was carried out to determine whether this polymorphism is functionally important and has any relation to airways responsiveness, atopy, or asthma. METHODS--The subjects studied were 58 family members of four patients with atopic asthma. Restriction fragment length polymorphism (RFLP) with Ban-I digestion of the beta 2ADR gene was detected by a specific DNA probe with Southern blot analysis. Airways responses to inhaled methacholine and the beta 2 agonist salbutamol, the skin prick test, and serum IgE levels were also examined and correlated to the beta 2ADR gene RFLP. In addition, measurements of cAMP responses to isoproterenol in peripheral mononuclear cells were performed in 22 healthy subjects whose genotype for beta 2ADR was known. RESULTS--A two allele polymorphism (2.3 kb and 2.1 kb) of the beta 2ADR gene was detected in the Japanese population. Family members without allele 2.3 kb (homozygote of allele 2.1 kb) had lower airways responses to inhaled salbutamol than those with allele 2.3 kb. The incidence of asthma was higher in those without allele 2.3 kb than in those with allele 2.3 kb. The beta 2ADR gene RFLP had no relation to airways responses to methacholine and atopic status. cAMP responses in peripheral mononuclear cells of the subjects without allele 2.3 kb tended to be lower than those of the subjects with allele 2.3 kb. CONCLUSIONS--These results suggest that Ban-I RFLP of the beta 2ADR gene may have some association with the airways responses to beta 2 agonists and the incidence of bronchial asthma. Images PMID:7785006

  11. Effect of inhaled corticosteroids on bronchial asthma in Japanese athletes.

    PubMed

    Hoshino, Yoshifumi; Koya, Toshiyuki; Kagamu, Hiroshi; Tsukioka, Keisuke; Toyama, Mio; Sakagami, Takuro; Hasegawa, Takashi; Narita, Ichiei; Arakawa, Masaaki; Suzuki, Eiichi

    2015-04-01

    Asthma has a higher prevalence in athlete populations such as Olympic athletes than in the general population. Correct diagnosis and management of asthma in athletes is important for symptom control and avoidance of doping accusations. However, few reports are available on asthma treatment in the athlete population in clinical practice. In this study, we focused on the clinical efficacy of inhaled corticosteroid (ICS) for asthma in a Japanese athlete population. The study subjects included athletes who visited the Niigata Institute for Health and Sports Medicine, Niigata, Japan for athletic tests and who were diagnosed with asthma on the basis of respiratory symptoms and positive results in a bronchodilator or bronchial provocation test such as exercise, hypertonic saline, or methacholine provocation. The athletes received ICS alone for at least 3 months, and the clinical background, sports type, and treatment efficacy were analyzed. The study population comprised 80 athletes (59 men and 21 women) with a median age of 16.0 years. Regarding sports type, 28 athletes engaged in winter sports (35%), 22 in endurance sports (27.5%), and 25 in indoor sports (31.3%). Although ICS is the primary treatment in athlete asthma, 16.3% of the athletes showed an unsatisfactory response to treatment according to the Global Evaluation of Treatment Effectiveness (GETE). These subjects were characterized by a decreased response to methacholine and lower values for FEV1/FVC and type 2 helper T cell (Th2)-associated biomarkers relative to responsive athletes. In multivariate analysis, FEV1/FVC and the logarithm to the base 10 of the IgE level were independently associated with the ICS response. These data suggest that ICS is effective for asthma in most athletes. However, certain asthmatic athletes are less responsive to ICS than expected. The pathogenesis in these subjects may differ from that of conventional asthma characterized by chronic allergic airway inflammation. Copyright © 2014 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  12. Cholinergic inhibition of adrenergic neurosecretion in the rabbit iris-ciliary body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jumblatt, J.E.; North, G.T.

    The prejunctional effects of cholinergic agents on release of norepinephrine from sympathetic nerve endings were investigated in the isolated, superfused rabbit iris-ciliary body. Stimulation-evoked release of /sup 3/H-norepinephrine was inhibited by the cholinergic agonists methacholine, oxotremorine, muscarine, carbamylcholine and acetylcholine (plus eserine), but was unmodified by pilocarpine or nicotine. Agonist-induced inhibition was antagonized selectively by atropine, indicating a muscarinic response. Atropine alone markedly enhanced norepinephrine release, revealing considerable tonic activation of prejunctional cholinergic receptors in this system. Prejunctional inhibition by carbamylcholine was found to completely override the facilitative action of forskolin or 8-bromo-cyclic AMP on neurotransmitter release. Cholinergic and alphamore » 2-adrenergic effects on neurosecretion were non-additive, suggesting that the underlying receptors coexist at neurotransmitter release sites.« less

  13. Popcorn worker's lung: In vitro exposure to diacetyl, an ingredient in microwave popcorn butter flavoring, increases reactivity to methacholine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedan, J.S.; Dowdy, J.A.; Fedan, K.B.

    Workers who inhale microwave popcorn butter flavorings experience decrements in lung function and can develop clinical bronchiolitis obliterans, i.e., 'popcorn worker's lung' (Kreiss, K., Gomaa, A., Kullman, G., Fedan, K., Simoes, E.J., Enright, P.L., 2002. Clinical bronchiolitis obliterans in workers at a microwave-popcorn plant. N. Engl. J. Med. 347, 330-338.). In a rat inhalation model, vapors of an artificial butter flavoring damaged the epithelium of the upper and lower airways (Hubbs, A.F., Battelli, L.A., Goldsmith, W.T., Porter, D.W., Frazer, D., Friend, S., Schwegler-Berry, D., Mercer, R.R., Reynolds, J.S., Grote, A., Castranova, V., Kullman, G., Fedan, J.S., Dowdy, J., Jones, W.G.,more » 2002. Necrosis of nasal and airway epithelium in rats inhaling vapors of artificial butter flavoring. Toxicol. Appl. Pharmacol. 185, 128-135.). Diacetyl, a butter flavoring component, is a major volatile ketone in the popcorn-processing workplace. We investigated the effects of diacetyl on epithelium of guinea pig isolated airway preparations and the effects of diacetyl in vitro on reactivity to bronchoactive agents. In the isolated, perfused trachea preparation, diacetyl added to the intraluminal (mucosal) bath elicited responses that began with contraction (threshold ca. 3 mM) and ended with relaxation. After a 4-h incubation with intraluminal diacetyl (3 mM), contractions to extraluminal (serosal) methacholine (MCh) were slightly increased; however, sensitivity to intraluminally (mucosally) applied MCh was increased by 10-fold. Relaxation responses of MCh (3 x 10{sup -7} M)-contracted tracheas to extraluminally applied terbutaline and intraluminally applied 120 mM KCl, to evoke epithelium-derived relaxing factor release, were unaffected by diacetyl. Exposure of the tracheal epithelium in Ussing chambers to diacetyl decreased transepithelial potential difference and resistance. These findings suggest that diacetyl exposure compromised epithelial barrier function, leading to hyperreactivity to mucosally applied MCh. The respiratory epithelium appears to serve as an initial target for the toxic effects of diacetyl in the airways.« less

  14. Methacholine challenge testing: improved patient comfort with a 2-tiered protocol.

    PubMed

    Segel, Michael J; Rabinovich, Einat; Schwarz, Yehuda; Ben-Dov, Issahar

    2013-06-01

    The methacholine challenge test (MCT) is a test of bronchial hyperreactivity used as an aid in the diagnosis of asthma. MCT results are reported as the provocation concentration at which the forced expiratory volume in 1 second (FEV1) decreases 20% (PC20). The requirement for a 20% or greater decrease in FEV1 results in precipitous decreases in FEV1 in some patients. To improve MCT safety without compromising accuracy. We performed a retrospective analysis of 879 consecutive MCTs (derivation cohort). A novel protocol for MCT was developed and validated in a cohort of 564 MCTs performed in a second institution. In comparison with a PC20 cutoff of less than 8 mg/mL, a provocation concentration at which the FEV1 decreases 10% (PC10) cutoff of 1 mg/mL or less has a sensitivity of 86%, a specificity of 98%, a positive predictive value (PPV) of 97%, and a negative predictive value (NPV) of 91%. We propose a novel 2-tiered protocol for MCT. If the PC10 is 1 mg/mL or less, bronchial hyperreactivity is present; if the PC10 is greater than 1 mg/mL, the test is continued until the provocative concentration is 8 mg/mL or a 20% decrease in FEV1 is achieved. Compared with the standard protocol, the proposed protocol has a sensitivity, specificity, PPV, NPV, and overall accuracy of 100%, 98%, 97.6%, 100%, and 99%, respectively. The modified protocol would have enabled us to avoid 26 of 42 cases (62%) in which a 40% or greater decrease in FEV1 occurred and would save 0.65 dose for every MCT performed. The 2-tiered protocol performed well in the validation cohort; sensitivity, specificity, PPV, NPV, and overall accuracy were 100%, 98%, 87%, 100%, and 98%, respectively. The proposed 2-tiered protocol is accurate, saves time, and avoids precipitous decreases in FEV1. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. Effect of gas cooking on lung function in adolescents: modifying role of sex and immunoglobulin E.

    PubMed

    Corbo, G M; Forastiere, F; Agabiti, N; Dell'Orco, V; Pistelli, R; Aebischer, M L; Valente, S; Perucci, C A

    2001-07-01

    A study was undertaken to investigate the effect of gas cooking on the lung function of adolescents while considering serum IgE level as a possible effect modifier. The cross sectional study was performed in 702 subjects aged 11-13 years from primary and secondary schools in Civitavecchia and Viterbo ( Latium region in Central Italy), categorised according to how often they were in the kitchen while the mother cooked (never, sometimes, often). Data were collected by questionnaire and lung function was measured by spirometric tests. Bronchial hyperresponsiveness was evaluated by the methacholine test, atopic status by a skin prick test, and a blood sample was collected to determine serum IgE levels. The results were analysed separately for boys and girls. Multiple regression analysis was performed, taking functional parameters (FEV(1), FEV(1)/FVC, FEF(25-75), FEF(50), FEF(75)) as the dependent variables and age, height, parental smoking, and father's education as independent variables. There was no association between time spent in the kitchen and lung function level in boys, but a reduction in lung function was detected in girls which was statistically significant for FEF(75) (sometimes -10.3%, often -11.1%). After stratifying boys and girls into four groups on the basis of the IgE serum level (below and above the median value of IgE), the reduction in lung function was significant in girls with a high IgE value whereas no significant deleterious effects were evident in girls with a low IgE value or in boys with either a low or high IgE. The results remained substantially unchanged after excluding girls with a response to methacholine below the concentration of 4 mg/ml, asthmatic patients, and those with positive skin prick tests. Gas cooking has a harmful effect on the lung function of girls with a high serum level of IgE. We do not know whether serum IgE, a marker of allergic susceptibility, is a simple indicator that an inflammatory process is in progress or whether it is involved in the pathogenesis of injury leading to bronchial obstruction.

  16. Quantification of atopy, lung function and airway hypersensitivity in adults

    PubMed Central

    2011-01-01

    Background Studies in children have shown that concentration of specific serum IgE (sIgE) and size of skin tests to inhalant allergens better predict wheezing and reduced lung function than the information on presence or absence of atopy. However, very few studies in adults have investigated the relationship of quantitative atopy with lung function and airway hyperresponsiveness (AHR). Objective To determine the association between lung function and AHR and quantitative atopy in a large sample of adults from the UK. Methods FEV1 and FVC (% predicted) were measured using spirometry and airway responsiveness by methacholine challenge (5-breath dosimeter protocol) in 983 subjects (random sample of 800 parents of children enrolled in a population-based birth cohort enriched with 183 patients with physician-diagnosed asthma). Atopic status was assessed by skin prick tests (SPT) and measurement of sIgE (common inhalant allergens). We also measured indoor allergen exposure in subjects' homes. Results Spirometry was completed by 792 subjects and 626 underwent methacholine challenge, with 100 (16.0%) having AHR (dose-response slope>25). Using sIgE as a continuous variable in a multiple linear regression analysis, we found that increasing levels of sIgE to mite, cat and dog were significantly associated with lower FEV1 (mite p = 0.001, cat p = 0.0001, dog p = 2.95 × 10-8). Similar findings were observed when using the size of wheal on skin testing as a continuous variable, with significantly poorer lung function with increasing skin test size (mite p = 8.23 × 10-8, cat p = 3.93 × 10-10, dog p = 3.03 × 10-15, grass p = 2.95 × 10-9). The association between quantitative atopy with lung function and AHR remained unchanged when we repeated the analyses amongst subjects defined as sensitised using standard definitions (sIgE>0.35 kUa/l, SPT-3 mm>negative control). Conclusions In the studied population, lung function decreased and AHR increased with increasing sIgE levels or SPT wheal diameter to inhalant allergens, suggesting that atopy may not be a dichotomous outcome influencing lung function and AHR. PMID:22410099

  17. Diesel asthma. Reactive airways disease following overexposure to locomotive exhaust.

    PubMed

    Wade, J F; Newman, L S

    1993-02-01

    While some of the gaseous and particulate components of diesel exhaust can cause pulmonary irritation and bronchial hyperreactivity, diesel exhaust exposure has not been shown to cause asthma. Three railroad workers developed asthma following excessive exposure to locomotive emissions while riding immediately behind the lead engines of caboose-less trains. Asthma diagnosis was based on symptoms, pulmonary function tests, and measurement of airways hyperreactivity to methacholine or exercise. One individual's peak expiratory flow rates fell in a work-related pattern when riding immediately behind the lead diesel engine. None had a previous history of asthma or other respiratory disease and none were current smokers. All three developed persistent asthma. In two cases, physiologic abnormalities suggesting reversible restriction were observed. This is the first report implicating diesel exhaust as a cause of reactive airways disease.

  18. A geranyl acetophenone targeting cysteinyl leukotriene synthesis prevents allergic airway inflammation in ovalbumin-sensitized mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Norazren; Jambari, Nuzul Nurahya; Zareen, Seema

    Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The current use of corticosteroids in the management of asthma has recently raised issues regarding safety and lack of responsiveness in 5–10% of asthmatic individuals. The aim of the present study was to investigate the therapeutic effect of a non-steroidal small molecule that has cysteinyl leukotriene (cysLT) inhibitory activity, upon attenuation of allergic lung inflammation in an acute murine model. Mice were sensitized with ovalbumin (OVA) and treated with several intraperitoneal doses (100, 20, 2 and 0.2 mg/kg) of 2,4,6,-trihydroxy-3-geranylacetophenone (tHGA). Bronchoalveolar lavage was performed, blood and lung samples weremore » obtained and respiratory function was measured. OVA sensitization increased pulmonary inflammation and pulmonary allergic inflammation was significantly reduced at doses of 100, 20 and 2 mg/kg with no effect at the lowest dose of 0.2 mg/kg. The beneficial effects in the lung were associated with reduced eosinophilic infiltration and reduced secretion of Th2 cytokines and cysLTs. Peripheral blood reduction of total IgE was also a prominent feature. Treatment with tHGA significantly attenuated altered airway hyperresponsiveness as measured by the enhanced pause (Penh) response to incremental doses of methacholine. These data demonstrate that tHGA, a synthetic non-steroidal small molecule, can prevent acute allergic inflammation. This proof of concept opens further avenues of research and development of tHGA as an additional option to the current armamentarium of anti-asthma therapeutics. -- Highlights: ► Safer and effective anti-asthmatic drugs are in great demand. ► tHGA is a new 5-LO/cysLT inhibitor that inhibits allergic asthma in mice. ► tHGA is a natural compound that can be synthesized. ► Doses as low as 2 mg/kg alleviate lung pathology in experimental asthma. ► tHGA is a potential drug lead for the treatment of allergic asthma.« less

  19. ASM-024, a Piperazinium Compound, Promotes the In Vitro Relaxation of β2-Adrenoreceptor Desensitized Tracheas

    PubMed Central

    Israël-Assayag, Evelyne; Beaulieu, Marie-Josée; Cormier, Yvon

    2015-01-01

    Inhaled β2-adrenoreceptor agonists are widely used in asthma and chronic obstructive pulmonary disease (COPD) for bronchoconstriction relief. β2-adrenoreceptor agonists relax airway smooth muscle cells via cyclic adenosine monophosphate (cAMP) mediated pathways. However, prolonged stimulation induces functional desensitization of the β2-adrenoreceptors (β2-AR), potentially leading to reduced clinical efficacy with chronic or prolonged administration. ASM-024, a small synthetic molecule in clinical stage development, has shown activity at the level of nicotinic receptors and possibly at the muscarinic level and presents anti-inflammatory and bronchodilator properties. Aerosolized ASM-024 reduces airway resistance in mice and promotes in-vitro relaxation of tracheal and bronchial preparations from animal and human tissues. ASM-024 increased in vitro relaxation response to maximally effective concentration of short—acting beta-2 agonists in dog and human bronchi. Although the precise mechanisms by which ASM-024 promotes airway smooth muscle (ASM) relaxation remain unclear, we hypothesized that ASM-024 will attenuate and/or abrogate agonist-induced contraction and remain effective despite β2-AR tachyphylaxis. β2-AR tachyphylaxis was induced with salbutamol, salmeterol and formoterol on guinea pig tracheas. The addition of ASM-024 relaxed concentration-dependently intact or β2-AR desensitized tracheal rings precontracted with methacholine. ASM-024 did not induce any elevation of intracellular cAMP in isolated smooth muscle cells; moreover, blockade of the cAMP pathway with an adenylate cyclase inhibitor had no significant effect on ASM-024-induced guinea pig trachea relaxation. Collectively, these findings show that ASM-024 elicits relaxation of β2-AR desensitized tracheal preparations and suggest that ASM-024 mediates smooth muscle relaxation through a different target and signaling pathway than β2-adrenergic receptor agonists. These findings suggest ASM-024 could potentially provide clinical benefit when used adjunctively with inhaled β2-adrenoreceptor agonists in those patients exhibiting a reduced response to their chronic use. PMID:25799096

  20. ASM-024, a piperazinium compound, promotes the in vitro relaxation of β2-adrenoreceptor desensitized tracheas.

    PubMed

    Israël-Assayag, Evelyne; Beaulieu, Marie-Josée; Cormier, Yvon

    2015-01-01

    Inhaled β2-adrenoreceptor agonists are widely used in asthma and chronic obstructive pulmonary disease (COPD) for bronchoconstriction relief. β2-Adrenoreceptor agonists relax airway smooth muscle cells via cyclic adenosine monophosphate (cAMP) mediated pathways. However, prolonged stimulation induces functional desensitization of the β2-adrenoreceptors (β2-AR), potentially leading to reduced clinical efficacy with chronic or prolonged administration. ASM-024, a small synthetic molecule in clinical stage development, has shown activity at the level of nicotinic receptors and possibly at the muscarinic level and presents anti-inflammatory and bronchodilator properties. Aerosolized ASM-024 reduces airway resistance in mice and promotes in-vitro relaxation of tracheal and bronchial preparations from animal and human tissues. ASM-024 increased in vitro relaxation response to maximally effective concentration of short-acting beta-2 agonists in dog and human bronchi. Although the precise mechanisms by which ASM-024 promotes airway smooth muscle (ASM) relaxation remain unclear, we hypothesized that ASM-024 will attenuate and/or abrogate agonist-induced contraction and remain effective despite β2-AR tachyphylaxis. β2-AR tachyphylaxis was induced with salbutamol, salmeterol and formoterol on guinea pig tracheas. The addition of ASM-024 relaxed concentration-dependently intact or β2-AR desensitized tracheal rings precontracted with methacholine. ASM-024 did not induce any elevation of intracellular cAMP in isolated smooth muscle cells; moreover, blockade of the cAMP pathway with an adenylate cyclase inhibitor had no significant effect on ASM-024-induced guinea pig trachea relaxation. Collectively, these findings show that ASM-024 elicits relaxation of β2-AR desensitized tracheal preparations and suggest that ASM-024 mediates smooth muscle relaxation through a different target and signaling pathway than β2-adrenergic receptor agonists. These findings suggest ASM-024 could potentially provide clinical benefit when used adjunctively with inhaled β2-adrenoreceptor agonists in those patients exhibiting a reduced response to their chronic use.

  1. Protection of Radiation-Induced Damage to the Hematopoietic System, Small Intestine and Salivary Glands in Rats by JNJ7777120 Compound, a Histamine H4 Ligand

    PubMed Central

    Martinel Lamas, Diego J.; Carabajal, Eliana; Prestifilippo, Juan P.; Rossi, Luis; Elverdin, Juan C.; Merani, Susana; Bergoc, Rosa M.; Rivera, Elena S.; Medina, Vanina A.

    2013-01-01

    Based on previous data on the histamine radioprotective effect on highly radiosensitive tissues, in the present work we aimed at investigating the radioprotective potential of the H4R ligand, JNJ7777120, on ionizing radiation-induced injury and genotoxic damage in small intestine, salivary glands and hematopoietic tissue. For that purpose, rats were divided into 4 groups. JNJ7777120 and JNJ7777120-irradiated groups received a daily subcutaneous JNJ7777120 injection (10 mg/kg) starting 24 h before irradiation. Irradiated groups received a single dose of 5 Gy on whole-body using Cesium-137 source and were sacrificed 3 or 30 days after irradiation. Tissues were removed, fixed, stained with hematoxylin and eosin or PAS staining and histological characteristics were evaluated. Proliferative and apoptotic markers were studied by immunohistochemistry, while micronucleus assay was performed to evaluate DNA damage. Submandibular gland (SMG) function was evaluated by methacholine-induced salivation. Results indicate that JNJ7777120 treatment diminished mucosal atrophy and preserved villi and the number of crypts after radiation exposure (240±8 vs. 165±10, P<0.01). This effect was associated to a reduced apoptosis and DNA damage in intestinal crypts. JNJ7777120 reduced radiation-induced aplasia, preserving medullar components and reducing formation of micronucleus and also it accelerated bone marrow repopulation. Furthermore, it reduced micronucleus frequency in peripheral blood (27±8 vs. 149±22, in 1,000 erythrocytes, P<0.01). JNJ7777120 completely reversed radiation-induced reduced salivation, conserving glandular mass with normal histological appearance and reducing apoptosis and atrophy of SMG. JNJ7777120 exhibits radioprotective effects against radiation-induced cytotoxic and genotoxic damages in small intestine, SMG and hematopoietic tissues and, thus, could be of clinical value for patients undergoing radiotherapy. PMID:23922686

  2. Intracellular interactions of umeclidinium and vilanterol in human airway smooth muscle

    PubMed Central

    Shaikh, Nooreen; Johnson, Malcolm; Hall, David A; Chung, Kian Fan; Riley, John H; Worsley, Sally; Bhavsar, Pankaj K

    2017-01-01

    Background Intracellular mechanisms of action of umeclidinium (UMEC), a long-acting muscarinic receptor antagonist, and vilanterol (VI), a long-acting β2-adrenoceptor (β2R) agonist, were investigated in target cells: human airway smooth-muscle cells (ASMCs). Materials and methods ASMCs from tracheas of healthy lung-transplant donors were treated with VI, UMEC, UMEC and VI combined, or control compounds (salmeterol, propranolol, ICI 118.551, or methacholine [MCh]). Cyclic adenosine monophosphate (cAMP) was measured using an enzyme-linked immunosorbent assay, intracellular free calcium ([Ca2+]i) using a fluorescence assay, and regulator of G-protein signaling 2 (RGS2) messenger RNA using real-time quantitative polymerase chain reaction. Results VI and salmeterol (10−12–10−6 M) induced cAMP production from ASMCs in a concentration-dependent manner, which was greater for VI at all concentrations. β2R antagonism by propranolol or ICI 118.551 (10−12–10−4 M) resulted in concentration-dependent inhibition of VI-induced cAMP production, and ICI 118.551 was more potent. MCh (5×10−6 M, 30 minutes) attenuated VI-induced cAMP production (P<0.05), whereas pretreatment with UMEC (10−8 M, 1 hour) restored the magnitude of VI-induced cAMP production. ASMC stimulation with MCh (10−11–5×10−6 M) resulted in a concentration-dependent increase in [Ca2+]i, which was attenuated with UMEC pretreatment. Reduction of MCh-induced [Ca2+]i release was greater with UMEC + VI versus UMEC. UMEC enhanced VI-induced RGS2 messenger RNA expression. Conclusion These data indicate that UMEC reverses cholinergic inhibition of VI-induced cAMP production, and is a more potent muscarinic receptor antagonist when in combination with VI versus either alone. PMID:28721035

  3. Dietary sodium intake and the risk of airway hyperreactivity in a random adult population.

    PubMed Central

    Britton, J.; Pavord, I.; Richards, K.; Knox, A.; Wisniewski, A.; Weiss, S.; Tattersfield, A.

    1994-01-01

    BACKGROUND--High dietary sodium intake has been identified as a potential cause of asthma and airway hyperreactivity. This study was designed to test the hypothesis that dietary sodium intake is an independent determinant of the risk of hyperreactivity in the general population, and to assess the role of atopy in the association between these factors. METHODS--Airway reactivity to methacholine, atopy, 24 hour urinary sodium excretion, and self-reported smoking and symptom history were measured in a random sample of 1702 adults aged 18-70 from an administrative district of Nottingham. Hyperreactivity was defined as a PD20FEV1 of 12.25 mumol or less, and atopy was defined quantitatively as the mean allergen skin weal response to Dermatophagoides pteronyssinus, cat fur, and grass pollen, and categorically as the occurrence of any allergen response 1 mm or greater than the saline control. Multiple logistic regression analysis was used to estimate the independent relative odds of hyperreactivity, atopy, or symptoms in relation to sodium excretion in all 1702 subjects, and multiple linear regression to assess the independent relation between sodium excretion and mean allergen skin weal diameter, and the PD20 value amongst hyperreactive subjects. RESULTS--There was no relation between the relative odds of hyperreactivity to methacholine and 24 hour urinary sodium excretion, either before or after adjustment for age, smoking, allergen skin weal diameter, and sex, and similarly no relation if the analysis was restricted to men or women only. The relative odds of having at least one allergen skin test response 1 mm greater than the saline control were increased in relation to sodium excretion after adjustment for age, sex, and smoking by a ratio of 2.08 (95% CI 1.04 to 4.15) per log10 unit increase in sodium excretion, but there was no evidence of an association between sodium excretion and the occurrence of self-reported wheeze, hay fever, eczema, or asthma. There was no relation between 24 hour sodium excretion and the magnitude of the mean allergen skin weal response or the PD20 value. CONCLUSIONS--These findings do not support the hypothesis that a high dietary sodium intake is a risk factor for airway hyperreactivity or atopic disease in the general adult population. PMID:7940426

  4. Influence of parainfluenza-1 respiratory tract viral infection on endothelin receptor-effector systems in mouse and rat tracheal smooth muscle.

    PubMed Central

    Knott, P. G.; Henry, P. J.; McWilliam, A. S.; Rigby, P. J.; Fernandes, L. B.; Goldie, R. G.

    1996-01-01

    1. In this study we have compared the effects of parainfluenza-1 respiratory tract viral infection on the density and function of ETA and ETB receptors in rat and mouse tracheal airway smooth muscle. 2. The bronchoconstrictor effect of inhaled methacholine was significantly enhanced in virus-infected rats, at both 4 and 12 days post-inoculation. That is, the concentration of methacholine causing an increase in resistance of 100% (PC100 methacholine) was significantly lower in virus-infected animals at both 4 and 12 days post-inoculation (n = 6-8; P < 0.05). 3. Total specific binding of [125I]-endothelin-1 and the relative proportions of ETA and ETB binding sites for [125I]-endothelin-1 were assessed in tracheal airway smooth muscle in parainfluenza-1-infected rats and mice at days 2, 4 and 12 post-inoculation using the ligands BQ-123 (1 microM; ETA receptor-selective) and sarafotoxin S6c (100 nM; ETB receptor-selective). Total specific binding in mice was significantly reduced at day 2 post-inoculation (n = 5; P < 0.05) but not at days 4 and 12 post-inoculation (n = 5). In control mice, the proportions of ETA and ETB binding sites were 53%:47% at day 2 and 43%:57% at day 4 and these were significantly altered by parainfluenza-1 infection such that, the ratios were 81%:19% at day 2 and 89%:11% at day 4 (P < 0.05). By day 12 post-inoculation, the proportion of ETA and ETB binding sites in tracheal smooth muscle from mice infected with parainfluenza-1 was not significantly different from control. In rat tracheal airway smooth muscle, neither total specific binding nor the ETA and ETB binding site ratio (64%:36%) were significantly altered in virus-inoculated rats at days 2, 4 or 12 post-inoculation (n = 5). 4. Parainfluenza-1 infection in mice had no effect on the sensitivity or maximal contractile effect of endothelin-1 in tracheal smooth muscle at days 2, 4 or 12 post-inoculation (n = 4). In contrast, contraction in response to the ETB receptor-selective agonist sarafotoxin S6c was attenuated by 39% at day 2 and by 93% at day 4 post-inoculation (P < 0.05). However, by day 12 post-inoculation, contractions to sarafotoxin S6c were not significantly different between control and virus-infected mice. In parainfluenza-1-infected rats, there were small but significant reductions in the sensitivity to carbachol, endothelin-1 and sarafotoxin S6c whilst the maximal responses to the highest concentrations of these agonists were not significantly altered by virus infection (n = 8). 5. BQ-123 (3 microM) had no significant effect on cumulative concentration-effect curves to endothelin-1 in tracheal preparations from control mice (n = 4) or parainfluenza-1-infected rats (n = 8). In contrast, in tissues taken from virus-infected mice at day 4 post-inoculation, BQ-123 caused a marked 9.6 fold rightward shift in the concentration-effect curve to endothelin-1 (n = 4). 6. In summary, we have demonstrated that parainfluenza-1 infection in mice transiently reduced the density of tracheal airway smooth muscle ETB receptors and this was reflected in reduced responsiveness to the ETB receptor-selective agonist sarafotoxin S6c. In contrast, whilst parainfluenza-1 infection in rats was associated with the pathological features and bronchial hyperresponsiveness common to respiratory tract viral infection, there was no selective down-regulation of ETB receptor expression or functional activity. The reasons for these species differences are not clear, but may relate to differences in the airway inflammatory response to parainfluenza-1 virus. PMID:8886411

  5. Effect of two doses of inhaled diltiazem on exercise-induced asthma.

    PubMed

    Foresi, A; Corbo, G M; Ciappi, G; Valente, S; Polidori, G

    1987-01-01

    Seven asthmatic children with moderately to severely increased bronchial responsiveness to methacholine took part in a double-blind placebo-controlled study to assess the effect of a calcium channel blocker, diltiazem, on exercise-induced asthma (EIA), and its duration. On the control day, bronchial response to exercise was found to be highly reproducible when performed 2 h apart (intraclass correlation coefficient 0.92). Normal saline and diltiazem at concentrations of 1.75 and 3.50 mg/ml (estimated nebulized doses 5 and 10 mg, respectively) were given in random order before exercise on a bicycle ergometer. Exercise challenge was performed 20 min and 2 h after each treatment, and bronchial response was expressed as percent fall in the forced expiratory volume in 1 s. In the overall group, diltiazem did not significantly change resting bronchial tone and produced no significant (p = 0.18) attenuation of EIA. An almost complete protection was detected only in two subjects 20 min after diltiazem 10 mg. This limited effect waned 2 h after the administration.

  6. Occupational asthma induced by cephalosporins.

    PubMed

    Sastre, J; Quirce, S; Novalbos, A; Lluch-Bernal, M; Bombín, C; Umpiérrez, A

    1999-05-01

    A 20-yr-old pharmaceutical worker who developed attacks of shortness of breath and wheezing 9 months after beginning work on a process in which cefadroxil powder was bottled or encapsulated will be described. Skin test with cefaxodril was negative. Baseline spirometry and methacholine inhalation test were normal. A controlled bronchial challenge test was carried out in a closed-circuit system with assessment of respirable dust concentration. Exposure to cefadroxil powder at a mean concentration of 10 mg x m(-3) for 10 min elicited an isolated immediate asthmatic response, but no response was observed to control challenge with lactose. Single-blind oral challenge test with amoxicillin up to 500 mg was well tolerated, whereas the oral challenge with cephalexin (25 mg) elicited an immediate asthmatic response. This patient had developed occupational asthma caused by inhalation of cefadroxil as confirmed by specific inhalation test. Since she tolerated oral amoxicillin, a synthetic penicillin with the side-chain identical to that of cefadroxil, it seems that she may be sensitized to the dihydrothiazine ring of cephalosporins.

  7. Bronchial reactions to exposure to welding fumes.

    PubMed Central

    Contreras, G R; Chan-Yeung, M

    1997-01-01

    OBJECTIVES: To study the airway response and its mechanism to welding fumes in six welders with respiratory symptoms. METHODS: Methacholine and welding challenge tests were carried out. The concentration of welding fumes during the exposure test was measured. On two subjects who developed bronchoconstricition to welding challenge, additional tests were carried out including prick, patch, and inhalation challenges with metal salt solutions. RESULTS: Three subjects developed immediate bronchial reaction to exposure to welding fume; one to mild steel and stainless steel welding, another to mild steel and galvanised welding, and one only to galvanised welding. They all had a moderate to pronounced degree of non-specific bronchial hyperresponsiveness. The concentration of fumes during welding tests, particularly to galvanised welding, was high. An inhalation challenge test with zinc chloride salt solution in two subjects who reacted to galvanised welding was negative. Prick and patch tests with zinc chloride were also negative. CONCLUSION: The airway response to welding in these subjects is non-specific and is due to irritation rather than to sensitisation. PMID:9538358

  8. Bronchial reactions to exposure to welding fumes.

    PubMed

    Contreras, G R; Chan-Yeung, M

    1997-11-01

    To study the airway response and its mechanism to welding fumes in six welders with respiratory symptoms. Methacholine and welding challenge tests were carried out. The concentration of welding fumes during the exposure test was measured. On two subjects who developed bronchoconstricition to welding challenge, additional tests were carried out including prick, patch, and inhalation challenges with metal salt solutions. Three subjects developed immediate bronchial reaction to exposure to welding fume; one to mild steel and stainless steel welding, another to mild steel and galvanised welding, and one only to galvanised welding. They all had a moderate to pronounced degree of non-specific bronchial hyperresponsiveness. The concentration of fumes during welding tests, particularly to galvanised welding, was high. An inhalation challenge test with zinc chloride salt solution in two subjects who reacted to galvanised welding was negative. Prick and patch tests with zinc chloride were also negative. The airway response to welding in these subjects is non-specific and is due to irritation rather than to sensitisation.

  9. Acute pulmonary effects of nitrogen dioxide exposure during exercise in competitive athletes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S.U.; Koenig, J.Q.; Pierson, W.E.

    The acute pulmonary responses of athletes after short-term exposure to ambient concentrations of NO{sub 2} during heavy exercise have been examined. Intercollegiate male athletes were screened for history of cardiac disease, respiratory disease, allergic conditions and extensive exposure to pollutants. After completion of serum IgE level determination, exercise tolerance test and methacholine challenge test with normal results, nine healthy subjects 18 to 23 years of age were exposed to filtered air and to 0.18 and 0.30 ppm NO{sub 2} for 30 min on different days while exercising on a treadmill. Pulmonary function parameters were measured before and after each exposure.more » In this study, no statistically significant changes were observed in FEV1, RT PEFR, and Vmax50% after exposure to 0.18 and 0.30 ppm NO{sub 2}. For these selected healthy athletes, short-term exposure to ambient NO{sub 2} levels during heavy exercise does not affect adversely the pulmonary function.« less

  10. Aging and cholinergic responses in bovine trachealis muscle.

    PubMed Central

    Wills, M.; Douglas, J. S.

    1988-01-01

    1. The relative potencies of muscarinic agonists on bovine tracheal smooth muscle were unchanged as a consequence of aging and were carbachol greater than oxotremorine greater than muscarine greater than pilocarpine greater than McNeil A-343. 2. During aging, the potencies of carbachol, oxotremorine, McNeil A-343 and pilocarpine, but not muscarine, were reduced. 3. Maximal induced tensions to all the agents studied were reduced as a consequence of age. 4. Irreversible antagonism with benzilylcholine mustard showed that agonist efficacy was significantly reduced during aging. 5. Estimated receptor occupancy at the EC50 was significantly greater in tracheal tissues from the mature versus immature cows for every agonist studied. 6. The dissociation constants for full agonists (carbachol, oxotremorine and methacholine) were decreased with maturation while the converse was observed with partial agonists (McNeil A-343, pilocarpine). 7. We conclude that there are significant changes in the properties and coupling of muscarinic receptors during aging. These changes may contribute to the reduced airway reactivity seen in vivo. PMID:3390660

  11. Case report of occupational asthma induced by polyvinyl chloride and nickel.

    PubMed

    Song, Ga-Won; Ban, Ga-Young; Nam, Young-Hee; Park, Hae-Sim; Ye, Young-Min

    2013-10-01

    Polyvinyl chloride (PVC) is a widely used chemical for production of plastics. However occupational asthma (OA) caused by PVC has been reported only rarely. We report a 34-yr-old male wallpaper factory worker with OA due to PVC and nickel (Ni) whose job was mixing PVC with plasticizers. He visited the emergency room due to an asthma attack with moderate airflow obstruction and markedly increased sputum eosinophil numbers. A methacholine challenge test was positive (PC20 2.5 mg/mL). Bronchoprovocation tests with both PVC and Ni showed early and late asthmatic responses, respectively. Moreover, the fractional concentration of exhaled nitric oxide (FeNO) was increased after challenge with PVC. To our knowledge, this is the first case of OA in Korea induced by exposure to both PVC and Ni. We suggest that eosinophilic inflammation may be involved in the pathogenesis of PVC-induced OA and that FeNO monitoring can be used for its diagnosis.

  12. Case Report of Occupational Asthma Induced by Polyvinyl Chloride and Nickel

    PubMed Central

    Song, Ga-Won; Ban, Ga-Young; Nam, Young-Hee; Park, Hae-Sim

    2013-01-01

    Polyvinyl chloride (PVC) is a widely used chemical for production of plastics. However occupational asthma (OA) caused by PVC has been reported only rarely. We report a 34-yr-old male wallpaper factory worker with OA due to PVC and nickel (Ni) whose job was mixing PVC with plasticizers. He visited the emergency room due to an asthma attack with moderate airflow obstruction and markedly increased sputum eosinophil numbers. A methacholine challenge test was positive (PC20 2.5 mg/mL). Bronchoprovocation tests with both PVC and Ni showed early and late asthmatic responses, respectively. Moreover, the fractional concentration of exhaled nitric oxide (FeNO) was increased after challenge with PVC. To our knowledge, this is the first case of OA in Korea induced by exposure to both PVC and Ni. We suggest that eosinophilic inflammation may be involved in the pathogenesis of PVC-induced OA and that FeNO monitoring can be used for its diagnosis. PMID:24133363

  13. Gene Silencing of SOCS3 by siRNA Intranasal Delivery Inhibits Asthma Phenotype in Mice

    PubMed Central

    Mazzeo, Carla; Gámez, Cristina; Rodriguez Marco, Ainara; de Zulueta, Ana; Sanz, Veronica; Bilbao, Izaskun; Ruiz-Cabello, Jesús; Zubeldia, Jose M.; del Pozo, Victoria

    2014-01-01

    Suppresors of cytokine signaling (SOCS) proteins regulate cytokine responses and control immune balance. Several studies have confirmed that SOCS3 is increased in asthmatic patients, and SOCS3 expression is correlated with disease severity. The objective of this study was to evaluate if delivering of SOCS3 short interfering RNA (siRNA) intranasally in lungs could be a good therapeutic approach in an asthma chronic mouse model. Our results showed that intranasal treatment with SOCS3-siRNA led to an improvement in the eosinophil count and the normalization of hyperresponsiveness to methacholine. Concomitantly, this treatment resulted in an improvement in mucus secretion, a reduction in lung collagen, which are prominent features of airway remodeling. The mechanism implies JAK/STAT and RhoA/Rho-kinase signaling pathway, because we found a decreasing in STAT3 phosphorylation status and down regulation of RhoA/Rho-kinase protein expression. These results might lead to a new therapy for the treatment of chronic asthma. PMID:24637581

  14. Effects of the phosphodiesterase type 4 inhibitor roflumilast on early and late allergic response and airway hyperresponsiveness in Aspergillus-fumigatus-sensitized mice.

    PubMed

    Hoymann, Heinz-Gerd; Wollin, Lutz; Muller, Meike; Korolewitz, Regina; Krug, Norbert; Braun, Armin; Beume, Rolf

    2009-01-01

    Inhibitory effects of roflumilast on responses characteristic of allergic asthma were investigated in a fungal asthma model in BALB/c mice. Mice were sensitized with Aspergillus antigen (Afu) and exposed to Afu or vehicle, and given roflumilast 1 or 5 mg/kg. Early airway response (EAR) and late airway hyperresponsiveness (AHR) to methacholine were measured via plethysmography. Bronchoalveolar lavage (BAL) was used to assess inflammatory cell count. In Afu-exposed mice, roflumilast dose-dependently reduced the EAR [26% at 1 mg/kg (NS) and 94% at 5 mg/kg (p < 0.01)] and AHR [46% at 1 mg/kg (NS) and 128% at 5 mg/kg (p < 0.05)]. Roflumilast 5 mg/kg reduced neutrophil, eosinophil and lymphocyte counts [87% (p < 0.01), 40% (NS) and 67% (p < 0.01), respectively] in BAL fluid versus controls. In this model, roflumilast inhibited the EAR, suppressed AHR and reduced inflammatory cell infiltration. 2009 S. Karger AG, Basel.

  15. Measurement of bronchial blood flow in the sheep by video dilution technique.

    PubMed Central

    Link, D P; Parsons, G H; Lantz, B M; Gunther, R A; Green, J F; Cross, C E

    1985-01-01

    Bronchial blood flow was determined in five adult anaesthetised sheep by the video dilution technique. This is a new fluoroscopic technique for measuring blood flow that requires only arterial catheterisation. Catheters were placed into the broncho-oesophageal artery and ascending aorta from the femoral arteries for contrast injections and subsequent videotape recording. The technique yields bronchial blood flow as a percentage of cardiac output. The average bronchial artery blood flow was 0.6% (SD 0.20%) of cardiac output. In one sheep histamine (90 micrograms) injected directly into the bronchial artery increased bronchial blood flow by a factor of 6 and histamine (90 micrograms) plus methacholine (4.5 micrograms) augmented flow by a factor of 7.5 while leaving cardiac output unchanged. This study confirms the high degree of reactivity of the bronchial circulation and demonstrates the feasibility of using the video dilution technique to investigate the determinants of total bronchial artery blood flow in a stable animal model avoiding thoracotomy. Images PMID:3883564

  16. Respiratory and ocular symptoms in workers exposed to potassium aluminium-tetrafluoride soldering flux.

    PubMed

    Larsson, Britt; Karlsson, Jan-Eric; Nielsen, Jörn

    2007-07-01

    Exposure to aluminium compounds, such as fluorides in gaseous and particulate form, places people who work in potrooms at risk for respiratory symptoms. Workers in potrooms, however, also are exposed to a number of other air contaminants. In this study, we present the first report of a dose-response relationship after exposure to potassium aluminium tetrafluoride (KAlF(4)) and the influence of smoking and atopy. All workers (308) from an industrial plant that used KAlF as soldering flux were invited to participate in the study. In all, 289 workers participated and 118 employees not exposed to chemicals in their professional work served as an unexposed group. In the first step, all subjects answered a questionnaire concerning respiratory symptoms and work history, and participated in a lung function examination. In a second step, all workers who reported work-related complaints from lower respiratory airways were invited to participate in medical examination, methacholine test, screening test of respiratory allergy, and skin prick test against KAlF(4). The exposed subjects had more symptoms than the unexposed group; dry cough odds ratio (OR): 5.17 (confidence interval 1.79-15.0), stuffy nose: 2.3 (1.25-4.22), nose bleeding: 10.7 (3.26-35.3) and ocular symptoms 5.01 (1.92-13.1) except for chest tightening and wheezing, and shortness of breath. The symptoms appeared in a dose response-like manner although the ORs between high and low exposed were significant for only chest tightening and wheezing, 2.62 (1.30-5.26) and stuffy nose 2.1 (1.22-3.66). Smokers and atopics did not report more frequent work-related symptoms. Smokers were significantly less hyperreactive than non-smokers, indicating a healthy-worker effect. No one showed a positive skin prick test against KAlF(4). In spite of exposure levels of KAlF(4 )well below the new Swedish threshold limit, value frequent respiratory and ocular symptoms were reported. No evidence of IgE mediated allergy was found.

  17. Non-invasive measurements of exhaled NO and CO associated with methacholine responses in mice

    PubMed Central

    Sethi, Jigme M; Choi, Augustine MK; Calhoun, William J; Ameredes, Bill T

    2008-01-01

    Background Nitric oxide (NO) and carbon monoxide (CO) in exhaled breath are considered obtainable biomarkers of physiologic mechanisms. Therefore, obtaining their measures simply, non-invasively, and repeatedly, is of interest, and was the purpose of the current study. Methods Expired NO (ENO) and CO (ECO) were measured non-invasively using a gas micro-analyzer on several strains of mice (C57Bl6, IL-10-/-, A/J, MKK3-/-, JNK1-/-, NOS-2-/- and NOS-3-/-) with and without allergic airway inflammation (AI) induced by ovalbumin systemic sensitization and aerosol challenge, compared using independent-sample t-tests between groups, and repeated measures analysis of variance (ANOVA) within groups over time of inflammation induction. ENO and ECO were also measured in C57Bl6 and IL-10-/- mice, ages 8–58 weeks old, the relationship of which was determined by regression analysis. S-methionyl-L-thiocitrulline (SMTC), and tin protoporphyrin (SnPP) were used to inhibit neuronal/constitutive NOS-1 and heme-oxygenase, respectively, and alter NO and CO production, respectively, as assessed by paired t-tests. Methacholine-associated airway responses (AR) were measured by the enhanced pause method, with comparisons by repeated measures ANOVA and post-hoc testing. Results ENO was significantly elevated in naïve IL-10-/- (9–14 ppb) and NOS-2-/- (16 ppb) mice as compared to others (average: 5–8 ppb), whereas ECO was significantly higher in naïve A/J, NOS-3-/- (3–4 ppm), and MKK3-/- (4–5 ppm) mice, as compared to others (average: 2.5 ppm). As compared to C57Bl6 mice, AR of IL-10-/-, JNK1-/-, NOS-2-/-, and NOS-3-/- mice were decreased, whereas they were greater for A/J and MKK3-/- mice. SMTC significantly decreased ENO by ~30%, but did not change AR in NOS-2-/- mice. SnPP reduced ECO in C57Bl6 and IL-10-/- mice, and increased AR in NOS-2-/- mice. ENO decreased as a function of age in IL-10-/- mice, remaining unchanged in C57Bl6 mice. Conclusion These results are consistent with the ideas that: 1) ENO is associated with mouse strain and knockout differences in NO production and AR, 2) alterations of ENO and ECO can be measured non-invasively with induction of allergic AI or inhibition of key gas-producing enzymes, and 3) alterations in AR may be dependent on the relative balance of NO and CO in the airway. PMID:18505586

  18. First evidence of occupational asthma to argan powder in a cosmetic factory.

    PubMed

    Paris, C; Herin, F; Penven, E; Thaon, I; Richard, C; Jacquenet, S; Barbaud, A; Poussel, M

    2016-04-01

    Argan is used worldwide in numerous cosmetic products, as this fruit is supposed to have many beneficial properties on health. New cases of allergy can be expected with the growing use of argan. We investigated all workers (9) employed by a cosmetic factory and exposed to argan powder to identify possible allergies related to exposure to argan powder. Patients were investigated in the occupational disease department and, according to their symptoms, underwent pulmonary function testing, methacholine challenge, specific inhalation challenge to argan powder, skin prick tests, and immunoblotting analysis. We report three cases of occupational asthma to argan powder and a probable case of rhinitis. Fifteen argan proteins were recognized by the patients' IgE. Identification of proteins, cross-reactions to nuts, and ELISA inhibition tests suggested that some argan allergens can cross-react in vitro with hazelnut allergens, including 11S globulin and vicilin. High-level exposure to argan powder should be considered to be a potential cause of IgE-mediated allergy, and workers handling argan powder should be carefully investigated. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Improvement in bronchial hyper-responsiveness in patients with moderate asthma after treatment with a hypnotic technique: a randomised controlled trial.

    PubMed Central

    Ewer, T C; Stewart, D E

    1986-01-01

    A prospective, randomised, single blind, and controlled trial of a hypnotic technique was undertaken in 39 adults with mild to moderate asthma graded for low and high susceptibility to hypnosis. After a six week course of hypnotherapy 12 patients with a high susceptibility score showed a 74.9% improvement (p less than 0.01) in the degree of bronchial hyper-responsiveness to a standardised methacholine challenge test. Daily home recordings of symptoms improved by 41% (p less than 0.01), peak expiratory flow rates improved by 5.5% (p less than 0.01), and use of bronchodilators decreased by 26.2% (p less than 0.05). The improvement in bronchial hyper-reactivity occurred without a change in subjective appreciation of the degree of bronchoconstriction. A control group 17 patients and 10 patients undergoing treatment with low susceptibility to hypnosis had no change in either bronchial hyper-responsiveness or any of the symptoms recorded at home. This study shows the efficacy of a hypnotic technique in adult asthmatics who are moderately to highly susceptible to hypnosis. PMID:3094804

  20. Early life rhinovirus infection exacerbates house-dust-mite induced lung disease more severely in female mice.

    PubMed

    Phan, Jennifer A; Kicic, Anthony; Berry, Luke J; Sly, Peter D; Larcombe, Alexander N

    2016-01-01

    Recent studies have employed animal models to investigate links between rhinovirus infection and allergic airways disease, however, most do not involve early life infection, and none consider the effects of sex on responses. Here, we infected male and female mice with human rhinovirus 1B (or control) on day 7 of life. Mice were then subjected to 7 weeks of exposure to house-dust-mite prior to assessment of bronchoalveolar inflammation, serum antibodies, lung function, and responsiveness to methacholine. There were significant differences in responses between males and females in most outcomes. In males, chronic house-dust-mite exposure increased bronchoalveolar inflammation, house-dust-mite specific IgG1 and responsiveness of the lung parenchyma, however, there was no additional impact of rhinovirus infection. Conversely, in females, there were additive and synergistic effects of rhinovirus infection and house-dust-mite exposure on neutrophilia, airway resistance, and responsiveness of the lung parenchyma. We conclude that early life rhinovirus infection influences the development of house-dust-mite induced lung disease in female, but not male mice.

  1. Changes in rat respiratory system produced by exposure to exhaust gases of combustion of glycerol.

    PubMed

    Serra, Daniel Silveira; Evangelista, Janaína Serra Azul Monteiro; Zin, Walter Araujo; Leal-Cardoso, José Henrique; Cavalcante, Francisco Sales Ávila

    2017-08-01

    The combustion of residual glycerol to generate heat in industrial processes has been suggested as a cost-effective solution for disposal of this environmental liability. Thus, we investigated the effects of exposure to the exhaust gases of glycerol combustion in the rat respiratory system. We used 2 rats groups, one exposed to the exhaust gases from glycerol combustion (Glycerol), and the other exposed to ambient air (Control). Exposure occurred 5h a day, 5days a week for 13 weeks. We observed statistically changes in all parameters of respiratory system mechanics in vivo. This results was supported by histological analysis and morphometric data, confirming narrower airways and lung parenchimal changes. Variables related to airway resistance (ΔR N ) and elastic properties of the tissue (ΔH), increased after challenge with methacholine. Finally, analysis of lung tissue micromechanics showed statistically increases in all parameters (R, E and hysteresivity). In conclusion, exhaust gases from glycerol combustion were harmful to the respiratory system. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of a chemical chaperone, tauroursodeoxycholic acid, on HDM-induced allergic airway disease

    PubMed Central

    Siddesha, Jalahalli M.; Nakada, Emily M.; Mihavics, Bethany R.; Hoffman, Sidra M.; Rattu, Gurkiranjit K.; Chamberlain, Nicolas; Cahoon, Jonathon M.; Lahue, Karolyn G.; Daphtary, Nirav; Aliyeva, Minara; Chapman, David G.; Desai, Dhimant H.; Poynter, Matthew E.

    2016-01-01

    Endoplasmic reticulum (ER) stress-induced unfolded protein response plays a critical role in inflammatory diseases, including allergic airway disease. However, the benefits of inhibiting ER stress in the treatment of allergic airway disease are not well known. Herein, we tested the therapeutic potential of a chemical chaperone, tauroursodeoxycholic acid (TUDCA), in combating allergic asthma, using a mouse model of house dust mite (HDM)-induced allergic airway disease. TUDCA was administered during the HDM-challenge phase (preventive regimen), after the HDM-challenge phase (therapeutic regimen), or therapeutically during a subsequent HDM rechallenge (rechallenge regimen). In the preventive regimen, TUDCA significantly decreased HDM-induced inflammation, markers of ER stress, airway hyperresponsiveness (AHR), and fibrosis. Similarly, in the therapeutic regimen, TUDCA administration efficiently decreased HDM-induced airway inflammation, mucus metaplasia, ER stress markers, and AHR, but not airway remodeling. Interestingly, TUDCA administered therapeutically in the HDM rechallenge regimen markedly attenuated HDM-induced airway inflammation, mucus metaplasia, ER stress markers, methacholine-induced AHR, and airway fibrotic remodeling. These results indicate that the inhibition of ER stress in the lungs through the administration of chemical chaperones could be a valuable strategy in the treatment of allergic airway diseases. PMID:27154200

  3. Inhibitory effect of kefiran on ovalbumin-induced lung inflammation in a murine model of asthma.

    PubMed

    Kwon, Ok-Kyoung; Ahn, Kyung-Seop; Lee, Mee-Young; Kim, So-Young; Park, Bo-Young; Kim, Mi-Kyoung; Lee, In-Young; Oh, Sei-Ryang; Lee, Hyeong-Kyu

    2008-12-01

    Kefiran is a major component of kefir which is a microbial symbiont mixture that produces jelly-like grains. This study aimed to evaluate the therapeutic availability of kefiran on the ovalbumin-induced asthma mouse model in which airway inflammation and airway hyper-responsiveness were found in the lung. BALB/c mice sensitized and challenged to ovalbumin were treated intra-gastrically with kefiran 1 hour before the ovalbumin challenge. Kefiran significantly suppressed ovalbumin-induced airway hyper-responsiveness (AHR) to inhaled methacholine. Administration of kefiran significantly inhibited the release of both eosinophils and other inflammatory cells into bronchoalveolar lavage (BAL) fluid and lung tissue which was measured by Diff-Quik. Interleukin-4 (IL-4) and interleukin-5 (IL-5) were also reduced to normal levels after administration of kefiran in BAL fluid. Histological studies demonstrate that kefiran substantially inhibited ovalbumin-induced eosinophilia in lung tissue by H&E staining and goblet cell hyperplasia in the airway by PAS staining. Taken above data, kefiran may be useful for the treatment of inflammation of lung tissue and airway hyper-responsiveness in a murine model and may have therapeutic potential for the treatment of allergic bronchial asthma.

  4. Evaluation of respiratory system mechanics in mice using the forced oscillation technique.

    PubMed

    McGovern, Toby K; Robichaud, Annette; Fereydoonzad, Liah; Schuessler, Thomas F; Martin, James G

    2013-05-15

    The forced oscillation technique (FOT) is a powerful, integrative and translational tool permitting the experimental assessment of lung function in mice in a comprehensive, detailed, precise and reproducible manner. It provides measurements of respiratory system mechanics through the analysis of pressure and volume signals acquired in reaction to predefined, small amplitude, oscillatory airflow waveforms, which are typically applied at the subject's airway opening. The present protocol details the steps required to adequately execute forced oscillation measurements in mice using a computer-controlled piston ventilator (flexiVent; SCIREQ Inc, Montreal, Qc, Canada). The description is divided into four parts: preparatory steps, mechanical ventilation, lung function measurements, and data analysis. It also includes details of how to assess airway responsiveness to inhaled methacholine in anesthetized mice, a common application of this technique which also extends to other outcomes and various lung pathologies. Measurements obtained in naïve mice as well as from an oxidative-stress driven model of airway damage are presented to illustrate how this tool can contribute to a better characterization and understanding of studied physiological changes or disease models as well as to applications in new research areas.

  5. Maternal stress during pregnancy increases neonatal allergy susceptibility: role of glucocorticoids.

    PubMed

    Lim, Robert; Fedulov, Alexey V; Kobzik, Lester

    2014-07-15

    We sought to test experimentally whether maternal stress can promote susceptibility to development of asthma-like allergic airways disease in offspring. Normal pregnant mice (day 15) were subjected to a single restraint stress exposure. We subsequently tested their offspring for the development of airway hyperreactivity (AHR) and allergic airway inflammation (AI), after an intentionally suboptimal sensitization protocol. The offspring of stressed mothers showed levels of AI and enhanced airway responses to methacholine comparable to those seen in fully sensitized and challenged positive control animals; in contrast, minimal effects were seen in control offspring. Restraint stress caused a rapid and large increase in plasma corticosterone levels. Maternal treatment with dexamethasone on day 15 of pregnancy mimicked the stress effect and reproduced the AI and AHR outcomes, whereas blockade of the stress-induced corticosterone surge with metyrapone pretreatment of pregnant mice abrogated the effect. We conclude that stress-triggered glucocorticoids during pregnancy can increase susceptibility to allergy in offspring. Because inflammation typically includes a stress hormone response, the results also suggest a common pathway by which various injurious exposures during pregnancy might increase offspring susceptibility to asthma. Copyright © 2014 the American Physiological Society.

  6. Ebselen does not improve oxidative stress and vascular function in patients with diabetes: a randomized, crossover trial.

    PubMed

    Beckman, Joshua A; Goldfine, Allison B; Leopold, Jane A; Creager, Mark A

    2016-12-01

    Oxidative stress is a key driver of vascular dysfunction in diabetes mellitus. Ebselen is a glutathione peroxidase mimetic. A single-site, randomized, double-masked, placebo-controlled, crossover trial was carried out in 26 patients with type 1 or type 2 diabetes to evaluate effects of high-dose ebselen (150 mg po twice daily) administration on oxidative stress and endothelium-dependent vasodilation. Treatment periods were in random order of 4 wk duration, with a 4-wk washout between treatments. Measures of oxidative stress included nitrotyrosine, plasma 8-isoprostanes, and the ratio of reduced to oxidized glutathione. Vascular ultrasound of the brachial artery and plethysmographic measurement of blood flow were used to assess flow-mediated and methacholine-induced endothelium-dependent vasodilation of conduit and resistance vessels, respectively. Ebselen administration did not affect parameters of oxidative stress or conduit artery or forearm arteriolar vascular function compared with placebo treatment. There was no difference in outcome by diabetes type. Ebselen, at the dose and duration evaluated, does not improve the oxidative stress profile, nor does it affect endothelium-dependent vasodilation in patients with diabetes mellitus. Copyright © 2016 the American Physiological Society.

  7. Ghrelin Ameliorates Asthma by Inhibiting Endoplasmic Reticulum Stress.

    PubMed

    Fu, Tian; Wang, Lei; Zeng, Qingdi; Zhang, Yan; Sheng, Baowei; Han, Liping

    2017-12-01

    This study aimed to confirm the ameliorative effect of ghrelin on asthma and investigate its mechanism. The murine model of asthma was induced by ovalbumin (OVA) treatment and assessed by histological pathology and airway responsiveness to methacholine. The total and differential leukocytes were counted. Tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 levels in bronchoalveolar lavage fluid were quantified by commercial kits. The protein levels in pulmonary tissues were measured by Western blot analysis. Ghrelin ameliorated the histological pathology and airway hyperresponsiveness in the OVA-induced asthmatic mouse model. Consistently, OVA-increased total and differential leukocytes and levels of tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 in bronchoalveolar lavage fluid were significantly attenuated by ghrelin. Ghrelin prevented the increased protein levels of the endoplasmic reticulum stress markers glucose regulated protein 78 and CCAAT/enhancer binding protein homologous protein and reversed the reduced levels of p-Akt in asthmatic mice. Ghrelin might prevent endoplasmic reticulum stress activation by stimulating the Akt signaling pathway, which attenuated inflammation and ameliorated asthma in mice. Ghrelin might be a new target for asthma therapy. Copyright © 2017. Published by Elsevier Inc.

  8. Therapeutic effects of naringin in a guinea pig model of ovalbumin-induced cough-variant asthma.

    PubMed

    Jiao, Hao-yan; Su, Wei-wei; Li, Pei-bo; Liao, Yan; Zhou, Qian; Zhu, Na; He, Li-li

    2015-08-01

    Naringin, a well known component isolated from Exocarpium Citri Grandis, has significant antitussive effects. Recently, Naringin exhibited novel anti-inflammatory effect in chronic inflammatory diseases. In this work, we firstly evaluated the effects of naringin on enhanced cough, airway hyper-responsiveness (AHR), and airway inflammation in an ovalbumin-induced experimental cough-variant asthma (CVA) model in guinea pigs. We investigated the effect of naringin (18.4 mg/kg, per os, single dose or consecutively) on cough to inhaled capsaicin after challenge with an aerosolized antigen in actively sensitized guinea pigs. The effect of naringin on AHR to inhaled methacholine was evaluated 24 h after cough determination. Airway inflammation was assessed via bronchoalveolar lavage fluid (BALF) cytology and lung histopathology. Naringin, given consecutively, significantly reduced ovalbumin-induced enhanced cough and AHR, inhibited the increases in the leukocytes, interleukin-4 (IL-4), IL-5, and IL-13 in BALF compared with the model group. Moreover, the pathologic changes in lung tissues were clearly ameliorated by naringin treatment. These results suggest that naringin may be a beneficial agent for CVA treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Alteration of Airway Reactivity and Reduction of Ryanodine Receptor Expression by Cigarette Smoke in Mice.

    PubMed

    Donovan, Chantal; Seow, Huei Jiunn; Royce, Simon G; Bourke, Jane E; Vlahos, Ross

    2015-10-01

    Small airways are a major site of airflow limitation in chronic obstructive pulmonary disease (COPD). Despite the detrimental effects of long-term smoking in COPD, the effects of acute cigarette smoke (CS) exposure on small airway reactivity have not been fully elucidated. Balb/C mice were exposed to room air (sham) or CS for 4 days to cause airway inflammation. Changes in small airway lumen area in response to contractile agents were measured in lung slices in situ using phase-contrast microscopy. Separate slices were pharmacologically maintained at constant intracellular Ca(2+) using caffeine/ryanodine before contractile measurements. Gene and protein analysis of contractile signaling pathways were performed on separate lungs. Monophasic contraction to serotonin became biphasic after CS exposure, whereas contraction to methacholine was unaltered. This altered pattern of contraction was normalized by caffeine/ryanodine. Expression of contractile agonist-specific receptors was unaltered; however, all isoforms of the ryanodine receptor were down-regulated. This is the first study to show that acute CS exposure selectively alters small airway contraction to serotonin and down-regulates ryanodine receptors involved in maintaining Ca(2+) oscillations in airway smooth muscle. Understanding the contribution of ryanodine receptors to altered airway reactivity may inform the development of novel treatment strategies for COPD.

  10. Simultaneous measurement of mechanical responses and transepithelial potential difference and resistance, in guinea-pig isolated, perfused trachea using a novel apparatus: pharmacological characterization.

    PubMed

    Jing, Yi; Dowdy, Janet A; Van Scott, Michael R; Fedan, Jeffrey S

    2008-11-19

    The isolated, perfused trachea preparation has been used to compare reactivity of the intact airway in response to differential exposure of the mucosal (intraluminal) and serosal (extraluminal) surfaces to contractile and relaxant agonists and other agents, and to gain insight into the modulatory role of the epithelium and the pathways involved. The apparatus has also been configured for simultaneous measurement of transepithelial potential difference and changes in tracheal diameter, thereby providing parallel observations of epithelial and smooth muscle function and reactivity to drugs. The transepithelial potential difference is a product of transepithelial resistance and short circuit current, and the present study describes a novel isolated, perfused tracheal apparatus which allows simultaneous measurement of transepithelial potential difference, transepithelial resistance and mechanical responses of the smooth muscle. The apparatus was validated using well-known ion transport inhibitors [intraluminal amiloride and 5-nitro-2-(3-phenylpropyl-amino) benzoic acid (NPPB), extraluminal ouabain and bumetanide], bronchoactive agonists (extraluminal methacholine, histamine and terbutaline), and osmolytes (intraluminal d-mannitol and NaCl) to induce epithelium-derived relaxing factor-mediated relaxations. This apparatus will facilitate investigation of interactions between the epithelium and smooth muscle in airways that retain their in situ structure, and signaling mechanisms potentially involved in the regulation of airway smooth muscle tone.

  11. Glove-related rhinopathy among hospital personnel.

    PubMed

    Kujala, V M; Reijula, K E

    1996-08-01

    Hypersensitivity to natural rubber latex (NRL) in health care personnel exposed to powdered latex gloves appears as conjunctivitis, rhinitis, nasal congestion, cough, dyspnea, or bronchial asthma in approximately 30% of all cases with latex allergy while most of the patients have contact urticaria. The purpose of the present study was to determine the prevalence of latex-induced allergic rhinitis in health care workers using NRL gloves on a daily basis. Clinical examination accompanied by skin prick test (SPT) with latex glove extracts and common aeroallergens, measurements of specific IgE to NRL, and lung function tests were performed in 25 symptomatic workers and 11 latex-exposed asymptomatic controls. Sensitization to NRL was detected using SPT in one (4%) of 25 symptomatic workers but not in any of the asymptomatic controls. Positive SPT to aeroallergens was demonstrated in 8/25 symptomatic workers and 6/11 controls. Measurements of forced vital capacity, forced expiratory volume in I sec, and bronchial methacholine challenge did not show any significant differences between the study groups. In conclusion, NRL-aeroallergen-induced occupational rhinitis may occur among physicians and nurses who have a frequent use of latex gloves on a daily basis at hospital work. However, a relatively low prevalence of NRL-induced occupational rhinitis is associated with profuse consumption of no-powder sterile gloves.

  12. Airway and Parenchymal Strains during Bronchoconstriction in the Precision Cut Lung Slice

    PubMed Central

    Hiorns, Jonathan E.; Bidan, Cécile M.; Jensen, Oliver E.; Gosens, Reinoud; Kistemaker, Loes E. M.; Fredberg, Jeffrey J.; Butler, Jim P.; Krishnan, Ramaswamy; Brook, Bindi S.

    2016-01-01

    The precision-cut lung slice (PCLS) is a powerful tool for studying airway reactivity, but biomechanical measurements to date have largely focused on changes in airway caliber. Here we describe an image processing tool that reveals the associated spatio-temporal changes in airway and parenchymal strains. Displacements of sub-regions within the PCLS are tracked in phase-contrast movies acquired after addition of contractile and relaxing drugs. From displacement maps, strains are determined across the entire PCLS or along user-specified directions. In a representative mouse PCLS challenged with 10−4M methacholine, as lumen area decreased, compressive circumferential strains were highest in the 50 μm closest to the airway lumen while expansive radial strains were highest in the region 50–100 μm from the lumen. However, at any given distance from the airway the strain distribution varied substantially in the vicinity of neighboring small airways and blood vessels. Upon challenge with the relaxant agonist chloroquine, although most strains disappeared, residual positive strains remained a long time after addition of chloroquine, predominantly in the radial direction. Taken together, these findings establish strain mapping as a new tool to elucidate local dynamic mechanical events within the constricting airway and its supporting parenchyma. PMID:27559314

  13. Cholinergic agonists increase intracellular calcium concentration in frog vestibular hair cells.

    PubMed

    Ohtani, M; Devau, G; Lehouelleur, J; Sans, A

    1994-11-01

    Acetylcholine (ACh) is usually considered to be the neurotransmitter of the efferent vestibular system. The nature and the localization of cholinergic receptors have been investigated on frog isolated vestibular hair cells (VHCs), by measuring variations of intracellular calcium concentration ([Ca2+]i), using calcium sensitive dye fura-2. Focal iontophoretic ACh (1 M, 300 nA.40 ms) application induced a rapid increase in [Ca2+]i, reaching a peak in 20 s and representing about 5-fold the resting level (from 61 +/- 6 to 320 +/- 26 nM). Applications of muscarinic agonists as methacholine and carbachol induced weaker calcium responses (from 78 +/- 25 to 238 +/- 53 nM) than the one obtained with ACh applications. These muscarinic agonists were efficient only in precise zones. Desensitization of muscarinic receptors to successive stimulations was significant. Perfusion of nicotine or 1,1-dimethyl-4-phenyl-piperazinium (DMPP), a nicotinic agonist, induced an increase in [Ca2+]i only in some cells (4/28 with DMPP). These results indicated the presence of cholinergic receptors on frog VHCs: muscarinic receptors were more responsive than nicotinic receptors. Presence of muscarinic and nicotinic receptors in the membrane of VHCs could indicate different modulations of VHCs activity mediated by [Ca2+]i and involving an efferent control which represents a central regulation of the vestibular afferent message.

  14. Bronchial biopsy evidence for leukocyte infiltration and upregulation of leukocyte-endothelial cell adhesion molecules 6 hours after local allergen challenge of sensitized asthmatic airways.

    PubMed Central

    Montefort, S; Gratziou, C; Goulding, D; Polosa, R; Haskard, D O; Howarth, P H; Holgate, S T; Carroll, M P

    1994-01-01

    We have examined the mucosal changes occurring in bronchial biopsies from six atopic asthmatics 5-6 h after local endobronchial allergen challenge and compared them with biopsies from saline-challenged segments from the same subjects at the same time point. All the subjects developed localized bronchoconstriction in the allergen-challenged segment and had a decrease in forced expiratory volume in 1 s (FEV1) (P < 0.01) and a decrease in their methacholine provocative concentration of agonist required to reduce FEV1 from baseline by 20% (P < 0.05) 24 h postchallenge. At 6 h we observed an increase in neutrophils (P = 0.03), eosinophils (P = 0.025), mast cells (P = 0.03), and CD3+ lymphocytes (P = 0.025), but not in CD4+ or CD8+ lymphocyte counts. We also detected an increase in endothelial intercellular adhesion molecule type 1 (P < 0.05) and E-selectin (P < 0.005), but not vascular cell adhesion molecule type 1 expression with a correlative increase in submucosal and epithelial LFA+ leucocytes (P < 0.01). Thus, in sensitized asthmatics, local endobronchial allergen instillation leads to an increased inflammatory cell infiltrate of the airway mucosa that involves upregulation of specific adhesion molecules expressed on the microvasculature. Images PMID:7512980

  15. Effect of aerosol fenoterol on the severity of bronchial hyperreactivity in patients with asthma.

    PubMed Central

    Salome, C M; Schoeffel, R E; Yan, K; Woolcock, A J

    1983-01-01

    Beta adrenergic agents given by aerosol decrease the responsiveness of the airways to histamine and methacholine in subjects with asthma, causing a shift of the dose response curve to the right. To find out whether the shift is related to the dose of beta adrenergic agent given and to determine the duration of the reduced responsiveness, eight subjects with asthma were given histamine inhalation tests after inhaled saline and after increasing doses of inhaled fenoterol on different days. The histamine inhalation tests were repeated at hourly intervals for five hours after a selected dose of fenoterol. Fenoterol caused a dose related shift to the right of the histamine dose response curve in each subject and in some the dose response relationship reached the "non-symptomatic range." The shift in the dose response curve was short lived and had returned towards the control position within three hours in all subjects. There was no change in shape of the curves at the time of maximal shift. The results show that inhaled fenoterol greatly reduces the airway responsiveness to histamine, but up to 400 micrograms of fenoterol every four to five hours may be needed to keep the responsiveness of the airways in the non-symptomatic range. PMID:6648868

  16. Determinants of asthma phenotypes in supermarket bakery workers.

    PubMed

    Baatjies, R; Lopata, A L; Sander, I; Raulf-Heimsoth, M; Bateman, E D; Meijster, T; Heederik, D; Robins, T G; Jeebhay, M F

    2009-10-01

    While baker's asthma has been well described, various asthma phenotypes in bakery workers have yet to be characterised. Our study aims to describe the asthma phenotypes in supermarket bakery workers in relation to host risk factors and self-reported exposure to flour dust. A cross-sectional study of 517 supermarket bakery workers in 31 bakeries used a questionnaire, skin prick tests, and specific immunoglobulin E to wheat, rye and fungal alpha-amylase and methacholine challenge testing. The prevalence of probable occupational asthma (OA, 13%) was higher than atopic (6%), nonatopic (6%) and work-aggravated asthma (WAA, 3%) phenotypes. Previous episodes of high exposure to dusts, fumes and vapours causing asthma symptoms were more strongly associated with WAA (OR 5.8, 95% CI 1.7-19.2) than OA (2.8, 1.4-5.5). Work-related ocular-nasal symptoms were significantly associated with WAA (4.3, 1.3-13.8) and OA (3.1, 1.8-5.5). Bakers with OA had an increased odds ratio of reporting adverse reactions to ingested grain products (6.4, 2.0-19.8). OA is the most common phenotype among supermarket bakery workers. Analysis of risk factors contributes to defining clinical phenotypes, which will guide ongoing medical surveillance and clinical management of bakery workers.

  17. Respiratory symptoms, lung function, and sensitisation to flour in a British bakery.

    PubMed Central

    Musk, A W; Venables, K M; Crook, B; Nunn, A J; Hawkins, R; Crook, G D; Graneek, B J; Tee, R D; Farrer, N; Johnson, D A

    1989-01-01

    A survey of dust exposure, respiratory symptoms, lung function, and response to skin prick tests was conducted in a modern British bakery. Of the 318 bakery employees, 279 (88%) took part. Jobs were ranked from 0 to 10 by perceived dustiness and this ranking correlated well with total dust concentration measured in 79 personal dust samples. Nine samples had concentrations greater than 10 mg/m3, the exposure limit for nuisance dust. All participants completed a self administered questionnaire on symptoms and their relation to work. FEV1 and FVC were measured by a dry wedge spirometer and bronchial reactivity to methacholine was estimated. Skin prick tests were performed with three common allergens and with 11 allergens likely to be found in bakery dust, including mites and moulds. Of the participants in the main exposure group, 35% reported chest symptoms which in 13% were work related. The corresponding figures for nasal symptoms were 38% and 19%. Symptoms, lung function, bronchial reactivity, and response to skin prick tests were related to current or past exposure to dust using logistic or linear regression analysis as appropriate. Exposure rank was significantly associated with most of the response variables studied. The study shows that respiratory symptoms and sensitisation are common, even in a modern bakery. PMID:2789967

  18. Mast Cells Can Amplify Airway Reactivity and Features of Chronic Inflammation in an Asthma Model in Mice

    PubMed Central

    Williams, Cara M.M.; Galli, Stephen J.

    2000-01-01

    The importance of mast cells in the development of the allergen-induced airway hyperreactivity and inflammation associated with asthma remains controversial. We found that genetically mast cell–deficient WBB6F1-W/Wv mice that were sensitized to ovalbumin (OVA) without adjuvant, then challenged repetitively with antigen intranasally, exhibited much weaker responses in terms of bronchial hyperreactivity to aerosolized methacholine, lung tissue eosinophil infiltration, and numbers of proliferating cells within the airway epithelium than did identically treated WBB6F1-+/+ normal mice. However, W/Wv mice that had undergone selective reconstitution of tissue mast cells with in vitro–derived mast cells of congenic +/+ mouse origin exhibited airway responses that were very similar to those of the +/+ mice. By contrast, W/Wv mice that were sensitized with OVA emulsified in alum and challenged with aerosolized OVA exhibited levels of airway hyperreactivity and lung tissue eosinophil infiltration that were similar to those of the corresponding +/+ mice. Nevertheless, these W/Wv mice exhibited significantly fewer proliferating cells within the airway epithelium than did identically treated +/+ mice. These results show that, depending on the “asthma model” investigated, mast cells can either have a critical role in, or not be essential for, multiple features of allergic airway responses in mice. PMID:10934234

  19. Small airways function in aluminium and stainless steel welders.

    PubMed

    Nielsen, J; Dahlqvist, M; Welinder, H; Thomassen, Y; Alexandersson, R; Skerfving, S

    1993-01-01

    The effect of welding fumes on small airways was studied in 25 male subjects who welded in aluminium (Al) and to some extent also in stainless steel (SS). Despite a low exposure to welding fumes as compared to the permissible exposure limits, excretion of Al in urine was found to be increased in all subjects (median value: 0.29 mmol/mol creatinine on Friday afternoon, as compared to an upper reference level of 0.10 mmol/mol creatinine). In addition, the welders displayed increased prevalences of work-related eye and airways (pharyngitis and non-specific bronchial hyperreactivity) symptoms, as compared to 25 matched controls. Short-term welders (< or = 2.5 years) had more symptoms related to the upper airways than did long-term welders, which may indicate a selection. Spirometry, closing volume and volume of trapped gas (VTG) did not deviate. However, after methacholine inhalation, the long-term welders had a significantly steeper slope of the alveolar plateau on the single-breath nitrogen wash-out test, and a slight increase in VTG, as compared to the short-term welders and the controls. These findings may indicate a welding fume-induced increase in the reactivity of the small airways. Because Al welding was far more frequent than SS welding, an association with the former seems likely.

  20. Functional residual capacity and airway resistance of the rat measured with a heat- and temperature-adjusted body plethysmograph.

    PubMed

    Tajiri, Sakurako; Kondo, Tetsuri; Yamabayashi, Hajime

    2006-12-01

    The functional residual capacity (FRC) and airway resistance (R(aw)) of the rat were measured, using a newly designed body plethysmograph (BPG), the inner environment of which was maintained at body temperature and was water-vapor saturated. The subjects were anesthetized and tracheally intubated male Wistar rats (n = 15). After measuring the FRC and R(aw), we analyzed the effects of inhaled methacholine (Mch, 0-8 mg/ml) on R(aw).The determined FRC was 5.37 +/- 0.22 ml (mean +/- SE). An almost linear relationship between box pressure and respiratory flow was obtained when the difference between box-gas temperature and the rectal temperature of the rat was less than 1.0 degrees C. The R(aw) at FRC was 0.230 +/- 0.017 cm H(2)O/ml/s. It increased proportionally with increases in the Mch concentration. When the dynamic changes in R(aw) were analyzed, the R(aw) was found to progressively increase during expiration; this increase continued throughout inspiration. Thus in the rat, R(aw) is not simply a function of changes in lung volume. In conclusion, the humidity- and temperature-adjusted BPG provided an absolute and possibly dynamic value of R(aw).

  1. Comparison of Airway Responses Induced in a Mouse Model by the Gas and Particulate Fractions of Gasoline Direct Injection Engine Exhaust.

    PubMed

    Maikawa, Caitlin L; Zimmerman, Naomi; Ramos, Manuel; Shah, Mittal; Wallace, James S; Pollitt, Krystal J Godri

    2018-03-01

    Diesel exhaust has been associated with asthma, but its response to other engine emissions is not clear. The increasing prevalence of vehicles with gasoline direct injection (GDI) engines motivated this study, and the objective was to evaluate pulmonary responses induced by acute exposure to GDI engine exhaust in an allergic asthma murine model. Mice were sensitized with an allergen to induce airway hyperresponsiveness or treated with saline (non-allergic group). Animals were challenged for 2-h to exhaust from a laboratory GDI engine operated at conditions equivalent to a highway cruise. Exhaust was filtered to assess responses induced by the particulate and gas fractions. Short-term exposure to particulate matter from GDI engine exhaust induced upregulation of genes related to polycyclic aromatic hydrocarbon (PAH) metabolism ( Cyp1b1 ) and inflammation ( TNFα ) in the lungs of non-allergic mice. High molecular weight PAHs dominated the particulate fraction of the exhaust, and this response was therefore likely attributable to the presence of these PAHs. The particle fraction of GDI engine exhaust further contributed to enhanced methacholine responsiveness in the central and peripheral tissues in animals with airway hyperresponsiveness. As GDI engines gain prevalence in the vehicle fleet, understanding the health impacts of their emissions becomes increasingly important.

  2. A nocturnal decline of salivary pH associated with airway hyperresponsiveness in asthma.

    PubMed

    Watanabe, Masanari; Sano, Hiroyuki; Tomita, Katsuyuki; Yamasaki, Akira; Kurai, Jun; Hasegawa, Yasuyuki; Igishi, Tadashi; Okazaki, Ryota; Tohda, Yuji; Burioka, Naoto; Shimizu, Eiji

    2010-08-01

    Salivary pH is associated with esophageal acid reflux and neutralization of esophageal acid. In this study, we assessed the association between nocturnal decline of salivary pH and airway hyperresponsiveness. Salivary pH was serially assessed in 9 patients with mild asthma (7 men and 2 women; mean age 33.3 years; mean %predicted FEV(1.0) 89.4%) and 10 healthy volunteers (6 men and 4 women; mean age 31.2 years) using a pH indicator tape. The buffering capacity of saliva was defined as the median effective dose (ED(50)) for acidification of saliva with 0.01 N HCl, and airway responsiveness was defined as the dose of methacholine producing a 35% fall in Grs (PD(35)-Grs). There was a significant correlation between the values obtained from the pH indicator tape and those obtained from the electrometric pH meter. Using the indicator tape for sequential monitoring, we observed a nocturnal fall (ΔpH) in salivary pH in all subjects. A significant correlation was found between airway hyperresponsiveness (PD(35)-Grs) and either ΔpH or ED(50) in mildly asthmatic patients. Vagal reflux dysfunction might contribute to nocturnal salivary pH as well as to airway hyperresponsiveness in mild asthmatics.

  3. Airway epithelial SPDEF integrates goblet cell differentiation and pulmonary Th2 inflammation

    PubMed Central

    Rajavelu, Priya; Chen, Gang; Xu, Yan; Kitzmiller, Joseph A.; Korfhagen, Thomas R.; Whitsett, Jeffrey A.

    2015-01-01

    Epithelial cells that line the conducting airways provide the initial barrier and innate immune responses to the abundant particles, microbes, and allergens that are inhaled throughout life. The transcription factors SPDEF and FOXA3 are both selectively expressed in epithelial cells lining the conducting airways, where they regulate goblet cell differentiation and mucus production. Moreover, these transcription factors are upregulated in chronic lung disorders, including asthma. Here, we show that expression of SPDEF or FOXA3 in airway epithelial cells in neonatal mice caused goblet cell differentiation, spontaneous eosinophilic inflammation, and airway hyperresponsiveness to methacholine. SPDEF expression promoted DC recruitment and activation in association with induction of Il33, Csf2, thymic stromal lymphopoietin (Tslp), and Ccl20 transcripts. Increased Il4, Il13, Ccl17, and Il25 expression was accompanied by recruitment of Th2 lymphocytes, group 2 innate lymphoid cells, and eosinophils to the lung. SPDEF was required for goblet cell differentiation and pulmonary Th2 inflammation in response to house dust mite (HDM) extract, as both were decreased in neonatal and adult Spdef–/– mice compared with control animals. Together, our results indicate that SPDEF causes goblet cell differentiation and Th2 inflammation during postnatal development and is required for goblet cell metaplasia and normal Th2 inflammatory responses to HDM aeroallergen. PMID:25866971

  4. Prevalence of Allergic Diseases and Risk Factors of Wheezing in Korean Military Personnel

    PubMed Central

    Lee, Sang Min; Ahn, Jong Seong; Noh, Chang Suk

    2011-01-01

    The objective of this study was to evaluate the prevalence of asthma, allergic rhinitis, and atopic dermatitis, as well as the risk factors of wheezing among young adults in the Korean military. Young military conscripts in five areas completed a modified International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire. For subjects with current wheeze in one sample area, baseline spirometry and bronchodilator response were measured. For subjects without a significant response to bronchodilator (improvement in FEV1 of more than 200 mL and 12%), methacholine challenge tests (MCT) were also performed. Of 3,359 subjects that completed the questionnaire, 354 (10.5%) had current wheeze, 471 (14.0%) had current allergic rhinitis, and 326 (9.7%) had current eczema. Current wheeze was associated with family history of allergic disease, overweight, current smoking, allergic rhinitis, and atopic dermatitis. Of 36 subjects with current wheeze who underwent PFT with or without MCT in the Anyang area, 24 (66.7%) were confirmed to have current asthma. In conclusion, the prevalence of allergic disease in young adults of Korean military is not low, and the risk factors of wheezing include family history of allergic disease, overweight, current smoking, allergic rhinitis, and atopic dermatitis. PMID:21286010

  5. Comparison of Airway Responses Induced in a Mouse Model by the Gas and Particulate Fractions of Gasoline Direct Injection Engine Exhaust

    PubMed Central

    Maikawa, Caitlin L.; Zimmerman, Naomi; Ramos, Manuel; Wallace, James S.; Pollitt, Krystal J. Godri

    2018-01-01

    Diesel exhaust has been associated with asthma, but its response to other engine emissions is not clear. The increasing prevalence of vehicles with gasoline direct injection (GDI) engines motivated this study, and the objective was to evaluate pulmonary responses induced by acute exposure to GDI engine exhaust in an allergic asthma murine model. Mice were sensitized with an allergen to induce airway hyperresponsiveness or treated with saline (non-allergic group). Animals were challenged for 2-h to exhaust from a laboratory GDI engine operated at conditions equivalent to a highway cruise. Exhaust was filtered to assess responses induced by the particulate and gas fractions. Short-term exposure to particulate matter from GDI engine exhaust induced upregulation of genes related to polycyclic aromatic hydrocarbon (PAH) metabolism (Cyp1b1) and inflammation (TNFα) in the lungs of non-allergic mice. High molecular weight PAHs dominated the particulate fraction of the exhaust, and this response was therefore likely attributable to the presence of these PAHs. The particle fraction of GDI engine exhaust further contributed to enhanced methacholine responsiveness in the central and peripheral tissues in animals with airway hyperresponsiveness. As GDI engines gain prevalence in the vehicle fleet, understanding the health impacts of their emissions becomes increasingly important. PMID:29494515

  6. Substance P antagonists and mucociliary activity in rabbit.

    PubMed

    Lindberg, S; Mercke, U

    1985-06-01

    Substance P (SP) is known to accelerate mucociliary (m.c.) activity in the rabbit maxillary sinus in vivo. The physiological significance of this finding was investigated by testing three putative SP antagonists. [Arg5, D-Trp7,9, Nle11]SP5-11 could not be used as an antagonist because it stimulated m.c. activity. [D-Arg1, D-Trp7,9, Leu11]SP had no effect on the m.c. activity changes induced by SP. [D-Pro2, D-Trp7,9]SP was found to be an effective antagonist, 1 mg/kg of this drug reversibly inhibiting both the effects of 0.1 micrograms/kg SP and the stimulating effect of 1.0 micrograms/kg bradykinin and 30.0 micrograms/kg capsaicin; the stimulating effect of 0.5 micrograms/kg methacholine was not inhibited. It is suggested that bradykinin and capsaicin stimulate m.c. activity at least partly by releasing SP. The results of this investigation also support the view that the accelerating effect of SP on m.c. activity reflects physiological SP-mediated protective mechanisms in the airways. It is concluded that [D-Pro2,D-Trp7,9]SP is a useful pharmacological tool for studying the role of SP in the control of m.c. activity in rabbits.

  7. Swine confinement buildings: effects of airborne particles and settled dust on airway smooth muscles.

    PubMed

    Demanche, Annick; Bonlokke, Jakob; Beaulieu, Marie-Josee; Assayag, Evelyne; Cormier, Yvon

    2009-01-01

    Swine confinement workers are exposed to various contaminants. These agents can cause airway inflammation and bronchoconstriction. This study was undertaken to evaluate if the bronchoconstrictive effects of swine barn air and settled dust are mediated by endotoxin, and if these effects are directly mediated on airway smooth muscles. Mouse tracheas where isolated and mounted isometrically in organ baths. Tracheas, with or without epithelium, were attached to a force transducer and tension was recorded. Concentrated swine building air at 68 EU/ml or settled dust extract at 0.01 g/ml were added for 20 minutes and tracheal smooth muscle contraction was measured. Direct role of LPS was assessed by removing it from air concentrates with an endotoxin affinity resin. Swine barn air and settled dust extract caused contraction of tracheal smooth muscle by 26 and 20%, respectively, of the maximal induced by methacholine. Removal of epithelium did not affect the contractile effects. LPS alone and LPS with peptidoglycans did not induce contraction. However, when endotoxin was removed from swine barn air concentrates, it lost 24% of its contractile effect. Concentrated swine barn air and settled dust have direct effects on airway smooth muscles. This effect is partially due to LPS but a synergy with other components of the environment of swine confinement buildings is required.

  8. Occupational asthma caused by exposure to asparagus: detection of allergens by immunoblotting.

    PubMed

    Lopez-Rubio, A; Rodriguez, J; Crespo, J F; Vives, R; Daroca, P; Reaño, M

    1998-12-01

    Vegetables of the Liliaceae family, such as garlic or onion, have been reported to cause occupational asthma. However, there are few data on adverse reactions to asparagus. We evaluated the role of asparagus as a cause of asthma in a patient with respiratory symptoms occurring at work (horticulture) and studied relevant allergens. A 28-year-old man complained of rhinoconjunctivitis and asthma when harvesting asparagus at work. Eating cooked asparagus did not provoke symptoms. A positive skin test reaction was observed with raw asparagus, Alternaria alternata, and grass-pollen extracts. The methacholine test demonstrated mild bronchial hyperresponsiveness. The patient had an immediate asthmatic response after challenge with raw asparagus extract. Bronchial provocation tests with boiled asparagus, A. alternata, and control extracts were negative. Two unexposed subjects with seasonal allergic asthma did not react to the raw asparagus extract. The double-blind, placebo-controlled food challenge with raw asparagus was negative. Serum asparagus-specific IgE was 13.9 kU(A)/l. By SDS-PAGE immunoblot, at least six IgE-binding components, ranging from 22 to 73 kDa, were detected only in raw asparagus. We report a case of occupational asthma caused by asparagus inhalation, confirmed by specific bronchoprovocation. Immunoblot analysis showed that asparagus allergens are very labile and quite sensitive to heat denaturation.

  9. Greater involvement of neurokinins found in Guinea pig models of severe asthma compared with mild asthma.

    PubMed

    Mukaiyama, Osamu; Morimoto, Kiyoshi; Nosaka, Emi; Takahashi, Sakiko; Yamashita, Makoto

    2004-08-01

    Involvement of neurokinins in asthma has been previously pointed out by several reports. However, the relationship between neurokinins and the severity of asthma has remained unclear. We developed a model of mild asthma (model I) and severe asthma (model II) in guinea pigs, and investigated the function of neurokinins in both models. In models I and II, systemically sensitized guinea pigs were made to inhale ovalbumin once and three times, respectively. Substance P (SP) and neurokinin A (NKA) concentrations in the bronchoalveolar lavage fluid (BALF) were measured in models I and II. Then, the effects of a capsaicin pretreatment, which depletes neurokinins, in both animal models on airway narrowing induced by the last ovalbumin inhalation, airway hyperresponsiveness to inhaled methacholine, and eosinophil accumulation in BALF, were investigated. SP concentration tended to increase and the NKA concentration increased significantly in model II, but not in model I. Capsaicin pretreatment significantly inhibited the late bronchial response that was observed 2-6 h after the last ovalbumin inhalation, airway hyperresponsiveness and eosinophil accumulation in model II. On the other hand, it had no effects on the responses in model I. It is suggested that the more severe the disease, the greater the involvement of neurokinins. Copyright 2004 S. Karger AG, Basel

  10. Effect of choline chloride in allergen-induced mouse model of airway inflammation.

    PubMed

    Mehta, A K; Gaur, S N; Arora, N; Singh, B P

    2007-10-01

    The incidence of asthma has increased the world over, and current therapies for the disease suffer from potential side-effects. This has created an opportunity to develop novel therapeutic approaches. Here, the anti-inflammatory activity of choline was investigated in a mouse model of allergic airway inflammation. Choline (1 mg.kg(-1)) was administered via oral gavage or intranasally before and after ovalbumin (OVA) challenge in sensitised mice. Airway hyperresponsiveness (AHR) to methacholine was measured in the mice by whole-body plethysmography. Type-2 T-helper cell cytokine and leukotriene levels were estimated in bronchoalveolar lavage fluid (BALF) and spleen culture supernatant by ELISA. Eosinophil peroxidase activity was also determined in the BALF supernatant. Choline treatment in sensitised mice before OVA challenge via oral/intranasal routes significantly inhibited eosinophilic airway inflammation and eosinophil peroxidase activity. It also reduced immunoglobulin E and G1 production and inhibited the release of type-2 T-helper cell cytokines and leukotrienes. However, the development of AHR was prevented effectively by intranasal choline treatment. Most importantly, choline treatment after OVA challenge by both routes could reverse established asthmatic conditions in mice by inhibiting AHR, eosinophilic airway inflammation and other inflammatory parameters. This study provides a new therapeutic approach for controlling as well as preventing asthma exacerbations.

  11. S-nitrosoglutathione reductase: an important regulator in human asthma.

    PubMed

    Que, Loretta G; Yang, Zhonghui; Stamler, Jonathan S; Lugogo, Njira L; Kraft, Monica

    2009-08-01

    Nitric oxide bioactivity, mediated through the formation of S-nitrosothiols (SNOs), has a significant effect on bronchomotor tone. S-Nitrosoglutathione is an endogenous bronchodilator that is decreased in children with asthmatic respiratory failure and in adults with asthma undergoing segmental airway challenge. Recently we showed that S-nitrosoglutathione reductase (GSNOR) regulates endogenous SNOs. Mice with genetic deletion of GSNOR are protected from airway hyperresponsivity in an allergic asthma model. We hypothesized that GSNOR is increased in human asthma and correlates with lung SNO content and airway reactivity. We recruited 36 subjects with mild asthma with FEV(1) 88.5 +/- 2.3% predicted and 34 healthy control subjects with FEV(1) 100.7 +/- 2.5% predicted. Bronchoalveolar lavage (BAL) was performed in all subjects. Cell counts, differentials, GSNOR activity, and SNO levels were determined in BAL. SNO content was decreased in asthmatic BAL compared with control BAL and correlated inversely with GSNOR expression in BAL cell lysates. Furthermore, GSNOR activity measured from BAL samples was significantly increased in subjects with asthma compared with control subjects and correlated inversely with the provocative concentration of methacholine causing a 20% decrease in FEV(1). These findings suggest that GSNOR is an important regulator of airway SNO content and airways hyperresponsiveness in human asthma.

  12. Impact of tamsulosin and nifedipine on contractility of pregnant rat ureters in vitro.

    PubMed

    Haddad, Lisette; Corriveau, Stéphanie; Rousseau, Eric; Blouin, Simon; Pasquier, Jean-Charles; Ponsot, Yves; Roy-Lacroix, Marie-Ève

    2018-01-01

    To evaluate the in vitro effect of tamsulosin and nifedipine on the contractility of pregnant rat ureters and to perform quantitative analysis of the pharmacological effects. Medical expulsive therapy (MET) is commonly used to treat urolithiasis. However, this treatment is seldom used in pregnant women since no studies support this practice. This was an in vitro study on animal tissue derived from pregnant Sprague-Dawley rats. A total of 124 ureteral segments were mounted in an organ bath system and contractile response to methacholine (MCh) was assessed. Tamsulosin or nifedipine were added at cumulative concentrations (0.001-1 μM). The area under the curve (AUC) from isometric tension measurements was calculated. The effect of pharmacological agents and the respective controls were assessed by calculating the AUC for each 5-min interval. Statistical analyses were performed using the Mann-Whitney-Wilcoxon nonparametric test. Both drugs displayed statistically significant inhibitory activity at concentrations of 0.1 and 1 μM for tamsulosin and 1 μM for nifedipine when calculated as the AUC as compared to DMSO controls. Tamsulosin and nifedipine directly inhibit MCh-induced contractility of pregnant rat ureters. Further work is needed to determine the clinical efficacy of these medications for MET in pregnancy.

  13. Validation of measurements of ventilation-to-perfusion ratio inequality in the lung from expired gas

    NASA Technical Reports Server (NTRS)

    Prisk, G. Kim; Guy, Harold J B.; West, John B.; Reed, James W.

    2003-01-01

    The analysis of the gas in a single expirate has long been used to estimate the degree of ventilation-perfusion (Va/Q) inequality in the lung. To further validate this estimate, we examined three measures of Va/Q inhomogeneity calculated from a single full exhalation in nine anesthetized mongrel dogs under control conditions and after exposure to aerosolized methacholine. These measurements were then compared with arterial blood gases and with measurements of Va/Q inhomogeneity obtained using the multiple inert gas elimination technique. The slope of the instantaneous respiratory exchange ratio (R slope) vs. expired volume was poorly correlated with independent measures, probably because of the curvilinear nature of the relationship due to continuing gas exchange. When R was converted to the intrabreath Va/Q (iV/Q), the best index was the slope of iV/Q vs. volume over phase III (iV/Q slope). This was strongly correlated with independent measures, especially those relating to inhomogeneity of perfusion. The correlations for iV/Q slope and R slope considerably improved when only the first half of phase III was considered. We conclude that a useful noninvasive measurement of Va/Q inhomogeneity can be derived from the intrabreath respiratory exchange ratio.

  14. Mouse Model of Halogenated Platinum Salt Hypersensitivity ...

    EPA Pesticide Factsheets

    Occupational exposure to halogenated platinum salts can trigger the development of asthma. Concern for increased asthma risk exists for the general population due to the use of platinum (Pt) in catalytic converters and its emerging use as a diesel fuel additive. To investigate airway responses to Pt, we developed a mouse model of Pt hypersensitivity. Previously, we confirmed the dermal sensitizing potency of ammonium hexachloroplatinate (AHCP) using an ex vivo [3H]methyl thymidine labeling version of the local lymph node assay in BALB/c mice. Here, we investigated the ability of AHCP to induce airway responses in mice sensitized by the dermal route. Mice were sensitized through application of 100 µL 1% AHCP in DMSO to the shaved back on days 0, 5 and 19, and 25 µl to each ear on days 10, 11 and 12. Unsensitized mice received vehicle. On day 24, mice were challenged by oropharyngeal aspiration (OPA) with 0 or 100 µg AHCP in saline. Before and immediately after challenge, airway responses were assessed using whole body plethysmography (WBP). On day 26, changes in ventilatory responses to methacholine (Mch) aerosol were assessed by WBP; dose-dependent increases in Mch responsiveness occurred in sensitized mice. Bronchoalveolar lavage fluid harvested from sensitized mice contained an average of 7.5% eosinophils compared to less than 0.5% in control mice (p < 0.05). This model will be useful for assessing both relative sensitizing potency and cross-reacti

  15. Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury

    PubMed Central

    Lazrak, Ahmed; Creighton, Judy; Yu, Zhihong; Komarova, Svetlana; Doran, Stephen F.; Aggarwal, Saurabh; Emala, Charles W.; Stober, Vandy P.; Trempus, Carol S.; Garantziotis, Stavros

    2015-01-01

    Chlorine (Cl2) inhalation induces severe oxidative lung injury and airway hyperresponsiveness (AHR) that lead to asthmalike symptoms. When inhaled, Cl2 reacts with epithelial lining fluid, forming by-products that damage hyaluronan, a constituent of the extracellular matrix, causing the release of low-molecular-weight fragments (L-HA, <300 kDa), which initiate a series of proinflammatory events. Cl2 (400 ppm, 30 min) exposure to mice caused an increase of L-HA and its binding partner, inter-α-trypsin-inhibitor (IαI), in the bronchoalveolar lavage fluid. Airway resistance following methacholine challenge was increased 24 h post-Cl2 exposure. Intratracheal administration of high-molecular-weight hyaluronan (H-HA) or an antibody against IαI post-Cl2 exposure decreased AHR. Exposure of human airway smooth muscle (HASM) cells to Cl2 (100 ppm, 10 min) or incubation with Cl2-exposed H-HA (which fragments it to L-HA) increased membrane potential depolarization, intracellular Ca2+, and RhoA activation. Inhibition of RhoA, chelation of intracellular Ca2+, blockade of cation channels, as well as postexposure addition of H-HA, reversed membrane depolarization in HASM cells. We propose a paradigm in which oxidative lung injury generates reactive species and L-HA that activates RhoA and Ca2+ channels of airway smooth muscle cells, increasing their contractility and thus causing AHR. PMID:25747964

  16. Effects of Source-Apportioned Coarse Particulate Matter (PM) ...

    EPA Pesticide Factsheets

    The Cleveland Multiple Air Pollutant Study (CMAPS) is one of the first comprehensive studies conducted to evaluate particulate matter (PM) over local and regional scales. Cleveland and the nearby Ohio River Valley impart significant regional sources of air pollution including coal combustion and steel production. Size-fractionated PM (coarse, fine and ultrafine) were collected from an urban site (G.T. Craig (GTC)) and a rural site (Chippewa Lake monitor (CLM) located 53 km southwest of Cleveland) from July 2009 to June 2010. Following collection, resulting speciated PM data were apportioned to identify local industrial emission sources for each size fraction and location, indicating these samples were enriched with resident emission sources. This study was designed to determine whether exposure of the CMAPS coarse PM contributes to the exacerbation of allergic asthma. Non-sensitized and house dust mite (HDM)-sensitized female Balb/cJ mice (n= 8/group) were exposed via oropharyngeal (OP) aspiration to 100 g coarse fractions of one of five source apportioned groups representative of distinct time periods of 4-6 weeks (traffic, coal, steel 1, steel 2, or winter PM) and OP challenge with HDM conducted 2 hr following dosing with PM. Two days later, airway responsiveness to methacholine aerosol was assessed in anesthetized ventilated control and HDM mice. The HDM-allergic mice demonstrated increased airway reactivity in comparison to control mice. Bronchoalveolar l

  17. Pulmonary mechanic and lung histology induced by Crotalus durissus cascavella snake venom.

    PubMed

    Oliveira Neto, Joselito de; Silveira, João Alison de Moraes; Serra, Daniel Silveira; Viana, Daniel de Araújo; Borges-Nojosa, Diva Maria; Sampaio, Célia Maria Souza; Monteiro, Helena Serra Azul; Cavalcante, Francisco Sales Ávila; Evangelista, Janaina Serra Azul Monteiro

    2017-10-01

    This study have analyzed the pulmonary function in an experimental model of acute lung injury, induced by the Crotalus durissus cascavella venom (C. d. cascavella) (3.0 μg/kg - i.p), in pulmonary mechanic and histology at 1 h, 3 h, 6 h, 12 h and 24 h after inoculation. The C. d. cascavella venom led to an increase in Newtonian Resistance (R N ), Tissue Resistance (G) and Tissue Elastance (H) in all groups when compared to the control, particularly at 12 h and 24 h. The Histeresivity (η) increased 6 h, 12 h and 24 h after inoculation. There was a decrease in Static Compliance (C ST ) at 6 h, 12 h and 24 h and inspiratory capacity (IC) at 3 h, 6 h, 12 h and 24 h. C. d. cascavella venom showed significant morphological changes such as atelectasis, emphysema, hemorrhage, polymorphonuclear inflammatory infiltrate, edema and congestion. After a challenge with methacholine (MCh), R N demonstrated significant changes at 6, 12 and 24 h. This venom caused mechanical and histopathological changes in the lung tissue; however, its mechanisms of action need further studies in order to better elucidate the morphofunctional lesions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Clinical Trial: High-Dose Acid Suppression for Chronic Cough: A Randomized, Double-Blind, Placebo-Controlled Trial

    PubMed Central

    Shaheen, Nicholas J.; Crockett, Seth D.; Bright, Stephanie D.; Madanick, Ryan D.; Buckmire, Robert; Couch, Marion; Dellon, Evan S.; Galanko, Joseph A.; Sharpless, Ginny; Morgan, Douglas R.; Spacek, Melissa B.; Heidt-Davis, Paris; Henke, David

    2011-01-01

    Summary Background Cough may be a manifestation of gastro-esophageal reflux disease (GERD). The utility of acid suppression in GERD-related cough is uncertain. Aim To assess the impact of high-dose acid suppression with proton pump inhibitors (PPI) on chronic cough in subjects with rare or no heartburn. Methods Subjects were non-smokers without history of asthma, with chronic cough for > 8 weeks. All subjects underwent a baseline 24 hr pH/impedance study, methacholine challenge test (MCT), and laryngoscopy. Subjects were randomized to either 40 mg of esomeprazole twice daily or placebo for 12 weeks. The primary outcome measure was the Cough-Specific Quality of Life Questionnaire (CQLQ). Secondary outcomes were response on Fisman Cough Severity/Frequency scores, and change in laryngeal findings. Results 40 subjects were randomized (22 PPI, 18 placebo) and completed the study. There was no difference between PPI and placebo in CQLQ (mean improvement 9.8, vs. 5.9 in placebo, p = 0.3), or Fisman Cough Severity/Frequency scores. The proportion of patients who improved by >1 standard deviation on the CQLQ was 27.8% (5/18) and 31.8% (7/22) in the placebo and PPI groups respectively. Conclusions In subjects with chronic cough and rare or no heartburn, high-dose PPI did not improve cough-related quality of life or symptoms in this randomized controlled trial. PMID:21083673

  19. Vocal cord dysfunction related to water-damaged buildings.

    PubMed

    Cummings, Kristin J; Fink, Jordan N; Vasudev, Monica; Piacitelli, Chris; Kreiss, Kathleen

    2013-01-01

    Vocal cord dysfunction (VCD) is the intermittent paradoxical adduction of the vocal cords during respiration, resulting in variable upper airway obstruction. Exposure to damp indoor environments is associated with adverse respiratory health outcomes, including asthma, but its role in the development of VCD is not well described. We describe the spectrum of respiratory illness in occupants of 2 water-damaged office buildings. The National Institute for Occupational Safety and Health conducted a health hazard evaluation that included interviews with managers, a maintenance officer, a remediation specialist who had evaluated the 2 buildings, employees, and consulting physicians. In addition, medical records and reports of building evaluations were reviewed. Diagnostic evaluations for VCD had been conducted at the Asthma and Allergy Center of the Medical College of Wisconsin. Two cases of VCD were temporally related to occupancy of water-damaged buildings. The patients experienced cough, chest tightness, dyspnea, wheezing, and hoarseness when in the buildings. Spirometry was normal. Methacholine challenge did not show bronchial hyperreactivity but did elicit symptoms of VCD and inspiratory flow-volume loop truncation. Direct laryngoscopy revealed vocal cord adduction during inspiration. Coworkers developed upper and lower respiratory symptoms; their diagnoses included sinusitis and asthma, consistent with recognized effects of exposure to indoor dampness. Building evaluations provided evidence of water damage and mold growth. VCD can occur with exposure to water-damaged buildings and should be considered in exposed patients with asthma-like symptoms. Published by Elsevier Inc.

  20. Elevated leukocyte phosphodiesterase as a basis for depressed cyclic adenosine monophosphate responses in the Basenji greyhound dog model of asthma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, S.C.; Hanifin, J.M.; Holden, C.A.

    1985-08-01

    The BG dog manifests various characteristics of human asthma, including airway hyperreactivity to low concentrations of methacholine. Studies have suggested that airway hyperreactivity in asthma is related to inadequate intracellular cAMP responses. The authors studied cAMP characteristics in MNL from 19 BG and 14 mongrel dogs. beta-Adrenergic receptors were assessed by /sup 125/I CYP in the presence and absence of propranolol. The responses of cAMP to ISO were measured by radioimmunoassay. Adenylate cyclase activity was determined in homogenized MNL preparations by cAMP generation. PDE activity was quantitated by radioenzyme assay. Mongrel dog leukocyte ISO-stimulated cAMP levels doubled, whereas there weremore » negligible increases in MNL from BG dogs. Basal PDE levels were higher in BG dogs than in mongrel dogs. The PDE inhibitor Ro 20-1724 restored ISO-stimulated cAMP responses in MNL of BG dogs. Adenylate cyclase activity was not lower in MNL homogenates from BG dogs than in mongrel dogs. Cells from both BG and mongrel dogs demonstrated similar receptor numbers and affinities of saturable, specific beta-adrenergic binding over a 10 pM to 400 pM range. The results suggest that depressed cAMP responses in BG dogs are due to high PDE activity rather than to a defect in the beta-adrenergic receptor adenylate cyclase system.« less

  1. Effects of ozone on the respiratory health, allergic sensitization, and cellular immune system in children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zwick, H.; Popp, W.; Wagner, C.

    1991-11-01

    To investigate the lasting effects of high ozone concentrations under environmental conditions, we examined the respiratory health, pulmonary function, bronchial hyperresponsiveness to methacholine, allergic sensitization, and lymphocyte subpopulations of 10- to 14-yr-old children. A total of 218 children recruited from an area with high ozone concentrations (Group A) were tested against 281 children coming from an area with low ozone concentrations (Group B). As to subjective complaints, categorized as 'usually cough with or without phlegm,' 'breathlessness,' and 'susceptibility to chest colds,' there was no difference between the two groups. The lung function parameters were similar, but in Group A subjects'more » bronchial hyperresponsiveness occurred more frequently and was found to be more severe than in Group B (29.4 versus 19.9%, p less than 0.02; PD20 2,100 {plus minus} 87 versus 2,350 {plus minus} 58 micrograms, p less than 0.05). In both groups the number of children who had been suffering from allergic diseases and sensitization to aeroallergens, found by means of the skin test, was the same. Comparison of the total IgE levels showed no difference at all between the two groups. As far as the white blood cells are concerned, the total and differential cell count was the same, whereas lymphocyte subpopulations showed readily recognizable changes.« less

  2. Mega-dose vitamin C attenuated lung inflammation in mouse asthma model.

    PubMed

    Jeong, Young-Joo; Kim, Jin-Hee; Kang, Jae Seung; Lee, Wang Jae; Hwang, Young-Il

    2010-12-01

    Asthma is a Th2-dependent disease mediated by IgE and Th2 cytokines, and asthmatic patients suffer from oxidative stresses from abnormal airway inflammation. Vitamin C is a micro-nutrient functioning as an antioxidant. When administered at a mega-dose, vitamin C has been reported to shift immune responses toward Th1. Thus, we tried to determine whether vitamin C exerted beneficial effects in asthma animal model. Asthma was induced in mice by sensitizing and challenging with ovalbumin. At the time of challenge, 3~5 mg of vitamin C was administered and the effects were evaluated. Vitamin C did not modulate Th1/Th2 balance in asthma model. However, it decreased airway hyperreactivity to methacholine, decreased inflammatory cell numbers in brochoalveolar lavage fluid, and moderate reduction of perivascular and peribronchiolar inflammatory cell infiltration. These results suggest that vitamin C administered at the time of antigen challenge exerted anti-inflammatory effects. Further studies based on chronic asthma model are needed to evaluate a long-term effect of vitamin C in asthma. In conclusion, even though vitamin C did not show any Th1/Th2 shifting effects in this experiment, it still exerted moderate anti-inflammatory effects. Considering other beneficial effects and inexpensiveness of vitamin C, mega-dose usage of vitamin C could be a potential supplementary modality for the management of asthma.

  3. Investigative bronchoprovocation and bronchoscopy in airway diseases.

    PubMed

    Busse, William W; Wanner, Adam; Adams, Kenneth; Reynolds, Herbert Y; Castro, Mario; Chowdhury, Badrul; Kraft, Monica; Levine, Robert J; Peters, Stephen P; Sullivan, Eugene J

    2005-10-01

    Basic and clinical research strategies used for many lung diseases have depended on volunteer subjects undergoing bronchoscopy to establish access to the airways to collect biological specimens and tissue, perhaps with added bronchoprovocation in asthma syndromes. These procedures have yielded a wealth of important scientific information. Since the last critical review more than a decade ago, some of the techniques and applications have changed, and untoward events have occurred, raising safety concerns and increasing institutional review scrutiny. To reappraise these investigational methods in the context of current knowledge, the National Heart, Lung, and Blood Institute and the National Institute of Allergy and Infectious Diseases of the National Institutes of Health convened a working group to review these procedures used for airway disease research, emphasizing asthma and chronic obstructive pulmonary disease. The group reaffirmed the scientific importance of investigative bronchoscopy and bronchoprovocation, even as less invasive technologies evolve. The group also considered the safety of bronchoscopy and bronchoprovocation with methacholine and antigen to be acceptable for volunteer subjects and patients, but stressed the need to monitor this closely and to emphasize proper training of participating medical research personnel. Issues were raised about vulnerable volunteers, especially children who need surrogates for informed consent. This review of investigative bronchoscopy and bronchoprovocation could serve as the basis for future guidelines for the use of these procedures in the United States.

  4. Interleukin-1beta-induced airway hyperresponsiveness enhances substance P in intrinsic neurons of ferret airway.

    PubMed

    Wu, Z-X; Satterfield, B E; Fedan, J S; Dey, R D

    2002-11-01

    Interleukin (IL)-1beta causes airway inflammation, enhances airway smooth muscle responsiveness, and alters neurotransmitter expression in sensory, sympathetic, and myenteric neurons. This study examines the role of intrinsic airway neurons in airway hyperresponsiveness (AHR) induced by IL-1beta. Ferrets were instilled intratracheally with IL-1beta (0.3 microg/0.3 ml) or saline (0.3 ml) once daily for 5 days. Tracheal smooth muscle contractility in vitro and substance P (SP) expression in tracheal neurons were assessed. Tracheal smooth muscle reactivity to acetylcholine (ACh) and methacholine (MCh) and smooth muscle contractions to electric field stimulation (EFS) both increased after IL-1beta. The IL-1beta-induced AHR was maintained in tracheal segments cultured for 24 h, a procedure that depletes SP from sensory nerves while maintaining viability of intrinsic airway neurons. Pretreatment with CP-99994, an antagonist of neurokinin 1 receptor, attenuated the IL-1beta-induced hyperreactivity to ACh and MCh and to EFS in cultured tracheal segments. SP-containing neurons in longitudinal trunk, SP innervation of superficial muscular plexus neurons, and SP nerve fiber density in tracheal smooth muscle all increased after treatment with IL-1beta. These results show that IL-1beta-enhanced cholinergic airway smooth muscle contractile responses are mediated by the actions of SP released from intrinsic airway neurons.

  5. Lung Function Changes in Mice Sensitized to Ammonium ...

    EPA Pesticide Factsheets

    Occupational exposure to halogenated platinum salts can trigger the development of asthma. The risk to the general population that may result from the use of platinum in catalytic converters and its emerging use as a diesel fuel additive is unclear. To investigate pulmonary responses to platinum, we developed a mouse model of platinum hypersensitivity. Mice were sensitized through application of ammonium hexachloroplatinate (AHCP) to the shaved back on days 0, 5 and 19, and to each ear on days 10, 11 and 12. On days 24 and 29, mice were challenged by oropharyngeal aspiration with AHCP in saline. Before and immediately after challenge, pulmonary responses were assessed using whole body plethysmography (WBP). A dose-dependentincrease in immediate responses was observed in AHCP-sensitized and challenged mice. On days 26 and 31, changes in ventilatory responses to methacholine (Mch) aerosol were assessed by WBP; dose-dependent increases in Mch responsiveness occurred in sensitized mice. Lymph node cell counts indicate a proliferative response in lymph nodes drainng the sites of application. Bronchoalveolar lavage fluid harvested from sensitized mice contained an average of 5% eosinophils compared to less than 0.5% in non-sensitized mice (p < 0.05); significant increases in total serum immunoglobulin E were observed for all sensitized mice. Although a second airway challenge on day 29 affected some results, only one airway challenge was needed to observe changes in l

  6. Occupational vocal cord dysfunction due to exposure to wood dust and xerographic toner.

    PubMed

    Muñoz, Xavier; Roger, Alex; De la Rosa, David; Morell, Ferran; Cruz, Maria J

    2007-04-01

    Vocal cord dysfunction is a poorly understood entity that is often misdiagnosed as asthma. Both irritant and non-irritant vocal cord dysfunction have been described. This report presents two cases of irritant vocal cord dysfunction secondary to specific environmental exposure, the first to iroko and western red cedar wood (a carpenter) and the second to xerographic printing toner (a secretary). Several tests were performed, including chest radiographs, measurements of total serum immunoglobulin E, skin prick tests with common pneumoallergens (as well as iroko and western red cedar in the first case), pulmonary function studies, methacholine challenge testing, specific inhalation challenge performed with suspected agents in a single-blinded fashion, and peak expiratory flow testing and fiberoptic rhinolaryngoscopy (in case 1). During the specific inhalation challenge, the patients showed dysphonia, chest tightness, inspiratory stridor, and flattening of the inspiratory limb of the maximum flow-volume loop in spirometry, with no significant decreases in the level of forced expiratory volume in 1 second; fiberoptic rhinolaryngoscopy confirmed the diagnosis of vocal cord dysfunction in case 1. It is important to know that agents that can cause occupational asthma can also cause vocal cord dysfunction. The mechanisms by which these agents produce vocal cord dysfunction are unknown. The differences in the clinical presentation of the patients described relative to the reported cases suggest that more than one pathophysiological mechanism may be implicated in the genesis of this entity.

  7. Effects of sulfur dioxide exposure on African-American and Caucasian asthmatics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heath, S.K.; Koenig, J.Q.; Morgan, M.S.

    1994-07-01

    There is concern that air pollution may be causing increases in asthma morbidity and mortality, especially among African-Americans. It is possible that there may be ethnic differences in susceptibility. To evaluate this speculation, a comparative pilot study of respiratory function in 10 African American and 12 Caucasian methacholine positive asthmatic males was conducted. Subjects were exposed to pure air or 1 ppm SO[sub 2] while breathing inside a polycarbonate head dome, for 10 min of rest and 10 min of exercise. Baseline and postexposure pulmonary function measurements were recorded, and nasal lavage fluid samples were collected and processed for epithelialmore » and white blood counts. Although significant increases were seen in total respiratory resistance following SO[sub 2] exposure in both groups (P = 0.04), no ethnic-based difference in response was seen. No significant differences were found in pulmonary or nasal measurements after exposure to SO[sub 2] between African-American and Caucasian subjects. No significant changes in epithelial or white blood cell count were found either when data were analyzed from the entire group or separately from the two subject groups. Even though there were no significant group changes, some individuals were particularly responsive to SO[sub 2]. Three Caucasian and 5 African-American subjects showed greater than 20% increases in respiratory resistance. 26 refs., 2 figs., 3 tabs.« less

  8. Cough-variant asthma: a diagnostic dilemma in the occupational setting.

    PubMed

    Lipińska-Ojrzanowska, A; Wiszniewska, M; Walusiak-Skorupa, J

    2015-03-01

    Cough-variant asthma (Corrao's syndrome) is defined as the presence of chronic non-productive cough in patients with bronchial hyperresponsiveness (BHR) and response to bronchodilator therapy. This variant of asthma may present a diagnostic problem in occupational medicine. To describe additional evaluation of cough-variant asthma in a cyanoacrylate-exposed worker in whom standard diagnostic testing was negative. A female beautician was evaluated for suspected occupational allergic rhinitis and asthma. A specific inhalation challenge test (SICT) was performed with cyanoacrylate glues used for applying artificial eyelashes and nails. Spirometry and peak expiratory flow (PEF) measurements were recorded hourly for 24h; methacholine challenge testing was performed and nasal lavage (NL) samples were analysed for eosinophilia. After SICT, the patient developed sneezing, nasal airflow obstruction and cough. Declines in forced expiratory volume in 1 s and PEF were not observed. Eosinophil proportions in NL fluid increased markedly at 4 and 24h after SICT. A significant increase in BHR also occurred 24h after SICT. Clinical symptoms, post-challenge BHR and increased NL eosinophil counts confirmed a positive response to SICT and validated the diagnosis of cough-variant occupational asthma. SICT may be useful in cases where history and clinical data suggest cough-variant asthma and spirometric indices are negative. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. How the airway smooth muscle in cystic fibrosis reacts in proinflammatory conditions: implications for airway hyper-responsiveness and asthma in cystic fibrosis.

    PubMed

    McCuaig, Sarah; Martin, James G

    2013-04-01

    Among patients with cystic fibrosis there is a high prevalence (40-70%) of asthma signs and symptoms such as cough and wheezing and airway hyper-responsiveness to inhaled histamine or methacholine. Whether these abnormal airway responses are due to a primary deficiency in the cystic fibrosis transmembrane conductance regulator (CFTR) or are secondary to the inflammatory environment in the cystic fibrosis lungs is not clear. A role for the CFTR in smooth muscle function is emerging, and alterations in contractile signalling have been reported in CFTR-deficient airway smooth muscle. Persistent bacterial infection, especially with Pseudomonas aeruginosa, stimulates interleukin-8 release from the airway epithelium, resulting in neutrophilic inflammation. Increased neutrophilia and skewing of CFTR-deficient T-helper cells to type 2 helper T cells creates an inflammatory environment characterised by high concentrations of tumour necrosis factor α, interleukin-8, and interleukin-13, which might all contribute to increased contractility of airway smooth muscle in cystic fibrosis. An emerging role of interleukin-17, which is raised in patients with cystic fibrosis, in airway smooth muscle proliferation and hyper-responsiveness is apparent. Increased understanding of the molecular mechanisms responsible for the altered smooth muscle physiology in patients with cystic fibrosis might provide insight into airway dysfunction in this disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Loop diuretics inhibit cholinergic and noncholinergic nerves in guinea pig airways.

    PubMed

    Elwood, W; Lötvall, J O; Barnes, P J; Chung, K F

    1991-06-01

    Furosemide, a loop diuretic, is known to inhibit the response to a variety of indirect bronchial challenges in humans but does not inhibit bronchoconstriction induced by inhaled methacholine or histamine. We have investigated the effects of the two loop diuretics, furosemide (10(-6) to 10(-3) M) and bumetanide (10(-7) to 10(-4) M), on airway smooth muscle contraction in vitro induced by electrical field stimulation (EFS), or exogenously applied acetylcholine (ACh) or substance P (SP) in guinea pig tracheal and bronchial smooth muscle strips pretreated with indomethacin (10(-5) M) and propranolol (10(-6) M). Both furosemide and bumetanide caused a concentration-dependent inhibition of cholinergically mediated neural contraction in the trachea. The effect of furosemide was not influenced by the presence of airway epithelium. Furthermore, both furosemide and bumetanide inhibited in a concentration-dependent fashion nonadrenergic, noncholinergic (NANC) contraction induced by electrical field stimulation of bronchi pretreated with atropine (10(-5) M). Neither drug at the highest concentration inhibited the responses to exogenous acetylcholine (10(-8) to 10(-2) M) or substance P (10(-9) to 10(-5) M). Thus loop diuretics inhibit the neurally induced contraction of guinea pig airways without a direct effect on airway smooth muscle. We conclude that loop diuretics inhibit both cholinergic and excitatory NANC neurotransmission in guinea pig airways and that this effect may be related to their inhibitory effects on the sodium-potassium-chloride cotransporter.

  11. Nocturnal gastro-oesophageal reflux, asthma and symptoms of OSA: a longitudinal, general population study.

    PubMed

    Emilsson, Össur I; Bengtsson, Anna; Franklin, Karl A; Torén, Kjell; Benediktsdóttir, Bryndís; Farkhooy, Amir; Weyler, Joost; Dom, Sandra; De Backer, Wilfried; Gislason, Thorarinn; Janson, Christer

    2013-06-01

    Nocturnal gastro-oesophageal reflux (nGOR) is associated with asthma and obstructive sleep apnoea (OSA). Our aim was to investigate whether nGOR is a risk factor for onset of asthma and onset of respiratory and OSA symptoms in a prospective population-based study. We invited 2640 subjects from Iceland, Sweden and Belgium for two evaluations over a 9-year interval. They participated in structured interviews, answered questionnaires, and underwent spirometries and methacholine challenge testing. nGOR was defined by reported symptoms. Subjects with persistent nGOR (n=123) had an independent increased risk of new asthma at follow-up (OR 2.3, 95% CI 1.1-4.9). Persistent nGOR was independently related to onset of respiratory symptoms (OR 3.0, 95% CI 1.6-5.6). The risk of developing symptoms of OSA was increased in subjects with new and persistent nGOR (OR 2.2, 95% CI 1.3-1.6, and OR 2.0, 95% CI 1.0-3.7, respectively). No significant association was found between nGOR and lung function or bronchial responsiveness. Persistent symptoms of nGOR contribute to the development of asthma and respiratory symptoms. New onset of OSA symptoms is higher among subjects with symptoms of nGOR. These findings provide evidence that nGOR may play a role in the genesis of respiratory symptoms and diseases.

  12. TRPV1 Blocking Alleviates Airway Inflammation and Remodeling in a Chronic Asthma Murine Model.

    PubMed

    Choi, Joon Young; Lee, Hwa Young; Hur, Jung; Kim, Kyung Hoon; Kang, Ji Young; Rhee, Chin Kook; Lee, Sook Young

    2018-05-01

    Asthma is a chronic inflammatory airway disease characterized by airway hyperresponsiveness (AHR), inflammation, and remodeling. There is emerging interest in the involvement of the transient receptor potential vanilloid 1 (TRPV1) channel in the pathophysiology of asthma. This study examined whether TRPV1 antagonism alleviates asthma features in a murine model of chronic asthma. BALB/c mice were sensitized to and challenged by ovalbumin to develop chronic asthma. Capsazepine (TRPV1 antagonist) or TRPV1 small interfering RNA (siRNA) was administered in the treatment group to evaluate the effect of TPV1 antagonism on AHR, airway inflammation, and remodeling. The mice displayed increased AHR, airway inflammation, and remodeling. Treatment with capsazepine or TRPV1 siRNA reduced AHR to methacholine and airway inflammation. Type 2 T helper (Th2) cytokines (interleukin [IL]-4, IL-5, and IL-13) were reduced and epithelial cell-derived cytokines (thymic stromal lymphopoietin [TSLP], IL-33, and IL-25), which regulate Th2 cytokine-associated inflammation, were also reduced. Airway remodeling characterized by goblet cell hyperplasia, increased α-smooth muscle action, and collagen deposition was also alleviated by both treatments. Treatment directed at TRPV1 significantly alleviated AHR, airway inflammation, and remodeling in a chronic asthma murine model. The TRPV1 receptor can be a potential drug target for chronic bronchial asthma. Copyright © 2018 The Korean Academy of Asthma, Allergy and Clinical Immunology · The Korean Academy of Pediatric Allergy and Respiratory Disease.

  13. Fisetin, a bioactive flavonol, attenuates allergic airway inflammation through negative regulation of NF-κB.

    PubMed

    Goh, Fera Y; Upton, Nadine; Guan, Shouping; Cheng, Chang; Shanmugam, Muthu K; Sethi, Gautam; Leung, Bernard P; Wong, W S Fred

    2012-03-15

    Persistent activation of nuclear factor-κB (NF-κB) has been associated with the development of asthma. Fisetin (3,7,3',4'-tetrahydroxyflavone), a naturally occurring bioactive flavonol, has been shown to inhibit NF-κB activity. We hypothesized that fisetin may attenuate allergic asthma via negative regulation of the NF-κB activity. Female BALB/c mice sensitized and challenged with ovalbumin developed airway inflammation. Bronchoalveolar lavage fluid was assessed for total and differential cell counts, and cytokine and chemokine levels. Lung tissues were examined for cell infiltration and mucus hypersecretion, and the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis. Fisetin dose-dependently inhibited ovalbumin-induced increases in total cell count, eosinophil count, and IL-4, IL-5 and IL-13 levels recovered in bronchoalveolar lavage fluid. It attenuated ovalbumin-induced lung tissue eosinophilia and airway mucus production, mRNA expression of adhesion molecules, chitinase, IL-17, IL-33, Muc5ac and inducible nitric oxide synthase in lung tissues, and airway hyperresponsiveness to methacholine. Fisetin blocked NF-κB subunit p65 nuclear translocation and DNA-binding activity in the nuclear extracts from lung tissues of ovalbumin-challenged mice. In normal human bronchial epithelial cells, fisetin repressed TNF-α-induced NF-κB-dependent reporter gene expression. Our findings implicate a potential therapeutic value of fisetin in the treatment of asthma through negative regulation of NF-κB pathway. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Ayanin, a non-selective phosphodiesterase 1-4 inhibitor, effectively suppresses ovalbumin-induced airway hyperresponsiveness without affecting xylazine/ketamine-induced anesthesia.

    PubMed

    Lee, Fei-Peng; Shih, Chwen-Ming; Shen, Hsin-Yi; Chen, Chien-Ming; Chen, Chi-Ming; Ko, Wun-Chang

    2010-06-10

    In recent in vitro reports, the IC(50) value of ayanin (quercetin-3,7,4'-O-trimethylether) was 2.2microM for inhibiting interleukin (IL)-4 production from purified basophils, and its therapeutic ratio was >19. Therefore, we were interested in investigating the effects on ovalbumin induced airway hyperresponsiveness in vivo, and to clarify its potential for treating asthma. Ayanin (30-100micromol/kg, orally (p.o.)) dose-dependently and significantly attenuated the enhanced pause (P(enh)) value induced by methacholine in sensitized and challenged mice. It also significantly suppressed the increases in total inflammatory cells, macrophages, lymphocytes, neutrophils, and eosinophils, and levels of cytokines, including IL-2, IL-4, IL-5, and tumor necrosis factor (TNF)-alpha in bronchoalveolar lavage fluid of these mice. However, at 100micromol/kg, it significantly enhanced the level of interferon (IFN)-gamma. In addition, ayanin (30-100micromol/kg, p.o.) dose-dependently and significantly suppressed total and OVA-specific immunoglobulin (Ig)E levels in the serum and bronchoalveolar lavage fluid, and enhanced the IgG(2a) level in serum of these mice. In the present results, ayanin did not affect xylazine/ketamine-induced anesthesia, suggesting that ayanin has few or no adverse effects, such as nausea, vomiting, and gastric hypersecretion. In conclusion, the above results suggest that ayanin may have the potential for use in treating allergic asthma.

  15. Discovery of a novel orally active PDE-4 inhibitor effective in an ovalbumin-induced asthma murine model.

    PubMed

    Kwak, Hyun Jeong; Nam, Ji Yeon; Song, Jin Sook; No, Zaesung; Yang, Sung Don; Cheon, Hyae Gyeong

    2012-06-15

    Phosphodiesterase-4 (PDE-4) is responsible for metabolizing adenosine 3',5'-cyclic monophosphate that reduces the activation of a wide range of inflammatory cells including eosinophils. PDE-4 inhibitors are under development for the treatment of respiratory diseases such as asthma and chronic obstructive pulmonary disease. Herein, we report a novel PDE-4 inhibitor, PDE-423 (3-[1-(3-cyclopropylmethoxy-4-difluoromethoxybenzyl)-1H-pyrazol-3-yl]-benzoic acid), which shows good in vitro and in vivo oral activities. PDE-423 exhibited in vitro IC(50)s of 140 nM and 550 nM in enzyme assay and cell-based assay, respectively. In vivo study using ovalbumin-induced asthmatic mice revealed that PDE-423 reduced methacholine-stimulated airway hyperreactivity in a dose-dependent manner by once daily oral administration (ED(50)=18.3 mg/kg), in parallel with decreased eosinophil peroxidase activity and improved lung histology. In addition, PDE-423 was effective in diminishing lipopolysaccharide-induced neutrophilia in vivo as well as in vitro. Oral administration of PDE-423 (100 mg/kg) had no effect on the duration of xylazine/ketamine-induced anesthesia and did not induce vomiting incidence in ferrets up to the dose of 1000 mg/kg. The present study indicates that a novel PDE-4 inhibitor, PDE-423, has good pharmacological profiles implicating this as a potential candidate for the development of a new anti-asthmatic drug. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Chronic productive cough in young adults is very often due to chronic rhino-sinusitis.

    PubMed

    Corsico, A G; Villani, S; Zoia, M C; Niniano, R; Ansaldo, E; Cervio, G; Quaresima, P M; Gatto, E; Crippa, E; Marinoni, A; Foresi, A; Pozzi, E; Cerveri, I

    2007-06-01

    Chronic productive cough is a common clinical problem; often potential causes outside the lower respiratory tract are forgotten or ignored. The aim of this study was to make a precise etiopathogenetic diagnosis of chronic productive cough in young adults. In a clinical setting, 212 subjects (mean age 41+/-5 years) who had reported chronic productive cough in a previous postal survey of a young adult population underwent within two years clinical and functional investigations following a rational diagnostic approach. Two pulmonologists independently established the diagnosis using a clinically structured interview on nasal and respiratory symptoms, spirometry and other tests when appropriate (bronchodilator test or methacholine bronchial challenge, chest radiography); if rhino-sinusitis was suspected, subjects underwent an ENT examination with nasal endoscopy and/or sinus computed tomography. At the end of the diagnostic procedure, 87 subjects (41%) no longer had chronic productive cough and had normal function. Fifty-eight subjects (27%) had chronic rhino-sinusitis; seventeen subjects (8%) had asthma, and of these fourteen also had chronic rhino-sinusitis; 50 subjects (24%) had COPD stage 0+, of these seven also had chronic rhino-sinusitis. Chronic rhino-sinusitis was more frequent in females than in males (p<0.05). Both in clinical practice and in epidemiological studies, it is important to consider that the origin of chronic productive cough could be frequently outside the lower respiratory tract; a consistent percentage of young adults with persistent productive cough has indeed chronic rhino-sinusitis.

  17. Inhibition of pan neurotrophin receptor p75 attenuates diesel particulate-induced enhancement of allergic airway responses in C57/B16J mice.

    PubMed

    Farraj, Aimen K; Haykal-Coates, Najwa; Ledbetter, Allen D; Evansky, Paul A; Gavett, Stephen H

    2006-06-01

    Recent investigations have linked neurotrophins, including nerve growth factor (NGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF), to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance in allergic mice. Diesel exhaust particle (DEP) exposure has been linked to asthma exacerbation in many cities with vehicular traffic congestion. We tested the hypothesis that DEP-induced enhancement of the hallmark features of allergic airway disease in a murine model is dependent on the function of the pan neurotrophin receptor p75. Ovalbumin (OVA)-sensitized C57B1/6J mice were intranasally instilled with an antibody against the p75 receptor or saline alone 1 h before OVA challenge. The mice were then exposed nose-only to the PM2.5 fraction of SRM2975 DEP or air alone for 5 h beginning 1 h after OVA challenge. Two days later, air-exposed OVA-allergic mice developed a small but insignificant increase in methacholine-induced airflow obstruction relative to air-exposed, vehicle-sensitized mice. DEP-exposed OVA-allergic mice had a significantly greater degree of airway obstruction than all other groups. Instillation of anti-p75 significantly attenuated the DEP-induced increase in airway obstruction in OVA-allergic mice to levels similar to non-sensitized mice. The DEP-induced exacerbation of allergic airway responses may, in part, be mediated by neurotrophins.

  18. Additive Effect of Diesel Exhaust Particulates and Ozone on Airway Hyperresponsiveness and Inflammation in a Mouse Model of Asthma

    PubMed Central

    Choi, Inseon-S; Takizawa, Hajime; Rhim, TaiYoun; Lee, June-Hyuk; Park, Sung-Woo; Park, Choon-Sik

    2005-01-01

    Allergic airway diseases are related to exposure to atmospheric pollutants, which have been suggested to be one factor in the increasing prevalence of asthma. Little is known about the effect of ozone and diesel exhaust particulates (DEP) on the development or aggravation of asthma. We have used a mouse asthma model to determine the effect of ozone and DEP on airway hyperresponsiveness and inflammation. Methacholine enhanced pause (Penh) was measured. Levels of IL-4 and IFN-γ were quantified in bronchoalveolar lavage fluids by enzyme immunoassays. The OVA-sensitized-challenged and ozone and DEP exposure group had higher Penh than the OVA-sensitized-challenged group and the OVA-sensitized-challenged and DEP exposure group, and the OVA-sensitized-challenged and ozone exposure group. Levels of IFN-γ were decreased in the OVA-sensitized-challenged and DEP exposure group and the OVA-sensitized-challenged and ozone and DEP exposure group compared to the OVA-sensitized-challenged and ozone exposure group. Levels of IL-4 were increased in the OVA-sensitized-challenged and ozone exposure group and the OVA-sensitized-challenged and DEP exposure group, and the OVA-sensitized-challenged and ozone and DEP exposure group compared to OVA-sensitized-challenged group. Co-exposure of ozone and DEP has additive effect on airway hyperresponsiveness by modulation of IL-4 and IFN-γ suggesting that DEP amplify Th2 immune response. PMID:16224148

  19. Bronchopulmonary dysplasia: improvement in lung function between 7 and 10 years of age.

    PubMed

    Blayney, M; Kerem, E; Whyte, H; O'Brodovich, H

    1991-02-01

    To evaluate the natural history of bronchopulmonary dysplasia, we studied the same 32 patients at a mean age of 7 and 10 years. The group as a whole had normal height and weight percentiles, and each child grew along his or her established somatic growth curve. Although some children had abnormal values, the group maintained a normal mean total lung capacity and functional residual capacity. The mean residual volume and the residual volume/total lung capacity ratios were elevated at both ages. At age 7 years the 19 patients (59%) who had a forced expiratory volume in 1 second (FEV1) of less than 80% had "catch up" improvement by 10 years of age (65 +/- 11% to 72 +/- 16% of predicted value; p less than 0.05). All the children who had a normal FEV1 at 7 years of age continued to have a normal FEV1 at age 10 years. Resting single-breath carbon monoxide uptake by the lung was normal when measured at age 10 years. The majority of patients had a positive methacholine challenge test result at both ages, although there was a low incidence of clinically diagnosed asthma. This study demonstrates that patients with bronchopulmonary dysplasia who have normal lung function at age 7 have had normal lung growth and that those with evidence of mild to moderate lung disease have continued lung growth or repair, or both, during their school years.

  20. A descriptive analysis of asthma in the U.S. Navy Submarine Force.

    PubMed

    Sims, J R; Tibbles, P M; Jackman, R P

    1999-12-01

    The U.S. Navy Submarine Force offers a unique opportunity to study asthma because of the relative socioeconomic and physical homogeneity of the population and the closed environment occupational exposure. Currently, asthma is disqualifying from submarine service, which results in a significant loss of experienced personnel. We performed a retrospective analysis of 119 U.S. Navy submariner disqualification packages for asthma between 1989-1993. We found a 0.16% annual period prevalence of asthma in the active duty enlisted Atlantic Fleet Submarine Force. Two groups of asthma disqualifications were identified with a significant increase above their proportional representation in the fleet: enlisted personnel (p < 0.01) and submarine recruits (p < 0.0001). The proportion of African-American personnel also had a tendency toward increased asthma disqualification (p < 0.08). There were no differences in prevalence of asthma between crews of ballistic missile submarines or fast attack submarines. Asthma risk factors reported in the civilian literature (childhood history of asthma, family history of asthma and non-drug allergies) were highly represented in our study (41%, 46% and 68% of submariners, respectively). Most disqualified submariners had "mild" asthma based on the diagnostic work-up. The methacholine challenge test appeared to carry a disproportionate diagnostic weight despite its low specificity. Although the period prevalence of asthma is low in the U.S. Navy Submarine Force, submariners disqualified for asthma have similar historical and ethnic risk factors as the civilian population.

  1. Soy Biodiesel Emissions Have Reduced Inflammatory Effects ...

    EPA Pesticide Factsheets

    Toxicity of exhaust from combustion of petroleum diesel (BO), soy-based biodiesel (B100), or a 20% biodiesel/80% petrodiesel mix (B20) was compared in healthy and house dust mite (HDM)-allergic mice. Fuel emissions were diluted to target fine particulate matter (PM2.5) conrentrations of 50, 150, or 500 µg/m(3). Studies in healthy mice showed greater levels of neutrophils and MIP-2 in bronchoaeolar lavage (BAL) fluid 2 h after a single 4-h exposure to BO compared with mice exposed to B20 or B100. No consistent differences in BAL cells and biochemistry, or hematological parameters, were observed after 5 d or 4 weeks of exposure to any of the emissions. Air-exposed HDM-allergc mice had significantly increased responsiveness to methacholine aerosol challenge compared with non-allergic mice. Exposure to any of the emissions for 4 weeks did not further increase responsiveness in either non-allergic or HDM­ allergic mice, and few parameters of allergic inflammation in BAL fluid were altered. Lung and nasal pathology were not significantly different among BO-, B20-, or B100-exposed groups. In HDM-allergic mice, exposure to BO, but not B20 or B100, significantly increased resting peribronchiolar lymph node cell proliferation and production of TH2 cytokines (IL-4, IL-5, and IL-13) and IL-17 in comparison with air-exposed allergic mice. These results suggest that diesel exhaust at a relatively high concentration (500 µg/m(3)) can induce inflammation acutely in healthy m

  2. Eosinophil Activities Modulate the Immune/Inflammatory Character of Allergic Respiratory Responses in Mice

    PubMed Central

    Jacobsen, Elizabeth A.; LeSuer, William E.; Willetts, Lian; Zellner, Katie R.; Mazzolini, Kirea; Antonios, Nathalie; Beck, Brandon; Protheroe, Cheryl; Ochkur, Sergei I.; Colbert, Dana; Lacy, Paige; Moqbel, Redwan; Appleton, Judith; Lee, Nancy A.; Lee, James J.

    2014-01-01

    Background The importance and specific role(s) of eosinophils in modulating the immune/inflammatory phenotype of allergic pulmonary disease remain to be defined. Established animals models assessing the role(s) of eosinophils as contributors and/or causative agents of disease have relied on congenitally deficient mice where the developmental consequences of eosinophil depletion are unknown. Methods We developed a novel conditional eosinophil-deficient strain of mice (iPHIL) through a gene knock-in strategy inserting the human diphtheria toxin (DT) receptor (DTR) into the endogenous eosinophil peroxidase genomic locus. Results Expression of DTR rendered resistant mouse eosinophil progenitors sensitive to DT without affecting any other cell types. The presence of eosinophils was shown to be unnecessary during the sensitization phase of either ovalbumin (OVA) or house dust mite (HDM) acute asthma models. However, eosinophil ablation during airway challenge led to a predominantly neutrophilic phenotype (>15% neutrophils) accompanied by allergen-induced histopathologies and airway hyperresponsiveness in response to methacholine indistinguishable from eosinophilic wild type mice. Moreover, the iPHIL neutrophilic airway phenotype was shown to be a steroid-resistant allergic respiratory variant that was reversible upon restoration of peripheral eosinophils. Conclusions Eosinophil contributions to allergic immune/inflammatory responses appear to be limited to the airway challenge and not the sensitization phase of allergen provocation models. The reversible steroid-resistant character of the iPHIL neutrophilic airway variant suggests underappreciated mechanisms by which eosinophils shape the character of allergic respiratory responses. PMID:24266710

  3. Validation of specific inhalation challenge for the diagnosis of occupational asthma due to persulphate salts

    PubMed Central

    Munoz, X; Cruz, M; Orriols, R; Torres, F; Espuga, M; Morell, F

    2004-01-01

    Background: The significant value of tests used to certify the diagnosis of occupational asthma due to persulphate salts remains uncertain. Aims: To validate the specific inhalation challenge (SIC) test for the diagnosis of occupational asthma. Methods: Eight patients with occupational asthma due to persulphate salts, eight patients with bronchial asthma who were never exposed to persulphate salts, and ten healthy subjects were studied. Clinical history taking, spirometry, bronchial challenge with methacholine, skin prick testing to common inhalant allergens and persulphate salts, total IgE levels, and SIC to potassium persulphate were carried out in all subjects. The SIC used increasing concentrations of potassium persulphate (5, 10, 15, and 30 g) mixed with 150 g of lactose. Patients tipped the mixture from one tray to another at a distance of 30 cm from the face for 10 minutes in a challenge booth. Results: The SIC was positive in all subjects with persulphate induced asthma and in one patient with bronchial asthma who had never been exposed to persulphate salts. Sensitivity was 100% (95% CI 67.6 to 100) and specificity was 87.5% (95% CI 52.9–97.8) when patients with occupational asthma due to persulphate salts were compared with those with bronchial asthma never exposed to persulphate salts. Conclusions: SIC to persulphate salts performed according to the protocol described appears to be useful for the diagnosis of occupational asthma secondary to inhalation of this substance. PMID:15377773

  4. Study of active duty military for pulmonary disease related to environmental deployment exposures (STAMPEDE).

    PubMed

    Morris, Michael J; Dodson, Darrel W; Lucero, Pedro F; Haislip, Georgette D; Gallup, Roger A; Nicholson, Karin L; Zacher, Lisa L

    2014-07-01

    Because of increased levels of airborne particulate matter in Southwest Asia, deployed military personnel are at risk for developing acute and chronic lung diseases. Increased respiratory symptoms are reported, but limited data exist on reported lung diseases. To evaluate new respiratory complaints in military personnel returning from Southwest Asia to determine potential etiologies for symptoms. Returning military personnel underwent a prospective standardized evaluation for deployment-related respiratory symptoms within 6 months of returning to their duty station. Prospective standardized evaluation included full pulmonary function testing, high-resolution chest tomography, methacholine challenge testing, and fiberoptic bronchoscopy with bronchoalveolar lavage. Other procedures including lung biopsy were performed if clinically indicated. Fifty patients completed the study procedures. A large percentage (42%) remained undiagnosed, including 12% with normal testing and an isolated increase in lavage neutrophils or lymphocytes. Twenty (40%) patients demonstrated some evidence of airway hyperreactivity to include eight who met asthma criteria and two with findings secondary to gastroesophageal reflux. Four (8%) additional patients had isolated reduced diffusing capacity and the remaining six had other miscellaneous airway disorders. No patients were identified with diffuse parenchymal disease on the basis of computed tomography imaging. A significant number (66%) of this cohort had underlying mental health and sleep disorders. Evaluation of new respiratory symptoms in military personnel after service in Southwest Asia should focus on airway hyperreactivity from exposures to higher levels of ambient particulate matter. These patients may be difficult to diagnose and require close follow-up.

  5. The effect of vitamin E on tracheal responsiveness and lung inflammation in sulfur mustard exposed guinea pigs.

    PubMed

    Boskabady, Mohammad Hossein; Amery, Sediqa; Vahedi, Nassim; Khakzad, Mohammad Reza

    2011-02-01

    Pulmonary complications of sulfur mustard (SM) range from mild respiratory symptoms to even severe bronchial stenosis. In the present study, the protective effect of vitamin E on tracheal responsiveness (TR) and lung inflammation of SM-exposed guinea pigs were examined. Guinea pigs were exposed to ethanol (control group), 40 mg/m(3) inhaled SM and ethanol vehicle (sulfur mustard exposed (SME) group), SME treated with vitamin E (SME + E), SME with dexamethasone (SME + D) and both drugs (SME + E + D), (n = 8 for each group). TR to methacholine, total and differential white blood cell (WBC) count of lung lavage and serum cytokines were evaluated 14 days post-exposure. TR, WBC, interleukin 4 (IL-4), interferon gamma (INF-γ), eosinophil, and monocyte levels in SME guinea pigs were significantly higher, but lymphocyte was lower than those of controls (P < 0.05 to P < 0.001). TR, IL-4, and eosinophil levels in SME + E, SME + D and SME + E + D, INF-γ in SME + E and SME + E + D and WBC in SME + E were significantly decreased compared to that of the SME group (P < 0.01 to P < 0.001). In addition, the TR of SME + D + E was significantly higher than that of SME + E (P < 0.01) and SME + D (P < 0.05) groups. The results showed a preventive effect of vitamin E, dexamethasone and their combination on TR and lung inflammation in SME guinea pigs.

  6. Effect of treatment with geraniol on ovalbumin-induced allergic asthma in mice.

    PubMed

    Xue, Zheng; Zhang, Xin-Guang; Wu, Jie; Xu, Wan-Chao; Li, Li-Qing; Liu, Fei; Yu, Jian-Er

    2016-06-01

    Asthma, a complex highly prevalent airway disease, is a major public health problem for which current treatment options are inadequate. To evaluate the antiasthma activity of geraniol and investigate its underlying molecular mechanisms. In a standard experimental asthma model, Balb/c mice were sensitized with ovalbumin, treated with geraniol (100 or 200 mg/kg) or a vehicle control, during ovalbumin challenge. Treatment of ovalbumin-sensitized/challenged mice with geraniol significantly decreased airway hyperresponsiveness to inhaled methacholine. Geraniol treatment reduced eotaxin levels in bronchoalveolar lavage fluid and attenuated infiltration of eosinophils induced by ovalbumin. Geraniol treatment reduced TH2 cytokines (including interleukins 4, 5, and 13), increased TH1 cytokine interferon γ in bronchoalveolar lavage fluid, and reduced ovalbumin-specific IgE in serum. In addition, treatment of ovalbumin-sensitized/challenged mice with geraniol enhanced T-bet (TH1 response) messenger RNA expression and reduced GATA-3 (TH2 response) messenger RNA expression in lungs. Furthermore, treatment of ovalbumin -sensitized/challenged mice with geraniol further enhanced Nrf2 protein expression and activated Nrf2-directed antioxidant pathways, such as glutamate-cysteine ligase, superoxide dismutase, and glutathione S-transferase, and enhanced formation of reduced glutathione and reduced formation of malondialdehyde in lungs. Geraniol attenuated important features of allergic asthma in mice, possibly through the modulation of TH1/TH2 balance and activation the of Nrf2/antioxidant response element pathway. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  7. Comparative Toxicity of Simulated Smog Atmospheres in ...

    EPA Pesticide Factsheets

    Effects of complex regional multipollutant mixtures on disease expression in susceptible populations are dependent on multiple exposure and susceptibility factors. Differing profiles of ozone (O3), nitrogen dioxide (NO2), and particulate matter (PM), which are key components of smog, and other hazardous pollutants may develop as a result of regional-specific geographic and urban environment characteristics. We investigated the pulmonary effects of two smog mixtures with different compositions in a mouse model of allergic airway disease to determine which source profile had the greatest impact on pulmonary endpoints. A hydrocarbon mixture was combined with NO gas in the presence of UV light in a controlled setting. Simulated smog atmosphere 1 (SSA-1) consisted of concentrations of 1070 µg/m3 secondary organic aerosol (SOA), 0.104 ppm O3, and 0.252 ppm NO2. SSA-2 consisted of a starting concentration of 53 µg/m3 SOA, 0.376 ppm O3, and 0.617 ppm NO2. An increased aerosol concentration was noted in the exposure chamber. Healthy and house dust mite (HDM)-sensitized (allergic) female BALB/cJ mice were exposed 4 hr/day for 1 or 5 days to either smog mixture or clean air. Two days after HDM challenge, airway mechanics were tested in anesthetized ventilated mice. Following methacholine aerosol challenge, increased airway resistance and elastance and a decrease in lung compliance were consistently observed in air- and smog-exposed HDM-allergic groups compared with non-a

  8. Assessment of the mechanics of a tissue-engineered rat trachea in an image-processing environment.

    PubMed

    Silva, Thiago Henrique Gomes da; Pazetti, Rogerio; Aoki, Fabio Gava; Cardoso, Paulo Francisco Guerreiro; Valenga, Marcelo Henrique; Deffune, Elenice; Evaristo, Thaiane; Pêgo-Fernandes, Paulo Manuel; Moriya, Henrique Takachi

    2014-07-01

    Despite the recent success regarding the transplantation of tissue-engineered airways, the mechanical properties of these grafts are not well understood. Mechanical assessment of a tissue-engineered airway graft before implantation may be used in the future as a predictor of function. The aim of this preliminary work was to develop a noninvasive image-processing environment for the assessment of airway mechanics. Decellularized, recellularized and normal tracheas (groups DECEL, RECEL, and CONTROL, respectively) immersed in Krebs-Henseleit solution were ventilated by a small-animal ventilator connected to a Fleisch pneumotachograph and two pressure transducers (differential and gauge). A camera connected to a stereomicroscope captured images of the pulsation of the trachea before instillation of saline solution and after instillation of Krebs-Henseleit solution, followed by instillation with Krebs-Henseleit with methacholine 0.1 M (protocols A, K and KMCh, respectively). The data were post-processed with computer software and statistical comparisons between groups and protocols were performed. There were statistically significant variations in the image measurements of the medial region of the trachea between the groups (two-way analysis of variance [ANOVA], p<0.01) and of the proximal region between the groups and protocols (two-way ANOVA, p<0.01). The technique developed in this study is an innovative method for performing a mechanical assessment of engineered tracheal grafts that will enable evaluation of the viscoelastic properties of neo-tracheas prior to transplantation.

  9. Winter sports athletes: long-term effects of cold air exposure.

    PubMed

    Sue-Chu, Malcolm

    2012-05-01

    Athletes such as skaters and skiers inhale large volumes of cold air during exercise and shift from nasal to mouth breathing. Endurance athletes, like cross-country skiers, perform at 80% or more of their maximal oxygen consumption and have minute ventilations in excess of 100 l/min. Cold air is always dry, and endurance exercise results in loss of water and heat from the lower respiratory tract. In addition, athletes can be exposed to indoor and outdoor pollutants during the competitive season and during all-year training. Hyperpnoea with cold dry air represents a significant environmental stress to the airways. Winter athletes have a high prevalence of respiratory symptoms and airway hyper-responsiveness to methacholine and hyperpnoea. The acute effects of exercise in cold air are neutrophil influx as demonstrated in lavage fluid and airway epithelial damage as demonstrated by bronchoscopy. Upregulation of pro-inflammatory cytokines has been observed in horses. Chronic endurance training damages the epithelium of the small airways in mice. Airway inflammation has been observed on bronchoscopy of cross-country skiers and in dogs after a 1100-mile endurance race in Alaska. Neutrophilic and lymphocytic inflammation with remodelling is present in bronchial biopsies from skiers. Repeated peripheral airway hyperpnoea with dry air causes inflammation and remodelling in dogs. As it is currently unknown if these airway changes are reversible upon cessation of exposure, preventive measures to diminish exposure of the lower airways to cold air should be instituted by all winter sports athletes.

  10. Expression of nitric oxide synthase-2 in the lungs decreases airway resistance and responsiveness.

    PubMed

    Hjoberg, Josephine; Shore, Stephanie; Kobzik, Lester; Okinaga, Shoji; Hallock, Arlene; Vallone, Joseph; Subramaniam, Venkat; De Sanctis, George T; Elias, Jack A; Drazen, Jeffrey M; Silverman, Eric S

    2004-07-01

    Individuals with asthma have increased levels of nitric oxide in their exhaled air. To explore its role, we have developed a regulatable transgenic mouse capable of overexpressing inducible nitric oxide synthase in a lung-specific fashion. The CC10-rtTA-NOS-2 mouse contains two transgenes, a reverse tetracycline transactivator under the control of the Clara cell protein promoter and the mouse nitric oxide synthase-2 (NOS-2) coding region under control of a tetracycline operator. Addition of doxycycline to the drinking water of CC10-rtTA-NOS-2 mice causes an increase in nitric oxide synthase-2 that is largely confined to the airway epithelium. The fraction of expired nitric oxide increases over the first 24 h from approximately 10 parts per billion to a plateau of approximately 20 parts per billion. There were no obvious differences between CC10-rtTA-NOS-2 mice, with or without doxycycline, and wild-type mice in lung histology, bronchoalveolar protein, total cell count, or count differentials. However, airway resistance was lower in CC10-rtTA-NOS-2 mice with doxycycline than in CC10-rtTA-NOS-2 mice without doxycycline or wild-type mice with doxycycline. Moreover, doxycycline-treated CC10-rtTA-NOS-2 mice were hyporesponsive to methacholine compared with other groups. These data suggest that increased nitric oxide in the airways has no proinflammatory effects per se and may have beneficial effects on pulmonary function.

  11. Increase in exhaled nitric oxide is associated with bronchial hyperresponsiveness among apprentices.

    PubMed

    Tossa, Paul; Paris, Christophe; Zmirou-Navier, Denis; Demange, Valérie; Acouetey, Dovi-Stéphanie; Michaely, Jean-Pierre; Bohadana, Abraham

    2010-09-15

    Airway inflammation is a hallmark of asthma. Several studies have validated the use of the fractional concentration of exhaled nitric oxide (Fe(NO)) as a surrogate marker of airway inflammation in asthma. We examined how the change in Fe(NO) levels, since the beginning of occupational exposure, could be associated with the incidence of bronchial hyperresponsiveness (BHR) among baker, pastry maker, and hairdresser apprentices during their 2-year training. A standardized questionnaire was administered; skin prick tests for common and specific occupational allergens were done; methacholine challenge and measurement of Fe(NO) were performed 6, 12, and 15 months after the first examination. Of 441 apprentices initially included, 351 completed the study. The increase in Fe(NO), since the beginning of exposure, was associated with the incidence of BHR (odds ratio, 2.00 [95% confidence interval, 1.21-3.32] per unit increase in log parts per billion) both in atopic and nonatopic subjects. The average increase in Fe(NO) was similar in atopic and nonatopic subjects and was unrelated to past or current smoking habits, sex, or training track. Atopy in bakers/pastry makers and sensitization to alkaline persulfates in hairdressers were also independently associated with the incidence of BHR. BHR occurred sooner among bakers/pastry makers than among hairdressers, but its incidence leveled off later. Our results suggest that measurement of Fe(NO), a simple and reproducible test, could be useful in the screening of BHR in workers newly exposed to agents known to cause occupational asthma.

  12. Control of nasal vasculature and airflow resistance in the dog.

    PubMed Central

    Lung, M A; Phipps, R J; Wang, J C; Widdicombe, J G

    1984-01-01

    Nasal vascular and airflow resistances have been measured in dogs, simultaneously on both sides separately. Vascular resistance was measured either by constant flow perfusion of the terminal branch of the maxillary artery (which supplies, via the sphenopalatine artery, the nasal septum, most of the turbinates and the nasal sinuses) or by measuring blood flow through this artery, maintained by the dog's own blood pressure. Airflow resistance was assessed by inserting balloon-tipped endotracheal catheters into the back of each nasal cavity via the nasopharynx, and measuring transnasal pressure at constant airflow through each side of the nose simultaneously. Preliminary experiments indicated that there was 5-10% collateral anastomosis between the two sides. Close-arterial injection of drugs showed different patterns of response. Adrenaline, phenylephrine, chlorpheniramine and low doses of prostaglandin F2 alpha increased vascular resistance and lowered airway resistance. Salbutamol, methacholine and histamine lowered vascular resistance and increased airway resistance. Dobutamine decreased airway resistance with a small increase in vascular resistance. Prostaglandins E1, E2 and F2 alpha (high dose) decreased both vascular and airway resistances. Substance P, eledoisin-related peptide and vasoactive intestinal polypeptide lowered vascular resistance with little change in airway resistance. The results are interpreted in terms of possible drug actions on precapillary resistance vessels, sinusoids and venules, and arteriovenous anastomoses. It is concluded that nasal airway resistance cannot be correlated with vascular resistance or blood flow, since the latter has a complex and ill-defined relationship with nasal vascular blood volume. PMID:6204040

  13. Indoleamine 2,3-dioxygenase-dependent tryptophan metabolites contribute to tolerance induction during allergen immunotherapy in a mouse model.

    PubMed

    Taher, Yousef A; Piavaux, Benoit J A; Gras, Reneé; van Esch, Betty C A M; Hofman, Gerard A; Bloksma, Nanne; Henricks, Paul A J; van Oosterhout, Antoon J M

    2008-04-01

    The tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) has been implicated in immune suppression and tolerance induction. We examined (1) whether IDO activity is required during tolerance induction by allergen immunotherapy or for the subsequent suppressive effects on asthma manifestations and (2) whether tryptophan depletion or generation of its downstream metabolites is involved. Ovalbumin (OVA)-sensitized and OVA-challenged BALB/c mice that display increased airway responsiveness to methacholine, serum OVA-specific IgE levels, bronchoalveolar eosinophilia, and TH2 cytokine levels were used as a model of allergic asthma. Sensitized mice received subcutaneous optimal (1 mg) or suboptimal (100 microg) OVA immunotherapy. Inhibition of IDO by 1-methyl-DL-tryptophan during immunotherapy, but not during inhalation challenge, partially reversed the suppressive effects of immunotherapy on airway eosinophilia and TH2 cytokine levels, whereas airway hyperresponsiveness and serum OVA-specific IgE levels remained suppressed. Administration of tryptophan during immunotherapy failed to abrogate its beneficial effects toward allergic airway inflammation. Interestingly, administration of tryptophan or its metabolites, kynurenine, 3-hydroxykynurenine, and xanthurenic acid, but not 3-hydroxyanthranilinic acid, quinolinic acid, and kynurenic acid, during suboptimal immunotherapy potentiated the reduction of eosinophilia. These effects coincided with reduced TH2 cytokine levels in bronchoalveolar lavage fluid, but no effects on IgE levels were detected. During immunotherapy, the tryptophan metabolites kynurenine, 3-hydroxykynurenine, and xanthurenic acid generated through IDO contribute to tolerance induction regarding TH2-dependent allergic airway inflammation.

  14. Control of nasal vasculature and airflow resistance in the dog.

    PubMed

    Lung, M A; Phipps, R J; Wang, J C; Widdicombe, J G

    1984-04-01

    Nasal vascular and airflow resistances have been measured in dogs, simultaneously on both sides separately. Vascular resistance was measured either by constant flow perfusion of the terminal branch of the maxillary artery (which supplies, via the sphenopalatine artery, the nasal septum, most of the turbinates and the nasal sinuses) or by measuring blood flow through this artery, maintained by the dog's own blood pressure. Airflow resistance was assessed by inserting balloon-tipped endotracheal catheters into the back of each nasal cavity via the nasopharynx, and measuring transnasal pressure at constant airflow through each side of the nose simultaneously. Preliminary experiments indicated that there was 5-10% collateral anastomosis between the two sides. Close-arterial injection of drugs showed different patterns of response. Adrenaline, phenylephrine, chlorpheniramine and low doses of prostaglandin F2 alpha increased vascular resistance and lowered airway resistance. Salbutamol, methacholine and histamine lowered vascular resistance and increased airway resistance. Dobutamine decreased airway resistance with a small increase in vascular resistance. Prostaglandins E1, E2 and F2 alpha (high dose) decreased both vascular and airway resistances. Substance P, eledoisin-related peptide and vasoactive intestinal polypeptide lowered vascular resistance with little change in airway resistance. The results are interpreted in terms of possible drug actions on precapillary resistance vessels, sinusoids and venules, and arteriovenous anastomoses. It is concluded that nasal airway resistance cannot be correlated with vascular resistance or blood flow, since the latter has a complex and ill-defined relationship with nasal vascular blood volume.

  15. Protective effects of valproic acid against airway hyperresponsiveness and airway remodeling in a mouse model of allergic airways disease.

    PubMed

    Royce, Simon G; Dang, William; Ververis, Katherine; De Sampayo, Nishika; El-Osta, Assam; Tang, Mimi L K; Karagiannis, Tom C

    2011-12-01

    Airway remodeling and airway hyperresponsiveness are major aspects of asthma pathology that are not targeted optimally by existing anti-inflammatory drugs. Histone deacetylase inhibitors have a wide range of effects that may potentially abrogate aspects of remodeling. One such histone deacetylase inhibitor is valproic acid (2-propylvaleric acid). Valproic acid is used clinically as an anti-epileptic drug and is a potent inhibitor of class I histone deacetylases but also inhibits class II histone deacetylases. We used valproic acid as a molecular model of histone deacetylase inhibition in vivo in chronic allergic airways disease mice with airway remodeling and airway hyperresponsiveness. Wild-type Balb/c mice with allergic airways disease were treated with valproic acid or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid cell counts and examination of lung tissue sections. Remodeling was assessed by morphometric analysis of histochemically stained slides and lung function was assessed by invasive plethysmography measurement of airway resistance. Valproic acid treatment did not affect inflammation parameters; however, valproic acid treatment resulted in reduced epithelial thickness as compared to vehicle treated mice (p < 0.01), reduced subepithelial collagen deposition (p < 0.05) and attenuated airway hyperresponsiveness (p < 0.05 and p < 0.01 for the two highest doses of methacholine, respectively). These findings show that treatment with valproic acid can reduce structural airway remodeling changes and hyperresponsiveness, providing further evidence for the potential use of histone deacetylase inhibitors for the treatment of asthma.

  16. Deviations from Haber’s Law for Multiple Measures of Acute Lung Injury in Chlorine-Exposed Mice

    PubMed Central

    Hoyle, Gary W.; Chang, Weiyuan; Chen, Jing; Schlueter, Connie F.; Rando, Roy J.

    2010-01-01

    Chlorine gas is considered a chemical threat agent that can cause acute lung injury. Studies in the early 20th century on war gases led Haber to postulate that the dose of an inhaled chemical expressed as the product of gas concentration and exposure time leads to a constant toxicological effect (Haber’s Law). In the present work, mice were exposed to a constant dose of chlorine (100 ppm-h) delivered using different combinations of concentration and time (800 ppm/7.5 min, 400 ppm/15 min, 200 ppm/30 min, and 100 ppm/60 min). Significant effects of exposure protocol on survival evaluated 6 h after exposure were observed, ranging from 0% for the 7.5-min exposure to 100% for the 30- and 60-min exposures. Multiple parameters indicative of lung injury were examined to determine if any aspects of lung injury were differentially affected by the exposure protocols. Most parameters (pulmonary edema, neutrophil influx, and levels of protein, immunoglobulin M, and the chemokine KC [Cxcl1] in lavage fluid) indicated that lung injury was most pronounced for the 15-min exposure and least for the 60-min exposure. In contrast, changes in pulmonary function at baseline and in response to inhaled methacholine were similar following the three exposure regimens. The results indicate that the extent of lung injury following chlorine inhalation depends not only on total dose but also on the specifics of exposure concentration and time, and they suggest that evaluation of countermeasures against chlorine-induced lung injury should be performed using multiple types of exposure scenarios. PMID:20819911

  17. The effects of salmeterol on power output in nonasthmatic athletes.

    PubMed

    McDowell, S L; Fleck, S J; Storms, W W

    1997-04-01

    Salmeterol xinafoate is a new aerosol inhalant that is used in the treatment of asthma. It is currently banned by the International Olympic Committee because of the concern that it may lend an unfair competitive advantage to the user. The purpose of this study was to determine whether salmeterol improves short-term anaerobic performance in elite nonasthmatic track cyclists. Eleven elite track cyclists volunteered to perform a 30-second all-out cycle ergometer test 3 hours after receiving either 42 micrograms of salmeterol xinafoate or placebo applied in a double-blind crossover procedure. During the ergometer test, peak power output, total work, time to peak power, and percent fatigue (decline in power output) were measured. Pulmonary measurements were also taken before and at various time points after inhalation and the ergometer test. A methacholine challenge was administered to each subject before participation in the study to ensure that none of the subjects had any reactive airway diseases. There were no significant differences (p > 0.05) between the placebo and salmeterol trials for peak power output, total work performed during the 30-second test, percent fatigue, and time to peak power. No differences between trials were observed for the pulmonary function test variables at any of the time points. Blood lactate concentrations before and after administration of drug or placebo were also not significantly different between trials. Additionally, salmeterol did not affect the maximal heart rate achieved during the test as compared with the placebo. Short-term salmeterol use within the prescribed dosage was not shown to increase short-term power output in nonasthmatic cyclists.

  18. Popcorn flavoring effects on reactivity of rat airways in vivo and in vitro.

    PubMed

    Zaccone, Eric J; Thompson, Janet A; Ponnoth, Dovenia S; Cumpston, Amy M; Goldsmith, W Travis; Jackson, Mark C; Kashon, Michael L; Frazer, David G; Hubbs, Ann F; Shimko, Michael J; Fedan, Jeffrey S

    2013-01-01

    "Popcorn workers' lung" is an obstructive pulmonary disease produced by inhalation of volatile artificial butter flavorings. In rats, inhalation of diacetyl, a major component of butter flavoring, and inhalation of a diacetyl substitute, 2,3-pentanedione, produce similar damage to airway epithelium. The effects of diacetyl and 2,3-pentanedione and mixtures of diacetyl, acetic acid, and acetoin, all components of butter flavoring, on pulmonary function and airway reactivity to methacholine (MCh) were investigated. Lung resistance (RL) and dynamic compliance (Cdyn) were negligibly changed 18 h after a 6-h inhalation exposure to diacetyl or 2,3-pentanedione (100-360 ppm). Reactivity to MCh was not markedly changed after diacetyl, but was modestly decreased after 2,3-pentanedione inhalation. Inhaled diacetyl exerted essentially no effect on reactivity to mucosally applied MCh, but 2,3-pentanedione (320 and 360 ppm) increased reactivity to MCh in the isolated, perfused trachea preparation (IPT). In IPT, diacetyl and 2,3-pentanedione (≥3 mM) applied to the serosal and mucosal surfaces of intact and epithelium-denuded tracheas initiated transient contractions followed by relaxations. Inhaled acetoin (150 ppm) exerted no effect on pulmonary function and airway reactivity in vivo; acetic acid (27 ppm) produced hyperreactivity to MCh; and exposure to diacetyl + acetoin + acetic acid (250 + 150 + 27 ppm) led to a diacetyl-like reduction in reactivity. Data suggest that the effects of 2,3-pentanedione on airway reactivity are greater than those of diacetyl, and that flavorings are airway smooth muscle relaxants and constrictors, thus indicating a complex mechanism.

  19. POPCORN FLAVORING EFFECTS ON REACTIVITY OF RAT AIRWAYS IN VIVO AND IN VITRO

    PubMed Central

    Zaccone, Eric J.; Thompson, Janet A.; Ponnoth, Dovenia S.; Cumpston, Amy M.; Goldsmith, W. Travis; Jackson, Mark C.; Kashon, Michael L.; Frazer, David G.; Hubbs, Ann F.; Shimko, Michael J.; Fedan, Jeffrey S.

    2015-01-01

    “Popcorn workers’ lung” is an obstructive pulmonary disease produced by inhalation of volatile artificial butter flavorings. In rats, inhalation of diacetyl, a major component of butter flavoring, and inhalation of a diacetyl substitute, 2,3-pentanedione, produce similar damage to airway epithelium. The effects of diacetyl and 2,3-pentanedione and mixtures of diacetyl, acetic acid, and acetoin, all components of butter flavoring, on pulmonary function and airway reactivity to methacholine (MCh) were investigated. Lung resistance (RL) and dynamic compliance (Cdyn) were negligibly changed 18 h after a 6-h inhalation exposure to diacetyl or 2,3-pentanedione (100–360 ppm). Reactivity to MCh was not markedly changed after diacetyl, but was modestly decreased after 2,3-pentanedione inhalation. Inhaled diacetyl exerted essentially no effect on reactivity to mucosally applied MCh, but 2,3-pentanedione (320 and 360 ppm) increased reactivity to MCh in the isolated, perfused trachea preparation (IPT). In IPT, diacetyl and 2,3-pentanedione (≥3 mM) applied to the serosal and mucosal surfaces of intact and epithelium-denuded tracheas initiated transient contractions followed by relaxations. Inhaled acetoin (150 ppm) exerted no effect on pulmonary function and airway reactivity in vivo; acetic acid (27 ppm) produced hyperreactivity to MCh; and exposure to diacetyl + acetoin + acetic acid (250 + 150 + 27 ppm) led to a diacetyl-like reduction in reactivity. Data suggest that the effects of 2,3-pentanedione on airway reactivity are greater than those of diacetyl, and that flavorings are airway smooth muscle relaxants and constrictors, thus indicating a complex mechanism. PMID:23941636

  20. MAG-EPA reduces severity of DSS-induced colitis in rats.

    PubMed

    Morin, Caroline; Blier, Pierre U; Fortin, Samuel

    2016-05-15

    Ulcerative colitis (UC) is a chronic disease characterized by diffuse inflammation of the intestinal mucosa of the large bowel. Omega-3 (ω3) fatty acid supplementation has been associated with a decreased production of inflammatory cytokines involved in UC pathogenesis. The aim of this study was to determine the preventive and therapeutic potential of eicosapentaenoic acid monoglyceride (MAG-EPA) in an in vivo rats model of UC induced by dextran sulfate sodium (DSS). DSS rats were untreated or treated per os with MAG-EPA. Morphological, histological, and biochemical analyses were performed following MAG-EPA administrations. Morphological and histological analyses revealed that MAG-EPA pretreatment (12 days pre-DSS) and treatment (6 days post-DSS) exhibited strong activity in reducing severity of disease in DSS rats. Following MAG-EPA administrations, tissue levels of the proinflammatory cytokines TNF-α, IL-1β, and IL-6 were markedly lower compared with rats treated only with DSS. MAG-EPA per os administration decrease neutrophil infiltration in colon tissues, as depicted by myelohyperoxidase activity. Results also revealed a reduced activation of NF-κB pathways correlated with a decreased expression of COX-2 in colon homogenates derived from MAG-EPA-pretreated and treated rats. Tension measurements performed on colon tissues revealed that contractile responses to methacholine and relaxing effect induced by sodium nitroprusside were largely increased following MAG-EPA treatment. The combined treatment of MAG-EPA and vitamin E displayed an antagonistic effect on anti-inflammatory properties of MAG-EPA in DSS rats. Copyright © 2016 the American Physiological Society.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu; Patel, Kinal J., E-mail: kinalv5@gmail.com; Shen, Jianliang, E-mail: jianliangs@gmail.com

    Nitrogen mustard is a vesicant that causes damage to the respiratory tract. In these studies, we characterized the acute effects of nitrogen mustard on lung structure, inflammatory mediator expression, and pulmonary function, with the goal of identifying mediators potentially involved in toxicity. Treatment of rats (male Wistar, 200-225 g) with nitrogen mustard (mechlorethamine hydrochloride, i.t., 0.25 mg/kg) resulted in marked histological changes in the respiratory tract, including necrotizing bronchiolitis, thickening of alveolar septa, and inflammation which was evident within 24 h. This was associated with increases in bronchoalveolar lavage protein and cells, confirming injury to alveolar epithelial regions of themore » lung. Nitrogen mustard administration also resulted in increased expression of inducible nitric oxide synthase and cyclooxygenase-2, pro-inflammatory proteins implicated in lung injury, in alveolar macrophages and alveolar and bronchial epithelial cells. Expression of connective tissue growth factor and matrix metalloproteinase-9, mediators regulating extracellular matrix turnover was also increased, suggesting that pathways leading to chronic lung disease are initiated early in the pathogenic process. Following nitrogen mustard exposure, alterations in lung mechanics and function were also observed. These included decreases in baseline static compliance, end-tidal volume and airway resistance, and a pronounced loss of methacholine responsiveness in resistance, tissue damping and elastance. Taken together, these data demonstrate that nitrogen mustard induces rapid structural and inflammatory changes in the lung which are associated with altered lung functioning. Understanding the nature of the injury induced by nitrogen mustard and related analogs may aid in the development of efficacious therapies for treatment of pulmonary injury resulting from exposure to vesicants.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu; Patel-Vayas, Kinal, E-mail: kinalv5@gmail.com; Shen, Jianliang, E-mail: jianliangs@gmail.com

    Lung toxicity induced by sulfur mustard is associated with inflammation and oxidative stress. To elucidate mechanisms mediating pulmonary damage, we used 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. Male mice (B6129) were treated intratracheally with CEES (3 or 6 mg/kg) or control. Animals were sacrificed 3, 7 or 14 days later and bronchoalveolar lavage (BAL) fluid and lung tissue collected. Treatment of mice with CEES resulted in an increase in BAL protein, an indication of alveolar epithelial damage, within 3 days. Expression of Ym1, an oxidative stress marker also increased in the lung, along with inducible nitric oxidemore » synthase, and at 14 days, cyclooxygenase-2 and monocyte chemotactic protein-1, inflammatory proteins implicated in tissue injury. These responses were attenuated in mice lacking the p55 receptor for TNF{alpha} (TNFR1-/-), demonstrating that signaling via TNFR1 is key to CEES-induced injury, oxidative stress, and inflammation. CEES-induced upregulation of CuZn-superoxide dismutase (SOD) and MnSOD was delayed or absent in TNFR1-/- mice, relative to WT mice, suggesting that TNF{alpha} mediates early antioxidant responses to lung toxicants. Treatment of WT mice with CEES also resulted in functional alterations in the lung including decreases in compliance and increases in elastance. Additionally, methacholine-induced alterations in total lung resistance and central airway resistance were dampened by CEES. Loss of TNFR1 resulted in blunted functional responses to CEES. These effects were most notable in the airways. These data suggest that targeting TNF{alpha} signaling may be useful in mitigating lung injury, inflammation and functional alterations induced by vesicants.« less

  3. Concomitant Exposure to Ovalbumin and Endotoxin Augments Airway Inflammation but Not Airway Hyperresponsiveness in a Murine Model of Asthma

    PubMed Central

    Mac Sharry, John; Shalaby, Karim H.; Marchica, Cinzia; Farahnak, Soroor; Chieh-Li, Tien; Lapthorne, Susan; Qureshi, Salman T.; Shanahan, Fergus; Martin, James G.

    2014-01-01

    Varying concentrations of lipopolysaccharide (LPS) in ovalbumin (OVA) may influence the airway response to allergic sensitization and challenge. We assessed the contribution of LPS to allergic airway inflammatory responses following challenge with LPS-rich and LPS-free commercial OVA. BALB/c mice were sensitized with LPS-rich OVA and alum and then underwent challenge with the same OVA (10 µg intranasally) or an LPS-free OVA. Following challenge, bronchoalveolar lavage (BAL), airway responsiveness to methacholine and the lung regulatory T cell population (Treg) were assessed. Both OVA preparations induced BAL eosinophilia but LPS-rich OVA also evoked BAL neutrophilia. LPS-free OVA increased interleukin (IL)-2, IL-4 and IL-5 whereas LPS-rich OVA additionally increased IL-1β, IL-12, IFN-γ, TNF-α and KC. Both OVA-challenged groups developed airway hyperresponsiveness. TLR4-deficient mice challenged with either OVA preparation showed eosinophilia but not neutrophilia and had increased IL-5. Only LPS-rich OVA challenged mice had increased lung Tregs and LPS-rich OVA also induced in vitro Treg differentiation. LPS-rich OVA also induced a Th1 cytokine response in human peripheral blood mononuclear cells.We conclude that LPS-rich OVA evokes mixed Th1, Th2 and innate immune responses through the TLR-4 pathway, whereas LPS-free OVA evokes only a Th2 response. Contaminating LPS is not required for induction of airway hyperresponsiveness but amplifies the Th2 inflammatory response and is a critical mediator of the neutrophil, Th1 and T regulatory cell responses to OVA. PMID:24968337

  4. IFN-γ elevates airway hyper-responsiveness via up-regulation of neurokinin A/neurokinin-2 receptor signaling in a severe asthma model.

    PubMed

    Kobayashi, Minoru; Ashino, Shigeru; Shiohama, Yasuo; Wakita, Daiko; Kitamura, Hidemitsu; Nishimura, Takashi

    2012-02-01

    The adoptive transfer of OVA-specific Th1 cells into WT mice followed by OVA inhalation induces a significant elevation of airway hyper-responsiveness (AHR) with neutrophilia but not mucus hypersecretion. Here, we demonstrate that the airway inflammation model, pathogenically characterized as severe asthma, was partly mimicked by i.n. administration of IFN-γ. The administration of IFN-γ instead of Th1 cells caused AHR elevation but not neutrophilia, and remarkably induced neurokinin-2 receptor (NK2R) expression along with neurokinin A (NKA) production in the lung. To evaluate whether NKA/NK2R was involved in airway inflammation, we first investigated the role of NKA/NK2R-signaling in airway smooth muscle cells (ASMCs) in vitro. NK2R mRNA expression was significantly augmented in tracheal tube-derived ASMCs of WT mice but not STAT-1(-/-) mice after stimulation with IFN-γ. In addition, methacholine-mediated Ca(2+) influx into the ASMCs was significantly reduced in the presence of NK2R antagonist. Moreover, the NK2R antagonist strongly inhibited IFN-γ-dependent AHR elevation in vivo. Thus, these results demonstrated that IFN-γ directly acts on ASMCs to elevate AHR via the NKA/NK2R-signaling cascade. Our present findings suggested that NK2R-mediated neuro-immuno crosstalk would be a promising target for developing novel drugs in Th1-cell-mediated airway inflammation, including severe asthma. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Cigarette Smoke Upregulates PDE3 and PDE4 to Decrease cAMP in Airway Cells.

    PubMed

    Zuo, Haoxiao; Han, Bing; Poppinga, Wilfred J; Ringnalda, Lennard; Kistemaker, Loes E M; Halayko, Andrew J; Gosens, Reinoud; Nikolaev, Viacheslav O; Schmidt, Martina

    2018-05-03

    3', 5'-cyclic adenosine monophosphate (cAMP) is a central second messenger that broadly regulates cell function and can underpin pathophysiology. In chronic obstructive pulmonary disease (COPD), a lung disease primarily provoked by cigarette smoke (CS), the induction of cAMP-dependent pathways, via inhibition of hydrolyzing phosphodiesterases (PDEs), is a prime therapeutic strategy. Mechanisms that disrupt cAMP signaling in airway cells, in particular regulation of endogenous PDEs are poorly understood. We used a novel Förster resonance energy transfer (FRET) based cAMP biosensor in mouse in vivo, ex vivo precision cut lung slices (PCLS), and in human in vitro cell models to track the effects of CS exposure. Under fenoterol stimulated conditions, FRET responses to cilostamide were significantly increased in in vivo, ex vivo PCLS exposed to CS and in human airway smooth muscle cells exposed to CS extract. FRET signals to rolipram were only increased in the in vivo CS model. Under basal conditions, FRET responses to cilostamide and rolipram were significantly increased in in vivo, ex vivo PCLS exposed to CS. Elevated FRET signals to rolipram correlated with a protein upregulation of PDE4 subtypes. In ex vivo PCLS exposed to CS extract, rolipram reversed downregulation of ciliary beating frequency, whereas only cilostamide significantly increased airway relaxation of methacholine pre-contracted airways. We show that CS upregulates expression and activity of both PDE3 and PDE4, which regulate real-time cAMP dynamics. These mechanisms determine the availability of cAMP and can contribute to CS-induced pulmonary pathophysiology. This article is protected by copyright. All rights reserved.

  6. ITGB5 and AGFG1 variants are associated with severity of airway responsiveness.

    PubMed

    Himes, Blanca E; Qiu, Weiliang; Klanderman, Barbara; Ziniti, John; Senter-Sylvia, Jody; Szefler, Stanley J; Lemanske, Robert F; Zeiger, Robert S; Strunk, Robert C; Martinez, Fernando D; Boushey, Homer; Chinchilli, Vernon M; Israel, Elliot; Mauger, David; Koppelman, Gerard H; Nieuwenhuis, Maartje A E; Postma, Dirkje S; Vonk, Judith M; Rafaels, Nicholas; Hansel, Nadia N; Barnes, Kathleen; Raby, Benjamin; Tantisira, Kelan G; Weiss, Scott T

    2013-08-28

    Airway hyperresponsiveness (AHR), a primary characteristic of asthma, involves increased airway smooth muscle contractility in response to certain exposures. We sought to determine whether common genetic variants were associated with AHR severity. A genome-wide association study (GWAS) of AHR, quantified as the natural log of the dosage of methacholine causing a 20% drop in FEV1, was performed with 994 non-Hispanic white asthmatic subjects from three drug clinical trials: CAMP, CARE, and ACRN. Genotyping was performed on Affymetrix 6.0 arrays, and imputed data based on HapMap Phase 2, was used to measure the association of SNPs with AHR using a linear regression model. Replication of primary findings was attempted in 650 white subjects from DAG, and 3,354 white subjects from LHS. Evidence that the top SNPs were eQTL of their respective genes was sought using expression data available for 419 white CAMP subjects. The top primary GWAS associations were in rs848788 (P-value 7.2E-07) and rs6731443 (P-value 2.5E-06), located within the ITGB5 and AGFG1 genes, respectively. The AGFG1 result replicated at a nominally significant level in one independent population (LHS P-value 0.012), and the SNP had a nominally significant unadjusted P-value (0.0067) for being an eQTL of AGFG1. Based on current knowledge of ITGB5 and AGFG1, our results suggest that variants within these genes may be involved in modulating AHR. Future functional studies are required to confirm that our associations represent true biologically significant findings.

  7. Sulforaphane improves the bronchoprotective response in asthmatics through Nrf2-mediated gene pathways.

    PubMed

    Brown, Robert H; Reynolds, Curt; Brooker, Allison; Talalay, Paul; Fahey, Jed W

    2015-09-15

    It is widely recognized that deep inspiration (DI), either before methacholine (MCh) challenge (Bronchoprotection, BP) or after MCh challenge (Bronchodilation, BD) protects against this challenge in healthy individuals, but not in asthmatics. Sulforaphane, a dietary antioxidant and antiinflammatory phytochemical derived from broccoli, may affect the pulmonary bronchoconstrictor responses to MCh and the responses to DI in asthmatic patients. Forty-five moderate asthmatics were administered sulforaphane (100 μmol daily for 14 days), BP, BD, lung volumes by body-plethsmography, and airway morphology by computed tomography (CT) were measured pre- and post sulforaphane consumption. Sulforaphane ameliorated the bronchoconstrictor effects of MCh on FEV1 significantly (on average by 21 %; p = 0.01) in 60 % of these asthmatics. Interestingly, in 20 % of the asthmatics, sulforaphane aggravated the bronchoconstrictor effects of MCh and in a similar number was without effect, documenting the great heterogeneity of the responsiveness of these individuals to sulforaphane. Moreover, in individuals in whom the FEV1 response to MCh challenge decreased after sulforaphane administration, i.e., sulforaphane was protective, the activities of Nrf2-regulated antioxidant and anti-inflammatory genes decreased. In contrast, individuals in whom sulforaphane treatment enhanced the FEV1 response to MCh, had increased expression of the activities of these genes. High resolution CT scans disclosed that in asthmatics sulforaphane treatment resulted in a significant reduction in specific airway resistance and also increased small airway luminal area and airway trapping modestly but significantly. These findings suggest the potential value of blocking the bronchoconstrictor hyperresponsiveness in some types of asthmatics by phytochemicals such as sulforaphane.

  8. Quercetin acutely relaxes airway smooth muscle and potentiates β-agonist-induced relaxation via dual phosphodiesterase inhibition of PLCβ and PDE4

    PubMed Central

    Emala, Charles W.

    2013-01-01

    Asthma is a disease of the airways with symptoms including exaggerated airway narrowing and airway inflammation. Early asthma therapies used methylxanthines to relieve symptoms, in part, by inhibiting cyclic nucleotide phosphodiesterases (PDEs), the enzyme responsible for degrading cAMP. The classification of tissue-specific PDE subtypes and the clinical introduction of PDE-selective inhibitors for chronic obstructive pulmonary disease (i.e., roflumilast) have reopened the possibility of using PDE inhibition in the treatment of asthma. Quercetin is a naturally derived PDE4-selective inhibitor found in fruits, vegetables, and tea. We hypothesized that quercetin relaxes airway smooth muscle via cAMP-mediated pathways and augments β-agonist relaxation. Tracheal rings from male A/J mice were mounted in myographs and contracted with acetylcholine (ACh). Addition of quercetin (100 nM-1 mM) acutely and concentration-dependently relaxed airway rings precontracted with ACh. In separate studies, pretreatment with quercetin (100 μM) prevented force generation upon exposure to ACh. In additional studies, quercetin (50 μM) significantly potentiated isoproterenol-induced relaxations. In in vitro assays, quercetin directly attenuated phospholipase C activity, decreased inositol phosphate synthesis, and decreased intracellular calcium responses to Gq-coupled agonists (histamine or bradykinin). Finally, nebulization of quercetin (100 μM) in an in vivo model of airway responsiveness significantly attenuated methacholine-induced increases in airway resistance. These novel data show that the natural PDE4-selective inhibitor quercetin may provide therapeutic relief of asthma symptoms and decrease reliance on short-acting β-agonists. PMID:23873842

  9. Soybean flour asthma: detection of allergens by immunoblotting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, R.K.; Schroeckenstein, D.; Meier-Davis, S.

    1988-08-01

    A 43-year-old woman developed asthma 6 years after beginning work in a food-processing plant in which soybean flour was used as a protein extender. Symptoms of sneezing, coughing, and wheezing would begin within minutes of exposure to soybean flour and resolve 2 hours after exposure ceased. Skin tests were positive to a soy extract prepared from the flour. Airway hyperreactivity was confirmed by a positive bronchial challenge to methacholine. Bronchial challenge with soybean flour produced an immediate increase in specific airway resistance from 5.0 to 22.7 L. cm of H2O/L/sec. There was no response to challenge with lactose. The patient'smore » allergic response to soy-flour extract was further characterized by several immunologic methods. IgE binding to soy-flour protein by direct RAST was 5.98 times that of a normal control serum. The soy-flour extract was separated by dodecyl sulfate-polyacrylamide gel electrophoresis. Twenty-four protein bands were detected in the crude soy-flour extract. After immunoblotting and subsequent autoradiography, nine proteins with molecular weights ranging from 54,500 to 14,875 were found. Cross-reactivity studies with other legumes demonstrated apparent immunologic identity between a component in green pea extract and a soybean protein with a molecular weight of 17,000. The clinical significance of this cross-reactivity is not known. We conclude that in this case of occupational asthma to soybean flour, multiple allergens were involved. Immunoblotting may be useful in identifying the allergens involved in occupational asthma.« less

  10. Attenuation of airway smooth muscle contractility via flavonol-mediated inhibition of phospholipase-Cβ

    PubMed Central

    Brown, Amy; Danielsson, Jennifer; Townsend, Elizabeth A.; Zhang, Yi; Perez-Zoghbi, Jose F.; Emala, Charles W.

    2016-01-01

    Enhanced contractility of airway smooth muscle (ASM) is a major pathophysiological characteristic of asthma. Expanding the therapeutic armamentarium beyond β-agonists that target ASM hypercontractility would substantially improve treatment options. Recent studies have identified naturally occurring phytochemicals as candidates for acute ASM relaxation. Several flavonoids were evaluated for their ability to acutely relax human and murine ASM ex vivo and murine airways in vivo and were evaluated for their ability to inhibit procontractile signaling pathways in human ASM (hASM) cells. Two members of the flavonol subfamily, galangin and fisetin, significantly relaxed acetylcholine-precontracted murine tracheal rings ex vivo (n = 4 and n = 5, respectively, P < 0.001). Galangin and fisetin also relaxed acetylcholine-precontracted hASM strips ex vivo (n = 6–8, P < 0.001). Functional respiratory in vivo murine studies demonstrated that inhaled galangin attenuated the increase in lung resistance induced by inhaled methacholine (n = 6, P < 0.01). Both flavonols, galangin and fisetin, significantly inhibited purified phosphodiesterase-4 (PDE4) (n = 7, P < 0.05; n = 7, P < 0.05, respectively), and PLCβ enzymes (n = 6, P < 0.001 and n = 6, P < 0.001, respectively) attenuated procontractile Gq agonists' increase in intracellular calcium (n = 11, P < 0.001), acetylcholine-induced increases in inositol phosphates, and CPI-17 phosphorylation (n = 9, P < 0.01) in hASM cells. The prorelaxant effect retained in these structurally similar flavonols provides a novel pharmacological method for dual inhibition of PLCβ and PDE4 and therefore may serve as a potential treatment option for acute ASM constriction. PMID:26773068

  11. Clustering patterns of LOD scores for asthma-related phenotypes revealed by a genome-wide screen in 295 French EGEA families.

    PubMed

    Bouzigon, Emmanuelle; Dizier, Marie-Hélène; Krähenbühl, Christine; Lemainque, Arnaud; Annesi-Maesano, Isabella; Betard, Christine; Bousquet, Jean; Charpin, Denis; Gormand, Frédéric; Guilloud-Bataille, Michel; Just, Jocelyne; Le Moual, Nicole; Maccario, Jean; Matran, Régis; Neukirch, Françoise; Oryszczyn, Marie-Pierre; Paty, Evelyne; Pin, Isabelle; Rosenberg-Bourgin, Myriam; Vervloet, Daniel; Kauffmann, Francine; Lathrop, Mark; Demenais, Florence

    2004-12-15

    A genome-wide scan for asthma phenotypes was conducted in the whole sample of 295 EGEA families selected through at least one asthmatic subject. In addition to asthma, seven phenotypes involved in the main asthma physiopathological pathways were considered: SPT (positive skin prick test response to at least one of 11 allergens), SPTQ score being the number of positive skin test responses to 11 allergens, Phadiatop (positive specific IgE response to a mixture of allergens), total IgE levels, eosinophils, bronchial responsiveness (BR) to methacholine challenge and %predicted FEV(1). Four regions showed evidence for linkage (P

  12. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release.

    PubMed

    Steinberg, H O; Brechtel, G; Johnson, A; Fineberg, N; Baron, A D

    1994-09-01

    The purpose of this study was to examine whether insulin's effect to vasodilate skeletal muscle vasculature is mediated by endothelium-derived nitric oxide (EDNO). N-monomethyl-L-arginine (L-NMMA), a specific inhibitor of NO synthase, was administered directly into the femoral artery of normal subjects at a dose of 16 mg/min and leg blood flow (LBF) was measured during an infusion of saline (NS) or during a euglycemic hyperinsulinemic clamp (HIC) designed to approximately double LBF. In response to the intrafemoral artery infusion of L-NMMA, LBF decreased from 0.296 +/- 0.032 to 0.235 +/- 0.022 liters/min during NS and from 0.479 +/- 0.118 to 0.266 +/- 0.052 liters/min during HIC, P < 0.03. The proportion of NO-dependent LBF during NS and HIC was approximately 20% and approximately 40%, respectively, P < 0.003 (NS vs. HIC). To elucidate whether insulin increases EDNO synthesis/release or EDNO action, vasodilative responses to graded intrafemoral artery infusions of the endothelium-dependent vasodilator methacholine chloride (MCh) or the endothelium-independent vasodilator sodium nitroprusside (SNP) were studied in normal subjects during either NS or HIC. LBF increments in response to intrafemoral artery infusions of MCh but not SNP were augmented during HIC versus NS, P < 0.03. In summary, insulin-mediated vasodilation is EDNO dependent. Insulin vasodilation of skeletal muscle vasculature most likely occurs via increasing EDNO synthesis/release. Thus, insulin appears to be a novel modulator of the EDNO system.

  13. Mutation analysis of the muscarinic cholinergic receptor genes in isolated growth hormone deficiency type IB.

    PubMed

    Mohamadi, Ali; Martari, Marco; Holladay, Cindy D; Phillips, John A; Mullis, Primus E; Salvatori, Roberto

    2009-07-01

    Isolated GH deficiency (IGHD) is familial in 5-30% of patients. The most frequent form (IGHD-IB) has autosomal recessive inheritance, and it is known that it can be caused by mutations in the GHRH receptor (GHRHR) gene or in the GH gene. However, most forms of IGHD-IB have an unknown genetic cause. In normal subjects, muscarinic cholinergic stimulation causes an increase in pituitary GH release, whereas its blockade has the opposite effect, suggesting that a muscarinic acetylcholine receptor (mAchR) is involved in stimulating GH secretion. Five types of mAchR (M(1)-M(5)) exist. A transgenic mouse in which the function of the M(3) receptor was selectively ablated in the central nervous system has isolated GH deficiency similar to animals with defective GHRH or GHRHR gene. We hypothesized that mAchR mutations may cause a subset of familial IGHD. After confirming the expression of M(1)-M(5) receptor mRNA in human hypothalamus, we analyzed the index cases of 39 families with IGHD-IB for mutations in the genes encoding for the five receptors. Coding sequences for each of the five mAchRs were subjected to direct sequencing. In one family, an affected member was homozygous for a M(3) change in codon 65 that replaces valine with isoleucine (V65I). The V65I receptor was expressed in CHO cells where it had normal ability to transmit methacholine signaling. mAchR mutations are absent or rare (less than 2.6%) in familial IGHD type IB.

  14. Exercise-induced airway obstruction in young asthmatics measured by impulse oscillometry.

    PubMed

    Lee, J H; Lee, Y W; Shin, Y S; Jung, Y H; Hong, C S; Park, J W

    2010-01-01

    Impulse oscillometry (IOS) is a good method for measuring airway resistance. It does not require special breathing skills and it can reflect different aspects of airway obstruction to those revealed by spirometry, which is an effort-dependent maneuver. To evaluate the characteristics of airway obstruction in young asthmatics after an exercise bronchial provocation test (EBPT) using IOS. Forty-seven young adults were enrolled in the study. All the participants underwent a methacholine bronchial provocation test (MBPT) and an EBPT for the evaluation of their asthma. IOS and spirometric parameters were collected at baseline and at 0, 5, 10, 20, and 30 minutes post-EBPT.The participants were divided into 2 groups according to MBPT positivity: an airway hyperresponsiveness (AHR) group and a no-AHR group. There were differences in the percent decrease in forced expiratory volume in the first second (FEV1) between the 2 groups at 5, 10, and 20 minutes after exercise. Resistance at 5 Hz (R5) increased in the AHR group but not in the no-AHR group at 5 and 10 minutes after exercise. Integration of reactance from 5 Hz to resonance frequency (area of reactance, AX) was also increased in the AHR group at only 5 and 10 minutes post-EBPT. Delta R5 and delta AX at 5 and 10 minutes post-exercise were well correlated with the percent decrease in FEV1. IOS parameters, especially delta R5 and delta AX, may be useful for performing objective evaluations and improving our understanding of exercise-induced airway obstruction in young asthmatics.

  15. Recurrent milk aspiration produces changes in airway mechanics, lung eosinophilia, and goblet cell hyperplasia in a murine model.

    PubMed

    Janahi, I A; Elidemir, O; Shardonofsky, F R; Abu-Hassan, M N; Fan, L L; Larsen, G L; Blackburn, M R; Colasurdo, G N

    2000-12-01

    Recurrent aspiration of milk into the respiratory tract has been implicated in the pathogenesis of a variety of inflammatory lung disorders including asthma. However, the lack of animal models of aspiration-induced lung injury has limited our knowledge of the pathophysiological characteristics of this disorder. This study was designed to evaluate the effects of recurrent milk aspiration on airway mechanics and lung cells in a murine model. Under light anesthesia, BALB/c mice received daily intranasal instillations of whole cow's milk (n = 7) or sterile physiologic saline (n = 9) for 10 d. Respiratory system resistance (Rrs) and dynamic elastance (Edyn,rs) were measured in anesthetized, tracheotomized, paralyzed and mechanically ventilated mice 24 h after the last aspiration of milk. Rrs and Edyn,rs were derived from transrespiratory and plethysmographic pressure signals. In addition, airway responses to increasing concentrations of i.v. methacholine (Mch) were determined. Airway responses were measured in terms of PD(100) (dose of Mch causing 100% increase from baseline Rrs) and Rrs,max (% increase from baseline at the maximal plateau response) and expressed as % control (mean +/- SE). We found recurrent milk aspiration did not affect Edyn and baseline Rrs values. However, airway responses to Mch were increased after milk aspiration when compared with control mice. These changes in airway mechanics were associated with an increased percentage of lymphocytes and eosinophils in the bronchoalveolar lavage, mucus production, and lung inflammation. Our findings suggest that recurrent milk aspiration leads to alterations in airway function, lung eosinophilia, and goblet cell hyperplasia in a murine model.

  16. Role of breast milk in a mouse model of maternal transmission of asthma susceptibility.

    PubMed

    Leme, Adriana S; Hubeau, Cedric; Xiang, Yuhong; Goldman, Alejandra; Hamada, Kaoru; Suzaki, Yasue; Kobzik, Lester

    2006-01-15

    Epidemiologic data suggest a link between nursing by asthmatic mothers and increased risk of allergy in babies. We sought to experimentally test the potential contribution of breast milk mediator(s) in a mouse model of maternal transmission of asthma risk by evaluating the effect of adoptive nursing on asthma susceptibility in the offspring. We measured airway hyperresponsiveness (AHR) and allergic airway inflammation (AI) after an intentionally suboptimal OVA Ag sensitization, tested the allergen independence of the maternal effect by using a second allergen, casein, for sensitization of the baby mice, and tested the potential role of cytokines by measuring their levels in breast milk. Offspring of asthmatic, but not normal, mothers showed AHR and AI, indicating a maternal transfer of asthma risk. After adoptive nursing, both groups (litters born to asthmatic mothers and nursed by normal mothers, and normal babies nursed by asthmatic mothers) showed AHR (enhanced pause after methacholine aerosol, 50 mg/ml, 3.7 +/- 0.7, 4.2 +/- 0.5, respectively, vs 1.1 +/- 0.1 normal controls, n = 25, p < 0.01) and AI, seen as eosinophilia on histology and bronchoalveolar lavage (40.7 +/- 4.5%, 28.7 +/- 3.7%, vs 1.0 +/- 0.5% normals, n = 25, p < 0.01) after OVA sensitization. Similar results using casein allergen were observed. Multiplex assays for cytokines (IFN-gamma, IL-2, IL-4, IL-5, TNF-alpha, and IL-13) in breast milk were negative. Breast milk is sufficient, but not necessary, to mediate allergen-independent maternal transmission of asthma risk to offspring.

  17. Attenuation of airway smooth muscle contractility via flavonol-mediated inhibition of phospholipase-Cβ.

    PubMed

    Brown, Amy; Danielsson, Jennifer; Townsend, Elizabeth A; Zhang, Yi; Perez-Zoghbi, Jose F; Emala, Charles W; Gallos, George

    2016-04-15

    Enhanced contractility of airway smooth muscle (ASM) is a major pathophysiological characteristic of asthma. Expanding the therapeutic armamentarium beyond β-agonists that target ASM hypercontractility would substantially improve treatment options. Recent studies have identified naturally occurring phytochemicals as candidates for acute ASM relaxation. Several flavonoids were evaluated for their ability to acutely relax human and murine ASM ex vivo and murine airways in vivo and were evaluated for their ability to inhibit procontractile signaling pathways in human ASM (hASM) cells. Two members of the flavonol subfamily, galangin and fisetin, significantly relaxed acetylcholine-precontracted murine tracheal rings ex vivo (n = 4 and n = 5, respectively, P < 0.001). Galangin and fisetin also relaxed acetylcholine-precontracted hASM strips ex vivo (n = 6-8, P < 0.001). Functional respiratory in vivo murine studies demonstrated that inhaled galangin attenuated the increase in lung resistance induced by inhaled methacholine (n = 6, P < 0.01). Both flavonols, galangin and fisetin, significantly inhibited purified phosphodiesterase-4 (PDE4) (n = 7, P < 0.05; n = 7, P < 0.05, respectively), and PLCβ enzymes (n = 6, P < 0.001 and n = 6, P < 0.001, respectively) attenuated procontractile Gq agonists' increase in intracellular calcium (n = 11, P < 0.001), acetylcholine-induced increases in inositol phosphates, and CPI-17 phosphorylation (n = 9, P < 0.01) in hASM cells. The prorelaxant effect retained in these structurally similar flavonols provides a novel pharmacological method for dual inhibition of PLCβ and PDE4 and therefore may serve as a potential treatment option for acute ASM constriction. Copyright © 2016 the American Physiological Society.

  18. Peripheral Airway Smooth Muscle, but Not the Trachealis, Is Hypercontractile in an Equine Model of Asthma.

    PubMed

    Matusovsky, Oleg S; Kachmar, Linda; Ijpma, Gijs; Bates, Genevieve; Zitouni, Nedjma; Benedetti, Andrea; Lavoie, Jean-Pierre; Lauzon, Anne-Marie

    2016-05-01

    Heaves is a naturally occurring equine disease that shares many similarities with human asthma, including reversible antigen-induced bronchoconstriction, airway inflammation, and remodeling. The purpose of this study was to determine whether the trachealis muscle is mechanically representative of the peripheral airway smooth muscle (ASM) in an equine model of asthma. Tracheal and peripheral ASM of heaves-affected horses under exacerbation, or under clinical remission of the disease, and control horses were dissected and freed of epithelium to measure unloaded shortening velocity (Vmax), stress (force/cross-sectional area), methacholine effective concentration at which 50% of the maximum response is obtained, and stiffness. Myofibrillar Mg(2+)-ATPase activity, actomyosin in vitro motility, and contractile protein expression were also measured. Horses with heaves had significantly greater Vmax and Mg(2+)-ATPase activity in peripheral airway but not in tracheal smooth muscle. In addition, a significant correlation was found between Vmax and the time elapsed since the end of the corticosteroid treatment for the peripheral airways in horses with heaves. Maximal stress and stiffness were greater in the peripheral airways of the horses under remission compared with controls and the horses under exacerbation, potentially due to remodeling. Actomyosin in vitro motility was not different between controls and horses with heaves. These data demonstrate that peripheral ASM is mechanically and biochemically altered in heaves, whereas the trachealis behaves as in control horses. It is therefore conceivable that the trachealis muscle may not be representative of the peripheral ASM in human asthma either, but this will require further investigation.

  19. Motorcycle exhaust particles induce airway inflammation and airway hyperresponsiveness in BALB/C mice.

    PubMed

    Lee, Chen-Chen; Liao, Jiunn-Wang; Kang, Jaw-Jou

    2004-06-01

    A number of large studies have reported that environmental pollutants from fossil fuel combustion can cause deleterious effects to the immune system, resulting in an allergic reaction leading to respiratory tract damage. In this study, we investigated the effect of motorcycle exhaust particles (MEP), a major pollutant in the Taiwan urban area, on airway inflammation and airway hyperresponsiveness in laboratory animals. BALB/c mice were instilled intratracheally (i.t.) with 1.2 mg/kg and 12 mg/kg of MEP, which was collected from two-stroke motorcycle engines. The mice were exposed 3 times i.t. with MEP, and various parameters for airway inflammation and hyperresponsiveness were sequentially analyzed. We found that MEP would induce airway and pulmonary inflammation characterized by infiltration of eosinophils, neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid (BALF) and inflammatory cell infiltration in lung. In addition, MEP treatment enhanced BALF interleukin-4 (IL-4), IL-5, and interferon-gamma (IFN-gamma) cytokine levels and serum IgE production. Bronchial response measured by unrestrained plethysmography with methacholine challenge showed that MEP treatment induced airway hyperresponsiveness (AHR) in BALB/c mice. The chemical components in MEP were further fractionated with organic solvents, and we found that the benzene-extracted fraction exerts a similar biological effect as seen with MEP, including airway inflammation, increased BALF IL-4, serum IgE production, and induction of AHR. In conclusion, we present evidence showing that the filter-trapped particles emitted from the unleaded-gasoline-fueled two-stroke motorcycle engine may induce proinflammatory and proallergic response profiles in the absence of exposure to allergen.

  20. Roflumilast attenuates allergen-induced inflammation in mild asthmatic subjects.

    PubMed

    Gauvreau, Gail M; Boulet, Louis-Philippe; Schmid-Wirlitsch, Christine; Côté, Johanne; Duong, Mylinh; Killian, Kieran J; Milot, Joanne; Deschesnes, Francine; Strinich, Tara; Watson, Richard M; Bredenbröker, Dirk; O'Byrne, Paul M

    2011-10-26

    Phosphodiesterase 4 (PDE4) inhibitors increase intracellular cyclic adenosine monophosphate (cAMP), leading to regulation of inflammatory cell functions. Roflumilast is a potent and targeted PDE4 inhibitor. The objective of this study was to evaluate the effects of roflumilast on bronchoconstriction, airway hyperresponsiveness (AHR), and airway inflammation in mild asthmatic patients undergoing allergen inhalation challenge. 25 subjects with mild allergic asthma were randomized to oral roflumilast 500 mcg or placebo, once daily for 14 days in a double-blind, placebo-controlled, crossover study. Allergen challenge was performed on Day 14, and FEV1 was measured until 7 h post challenge. Methacholine challenge was performed on Days 1 (pre-dose), 13 (24 h pre-allergen), and 15 (24 h post-allergen), and sputum induction was performed on Days 1, 13, 14 (7 h post-allergen), and 15. Roflumilast inhibited the allergen-induced late phase response compared to placebo; maximum % fall in FEV1 (p = 0.02) and the area under the curve (p = 0.01). Roflumilast had a more impressive effect inhibiting allergen-induced sputum eosinophils, neutrophils, and eosinophil cationic protein (ECP) at 7 h post-allergen (all p = 0.02), and sputum neutrophils (p = 0.04), ECP (p = 0.02), neutrophil elastase (p = 0.0001) and AHR (p = 0.004) at 24 h post-allergen. This study demonstrates a protective effect of roflumilast on allergen-induced airway inflammation. The observed attenuation of sputum eosinophils and neutrophils demonstrates the anti-inflammatory properties of PDE4 inhibition and supports the roles of both cell types in the development of late phase bronchoconstriction and AHR. ClinicalTrials.gov: NCT01365533.

  1. Glyphosate–rich air samples induce IL–33, TSLP and generate IL–13 dependent airway inflammation

    PubMed Central

    Kumar, Sudhir; Khodoun, Marat; Kettleson, Eric M.; McKnight, Christopher; Reponen, Tiina; Grinshpun, Sergey A.; Adhikari, Atin

    2014-01-01

    Several low weight molecules have often been implicated in the induction of occupational asthma. Glyphosate, a small molecule herbicide, is widely used in the world. There is a controversy regarding a role of glyphosate in developing asthma and rhinitis among farmers, the mechanism of which is unexplored. The aim of this study was to explore the mechanisms of glyphosate induced pulmonary pathology by utilizing murine models and real environmental samples. C57BL/6, TLR4−/−, and IL-13−/− mice inhaled extracts of glyphosate-rich air samples collected on farms during spraying of herbicides or inhaled different doses of glyphosate and ovalbumin. The cellular response, humoral response, and lung function of exposed mice were evaluated. Exposure to glyphosate-rich air samples as well as glyphosate alone to the lungs increased: eosinophil and neutrophil counts, mast cell degranulation, and production of IL-33, TSLP, IL-13, and IL-5. In contrast, in vivo systemic IL-4 production was not increased. Co-administration of ovalbumin with glyphosate did not substantially change the inflammatory immune response. However, IL-13-deficiency resulted in diminished inflammatory response but did not have a significant effect on airway resistance upon methacholine challenge after 7 or 21 days of glyphosate exposure. Glyphosate-rich farm air samples as well as glyphosate alone were found to induce pulmonary IL-13-dependent inflammation and promote Th2 type cytokines, but not IL-4 for glyphosate alone. This study, for the first time, provides evidence for the mechanism of glyphosate-induced occupational lung disease. PMID:25172162

  2. Neural control of airway to deep inhalation in rabbits.

    PubMed

    Schweitzer, Cyril; Demoulin, Bruno; Varechova, Silvia; Poussel, Mathias; Marchal, François

    2011-07-31

    Bronchodilation induced by a deep inhalation (DI) is usually attributed to the mechanical interdependence between airways and parenchyma. The aim of the study was to evaluate the contribution of neural control of the airway in the response to DI. In mechanically ventilated rabbits, cervical vagi were cooled using 2 Peltier elements. Lung resistance was measured before and up to 2 min after a DI at vagus nerve temperature = 37 °C (R(L37 °C)), 8 °C (R(L8 °C)) and 4 °C (R(L4 °C)). Measurements were performed in control conditions (Ctrl) and during infusion of methacholine (Mch). At Ctrl, R(L8 °C) and R(L4 °C) were significantly lower than R(L37 °C). After Mch, however, R(L4 °C) was not different from R(L37 °C), both being significantly higher than R(L8 °C). Vagal cold block (VCB) abolished the bronchodilation observed after the control DI and reduced its magnitude after Mch. The magnitude of bronchodilation immediately after the DI was significantly related to baseline R(L) at any vagal temperature (p < 0.001), but the renarrowing was more strongly related to baseline R(L) after VCB than at baseline. The data indicate a significant contribution of respiratory reflexes to the airway response after DI, highlight the influence of vagal control of airway wall visco-elasticity and suggests the occurrence of a moderate reflex bronchodilation in response to Mch. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Adam8 Limits the Development of Allergic Airway Inflammation in Mice

    PubMed Central

    Knolle, Martin D.; Nakajima, Takahiro; Hergrueter, Anja; Gupta, Kushagra; Polverino, Francesca; Craig, Vanessa J.; Fyfe, Susanne E.; Zahid, Muhammad; Permaul, Perdita; Cernadas, Manuela; Montano, Gilbert; Tesfaigzi, Yohannes; Sholl, Lynette; Kobzik, Lester; Israel, Elliot; Owen, Caroline A.

    2013-01-01

    To determine whether a disintegrin and a metalloproteinase-8 (Adam8) regulates allergic airway inflammation (AAI) and airway hyper-responsiveness (AHR), we compared AAI and AHR in wild type (WT) versus Adam8−/− mice in different genetic backgrounds sensitized and challenged with ovalbumin (OVA) or house dust mite protein extract (HDM). OVA- and HDM-treated Adam8−/− mice had higher lung leukocyte counts, more airway mucus metaplasia, greater lung levels of some TH2 cytokines, and higher methacholine-induced increases in central airway resistance than allergen-treated WT mice. Studies of OVA-treated Adam8 bone marrow chimeric mice confirmed that leukocyte-derived Adam8 predominantly mediated Adam8’s anti-inflammatory activities in murine airways. Airway eosinophils and macrophages both expressed Adam8 in WT mice with AAI. Adam8 limited AAI and AHR in mice by reducing leukocyte survival because: 1) Adam8−/− mice with AAI had fewer apoptotic eosinophils and macrophages in their airways than WT mice with AAI; and 2) Adam8−/− macrophages and eosinophils had reduced rates of apoptosis compared with WT leukocytes when the intrinsic (but not the extrinsic) apoptosis pathway was triggered in the cells in vitro. ADAM8 was robustly expressed by airway granulocytes in lung sections from human asthma patients but, surprisingly, airway macrophages had less ADAM8 staining than airway eosinophils. Thus, ADAM8 has anti-inflammatory activities during AAI in mice by activating the intrinsic apoptosis pathway in myeloid leukocytes. Strategies that increase ADAM8 levels in myeloid leukocytes may have therapeutic efficacy in asthma. PMID:23670189

  4. Risk factors for allergic rhinitis in Costa Rican children with asthma.

    PubMed

    Bunyavanich, S; Soto-Quiros, M E; Avila, L; Laskey, D; Senter, J M; Celedón, J C

    2010-02-01

    Risk factors for allergic rhinitis (AR) in asthmatics are likely distinct from those for AR or asthma alone. We sought to identify clinical and environmental risk factors for AR in children with asthma. We performed a cross-sectional study of 616 Costa Rican children aged 6-14 years with asthma. Candidate risk factors were drawn from questionnaire data, spirometry, methacholine challenge testing, skin testing, and serology. Two outcome measures, skin test reaction (STR)-positive AR and physician-diagnosed AR, were examined by logistic regression. STR-positive AR had high prevalence (80%) in Costa Rican children with asthma, and its independent risk factors were nasal symptoms after exposure to dust or mold, parental history of AR, older age at asthma onset, oral steroid use in the past year, eosinophilia, and positive IgEs to dust mite and cockroach. Physician-diagnosed AR had lower prevalence (27%), and its independent risk factors were nasal symptoms after pollen exposure, STR to tree pollens, a parental history of AR, inhaled steroid and short-acting beta2 agonist use in the past year, household mold/mildew, and fewer older siblings. A physician's diagnosis was only 29.5% sensitive for STR-positive AR. Risk factors for AR in children with asthma depend on the definition of AR. Indoor allergens drive risk for STR-positive AR. Outdoor allergens and home environmental conditions are risk factors for physician-diagnosed AR. We propose that children with asthma in Costa Rica and other Latin American nations undergo limited skin testing or specific IgE measurements to reduce the current under-diagnosis of AR.

  5. Prevention of Asthma Exacerbation in a Mouse Model by Simultaneous Inhibition of NF-κB and STAT6 Activation Using a Chimeric Decoy Strategy.

    PubMed

    Miyake, Tetsuo; Miyake, Takashi; Sakaguchi, Makoto; Nankai, Hirokazu; Nakazawa, Takahiro; Morishita, Ryuichi

    2018-03-02

    Transactivation of inflammatory and immune mediators in asthma is tightly regulated by nuclear factor κB (NF-κB) and signal transducer and activator of transcription 6 (STAT6). Therefore, we investigated the efficacy of simultaneous inhibition of NF-κB and STAT6 using a chimeric decoy strategy to prevent asthma exacerbation. The effects of decoy oligodeoxynucleotides were evaluated using an ovalbumin-induced mouse asthma model. Ovalbumin-sensitized mice received intratracheal administration of decoy oligodeoxynucleotides 3 days before ovalbumin challenge. Fluorescent-dye-labeled decoy oligodeoxynucleotides could be detected in lymphocytes and macrophages in the lung, and activation of NF-κB and STAT6 was inhibited by chimeric decoy oligodeoxynucleotide transfer. Consequently, treatment with chimeric or NF-κB decoy oligodeoxynucleotides protected against methacholine-induced airway hyperresponsiveness, whereas the effect of chimeric decoy oligodeoxynucleotides was significantly greater than that of NF-κB decoy oligodeoxynucleotides. Treatment with chimeric decoy oligodeoxynucleotides suppressed airway inflammation through inhibition of overexpression of interleukin-4 (IL-4), IL-5, and IL-13 and inflammatory infiltrates. Histamine levels in the lung were reduced via suppression of mast cell accumulation. A significant reduction in mucin secretion was observed due to suppression of MUC5AC gene expression. Interestingly, the inhibitory effects on IL-5, IL-13, and histamine secretion were achieved by transfer of chimeric decoy oligodeoxynucleotides only. This novel therapeutic approach could be useful to treat patients with various types of asthma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Corticosteroid treatment inhibits airway hyperresponsiveness and lung injury in a murine model of chemical-induced airway inflammation.

    PubMed

    Wigenstam, Elisabeth; Jonasson, Sofia; Koch, Bo; Bucht, Anders

    2012-11-15

    Exposure to toxic alkylating mustard agents causes both acute and long-term effects to the lungs as indicated by increased number of inflammatory cells in airways, lung edema and lung tissue fibrosis. We have previously demonstrated that treatment with the corticosteroid dexamethasone 1 h after lung exposure to the nitrogen mustard analog melphalan protects mice from acute and sub-acute inflammatory responses, as well as from lung tissue fibrosis. In order to address the importance of early anti-inflammatory treatment, we investigated the therapeutic effect of dexamethasone administered 1, 2 or 6 h following exposure to melphalan. C57BL/6 mice were exposed to melphalan and treated with dexamethasone 1, 2 or 6 h after exposure. Twenty hours or 14 days post exposure mice were subjected to analysis of respiratory mechanics where the effects of incremental doses of methacholine on central and peripheral lung components were measured. We also determined the amount of inflammatory cells in the bronchoalveolar lavage fluid and measured the amount of collagen content in the lungs. Melphalan exposure increased airway hyperresponsiveness in both central and peripheral airways and induced an airway inflammation dominated by infiltration of macrophages and neutrophils. Dexamethasone given 1 h after exposure to melphalan provided better protection against airway inflammation than administration 2 or 6 h after exposure. Collagen deposition 14 days after exposure was decreased due to dexamethasone treatment. Early treatment with dexamethasone is important in order to reduce the airway hyperresponsiveness and inflammation caused by toxic alkylating mustards such as melphalan. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Contributions of dysglycemia, obesity and insulin resistance to impaired endothelium-dependent vasodilation in humans

    PubMed Central

    Han, KA; Patel, Y; Lteif, AA; Chisholm, R; Mather, KJ

    2011-01-01

    Background Individual effects of hyperglycemia and obesity to impair vascular health are recognized. However, the relative contributions of dysglycemia versus other obesity-related traits to vascular dysfunction have not been systematically evaluated. Methods We undertook a cross-sectional evaluation of factors contributing to vascular function in 271 consecutive subjects, categorized as non-obese normal glucose tolerant (n=115), non-obese dysglycemic (n=32), obese normal glucose tolerant (n=57), obese dysglycemic (n=38), or type 2 diabetic (n=29). Vascular function was measured invasively as leg blood flow responses to methacholine chloride, an endothelium-dependent vasodilator. Categorical and continuous analyses were used to assess the contributions of hyperglycemia to vascular dysfunction. Results Even among normoglycemic subjects, obese subjects had impaired vascular function compared to non-obese subjects (p=0.004). Vascular function was also impaired in non-obese dysglycemic subjects (p=0.04 versus non-obese normoglycemic subjects), to a level comparable to normoglycemic obese subjects. Within obese subject groups, gradations of dysglycemia including the presence of diabetes were not associated with further worsening of these vascular responses beyond the effect of obesity alone (p=NS comparing all obese groups, p<0.001 versus lean normoglycemic subjects). In univariate and multivariable modeling analyses we found that effects of glycemia were less powerful than effects of insulin resistance and obesity on vascular dysfunction. Conclusions Dysglycemia contributes to impaired vascular function in non-obese subjects, but obesity and insulin resistance are more important determinants of vascular function in obese and diabetic subjects. PMID:21309061

  8. Ventilation heterogeneity is a major determinant of airway hyperresponsiveness in asthma, independent of airway inflammation

    PubMed Central

    Downie, Sue R; Salome, Cheryl M; Verbanck, Sylvia; Thompson, Bruce; Berend, Norbert; King, Gregory G

    2007-01-01

    Background Airway hyperresponsiveness is the ability of airways to narrow excessively in response to inhaled stimuli and is a key feature of asthma. Airway inflammation and ventilation heterogeneity have been separately shown to be associated with airway hyperresponsiveness. A study was undertaken to establish whether ventilation heterogeneity is associated with airway hyperresponsiveness independently of airway inflammation in subjects with asthma and to determine the effect of inhaled corticosteroids on this relationship. Methods Airway inflammation was measured in 40 subjects with asthma by exhaled nitric oxide, ventilation heterogeneity by multiple breath nitrogen washout and airway hyperresponsiveness by methacholine challenge. In 18 of these subjects with uncontrolled symptoms, measurements were repeated after 3 months of treatment with inhaled beclomethasone dipropionate. Results At baseline, airway hyperresponsiveness was independently predicted by airway inflammation (partial r2 = 0.20, p<0.001) and ventilation heterogeneity (partial r2 = 0.39, p<0.001). Inhaled corticosteroid treatment decreased airway inflammation (p = 0.002), ventilation heterogeneity (p = 0.009) and airway hyperresponsiveness (p<0.001). After treatment, ventilation heterogeneity was the sole predictor of airway hyperresponsiveness (r2 = 0.64, p<0.001). Conclusions Baseline ventilation heterogeneity is a strong predictor of airway hyperresponsiveness, independent of airway inflammation in subjects with asthma. Its persistent relationship with airway hyperresponsiveness following anti‐inflammatory treatment suggests that it is an important independent determinant of airway hyperresponsiveness. Normalisation of ventilation heterogeneity is therefore a potential goal of treatment that may lead to improved long‐term outcomes. PMID:17311839

  9. Comparative cardiopulmonary effects of size-fractionated airborne particulate matter.

    PubMed

    Amatullah, Hajera; North, Michelle L; Akhtar, Umme S; Rastogi, Neeraj; Urch, Bruce; Silverman, Frances S; Chow, Chung-Wai; Evans, Greg J; Scott, Jeremy A

    2012-02-01

    Strong epidemiological evidence exists linking particulate matter (PM) exposures with hospital admissions of individuals for cardiopulmonary symptoms. The PM size is important in influencing the extent of infiltration into the respiratory tract and systemic circulation and directs the differential physiological impacts. To investigate the differential effects of the quasi-ultrafine (PM(0.2)), fine (PM(0.15-2.5)), and coarse PM (PM(2.5-10)) size fractions on pulmonary and cardiac function. Female BALB/c mice were exposed to HEPA-filtered laboratory air or concentrated coarse, fine, or quasi-ultrafine PM using Harvard Ambient Particle Concentrators in conjunction with our nose-only exposure system. These exposures were conducted as part of the "Health Effects of Aerosols in Toronto (HEAT)" campaign. Following a 4 h exposure, mice underwent assessment of respiratory function and recording of electrocardiograms using the flexiVent® system. Exposure to coarse and fine PM resulted in a significant reduction in quasistatic compliance of the lung. Baseline total respiratory resistance and maximum responsiveness to methacholine were augmented after coarse PM exposures but were not affected by quasi-ultrafine PM exposures. In contrast, quasi-ultrafine PM alone had a significant effect on heart rate and in reducing heart rate variability. These findings indicate that coarse and fine PM influence lung function and airways responsiveness, while ultrafine PM can perturb cardiac function. This study supports the hypothesis that coarse and fine PM exerts its predominant physiologic effects at the site of deposition in the airways, whereas ultrafine PM likely crosses the alveolar epithelial barrier into the systemic circulation to affect cardiovascular function.

  10. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents

    PubMed Central

    Zaccone, Eric J.; Goldsmith, W. Travis; Shimko, Michael J.; Wells, J.R.; Schwegler-Berry, Diane; Willard, Patsy A.; Case, Shannon L.; Thompson, Janet A.; Fedan, Jeffrey S.

    2016-01-01

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance, we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity. We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥60 ppm) and the effects on short circuit current and transepithelial resistance (Rt) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na+ transport, without affecting Cl− transport or Na+,K+-pump activity. Rt was unaffected. Na+ transport recovered 18 h after exposure. Concentrations (100–360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro. PMID:26454031

  11. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents.

    PubMed

    Zaccone, Eric J; Goldsmith, W Travis; Shimko, Michael J; Wells, J R; Schwegler-Berry, Diane; Willard, Patsy A; Case, Shannon L; Thompson, Janet A; Fedan, Jeffrey S

    2015-12-15

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance,we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity.We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥ 60 ppm) and the effects on short circuit current and transepithelial resistance (Rt) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na+ transport,without affecting Cl- transport or Na+,K+-pump activity. Rt was unaffected. Na+ transport recovered 18 h after exposure. Concentrations (100-360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro.

  12. RGS4 Overexpression in Lung Attenuates Airway Hyperresponsiveness in Mice.

    PubMed

    Madigan, Laura A; Wong, Gordon S; Gordon, Elizabeth M; Chen, Wei-Sheng; Balenga, Nariman; Koziol-White, Cynthia J; Panettieri, Reynold A; Levine, Stewart J; Druey, Kirk M

    2018-01-01

    A cardinal feature of asthma is airway hyperresponsiveness (AHR) to spasmogens, many of which activate G protein-coupled receptors (GPCRs) on airway smooth muscle (ASM) cells. Asthma subtypes associated with allergy are characterized by eosinophilic inflammation in the lung due to the type 2 immune response to allergens and proinflammatory mediators that promote AHR. The degree to which intrinsic abnormalities of ASM contribute to this phenotype remains unknown. The regulators of G protein signaling (RGS) proteins are a large group of intracellular proteins that inhibit GPCR signaling pathways. RGS2- and RGS5-deficient mice develop AHR spontaneously. Although RGS4 is upregulated in ASM from patients with severe asthma, the effects of increased RGS4 expression on AHR in vivo are unknown. Here, we examined the impact of forced RGS4 overexpression in lung on AHR using transgenic (Tg) mice. Tg RGS4 was expressed in bronchial epithelium and ASM in vivo, and protein expression in lung was increased at least 4-fold in Tg mice compared with wild-type (WT) mice. Lung slices from Tg mice contracted less in response to the m3 muscarinic receptor agonist methacholine compared with the WT, although airway resistance in live, unchallenged mice of both strains was similar. Tg mice were partially protected against AHR induced by fungal allergen challenge due to weakened contraction signaling in ASM and reduced type 2 cytokine (IL-5 and IL-13) levels in Tg mice compared with the WT. These results provide support for the hypothesis that increasing RGS4 expression and/or function could be a viable therapeutic strategy for asthma.

  13. The effect of isoenzyme-selective PDE inhibitors on methacholine-induced contraction of guinea-pig and rat ileum.

    PubMed Central

    Tomkinson, A.; Raeburn, D.

    1996-01-01

    1. We have examined the effects of the isoenzyme-selective phosphodiesterase (PDE) inhibitors, vinpocetine (type 1), siguazodan (type 3), rolipram (type 4) and zaprinast (type 5) and the non-selective PDE inhibitor enprofylline on methacholine (MCh) contractile concentration-response curves on guinea-pig and rat isolated ileum. 2. In guinea-pig ileum, vinpocetine (10-300 microM), zaprinast (1-300 microM) and enprofylline (100-1000 microM) produced a concentration-dependent depression of the maximum response (Emax) to MCh only without effect on the MCh EC50 values (rank order of potency: zaprinast > vinpocetine > enprofylline). In contrast, siguazodan (10-300 microM) and rolipram (10-300 microM) produced a rightward displacement of the MCh concentration-response curve (increase in EC50: rank order; rolipram > siguazodan), with effects on the MCh maximum seen only at higher concentrations. 3. In the rat ileum, vinpocetine (10-300 microM), zaprinast (0.1-300 microM) and enprofylline (100-1000 microM) caused depression of the MCh maximum contraction (rank order: zaprinast > vinpocetine > enprofylline). Low concentrations of rolipram and siguazodan had no significant effect on the MCh maximum. In the presence of higher concentrations (> 100 microM) of rolipram and siguazodan, a maximum response was not achieved at the highest concentration of MCh tested. As in the guinea-pig ileum, only rolipram (10-300 microM) and siguazodan (10-300 microM) produced a significant, concentration-dependent, rightward displacement of the MCh concentration-response curve (increase in EC50: rank order: rolipram > siguazodan). 4. In the guinea-pig ileum, isoprenaline (0.1 microM) produced a rightward displacement (approximately 3 fold) of the MCh concentration-response curve, accompanied by a significant depression of the maximum response. Increasing the isoprenaline concentration (1 microM) had no further effect on either parameter. Sodium nitroprusside (SNP, > or = 10 microM) produced a concentration-dependent depression of the MCh maximum without an effect on the EC50. 5. In the rat ileum, isoprenaline (1 microM) produced a concentration-dependent rightward displacement (approximately 2.8 fold) of the MCh concentration-response curve with depression of the MCh maximum at higher (> or = 100 microM) concentrations. SNP produced depression of the MCh maximum at a concentration of 10 microM and above. Effects on the MCh EC50 were seen only at 100 and 300 microM. 6. In guinea-pig ileum, isoprenaline (0.1 microM) in combination with rolipram (10 microM) further increased the MCh EC50 and reduced the MCh maximum. The combination of SNP (10 microM) with zaprinast (0.1 microM) produced no further significant effect than SNP alone. 7. In rat ileum, isoprenaline (1 microM) in combination with rolipram (10 microM) further increased the EC50 and reduced the maximum. SNP (10 microM) had no significant effect on either the MCh maximum or EC50. A combination with zaprinast (1 microM) had no further effect. 8. In conclusion, all the PDE inhibitors tested produced a concentration-dependent inhibition of the MCh concentration-response curve, indicating a modulator role for the PDE isoenzymes in gastrointestinal smooth muscle contractility. The PDE inhibitors that elevate cyclic GMP produced a depression of the MCh maximum response only, whilst those that elevate cyclic AMP produced a rightward displacement of the MCh concentration-response curve. This was confirmed by the use of isoprenaline and SNP. This difference in the type of inhibition produced by these PDE isoenzyme inhibitors may reflect a different intracellular site/mechanism by which the cyclic AMP- and cyclic GMP-activated kinases act functionally to antagonize the contractile response. PMID:8864552

  14. Winter ambient training conditions are associated with increased bronchial hyperreactivity and with shifts in serum innate immunity proteins in young competitive speed skaters.

    PubMed

    Kurowski, Marcin; Jurczyk, Janusz; Moskwa, Sylwia; Jarzębska, Marzanna; Krysztofiak, Hubert; Kowalski, Marek L

    2018-01-01

    Regular training modulates airway inflammation and modifies susceptibility to respiratory infections. The impact of exercise and ambient conditions on airway hyperreactivity and innate immunity has not been well studied. We aimed to assess exercise-related symptoms, lung function, airway hyperresponsiveness and innate immunity proteins in relation to meteorological conditions and exercise load in competitive athletes. Thirty-six speed skaters were assessed during winter (WTP) and summer (STP) periods. The control group comprised 22 non-exercising subjects. An allergy questionnaire for athletes (AQUA) and IPAQ (International Physical Activity Questionnaire) were used to assess symptoms and exercise. Meteorological parameters were acquired from World Meteorological Organization resources. Serum innate immunity proteins were measured by ELISA. Exercise-associated respiratory symptoms were reported by 79.4% of skaters. Despite similar exercise load and lung parameters during both periods, positive methacholine challenge was more frequent during winter ( p = 0.04). Heat shock protein HSPA1 and IL-1RA were significantly decreased during STP compared to WTP and controls. During WTP, IL-1RA was elevated in skaters reporting exercise-induced symptoms ( p = 0.007). sCD14 was elevated in athletes versus controls in both periods ( p < 0.05). HSPA1 was significantly higher in WTP compared to STP irrespective of presence of respiratory tract infections (RTIs). IL-1RA in WTP was elevated versus STP ( p = 0.004) only in RTI-negative athletes. Serum IL-1RA negatively correlated with most meteorological parameters during WTP. Ambient training conditions, but not training load, influence bronchial hyperreactivity and the innate immune response in competitive athletes assessed during winter. The protective effect of regular exercise against respiratory infections is associated with a shift in serum innate immunity proteins.

  15. Matrix Metalloproteinase-1 Activation Contributes to Airway Smooth Muscle Growth and Asthma Severity

    PubMed Central

    Naveed, Shams-un-nisa; Clements, Debbie; Jackson, David J.; Philp, Christopher; Billington, Charlotte K.; Soomro, Irshad; Reynolds, Catherine; Harrison, Timothy W.; Johnston, Sebastian L.; Shaw, Dominick E.

    2017-01-01

    Rationale: Matrix metalloproteinase-1 (MMP-1) and mast cells are present in the airways of people with asthma. Objectives: To investigate whether MMP-1 could be activated by mast cells and increase asthma severity. Methods: Patients with stable asthma and healthy control subjects underwent spirometry, methacholine challenge, and bronchoscopy, and their airway smooth muscle cells were grown in culture. A second asthma group and control subjects had symptom scores, spirometry, and bronchoalveolar lavage before and after rhinovirus-induced asthma exacerbations. Extracellular matrix was prepared from decellularized airway smooth muscle cultures. MMP-1 protein and activity were assessed. Measurements and Main Results: Airway smooth muscle cells generated pro–MMP-1, which was proteolytically activated by mast cell tryptase. Airway smooth muscle treated with activated mast cell supernatants produced extracellular matrix, which enhanced subsequent airway smooth muscle growth by 1.5-fold (P < 0.05), which was dependent on MMP-1 activation. In asthma, airway pro–MMP-1 was 5.4-fold higher than control subjects (P = 0.002). Mast cell numbers were associated with airway smooth muscle proliferation and MMP-1 protein associated with bronchial hyperresponsiveness. During exacerbations, MMP-1 activity increased and was associated with fall in FEV1 and worsening asthma symptoms. Conclusions: MMP-1 is activated by mast cell tryptase resulting in a proproliferative extracellular matrix. In asthma, mast cells are associated with airway smooth muscle growth, MMP-1 levels are associated with bronchial hyperresponsiveness, and MMP-1 activation are associated with exacerbation severity. Our findings suggest that airway smooth muscle/mast cell interactions contribute to asthma severity by transiently increasing MMP activation, airway smooth muscle growth, and airway responsiveness. PMID:27967204

  16. The effects of IL-5 on airway physiology and inflammation in rats.

    PubMed

    Nag, Sammy S; Xu, Li Jing; Hamid, Qutayba; Renzi, Paolo M

    2003-03-01

    There is evidence that the cytokine IL-5 is a prominent feature of airway inflammation in asthma. The aim of this study was to determine whether exogenous IL-5 could cause changes in lung physiology, the early and late airway response after antigen challenge, and airway inflammation in rats that do not have a propensity to develop these changes after sensitization and challenge. Intratracheal administration of IL-5 to ovalbumin sensitized Brown Norway SSN rats increased the airway responsiveness to methacholine (AHR) 20 hours after administration of IL-5 at the same time as an increase in neutrophils occurred in the lung lavage. This effect was dose dependent and was not caused by endotoxin. Concurrent intratracheal administration of 50 ng of anti-IL-5 monoclonal antibody with 10 microg of recombinant human IL-5 decreased the AHR and neutrophil influx. Pretreatment with 3 microg of IL-5 had no effect on the early and late airway response or on AHR after ovalbumin challenge. However, IL-5 increased lung re-sistance 20 hours after antigen challenge. Although total lung cells and differential counts did not differ significantly 8 hours after antigen challenge, the blood lymphocyte CD4/CD8 ratio decreased in IL-5 pretreated rats (P <.05). In addition, in situ hybridization showed a significant increase in cells within the airway wall expressing IL-4 and IL-5 mRNA in IL-5 treated/challenged rats compared to controls (P <.05). The intratracheal administration of IL-5 causes only part of the physiologic changes that are associated with asthma. Other factors are necessary to obtain the complete asthma phenotype.

  17. Responsiveness to montelukast is associated with bronchial hyperresponsiveness and total immunoglobulin E but not polymorphisms in the leukotriene C4 synthase and cysteinyl leukotriene receptor 1 genes in Korean children with exercise-induced asthma (EIA).

    PubMed

    Lee, S-Y; Kim, H-B; Kim, J-H; Kim, B-S; Kang, M-J; Jang, S-O; Seo, H-J; Hong, S-J

    2007-10-01

    As previous studies have shown that cysteinyl leukotrienes are important mediators in exercise-induced bronchoconstriction (EIB), and leukotriene receptor antagonists (LTRAs) such as montelukast have been shown to improve post-exercise bronchoconstrictor responses, we herein investigated whether clinical responsiveness to montelukast was associated with polymorphisms in the genes encoding leukotriene C4 synthase (LTC4S) and cysteinyl leukotriene receptor 1 (CysLTR1) and/or clinical parameters in Korean asthmatic children with EIB. The study population consisted of 100 asthmatic children with EIB. The individuals studied were given exercise challenge tests before and after receiving montelukast (5 mg/day) for 8 weeks. Responders were defined as children showing>10% post-treatment improvement in forced expiratory volume in 1 s (FEV1). The LTC4S A(-444)C and CysLTR1 T(+927)C polymorphisms were genotyped by PCR-restriction fragment length polymorphism analysis. Of 100 enrolled children, 68 were classified as responders and 32 were classified as non-responders. No significant association was observed between montelukast responsiveness and LTC4S or CysLTR1 genotype, either alone or in combination. In contrast, montelukast-induced improvement in FEV(1) after exercise was correlated with higher pre-treatment PC20 (methacholine) values (r=0.210, P=0.036) and lower total IgE levels (r=-0.216, P=0.031). The LTC4S A(-444)C and CysLTR1 T(+927)C genotypes do not appear to be useful for predicting clinical responsiveness to montelukast, whereas bronchial hyperresponsiveness and total IgE appear to predict the degree of montelukast responsiveness in Korean asthmatic children with EIB.

  18. Risk Factors for Allergic Rhinitis in Costa Rican Children with Asthma

    PubMed Central

    Bunyavanich, Supinda; Soto-Quiros, Manuel E.; Avila, Lydiana; Laskey, Daniel; Senter, Jody M.; Celedón, Juan C.

    2009-01-01

    Background Risk factors for allergic rhinitis (AR) in asthmatics are likely distinct from those for AR or asthma alone. We sought to identify clinical and environmental risk factors for AR in children with asthma. Methods We performed a cross-sectional study of 616 Costa Rican children aged 6–14 years with asthma. Candidate risk factors were drawn from questionnaire data, spirometry, methacholine challenge testing, skin testing, and serology. Two outcome measures, skin test reaction (STR)-positive AR and physician-diagnosed AR, were examined by logistic regression. Results STR-positive AR had high prevalence (80%) in Costa Rican children with asthma, and its independent risk factors were nasal symptoms after exposure to dust or mold, parental history of AR, older age at asthma onset, oral steroid use in the past year, eosinophilia, and positive IgEs to dust mite and cockroach. Physician-diagnosed AR had lower prevalence (27%), and its independent risk factors were nasal symptoms after pollen exposure, STR to tree pollens, a parental history of AR, inhaled steroid and short-acting β2 agonist use in the past year, household mold/mildew, and fewer older siblings. A physician’s diagnosis was only 29.5% sensitive for STR-positive AR. Conclusions Risk factors for AR in children with asthma depend on the definition of AR. Indoor allergens drive risk for STR-positive AR. Outdoor allergens and home environmental conditions are risk factors for physician-diagnosed AR. We propose that children with asthma in Costa Rica and other Latin American nations undergo limited skin testing or specific IgE measurements to reduce the current under-diagnosis of AR. PMID:19796208

  19. Vitamin D deficiency causes airway hyperresponsiveness, increases airway smooth muscle mass, and reduces TGF‐β expression in the lungs of female BALB/c mice

    PubMed Central

    Foong, Rachel E.; Shaw, Nicole C.; Berry, Luke J.; Hart, Prue H.; Gorman, Shelley; Zosky, Graeme R.

    2014-01-01

    Abstract Vitamin D deficiency is associated with disease severity in asthma. We tested whether there is a causal association between vitamin D deficiency, airway smooth muscle (ASM) mass, and the development of airway hyperresponsiveness (AHR). A physiologically relevant mouse model of vitamin D deficiency was developed by raising BALB/c mice on vitamin D‐deficient or ‐replete diets. AHR was assessed by measuring lung function responses to increasing doses of inhaled methacholine. Five‐micron sections from formalin‐fixed lungs were used for ASM measurement and assessment of lung structure using stereological methods. Transforming growth factor (TGF)‐β levels were measured in bronchoalveolar lavage fluid (BALF). Lungs were dissected from embryonic day (E) 17.5 vitamin D‐deficient and ‐replete fetal mice for quantification of ASM density and relative gene expression of TGF‐β signaling pathway molecules. Eight‐week‐old adult vitamin D‐deficient female mice had significantly increased airway resistance and ASM in the large airways compared with controls. Vitamin D‐deficient female mice had a smaller lung volume, volume of parenchyma, and alveolar septa. Both vitamin D‐deficient male and female mice had reduced TGF‐β levels in BALF. Vitamin D deficiency did not have an effect on ASM density in E17.5 mice, however, expression of TGF‐β1 and TGF‐β receptor I was downregulated in vitamin D‐deficient female fetal mice. Decreased expression of TGF‐β1 and TGF‐β receptor I during early lung development in vitamin D‐deficient mice may contribute to airway remodeling and AHR in vitamin D‐deficient adult female mice. This study provides a link between vitamin D deficiency and respiratory symptoms in chronic lung disease. PMID:24760528

  20. Regulation of muscarinic acetylcholine receptors in cultured guinea pig pancreatic acini

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hootman, S.R.; Brown, M.E.; Williams, J.A.

    1986-07-01

    Regulation of muscarinic receptors in cultured guinea pig pancreatic acini was investigated by assessing the effects of cholinergic agonists on binding of (N-methyl-TH)scopolamine ((TH)NMS) and on amylase release. Freshly dispersed acini bound (TH)NMS with a K/sub d/ of 74 pM and a maximal binding level (B/sub max/) of 908 fmol/mg DNA. Carbachol (CCh) stimulated amylase secretion and inhibited (TH)NMS binding. Incubation of acini for 30 min with 0.1 mM CCh decreased the subsequent efficacy of CCh in stimulating amylase release by threefold but had no effect on its potency. In contrast, amylase release in response to cholecystokinin octapeptide (CCK-8) wasmore » not altered by CCh preincubation. (TH)NMS binding to acini was decreased only 15-20% after 30-min incubation with CCh. However, culture of acini with 0.1 mM CCh decreased (TH)NMS binding by 50% at 3-4 h and by 85-90% at 24 h. This decrease was attributable primarily to a reduction in B/sub max/ (TH)NMS binding also was decreased to a similar extent by the cholinergic agonists bethanechol and methacholine but not by other secretagogues. The decrease in antagonist binding induced by CCh was dose dependent, with the IC50, 5.8 M, approximating the EC50 for amylase release, 4.3 M. Cultured of acini for 24 h with CCh abolished subsequent amylase release in response to CCh but not to CCK-8. The results indicate that muscarinic receptor turnover in the pancreatic acinus is regulated by receptor activation and that both a decease in receptor numbers and sensitivity to agonists follows prolonged cholinergic agonist exposure.« less

  1. Could an increase in airway smooth muscle shortening velocity cause airway hyperresponsiveness?

    PubMed Central

    Bullimore, Sharon R.; Siddiqui, Sana; Donovan, Graham M.; Martin, James G.; Sneyd, James; Bates, Jason H. T.

    2011-01-01

    Airway hyperresponsiveness (AHR) is a characteristic feature of asthma. It has been proposed that an increase in the shortening velocity of airway smooth muscle (ASM) could contribute to AHR. To address this possibility, we tested whether an increase in the isotonic shortening velocity of ASM is associated with an increase in the rate and total amount of shortening when ASM is subjected to an oscillating load, as occurs during breathing. Experiments were performed in vitro using 27 rat tracheal ASM strips supramaximally stimulated with methacholine. Isotonic velocity at 20% isometric force (Fiso) was measured, and then the load on the muscle was varied sinusoidally (0.33 ± 0.25 Fiso, 1.2 Hz) for 20 min, while muscle length was measured. A large amplitude oscillation was applied every 4 min to simulate a deep breath. We found that: 1) ASM strips with a higher isotonic velocity shortened more quickly during the force oscillations, both initially (P < 0.001) and after the simulated deep breaths (P = 0.002); 2) ASM strips with a higher isotonic velocity exhibited a greater total shortening during the force oscillation protocol (P < 0.005); and 3) the effect of an increase in isotonic velocity was at least comparable in magnitude to the effect of a proportional increase in ASM force-generating capacity. A cross-bridge model showed that an increase in the total amount of shortening with increased isotonic velocity could be explained by a change in either the cycling rate of phosphorylated cross bridges or the rate of myosin light chain phosphorylation. We conclude that, if asthma involves an increase in ASM velocity, this could be an important factor in the associated AHR. PMID:20971805

  2. Fisetin-treatment alleviates airway inflammation through inhbition of MyD88/NF-κB signaling pathway.

    PubMed

    Huang, Wei; Li, Ming-Li; Xia, Ming-Yue; Shao, Jian-Ying

    2018-07-01

    Asthma is a common chronic airway inflammation disease and is considered as a major public health problem. Fisetin (3,3',4',7-tetrahydroxyflavone) is a naturally occurring flavonoid abundantly found in different vegetables and fruits. Fisetin has been reported to exhibit various positive biological effects, including anti-proliferative, anticancer, anti-oxidative and neuroprotective effects. We evaluated the effects of fisetin on allergic asthma regulation in mice. Mice were first sensitized, then airway-challenged with ovalbumin (OVA). Whether fisetin treatment attenuated OVA-induced airway inflammation was examined via inflammation inhibition through MyD88-related NF-κB (p65) signaling pathway. Mice were divided into the control (Con), OVA-induced asthma (Mod), 40 (FL) and 50 (FH) mg/kg fisetin-treated OVA-induced asthma groups. Our results found that OVA-induced airway inflammation in mice caused a significant inflammatory response via the activation of MyD88 and NF-κB signaling pathways, leading to release of pro-inflammatory cytokines. In contrast, fisetin-treated mice after OVA induction inhibited activation of MyD88 and NF-κB signaling pathways, resulting in downregulation of pro-inflammatory cytokine secretion. Further, fisetin significantly ameliorated the airway hyperresponsiveness (AHR) towards methacholine (Mch). In addition, fisetin reduced the number of eosinophil, monocyte, neutrophil and total white blood cell in the bronchoalveolar lavage fluid (BALF) of OVA-induced mice. The serum and BALF samples obtained from the OVA-induced mice with fisetin showed lower levels of pro-inflammatory cytokines. The results of our study illustrated that fisetin may be a new promising candidate to inhibit airway inflammation response induced by OVA.

  3. Fisetin-treatment alleviates airway inflammation through inhbition of MyD88/NF-κB signaling pathway

    PubMed Central

    Huang, Wei; Li, Ming-Li; Xia, Ming-Yue; Shao, Jian-Ying

    2018-01-01

    Asthma is a common chronic airway inflammation disease and is considered as a major public health problem. Fisetin (3,3′,4′,7-tetrahydroxyflavone) is a naturally occurring flavonoid abundantly found in different vegetables and fruits. Fisetin has been reported to exhibit various positive biological effects, including anti-proliferative, anticancer, anti-oxidative and neuroprotective effects. We evaluated the effects of fisetin on allergic asthma regulation in mice. Mice were first sensi-tized, then airway-challenged with ovalbumin (OVA). Whether fisetin treatment attenuated OVA-induced airway inflammation was examined via inflammation inhibition through MyD88-related NF-κB (p65) signaling pathway. Mice were divided into the control (Con), OVA-induced asthma (Mod), 40 (FL) and 50 (FH) mg/kg fisetin-treated OVA-induced asthma groups. Our results found that OVA-induced airway inflammation in mice caused a significant inflammatory response via the activation of MyD88 and NF-κB signaling pathways, leading to release of pro-inflammatory cytokines. In contrast, fisetin-treated mice after OVA induction inhibited activation of MyD88 and NF-κB signaling pathways, resulting in downregulation of pro-inflammatory cytokine secretion. Further, fisetin significantly ameliorated the airway hyperresponsiveness (AHR) towards methacholine (Mch). In addition, fisetin reduced the number of eosinophil, monocyte, neutrophil and total white blood cell in the bronchoalveolar lavage fluid (BALF) of OVA-induced mice. The serum and BALF samples obtained from the OVA-induced mice with fisetin showed lower levels of pro-inflammatory cytokines. The results of our study illustrated that fisetin may be a new promising candidate to inhibit airway inflammation response induced by OVA. PMID:29568921

  4. Long-term nicotine exposure dampens LPS-induced nerve-mediated airway hyperreactivity in murine airways.

    PubMed

    Xu, Yuan; Cardell, Lars-Olaf

    2017-09-01

    Nicotine is a major component of cigarette smoke. It causes addiction and is used clinically to aid smoke cessation. The aim of the present study is to investigate the effect of nicotine on lipopolysaccharide (LPS)-induced airway hyperreactivity (AHR) and to explore the potential involvement of neuronal mechanisms behind nicotine's effects in murine models in vivo and in vitro. BALB/c mice were exposed to nicotine in vivo via subcutaneous Alzet osmotic minipumps containing nicotine tartate salt solution (24 mg·kg -1 ·day -1 ) for 28 days. LPS (0.1 mg/ml, 20 µl) was administered intranasally for 3 consecutive days during the end of this period. Lung functions were measured with flexiVent. For the in vitro experiments, mice tracheae were organcultured with either nicotine (10 μM) or vehicle (DMSO, 0.1%) for 4 days. Contractile responses of the tracheal segments were measured in myographs following electric field stimulation (EFS; increasing frequencies of 0.2 to 12.8 Hz) before and after incubation with 10 µg/ml LPS for 1 h. Results showed that LPS induced AHR to methacholine in vivo and increased contractile responses to EFS in vitro. Interestingly, long-term nicotine exposure markedly dampened this LPS-induced AHR both in vitro and in vivo. Tetrodotoxin (TTX) inhibited LPS-induced AHR but did not further inhibit nicotine-suppressed AHR in vivo. In conclusion, long-term nicotine exposure dampened LPS-induced AHR. The effect of nicotine was mimicked by TTX, suggesting the involvement of neuronal mechanisms. This information might be used for evaluating the long-term effects of nicotine and further exploring of how tobacco products interact with bacterial airway infections. Copyright © 2017 the American Physiological Society.

  5. Effect of Study Design on Sample Size in Studies Intended to Evaluate Bioequivalence of Inhaled Short‐Acting β‐Agonist Formulations

    PubMed Central

    Zeng, Yaohui; Singh, Sachinkumar; Wang, Kai

    2017-01-01

    Abstract Pharmacodynamic studies that use methacholine challenge to assess bioequivalence of generic and innovator albuterol formulations are generally designed per published Food and Drug Administration guidance, with 3 reference doses and 1 test dose (3‐by‐1 design). These studies are challenging and expensive to conduct, typically requiring large sample sizes. We proposed 14 modified study designs as alternatives to the Food and Drug Administration–recommended 3‐by‐1 design, hypothesizing that adding reference and/or test doses would reduce sample size and cost. We used Monte Carlo simulation to estimate sample size. Simulation inputs were selected based on published studies and our own experience with this type of trial. We also estimated effects of these modified study designs on study cost. Most of these altered designs reduced sample size and cost relative to the 3‐by‐1 design, some decreasing cost by more than 40%. The most effective single study dose to add was 180 μg of test formulation, which resulted in an estimated 30% relative cost reduction. Adding a single test dose of 90 μg was less effective, producing only a 13% cost reduction. Adding a lone reference dose of either 180, 270, or 360 μg yielded little benefit (less than 10% cost reduction), whereas adding 720 μg resulted in a 19% cost reduction. Of the 14 study design modifications we evaluated, the most effective was addition of both a 90‐μg test dose and a 720‐μg reference dose (42% cost reduction). Combining a 180‐μg test dose and a 720‐μg reference dose produced an estimated 36% cost reduction. PMID:29281130

  6. Occupational allergy and asthma among salt water fish processing workers.

    PubMed

    Jeebhay, Mohamed F; Robins, Thomas G; Miller, Mary E; Bateman, Eric; Smuts, Marius; Baatjies, Roslynn; Lopata, Andreas L

    2008-12-01

    Fish processing is a common economic activity in Southern Africa. The aim of this study was to determine the prevalence and host determinants of allergic symptoms, allergic sensitization, bronchial hyper-responsiveness and asthma among workers processing saltwater fish. A cross-sectional study was conducted on 594 currently employed workers in two processing plants involved in pilchard canning and fishmeal processing. A modified European Community Respiratory Health Survey (ECRHS) questionnaire was used. Skin prick tests (SPT) used extracts of common airborne allergens, fresh fish (pilchard, anchovy, maasbanker, mackerel, red eye) and fishmeal. Spirometry and methacholine challenge tests (MCTs; tidal breathing method) used ATS guidelines. Work-related ocular-nasal symptoms (26%) were more common than asthma symptoms (16%). The prevalence of atopy was 36%, while 7% were sensitized to fish species and 26% had NSBH (PC(20) < or = 8 mg/ml or > or =12% increase in FEV(1) post-bronchodilator). The prevalence of probable occupational asthma was 1.8% and fish allergic rhino-conjunctivitis 2.6%. Women were more likely to report work-related asthma symptoms (OR = 1.94) and have NSBH (OR = 3.09), while men were more likely to be sensitized to fish (OR = 2.06) and have airway obstruction (OR = 4.17). Atopy (OR = 3.16) and current smoking (OR = 2.37), but not habitual seafood consumption were associated with sensitization to fish. Based on comparison with previous published studies, the prevalence of occupational asthma to salt water fish is lower than due to shellfish. The gendered distribution of work and exposures in fish processing operations together with atopy and cigarette smoking are important determinants of occupational allergy and asthma. Copyright 2008 Wiley-Liss, Inc.

  7. Ca2+-Activated K+ Channel–3.1 Blocker TRAM-34 Attenuates Airway Remodeling and Eosinophilia in a Murine Asthma Model

    PubMed Central

    Girodet, Pierre-Olivier; Ozier, Annaig; Carvalho, Gabrielle; Ilina, Olga; Ousova, Olga; Gadeau, Alain-Pierre; Begueret, Hugues; Wulff, Heike; Marthan, Roger; Bradding, Peter

    2013-01-01

    Key features of asthma include bronchial hyperresponsiveness (BHR), eosinophilic airway inflammation, and bronchial remodeling, characterized by subepithelial collagen deposition, airway fibrosis, and increased bronchial smooth muscle (BSM) mass. The calcium-activated K+ channel KCa3.1 is expressed by many cells implicated in the pathogenesis of asthma, and is involved in both inflammatory and remodeling responses in a number of tissues. The specific KCa3.1 blocker 5-[(2-chlorophenyl)(diphenyl)methyl]-1H-pyrazole (TRAM-34) attenuates BSM cell proliferation, and both mast cell and fibrocyte recruitment in vitro. We aimed to examine the effects of KCa3.1 blockade on BSM remodeling, airway inflammation, and BHR in a murine model of chronic asthma. BALB/c mice were sensitized with intraperitoneal ovalbumin (OVA) on Days 0 and 14, and then challenged with intranasal OVA during Days 14–75. OVA-sensitized/challenged mice received TRAM-34 (120 mg/kg/day, subcutaneous) from Days −7 to 75 (combined treatment), Days −7 to 20 (preventive treatment), or Days 21 to 75 (curative treatment). Untreated mice received daily injections of vehicle (n = 8 per group). Bronchial remodeling was assessed by histological and immunohistochemical analyses. Inflammation was evaluated using bronchoalveolar lavage and flow cytometry. We also determined BHR in both conscious and anesthetized mice via plethysmography. We demonstrated that curative treatment with TRAM-34 abolishes BSM remodeling and subbasement collagen deposition, and attenuates airway eosinophilia. Although curative treatment alone did not significantly reduce BHR, the combined treatment attenuated nonspecific BHR to methacholine. This study indicates that KCa3.1 blockade could provide a new therapeutic strategy in asthma. PMID:23204391

  8. Comparative Toxicity of Size-Fractionated Airborne Particulate Matter Collected at Different Distances from an Urban Highway

    PubMed Central

    Cho, Seung-Hyun; Tong, Haiyan; McGee, John K.; Baldauf, Richard W.; Krantz, Q. Todd; Gilmour, M. Ian

    2009-01-01

    Background Epidemiologic studies have reported an association between proximity to highway traffic and increased cardiopulmonary illnesses. Objectives We investigated the effect of size-fractionated particulate matter (PM), obtained at different distances from a highway, on acute cardiopulmonary toxicity in mice. Methods We collected PM for 2 weeks in July–August 2006 using a three-stage (ultrafine, < 0.1 μm; fine, 0.1–2.5 μm; coarse, 2.5–10 μm) high-volume impactor at distances of 20 m [near road (NR)] and 275 m [far road (FR)] from an interstate highway in Raleigh, North Carolina. Samples were extracted in methanol, dried, diluted in saline, and then analyzed for chemical constituents. Female CD-1 mice received either 25 or 100 μg of each size fraction via oropharyngeal aspiration. At 4 and 18 hr postexposure, mice were assessed for pulmonary responsiveness to inhaled methacholine, biomarkers of lung injury and inflammation; ex vivo cardiac pathophysiology was assessed at 18 hr only. Results Overall chemical composition between NR and FR PM was similar, although NR samples comprised larger amounts of PM, endotoxin, and certain metals than did the FR samples. Each PM size fraction showed differences in ratios of major chemical classes. Both NR and FR coarse PM produced significant pulmonary inflammation irrespective of distance, whereas both NR and FR ultrafine PM induced cardiac ischemia–reperfusion injury. Conclusions On a comparative mass basis, the coarse and ultrafine PM affected the lung and heart, respectively. We observed no significant differences in the overall toxicity end points and chemical makeup between the NR and FR PM. The results suggest that PM of different size-specific chemistry might be associated with different toxicologic mechanisms in cardiac and pulmonary tissues. PMID:20049117

  9. Urothelial acetylcholine involvement in ATP-induced contractile responses of the rat urinary bladder.

    PubMed

    Stenqvist, Johanna; Winder, Michael; Carlsson, Thomas; Aronsson, Patrik; Tobin, Gunnar

    2017-08-15

    Both acetylcholine and adenosine 5'-triphosphate (ATP) are released from the urothelium. In in vivo experiments ATP has been shown to evoke contractile responses that are significantly reduced by atropine. Currently, we aimed to examine the cholinergic part of the ATP-evoked contractile response of normal and inflamed (cyclophosphamide-treated rats) bladders. A whole bladder preparation that enabled drug administration either outside or inside the urinary bladder was used. The responses were examined in bladders from control and cyclophosphamide-treated rats that were either intact or urothelium-denuded. The expression of choline acetyltransferase and carnitine acetyltransferase were examined by Western blotting of normal and inflamed bladders. Methacholine evoked larger contractions when administered to the outside of the bladder in comparison to instillation. For ATP, an opposite trend emerged. While atropine substantially reduced the ATP-induced responses at internal administration (7.4±1.1 and 3.7±0.9 mN at 10 -3 M; n=13; P<0.001), it had no effect when administered outside the bladder. The removal of the urothelium caused a similar reduction of the responses to internal administration of ATP as caused by atropine. In cyclophosphamide-treated rats, neither atropine nor urothelium-denudation had any effect on the ATP-evoked responses. No changes in the expressions of the acetylcholine synthesising enzymes were observed. The current study shows that ATP induces a release of urothelial acetylcholine that contributes to the purinergic contractile response in the rat urinary bladder. This atropine-sensitive part of the purinergic contractile response is absent in the inflamed bladder. This may be one pathological mechanism involved in bladder dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The MEGA Project: A Study of the Mechanisms Involved in the Genesis and Disease Course of Asthma. Asthma Cohort Creation and Long-Term Follow-Up.

    PubMed

    Muñoz, Xavier; Álvarez-Puebla, María José; Arismendi, Ebymar; Arochena, Lourdes; Ausín, María Del Pilar; Barranco, Pilar; Bobolea, Irina; Cañas, Jose Antonio; Cardaba, Blanca; Crespo, Astrid; Del Pozo, Victora; Domínguez-Ortega, Javier; Fernandez-Nieto, María Del Mar; Giner, Jordi; González-Barcala, Francisco Javier; Luna, Juan Alberto; Mullol, Joaquim; Ojanguren, Iñigo; Olaguibel, José María; Picado, César; Plaza, Vicente; Quirce, Santiago; Ramos, David; Rial, Manuel; Romero-Mesones, Christian; Salgado, Francisco Javier; San-José, María Esther; Sánchez-Diez, Silvia; Sastre, Beatriz; Sastre, Joaquin; Soto, Lorena; Torrejón, Montserrat; Urnadoz, Marisa; Valdes, Luis; Valero, Antonio; Cruz, María Jesús

    2018-03-19

    The general aim of this study is to create a cohort of asthma patients with varying grades of severity in order to gain greater insight into the mechanisms underlying the genesis and course of this disease. The specific objectives focus on various studies, including imaging, lung function, inflammation, and bronchial hyperresponsiveness, to determine the relevant events that characterize the asthma population, the long-term parameters that can determine changes in the severity of patients, and the treatments that influence disease progression. The study will also seek to identify the causes of exacerbations and how this affects the course of the disease. Patients will be contacted via the outpatient clinics of the 8 participating institutions under the auspices of the Spanish Respiratory Diseases Networking System (CIBER). In the inclusion visit, a standardized clinical history will be obtained, a clinical examination, including blood pressure, body mass index, complete respiratory function tests, and FENO will be performed, and the Asthma Control Test (ACT), Morisky-Green test, Asthma Quality of Life Questionnaire (Mini AQLQ), the Sino-Nasal Outcome Test 22 (SNOT-22), and the Hospital Anxiety and Depression scale (HADS) will be administered. A specific electronic database has been designed for data collection. Exhaled breath condensate, urine and blood samples will also be collected. Non-specific bronchial hyperresponsiveness testing with methacholine will be performed and an induced sputum sample will be collected at the beginning of the study and every 24 months. A skin prick test for airborne allergens and a chest CT will be performed at the beginning of the study and repeated every 5 years. Copyright © 2018 SEPAR. All rights reserved.

  11. Radical-Containing Ultrafine Particulate Matter Initiates Epithelial-to-Mesenchymal Transitions in Airway Epithelial Cells

    PubMed Central

    Thevenot, Paul T.; Saravia, Jordy; Jin, Nili; Giaimo, Joseph D.; Chustz, Regina E.; Mahne, Sarah; Kelley, Matthew A.; Hebert, Valeria Y.; Dellinger, Barry; Dugas, Tammy R.; DeMayo, Francesco J.

    2013-01-01

    Environmentally persistent free radicals (EPFRs) in combustion-generated particulate matter (PM) are capable of inducing pulmonary pathologies and contributing to the development of environmental asthma. In vivo exposure of infant rats to EPFRs demonstrates their ability to induce airway hyperresponsiveness to methacholine, a hallmark of asthma. However, the mechanisms by which combustion-derived EPFRs elicit in vivo responses remain elusive. In this study, we used a chemically defined EPFR consisting of approximately 0.2 μm amorphrous silica containing 3% cupric oxide with the organic pollutant 1,2-dichlorobenzene (DCB-230). DCB-230 possesses similar radical content to urban-collected EPFRs but offers several advantages, including lack of contaminants and chemical uniformity. DCB-230 was readily taken up by BEAS-2B and at high doses (200 μg/cm2) caused substantial necrosis. At low doses (20 μg/cm2), DCB-230 particles caused lysosomal membrane permeabilization, oxidative stress, and lipid peroxidation within 24 hours of exposure. During this period, BEAS-2B underwent epithelial-to-mesenchymal transition (EMT), including loss of epithelial cell morphology, decreased E-cadherin expression, and increased α–smooth muscle actin (α-SMA) and collagen I production. Similar results were observed in neonatal air–liquid interface culture (i.e., disruption of epithelial integrity and EMT). Acute exposure of infant mice to DCB-230 resulted in EMT, as confirmed by lineage tracing studies and evidenced by coexpression of epithelial E-cadherin and mesenchymal α-SMA proteins in airway cells and increased SNAI1 expression in the lungs. EMT in neonatal mouse lungs after EPFR exposure may provide an explanation for epidemiological evidence supporting PM exposure and increased risk of asthma. PMID:23087054

  12. Clinical and atopic parameters and airway inflammatory markers in childhood asthma: a factor analysis

    PubMed Central

    Leung, T; Wong, G; Ko, F; Lam, C; Fok, T

    2005-01-01

    Background: Recent studies have repeatedly shown weak correlations among lung function parameters, atopy, exhaled nitric oxide level (FeNO), and airway inflammatory markers, suggesting that they are non-overlapping characteristics of asthma in adults. A study was undertaken to determine, using factor analysis, whether the above features represent separate dimensions of childhood asthma. Methods: Clinically stable asthmatic patients aged 7–18 years underwent spirometric testing, methacholine bronchial challenge, blood sampling for atopy markers and chemokine levels (macrophage derived chemokine (MDC), thymus and activation regulated chemokine (TARC), and eotaxin), FeNO, and chemokines (MDC and eotaxin) and leukotriene B4 measurements in exhaled breath condensate (EBC). Results: The mean (SD) forced expiratory volume in 1 second (FEV1) and FeNO of 92 patients were 92.1 (15.9)% predicted and 87.3 (65.7) ppb, respectively. 59% of patients received inhaled corticosteroids. Factor analysis selected four different factors, explaining 55.5% of total variance. The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.587. Plasma total and specific IgE levels, peripheral blood eosinophil percentage, and FeNO loaded on factor 1; plasma TARC and MDC concentrations on factor 2; MDC, eotaxin and leukotriene B4 concentrations in EBC on factor 3; and plasma eotaxin concentration together with clinical indices including body mass index and disease severity score loaded on factor 4. Post hoc factor analyses revealed similar results when outliers were excluded. Conclusions: The results suggest that atopy related indices and airway inflammation are separate dimensions in the assessment of childhood asthma, and inflammatory markers in peripheral blood and EBC are non-overlapping factors of asthma. PMID:16055623

  13. Intracellular ion concentrations and cell volume during cholinergic stimulation of eccrine secretory coil cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takemura, T.; Sato, F.; Saga, K.

    Methacholine (MCh)-induced changes in intracellular concentrations of Na, K, and Cl (( Na)i, (K)i, and (Cl)i, respectively) and in cellular dry mass (a measure of cell shrinkage) were examined in isolated monkey eccrine sweat secretory coils by electron probe X-ray microanalysis using the peripheral standard method. To further confirm the occurrence of cell shrinkage during MCh stimulation, the change in cell volume of dissociated clear and dark cells were directly determined under a light microscope equipped with differential interference contrast (DIC) optics. X-ray microanalysis revealed a biphasic increase in cellular dry mass in clear cells during continuous MCh stimulation; anmore » initial increase of dry mass to 158% (of control) followed by a plateau at 140%, which correspond to the decrease in cell volume of 37 and 29%, respectively. The latter agrees with the MCh-induced cell shrinkage of 29% in dissociated clear cells. The MCh-induced increase in dry mass in myoepithelial cells was less than half that of clear cells. During the steady state of MCh stimulation, both (K+)i and (Cl)i of clear cells decreased by about 45%, whereas (Na)i increased in such a way to maintain the sum of (Na) i + (K)i constant. There was a small (12-15 mM) increase in (Na)i and a decrease in (K)i in myoepithelial cells during stimulation with MCh. Dissociated dark cells failed to significantly shrink during MCh stimulation. The decrease in (Cl)i in the face of constant (Na)i + (K)i suggests the accumulation of unknown anion(s) inside the clear cell during MCh stimulation.« less

  14. The magnitude of ivacaftor effects on fluid secretion via R117H-CFTR channels: Human in vivo measurements

    PubMed Central

    Char, Jessica E.; Dunn, Colleen; Davies, Zoe; Milla, Carlos; Moss, Richard B.; Wine, Jeffrey J.

    2017-01-01

    We optically measured effects of orally available ivacaftor (Kalydeco®) on sweat rates of identified glands in 3 R117H subjects, each having a unique set of additional mutations, and compared them with 5 healthy control subjects tested contemporaneously. We injected β-adrenergic agonists intradermally to stimulate CFTR-dependent ‘C-sweat’ and methacholine to stimulate ‘M-sweat’, which persists in CF subjects. We focused on an R117H-7T/F508del subject who produced quantifiable C-sweat off ivacaftor and was available for 1 blinded, 3 off ivacaftor, and 3 on ivacaftor tests, allowing us to estimate in vivo fold-increase in sweat rates produced by ivacaftor’s effect on the open probability (PO) of R117H-CFTR. Measured sweat rates must be corrected for sweat losses. With estimated sweat losses of 0.023 to 0.08 nl·gland-1·min-1, ivacaftor increased the average C-sweat rates 3–7 fold, and estimated function as % of WT were 4.1–12% off ivacaftor and 21.9–32% on ivacaftor (larger values reflect increased loss estimates). Based on single tests, an R117H-7T/ R117H-7T subject showed 6–9% WT function off ivacaftor and 28–43% on ivacaftor. Repeat testing of an R117H-5T/F508del subject detected only trace responding to ivacaftor. We conclude that in vivo, R117H PO is strongly increased by ivacaftor, but channel number, mainly determined by variable deletion of exon 10, has a marked influence on outcomes. PMID:28419121

  15. The contribution of Ca2+ signaling and Ca2+ sensitivity to the regulation of airway smooth muscle contraction is different in rats and mice.

    PubMed

    Bai, Yan; Sanderson, Michael J

    2009-06-01

    To determine the relative contributions of Ca(2+) signaling and Ca(2+) sensitivity to the contractility of airway smooth muscle cells (SMCs), we compared the contractile responses of mouse and rat airways with the lung slice technique. Airway contraction was measured by monitoring changes in airway lumen area with phase-contrast microscopy, whereas changes in intracellular calcium concentration ([Ca(2+)](i)) of the SMCs were recorded with laser scanning microscopy. In mice and rats, methacholine (MCh) or serotonin induced concentration-dependent airway contraction and Ca(2+) oscillations in the SMCs. However, rat airways demonstrated greater contraction compared with mice, in response to agonist-induced Ca(2+) oscillations of a similar frequency. Because this indicates that rat airway SMCs have a higher Ca(2+) sensitivity compared with mice, we examined Ca(2+) sensitivity with Ca(2+)-permeabilized airway SMCs in which the [Ca(2+)](i) was experimentally controlled. In the absence of agonists, high [Ca(2+)](i) induced a sustained contraction in rat airways but only a transient contraction in mouse airways. This sustained contraction of rat airways was relaxed by Y-23672, a Rho kinase inhibitor, but not affected by GF-109203X, a PKC inhibitor. The subsequent exposure of Ca(2+)-permeabilized airway SMCs, with high [Ca(2+)](i), to MCh elicited a further contraction of rat airways and initiated a sustained contraction of mouse airways, without changing the [Ca(2+)](i) of the SMCs. Collectively, these results indicate that airway SMCs of rats have a substantially higher innate Ca(2+) sensitivity than mice and that this strongly influences the transduction of the frequency of Ca(2+) oscillations into the contractility of airway SMCs.

  16. Multi-scale lung modeling.

    PubMed

    Tawhai, Merryn H; Bates, Jason H T

    2011-05-01

    Multi-scale modeling of biological systems has recently become fashionable due to the growing power of digital computers as well as to the growing realization that integrative systems behavior is as important to life as is the genome. While it is true that the behavior of a living organism must ultimately be traceable to all its components and their myriad interactions, attempting to codify this in its entirety in a model misses the insights gained from understanding how collections of system components at one level of scale conspire to produce qualitatively different behavior at higher levels. The essence of multi-scale modeling thus lies not in the inclusion of every conceivable biological detail, but rather in the judicious selection of emergent phenomena appropriate to the level of scale being modeled. These principles are exemplified in recent computational models of the lung. Airways responsiveness, for example, is an organ-level manifestation of events that begin at the molecular level within airway smooth muscle cells, yet it is not necessary to invoke all these molecular events to accurately describe the contraction dynamics of a cell, nor is it necessary to invoke all phenomena observable at the level of the cell to account for the changes in overall lung function that occur following methacholine challenge. Similarly, the regulation of pulmonary vascular tone has complex origins within the individual smooth muscle cells that line the blood vessels but, again, many of the fine details of cell behavior average out at the level of the organ to produce an effect on pulmonary vascular pressure that can be described in much simpler terms. The art of multi-scale lung modeling thus reduces not to being limitlessly inclusive, but rather to knowing what biological details to leave out.

  17. Airways in smooth muscle α-actin null mice experience a compensatory mechanism that modulates their contractile response.

    PubMed

    Shardonofsky, Felix R; Moore, Joan; Schwartz, Robert J; Boriek, Aladin M

    2012-03-01

    We hypothesized that ablation of smooth muscle α-actin (SM α-A), a contractile-cytoskeletal protein expressed in airway smooth muscle (ASM) cells, abolishes ASM shortening capacity and decreases lung stiffness. In both SM α-A knockout and wild-type (WT) mice, airway resistance (Raw) determined by the forced oscillation technique rose in response to intravenous methacholine (Mch). However, the slope of Raw (cmH(2)O·ml(-1)·s) vs. log(2) Mch dose (μg·kg(-1)·min(-1)) was lower (P = 0.007) in mutant (0.54 ± 0.14) than in WT mice (1.23 ± 0.19). RT-PCR analysis performed on lung tissues confirmed that mutant mice lacked SM α-A mRNA and showed that these mice had robust expressions of both SM γ-A mRNA and skeletal muscle (SKM) α-A mRNA, which were not expressed in WT mice, and an enhanced SM22 mRNA expression relative to that in WT mice. Compared with corresponding spontaneously breathing mice, mechanical ventilation-induced lung mechanical strain increased the expression of SM α-A mRNA in WT lungs; in mutant mice, it augmented the expressions of SM γ-A mRNA and SM22 mRNA and did not alter that of SKM α-A mRNA. In mutant mice, the expression of SM γ-A mRNA in the lung during spontaneous breathing and its enhanced expression following mechanical ventilation are consistent with the likely possibility that in the absence of SM α-A, SM γ-A underwent polymerization and interacted with smooth muscle myosin to produce ASM shortening during cholinergic stimulation. Thus our data are consistent with ASM in mutant mice experiencing compensatory mechanisms that modulated its contractile muscle capacity.

  18. Interleukin(IL)-1 Regulates Ozone-enhanced Tracheal Smooth Muscle Responsiveness by Increasing Substance P (SP) Production in Intrinsic Airway Neurons of Ferret

    PubMed Central

    Wu, Z.-X.; Barker, J. S.; Batchelor, T. P.; Dey, R.D.

    2008-01-01

    Exposure to ozone induces airway hyperresponsiveness (AHR) mediated partly by SP released from nerve terminals of intrinsic airway neurons. Our recent studies showed that IL-1, an important multifunctional proinflammatory cytokine, increases synthesis and release of SP from intrinsic airway neurons. The purpose of this study is to investigate the possible involvement of endogenous IL-1 in modulating neural responses associated with ozone-enhanced airway responsiveness. Ferrets were exposed to 2 ppm ozone or filtered air for 3 hrs. IL-1 in the bronchoalveolar lavage (BAL) fluid was significantly increased in ozone-exposed animals and responses of tracheal smooth muscle to methacholine (MCh) and electrical field stimulation (EFS) were elevated significantly. Both the SP nerve fiber density in tracheal smooth muscle and the number of SP-containing neurons in airway ganglia were significantly increased following ozone exposure. Pretreatment with IL-1 receptor antagonist (IL-1 Ra) significantly diminished ozone-enhanced airway responses to EFS as well as ozone-increased SP in the airway. To selectively investigate intrinsic airway neurons, segments of ferret trachea were maintained in culture conditions for 24 hrs to eliminate extrinsic contributions from sensory nerves. The segments were then exposed to 2 ppm ozone in vitro for 3 hrs. The changes of ozone-induced airway responses to MCh and EFS, and the SP levels in airway neurons paralleled those observed with in vivo ozone exposure. The ozone-enhanced airway responses and neuronal SP levels were inhibited by pretreatment with IL-1 Ra. These findings show that IL-1 is released during ozone exposure enhances airway responsiveness by modulating SP expression in airway neurons. PMID:18718561

  19. Nerve growth factor-enhanced airway responsiveness involves substance P in ferret intrinsic airway neurons.

    PubMed

    Wu, Z-X; Dey, R D

    2006-07-01

    Nerve growth factor (NGF), a member of the neurotrophin family, enhances synthesis of neuropeptides in sensory and sympathetic neurons. The aim of this study was to examine the effect of NGF on airway responsiveness and determine whether these effects are mediated through synthesis and release of substance P (SP) from the intrinsic airway neurons. Ferrets were instilled intratracheally with NGF or saline. Tracheal smooth muscle contractility to methacholine and electrical field stimulation (EFS) was assessed in vitro. Contractions of isolated tracheal smooth muscle to EFS at 10 and 30 Hz were significantly increased in the NGF treatment group (10 Hz: 33.57 +/- 2.44%; 30 Hz: 40.12 +/- 2.78%) compared with the control group (10 Hz: 27.24 +/- 2.14%; 30 Hz: 33.33 +/- 2.31%). However, constrictive response to cholinergic agonist was not significantly altered between the NGF treatment group and the control group. The NGF-induced modulation of airway smooth muscle to EFS was maintained in tracheal segments cultured for 24 h, a procedure that causes a significant anatomic and functional loss of SP-containing sensory fibers while maintaining viability of intrinsic airway neurons. The number of SP-containing neurons in longitudinal trunk and superficial muscular plexus and SP nerve fiber density in tracheal smooth muscle all increased significantly in cultured trachea treated with NGF. Pretreatment with CP-99994, an antagonist of neurokinin 1 receptor, attenuated the NGF-induced increased contraction to EFS in cultured segments but had no effect in saline controls. These results show that the NGF-enhanced airway smooth muscle contractile responses to EFS are mediated by the actions of SP released from intrinsic airway neurons.

  20. A novel bronchial ring bioassay for the evaluation of small airway smooth muscle function in mice.

    PubMed

    Liu, John Q; Yang, Dennis; Folz, Rodney J

    2006-08-01

    Advances in our understanding of murine airway physiology have been hindered by the lack of suitable, ex vivo, small airway bioassay systems. In this study, we introduce a novel small murine airway bioassay system that permits the physiological and pharmacological study of intrapulmonary bronchial smooth muscle via a bronchial ring (BR) preparation utilizing BR segments as small as 200 microm in diameter. Using this ex vivo BR bioassay, we characterized small airway smooth muscle contraction and relaxation in the presence and absence of bronchial epithelium. In control BRs, the application of mechanical stretch is followed by spontaneous bronchial smooth muscle relaxation. BRs pretreated with methacholine (MCh) partially attenuate this stretch-induced relaxation by as much as 42% compared with control. MCh elicited a dose-dependent bronchial constriction with a maximal tension (E(max)) of 8.7 +/- 0.2 mN at an EC(50) of 0.33 +/- 0.02 microM. In the presence of nifedipine, ryanodine, 2-aminoethoxydiphenyl borate, and SKF-96365, E(max) to MCh was significantly reduced. In epithelium-denuded BRs, MCh-induced contraction was significantly enhanced to 11.4 +/- 1.0 mN with an EC(50) of 0.16 +/- 0.04 microM (P < 0.01). Substance P relaxed MCh-precontracted BR by 62.1%; however, this bronchial relaxation effect was completely lost in epithelium-denuded BRs. Papaverine virtually abolished MCh-induced constriction in both epithelium-intact and epithelium-denuded bronchial smooth muscle. In conclusion, this study introduces a novel murine small airway BR bioassay that allows for the physiological study of smooth muscle airway contractile responses that may aid in our understanding of the pathophysiology of asthma.

  1. Athletes Do Not Condition Inspired Air More Effectively than Nonathletes during Hyperpnea.

    PubMed

    Boulet, Louis-Philippe; Moreau, Simon-Pierre; Villeneuve, HÉlÈNE; Turmel, Julie

    2017-01-01

    Endurance athletes have a high prevalence of airway diseases, some possibly representing adaptive mechanisms to the need of conditioning large volumes of inspired air during high ventilation in specific environments. The aim of this study is to assess the ability to condition (warm and humidify) inspired air in athletes by measuring the difference between inhaled and exhaled air temperature (ΔT) during and after eucapnic voluntary hyperpnea (EVH) test. Twenty-three endurance athletes from various sports, 12 with airway hyperresponsiveness (AHR) and/or exercise-induced bronchoconstriction (EIB) (A+), 11 without AHR and/or EIB (A-), 12 nonathletes with AHR and/or EIB (C+), and 11 nonathletes without AHR and/or EIB (C-) were recruited. All subjects attended the laboratory on three occasions, twice for baseline characterization, including questionnaires, pulmonary function, methacholine bronchoprovocation, allergy skin prick tests, exhaled nitric oxide measurement, and a standard EVH, and once to perform a modified EVH to assess ΔT. Inspired and expired air temperatures were measured with a high-precision probe during EVH and at regular intervals until 30 min after the end of the test. The global ΔT during the EVH was +5.8°C ± 1.5°C and +4.7°C ± 1.5°C during the 30 min after the EVH. No difference was found between groups for either the ΔT or the slope of ΔT, during and after the EVH. This study shows no evidence of improved capacity to condition inspired air in endurance athletes, which could have suggested an increased bronchial blood flow or another adaptive mechanism. The absence of an adaptive mechanism could therefore contribute to airway damage observed in athletes in allowing colder but mainly dryer air to penetrate deeper in the lung.

  2. Eosinophils contribute to the resolution of lung-allergic responses following repeated allergen challenge.

    PubMed

    Takeda, Katsuyuki; Shiraishi, Yoshiki; Ashino, Shigeru; Han, Junyan; Jia, Yi; Wang, Meiqin; Lee, Nancy A; Lee, James J; Gelfand, Erwin W

    2015-02-01

    Eosinophils accumulate at the site of allergic inflammation and are critical effector cells in allergic diseases. Recent studies have also suggested a role for eosinophils in the resolution of inflammation. To determine the role of eosinophils in the resolution phase of the response to repeated allergen challenge. Eosinophil-deficient (PHIL) and wild-type (WT) littermates were sensitized and challenged to ovalbumin (OVA) 7 or 11 times. Airway inflammation, airway hyperresponsiveness (AHR) to inhaled methacholine, bronchoalveolar lavage (BAL) cytokine levels, and lung histology were monitored. Intracellular cytokine levels in BAL leukocytes were analyzed by flow cytometry. Groups of OVA-sensitized PHIL mice received bone marrow from WT or IL-10(-/-) donors 30 days before the OVA challenge. PHIL and WT mice developed similar levels of AHR and numbers of leukocytes and cytokine levels in BAL fluid after OVA sensitization and 7 airway challenges; no eosinophils were detected in the PHIL mice. Unlike WT mice, sensitized PHIL mice maintained AHR, lung inflammation, and increased levels of IL-4, IL-5, and IL-13 in BAL fluid after 11 challenges whereas IL-10 and TGF-β levels were decreased. Restoration of eosinophil numbers after injection of bone marrow from WT but not IL-10-deficient mice restored levels of IL-10 and TGF-β in BAL fluid as well as suppressed AHR and inflammation. Intracellular staining of BAL leukocytes revealed the capacity of eosinophils to produce IL-10. After repeated allergen challenge, eosinophils appeared not essential for the development of AHR and lung inflammation but contributed to the resolution of AHR and inflammation by producing IL-10. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Sensory neuropeptides modulate cigarette smoke-induced decrease in neutral endopeptidase activity in guinea pig airways.

    PubMed

    Kuo, H P; Lu, L C

    1995-01-01

    Cigarette smoke (CS) inhalation stimulates C-fibers to release sensory neuropeptides which mediate airway reflex responses to prevent irritants from entering the lower airways. When CS is inhaled via the upper airways, these airway defense responses may modulate the effect of CS on airway NEP activity and related airway hyperresponsiveness. To examine this possibility, we exposed guinea pigs to 1:10 diluted mid-tar cigarette smoke 100 puffs per day for 7 days and recorded pulmonary resistance of cumulative doses of neurokinin A (NKA, 10(-12)-10(-8) mol/kg, i.v.) or methacholine (Mch, 1-50 micrograms/kg, i.v.). NEP activity in the tracheobronchi was measured using fluorometric assay. Exposure of CS alone failed to alter the dose-response to NKA or Mch compared with air control. NEP activity in the airways after CS exposure was slightly but significantly lower than that of air control. Capsaicin pretreatment 1 week before CS exposure significantly shifted the dose-response curves of NKA, but not Mch, to the left and decreased NEP activity in the airways to a greater extent compared with CS exposure alone group. Capsaicin pretreatment alone failed to alter the responsiveness to NKA or NEP activity. CS also induced a significant increase in neutrophil counts in airways. Capsaicin pretreatment enhanced the effect of CS on neutrophil recruitment. We conclude that sensory neuropeptides may have a protective role in modulation of airways NEP activity downregulation induced by CS, probably by preventing CS from entering the lower airways or the chronic release of sensory neuropeptides induced by CS providing increased amount of substrata for NEP upregulation, and therefore modify the direct effect of CS on NEP activity and related airway hyperresponsiveness.

  4. Neutral endopeptidase activity and airway hyperresponsiveness to neurokinin A in asthmatic subjects in vivo.

    PubMed

    Cheung, D; Timmers, M C; Zwinderman, A H; den Hartigh, J; Dijkman, J H; Sterk, P J

    1993-12-01

    In a previous study we have shown that inhibition of the endogenous neuropeptide-degrading enzyme, neutral endopeptidase (NEP), potentiates airway narrowing to neurokinin A (NKA) in normal humans in vivo. In the present study, we tested the hypothesis that hyperresponsiveness to NKA in asthma is caused by a reduction in endogenous NEP activity. To that end, we used the NEP inhibitor, thiorphan, or placebo as inhaled pretreatment to NKA challenge in eight atopic asthmatic men, who were controlled by on-demand usage of beta 2-agonists alone. The dose of thiorphan pretreatment was obtained from pilot experiments in which 0.5 ml of a 2.5-mg/ml concentration appeared to be the maximally effective nebulized dose. Dose-response curves to inhaled NKA (1 to 125 micrograms/ml, 0.5 ml/dose) were recorded on 2 randomized days 1 wk apart, in a cross-over study. To detect any effects of thiorphan on bronchoconstriction per se, we also investigated the effect of thiorphan or placebo on the dose-response curve to inhaled methacholine in a separate set of experiments. The response was measured by FEV1 and by partial expiratory flow-volume curves (V40p). The position of the dose-response curves was expressed as the concentration causing a 20% fall in FEV1 (PC20FEV1) or a 40% fall in V40p (PC40V40p). Baseline FEV1 and V40p were not affected by either pretreatment (p > 0.06). PC20FEV1 and PC40V40p to NKA were significantly lower after thiorphan pretreatment as compared with placebo (mean difference +/- SEM: 2.3 +/- 0.6 and 1.6 +/- 0.5 doubling dose, respectively; p < 0.015).(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Soy biodiesel emissions have reduced inflammatory effects compared to diesel emissions in healthy and allergic mice.

    PubMed

    Gavett, Stephen H; Wood, Charles E; Williams, Marc A; Cyphert, Jaime M; Boykin, Elizabeth H; Daniels, Mary J; Copeland, Lisa B; King, Charly; Krantz, Todd Q; Richards, Judy H; Andrews, Debora L; Jaskot, Richard H; Gilmour, M Ian

    2015-01-01

    Toxicity of exhaust from combustion of petroleum diesel (B0), soy-based biodiesel (B100), or a 20% biodiesel/80% petrodiesel mix (B20) was compared in healthy and house dust mite (HDM)-allergic mice. Fuel emissions were diluted to target fine particulate matter (PM(2.5)) concentrations of 50, 150, or 500 μg/m(3). Studies in healthy mice showed greater levels of neutrophils and MIP-2 in bronchoalveolar lavage (BAL) fluid 2 h after a single 4-h exposure to B0 compared with mice exposed to B20 or B100. No consistent differences in BAL cells and biochemistry, or hematological parameters, were observed after 5 d or 4 weeks of exposure to any of the emissions. Air-exposed HDM-allergic mice had significantly increased responsiveness to methacholine aerosol challenge compared with non-allergic mice. Exposure to any of the emissions for 4 weeks did not further increase responsiveness in either non-allergic or HDM-allergic mice, and few parameters of allergic inflammation in BAL fluid were altered. Lung and nasal pathology were not significantly different among B0-, B20-, or B100-exposed groups. In HDM-allergic mice, exposure to B0, but not B20 or B100, significantly increased resting peribronchiolar lymph node cell proliferation and production of T(H)2 cytokines (IL-4, IL-5, and IL-13) and IL-17 in comparison with air-exposed allergic mice. These results suggest that diesel exhaust at a relatively high concentration (500 μg/m(3)) can induce inflammation acutely in healthy mice and exacerbate some components of allergic responses, while comparable concentrations of B20 or B100 soy biodiesel fuels did not elicit responses different from those caused by air exposure alone.

  6. Heme Attenuation Ameliorates Irritant Gas Inhalation-Induced Acute Lung Injury

    PubMed Central

    Aggarwal, Saurabh; Lam, Adam; Bolisetty, Subhashini; Carlisle, Matthew A.; Traylor, Amie; Agarwal, Anupam

    2016-01-01

    Abstract Aims: Exposure to irritant gases, such as bromine (Br2), poses an environmental and occupational hazard that results in severe lung and systemic injury. However, the mechanism(s) of Br2 toxicity and the therapeutic responses required to mitigate lung damage are not known. Previously, it was demonstrated that Br2 upregulates the heme degrading enzyme, heme oxygenase-1 (HO-1). Since heme is a major inducer of HO-1, we determined whether an increase in heme and heme-dependent oxidative injury underlies the pathogenesis of Br2 toxicity. Results: C57BL/6 mice were exposed to Br2 gas (600 ppm, 30 min) and returned to room air. Thirty minutes postexposure, mice were injected intraperitoneally with a single dose of the heme scavenging protein, hemopexin (Hx) (3 μg/gm body weight), or saline. Twenty-four hours postexposure, saline-treated mice had elevated total heme in bronchoalveolar lavage fluid (BALF) and plasma and acute lung injury (ALI) culminating in 80% mortality after 10 days. Hx treatment significantly lowered heme, decreased evidence of ALI (lower protein and inflammatory cells in BALF, lower lung wet-to-dry weight ratios, and decreased airway hyperreactivity to methacholine), and reduced mortality. In addition, Br2 caused more severe ALI and mortality in mice with HO-1 gene deletion (HO-1−/−) compared to wild-type controls, while transgenic mice overexpressing the human HO-1 gene (hHO-1) showed significant protection. Innovation: This is the first study delineating the role of heme in ALI caused by Br2. Conclusion: The data suggest that attenuating heme may prove to be a useful adjuvant therapy to treat patients with ALI. Antioxid. Redox Signal. 24, 99–112. PMID:26376667

  7. Heme Attenuation Ameliorates Irritant Gas Inhalation-Induced Acute Lung Injury.

    PubMed

    Aggarwal, Saurabh; Lam, Adam; Bolisetty, Subhashini; Carlisle, Matthew A; Traylor, Amie; Agarwal, Anupam; Matalon, Sadis

    2016-01-10

    Exposure to irritant gases, such as bromine (Br2), poses an environmental and occupational hazard that results in severe lung and systemic injury. However, the mechanism(s) of Br2 toxicity and the therapeutic responses required to mitigate lung damage are not known. Previously, it was demonstrated that Br2 upregulates the heme degrading enzyme, heme oxygenase-1 (HO-1). Since heme is a major inducer of HO-1, we determined whether an increase in heme and heme-dependent oxidative injury underlies the pathogenesis of Br2 toxicity. C57BL/6 mice were exposed to Br2 gas (600 ppm, 30 min) and returned to room air. Thirty minutes postexposure, mice were injected intraperitoneally with a single dose of the heme scavenging protein, hemopexin (Hx) (3 μg/gm body weight), or saline. Twenty-four hours postexposure, saline-treated mice had elevated total heme in bronchoalveolar lavage fluid (BALF) and plasma and acute lung injury (ALI) culminating in 80% mortality after 10 days. Hx treatment significantly lowered heme, decreased evidence of ALI (lower protein and inflammatory cells in BALF, lower lung wet-to-dry weight ratios, and decreased airway hyperreactivity to methacholine), and reduced mortality. In addition, Br2 caused more severe ALI and mortality in mice with HO-1 gene deletion (HO-1-/-) compared to wild-type controls, while transgenic mice overexpressing the human HO-1 gene (hHO-1) showed significant protection. This is the first study delineating the role of heme in ALI caused by Br2. The data suggest that attenuating heme may prove to be a useful adjuvant therapy to treat patients with ALI.

  8. IL-13 is a central mediator of chemical-induced airway hyperreactivity in mice

    PubMed Central

    Devos, Fien C.; Pollaris, Lore; Cremer, Jonathan; Seys, Sven; Hoshino, Tomoaki; Ceuppens, Jan; Talavera, Karel; Nemery, Benoit; Hoet, Peter H. M.

    2017-01-01

    Background While the importance of the Th2 cytokine IL-13 as a central mediator of airway hyperreactivity (AHR) has been described in allergic protein-induced asthma, this has never been investigated in chemical-induced asthma. Objective We examined the importance of IL-13 in a mouse model of chemical-induced AHR, using toluene-2,4-diisocyanate (TDI). Methods In a first set-up, wild type (WT) and IL-13 knockout (KO) C57Bl/6 mice were dermally treated on days 1 and 8 with 1% TDI or vehicle (acetone/olive oil) on both ears. On day 15, mice received an intranasal instillation with 0.1% TDI or vehicle. In a second set-up, WT mice sensitized with 1% TDI or vehicle, received i.v. either anti-IL-13 or control antibody prior to the intranasal challenge. Results TDI-sensitized and TDI-challenged WT mice showed AHR to methacholine, in contrast to TDI-sensitized and TDI-challenged IL-13 KO mice, which also showed lower levels of total serum IgE. TDI-sensitized and TDI-challenged IL-13 KO mice had lower numbers of T-cells in the auricular lymph nodes. TDI-treated WT mice, receiving anti-IL-13, showed no AHR, in contrast to those receiving control antibody, despite increased levels of IgE. Anti-IL-13 treatment in TDI-treated WT mice resulted in lower levels of serum IL-13, but did not induce changes in T- and B-cell numbers, and in the cytokine production profile. Conclusion and clinical relevance We conclude that IL-13 plays a critical role in the effector phase of chemical-induced, immune-mediated AHR. This implicates that anti-IL-13 treatment could have a beneficial effect in patients with this asthma phenotype. PMID:28704401

  9. Interaction between gas cooking and GSTM1 null genotype in bronchial responsiveness: results from the European Community Respiratory Health Survey

    PubMed Central

    Amaral, André F S; Ramasamy, Adaikalavan; Castro-Giner, Francesc; Minelli, Cosetta; Accordini, Simone; Sørheim, Inga-Cecilie; Pin, Isabelle; Kogevinas, Manolis; Jõgi, Rain; Balding, David J; Norbäck, Dan; Verlato, Giuseppe; Olivieri, Mario; Probst-Hensch, Nicole; Janson, Christer; Zock, Jan-Paul; Heinrich, Joachim; Jarvis, Deborah L

    2014-01-01

    Background Increased bronchial responsiveness is characteristic of asthma. Gas cooking, which is a major indoor source of the highly oxidant nitrogen dioxide, has been associated with respiratory symptoms and reduced lung function. However, little is known about the effect of gas cooking on bronchial responsiveness and on how this relationship may be modified by variants in the genes GSTM1, GSTT1 and GSTP1, which influence antioxidant defences. Methods The study was performed in subjects with forced expiratory volume in one second at least 70% of predicted who took part in the multicentre European Community Respiratory Health Survey, had bronchial responsiveness assessed by methacholine challenge and had been genotyped for GSTM1, GSTT1 and GSTP1-rs1695. Information on the use of gas for cooking was obtained from interviewer-led questionnaires. Effect modification by genotype on the association between the use of gas for cooking and bronchial responsiveness was assessed within each participating country, and estimates combined using meta-analysis. Results Overall, gas cooking, as compared with cooking with electricity, was not associated with bronchial responsiveness (β=−0.08, 95% CI −0.40 to 0.25, p=0.648). However, GSTM1 significantly modified this effect (β for interaction=−0.75, 95% CI −1.16 to −0.33, p=4×10−4), with GSTM1 null subjects showing more responsiveness if they cooked with gas. No effect modification by GSTT1 or GSTP1-rs1695 genotypes was observed. Conclusions Increased bronchial responsiveness was associated with gas cooking among subjects with the GSTM1 null genotype. This may reflect the oxidant effects on the bronchi of exposure to nitrogen dioxide. PMID:24613990

  10. The effects of inhaled corticosteroids on intrinsic responsiveness and histology of airways from infant monkeys exposed to house dust mite allergen and ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joad, Jesse P.; Kott, Kayleen S.; Bric, John M.

    2008-01-15

    Inhaled corticosteroids (ICS) are recommended to treat infants with asthma, some with intermittent asthma. We previously showed that exposing infant monkeys to allergen/ozone resulted in asthma-like characteristics of their airways. We evaluated the effects of ICS on histology and intrinsic responsiveness of allergen/ozone-exposed and normal infant primate airways. Infant monkeys were exposed by inhalation to (1) filtered air and saline, (2) house dust mite allergen (HDMA) + ozone and saline, (3) filtered air and ICS (budesonide) or (4) HDMA + ozone and ICS. Allergen/ozone exposures started at 1 month and ICS at 3 months of age. At 6 months ofmore » age, methacholine-induced changes in luminal area of airways in proximal and distal lung slices were determined using videomicrometry, followed by histology of the same slices. Proximal airway responsiveness was increased by allergen/ozone and by ICS. Eosinophil profiles were increased by allergen/ozone in both proximal and distal airways, an effect that was decreased by ICS in distal airways. In both allergen/ozone- and air-exposed monkeys, ICS increased the number of alveolar attachments in distal airways, decreased mucin in proximal airways and decreased epithelial volume in both airways. ICS increased smooth muscle in air-exposed animals while decreasing it in allergen/ozone-exposed animals in both airways. In proximal airways, there was a small but significant positive correlation between smooth muscle and airway responsiveness, as well as between alveolar attachments and responsiveness. ICS change morphology and function in normal airways as well as allergen/ozone-exposed airways, suggesting that they should be reserved for infants with active symptoms.« less

  11. Protective effects of tiotropium alone or combined with budesonide against cadmium inhalation induced acute neutrophilic pulmonary inflammation in rats

    PubMed Central

    Zhi, Jianming; Gustin, Pascal

    2018-01-01

    As a potent bronchodilator, the anti-inflammatory effects of tiotropium and its interaction with budesonide against cadmium-induced acute pulmonary inflammation were investigated. Compared to values obtained in rats exposed to cadmium, cytological analysis indicated a significant decrease of total cell and neutrophil counts and protein concentration in bronchoalveolar lavage fluid (BALF) in rats pretreated with tiotropium (70μg/15ml or 350μg/15ml). Zymographic tests showed a decrease of MMP-2 activity in BALF in rats pretreated only with high concentration of tiotropium. Histological examination revealed a significant decrease of the severity and extent of inflammatory lung injuries in rats pretreated with both tested concentrations of tiotropium. Though tiotropium (70μg/15ml) or budesonide (250μg/15ml) could not reduce cadmium-induced bronchial hyper-responsiveness, their combination significantly decreased bronchial contractile response to methacholine. These two drugs separately decreased the neutrophil number and protein concentration in BALF but no significant interaction was observed when both drugs were combined. Although no inhibitory effects on MMP-2 and MMP-9 was observed in rats pretreated with budesonide alone, the combination with the ineffective dose of tiotropium induced a significant reduction on these parameters. The inhibitory effect of tiotropium on lung injuries was not influenced by budesonide which alone induced a limited action on the severity and extent of inflammatory sites. Our findings show that tiotropium exerts anti-inflammatory effects on cadmium-induced acute neutrophilic pulmonary inflammation. The combination of tiotropium with budesonide inhibits cadmium-induced inflammatory injuries with a synergistic interaction on MMP-2 and MMP-9 activity and airway hyper-responsiveness. PMID:29489916

  12. Protective effects of tiotropium alone or combined with budesonide against cadmium inhalation induced acute neutrophilic pulmonary inflammation in rats.

    PubMed

    Zhao, Shiwei; Yang, Qi; Yu, Zhixi; Lv, You; Zhi, Jianming; Gustin, Pascal; Zhang, Wenhui

    2018-01-01

    As a potent bronchodilator, the anti-inflammatory effects of tiotropium and its interaction with budesonide against cadmium-induced acute pulmonary inflammation were investigated. Compared to values obtained in rats exposed to cadmium, cytological analysis indicated a significant decrease of total cell and neutrophil counts and protein concentration in bronchoalveolar lavage fluid (BALF) in rats pretreated with tiotropium (70μg/15ml or 350μg/15ml). Zymographic tests showed a decrease of MMP-2 activity in BALF in rats pretreated only with high concentration of tiotropium. Histological examination revealed a significant decrease of the severity and extent of inflammatory lung injuries in rats pretreated with both tested concentrations of tiotropium. Though tiotropium (70μg/15ml) or budesonide (250μg/15ml) could not reduce cadmium-induced bronchial hyper-responsiveness, their combination significantly decreased bronchial contractile response to methacholine. These two drugs separately decreased the neutrophil number and protein concentration in BALF but no significant interaction was observed when both drugs were combined. Although no inhibitory effects on MMP-2 and MMP-9 was observed in rats pretreated with budesonide alone, the combination with the ineffective dose of tiotropium induced a significant reduction on these parameters. The inhibitory effect of tiotropium on lung injuries was not influenced by budesonide which alone induced a limited action on the severity and extent of inflammatory sites. Our findings show that tiotropium exerts anti-inflammatory effects on cadmium-induced acute neutrophilic pulmonary inflammation. The combination of tiotropium with budesonide inhibits cadmium-induced inflammatory injuries with a synergistic interaction on MMP-2 and MMP-9 activity and airway hyper-responsiveness.

  13. Downregulation of the cough reflex by aclidinium and tiotropium in awake and anesthetized rabbits.

    PubMed

    Mutolo, Donatella; Cinelli, Elenia; Iovino, Ludovica; Pantaleo, Tito; Bongianni, Fulvia

    2016-06-01

    Long-acting muscarinic receptor antagonists (LAMAs) have been reported to attenuate cough in preclinical and clinical studies. The present study was performed on rabbits to compare aclidinium and tiotropium efficacy in the downregulation of the cough reflex. This reflex was evoked by citric acid inhalation in unanesthetized animals and by both citric acid inhalation and mechanical stimulation of the tracheobronchial tree in anesthetized animals 90 min following the inhalation of each drug (nebulizer output always at 1 mL/min). Aclidinium 4 mg/mL and tiotropium 200 μg/mL inhaled in 1 min proved to have similar protective effect on methacholine-induced bronchoconstriction in anesthetized animals. The total dosage employed for aclidinium and tiotropium was 4 mg and 200 μg, respectively. In awake animals, similar reductions in the cough number were observed following 10-min inhalation of each drug with a slight, not significant tendency to higher antitussive effects for aclidinium. In anesthetized animals, 1-min inhalation of each drug caused similar depressant effects on cough responses induced by both mechanical and chemical stimulation. A complete suppression of cough responses to mechanical stimuli was seen in some preparations. The results strongly suggest that the LAMA-induced downregulation of cough may be mediated not only by transient receptor potential vanilloid type 1 channels, as already reported, but also by acid-sensing ion channels and mechanoreceptors. The route of administration along with the more rapid hydrolysis of aclidinium into inactive metabolites minimize potential systemic side effects and give to this drug a very favorable safety profile. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Serum Vitamin D Levels and Markers of Severity of Childhood Asthma in Costa Rica

    PubMed Central

    Brehm, John M.; Celedón, Juan C.; Soto-Quiros, Manuel E.; Avila, Lydiana; Hunninghake, Gary M.; Forno, Erick; Laskey, Daniel; Sylvia, Jody S.; Hollis, Bruce W.; Weiss, Scott T.; Litonjua, Augusto A.

    2009-01-01

    Rationale: Maternal vitamin D intake during pregnancy has been inversely associated with asthma symptoms in early childhood. However, no study has examined the relationship between measured vitamin D levels and markers of asthma severity in childhood. Objectives: To determine the relationship between measured vitamin D levels and both markers of asthma severity and allergy in childhood. Methods: We examined the relation between 25-hydroxyvitamin D levels (the major circulating form of vitamin D) and markers of allergy and asthma severity in a cross-sectional study of 616 Costa Rican children between the ages of 6 and 14 years. Linear, logistic, and negative binomial regressions were used for the univariate and multivariate analyses. Measurements and Main Results: Of the 616 children with asthma, 175 (28%) had insufficient levels of vitamin D (<30 ng/ml). In multivariate linear regression models, vitamin D levels were significantly and inversely associated with total IgE and eosinophil count. In multivariate logistic regression models, a log10 unit increase in vitamin D levels was associated with reduced odds of any hospitalization in the previous year (odds ratio [OR], 0.05; 95% confidence interval [CI], 0.004–0.71; P = 0.03), any use of antiinflammatory medications in the previous year (OR, 0.18; 95% CI, 0.05–0.67; P = 0.01), and increased airway responsiveness (a ≤8.58-μmol provocative dose of methacholine producing a 20% fall in baseline FEV1 [OR, 0.15; 95% CI, 0.024–0.97; P = 0.05]). Conclusions: Our results suggest that vitamin D insufficiency is relatively frequent in an equatorial population of children with asthma. In these children, lower vitamin D levels are associated with increased markers of allergy and asthma severity. PMID:19179486

  15. Gaps in capacity for respiratory care in developing countries. Nigeria as a case study.

    PubMed

    Obaseki, Daniel; Adeniyi, Bamidele; Kolawole, Tolulope; Onyedum, Cajetan; Erhabor, Gregory

    2015-04-01

    There are unmet needs for respiratory medical care in developing countries. We sought to evaluate the quality and capacity for respiratory care in low- and lower-middle-income countries, using Nigeria as a case study. We obtained details of the respiratory practice of consultants and senior residents (fellows) in respiratory medicine in Nigeria via a semistructured questionnaire administered to physician attendees at the 2013 National Congress of the Nigerian Thoracic Society. Out of 76 society-registered members, 48 attended the congress, 40 completed the questionnaire, and 35 provided complete data (73% adjusted response rate). Respondents provided information on the process and costs of respiratory medicine training and facility, equipment, and supply capacities at the institutions they represented. Approximately 83% reported working at a tertiary level (teaching) hospital; 91% reported capacity for sputum smear analysis for acid alcohol-fast bacilli, 37% for GeneXpert test cartridges, and 20% for BACTEC liquid sputum culture. Only 34% of respondents could perform full spirometry on patients, and none had the capacity for performing a methacholine challenge test or for measuring the diffusion capacity for carbon monoxide. We estimated the proportion of registered respiratory physicians to the national population at 1 per 2.3 million individuals. Thirteen states with an estimated combined population of 57.7 million offer no specialist respiratory services. Barriers to development of this capacity include the high cost of training. We conclude that substantial gaps exist in the capacity and quality of respiratory care in Nigeria, a pattern that probably mirrors most of sub-Saharan Africa and other countries of similar economic status. Health policy makers should address these gaps systematically.

  16. Characterization of cholinergic muscarinic receptor-stimulated phosphoinositide metabolism in brain from immature rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balduini, W.; Murphy, S.D.; Costa, L.G.

    Hydrolysis of phosphoinositides elicited by stimulation of cholinergic muscarinic receptors has been studied in brain from neonatal (7-day-old) rats in order to determine: (1) whether the neonatal rat could provide a good model system to study this signal-transduction pathway; and (2) whether potential differences with adult nerve tissue would explain the differential, age-related effects of cholinergic agonists. Accumulation of (3H) inositol phosphates in (3H)inositol prelabeled slices from neonatal and adult rats was measured as an index of phosphoinositide metabolism. Full (acetylcholine, methacholine, carbachol) and partial (oxotremorine, bethanechol) agonists had qualitatively similar, albeit quantitatively different, effects in neonatal and adult rats.more » Atropine and pirenzepine effectively blocked the carbachol-induced response with inhibition constants of 1.2 and 20.7 nM, respectively. In all brain areas, response to all agonists was higher in neonatal than adult rats, and in hippocampus and cerebral cortex the response was higher than in cerebellum or brainstem. The relative intrinsic activity of partial agonists was higher in the latter two areas (0.6-0.7) than in the former two (0.3-0.4). Carbachol-stimulated phosphoinositide metabolism in brain areas correlated well with the binding of (3H)QNB (r2 = 0.627) and, particularly, with (3H)pirenzepine (r2 = 0.911). In cerebral cortex the effect of carbachol was additive to that of norepinephrine and glutamate. The presence of calcium (250-500 microM) was necessary for maximal response to carbachol to be elicited; the EC50 value for Ca2+ was 65.4 microM. Addition of EDTA completely abolished the response. Removal of sodium ions from the incubation medium reduced the response to carbachol by 50%.« less

  17. Heart Rate Variability Biofeedback Does Not Substitute for Asthma Steroid Controller Medication.

    PubMed

    Lehrer, Paul M; Irvin, Charles G; Lu, Shou-En; Scardella, Anthony; Roehmheld-Hamm, Beatrix; Aviles-Velez, Milisyaris; Graves, Jessica; Vaschillo, Evgeny G; Vaschillo, Bronya; Hoyte, Flavia; Nelson, Harold; Wamboldt, Frederick S

    2018-03-01

    Despite previous findings of therapeutic effects for heart rate variability biofeedback (HRVB) on asthma, it is not known whether HRVB can substitute either for controller or rescue medication, or whether it affects airway inflammation. Sixty-eight paid volunteer steroid naïve study participants with mild or moderate asthma were given 3 months of HRVB or a comparison condition consisting of EEG alpha biofeedback with relaxing music and relaxed paced breathing (EEG+), in a two-center trial. All participants received a month of intensive asthma education prior to randomization. Both treatment conditions produced similar significant improvements on the methacholine challenge test (MCT), asthma symptoms, and asthma quality of life (AQOL). MCT effects were of similar size to those of enhanced placebo procedures reported elsewhere, and were 65% of those of a course of a high-potency inhaled steroid budesonide given to a sub-group of participants following biofeedback training. Exhaled nitric oxide decreased significantly only in the HRVB group, 81% of the budesonide effect, but with no significant differences between groups. Participants reported becoming more relaxed during practice of both techniques. Administration of albuterol after biofeedback sessions produced a large improvement in pulmonary function test results, indicating that neither treatment normalized pulmonary function as a potent controller medication would have done. Impulse oscillometry showed increased upper airway (vocal cord) resistance during biofeedback periods in both groups. These data suggest that HRVB should not be considered an alternative to asthma controller medications (e.g., inhaled steroids), although both biofeedback conditions produced some beneficial effects, warranting further research, and suggesting potential complementary effects. Various hypotheses are presented to explain why HRVB effects on asthma appeared smaller in this study than in earlier studies. Clinical Trial Registration NCT02766374.

  18. Pulmonary function, bronchial reactivity, and epithelial permeability are response phenotypes to ozone and develop differentially in healthy humans.

    PubMed

    Que, Loretta G; Stiles, Jane V; Sundy, John S; Foster, W Michael

    2011-09-01

    Effect of laboratory exposure to O₃ (220 ppb) and filtered air (FA) on respiratory physiology were evaluated at two time points (acute and 1 day postexposure) in healthy cohort (n = 138, 18-35 yr, 40% women) comprised mainly of Caucasian (60%) and African American (33.3%) subjects. Randomized exposures had a crossover design and durations of 2.25 h that included rest and treadmill walking. Airway responsiveness (AHR) to methacholine (Mch) and permeability of respiratory epithelium (EI) to hydrophilic radiomarker ((99m)Tc-DTPA, MW = 492), were measured at 1-day postexposure. O₃ significantly affected FEV₁ and FVC indices acutely with mean decrements from pre-exposure values on the order of 7.7 to 8.8% and 1.8 to 2.3% at 1-day post. Acute FEV₁ and FVC decreases were most robust in African American male subjects. At 1-day post, O₃ induced significant changes in AHR (slope of Mch dose response curve) and EI (Tc(99m)-DTPA clearance half-time). Based on conventional thresholds of response and dichotomous classification of subjects as responders and nonresponders, sensitivity to O₃ was shown to be nonuniform. Acute decrements ≥ 15% in FEV₁, a doubling of Mch slope, or ≥ 15% increase in EI developed in 20.3%, 23.1%, and 25.9%, respectively, of subjects evaluated. Results demonstrate a diffuse sensitivity to O₃ and physiological responses, either acutely (decreases in FEV₁) or 1 day post (development of AHR or change in EI) occur differentially in healthy young adults. Random overlap among subjects classified as responsive for respective FEV₁, AHR, and EI endpoints suggests these are separate and independent phenotypes of O₃ exposure.

  19. Pulmonary function, bronchial reactivity, and epithelial permeability are response phenotypes to ozone and develop differentially in healthy humans

    PubMed Central

    Que, Loretta G.; Stiles, Jane V.; Sundy, John S.

    2011-01-01

    Effect of laboratory exposure to O3 (220 ppb) and filtered air (FA) on respiratory physiology were evaluated at two time points (acute and 1 day postexposure) in healthy cohort (n = 138, 18–35 yr, 40% women) comprised mainly of Caucasian (60%) and African American (33.3%) subjects. Randomized exposures had a crossover design and durations of 2.25 h that included rest and treadmill walking. Airway responsiveness (AHR) to methacholine (Mch) and permeability of respiratory epithelium (EI) to hydrophilic radiomarker (99mTc-DTPA, MW = 492), were measured at 1-day postexposure. O3 significantly affected FEV1 and FVC indices acutely with mean decrements from pre-exposure values on the order of 7.7 to 8.8% and 1.8 to 2.3% at 1-day post. Acute FEV1 and FVC decreases were most robust in African American male subjects. At 1-day post, O3 induced significant changes in AHR (slope of Mch dose response curve) and EI (Tc99m-DTPA clearance half-time). Based on conventional thresholds of response and dichotomous classification of subjects as responders and nonresponders, sensitivity to O3 was shown to be nonuniform. Acute decrements ≥15% in FEV1, a doubling of Mch slope, or ≥15% increase in EI developed in 20.3%, 23.1%, and 25.9%, respectively, of subjects evaluated. Results demonstrate a diffuse sensitivity to O3 and physiological responses, either acutely (decreases in FEV1) or 1 day post (development of AHR or change in EI) occur differentially in healthy young adults. Random overlap among subjects classified as responsive for respective FEV1, AHR, and EI endpoints suggests these are separate and independent phenotypes of O3 exposure. PMID:21700892

  20. Early markers of airways inflammation and occupational asthma: Rationale, study design and follow-up rates among bakery, pastry and hairdressing apprentices

    PubMed Central

    Tossa, Paul; Bohadana, Abraham; Demange, Valérie; Wild, Pascal; Michaely, Jean-Pierre; Hannhart, Bernard; Paris, Christophe; Zmirou-Navier, Denis

    2009-01-01

    Background Occupational asthma is a common type of asthma caused by a specific agent in the workplace. The basic alteration of occupational asthma is airways inflammation. Although most patients with occupational asthma are mature adults, there is evidence that airways inflammation starts soon after inception of exposure, including during apprenticeship. Airways hyper responsiveness to methacholine is a valid surrogate marker of airways inflammation, which has proved useful in occupational epidemiology. But it is time-consuming, requires active subject's cooperation and is not readily feasible. Other non-invasive and potentially more useful tests include the forced oscillation technique, measurement of fraction exhaled nitric oxide, and eosinophils count in nasal lavage fluid. Methods and design This study aims to investigate early development of airways inflammation and asthma-like symptoms in apprentice bakers, pastry-makers and hairdressers, three populations at risk of occupational asthma whose work-related exposures involve agents of different nature. The objectives are to (i) examine the performance of the non-invasive tests cited above in detecting early airways inflammation that might eventually develop into occupational asthma; and (ii) evaluate whether, and how, constitutional (e.g. atopy) and behavioural (e.g. smoking) risk factors for occupational asthma modulate the effects of allergenic and/or irritative substances involved in these occupations. This paper presents the study rationale and detailed protocol. Discussion Among 441 volunteers included at the first visit, 354 attended the fourth one. Drop outs were investigated and showed unrelated to the study outcome. Sample size and follow-up participation rates suggest that the data collected in this study will allow it to meet its objectives. PMID:19389222

  1. Associations of airway inflammation and responsiveness markers in non asthmatic subjects at start of apprenticeship

    PubMed Central

    2010-01-01

    Background Bronchial Hyperresponsiveness (BHR) is considered a hallmark of asthma. Other methods are helpful in epidemiological respiratory health studies including Fractional Exhaled Nitric Oxide (FENO) and Eosinophils Percentage (EP) in nasal lavage fluid measuring markers for airway inflammation along with the Forced Oscillatory Technique measuring Airway resistance (AR). Can their outcomes discriminate profiles of respiratory health in healthy subjects starting apprenticeship in occupations with a risk of asthma? Methods Rhinoconjunctivitis, asthma-like symptoms, FEV1 and AR post-Methacholine Bronchial Challenge (MBC) test results, FENO measurements and EP were all investigated in apprentice bakers, pastry-makers and hairdressers not suffering from asthma. Multiple Correspondence Analysis (MCA) was simultaneously conducted in relation to these groups and this generated a synthetic partition (EI). Associations between groups of subjects based on BHR and EI respectively, as well as risk factors, symptoms and investigations were also assessed. Results Among the 441 apprentice subjects, 45 (10%) declared rhinoconjunctivitis-like symptoms, 18 (4%) declared asthma-like symptoms and 26 (6%) suffered from BHR. The mean increase in AR post-MBC test was 21% (sd = 20.8%). The median of FENO values was 12.6 ppb (2.6-132 range). Twenty-six subjects (6.7%) had EP exceeding 14%. BHR was associated with atopy (p < 0.01) and highest FENO values (p = 0.09). EI identified 39 subjects with eosinophilic inflammation (highest values of FENO and eosinophils), which was associated with BHR and atopy. Conclusions Are any of the identified markers predictive of increased inflammatory responsiveness or of development of symptoms caused by occupational exposures? Analysis of population follow-up will attempt to answer this question. PMID:20604945

  2. Early markers of airways inflammation and occupational asthma: rationale, study design and follow-up rates among bakery, pastry and hairdressing apprentices.

    PubMed

    Tossa, Paul; Bohadana, Abraham; Demange, Valérie; Wild, Pascal; Michaely, Jean-Pierre; Hannhart, Bernard; Paris, Christophe; Zmirou-Navier, Denis

    2009-04-23

    Occupational asthma is a common type of asthma caused by a specific agent in the workplace. The basic alteration of occupational asthma is airways inflammation. Although most patients with occupational asthma are mature adults, there is evidence that airways inflammation starts soon after inception of exposure, including during apprenticeship. Airways hyper responsiveness to methacholine is a valid surrogate marker of airways inflammation, which has proved useful in occupational epidemiology. But it is time-consuming, requires active subject's cooperation and is not readily feasible. Other non-invasive and potentially more useful tests include the forced oscillation technique, measurement of fraction exhaled nitric oxide, and eosinophils count in nasal lavage fluid. This study aims to investigate early development of airways inflammation and asthma-like symptoms in apprentice bakers, pastry-makers and hairdressers, three populations at risk of occupational asthma whose work-related exposures involve agents of different nature. The objectives are to (i) examine the performance of the non-invasive tests cited above in detecting early airways inflammation that might eventually develop into occupational asthma; and (ii) evaluate whether, and how, constitutional (e.g. atopy) and behavioural (e.g. smoking) risk factors for occupational asthma modulate the effects of allergenic and/or irritative substances involved in these occupations. This paper presents the study rationale and detailed protocol. Among 441 volunteers included at the first visit, 354 attended the fourth one. Drop outs were investigated and showed unrelated to the study outcome. Sample size and follow-up participation rates suggest that the data collected in this study will allow it to meet its objectives.

  3. Post-Exposure Antioxidant Treatment in Rats Decreases Airway Hyperplasia and Hyperreactivity Due to Chlorine Inhalation

    PubMed Central

    Bracher, Andreas; Doran, Stephen F.; Squadrito, Giuseppe L.; Fernandez, Solana; Postlethwait, Edward M.; Bowen, Larry; Matalon, Sadis

    2012-01-01

    We assessed the safety and efficacy of combined intravenous and aerosolized antioxidant administration to attenuate chlorine gas–induced airway alterations when administered after exposure. Adult male Sprague-Dawley rats were exposed to air or 400 parts per million (ppm) chlorine (a concentration likely to be encountered in the vicinity of industrial accidents) in environmental chambers for 30 minutes, and returned to room air, and they then received a single intravenous injection of ascorbic acid and deferoxamine or saline. At 1 hour and 15 hours after chlorine exposure, the rats were treated with aerosolized ascorbate and deferoxamine or vehicle. Lung antioxidant profiles, plasma ascorbate concentrations, airway morphology, and airway reactivity were evaluated at 24 hours and 7 days after chlorine exposure. At 24 hours after exposure, chlorine-exposed rats had significantly lower pulmonary ascorbate and reduced glutathione concentrations. Treatment with antioxidants restored depleted ascorbate in lungs and plasma. At 7 days after exposure, in chlorine-exposed, vehicle-treated rats, the thickness of the proximal airways was 60% greater than in control rats, with twice the amount of mucosubstances. Airway resistance in response to methacholine challenge was also significantly elevated. Combined treatment with intravenous and aerosolized antioxidants restored airway morphology, the amount of airway mucosubstances, and airway reactivity to control levels by 7 days after chlorine exposure. Our results demonstrate for the first time, to the best of our knowledge, that severe injury to major airways in rats exposed to chlorine, as characterized by epithelial hyperplasia, mucus accumulation, and airway hyperreactivity, can be reversed in a safe and efficacious manner by the post-exposure administration of ascorbate and deferoxamine. PMID:22162906

  4. Acute Lung Injury and Persistent Small Airway Disease in a Rabbit Model of Chlorine Inhalation

    PubMed Central

    Musah, Sadiatu; Schlueter, Connie F.; Humphrey, David M.; Powell, Karen S.; Roberts, Andrew M.; Hoyle, Gary W.

    2016-01-01

    Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbits were extubated and were allowed to survive for up to 24 h after exposure to 800 ppm chlorine for 4 min to study acute effects or up to 7 days after exposure to 400 ppm for 8 min to study longer term effects. Acute effects observed 6 or 24 h after inhalation of 800 ppm chlorine for 4 min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400 ppm chlorine for 8 min, rabbits exhibited mild hypoxemia, increased area of pressure-volume loops, and airway hyperreactivity. Lung histology 7 days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. PMID:27913141

  5. Dimethylthiourea protects against chlorine induced changes in airway function in a murine model of irritant induced asthma.

    PubMed

    McGovern, Toby K; Powell, William S; Day, Brian J; White, Carl W; Govindaraju, Karuthapillai; Karmouty-Quintana, Harry; Lavoie, Normand; Tan, Ju Jing; Martin, James G

    2010-10-06

    Exposure to chlorine (Cl2) causes airway injury, characterized by oxidative damage, an influx of inflammatory cells and airway hyperresponsiveness. We hypothesized that Cl2-induced airway injury may be attenuated by antioxidant treatment, even after the initial injury. Balb/C mice were exposed to Cl2 gas (100 ppm) for 5 mins, an exposure that was established to alter airway function with minimal histological disruption of the epithelium. Twenty-four hours after exposure to Cl2, airway responsiveness to aerosolized methacholine (MCh) was measured. Bronchoalveolar lavage (BAL) was performed to determine inflammatory cell profiles, total protein, and glutathione levels. Dimethylthiourea (DMTU;100 mg/kg) was administered one hour before or one hour following Cl2 exposure. Mice exposed to Cl2 had airway hyperresponsiveness to MCh compared to control animals pre-treated and post-treated with DMTU. Total cell counts in BAL fluid were elevated by Cl2 exposure and were not affected by DMTU treatment. However, DMTU-treated mice had lower protein levels in the BAL than the Cl2-only treated animals. 4-Hydroxynonenal analysis showed that DMTU given pre- or post-Cl2 prevented lipid peroxidation in the lung. Following Cl2 exposure glutathione (GSH) was elevated immediately following exposure both in BAL cells and in fluid and this change was prevented by DMTU. GSSG was depleted in Cl2 exposed mice at later time points. However, the GSH/GSSG ratio remained high in chlorine exposed mice, an effect attenuated by DMTU. Our data show that the anti-oxidant DMTU is effective in attenuating Cl2 induced increase in airway responsiveness, inflammation and biomarkers of oxidative stress.

  6. Exercise-associated Excessive Dynamic Airway Collapse in Military Personnel.

    PubMed

    Weinstein, Daniel J; Hull, James E; Ritchie, Brittany L; Hayes, Jackie A; Morris, Michael J

    2016-09-01

    Evaluation of military personnel for exertional dyspnea can present a diagnostic challenge, given multiple unique factors that include wide variation in military deployment. Initial consideration is given to common disorders such as asthma, exercise-induced bronchospasm, and inducible laryngeal obstruction. Excessive dynamic airway collapse has not been reported previously as a cause of dyspnea in these individuals. To describe the clinical and imaging characteristics of military personnel with exertional dyspnea who were found to have excessive dynamic collapse of large airways during exercise. After deployment to Afghanistan or Iraq, 240 active U.S. military personnel underwent a standardized evaluation to determine the etiology of persistent dyspnea on exertion. Study procedures included full pulmonary function testing, impulse oscillometry, exhaled nitric oxide measurement, methacholine challenge testing, exercise laryngoscopy, cardiopulmonary exercise testing, and fiberoptic bronchoscopy. Imaging included high-resolution computed tomography with inspiratory and expiratory views. Selected individuals underwent further imaging with dynamic computed tomography. A total of five men and one woman were identified as having exercise-associated excessive dynamic airway collapse on the basis of the following criteria: (1) exertional dyspnea without resting symptoms, (2) focal expiratory wheezing during exercise, (3) functional collapse of the large airways during bronchoscopy, (4) expiratory computed tomographic imaging showing narrowing of a large airway, and (5) absence of underlying apparent pathology in small airways or pulmonary parenchyma. Identification of focal expiratory wheezing correlated with bronchoscopic and imaging findings. Among 240 military personnel evaluated after presenting with postdeployment exertional dyspnea, a combination of symptoms, auscultatory findings, imaging, and visualization of the airways by bronchoscopy identified six individuals with excessive dynamic central airway collapse as the sole apparent cause of dyspnea. Exercise-associated excessive dynamic airway collapse should be considered in the differential diagnosis of exertional dyspnea.

  7. Do Low Molecular Weight Agents Cause More Severe Asthma than High Molecular Weight Agents?

    PubMed

    Meca, Olga; Cruz, María-Jesús; Sánchez-Ortiz, Mónica; González-Barcala, Francisco-Javier; Ojanguren, Iñigo; Munoz, Xavier

    2016-01-01

    The aim of this study was to analyse whether patients with occupational asthma (OA) caused by low molecular weight (LMW) agents differed from patients with OA caused by high molecular weight (HMW) with regard to risk factors, asthma presentation and severity, and response to various diagnostic tests. Seventy-eight patients with OA diagnosed by positive specific inhalation challenge (SIC) were included. Anthropometric characteristics, atopic status, occupation, latency periods, asthma severity according to the Global Initiative for Asthma (GINA) control classification, lung function tests and SIC results were analysed. OA was induced by an HMW agent in 23 patients (29%) and by an LMW agent in 55 (71%). A logistic regression analysis confirmed that patients with OA caused by LMW agents had a significantly higher risk of severity according to the GINA classification after adjusting for potential confounders (OR = 3.579, 95% CI 1.136-11.280; p = 0.029). During the SIC, most patients with OA caused by HMW agents presented an early reaction (82%), while in patients with OA caused by LMW agents the response was mainly late (73%) (p = 0.0001). Similarly, patients with OA caused by LMW agents experienced a greater degree of bronchial hyperresponsiveness, measured as the difference in the methacholine dose-response ratio (DRR) before and after SIC (1.77, range 0-16), compared with patients with OA caused by HMW agents (0.87, range 0-72), (p = 0.024). OA caused by LMW agents may be more severe than that caused by HMW agents. The severity of the condition may be determined by the different mechanisms of action of these agents.

  8. Permeability of ferret trachea in vitro to {sup 99m}{Tc}-DTPA and [{sup 14}C]antipyrine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanafi, Z.; Webber, S.E.; Widdicombe, J.G.

    1994-09-01

    Platelet-activating factor (PAF) and vasoactive drugs were tested on permeability of ferret trachea in vitro by measuring fluxes of {sup 99m}{Tc}-diethylenetriamine pentaacetic acid ({sup 99m}{Tc}-DTPA; hydrophilic) and [{sup 14}C]antipyrine ([{sup 14}C]AP; lipophilic) across the tracheal wall. Tracheae were bathed on both sides with Krebs-Henseleit buffer, with luminal buffer containing either {sup 99m}{Tc}-DTPA or [{sup 14}C]AP. Luminal and abluminal radioactivities, potential difference, and tracheal smooth muscle tone were measured. Baseline {sup 99m}{Tc}-DTPA and [{sup 14}C]AP permeability coefficients were - 4.7 {+-} 0.6 (SE) x 10{sup {minus}7} and -2.2 {+-} 0.1 x 10{sup {minus}5} cm/s, respectively. PAF (10 {mu}M) increased permeability tomore » {sup 99m}{Tc}-DTPA to -35.3 {+-} 7.6 x 10{sup {minus}7} cm/s (P < 0.05), but permeability to [{sup 14}C]AP did not change, suggesting that paracellular but not transcellular transport was affected. Abluminal and luminal applications of methacholine (MCh, 20 {mu}M), phenylephrine (PE, 100 {mu}M), and albuterol (Alb, 100 {mu}M) caused no change in permeability to {sup 99m}{Tc}-DTPA before or after exposure to luminal PAF, but abluminal histamine (Hist, 10 {mu}M) significantly increased permeability. Abluminal Hist decreased permeability to [{sup 14}C]AP before and after exposure to PAF. MCh, PE, and Hist increased smooth muscle tone; Alb and PAF had no effect. Thus, only PAF and Hist altered permeability to {sup 99m}{Tc}-DTPA, and MCh, PE, and Hist changed smooth muscle tone. Tracheal permeability changes were greater for the hydrophilic than for the lipophilic agent. 37 refs., 11 figs., 1 tab.« less

  9. Association of IL-13 gene polymorphisms with airway hyperresponsiveness in a Japanese adult asthmatic population.

    PubMed

    Utsumi, Yu; Sasaki, Nobuhito; Nagashima, Hiromi; Suzuki, Naomi; Nakamura, Yutaka; Yamashita, Masahiro; Kobayashi, Hitoshi; Yamauchi, Kohei

    2013-09-01

    A single nucleotide polymorphism (SNP; rs20541) in the IL-13 gene has been recognized as a risk factor for asthma. This SNP causes Arg to Gln (Q) substitution at position 110 in the mature IL-13 protein. We have recently showed that FEV1 in asthmatics with the Q110 variant of IL-13 declined faster, and progressive airway remodeling was observed in these subjects (Wynn, 2003 [1]). However, the effects of the IL-13 variant on airway hyperresponsiveness (AHR) remain to be elucidated. We analyzed the relationship between SNP rs20541 in IL-13 and AHR in asthmatics. We recruited 182 asthmatics who visited the asthma outpatient clinic at Iwate Medical University Hospital from 2006 to 2011. Subjects were genotyped for rs20541. Asthma severity, atopic status, age of asthma onset, serum IgE concentration, AHR, and pulmonary function were studied in these subjects. AHR was measured using the continuous methacholine inhalation method (Astograph; Chest; Tokyo, Japan). Genotyping of rs20541 revealed 26 A/A, 77 A/G, and 79 G/G patient genotypes. The D min (U) of the 3 genotypes was 1.17±0.300 in A/A, 1.99±0.35 in A/G, and 2.85±0.39 in G/G. The D min in the 3 genotypes was significantly different. Spirometric data revealed that % FEV1 and % FEF75 were significantly different among the 3 groups of IL-13 genotypes, whereas no significant differences were observed in therapeutic steps, atopic status, house dust mite sensitization, or serum IgE concentration. The SNP rs20541 in IL-13 was associated with AHR in Japanese adult asthmatics. Copyright © 2013 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  10. Enhanced basophil histamine release and neutrophil chemotactic activity predispose grain dust-induced airway obstruction.

    PubMed

    Park, H; Jung, K; Kang, K; Nahm, D; Cho, S; Kim, Y

    1999-04-01

    The pathogenic mechanism of grain dust (GD)-induced occupational asthma (OA) remains unclear. To understand further the mechanism of GD-induced OA. Fifteen employees working in a same GD industry, complaining of work-related respiratory symptoms, were enrolled and were divided into two groups according to the GD-bronchoprovocation test (BPT) result: six positive responders were grouped as group III, nine negative responders as group II and five healthy controls as group I. Serum GD-specific immunoglobulin (Ig)E (sIgE), specific IgG (sIgG) and specific IgG4 (sIgG4) antibodies were detected by enzyme-linked immunosorbent assay. Basophil histamine release was measured by the autofluorometric method, and changes of serum neutrophil chemotactic activity were observed by the Boyden chamber method. For clinical parameters such as degree of airway hyperresponsiveness to methacholine, duration of respiratory symptoms, exposure duration, and prevalences of serum sIgE, sIgG and sIgG4 antibodies, there were no significant differences between group II and III (P > 0.05, respectively). Serum neutrophil chemotactic activity increased significantly at 30 min and decreased at 240 min after the GD-BPT in group III subjects (P < 0.05, respectively), while no significant changes were noted in group II subjects (P > 0.05). Basophil histamine release induced by GD was significantly higher in group III than those of group I or group II (P < 0.05, respectively), while minimal release of anti-IgG4 antibodies was noted in all three groups. These results suggest that enhanced basophil histamine release and serum neutrophil chemotactic activity might contribute to the development of GD-induced occupational asthma.

  11. Ca(2+)-activated K(+) channel-3.1 blocker TRAM-34 attenuates airway remodeling and eosinophilia in a murine asthma model.

    PubMed

    Girodet, Pierre-Olivier; Ozier, Annaig; Carvalho, Gabrielle; Ilina, Olga; Ousova, Olga; Gadeau, Alain-Pierre; Begueret, Hugues; Wulff, Heike; Marthan, Roger; Bradding, Peter; Berger, Patrick

    2013-02-01

    Key features of asthma include bronchial hyperresponsiveness (BHR), eosinophilic airway inflammation, and bronchial remodeling, characterized by subepithelial collagen deposition, airway fibrosis, and increased bronchial smooth muscle (BSM) mass. The calcium-activated K(+) channel K(Ca)3.1 is expressed by many cells implicated in the pathogenesis of asthma, and is involved in both inflammatory and remodeling responses in a number of tissues. The specific K(Ca)3.1 blocker 5-[(2-chlorophenyl)(diphenyl)methyl]-1H-pyrazole (TRAM-34) attenuates BSM cell proliferation, and both mast cell and fibrocyte recruitment in vitro. We aimed to examine the effects of K(Ca)3.1 blockade on BSM remodeling, airway inflammation, and BHR in a murine model of chronic asthma. BALB/c mice were sensitized with intraperitoneal ovalbumin (OVA) on Days 0 and 14, and then challenged with intranasal OVA during Days 14-75. OVA-sensitized/challenged mice received TRAM-34 (120 mg/kg/day, subcutaneous) from Days -7 to 75 (combined treatment), Days -7 to 20 (preventive treatment), or Days 21 to 75 (curative treatment). Untreated mice received daily injections of vehicle (n = 8 per group). Bronchial remodeling was assessed by histological and immunohistochemical analyses. Inflammation was evaluated using bronchoalveolar lavage and flow cytometry. We also determined BHR in both conscious and anesthetized mice via plethysmography. We demonstrated that curative treatment with TRAM-34 abolishes BSM remodeling and subbasement collagen deposition, and attenuates airway eosinophilia. Although curative treatment alone did not significantly reduce BHR, the combined treatment attenuated nonspecific BHR to methacholine. This study indicates that K(Ca)3.1 blockade could provide a new therapeutic strategy in asthma.

  12. Age‐related differences in postsynaptic increases in sweating and skin blood flow postexercise

    PubMed Central

    Stapleton, Jill M.; Fujii, Naoto; McGinn, Ryan; McDonald, Katherine; Kenny, Glen P.

    2014-01-01

    Abstract The influence of peripheral factors on the control of heat loss responses (i.e., sweating and skin blood flow) in the postexercise period remains unknown in young and older adults. Therefore, in eight young (22 ± 3 years) and eight older (65 ± 3 years) males, we examined dose‐dependent responses to the administration of acetylcholine (ACh) and methacholine (MCh) for sweating (ventilated capsule), as well as to ACh and sodium nitroprusside (SNP) for cutaneous vascular conductance (CVC, laser‐Doppler flowmetry, % of max). In order to assess if peripheral factors are involved in the modulation of thermoeffector activity postexercise, pharmacological agonists were perfused via intradermal microdialysis on two separate days: (1) at rest (DOSE) and (2) following a 30‐min bout of exercise (Ex+DOSE). No differences in sweat rate between the DOSE and Ex+DOSE conditions at either ACh or MCh were observed for the young (ACh: P =0.992 and MCh: P =0.710) or older (ACh: P =0.775 and MCh: P =0.738) adults. Similarly, CVC was not different between the DOSE and Ex+DOSE conditions for the young (ACh: P =0.123 and SNP: P =0.893) or older (ACh: P =0.113 and SNP: P =0.068) adults. Older adults had a lower sweating response for both the DOSE (ACh: P =0.049 and MCh: P =0.006) and Ex+DOSE (ACh: P =0.050 and MCh: P =0.029) conditions compared to their younger counterparts. These findings suggest that peripheral factors do not modulate postexercise sweating and skin blood flow in both young and older adults. Additionally, sweat gland function is impaired in older adults, albeit the impairments were not exacerbated during postexercise recovery. PMID:25347861

  13. Characterization of muscarinic receptors mediating relaxation and contraction in the rat iris dilator muscle.

    PubMed Central

    Masuda, Y; Yamahara, N S; Tanaka, M; Ryang, S; Kawai, T; Imaizumi, Y; Watanabe, M

    1995-01-01

    1. The characteristics of muscarinic receptors mediating relaxation and/or contraction in the rat iris dilator muscle were examined. 2. Relaxation was induced in a dilator muscle by application of acetylcholine (ACh) at low doses (3 microM or less) and contraction was induced by high doses. Methacholine and carbachol also showed biphasic effects similar to those of ACh; in contrast, bethanechol, arecoline, pilocarpine and McN-A-343 induced mainly relaxation but no substantial contraction. 3. After parasympathetic denervation by ciliary ganglionectomy, the relaxant response to muscarinic agonists disappeared upon nerve stimulation. Application of McN-A-343 and pilocarpine induced only small contractions in denervated dilator muscles, indicating that these are partial agonists for contraction. 4. pA2 values of pirenzepine, methoctramine, AF-DX 116, himbacine, and 4-DAMP for antagonism to pilocarpine-induced relaxation in normal dilator muscles and those for antagonism to ACh-induced contraction in denervated dilator muscles were determined. The pA2 values for antagonism to relaxation of all these antagonists were most similar to those for M3-type muscarinic receptors. 5. Although pA2 values for contraction of these antagonists, except for methoctramine, were very close to those for relaxation, contraction was not significantly antagonized by methoctramine. Contraction might be mediated by M3-like receptors which have a very low affinity for methoctramine. 6. In conclusion, ACh-induced biphasic responses in rat iris dilator muscles were clearly distinguished from each other by specific muscarinic agonists and parasympathetic denervation, whereas muscarinic receptors could not be subclassified according to the pA2 values of 5 specific antagonists only. PMID:7539696

  14. Pattern of airway inflammation and remodelling in mild persistent atopic asthma and in mild persistent asthma related to gastroesophageal reflux.

    PubMed

    Dal Negro, R W; Guerriero, M; Micheletto, C

    2012-12-01

    The increase of basement membrane thickness (BMAT) represents a structural feature described as commonly characterizing airway remodelling in asthma, even if the non-atopic condition had been investigated only episodically from this point of view. Gastrooesophageal-reflux is a pathological condition which can frequently cause and/or sustain asthma in non-atopic individuals. The aim of the study was to measure BMT; some inflammatory mediators in BAL; cys-leucotrienes (LTE4) in urine; e-NO, and BHR to Methacholine (MCh) in mild atopic and in mild non-atopic, GER-related asthma. After their informed consent, 25 mild atopic (40.9 years +/- 13.1 sd, FEV1 = 95.9% pred. +/- 12.9 sd) and 39 non-atopic, GER-related asthmatics (57.3 years +/- 14.2 ds, FEVY1 = 101.3% pred. +/- 12.2 sd), nonsmoker and of a comparable asthma duration, underwent measurements of basal lung function and bronchial response to MCh (PD20 FEV1); endobronchial biopsies and BAL (in the right middle lobe), and a 24-h gastroesophageal pHmetry. Atopic GER-related asthma showed two distinct patterns of airway inflammation. The eosinophilic contribution to airway inflammation was systematically prevailing in the former group, such as: EOS = 10.7% +/- 13.4 sd vs 2.0% +/- 2.8 sd, p = 0.001; ECP = 344.9 mcg/l +/- 635.9 sd vs 59.2 mcg/l +/- 75.1 sd, p = 0.001. Data from the present study are suggesting that persistent mild atopic and mild GER-related asthma seem to represent two distinct phenotypes of asthma in terms of airway remodelling, and in particular of BMT involvement.

  15. Between-Visit Variability in FEV1 as a Diagnostic Test for Asthma in Adults.

    PubMed

    Dean, Benjamin W; Birnie, Erin E; Whitmore, G A; Vandemheen, Katherine L; Boulet, Louis-Philippe; FitzGerald, J Mark; Ainslie, Martha; Gupta, Samir; Lemiere, Catherine; Field, Stephen K; McIvor, R Andrew; Hernandez, Paul; Mayers, Irvin; Aaron, Shawn D

    2018-06-07

    The reliability of using between-visit variation in FEV1 to diagnose asthma is understudied, and hence uncertain. To determine if FEV1 variability measured over recurrent visits is significantly associated with a diagnosis of current asthma. Randomly-selected adults (N=964) with a history of physician-diagnosed asthma were studied from 2005-2007 and from 2012-2016. A diagnosis of current asthma was confirmed in those participants who exhibited bronchial hyper-responsiveness to methacholine and/or acute worsening of asthma symptoms while being weaned off asthma medications. Regression analyses and receiver operating curves were used to evaluate the ability of between-visit FEV1 variability to diagnose asthma. A current diagnosis of asthma was confirmed in 584 of 964 participants (60%). Between-visit absolute variability in FEV1 was significantly greater in those in whom current asthma was confirmed, compared to those in whom current asthma was ruled out (7.3% vs 4.8%, mean difference between the 2 groups = 2.5%; 95% CI: 1.7-3.3%). However, a 12 percent and 200 mL between-visit variation in FEV1, which is the diagnostic threshold recommended by GINA, exhibited a sensitivity of only 0.17 and a specificity of 0.94 for confirming current asthma. A between-visit absolute variability in FEV1 ≥ 12% and 200 ml increased the pre-test probability of asthma from 60% to a post-test probability of 81%. A 12% and 200 mL between-visit variation in FEV1, if present, has reasonably good specificity for diagnosing asthma, but has poor sensitivity compared to bronchial challenge testing. Between-visit variability in FEV1 is a relatively unhelpful test to establish a diagnosis of asthma.

  16. Vital capacities in acute and chronic airway obstruction: dependence on flow and volume histories.

    PubMed

    Brusasco, V; Pellegrino, R; Rodarte, J R

    1997-06-01

    The aim of this study was to investigate whether measurements of vital capacity (VC) are affected by the direction of the manoeuvre (inspiratory vs expiratory) and by the rate of expiratory flow. The study was performed on 25 individuals with chronic airway obstruction (CAO) and a forced expiratory volume in one second (FEV1) (expressed in standardized residuals (SR)) of -2.0+/-1.4 SD (CAO group), and 10 asthmatic subjects with methacholine (MCh)-induced bronchoconstriction (FEV1 -23+/-1.02 SR) (MCh group). VCs were measured during fast inspiration following both slow (FIVCse) and forced (FIVCfe) expiration from end-tidal inspiration to residual volume (RV), and during slow (EVC) or forced (FVC) expiration from total lung capacity (TLC). In the CAO group, FVC was the smallest volume (3.75+/-1.03 L) and significantly different from the other three estimates of VC; FIVCse (4.03+/-0.91 L) was the largest volume and significantly different from FVC and FIVCfe (3.83+/-0.98 L). In the MCh group, FVC (4.16+/-0.94 L) and EVC (4.19+/-0.89 L) were the largest volumes, although only the difference between FVC and FIVCfe (3.76+/-0.81 L) reached statistical significance. These data suggest that both flow and volume histories contribute to decreased vital capacities during bronchoconstriction. However, whereas increasing expiratory flow always tends to decrease vital capacity, the volume history of full inflation has different effects in chronic and acute bronchoconstriction, probably due to different effects on airway calibre. These results stress the importance of using standardized manoeuvres in order to obtain comparable values of vital capacity.

  17. Identification of genes differentially regulated by vitamin D deficiency that alter lung pathophysiology and inflammation in allergic airways disease.

    PubMed

    Foong, Rachel E; Bosco, Anthony; Troy, Niamh M; Gorman, Shelley; Hart, Prue H; Kicic, Anthony; Zosky, Graeme R

    2016-09-01

    Vitamin D deficiency is associated with asthma risk. Vitamin D deficiency may enhance the inflammatory response, and we have previously shown that airway remodeling and airway hyperresponsiveness is increased in vitamin D-deficient mice. In this study, we hypothesize that vitamin D deficiency would exacerbate house dust mite (HDM)-induced inflammation and alterations in lung structure and function. A BALB/c mouse model of vitamin D deficiency was established by dietary manipulation. Responsiveness to methacholine, airway smooth muscle (ASM) mass, mucus cell metaplasia, lung and airway inflammation, and cytokines in bronchoalveolar lavage (BAL) fluid were assessed. Gene expression patterns in mouse lung samples were profiled by RNA-Seq. HDM exposure increased inflammation and inflammatory cytokines in BAL, baseline airway resistance, tissue elastance, and ASM mass. Vitamin D deficiency enhanced the HDM-induced influx of lymphocytes into BAL, ameliorated the HDM-induced increase in ASM mass, and protected against the HDM-induced increase in baseline airway resistance. RNA-Seq identified nine genes that were differentially regulated by vitamin D deficiency in the lungs of HDM-treated mice. Immunohistochemical staining confirmed that protein expression of midline 1 (MID1) and adrenomedullin was differentially regulated such that they promoted inflammation, while hypoxia-inducible lipid droplet-associated, which is associated with ASM remodeling, was downregulated. Protein expression studies in human bronchial epithelial cells also showed that addition of vitamin D decreased MID1 expression. Differential regulation of these genes by vitamin D deficiency could determine lung inflammation and pathophysiology and suggest that the effect of vitamin D deficiency on HDM-induced allergic airways disease is complex. Copyright © 2016 the American Physiological Society.

  18. Trichostatin A Abrogates Airway Constriction, but Not Inflammation, in Murine and Human Asthma Models

    PubMed Central

    Trivedi, Chinmay M.; Damera, Gautam; Jiang, Meiqi; Jester, William; Hoshi, Toshinori; Epstein, Jonathan A.; Panettieri, Reynold A.

    2012-01-01

    Histone deacetylase (HDAC) inhibitors may offer novel approaches in the treatment of asthma. We postulate that trichostatin A (TSA), a Class 1 and 2 inhibitor of HDAC, inhibits airway hyperresponsiveness in antigen-challenged mice. Mice were sensitized and challenged with Aspergillus fumigatus antigen (AF) and treated with TSA, dexamethasone, or vehicle. Lung resistance (RL) and dynamic compliance were measured, and bronchial alveolar lavage fluid (BALF) was analyzed for numbers of leukocytes and concentrations of cytokines. Human precision-cut lung slices (PCLS) were treated with TSA and their agonist-induced bronchoconstriction was measured, and TSA-treated human airway smooth muscle (ASM) cells were evaluated for the agonist-induced activation of Rho and intracellular release of Ca2+. The activity of HDAC in murine lungs was enhanced by antigen and abrogated by TSA. TSA also inhibited methacholine (Mch)-induced increases in RL and decreases in dynamic compliance in naive control mice and in AF-sensitized and -challenged mice. Total cell counts, concentrations of IL-4, and numbers of eosinophils in BALF were unchanged in mice treated with TSA or vehicle, whereas dexamethasone inhibited the numbers of eosinophils in BALF and concentrations of IL-4. TSA inhibited the carbachol-induced contraction of PCLS. Treatment with TSA inhibited the intracellular release of Ca2+ in ASM cells in response to histamine, without affecting the activation of Rho. The inhibition of HDAC abrogates airway hyperresponsiveness to Mch in both naive and antigen-challenged mice. TSA inhibits the agonist-induced contraction of PCLS and mobilization of Ca2+ in ASM cells. Thus, HDAC inhibitors demonstrate a mechanism of action distinct from that of anti-inflammatory agents such as steroids, and represent a promising therapeutic agent for airway disease. PMID:22298527

  19. Mechanisms determining cholinergic neural responses in airways of young and mature rabbits.

    PubMed

    Larsen, Gary L; Loader, Joan; Nguyen, Dee Dee; Fratelli, Cori; Dakhama, Azzeddine; Colasurdo, Giuseppe N

    2004-08-01

    Neural pathways help control airway caliber and responsiveness. Yet little is known of how neural control changes as a function of development. In rabbits, we found electrical field stimulation (EFS) of airway nerves led to more marked contractile responses in 2- vs. 13-week-old animals. This enhanced response to EFS may be due to prejunctional, junctional, and/or postjunctional neural mechanisms. We assessed these mechanisms in airways of 2- and 13-week-old rabbits. The contractile responses to methacholine did not differ in the groups, suggesting postjunctional neural events are not primarily responsible for differing responses to EFS. To address junctional events, acetylcholinesterase (AChE) was measured (spectrophotometry). AChE was elevated in 2-week-olds. However, this should lead to less and not greater responses. Prejunctionally, EFS-induced acetylcholine (ACh) release was assessed by HPLC. Airways of 2-week-old rabbits released significantly more ACh than airways from mature rabbits. Choline acetyltransferase, a marker of cholinergic nerves, was not different between groups, suggesting that more ACh release in young rabbits was not due to increased nerve density. ACh release in the presence of polyarginine increased significantly in both groups, supporting the presence of functional muscarinic autoreceptors (M2) at both ages. Because substance P (SP) increases release of ACh, SP was measured by ELISA. This neuropeptide was significantly elevated in airways of younger rabbits. Nerve growth factor (NGF) increased SP and was also significantly increased in airways from younger rabbits. This work suggests that increases in EFS-induced responsiveness in young rabbits are likely due to prejunctional events with enhanced release of ACh. Increases in NGF and SP early in life may contribute to this increased responsiveness. Copyright 2004 Wiley-Liss, Inc.

  20. Tachykinin control of ferret airways: mucus secretion, bronchoconstriction and receptor mapping.

    PubMed

    Meini, S; Mak, J C; Rohde, J A; Rogers, D F

    1993-02-01

    The effects of synthetic tachykinin receptor agonists on mucus secretion by ferret trachea was determined in vitro in Ussing chambers using 35SO4 as a mucus marker and the synthetic peptides [Sar9,Met(O2)11]substance P (SarSP), [beta Ala8]neurokinin A-(4-10) and [MePhe7] neurokinin B which are selective for NK1, NK2 and NK3 tachykinin-receptors respectively. The bronchomotor effects of the same agonists were also studied in vitro and tachykinin receptors were localized by autoradiographic mapping. SarSP was the only synthetic agonist able to elicit a concentration-dependent increase in mucus secretion and was much more potent than SP. The EC50 for SarSP was 1.7 x 10(-6) M. Moreover, the maximal increase in release of 35SO4 produced by SarSP 10(-5) M was 95% of the increase produced by methacholine 10(-4) M indicating that this concentration of SarSP induced a near maximal secretory response. There was no significant difference in the secretory action of SP administered from the luminal or the submucosal side of the tissue. Only the NK2 agonist was able to produce a concentration-dependent contractility of bronchial ring preparations and its effect was relatively weak (EC50 6.4 x 10(-6) M). Capsaicin (10(-5) M) produced only a slight increase in tracheal mucus secretion (28 +/- 5%; n = 6) and was completely ineffective in inducing bronchoconstriction. Binding sites for [125I]-Bolton Hunter SP were more evident than sites for [125I]-NKA on submucosal glands and epithelium. In contrast, only binding sites to NKA could be observed over the smooth muscle.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Sensitivity of disease parameters to flexible budesonide/formoterol treatment in an allergic rat model.

    PubMed

    Brange, Charlotte; Smailagic, Amir; Jansson, Anne-Helene; Middleton, Brian; Miller-Larsson, Anna; Taylor, John D; Silberstein, David S; Lal, Harbans

    2009-02-01

    Clinical studies show that flexible dosing (maintenance and symptom-driven dose adjustments) of budesonide and formoterol (BUD/FORM) improves control of asthma exacerbations as compared to fixed maintenance dosing protocols (maintenance therapy) even when the latter utilize higher BUD/FORM doses. This suggests that dose-response relationships for certain pathobiologic mechanisms in asthma shift over time. Here, we have conducted animal studies to address this issue. (1) To test in an animal asthma-like model whether it is possible to achieve the same or greater pharmacological control over bronchoconstriction and airway/lung inflammation, and with less total drug used, by flexible BUD/FORM dosing (upward adjustment of doses) in association with allergen challenges. (2) To determine whether the benefit requires adjustment of both drug components. Rats sensitized on days 0 and 7 were challenged intratracheally with ovalbumin on days 14 and 21. On days 13-21, rats were treated intratracheally with fixed maintenance or flexible BUD/FORM combinations. On day 22, rats were challenged with methacholine and lungs were harvested for analysis. A flexible BUD/FORM dosing regimen (using 3.3 times less total drug than the fixed maintenance high dose regimen), delivered the same or greater reductions of excised lung gas volume (a measure of gas trapped in lung by bronchoconstriction) and lung weight (a measure of inflammatory oedema). When either BUD or FORM alone was increased on days of challenge, the benefit of the flexible dose upward adjustment was lost. Flexible dosing of the BUD/FORM combination improves the pharmacological inhibition of allergen-induced bronchoconstriction and an inflammatory oedema in an allergic asthma-like rat model.

  2. TUNGSTEN BRONZE RELATED NON-NOBLE ELECTROCATALYSTS.

    DTIC Science & Technology

    FUEL CELLS, *CATALYSTS), (*OXYGEN, *ELECTRODES), (* SILICIDES , ELECTRODES), (*CARBIDES, ELECTRODES), (*TUNGSTEN COMPOUNDS, *ELECTROCHEMISTRY...CATALYSTS, TITANIUM COMPOUNDS, ZIRCONIUM COMPOUNDS, VANADIUM COMPOUNDS, NIOBIUM COMPOUNDS, TUNGSTEN COMPOUNDS, TANTALUM COMPOUNDS, MOLYBDENUM COMPOUNDS, SULFURIC ACID, CRYSTAL GROWTH, SODIUM COMPOUNDS

  3. Pharmacists' Perceptions of the Economic Value of Compounded Pharmaceuticals: A Comparison of Compounded and Commercial Pharmaceuticals in Select Disease States.

    PubMed

    Lobb, William B; Wilkin, Noel E; Holmes, Erin R

    2015-01-01

    Studies have been conducted to assess patient satisfaction with compounded pharmaceuticals and to directly compare compounded pharmaceuticals with their comparable commercial pharmaceuticals. Yet, the economic value of or potential for economic value derived from compounded pharmaceuticals relative to commercial pharmaceuticals is still not known. Therefore, the purpose of this study was to assess and compare compounding and non-compounding pharmacists' perceptions of the economic value of compounded preparations relative to commercial products. In-depth interviews with 10 compounding pharmacists and physicians who prescribe compounded prescription pharmaceutical preparations were conducted to help develop a self-administered questionnaire distributed to 50 compounding and 50 non-compounding pharmacists. Compounding and non-compounding pharmacists' perceptions differed most often in the context of compounded pharmaceuticals for pediatric patients. However, both groups responded with moderate agreement that compounded prescription treatments are more profitable for the pharmacy than commercial prescription treatments in most therapeutic areas. This research sought to understand the perception of pharmacists of areas for potential direct and indirect economic cost savings as a result of compounding. For all items whereby compounding and non-compounding pharmacists' ratings were significantly different, compounding pharmacists more strongly believed that compounding pharmaceuticals offered benefit and vice versa. The differences in ratings that were most common were those that directly compared the economic value of compounding and commercial pharmaceuticals, with compounding pharmacists more strongly agreeing with the potential cost savings associated with compounded pharmaceuticals. Based on these findings, prescription compounds are believed to have a benefit to the health system by those who provide them. Future research should proactively explore the economic benefit of compounded preparations compared to conventionally manufactured products to determine the economic value of compounded pharmaceuticals for patients, pharmacies, physicians, and the healthcare system.

  4. Energy efficient synthesis of boranes

    DOEpatents

    Thorn, David L [Los Alamos, NM; Tumas, William [Los Alamos, NM; Schwarz, Daniel E [Los Alamos, NM; Burrell, Anthony K [Los Alamos, NM

    2012-01-24

    The reaction of halo-boron compounds (B--X compounds, compounds having one or more boron-halogen bonds) with silanes provides boranes (B--H compounds, compounds having one or more B--H bonds) and halosilanes. Inorganic hydrides, such as surface-bound silane hydrides (Si--H) react with B--X compounds to form B--H compounds and surface-bound halosilanes. The surface bound halosilanes are converted back to surface-bound silanes electrochemically. Halo-boron compounds react with stannanes (tin compounds having a Sn--H bond) to form boranes and halostannanes (tin compounds having a Sn--X bond). The halostannanes are converted back to stannanes electrochemically or by the thermolysis of Sn-formate compounds. When the halo-boron compound is BCl.sub.3, the B--H compound is B.sub.2H.sub.6, and where the reducing potential is provided electrochemically or by the thermolysis of formate.

  5. Energy efficient synthesis of boranes

    DOEpatents

    Thorn, David L.; Tumas, William; Schwarz, Daniel E.; Burrell, Anthony K.

    2010-11-23

    The reaction of halo-boron compounds (B--X compounds, compounds having one or more boron-halogen bonds) with silanes provides boranes (B--H compounds, compounds having one or more B--H bonds) and halosilanes. Inorganic hydrides, such as surface-bound silane hydrides (Si--H) react with B--X compounds to form B--H compounds and surface-bound halosilanes. The surface bound halosilanes are converted back to surface-bound silanes electrochemically. Halo-boron compounds react with stannanes (tin compounds having a Sn--H bond) to form boranes and halostannanes (tin compounds having a Sn--X bond). The halostannanes are converted back to stannanes electrochemically or by the thermolysis of Sn-formate compounds. When the halo-boron compound is BCl.sub.3, the B--H compound is B.sub.2H.sub.6, and where the reducing potential is provided electrochemically or by the thermolysis of formate.

  6. Arylglycerol-γ-Formyl Ester as an Aromatic Ring Cleavage Product of Nonphenolic β-O-4 Lignin Substructure Model Compounds Degraded by Coriolus versicolor†

    PubMed Central

    Kawai, Shingo; Umezawa, Toshiaki; Higuchi, Takayoshi

    1985-01-01

    4-Ethoxy-3-methoxyphenylglycerol-γ-formyl ester (compound IV) was identified as a degradation product of both 4-ethoxy-3-methoxyphenylglycerol-β-syringaldehyde ether (compound I) and 4-ethoxy-3-methoxyphenylglycerol-β-2,6-dimethoxyphenyl ether (compound II) by a ligninolytic culture of Coriolus versicolor. An isotopic experiment with a 13C-labeled compound (compound II′) indicated that the formyl group of compound IV was derived from the β-phenoxyl group of β-O-4 dimer as an aromatic ring cleavage fragment. However, compound IV was not formed from 4-ethoxy-3-methoxyphenylglycerol-β-guaiacyl ether (compound III). γ-Formyl arylglycerol (compound IV) could be a precursor of 4-ethoxy-3-methoxyphenylglycerol (compound VI), because 3-(4-ethoxy-3-methoxyphenyl)-1-formyloxy propane (compound VII) was cleaved to give 3-(4-ethoxy-3-methoxyphenyl)-1-propanol (compound VIII) by C. versicolor. 4-Ethoxy-3-methoxyphenylglycerol-β,γ-cyclic carbonate (compound V), previously found as a degradation product of compound III by Phanerochaete chrysosporium (T. Umezawa, and T. Higuchi, FEBS Lett., 25:123-126, 1985), was also identified from the cultures with compound I, II, and III and degraded to give the arylglycerol (compound VI). An isotopic experiment with 13C-labeled compounds II′ and III′ indicated that the carbonate carbon of compound V was derived from the β-phenoxyl groups of β-O-4 substructure. PMID:16346950

  7. Developing a novel dual PI3K–mTOR inhibitor from the prodrug of a metabolite

    PubMed Central

    Zhou, Yan; Zhang, Genyan; Wang, Feng; Wang, Jin; Ding, Yanwei; Li, Xinyu; Shi, Chongtie; Li, Jiakui; Shih, Chengkon; You, Song

    2017-01-01

    This study presents a process of developing a novel PI3K–mTOR inhibitor through the prodrug of a metabolite. The lead compound (compound 1) was identified with similar efficacy as that of NVP-BEZ235 in a tumor xenograft model, but the exposure of compound 1 was much lower than that of NVP-BEZ235. After reanalysis of the blood sample, a major metabolite (compound 2) was identified. Compound 2 exerted similar in vitro activity as compound 1, which indicated that compound 2 was an active metabolite and that the in vivo efficacy in the animal model came from compound 2 instead of compound 1. However, compound 1 was metabolized into compound 2 predominantly in the liver microsomes of mouse, but not in the liver microsomes of rat, dog, or human. In order to translate the efficacy in the animal model into clinical development or predict the pharmacokinetic/pharmacodynamic parameters in the clinical study using a preclinical model, we developed the metabolite (compound 2) instead of compound 1. Due to the low bioavailability of compound 2, its prodrug (compound 3) was designed and synthesized to improve the solubility. The prodrug was quickly converted to compound 2 through both intravenous and oral administrations. Because the prodrug (compound 3) did not improve the oral exposure of compound 2, developing compound 3 as an intravenous drug was considered by our team, and the latest results will be reported in the future. PMID:29118584

  8. THE DIFFERENTIAL THERMAL ANALYSIS OF CYANO-TRANSITION METAL COMPLEXES

    DTIC Science & Technology

    COMPOUNDS, CHROMATES, COBALT COMPOUNDS, CYANIDES, CYANOGEN, DYES, FERRATES , GASES, HEAT, HYDROXIDES, LITHIUM COMPOUNDS, MOLYBDATES, NICKELATES, NITRATES...OXIDATION REDUCTION REACTIONS, POTASSIUM COMPOUNDS, SILVER COMPOUNDS, SODIUM COMPOUNDS, VANADATES

  9. Preparation of cuxinygazsen precursor films and powders by electroless deposition

    DOEpatents

    Bhattacharya, Raghu N.; Batchelor, Wendi Kay; Wiesner, Holm; Ramanathan, Kannan; Noufi, Rommel

    1999-01-01

    A method for electroless deposition of Cu.sub.x In.sub.y Ga.sub.z Se.sub.n (x=0-2, y=0-2, z=0-2, n=0-3) precursor films and powders onto a metallic substrate comprising: preparing an aqueous bath solution of compounds selected from the group consisting of: I) a copper compound, a selenium compound, an indium compound and gallium compound; II) a copper compound, a selenium compound and an indium compound; III) a selenium compound, and indium compound and a gallium compound; IV) a selenium compound and a indium compound; and V) a copper compound and selenium compound; each compound being present in sufficient quantity to react with each other to produce Cu.sub.x In.sub.y Ga.sub.z Se.sub.n (x=0-2, y=0-2, z=0-2, n=0-3); adjusting the pH of the aqueous bath solution to an acidic value by the addition of a dilute acid; and initiating an electroless reaction with an oxidizing counterelectrode for a sufficient time to cause a deposit of Cu.sub.x In.sub.y Ga.sub.z Se.sub.n (x=0-2, y=0-2, z=0-2, n=0-3) from the aqueous bath solution onto a metallic substrate.

  10. Lipopolysaccharide does not alter small airway reactivity in mouse lung slices.

    PubMed

    Donovan, Chantal; Royce, Simon G; Vlahos, Ross; Bourke, Jane E

    2015-01-01

    The bacterial endotoxin, lipopolysaccharide (LPS) has been associated with occupational airway diseases with asthma-like symptoms and in acute exacerbations of COPD. The direct and indirect effects of LPS on small airway reactivity have not been fully elucidated. We tested the hypothesis that both in vitro and in vivo LPS treatment would increase contraction and impair relaxation of mouse small airways. Lung slices were prepared from naïve Balb/C mice and cultured in the absence or presence of LPS (10 μg/ml) for up to 48 h for measurement of TNFα levels in conditioned media. Alternatively, mice were challenged with PBS or LPS in vivo once a day for 4 days for preparation of lung slices or for harvest of lungs for Q-PCR analysis of gene expression of pro-inflammatory cytokines and receptors involved in airway contraction. Reactivity of small airways to contractile agonists, methacholine and serotonin, and bronchodilator agents, salbutamol, isoprenaline and rosiglitazone, were assessed using phase-contrast microscopy. In vitro LPS treatment of slices increased TNFα release 6-fold but did not alter contraction or relaxation to any agonists tested. In vivo LPS treatment increased lung gene expression of TNFα, IL-1β and ryanodine receptor isoform 2 more than 5-fold. However there were no changes in reactivity in lung slices from these mice, even when also incubated with LPS ex vivo. Despite evidence of LPS-induced inflammation, neither airway hyperresponsiveness or impaired dilator reactivity were evident. The increase in ryanodine receptor isoform 2, known to regulate calcium signaling in vascular smooth muscle, warrants investigation. Since LPS failed to elicit changes in small airway reactivity in mouse lung slices following in vitro or in vivo treatment, alternative approaches are required to define the potential contribution of this endotoxin to altered small airway reactivity in human lung diseases.

  11. Effect of bedding control on amount of house dust mite allergens, asthma symptoms, and peak expiratory flow rate.

    PubMed

    Lee, Inn-Sook

    2003-04-30

    This quasi-experimental study was designed to investigate the effect of bedding control on the amount of house dust mite (HDM) allergens, asthma symptoms, and peak expiratory flow rate (PEFR) in asthmatics sensitive to HDMs. The subjects in the study were drawn from patients receiving treatment at the allergy clinics of three university-affiliated hospitals in Seoul. Forty-two patients without prior practice of the bedding control used in this study were selected. They commonly showed bronchial asthma caused by HDMs, and exhibited strong positive points (more than 3 points) in skin prick test (D. farinae, D. pteronyssinus), and positive response in both fluoro-allergosorbent test (FAST), and PC20 methacholine test. Of the subjects, alternatively, 22 were assigned to the experimental group and 20 to control group. Bedding control consisted of the use of outer cotton covers, boiling them for 10 minutes fortnightly, and disinfecting bedding by sunlight fortnightly. The experimental group was under bedding control for 4 weeks. The data were collected from October 2000 to January 2001. The results were as follows: 1. After bedding control, the total amount of HDM allergens decreased significantly in the experimental group. However there was no significant difference in the decrease of the amount of HDM allergens between the two groups. 2. Of the asthma symptoms, there was significant difference only in the decrease of the frequency of dyspnea, and in the increase of sleeping disturbance between the two groups after bedding control. 3. After bedding control, PEFR increased in the experimental group whereas it decreased in the control group. However, neither change was significant. The above findings indicate that bedding control improved several asthma symptoms in asthmatics sensitive to HDMs. Accordingly, we suggest that bedding control is adopted as a useful nursing intervention in the field.

  12. MAG-EPA resolves lung inflammation in an allergic model of asthma.

    PubMed

    Morin, C; Fortin, S; Cantin, A M; Rousseau, É

    2013-09-01

    Asthma is a chronic disease characterized by airways hyperresponsiveness, inflammation and airways remodelling involving reversible bronchial obstruction. Omega-3 fatty acids and their derivatives are known to reduce inflammation in several tissues including lung. The effects of eicosapentaenoic acid monoacylglyceride (MAG-EPA), a newly synthesized EPA derivative, were determined on the resolution of lung inflammation and airway hyperresponsiveness in an in vivo model of allergic asthma. Ovalbumin (OVA)-sensitized guinea-pigs were treated or not with MAG-EPA administered per os. Isometric tension measurements, histological analyses, homogenate preparation for Western blot experiments or total RNA extraction for RT-PCR were performed to assess the effect of MAG-EPA treatments. Mechanical tension measurements revealed that oral MAG-EPA treatments reduced methacholine (MCh)-induced bronchial hyperresponsiveness in OVA-sensitized guinea-pigs. Moreover, MAG-EPA treatments also decreased Ca(2+) hypersensitivity of bronchial smooth muscle. Histological analyses and leucocyte counts in bronchoalveolar lavages revealed that oral MAG-EPA treatments led to less inflammatory cell recruitment in the lung of OVA-sensitized guinea-pigs when compared with lungs from control animals. Results also revealed a reduction in mucin production and MUC5AC expression level in OVA-sensitized animals treated with MAG-EPA. Following MAG-EPA treatments, the transcript levels of pro-inflammatory markers such as IL-5, eotaxin, IL-13 and IL-4 were markedly reduced. Moreover, per os MAG-EPA administrations reduced COX2 over-expression in OVA-sensitized animals. We demonstrate that MAG-EPA reduces airway hyperresponsiveness and lung inflammation in OVA-sensitized animals, a finding consistent with a decrease in IL-4, IL-5, IL-13, COX-2 and MUC5AC expression levels in the lung. The present data suggest that MAG-EPA represents a new potential therapeutic strategy for resolving inflammation in allergic asthma. © 2013 John Wiley & Sons Ltd.

  13. Strain-dependent airway hyperresponsiveness and a chromosome 7 locus of elevated lymphocyte numbers in cystic fibrosis transmembrane conductance regulator-deficient mice.

    PubMed

    Bazett, Mark; Stefanov, Anguel N; Paun, Alexandra; Paradis, Josee; Haston, Christina K

    2012-03-01

    We previously observed the lungs of naive BALB/cJ Cftr(tm1UNC) mice to have greater numbers of lymphocytes, by immunohistochemical staining, than did BALB wild type littermates or C57BL/6J Cftr(tm1UNC) mice. In the present study, we initially investigated whether this mutation in Cftr alters the adaptive immunity phenotype by measuring the lymphocyte populations in the lungs and spleens by FACS and by evaluating CD3-stimulated cytokine secretion, proliferation, and apoptosis responses. Next, we assessed a potential influence of this lymphocyte phenotype on lung function through airway resistance measures. Finally, we mapped the phenotype of pulmonary lymphocyte counts in BALB × C57BL/6J F2 Cftr(tm1UNC) mice and reviewed positional candidate genes. By FACS analysis, both the lungs and spleens of BALB Cftr(tm1UNC) mice had more CD3(+) (both CD4(+) and CD8(+)) cells than did littermates or C57BL/6J Cftr(tm1UNC) mice. Cftr(tm1UNC) and littermate mice of either strain did not differ in anti-CD3-stimulated apoptosis or proliferation levels. Lymphocytes from BALB Cftr(tm1UNC) mice produced more IL-4 and IL-5 and reduced levels of IFN-γ than did littermates, whereas lymphocytes from C57BL/6J Cftr(tm1UNC) mice demonstrated increased Il-17 secretion. BALB Cftr(tm1UNC) mice presented an enhanced airway hyperresponsiveness to methacholine challenge compared with littermates and C57BL/6J Cftr(tm1UNC) mice. A chromosome 7 locus was identified to be linked to lymphocyte numbers, and genetic evaluation of the interval suggests Itgal and Il4ra as candidate genes for this trait. We conclude that the pulmonary phenotype of BALB Cftr(tm1UNC) mice includes airway hyperresponsiveness and increased lymphocyte numbers, with the latter trait being influenced by a chromosome 7 locus.

  14. Chemical pneumonitis and subsequent reactive airways dysfunction syndrome after a single exposure to a household product: a case report.

    PubMed

    Khalid, Imran; Godfrey, Amanda M; Ouellette, Daniel R

    2009-11-09

    Household products are usually safe to use. Adverse events arising from their use are mostly reported in patients with pre-existing atopy or pulmonary problems and usually only after a prolonged exposure to such products. We report the case of a patient with no prior problems who developed significant side effects from a single exposure to a domestic product. A 43-year-old Caucasian American man, previously in good health, used a domestic aerosol product called 'Stand N' Seal "Spray-On" Grout Sealer' in an enclosed room in his house. The product contained n-butyl acetate (<5%), propane (10%), isobutane (<5%), C8-C9 petroleum hydrocarbon solvent (80%), a fluoropolymer resin and a solvent. Within a few hours of exposure to the sealant, he developed rapidly progressive shortness of breath and a severe non-productive cough. By the time he reached the emergency room he was severely hypoxic. A diagnosis of chemical pneumonitis was made based on the clinical scenario and the diffuse infiltrates on the computer tomography scan. With supportive therapy, his condition improved and he was discharged from the hospital. However, he continued to have symptoms of intermittent cough and shortness of breath in response to strong odours, fumes, cold air and exertion even after his chest radiograph had normalized. Three months later, bronchial hyper-responsiveness was documented by a methacholine inhalation test and a diagnosis of reactive airways dysfunction syndrome was made. The patient was started on high-dose inhaled steroids and his symptoms improved. The mechanism of toxicity and determination of the exact agent responsible is still under investigation. A household product may still prove unsafe to use even after it has gone through vigorous testing and approval processes. Even healthy individuals are susceptible to adverse outcomes after a brief exposure. Extra precautions should be taken when using any chemical product at home.

  15. Factor analysis in the Genetics of Asthma International Network family study identifies five major quantitative asthma phenotypes.

    PubMed

    Pillai, S G; Tang, Y; van den Oord, E; Klotsman, M; Barnes, K; Carlsen, K; Gerritsen, J; Lenney, W; Silverman, M; Sly, P; Sundy, J; Tsanakas, J; von Berg, A; Whyte, M; Ortega, H G; Anderson, W H; Helms, P J

    2008-03-01

    Asthma is a clinically heterogeneous disease caused by a complex interaction between genetic susceptibility and diverse environmental factors. In common with other complex diseases the lack of a standardized scheme to evaluate the phenotypic variability poses challenges in identifying the contribution of genes and environments to disease expression. To determine the minimum number of sets of features required to characterize subjects with asthma which will be useful in identifying important genetic and environmental contributors. Methods Probands aged 7-35 years with physician diagnosed asthma and symptomatic siblings were identified in 1022 nuclear families from 11 centres in six countries forming the Genetics of Asthma International Network. Factor analysis was used to identify distinct phenotypes from questionnaire, clinical, and laboratory data, including baseline pulmonary function, allergen skin prick test (SPT). Five distinct factors were identified:(1) baseline pulmonary function measures [forced expiratory volume in 1 s (FEV(1)) and forced vital capacity (FVC)], (2) specific allergen sensitization by SPT, (3) self-reported allergies, (4) symptoms characteristic of rhinitis and (5) symptoms characteristic of asthma. Replication in symptomatic siblings was consistent with shared genetic and/or environmental effects, and was robust across age groups, gender, and centres. Cronbach's alpha ranged from 0.719 to 0.983 suggesting acceptable internal scale consistencies. Derived scales were correlated with serum IgE, methacholine PC(20), age and asthma severity (interrupted sleep). IgE correlated with all three atopy-related factors, the strongest with the SPT factor whereas severity only correlated with baseline lung function, and with symptoms characteristic of rhinitis and of asthma. In children and adolescents with established asthma, five distinct sets of correlated patient characteristics appear to represent important aspects of the disease. Factor scores as quantitative traits may be better phenotypes in epidemiological and genetic analyses than those categories derived from the presence or absence of combinations of +ve SPTs and/or elevated IgE.

  16. Serelaxin Elicits Bronchodilation and Enhances β-Adrenoceptor-Mediated Airway Relaxation

    PubMed Central

    Lam, Maggie; Royce, Simon G.; Donovan, Chantal; Jelinic, Maria; Parry, Laura J.; Samuel, Chrishan S.; Bourke, Jane E.

    2016-01-01

    Treatment with β-adrenoceptor agonists does not fully overcome the symptoms associated with severe asthma. Serelaxin elicits potent uterine and vascular relaxation via its cognate receptor, RXFP1, and nitric oxide (NO) signaling, and is being clinically evaluated for the treatment of acute heart failure. However, its direct bronchodilator efficacy has yet to be explored. Tracheal rings were prepared from male Sprague-Dawley rats (250–350 g) and tricolor guinea pigs, and precision cut lung slices (PCLSs) containing intrapulmonary airways were prepared from rats only. Recombinant human serelaxin (rhRLX) alone and in combination with rosiglitazone (PPARγ agonist; recently described as a novel dilator) or β-adrenoceptor agonists (isoprenaline, salbutamol) were added either to pre-contracted airways, or before contraction with methacholine or endothelin-1. Regulation of rhRLX responses by epithelial removal, indomethacin (cyclooxygenase inhibitor), L-NAME (nitric oxide synthase inhibitor), SQ22536 (adenylate cyclase inhibitor) and ODQ (guanylate cyclase inhibitor) were also evaluated. Immunohistochemistry was used to localize RXFP1 to airway epithelium and smooth muscle. rhRLX elicited relaxation in rat trachea and PCLS, more slowly than rosiglitazone or isoprenaline, but potentiated relaxation to both these dilators. It markedly increased β-adrenoceptor agonist potency in guinea pig trachea. rhRLX, rosiglitazone, and isoprenaline pretreatment also inhibited the development of rat tracheal contraction. Bronchoprotection by rhRLX increased with longer pre-incubation time, and was partially reduced by epithelial removal, indomethacin and/or L-NAME. SQ22536 and ODQ also partially inhibited rhRLX-mediated relaxation in both intact and epithelial-denuded trachea. RXFP1 expression in the airways was at higher levels in epithelium than smooth muscle. In summary, rhRLX elicits large and small airway relaxation via epithelial-dependent and -independent mechanisms, likely via RXFP1 activation and generation of NO, prostaglandins and cAMP/cGMP. rhRLX also enhanced responsiveness to other dilators, suggesting its potential as an alternative or add-on therapy for severe asthma. PMID:27833558

  17. Lipopolysaccharide Does Not Alter Small Airway Reactivity in Mouse Lung Slices

    PubMed Central

    Donovan, Chantal; Royce, Simon G.; Vlahos, Ross; Bourke, Jane E.

    2015-01-01

    The bacterial endotoxin, lipopolysaccharide (LPS) has been associated with occupational airway diseases with asthma-like symptoms and in acute exacerbations of COPD. The direct and indirect effects of LPS on small airway reactivity have not been fully elucidated. We tested the hypothesis that both in vitro and in vivo LPS treatment would increase contraction and impair relaxation of mouse small airways. Lung slices were prepared from naïve Balb/C mice and cultured in the absence or presence of LPS (10 μg/ml) for up to 48 h for measurement of TNFα levels in conditioned media. Alternatively, mice were challenged with PBS or LPS in vivo once a day for 4 days for preparation of lung slices or for harvest of lungs for Q-PCR analysis of gene expression of pro-inflammatory cytokines and receptors involved in airway contraction. Reactivity of small airways to contractile agonists, methacholine and serotonin, and bronchodilator agents, salbutamol, isoprenaline and rosiglitazone, were assessed using phase-contrast microscopy. In vitro LPS treatment of slices increased TNFα release 6-fold but did not alter contraction or relaxation to any agonists tested. In vivo LPS treatment increased lung gene expression of TNFα, IL-1β and ryanodine receptor isoform 2 more than 5-fold. However there were no changes in reactivity in lung slices from these mice, even when also incubated with LPS ex vivo. Despite evidence of LPS-induced inflammation, neither airway hyperresponsiveness or impaired dilator reactivity were evident. The increase in ryanodine receptor isoform 2, known to regulate calcium signaling in vascular smooth muscle, warrants investigation. Since LPS failed to elicit changes in small airway reactivity in mouse lung slices following in vitro or in vivo treatment, alternative approaches are required to define the potential contribution of this endotoxin to altered small airway reactivity in human lung diseases. PMID:25822969

  18. Reactive airways dysfunction syndrome in housewives due to a bleach-hydrochloric acid mixture.

    PubMed

    Gorguner, Metin; Aslan, Sahin; Inandi, Tacettin; Cakir, Zeynep

    2004-02-01

    The sudden onset of asthmalike symptoms and persistence of airway reactivity following an acute exposure to an irritant gas or vapor has been termed reactive airways dysfunction syndrome (RADS). A mixture of sodium hypochlorite (bleach, 40%) and hydrochloric acid (18%) is commonly used as a household cleaning solution in our region. From this mixture, chlorine gas is produced, which can cause airway damage and ensuing RADS. Here we describe findings of patients with RADS due to this cleaning mixture, and determine factors associated with a favorable outcome. Data were collected retrospectively on 55 symptomatic patients presenting to our emergency department after inhalation exposure to a mixture of bleach and hydrochloric acid. Symptoms, past medical and smoking history, details of the exposure, initial peak expiratory flow rate (PEFR) and oxygenation, and acute reversibility of airways obstruction were documented. All patients met previously defined criteria for the diagnosis of RADS, but did not undergo methacholine challenge testing and bronchoalveolar lavage or histopathologic study. Fifty patients were followed over the course of 3 mo. The majority of exposures (64%) occurred in the bathroom or kitchen. Only 21 of 55 (38%) patients showed an improvement in PEFR of 15% or greater following two beta(2)-agonist inhalation treatments. In follow-up, 48 patients (87%) improved clinically and functionally (FEV(1)). Seven patients (13%) deteriorated, with ARDS developing in two, one of whom died from respiratory failure. Advanced age, initial low PEFR, exposure in a small enclosed area, use immediately after mixing, and prolonged short- and long-term exposures were associated with a poorer prognosis. This descriptive study is the largest case series in the literature of RADS developing after exposure to a bleach-hydrochloric acid mixture. The optimum acute treatment and long-term outcomes for patients with RADS due to this combination still need to be determined.

  19. Inflammation and airway hyperresponsiveness after chlorine exposure are prolonged by Nrf2 deficiency in mice.

    PubMed

    Ano, Satoshi; Panariti, Alice; Allard, Benoit; O'Sullivan, Michael; McGovern, Toby K; Hamamoto, Yoichiro; Ishii, Yukio; Yamamoto, Masayuki; Powell, William S; Martin, James G

    2017-01-01

    Chlorine gas (Cl 2 ) is a potent oxidant and trigger of irritant induced asthma. We explored NF-E2-related factor 2 (Nrf2)-dependent mechanisms in the asthmatic response to Cl 2 , using Nrf2-deficient mice, buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis and sulforaphane (SFN), a phytochemical regulator of Nrf2. Airway inflammation and airway hyperresponsiveness (AHR) were assessed 24 and 48h after a 5-min nose-only exposure to 100ppm Cl 2 of Nrf2-deficient and wild type Balb/C mice treated with BSO or SFN. Animals were anesthetized, paralyzed and mechanically ventilated (FlexiVent™) and challenged with aerosolized methacholine. Bronchoalveolar lavage (BAL) was performed and lung tissues were harvested for assessment of gene expression. Cl 2 exposure induced a robust AHR and an intense neutrophilic inflammation that, although similar in Nrf2-deficient mice and wild-type mice at 24h after Cl 2 exposure, were significantly greater at 48h post exposure in Nrf2-deficient mice. Lung GSH and mRNA for Nrf2-dependent phase II enzymes (NQO-1 and GPX2) were significantly lower in Nrf2-deficient than wild-type mice after Cl 2 exposure. BSO reduced GSH levels and promoted Cl 2 -induced airway inflammation in wild-type mice, but not in Nrf2-deficient mice, whereas SFN suppressed Cl 2 -induced airway inflammation in wild-type but not in Nrf2-deficient mice. AHR was not affected by either BSO or SFN at 48h post Cl 2 exposure. Nrf2-dependent phase II enzymes play a role in the resolution of airway inflammation and AHR after Cl 2 exposure. Moderate deficiency of GSH affects the magnitude of acute inflammation but not AHR. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Sensitivity to the house dust mite and airway hyperresponsiveness in a young adult population.

    PubMed

    Obase, Y; Shimoda, T; Mitsuta, K; Matsuo, N; Matsuse, H; Kohno, S

    1999-10-01

    The pathogenic mechanisms of airway hyperresponsiveness (AHR) in asthma are unknown and only a few studies have examined the importance of sensitivity to antigens in AHR in young adults. We investigated the correlation between AHR and sensitivity to specific antigens, atopy, history of childhood asthma and spirometry in a young adult population. Based on the results of interviews with 447 students at our university, 308 non-smoker students were classified into six groups. Group 1 comprised subjects with intermittent mild bronchial asthma; group 2, subjects with history of childhood asthma; group 3, subjects with atopic disease, and a RAST score for Dermatophagoides farinae (Def) of > or = 2; group 4, normal subjects with a RAST score for Def of > or = 2; group 5, subjects with cedar pollinosis; and group 6, normal subjects. We measured AHR to methacholine (MCh), spirometry, immunoglobulin E-radioimmunosorbent test (IgE-RIST), IgE-radioallergosorbent test to six common antigens, eosinophil cationic protein (ECP), and eosinophil count in peripheral blood in each subject. Airway hyperresponsiveness to MCh did not correlate with IgE-RIST, eosinophil count, or ECP. The highest AHR to MCh was present in groups 1 and 2 and lowest in groups 5 and 6. Multiple regression analysis showed that sensitivity to Def was the only factor that significantly influenced AHR to MCh. Airway hyperresponsiveness to MCh of groups with a RAST score for Def of 0/1 was lower than groups with a RAST score of 2 to 6. Airway hyperresponsiveness to MCh did not correlate with the degree of positivity to Def antigen among positive sensitized groups (RAST score 2 to 6). Sensitivity to mite antigen may be important in the pathogenesis of AHR and Def is a major contributing antigen in young adults in Japan. Once asthma occurs, AHR remains positive for a long time even after the disappearance of asthma-related symptoms.

  1. Effect of Study Design on Sample Size in Studies Intended to Evaluate Bioequivalence of Inhaled Short-Acting β-Agonist Formulations.

    PubMed

    Zeng, Yaohui; Singh, Sachinkumar; Wang, Kai; Ahrens, Richard C

    2018-04-01

    Pharmacodynamic studies that use methacholine challenge to assess bioequivalence of generic and innovator albuterol formulations are generally designed per published Food and Drug Administration guidance, with 3 reference doses and 1 test dose (3-by-1 design). These studies are challenging and expensive to conduct, typically requiring large sample sizes. We proposed 14 modified study designs as alternatives to the Food and Drug Administration-recommended 3-by-1 design, hypothesizing that adding reference and/or test doses would reduce sample size and cost. We used Monte Carlo simulation to estimate sample size. Simulation inputs were selected based on published studies and our own experience with this type of trial. We also estimated effects of these modified study designs on study cost. Most of these altered designs reduced sample size and cost relative to the 3-by-1 design, some decreasing cost by more than 40%. The most effective single study dose to add was 180 μg of test formulation, which resulted in an estimated 30% relative cost reduction. Adding a single test dose of 90 μg was less effective, producing only a 13% cost reduction. Adding a lone reference dose of either 180, 270, or 360 μg yielded little benefit (less than 10% cost reduction), whereas adding 720 μg resulted in a 19% cost reduction. Of the 14 study design modifications we evaluated, the most effective was addition of both a 90-μg test dose and a 720-μg reference dose (42% cost reduction). Combining a 180-μg test dose and a 720-μg reference dose produced an estimated 36% cost reduction. © 2017, The Authors. The Journal of Clinical Pharmacology published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.

  2. The impact of food allergens on airway responsiveness in schoolchildren with asthma: A DBPCFC study.

    PubMed

    Krogulska, Aneta; Dynowski, Jarosław; Jędrzejczyk, Magdalena; Sardecka, Izabela; Małachowska, Beata; Wąsowska-Królikowska, Krystyna

    2016-08-01

    Despite the growing evidence of a possible link between asthma and food allergy (FA), so far, the involvement of food in inducing respiratory symptoms has not been fully evaluated. The objective of this study was to evaluate the impact of food allergens on respiratory symptoms and bronchial reactivity (BHR) in schoolchildren with asthma. The initial study group consisted of 362 children with asthma. In the end, 22 children with concomitant FA, and 18 without FA, were selected to participate in the study. Spirometry and Methacholine Inhalation Challenge (MIC) were conducted prior to and after the completion of a double blind placebo control food challenge (DBPCFC). The food-induced asthmatic reactions were observed in nine (2.5%) out of all 362 children with asthma. Mean FEV1 prior to and after allergen or placebo challenge did not differ between the groups studied. Increase of BHR after DBPCFC was seen in 17 (4.7%) children with asthma. The mean PC20 value in children with FA was 1.41 ± 1.12 mg/ml prior to the allergen challenge and 0.86 ± 0.71 mg/ml (P = 0.002) after the test, whereas these values were 1.93 ± 1.68 mg/ml and 2.02 ± 1.75 mg/ml, respectively, in children without FA (P > 0.05). Significant differences were noted after the allergen provocation in children with FA as compared to children without FA (P = 0.007). Although food allergens are a rare trigger of food-induced asthmatic reactions in schoolchildren with asthma, they could enhance BHR, despite a lack of evident clinical respiratory signs and decreased in FEV1 values after food challenge. Pediatr Pulmonol. 2016;51:787-795. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Preeclampsia Associates with Asthma, Allergy, and Eczema in Childhood.

    PubMed

    Stokholm, Jakob; Sevelsted, Astrid; Anderson, Ulrik D; Bisgaard, Hans

    2017-03-01

    Preeclampsia reflects an unusual increase in systemic inflammation during pregnancy. We studied associations between preeclampsia and asthma, allergy, and eczema in Copenhagen Prospective Studies on Asthma in Childhood 2000 (COPSAC 2000 ) and in national registries. COPSAC 2000 is a high-risk birth cohort of 411 Danish children. Asthma, allergy, and eczema were diagnosed prospectively, and lung function measured at age 1 month and 7 years. Sensitization was evaluated at age 6 months, 18 months, 4 years, and 6 years by skin prick tests and IgE measurements. The register-based cohort included 1.7 million children from Danish national registries in the 35-year period 1977-2012. Children born to mothers with preeclampsia were analyzed regarding risk of asthma, allergy, and eczema. In the COPSAC 2000 cohort, 5.6% (n = 23) were diagnosed with preeclampsia. Preeclampsia was associated with increased risk of treatment with inhaled corticosteroids at age 7 years (adjusted odds ratio, 4.01 [95% confidence interval (CI), 1.11-14.43]; P = 0.0337), increased bronchial responsiveness to methacholine (adjusted β-coefficient log-μmol, -0.80 [95% CI, -1.55 to -0.06]; P = 0.0348), and allergic rhinitis (adjusted odds ratio, 4.83 [95% CI, 1.58-14.78]; P = 0.0057) in the 7-year-old children. Furthermore, the children had an increased risk of sensitization to both aeroallergens and food allergens, and increased amount of total IgE during childhood. In the registry-based cohort, 3.7% (n = 62,728) were born to mothers with preeclampsia. Preeclampsia was associated with increased risk of asthma, eczema, and aeroallergen and food allergy, especially pronounced after a duration of preeclampsia of 14 days or more. Maternal asthma increased the risk of preeclampsia. Preeclampsia is a shared prenatal risk factor for asthma, eczema, and allergy in childhood pointing toward in utero immune programming of the child.

  4. Cluster analysis of obesity and asthma phenotypes.

    PubMed

    Sutherland, E Rand; Goleva, Elena; King, Tonya S; Lehman, Erik; Stevens, Allen D; Jackson, Leisa P; Stream, Amanda R; Fahy, John V; Leung, Donald Y M

    2012-01-01

    Asthma is a heterogeneous disease with variability among patients in characteristics such as lung function, symptoms and control, body weight, markers of inflammation, and responsiveness to glucocorticoids (GC). Cluster analysis of well-characterized cohorts can advance understanding of disease subgroups in asthma and point to unsuspected disease mechanisms. We utilized an hypothesis-free cluster analytical approach to define the contribution of obesity and related variables to asthma phenotype. In a cohort of clinical trial participants (n = 250), minimum-variance hierarchical clustering was used to identify clinical and inflammatory biomarkers important in determining disease cluster membership in mild and moderate persistent asthmatics. In a subset of participants, GC sensitivity was assessed via expression of GC receptor alpha (GCRα) and induction of MAP kinase phosphatase-1 (MKP-1) expression by dexamethasone. Four asthma clusters were identified, with body mass index (BMI, kg/m(2)) and severity of asthma symptoms (AEQ score) the most significant determinants of cluster membership (F = 57.1, p<0.0001 and F = 44.8, p<0.0001, respectively). Two clusters were composed of predominantly obese individuals; these two obese asthma clusters differed from one another with regard to age of asthma onset, measures of asthma symptoms (AEQ) and control (ACQ), exhaled nitric oxide concentration (F(E)NO) and airway hyperresponsiveness (methacholine PC(20)) but were similar with regard to measures of lung function (FEV(1) (%) and FEV(1)/FVC), airway eosinophilia, IgE, leptin, adiponectin and C-reactive protein (hsCRP). Members of obese clusters demonstrated evidence of reduced expression of GCRα, a finding which was correlated with a reduced induction of MKP-1 expression by dexamethasone Obesity is an important determinant of asthma phenotype in adults. There is heterogeneity in expression of clinical and inflammatory biomarkers of asthma across obese individuals. Reduced expression of the dominant functional isoform of the GCR may mediate GC insensitivity in obese asthmatics.

  5. Poor asthma control and exposure to traffic pollutants and obesity in older adults

    PubMed Central

    Epstein, Tolly G.; Ryan, Patrick H.; LeMasters, Grace K.; Bernstein, Cheryl K.; Levin, Linda S.; Bernstein, Jonathan A.; Villareal, Manuel S.; Bernstein, David I.

    2015-01-01

    Background Environmental and host predictors of asthma control in older asthmatic patients (>65 years old) are poorly understood. Objective To examine the effects of residential exposure to traffic exhaust and other environmental and host predictors on asthma control in older adults. Methods One hundred four asthmatic patients 65 years of age or older from allergy and pulmonary clinics in greater Cincinnati, Ohio, completed the validated Asthma Control Questionnaire (ACQ), pulmonary function testing, and skin prick testing to 10 common aeroallergens. Patients had a physician’s diagnosis of asthma, had significant reversibility in forced expiratory volume in 1 second or a positive methacholine challenge test result, and did not have chronic obstructive pulmonary disease. The mean daily residential exposure to elemental carbon attributable to traffic (ECAT) was estimated using a land-use regression model. Regression models were used to evaluate associations among independent variables, ACQ scores, and the number of asthma exacerbations, defined as acute worsening of asthma symptoms requiring prednisone use, in the past year. Results In the adjusted model, mean daily residential exposure to ECAT greater than 0.39 µg/m3 was significantly associated with poorer asthma control based on ACQ scores (adjusted β = 2.85; 95% confidence interval [CI], 0.58–5.12; P = .02). High ECAT levels were also significantly associated with increased risk of asthma exacerbations (adjusted odds ratio, 3.24; 95% CI, 1.01–10.37; P = .05). A significant association was found between higher body mass index and worse ACQ scores (adjusted β = 1.15; 95% CI, 0.53–1.76; P < .001). Atopic patients (skin prick test positive) had significantly better ACQ scores than nonatopic patients (adjusted β = −0.39; 95% CI, −0.67 to −0.11; P < .01). Conclusion Higher mean daily residential exposure to traffic exhaust, obesity, and nonatopic status are associated with poorer asthma control among older asthmatic patients. PMID:22626595

  6. Effects of acute inhalation of aerosols generated during resistance spot welding with mild-steel on pulmonary, vascular and immune responses in rats

    PubMed Central

    Zeidler-Erdely, Patti C.; Meighan, Terence G.; Erdely, Aaron; Fedan, Jeffrey S.; Thompson, Janet A.; Bilgesu, Suzan; Waugh, Stacey; Anderson, Stacey; Marshall, Nikki B.; Afshari, Aliakbar; McKinney, Walter; Frazer, David G.; Antonini, James M.

    2015-01-01

    Spot welding is used in the automotive and aircraft industries, where high-speed, repetitive welding is needed to join thin sections of metal. Epoxy adhesives are applied as sealers to the metal seams. Pulmonary function abnormalities and airway irritation have been reported in spot welders, but no animal toxicology studies exist. Therefore, the goal of this study was to investigate vascular, immune and lung toxicity measures after exposure to these metal fumes in an animal model. Male Sprague-Dawley rats were exposed by inhalation to 25 mg/m3 to either mild-steel spot welding aerosols with sparking (high metal, HM) or without sparking (low metal, LM) for 4 h/d for 3, 8 and 13 d. Shams were exposed to filtered air. Bronchoalveolar lavage (BAL), lung gene expression and ex vivo BAL cell challenge were performed to assess lung toxicity. Lung resistance (RL) was evaluated before and after challenge with inhaled methacholine (MCh). Functional assessment of the vascular endothelium in isolated rat tail arteries and leukocyte differentiation in the spleen and lymph nodes via flow cytometry was also done. Immediately after exposure, baseline RL was significantly elevated in the LM spot welding aerosols, but returned to control level by 24 h postexposure. Airway reactivity to MCh was unaffected. Lung inflammation and cytotoxicity were mild and transient. Lung epithelial permeability was significantly increased after 3 and 8 d, but not after 13 d of exposure to the HM aerosol. HM aerosols also caused vascular endothelial dysfunction and increased CD4+, CD8+ and B cells in the spleen. Only LM aerosols caused increased IL-6 and MCP-1 levels compared with sham after ex vivo LPS stimulation in BAL macrophages. Acute inhalation of mild-steel spot welding fumes at occupationally relevant concentrations may act as an irritant as evidenced by the increased RL and result in endothelial dysfunction, but otherwise had minor effects on the lung. PMID:25140454

  7. Allergen-induced Increases in Sputum Levels of Group 2 Innate Lymphoid Cells in Subjects with Asthma.

    PubMed

    Chen, Ruchong; Smith, Steven G; Salter, Brittany; El-Gammal, Amani; Oliveria, John Paul; Obminski, Caitlin; Watson, Rick; O'Byrne, Paul M; Gauvreau, Gail M; Sehmi, Roma

    2017-09-15

    Group 2 innate lymphoid cells (ILC2), a major source of type 2 cytokines, initiate eosinophilic inflammatory responses in murine models of asthma. To investigate the role of ILC2 in allergen-induced airway eosinophilic responses in subjects with atopy and asthma. Using a diluent-controlled allergen challenge crossover study, where all subjects (n = 10) developed allergen-induced early and late responses, airway eosinophilia, and increased methacholine airway responsiveness, bone marrow, blood, and sputum samples were collected before and after inhalation challenge. ILC2 (lin - FcεRI - CD45 + CD127 + ST2 + ) and CD4 + T lymphocytes were enumerated by flow cytometry, as well as intracellular IL-5 and IL-13 expression. Steroid sensitivity of ILC2 and CD4 + T cells was investigated in vitro. A significant increase in total, IL-5 + , IL-13 + , and CRTH2 + ILC2 was found in sputum, 24 hours after allergen, coincident with a significant decrease in blood ILC2. Total, IL-5 + , and IL-13 + , but not CRTH2 + , CD4 + T cells significantly increased at 24 and 48 hours after allergen in sputum. In blood and bone marrow, only CD4 + cells demonstrated increased activation after allergen. Airway eosinophilia correlated with IL-5 + ILC2 at all time points and allergen-induced changes in IL-5 + CD4 + cells at 48 hours after allergen. Dexamethasone significantly attenuated IL-2- and IL-33-stimulated IL-5 and IL-13 production by both cell types. Innate and adaptive immune cells are increased in the airways associated with allergic asthmatic responses. Total and type 2 cytokine-positive ILC2 are increased only within the airways, whereas CD4 + T lymphocytes demonstrated local and systemic increases. Steroid sensitivity of both cells may explain effectiveness of this therapy in those with mild asthma.

  8. Asthma, chronic bronchitis, and exposure to irritant agents in occupational domestic cleaning: a nested case-control study.

    PubMed

    Medina-Ramón, M; Zock, J P; Kogevinas, M; Sunyer, J; Torralba, Y; Borrell, A; Burgos, F; Antó, J M

    2005-09-01

    Women employed in domestic cleaning are at increased risk for symptoms of obstructive lung disease, but the agents responsible are unknown. To investigate common tasks and products in occupational domestic cleaning in relation to respiratory morbidity. Case-control study in domestic cleaning women nested within a large population based survey of women aged 30-65 years; 160 domestic cleaning women with asthma symptoms, chronic bronchitis symptoms, or both and 386 without a history of respiratory symptoms were identified. Detailed exposures were evaluated for 40 cases who reported still having symptoms at the recruitment interview, and 155 controls who reported not having symptoms. All tasks performed and products used when cleaning houses were determined in a face-to-face interview. Lung function, methacholine challenge, and serum IgE testing were performed. Personal exposure measurements of airborne chlorine and ammonia were performed in a subsample. Associations between asthma, chronic bronchitis, and cleaning exposures were evaluated using multiple logistic regression analysis. Airborne chlorine (median level 0-0.4 ppm) and ammonia (0.6-6.4 ppm) were detectable during occupational domestic cleaning activities. Cases used bleach more frequently than controls; adjusted odds ratio (OR) for intermediate exposure was 3.3 (95% CI 0.9 to 11) and for high exposure 4.9 (1.5 to 15). Other independent associations included accidental inhalation of vapours and gases from cleaning agents and washing dishes. These associations were more pronounced for cases with asthma symptoms than for those with symptoms of chronic bronchitis, but were not related to sensitisation to common allergens. Asthma symptoms in domestic cleaning women are associated with exposure to bleach and possibly other irritant agents. The public health impact of the use of irritant cleaning products could be widespread since the use of these products is common both in the workplace and at home.

  9. In Vivo Readout of CFTR Function: Ratiometric Measurement of CFTR-Dependent Secretion by Individual, Identifiable Human Sweat Glands

    PubMed Central

    Wine, Jeffrey J.; Char, Jessica E.; Chen, Jonathan; Cho, Hyung-ju; Dunn, Colleen; Frisbee, Eric; Joo, Nam Soo; Milla, Carlos; Modlin, Sara E.; Park, Il-Ho; Thomas, Ewart A. C.; Tran, Kim V.; Verma, Rohan; Wolfe, Marlene H.

    2013-01-01

    To assess CFTR function in vivo, we developed a bioassay that monitors and compares CFTR-dependent and CFTR-independent sweat secretion in parallel for multiple (∼50) individual, identified glands in each subject. Sweating was stimulated by intradermally injected agonists and quantified by optically measuring spherical sweat bubbles in an oil-layer that contained dispersed, water soluble dye particles that partitioned into the sweat bubbles, making them highly visible. CFTR-independent secretion (M-sweat) was stimulated with methacholine, which binds to muscarinic receptors and elevates cytosolic calcium. CFTR-dependent secretion (C-sweat) was stimulated with a β-adrenergic cocktail that elevates cytosolic cAMP while blocking muscarinic receptors. A C-sweat/M-sweat ratio was determined on a gland-by-gland basis to compensate for differences unrelated to CFTR function, such as gland size. The average ratio provides an approximately linear readout of CFTR function: the heterozygote ratio is ∼0.5 the control ratio and for CF subjects the ratio is zero. During assay development, we measured C/M ratios in 6 healthy controls, 4 CF heterozygotes, 18 CF subjects and 4 subjects with ‘CFTR-related’ conditions. The assay discriminated all groups clearly. It also revealed consistent differences in the C/M ratio among subjects within groups. We hypothesize that these differences reflect, at least in part, levels of CFTR expression, which are known to vary widely. When C-sweat rates become very low the C/M ratio also tended to decrease; we hypothesize that this nonlinearity reflects ductal fluid absorption. We also discovered that M-sweating potentiates the subsequent C-sweat response. We then used potentiation as a surrogate for drugs that can increase CFTR-dependent secretion. This bioassay provides an additional method for assessing CFTR function in vivo, and is well suited for within-subject tests of systemic, CFTR-directed therapeutics. PMID:24204751

  10. The contribution of inositol 1,4,5-trisphosphate and ryanodine receptors to agonist-induced Ca(2+) signaling of airway smooth muscle cells.

    PubMed

    Bai, Yan; Edelmann, Martin; Sanderson, Michael J

    2009-08-01

    The relative contribution of inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) and ryanodine receptors (RyRs) to agonist-induced Ca(2+) signaling in mouse airway smooth muscle cells (SMCs) was investigated in lung slices with phase-contrast or laser scanning microscopy. At room temperature (RT), methacholine (MCh) or 5-hydroxytryptamine (5-HT) induced Ca(2+) oscillations and an associated contraction in small airway SMCs. The subsequent exposure to an IP(3)R antagonist, 2-aminoethoxydiphenyl borate (2-APB), inhibited the Ca(2+) oscillations and induced airway relaxation in a concentration-dependent manner. 2-APB also inhibited Ca(2+) waves generated by the photolytic release of IP(3). However, the RyR antagonist ryanodine had no significant effect, at any concentration, on airway contraction or agonist- or IP(3)-induced Ca(2+) oscillations or Ca(2+) wave propagation. By contrast, a second RyR antagonist, tetracaine, relaxed agonist-contracted airways and inhibited agonist-induced Ca(2+) oscillations in a concentration-dependent manner. However, tetracaine did not affect IP(3)-induced Ca(2+) release or wave propagation nor the Ca(2+) content of SMC Ca(2+) stores as evaluated by Ca(2+)-release induced by caffeine. Conversely, both ryanodine and tetracaine completely blocked agonist-independent slow Ca(2+) oscillations induced by KCl. The inhibitory effects of 2-APB and absence of an effect of ryanodine on MCh-induced airway contraction or Ca(2+) oscillations of SMCs were also observed at 37 degrees C. In Ca(2+)-permeable SMCs, tetracaine inhibited agonist-induced contraction without affecting intracellular Ca(2+) levels indicating that relaxation also resulted from a reduction in Ca(2+) sensitivity. These results indicate that agonist-induced Ca(2+) oscillations in mouse small airway SMCs are primary mediated via IP(3)Rs and that tetracaine induces relaxation by both decreasing Ca(2+) sensitivity and inhibiting agonist-induced Ca(2+) oscillations via an IP(3)-dependent mechanism.

  11. Nasal nitric oxide is associated with exhaled NO, bronchial responsiveness and poor asthma control.

    PubMed

    Krantz, C; Janson, C; Borres, M P; Nordvall, L; Alving, K; Malinovschi, A

    2014-06-01

    The fraction of exhaled nitric oxide (FeNO) is an established marker of airway inflammation in asthma. Nasal nitric oxide (nNO) has initially been regarded as a promising marker of inflammation of nasal mucosa. However, due to its dual origins, paranasal sinuses and nasal mucosa, the clinical use of nNO is controversial. There is an inflammatory link between inflammation in the upper and lower airways within the united airways' paradigm, but the study of the clinical value of nNO in asthma has been limited. The objective of this study is to analyse nNO in asthmatics and its relationship to FeNO, bronchial hyperresponsiveness, allergic sensitization and asthma control. A total of 371 children and young adults from an asthma cohort were included in this study, which performed measurements of nNO (through aspiration at 5 mL s(-1)), FeNO, bronchial responsiveness to methacholine, blood eosinophil count (B-Eos) and IgE sensitization. The asthma control test (ACT) and a questionnaire regarding medical treatment, symptoms of asthma, rhinitis and chronic rhinosinusitis were completed by all subjects. An association was found between higher nNO levels and increased bronchial responsiveness (p < 0.001), FeNO (p < 0.001) and B-Eos (p = 0.002). Sensitization to furry animals related to higher levels of nNO (p < 0.001). Subjects with poorly controlled asthma (ACT < 15) had lower levels of nNO than subjects with a higher ACT score (619 ± 278 ppb, versus 807 ± 274 ppb, p = 0.002). Loss of smell showed the strongest association with lower nNO levels among the upper airway symptoms recorded. In patients with asthma, nNO was positively correlated with exhaled NO, bronchial responsiveness and asthma control. This study suggests clinical utility of nNO in subjects with asthma, but in order to get better understanding of the nNO determinants, simultaneous mapping of upper airway comorbidities by clinical examination is appropriate.

  12. The effect of Nigella sativa alone, and in combination with dexamethasone, on tracheal muscle responsiveness and lung inflammation in sulfur mustard exposed guinea pigs.

    PubMed

    Boskabady, Mohammad Hossein; Vahedi, Nassim; Amery, Sediqa; Khakzad, Mohammad Reza

    2011-09-02

    ETHNOMEDICAL RELEVANCE: The anti-inflammatory activity of both systemic and local administrations of essential oil from Nigella sativa L. has been shown. Therefore, the effect of Nigella sativa on tracheal responsiveness (TR) and lung inflammation of sulfur mustard (SM) exposed guinea pigs was examined. Guinea pigs were exposed to diluent solution (control group), inhaled SM (SME group), SME treated with Nigella sativa (SME+N), SME treated with dexamethasone (SME+D) and SME treated with both drugs (SME+N+D), (n=7 for each group). TR to methacholine, total white blood cell (WBC) and differential WBC count of lung lavage, and serum cytokines were measured 14 days post-exposure. The values of TR, eosinophil, monocyte, lymphocyte, interleukine-4 (IL-4) and interferon gamma (IFN-γ) of SME group were significantly higher than those of controls (p<0.05 to p<0.001). The TR in SME+N, SME+D and SME+N+D was significantly lower compared to that of SME group (p<0.01 for all cases). The percentage of eosinophil in SME+D, and the percentage of monocyte in SME+N+D (p<0.05 to p<0.01) were significantly lower than those in SME group. The neutrophil number was decreased in SME+N and SME+N+D groups compared to SME animals (p<0.05 to p<0.01). IL-4 levels in serum of SME+N (p<0.01), SME+D (p<0.05), SME+N+D (p<0.01) and IFN-γ in SME+N (p<0.05) were greater than those in SME animals. These results showed a preventive effect of Nigella sativa on TR and lung inflammation of SM exposed guinea pigs. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Obstructive Airways Disease With Air Trapping Among Firefighters Exposed to World Trade Center Dust

    PubMed Central

    Weiden, Michael D.; Ferrier, Natalia; Nolan, Anna; Rom, William N.; Comfort, Ashley; Gustave, Jackson; Zeig-Owens, Rachel; Zheng, Shugi; Goldring, Roberta M.; Berger, Kenneth I.; Cosenza, Kaitlyn; Lee, Roy; Webber, Mayris P.; Kelly, Kerry J.; Aldrich, Thomas K.

    2010-01-01

    Background: The World Trade Center (WTC) collapse produced a massive exposure to respirable particulates in New York City Fire Department (FDNY) rescue workers. This group had spirometry examinations pre-September 11, 2001, and post-September 11, 2001, demonstrating declines in lung function with parallel declines in FEV1 and FVC. To date, the underlying pathophysiologic cause for this has been open to question. Methods: Of 13,234 participants in the FDNY-WTC Monitoring Program, 1,720 (13%) were referred for pulmonary subspecialty evaluation at a single institution. Evaluation included 919 full pulmonary function tests, 1,219 methacholine challenge tests, and 982 high-resolution chest CT scans. Results: At pulmonary evaluation (median 34 months post-September 11, 2001), median values were FEV1 93% predicted (interquartile range [IQR], 83%-101%), FVC 98% predicted (IQR, 89%-106%), and FEV1/FVC 0.78 (IQR, 0.72-0.82). The residual volume (RV) was 123% predicted (IQR, 106%-147%) with nearly all participants having normal total lung capacity, functional residual capacity, and diffusing capacity of carbon monoxide. Also, 1,051/1,720 (59%) had obstructive airways disease based on at least one of the following: FEV1/FVC, bronchodilator responsiveness, hyperreactivity, or elevated RV. After adjusting for age, gender, race, height and weight, and tobacco use, the decline in FEV1 post-September 11, 2001, was significantly correlated with increased RV percent predicted (P < .0001), increased bronchodilator responsiveness (P < .0001), and increased hyperreactivity (P = .0056). CT scans demonstrated bronchial wall thickening that was significantly associated with the decline in FEV1 post-September 11, 2001 (P = .024), increases in hyperreactivity (P < .0001), and increases in RV (P < .0001). Few had evidence for interstitial disease. Conclusions: Airways obstruction was the predominant physiologic finding underlying the reduction in lung function post-September 11, 2001, in FDNY WTC rescue workers presenting for pulmonary evaluation. PMID:19820077

  14. Validation of an asthma questionnaire for use in healthcare workers

    PubMed Central

    Delclos, G L; Arif, A A; Aday, L; Carson, A; Lai, D; Lusk, C; Stock, T; Symanski, E; Whitehead, L W; Benavides, F G; Antó, J M

    2006-01-01

    Background Previous studies have described increased occurrence of asthma among healthcare workers, but to our knowledge there are no validated survey questionnaires with which to study this occupational group. Aims To develop, validate, and refine a new survey instrument on asthma for use in epidemiological studies of healthcare workers. Methods An initial draft questionnaire, designed by a multidisciplinary team, used previously validated questions where possible; the occupational exposure section was developed by updating health services specific chemical lists through hospital walk‐through surveys and review of material safety data sheets. A cross‐sectional validation study was conducted in 118 non‐smoking subjects, who also underwent bronchial challenge testing, an interview with an industrial hygienist, and measurement of specific IgE antibodies to common aeroallergens. Results The final version consisted of 43 main questions in four sections. Time to completion of the questionnaire ranged from 13 to 25 minutes. Test–retest reliability of asthma and allergy items ranged from 75% to 94%, and internal consistency for these items was excellent (Cronbach's α ⩾ 0.86). Against methacholine challenge, an eight item combination of asthma related symptoms had a sensitivity of 71% and specificity of 70%; against a physician diagnosis of asthma, this same combination showed a sensitivity of 79% and specificity of 98%. Agreement between self‐reported exposures and industrial hygienist review was similar to previous studies and only moderate, indicating the need to incorporate more reliable methods of exposure assessment. Against the aerollergen panel, the best combinations of sensitivity and specificity were obtained for a history of allergies to dust, dust mite, and animals. Conclusions Initial evaluation of this new questionnaire indicates good validity and reliability, and further field testing and cross‐validation in a larger healthcare worker population is in progress. The need for development of more reliable occupational exposure assessment methods that go beyond self‐report is underscored. PMID:16497858

  15. Identifying biomarkers for asthma diagnosis using targeted metabolomics approaches.

    PubMed

    Checkley, William; Deza, Maria P; Klawitter, Jost; Romero, Karina M; Klawitter, Jelena; Pollard, Suzanne L; Wise, Robert A; Christians, Uwe; Hansel, Nadia N

    2016-12-01

    The diagnosis of asthma in children is challenging and relies on a combination of clinical factors and biomarkers including methacholine challenge, lung function, bronchodilator responsiveness, and presence of airway inflammation. No single test is diagnostic. We sought to identify a pattern of inflammatory biomarkers that was unique to asthma using a targeted metabolomics approach combined with data science methods. We conducted a nested case-control study of 100 children living in a peri-urban community in Lima, Peru. We defined cases as children with current asthma, and controls as children with no prior history of asthma and normal lung function. We further categorized enrollment following a factorial design to enroll equal numbers of children as either overweight or not. We obtained a fasting venous blood sample to characterize a comprehensive panel of targeted markers using a metabolomics approach based on high performance liquid chromatography-mass spectrometry. A statistical comparison of targeted metabolites between children with asthma (n = 50) and healthy controls (n = 49) revealed distinct patterns in relative concentrations of several metabolites: children with asthma had approximately 40-50% lower relative concentrations of ascorbic acid, 2-isopropylmalic acid, shikimate-3-phosphate, and 6-phospho-d-gluconate when compared to children without asthma, and 70% lower relative concentrations of reduced glutathione (all p < 0.001 after Bonferroni correction). Moreover, a combination of 2-isopropylmalic acid and betaine strongly discriminated between children with asthma (2-isopropylmalic acid ≤ 13 077 normalized counts/second) and controls (2-isopropylmalic acid > 13 077 normalized counts/second and betaine ≤ 16 47 121 normalized counts/second). By using a metabolomics approach applied to serum, we were able to discriminate between children with and without asthma by revealing different metabolic patterns. These results suggest that serum metabolomics may represent a diagnostic tool for asthma and may be helpful for distinguishing asthma phenotypes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Urinary leukotriene E4/exhaled nitric oxide ratio and montelukast response in childhood asthma.

    PubMed

    Rabinovitch, Nathan; Graber, Nora J; Chinchilli, Vernon M; Sorkness, Christine A; Zeiger, Robert S; Strunk, Robert C; Bacharier, Leonard B; Martinez, Fernando D; Szefler, Stanley J

    2010-09-01

    A subset of children with asthma respond better to leukotriene receptor antagonists than to inhaled corticosteroids. Information is needed to identify children with these preferential responses. We sought to determine whether the ratio of urinary leukotriene E(4) (LTE(4)) to fractional exhaled nitric oxide (FE(NO)) delineates children with preferential responsiveness to montelukast compared with fluticasone propionate (FP) therapy. Data from 318 children with mild-to-moderate asthma enrolled in 2 National Heart, Lung, and Blood Institute Childhood Asthma Research and Education Network studies (Characterizing the Response to a Leukotriene Receptor Antagonist and an Inhaled Corticosteroid [CLIC] and the Pediatric Asthma Controller Trial [PACT]) were analyzed. The association between LTE(4)/FE(NO) ratios at baseline and improved lung function or asthma control days (ACDs) with montelukast and FP therapy was determined, and phenotypic characteristics related to high ratios were assessed. LTE(4)/FE(NO) ratios were associated with a greater response to montelukast than FP therapy for FEV(1) measurements (2.1% increase per doubling of ratio, P = .001) and for ACDs per week (0.3-ACD increase, P = .009) in the CLIC study. In PACT the ratio was associated with greater ACD responsiveness to MT than FP therapy (0.6 ACD increase, P=.03) [corrected]. In a combined study analysis, LTE(4): FE(NO) ratios were associated with greater response to MT than FP therapy for FEV(1) (1.8% increase, P =.0005) and ACDs (0.4 increase, P =.001)[corrected].Children with LTE(4)/FE(NO) ratios at or above the 75th percentile were likely (P < .05) to be younger and female and exhibit lower levels of atopic markers and methacholine reactivity. LTE(4)/FE(NO) ratios predict a better response to montelukast than FP therapy in children with mild-to-moderate asthma. Copyright (C) 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  17. Objective Cough Frequency, Airway Inflammation, and Disease Control in Asthma.

    PubMed

    Marsden, Paul A; Satia, Imran; Ibrahim, Baharudin; Woodcock, Ashley; Yates, Lucy; Donnelly, Iona; Jolly, Lisa; Thomson, Neil C; Fowler, Stephen J; Smith, Jaclyn A

    2016-06-01

    Cough is recognized as an important troublesome symptom in the diagnosis and monitoring of asthma. Asthma control is thought to be determined by the degree of airway inflammation and hyperresponsiveness but how these factors relate to cough frequency is unclear. The goal of this study was to investigate the relationships between objective cough frequency, disease control, airflow obstruction, and airway inflammation in asthma. Participants with asthma underwent 24-h ambulatory cough monitoring and assessment of exhaled nitric oxide, spirometry, methacholine challenge, and sputum induction (cell counts and inflammatory mediator levels). Asthma control was assessed by using the Global Initiative for Asthma (GINA) classification and the Asthma Control Questionnaire (ACQ). The number of cough sounds was manually counted and expressed as coughs per hour (c/h). Eighty-nine subjects with asthma (mean ± SD age, 57 ± 12 years; 57% female) were recruited. According to GINA criteria, 18 (20.2%) patients were classified as controlled, 39 (43.8%) partly controlled, and 32 (36%) uncontrolled; the median ACQ score was 1 (range, 0.0-4.4). The 6-item ACQ correlated with 24-h cough frequency (r = 0.40; P < .001), and patients with uncontrolled asthma (per GINA criteria) had higher median 24-h cough frequency (4.2 c/h; range, 0.3-27.6) compared with partially controlled asthma (1.8 c/h; range, 0.2-25.3; P = .01) and controlled asthma (1.7 c/h; range, 0.3-6.7; P = .002). Measures of airway inflammation were not significantly different between GINA categories and were not correlated with ACQ. In multivariate analyses, increasing cough frequency and worsening FEV1 independently predicted measures of asthma control. Ambulatory cough frequency monitoring provides an objective assessment of asthma symptoms that correlates with standard measures of asthma control but not airflow obstruction or airway inflammation. Moreover, cough frequency and airflow obstruction represent independent dimensions of asthma control. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  18. Modification of acute and late-phase allergic responses to ovalbumin with lipopolysaccharide.

    PubMed

    Tulic, Mark K; Holt, Patrick G; Sly, Peter D

    2002-10-01

    We have previously shown that lipopolysaccharide (LPS) exposure in sensitised animals 18 h after ovalbumin (OVA) challenge inhibits OVA-induced airway hyper-responsiveness (AHR). In the present study, we investigated the effect of LPS on OVA-induced acute and late-phase allergic responses in sensitised rats when challenged with OVA. Rats were sensitised with OVA and 11 days later challenged with 1% OVA in the presence or absence of LPS (0.5-50 microg/ml) given in the same nebulizer. Acute responses to OVA were measured each minute for 30 min after challenge. In a separate group of animals, late-phase responses to OVA were determined at 24 h. At the end of each study, Evans blue dye was injected and animals sacrificed 30 min later. Bronchoalveolar lavage was obtained to monitor inflammatory cell migration and microvascular leakage. OVA challenge in sensitised animals produced an acute response with changes in lung mechanics peaking 10.0 +/- 0.9 min after OVA and returning to baseline within 30 min. This was followed 24 h later by increased responses to methacholine chloride (MCh), inflammatory cell influx and increased Evans blue leakage into the lungs. Presence of 5 or 50 microg/ml LPS in the nebulizer during OVA challenge altered the kinetics of the acute-phase response, with an immediate decrease in lung function (time to peak decreased from 10.3 +/- 1.2 to 1.8 +/- 0.2 and 2.2 +/- 0.3 min, respectively: p < 0.001, n = 6) and a dose-dependent attenuation of late-phase AHR, cellular influx (n = 5, p < 0.001) and Evans blue leakage (n = 5, p < 0.001) at 24 h. In summary, co-administration of OVA with LPS modifies both the acute and late-phase responses to the allergen, inducing an earlier acute change in lung function and a dose-dependent inhibition of late-phase responses to the allergen. Copyright 2002 S. Karger AG, Basel

  19. Acute lung injury and persistent small airway disease in a rabbit model of chlorine inhalation.

    PubMed

    Musah, Sadiatu; Schlueter, Connie F; Humphrey, David M; Powell, Karen S; Roberts, Andrew M; Hoyle, Gary W

    2017-01-15

    Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbits were extubated and were allowed to survive for up to 24h after exposure to 800ppm chlorine for 4min to study acute effects or up to 7days after exposure to 400ppm for 8min to study longer term effects. Acute effects observed 6 or 24h after inhalation of 800ppm chlorine for 4min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400ppm chlorine for 8min, rabbits exhibited mild hypoxemia, increased area of pressure-volume loops, and airway hyperreactivity. Lung histology 7days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Bradykinin Type 2 Receptor BE1 Genotype Influences Bradykinin-Dependent Vasodilation During Angiotensin-Converting Enzyme Inhibition

    PubMed Central

    Van Guilder, Gary P.; Pretorius, Mias; Luther, James M.; Byrd, J. Brian; Hill, Kevin; Gainer, James V.; Brown, Nancy J.

    2008-01-01

    To test the hypothesis that the bradykinin receptor 2 (BDKRB2) BE1 +9/−9 polymorphism affects vascular responses to bradykinin, we measured the effect of intra-arterial bradykinin on forearm blood flow and tissue-type plasminogen activator (t-PA) release in 89 normotensive, nonsmoking, white American subjects in whom degradation of bradykinin was blocked by enalaprilat. BE1 genotype frequencies were +9/+9:+9/−9:−9/−9=19:42:28. BE1 genotype was associated with systolic blood pressure (121.4±2.8, 113.8±1.8, and 110.6±1.8 mm Hg in +9/+9, +9/−9, and −9/−9 groups, respectively; P=0.007). In the absence of enalaprilat, bradykinin-stimulated forearm blood flow, forearm vascular resistance, and net t-PA release were similar among genotype groups. Enalaprilat increased basal forearm blood flow (P=0.002) and decreased basal forearm vascular resistance (P=0.01) without affecting blood pressure. Enalaprilat enhanced the effect of bradykinin on forearm blood flow, forearm vascular resistance, and t-PA release (all P<0.001). During enalaprilat, forearm blood flow was significantly lower and forearm vascular resistance was higher in response to bradykinin in the +9/+9 compared with +9/−9 and −9/−9 genotype groups (P=0.04 for both). t-PA release tended to be decreased in response to bradykinin in the +9/+9 group (P=0.08). When analyzed separately by gender, BE1 genotype was associated with bradykinin-stimulated t-PA release in angiotensin-converting enzyme inhibitor–treated men but not women (P=0.02 and P=0.77, respectively), after controlling for body mass index. There was no effect of BE1 genotype on responses to the bradykinin type 2 receptor–independent vasodilator methacholine during enalaprilat. In conclusion, the BDKRB2 BE1 polymorphism influences bradykinin type 2 receptor–mediated vasodilation during angiotensin-converting enzyme inhibition. PMID:18180402

  1. Effect of Continuous Positive Airway Pressure on Airway Reactivity in Asthma. A Randomized, Sham-controlled Clinical Trial

    PubMed Central

    Sugar, Elizabeth A.; Brown, Robert H.; Drye, Lea T.; Irvin, Charles G.; Schwartz, Alan R.; Tepper, Robert S.; Wise, Robert A.; Yasin, Razan Z.; Busk, Michael F.

    2016-01-01

    Rationale: Studies have demonstrated that application of stress suppresses airway smooth muscle contractility. In animal models of asthma, continuous positive airway pressure (CPAP) reduced airway reactivity. Short-term studies of CPAP in patients with asthma showed reductions in airway reactivity. Objectives: To evaluate whether nocturnal CPAP decreased the provocative concentration of methacholine to reduce FEV1 by 20% (PC20). Methods: One hundred ninety-four individuals with asthma were randomized (1:1:1) to use CPAP with warmed, filtered, humidified air at night at pressures either less than 1 cm H2O (sham) or at 5 cm H2O or 10 cm H2O. The primary outcome was change in PC20 after 12 weeks. Measurements and Main Results: Adherence to CPAP was low in all groups. Regardless, all groups had a significant improvement in PC20, with 12 weeks/baseline PC20 ratios of 2.12, 1.73, and 1.78 for the sham, 5 cm H2O, and 10 cm H2O groups, respectively, and no significant differences between the active and sham groups. Changes in FEV1 and exhaled nitric oxide were minimal in all groups. The sham group had larger improvements in most patient-reported outcomes measuring asthma symptoms and quality of life, as well as sinus symptoms, than the 5 cm H2O group. The 10 cm H2O group showed similar but less consistent improvements in scores, which were not different from improvements in the sham group. Conclusions: Adherence to nocturnal CPAP was low. There was no evidence to support positive pressure as being effective for reducing airway reactivity in people with well-controlled asthma. Regardless, airway reactivity was improved in all groups, which may represent an effect of participating in a study and/or an effect of warm, humid, filtered air on airway reactivity. Clinical trial registered with www.clinicaltrials.gov (NCT01629823). PMID:27398992

  2. Increased leukotriene E4 in the exhaled breath condensate of children with mild asthma.

    PubMed

    Shibata, Atsushi; Katsunuma, Toshio; Tomikawa, Morimitsu; Tan, Aiko; Yuki, Keisuke; Akashi, Kenichi; Eto, Yoshikatsu

    2006-12-01

    Chronic airway inflammation is a feature of asthma. Increased levels of cysteinyl leukotrienes (cys-LTs; leukotriene [LT]C(4), LTD(4), LTE(4)) have been shown in the exhaled breath condensate (EBC) of children with moderate-to-severe asthma. The aim of this study was to examine the relationship between EBC cys-LTs (LTE(4)) levels and bronchial hyperreactivity in children with mild asthma in order to evaluate the clinical utility of measuring EBC cys-LTs levels. We measured LTE(4) levels in the EBC of children aged 8 to 18 years, including healthy nonasthmatic children (n = 6) and children with mild asthma (n = 37). Patients with mild asthma were classified into the following three groups: group 1, participants who had been asymptomatic (no wheezing/symptoms of asthma) for > 6 months prior to examination (n = 12); group 2, participants who were asymptomatic but had had wheezing/symptoms of asthma within 6 months before examination (n = 18); and group 3, patients with current wheeze and/or mild symptoms of asthma exacerbation at the time of examination. Exhaled LTE(4) levels were increased in all children with mild asthma compared with nonasthmatic control subjects (5.69 +/- 9.62 pg/20 min vs 0.74 +/- 0.79 pg/20 min, p < 0.05) [mean +/- SD]. In particular, the EBC LTE(4) levels in group 2 (4.99 +/- 6.70 pg/20 min) and group 3 (14.66 +/- 17.11 pg/20 min) were increased compared with control subjects and group 1 (1.50 +/- 1.69 pg/20 min). The EBC LTE(4) levels negatively correlated with the provocative concentration of methacholine causing a 15% fall in FEV(1) (r = - 0.454, p = 0.012). EBC cys-LTs may be useful as a noninvasive marker assessing airway inflammation and hyperreactivity in children with asthma.

  3. Airway hyperresponsiveness in chronic obstructive pulmonary disease: A marker of asthma-chronic obstructive pulmonary disease overlap syndrome?

    PubMed

    Tkacova, Ruzena; Dai, Darlene L Y; Vonk, Judith M; Leung, Janice M; Hiemstra, Pieter S; van den Berge, Maarten; Kunz, Lisette; Hollander, Zsuzsanna; Tashkin, Donald; Wise, Robert; Connett, John; Ng, Raymond; McManus, Bruce; Paul Man, S F; Postma, Dirkje S; Sin, Don D

    2016-12-01

    The impact of airway hyperreactivity (AHR) on respiratory mortality and systemic inflammation among patients with chronic obstructive pulmonary disease (COPD) is largely unknown. We used data from 2 large studies to determine the relationship between AHR and FEV 1 decline, respiratory mortality, and systemic inflammation. We sought to determine the relationship of AHR with FEV 1 decline, respiratory mortality, and systemic inflammatory burden in patients with COPD in the Lung Health Study (LHS) and the Groningen Leiden Universities Corticosteroids in Obstructive Lung Disease (GLUCOLD) study. The LHS enrolled current smokers with mild-to-moderate COPD (n = 5887), and the GLUCOLD study enrolled former and current smokers with moderate-to-severe COPD (n = 51). For the primary analysis, we defined AHR by a methacholine provocation concentration of 4 mg/mL or less, which led to a 20% reduction in FEV 1 (PC 20 ). The primary outcomes were FEV 1 decline, respiratory mortality, and biomarkers of systemic inflammation. Approximately 24% of LHS participants had AHR. Compared with patients without AHR, patients with AHR had a 2-fold increased risk of respiratory mortality (hazard ratio, 2.38; 95% CI, 1.38-4.11; P = .002) and experienced an accelerated FEV 1 decline by 13.2 mL/y in the LHS (P = .007) and by 12.4 mL/y in the much smaller GLUCOLD study (P = .079). Patients with AHR had generally reduced burden of systemic inflammatory biomarkers than did those without AHR. AHR is common in patients with mild-to-moderate COPD, affecting 1 in 4 patients and identifies a distinct subset of patients who have increased risk of disease progression and mortality. AHR may represent a spectrum of the asthma-COPD overlap phenotype that urgently requires disease modification. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  4. Useful marker of oscillatory lung function in methacholine challenge test-comparison of reactance and resistance with dose-response slope.

    PubMed

    Yoon, Jung Won; Shin, Youn Ho; Jee, Hye Mi; Chang, Sun Jung; Baek, Ji Hyeon; Choi, Sun Hee; Kim, Hyeong Yun; Han, Man Yong

    2014-06-01

    There are few studies focusing on the comparison of resistance (Rrs) and reactance (Xrs) in impulse oscillometry system (IOS) in the bronchial challenge test using dose-response slope (DRS), a quantitative index of bronchial hyperresponsiveness. We conducted a case-control study of 144 asthmatic and 218 non-asthmatic children to compare the diagnostic accuracy of two-point linear DRS for FEV1 , Rrs5 , and Xrs5 (DRS_FEV1 , DRS_Rrs5 , and DRS_Xrs5 ) and assessed various diagnostic cut-off points of provocation concentrations (PC) using receiver operating characteristic (ROC) curves. DRS_FEV1 had a stronger correlation with DRS_Xrs5 (r = 0.739, P < 0.001) than with DRS_Rrs5 (r = 0.652, P < 0.001) and the area under the ROC curves of DRS_Xrs5 (0.737) was similar to that of DRS_FEV1 (0.732) and higher than that of DRS_Rrs5 (0.668). The area under the ROC curves in order of greater value was as follows: absolute change of Xrs5 (Abs_Xrs5 ) (0.759) > percent change of FEV1 (Pch_FEV1 ) (0.735) > Pch_Xrs5 (0.727) > Abs_Rrs5 (0.690) > Pch_Rrs5 (0.630). PC78 _Xrs5 and PC0.17 _Xrs5 of IOS showed considerably good sensitivity and specificity comparable to those of PC20 _FEV1 by spirometry. Additional 18 (13%) children who showed normal spirometric measures were identified as asthmatics with the use of IOS. The utility of the DRS_Xrs5 to differentiate asthmatics from controls was comparable to that of the DRS_FEV1 and better than that of the DRS_Rrs5 . In addition, IOS could detect additional asthmatic patients who did not show positive responses in spirometry. © 2013 Wiley Periodicals, Inc.

  5. Stimulation of airway sensory nerves by cyclosporin A and FK506 in guinea-pig isolated bronchus.

    PubMed

    Harrison, S; Reddy, S; Page, C P; Spina, D

    1998-12-01

    We have investigated the contractile property of cyclosporin A and FK506 in guinea-pig isolated bronchus. Cyclosporin A (10 microM) failed to significantly attenuate the excitatory non-adrenergic non-cholinergic (eNANC) and cholinergic contractile response (per cent methacholine Emax) induced by electrical field stimulation (EFS). In contrast, eNANC responses were significantly attenuated by both the neurokinin (NK)-1 and (NK)-2 receptor antagonists, N-acetyl-L-tryptophan 3,5-bis (trifluoromethyl)-benzyl and SR48968, respectively. Cyclosporin A and FK506 caused a concentration-dependent contraction in guinea-pig isolated bronchus, which was significantly attenuated by NK-1 and NK-2 receptor antagonists. The capsaicin receptor antagonist, capsazepine (10 microM) significantly reduced the contractile response to cyclosporin A and capsaicin, but not to FK506. The N-type calcium channel blocker, omega-Conotoxin (omegaCTX: 10 nM), significantly reduced the contractile response to FK506 and the eNANC response following EFS. In contrast, omega-CTX failed to significantly reduce the contractile potency to capsaicin or cyclosporin A. In bronchial preparations desensitized by repeated application of capsaicin (1 microM), the contractile responses to both cyclosporin A (100 microM) and FK506 (100 microM), were significantly reduced. In contrast, the contractile responses to substance P and neurokinin A (10 microM) were not altered. Furthermore, repeated application of cyclosporin A (100 microM) significantly inhibited the contractile response to capsaicin (1 microM). The findings from this study would indicate that cyclosporin A and FK506 mediate contraction of guinea-pig isolated bronchus secondary to the release of neuropeptides from airway sensory nerves. However, the release of sensory neuropeptides appears to be mediated via different mechanisms for cyclosporin A and FK506, the former by stimulation of the vanilloid receptor and the latter via opening of N-type calcium channels.

  6. Exposure to substances in the workplace and new-onset asthma: an international prospective population-based study (ECRHS-II).

    PubMed

    Kogevinas, Manolis; Zock, Jan-Paul; Jarvis, Debbie; Kromhout, Hans; Lillienberg, Linnéa; Plana, Estel; Radon, Katja; Torén, Kjell; Alliksoo, Ada; Benke, Geza; Blanc, Paul D; Dahlman-Hoglund, Anna; D'Errico, Angelo; Héry, Michel; Kennedy, Susan; Kunzli, Nino; Leynaert, Bénédicte; Mirabelli, Maria C; Muniozguren, Nerea; Norbäck, Dan; Olivieri, Mario; Payo, Félix; Villani, Simona; van Sprundel, Marc; Urrutia, Isabel; Wieslander, Gunilla; Sunyer, Jordi; Antó, Josep M

    2007-07-28

    The role of exposure to substances in the workplace in new-onset asthma is not well characterised in population-based studies. We therefore aimed to estimate the relative and attributable risks of new-onset asthma in relation to occupations, work-related exposures, and inhalation accidents. We studied prospectively 6837 participants from 13 countries who previously took part in the European Community Respiratory Health Survey (1990-95) and did not report respiratory symptoms or a history of asthma at the time of the first study. Asthma was assessed by methacholine challenge test and by questionnaire data on asthma symptoms. Exposures were defined by high-risk occupations, an asthma-specific job exposure matrix with additional expert judgment, and through self-report of acute inhalation events. Relative risks for new onset asthma were calculated with log-binomial models adjusted for age, sex, smoking, and study centre. A significant excess asthma risk was seen after exposure to substances known to cause occupational asthma (Relative risk=1.6, 95% CI 1.1-2.3, p=0.017). Risks were highest for asthma defined by bronchial hyper-reactivity in addition to symptoms (2.4, 1.3-4.6, p=0.008). Of common occupations, a significant excess risk of asthma was seen for nursing (2.2, 1.3-4.0, p=0.007). Asthma risk was also increased in participants who reported an acute symptomatic inhalation event such as fire, mixing cleaning products, or chemical spills (RR=3.3, 95% CI 1.0-11.1, p=0.051). The population-attributable risk for adult asthma due to occupational exposures ranged from 10% to 25%, equivalent to an incidence of new-onset occupational asthma of 250-300 cases per million people per year. Occupational exposures account for a substantial proportion of adult asthma incidence. The increased risk of asthma after inhalation accidents suggests that workers who have such accidents should be monitored closely.

  7. Carbon Dioxide Utilization by the Five-Membered Ring Products of Cyclometalation Reactions

    PubMed Central

    Omae, Iwao

    2016-01-01

    In carbon dioxide utilization by cyclometalated five-membered ring products, the following compounds are used in four types of applications: 1. 2-Phenylpyrazole iridium compounds, pincer phosphine iridium compounds and 2-phenylimidazoline iridium compounds are used as catalysts for both formic acid production from CO2 and H2, and hydrogen production from the formic acid. This formic acid can be a useful agent for H2 production and storage for fuel cell electric vehicles. 2. Other chemicals, e.g., dimethyl carbonate, methane, methanol and CO, are produced with dimethylaminomethylphenyltin compounds, pincer phosphine iridium compounds, pincer phosphine nickel compound and ruthenium carbene compound or 2-phenylpyridine iridium compounds, and phenylbenzothiazole iridium compounds as the catalysts for the reactions with CO2. 3. The five-membered ring intermediates of cyclometalation reactions with the conventional substrates react with carbon dioxide to afford their many types of carboxylic acid derivatives. 4. Carbon dioxide is easily immobilized at room temperature with immobilizing agents such as pincer phosphine nickel compounds, pincer phosphine palladium compounds, pincer N,N-dimethylaminomethyltin compounds and tris(2-pyridylthio)methane zinc compounds. PMID:28503084

  8. Carbon Dioxide Utilization by the Five-Membered Ring Products of Cyclometalation Reactions.

    PubMed

    Omae, Iwao

    2016-04-01

    In carbon dioxide utilization by cyclometalated five-membered ring products, the following compounds are used in four types of applications: 1. 2-Phenylpyrazole iridium compounds, pincer phosphine iridium compounds and 2-phenylimidazoline iridium compounds are used as catalysts for both formic acid production from CO 2 and H 2 , and hydrogen production from the formic acid. This formic acid can be a useful agent for H 2 production and storage for fuel cell electric vehicles. 2. Other chemicals, e.g. , dimethyl carbonate, methane, methanol and CO, are produced with dimethylaminomethylphenyltin compounds, pincer phosphine iridium compounds, pincer phosphine nickel compound and ruthenium carbene compound or 2-phenylpyridine iridium compounds, and phenylbenzothiazole iridium compounds as the catalysts for the reactions with CO 2 . 3. The five-membered ring intermediates of cyclometalation reactions with the conventional substrates react with carbon dioxide to afford their many types of carboxylic acid derivatives. 4. Carbon dioxide is easily immobilized at room temperature with immobilizing agents such as pincer phosphine nickel compounds, pincer phosphine palladium compounds, pincer N , N -dimethylaminomethyltin compounds and tris(2-pyridylthio)methane zinc compounds.

  9. Ionic Fluorine Chemistry.

    DTIC Science & Technology

    SOLID ROCKET OXIDIZERS, *LIQUID ROCKET OXIDIZERS, CHLORATES, FLUORIDES, ACETONES, CHLORINE COMPOUNDS, NITROSO COMPOUNDS, *HALOGEN COMPOUNDS, ADDITION REACTIONS, CESIUM COMPOUNDS, CHLORIDES, COMPLEX COMPOUNDS

  10. Independent Community Pharmacists' Perspectives on Compounding in Contemporary Pharmacy Education

    PubMed Central

    McPherson, Timothy B.; Fontane, Patrick E.; Berry, Tricia; Chereson, Rasma; Bilger, Rhonda

    2009-01-01

    Objectives To identify compounding practices of independent community pharmacy practitioners in order to make recommendations for the development of curricular objectives for doctor of pharmacy (PharmD) programs. Methods Independent community practitioners were asked about compounding regarding their motivations, common activities, educational exposures, and recommendations for PharmD education. Results Most respondents (69%) accepted compounding as a component of pharmaceutical care and compounded dermatological preparations for local effects, oral solutions, and suspensions at least once a week. Ninety-five percent were exposed to compounding in required pharmacy school courses and most (98%) who identified compounding as a professional service offered in their pharmacy sought additional postgraduate compounding education. Regardless of the extent of compounding emphasis in the practices surveyed, 84% stated that PharmD curricula should include compounding. Conclusions Pharmacy schools should define compounding curricular objectives and develop compounding abilities in a required laboratory course to prepare graduates for pharmaceutical care practice. PMID:19564997

  11. Reductive precipitation of metals photosensitized by tin and antimony porphyrins

    DOEpatents

    Shelnutt, John A.; Gong, Weiliang; Abdelouas, Abdesselam; Lutze, Werner

    2003-09-30

    A method for reducing metals using a tin or antimony porphyrin by forming an aqueous solution of a tin or antimony porphyrin, an electron donor, such as ethylenediaminetetraaceticacid, triethylamine, triethanolamine, and sodium nitrite, and at least one metal compound selected from a uranium-containing compound, a mercury-containing compound, a copper-containing compound, a lead-containing compound, a gold-containing compound, a silver-containing compound, and a platinum-containing compound through irradiating the aqueous solution with light.

  12. Volatile flavor compounds in yogurt: a review.

    PubMed

    Cheng, Hefa

    2010-11-01

    Considerable knowledge has been accumulated on the volatile compounds contributing to the aroma and flavor of yogurt. This review outlines the production of the major flavor compounds in yogurt fermentation and the analysis techniques, both instrumental and sensory, for quantifying the volatile compounds in yogurt. The volatile compounds that have been identified in plain yogurt are summarized, with the few key aroma compounds described in detail. Most flavor compounds in yogurt are produced from lipolysis of milkfat and microbiological transformations of lactose and citrate. More than 100 volatiles, including carbonyl compounds, alcohols, acids, esters, hydrocarbons, aromatic compounds, sulfur-containing compounds, and heterocyclic compounds, are found in yogurt at low to trace concentrations. Besides lactic acid, acetaldehyde, diacetyl, acetoin, acetone, and 2-butanone contribute most to the typical aroma and flavor of yogurt. Extended storage of yogurt causes off-flavor development, which is mainly attributed to the production of undesired aldehydes and fatty acids during lipid oxidation. Further work on studying the volatile flavor compounds-matrix interactions, flavor release mechanisms, and the synergistic effect of flavor compounds, and on correlating the sensory properties of yogurt with the compositions of volatile flavor compounds are needed to fully elucidate yogurt aroma and flavor.

  13. DEVELOPMENT OF IMPROVED TITANIUM ORGANIC COMPOUNDS FOR USE AS HYDRAULIC FLUIDS

    DTIC Science & Technology

    HYDRAULIC FLUIDS, *METALORGANIC COMPOUNDS, *TITANATES, *TITANIUM COMPOUNDS, ALKYL RADICALS, CATALYSTS , CHLORIDES, COMPLEX COMPOUNDS, FLUIDS, PHOSPHORIC ACIDS, PROPYL RADICALS, VISCOSITY, ZINC COMPOUNDS

  14. Understanding the mental lexicon through neglect dyslexia: a study on compound noun reading.

    PubMed

    Marelli, Marco; Aggujaro, Silvia; Molteni, Franco; Luzzatti, Claudio

    2013-04-01

    The present study employs neglect dyslexia (ND) as an experimental model to study compound-word processing; in particular, it investigates whether compound constituents are hierarchically organized at mental level and addresses the possibility of whole-word representation. Seven Italian-speaking patients suffering from ND participated in a word naming task. Both left-headed (pescespada, swordfish) and right-headed (astronave, spaceship) Italian compound nouns were used as stimuli. Non-existent compounds, which were generated by substituting the leftmost constituent of a compound with an orthographically similar word (e.g., *pestespada, *plaguesword), were also employed. A significant headedness effect emerged in the group analysis: patients read left-headed compounds better than right-headed compounds. A significant lexicality effect was also found: the participants read real compounds better than their non-existent compound pairs. Moreover, logit mixed-effects analyses indicated a left-hand constituent frequency effect. Results are discussed in terms of hierarchical representation of compounds and direct access to compound lemma nodes.

  15. Clandestine grave detector

    DOEpatents

    Andrews, Jr., William H.; Thompson, Cyril V [Knoxville, TN; Vass, Arpad A [Oak Ridge, TN; Smith, Rob R [Knoxville, TN

    2011-12-13

    An apparatus and a method for detecting a burial site of human remains are disclosed. An air stream is drawn through an air intake conduit from locations near potential burial sites of human remains. The air stream is monitored by one or more chemical sensors to determine whether the air stream includes one or more indicator compounds selected from halogenated compounds, hydrocarbons, nitrogen-containing compounds, sulfur-containing compounds, acid/ester compounds, oxygen-containing compounds, and naphthalene-containing compounds. When it is determined that an indicator compound is present in the air stream, this indicates that a burial site of human remains is below or nearby. Each sensor may be in electrical communication with an indicator that signals when the sensor has detected the presence of the indicator compound in the air stream. In one form, the indicator compound is a halogenated compound and/or a hydrocarbon, and the presence of the halogenated compound and/or the hydrocarbon in the air stream indicates that a burial site of human remains is below or nearby.

  16. [Studies on metabolites from marine microorganism Aspergillus terreus collected from nature reserve region of mangrove].

    PubMed

    Shen, Yi; Zou, Jianhua; Dai, Jungui

    2011-09-01

    To search for new antitumor active lead compounds from marine microorganism. A marine strain, Aspergillus terreus, was cultured and up-scaled in artificial seawater media, from which the metabolites were isolated and elucidated by using modern spectroscopy techniques. Twelve compounds were isolated from mycelia and fermentation broth of A. terreus. Compounds 1-4 were steroids, compounds 5-8 were organic acids and esters, compound 9 was an alkaloid, compound 10 was an isocoumarin, compound 11 was ceramide, compound 12 was propenyl cyclic pentanediol.

  17. Basics of compounding: Tips and hints: powders, capsules, tablets, suppositories, and sticks, part 1.

    PubMed

    Allen, Loyd V

    2014-01-01

    No matter the profession, professionals should never stop learning. This is especially true and important in the profession of compounding pharmacy. Compounding pharmacists are continuously faced with the challenge of finding new and inventive ways to assist patients with their individual and specific drug requirements. As compounding pharmacists learn, be it through formal continuing education or experience, they should be willing to share their knowledge with other compounders. In our goal of providing compounding pharmacists with additional knowledge to improve their skills in the art and practice of compounding, this article, which provides tips and hits on compounding with powders, capsules, tablets, suppositories, and sticks, represents the first in a series of articles to assist compounding pharmacists in the preparation of compounded medications.

  18. Design and synthesis of aloe-emodin derivatives as potent anti-tyrosinase, antibacterial and anti-inflammatory agents.

    PubMed

    Liu, Jinbing; Wu, Fengyan; Chen, Changhong

    2015-11-15

    Twenty aloe-emodin derivatives were designed, synthesized, and their biological activities were evaluated. Some compounds displayed potent tyrosinase inhibitory activities, especially, compounds with thiosemicarbazide moiety showed more potent inhibitory effects than the other compounds. The structure-activity relationships (SARs) were preliminarily discussed. The inhibition mechanism of selected compounds 1 and 13 were investigated. The results showed compound 1 was reversible inhibitor, however, compound 13 was irreversible. Kinetic analysis indicated that compound 1 was competitive tyrosinase inhibitor. Furthermore, the antibacterial activities and anti-inflammatory activities of some selected compounds were also screened. The results showed that compound 3 exhibited more potent antibacterial activity than the aloe-emodin, compounds 5 and 6 possessed more potent anti-inflammatory activities than the diacerein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. [Detection of organic compounds on Mars].

    PubMed

    Kobayashi, K

    1997-03-01

    McKay et al. detected polycyclic aromatic hydrocarbons (PAHs) in Martian meteorite ALH 84001 by two-step laser mass spectrometry. From the presence of PAHs, together with other results, they concluded that there were past life of Mars. On the other hands, no organisms nor organic compounds were detected in Martian regolith in Viking experiments in 1976. In order to obtain solid evidence for organisms or bioorganic compounds compounds on Mars, further analyses of Martian samples are required. There may be four classes of organic compounds on Mars, which are (i) organic compounds abiotically formed from primitive Mars atmosphere, (ii) Organic compounds delivered out of Mars, (iii) Organic compounds biotically formed by Mars organisms, and (iv) Organic compounds abiotically formed from the present Mars atmosphere. Possible organic compounds on Mars and analytical methods for them are discussed.

  20. ION COMPOSITION ELUCIDATION (ICE): A HIGH ...

    EPA Pesticide Factsheets

    Unidentified Organic Compounds. For target analytes, standards are purchased, extraction and clean-up procedures are optimized, and mass spectra and retention times for the chromatographic separation are obtained for comparison to the target compounds in environmental sample extracts. This is an efficient approach and selective extraction and clean-up can decrease detection limits for the target compounds relative to analyzing a raw extract containing compounds that yield mass interferences. But selection of a class of compounds for study ignores many potentially toxic compounds. All compounds should be considered, because even trace amounts of compounds found to be endocrine disrupting chemicals might influence embryonic development. Before the toxicology of the hundreds of compounds found in sewage treatment effluents and water reservoirs can be studied alone and in mixtures, they must first be identified. A given compound might be one of the 3800 high production volume chemicals used commercially, a human or microorganism metabolite of such a compound, a photochemical degradation, hydrolysis, or thermal decomposition product, a chlorination or ozonolysis byproduct for drinking water samples, or a naturally occurring compound. Numerous researchers targeting assorted classes of analytes could easily overlook or be unable to identify many of these compounds. Most non-targeted compounds will not be in mass spectral libraries and can seldom be tentatively identifi

  1. Defense Technical Information Center Thesaurus

    DTIC Science & Technology

    2000-10-01

    acquisition radar 4 + Indicates existence of further generic levels of the term DTIC Thesaurus Actuators Acridines Actinide series (cont.) Activated sintering...BT Heterocyclic compounds+ Uranium+ BT Sintering Acrilan Actinide series compounds Activated sludge process use Acrylonitrile polymers RT Actinide...Waste treatment+ Protactinium compounds Acronyms Thorium compounds+ Activation use Abbreviations Transuranium compounds+ UF Energizing Uranium compounds

  2. A kinase-focused compound collection: compilation and screening strategy.

    PubMed

    Sun, Dongyu; Chuaqui, Claudio; Deng, Zhan; Bowes, Scott; Chin, Donovan; Singh, Juswinder; Cullen, Patrick; Hankins, Gretchen; Lee, Wen-Cherng; Donnelly, Jason; Friedman, Jessica; Josiah, Serene

    2006-06-01

    Lead identification by high-throughput screening of large compound libraries has been supplemented with virtual screening and focused compound libraries. To complement existing approaches for lead identification at Biogen Idec, a kinase-focused compound collection was designed, developed and validated. Two strategies were adopted to populate the compound collection: a ligand shape-based virtual screening and a receptor-based approach (structural interaction fingerprint). Compounds selected with the two approaches were cherry-picked from an existing high-throughput screening compound library, ordered from suppliers and supplemented with specific medicinal compounds from internal programs. Promising hits and leads have been generated from the kinase-focused compound collection against multiple kinase targets. The principle of the collection design and screening strategy was validated and the use of the kinase-focused compound collection for lead identification has been added to existing strategies.

  3. Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran.

    PubMed

    Wang, Wei; Guo, Jia; Zhang, Junnan; Peng, Jie; Liu, Tianxing; Xin, Zhihong

    2015-03-15

    The bound phenolic compounds in rice bran were released and extracted with ethyl acetate based on alkaline digestion. An investigation of the chemical constituents of EtOAc extract has led to the isolation of a new compound, para-hydroxy methyl benzoate glucoside (8), together with nine known compounds, cycloeucalenol cis-ferulate (1), cycloeucalenol trans-ferulate (2), trans-ferulic acid (3), trans-ferulic acid methyl ester (4), cis-ferulic acid (5), cis-ferulic acid methyl ester (6), methyl caffeate (7), vanillic aldehyde (9) and para-hydroxy benzaldehyde (10). The structures of these compounds were determined using a combination of spectroscopic methods and chemical analysis. Among the compounds isolated, compound 3, 5 and 7 exhibited strong DPPH and ABTS(+) radical scavenging activities, followed by compounds 4 and 6. Compound 1 and 2 showed potent DPPH and ABTS(+) radical scavenging activities, compound 8 displayed moderate antioxidant activity against ABTS(+) radical, whereas compound 9 and 10 showed weak antioxidant activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Polymers containing borane or carborane cage compounds and related applications

    DOEpatents

    Bowen, III, Daniel E; Eastwood, Eric A

    2013-04-23

    Polymers comprising residues of cage compound monomers having at least one polyalkoxy silyl substituent are provided. The cage compound monomers are selected from borane cage compound monomers comprising at least 7 cage atoms and/or carborane cage compound monomers comprising 7 to 11 cage compound monomers. Such polymers can further comprise one or more reactive matrices and/or co-monomers covalently bound with the cage compound monomer residues. Articles of manufacture comprising such polymers are also disclosed.

  5. Word Syntax of Nominal Compounds: Internal and Aphasiological Evidence from Turkish

    ERIC Educational Resources Information Center

    Tat, Deniz

    2013-01-01

    This dissertation is an analysis of two types of nominal compounds in Turkish, primary compounds and synthetic compounds within the framework of Distributed Morphology. A nominal primary compound is formed by two nouns, and its meaning is largely determined by world knowledge. A synthetic compound, on the other hand, is formed by a noun and a…

  6. Formulations for neutralization of chemical and biological toxants

    DOEpatents

    Tadros, Maher E.; Tucker, Mark D.

    2003-05-20

    A formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents. The formulation of the present invention non-toxic and non-corrosive and can be delivered by a variety of means and in different phases. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The at least one reactive compound can be an oxidizing compound, a nucleophilic compound or a mixture of both. The formulation can kill up to 99.99999% of bacterial spores within one hour of exposure.

  7. Therapeutic Phytogenic Compounds for Obesity and Diabetes

    PubMed Central

    Jung, Hee Soong; Lim, Yun; Kim, Eun-Kyoung

    2014-01-01

    Natural compounds have been used to develop drugs for many decades. Vast diversities and minimum side effects make natural compounds a good source for drug development. However, the composition and concentrations of natural compounds can vary. Despite this inconsistency, half of the Food and Drug Administration (FDA)-approved pharmaceuticals are natural compounds or their derivatives. Therefore, it is essential to continuously investigate natural compounds as sources of new pharmaceuticals. This review provides comprehensive information and analysis on natural compounds from plants (phytogenic compounds) that may serve as anti-obesity and/or anti-diabetes therapeutics. Our growing understanding and further exploration of the mechanisms of action of the phytogenic compounds may afford opportunities for development of therapeutic interventions in metabolic diseases. PMID:25421245

  8. Dehydrogenation of liquid fuel in microchannel catalytic reactor

    DOEpatents

    Toseland, Bernard Allen; Pez, Guido Peter; Puri, Pushpinder Singh

    2010-08-03

    The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.

  9. Dehydrogenation of liquid fuel in microchannel catalytic reactor

    DOEpatents

    Toseland, Bernard Allen [Allentown, PA; Pez, Guido Peter [Allentown, PA; Puri, Pushpinder Singh [Emmaus, PA

    2009-02-03

    The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.

  10. History of sterile compounding in U.S. hospitals: learning from the tragic lessons of the past.

    PubMed

    Myers, Charles E

    2013-08-15

    The evolution of sterile compounding in the context of hospital patient care, the evolution of related technology, past incidents of morbidity and mortality associated with preparations compounded in various settings, and efforts over the years to improve compounding practices are reviewed. Tightened United States Pharmacopeial Convention standards (since 2004) for sterile compounding made it difficult for hospitals to achieve all of the sterile compounding necessary for patient care. Shortages of manufactured injections added to the need for compounding. Non-hospital-based compounding pharmacies increased sterile compounding to meet the needs. Gaps in federal and state laws and regulations about compounding pharmacies led to deficiencies in their regulation. Lapses in sterility led to injuries and deaths. Perspectives offered include potential actions, including changes in practitioner education, better surveillance of sterile compounding, regulatory reforms, reexamination of the causes of drug shortages, and the development of new technologies. Over the years, there have been numerous exhortations for voluntary better performance in sterile compounding. In addition, professional leadership has been vigorous and extensive in the form of guidance, publications, education, enforceable standards, and development of various associations and organizations dealing with safe compounding practices. Yet problems continue to occur. We must engage in diligent learning from the injuries and tragedies that have occurred. Assuming that we are already doing all we can to avoid problems would be an abdication of the professional mission of pharmacists. It would be wrong thinking to assume that the recent problems in large-scale compounding pharmacies are the only problems that warrant attention. It is time for a systematic assessment of the nature and the dimensions of the problems in every type of setting where sterile compounding occurs. It also is time for some innovative thinking about ensuring safety in sterile compounding.

  11. Organic compounds in produced waters from coalbed natural gas wells in the Powder River Basin, Wyoming, USA

    USGS Publications Warehouse

    Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D.

    2007-01-01

    The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 ??g/L. Concentrations of individual compounds ranged from about 18 to <0.01 ??g/L. Temporal variability of organic compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.

  12. Mutagenic Azo Dyes, Rather Than Flame Retardants, Are the Predominant Brominated Compounds in House Dust.

    PubMed

    Peng, Hui; Saunders, David M V; Sun, Jianxian; Jones, Paul D; Wong, Chris K C; Liu, Hongling; Giesy, John P

    2016-12-06

    Characterization of toxicological profiles by use of traditional targeted strategies might underestimate the risk of environmental mixtures. Unbiased identification of prioritized compounds provides a promising strategy for meeting regulatory needs. In this study, untargeted screening of brominated compounds in house dust was conducted using a data-independent precursor isolation and characteristic fragment (DIPIC-Frag) approach, which used data-independent acquisition (DIA) and a chemometric strategy to detect peaks and align precursor ions. A total of 1008 brominated compound peaks were identified in 23 house dust samples. Precursor ions and formulas were identified for 738 (73%) of the brominated compounds. A correlation matrix was used to cluster brominated compounds; three large groups were found for the 140 high-abundance brominated compounds, and only 24 (17%) of these compounds were previously known flame retardants. The predominant class of unknown brominated compounds was predicted to consist of nitrogen-containing compounds. Following further validation by authentic standards, these compounds (56%) were determined to be novel brominated azo dyes. The mutagenicity of one major component was investigated, and mutagenicity was observed at environmentally relevant concentrations. Results of this study demonstrated the existence of numerous unknown brominated compounds in house dust, with mutagenic azo dyes unexpectedly being identified as the predominant compounds.

  13. Functional Group Analysis.

    ERIC Educational Resources Information Center

    Smith, Walter T., Jr.; Patterson, John M.

    1984-01-01

    Literature on analytical methods related to the functional groups of 17 chemical compounds is reviewed. These compounds include acids, acid azides, alcohols, aldehydes, ketones, amino acids, aromatic hydrocarbons, carbodiimides, carbohydrates, ethers, nitro compounds, nitrosamines, organometallic compounds, peroxides, phenols, silicon compounds,…

  14. Applying Quality by Design Concepts to Pharmacy Compounding.

    PubMed

    Timko, Robert J

    2015-01-01

    Compounding of medications is an important part of the practice of the pharmacy profession. Because compounded medications do not have U.S. Food and Drug Administration approval, a pharmacist has the responsibility to ensure that compounded medications are of suitable quality, safety, and efficacy. The Federal Government and numerous states have updated their laws and regulations regarding pharmacy compounding as a result of recent quality issues. Compounding pharmacists are expected to follow good preparation prodecures in their compounding practices in much the same way pharmaceutical manufacturers are required to follow Current Good Manufacturing Procedures as detailed in the United States Code of Federal Regulations. Application of Quality by Design concepts to the preparation process for a compounded medication can help in understanding the potential pitfalls and the means to mitigate their impact. The goal is to build quality into the compounding process to ensure that the resultant compounded prescription meets the human or animal patients' requirements.

  15. Chemistry WebBook

    National Institute of Standards and Technology Data Gateway

    SRD 69 NIST Chemistry WebBook (Web, free access)   The NIST Chemistry WebBook contains: Thermochemical data for over 7000 organic and small inorganic compounds; thermochemistry data for over 8000 reactions; IR spectra for over 16,000 compounds; mass spectra for over 33,000 compounds; UV/Vis spectra for over 1600 compounds; electronic and vibrational spectra for over 5000 compounds; constants of diatomic molecules(spectroscopic data) for over 600 compounds; ion energetics data for over 16,000 compounds; thermophysical property data for 74 fluids.

  16. The nature of compounds: a psychocentric perspective.

    PubMed

    Libben, Gary

    2014-01-01

    Although compound words often seem to be words that themselves contain words, this paper argues that this is not the case for the vast majority of lexicalized compounds. Rather, it is claimed that as a result of acts of lexical processing, the constituents of compound words develop into new lexical representations. These representations are bound to specific morphological roles and positions (e.g., head, modifier) within a compound word. The development of these positionally bound compound constituents creates a rich network of lexical knowledge that facilitates compound processing and also creates some of the well-documented patterns in the psycholinguistic and neurolinguistic study of compounding.

  17. Veterinary Compounding: Regulation, Challenges, and Resources

    PubMed Central

    Davidson, Gigi

    2017-01-01

    The spectrum of therapeutic need in veterinary medicine is large, and the availability of approved drug products for all veterinary species and indications is relatively small. For this reason, extemporaneous preparation, or compounding, of drugs is commonly employed to provide veterinary medical therapies. The scope of veterinary compounding is broad and focused primarily on meeting the therapeutic needs of companion animals and not food-producing animals in order to avoid human exposure to drug residues. As beneficial as compounded medical therapies may be to animal patients, these therapies are not without risks, and serious adverse events may occur from poor quality compounds or excipients that are uniquely toxic when administered to a given species. Other challenges in extemporaneous compounding for animals include significant regulatory variation across the global veterinary community, a relative lack of validated compounding formulas for use in animals, and poor adherence by compounders to established compounding standards. The information presented in this article is intended to provide an overview of the current landscape of compounding for animals; a discussion on associated benefits, risks, and challenges; and resources to aid compounders in preparing animal compounds of the highest possible quality. PMID:28075379

  18. Influence of mastication rate on dynamic flavour release analysed by combined model mouth/proton transfer reaction-mass spectrometry

    NASA Astrophysics Data System (ADS)

    van Ruth, Saskia M.; Buhr, Katja

    2004-12-01

    The influence of mastication rate on the dynamic release of seven volatile flavour compounds from sunflower oil was evaluated by combined model mouth/proton transfer reaction-mass spectrometry (PTR-MS). Air/oil partition coefficients were measured by static headspace gas chromatography. The dynamic release of the seven volatile flavour compounds from sunflower oil was significantly affected by the compounds' hydrophobicity and the mastication rate employed in the model mouth. The more hydrophobic compounds were released at a higher rate than their hydrophilic counterparts. Increase in mastication rate increased the maximum concentration measured by 36% on average, and the time to reach this maximum by 35% on average. Mastication affected particularly the release of the hydrophilic compounds. The maximum concentration of the compounds correlated significantly with the compounds' air/oil partition coefficients. The initial release rates over the first 15 s were affected by the type of compound, but not by the mastication rate. During the course of release, the proportions of the hydrophilic compounds to the overall flavour mixture in air decreased. The contribution of the hydrophobic compounds increased. Higher mastication rates, however, increased the proportions of the hydrophilic compounds and decreased those of the hydrophobic compounds.

  19. Surface-water-quality assessment of the Yakima River basin, Washington; distribution of pesticides and other organic compounds in water, sediment, and aquatic biota, 1987-91; with a section on dissolved organic carbon in the Yakima River basin

    USGS Publications Warehouse

    Rinella, Joseph F.; McKenzie, Stuart W.; Crawford, J. Kent; Foreman, William T.; Fuhrer, Gregory J.; Morace, Jennifer L.; Aiken, George R.

    1999-01-01

    During 1987-91, chemical data were collected for pesticides and other organic compounds in surface water, streambed sediment, suspended sediment, agricultural soil, and aquatic biota to determine the occurrence, distribution, transport, and fate of organic compounds in the Yakima River basin in Washington. The report describes the chemical and physical properties of the compounds most frequently detected in the water column; organochlorine compounds including DDT, organophosphorus compounds, thiocarbamate and sulfite compounds, acetamide and triazine compounds, and chlorophenoxy-acetic acid and benzoic compounds. Concentrations are evaluated relative to chronic-toxicity water quality criteria and guidelines for the protection of human health and freshwater aquatic life.

  20. Phenethyl ester and amide of Ferulic Acids: Synthesis and bioactivity against P388 Leukemia Murine Cells

    NASA Astrophysics Data System (ADS)

    Firdaus; Soekamto, N. H.; Seniwati; Islam, M. F.; Sultan

    2018-03-01

    Bioactivity of a compound is closely related to the molecular structure of the compound concerned, its strength being the quantitative relation of the strength of the activity of the group it possesses. The combining of moieties of the active compounds will produce more active compounds. Most phenolic compounds as well as compounds containing moiety phenethyl groups have potential activity as anticancer. Combining phenolic groups and phenethyl groups in a compound will result in compounds having strong anticancer bioactivity. This study aims to combine the feruloyl and phenethyl groups to form esters and amides by synthesize of phenethyl trans-3-(4-hydroxy-3-methoxyphenyl)acrylate (5) and trans-3-(4- hydroxy-3-methoxyphenyl)-N-phenethylacrylamide (6) from ferulic acid with phenethyl alcohol and phenethylamine, and to study their bioactivity as anticancer. The synthesis of both compounds was conducted via indirect reaction, including acetylation, chlorination, esterfication/amidation, and deacetylation. Structures of products were characterized by FTIR and NMR data, and their bioactivity assay of the compounds against P388 Leukemia Murine Cells was conducted by an MTT method. Results showed that the compound 5 was obtained as a yellow gel with the IC50 of 10.79 μg/mL (36.21 μΜ), and the compound 6 was a yellowish solid with a melting point of 118-120°C and the IC50 of 29.14 μg/mL (97.79 μΜ). These compounds were more active than the analog compounds.

  1. Encapsulation of bioactive compound from extracted jasmine flower using β-Cyclodextrin via electrospray

    NASA Astrophysics Data System (ADS)

    Rahmam., S.; Naim., M. N.; Ng., E.; Mokhtar, M. Nn; Abu Bakar, N. F.

    2016-06-01

    The ability of electrospray to encapsulate the bioactive compound extracted from Jasmine flower with β-Cyclodextrion (β-CD) without any thermal-assisted processing was demonstrated in this study. The extraction of Jasmine compound were conducted using sonicator at 70 000 Hz, for 10 minutes and followed by mixing of the filtered compound with β-CD. Then, the mixture was electrosprayed under a stable Taylor cone jet mode at the voltage of 4 - 5 kV, with flow rate of 0.2 ml/hour. The aluminum substrate that used for collecting the deposit was placed at 30 cm from the needle's tip to allow the occurrence of evaporation and droplet fission until the droplet transform to solid particles. Characteristics of solidified bioactive compound from Jasmine flower (non-encapsulated compound) and solidified bioactive compound with β-CD (encapsulated compound) were studied in this work. From SEM images, it can be observed that the particles size distribution of encapsulated compound deposits have better deposition array and did not aggregate with each other compared to the non-encapsulated compound. FE-SEM images of encapsulated compound deposits indicate more solid crystal looks while non-encapsulated compound was obtained in the porous form. The electrospray process in this work has successfully encapsulated the Jasmine compound with β-CD without any thermal-assisted process. The encapsulation occurrence was determined using FTIR analysis. Identical peaks that referred to the β-CD were found on the encapsulated compound demonstrated that most deposits were encapsulated with β-CD.

  2. Compound C induces protective autophagy in human cholangiocarcinoma cells via Akt/mTOR-independent pathway.

    PubMed

    Zhao, Xiaofang; Luo, Guosong; Cheng, Ying; Yu, Wenjing; Chen, Run; Xiao, Bin; Xiang, Yuancai; Feng, Chunhong; Fu, Wenguang; Duan, Chunyan; Yao, Fuli; Xia, Xianming; Tao, Qinghua; Wei, Mei; Dai, Rongyang

    2018-07-01

    Compound C, a well-known inhibitor of AMP-activated protein kinase (AMPK), has been reported to exert antitumor activities in some types of cells. Whether compound C can exert antitumor effects in human cholangiocarcinoma (CCA) remains unknown. Here, we demonstrated that compound C is a potent inducer of cell death and autophagy in human CCA cells. Autophagy inhibitors increased the cytotoxicity of compound C towards human CCA cells, as confirmed by increased LDH release, and PARP cleavage. It is notable that compound C treatment increased phosphorylated Akt, sustained high levels of phosphorylated p70S6K, and decreased mTOR regulated p-ULK1 (ser757). Based on the data that blocking PI3K/Akt or mTOR had no apparent influence on autophagic response, we suggest that compound C induces autophagy independent of Akt/mTOR signaling in human CCA cells. Further study demonstrated that compound C inhibited the phosphorylation of JNK and its target c-Jun. Blocking JNK by SP600125 or siRNA suppressed autophagy induction upon compound C treatment. Moreover, compound C induced p38 MAPK activation, and its inhibition promoted autophagy induction via JNK activation. In addition, compound C induced p53 expression, and its inhibition attenuated compound C-induced autophagic response. Thus, compound C triggers autophagy, at least in part, via the JNK and p53 pathways in human CCA cells. In conclusion, suppresses autophagy could increase compound C sensitivity in human CCA. © 2018 Wiley Periodicals, Inc.

  3. Characterization of ToxCast Phase II compounds disruption of ...

    EPA Pesticide Factsheets

    The development of multi-well microelectrode array (mwMEA) systems has increased in vitro screening throughput making them an effective method to screen and prioritize large sets of compounds for potential neurotoxicity. In the present experiments, a multiplexed approach was used to determine compound effects on both neural function and cell health in primary cortical networks grown on mwMEA plates following exposure to ~1100 compounds from EPA’s Phase II ToxCast libraries. On DIV 13, baseline activity (40 min) was recorded prior to exposure to each compound at 40 µM. DMSO and the GABAA antagonist bicuculline (BIC) were included as controls on each mwMEA plate. Changes in spontaneous network activity (mean firing rate; MFR) and cell viability (lactate dehydrogenase; LDH and CellTiter Blue; CTB) were assessed within the same well following compound exposure. Activity calls (“hits”) were established using the 90th and 20th percentiles of the compound-induced change in MFR (medians of triplicates) across all tested compounds; compounds above (top 10% of compounds increasing MFR), and below (bottom 20% of compounds decreasing MFR) these thresholds, respectively were considered hits. MFR was altered beyond one of these thresholds by 322 compounds. Four compound categories accounted for 66% of the hits, including: insecticides (e.g. abamectin, lindane, prallethrin), pharmaceuticals (e.g. haloperidol, reserpine), fungicides (e.g. hexaconazole, fenamidone), and h

  4. Combination of cheminformatics and bioinformatics to explore the chemical basis of the rhizomes and aerial parts of Dioscorea nipponica Makino.

    PubMed

    Li, Xu-Zhao; Zhang, Shuai-Nan; Yang, Xu-Yan

    2017-12-01

    This study was aimed to explore the chemical basis of the rhizomes and aerial parts of Dioscorea nipponica Makino (DN). The pharmacokinetic profiles of the compounds from DN were calculated via ACD/I-Lab and PreADMET program. Their potential therapeutic and toxicity targets were screened through the DrugBank's or T3DB's ChemQuery structure search. Eleven of 48 compounds in the rhizomes and over half of the compounds in the aerial parts had moderate or good human oral bioavailability. Twenty-three of 48 compounds in the rhizomes and 40/43 compounds from the aerial parts had moderate or good permeability to intestinal cells. Forty-three of 48 compounds from the rhizomes and 18/43 compounds in the aerial parts bound weakly to the plasma proteins. Eleven of 48 compounds in the rhizomes and 36/43 compounds of the aerial parts might pass across the blood-brain barrier. Forty-three 48 compounds in the rhizomes and 18/43 compounds from the aerial parts showed low renal excretion ability. The compounds in the rhizomes possessed 391 potential therapeutic targets and 216 potential toxicity targets. Additionally, the compounds from the aerial parts possessed 101 potential therapeutic targets and 183 potential toxicity targets. These findings indicated that combination of cheminformatics and bioinformatics may facilitate achieving the objectives of this study. © 2017 Royal Pharmaceutical Society.

  5. Competition between the compound and the pre-compound emission processes in α-induced reactions at near astrophysical energy to well above it

    NASA Astrophysics Data System (ADS)

    Sharma, Manoj Kumar; Sharma, Vijay Raj; Yadav, Abhiskek; Singh, Pushpendra P.; Singh, B. P.; Prasad, R.

    2016-04-01

    The study of pre-compound emission in α-induced reactions, particularly at the low incident energies, is of considerable interest as the pre-compound emission is more likely to occur at higher energies. With a view to study the competition between the compound and the pre-compound emission processes in α-induced reactions at different energies and with different targets, a systematics for neutron emission channels in targets 51V, 55Mn, 93Nb, 121, 123Sb and 141Pr at energy ranging from astrophysical interest to well above it, has been developed. The off-line γ-ray-spectrometry based activation technique has been adopted to measure the excitation functions. The experimental excitation functions have been analysed within the framework of the compound nucleus mechanism based on the Weisskopf-Ewing model and the pre-compound emission calculations based on the geometry dependent hybrid model. The analysis of the data shows that experimental excitation functions could be reproduced only when the pre-compound emission, simulated theoretically, is taken into account. The strength of pre-compound emission process for each system has been obtained by deducing the pre-compound fraction. Analysis of data indicates that in α-induced reactions, the pre-compound emission process plays an important role, particularly at the low incident energies, where the pure compound nucleus process is likely to dominate.

  6. Method for halogenating or radiohalogenating a chemical compound

    DOEpatents

    Kabalka, George W.

    2006-05-09

    A method for obtaining a halogenated organic compound, whereby an organotrifluoroborate compound is reacted with a halide ion in the presence of an oxidizing agent to produce the corresponding halogenated organic compound. The method may be used for producing radiohalogenated organic compounds.

  7. Ultrabright fluorescent OLEDS using triplet sinks

    DOEpatents

    Zhang, Yifan; Forrest, Stephen R; Thompson, Mark

    2013-06-04

    A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer further comprises an organic host compound, an organic emitting compound capable of fluorescent emission at room temperature, and an organic dopant compound. The triplet energy of the dopant compound is lower than the triplet energy of the host compound. The dopant compound does not strongly absorb the fluorescent emission of the emitting compound.

  8. Investigation on modes of toxic action to rats based on aliphatic and aromatic compounds and comparison with fish toxicity based on exposure routes.

    PubMed

    He, Jia; Li, Jin J; Wen, Yang; Tai, Hong W; Yu, Yang; Qin, Wei C; Su, Li M; Zhao, Yuan H

    2015-06-01

    The modes of toxic action (MOAs) play an important role in the assessment of the ecotoxicity of organic pollutants. However, few studies have been reported on the MOAs in rat toxicity. In this paper, the toxic contributions of functional groups in 1255 aromatic compounds were calculated from regression and were then compared with the toxic contributions in aliphatic compounds. The results show that some functional groups have same toxic contributions both in aromatic and aliphatic compounds, but some have not. To investigate the MOAs in rat toxicity, the distribution of toxic ratio (TR) was examined for well-known baseline and less inert compounds and thresholds of log TR=0.3 and 0.5 were used to classify baseline, less inert and reactive compounds. The results showed that some compounds identified as baseline compounds in fish toxicity were also classified as baseline compounds in rat toxicity. Except for phenols and anilines which were identified as less inert compounds in fish toxicity, aromatic compounds with functional groups such as ether, nitrile, nitrophenol, isocyanatoe and chloro were identified as less inert chemicals in rat toxicity. Reactive compounds identified in fish toxicity exhibit greater toxicity to rats. These compounds can undergo nucleophilic substitution, acylation and Schiff base formation with biological macromolecules. The critical body residues (CBRs) calculated from absorption and bioconcentration show that log 1/CBRs in rat toxicity are not equal to that in fish for some compounds. It suggests that the exposure route can affect the identification of MOAs between these two species for these compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Potential Compounds for Oral Cancer Treatment: Resveratrol, Nimbolide, Lovastatin, Bortezomib, Vorinostat, Berberine, Pterostilbene, Deguelin, Andrographolide, and Colchicine

    PubMed Central

    Bundela, Saurabh; Sharma, Anjana; Bisen, Prakash S.

    2015-01-01

    Oral cancer is one of the main causes of cancer-related deaths in South-Asian countries. There are very limited treatment options available for oral cancer. Research endeavors focused on discovery and development of novel therapies for oral cancer, is necessary to control the ever rising oral cancer related mortalities. We mined the large pool of compounds from the publicly available compound databases, to identify potential therapeutic compounds for oral cancer. Over 84 million compounds were screened for the possible anti-cancer activity by custom build SVM classifier. The molecular targets of the predicted anti-cancer compounds were mined from reliable sources like experimental bioassays studies associated with the compound, and from protein-compound interaction databases. Therapeutic compounds from DrugBank, and a list of natural anti-cancer compounds derived from literature mining of published studies, were used for building partial least squares regression model. The regression model thus built, was used for the estimation of oral cancer specific weights based on the molecular targets. These weights were used to compute scores for screening the predicted anti-cancer compounds for their potential to treat oral cancer. The list of potential compounds was annotated with corresponding physicochemical properties, cancer specific bioactivity evidences, and literature evidences. In all, 288 compounds with the potential to treat oral cancer were identified in the current study. The majority of the compounds in this list are natural products, which are well-tolerated and have minimal side-effects compared to the synthetic counterparts. Some of the potential therapeutic compounds identified in the current study are resveratrol, nimbolide, lovastatin, bortezomib, vorinostat, berberine, pterostilbene, deguelin, andrographolide, and colchicine. PMID:26536350

  10. Drugs as habitable planets in the space of dark chemical matter.

    PubMed

    Siramshetty, Vishal B; Preissner, Robert

    2018-03-01

    A recent study demonstrated antifungal activity of dark chemical matter (DCM) compounds that were otherwise inactive in more than 100 HTS assays. These compounds were proposed to possess unique activity and 'clean' safety profiles. Here, we present an outlook of the promiscuity and safety of these compounds by retrospectively comparing their chemical and biological spaces with those of drugs. Significant amounts of marketed drugs (16%), withdrawn drugs (16.5%) and natural compounds (3.5%) share structural identity with DCM. Compound promiscuity assessment indicates that dark matter compounds could potentially interact with multiple biological targets. Further, thousands of DCM compounds showed presence of frequent-hitting pan-assay interference compound (PAINS) substructures. In light of these observations, filtering these compounds from screening libraries can be an irrevocable loss. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The Mu.Ta.Lig. Chemotheca: A community-populated molecular database for multi-target ligands identification and compound-repurposing

    NASA Astrophysics Data System (ADS)

    Ortuso, Francesco; Bagetta, Donatella; Maruca, Annalisa; Talarico, Carmine; Bolognesi, Maria L.; Haider, Norbert; Borges, Fernanda; Bryant, Sharon; Langer, Thierry; Senderowitz, Hanoch; Alcaro, Stefano

    2018-04-01

    Abstract For every lead compound developed in medicinal chemistry research, numerous other inactive or less active candidates are synthetized/isolated and tested. The majority of these compounds will not be selected for further development due to a sub-optimal pharmacological profile. However, some poorly active or even inactive compounds could live a second life if tested against other targets. Thus, new therapeutic opportunities could emerge and synergistic activities could be identified and exploited for existing compounds by sharing information between researchers who are working on different targets. The Mu.Ta.Lig (Multi-Target Ligand) Chemotheca database aims to offer such opportunities by facilitating information exchange among researchers worldwide. After a preliminary registration, users can (a) virtually upload structures and activity data for their compounds with corresponding, and eventually known activity data, and (b) search for other available compounds uploaded by the users community. Each piece of information about given compounds is owned by the user who initially uploaded it and multiple ownership is possible (occurs if different users uploaded the same compounds or information pertaining to the same compounds). A web-based graphical user interface has been developed to assist compound uploading, compounds searching and data retrieval. Physico-chemical and ADME properties as well as substructure-based PAINS evaluations are computed on the fly for each uploaded compound. Samples of compounds that match a set of search criteria and additional data on these compounds could be requested directly from their owners with no mediation by the Mu.Ta.Lig Chemotheca team. Guest access provides a simplified search interface to retrieve only basic information such as compound IDs and related 2D or 3D chemical structures. Moreover, some compounds can be hidden from Guest users according to an owner’s decision. In contrast, registered users have full access to all of the Chemotheca data including the permission to upload new compounds and/or update experimental/theoretical data (e.g., activities against new targets tested) related to already stored compounds. In order to facilitate scientific collaborations, all available data are connected to the corresponding owner’s email address (available for registered users only). The Chemotheca web site is accessible at http://chemotheca.unicz.it.

  12. The Mu.Ta.Lig. Chemotheca: A Community-Populated Molecular Database for Multi-Target Ligands Identification and Compound-Repurposing.

    PubMed

    Ortuso, Francesco; Bagetta, Donatella; Maruca, Annalisa; Talarico, Carmine; Bolognesi, Maria L; Haider, Norbert; Borges, Fernanda; Bryant, Sharon; Langer, Thierry; Senderowitz, Hanoch; Alcaro, Stefano

    2018-01-01

    For every lead compound developed in medicinal chemistry research, numerous other inactive or less active candidates are synthetized/isolated and tested. The majority of these compounds will not be selected for further development due to a sub-optimal pharmacological profile. However, some poorly active or even inactive compounds could live a second life if tested against other targets. Thus, new therapeutic opportunities could emerge and synergistic activities could be identified and exploited for existing compounds by sharing information between researchers who are working on different targets. The Mu.Ta.Lig (Multi-Target Ligand) Chemotheca database aims to offer such opportunities by facilitating information exchange among researchers worldwide. After a preliminary registration, users can (a) virtually upload structures and activity data for their compounds with corresponding, and eventually known activity data, and (b) search for other available compounds uploaded by the users community. Each piece of information about given compounds is owned by the user who initially uploaded it and multiple ownership is possible (this occurs if different users uploaded the same compounds or information pertaining to the same compounds). A web-based graphical user interface has been developed to assist compound uploading, compounds searching and data retrieval. Physico-chemical and ADME properties as well as substructure-based PAINS evaluations are computed on the fly for each uploaded compound. Samples of compounds that match a set of search criteria and additional data on these compounds could be requested directly from their owners with no mediation by the Mu.Ta.Lig Chemotheca team. Guest access provides a simplified search interface to retrieve only basic information such as compound IDs and related 2D or 3D chemical structures. Moreover, some compounds can be hidden to Guest users according to an owner's decision. In contrast, registered users have full access to all of the Chemotheca data including the permission to upload new compounds and/or update experimental/theoretical data (e.g., activities against new targets tested) related to already stored compounds. In order to facilitate scientific collaborations, all available data are connected to the corresponding owner's email address (available for registered users only). The Chemotheca web site is accessible at http://chemotheca.unicz.it.

  13. Discovery of Novel Anti-prion Compounds Using In Silico and In Vitro Approaches

    PubMed Central

    Hyeon, Jae Wook; Choi, Jiwon; Kim, Su Yeon; Govindaraj, Rajiv Gandhi; Jam Hwang, Kyu; Lee, Yeong Seon; An, Seong Soo A.; Lee, Myung Koo; Joung, Jong Young; No, Kyoung Tai; Lee, Jeongmin

    2015-01-01

    Prion diseases are associated with the conformational conversion of the physiological form of cellular prion protein (PrPC) to the pathogenic form, PrPSc. Compounds that inhibit this process by blocking conversion to the PrPSc could provide useful anti-prion therapies. However, no suitable drugs have been identified to date. To identify novel anti-prion compounds, we developed a combined structure- and ligand-based virtual screening system in silico. Virtual screening of a 700,000-compound database, followed by cluster analysis, identified 37 compounds with strong interactions with essential hotspot PrP residues identified in a previous study of PrPC interaction with a known anti-prion compound (GN8). These compounds were tested in vitro using a multimer detection system, cell-based assays, and surface plasmon resonance. Some compounds effectively reduced PrPSc levels and one of these compounds also showed a high binding affinity for PrPC. These results provide a promising starting point for the development of anti-prion compounds. PMID:26449325

  14. High-Temperature Syntheses of New, Thermally-Stable Chemical Compounds.

    DTIC Science & Technology

    SYNTHESIS(CHEMISTRY), HEAT RESISTANT PLASTICS, NITRILES, FLUORINE COMPOUNDS, COMPLEX COMPOUNDS, NITROGEN, SULFIDES, ORGANOMETALLIC COMPOUNDS, ORGANOBORANES, BORIDES, SPINEL, CARBIDES, NITRIDES, SILICIDES .

  15. Response of Bioluminescent Bacteria to Alkyltin Compounds.

    DTIC Science & Technology

    1987-12-01

    found in the butyltiri series of compounds; tributyltin was (’Stimes more toxic than dibutyltin and (- 50 times more toxic than (mono)butyltin. When...correlations between compounds, tributyltin was -35 tine more Kicrotxit and fish bLoessays for pure toxic than dibutyltin end -750 times More compounds and...the compounds as a decrease in toxicity (5) tributyltin compounds ea -150 tines more and a method to study synergistic andtoxic than trinethyltia

  16. Identification and quantification of volatile organic compounds using systematic single-ion chromatograms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuchiya, Yoshio; Kanabus-Kaminska, J.M.

    1996-12-31

    In order to determine the background level of volatile organic compounds (VOCs) in Canadian indoor air, a method of identification and quantification at a level of 0.3 {micro}g/m{sup 3} using systematic single-ion chromatograms (SICs) has been developed. The compounds selected for measurement included several halogenated compounds, oxygen compounds, terpenes, and C8 to C16 n-alkanes. Air samples were taken in 3-layered sorbent tubes and trapped compounds were thermally desorbed into the helium stream of a gas chromatograph/mass spectrometer (GC/MS) analytical system. Total quantities of volatile organic compounds (TVOCs) were measured using a flame ionization detector (FID). Individual compounds were analyzed bymore » a GC/MS. For the identification of compounds in the main stream GC effluent, both the specific GC retention and mass spectra were used. About 50 selected SICs were routinely extracted from a total ion chromatogram (TIC) to detect and quantify compounds. For each compound, a single representative ion was selected. The specific retention was calculated from the elution time on the SIC. For quantification, ion counts under a peak in the SIC were measured. The single-ion MS response factor for some of the compounds was experimentally determined using a dynamic reference procedure.« less

  17. Analysis and Identification of Aptamer-Compound Interactions with a Maximum Relevance Minimum Redundancy and Nearest Neighbor Algorithm

    PubMed Central

    Wang, ShaoPeng; Zhang, Yu-Hang; Lu, Jing; Cui, Weiren; Hu, Jerry; Cai, Yu-Dong

    2016-01-01

    The development of biochemistry and molecular biology has revealed an increasingly important role of compounds in several biological processes. Like the aptamer-protein interaction, aptamer-compound interaction attracts increasing attention. However, it is time-consuming to select proper aptamers against compounds using traditional methods, such as exponential enrichment. Thus, there is an urgent need to design effective computational methods for searching effective aptamers against compounds. This study attempted to extract important features for aptamer-compound interactions using feature selection methods, such as Maximum Relevance Minimum Redundancy, as well as incremental feature selection. Each aptamer-compound pair was represented by properties derived from the aptamer and compound, including frequencies of single nucleotides and dinucleotides for the aptamer, as well as the constitutional, electrostatic, quantum-chemical, and space conformational descriptors of the compounds. As a result, some important features were obtained. To confirm the importance of the obtained features, we further discussed the associations between them and aptamer-compound interactions. Simultaneously, an optimal prediction model based on the nearest neighbor algorithm was built to identify aptamer-compound interactions, which has the potential to be a useful tool for the identification of novel aptamer-compound interactions. The program is available upon the request. PMID:26955638

  18. Pharmacological Evaluation and Preparation of Nonsteroidal Anti-Inflammatory Drugs Containing an N-Acyl Hydrazone Subunit

    PubMed Central

    de Melo, Thais Regina Ferreira; Chelucci, Rafael Consolin; Pires, Maria Elisa Lopes; Dutra, Luiz Antonio; Barbieri, Karina Pereira; Bosquesi, Priscila Longhin; Trossini, Gustavo Henrique Goulart; Chung, Man Chin; dos Santos, Jean Leandro

    2014-01-01

    A series of anti-inflammatory derivatives containing an N-acyl hydrazone subunit (4a–e) were synthesized and characterized. Docking studies were performed that suggest that compounds 4a–e bind to cyclooxygenase (COX)-1 and COX-2 isoforms, but with higher affinity for COX-2. The compounds display similar anti-inflammatory activities in vivo, although compound 4c is the most effective compound for inhibiting rat paw edema, with a reduction in the extent of inflammation of 35.9% and 52.8% at 2 and 4 h, respectively. The anti-inflammatory activity of N-acyl hydrazone derivatives was inferior to their respective parent drugs, except for compound 4c after 5 h. Ulcerogenic studies revealed that compounds 4a–e are less gastrotoxic than the respective parent drug. Compounds 4b–e demonstrated mucosal damage comparable to celecoxib. The in vivo analgesic activities of the compounds are higher than the respective parent drug for compounds 4a–b and 4d–e. Compound 4a was more active than dipyrone in reducing acetic-acid-induced abdominal constrictions. Our results indicate that compounds 4a–e are anti-inflammatory and analgesic compounds with reduced gastrotoxicity compared to their respective parent non-steroidal anti-inflammatory drugs. PMID:24714090

  19. Analysis and Identification of Aptamer-Compound Interactions with a Maximum Relevance Minimum Redundancy and Nearest Neighbor Algorithm.

    PubMed

    Wang, ShaoPeng; Zhang, Yu-Hang; Lu, Jing; Cui, Weiren; Hu, Jerry; Cai, Yu-Dong

    2016-01-01

    The development of biochemistry and molecular biology has revealed an increasingly important role of compounds in several biological processes. Like the aptamer-protein interaction, aptamer-compound interaction attracts increasing attention. However, it is time-consuming to select proper aptamers against compounds using traditional methods, such as exponential enrichment. Thus, there is an urgent need to design effective computational methods for searching effective aptamers against compounds. This study attempted to extract important features for aptamer-compound interactions using feature selection methods, such as Maximum Relevance Minimum Redundancy, as well as incremental feature selection. Each aptamer-compound pair was represented by properties derived from the aptamer and compound, including frequencies of single nucleotides and dinucleotides for the aptamer, as well as the constitutional, electrostatic, quantum-chemical, and space conformational descriptors of the compounds. As a result, some important features were obtained. To confirm the importance of the obtained features, we further discussed the associations between them and aptamer-compound interactions. Simultaneously, an optimal prediction model based on the nearest neighbor algorithm was built to identify aptamer-compound interactions, which has the potential to be a useful tool for the identification of novel aptamer-compound interactions. The program is available upon the request.

  20. Monomers, polymers and articles containing the same from sugar derived compounds

    DOEpatents

    Gallagher, James; Reineke, Theresa; Hillmyer, Marc A.

    2016-11-29

    Disclosed herein are monomers formed by reacting a sugar derived compound(s) comprising a lactone and two hydroxyls with a compound(s) comprising an isocyanate and an acrylate or methacrylate. Polymers formed from such monomers, and articles formed from the polymers are also disclosed.

  1. MANUFACTURING METHODS FOR PHASE SHIFTERS.

    DTIC Science & Technology

    MANUFACTURING), (*PHASE SHIFT CIRCUITS, FERRITES, GARNET , DIGITAL SYSTEMS, X BAND, C BAND, S BAND, RADAR EQUIPMENT, MAGNETIC MATERIALS, YTTRIUM COMPOUNDS, GADOLINIUM COMPOUNDS, ALUMINUM COMPOUNDS, IRON COMPOUNDS, OXIDES.

  2. Compound Nouns and Category Structure in Young Children.

    ERIC Educational Resources Information Center

    Clark, Eve V.; And Others

    1985-01-01

    In two experiments 96 children and eight adults were tested for comprehension of the modifier-head relation in compounds such as apple-knife or were asked to label objects with compounds. Results show that by age three children reliably interpret novel compounds and made use of novel compounds to subcategorize. (RH)

  3. Compounding in Ukraine.

    PubMed

    Zdoryk, Oleksandr A; Georgiyants, Victoriya A; Gryzodub, Oleksandr I; Schnatz, Rick

    2013-01-01

    Pharmaceutical compounding in modern Ukraine has a rich history and goes back to ancient times. Today in the Ukraine, there is a revival of compounding practice, the opening of private compounding pharmacies, updating of legislative framework and requirements of the State Pharmacopeia of Ukraine for compounding preparations, and the introduction of Good Pharmaceutical Practice.

  4. Analytic Methods Used in Quality Control in a Compounding Pharmacy.

    PubMed

    Allen, Loyd V

    2017-01-01

    Analytical testing will no doubt become a more important part of pharmaceutical compounding as the public and regulatory agencies demand increasing documentation of the quality of compounded preparations. Compounding pharmacists must decide what types of testing and what amount of testing to include in their quality-control programs, and whether testing should be done in-house or outsourced. Like pharmaceutical compounding, analytical testing should be performed only by those who are appropriately trained and qualified. This article discusses the analytical methods that are used in quality control in a compounding pharmacy. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  5. Fig volatile compounds--a first comparative study.

    PubMed

    Grison-Pigé, Laure; Hossaert-McKey, Martine; Greeff, Jaco M; Bessière, Jean-Marie

    2002-09-01

    We analysed the compounds of volatile blends released by receptive figs of twenty Ficus species to attract their specific pollinating wasps. In all, 99 different compounds were identified. The compounds are mainly terpenoids, aliphatic compounds and products from the shikimic acid pathway. In each species blend, there are few major compounds, which are generally common among floral fragrances. Most species blends also include rare compounds, but generally their proportion in the blend is low. A possible basis for species-specificity of Ficus-wasp interactions is discussed in relation to the patterns of volatiles found in this interspecies comparison. Copyright 2002 Elsevier Science Ltd.

  6. Phytochemical Investigations of Three Rhodocodon (Hyacinthaceae Sensu APG II) Species.

    PubMed

    Schwikkard, Sianne; Alqahtani, Alaa; Knirsch, Walter; Wetschnig, Wolfgang; Jaksevicius, Andrius; Opara, Elizabeth I; Langat, Moses K; Andriantiana, Jackie L; Mulholland, Dulcie A

    2017-01-27

    The genus Rhodocodon (Hyacinthaceae sensu APG II) is endemic to Madagascar, and its phytochemistry has not been described previously. The phytochemistry of three species in this genus has been investigated, and eight compounds, including three bufadienolides (compounds 1, 4, and 5), a norlignan (2), and four homoisoflavonoids (compounds 3 and 6-8), have been isolated and identified. Compounds 1-3 and 6-8 have not been described previously. The COX-2 inhibitory activity of compound 6 and compound 7 acetate (compound 7A) was investigated on isolated colorectal cancer cells. Compounds 6 and 7A inhibited COX-2 by 10% and 8%, respectively, at a concentration of 12.5 μM compared to 12% for 1 mM aspirin (the positive control).

  7. Chemical vapor deposition of group IIIB metals

    DOEpatents

    Erbil, A.

    1989-11-21

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

  8. Chemical vapor deposition of group IIIB metals

    DOEpatents

    Erbil, Ahmet

    1989-01-01

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula (I) ##STR1## where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula I is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula I and a heat decomposable tellurium compound under nonoxidizing conditions.

  9. Biotransformation of natural gas and oil compounds associated with marine oil discharges.

    PubMed

    Brakstad, Odd Gunnar; Almås, Inger K; Krause, Daniel Franklin

    2017-09-01

    Field data from the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico (GoM) suggested that oxidation of gas compounds stimulated biodegradation of oil compounds in the deep sea plume. We performed experiments with local seawater from a Norwegian fjord to examine if the presence of dissolved gas compounds (methane, ethane and propane) affected biodegradation of volatile oil compounds, and if oil compounds likewise affected gas compound oxidation. The results from the experiment showed comparable oil compound biotransformation rates in seawater at 5 °C between seawater with and without soluble gases. Gas oxidation was not affected by the presence of volatile oil compounds. Contrary to DWH deep sea plume data, propane oxidation was not faster than methane oxidation. These data may reflect variations between biodegradation of oil and gas in seawater environments with different history of oil and gas exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Bilingual reading of compound words.

    PubMed

    Ko, In Yeong; Wang, Min; Kim, Say Young

    2011-02-01

    The present study investigated whether bilingual readers activate constituents of compound words in one language while processing compound words in the other language via decomposition. Two experiments using a lexical decision task were conducted with adult Korean-English bilingual readers. In Experiment 1, the lexical decision of real English compound words was more accurate when the translated compounds (the combination of the translation equivalents of the constituents) in Korean (the nontarget language) were real words than when they were nonwords. In Experiment 2, when the frequency of the second constituents of compound words in English (the target language) was manipulated, the effect of lexical status of the translated compounds was greater on the compounds with high-frequency second constituents than on those with low-frequency second constituents in the target language. Together, these results provided evidence for morphological decomposition and cross-language activation in bilingual reading of compound words.

  11. Pharmaceutical compounding or pharmaceutical manufacturing? A regulatory perspective.

    PubMed

    Timko, Robert J; Crooker, Philip E M

    2014-01-01

    At one time, nearly all prescriptions were compounded preparations. There is an ongoing demand for compounded prescription medications because manufacturers cannot fulfill the needs of all individual patients. Compounding pharmacies are a long standing yet less frequently discussed element in the complex matrix of prescription drug manufacturing, distribution, and patient use. The drug shortage situation for many necessary and life-saving drug products is a complicating factor that has led to the numerous quality issues that currently plague large-scale compounding pharmacies. The states are the primary regulator of pharmacies, including community drug stores, large chains, and specialty pharmacies. Pharmacies making and distributing drugs in a way that is outside the bounds of traditional pharmacy compounding are of great concern to the U.S. Food and Drug Administration. The U.S. Congress has recently passed the Drug Quality and Security Act. This legislation establishes a clear boundary between traditional compounders and compounding manufacturers. It clarifies a national, uniform set of rules for compounding manufacturers while preserving the states' primary role in traditional pharmacy regulation. It clarifies the U.S. Food and Drug Administration's authority over the compounding of human drugs while requiring the Agency to engage and coordinate with states to ensure the safety of compounded drugs.

  12. Crystallographic site swapping of La3+ ion in BaA'LaTeO6 (A' = Na, K, Rb) double perovskite type compounds: diffraction and photoluminescence evidence for the site swapping.

    PubMed

    Phatak, R; Gupta, S K; Krishnan, K; Sali, S K; Godbole, S V; Das, A

    2014-02-28

    Double perovskite type compounds of the formula BaA'LaTeO6 (A' = Na, K, Rb) were synthesized by solid state route and their crystal structures were determined by Rietveld analysis using powder X-ray diffraction and neutron diffraction data. Na compound crystallizes in the monoclinic system with P2₁/n space group whereas, K and Rb compounds crystallize in Fm3m space group. All the three compounds show rock salt type ordering at B site. Crystal structure analysis shows that La ion occupies A site in Na compound whereas, it occupies B site in K and Rb compounds according to the general formula of AA'BB'O6 for a double perovskite type compound. Effect of this crystallographic site swapping of the La ion was also observed in the photoluminescence study by doping Eu(3+) in La(3+) site. The large decrease in the intensity of the electric dipole ((5)D0-(7)F2) transition in the Rb compound compared to the Na compound indicates that Eu(3+) ion resides in the centrosymmetric octahedral environment in the Rb compound.

  13. Estimating the densities of benzene-derived explosives using atomic volumes.

    PubMed

    Ghule, Vikas D; Nirwan, Ayushi; Devi, Alka

    2018-02-09

    The application of average atomic volumes to predict the crystal densities of benzene-derived energetic compounds of general formula C a H b N c O d is presented, along with the reliability of this method. The densities of 119 neutral nitrobenzenes, energetic salts, and cocrystals with diverse compositions were estimated and compared with experimental data. Of the 74 nitrobenzenes for which direct comparisons could be made, the % error in the estimated density was within 0-3% for 54 compounds, 3-5% for 12 compounds, and 5-8% for the remaining 8 compounds. Among 45 energetic salts and cocrystals, the % error in the estimated density was within 0-3% for 25 compounds, 3-5% for 13 compounds, and 5-7.4% for 7 compounds. The absolute error surpassed 0.05 g/cm 3 for 27 of the 119 compounds (22%). The largest errors occurred for compounds containing fused rings and for compounds with three -NH 2 or -OH groups. Overall, the present approach for estimating the densities of benzene-derived explosives with different functional groups was found to be reliable. Graphical abstract Application and reliability of average atom volume in the crystal density prediction of energetic compounds containing benzene ring.

  14. Pre-compound emission in low-energy heavy-ion interactions

    NASA Astrophysics Data System (ADS)

    Sharma, Manoj Kumar; Shuaib, Mohd.; Sharma, Vijay R.; Yadav, Abhishek; Singh, Pushpendra P.; Singh, Devendra P.; Unnati; Singh, B. P.; Prasad, R.

    2017-11-01

    Recent experimental studies have shown the presence of pre-compound emission component in heavy ion reactions at low projectile energy ranging from 4 to 7 MeV/nucleons. In earlier measurements strength of the pre-compound component has been estimated from the difference in forward-backward distributions of emitted particles. Present measurement is a part of an ongoing program on the study of reaction dynamics of heavy ion interactions at low energies aimed at investigating the effect of momentum transfer in compound, precompound, complete and incomplete fusion processes in heavy ion reactions. In the present work on the basis of momentum transfer the measurement of the recoil range distributions of heavy residues has been used to decipher the components of compound and pre-compound emission processes in the fusion of 16O projectile with 159Tb and 169Tm targets. The analysis of recoil range distribution measurements show two distinct linear momentum transfer components corresponding to pre-compound and compound nucleus processes are involved. In order to obtain the mean input angular momentum associated with compound and pre-compound emission processes, an online measurement of the spin distributions of the residues has been performed. The analysis of spin distribution indicate that the mean input angular momentum associated with pre-compound products is found to be relatively lower than that associated with compound nucleus process. The pre-compound components obtained from the present analysis are consistent with those obtained from the analysis of excitation functions.

  15. [Determination of flavor compounds in foxtail millet wine by gas chromatography-mass spectrometry coupled with headspace solid phase microextraction].

    PubMed

    Liu, Jingke; Zhang, Aixia; Li, Shaohui; Zhao, Wei; Zhang, Yuzong; Xing, Guosheng

    2017-11-08

    To comprehensively understand flavor compounds and aroma characteristics of foxtail millet wine, extraction conditions were optimized with 85 μm polyacrylate (PA), 100 μm polydimethylsiloxane (PDMS), 75 μm carboxen (CAR)/PDMS and 50/30 μm divinylbenzene (DVB)/CAR/PDMS fibers. The flavor compounds in foxtail millet wine were investigated by gas chromatography-mass spectrometry (GC-MS) coupled with headspace solid phase microextraction (HS-SPME), and the odor characteristics and intensity were analyzed by odor active values (OAVs). The samples of 8 mL were placed in headspace vials with 1.5 g NaCl, then the headspace vials were heated at 60℃ for 40 min. Using HS-SPME with different fibers, a total of 55 flavor compounds were identified from the samples, including alcohols, esters, benzene derivatives, hydrocarbons, acids, aldehydes, ketones, terpenes, phenols and heterocycle compounds. The main flavor compounds were alcohols compounds. According to their OAVs, phenylethyl alcohol, styrene, 1-methyl-naphthalene, 2-methyl-naphthalene, benzaldehyde, benzeneacetaldehyde and 2-methoxy-phenol were established to be odor-active compounds. Phenylethyl alcohol and benzeneacetaldehyde were the most prominent odor-active compounds. PA and PDMS fibers had good extraction effect for polar and nonpolar compounds, respectively. CAR/PDMS and DVB/CAR/PDMS provided a similar compounds profile for moderate polar compounds. This research comprehensively determined flavor compounds of foxtail millet wine, and provided theoretical basis for product development and quality control.

  16. Automated compound classification using a chemical ontology.

    PubMed

    Bobach, Claudia; Böhme, Timo; Laube, Ulf; Püschel, Anett; Weber, Lutz

    2012-12-29

    Classification of chemical compounds into compound classes by using structure derived descriptors is a well-established method to aid the evaluation and abstraction of compound properties in chemical compound databases. MeSH and recently ChEBI are examples of chemical ontologies that provide a hierarchical classification of compounds into general compound classes of biological interest based on their structural as well as property or use features. In these ontologies, compounds have been assigned manually to their respective classes. However, with the ever increasing possibilities to extract new compounds from text documents using name-to-structure tools and considering the large number of compounds deposited in databases, automated and comprehensive chemical classification methods are needed to avoid the error prone and time consuming manual classification of compounds. In the present work we implement principles and methods to construct a chemical ontology of classes that shall support the automated, high-quality compound classification in chemical databases or text documents. While SMARTS expressions have already been used to define chemical structure class concepts, in the present work we have extended the expressive power of such class definitions by expanding their structure-based reasoning logic. Thus, to achieve the required precision and granularity of chemical class definitions, sets of SMARTS class definitions are connected by OR and NOT logical operators. In addition, AND logic has been implemented to allow the concomitant use of flexible atom lists and stereochemistry definitions. The resulting chemical ontology is a multi-hierarchical taxonomy of concept nodes connected by directed, transitive relationships. A proposal for a rule based definition of chemical classes has been made that allows to define chemical compound classes more precisely than before. The proposed structure-based reasoning logic allows to translate chemistry expert knowledge into a computer interpretable form, preventing erroneous compound assignments and allowing automatic compound classification. The automated assignment of compounds in databases, compound structure files or text documents to their related ontology classes is possible through the integration with a chemical structure search engine. As an application example, the annotation of chemical structure files with a prototypic ontology is demonstrated.

  17. Automated compound classification using a chemical ontology

    PubMed Central

    2012-01-01

    Background Classification of chemical compounds into compound classes by using structure derived descriptors is a well-established method to aid the evaluation and abstraction of compound properties in chemical compound databases. MeSH and recently ChEBI are examples of chemical ontologies that provide a hierarchical classification of compounds into general compound classes of biological interest based on their structural as well as property or use features. In these ontologies, compounds have been assigned manually to their respective classes. However, with the ever increasing possibilities to extract new compounds from text documents using name-to-structure tools and considering the large number of compounds deposited in databases, automated and comprehensive chemical classification methods are needed to avoid the error prone and time consuming manual classification of compounds. Results In the present work we implement principles and methods to construct a chemical ontology of classes that shall support the automated, high-quality compound classification in chemical databases or text documents. While SMARTS expressions have already been used to define chemical structure class concepts, in the present work we have extended the expressive power of such class definitions by expanding their structure-based reasoning logic. Thus, to achieve the required precision and granularity of chemical class definitions, sets of SMARTS class definitions are connected by OR and NOT logical operators. In addition, AND logic has been implemented to allow the concomitant use of flexible atom lists and stereochemistry definitions. The resulting chemical ontology is a multi-hierarchical taxonomy of concept nodes connected by directed, transitive relationships. Conclusions A proposal for a rule based definition of chemical classes has been made that allows to define chemical compound classes more precisely than before. The proposed structure-based reasoning logic allows to translate chemistry expert knowledge into a computer interpretable form, preventing erroneous compound assignments and allowing automatic compound classification. The automated assignment of compounds in databases, compound structure files or text documents to their related ontology classes is possible through the integration with a chemical structure search engine. As an application example, the annotation of chemical structure files with a prototypic ontology is demonstrated. PMID:23273256

  18. Gasoline-Related Compounds in Lakes Mead and Mohave, Nevada, 2004-06

    USGS Publications Warehouse

    Lico, Michael S.; Johnson, B. Thomas

    2007-01-01

    The distribution of man-made organic compounds, specifically gasoline-derived compounds, was investigated from 2004 to 2006 in Lakes Mead and Mohave and one of its tributary streams, Las Vegas Wash. Compounds contained in raw gasoline (benzene, toluene, ethylbenzene, xylenes; also known as BTEX compounds) and those produced during combustion of gasoline (polycyclic aromatic hydrocarbon compounds; also known as PAH compounds) were detected at every site sampled in Lakes Mead and Mohave. Water-quality analyses of samples collected during 2004-06 indicate that motorized watercraft are the major source of these organic compounds to the lakes. Concentrations of BTEX increase as the boating season progresses and decrease to less than detectable levels during the winter when few boats are on the water. Volatilization and microbial degradation most likely are the primary removal mechanisms for BTEX compounds in the lakes. Concentrations of BTEX compounds were highest at sampling points near marinas or popular launching areas. Methyl tert-butyl ether (MTBE) was detected during 2004 but concentrations decreased to less than the detection level during the latter part of the study; most likely due to the removal of MTBE from gasoline purchased in California. Distribution of PAH compounds was similar to that of BTEX compounds, in that, concentrations were highest at popular boating areas and lowest in areas where fewer boats traveled. PAH concentrations were highest at Katherine Landing and North Telephone Cove in Lake Mohave where many personal watercraft with carbureted two-stroke engines ply the waters. Lake-bottom sediment is not a sink for PAH as indicated by the low concentrations detected in sediment samples from both lakes. PAH compounds most likely are removed from the lakes by photochemical degradation. PAH compounds in Las Vegas Wash, which drains the greater Las Vegas metropolitan area, were present in relatively high concentrations in sediment from the upstream reaches. Concentrations of PAH compounds were low in water and sediment samples collected farther downstream, thus the bottom sediment in the upstream part of the wash may be an effective trap for these compounds. Bioavailable PAH compounds were present in all samples as determined using the Fluoroscan method. Microtox acute toxicity profiles indicated that Callville Bay in Lake Mead and the two Lake Mohave sites had only minor evidence that toxic compounds are present.

  19. A strategy to find novel candidate anti-Alzheimer's disease drugs by constructing interaction networks between drug targets and natural compounds in medical plants.

    PubMed

    Chen, Bi-Wen; Li, Wen-Xing; Wang, Guang-Hui; Li, Gong-Hua; Liu, Jia-Qian; Zheng, Jun-Juan; Wang, Qian; Li, Hui-Juan; Dai, Shao-Xing; Huang, Jing-Fei

    2018-01-01

    Alzheimer' disease (AD) is an ultimately fatal degenerative brain disorder that has an increasingly large burden on health and social care systems. There are only five drugs for AD on the market, and no new effective medicines have been discovered for many years. Chinese medicinal plants have been used to treat diseases for thousands of years, and screening herbal remedies is a way to develop new drugs. We used molecular docking to screen 30,438 compounds from Traditional Chinese Medicine (TCM) against a comprehensive list of AD target proteins. TCM compounds in the top 0.5% of binding affinity scores for each target protein were selected as our research objects. Structural similarities between existing drugs from DrugBank database and selected TCM compounds as well as the druggability of our candidate compounds were studied. Finally, we searched the CNKI database to obtain studies on anti-AD Chinese plants from 2007 to 2017, and only clinical studies were included. A total of 1,476 compounds (top 0.5%) were selected as drug candidates. Most of these compounds are abundantly found in plants used for treating AD in China, especially the plants from two genera Panax and Morus. We classified the compounds by single target and multiple targets and analyzed the interactions between target proteins and compounds. Analysis of structural similarity revealed that 17 candidate anti-AD compounds were structurally identical to 14 existing approved drugs. Most of them have been reported to have a positive effect in AD. After filtering for compound druggability, we identified 11 anti-AD compounds with favorable properties, seven of which are found in anti-AD Chinese plants. Of 11 anti-AD compounds, four compounds 5,862, 5,863, 5,868, 5,869 have anti-inflammatory activity. The compound 28,814 mainly has immunoregulatory activity. The other six compounds have not yet been reported for any biology activity at present. Natural compounds from TCM provide a broad prospect for the screening of anti-AD drugs. In this work, we established networks to systematically study the connections among natural compounds, approved drugs, TCM plants and AD target proteins with the goal of identifying promising drug candidates. We hope that our study will facilitate in-depth research for the treatment of AD in Chinese medicine.

  20. Identification of compound-protein interactions through the analysis of gene ontology, KEGG enrichment for proteins and molecular fragments of compounds.

    PubMed

    Chen, Lei; Zhang, Yu-Hang; Zheng, Mingyue; Huang, Tao; Cai, Yu-Dong

    2016-12-01

    Compound-protein interactions play important roles in every cell via the recognition and regulation of specific functional proteins. The correct identification of compound-protein interactions can lead to a good comprehension of this complicated system and provide useful input for the investigation of various attributes of compounds and proteins. In this study, we attempted to understand this system by extracting properties from both proteins and compounds, in which proteins were represented by gene ontology and KEGG pathway enrichment scores and compounds were represented by molecular fragments. Advanced feature selection methods, including minimum redundancy maximum relevance, incremental feature selection, and the basic machine learning algorithm random forest, were used to analyze these properties and extract core factors for the determination of actual compound-protein interactions. Compound-protein interactions reported in The Binding Databases were used as positive samples. To improve the reliability of the results, the analytic procedure was executed five times using different negative samples. Simultaneously, five optimal prediction methods based on a random forest and yielding maximum MCCs of approximately 77.55 % were constructed and may be useful tools for the prediction of compound-protein interactions. This work provides new clues to understanding the system of compound-protein interactions by analyzing extracted core features. Our results indicate that compound-protein interactions are related to biological processes involving immune, developmental and hormone-associated pathways.

Top