Science.gov

Sample records for methacrylate butyl methacrylate

  1. Sequence dependent conformations of glycidyl methacrylate/butyl methacrylate copolymers in the gas phase

    NASA Astrophysics Data System (ADS)

    Baker, Erin Shammel; Gidden, Jennifer; Simonsick, William J.; Grady, Michael C.; Bowers, Michael T.

    2004-11-01

    Sequence dependent conformations of a series of glycidyl methacrylate/butyl methacrylate (GMA/BMA) copolymers cationized by sodium were analyzed in the gas phase using ion mobility methods. GMA and BMA have the same nominal mass but vary in exact mass by 0.036 Da (CH4 versus O). Matrix assisted laser desorption/ionization (MALDI) was used to form Na+(GMA/BMA) copolymer ions and their collision cross-sections were measured in helium using ion mobility methods. The copolymer sequences from Na+(GMA/BMA)3 to Na+(GMA/BMA)5 (i.e. for the trimer to the pentamer) were studied. Analysis by molecular mechanics/dynamics indicates that each copolymer (regardless of sequence) forms a ring around the sodium ions due to Na+/oxygen electrostatic interactions. However, the structures vary in size, since the epoxy oxygen atoms in the glycidyl groups are attracted to the sodium ions while the carbon-composed butyl groups are not. This allows copolymers with more GMA segments to fold tighter (more spherically) around the sodium ion and have smaller cross-sections than copolymers with a larger amount of BMA segments in the sequence. Due to this cross-sectional difference, the GMA/BMA sequence compositions of the trimer and tetramer could be quantified.

  2. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  3. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  4. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  5. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  6. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  7. Thermally Switchable Thin Films of an ABC Triblock Copolymer of Poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate)

    SciTech Connect

    Zhang, Shanju; Liu, Zhan; Bucknall, David G.; He, Lihong; Hong, Kunlun; Mays, Jimmy; Allen, Mark

    2011-01-01

    The thermo-responsive behavior of polymer films consisting of novel linear triblock copolymers of poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) (PnBuMA-PMMA-P2FEMA) are reported using differential scanning calorimetry (DSC), atomic forcing microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contacting angle (CA) measurements. The surface morphology, wettability and chemical structure of thin films of these triblock copolymers on silicon wafers as a function of temperature have been investigated. It has been shown that the wettability of the films is thermally switchable. Detailed structural analysis shows that thermo-responsive surface composition changes are produced. The underlying mechanism of the thermoresponsive behavior is discussed.

  8. Thermally switchable thin films of an ABC triblock copolymer of poly( n -butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Zhang, Shanju; Liu, Zhan; Bucknall, David G.; He, Lihong; Hong, Kunlun; Mays, Jimmy W.; Allen, Mark G.

    2011-09-01

    The thermo-responsive behavior of polymer films consisting of novel linear triblock copolymers of poly( n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) (PnBuMA-PMMA-P2FEMA) are reported using differential scanning calorimetry (DSC), atomic forcing microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contacting angle (CA) measurements. The surface morphology, wettability and chemical structure of thin films of these triblock copolymers on silicon wafers as a function of temperature have been investigated. It has been shown that the wettability of the films is thermally switchable. Detailed structural analysis shows that thermo-responsive surface composition changes are produced. The underlying mechanism of the thermoresponsive behavior is discussed.

  9. Night-time atmospheric degradation of a series of butyl methacrylates

    NASA Astrophysics Data System (ADS)

    Teruel, Mariano A.; López, Rocío S. Pérez; Barnes, Ian; Blanco, María B.

    2016-11-01

    Rate coefficients for the reactions of NO3 with n-butyl methacrylate (k1), iso-butyl methacrylate (k2) and tert-butyl methacrylate (k3) have been determined at 298 K and atmospheric pressure using the relative rate method. The following rate coefficients (×10-15 cm3 molecule-1 s-1) were obtained for the first time: k1 = (5.5 ± 2.6), k2 = (5.8 ± 2.8) and k3 = (5.6 ± 2.5). The NO3 reactions of these compounds could contribute to the removal of NOx and as NOy reservoirs. The potential importance for the tropospheric nitrogen budget of these reactions is discussed and atmospheric lifetimes for the butyl esters are calculated.

  10. 76 FR 77709 - Butyl acrylate-methacrylic acid-styrene polymer; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... AGENCY 40 CFR Part 180 Butyl acrylate-methacrylic acid-styrene polymer; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of 2-Propenoic acid, 2-methyl-, polymer with butyl 2...-styrene polymer when used as an inert ingredient in a pesticide chemical formulation....

  11. Crosslinked superhydrophobic films fabricated by simply casting poly(methyl methacrylate-butyl acrylate-hydroxyethyl methacrylate)-b-poly(perfluorohexylethyl methacrylate) solution

    NASA Astrophysics Data System (ADS)

    Wen, Xiufang; Ye, Chao; Cai, Zhiqi; Xu, Shouping; Pi, Pihui; Cheng, Jiang; Zhang, Lijuan; Qian, Yu

    2015-06-01

    This study focuses on the preparation of superhydrophobic films by crosslinkable polymer material-Poly(methyl methacrylate-butyl acrylate-hydroxyethyl methacrylate)-b-Poly(perfluorohexylethyl methacrylate) (P (MMA-BA-HEMA)-b-PFMA) with a simple one-step casting process. Nanoscale micelle particles with core-shell structure was obtained by dissolving the polymer and curing agent in the mixture of acetone and 1H, 1H, 5H octafluoropentyl-1,1,2,2 tetrafluoroethyl ether (FHT). Superhydrophobic films were fabricated by casting the micelle solution on the glass slides. By controlling the polymer concentration and acetone/FHT volume ratio, superhydrophobic polymer film with water contact angle of 153.2 ± 2.1° and sliding angle of 4° was obtained. By introducing a curing agent into the micelle solution, mechanical properties of the films can be improved. The adhension grade and hardness of the crosslinked superhydrophobic films reached 2 grade and 3H, respectively. The hydrophobicity is attributed to the synergistic effect of micro-submicro-nano-meter scale roughness by nanoscale micelle particles and low surface energy of fluoropolymer. This procedure makes it possible for widespread applications of superhydrophobic film due to its simplicity and practicability.

  12. ATOM TRANSFER RADICAL POLYMERIZATION OF N-BUTYL METHACRYLATE IN AQUEOUS DISPERSED SYSTEMS: A MINIEMULSION APPROACH. (R826735)

    EPA Science Inventory

    Ultrasonication was applied in combination with a hydrophobe for the copper-mediated atom transfer radical polymerization of n-butyl methacrylate in an aqueous dispersed system. A controlled polymerization was successfully achieved, as demonstrated by a linear correlation between...

  13. Methyl methacrylate

    Integrated Risk Information System (IRIS)

    TOXICOLOGICAL REVIEW of METHYL METHACRYLATE ( CAS No . 80 - 62 - 6 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) January 1998 U.S . Environmental Protection Agency Washington , DC TABLE OF CONTENTS DISCLAIMER . . . . . . . . . . . . . . . . . . . . . . . . .

  14. Ammonium methacrylate

    Integrated Risk Information System (IRIS)

    Ammonium methacrylate ; CASRN 16325 - 47 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  15. UV-Curable Polyurethane-Methacrylate Co-Networks and Interpenetrating Networks

    DTIC Science & Technology

    1989-05-30

    were: methyl methacrylate (MMA), ethyl methacrylate (EMA), hydroxyethyl methacrylate ( HEMA ), butyl methacrylate (BMA), lauryl methacrylate (LMA), and...ACCESSION NO. 11. TITLE (include Security Classification) UV’V-Curable Polyurethane- Methacrylate Co-Networks and Interpenetrating Networks 12. PERSONAL...by block number 4 Castor oil was reacted in varying ratios with 6-isocyanatoethyl methacrylate to form a liquid urethane- methacrylate prepolymer. This

  16. Basic butylated methacrylate copolymer/kappa-carrageenan interpolyelectrolyte complex: preparation, characterization and drug release behaviour.

    PubMed

    Prado, H J; Matulewicz, M C; Bonelli, P; Cukierman, A L

    2008-09-01

    The formation of a novel interpolyelectrolyte complex (IPEC) between basic butylated methacrylate copolymer and kappa-carrageenan was investigated and the product formed was characterized. Turbidity measurements and elemental analyses pointed to a 1:1 interaction of the repeating units. These results and FT-IR confirmed IPEC formation. Electronic microscopy images, particle size determination by image analysis and N(2) (77K) adsorption measurements were consistent with a porous material. This IPEC formed presented very good flowability and compactibility. Two maxima were observed in the swelling behaviour as a function of pH. The performance of the IPEC as a matrix for controlled release of drugs was evaluated, using ibuprofen as a model drug. Release profiles were properly represented by a mathematical model, which indicates that the system releases ibuprofen in a zero-order manner. These profiles could be controlled by conveniently modifying the proportion of the IPEC in the tablets.

  17. Specialty polymeric membranes. 8: Separation of benzene from benzene/cyclohexane mixtures with nylon 6-graft-poly(butyl methacrylate) membranes

    SciTech Connect

    Yoshikawa, Masakazu; Tsubouchi, Keisuke; Kitao, Toshio

    1999-02-01

    A novel pervaporation membrane was prepared by radical graft polymerization of butyl methacrylate onto nylon 6. The permselectivity toward benzene was increased by the introduction of poly(butyl methacrylate) onto a nylon 6 membrane. From pervaporation and sorption experiments, it was shown that the introduction of poly(butyl methacrylate) onto a nylon 6 membrane leads to the enhancement of permselectivity toward benzene. The solubility data for benzene were described by a combination of simple sorption and specific sorption, while cyclohexane solubility was described by simple sorption.

  18. Synthesis and characterization of anionic amphiphilic model conetworks of 2-butyl-1-octyl-methacrylate and methacrylic acid: effects of polymer composition and architecture.

    PubMed

    Kali, Gergely; Georgiou, Theoni K; Iván, Béla; Patrickios, Costas S; Loizou, Elena; Thomann, Yi; Tiller, Joerg C

    2007-10-09

    Seven amphiphilic conetworks of methacrylic acid (MAA) and a new hydrophobic monomer, 2-butyl-1-octyl-methacrylate (BOMA), were synthesized using group transfer polymerization. The MAA units were introduced via the polymerization of tetrahydropyranyl methacrylate (THPMA) followed by the removal of the protecting tetrahydropyranyl group by acid hydrolysis after network formation. Both THPMA and BOMA were in-house synthesized. Ethylene glycol dimethacrylate (EGDMA) was used as the cross-linker. Six of the conetworks were model conetworks, containing copolymer chains between cross-links of precise molecular weight and composition. The prepared conetwork series covered a wide range of compositions and architectures. In particular, the MAA content was varied from 67 to 94 mol %, and three different conetwork architectures were constructed: ABA triblock copolymer-based, statistical copolymer-based, and randomly cross-linked. The linear conetwork precursors were analyzed by gel permeation chromatography and 1H NMR spectroscopy in terms of their molecular weight and composition, both of which were found to be close to the theoretically calculated values. The degrees of swelling (DS) of all the amphiphilic conetworks were measured in water and in THF over the whole range of ionization of the MAA units. The DSs in water increased with the degree of ionization (DI) and the content of the hydrophilic MAA units in the conetwork, while the DSs in THF increased with the degree of polymerization of the chains between the cross-links and by reducing the DI of the MAA units. Finally, the nanophase behavior of the conetworks was probed using small-angle neutron scattering and atomic force microscopy.

  19. 76 FR 69659 - Methacrylic Acid-Methyl Methacrylate-Polyethylene Glycol Monomethyl Ether Methacrylate Graft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... AGENCY 40 CFR Part 180 Methacrylic Acid-Methyl Methacrylate-Polyethylene Glycol Monomethyl Ether... residues of methacrylic acid-methyl methacrylate- polyethylene glycol monomethyl ether methacrylate graft... permissible level for residues of methacrylic acid-methyl methacrylate-polyethylene glycol monomethyl...

  20. Poly(butyl methacrylate-g-methoxypoly(ethylene glycol)) and poly(methyl methacrylate-g-methoxypoly(ethylene glycol)) graft copolymers: preparation and aqueous solution properties.

    PubMed

    Horgan, Adrian; Saunders, Brian; Vincent, Brian; Heenan, Richard K

    2003-06-15

    A series of water-soluble, amphiphilic graft copolymers has been prepared by free-radical copolymerization of methoxypoly(ethylene glycol) macromonomers, with either methyl methacrylate or butyl methacrylate as the comonomers, in water/ethanol solvent mixtures. Lower molecular weight copolymers were obtained by increasing the concentration of the initiator, azobisisobutyronitrile (AIBN), used in the polymerization reaction. However, the route used also led to the formation of significant quantities of tetramethylsuccinodinitrile, a toxic byproduct resulting from the cage reaction of AIBN. Static fluorescence measurements using pyrene as a probe, along with 1H NMR experiments, showed that the graft copolymers form aggregates in water at very low concentrations (approximately 0.01 g l(-1)) with the pendant hydrophilic graft chains forming a stabilizing shell around the hydrophobic backbone. An increase in the hydrophile-lipophile balance of the graft copolymers was found to lead to smaller aggregates with lower aggregation numbers and highly swollen hydrophilic shells, as revealed by small angle neutron scattering (SANS).

  1. Polystyrene nanoparticles based on poly(butyl methacrylate-g-methoxypoly(ethylene glycol)) and poly(methyl methacrylate-g-methoxypoly(ethylene glycol)) graft copolymers.

    PubMed

    Horgan, Adrian; Vincent, Brian

    2003-06-15

    The solubilization of styrene by poly(butyl methacrylate-g-methoxypoly(ethylene glycol)) and poly(methyl methacrylate-g-methoxypoly(ethylene glycol)) graft copolymers has been examined. From turbidity measurements the solubility limit of the monomer in the micelles was obtained and the distribution coefficients were evaluated. Dynamic light scattering revealed that below the solubility limit, solubilization leads to a slight increase in micelle size, while above the solubility limit, there is a dramatic increase in particle size and turbidity as oil-in-water emulsions are formed through coalescence of monomer-swollen micelles. Polymerizations carried out below the solubility limit using the graft copolymer micelles as templates resembled microemulsion polymerizations in nature and led to very fine sterically stabilized polystyrene latex particles. Through careful control of the monomer concentration and the polymerization temperature it was possible to obtain spherical nanosize latex particles with similar size to those of the micelle precursors (10 nm) up to 11% monomer by weight. Polymerizations above the solubility limit, on the other hand, showed similarities with emulsion polymerizations and resulted in larger particles with higher polydispersity.

  2. Preparation and characterization of lignin based macromonomer and its copolymers with butyl methacrylate.

    PubMed

    Liu, Xiaohuan; Wang, Jifu; Yu, Juan; Zhang, Mingming; Wang, Chunpeng; Xu, Yuzhi; Chu, Fuxiang

    2013-09-01

    Copolymerization of butyl methacrylate (BMA) with biobutanol lignin (BBL) was achieved by free-radical polymerization (FRP) using a lignin-based macromonomer. The lignin-based macromonomer containing acrylic groups was prepared by reacting acryloyl chloride with biobutanol lignin using triethylamine (TEA) as absorb acid agentin. From the results of elemental analysis and GPC, the average degree of polymerization (DP) of BBL was estimated to be five. A detailed molecular characterization has been performed, including techniques such as (1)H NMR, (13)C NMR and UV-vis spectroscopies, which provided quantitative information about the composition of the copolymers. The changes in the solubility of lignin-g-poly(BMA) copolymers in ethyl ether were dependent on the length of poly(BMA) side chain. TGA analysis indicated that the lignin-containing poly(BMA) graft copolymers exhibited high thermal stability. The bulky aromatic group of lignin increased the glass-transition temperature of poly(BMA). In order to confirm the main structure of copolymer, (AC-g-BBL)-co-BMA copolymer was also synthesized by atom transfer radical polymerization (ATRP), and the results revealed that the copolymer prepared by ATRP had the same solution behavior as that prepared by FRP, and the lignin-based macromonomer showed no homopolymerizability due to the steric hindrance. In addition, the lignin-co-BMA copolymer had a surprisingly higher molecular weight than poly(BMA) under the same reaction condition, suggesting that a branched lignin based polymer could be formed.

  3. A Butyl Methacrylate Monolithic Column Prepared In-Situ on a Microfluidic Chip and its Applications

    PubMed Central

    Xu, Yi; Zhang, Wenpin; Zeng, Ping; Cao, Qiang

    2009-01-01

    A butyl methacrylate (BMA) monolithic column was polymerized in-situ with UV irradiation in an ultraviolet transparent PDMS micro-channel on a homemade micro-fluidic chip. Under the optimized conditions and using a typical polymerization mixture consisting of 75% porogenic solvents and 25% monomers, the BMA monolithic column was obtained as expected. The BET surface area ratio of the BMA monolithic column was 366 m2·g-1. The corresponding SEM images showed that the monolithic column material polymerized in a glass channel was composed of uniform pores and spherical particles with diameters ranging from 3 to 5 μm. The promethazine–luminal–potassium ferricyanide chemiluminescence system was selected for testing the capability of the column. A flow injection analytical technique–chemiluminescence (FIA–CL) system on the microfluidic chip with a BMA monolithic column pretreatment unit was established to determine promethazine. Trace promethazine was enriched by the BMA monolithic column, with more than a 10-fold average enrichment ratio. The proposed method has a linear response concentration range of 1.0×10-8 - 1.0×10-6g·mL-1 and the detection limit was 1.6×10-9g·mL-1. PMID:22412320

  4. Analysis of stochastic effects in chemically amplified poly(4-hydroxystyrene-co-t-butyl methacrylate) resist

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2016-07-01

    Understanding of stochastic phenomena is essential to the development of a highly sensitive resist for nanofabrication. In this study, we investigated the stochastic effects in a chemically amplified resist consisting of poly(4-hydroxystyrene-co-t-butyl methacrylate), triphenylsulfonium nonafluorobutanesulfonate (acid generator), and tri-n-octylamine (quencher). Scanning electron microscopy (SEM) images of resist patterns were analyzed by Monte Carlo simulation on the basis of the sensitization and reaction mechanisms of chemically amplified extreme ultraviolet resists. It was estimated that a ±0.82σ fluctuation of the number of protected units per polymer molecule led to line edge roughness formation. Here, σ is the standard deviation of the number of protected units per polymer molecule after postexposure baking (PEB). The threshold for the elimination of stochastic bridge generation was 4.38σ (the difference between the average number of protected units after PEB and the dissolution point). The threshold for the elimination of stochastic pinching was 2.16σ.

  5. Polymer electrolyte based on crosslinked poly(glycidyl methacrylate) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

    SciTech Connect

    Fei, Beatrice Wong Chui; Hanifah, Sharina Abu; Ahmad, Azizan; Hassan, Nur Hasyareeda

    2015-09-25

    Polymer electrolytes based on crosslinked poly(glycidyl methacrylate) as polymer host and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) as incorporated salt were prepared by in-situ photopolymerization technique. The complexes with different mass ratio of glycidyl methacrylate (GMA) monomer to BmimTFSI were investigated. The ionic conductivity of the polymer electrolyte was increased and reach the highest value of 7.50 × 10{sup −4} S cm{sup −1} at the ratio of 3:7 (GMA: BmimTFSI). The interaction between the polymer host and ionic liquid was proved by Attenuated Total Reflectance-Fourier Transformation Infra-Red Spectroscopy (ATR-FTIR). Meanwhile, the X-ray diffraction analysis shows the amorphousity of the polymer electrolyte film increase with the ionic liquid ratio.

  6. The thickening additives for mineral and synthetic oils based on the copolymers of alkyl acrylates or methacrylates and butyl vinyl ether

    NASA Astrophysics Data System (ADS)

    Geraskina, Evgeniya V.; Moikin, Alexey A.; Semenycheva, Ludmila L.

    2014-05-01

    A new method for synthesizing of the copolymers of acrylic and methacrylic acid esters with butyl vinyl ether in an excess of low-boiling monomer, which has proven effective for a number of alkyl methacrylates was proposed. Tests of thickening efficiency of the obtained copolymers were carried out. The resistance to mechanical degradation of the mineral, semi synthetic and synthetic base oils doped with the copolymers was evaluated.

  7. Thermomechanical behavior of amorphous tactic methacrylate polymers

    NASA Technical Reports Server (NTRS)

    Kiran, E.; Gillham, J. K.; Gipstein, E.

    1974-01-01

    Dynamic mechanical spectra of amorphous stereoregular poly(methyl methacrylate)s and poly(t-butyl methacrylate)s with assigned microtacticities are presented and discussed. An intermolecular argument is invoked to account for the higher glass transition temperature of syndiotactic vis a vis isotactic PMMA, in spite of the higher density of the latter at 30 C. An argument is presented to show that the ratio of glassy-region relaxation temperature to glass transition temperature is not only a measure of the degree of coupling of the beta and glass transition processes, but also of the degree to which intermolecular factors influence these processes. The greater extent of the low-temperature irreversibilities observed in the thermomechanical spectra of poly(t-butyl methacrylate)s is attributed to the brittle character induced by the bulky side groups which presumably weaken cohesive forces.

  8. Gas phase kinetics for the ozonolysis of n-butyl methacrylate, ethyl crotonate and vinyl propionate under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Gaona Colmán, Elizabeth; Blanco, María B.; Barnes, Ian; Teruel, Mariano A.

    2013-07-01

    Rate coefficients for the reactions of ozone with n-butyl methacrylate, ethyl crotonate and vinyl propionate have been determined at 298 ± 1 K and atmospheric pressure. The following room temperature rate coefficients (in cm3 molecule-1 s-1 units) were obtained: k1(O3 + CH2dbnd C(CH3)C(O)OC4H9) = (1.0 ± 0.3) × 10-17, k2(O3 + CH3CHdbnd CHC(O)OCH2CH3) = (8.0 ± 1.8) × 10-18 and k3(O3 + CH3CH2C(O)OCHdbnd CH2) = (5.3 ± 1.3) × 10-18. This is the first kinetic study for these reactions at atmospheric pressure. The effect of substituent groups on the overall rate coefficients is analyzed. Free energy relationships are presented and atmospheric lifetimes are discussed.

  9. Acrylates and Methacrylates,

    DTIC Science & Technology

    1987-09-15

    of ethylene and hydrocyanic acid through ethylene cyanohydrin. In the presence of basic catalysts ethylene oxide easily adds hydrocyanic acid with the...of synthesis of methacrylates. At present methacrylates are obtained in the industry by continuous method from acetone and hydrocyanic acid through...acetone cyanohydrin. The addition/connection to it of hydrocyanic acid with the formation of acetone cyanohydrin is one of the most important reactions

  10. Thermoforming polymethyl methacrylate.

    PubMed

    Jagger, R G; Okdeh, A

    1995-11-01

    This study characterized a range of commercially available polymethyl methacrylate sheets with respect to molecular weight, residual monomer content, and glass transition temperature and then developed a thermoforming procedure that produced visually satisfactory thermoformed polymethyl methacrylate specimens. Molecular weight values of Perspex material were considerably greater than those of the other materials. All materials but Diakon had residual monomer concentrations of less than 1% and glass transition temperature values greater than 100 degrees C. Perspex material was selected for further investigation. It was necessary to preheat Perspex sheets in an oven at 160 degrees C for at least 30 minutes before heating and forming on the thermoforming apparatus to obtain acceptable specimens.

  11. Stability and repeatability of capillary columns based on porous monoliths of poly(butyl methacrylate-co-ethylene dimethacrylate)

    PubMed Central

    Geiser, Laurent; Eeltink, Sebastiaan; Svec, Frantisek; Fréchet, Jean M.J.

    2009-01-01

    Monolithic poly(butyl methacrylate-co-ethylene dimethacrylate) capillary columns have been prepared via either thermally or photochemically initiated polymerization of the corresponding monomers and the repeatability of their preparation has been explored. Three separate batches of five columns each were prepared using thermal and photochemical initiation for a total of thirty columns. All thirty capillary columns were tested in liquid chromatography-electrospray ionization-mass spectrometry mode for the separation of a model mixture of three proteins - ribonuclease A, cytochrome c and myoglobin. Excellent repeatability of retention times was observed for the proteins as evidenced by relative standard deviation (RSD) values of less than 1.5%. Somewhat broader variations with RSD values of up to 10% were observed for the pressure drop in the columns. The stability of retention times was also monitored using a single monolithic column and no significant shifts in either retention times or back pressure was observed in a series of almost 2200 consecutive protein separations. PMID:17182044

  12. Multifunctional poly(alkyl methacrylate) films for dental care.

    PubMed

    Nielsen, Birthe V; Nevell, Thomas G; Barbu, Eugen; Smith, James R; Rees, Gareth D; Tsibouklis, John

    2011-02-01

    Towards the evaluation of non-permanent dental coatings for their capacity to impart dental-care benefits, thin films of a homologous series of comb-like poly(alkyl methacrylate)s (ethyl to octadecyl) have been deposited, from aqueous latex formulations, onto dentally relevant substrates. AFM studies have shown that the thickness (40-300 nm) and surface roughness (8-12 nm) of coherent polymer films are influenced by the degree of polymerization and by the length of the pendant chain. Of the polymers under consideration, poly(butyl methacrylate) formed a close-packed film that conferred to dental substrates a high degree of inhibition to acid-mediated erosion (about 27%), as evaluated by released-phosphate determinations. The potential utility of the coatings to act as anti-sensitivity barriers has been evaluated by determining the hydraulic conductance of coated bovine-dentine substrates; single treatments of dentine discs with poly(butyl methacrylate) or with poly(ethyl methacrylate) effected mean respective reductions in fluid flow of about 23% with respect to water-treated controls; repeated applications of the poly(butyl methacrylate) latex led to mean reductions in fluid flow of about 80%. Chromometric measurements have shown that pellicle-coated hydroxyapatite discs treated with poly(butyl methacrylate), poly(hexyl methacrylate) or poly(lauryl methacrylate) exhibit significant resistance to staining by food chromogens.

  13. Study on stochastic phenomena induced in chemically amplified poly(4-hydroxystyrene-co-t-butyl methacrylate) resist (high performance model resist for extreme ultraviolet lithography)

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Santillan, Julius J.; Itani, Toshiro

    2016-03-01

    Understanding of stochastic phenomena is essential to the development of highly sensitive resist for nanofabrication. In this study, we investigated the stochastic effects in a chemically amplified resist consisting of poly(4-hydroxystyrene-co-t-butyl methacrylate), triphenylsulfonium nonafluorobutanesulfonate (an acid generator), and tri-n-octylamine (a quencher). The SEM images of resist patterns were analyzed, using Monte Carlo simulation on the basis of the sensitization and reaction mechanisms of chemically amplified extreme ultraviolet resists. It was estimated that +/-0.82σ fluctuation of the number of protected units per polymer molecule led to line edge roughness formation. Here, σ is the standard deviation of the number of protected units per polymer molecule after postexposure baking.

  14. Final report of the safety assessment of methacrylate ester monomers used in nail enhancement products.

    PubMed

    2005-01-01

    Methacrylate ester monomers are used in as artificial nail builders in nail enhancement products. They undergo rapid polymerization to form a hard material on the nail that is then shaped. While Ethyl Methacrylate is the primary monomer used in nail enhancement products, other methacrylate esters are also used. This safety assessment addresses 22 other methacrylate esters reported by industry to be present in small percentages as artificial nail builders in cosmetic products. They function to speed up polymerization and/or form cross-links. Only Tetrahydrofurfuryl Methacrylate was reported to the FDA to be in current use. The polymerization rates of these methacrylate esters are within the same range as Ethyl Methacrylate. While data are not available on all of these methacrylate esters, the available data demonstrated little acute oral, dermal, or i.p. toxicity. In a 28-day inhalation study on rats, Butyl Methacrylate caused upper airway irritation; the NOAEL was 1801 mg/m3. In a 28-day oral toxicity study on rats, t-Butyl Methacrylate had a NOAEL of 20 mg/kg/day. Beagle dogs dosed with 0.2 to 2.0 g/kg/day of C12 to C18 methacrylate monomers for 13 weeks exhibited effects only in the highest dose group: weight loss, emesis, diarrhea, mucoid feces, or salivation were observed. Butyl Methacrylate (0.1 M) and Isobutyl Methacrylate (0.1 M) are mildly irritating to the rabbit eye. HEMA is corrosive when instilled in the rabbit eye, while PEG-4 Dimethacrylate and Trimethylolpropane Trimethacrylate are minimally irritating to the eye. Dermal irritation caused by methacrylates is documented in guinea pigs and rabbits. In guinea pigs, HEMA, Isopropylidenediphenyl Bisglycidyl Methacrylate, Lauryl Methacrylate, and Trimethylolpropane Trimethacrylate are strong sensitizers; Butyl Methacrylate, Cyclohexyl Methacrylate, Hexyl Methacrylate, and Urethane Methacrylate are moderate sensitizers; Hydroxypropyl Methacrylate is a weak sensitizer; and PEG-4 Dimethacrylate and

  15. 78 FR 55644 - Styrene, Copolymers with Acrylic Acid and/or Methacrylic Acid; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... methacrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and/or hydroxyethyl acrylate; and its sodium... methacrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and/or hydroxyethyl acrylate; and its sodium... methacrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and/or hydroxyethyl acrylate, and its...

  16. Determination of Sudan dyes in chili pepper powder by online solid-phase extraction with a butyl methacrylate monolithic column coupled to liquid chromatography with tandem mass spectrometry.

    PubMed

    Liu, Yao; Wang, Man-Man; Ai, Lian-Feng; Zhang, Chang-Kun; Li, Xin; Wang, Xue-Sheng

    2014-07-01

    A poly(butyl methacrylate-co-ethylene dimethacrylate) monolithic column was fabricated and used as a novel sorbent for online solid-phase extraction coupled to liquid chromatography with tandem mass spectrometry for the simultaneous determination of Sudan I-IV in chili pepper powder. The prepared columns were characterized by scanning electron microscopy, nitrogen adsorption-desorption, and pressure drop measurements. Online solid-phase extraction was performed on the synthesized monolithic column using 10 mM ammonium acetate solution as the loading solution with the aid of an online cleanup chromatography system. The desorption of Sudan I-IV was achieved with acetonitrile as the eluting solution at the flow rate of 0.5 mL/min. The extracted analytes were subsequently eluted into a C18 analytical column for chromatographic separation using a mixture of 10% acetonitrile/90% formic acid (0.5%) solution as the mobile phase. Under the optimized conditions, the developed method had linear range of 1.0-50 μg/kg, a detection limit of 0.3 μg/kg, and a quantification limit of 1.0 μg/kg for each analyte. The intraday and interday recoveries of Sudan I-IV in chili pepper powder samples ranged from 94.8 to 100.9% and 94.9 to 99.4%, respectively. The intraday and interday precision were between 3.37-7.01% and 5.01-7.68%, respectively.

  17. Radiation graft copolymerization of butyl methacrylate and acrylamide onto low density polyethylene and polypropylene films, and its application in wastewater treatment

    NASA Astrophysics Data System (ADS)

    Abdel Ghaffar, A. M.; El-Arnaouty, M. B.; Aboulfotouh, Maysara E.; Taher, N. H.; Taha, Ahmed A.

    2014-09-01

    Butyl methacrylate and acrylamide (BMA/AAm) comonomers were grafted onto low-density polyethylene (LDPE) and polypropylene (PP) films using the mutual gamma radiation grafting technique. The influences of grafting conditions such as solvent, monomer concentration, monomer composition, and irradiation dose on the grafting yield were determined. It was found that using dimethyl formamide as a solvent enhanced the copolymerization process. The grafting yield increases as the comonomer concentration increases up to 60%. Also it was found that the degree of grafting of BMA/AAm onto both LDPE and PP films increases as the AAm content increases till an optimum value at 50:50 wt%. The grafting yield of the comonomers was found to increase with increase in the radiation dose. It was observed that the degree of grafting of polyethylene films is higher than that of polypropylene (PP) films at the same conditions. Some selected properties of the graft copolymers, such as water uptake and thermal properties, were determined using thermogravimetric analysis. The morphology and structure of the grafted films were investigated using scanning electron microscopy, infra-red, and X-ray diffraction. Improvement in such properties of the prepared copolymers was observed which offers possible uses in some practical applications such as the removal of some heavy metals from wastewater. It was found that the maximum metal uptake by the copolymer followed the order Cu2+>Co2+>Ni2+ ions.

  18. Influence of ethylene glycol and propylene glycol on polymer diffusion in poly(butyl acrylate-co-methyl methacrylate) latex films.

    PubMed

    Schroeder, Walter F; Liu, Yuanqin; Tomba, J Pablo; Soleimani, Mohsen; Lau, Willie; Winnik, Mitchell A

    2010-03-11

    We describe fluorescence resonance energy transfer (FRET) experiments carried out to examine the effect of ethylene glycol and propylene glycol on the early stages of polymer diffusion in poly(butyl acrylate-co-methyl methacrylate) latex films. In our approach, we temporarily arrest the drying process of a wet latex film by sealing the film in a previously cooled airtight sample chamber. This arrests propagation of the drying front and suppresses polymer diffusion during the measurements. We then measure donor fluorescence decays from 0.5 mm diameter spots at various locations on the film. From our analysis, we obtain information about the earliest stages of polymer diffusion as the film is still drying. We also investigate the effect of these glycols on polymer diffusion at longer aging times on predried latex films. Ethylene glycol and propylene glycol retard polymer diffusion at early times immediately after the passing of the drying front but enhance the rate of polymer diffusion at later aging times. This behavior is described quantitatively in terms of free-volume theory and the partitioning of the glycols between the aqueous and polymer phases in the film.

  19. Continuous process of preparation of n-butyl(meth)acrylate by esterification of (meth)acrylic acid by butanol on thermostable sulfo-cation exchanger

    SciTech Connect

    Zheleznaya, L.L.; Karakhanov, R.A.; Lunin, A.F.; Magadov, R.S.; Meshcheryakov, S.V.; Mkrtychan, V.R.; Fomin, V.A.

    1987-11-10

    The authors propose an effective thermostable sulfo-cation exchanger based on polymers with a system of conjugated bonds, sulfopolyphenylene ketone (SPP) differing from the known cation exchangers by the high thermostability (up to 250/sup 0/C), and also having the effect of the stabilization of the double bond in unsaturated monomers. The combination of inhibiting and cation exchange properties makes it also possible to use these sulfo-cation exchangers in the processes of esterification of (meth)acrylic acids by alcohols without addition of special inhibitors. The SPP catalyst was tested in esterification processes of acrylic an methacrylic acid by butanol at a pilot plant.

  20. The lower alkyl methacrylates: Genotoxic profile of non-carcinogenic compounds.

    PubMed

    Albertini, Richard J

    2017-03-01

    All of the lower alkyl methacrylates are high production chemicals with potential for human exposure. The genotoxicity of seven mono-functional alkyl esters of methacrylic acid, i.e. methyl methacrylate, ethyl methacrylate, hydroxyethyl methacrylate, n-, i- and t-butyl methacrylate and 2 ethyl hexyl methacrylate, as well as methacrylic acid itself, the acyl component common to all, is reviewed and compared with the lack of carcinogenicity of methyl methacrylate, the representative member of the series so evaluated. Also reviewed are the similarity of structure, chemical and biological reactivity, metabolism and common metabolic products of this group of compounds which allows a category approach for assessing genotoxicity. As a class, the lower alkyl methacrylates are universally negative for gene mutations in prokaryotes but do exhibit high dose clastogenicity in mammalian cells in vitro. There is no convincing evidence that these compounds induce genotoxic effects in vivo in either sub-mammalian or mammalian species. This dichotomy of effects can be explained by the potential genotoxic intermediates generated in vitro. This genotoxic profile of the lower alkyl methacrylates is consistent with the lack of carcinogenicity of methyl methacrylate.

  1. Molecular recognition at methyl methacrylate/n-butyl acrylate (MMA/nBA) monomer unit boundaries of phospholipids at p-MMA/nBA copolymer surfaces.

    PubMed

    Yu, Min; Urban, Marek W; Sheng, Yinghong; Leszczynski, Jerzy

    2008-09-16

    Lipid structural features and their interactions with proteins provide a useful vehicle for further advances in membrane proteins research. To mimic one of potential lipid-protein interactions we synthesized poly(methyl methacrylate/ n-butyl acrylate) (p-MMA/nBA) colloidal particles that were stabilized by phospholipid (PLs). Upon the particle coalescence, PL stratification resulted in the formation of surface localized ionic clusters (SLICs). These entities are capable of recognizing MMA/nBA monomer interfaces along the p-MMA/nBA copolymer backbone and form crystalline SLICs at the monomer interface. By utilizing attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy and selected area electron diffraction (SAD) combined with ab initio calculations, studies were conducted that identified the origin of SLICs as well as their structural features formed on the surface of p-MMA/nBA copolymer films stabilized by 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) PL. Specific entities responsible for SLIC formation are selective noncovalent bonds of anionic phosphate and cationic quaternary ammonium segments of DLPC that interact with two neighboring carbonyl groups of nBA and MMA monomers of the p-MMA/nBA polymer backbone. To the best of our knowledge this is the first example of molecular recognition facilitated by coalescence of copolymer colloidal particles and the ability of PLs to form SLICs at the boundaries of the neighboring MMA and nBA monomer units of the p-MMA/nBA chain. The dominating noncovalent bonds responsible for the molecular recognition is a combination of H-bonding and electrostatic interactions.

  2. Methacrylate-based monolithic layers for planar chromatography of polymers.

    PubMed

    Maksimova, E F; Vlakh, E G; Tennikova, T B

    2011-04-29

    A series of macroporous monolithic methacrylate-based materials was synthesized by in situ free radical UV-initiated copolymerization of functional monomers, such as glycidyl methacrylate (GMA), butyl methacrylate (BuMA), 2-aminoethyl methacrylate (AEMA), 2-hydroxyethyl methacrylate (HEMA) and 2-cyanoethyl methacrylate (CEMA), with crosslinking agent, namely, ethylene glycol dimethacrylate (EDMA). The materials obtained were applied as the stationary phases in simple and robust technique - planar chromatography (PLC). The method of separation layer fabrication representing macroporous polymer monolith bound to the specially prepared glass surface was developed and optimized. The GMA-EDMA and BuMA-EDMA matrixes were successfully applied for the separation of low molecular weight compounds (the mixture of several dies), as well as poly(vinylpyrrolidone) and polystyrene homopolymers of different molecular weights using reversed-phase mechanism. The materials based on copolymers AEMA-HEMA-EDMA and CEMA-HEMA-EDMA were used for normal-phase PLC separation of 2,4-dinitrophenyl amino acids and polystyrene standards.

  3. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new...

  4. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new...

  5. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate... generically as polymers of styrene, cyclohexyl methacrylate and substituted methacrylate (PMNs...

  6. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new...

  7. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new...

  8. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new...

  9. The acute aquatic toxicity of a series of acrylate and methacrylate esters

    SciTech Connect

    Staples, C.A.; McLaughlin, J.E.; Hamilton, J.D.

    1994-12-31

    Acute aquatic toxicity data for several acrylate and methacrylate esters were reviewed. Acrylates included acrylic acid, ethyl-, and butyl-acrylate. Methacrylates included methacrylic acid, methyl-, and butyl-methacrylate. Tests were 48 hr or 96 hr standard flow through (invertebrates and fish) assays (measured exposure concentrations). These data are currently used in a risk assessment of acrylate/methacrylate environmental safety. Algal growth (Selanastrum capricomutum) 96 hr EC{sub 50}s were 0.17 mg/L (NOEC < 0.13 mg/L) for acrylic acid, 11.0 mg/L (NOEC < 6.5 mg/L) for ethyl acrylate, and 5.2 mg/L (NOEC < 3.8 mg/L) for butyl acrylate. Invertebrate (Daphnia magna) 48 hr LC{sub 50}s were 95.0 mg/L (NOEC 23.0 mg/L) for acrylic acid, 7.9 mg/L (NOEC 3.4 mg/L) for ethyl acrylate, and 8.2 mg/L (NOEC 2.4 mg/L) for butyl acrylate. Rainbow trout (Oncorhynchus mykiss) 96 hr LC{sub 50}s were 27.0 mg/L (NOEC 6.3 mg/L) for acrylic acid, 4.6 mg/L (NOEC 0.78 mg/L) for ethyl acrylate, and 5.2 mg/L (NOEC 3.8 mg/L) for butyl acrylate. Algae 96 hr EC{sub 50}s were 0.59 mg/L (NOEC 0.38 mg/L) for methacrylic acid, 170.0 mg/L (NOEC 100.0 mg/L) for methyl methacrylate, and 130.0 mg/L for butyl methacrylate. Daphnia magna 48 hr LC{sub 50}s were > 130.0 mg/L (NOEC 130.0 mg/L) for methacrylic acid, 69.0 mg/L (NOEC 48.0 mg/L) for methyl methacrylate, and 32.0 mg/L (NOEC 23.0 mg/L) for butyl methacrylate. Trout 96 hr LC{sub 50}s were 85.0 mg/L (NOEC 12.0 mg/L) for methacrylic acid and > 79.0 mg/L (NOEC 40.0 mg/L) for methyl methacrylate. The fathead minnow (Pimephales promelas) 96 hr LC{sub 50} was 11.0 mg/L for butyl methacrylate.

  10. Exposure to volatile methacrylates in dental personnel.

    PubMed

    Hagberg, Stig; Ljungkvist, Göran; Andreasson, Harriet; Karlsson, Stig; Barregård, Lars

    2005-06-01

    Dental personnel are exposed to acrylates due to the acrylic resin-based composites and bonding agents used in fillings. It is well known that these compounds can cause contact allergy in dental personnel. However, in the 1990s, reports emerged on asthma also caused by methacrylates. The main volatile acrylates in dentistry are 2-hydroxyethyl methacrylate and methyl methacrylate. The aim of this study was to quantify the exposure to these acrylates in Swedish dental personnel. We studied the exposure to 2-hydroxyethyl methacrylate and methyl methacrylate in five randomly selected public dental clinics and at the Faculty of Odontology at Göteborg University. In total, 21 whole-day and 46 task-specific short-term (1-18 min) measurements were performed. The median 8-hour time-weighted averages were 2.5 microg/m3 (dentists) and 2.9 microg/m3 (dental nurses) for 2-hydroxyethyl methacrylate, and 0.8 microg/m3 (dentists) and 0.3 microg/m3 (dental nurses) for methyl methacrylate. The maximum short-term exposure levels were 79 microg/m3 for 2-hydroxyethyl methacrylate and 15 microg/m3 for methyl methacrylate, similar in dentists and dental nurses. The observed levels are much lower than in complete denture fabrication. We found only one previous study in dentistry and it showed similar results (though it reported short-term measurements only). Irritant effects would not be expected in healthy people at these levels. Nevertheless, occupational respiratory diseases due to methacrylates may occur in dental personnel, and improvements in the handling of these chemicals in dentistry are warranted. This includes better vials for the bonding agents and avoiding evaporation from discarded materials.

  11. Kinetic laws and mechanism of the initiation of the polymerization of methyl methacrylate in systems consisting of a chloride of a nontransition element of group III or IV and tert-butyl hydroperoxide

    SciTech Connect

    Aleksandrov, Yu.A.; Lelekov, V.E.; Makin, G.I.; Mazanova, L.M.; Semchikov, Yu.D.; Katkova, M.A.

    1988-02-10

    The compositions and yields of the products of the transformation of tert-butyl hydroperoxide under the influence of chlorides in ethyl acetate are shown and the differential kinetics of the decomposition of the hydroperoxide and the accumulation of its main transformation products are presented. The kinetic and activation parameters of the process of decomposition of tert-butyl hydroperoxide are shown. The initiation of the polymerization of methy methacrylate by the system MCl/sub n-t/-BuOOH went with the participation of the complex MCl/sub n-t/-BuOOH; the transformation of the complex in a medium of the monomer takes simultaneous heterolytic and free-radical course.

  12. Enhanced surface segregation of poly(methyl methacrylate) end-capped with 2-perfluorooctylethyl methacrylate by introduction of a second block.

    PubMed

    Ni, Huagang; Gao, Jie; Li, Xuehua; Hu, Yanyan; Yan, Donghuan; Ye, XiuYun; Wang, Xinping

    2012-01-01

    New fluorinated copolymers of poly(methyl methacrylate)-b-poly(butyl methacrylate) or poly(n-octadecyl methacrylate) end-capped with 2-perfluorooctylethyl methacrylate (PMMA(x)-b-PBMA(y)-ec-PFMA(z) or PMMA(x)-b-PODMA(y)-ec-PFMA(z)) were synthesized by living atom transfer radical polymerization. Thin films made of PMMA(230)-b-PODMA(y)-ec-PFMA(1) were characterized by differential scanning calorimetry, angle-resolved X-ray photoelectron spectroscopy and X-ray diffraction. These films were found to exhibit robust surface segregation of the end groups. Furthermore, the fluorine enrichment factor at the film surface was found to increase linearly with increasing degree of polymerization of poly(n-octadecyl methacrylate) and its increasing fusion enthalpy in the second block, which enhances the segregation of the fluorinated moieties.

  13. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may... produced by the polymerization of methacrylic acid and divinylbenzene. The divinylbenzene functions as...

  14. Methacrylated glycol chitosan as a photopolymerizable biomaterial.

    PubMed

    Amsden, Brian G; Sukarto, Abby; Knight, Darryl K; Shapka, Stephen N

    2007-12-01

    Glycol chitosan is a derivative of chitosan that is soluble at neutral pH and possesses potentially useful biological properties. With the goal of obtaining biocompatible hydrogels for use as tissue engineering scaffolds or drug delivery depots, glycol chitosan was converted to a photopolymerizable prepolymer through graft methacrylation using glycidyl methacrylate in aqueous media at pH 9. N-Methacrylation was verified by both (1)H NMR and (13)C NMR. The degree of N-methacrylation, measured via (1)H NMR, was easily varied from 1.5% to approximately 25% by varying the molar ratio of glycidyl methacrylate to glycol chitosan and the reaction time. Using a chondrocyte cell line, the N-methacrylated glycol chitosan was found to be noncytotoxic up to a concentration of 1 mg/mL. The prepolymer was cross-linked in solution using UV light and Irgacure 2959 photoinitiator under various conditions to yield gels of low sol content ( approximately 5%), high equilibrium water content (85-95%), and thicknesses of up to 6 mm. Cross-polarization magic-angle spinning (13)C solid state NMR verified the complete conversion of the double bonds in the gel. Chondrocytes seeded directly onto the gel surface, populated the entirety of the gel and remained viable for up to one week. The hydrogels degraded slowly in vitro in the presence of lysozyme at a rate that increased as the cross-link density of the gels decreased.

  15. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate...

  16. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate...

  17. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate...

  18. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate...

  19. Luminescence techniques and characterization of the morphology of polymer latices. 3. An investigation of the microenvironments within stabilized aqueous latex dispersions of poly(n-butyl methacrylate) and polyurethane.

    PubMed

    Soutar, I; Swanson, L; Annable, T; Padget, J C; Satgurunathan, R

    2006-06-20

    Fluorescence techniques (including time-resolved anisotropy measurements, TRAMS) have been used to probe differences in morphology between two stabilized aqueous latex dispersions (poly(n-butyl methacrylate), PBMA, and polyurethane, PU). Use of the emission characteristics of probes such as pyrene and phenanthrene dispersed within particles reveals that the PU latices are more heterogeneous in nature: evidence exists, particularly from quenching measurements and TRAMS, that voids and channels of water permeate the PU structure, resulting in a relatively soft, open particle, swollen by ingress of the bulk aqueous phase. Fluorescence measurements indicate that PBMA colloids, however, are composed of relatively hard, hydrophobic particles. In addition, TRAMS are considered to be a valuable tool both for probing the morphological characteristics of such dispersions and in estimating the average particle size.

  20. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of...

  1. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of...

  2. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of...

  3. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of...

  4. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of...

  5. pH-sensitive methacrylic copolymers and the production thereof

    SciTech Connect

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2007-01-09

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  6. pH-sensitive methacrylic copolymers and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2006-02-14

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  7. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  8. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  9. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  10. Solute solvent interaction in methyl methacrylate and 2-hydroxyethyl methacrylate monomers solutions

    NASA Astrophysics Data System (ADS)

    Al-ghamdi, Attieh A.; Bahattab, M. A.; Farhoud, M.; Al-Dossary, Mishal; Al-Enizi, Abdullah; Al-Deyab, S. S.

    2006-11-01

    Solute-solvent interactions are studied using induced birefringence measurements in monomers solutions of methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA), dissolved in ethanol, acetone, ethyl acetate, tetrahydrofuran and dimethyl sulfoxide, over a broad range of concentrations. The data are combined with refractive index and density to calculate the electric, optical and molar Kerr constants. All related microscopic parameters concerning the molecular structure such as nonlinear Kerr constants, anisotropic factors, and optical anisotropy have been calculated.

  11. Effects of monomers and homopolymer contents on the dry and wet tensile properties of starch films grafted with various methacrylates.

    PubMed

    Shi, Zhen; Reddy, Narendra; Shen, Li; Hou, Xiuliang; Yang, Yiqi

    2014-05-21

    Starch grafted with four different methacrylates was compression molded to form thermoplastic films with good strength and water stability. Starch is an inexpensive and biodegradable polymer but is nonthermoplastic and needs to be chemically modified to make starch suitable for various applications. In this research, starch was grafted with four methacrylates (methyl, ethyl, butyl, and hexyl), and the effect of the length of the alkyl ester group on grafting parameters, thermoplasticity, and properties of thermoplastic films developed have been studied. Influence of grafting conditions on % grafting efficiency, % homopolymers, and % monomer conversion were studied, and the grafted starch was characterized using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and nuclear magnetic resonance ((1)H NMR). At similar grafting ratios, butyl methacrylate (BMA) provided better strength and elongation to the starch films than the other three methacrylates. Grafting of methacrylates appears to be an economical approach to develop thermoplastic products from starch.

  12. Poly(divinylbenzene-alkyl methacrylate) monolithic stationary phases in capillary electrochromatography.

    PubMed

    Huang, Hsi-Ya; Cheng, Yi-Jie; Liu, Wan-Ling; Hsu, Yi-Fen; Lee, Szetsen

    2010-09-10

    In this study, a series of poly(divinylbenzene-alkyl methacrylate) monolithic stationary phases, which were prepared by single step in situ polymerization of divinylbenzene and various alkyl methacrylates (butyl-, octyl-, or lauryl-methacrylate), were developed as separation columns of benzophenone compounds for capillary electrochromatography (CEC). In addition to the presence of plenty of benzene moieties, the stationary phases contained long and flexible alkyl groups on the surface. With an increase in the molecular length of alkyl methacrylate, the polymeric monolith, which had higher hydrophobicity, effectively reduced the peak tailing of benzophenones, but a weaker retention was observed. The unusual phenomenon was likely due to the pi-pi interaction between the aromatic compound and the polymeric material. The usage of longer alkyl methacrylate as reaction monomer limited the retention of aromatic compounds on the stationary phase surface, thus the pi-pi interaction between them was possibly reduced. Consequently, the retention time of aromatic compounds was markedly decreased with an increase in carbon length of alkyl methacrylate that was carried on the polymeric monolith. Compared to previous reports on polystyrene-based columns in which the peak-tailing problem was reduced by decreasing the benzene moieties on the stationary phase, this study demonstrated that the undesirable retention (peak-tailing) could also be improved by the inclusion of long alkyl methacrylate to the polystyrene-based columns.

  13. Dendrimer/methyl methacrylate co-polymers: residual methyl methacrylate and degree of conversion.

    PubMed

    Viljanen, Eeva K; Skrifvars, Mikael; Vallittu, Pekka K

    2005-01-01

    Dendrimer/methyl methacrylate co-polymers were studied for use in dental composites. The aim was to determine the effects of methyl methacrylate concentration in the resin mixture and polymerization method on the degree of conversion and residual monomer content of the copolymers. Two dendrimers were studied, D12 with 12 reactive methacrylate groups and D24 with 24 reactive groups. The concentration of methyl methacrylate varied from 20 wt% to 50 wt% of monomers. Camphorquinone (CQ) was used as the light-activation initiator and 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA) as the activator, both in the quantity of 3.0 wt%. Three polymerization methods were used: photo-polymerization, photo-polymerized immediately followed by post-polymerization at 120 degrees C for 15 min, and photo-polymerization followed by postpolymerization after 7 days. The degree of conversion was determined using FT-IR. Residual monomers were extracted with tetrahydrofuran and methanol and analyzed with HPLC. The highest degrees of conversion were 65 and 62%, and the lowest residual monomer contents 1.0 and 1.5% for D12 and D24, respectively. These were measured after heat-induced post-polymerization. For D12, increasing the proportion of methyl methacrylate decreased the degree of conversion and increased the residual monomer content after photo-polymerization. Post-polymerization enhanced the polymerization of the dendrimer co-polymers in respect of degree of conversion and residual monomer content. The present study suggested that the tested dendrimer/methyl methacrylate copolymers require heat-induced polymerization to reach the generally accepted levels of degree of conversion and residual monomers.

  14. Effect of methacrylic acid:methyl methacrylate monomer ratios on polymerization rates and properties of polymethyl methacrylates.

    PubMed

    Chen, T; Kusy, R P

    1997-08-01

    Five binary formulations were prepared from methyl methacrylate (MMA) and methacrylic acid (MAA) monomers, and six ternary formulations were prepared from polysols of 30% wt polymethyl methacrylate (PMMA)/MMA and MAA. Using thermal analyses (DSC and TGA) the polymerization kinetics, condition of postcuring, relative amount of residual monomers, and glass transition temperature (Tg) were determined. From bar-shaped samples, 25 x 5 x 0.9 mm in dimensions, mechanical properties [flexural moduli (E) and maximum strengths (sigma)] were measured in three-point bending. Polymerization kinetics of binary formulations improved over pure PMMA (from 15 to 4 min) as a result of over a 60-fold increase in propagation-to-termination constants (Kp/Kt) of MAA/MMA. The further addition of PMMA increased the viscosity, slowed down termination, and, consequently, improved the polymerization kinetics twofold. These enhancements occurred without a substantive change in the Tg of the ternary system (ca. 107 degrees C) over pure PMMA (ca. 112 degrees C). Moreover, the Es of the four ternary formulations averaged 2.94 GPa, which was comparable with many values reported in the literature. In contrast the sigma s of these same formulations averaged 97 MPa, which was about 25% better than earlier investigations of pure acrylic. When a thermoplastic material is required for pultruding profiles that cure fast and have good thermal-mechanical properties, ternaries of PMMA/MMA/MAA should be considered.

  15. A pre-formed methyl methacrylate cranioplasty.

    PubMed

    Cooper, P R; Schechter, B; Jacobs, G B; Rubin, R C; Wille, R L

    1977-09-01

    The use of a pre-formed methyl methacrylate cranioplasty prosthesis reinforced with stainless steel wire is described. The prosthesis is non-reactive, virtually unbreakable, and undentable. Pre-forming of the prosthesis in the dental laboratory using a mold of the patient's bony defect as a model saves considerable operating time, and when employed for a large cranial defect the three dimensional cosmetic effect is superior to intra-operatively fashioned prostheses.

  16. Development and characterization of thermoplastic films from sorghum distillers dried grains grafted with various methacrylates.

    PubMed

    Reddy, Narendra; Shi, Zhen; Temme, Lisa; Xu, Helan; Xu, Lan; Hou, Xiuliang; Yang, Yiqi

    2014-03-19

    Distillers Dried Grains (DDG) obtained during production of ethanol from grain sorghum were grafted with methacrylates and compression molded into films with good dry and wet tensile properties. Since sorghum DDG contains up to 45% proteins that are indigestible by animals, it is necessary to find alternative applications to make sorghum ethanol economically competitive. In this research, sorghum DDG was grafted with methyl, ethyl, and butyl methacrylates, the grafted DDG was compression molded into films, and the properties of the grafted DDG and films were studied. At a grafting ratio of 40%, butyl methacrylate (BMA) grafted films had a strength of 4.8 MPa and elongation of 1.8% when dry and 3.1 MPa and 8.1% when wet, indicating that the films had good strength and wet stability. Films developed from grafted DDG show the potential to overcome the brittleness and poor water stability of biopolymer-based films and be useful for various applications.

  17. Reactivity of methacrylates in insertion polymerization.

    PubMed

    Rünzi, Thomas; Guironnet, Damien; Göttker-Schnetmann, Inigo; Mecking, Stefan

    2010-11-24

    Polymerization of ethylene by complexes [{(P^O)PdMe(L)}] (P^O = κ(2)-(P,O)-2-(2-MeOC(6)H(4))(2)PC(6)H(4)SO(3))) affords homopolyethylene free of any methyl methacrylate (MMA)-derived units, even in the presence of substantial concentrations of MMA. In stoichiometric studies, reactive {(P^O)Pd(Me)L} fragments generated by halide abstraction from [({(P^O)Pd(Me)Cl}μ-Na)(2)] insert MMA in a 1,2- as well as 2,1-mode. The 1,2-insertion product forms a stable five-membered chelate by coordination of the carbonyl group. Thermodynamic parameters for MMA insertion are ΔH(++) = 69.0(3.1) kJ mol(-1) and ΔS(++) = -103(10) J mol(-1) K(-1) (total average for 1,2- and 2,1-insertion), in comparison to ΔH(++) = 48.5(3.0) kJ mol(-1) and ΔS(++) = -138(7) J mol(-1) K(-1) for methyl acrylate (MA) insertion. These data agree with an observed at least 10(2)-fold preference for MA incorporation vs MMA incorporation (not detected) under polymerization conditions. Copolymerization of ethylene with a bifunctional acrylate-methacrylate monomer yields linear polyethylenes with intact methacrylate substituents. Post-polymerization modification of the latter was exemplified by free-radical thiol addition and by cross-metathesis.

  18. Dimensional accuracy of thermoformed polymethyl methacrylate.

    PubMed

    Jagger, R G

    1996-12-01

    Thermoforming of polymethyl methacrylate sheet is used to produce a number of different types of dental appliances. The purpose of this study was to determine the dimensional accuracy of thermoformed polymethyl methacrylate specimens. Five blanks of the acrylic resin were thermoformed on stone casts prepared from a silicone mold of a brass master die. The distances between index marks were measured both on the cast and on the thermoformed blanks with an optical comparator. Measurements on the blanks were made again 24 hours after processing and then 1 week, 1 month, and 3 months after immersion in water. Linear shrinkage of less than 1% (range 0.37% to 0.52%) was observed 24 hours after removal of the blanks from the cast. Immersion of the thermoformed specimens in water resulted in an increase in measured dimensions, but after 3 months' immersion these increases were still less than those of the cast (range 0.07% to 0.18%). It was concluded that it is possible to thermoform Perspex polymethyl methacrylate accurately.

  19. Immobilization of enzymes on 2-hydroxyethyl methacrylate and glycidyl methacrylate copolymer brushes.

    PubMed

    Ren, Tanchen; Mao, Zhengwei; Moya, Sergio Enrique; Gao, Changyou

    2014-08-01

    The immobilization of enzymes is of paramount importance to maintain their activity and stability. In this study, surface-initiated atom-transfer radical polymerization was applied to prepare poly(2-hydroxyethyl methacrylate)-block-poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) brushes on glass slides. The polymerization kinetics was followed by using a quartz crystal microbalance with dissipation monitoring and ellipsometry in terms of mass and thickness growth, respectively. The surface chemical compositions of the obtained polymer brushes were characterized by X-ray photoelectron spectroscopy. Their mass, thickness, and enzyme-immobilization ability could be easily tuned by the initiator reaction time, monomer ratio, and polymerization time. The antibacterial activity and stability of the immobilized lysozymes were studied by fluorescent staining and bacteria lysis assay, which revealed that the lysozymes on the copolymer brushes had good stability during storage at 4 °C for up to 30 days.

  20. Facile Fabrication of Gradient Surface Based on (meth)acrylate Copolymer Films

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Yang, H.; Wen, X.-F.; Cheng, J.; Xiong, J.

    2016-08-01

    This paper describes a simple and economic approach for fabrication of surface wettability gradient on poly(butyl acrylate - methyl methacrylate) [P (BA-MMA)] and poly(butyl acrylate - methyl methacrylate - 2-hydroxyethyl methacrylate) [P (BA-MMA-HEMA)] films. The (meth)acrylate copolymer [including P (BA-MMA) and P (BA-MMA-HEMA)] films are hydrolyzed in an aqueous solution of NaOH and the transformation of surface chemical composition is achieved by hydrolysis in NaOH solution. The gradient wetting properties are generated based on different functional groups on the P (BA-MMA) and P (BA-MMA-HEMA) films. The effects of both the surface chemical and surface topography on wetting of the (meth)acrylate copolymer film are discussed. Surface chemical composition along the materials length is determined by XPS, and surface topography properties of the obtained gradient surfaces are analyzed by FESEM and AFM. Water contact angle system (WCAs) results show that the P (BA-MMA-HEMA) films provide a larger slope of the gradient wetting than P (BA-MMA). Moreover, this work demonstrates that the gradient concentration of chemical composition on the poly(meth) acrylate films is owing to the hydrolysis processes of ester group, and the hydrolysis reactions that have negligible influence on the surface morphology of the poly(meth) acrylate films coated on the glass slide. The gradient wettability surfaces may find broad applications in the field of polymer coating due to the compatibility of (meth) acrylate polymer.

  1. On permeability of methyl methacrylate, 2-hydroxyethyl methacrylate and triethyleneglycol dimethacrylate through protective gloves in dentistry.

    PubMed

    Andreasson, Harriet; Boman, Anders; Johnsson, Stina; Karlsson, Stig; Barregård, Lars

    2003-12-01

    Continuous glove use is more common in dentistry than in most other occupations, and the glove should offer protection against blood-borne infections, skin irritants and contact allergens. Methacrylate monomers are potent contact allergens, and it is known that these substances may penetrate the glove materials commonly used. The aim of this study was to assess the permeability of various types of gloves to methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (HEMA) and triethyleneglycol dimethacrylate (TEGDMA) with special reference to combinations with ethanol or acetone. The permeation rate and time lag breakthrough (lag-BT) for MMA (neat, or diluted to 30% in ethanol or acetone), HEMA (30% in water, ethanol, or acetone) and TEGDMA (30% in ethanol or acetone) were investigated for different protective gloves. Nine different types of gloves were tested for one or several of these methacrylates. The lag-BT for neat MMA was

  2. Zwitterionic Poly(amino acid methacrylate) Brushes

    PubMed Central

    2014-01-01

    A new cysteine-based methacrylic monomer (CysMA) was conveniently synthesized via selective thia-Michael addition of a commercially available methacrylate-acrylate precursor in aqueous solution without recourse to protecting group chemistry. Poly(cysteine methacrylate) (PCysMA) brushes were grown from the surface of silicon wafers by atom-transfer radical polymerization. Brush thicknesses of ca. 27 nm were achieved within 270 min at 20 °C. Each CysMA residue comprises a primary amine and a carboxylic acid. Surface zeta potential and atomic force microscopy (AFM) studies of the pH-responsive PCysMA brushes confirm that they are highly extended either below pH 2 or above pH 9.5, since they possess either cationic or anionic character, respectively. At intermediate pH, PCysMA brushes are zwitterionic. At physiological pH, they exhibit excellent resistance to biofouling and negligible cytotoxicity. PCysMA brushes undergo photodegradation: AFM topographical imaging indicates significant mass loss from the brush layer, while XPS studies confirm that exposure to UV radiation produces surface aldehyde sites that can be subsequently derivatized with amines. UV exposure using a photomask yielded sharp, well-defined micropatterned PCysMA brushes functionalized with aldehyde groups that enable conjugation to green fluorescent protein (GFP). Nanopatterned PCysMA brushes were obtained using interference lithography, and confocal microscopy again confirmed the selective conjugation of GFP. Finally, PCysMA undergoes complex base-catalyzed degradation in alkaline solution, leading to the elimination of several small molecules. However, good long-term chemical stability was observed when PCysMA brushes were immersed in aqueous solution at physiological pH. PMID:24884533

  3. Injectible bodily prosthetics employing methacrylic copolymer gels

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  4. Methacrylic resin having a high solar radiant energy absorbing property and process for producing the same

    SciTech Connect

    Abe, K.; Kamada, K.; Nakai, Y.

    1981-10-20

    A methacrylic resin having a high solar radiant energy absorbing property wherein an organic compound (A) containing cupric ion and a compound (B) having at least one p-o-h bond in a molecule are contained into the methacrylic resin selected from poly(Methyl methacrylate) or methacrylic polymers containing at least 50% by weight of a methyl methacrylate unit. A process for producing said methacrylic resin is also disclosed.

  5. Preparation of poly(butyl methacrylate-co-ethyleneglyceldimethacrylate) monolithic column modified with β-cyclodextrin and nano-cuprous oxide and its application in polymer monolithic microextraction of polychlorinated biphenyls.

    PubMed

    Zheng, Haijiao; Liu, Qingwen; Jia, Qiong

    2014-05-23

    A poly(butyl methacrylate-co-ethyleneglyceldimethacrylate) (poly(BMA-EDMA)) monolithic column was prepared with in situ polymerization method and modified with allylamine-β-cyclodextrin (ALA-β-CD) and nano-cuprous oxide (Cu2O). A polymer monolith microextraction method was developed with the modified monolithic column for the preconcentration of polychlorinated biphenyls combined with gas chromatography-electron capture detector. Various parameters affecting the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, we obtained acceptable linearities, low limits of detection, and good intra-day/inter-day relative standard deviations. Because of the hydrophobic properties of β-CD and the porous nano structure of Cu2O, the enrichment capacity of the poly(BMA-EDMA) monolithic column was significantly improved. The extraction efficiency followed the order: poly(BMA-EDMA-ALA-β-CD-Cu2O)>poly(BMA-EDMA-ALA-β-CD)>poly(BMA-EDMA)>direct GC analysis. When applied to the determination of polychlorinated biphenyls in wine samples, low limits of detection (0.09ngmL(-1)) were obtained under the preoptimized conditions (sample volume 1.0mL, sample flow rate 0.1mLmin(-1), eluent volume 0.1mL, and eluent flow rate 0.05mLmin(-1)). In addition, the present method was employed to determine polychlorinated biphenyls in red wine samples and the accuracy was assessed through recovery experiments. The obtained recovery values were in the range of 78.8-104.1% with relative standard deviations less than 9.0%.

  6. Well-defined iron complexes as efficient catalysts for "green" atom-transfer radical polymerization of styrene, methyl methacrylate, and butyl acrylate with low catalyst loadings and catalyst recycling.

    PubMed

    Nakanishi, So-Ichiro; Kawamura, Mitsunobu; Kai, Hidetomo; Jin, Ren-Hua; Sunada, Yusuke; Nagashima, Hideo

    2014-05-05

    Environmentally friendly iron(II) catalysts for atom-transfer radical polymerization (ATRP) were synthesized by careful selection of the nitrogen substituents of N,N,N-trialkylated-1,4,9-triazacyclononane (R3 TACN) ligands. Two types of structures were confirmed by crystallography: "[(R3 TACN)FeX2 ]" complexes with relatively small R groups have ionic and dinuclear structures including a [(R3 TACN)Fe(μ-X)3 Fe(R3 TACN)](+) moiety, whereas those with more bulky R groups are neutral and mononuclear. The twelve [(R3 TACN)FeX2 ]n complexes that were synthesized were subjected to bulk ATRP of styrene, methyl methacrylate (MMA), and butyl acrylate (BA). Among the iron complexes examined, [{(cyclopentyl)3 TACN}FeBr2 ] (4 b) was the best catalyst for the well-controlled ATRP of all three monomers. This species allowed easy catalyst separation and recycling, a lowering of the catalyst concentration needed for the reaction, and the absence of additional reducing reagents. The lowest catalyst loading was accomplished in the ATRP of MMA with 4 b (59 ppm of Fe based on the charged monomer). Catalyst recycling in ATRP with low catalyst loadings was also successful. The ATRP of styrene with 4 b (117 ppm Fe atom) was followed by precipitation from methanol to give polystyrene that contained residual iron below the calculated detection limit (0.28 ppm). Mechanisms that involve equilibria between the multinuclear and mononuclear species were also examined.

  7. CEC separation of heterocyclic amines using methacrylate monolithic columns.

    PubMed

    Barceló-Barrachina, Elena; Moyano, Encarnación; Puignou, Lluís; Galceran, Maria Teresa

    2007-06-01

    Two methacrylate-based monolithic columns, one with a negatively charged group (sulfonic group) and another with a new monomer N,N-dimethylamino ethyl acrylate (DMAEA), were prepared and tested for the separation of basic compounds by CEC. This new monolithic stationary phase was prepared by the in situ polymerization of DMAEA with butyl methacrylate and ethylene dimethacrylate, using a ternary porogenic solvent consisting of water, 1-propanol and 1,4-butanediol. The performance of this column was evaluated by means of the analysis of a family of heterocyclic amines. Separation conditions such as pH, amount of organic modifier, ionic strength and elution mode (normal or counterdirectional flow) were studied. At the optimal running electrolyte composition, and using the counterdirectional mode, symmetrical electrochromatographic peaks were obtained, with the number of theoretical plates up to 30,000 and a good resolution between closely related peaks. The 2-acrylamido-2-methyl-1-propane-sulfonic acid column was used for CEC-MS, taking advantage of the compatibility of its elution mode (normal flow) with the MS coupling.

  8. Superhydrophobic terpolymer nanofibers containing perfluoroethyl alkyl methacrylate by electrospinning

    NASA Astrophysics Data System (ADS)

    Cengiz, Ugur; Avci, Merih Z.; Erbil, H. Yildirim; Sarac, A. Sezai

    2012-05-01

    A new statistical terpolymer containing perfluoroethyl alkyl methacrylate (Zonyl-TM), methyl methacrylate and butyl acrylate, poly(Zonyl-TM-ran-MMA-ran-BA) was synthesized in supercritical carbon dioxide at 200 bar and 80 °C using AIBN as an initiator by heterogeneous free radical copolymerization. Nanofibers of this terpolymer were produced by electrospinning from its DMF solution. The structural and thermal properties of terpolymers and electrospun poly(Zonyl-TM-MMA-BA) nanofibers were analyzed using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and differential scanning calorimetry. Nanofiber morphology was investigated by scanning electron microscopy. Electrospun nanofiber layer was found to be superhydrophobic with a water contact angle of 172 ± 1° and highly oleophobic with hexadecane, glycerol and ethylene glycol contact angles of 70 ± 1°, 167 ± 1° and 163 ± 1° respectively. The change of the contact angle results on the electrospun fiber layer and flat terpolymer surfaces by varying feed monomer composition were compared and discussed in the text.

  9. DEGRADATION OF POLY(METHYL METHACRYLATE) IN SOLUTION

    EPA Science Inventory

    The rate of degradation of poly(methyl methacrylate) (PMMA) to methyl methacrylate (MMA) was investigated in the liquid phase with toluene as the solvent. The degradation experiments were carried out in a tubular flow reactor at 1000 psig (6.8 MPa) and at four different temperat...

  10. Uptake of isoprene, methacrylic acid and methyl methacrylate into aqueous solutions of sulfuric acid and hydrogen peroxide.

    PubMed

    Liu, Ze; Ge, Maofa; Wang, Weigang

    2012-01-01

    Multiphase acid-catalyzed oxidation by hydrogen peroxide has been suggested to be a potential route to secondary organic aerosol formation from isoprene and its gas-phase oxidation products, but the lack of kinetics data significantly limited the evaluation of this process in the atmosphere. Here we report the first measurement of the uptake of isoprene, methacrylic acid and methyl methacrylate into aqueous solutions of sulfuric acid and hydrogen peroxide. Isoprene cannot readily partition into the solution because of its high volatility and low solubility, which hinders its further liquid-phase oxidation. Both methacrylic acid and methyl methacrylate can enter the solutions and be oxidized by hydrogen peroxide, and steady-state uptake was observed with the acidity of solution above 30 wt.% and 70 wt.%, respectively. The steady-state uptake coefficient of methacrylic acid is much larger than that of methyl methacrylate for a solution with same acidity. These observations can be explained by the different reactivity of these two compounds caused by the different electron-withdrawing conjugation between carboxyl and ester groups. The atmospheric lifetimes were estimated based on the calculated steady-state uptake coefficients. These results demonstrate that the multiphase acid-catalyzed oxidation of methacrylic acid plays a role in secondary organic aerosol formation, but for isoprene and methyl methacrylate, this process is not important in the troposphere.

  11. Effects of Surfactants on the Properties of Mortar Containing Styrene/Methacrylate Superplasticizer

    PubMed Central

    Negim, El-Sayed; Kozhamzharova, Latipa; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA. PMID:24955426

  12. Effects of surfactants on the properties of mortar containing styrene/methacrylate superplasticizer.

    PubMed

    Negim, El-Sayed; Kozhamzharova, Latipa; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA.

  13. Improvement of holographic thermal stability in phenanthrenequinone-doped poly(methyl methacrylate-co-methacrylic acid) photopolymer

    NASA Astrophysics Data System (ADS)

    Yu, Dan; Liu, Hongpeng; Wang, Heng; Wang, Jian; Jiang, Yongyuan; Sun, Xiudong

    2011-08-01

    Experimental studies of holographic thermal stability in phenanthrenequinone (PQ)-doped poly(methyl methacrylate-co-methacrylic acid) [P(MMA-co-MAA)] photopolymers are presented. A possibility to improve the thermal stability of holograms is demonstrated by doping methacrylic acid (MAA) into the poly(methyl methacrylate) (PMMA) polymer matrix. MAA as a copolymerization monomer can form a more stable polymer matrix with methyl methacrylate (MMA) monomer and increase average molecular weight of photoproducts, which finally depress the diffusion of photoproduct. The optimized MAA concentration copolymerized into P(MMA-co-MAA) polymer matrix can bring nearly a month's lifetime of gratings, which is obviously an improvement over the usual PQ-PMMA material under thermal treatment.

  14. Studies on novel radiopaque methyl methacrylate: glycidyl methacrylate based polymer for biomedical applications.

    PubMed

    Dawlee, S; Jayakrishnan, A; Jayabalan, M

    2009-12-01

    A new class of radiopaque copolymer using methyl methacrylate (MMA) and glycidyl methacrylate (GMA) monomers was synthesized and characterized. The copolymer was made radiopaque by the epoxide ring opening of GMA using the catalyst o-phenylenediamine and the subsequent covalent attachment of elemental iodine. The copolymer was characterized by Fourier transform infrared (FTIR) spectra, energy dispersive X-ray analysis using environmental scanning electron microscope (EDAX), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). X-ray visibility of the copolymer was checked by X-radiography. Blood compatibility and cytotoxicity of the newly synthesized copolymer were also evaluated. The iodinated copolymer was thermally stable, blood compatible, non-cytotoxic, and highly radiopaque. The presence of bulky iodine group created a new copolymer with modified properties for potential use in biomedical applications.

  15. Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers

    NASA Astrophysics Data System (ADS)

    Giffin, Shirin M.; McKinnie, Iain T.; Wadsworth, William J.; Woolhouse, Anthony D.; Smith, Gerald J.; Haskell, Tim G.

    1999-03-01

    The laser performance of a range of solid state dye lasers based on rhodamine 590-doped co-polymers of 2-hydroxyethyl methacrylate (HEMA) and methyl methacrylate (MMA) has been investigated. The optimisation of preparation conditions, including polymerisation initiator and solvent for dye delivery is discussed in detail. Laser efficiency is compared for different polymeric hosts and dye concentrations with a range of output couplers, cavity lengths and repetition rates. Passive and dynamic loss have been determined for each host medium. Laser efficiencies of optimised polymers are among the highest reported for rhodamine 590-doped solid state dye lasers under these operating conditions. Highest slope efficiency of 35% and lowest threshold fluence of 0.06 J cm -2 were obtained with dimethyl sulphoxide (DMSO) additive in MPMMA at 10 Hz repetition rate.

  16. Genotoxicity and cytotoxicity of 2-hydroxyethyl methacrylate.

    PubMed

    Pawlowska, Elzbieta; Poplawski, Tomasz; Ksiazek, Dominika; Szczepanska, Joanna; Blasiak, Janusz

    2010-02-01

    Resin-based methacrylate materials are widely used in restorative dentistry. They are viscous substances that are converted into solid material via polymerization. This process, however, may be incomplete, leading to the release of monomers into the oral cavity and the pulp, which can be reached through the dentin micro-channels. This opens the opportunity for the monomers to reach the bloodstream. Monomers can reach concentrations in the millimolar range, high enough to cause cellular damage, so it is justified to study their potential toxic effects. In the present work we investigated the cytotoxicity and genotoxicity of 2-hydroxyethyl methacrylate (HEMA) in human peripheral blood lymphocytes and A549 lung-tumour cells. HEMA at concentrations up to 10mM neither affected the viability of the cells nor interacted with isolated plasmid DNA during a 1h exposure. However, HEMA induced concentration-dependent DNA damage in lymphocytes, as assessed by alkaline and pH 12.1 versions of the comet assay. HEMA did not cause double-strand breaks, as assessed by the neutral version of the comet assay and pulsed-field gel electrophoresis. The use of DNA repair enzymes, spin traps and vitamin C produced results suggesting that HEMA induced oxidative modifications to DNA bases. DNA damage caused by HEMA at 10mM was removed within 120min. HEMA induced apoptosis in a concentration-dependent manner and caused cell-cycle delay at the G0/G1-checkpoint. Methylglycol chitosan displayed a protective effect against the DNA-damaging action of HEMA. The results obtained in this study suggest that HEMA induces adverse biological effects, mainly via reactive oxygen species, which can lead to DNA damage, apoptosis and cell-cycle delay. Chitosan and its derivatives can be considered as additional components of dental restoration to decrease the harmful potency of HEMA.

  17. Biocompatible Bacterial Cellulose-Poly(2-hydroxyethyl methacrylate) Nanocomposite Films

    PubMed Central

    Figueiredo, Andrea G. P. R.; Figueiredo, Ana R. P.; Alonso-Varona, Ana; Fernandes, Susana C. M.; Palomares, Teodoro; Rubio-Azpeitia, Eva; Barros-Timmons, Ana; Silvestre, Armando J. D.; Pascoal Neto, Carlos; Freire, Carmen S. R.

    2013-01-01

    A series of bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films was prepared by in situ radical polymerization of 2-hydroxyethyl methacrylate (HEMA), using variable amounts of poly(ethylene glycol) diacrylate (PEGDA) as cross-linker. Thin films were obtained, and their physical, chemical, thermal, and mechanical properties were evaluated. The films showed improved translucency compared to BC and enhanced thermal stability and mechanical performance when compared to poly(2-hydroxyethyl methacrylate) (PHEMA). Finally, BC/PHEMA nanocomposites proved to be nontoxic to human adipose-derived mesenchymal stem cells (ADSCs) and thus are pointed as potential dry dressings for biomedical applications. PMID:24093101

  18. Biocompatible bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films.

    PubMed

    Figueiredo, Andrea G P R; Figueiredo, Ana R P; Alonso-Varona, Ana; Fernandes, Susana C M; Palomares, Teodoro; Rubio-Azpeitia, Eva; Barros-Timmons, Ana; Silvestre, Armando J D; Pascoal Neto, Carlos; Freire, Carmen S R

    2013-01-01

    A series of bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films was prepared by in situ radical polymerization of 2-hydroxyethyl methacrylate (HEMA), using variable amounts of poly(ethylene glycol) diacrylate (PEGDA) as cross-linker. Thin films were obtained, and their physical, chemical, thermal, and mechanical properties were evaluated. The films showed improved translucency compared to BC and enhanced thermal stability and mechanical performance when compared to poly(2-hydroxyethyl methacrylate) (PHEMA). Finally, BC/PHEMA nanocomposites proved to be nontoxic to human adipose-derived mesenchymal stem cells (ADSCs) and thus are pointed as potential dry dressings for biomedical applications.

  19. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate.

    PubMed

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-03-02

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances.

  20. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate

    NASA Astrophysics Data System (ADS)

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-03-01

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances.

  1. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate

    PubMed Central

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-01-01

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances. PMID:28252049

  2. Quaternary ammonium poly(diethylaminoethyl methacrylate) possessing antimicrobial activity.

    PubMed

    Farah, Shady; Aviv, Oren; Laout, Natalia; Ratner, Stanislav; Beyth, Nurit; Domb, Abraham J

    2015-04-01

    Quaternary ammonium (QA) methacrylate monomers and polymers were synthesized from a N-alkylation of N,N-diethylaminoethyl methacrylate (DEAEM) monomer. Linear copolymers, and for the first time reported crosslinked nanoparticles (NPs), based QA-PDEAEM were prepared by radical polymerization of the quaternized QA-DEAEM monomers with either methyl methacrylate (MMA) or a divinyl monomer. QA-PDEAEM NPs of 50-70 nm were embedded in polyethylene vinyl acetate coating. QA-polymers with N-C8 and N-C18 alkyl chains and copolymers with methyl methacrylate were prepared at different molar ratios and examined for their antimicrobial effectiveness. These coatings exhibited strong antibacterial activity against four representative Gram-positive and Gram-negative bacteria.

  3. Molecularly imprinted films of acrylonitrile/methyl methacrylate/acrylic acid terpolymers: influence of methyl methacrylate in the binding performance of L-ephedrine imprinted films.

    PubMed

    Brisbane, Carrie; McCluskey, Adam; Bowyer, Michael; Holdsworth, Clovia I

    2013-05-07

    Molecularly imprinted polymeric films (MIPFs) highly selective to 1R,2S(-)ephedrine (L-ephedrine, EPD) were produced by phase inversion post-polymerization imprinting on poly(acrylonitrile-co-methyl methacrylate-co-acrylic acid) (PAMA) terpolymers. The inclusion of methyl methacrylate (MMA) to the polymer formulation resulted in enhanced EPD selectivity which appears to be dictated by polymer composition to achieve the necessary balance between polymer rigidity and porosity. Substitution of MMA with methyl acrylate, ethyl acrylate and n-butyl acrylate resulted in a loss of EPD selectivity and EPD entrapment within the polymer matrix not observed in PAMA MIPFs. MMA, by virtue of its methyl group, is able to provide the scaffolding and rigidity necessary for stability and preservation of imprinted cavities within the PAMA MIPF leading to high EPD selectivity.

  4. Assessment of the skin sensitising potency of the lower alkyl methacrylate esters.

    PubMed

    Kimber, Ian; Pemberton, Mark A

    2014-10-01

    There is continued interest in, and imperatives for, the classification of contact allergens according to their relative skin sensitising potency. However, achieving that end can prove problematic, not least when there is an apparent lack of concordance between experimental assessments of potency and the prevalence allergic contact dermatitis as judged by clinical experience. For the purpose of exploring this issue, and illustrating the important considerations that are required to reach sound judgements about potency categorisation, the lower alkyl methacrylate esters (LAM) have been employed here as a case study. Although the sensitising potential of methyl methacrylate (MMA) has been reviewed previously, there is available new information that is relevant for assessment of skin sensitising potency. Moreover, for the purposes of this article, analyses have been extended to include also other LAM for which relevant data are available: ethyl methacrylate (EMA), n-butyl methacrylate (nBMA), isobutyl methacrylate (iBMA), and 2-ethylhexyl methacrylate (EHMA). In addressing the skin sensitising activity of these chemicals and in drawing conclusions regarding relative potency, a number of sources of information has been considered, including estimates of potency derived from local lymph node assay (LLNA) data, the results of guinea pig assays, and data derived from in silico methods and from recently developed in vitro approaches. Moreover, clinical experience of skin sensitisation of humans by LAM has also been evaluated. The conclusion drawn is that MMA and other LAM are contact allergens, but that none of these chemicals has any more than weak skin sensitising potency. We have also explored here the possible bases for this modest sensitising activity. Finally, the nature of exposure to LAM has been reviewed briefly and on the basis of that information, together with an understanding of skin sensitising potency, a risk assessment has been prepared.

  5. Iron-catalyzed AGET ATRP of methyl methacrylate using an alcohol as a reducing agent in a polar solvent.

    PubMed

    Xue, Zhigang; Zhou, Jun; He, Dan; Wu, Fan; Yang, Danfeng; Ye, Yun Sheng; Liao, Yonggui; Zhou, Xingping; Xie, Xiaolin

    2014-11-21

    The alcohols, methanol, ethanol, ethylene glycol (EG), and glycerol, were used as reducing agents for iron(III)-catalyzed activators generated by electron transfer atom transfer radical polymerizations (AGET ATRPs) of methyl methacrylate in polar solvents (N,N-dimethylformamide, N-methylpyrrolidone, or acetonitrile). The effects of the iron catalyst, initiator and alcohol on polymerization were investigated, and most of the systems showed the typical features of controlled radical polymerization. In studies of the ATRP behavior, polymerizations were well controlled with a linear increase in the molecular weight (Mn) versus conversion in agreement with the theoretical one, and low molecular weight distributions (Mw/Mn) were observed throughout the reactions. To gain a deeper understanding of the iron(III)/polar solvent-mediated ATRP, the polymerizations of various monomers (methyl acrylate, methyl methacrylate, n-butyl acrylate, and n-butyl methacrylate) were also investigated.

  6. Chlorhexidine-releasing methacrylate dental composite materials.

    PubMed

    Leung, Danny; Spratt, David A; Pratten, Jonathan; Gulabivala, Kishor; Mordan, Nicola J; Young, Anne M

    2005-12-01

    Light curable antibacterial, dental composite restoration materials, consisting of 80 wt% of a strontium fluoroaluminosilicate glass dispersed in methacrylate monomers have been produced. The monomers contained 40-100 wt% of a 10 wt% chlorhexidine diacetate (CHXA) in hydroxyethylmethacrylate (HEMA) solution and 60-0 wt% of a 50/50 mix of urethane dimethacrylate (UDMA) and triethyleneglycol dimethacrylate (TEGDMA). On raising HEMA content, light cure polymerisation rates decreased. Conversely, water sorption induced swelling and rates of diffusion controlled CHXA release from the set materials increased. Experimental composites with 50 and 90 wt% of the CHXA in HEMA solution in the monomer were shown, within a constant depth film fermentor (CDFF), to have slower rates of biofilm growth on their surfaces between 1 and 7 days than the commercial dental composite Z250 or fluoride-releasing dental cements, Fuji II LC and Fuji IX. When an excavated bovine dentine cylinder re-filled with Z250 was placed for 10 weeks in the CDFF, both bacteria and polymers from the artificial saliva penetrated between the material and dentine. With the 50 wt% experimental HEMA/CHXA formulation, this bacterial microleakage was substantially reduced. Polymer leakage, however, still occurred. Both polymer and bacterial microleakage were prevented with a 90 wt% HEMA/CHXA restoration in the bovine dentine due to swelling compensation for polymerisation shrinkage in combination with antibacterial release.

  7. Furfuryl methacrylate plasma polymers for biomedical applications.

    PubMed

    Shirazi, Hanieh Safizadeh; Rogers, Nicholas; Michelmore, Andrew; Whittle, Jason D

    2016-09-08

    Furfuryl methacrylate (FMA) is a promising precursor for producing polymers for biomedical and cell therapy applications. Herein, FMA plasma polymer coatings were prepared with different powers, deposition times, and flow rates. The plasma polymer coatings were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results from AFM and SEM show the early growth of the coatings and the existence of particle aggregates on the surfaces. XPS results indicated no measureable chemical differences between the deposited films produced under different power and flow rate conditions. ToF-SIMS analysis demonstrated differing amounts of C5H5O (81 m/z) and C10H9O2 (161 m/z) species in the coatings which are related to the furan ring structure. Through judicious choice of plasma polymerization parameters, the quantity of the particle aggregates was reduced, and the fabricated plasma polymer coatings were chemically uniform and smooth. Primary human fibroblasts were cultured on FMA plasma polymer surfaces to determine the effect of surface chemical composition and the presence of particle aggregates on cell culture. Particle aggregates were shown to inhibit fibroblast attachment and proliferation.

  8. Characterization of new acrylic bone cement based on methyl methacrylate/1-hydroxypropyl methacrylate monomer.

    PubMed

    Pascual, B; Goñi, I; Gurruchaga, M

    1999-01-01

    New formulations of acrylic bone cement based on methyl methacrylate/1-hydroxypropyl methacrylate (MMA/HPMA) monomers were developed with the purpose of obtaining more ductile materials with reduced polymerization shrinkage. In this way, the ductility of such materials increased, but the introduction of high percentages of the hydrophilic component produced an important decrease in Young's modulus and strength. To ascertain the reason for the deterioration of the tensile parameters, an analysis by scanning electron microscopy of these formulations was carried out; it revealed poor adhesion between the matrix and poly(MMA) beads. We also observed that the polymerization shrinkage increased as the amount of hydrophilic monomer in the formulation decreased, and the 50% (v/v) HPMA modified bone cement compensated for this volume reduction with its water uptake swelling. Measurements taken on the setting time and polymerization exotherm showed a decrease in the former and an increase in the latter, because of the introduction of a more reactive monomer in the bone cement formulation.

  9. RAFT "grafting-through" approach to surface-anchored polymers: Electrodeposition of an electroactive methacrylate monomer.

    PubMed

    Grande, C D; Tria, M C; Felipe, M J; Zuluaga, F; Advincula, R

    2011-02-01

    The synthesis of homopolymer and diblock copolymers on surfaces was demonstrated using electrodeposition of a methacrylate-functionalized carbazole dendron and subsequent reversible addition-fragmentation chain transfer (RAFT) "grafting-through" polymerization. First, the anodically electroactive carbazole dendron with methacrylate moiety (G1CzMA) was electrodeposited over a conducting surface (i.e. gold or indium tin oxide (ITO)) using cyclic voltammetry (CV). The electrodeposition process formed a crosslinked layer of carbazole units bearing exposed methacrylate moieties. This film was then used as the surface for RAFT polymerization process of methyl methacrylate (MMA), styrene (S), and tert-butyl acrylate (TBA) in the presence of a free RAFT agent and a free radical initiator, resulting in grafted polymer chains. The molecular weights and the polydispersity indices (PDI) of the sacrificial polymers were determined by gel permeation chromatography (GPC). The stages of surface modification were investigated using X-ray photoelectron spectroscopy (XPS), ellipsometry, and atomic force microscopy (AFM) to confirm the surface composition, thickness, and film morphology, respectively. UV-Vis spectroscopy also confirmed the formation of an electro-optically active crosslinked carbazole film with a [Formula: see text] - [Formula: see text] absorption band from 450-650nm. Static water contact angle measurements confirmed the changes in surface energy of the ultrathin films with each modification step. The controlled polymer growth from the conducting polymer-modified surface suggests the viability of combining electrodeposition and grafting-through approach to form functional polymer ultrathin films.

  10. Characterisation of poly(alkyl methacrylate)s by means of electrospray ionisation-tandem mass spectrometry (ESI-MS/MS)

    NASA Astrophysics Data System (ADS)

    Jackson, Anthony T.; Slade, Susan E.; Scrivens, James H.

    2004-11-01

    Electrospray ionisation-tandem mass spectrometry (ESI-MS/MS) has been employed for the characterisation of two poly(alkyl methacrylate) polymers, namely poly(methyl methacrylate) (PMMA) and poly(n-butyl methacrylate) (PBMA). Collision-induced dissociation (CID) experiments were performed in a quadrupole orthogonal time-of-flight (ToF) tandem mass spectrometer fitted with a nanospray source. Tandem mass spectra from singly, doubly and triply charged precursor ions (with alkali metals used for cationisation of the oligomers) are shown and the data are compared to those previously generated by means of matrix-assisted laser desorption/ionisation-collision-induced dissociation (MALDI-CID). These data indicate that cations with greater ionic radii may yield the most useful structural information as the mass-to-charge ratio of the precursor ion increases, whereas lithium or sodium ions are proposed to be ideal for obtaining spectra from lower molecular weight oligomers. Fragment ions at low mass-to-charge ratios dominate the spectra. Two series of peaks may be used to calculate the masses of the initiating and terminating end groups of the polymer. Ion peaks of greater mass-to-charge ratios form series that may be used to infer sequence information from the polymers.

  11. Osteoblast cell death on methacrylate polymers involves apoptosis.

    PubMed

    Gough, J E; Downes, S

    2001-12-15

    The success of an implant depends on the implant-tissue interface. There are many causes of implant failure, one of which is tissue necrosis. The aim of this in vitro study was to determine whether cell death of primary human osteoblasts (implant site specific cells) occurred by apoptosis (a form of programmed cell death) on two methacrylate polymers. Cells were cultured on poly(ethyl methacrylate)/tetrahydrofurfuryl methacrylate and poly(methyl methacrylate in the form of 13-mm discs, in conditioned medium containing leachable monomer and in the presence of various concentrations of monomer itself in the culture medium. It was found that monomer and leached monomer caused apoptosis of human osteoblast cells in this system. Tetrahydrofurfuryl methacrylate monomer was found to be more toxic than currently used monomer methylmethacrylate. Preincubation of polymers in serum containing medium was found to increase the biocompatibility of the polymers. High levels of apoptosis occurred on polymer used directly after polymerization. Apoptosis levels were decreased after polymer was incubated at 60 degrees C overnight or for 3 days. Apoptosis therefore may occur in cells at the implant site in vivo.

  12. Complex microparticulate systems based on glycidyl methacrylate and xanthan.

    PubMed

    Lungan, Maria-Andreea; Popa, Marcel; Desbrieres, Jacques; Racovita, Stefania; Vasiliu, Silvia

    2014-04-15

    Porous microparticles based on glycidyl methacrylate, dimethacrylic monomers [ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate] and xanthan gum were synthesized by aqueous suspension polymerization method in the presence of toluene as diluent using two types of initiators: benzoyl peroxide and ammonium persulfate. The G microparticles based on glycidyl methacrylate and dimethacrylic monomers and X microparticles based on glycidyl methacrylate, xanthan and dimethacrylic monomers were characterized by various techniques including FT-IR spectroscopy, TG analysis, SEM analysis and DVS method. The specific surface areas were determined by DVS method, while the copolymer porosities and pore volume were obtained from the apparent and skeletal densities. The results have indicated that xanthan was included in the crosslinked matrix by means of covalent bonds. X microparticles have a porous structure with higher specific surface area (129-44 m(2)/g) and higher sorption capacities compared with G microparticles (69-31 m(2)/g).

  13. Health and Environmental Effects Profile for ethyl methacrylate

    SciTech Connect

    Not Available

    1986-06-01

    The Health and Environmental Effects Profile for ethyl methacrylate was prepared to support listings of hazardous constituents of a wide range of waste streams under Section 3001 of the Resource Conservation and Recovery Act (RCRA) and to provide health-related limits for emergency actions under Section 101 of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Both published literature and information obtained from Agency program office files were evaluated as they pertained to potential human health, aquatic life and environmental effects. Quantitative estimates are presented provided sufficient data are available. Ethyl methacrylate has been determined to be a systemic toxicant. An acceptable daily intake (ADI) for ethyl methacrylate is 0.086 mg/kg/day for oral exposure.

  14. Protonation of diethylaminoethyl methacrylate by acids in various solvents

    SciTech Connect

    Zhuravleva, I.L.; Bune, E.V.; Bogachev, Yu.S.; Sheinker, A.P.; Teleshov, E.N.

    1988-04-10

    It was established by /sup 1/H and /sup 13/C NMR that diethylaminoethyl methacrylate exists in the unprotonated form in solvents which are not acids. In the presence of an equimolar amount of hydrochloric or trifluoroacetic acids the amino ester is fully protonated, irrespective of the solvent. The diethylaminoethyl methacrylate-acetic acid system exists in the form of a molecular complex with a hydrogen bond and in the protonated form; the proportions of the protonated form were estimated in various solvents. The change in the reactivity of diethylaminoethyl methacrylate and its salts in polymerization was explained by a change in the electronic state of CH/sub 2/ = group of the monomer as a result of its protonation and of the formation of a hydrogen bond between the C = O group of the monomer and the solvent.

  15. Poly(methyl methacrylate)-cellulose nitrate copolymers. I. Preparation

    SciTech Connect

    Badran, B.M.; Sherif, S.; Abu-Sedira, A.A.

    1981-03-01

    Poly(methyl methacrylate)-cellulose nitrate copolymers were prepared in the form of rods and sheets by bulk polymerization using benzoyl peroxide as initiator. Suspension polymerization did not succeed in preparing poly(methyl methacrylate)-cellulose nitrate copolymers, especially when cellulose nitrate of 11.4% nitrogen content was used. The parameters such as cellulose nitrate concentration, nitrogen content of cellulose nitrate, the amount of initiator and the reaction time, and the temperature are discussed. The prepared copolymers were irradiated for specified periods of up to 11.83 Mrad. It was found that poly(methyl methacrylate)-cellulose nitrate copolymers did not dissolve in any conventional solvent, but they swelled. Swelling decreases with increasing cellulose nitrate concentrations, nitrogen content of cellulose nitrate, and irradiation dose, indicating the crosslinked structure of the prepared copolymers.

  16. 40 CFR 721.10523 - Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (generic). 721... Substances § 721.10523 Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl... methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (PMN...

  17. 40 CFR 721.10523 - Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (generic). 721... Substances § 721.10523 Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl... methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (PMN...

  18. Polymerisation and surface modification of methacrylate monoliths in polyimide channels and polyimide coated capillaries using 660 nm light emitting diodes.

    PubMed

    Walsh, Zarah; Levkin, Pavel A; Abele, Silvija; Scarmagnani, Silvia; Heger, Dominik; Klán, Petr; Diamond, Dermot; Paull, Brett; Svec, Frantisek; Macka, Mirek

    2011-05-20

    An investigation into the preparation of monolithic separation media utilising a cyanine dye sensitiser/triphenylbutylborate/N-methoxy-4-phenylpyridinium tetrafluoroborate initiating system activated by 660 nm light emitting diodes is reported. The work demonstrates multiple uses of red-light initiated polymerisation in the preparation of monolithic stationary phases within polyimide and polyimide coated channels and the modification of monolithic materials with molecules which absorb strongly in the UV region. This initiator complex was used to synthesise poly(butyl methacrylate-co-ethylene dimethacrylate) and poly(methyl methacrylate-co-ethylene dimethacrylate) monolithic stationary phases in polyimide coated fused silica capillaries of varying internal diameters, as well as within polyimide micro-fluidic chips. The repeatability of the preparation procedure and resultant monolithic structure was demonstrated with a batch of poly(butyl methacrylate-co-ethylene dimethacrylate) monoliths in 100 μm i.d. polyimide coated fused silica capillary, which were applied to the separation of a model protein mixture (ribonuclease A, cytochrome C, myoglobin and ovalbumin). Taking an average from 12 chromatograms originating from each batch, the maximum relative standard deviation of the retention factor (k) for the protein separations was recorded as 0.53%, the maximum variance for the selectivity factor (α) was 0.40% while the maximum relative standard deviation in peak resolution was 8.72%. All maxima were recorded for the Ribonuclease A/Cytochrome C peaks. Scanning electron microscopy confirmed the success of experiments in which poly(butyl methacrylate-co-ethylene dimethacrylate) monoliths were prepared using the same initiation approach in capillary and micro-fluidic chips, respectively. The initiating system was also applied to the photo-initiated grafting of a chromophoric monomer onto poly(butyl methacrylate-co-ethylene dimethacrylate) monoliths within poly

  19. Review of Polymerization and Properties of Aminoalkyl Acrylates and Aminoalkyl Methacrylates

    DTIC Science & Technology

    1988-07-01

    to Russian investigators Korshunov, Bodnaryuk, and Kut’in, in 1975.2 The patent concerned the synthesis of methacrylate monomers containing an amino...group through transesterification. These researchers used alkyl methacrylates , mainly methyl methacrylate (MMA), as precursors for the synthesis. For...Ratios (rl, r2) of Aminoalkyl Methacrylates and Other Vinyl Monomers Monomer1 Moromer2 rl r2 DMAEMA MMA 0.717 0.676 DMAEMA BMA 0.705 0.66 BDIMA MMA 0.612

  20. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by reacting the dyes, either alone or in combination, with a vinyl alcohol/methyl methacrylate copolymer,...

  1. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by reacting the dyes, either alone or in combination, with a vinyl alcohol/methyl methacrylate copolymer,...

  2. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by reacting the dyes, either alone or in combination, with a vinyl alcohol/methyl methacrylate copolymer,...

  3. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by... methacrylate-dye reaction product listed under this section into commerce shall submit to the Food and...

  4. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by... methacrylate-dye reaction product listed under this section into commerce shall submit to the Food and...

  5. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic.../methyl methacrylate polymers. The vinylidene chloride/methyl acrylate/methyl methacrylate polymers...

  6. Mössbauer studies of solid state decomposition of methyl methacrylate-ethyl methacrylate copolymers containing ferric chloride

    NASA Astrophysics Data System (ADS)

    Kapur, G. S.; Brar, A. S.

    1990-07-01

    Methyl methacrylate (MMA)-ethyl methacrylate (EMA) copolymers of different monomer concentrations containing anhydrous ferric chloride were prepared by bulk polymerization at 70°C. TGA studies showed that inclusion of iron salt increases the thermal stability of copolymers by 50°C. Mössbauer spectra of copolymers heated at different temperatures showed the presence of Fe3+ species only, in different environments. The mechanism of thermal stabilization of copolymer has been proposed on the basis of IR, TGA and Mössbauer spectroscopy studies.

  7. Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G

    NASA Astrophysics Data System (ADS)

    Costela, A.; Florido, F.; Garcia-Moreno, I.; Duchowicz, R.; Amat-Guerri, F.; Figuera, J. M.; Sastre, R.

    1995-04-01

    Rhodamine 6G has been dissolved in copolymers of 2-HydroxyEthyl MethAcrylate (HEMA) and Methyl MethAcrylate (MMA) and the resulting solid-state solutions have been pumped at 337 nm and 532 nm. Lasing efficiencies similar to those found in ethanol solution have been obtained with a 1:1 vol/vol HEMA: MMA copolymer matrix, and lifetimes of ca. 10 000 (337 nm pumping) and ca. 75 000 (532 nm pumping) pulses at repetition rates up to 15 Hz and 10 Hz, respectively, have been demonstrated.

  8. Synthesis, characterization and molecular dynamic simulation on dendronized poly(diphtalimidoalky phenyl) methacrylates

    NASA Astrophysics Data System (ADS)

    Radić, D.; Alegría, L.; Sandoval, C.; Gargallo, L.

    2012-07-01

    Dendronized methacrylates containing 3,5-diphtalimido alkylphenyl moieties with ethyl (M-EthylG1), propyl (M-PropylG1) and butyl (M-ButylG1) spacer groups were synthesized. Monomers of the first generation were polymerized by radical polymerization using AIBN as initiator. The corresponding polymers (P-EthylG1), (P-PropylG1) and (P-ButylG1) were obtained. Monomers and polymers were characterized by 1H-NMR, 13C-NMR, FTIR spectroscopic measurements. Molecular weight was estimated by following the nitrogen content in the obtained polymers. Molecular Dynamic Simulation (MDS) was performed in order to evaluate the radius of gyration (Rg) and the end-to-end distance (ree) to estimate the stiffness of the backbone and of the dendrimers. According to the conformational analysis it is possible to observe different spacial arrangements depending on the length of the spacer group.

  9. 21 CFR 177.1830 - Styrene-methyl methacrylate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... methacrylate copolymers identified in this section may be safely used as components of plastic articles... weight percent of polymer units derived from styrene. (b) The finished plastic food-contact article, when... not to exceed an absorbance of 0.15. (3) Ultraviolet-absorbing distilled water and 8 and 50...

  10. Synthesis of acrylates and methacrylates from coal-derived syngas

    SciTech Connect

    Spivey, J.J.; Gogate, M.R.; Jang, B.W.L.

    1995-12-31

    Acrylates and methacrylates are among the most widely used chemical intermediates in the world. One of the key chemicals of this type is methyl methacrylate. Of the 4 billion pounds produced each year, roughly 85% is made using the acetone-cyanohydrin process, which requires handling of large quantities of hydrogen cyanide and produces ammonium sulfate wastes that pose an environmental disposal challenge. The U.S. Department of Energy and Eastman Chemical Company are sharing the cost of research to develop an alternative process for the synthesis of methyl methacrylate from syngas. Research Triangle Institute is focusing on the synthesis and testing of active catalysts for the condensation reactions, and Bechtel is analyzing the costs to determine the competitiveness of several process alternatives. Results thus far show that the catalysts for the condensation of formaldehyde and the propionate are key to selectively producing the desired product, methacrylic acid, with a high yield. These condensation catalysts have both acid and base functions and the strength and distribution of these acid-base sites controls the product selectivity and yield.

  11. Synthesis and Characterization of Carboxymethylcellulose-Methacrylate Hydrogel Cell Scaffolds

    PubMed Central

    Reeves, Robert; Ribeiro, Andreia; Lombardo, Leonard; Boyer, Richard; Leach, Jennie B.

    2012-01-01

    Many carbohydrates pose advantages for tissue engineering applications due to their hydrophilicity, degradability, and availability of chemical groups for modification. For example, carboxymethylcellulose (CMC) is a water-soluble cellulose derivative that is degradable by cellulase. Though this enzyme is not synthesized by mammalian cells, cellulase and the fragments derived from CMC degradation are biocompatible. With this in mind, we created biocompatible, selectively degradable CMC-based hydrogels that are stable in routine culture, but degrade when exposed to exogenous cellulase. Solutions of CMC-methacrylate and polyethylene glycol dimethacrylate (PEG-DM) were co-crosslinked to form stable hydrogels; we found that greater CMC-methacrylate content resulted in increased gel swelling, protein diffusion and rates of degradation by cellulase, as well as decreased gel shear modulus. CMC-methacrylate/PEG-DM gels modified with the adhesive peptide RGD supported fibroblast adhesion and viability. We conclude that hydrogels based on CMC-methacrylate are suitable for bioengineering applications where selective degradability may be favorable, such as cell scaffolds or controlled release devices. PMID:22708058

  12. Occupational asthma due to methyl methacrylate and cyanoacrylates.

    PubMed Central

    Lozewicz, S; Davison, A G; Hopkirk, A; Burge, P S; Boldy, D A; Riordan, J F; McGivern, D V; Platts, B W; Davies, D; Newman Taylor, A J

    1985-01-01

    Five patients had asthma provoked by cyanoacrylates and one by methyl methacrylate, possibly because of the development of a specific hypersensitivity response. Acrylates have wide domestic as well as industrial uses, and inhalation of vapour emitted during their use can cause asthma. PMID:4071461

  13. Reactive compatibilization of PBT/ABS blends by methyl methacrylate, glycidyl methacrylate, ethyl acrylate terpolymers

    NASA Astrophysics Data System (ADS)

    Hale, Wesley Raymond

    The impact resistance of poly(butylene terephthalate), PBT, has been improved by blending with acrylonitrile-butadiene-styrene terpolymers, ABS, as a minor dispersed phase; however, extensive coarsening of the dispersed phase in the blends occurs under certain heat fabrication conditions. The incorporation of certain reactive polymers (compatibilizers) that are miscible with the styrene/acrylonitrile (SAN) matrix of ABS should result in more stable morphologies. Terpolymers of methyl methacrylate, glycidyl methacrylate (GMA), ethyl acrylate, MGE, are effective as reactive compatibilizers for blends of PBT with SAN and ABS materials. The epoxide groups of MGE react with the carboxyl endgroups of PBT to form a MGE-g-PBT graft copolymer at the PBT/SAN interface to provide improved SAN or ABS dispersion, morphological stability, and a broadening of the melt processing window. Additionally, compatibilization produces large improvements in the low temperature fracture toughness of PBT/ABS blends; however, the toughness depends on the order of mixing blend components due to crosslinking reactions involving the epoxide groups of MGE catalyzed by residual acids present in some emulsion-made ABS materials. The PBT, ABS, and MGE type, content, and composition have been examined to evaluate their effects on the mechanical and morphological properties of PBT/ABS blends. Additionally, the effects of different processing conditions have been examined. High PBT melt viscosity is desirable for improving ABS dispersion and low temperature toughness of the blends. Generally, ABS materials with a high rubber content and low melt viscosity are desirable for toughening PBT. Moderate amounts of GMA in the blend were found to significantly improve blend properties. Melt blending can be performed using a variety of equipment; however, a co-rotating intermeshing twin screw extruder is the most effective for producing blends with excellent properties. The fracture properties of PBT

  14. Release of Water Soluble Drugs from Dynamically Swelling POLY(2-HYDROXYETHYL Methacrylate - CO - Methacrylic Acid) Hydrogels.

    NASA Astrophysics Data System (ADS)

    Kou, Jim Hwai-Cher

    In this study, ionizable copolymers of HEMA and methacrylic acid (MA) are investigated for their potential use in developing pH dependent oral delivery systems. Because of the MA units, these gels swell extensively at high pH. Since solute diffusion in the hydrophilic polymers depends highly on the water content of the matrix, it is anticipated that the release rate will be modulated by this pH induced swelling. From a practical point of view, the advantage of the present system is that one can minimize drug loss in the stomach and achieve a programmed release in intestine. This approach is expected to improve delivery of acid labile drugs or drugs that cause severe gastrointestinal side effects. This work mainly focuses on the basic understanding of the mechanism involved in drug release from the poly(HEMA -co- MA) gels, especially under dynamic swelling conditions. Equilibrium swelling is first characterized since water content is the major determinant of transport properties in these gels. Phenylpropanolamine (PPA) is chosen as the model drug for the release study and its diffusion characteristics in the gel matrix determined. The data obtained show that the PPA diffusivity follows the free volume theory of Yasuda, which explains the accelerating effect of swelling on drug release. A mathematical model based on a diffusion mechanism has been developed to describe PPA release from the swelling gels. Based on this model, several significant conclusions can be drawn. First, the release rate can be modulated by the aspect ratio of the cylindrical geometry, and this has a practical implication in dosage form design. Second, the release rate can be lowered quite considerably if the dimensional increase due to swelling is significant. Consequently, it is the balance between the drug diffusivity increase and the gel dimensional growth that determines the release rate from the swelling matrix. Third, quasi-steady release kinetics, which are characteristic of swelling

  15. Poly(methacrylic acid-co-methyl methacrylate) beads promote vascularization and wound repair in diabetic mice.

    PubMed

    Martin, Daniel C; Semple, John L; Sefton, Michael V

    2010-05-01

    Topical application of beads made from poly(methacrylic acid-co-methyl methacrylate) (45 mol % methacrylic acid, MAA) increased the number of blood vessels and improved 1.5 x 1.5 cm full thickness wound closure in a diabetic mouse (db/db) model. Three groups were compared: MAA beads, control poly(methyl methacrylate) beads (PMMA), and no bead blanks. MAA bead treatment significantly increased percent wound closure at all timepoints (7, 14, and 21 days) with MAA bead-treated wounds almost closed at day 21 (91 +/- 5.4% MAA vs. 79 +/- 3.2% PMMA or 76 +/- 4.8% no beads; p < 0.05). This was consistent with the expected significant increase in vascularity in the MAA group at days 7 and 14. For example at day 14, MAA bead-treated wounds had a vascular density of 22.7 +/- 2.6 vessels/hpf compared with 17.0 +/- 2.0 vessels/hpf in the PMMA bead group (p < 0.05). Epithelial gap and migration measurements suggested that the increased vascularity leads to enhanced epithelial cell migration as a principal means of wound closure. Although studies are underway to elucidate the mechanism of this angiogenic response, the results presented here support the notion that such materials, perhaps in other forms, may be useful in wound care or in other situations where vascularity is to be enhanced without the use of exogenous growth factors.

  16. Poly(sulfobetaine methacrylate)s as electrode modifiers for inverted organic electronics.

    PubMed

    Lee, Hyunbok; Puodziukynaite, Egle; Zhang, Yue; Stephenson, John C; Richter, Lee J; Fischer, Daniel A; DeLongchamp, Dean M; Emrick, Todd; Briseno, Alejandro L

    2015-01-14

    We demonstrate the use of poly(sulfobetaine methacrylate) (PSBMA), and its pyrene-containing copolymer, as solution-processable work function reducers for inverted organic electronic devices. A notable feature of PSBMA is its orthogonal solubility relative to solvents typically employed in the processing of organic semiconductors. A strong permanent dipole moment on the sulfobetaine moiety was calculated by density functional theory. PSBMA interlayers reduced the work function of metals, graphene, and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) by over 1 eV, and an ultrathin interlayer of PSBMA reduced the electron injection barrier between indium tin oxide (ITO) and C70 by 0.67 eV. As a result, the performance of organic photovoltaic devices with PSBMA interlayers is significantly improved, and enhanced electron injection is demonstrated in electron-only devices with ITO, PEDOT:PSS, and graphene electrodes. This work makes available a new class of dipole-rich, counterion-free, pH insensitive polymer interlayers with demonstrated effectiveness in inverted devices.

  17. Solid coatings deposited from liquid methyl methacrylate via Plasma Polymerization

    NASA Astrophysics Data System (ADS)

    Wurlitzer, Lisa; Maus-Friedrichs, Wolfgang; Dahle, Sebastian

    2016-09-01

    The polymerization of methyl methacrylate via plasma discharges is well known today. Usually, plasma-enhanced chemical vapor deposition (PECVD) is used to deposit polymer coatings. Solid coatings are formed out of the liquid phase from methyl methacrylate via dielectric barrier discharge. The formation of the coating proceeds in the gas and the liquid phase. To learn more about the reactions in the two phases, the coatings from MMA monomer will be compared to those from MMA resin. Finally, attenuated total reflection infrared spectroscopy, confocal laser scanning microscopy and X-ray photoelectron spectroscopy are employed to characterize the solid coatings. In conclusion, the plasma enhanced chemical solution deposition is compared to the classical thermal polymerization of MMA.

  18. Azulene methacrylate polymers: synthesis, electronic properties, and solar cell fabrication.

    PubMed

    Puodziukynaite, Egle; Wang, Hsin-Wei; Lawrence, Jimmy; Wise, Adam J; Russell, Thomas P; Barnes, Michael D; Emrick, Todd

    2014-08-06

    We report the synthesis of novel azulene-substituted methacrylate polymers by free radical polymerization, in which the azulene moieties represent hydrophobic dipoles strung pendant to the polymer backbone and impart unique electronic properties to the polymers. Tunable optoelectronic properties were realized by adjusting the azulene density, ranging from homopolymers (having one azulene group per repeat unit) to copolymers in which the azulene density was diluted with other pendant groups. Treating these polymers with organic acids revealed optical and excitonic behavior that depended critically on the azulene density along the polymer chain. Copolymers of azulene with zwitterionic methacrylates proved useful as cathode modification layers in bulk-heterojunction solar cells, where the relative azulene content affected the device metrics and the power conversion efficiency reached 7.9%.

  19. Physical properties of agave cellulose graft polymethyl methacrylate

    SciTech Connect

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan

    2013-11-27

    The grafting polymerization of methyl methacrylate and Agave cellulose was prepared and their structural analysis and morphology were investigated. The grafting reaction was carried out in an aqueous medium using ceric ammonium nitrate as an initiator. The structural analysis of the graft copolymers was carried out by Fourier transform infrared and X-ray diffraction. The graft copolymers were also characterized by field emission scanning electron microscopy (FESEM). An additional peak at 1732 cm{sup −1} which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity index upon grafting was found from 0.74 to 0.68 for cellulose and grafted Agave cellulose, respectively. Another evidence of grafting showed in the FESEM observation, where the surface of the grafted cellulose was found to be roughed than the raw one.

  20. [Chest granuloma secondary to methyl methacrylate. Case report].

    PubMed

    Martínez-Bistrain, Ricardo; Robles García, Verónica; Cornejo-Morales, Ivonne

    2010-01-01

    We present the case of a patient with a history of a massive left hemithorax crushing injury in 1985; the exact management of the lesion is unknown. Twenty years later he had a thoracic fistula with a culture that was reported as positive for Enteroccocus faecalis and Staphyloccocus epidermidis. The patient was referred by the chest surgery service with the diagnosis of rib osteomyelitis once complementary imaging tests were performed (plain X-rays, CAT scan and MRI). The patient underwent surgery at our service; a granulomatous reaction secondary to a foreign body (methyl methacrylate and Ethibon) was reported. Chest reconstruction for massive lesions is possible with methyl methacrylate. Imaging studies involve the well-known difficulty to identify this material, given that it may produce signals and densities that are difficult to interpret by specialized physicians.

  1. Penile enlargement with methacrylate injection: is it safe?

    PubMed

    Torricelli, Fabio Cesar Miranda; Andrade, Enrico Martins de; Marchini, Giovanni Scala; Lopes, Roberto Iglesias; Claro, Joaquim Francisco Almeida; Cury, Jose; Srougi, Miguel

    2013-01-01

    CONTEXT Penis size is a great concern for men in many cultures. Despite the great variety of methods for penile augmentation, none has gained unanimous acceptance among experts in the field. However, in this era of minimally invasive procedure, injection therapy for penile augmentation has become more popular. Here we report a case of methacrylate injection in the penis that evolved with penile deformity and sexual dysfunction. This work also reviews the investigation and management of this pathological condition. CASE REPORT A 36-year-old male sought medical care with a complaint of penile deformity and sexual dysfunction after methacrylate injection. The treatment administered was surgical removal. Satisfactory cosmetic and functional results were reached after two months. CONCLUSIONS There is a need for better structured scientific research to evaluate the outcomes and complication rates from all penile augmentation procedures.

  2. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    Makarand R. Gogate; James J. Spivey; Joseph R. Zoeller; Richard D. Colberg; Gerald N. Choi; Samuel S. Tam

    1999-04-21

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter (January-March/99), in-situ formaldehyde generation and condensation with methyl propionate were tested over various catalysts and reaction conditions. The patent application is in preparation and the results are retained for future reports.

  3. Positron annihilation investigations on poly(methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Mohamed, Hamdy F. M.; Abd-Elsadek, Gomaa G.

    2000-06-01

    Positron lifetime and Doppler broadened annihilation radiation were measured for seven different samples of poly(methyl methacrylate) at room temperature in vacuum. The polymerisation of methyl methacrylate was carried out as a bulk polymerisation in the presence of benzoyl peroxide as an initiator. The effect of the amount of the initiator on the viscosity-average molecular weight was studied. It was found that the viscosity-average molecular weight decreased with increasing amount of the initiator. The average lifetime and intensity of ortho-positronium ( o-Ps) increased with increasing viscosity-average molecular weight up to 6.85 × 10 4 and remained constant after that. The S-parameter showed a similar behaviour as that of the o-Ps intensity.

  4. Preparation and characterization of methacrylate hydrogels for zeta potential control

    NASA Technical Reports Server (NTRS)

    Gregonis, D. E.; Ma, S. M.; Vanwagenen, R.; Andrade, J. D.

    1976-01-01

    A technique based on the measurement of streaming potentials has been developed to evaluate the effects of hydrophilic coatings on electroosmotic flow. The apparatus and procedure are described as well as some results concerning the electrokinetic potential of glass capillaries as a function of ionic strength, pH, and temperature. The effect that turbulence and entrance flow conditions have on accurate streaming potential measurements is discussed. Various silane adhesion promoters exhibited only a slight decrease in streaming potential. A coating utilizing a glycidoxy silane base upon which methylcellulose is applied affords a six-fold decrease over uncoated tubes. Hydrophilic methacrylate gels show similar streaming potential behavior, independent of the water content of the gel. By introduction of positive or negative groups into the hydrophilic methacrylate gels, a range of streaming potential values are obtained having absolute positive or negative signs.

  5. Physical properties of agave cellulose graft polymethyl methacrylate

    NASA Astrophysics Data System (ADS)

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan

    2013-11-01

    The grafting polymerization of methyl methacrylate and Agave cellulose was prepared and their structural analysis and morphology were investigated. The grafting reaction was carried out in an aqueous medium using ceric ammonium nitrate as an initiator. The structural analysis of the graft copolymers was carried out by Fourier transform infrared and X-ray diffraction. The graft copolymers were also characterized by field emission scanning electron microscopy (FESEM). An additional peak at 1732 cm-1 which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity index upon grafting was found from 0.74 to 0.68 for cellulose and grafted Agave cellulose, respectively. Another evidence of grafting showed in the FESEM observation, where the surface of the grafted cellulose was found to be roughed than the raw one.

  6. SYNTHESIS OF METHACRYLATES FROM COAL-DERIVED SYNGAS

    SciTech Connect

    Jang, B.W.L.; Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.; Choi, G.N.

    1999-12-01

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel have developed a novel process for synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the US Department of Energy/Fossil Energy Technology Center (DOE/FETC). This project has resulted in five US patents (four already published and one pending publication). It has served as the basis for the technical and economic assessment of the production of this high-volume intermediate from coal-derived synthesis gas. The three-step process consists of the synthesis of a propionate from ethylene carbonylation using coal-derived CO, condensation of the propionate with formaldehyde to form methacrylic acid (MAA); and esterification of MAA with methanol to yield MMA. The first two steps, propionate synthesis and condensation catalysis, are the key technical challenges and the focus of the research presented here.

  7. Single step plasmid DNA purification using methacrylate monolith bearing combination of ion-exchange and hydrophobic groups.

    PubMed

    Smrekar, Vida; Smrekar, Franc; Strancar, Aleš; Podgornik, Aleš

    2013-02-08

    Purification of high quantities of human grade plasmid DNA is one of the most intensive production steps. Because of that several methods have been proposed, among them also chromatographic purification using methacrylate monoliths. Recently, a process comprising the combination of hydrophobic interaction (HIC) monolith and ion-exchange monolith was developed. In this work both chemistries were tried to be introduced on a single monolith. Methacrylate monoliths bearing octylamine groups, combination of butyl (C4) grafted methacrylate groups and diethylaminoethyl (DEAE) groups as well as grafted chains bearing both C4 and DEAE groups were prepared. All monoliths were investigated for their ionic and protein capacity and compared to conventional epoxy, C4, and DEAE methacrylate monoliths. Octylamine monolith and monolith bearing combination of C4 grafted methacrylate groups and DEAE groups were found to be the most promising candidates and were further tested for plasmid DNA (pDNA) dynamic binding capacity under ion-exchange (IEX) and HIC binding conditions and ability to separate open circular (OC) from supercoiled (SC) pDNA forms and RNA from pDNA. Since monolith bearing combination of grafted C4 methacrylate groups and DEAE groups was superior in all three tested features, exhibiting pDNA dynamic binding capacity of 4.7 mg/ml under IEX conditions and 2.1mg/ml under HIC conditions, it was used for the development of a single step purification method and tested with pure pDNA as well as with cell lysate. Developed method removed over 99% of RNA, host cell proteins (HCP) and genomic DNA (gDNA) demonstrating capacity to purify around 1.5mg of pDNA/ml of monolith from cell lysate.

  8. Pediatric poisonings from household products: hydrofluoric acid and methacrylic acid.

    PubMed

    Perry, H E

    2001-04-01

    Household products continue to be a cause of poisoning morbibidity and mortality. Young children frequently are exposed to cleaning products and cosmetics in the course of exploring their environment. Most of these exposures are insignificant, but some result in death or permanent disability. This review discusses two products that have been responsible for serious injury and death in children: hydrofluoric acid and methacrylic acid. It also discusses federal initiatives designed to protect children from these and other household hazards.

  9. Gelatin methacrylate microspheres for controlled growth factor release.

    PubMed

    Nguyen, Anh H; McKinney, Jay; Miller, Tobias; Bongiorno, Tom; McDevitt, Todd C

    2015-02-01

    Gelatin has been commonly used as a delivery vehicle for various biomolecules for tissue engineering and regenerative medicine applications due to its simple fabrication methods, inherent electrostatic binding properties, and proteolytic degradability. Compared to traditional chemical cross-linking methods, such as the use of glutaraldehyde (GA), methacrylate modification of gelatin offers an alternative method to better control the extent of hydrogel cross-linking. Here we examined the physical properties and growth factor delivery of gelatin methacrylate (GMA) microparticles (MPs) formulated with a wide range of different cross-linking densities (15-90%). Less methacrylated MPs had decreased elastic moduli and larger mesh sizes compared to GA MPs, with increasing methacrylation correlating to greater moduli and smaller mesh sizes. As expected, an inverse correlation between microparticle cross-linking density and degradation was observed, with the lowest cross-linked GMA MPs degrading at the fastest rate, comparable to GA MPs. Interestingly, GMA MPs at lower cross-linking densities could be loaded with up to a 10-fold higher relative amount of growth factor than conventional GA cross-linked MPs, despite the GA MPs having an order of magnitude greater gelatin content. Moreover, a reduced GMA cross-linking density resulted in more complete release of bone morphogenic protein 4 and basic fibroblast growth factor and accelerated release rate with collagenase treatment. These studies demonstrate that GMA MPs provide a more flexible platform for growth factor delivery by enhancing the relative binding capacity and permitting proteolytic degradation tunability, thereby offering a more potent controlled release system for growth factor delivery.

  10. Gelatin Methacrylate Microspheres for Growth Factor Controlled Release

    PubMed Central

    Nguyen, Anh H.; McKinney, Jay; Miller, Tobias; Bongiorno, Tom; McDevitt, Todd C.

    2014-01-01

    Gelatin has been commonly used as a delivery vehicle for various biomolecules for tissue engineering and regenerative medicine applications due to its simple fabrication methods, inherent electrostatic binding properties, and proteolytic degradability. Compared to traditional chemical cross-linking methods, such as the use of glutaraldehyde (GA), methacrylate modification of gelatin offers an alternative method to better control the extent of hydrogel cross-linking. Here we examined the physical properties and growth factor delivery of gelatin methacrylate (GMA) microparticles formulated with a wide range of different cross-linking densities (15–90%). Less methacrylated MPs had decreased elastic moduli and larger mesh sizes compared to GA MPs, with increasing methacrylation correlating to greater moduli and smaller mesh sizes. As expected, an inverse correlation between microparticle cross-linking density and degradation was observed, with the lowest cross-linked GMA MPs degrading at the fastest rate, comparable to GA MPs. Interestingly, GMA MPs at lower cross-linking densities could be loaded with up to a 10-fold higher relative amount of growth factor over conventional GA cross-linked MPs, despite an order of magnitude greater gelatin content of GA MPs. Moreover, a reduced GMA cross-linking density resulted in more complete release of bone morphogenic protein 4 (BMP4) and basic fibroblast growth factor (bFGF) and accelerated release rate with collagenase treatment. These studies demonstrate that GMA MPs provide a more flexible platform for growth factor delivery by enhancing the relative binding capacity and permitting proteolytic degradation tunability, thereby offering a more potent controlled release system for growth factor delivery. PMID:25463489

  11. Formation of poly(methyl methacrylate) thin films onto wool fiber surfaces by vapor deposition polymerization.

    PubMed

    Hassan, M Mahbubul; McLaughlin, J Robert

    2013-03-13

    Chemical vapor deposition (CVD) polymerization is a useful technique because of the possibility of forming very thin film of pure polymers on substrates with any geometric shape. In this work, thin films of poly(methyl methacrylate) or PMMA were formed on the surfaces of wool fabrics by a CVD polymerization process. Various polymerization initiators including dicumyl peroxide, tert-butyl peroxide, and potassium peroxydisulfate have been investigated to polymerize methyl methacrylate onto the surfaces of wool by the CVD polymerization. The wool fabrics were impregnated with initiators and were then exposed to MMA monomer vapor under vacuum at the boiling temperature of the monomer. Wool fabrics with vapor-deposited PMMA surfaces were characterized by elemental analysis, TGA, FTIR, disperse dye absorption, contact angles measurement, AFM, and SEM. PMMA-coated wool fabrics showed higher contact angle and absorbed more dyes than that of the control wool. It was evident from the results obtained by various characterization techniques that MMA was successfully polymerized and formed thin films on the surfaces of wool fabrics by all initiators investigated but the best results were achieved with tert-butyl peroxide.

  12. Multifunctional methacrylate-based coatings for glass and metal surfaces

    NASA Astrophysics Data System (ADS)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-03-01

    In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating's upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  13. Methacrylate based gel polymer electrolyte for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Isken, P.; Winter, M.; Passerini, S.; Lex-Balducci, A.

    2013-03-01

    A methacrylate based gel polymer electrolyte (GPE) was prepared and electrochemically investigated. The polymer was synthesized as a statistical co-polymer of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and benzyl methacrylate (BnMA) by free radical polymerization. The ethylene glycol side chain of OEGMA should be able to interact with the liquid electrolyte, thus keeping it inside the GPE, whereas BnMA was used to enhance the mechanical stability of the GPE. Such a polymer was able to retain liquid electrolyte up to 400% of its own weight, while the mechanical stability of the GPE was still high enough to be used as separator in lithium-ion batteries. The GPE displayed a conductivity of 1.8 mS cm-1 at 25 °C and an electrochemical stability window comparable to that of a standard liquid electrolyte. When used in lithium-ion batteries, such a GPE allowed a performance comparable to that obtained using conventional liquid electrolytes. Therefore the reported electrolyte was identified as a promising candidate as electrolyte for lithium-ion batteries.

  14. Evaluation of alternate routes for the synthesis of methyl methacrylate

    SciTech Connect

    Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.; Choi, G.N.

    1998-12-31

    The use of coal-derived syngas to produce high value chemicals is an important means of upgrading this resource. One example of a chemical that can be produced from coal-derived syngas is methyl methacrylate (MMA). Poly-methyl methacrylate is widely used in coatings and in various industrial molded products. The most widely practiced commercial technology for the synthesis of MMA is the acetone cyanohydrin (ACH) process. This process requires handling of large quantities of toxic hydrogen cyanide and generates one mole of ammonium bisulfate waste per mole of MMA. This bisulfate must either be regenerated or discarded, either of which substantially increases the cost. The ACH technology is thus environmentally and economically untenable for any new MMA plant expansions that would be needed to meet increasing demand. The RTI-Eastman-Bechtel research team is developing an alternative, environmentally benign route to MMA consisting of three steps; (step 1) synthesis of a propionate from ethylene, carbon monoxide, and steam, (step 2) condensation of this propionate with formaldehyde, and (step 3) esterification of resulting methacrylic acid with methanol to form MMA. This paper describes the preliminary economics of the overall process compared to other emerging processes, and focuses on step 2, including long term testing of catalysts for the condensation of propionic acid with formaldehyde to form MAA.

  15. Efficient Synthesis of Poly(hydroxyethyl Methacrylate)-b-Poly(dimethylaminoethyl Methacrylate) Block Copolymer by Atom Transfer Radical Polymerization.

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Loo, Yueh-Lin

    2009-03-01

    Polymers containing hydroxyethyl methacrylate (HEMA) and dimethylaminoethyl methacrylate (DMAEMA) have found wide applications in areas such as bioseparation, tissue engineering and controlled drug delivery. The controlled synthesis of block copolymers of PDMAEMA-b-PHEMA from PDMAEMA macroinitiator by atom transfer radical polymerization (ATRP), however, has not been successful due to the loss of chain end functionality during polymerization. We report an ATRP system that affords efficient chain extension from PDMAEMA to HEMA using Cu(0)/1,1,4,7,10,10-hexamethyltriethylenetetramine as the catalyst, 2-chloropropionitrile as the initiator in methanol at room temperature. A clear peak shift in the gel permeation chromatography trace towards shorter elution times indicates chain growth on HEMA addition. The chain end functionalities of PDMAEMA are thus retained and can be used to efficiently initiate chain extension reaction of HEMA. This new synthetic route opens new possibilities for the synthesis of pH- and temperature-responsive systems containing DMAEMA.

  16. Synthesis and characterization of injectable, water-soluble copolymers of tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates.

    PubMed

    Anderson, Brian C; Mallapragada, Surya K

    2002-11-01

    Several homopolymers and copolymers of 2-(diethylamino)ethyl methacrylate (DEAEM) and poly(ethylene glycol) methyl ether methacrylate (PEGMEM) were synthesized using anionic polymerization initiated by potassium t-butoxide. The polymers were characterized by average molecular weight, polydispersity and monomeric unit composition. A very narrow molecular weight distribution was achieved with a well-controlled composition. The glass transition temperatures and compositions of the copolymers followed a Gordon-Taylor relationship. The water solubility and biocompatibility of the copolymers was compared to their parent homopolymers to determine if the addition of a poly(ethylene glycol) group was sufficient to solubilize the polymers in aqueous buffer solutions and to increase the biocompatibility of the polymers. These water-soluble, injectable cationic copolymers have potential applications in gene delivery as well as other biomaterial applications.

  17. Preparation of hydroxyapatite/poly(methyl methacrylate) and calcium silicate/poly(methyl methacrylate) interpenetrating hybrid composites.

    PubMed

    Monvisade, Pathavuth; Siriphannon, Punnama; Jermsungnern, Rapee; Rattanabodee, Sirirat

    2007-10-01

    Hydroxyapatite/poly(methyl methacrylate) (HAp/PMMA) and calcium silicate/poly(methyl methacrylate) (CS/PMMA) composites were prepared by interpenetrating bulk polymerization of methyl methacrylate (MMA) monomer in porous structures of HAp and CS. The porous HAp and CS templates were prepared by mixing their calcined powders with poly(vinyl alcohol) (PVA) solution, shaping by uniaxial pressing and then firing at 1,100 degrees C for HAp and 900 degrees C for CS. The templates were soaked in the solution mixture of MMA monomer and 0.1 mol% of benzoyl peroxide (BPO) for 24 h. The pre-composites were then bulk polymerized at 85 degrees C for 24 h under nitrogen atmosphere. The microstructures of the composites showed the interpenetrating of PMMA into the porous HAp and CS structures. Thermogravimetric analysis indicated that the PMMA content in the HAp/PMMA and CS/PMMA composites were 13 and 26 wt%, respectively. Weight average molecular weights (M(w)) of PMMA were about 491,000 for HAp/PMMA composites and about 348,000 for CS/PMMA composites. Compressive strengths of these composites were about 90-131 MPa in which they were significantly higher than their starting porous templates.

  18. Affinity chromatography of proteins on non-porous copolymerized particles of styrene, methyl methacrylate and glycidyl methacrylate.

    PubMed

    Chen, C H; Lee, W C

    2001-06-29

    Non-porous particles having an average diameter of 2.1 microm were prepared by co-polymerization of styrene, methyl methacrylate and glycidyl methacrylate, which was abbreviated as P(S-MMA-GMA). The particles were mechanically stable due to the presence of benzene rings in the backbone of polymer chains, and could withstand high pressures when a column packed with these particles was operated in the HPLC mode. The polymer particles were advantaged by immobilization of ligands via the epoxy groups on the particle surface that were introduced by one of the monomers, glycidyl methacrylate. As a model system, Cibacron Blue 3G-A was covalently immobilized onto the non-porous copolymer beads. The dye-immobilized P(S-MMA-GMA) particles were slurry packed into a 1.0 cm x 0.46 cm I.D. column. This affinity column was effective for the separation of turkey egg white lysozyme from a protein mixture. The bound lysozyme could be eluted to yield a sharp peak by using a phosphate buffer containing 1 M NaCl. For a sample containing up to 8 microg of lysozyme, the retained portion of proteins could be completely eluted without any slit peak. Due to the use of a shorter column, the analysis time was shorter in comparison with other affinity systems reported in the literature. The retention time could be reduced significantly by increasing the flow-rate, while the capacity factor remained at the same level.

  19. Molecular Dynamics Simulations of Hugoniot Relations for Poly[methyl methacrylate

    DTIC Science & Technology

    2011-11-01

    Molecular Dynamics Simulations of Hugoniot Relations for Poly[ methyl methacrylate ] by Tanya L. Chantawansri, Edward F. C. Byrd, Betsy M. Rice...Ground, MD 21005-5066 ARL-TR-5819 November 2011 Molecular Dynamics Simulations of Hugoniot Relations for Poly[ methyl methacrylate ...4. TITLE AND SUBTITLE Molecular Dynamics Simulations of Hugoniot Relations for Poly[ methyl methacrylate ] 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  20. From the N-Heterocyclic Carbene-Catalyzed Conjugate Addition of Alcohols to the Controlled Polymerization of (Meth)acrylates.

    PubMed

    Ottou, Winnie Nzahou; Bourichon, Damien; Vignolle, Joan; Wirotius, Anne-Laure; Robert, Fredéric; Landais, Yannick; Sotiropoulos, Jean-Marc; Miqueu, Karinne; Taton, Daniel

    2015-06-22

    Among various N-heterocyclic carbenes (NHCs) tested, only 1,3-bis(tert-butyl)imidazol-2-ylidene (NHC(tBu) ) proved to selectively promote the catalytic conjugate addition of alcohols onto (meth)acrylate substrates. This rather rare example of NHC-catalyzed 1,4-addition of alcohols was investigated as a simple means to trigger the polymerization of both methyl methacrylate and methyl acrylate (MMA and MA, respectively). Well-defined α-alkoxy poly(methyl (meth)acrylate) (PM(M)A) chains, the molar masses of which could be controlled by the initial [(meth)acrylate]0/[ROH]0 molar ratio, were ultimately obtained in N,N-dimethylformamide at 25 °C. A hydroxyl-terminated poly(ethylene oxide) (PEO-OH) macro-initiator was also employed to directly access PEO-b-PMMA amphiphilic block copolymers. Investigations into the reaction mechanism by DFT calculations revealed the occurrence of two competitive concerted pathways, involving either the activation of the alcohol or that of the monomer by NHC(tBu) .

  1. Preparation and evaluation of poly(alkyl methacrylate-co-methacrylic acid-co-ethylene dimethacrylate) monolithic columns for separating polar small molecules by capillary liquid chromatography.

    PubMed

    Lin, Shu-Ling; Wu, Yu-Ru; Lin, Tzuen-Yeuan; Fuh, Ming-Ren

    2015-04-29

    In this study, methacrylic acid (MAA) was incorporated with alkyl methacrylates to increase the hydrophilicity of the synthesized ethylene dimethacrylate-based (EDMA-based) monoliths for separating polar small molecules by capillary LC analysis. Different alkyl methacrylate-MAA ratios were investigated to prepare a series of 30% alkyl methacrylate-MAA-EDMA monoliths in fused-silica capillaries (250-μm i.d.). The porosity, permeability, and column efficiency of the synthesized MAA-incorporated monolithic columns were characterized. A mixture of phenol derivatives is employed to evaluate the applicability of using the prepared monolithic columns for separating small molecules. Fast separation of six phenol derivatives was achieved in 5 min with gradient elution using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. In addition, the effect of acetonitrile content in mobile phase on retention factor and plate height as well as the plate height-flow velocity curves were also investigated to further examine the performance of the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. Moreover, the applicability of prepared polymer-based monolithic column for potential food safety applications was also demonstrated by analyzing five aflatoxins and three phenicol antibiotics using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column.

  2. Hardness of irradiated poly(methyl methacrylate) at elevated temperatures

    SciTech Connect

    Lu, K.-P.; Lee, Sanboh; Cheng, Cheu Pyeng

    2001-08-15

    The decrease in hardness induced by gamma irradiation in poly(methyl methacrylate) (PMMA) has been investigated. The hardness is assumed to decrease linearly with the concentration of radiation-induced defects. Annealing at high temperatures induces defect annihilation as tracked by an increase in hardness. The annihilation follows first-order kinetics during isothermal annealing. The dependence of hardness on the reciprocal of the time constant satisfies the Arrhenius equation, and the corresponding activation energy of the kinetic process decreases with increasing dose. The hardness of postannealed PMMA decreases linearly with increasing dose. {copyright} 2001 American Institute of Physics.

  3. Characterization and degradation of functionalized chitosan with glycidyl methacrylate.

    PubMed

    Flores-Ramírez, Nelly; Elizalde-Peña, Eduardo A; Vásquez-García, Salomón R; González-Hernández, Jesús; Martinez-Ruvalcaba, Agustín; Sanchez, Isaac C; Luna-Bárcenas, Gabriel; Gupta, Ram B

    2005-01-01

    The synthesis, characterization and degradation of a hybrid chitosan (CTS)/glycidyl methacrylate (GMA) material are reported. These versatile materials (natural-synthetic materials) are potential candidates for dental restoratives. All materials were characterized by infrared spectroscopy (FT-IR), X-ray diffraction and thermal (DSC) analysis. Particular attention was paid to the thermal stability and chemical resistance of the hybrid CTS materials. From dynamical rheological tests, it was concluded that CTS-GMA solutions behave as physical hydrogels. These pH-sensitive gels are an example of stimuli-responsive polymers, also known as 'smart polymers'.

  4. Methyl methacrylate permeability of dental and industrial gloves.

    PubMed

    Thomas, Sebastian; Padmanabhan, T V

    2009-01-01

    Our study was undertaken to measure the amount and time it took for methyl methacrylate monomer (MMA) to permeate latex, vinyl and industrial neoprene gloves and to compare the results to obtain a rating of the permeability of each of the gloves studied to MMA. The monomer, permeated under static conditions, was measured using a spectrophotometer. Latex and vinyl clinical gloves became permeable to MMA in a very short amount of time. Neoprene industrial gloves remained impervious for 25 minutes. Dentists and dental technicians should be aware of the toxic effects of MMA and understand that clinical gloves do not afford protection from MMA.

  5. Preparation of novel poly(hydroxyethyl methacrylate-co-glycidyl methacrylate)-grafted core-shell magnetic chitosan microspheres and immobilization of lactase.

    PubMed

    Zhao, Wei; Yang, Rui-Jin; Qian, Ting-Ting; Hua, Xiao; Zhang, Wen-Bin; Katiyo, Wendy

    2013-06-06

    Poly(hydroxyethyl methacrylate-co-glycidyl methacrylate)-grafted magnetic chitosan microspheres (HG-MCM) were prepared using reversed-phase suspension polymerization method. The HG-MCM presented a core-shell structure and regular spherical shape with poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) grafted onto the chitosan layer coating the Fe3O4 cores. The average diameter of the magnetic microspheres was 10.67 μm, within a narrow size distribution of 6.6-17.4 μm. The saturation magnetization and retentivity of the magnetic microspheres were 7.0033 emu/g and 0.6273 emu/g, respectively. The application of HG-MCM in immobilization of lactase showed that the immobilized enzyme presented higher storage, pH and thermal stability compared to the free enzyme. This indicates that HG-MCM have potential applications in bio-macromolecule immobilization.

  6. Synthesis of branched poly(methyl methacrylate)s via controlled/living polymerisations exploiting ethylene glycol dimethacrylate as branching agent.

    PubMed

    Isaure, Francoise; Cormack, Peter A G; Graham, Susan; Sherrington, David C; Armes, Steven P; Bütun, Vural

    2004-05-07

    With appropriate choice of reaction composition and conditions, copolymerisation of methyl methacrylate and ethylene glycol dimethacrylate using Cu-based ATRP or GTP methodologies yields soluble branched polymers in facile one-pot reactions.

  7. Cell toxicity of methacrylate monomers-the role of glutathione adduct formation.

    PubMed

    Ansteinsson, V; Kopperud, H B; Morisbak, E; Samuelsen, J T

    2013-12-01

    Polymer-based dental restorative materials are designed to polymerize in situ. However, the conversion of methacrylate monomer to polymer is never complete, and leakage of the monomer occurs. It has been shown that these monomers are toxic in vitro; hence concerns regarding exposure of patients and dental personnel have been raised. Different monomer methacrylates are thought to cause toxicity through similar mechanisms, and the sequestration of cellular glutathione (GSH) may be a key event. In this study we examined the commonly used monomer methacrylates, 2-hydroxyethylmethacrylate (HEMA), triethylenglycol-dimethacrylate (TEGDMA), bisphenol-A-glycidyl-dimethacrylate (BisGMA), glycerol-dimethacrylate (GDMA) and methyl-methacrylate (MMA). The study aimed to establish monomers' ability to complex with GSH, and relate this to cellular toxicity endpoints. Except for BisGMA, all the monomer methacrylates decreased the GSH levels both in cells and in a cell-free system. The spontaneous formation of methacrylate-GSH adducts were observed for all methacrylate monomers except BisGMA. However, we were not able to correlate GSH depletion and toxic response measured as SDH activity and changes in cell growth pattern. Together, the current study indicates mechanisms other than GSH-binding to be involved in the toxicity of methacrylate monomers.

  8. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl...

  9. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl...

  10. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl...

  11. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl...

  12. Allergic contact gingivostomatitis from a temporary crown made of methacrylates and epoxy diacrylates.

    PubMed

    Kanerva, L; Alanko, K; Estlander, T

    1999-12-01

    Occupational allergic contact dermatitis caused by (meth)acrylates is common in dental personnel, whereas dental acrylic fillings and crowns have rarely been reported to cause problems in dental patients. Here we report on a 48-year-old woman who developed gingivitis, stomatitis, and perioral dermatitis after a temporary crown made of restorative, two-component material had been inserted. The manufacturer stated that the temporary crown base paste and catalyst contained three (meth)acrylates, namely, a proacrylate, which is a modification of 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (BIS-GMA); a tricyclate, which is a saturated, aliphatic, tricyclic methacrylate; and urethane methacrylate. The manufacturer refused to give more exact information on the (meth)acrylates. Patch testing revealed that the patient was highly allergic to BIS-GMA, other epoxy diacrylates, and (meth)acrylates, as well as to the base paste and catalyst of the temporary crown. Accordingly, it was concluded that the allergic reaction was caused by BIS-GMA, or a cross-reacting (meth)acrylate, or other (meth)acrylates in the temporary crown.

  13. Antibacterial Adhesion of Polymethyl Methacrylate Modified by Borneol Acrylate.

    PubMed

    Sun, Xueli; Qian, Zhiyong; Luo, Lingqiong; Yuan, Qipeng; Guo, Ximin; Tao, Lei; Wei, Yen; Wang, Xing

    2016-10-07

    Polymethyl methacrylate (PMMA) is a widely used biomaterial. But there is still a challenge facing its unwanted bacterial adhesion, because the subsequent biofilm formation usually leads to failure of related implants. Herein, we present a borneol-modified PMMA based on a facile and effective stereochemical strategy, generating antibacterial copolymer named as P(MMA-co-BA). It was synthesized by free radical polymerization and studied with different ratio between methyl methacrylate (MMA) and borneol acrylate (BA) monomers. NMR, GPC and EA etc. were used to confirm their chemical features. Their films were challenged with Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive), showing a BA content-dependent antibacterial performance. The minimum effective dose should be 10%. Then in vivo subcutaneous implantations in mice demonstrated their biocompatibilities through routine histotomy and HE staining. Therefore, P(MMA-co-BA)s not only exhibited their unique antibacterial character, but also suggested a potential for the safe usage of borneol-modified PMMA frame and devices for further implantation.

  14. Modified acrylic bone cement with high amounts of ethoxytriethyleneglycol methacrylate.

    PubMed

    Pascual, B; Gurruchaga, M; Ginebra, M P; Gil, F J; Planell, J A; Vázquez, B; San Román, J; Goñi, I

    1999-03-01

    One cause of arthroplasty failure is the brittle mechanical behavior of bone cements. However, the improvement of cement formulations must also be accompanied by the maintenance of a wide variety of characteristics. New bone cements were obtained by the substitution of high percentages, up to 60% (v/v), of methyl methacrylate (MMA) by a higher molecular weight and more hydrophilic monomer, ethoxytriethyleneglycol methacrylate (TEG). The essential advantages of these materials were the decrease of maximum temperature together with a decrease in the residual monomer content with respect to conventional cement formulations. The water absorption process obeyed diffusion laws and the equilibrium water content increased by the introduction of higher percentages of the hydrophilic component. This characteristic had an appreciable effect on the viscoelastic behavior analyzed by DMTA. These modified bone cements had reduced polymerization shrinkage and similar levels of porosity. Tensile test revealed that the introduction of TEGMA gave rise to an important modification of the mechanical behavior, with a noticeable increase in the fracture strain. This fact was also confirmed by means of the analysis of the fracture surfaces by SEM.

  15. Synthesis of Methyl Methacrylate from Coal-Derived Syngas

    SciTech Connect

    Gerald N. Choi; James J. Spivey; Jospeh R. Zoeller; Makarand R. Gogate; Richard D. Colberg; Samuel S. Tam

    1998-04-17

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. RTI has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, RTI is currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last month, RTI has finalized the design of a fixed-bed microreactor system for DME partial oxidation reactions. RTI incorporated some design changes to the feed blending system, so as to be able to blend varying proportions of DME and oxygen. RTI has also examined the flammability limits of DME-air mixtures. Since the lower flammability limit of DME in air is 3.6 volume percent, RTI will use a nominal feed composition of 1.6 percent in air, which is less than half the lower explosion limit for DME-air mixtures. This nominal feed composition is thus considered operationally safe, for DME partial oxidation reactions. RTI is also currently developing an analytical system for DME partial oxidation reaction system.

  16. Degradation of poly(methyl methacrylate) in solution

    SciTech Connect

    Madras, G.; Smith, J.M.; McCoy, B.J.

    1996-06-01

    The rate of degradation of poly(methyl methacrylate) (PMMA) to methyl methacrylate (MMA) was investigated in the liquid phase with toluene as the solvent. The degradation experiments were carried out in a tubular flow reactor at 1,000 psig (6.8 MPa) and at four different temperatures (200, 225, 275, and 300 C). The polymer concentration was varied by 1 to 4 g/L. A discrete model for the first-order rate of polymer degradation was derived and compared to the continuous kinetics approach. Both models lead to the same expression for monomer concentration increasing linearly with time. Rate constants were evaluated using the moments of the molecular weight distributions of the reacted and unreacted polymer. The rate was first order in polymer concentration, and the activation energy was 8.4 kcal/mol (34 kJ/mol). This activation energy suggests that the rate controlling step for the thermal degradation of PMMA is the depropagation process.

  17. The biological properties of a novel ethyl methacrylate resin.

    PubMed

    Suzuki, T; Jinno, S; Hattori, N; Okeya, H; Ishikawa, A; Deguchi, M; Ohno, Y; Kawai, T; Noguchi, T

    2006-01-01

    A novel ethyl methacrylate (EMA) resin was developed to overcome the tissue, organ and systemic damage associated with the residual monomer of conventional methyl methacrylate (MMA) resin bone cement. EMA resin is a chemical/ photopolymerizable material and is easy to handle during clinical procedures. The biocompatibility of EMA was evaluated in accordance with ISO10993-6. No inflammatory response was observed 1 and 9 weeks after implantation in the dorsal subcutaneous tissue of ddY mice. EMA resin also demonstrated better biocompatibility when compared with conventional bone cements. Poly-L-lactic acid (PLLA) was used as a carrier for bone morphogenetic protein (BMP) and added to the EMA slurry. The EMA-PLLA composite membrane was sticky and BMP readily adhered to its surface. The EMA-PLLA-BMP composite membrane induced new bone formation, the new bone growing in the shape of the EMA in the thigh muscle pouch of ddY mice. This novel EMA resin has many potential clinical applications.

  18. Novel syngas-based process for methyl methacrylate

    SciTech Connect

    Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.; Choi, G.N.; Tam, S.S.; Tischer, R.E.; Srivastava, R.D.

    1996-12-31

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel are developing a novel process for synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the U.S. Department of Energy, Pittsburgh Energy Technology Center. This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Eastman has focused on the research on propionate synthesis step. The resultant Mo catalysts work efficiently at much less severe conditions (170{degrees}C and 30 atm) than the conventional Ni catalysts (270{degrees}C and 180 atm). Bechtel has performed an extensive cost analysis, which shows that Eastman`s propionate synthesis process is competitive with other technologies to produce the anhydride. In the second step, RTI and Eastman have developed active and stable V-SI-P and Ta metal oxide catalysts for condensation reactions of propionates with formaldehyde. RTI has demonstrated a novel correlation among the catalyst acid-base properties, condensation reaction yield, and long-term catalyst activity. Current research focuses on enhancing the condensation reaction yields, acid-base properties, in situ condensation in a high- temperature, high-pressure (HTHP) slurry reactor, and alternate formaldehyde feedstocks. Based on Eastman and RTI laboratory reactor operating data, a cost estimate is also being developed for the integrated process.

  19. Structural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) copolymer by nuclear magnetic resonance and mass spectrometry.

    PubMed

    Giordanengo, Rémi; Viel, Stéphane; Hidalgo, Manuel; Allard-Breton, Béatrice; Thévand, André; Charles, Laurence

    2009-11-03

    Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been combined to achieve the complete microstructural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) (PMAA-PMMA) copolymer synthesized by nitroxide-mediated polymerization. Various PMAA-PMMA species could be identified which mainly differ in terms of terminaisons. 1H and 13C NMR experiments revealed the structure of the end-groups as well as the proportion of each co-monomer in the copolymers. These end-group masses were further confirmed from m/z values of doubly charged copolymer anions detected in the single stage mass spectrum. In contrast, copolymer composition derived from MS data was not consistent with NMR results, obviously due to strong mass bias well known to occur during electrospray ionization of these polymeric species. Tandem mass spectrometry could reveal the random nature of the copolymer based on typical dissociation reactions, i.e., water elimination occurred from any two contiguous MAA units while MAA-MMA pairs gave rise to the loss of a methanol molecule. Polymer backbone cleavages were also observed to occur and gave low abundance fragment ions which allowed the structure of the initiating end-group to be confirmed.

  20. Analytical strategy for the molecular weight determination of random copolymers of poly(methyl methacrylate) and poly(methacrylic acid).

    PubMed

    Giordanengo, Rémi; Viel, Stéphane; Hidalgo, Manuel; Allard-Breton, Béatrice; Thévand, André; Charles, Laurence

    2010-06-01

    Molecular weight characterization of random amphiphilic copolymers currently represents an analytical challenge. In particular, molecules composed of methacrylic acid (MAA) and methyl methacrylate (MMA) as the repeat units raise issues in commonly used techniques. The present study shows that when random copolymers cannot be properly ionized by MALDI, and hence detected and measured in MS, one possible analytical strategy is to transform them into homopolymers, which are more amenable to this ionization technique. Then, by combining the molecular weight of the so-obtained homopolymers, as measured by MS, with the relative molar proportion of the MMA and MMA units, as given by (1)H NMR spectrum, one can straightforwardly estimate the molecular weight of the initial copolymer. A methylation reaction was performed to transform MAA-MMA copolymer samples into PMMA homopolymers, using trimethylsilyldiazomethane as a derivatization agent. Weight average molecular weight (M(w)) parameters of the MAA-MMA copolymers could then be derived from M(w) values obtained for the methylated MAA-MMA molecules by MALDI, which were also validated by pulsed gradient spin echo (PGSE) NMR. An alkene function in one of the studied copolymer end-groups was also shown to react with the methylation agent, giving rise to MMA-like polymeric by-products characterized by tandem mass spectrometry and which could be avoided by adjusting the amount of the trimethylsilyldiazomethane in the reaction medium.

  1. Poly(2-hydroxyethyl methacrylate-co-dodecyl methacrylate-co-acrylic acid): synthesis, physico-chemical characterisation and nafcillin carrier.

    PubMed

    Zecheru, Teodora; Rotariu, Traian; Rusen, Edina; Mărculescu, Bogdan; Miculescu, Florin; Alexandrescu, Laura; Antoniac, Iulian; Stancu, Izabela-Cristina

    2010-10-01

    In the present study polymeric microbeads of poly(2-hydroxyethyl methacrylate-co-dodecyl methacrylate-co-acrylic acid) or p(HEMA-co-dDMA-co-AA) were synthesised and characterized through FT-IR and scanning electron microscopy (SEM); their swelling behavior against saline solution was explored and their in vitro cytotoxicity was evaluated. Further, in order to elucidate kinetic aspects regarding the ternary system p(HEMA-co-dDMA-co-AA), a mathematical model of the reactivity ratios of the comonomers in the terpolymer has been conceived and analyzed. An intensified tendency of AA units accumulation in the copolymer has been noticed, in spite of HEMA units, while dDMA conserves in the copolymer the fraction from the feed. Three compositions have been selected for nafcillin-loading and their in vitro release capacity was evaluated. The compositions of 80:10:10 and 75:10:15 M ratios appear suitable for further in vivo testing, in order to be used as drug delivery systems in the treatment of different osseous diseases.

  2. Feedback-regulated paclitaxel delivery based on poly(N,N-dimethylaminoethyl methacrylate-co-2-hydroxyethyl methacrylate) nanoparticles.

    PubMed

    You, Jin-Oh; Auguste, Debra T

    2008-04-01

    pH-Sensitive poly(N,N-dimethylaminoethyl methacrylate (DMAEMA)/2-hydroxyethyl methacrylate (HEMA)) nanoparticles were prepared for the triggered release of paclitaxel within a tumor microenvironment. Tumors exhibit a lower extracellular pH than normal tissues. We show that paclitaxel release from DMAEMA/HEMA particles can be actively triggered by small, physiological changes in pH (within 0.2-0.6 pH units). Monodispersed nanoparticles were synthesized by forming an O/W emulsion followed by photopolymerization. Particles were characterized by transmission electron microscopy, dynamic light scattering, electrophoresis, and cytotoxicity. High release rates and swelling ratios are achieved at low pH, low crosslinking density, and high content of DMAEMA. Paclitaxel release is limited to 9% of the payload at pH 7.4 after a 2-h incubation at 37 degrees C. After adjusting to pH 6.8, 25% of the payload is released within 2h. Cell viability studies indicate that pH-sensitive DMAEMA/HEMA nanoparticles are not cytotoxic and may be used as an efficient, feedback-regulated drug delivery carrier.

  3. Radiation-grafted polymers for biomaterial applications. I. 2-hydroxyethyl methacrylate: ethyl methacrylate grafting onto low density polyethylene films

    SciTech Connect

    Cohn, D.; Hoffman, A.S.; Ratner, B.D.

    1984-08-01

    Studies were conducted on the radiation grafting of 2-hydroxyethyl methacrylate (HEMA) and ethyl methacrylate (EMA) by the mutual irradation technique onto low density polyethylene. Four different solution concentrations were used, and radiation doses ranged from 0.03 to 0.50 Mrad. Four copolymer compositions having different HEMA:EMA ratios were also studied using two total monomer concentrations. The kinetics of the grafting process demonstrated by the two monomers were basically different. While EMA showed a typical diffusion-controlled kinetic pattern, HEMA exhibited a more complex behavior, the main features of which were an induction period, a slight autoacceleration and a significant drop in graft level after a maximum is reached. The difference in behavior was interpreted in terms of partitioning of monomers into the polyethlene substrate. The surface topography of the grafted films was studied by means of scanning electron microscopy. A mechanism based on osmotic cell formation was suggested for the HEMA graft system. The copolymer systems investigated showed that the graft reaction is faster in the initial stages for higher percentages of EMA in the monomer mixtures; as grafting proceeds the trend is reversed. 24 references, 16 figures, 2 tables.

  4. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    BEN W.-L. JANG; GERALD N. CHOI; JAMES J. SPIVEY; JOSPEH R. ZOELLER; RICHARD D. COLBERG.

    1999-01-20

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter(Oct.-Dec./98), we have investigated the condensation between methyl propionate and formaldehyde (MP/HCHO=4.5/1) at various reaction temperatures(280-360EC) over 5%, 10%, and 20% Nb O /SiO catalysts. The conversion of HCHO increases with reaction 2 5 2 temperature and niobium loading. MMA+MAA selectivity goes through a maximum with the temperature over both 10% and 20% Nb O /SiO . The selectivities to MMA+MAA are 67.2%, 2 5 2 72.3%and 58.1% at 320EC over 5%, 10%, 20% Nb O /SiO , respectively. However, the 2 5 2 conversion of formaldehyde decreases rapidly with time on stream. The results suggest that silica supported niobium catalysts are active and selective for condensation of MP with HCHO, but deactivation needs to be minimized for the consideration of commercial application. We have preliminarily investigated the partial oxidation of dimethyl ether(DME) over 5% Nb O /SiO catalyst. Reactant gas mixture of 0.1% DME, 0.1% O and balance nitrogen is 2 5 2 2 studied with temperature ranging from 200C to 500C. The conversion of DME first increases with temperature reaching an maximum at 400C then decreases. The selectivity to HCHO also increases with reaction temperature first. But the selectivity to HCHO decreases at temperature above 350C accompanied by

  5. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    BEN W.-L. JANG; GERALD N. CHOI; JAMES J. SPIVEY; JOSPEH R. ZOELLER; RICHARD D. COLBERG

    1999-01-20

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter(Oct.-Dec./98), we have investigated the condensation between methyl propionate and formaldehyde (MP/HCHO=4.5/1) at various reaction temperatures(280-360EC) over 5%, 10%, and 20% Nb O /SiO catalysts. The conversion of HCHO increases with reaction 2 5 2 temperature and niobium loading. MMA+MAA selectivity goes through a maximum with the temperature over both 10% and 20% Nb O /SiO . The selectivities to MMA+MAA are 67.2%, 2 5 2 72.3%and 58.1% at 320EC over 5%, 10%, 20% Nb O /SiO , respectively. However, the 2 5 2 conversion of formaldehyde decreases rapidly with time on stream. The results suggest that silica supported niobium catalysts are active and selective for condensation of MP with HCHO, but deactivation needs to be minimized for the consideration of commercial application. We have preliminarily investigated the partial oxidation of dimethyl ether(DME) over 5% Nb O /SiO catalyst. Reactant gas mixture of 0.1% DME, 0.1% O and balance nitrogen is 2 5 2 2 studied with temperature ranging from 200°C to 500°C. The conversion of DME first increases with temperature reaching an maximum at 400°C then decreases. The selectivity to HCHO also increases with reaction temperature first. But the selectivity to HCHO decreases at temperature above 350

  6. Synthesis and aqueous solution properties of novel sugar methacrylate-based homopolymers and block copolymers.

    PubMed

    Narain, Ravin; Armes, Steven P

    2003-01-01

    We report the facile preparation of a range of novel, well-defined cyclic sugar methacrylate-based polymers without recourse to protecting group chemistry. 2-Gluconamidoethyl methacrylate (GAMA) and 2-lactobionamidoethyl methacrylate (LAMA) were prepared directly by reacting 2-aminoethyl methacrylate with D-gluconolactone and lactobionolactone, respectively. Homopolymerization of GAMA and LAMA by atom transfer radical polymerization (ATRP) gave reasonably low polydispersities as judged by aqueous gel permeation chromatography. A wide range of sugar-based block copolymers were prepared using near-monodisperse macroinitiators based on poly(ethylene oxide) [PEO], poly(propylene oxide) [PPO], or poly(e-caprolactone) [PCL] and/or by sequential monomer addition of other methacrylic monomers such as 2-(diethylamino)ethyl methacrylate [DEA], 2-(diisopropylaminoethyl methacrylate [DPA], or glycerol monomethacrylate [GMA]. The reversible micellar self-assembly of selected sugar-based block copolymers [PEO23-GAMA50-DEA100, PEO23-LAMA30-DEA50, PPO33-GAMA50, and PPO33-LAMA50] was studied in aqueous solution as a function of pH and temperature using dynamic light scattering, transmission electron microscopy, surface tensiometry, and 1H NMR spectroscopy.

  7. Cytotoxic effects of acrylates and methacrylates: relationships of monomer structures and cytotoxicity.

    PubMed

    Yoshii, E

    1997-12-15

    Thirty-nine acrylates and methacrylates that had been used in dental resin materials were evaluated by a cytotoxicity test, and the relationships between their structures and cytotoxicity were studied to predict cytotoxic levels of dental resin materials in order to develop new low-toxic resin materials. All the acrylates evaluated were more toxic than corresponding methacrylates. In both the acrylates and methacrylates, a hydroxyl group seemed to enhance cytotoxicity. Dimethacrylates with 14 or fewer oxyethylene chains showed similar cytotoxicity while dimethacrylates with 23 oxyethylene chains showed lower cytotoxicity. The cytotoxicity ranking of monomers widely used in dental resin materials was bisphenol A bis 2-hydroxypropyl methacrylate (bisGMA) > urethane dimethacrylate (UDMA) > triethyleneglycol dimethacrylate (3G) > 2-hydroxyethyl methacrylate (HEMA) > methyl methacrylate (MMA). In acrylates, methacrylates, and ethylmethacrylates with either substituents, the lipophilicity of substituents affected their cytotoxicity, and an inverse correlation between IC50 and logP was observed. These results will be useful in developing new resin materials with low toxic monomer compositions.

  8. Synthesis and fluorescence properties of divalent europium-poly(methacrylate containing crown ether structure) complexes

    SciTech Connect

    Higashiyama, N.; Nakamura, H.; Mishima, T.; Shiokawa, J.; Adachi, G. )

    1991-02-01

    This paper reports on divalent europium complexes with poly(methacrylate containing crown ether structure)s, poly(crown ether)s, prepared and their fluorescence properties studied. The polymers used were poly(15-crown-5-methyl methacrylate) (PMA15C5), copoly(15- crown-5-methyl methacrylate-X) (copoly(MA15C5-X)); (X = MMA, EMA, BMA, 2-methoxyethyl methacrylate (MAGI) 3,6,9,12,15- pentaoxahexadecyl methacrylate (MAG5)), poly(18-crown-6- methyl methacrylate) (PMA18C6), and copoly(18-crown-6-methyl methacrylate-MMA) (copoly(MA18C6-MMA)), which were obtained by bulk polymerization. The fluorescence properties of Eu{sup 2+} polymers activated by complexing Eu{sup 2+} ions with crown ether groups were measured in powder form. The Eu{sup 2+}-poly (crown ether)s irradiated by UV light generally gave blue bright emission in the region of 420-465 nm. It was Eu{sup 2+}-copoly(Ma15C5-X); (X = MMA, EMA, and MAG1) that showed the largest emission intensity among the Eu{sup 2+} polymers, and its emission intensity was ca. 20% of that for CaWO{sub 4}:Pb (NBS1026) whose quantum efficiency is about 76%. The intensities of emission for the Eu{sup 2+} polymers containing 15-crown-5 were much larger than that for the ones containing 18-crown-6.

  9. Dye attached poly(hydroxyethyl methacrylate) cryogel for albumin depletion from human serum.

    PubMed

    Andac, Muge; Galaev, Igor; Denizli, Adil

    2012-05-01

    Cibacron Blue F3GA was immobilized on poly(hydroxyethyl methacrylate) cryogel and it was used for selective and efficient depletion of albumin from human serum. The poly(hydroxyethyl methacrylate) was selected as the basic component because of its inertness, mechanical strength, chemical and biological stability, and biocompatibility. Cibacron Blue F3GA was covalently attached to the poly(hydroxyethyl methacrylate) cryogel to produce poly(hydroxyethyl methacrylate)-Cibacron Blue F3GA cryogel affinity column. The poly(hydroxyethyl methacrylate)-Cibacron Blue F3GA cryogel was characterized with respect to gelation yield, swelling degree, total volume of macropores, Fourier Transform Infrared spectroscopy, and scanning electron microscopy. It was found that the maximum amount of adsorption (343 mg/g of dry cryogel) obtained from experimental results is very close to the calculated Langmuir adsorption capacity (345 mg/g of dry cryogel). The maximum adsorption capacity for poly(hydroxyethyl methacrylate)-Cibacron Blue F3GA cryogel column was obtained as 950 mg/g of dry cryogel for nondiluted serum. The adsorption capacity decreased with increasing dilution ratios while the depletion ratio of albumin remained as 77% in serum sample. Finally, the poly(hydroxyethyl methacrylate)-Cibacron Blue F3GA cryogel was optimized for using in the fast protein liquid chromatography system for rapid removal of the high abundant proteins from the human serum.

  10. Study of scintillation in natural and synthetic quartz and methacrylate

    NASA Astrophysics Data System (ADS)

    Amaré, J.; Borjabad, S.; Cebrián, S.; Cuesta, C.; Fortuño, D.; García, E.; Ginestra, C.; Gómez, H.; Herrera, D. C.; Martínez, M.; Oliván, M. A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Pobes, C.; Puimedón, J.; Sarsa, M. L.; Villar, J. A.; Villar, P.

    2014-06-01

    Samples from different materials typically used as optical windows or light guides in scintillation detectors were studied in a very low background environment, at the Canfranc Underground Laboratory, searching for scintillation. A positive result can be confirmed for natural quartz: two distinct scintillation components have been identified, not being excited by an external gamma source. Although similar effect has not been observed neither for synthetic quartz nor for methacrylate, a fast light emission excited by intense gamma flux is evidenced for all the samples in our measurements. These results could affect the use of these materials in low energy applications of scintillation detectors requiring low radioactive background conditions, as they entail a source of background.

  11. A review of methods used to reinforce polymethyl methacrylate resin.

    PubMed

    Vallittu, P K

    1995-09-01

    Various methods to reinforce acrylic denture base material have been used to repair fractures in complete dentures. Metal wires and plates have been tested as reinforcement of polymethyl methacrylate (PMMA) resin. The contributions of the studies conducted on this biphase composite system are discussed in this review article. The literature has reported that even thin metal wires incorporated into the PMMA matrix increased the transverse strength of the PMMA construction. Metal mesh inserted into PMMA resin had negligible effects on the transverse strength of the restoration. macroscopic retention of the metal strengtheners to the PMMA had only a minor effect on the strength in contrast to microscopic retention, which showed a more marked effect. Chemical bonding between the PMMA and metal reinforcer enhanced the strength of the prosthesis with some exceptions.

  12. Methyl Methacrylate Polymerization in Nanoporous Matrix: Reactivity and Molecular Weight

    NASA Astrophysics Data System (ADS)

    Zhao, Haoyu; Simon, Sindee

    2011-03-01

    The influence of nanoconfinement on the free radical polymerization of methyl methacrylate is investigated. Nanoporous controlled pore glass (CPG) is used as a nanoconfining matrix for the polymerization. The reaction is followed by measuring heat flow as a function of reaction time during isothermal polymerization using differential scanning calorimetry (DSC). Preliminary results indicate several interesting effects for polymerization in 110 nm diameter pores: the induction time increases under nanoconfinement, the effective reaction rate constant increases, the effective activation energy is unchanged, and the gel effect or autoaccleration occurs at earlier times after induction. The latter result concerning the gel effect is presumably due to the decrease in diffusivity under nanoconfinement which results in a decrease in the termination rate of free radicals. The cause of the longer induction times and accelerated reaction rates just after induction are under investigation. The influence of nanoconfinement on molecular weight will also be examined.

  13. Interaction between N-vinylpyrrolidone and methyl methacrylate

    NASA Astrophysics Data System (ADS)

    Zaitseva, V. V.; Shtonda, A. V.; Tyurina, T. G.; Bagdasarova, A. R.; Zaitsev, S. Yu.

    2014-04-01

    It is established that the interaction of the isomers of N-vinylpyrrolidone (NVP) and methyl methacrylate (MMA) leads to the formation of molecular π-H- and H-complexes with energies within the limits of 10.2-13.6 (AM1) or 18.2-24.0 (B3LYP/6-311++G( d)) kJ/mol. The structures of complex-bound molecules are examined with respect to changes in the charges on terminal -C1=C2- groups, the distance between them and atoms in an H-bond, and the presence of combined overlapping molecular orbitals (MOs). The presence of an averaged complex that includes presumably all possible structures and allows us to perform the copolymerization of specified monomers in the absence of an initiator is confirmed by means of UV and NMR spectroscopy.

  14. Porous conductive polyblends of polyaniline in poly(methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Price, Aaron D.; Naguib, Hani E.

    2008-03-01

    The conductive polymer polyaniline is typically blended with conventional industrial thermoplastics in order to obtain an electrically conductive polymer blend with adequate mechanical properties. Processing these polyblends into foams yields a porous conductive material that exhibits immense application potential such as dynamic separation media and low-density electrostatic discharge protection. In the current study, the morphology of a thermally-processable blend consisting of an electrically conductive polyaniline-dodecylbenzene sulfonic acid complex and poly(methyl methacrylate) is explored using a two-phase batch foaming setup. The effect of blend composition and processing parameters on the resulting cellular morphology is investigated. Finally, the impact of the underlying microstructure on the frequency dependent electrical conductivity is elucidated.

  15. Radiation synthesis of nanosilver nanohydrogels of poly(methacrylic acid)

    NASA Astrophysics Data System (ADS)

    Gupta, Bhuvanesh; Gautam, Deepti; Anjum, Sadiya; Saxena, Shalini; Kapil, Arti

    2013-11-01

    Nanosilver nanohydrogels (nSnH) of poly(methacrylic acid) were synthesized and stabilized using gamma irradiation. The main objective of this study was to develop silver nanoparticles and to evaluate the antimicrobial activity. Radiation helps in the polymerization, crosslinking and reduction of silver nitrate as well. Highly stable and uniformly distributed silver nanoparticles have been obtained within hydrogel network by water in oil nanoemulsion polymerization and were evaluated by dynamic light scattering (DLS) and transmission electron microscopy (TEM) respectively. TEM showed almost spherical and uniform distribution of silver nanoparticles through the hydrogel network. The mean size of silver nanoparticles ranging is 10-50 nm. The nanohydrogels showed good swelling in water. Antibacterial studies of nSnH suggest that it can be a good candidate as coating material in biomedical applications.

  16. Chest wall reconstruction with methacrylate prosthesis in Poland syndrome.

    PubMed

    Arango Tomás, Elisabet; Baamonde Laborda, Carlos; Algar Algar, Javier; Salvatierra Velázquez, Angel

    2013-10-01

    Poland syndrome is a rare congenital malformation. This syndrome was described in 1841 by Alfred Poland at Guy's Hospital in London. It is characterized by hypoplasia of the breast and nipple, subcutaneous tissue shortages, lack of the costosternal portion of the pectoralis major muscle and associated alterations of the fingers on the same side. Corrective treatment of the chest and soft tissue abnormalities in Poland syndrome varies according to different authors. We report the case of a 17-year-old adolescent who underwent chest wall reconstruction with a methyl methacrylate prosthesis. This surgical procedure is recommended for large anterior chest wall defects, and it prevents paradoxical movement. Moreover it provides for individual remodeling of the defect depending on the shape of the patient's chest.

  17. Synthesis of Methyl Methacrylate From Coal-Derived Syngas

    SciTech Connect

    Ben W.-L. Jang; Gerald N. Choi; James J. Spivey; Jospeh R. Zoeller; Richard D. Colberg; Samuel S. Tam

    1998-07-27

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. RTI has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, RTI is currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter(April-June, 1998), RTI has modified the reactor system including a new preheater and new temperature settings for the preheater. Continuous condensation of formaldehyde with propionic acid were carried out over 10% Nb O /SiO at 300°C without 2 5 2 interruption. Five activity and four regeneration cycles have been completed without plugging or material balance problems. The results show that 10% Nb O /SiO deactivates slowly with time 2 5 2 but can be regenerated, at least four times, to 100% of its original activity with 2% O in nitrogen 2 at 400°C. The cycles continue with consistent 90-95% of carbon balance. The reaction is scheduled to complete with 6 activity cycles and 5 regenerations. Used catalysts will be analyzed with TGA and XPS to determine bulk and surface coke content and coke properties. RTI will start the investigation of effects of propionic acid/formaldehyde ratio on reaction activity and product selectivity over 20% Nb O /SiO catalysts.

  18. Reactivity of Monovinyl (Meth)Acrylates Containing Cyclic Carbonates.

    PubMed

    Berchtold, Kathryn A; Nie, Jun; Stansbury, Jeffrey W; Bowman, Christopher N

    2008-12-09

    The tremendous diversity of materials properties available with polymers is due in large part to the ability to design structures from the monomeric state. The ease of use of comonomer mixtures only expands this versatility. While final polymer properties are obviously important in the selection or development of a material for a given purpose, for a number of applications, such as optical fiber coatings, photolithography and microelectronics, the additional requirement of a very rapid polymerization process may be equally critical. A class of unusually reactive mono-(meth)acrylate monomers bearing secondary functionality that includes carbonates, carbamates and oxazolidones, has been demonstrated but not fully explained. Here, the influence of an integral cyclic carbonate functional group on (meth)acrylate photopolymerization kinetics is examined in detail with respect to monomers with a wide variety of alternative secondary functionality structure as well as in comparison to conventional mono- and di-(meth)acrylates. The kinetic results from full cure studies of several cyclic carbonate-containing monomers clearly highlight specific structural variations that effectively promote monomer reactivity. Copolymerizations with tetrahydrofurfuryl methacrylate reflect similar dramatic kinetic effects associated with the novel monomers while partial cure homopolymerization studies reveal exceptional dark cure behavior linked to observations of uncommonly low ratios of termination to propagation rates throughout the conversion profile. Temperature effects on reaction kinetics, including both reaction rate and the individual kinetic parameters, as well as the temperature dependence of hydrogen bonding interactions specifically involving the secondary functional groups are probed as a means to understand better the fundamentally interesting and practically important behavior of these monomers.

  19. Vascular responsiveness to dimethylaminoethyl methacrylate and its degradation products.

    PubMed

    Abebe, Worku; Maddux, William F; Schuster, George S; Lewis, Jill B

    2003-07-01

    The increasing use of acrylate-based resins in dentistry has raised questions about the biocompatibility of these substances with oral tissues. The focus of the present investigation was to assess the responsiveness of blood vessels to the resin polymerization accelerating agent dimethylaminoethyl methacrylate (DMAEMA) and its degradation products dimethylethanolamine (DME) and methacrylic acid (MAA), using the rat aortic ring preparation as a tissue model. DMAEMA induced concentration-dependent relaxation of norepinephrine (NE)-contracted aortic rings with and without endothelium. N-nitro-L-arginine methyl ester (L-NAME) selectively inhibited the endothelium-dependent relaxation induced by DMAEMA, suggesting the release of nitric oxide from the endothelium by DMAEMA. Both indomethacin and glybenclamide attenuated the vasorelaxation elicited by DMAEMA in the presence as well as in the absence of endothelium, providing evidence for the role of vasorelaxant prostanoid(s) and K(ATP) channel activation in the responses observed. On the other hand, while MAA was without any apparent effect on the rat aorta, DMAEMA at high and DME at relatively low concentrations caused contraction of the tissues with and without endothelium in the absence of NE. The DME-induced contraction was inhibited by indomethacin, suggesting the involvement of contractile arachidonic acid metabolite(s) in the action of DME. This observation was supported by the findings of increased thromboxane A(2) (TXA(2)) production in aortic rings incubated with DME. Taken together, the data suggest that both DMAEMA and its degradation product, DME, are vasoactive, inducing vasorelaxation and contraction by various mechanisms that may involve the release of nitric oxide from the endothelium, the activation of smooth muscle K(ATP) channels, and the generation of vasorelaxant prostanoid(s) and TXA(2). These effects may play a role in tissue homeostasis and certain adverse conditions associated with the use of

  20. Synthesis of acrylates and Methacrylates from Coal-Derived Syngas

    SciTech Connect

    1997-05-12

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the U.S. Department of Energy, Federal Energy Technology Center. This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Eastman has focused on the propionate synthesis step. The resultant Mo catalysts work efficiently at much less severe conditions (170{degrees}C and 30 atm) than the conventional Ni catalysts (270{degrees} C and 180 atm). Bechtel has performed an extensive cost analysis which shows that Eastman`s propionate synthesis step is competitive with other technologies to produce the anhydride. Eastman and Bechtel have also compared the RTI- Eastman-Bechtel three-step methanol route to five other process routes to MMA. The results show that the product MMA can be produced at 520/lb, for a 250 Mlb/year MMA plant, and this product cost is competitive to all other process routes to MMA, except propyne carbonylation. In the second step, RTI and Eastman have developed active and stable V-SI-P tertiary metal oxide catalysts, Nb/Si0{sub 2}, and Ta/Si0{sub 2} catalysts for condensation of propionic anhydride or propionic acid with formaldehyde. RTI has demonstrated a novel correlation among the catalyst acid-base properties, condensation reaction yield, and long-term catalyst performance. Eastman and Bechtel have used the RTI experimental results of a 20 percent Nb/Si0{sub 2} catalyst, in terms of reactant conversions, MAA selectivities, and MAA yield, for their economic analysis. Recent research focuses on enhancing the condensation reaction yields, a better understanding of the acid-base property correlation and enhancing the catalyst lifetime.

  1. Crosslinkable fumed silica-based nanocomposite electrolytes: role of methacrylate monomer in formation of crosslinked silica network

    NASA Astrophysics Data System (ADS)

    Yerian, Jeffrey A.; Khan, Saad A.; Fedkiw, Peter S.

    The electrochemical and rheological properties of composite polymer electrolytes (CPEs) based on fumed silica with tethered crosslinkable groups are reported. These silica nanoparticles are dispersed in electrolytes consisting of poly(ethylene glycol) dimethyl ether (PEGdm)+lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) to which various methacrylate monomers, such as methyl (MMA), ethyl (EMA), butyl (BMA), n-hexyl (HMA), and n-dodecyl (DMA) methacrylate, are added. The methacrylate monomer facilitates creation of chemical crosslinks between fumed silica particles and formation of a crosslinked network. In this study, the effects of concentration and alkyl chain length of the monomers on conductivity, dynamic rheology, open-circuit interfacial stability, and cell voltage in lithium-lithium cell cycling are examined. Increasing the length of the monomer alkyl chain enhances both conductivity and elastic modulus of the crosslinked CPE. In contrast, increasing monomer concentration results in higher elastic modulus, but reduced conductivity. Lithium-lithium cell cycling and open-circuit interfacial stability results did not correlate with alkyl chain length. That is, for the lithium-lithium cycling studies, all crosslinked samples exhibit higher half-cycle voltage compared to non-crosslinked samples; however, the open-circuit interfacial stability of CPEs containing BMA and HMA exhibit improved stability compared to the other monomers and the CPE without monomer.

  2. Manufacture of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) hydrogel tubes for use as nerve guidance channels.

    PubMed

    Dalton, Paul D; Flynn, Lauren; Shoichet, Molly S

    2002-09-01

    Hydrogel tubes of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (p(HEMA-co-MMA)) made by liquid-liquid centrifugal casting are being investigated as potential nerve guidance channels in the central nervous system. An important criterion for the nerve guidance channel is that its mechanical properties are similar to those of the spinal cord, where it will be implanted. The formulated p(HEMA-co-MMA) tubes are soft and flexible, consisting of a gel-like outer layer, and an interconnected macroporous, inner layer. The relative thickness of the gel phase to macroporous phase is controlled by the formulation chemistry, and specifically by the ratio of co-monomers, HEMA and MMA. By varying the surface chemistry of the mold within which the tubes are synthesized, tubes were prepared with either a "cracked" or a smooth outer morphology. Tubes with the cracked outer morphology had periodic channels that traversed the wall of the tube, which resulted in a lower modulus than smooth outer morphology tubes, yet likely greater diffusive permeability. For tubes (and not rods) to be formed, phase separation must precede gelation as is detailed in a formulation phase diagram for HEMA, MMA and water. The tensile elastic modulus of p(HEMA-co-MMA) tubes reflected the formulation chemistry, with greater moduli (up to 400 kPa) recorded for tubes having 10 wt% MMA. The p(HEMA-co-MMA) tubes therefore had similar mechanical properties to those of the spinal cord, which has a reported elastic modulus range between 200 and 600 kPa.

  3. Monitoring of acid-base status of workers at a methyl methacrylate and polymethyl methacrylate production plant in Bulgaria.

    PubMed

    Prakova, Gospodinka R

    2003-01-01

    This study was carried out on 104 workers at three work operations and a control (nonproduction) area, within a methyl methacrylate (MMA)/polymethyl methacrylate (PMMA) production facility in Bulgaria. Airborne monitoring was conducted over a 10-year period for MMA and the reactant chemicals methanol and acetone cyanhydrine at the MMA operation, and MMA was monitored at the PMMA operation. Acid-base status of the workers was evaluated using traditional criteria (pH, pCO(2), pO(2), and HCO(3) in plasma). Data from retrospective monitoring of air levels of the chemicals were compared with the acid-base status of workers at the plant. In some cases air concentrations exceeded the threshold limit value, with the highest percentage of overexposure occurring with airborne MMA in the PMMA production operation. Acid-base disruption indicated by reductions in plasma pH and HCO(3) was found for all groups except the control population. The highest percentage reduction was associated with PMMA production workers. Additionally, respiratory acidosis, indicated by increased pCO(2), was noted in the MMA production and maintenance groups, implying that the response to MMA exposure may involve both the metabolic and respiratory acidosis component. This study was unique in that the combined exposure to MMA and the precursor chemical (methanol) were shown to produce the same effects in workers. It is suggested that when combined exposure occurs, disruption of acid-base status may occur. Enforcement of PPM requirements for coveralls and gloves should prevent skin contamination. Additionally, improvement of equipment in MMA and PMMA production areas is recommended: (1) automation of some manual operations; (2) use of respiratory protection during equipment cleaning; and (3) installation of local ventilation when applicable.

  4. A poly(alkyl methacrylate-divinylbenzene-vinylbenzyl trimethylammonium chloride) monolithic column for solid-phase microextraction.

    PubMed

    Liu, Wan-Ling; Lirio, Stephen; Yang, Yicong; Wu, Lin-Tai; Hsiao, Shu-Ying; Huang, Hsi-Ya

    2015-05-22

    In this study, an organic polymer monolithic columns, which were prepared via in situ polymerization of alkyl methacrylate-ester (AMA), divinylbenzene (DVB) and vinylbenzyl trimethylammonium chloride (VBTA, charged monomer), were developed as adsorbent for solid-phase microextraction (SPME). Different parameters affecting the extraction efficiency for nine (9) non-steroidal anti-inflammatory drugs (NSAIDs) such as the ratio of the stearyl methacrylate (SMA) to DVB monomer, column length, sample pH, extraction flow rate and desorption solvent were investigated to obtain the optimal SPME condition. Also, the permeability for each poly(AMA-DVB-VBTA) monolithic column was investigated by adding porogenic solvent (poly(ethylene glycol), PEG). Using the optimized condition, a series of AMA-based poly(AMA-DVB-VBTA) monolith columns were developed to determine the effect the extraction efficiency of NSAIDs by varying the alkyl chain length of the methacrylate ester (methyl-, butyl-, octyl-, or lauryl-methacrylate; (MMA, BMA, OMA, LMA)). Results showed that decreasing the AMA chain length increases the extraction efficiency of some NSAIDs (i.e. sulindac (sul), naproxen (nap), ketoprofen (ket) and indomethacin (idm)). Among the poly(AMA-DVB-VBTA) monolithic columns, poly(BMA-DVB-VBTA) showed a highly repeatable extraction efficiency for NSAIDs with recoveries ranging from 85.0 to 100.2% with relative standard deviation (RSD) less than 6.8% (n=3). The poly(BMA-DVB-VBTA) can also be reused for at least 50 times without any significant effect in extraction efficiency for NSAIDs. Finally, using the established conditions, the poly(BMA-DVB-VBTA) was used to extract trace-level NSAIDs (100μgL(-1)) in river water with good recoveries ranging from 75.8 to 90.8% (RSD<14.9%).

  5. Dual-Responsive pH and Temperature Sensitive Nanoparticles Based on Methacrylic Acid and Di(ethylene glycol) Methyl Ether Methacrylate for the Triggered Release of Drugs.

    PubMed

    Khine, Yee Yee; Jiang, Yanyan; Dag, Aydan; Lu, Hongxu; Stenzel, Martina H

    2015-08-01

    A series of thermo-and pH-responsive poly(methyl methacrylate)-block-poly[methacrylic acid-co-di(ethylene glycol) methyl ether methacrylate] PMMA-b-P[MAA-co-DEGMA] block copolymers were synthesized by RAFT polymerization and self-assembled into micelles. The molar ratio of MAA was altered from 0-12% in order to modulate the lower critical solution temperature (LCST) of PDEGMA. The release of the drug albendazole from the micelle was strongly dependent on the temperature and the LCST value of the polymer. Systems below the LCST released the drug slowly while increasing the temperature above the LCST or decreasing the pH value to 5 resulted in the burst-like release of the drug. ABZ delivered in this pH-responsive drug carrier had a higher toxicity than the free drug or the drug delivered in a non-responsive drug carrier.

  6. Radical Polymerization of Vinyl Acetate and Methyl Methacrylate Using Organochromium Initiators Complexed with Macrocyclic Polyamines

    DTIC Science & Technology

    1994-06-30

    METHYL METHACRYLATE USING ORGANOCHROMIUM REA NTS COMPLEXED WITH MACROCYCLIC A• by Daniela Mardare, Scott Gaynor, Krzysztof Matyjaszewski DTIC Published... Daniela Mardare, Scott Gaynor, Krzysztof Matyjaszewski 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) a. PERFORMING ORGANIZATION Carnegie Mellon

  7. Amphiphilic copolymers of sucrose methacrylate and acrylic monomers: bio-based materials from renewable resource.

    PubMed

    de Oliveira, Heitor F N; Felisberti, Maria Isabel

    2013-04-15

    Regioselective sucrose 1'-O-methacrylate obtained by transesterification catalyzed by Proteinase-N was copolymerized with hydrophilic N-isopropylacrylamide and hydrophobic methyl methacrylate in different molar ratios by free radical polymerization. The copolymers were characterized by (13)C nuclear magnetic resonance spectroscopy, gel permeation chromatography, differential scanning calorimetry and thermogravimetry. Solubility and phase behavior of aqueous solutions were also investigated. The glass transition of the copolymers presents a positive deviation from the values of the homopolymers due to the high density of inter and intramolecular hydrogen bonding. Their solubility is strongly dependent on the composition. Copolymers poor in methyl methacrylate are water soluble, while copolymers richer in methyl methacrylate behaves as hydrogel. These hydrogels are not chemically crosslinked and their form can be design prior swelling by the conventional processing methods, such as solvent casting and extrusion for instance. Copolymers of N-isopropylacrylamide are water soluble and their aqueous solutions present a lower critical solution temperature behavior forming thermoreversible hydrogels.

  8. Biomimetic potential of some methacrylate-based copolymers: a comparative study.

    PubMed

    Zecheru, Teodora; Filmon, Robert; Rusen, Edina; Mărculescu, Bogdan; Zerroukhi, Amar; Cincu, Corneliu; Chappard, Daniel

    2009-11-01

    Preparation of new biocompatible materials for bone recovery has consistently gained interest in the last few decades. Special attention was given to polymers that contain negatively charged groups, such as phosphate, carboxyl, and sulfonic groups toward calcification. This present paper work demonstrates that other functional groups present also potential application in bone pathology. New copolymers of 2-hydroxyethyl methacrylate with diallyldimethylammonium chloride (DADMAC), glycidyl methacrylate (GlyMA), methacrylic acid (MAA), 2-methacryloyloxymethyl acetoacetate (MOEAA), 2-methacryloyloxyethyltriethylammonium chloride (MOETAC), and tetrahydrofurfuryl methacrylate (THFMA) were obtained. The copolymers were characterized by FTIR, swelling potential, and they were submitted to in vitro tests for calcification and cytotoxicity evaluation. GlyMA and MOETAC-containing copolymers show promising results for further in vivo mineralization tests, as a potential alternative to the classical bone grafts, in bone tissue engineering.

  9. Estimation of monomer content in polymethyl methacrylate contact lens materials by Raman spectroscopy.

    PubMed

    Kantarci, Z; Aksoy, S; Hasirci, N

    1997-07-01

    Polymethyl methacrylate is the most commonly used contact lens material due to its excellent optical properties. However the presence of residual monomer in the structure alters its transparency as well as its biocompatibility, thus, there is a need to detect any remaining methyl methacrylate. Raman spectroscopy is a rapid, sensitive, and non destructive method as compared to other spectroscopic, chromatographic or polarographic methods. In this study, the spectra of some lens materials (prepared from methyl methacrylate, 2-hydroxy ethyl methacrylate, Hexamethyl disiloxane and polypropylene glycol with or without the addition of crosslinker ethylene glycol dimethylacrylate) were obtained by Raman spectroscopy. It was observed that an amount of crosslinker present in the structure proves effective for the unpolymerized monomer content. None of the samples, except those containing nexamethyl disiloxane, demonstrated any monomer residue.

  10. 40 CFR 721.10517 - Alkyl methacrylates, polymer with substituted carbomonocycle, hydroxymethyl acrylamide and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted carbomonocycle, hydroxymethyl acrylamide and fluorinatedalkyl acrylate (generic). 721.10517... Substances § 721.10517 Alkyl methacrylates, polymer with substituted carbomonocycle, hydroxymethyl acrylamide... substituted carbomonocycle, hydroxymethyl acrylamide and fluorinatedalkyl acrylate (PMN P-10-485) is...

  11. 40 CFR 721.10517 - Alkyl methacrylates, polymer with substituted carbomonocycle, hydroxymethyl acrylamide and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted carbomonocycle, hydroxymethyl acrylamide and fluorinatedalkyl acrylate (generic). 721.10517... Substances § 721.10517 Alkyl methacrylates, polymer with substituted carbomonocycle, hydroxymethyl acrylamide... substituted carbomonocycle, hydroxymethyl acrylamide and fluorinatedalkyl acrylate (PMN P-10-485) is...

  12. Preparation of Optically Transparent Films of Poly(methyl methacrylate) (PMMA) and Montmorillonite

    DTIC Science & Technology

    2001-11-01

    methacrylate] [PMMA] and Montmorillonite DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report...Society V6.4 Preparation of Optically Transparent Films of Poly(methyl methacrylate) (PMMA) and Montmorillonite Elena Vasiliul, Chyi-Shan Wang"’ 2...exchanged with 1.40 meq/g of dimethyl dehydrogenated tallow ammonium from a sodium montmorillonite , Cloisite Na+ (CNa). Since the cation-exchange

  13. Fabrication of zeolitic imidazolate framework-8-methacrylate monolith composite capillary columns for fast gas chromatographic separation of small molecules.

    PubMed

    Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; ALOthman, Zeid Abdullah

    2015-08-07

    A composite zeolitic imidazolate framework-8 (ZIF-8) with a butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolithic capillary column (33.5cm long×250μm i.d.) was fabricated to enhance the separation efficiency of methacrylate monoliths toward small molecules using conventional low-pressure gas chromatography in comparison with a neat butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolithic capillary column (33.5cm long×250μm i.d.). The addition of 10mgmL(-1) ZIF-8 micro-particles increased the BET surface area of BuMA-co-EDMA by 3.4-fold. A fast separation of five linear alkanes in 36s with high resolution (Rs≥1.3) was performed using temperature program. Isothermal separation of the same sample also showed a high efficiency (3315platesm(-1) for octane) at 0.89min. Moreover, the column was able to separate skeletal isomers, such as iso-octane/octane and 2-methyl octane/nonane. In addition, an iso-butane/iso-butylene gas mixture was separated at ambient temperature. Comparison with an open tubular TR-5MS column (30m long×250μm i.d.) revealed the superiority of the composite column in separating the five-membered linear alkane mixture with 4-5 times increase in efficiency and a total separation time of 0.89min instead of 4.67min. A paint thinner sample was fully separated using the composite column in 2.43min with a good resolution (Rs≥0.89). The perfect combination between the polymeric monolith, with its high permeability, and ZIF-8, with its high surface area and flexible 0.34nm pore openings, led to the fast separation of small molecules with high efficiency and opened a new horizon in GC applications.

  14. Synthesis of Acrylates and Methacrylates from Coal-Derived Syngas.

    SciTech Connect

    Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.; Colberg, R.D.; Choi, G.N.; Tam, S.S.

    1997-10-17

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the U.S. Department of Energy/Federal Energy Technology Center (DOE/FETC). This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Over the last quarter, RTI carried out activity tests on a pure (99 percent) Nb{sub 2}O{sub 5} catalyst, received from Alfa Aesar, under the following experimental conditions: T=300 C; P=4 atm, 72:38:16:4:220 mmol/h, PA:H{sub 2}0:HCHO:CH{sub 3}0H:N{sub 2}; 5-g catalyst charge. For the pure material, the MAA yields (based on HCHO and PA) were at 8.8 and 1.5 percent, clearly inferior compared to those for a 10-percent Nb{sub 2}O{sub 5}/Si0{sub 2} catalyst (20.1 and 4.5 percent). The X-ray diffraction (XRD) patterns of pure Nb{sub 2}O{sub 5} and 20-percent Nb{sub 2}O{sub 5}/Si0{sub 2} that while pure Nb{sub 2}O{sub 5} is very highly crystalline, Si0{sub 2} support for an amorphous nature of the 20 percent Nb{sub 2}O{sub 5}/Si0{sub 2} catalyst the last quarter, RTI also began research on the use of dimethyl ether (DME), product of methanol dehydrocondensation, as an alternate feedstock in MMA synthesis. As a result, formaldehyde is generated either externally or in situ, from DME, in the process envisaged in the contract extension. The initial work on the DME extension of the contract focuses on a tradeoff analysis that will include a preliminary economic analysis of the DME and formaldehyde routes and catalyst synthesis and testing for DME partial oxidation and condensation reactions. Literature guides exist for DME partial oxidation catalysts; however, there are no precedent studies on catalyst development for DME-methyl propionate (MP) condensation reactions, thereby making DME-MP reaction studies a

  15. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    Makarand R. Gogate; James J. Spivey; Joseph R. Zoeller; Richard D. Colberg; Gerald N. Choi

    1999-07-19

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. During the April-June quarter(04-06/99) the first in-situ formaldehyde generation from DME and condensation with methyl propionate is demonstrated and the results are summarized. The supported niobium catalyst shows better condensation activity, but supported tungsten catalyst has higher formaldehyde selectivity. The project team has also completed a 200-hour long term test of PA-HCHO condensation over 30% Nb{sub 2}O{sub 5}/SiO{sub 2}. Three activity cycles and two regeneration cycles were carried out. 30% Nb{sub 2}O{sub 5}/SiO{sub 2} showed similar MAA yields as 10% Nb{sub 2}O{sub 5}/SiO{sub 2} at 300 C. However, the deactivation appears to be slower with 30% Nb{sub 2}O{sub 5}/SiO{sub 2} than 10% Nb{sub 2}O{sub 5}/SiO{sub 2}. An detailed economic analysis of PA-HCHO condensation process for a 250 million lb/yr MMA plant is currently studied by Bechtel. Using the Amoco data-based azeotropic distillation model as the basis, an ASPEN flow sheet model was constructed to simulate the formaldehyde and propionic acid condensation processing section based on RTI's design data. The RTI MAA effluent azeotropic distillation column was found to be much more difficult to converge. The presence of non-condensible gases along with the byproduct DEK (both of which were not presented in

  16. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    BEN W.-L. JANG; GERALD N. CHOI; JAMES J. SPIVEY; JOSPEH R. ZOELLER; RICHARD D. COLBERG

    1998-10-20

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. RTI has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, RTI is currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter (July-September, 1998), the project team has completed the continuous condensation of formaldehyde with propionic acid over 10% Nb{sub 2}O{sub 5}/SiO{sub 2} at 300 C. Six activity and five regeneration cycles have been completed. The results show that 10% Nb{sub 2}O{sub 5}/SiO{sub 2} deactivates slowly with time but can be regenerated to its original activity with 2% O{sub 2} in nitrogen over night at 400 C. We have investigated the effects of regeneration, propionic acid/formaldehyde ratio (PA/HCHO = 4.5/1 to 1.5/1) and reaction temperature(280-300 C) on reaction activity and product selectivity over 20% Nb{sub 2}O{sub 5}/SiO{sub 2} catalysts. The regeneration effect on 20% Nb{sub 2}O{sub 5}/SiO{sub 2} is similar to the effect on 10% Nb{sub 2}O{sub 5}/SiO{sub 2}. The regeneration can bring the deactivated catalyst to its original activity. However, the selectivity to MAA decreases with regeneration while the selectivity to DEK and CO{sub 2} increases. When PA/HCHO ratio is decreased from 4.5/1 to 2.25/1 then to 1.5/1 at 300 C the MAA yield decreases but the MAA selectivity first increases then decreases. Decreasing the reaction temperature from 300 C to 280 C decreases the MAA yield from 39.5% to 30.7% but increases the MAA selectivity from 73.7% to 82.2%. The

  17. Novel catalysts for the environmentally friendly synthesis of methyl methacrylate

    SciTech Connect

    Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.

    1997-11-01

    The development of a process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas can alleviate the environmental hazards associated with the current commercial MMA technology, the acetone cyanohydrin (ACH) process. A three-step syngas-based process consisted of synthesis of a propionic acid, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) to form MMA. The first two steps, propionic acid synthesis and condensation, are discussed here. The low-temperature, low-pressure process for single-step hydrocarbonylation of ethylene to propionic acid is carried out using a homogeneous iodine-promoted Mo(CO){sub 6} catalyst at pressures (30--70 atm) and temperatures (150--200 C) lower than those reported for other catalysts. Mechanistic investigations suggest that catalysis is initiated by a rate-limiting CO dissociation from Mo(CO){sub 6}. This dissociation appears to be followed by an inner electron-transfer process of an I atom from EtI to the coordinately unsaturated Mo(CO){sub 5}. This homogeneous catalyst for propionate synthesis represents the first case of an efficient carbonylation process based on Cr group metals. The condensation of formaldehyde with propionic acid is carried out by acid-base bifunctional catalysts. As a result of screening over 80 catalytic materials, group V metals supported on an amorphous silica are found to be most effective. A 20% Nb/SiO{sub 2} catalyst appears to be the most active and stable catalyst thus far. Preliminary relations among the reaction yield and catalyst properties indicate that a high surface area and a low overall surface acidity (<50 = mol of NH{sub 3}/g), with a high proportion of the acidity being weak (<350 C desorption of NH{sub 3}), are desirable. Long-term deactivation of V-Si-P, Nb-Si, and Ta-Si catalysts suggests that carbon deposition is the primary cause for activity decay, and the catalyst activity is partially restorable by oxidative regeneration.

  18. Cholesterol-modified superporous poly(2-hydroxyethyl methacrylate) scaffolds for tissue engineering.

    PubMed

    Kubinová, Sárka; Horák, Daniel; Syková, Eva

    2009-09-01

    Modifications of poly(2-hydroxyethyl methacrylate) (PHEMA) with cholesterol and laminin have been developed to design scaffolds that promote cell-surface interaction. Cholesterol-modified superporous PHEMA scaffolds have been prepared by the bulk radical copolymerization of 2-hydroxyethyl methacrylate (HEMA), cholesterol methacrylate (CHLMA) and the cross-linking agent ethylene dimethacrylate (EDMA) in the presence of ammonium oxalate crystals to introduce interconnected superpores in the matrix. With the aim of immobilizing laminin (LN), carboxyl groups were also introduced to the scaffold by the copolymerization of the above monomers with 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA). Subsequently, the MCMEMA moiety in the resulting hydrogel was hydrolyzed to [2-(methacryloyloxy)ethoxy]acetic acid (MOEAA), and laminin was immobilized via carbodiimide and N-hydroxysulfosuccinimide chemistry. The attachment, viability and morphology of mesenchymal stem cells (MSCs) were evaluated on both nonporous and superporous laminin-modified as well as laminin-unmodified PHEMA and poly(2-hydroxyethyl methacrylate-co-cholesterol methacrylate) P(HEMA-CHLMA) hydrogels. Neat PHEMA and laminin-modified PHEMA (LN-PHEMA) scaffolds facilitated MSC attachment, but did not support cell spreading and proliferation; the viability of the attached cells decreased with time of cultivation. In contrast, MSCs spread and proliferated on P(HEMA-CHLMA) and LN-P(HEMA-CHLMA) hydrogels.

  19. Synthesis and properties of methacrylic-functionalized tween monomer networks.

    PubMed

    Muzzalupo, Rita; Tavano, Lorena; Rossi, Cesare Oliviero; Cassano, Roberta; Trombino, Sonia; Picci, Nevio

    2009-02-03

    Tween surfactants possess very interesting properties such as biodegradability, biocompatibility, and low toxicity. The synthesis of acrylate monomers by means of the chemical modification of polysorbate surfactants Tween 20, 40, and 60 with unsaturated groups is described. Monomers were obtained as a result of the reaction of methacrylic anhydride with different grades of Tween surfactants. Further polymerization was carried out in tetrahydrofuran, dimethylformamide, and a mixture of water-tetrahydrofuran. Physicochemistry properties of the polymer networks were investigated, and the obtained results reveal that they strongly depend on the type of solvent used during the polymerization, as well as on the concentration of the casting solution. In particular, our study demonstrated that, depending on the solvent boiling point, i.e., the facility to remove the solvent from the polymer matrix, it is possible to predict properties of the network morphology. Moreover, in vitro studies on controlled release were accomplished to demonstrate the possibility of utilizing these new materials as drug delivery systems. All resulting networks represent a novel class of cross-linked polymeric materials useful both in pharmaceutical and chemical applications.

  20. Methyl methacrylate and respiratory sensitization: A Critical review

    PubMed Central

    Borak, Jonathan; Fields, Cheryl; Andrews, Larry S; Pemberton, Mark A

    2011-01-01

    Methyl methacrylate (MMA) is a respiratory irritant and dermal sensitizer that has been associated with occupational asthma in a small number of case reports. Those reports have raised concern that it might be a respiratory sensitizer. To better understand that possibility, we reviewed the in silico, in chemico, in vitro, and in vivo toxicology literature, and also epidemiologic and occupational medicine reports related to the respiratory effects of MMA. Numerous in silico and in chemico studies indicate that MMA is unlikely to be a respiratory sensitizer. The few in vitro studies suggest that MMA has generally weak effects. In vivo studies have documented contact skin sensitization, nonspecific cytotoxicity, and weakly positive responses on local lymph node assay; guinea pig and mouse inhalation sensitization tests have not been performed. Cohort and cross-sectional worker studies reported irritation of eyes, nose, and upper respiratory tract associated with short-term peaks exposures, but little evidence for respiratory sensitization or asthma. Nineteen case reports described asthma, laryngitis, or hypersensitivity pneumonitis in MMA-exposed workers; however, exposures were either not well described or involved mixtures containing more reactive respiratory sensitizers and irritants.The weight of evidence, both experimental and observational, argues that MMA is not a respiratory sensitizer. PMID:21401327

  1. Methyl Methacrylate Polymerization in Nanoporous Matrix: Reactivity and Resulting Properties

    NASA Astrophysics Data System (ADS)

    Zhao, Haoyu; Begum, Fatema; Simon, Sindee

    2012-02-01

    Nanoconfinement is well known to affect the properties of polymers, including changes in the glass transition temperature (Tg). In this work, the focus is on the influence of nanoconfinement on free radical polymerization reaction kinetics and the properties of the polymer produced. Controlled pore glass (CPG) is used as a nanoconfining matrix for methyl methacrylate (MMA) polymerization with pore diameters of 13 nm, 50 nm, and 110 nm. The reaction is followed by measuring heat flow as a function of reaction time during isothermal polymerization at temperatures ranging from 60 C to 95 C using differential scanning calorimetry (DSC). After reaction, the properties of the polymer are measured, including Tg, molecular weight, and tacticity. Nanoconfiment is found to result in earlier onset of autoacceleration, presumablely due to a decrease in the rate of termination arising from decreases in chain diffusivity in the confined state. In addition, Tg and molecular weight of the resulting PMMA are found to increase. A model of the nanoconfined reaction is able to quantitatively capture these effects by accounting for changes in chain diffusivity, and in native pores, also accounting for changes in intrinsic reaction rates.

  2. Directed Endothelial Cell Morphogenesis in Micropatterned Gelatin Methacrylate Hydrogels

    PubMed Central

    Nikkhah, Mehdi; Eshak, Nouran; Zorlutuna, Pinar; Annabi, Nasim; Castello, Marco; Kim, Keekyoung; Dolatshahi-Pirouz, Alireza; Edalat, Faramarz; Bae, Hojae; Yang, Yunzhi; Khademhosseini, Ali

    2013-01-01

    Engineering of organized vasculature is a crucial step in the development of functional and clinically relevant tissue constructs. A number of previous techniques have been proposed to spatially regulate the distribution of angiogenic biomolecules and vascular cells within biomaterial matrices to promote vascularization. Most of these approaches have been limited to two-dimensional (2D) micropatterned features or have resulted in formation of random vasculature within three-dimensional (3D) microenvironments. In this study, we investigate 3D endothelial cord formation within micropatterned gelatin methacrylate (GelMA) hydrogels with varying geometrical features (50–150 µm height). We demonstrated the significance dependence of endothelial cells proliferation, alignment and cord formation on geometrical dimensions of the patterned features. The cells were able to align and organize within the micropatterned constructs and assemble to form cord structures with organized actin fibers and circular/elliptical cross-sections. The inner layer of the cord structure was filled with gel showing that the micropatterned hydrogel constructs guided the assembly of endothelial cells into cord structures. Notably, the endothelial cords were retained within the hydrogel microconstructs for all geometries after two weeks of culture; however, only the 100 µm-high constructs provided the optimal microenvironment for the formation of circular and stable cord structures. Our findings suggest that endothelial cord formation is a preceding step to tubulogenesis and the proposed system can be used to develop organized vasculature for engineered tissue constructs. PMID:23018132

  3. The toxicokinetics and distribution of 2-hydroxyethyl methacrylate in mice.

    PubMed

    Durner, J; Kreppel, H; Zaspel, J; Schweikl, H; Hickel, R; Reichl, Franz X

    2009-04-01

    The cytotoxicity of dental composites has been attributed to the release of residual monomers from polymerized resin-based composites due to the degradation processes or the incomplete polymerisation of materials. 2-Hydroxyethyl methacrylate (HEMA) is one of the major components released from dental resin-based composites. It was shown in vitro that HEMA was released into the adjacent biophase from such materials during the first days after placement. In this study uptake, distribution, and excretion of 14C-HEMA applied via gastric tube or subcutaneous administration at dose levels well above those encountered in dental care were examined in mice to test the hypothesis that HEMA can reach cytotoxic levels in mammalian tissues. 14C-HEMA was taken up rapidly from the stomach and intestines after gastric administration and was widely distributed in the body following administration by each route. Most 14C was excreted within one day as (14)CO(2). Two metabolic pathways of 14C-HEMA can be described. The peak HEMA levels in all tissues examined after 24h were lower than known toxic levels. Therefore the study did not support the hypothesis.

  4. Aggregation and transport of Brij surfactants in hydroxyethyl methacrylate hydrogels.

    PubMed

    Kapoor, Yash; Bengani, Lokendrakumar C; Tan, Grace; John, Vijay; Chauhan, Anuj

    2013-10-01

    Surfactant loaded polymeric hydrogels find applications in several technological areas including drug delivery. Drug transport can be attenuated in surfactant loaded gels through partitioning of the drug in the surfactant aggregates. The drug transport depends on the type of the aggregates and also on the surfactant transport because diffusion of the surfactant leads to dissolution of the aggregates. The drug and the surfactant transport can be characterized by the surfactant monomer diffusivity Ds. and the critical aggregation concentration C(*). Here we focus on the transport in hydroxyethyl methacrylate (HEMA) hydrogels loaded with three different types of Brij surfactants. We measure transport of a hydrophobic drug cyclosporine and the surfactant for surfactant loadings ranging from 0.1% to 8%, and utilize the data to predict the values of Ds. and C(*). We show that the predictions based on surfactant transport are significantly different from those based on modeling the drug transport. The differences are attributed to the assumption of just one type of aggregate in the gel irrespective of the total concentration. The transport data suggests existence of multiple types of aggregates and this hypothesis is validated for Brij 98 by imaging of the microstructure with free fracture SEM.

  5. 2-hydroxyethyl methacrylate as an inhibitor of matrix metalloproteinase-2.

    PubMed

    Carvalho, Rodrigo V; Ogliari, Fabrício A; de Souza, Ana P; Silva, Adriana F; Petzhold, Cesar L; Line, Sergio R P; Piva, Evandro; Etges, Adriana

    2009-02-01

    This study evaluated the effect of different concentrations of 2-hydroxyethyl methacrylate (HEMA) on the inhibition of matrix metalloproteinase-2 (MMP-2) in vitro. Mouse gingival explants were cultured overnight in Dulbecco's modified Eagle's minimal essential medium, following which the expression of secreted enzymes was analyzed by gelatin zymography and the effects of different amounts of HEMA on enzyme activity were investigated. The gelatinolytic proteinases present in the conditioned media were characterized as being matrix metalloproteinases (MMPs) by means of specific chemical inhibition. The MMPs present in the conditioned media were identified, using immunoprecipitation, as MMP-2. Three major bands were detected in the zymographic assays and were characterized, according to their respective molecular weights, into the following forms of MMP-2: zymogene (72 kDa), intermediate (66 kDa), and active (62 kDa). All forms of MMP-2 were inhibited by HEMA in a dose-dependent manner, implying that MMP-2 may be inhibited by HEMA in vivo.

  6. Carboxybetaine methacrylate oligomer modified nylon for circulating tumor cells capture.

    PubMed

    Dong, Chaoqun; Wang, Huiyu; Zhang, Zhuo; Zhang, Tao; Liu, Baorui

    2014-10-15

    Circulating tumor cells (CTC) capture is one of the most effective approaches in diagnosis and treatment of cancers in the field of personalized cancer medicine. In our study, zwitterionic carboxybetaine methacrylate (CBMA) oligomers were grafted onto nylon via atomic transfer random polymerization (ATRP) which would serve as a novel material for the development of convenient CTC capture interventional medical devices. The chemical, physical and biological properties of pristine and modified nylon surfaces were assessed by Fourier transform infrared spectra, atomic force microscope, water contact angle measurements, X-ray photoelectron spectroscopy, protein adsorption, platelet adhesion, and plasma recalcification time (PRT) determinations, etc. The results, including the significant decrease of proteins adsorption and platelets adhesion, as well as prolonged PRTs demonstrated the extraordinary biocompatibility and blood compatibility of the modified surface. Furthermore, we showed that upon immobilization of anti-epithelial cell adhesion molecular (anti-EpCAM) antibody onto the CBMA moiety, the modified nylon surface can selectively capture EpCAM positive tumor cells from blood with high efficiency, indicating the potential of the modified nylon in the manufacture of convenient interventional CTC capture medical devices.

  7. Wettability interpretation of oxygen plasma modified poly(methyl methacrylate).

    PubMed

    Chai, Jinan; Lu, Fuzhi; Li, Baoming; Kwok, Daniel Y

    2004-12-07

    Poly(methyl methacrylate) (PMMA) has been modified via a dc pulsed oxygen plasma for different treatment times. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), optical profilometer, zeta potential, and advancing contact angle measurements. The measured advancing contact angles of water decreased considerably as a function of discharge. Several oxygen-based functionalities (carbonyl, carboxyl, carbonate, etc.) were detected by XPS, while zeta potential measurements confirmed an increase in negative charge for the treated PMMA surface. Evaluating the correlation between the concentration of polar chemical species and zeta potential, we found that increase in surface hydrophilicity results from the coeffect due to incorporation of oxygen functional groups and creation of charge states. The electrical double layer (EDL) effect was also considered in contact angle interpretation by introducing an additional surface tension term into Young's equation. We also found that EDL contribution to the solid-liquid interfacial tension is negligible and can be safely ignored for the systems considered here.

  8. 2-hydroxylethyl methacrylate (HEMA), a tooth restoration component, exerts its genotoxic effects in human gingival fibroblasts trough methacrylic acid, an immediate product of its degradation.

    PubMed

    Szczepanska, Joanna; Poplawski, Tomasz; Synowiec, Ewelina; Pawlowska, Elzbieta; Chojnacki, Cezary J; Chojnacki, Jan; Blasiak, Janusz

    2012-02-01

    HEMA (2-hydroxyethyl methacrylate), a methacrylate commonly used in dentistry, was reported to induce genotoxic effects, but their mechanism is not fully understood. HEMA may be degraded by the oral cavity esterases or through mechanical stress following the chewing process. Methacrylic acid (MAA) is the primary product of HEMA degradation. In the present work we compared cytotoxic and genotoxic effects induced by HEMA and MAA in human gingival fibroblasts (HGFs). A 6-h exposure to HEMA or MAA induced a weak decrease in the viability of HGFs. Neither HEMA nor MAA induced strand breaks in the isolated plasmid DNA, but both compounds evoked DNA damage in HGFs, as evaluated by the alkaline comet assay. Oxidative modifications to the DNA bases were monitored by the DNA repair enzymes Endo III and Fpg. DNA damage induced by HEMA and MAA was not persistent and was removed during a 120 min repair incubation. Results from the neutral comet assay indicated that both compounds induced DNA double strand breaks (DSBs) and they were confirmed by the γ-H2AX assay. Both compounds induced apoptosis and perturbed the cell cycle. Therefore, methacrylic acid, a product of HEMA degradation, may be involved in its cytotoxic and genotoxic action.

  9. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications.

    PubMed

    Buga, Mihaela-Ramona; Zaharia, Cătălin; Bălan, Mihai; Bressy, Christine; Ziarelli, Fabio; Margaillan, André

    2015-06-01

    In this study, silk fibroin surface containing hydroxyl and aminogroups was firstly modified using a polymerizable coupling agent 3-(trimethoxysilyl) propyl methacrylate (MPS), in order to induce vinyl groups onto the fiber surface. The reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization of methyl methacrylate (MMA) and tributylsilyl methacrylate (TBSiMA) through the immobilized vinyl bond on the silk fibroin surface in the presence of 2-cyanoprop-2-yl dithiobenzoate (CPDB) as chain-transfer agent and 2,2'-azobis(isobutyronitrile) (AIBN) as initiator was conducted in toluene solution at 70°C for 24h. The structure and properties of the modified fiber were characterized by Fourier Transform Infrared Spectroscopy, (13)C, (29)Si Nuclear Magnetic Resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), confirming the presence of the coupling molecule and the methacrylate groups onto the silk fibroin fiber surface. Molecular weight distributions were assessed by triple detection size exclusion chromatography (TD-SEC) in order to verify the livingness of the polymerization.

  10. Poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) Brushes as Peptide/Protein Microarray Substrate for Improving Protein Binding and Functionality.

    PubMed

    Lei, Zhen; Gao, Jiaxue; Liu, Xia; Liu, Dianjun; Wang, Zhenxin

    2016-04-27

    We developed a three-dimensional (3D) polymer-brush substrate for protein and peptide microarray fabrication, and this substrate was facilely prepared by copolymerization of glycidyl methacrylate (GMA) and 2-hydroxyethyl methacrylate (HEMA) monomers via surface-initiated atom transfer radical polymerization (SI-ATRP) on a glass slide. The performance of obtained poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) (P(GMA-HEMA)) brush substrate was assessed by binding of human IgG with rabbit antihuman IgG antibodies on a protein microarray and by the determination of matrix metalloproteinase (MMP) activities on a peptide microarray. The P(GMA-HEMA) brush substrate exhibited higher immobilization capacities for proteins and peptides than those of a two-dimensional (2D) planar epoxy slide. Furthermore, the sensitivity of the P(GMA-HEMA) brush-based microarray on rabbit antihuman IgG antibody detection was much higher than that of its 2D counterpart. The enzyme activities of MMPs were determined specifically with a low detection limit of 6.0 pg mL(-1) for MMP-2 and 5.7 pg mL(-1) for MMP-9. By taking advantage of the biocompatibility of PHEMA, the P(GMA-HEMA) brush-based peptide microarray was also employed to evaluate the secretion of MMP-2 and MMP-9 by cells cultured off the chip or directly on the chip, and satisfactory results were obtained.

  11. Synthesis and characterization of fluorinated methacrylates-based copolymers containing cross-linkable pendant groups for optical waveguides

    NASA Astrophysics Data System (ADS)

    Kim, Ho June; Kim, Kwangsok; Chin, In-Joo

    2006-02-01

    Methacrylate based copolymers containing thermal and UV cross-linkable groups were prepared, ad their optical properties were investigated. Copolymerization of octafluoropentyl methacrylate (OFPMA) with hydroxyethyl methacrylate (HEMA) was followed by reacting HEMA and methacrylic anhydride (MAAN), yielding a fluorinated copolymer with cross-linkable pendant group. The refractive indices of the copolymers before cross-linking ranged from 1.4329 to 1.4646, and those of the cross-linked copolymers varied from 1.4500 to 1.4822, depending on the fluorine content.

  12. Synthesis of three different galactose-based methacrylate monomers for the production of sugar-based polymers.

    PubMed

    Desport, Jessica S; Mantione, Daniele; Moreno, Mónica; Sardón, Haritz; Barandiaran, María J; Mecerreyes, David

    2016-09-02

    Glycopolymers, synthetic sugar-containing macromolecules, are attracting ever-increasing interest from the chemistry community. Glycidyl methacrylate (GMA) is an important building block for the synthesis of sugar based methacrylate monomers and polymers. Normally, glycidyl methacrylate shows some advantages such as reactivity against nucleophiles or milder synthetic conditions such as other reactive methacrylate monomers. However, condensation reactions of glycidyl methacrylate with for instance protected galactose monomer leads to a mixture of two products due to a strong competition between the two possible pathways: epoxide ring opening or transesterification. In this paper, we propose two alternative routes to synthesize regiospecific galactose-based methacrylate monomers using the epoxy-ring opening reaction. In the first alternative route, the protected galactose is first oxidized to the acid in order to make it more reactive against the epoxide of GMA. In the second route, the protected sugar was first treated with epichlorohydrin followed by the epoxy ring opening reaction with methacrylic acid, to create an identical analogue of the ring-opening product of GMA. These two monomers were polymerized using conventional radical polymerization and were compared to the previously known galactose-methacrylate one. The new polymers show similar thermal stability but lower glass transition temperature (Tg) with respect to the known galactose methacrylate polymer.

  13. Horseradish peroxidase mediated free radical polymerization of methyl methacrylate.

    PubMed

    Kalra, B; Gross, R A

    2000-01-01

    This paper reports the free radical polymerization of methyl methacrylate (MMA) catalyzed by horseradish peroxidase (HRP). A novel method was developed whereby MMA polymerization can be carried out at ambient temperatures in the presence of low concentrations of hydrogen peroxide and 2,4-pentanedione in a mixture of water and a water-miscible solvent. Polymers of MMA formed were highly stereoregular with predominantly syndiotactic sequences (syn-dyad fractions from 0.82 to 0.87). Analyses of the chloroform-soluble fraction of syndio-PMMA products by GPC showed that they have number-average molecular weights, Mn, that range from 7500 to 75,000. By using 25% v/v of the cosolvents dioxane, tetrahydrofuran, acetone, and dimethylformamide, 85, 45, 7 and 2% product yields, respectively, resulted after 24 h. Increasing the proportion of dioxane to water from 1:3 to 1:1 and 3:1 resulted in a decrease in polymer yield from 45 to 38 and 7%, respectively. Increase in the enzyme concentration from 70 to 80 and 90 mg/mL resulted in increased reaction kinetics. By adjustment of the molar ratio of 2,4-pentanedione to hydrogen peroxide between 1.30:1.0 and 1.45:1.0, the product yields and Mn values were increased. On the basis of the catalytic properties of HRP and studies herein, we believe that the keto-enoxy radicals from 2,4-pentanedione are the first radical species generated. Then, initiation may take place through this radical or by the radical transfer to another molecule.

  14. Dual-functional electrospun poly(2-hydroxyethyl methacrylate).

    PubMed

    Zhang, Bo; Lalani, Reza; Cheng, Fang; Liu, Qingsheng; Liu, Lingyun

    2011-12-01

    Poly(2-hydroxyethyl methacrylate) (pHEMA) has been widely used in many biomedical applications due to its well-known biocompatibility. For tissue engineering applications, porous scaffolds that mimic fibrous structures of natural extracellular matrix and possess high surface-area-to-volume ratios are highly desirable. So far, a systematic approach to control diameter and morphology of pHEMA fibers has not been reported and potential applications of pHEMA fibers have barely been explored. In this work, pHEMA was synthesized and processed into fibrous scaffolds using an electrospinning approach. Fiber diameters from 270 nm to 3.6 μm were achieved by controlling polymer solution concentration and electrospinning flow rate. Post-electrospinning thermal treatment significantly improves integrity of the electrospun membranes in water. The pHEMA microfibrous membranes exhibited water absorption up to 280% (w/w), whereas the pHEMA hydrogel only absorbed 70% water. Fibrinogen adsorption experiments demonstrate that the electrospun pHEMA fibers highly resist nonspecific protein adsorption. Hydroxyl groups on electrospun pHEMA fibers were further activated for protein immobilization. A bovine serum albumin (BSA) binding capacity as high as 120 mg BSA/g membrane was realized at an intermediate fiber diameter. The pHEMA fibrous scaffolds functionalized with collagen I significantly promoted fibroblast adhesion, spreading, and proliferation. We conclude that the electrospun pHEMA fibers are dual functional, that is, they resist nonspecific protein adsorption meanwhile abundant hydroxyl groups on fibers allow effective conjugation of biomolecules in a nonfouling background. High water absorption and dual functionality of the electrospun pHEMA fibers may lead to a number of potential applications such as wound dressings, tissue scaffolds, and affinity membranes.

  15. Assessment of methyl methacrylate genotoxicity by the micronucleus test.

    PubMed

    Araújo, Amarildo Mariano de; Alves, Guilherme Rodrigues; Avanço, Guilherme Trevisan; Parizi, José Luiz Santos; Nai, Gisele Alborghetti

    2013-01-01

    The aim of this study was to evaluate the genotoxic potential of methyl methacrylate (MMA) vapor by simulating standard occupational exposure of 8 hours per day and using the micronucleus test. We used 32 adult male Wistar rats divided into three groups: A - 16 rats exposed to MMA for 8 hours a day, B - Eight rats receiving single subcutaneous doses of cyclophosphamide on the first day of the experiment (positive control), C - Eight rats receiving only water and food ad libitum (negative control). Eight rats from group A and all of the rats from groups B and C were sacrificed 24 hours after beginning the experiment (acute exposure in group A). The remaining animals in group A were sacrificed 5 days after the experiment began (repeated exposure assessment in group A, simulating occupational exposure 40 hours/week). Femoral bone marrow was collected from each rat at the time of sacrifice for use in the micronucleus test. Two slides were completed per animal and were stained with Giemsa staining. Two thousand polychromatic erythrocytes were counted per animal. The Kruskal-Wallis test followed by a multiple comparisons test (Dunn test) was used for statistical analysis. The median number of micronuclei was 7.00 in the group exposed to MMA for 1 day, 2.00 in the group exposed to MMA for 5 days, 9.00 in the group exposed to cyclophosphamide (positive control) and 0.756 in the negative control group (p < 0.0001). MMA was genotoxic when measured after 1 day of exposure but was not evidently genotoxic after 5 days.

  16. Can quaternary ammonium methacrylates inhibit matrix MMPs and cathepsins?

    PubMed Central

    Tezvergil-Mutluay, Arzu; Agee, Kelli A.; Mazzoni, Annalisa; Carvalho, Ricardo M.; Carrilho, Marcela; Tersariol, Ivarne L.; Nascimento, Fabio D.; Imazato, Satoshi; Tjäderhane, Leo; Breschi, Lorenzo; Tay, Franklin R; Pashley, David H.

    2014-01-01

    Objective Dentin matrices release ICTP and CTX fragments during collagen degradation. ICTP fragments are known to be produced by MMPs. CTX fragments are thought to come from cathepsin K activity. The purpose of this study was to determine if quaternary methacrylates (QAMs) can inhibit matrix MMPs and cathepsins. Methods Dentin beams were demineralizated, and dried to constant weight. Beams were incubated with rh-cathepsin B, K, L or S for 24 h at pH 7.4 to identify which cathepsins release CTX at neutral pH. Beams were dipped in ATA, an antimicrobial QAM to determine if it can inhibit dentin matrix proteases. Other beams were dipped in another QAM (MDPB) to determine if it produced similar inhibition of dentin proteases. Results Only beams incubated with cathepsin K lost more dry mass than the controls and released CTX. Dentin beams dipped in ATA and incubated for 1 week at pH 7.4, showed a concentration-dependent reduction in weight-loss. There was no change in ICTP release from control values, meaning that ATA did not inhibit MMPs. Media concentrations of CTX fell significantly at 15 wt% ATA indicating that ATA inhibits capthesins. Beams dipped in increasing concentrations of MDPB lost progressively less mass, showing that MDPB is a protease-inhibitor. ICTP released from controls or beams exposed to low concentrations were the same, while 5 or 10% MDPB significantly lowered ICTP production. CTX levels were strongly inhibited by 2.5–10% MDPB, indicating that MDPB is a potent inhibitor of both MMPs and cathepsin K. Significance CTX seems to be released from dentin matrix only by cathepsin K. MMPs and cathepsin K and B may all contribute to matrix degradation. PMID:25467953

  17. Conversion of (Meth)acrylic acids to methane granular sludge: Initiation by specific anerobic microflora

    SciTech Connect

    Shtarkman, N.B.; Obraztova, A.Y.; Laurinavichyus, K.S.; Galushko, A.S.; Akimenko, V.K.

    1995-03-01

    The role of a specific anaerobic microflora in the initiation of degradation of (meth)acrylic acids to methane by granular sludge from a UASB reactor was investigated. Associations of anaerobic bacteria isolated from the anaerobic sludge, which was used for a long time for treatment of wastewater from (meth)acrylate production, were able to realize the initial stage of (meth)acrylic acid decomposition, i.e., a conversion of acrylic and methacrylic acids to propionic and isobutyric acids, respectively. When added to granules, these association played a role of an {open_quotes}initiator{close_quotes} of the degradation process, which was then continued by the granular sludge microflora utilizing propionate and isobutyrate. Some characteristics of the granules adapted to propionate or isobutyrate are presented. The rates of propionate and isobutyrate consumption by adapted granules is, respectively, 21 and 53 times higher than the values obtained for nonadapted granules. A combined use of {open_quotes}initiating{close_quotes} bacteria and adapted granules provided degradation of (meth)acrylic acids with a maximum methane yield. The possibility is discussed of employing the granules, which are adapted to short-chain fatty acids, and the {open_quotes}initiating{close_quotes} bacteria, which accomplish the initial steps of the organic material decomposition to lower fatty acids, for the conversion of various chemical compounds to methane. 10 refs., 3 figs., 2 tabs.

  18. Preparation and characterization of alkyl methacrylate-based monolithic columns for capillary gas chromatography applications.

    PubMed

    Yusuf, Kareem; Aqel, Ahmad; A L Othman, Zeid; Badjah-Hadj-Ahmed, Ahmed Yacine

    2013-08-02

    Gas chromatography (GC) is considered the least common application of both polymer and silica-based monolithic columns. This study describes the fabrication of alkyl methacrylate monolithic materials for use as stationary phases in capillary gas chromatography. Following the deactivation of the capillary surface with 3-(trimethoxysilyl)propyl methacrylate (TMSM), the monoliths were formed by the co-polymerization of either hexyl methacrylate (HMA) or lauryl methacrylate (LMA) with different percentage of ethylene glycol dimethacrylate (EDMA) in presence of an initiator (azobisisobutyronitrile, AIBN) and a mixture of porogens include 1-propanol, 1,4-butanediol and water. The monoliths were prepared in 500mm length capillaries possessing inner diameters of 250μm. The efficiencies of the monolithic columns for low molecular weight compounds significantly improved as the percentage of crosslinker was increased, because of the greater proportion of pores less than 50nm. The columns containing lower percentages of crosslinker were able to rapidly separate a series of 8 alkane members in 0.7min, but the separation was less efficient for the light alkanes. Columns prepared with the lauryl methacrylate monomer yielded a different morphology for the monolith-interconnected channels. The channels were more branched, which increased the separation time, and unlike the other columns, allowed for temperature programming.

  19. Flexural properties of ethyl or methyl methacrylate-UDMA blend polymers.

    PubMed

    Kanie, Takahito; Kadokawa, Akihiko; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2010-10-01

    Light-curing polyethyl methacrylate (PEMA)-urethane dimethacrylate (UDMA) resins and polymethyl methacrylate (PMMA)-UDMA resins were prepared by two processes. For first step, PEMA or PMMA powders were fully dissolved in ethyl methacrylate (EMA) or methyl methacrylate (MMA) and then the PEMA-EMA/PMMA-MMA mixtures were mixed with UDMA. The flexural properties of cured PEMA-UDMA and PMMA-UDMA polymers were measured using two PEMA (Mw: 300,000-400,000 and 650,000-1,000,000) and three PMMA (Mw: 30,000-60,000, 350,000 and 650,000-1,000,000) powders with different molecular weight, four mixing ratios of PMMA-MMA, and three mixing ratios of PMMA-MMA mixture and UDMA oligomer. Polymers with PMMA(Mw: 350,000) MMA=25/50, and with PMMA(Mw: 350,000)-MMA/UDMA=1/2 and =1/1, showed no-fracture in a flexural test at 1 mm/min and flexural strength and flexural modulus showed no significant difference compared with those of commercially available heat- and self-curing acrylic resins (p>0.01). Within limitation of this investigation, methyl methacrylate-UDMA blend polymer of this composition is available for denture base resin.

  20. Sensitive determination of parabens in human urine and serum using methacrylate monoliths and reversed-phase capillary liquid chromatography-mass spectrometry.

    PubMed

    Carrasco-Correa, Enrique Javier; Vela-Soria, Fernando; Ballesteros, Oscar; Ramis-Ramos, Guillermo; Herrero-Martínez, José Manuel

    2015-01-30

    A method for the determination of parabens in human urine and serum by capillary liquid chromatography (cLC) with UV-Vis and mass spectrometry (MS) detection using methacrylate ester-based monolithic columns has been developed. The influence of composition of polymerization mixture was studied. The optimum monolith was obtained with butyl methacrylate monomer at 60/40% (wt/wt) butyl methacrylate/ethylene dimethacrylate ratio and 50wt% porogens (composed of 36wt% of 1,4-butanediol, 54wt% 1-propanol and 10wt% water). Baseline resolution of analytes was achieved through a mobile phase of acetonitrile/water in gradient elution mode. Additionally, dispersive liquid-liquid microextraction (DLLME) was combined with both cLC-UV-Vis and cLC-MS to achieve the determination of parabens in human urine and serum samples with very low limits of detection. Satisfactory intra- and inter-day repeatabilities were obtained in UV-Vis and MS detection, although the latter provided lower detection limits (up to 300-fold) than the UV-Vis detection. Recoveries for the target analytes from spiked biological samples ranged from 95.2% to 106.7%. The proposed methodology for the ultra-low determination of parabens in human urine and serum samples is simple and fast, the consumption of reagents is very low, and very small samples can be analyzed.

  1. Toughening epoxy resin with poly(methyl methacrylate)-grafted natural rubber

    SciTech Connect

    Rezaifard, A.H.; Hodd, K.A.; Barton, J.M.

    1993-12-31

    A novel rubber, poly(methyl methacrylate)-g-natural rubber (Hevea-plus MG), has been studied as a toughening agent for bisphenol A diglycidyl ether (Shell 828 epoxy resin) cured with piperidine. Effective dispersions of the rubber, in concentrations of 2-10 parts per hundred parts resin, were achieved by adjusting the solubility parameter of the epoxy to approximate that of poly(methyl methacrylate) by adding bisphenol A. The fracture energy of the rubber-modified resin was determined by compact tension tests (in the temperature range -60 to +40{degrees}C) and by Charpy impact tests. The poly(methyl methacrylate)-g-natural rubber was found to be an effective toughening agent for the epoxy resin at both low and high rates of strain. Possible fracture mechanisms are discussed. 22 refs., 16 figs., 5 tabs.

  2. Novel poly(methyl methacrylate)-based semi-interpenetrating polyelectrolyte gels for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Kalapala, Saibabu; Easteal, Allan J.

    Novel semi-interpenetrating polymer gel electrolytes designed for use in rechargeable lithium polymer batteries are synthesised from methyl methacrylate and the lithium salt of 2-acrylamido-2-methylpropanesulfonic acid (LiAMPS). The gels are made by first synthesising linear chains of poly(LiAMPS) by free radical polymerisation of LiAMPS dissolved in dimethyl acetamide (DMA) or DMA/ethylene carbonate mixtures, then co-polymerisation of methyl methacrylate and a cross-linking monomer (tetraethyleneglycol diacrylate) to form the semi-interpenetrating network. The electrical conductivity of the gels is determined as a function of LiAMPS and methyl methacrylate (MMA) concentrations, cross-link density, and solvent composition. The conductivity ( σ) is found to be in the range 0.2 ≤ σ ≤ 0.8 mS cm -1 at ambient temperature (20 ± 1 °C).

  3. Basic study of a new denture base resin applying hydrophobic methacrylate monomer.

    PubMed

    Umemoto, K; Kurata, S

    1997-06-01

    To improve the water sorption of poly(methyl methacrylate), new hydrophobic monomers, such as norbonyl and phenyl methacrylate, were studied to determine the resin with lower water sorption with no decrease in mechanical property. Water sorption of the copolymers of the hydrophobic monomers and MMA decreased with the increase in the concentration of the monomers. Compressive and bending strength of the copolymers were higher than that of PMMA, and the elastic modulus in bending was the same as that of PMMA. In addition, the transverse-deflection values satisfied ADA specifications. Dynamic mechanical thermal analysis of the copolymers showed a similar tendency to that of PMMA in spite of the introduction of bulky groups, such as norbonyl and phenyl, in the polymer molecule. The polymerization shrinkage in volume was in the following order: norbonyl < phenyl < methyl methacrylate.

  4. Facile Synthesis of Novel Polyethylene-Based A-B-C Block Copolymers Containing Poly(methyl methacrylate) Using a Living Polymerization System.

    PubMed

    Song, Xiangyang; Ma, Qiong; Cai, Zhengguo; Tanaka, Ryo; Shiono, Takeshi; Grubbs, Robert B

    2016-02-01

    Ethylene-propylene-methyl methacrylate (MMA) and ethylene-hexene-MMA A-B-C block copolymers with high molecular weight (>100,000) are synthesized using fluorenylamide-ligated titanium complex activated by modified methylaluminoxane and 2,6-di-tert-butyl-4-methylphenol for the first time. After diblock copolymerization of olefin is conducted completely, MMA is added and activated by aluminum Lewis acid to promote anionic polymerization. The length of polyolefin and poly (methyl methacrylate) (PMMA) is controllable precisely by the change of the additive amount of olefin and polymerization time, respectively. A soft amorphous polypropylene or polyhexene segment is located between two hard segments of semicrystalline polyethylene and glassy PMMA blocks.

  5. Characterization and comparison of methacrylic acid with 2-acrylamido-2-methyl-1-propanesulfonic acid in the preparation of monolithic column for capillary electrochromatography.

    PubMed

    Horiguchi, Daisuke; Ohyama, Kaname; Masunaga, Tomoko; Fujita, Yoshiko; Ali, Marwa Fathy Bakr; Kishikawa, Naoya; Kuroda, Naotaka

    2013-01-01

    Butyl methacrylate (BMA)-ethylene dimethacrylate (EDMA)-methacrylic acid (MAA) and BMA-EDMA-2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) monolithic columns were prepared by varying the percentage of ionic monomers for capillary electrochromatography. Monolithic columns with a higher content of ionic monomers provided better column efficiency, and the performance of BMA-EDMA-MAA monoliths was better than BMA-EDMA-AMPS. To characterize and optimize BMA-EDMA-MAA monoliths, the effects of the content of cross-linker and the total monomer in the polymerization mixture on column performance were also studied. Plate heights of 8.2 µm for the unretained solute (thiourea) and 12.6 µm for the retained solute (naphthalene) were achieved with a monolithic column using 2.5% MAA (Column I).

  6. Methacrylate Polymer Scaffolding Enhances the Stability of Suspended Lipid Bilayers for Ion Channel Recordings and Biosensor Development

    PubMed Central

    Bright, Leonard K.; Baker, Christopher A.; Bränström, Robert; Saavedra, S. Scott; Aspinwall, Craig A.

    2016-01-01

    Black lipid membranes (BLMs) provide a synthetic environment that facilitates measurement of ion channel activity in diverse analytical platforms. The limited electrical, mechanical and temporal stabilities of BLMs pose a significant challenge to development of highly stable measurement platforms. Here, ethylene glycol dimethacrylate (EGDMA) and butyl methacrylate (BMA) were partitioned into BLMs and photopolymerized to create a cross-linked polymer scaffold in the bilayer lamella that dramatically improved BLM stability. The commercially available methacrylate monomers provide a simple, low cost, and broadly accessible approach for preparing highly stabilized BLMs useful for ion channel analytical platforms. When prepared on silane-modified glass microapertures, the resulting polymer scaffold-stabilized (PSS)-BLMs exhibited significantly improved lifetimes of 23 ± 9 to 40 ± 14 h and > 10-fold increase in mechanical stability, with breakdown potentials > 2000 mV attainable, depending on surface modification and polymer cross-link density. Additionally, the polymer scaffold exerted minimal perturbations to membrane electrical integrity as indicated by mean conductance measurements. When gramicidin A and α-hemolysin were reconstituted into PSS-BLMs, the ion channels retained function comparable to conventional BLMs. This approach is a key advance in the formation of stabilized BLMs and should be amenable to a wide range of receptor and ion channel functionalized platforms. PMID:26925461

  7. Lipase catalyzed HEMA initiated ring-opening polymerization: in situ formation of mixed polyester methacrylates by transesterification.

    PubMed

    Takwa, Mohamad; Xiao, Yan; Simpson, Neil; Malmström, Eva; Hult, Karl; Koning, Cor E; Heise, Andreas; Martinelle, Mats

    2008-02-01

    2-Hydroxyethyl methacrylate (HEMA) was used as initiator for the enzymatic ring-opening polymerization (ROP) of omega-pentadecalactone (PDL) and epsilon-caprolactone (CL). The lipase B from Candida antarctica was found to catalyze the cleavage of the ester bond in the HEMA end group of the formed polyesters, resulting in two major transesterification processes, methacrylate transfer and polyester transfer. This resulted in a number of different polyester methacrylate structures, such as polymers without, with one, and with two methacrylate end groups. Furthermore, the 1,2-ethanediol moiety (from HEMA) was found in the polyester products as an integral part of HEMA, as an end group (with one hydroxyl group) and incorporated within the polyester (polyester chains acylated on both hydroxyl groups). After 72 h, as a result of the methacrylate transfer, 79% (48%) of the initial amount of the methacrylate moiety (from HEMA) was situated (acylated) on the end hydroxyl group of the PPDL (PCL) polyester. In order to prepare materials for polymer networks, fully dimethacrylated polymers were synthesized in a one-pot procedure by combining HEMA-initiated ROP with end-capping using vinyl methacrylate. The novel PPDL dimethacrylate (>95% incorporated methacrylate end groups) is currently in use for polymer network formation. Our results show that initiators with cleavable ester groups are of limited use to obtain well-defined monomethacrylated macromonomers due to the enzyme-based transesterification processes. On the other hand, when combined with end-capping, well-defined dimethacrylated polymers (PPDL, PCL) were prepared.

  8. Production of microencapsulate glycidyl methacrylate with melamine formaldehyde resin shell materials

    NASA Astrophysics Data System (ADS)

    Bel, T.; Ulku, G.; Kizilcan, N.; Cimenoglu, H.; Yahya, N.; Baydogan, N.

    2016-11-01

    This study gives some information about the preparation of Glycidyl Methacrylate (GMA) microcapsules with Melamine Formaldehyde (MF) resin as a shell material (MF-GMA). Melamine formaldehyde resin containing hydroxyl groups was synthesized in the first step. Second step includes the addition of GMA monomer along with Sodium Dodecyl Benzenesulfonate (SDBS) and Polyvinyl Alcohol (PVA) aqueous solution for getting emulsible solution. The resultant MF-GMA microcapsules had good enclosing performance and thermal stability. The characteristic properties and the morphology of microencapsulated Glycidyl Methacrylate were examined by using FTIR analysis and their morphology was investigated by using optical microscope.

  9. [Gas chromatographic analysis of methyl methacrylate and methanol in its esterification mixture].

    PubMed

    Wu, C; Zeng, C

    1997-09-01

    A fast, simple and accurate gas chromatographic method is established for determining the content of methyl methacrylate (MMA) and methanol in the esterification mixture of methacrylic acid with methanol in the presence of sulfuric acid. In the measurement, polyethylene glycol-20M/sodium hydroxide was adopted as liquid phase, coated on the acid-washed 201 pink support. n-Heptane was used as the internal standard and the correction factors of MMA and methanol obtained were 1.65 and 4.10, respectively. It is significant for this method to be used to control MMA production by acetone cyanohydrin method and to improve the production technology.

  10. The Mark-Houwink-Sakurada Relation for Poly(Methyl Methacrylate)

    NASA Astrophysics Data System (ADS)

    Wagner, Herman L.

    1987-04-01

    In this third review of a series, the literature values for the viscosity-molecular weight relationship (Mark-Houwink-Sakurada) for poly(methyl methacrylate) have been critically evaluated. Although most of the studies have been concerned with conventionally produced poly(methyl methacrylate), some work has also been done with the isotactic polymer. The Mark-Houwink relations for the following solvents are discussed: benzene, toluene, acetone, chloroform, 2-butanone, and tetrahydrofuran, as well as for several other infrequently used solvents. The values of the coefficient K in the relation [η]=KM0.5 for several theta solvents are also reported.

  11. Photo-Physical Behavior and Fluorescence of Thermo Switchable Nanocomposite Based on Methyl Methacrylate -Spirobenzopyran.

    PubMed

    Rouhani, Shohre; Pishvaei, Malihe

    2017-03-01

    Nanocomposites with thermo and photo-switchable fluorescent properties were synthesized via mini-emulsion polymerization based on spiropyran and methyl methacrylate monomer. The photophysical behavior of fluorescence nanocomposites was investigated by fluorescence spectrophotometry in different temperature, UV-light and time of exposure. It was found that methyl methacrylate polymer is capable of acting as a protective layer and play a critical role in improving the photostability of colorants. The nanocomposites exhibited excellent fluorescent thermo-switching action with respect to the free spiro molecule. Graphical Abstract ᅟ.

  12. pH-sensitive methacrylic copolymer gels and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-05-15

    The present invention provides novel gel forming methacrylic blocking copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol)methyl ether polymer. The polymers may be used for drug and gene delivery, protein separation, as structural supplements, and more.

  13. Disabling disturbance of olfaction in a dental technician following exposure to methyl methacrylate.

    PubMed

    Braun, D; Wagner, W; Zenner, H-P; Schmahl, F W

    2002-10-01

    It is often difficult to diagnose dysosmia due to occupational olfactotoxic substances. The authors present a case of disabling disturbance of olfaction in a dental technician. This is very likely to have been caused by exposure to methyl methacrylate. From 1988-1992, the dental technician had very extensive and sustained contact with a self-polymerizing acrylic resin based on methyl methacrylate. Her perception of smell was still normal in 1988, but it deteriorated up to 1992. The olfactory disorders have persisted and impede social life and occupational rehabilitation.

  14. Reactive Poly(Amic Acid)/ Poly(Glycidyl Methacrylate-r-Poly(ethylene Glycol) Methyl Ether Methacrylate) Blends as Gas Permeation Membranes

    NASA Astrophysics Data System (ADS)

    Beaulieu, Michael; Watkins, James

    2012-02-01

    Polymers containing polar moieties, such as ether groups show an affinity for acidic gases, such as CO2 due to dipole-quadrapole interactions. Polymer blends in which one of the components is poly(ethylene glycol) (PEG) have been studied extensively in literature as a CO2/light gas permeation membrane, but due to the crystallization and poor mechanical properties have been difficult to incorporate PEG above 60wt%. In this study, a series of random copolymers containing both glycidyl methacrylate and poly(ethylene glycol) methyl ether methacrylate in different ratios are blended with a poly(amic acid) prepolymer made from 4, 4'-oxydianiline and pyromellitic dianhydride to create gas permeation membranes. By using a reactive blend PEG loadings above 70% have been realized with sufficient mechanical properties, and since the side chain on the PEGMA is short these blends do not suffer from crystallization.

  15. Terminal-Selective Transesterification of Chlorine-Capped Poly(Methyl Methacrylate)s: A Modular Approach to Telechelic and Pinpoint-Functionalized Polymers.

    PubMed

    Ogura, Yusuke; Terashima, Takaya; Sawamoto, Mitsuo

    2016-04-20

    Terminal-selective transesterification of chlorine-capped poly(methyl methacrylate)s (PMMA-Cl) with alcohols was developed as a modular approach to create telechelic and pinpoint-functionalized polymers. Being sterically less hindered and electronically activated, both the α-end ethyl ester and ω-end methyl ester of PMMA-Cl were efficiently and selectively transesterified with diverse alcohols in the presence of a titanium alkoxide catalyst, while retaining the pendent esters intact, to almost quantitatively give various chlorine-capped telechelic PMMAs. In sharp contrast to conventional telechelic counterparts, the telechelic polymers obtained herein yet carry a chlorine atom at the ω-terminal to further work as a macroinitiator in living radical polymerization. The iterative process of living radical polymerization and terminal-selective transesterification successfully afforded unique pinpoint-functionalized polymers where a single functional monomer unit was introduced into the desired site of the polymer chains.

  16. In situ synthesis of cobalt ferrite nanoparticle/polymer hybrid from a mixed Fe-Co methacrylate for magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Hayashi, Koichiro; Maeda, Kazuki; Moriya, Makoto; Sakamoto, Wataru; Yogo, Toshinobu

    2012-09-01

    Hyperthermic CoFe2O4 nanoparticle (CFO NP)/polymer hybrids were synthesized by hydrolysis-condensation from a complex of Co and Fe possessing methacrylate ligands. Single-crystal analysis revealed that the complex consisted of two Co and four Fe metal atoms coordinated by methacrylate and 2-methoxyethoxy groups. The complex was copolymerized with 2-hydroxyethyl methacrylate (HEMA) and the resulting copolymer was then hydrolyzed to form a CFO NP/copolymer of poly(methacrylate) and poly(2-hydroxyethyl methacrylate) hybrid. Copolymerization with HEMA enhanced the stability of the hybrid in water. The size and magnetic properties of CFO in the hybrid were controlled by adjusting the hydrolysis conditions. Moreover, the hybrid generated heat under an alternating current magnetic field; its exothermal properties depended on the magnetic properties of the hybrid, the strength of the applied field, and the CFO NP content in the agar phantom matrix.

  17. Effects of metal ions on entero-soluble poly(methacrylic acid-methyl methacrylate) coating: a combined analysis by ATR-FTIR spectroscopy and computational approaches.

    PubMed

    Cilurzo, Francesco; Gennari, Chiara G M; Selmin, Francesca; Vistoli, Giulio

    2010-04-05

    Poly(methacrylic acid-methyl methacrylate)s (HPMMs) are pH-dependent polymers which ionize and form salts (PMMs) in neutral conditions. Despite their wide use in tablet coating, the interactions of PMMs with electrolytes present in biorelevant media and luminal fluids have been scantly investigated. The data generated in the current work provide the basic information on the effect of bivalent cations, namely, Ca2+, Zn2+ and Mn2+, on the HPMMs' solubility and, consequently, on the performances (disintegration and drug dissolution) of acetaminophen gastroresistant tablets when exposed to fluid containing such salts. The interactions between polymers and metal ions were analyzed by ATR-FTIR spectroscopy and in silico combining molecular dynamics simulations to explore the conformational profiles of several oligomers with different M(w), taken as model of the polymers, with ab initio and semiempirical calculations in the gas phase. The computational results agree with the experimental data in terms of spatial disposition of the bications with respect to PMMs (Ca2+ and Mn2+ as bidentate form and Zn2+ as monodentate ligand) and interaction strength (Zn2+ > Mn(2+) > Ca2+). The tablet disintegration and dissolution rate of acetaminophen were strongly affected by the interactions of the dissolving copolymer with the metal ions which led to coating insolubilization. These preliminary results underline that the ingestion of metal ions at high concentrations could affect the drug liberation from gastroresistant dosage forms.

  18. Optical Properties of Nanocellulose Dispersions in Water, Dimethylformamide and Poly(Methyl Methacrylate)

    DTIC Science & Technology

    2013-10-01

    measurements for cellulose and PMMA thin- films . ..13  v List of Tables Table 1. Recorded optical data for nanocellulose in water...applications beyond thin films . In particular, the effects of nanocellulose fibers in higher concentrations, processed in different solvents, and...Optical Properties of Nanocellulose Dispersions in Water, Dimethylformamide and Poly(Methyl Methacrylate) by James F. Snyder, Joshua Steele

  19. Recent Origin of the Methacrylate Redox System in Geobacter sulfurreducens AM-1 through Horizontal Gene Transfer.

    PubMed

    Arkhipova, Oksana V; Meer, Margarita V; Mikoulinskaia, Galina V; Zakharova, Marina V; Galushko, Alexander S; Akimenko, Vasilii K; Kondrashov, Fyodor A

    2015-01-01

    The origin and evolution of novel biochemical functions remains one of the key questions in molecular evolution. We study recently emerged methacrylate reductase function that is thought to have emerged in the last century and reported in Geobacter sulfurreducens strain AM-1. We report the sequence and study the evolution of the operon coding for the flavin-containing methacrylate reductase (Mrd) and tetraheme cytochrome с (Mcc) in the genome of G. sulfurreducens AM-1. Different types of signal peptides in functionally interlinked proteins Mrd and Mcc suggest a possible complex mechanism of biogenesis for chromoproteids of the methacrylate redox system. The homologs of the Mrd and Mcc sequence found in δ-Proteobacteria and Deferribacteres are also organized into an operon and their phylogenetic distribution suggested that these two genes tend to be horizontally transferred together. Specifically, the mrd and mcc genes from G. sulfurreducens AM-1 are not monophyletic with any of the homologs found in other Geobacter genomes. The acquisition of methacrylate reductase function by G. sulfurreducens AM-1 appears linked to a horizontal gene transfer event. However, the new function of the products of mrd and mcc may have evolved either prior or subsequent to their acquisition by G. sulfurreducens AM-1.

  20. Controlled Degradation of Poly(Ethyl Cyanoacrylate-Co-Methyl Methacrylate)(PECA-Co-PMMA) Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes a method for modifying poly(ethyl cyanoacrylate) in order to control the degradation and the stability as well as the glass transition temperatures. Copolymers of poly(ethyl cyanoacrylate-co-methyl methacrylate) (PECA-co-PMMA) with various compositions were synthesized by free ...

  1. Chest Wall Reconstruction Using a Methyl Methacrylate Neo-Rib and Mesh.

    PubMed

    Suzuki, Kei; Park, Bernard J; Adusumilli, Prasad S; Rizk, Nabil P; Huang, James; Jones, David R; Bains, Manjit S

    2015-08-01

    Prosthetic reconstruction of the chest wall after oncologic resection is performed by means of various techniques using different materials. We describe a new technique of chest wall reconstruction that includes the use of Marlex mesh and the creation of a neo-rib from a Steinmann pin and methyl methacrylate.

  2. Enthalpy of mixing of methacrylic acid with organic solvents at 293 K

    NASA Astrophysics Data System (ADS)

    Sergeev, V. V.

    2016-03-01

    The enthalpies of mixing of binary systems of methacrylic acid with acetonitrile, benzene, hexane, 1,2-dichloroethane, and acetic acid are measured calorimetrically at 293 K and atmospheric pressure. The enthalpy of mixing of all the studied binary systems is positive over the range of concentrations.

  3. Use of methacrylate-modified chitosan to increase the durability of dentine bonding systems.

    PubMed

    Diolosà, Marina; Donati, Ivan; Turco, Gianluca; Cadenaro, Milena; Di Lenarda, Roberto; Breschi, Lorenzo; Paoletti, Sergio

    2014-12-08

    This study aimed at investigating the effect of a methacrylate-modified chitosan on the durability of adhesive interfaces to improve the clinical performance of dental restorations. Chitosan was modified with methacrylic acid (Chit-MA70) on 16% of the amino groups. Viscosity, rheology, and (1)H NMR spectroscopy were performed to characterize the modified polysaccharide. Chit-MA70 was blended into a primer of an "etch-and-rinse" experimental adhesive system and tested on human teeth. The presence of methacrylate moieties and of residual positive charges on the polysaccharide chain allowed Chit-MA70 to covalently bind to the restorative material and electrostatically interact with demineralized dentin. The Chit-MA70 containing an adhesive system showed values of the immediate bond strength (26.0 ± 8.7 MPa) comparable to the control adhesive system (25.5 ± 8.7 MPa). However, it was shown that upon performing thermo-mechanical cycling treatment of the dental restoration on human teeth, the adhesive with the methacrylate-modified chitosan, in variance with the control adhesive, did not show any decrease in the bond strength (28.4 ± 8.8 MPa). The modified chitosan is proposed as a component of the "etch-and-rinse" adhesive system to efficiently improve the durability of dental restorations.

  4. Versatility of Alkyne-Modified Poly(Glycidyl Methacrylate) Layers for Click Reactions

    SciTech Connect

    Soto-Cantu, Dr. Erick; Lokitz, Bradley S; Hinestrosa Salazar, Juan Pablo; Deodhar, Chaitra; Messman, Jamie M; Ankner, John Francis; Kilbey, II, S Michael

    2011-01-01

    Functional soft interfaces are of interest for a variety of technologies. We describe three methods for preparing substrates with alkyne groups, which show versatility for 'click' chemistry reactions. Two of the methods have the same root: formation of thin, covalently attached, reactive interfacial layers of poly(glycidyl methacrylate) (PGMA) via spin coating onto silicon wafers followed by reactive modification with either propargylamine or 5-hexynoic acid. The amine or the carboxylic acid moieties react with the epoxy groups of PGMA, creating interfacial polymer layers decorated with alkyne groups. The third method consists of using copolymers comprising glycidyl methacrylate and propargyl methacrylate (pGP). The pGP copolymers are spin coated and covalently attached on silicon wafers. For each method, we investigate the factors that control film thickness and content of alkyne groups using ellipsometry, and study the nanophase structure of the films using neutron reflectometry. Azide-terminated polymers of methacrylic acid and 2-vinyl-4,4-dimethylazlactone synthesized via reversible addition-fragmentation chain transfer polymerization were attached to the alkyne-modified substrates using 'click' chemistry, and grafting densities in the range of 0.007-0.95 chains nm{sup -2} were attained. The maximum density of alkyne groups attained by functionalization of PGMA with propargylamine or 5-hexynoic acid was approximately 2 alkynes nm{sup -3}. The alkyne content obtained by the three decorating approaches was sufficiently high that it was not the limiting factor for the click reaction of azide-capped polymers.

  5. Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair.

    PubMed

    Kubinová, Sárka; Horák, Daniel; Hejčl, Aleš; Plichta, Zdeněk; Kotek, Jiří; Syková, Eva

    2011-12-15

    Modifications of poly(2-hydroxyethyl methacrylate) (PHEMA) with cholesterol and the introduction of large pores have been developed to create highly superporous hydrogels that promote cell-surface interactions and that can serve as a permissive scaffold for spinal cord injury (SCI) treatment. Highly superporous cholesterol-modified PHEMA scaffolds have been prepared by the bulk radical copolymerization of 2-hydroxyethyl methacrylate (HEMA), cholesterol methacrylate (CHLMA), and ethylene dimethacrylate (EDMA) cross-linking agent in the presence of ammonium oxalate crystals to establish interconnected pores in the scaffold. Moreover, 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA) was incorporated in the polymerization recipe and hydrolyzed, thus introducing carboxyl groups in the hydrogel to control its swelling and softness. The hydrogels supported the in vitro adhesion and proliferation of rat mesenchymal stem cells. In an in vivo study of acute rat SCI, hydrogels were implanted to bridge a hemisection cavity. Histological evaluation was done 4 weeks after implantation and revealed the good incorporation of the implanted hydrogels into the surrounding tissue, the progressive infiltration of connective tissue and the ingrowth of neurofilaments, Schwann cells, and blood vessels into the hydrogel pores. The results show that highly superporous cholesterol-modified PHEMA hydrogels have bioadhesive properties and are able to bridge a spinal cord lesion.

  6. Characterization of methyl methacrylate grafting onto preirradiated biodegradable lignocellulose fiber by gamma-radiation.

    PubMed

    Khan, Ferdous

    2005-01-14

    Gamma-radiation-induced graft copolymerization of methyl methacrylate onto natural lignocellulose (jute) fiber was carried out by the preirradiation method in an aqueous medium by using octylphenoxy-polyethoxyethanol as an emulsifier. The different factors that influenced the graft copolymer reaction process were investigated. In the case of radiation-dose-dependent grafting, samples irradiated in the presence of air produced up to 73% graft weight compared to 53% obtained in the case of irradiation in a nitrogen environment. By assuming Arrhenius reaction kinetics, the activation energy (E(a)) of the grafting reaction process was evaluated for different reaction temperatures. Moreover, the graft copolymer reaction was controlled by incorporating a homopolymer-inhibiting agent and three different chain-transfer agents in the reaction medium. The mechanical and thermal properties of jute fiber 'as received' and jute-graft-poly(methyl methacrylate) were also investigated. The results showed that the percentage of grafting with jute fiber has a significant effect on the properties. The kinetic parameters were evaluated from TGA thermograms by using Broido's method in the temperature range 240-350 degrees C. Scanning electron micrographs show that the structural changes on the surface of jute fibers were induced by graft copolymerization of methyl methacrylate monomer. Fiber-fiber surface friction was measured in terms of the average maximum load and the kinetic friction. SEM of jute-graft-poly(methyl methacrylate).

  7. Copolymer of methacrylic acid with its diethylammonium salt: Effective waterproofing agent for oil wells

    SciTech Connect

    Kuznetsova, O.N.; Avvakumova, N.I.

    1992-08-10

    In the development of technology for the copolymerization of methacrylic acid with its diethylammonium salt (MAA-MAA{center_dot}DEA), the polymer-like reaction of polymethacrylic acid (PMAA) with diethylamine (DEA) and the polymerization of MAA in the presence of DEA have been studied. 13 refs., 3 figs., 4 tabs.

  8. 21 CFR 177.1030 - Acrylonitrile/butadiene/styrene/methyl methacrylate copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .../styrene/methyl methacrylate copolymer consists of: (1) 73 to 79 parts by weight of a matrix polymer... composition range as the matrix polymer. (b) Adjuvants. The copolymer identified in paragraph (a) of this...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces §...

  9. 21 CFR 177.1030 - Acrylonitrile/butadiene/styrene/methyl methacrylate copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .../styrene/methyl methacrylate copolymer consists of: (1) 73 to 79 parts by weight of a matrix polymer... composition range as the matrix polymer. (b) Adjuvants. The copolymer identified in paragraph (a) of this... HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES:...

  10. 21 CFR 177.1030 - Acrylonitrile/butadiene/styrene/methyl methacrylate copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .../styrene/methyl methacrylate copolymer consists of: (1) 73 to 79 parts by weight of a matrix polymer... composition range as the matrix polymer. (b) Adjuvants. The copolymer identified in paragraph (a) of this...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces §...

  11. 21 CFR 177.1030 - Acrylonitrile/butadiene/styrene/methyl methacrylate copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .../styrene/methyl methacrylate copolymer consists of: (1) 73 to 79 parts by weight of a matrix polymer... composition range as the matrix polymer. (b) Adjuvants. The copolymer identified in paragraph (a) of this...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces §...

  12. Gamma radiation-induced grafting of glycidyl methacrylate (GMA) onto water hyacinth fibers

    NASA Astrophysics Data System (ADS)

    Madrid, Jordan F.; Nuesca, Guillermo M.; Abad, Lucille V.

    2013-04-01

    Water hyacinth fibers (Eichhornia crassipes) were functionalized using radiation-induced graft polymerization of glycidyl methacrylate by γ-rays from 60Co source. The simultaneous grafting technique was employed wherein the water hyacinth fibers were irradiated in nitrogen atmosphere in the presence of glycidyl methacrylate dissolved in water/methanol solvent. The effects of different grafting parameters to the grafting yield were evaluated. The optimal values of solvent, absorbed dose, dose rate, and concentration of monomer were found to be 1:3 (volume/volume) water-methanol solvent, 10 kGy, 8 kGy h-1 dose rate and 5% volume/volume glycidyl methacrylate, respectively. Using the optimum conditions, degree of grafting of approximately 58% was achieved. The grafted water hyacinth fibers were characterized using Attenuated Total Reflectance-Fourier Transformed Infrared Spectroscopy (ATR-FTIR), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX). The results of these tests confirmed the successful grafting of glycidyl methacrylate onto water hyacinth fibers.

  13. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (generic). 721.10375... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (PMN P-10-200)...

  14. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (generic). 721.10375... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (PMN P-10-200)...

  15. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (generic). 721.10375... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (PMN P-10-200)...

  16. Properties of methacrylate-thiol-ene formulations as dental restorative materials

    PubMed Central

    Cramer, Neil B.; Couch, Charles L.; Schreck, Kathleen M.; Boulden, Jordan E.; Wydra, Robert; Stansbury, Jeffrey W.; Bowman, Christopher N.

    2010-01-01

    Objectives The objective of this study was to evaluate ternary methacrylate-thiol-ene systems, with varying thiol-ene content and thiol:ene stoichiometry, as dental restorative resin materials. It was hypothesized that an off-stoichiometric thiol-ene component would enhance interactions between the methacrylate and thiol-ene processes to reduce shrinkage stress while maintaining equivalent mechanical properties. Methods Polymerization kinetics and functional group conversions were determined by Fourier transform infrared spectroscopy (FTIR). Cured resin mechanical properties were evaluated using a three-point flexural test, carried out with a hydraulic universal test system. Polymerization shrinkage stress was measured with a tensometer coupled with simultaneous real-time conversion monitoring. Results The incorporation of thiol-ene mixtures as reactive diluents into conventional dimethacrylate resins previously was shown to combine synergistically advantageous methacrylate mechanical properties with the improved polymerization kinetics and reduced shrinkage stress of thiol-ene systems. In these systems, due to thiol consumption resultant from both the thiol-ene reaction and chain transfer involving the methacrylate polymerization, the optimum thiol:ene stoichiometry deviates from the traditional 1:1 ratio. Increasing the thiol:ene stoichiometry up to 3:1 results in systems with equivalent flexural modulus, 6 – 20 % reduced flexural strength, and 5 – 33 % reduced shrinkage stress relative to 1:1 stoichiometric thiol:ene systems. Significance Due to their improved overall functional group conversion, and shrinkage stress reduction while maintaining equivalent flexural modulus, methacrylate-thiol-ene resins, particularly those with excess thiol, beyond the conventional 1:1 thiol:ene molar ratio, yield superior dental restorative materials compared with purely dimethacrylate resins. PMID:20553973

  17. Preparation and application of sol-gel acrylate and methacrylate solid-phase microextraction fibres for gas chromatographic analysis of organoarsenic compounds.

    PubMed

    Popiel, Stanisław; Nawała, Jakub; Czupryński, Krzysztof

    2014-07-21

    Novel solid-phase microextraction (SPME) fibres containing methyl, ethyl, butyl acrylate and methacrylate were first prepared by a sol-gel technique and investigated for determination of selected organoarsenic compounds (lewisite, methyldichloroarsine, phenyldichloroarsine, diphenylchloroarsine and triphenylarsine) from water samples. The influence of sorption and desorption temperature and time for extraction efficiency were examined. The best new fibre coatings (methyl acrylate (MA), methyl methacrylate (MMA) and combination of methyl acrylate and methacrylate (MA/MMA)) for analysis of organoarsenic compounds were selected and compared with commercial fibres. The distribution coefficients Kfs were determined for the best novel fibres and for absorption commercial fibres. The highest Kfs value were obtained for MA/MMA and MMA fibres and were respectively 9458 and 6561 for lewisite and 6458 and 5884 for triphenylarsine. The limit of detection and quantification were determined for the three laboratory obtained fibres (MA, MMA and MA/MMA). LODs for tested fibres, at a signal-to-noise of 3, were 0.03-0.3 ng mL(-1). LOQs for selected coatings, at signal-to-noise of 10, were 0.1-0.8 ng mL(-1). The relative standard deviations (RSD) for all measurements were 4.3-6.5% (n=9) and relative errors were 2.5-5%. The laboratory obtained fibres were used for environmental analysis of pore water samples from the Baltic Sea.

  18. Original research paper. Characterization and taste masking evaluation of microparticles with cetirizine dihydrochloride and methacrylate-based copolymer obtained by spray drying.

    PubMed

    Amelian, Aleksandra; Szekalska, Marta; Ciosek, Patrycja; Basa, Anna; Winnicka, Katarzyna

    2017-03-01

    Taste of a pharmaceutical formulation is an important parameter for the effectiveness of pharmacotherapy. Cetirizine dihydrochloride (CET) is a second-generation antihistamine that is commonly administered in allergy treatment. CET is characterized by extremely bitter taste and it is a great challenge to successfully mask its taste; therefore the goal of this work was to formulate and characterize the microparticles obtained by the spray drying method with CET and poly(butyl methacrylate-co-(2-dimethylaminoethyl) methacrylate-co-methyl methacrylate 1:2:1 copolymer (Eudragit E PO) as a barrier coating. Assessment of taste masking by the electronic tongue has revealed that designed formulations created an effective taste masking barrier. Taste masking effect was also confirmed by the in vivo model and the in vitro release profile of CET. Obtained data have shown that microparticles with a drug/polymer ratio (0.5:1) are promising CET carriers with efficient taste masking potential and might be further used in designing orodispersible dosage forms with CET.

  19. Synthesis and Characterization of Amphiphilic Graft Copolymers of Poly (1,3dioxolane) Macromonomers with Styrene and Methyl Methacrylate

    NASA Astrophysics Data System (ADS)

    Bendaikha, H.; Clisson, G.; Khoukh, A.; François, J.; Kada, S. Ould; Krallafa, A.

    2008-08-01

    Methacrylate-terminated Poly (1,3dioxolane) (PDXL) macromonomers were synthesized by cationic ring-opening polymerization in the presence of 2-hydroxypropyl methacrylate (2-HPMA) as transfer agent. Molecular weights and polydispersity index of the PDXL macromonomers were evaluated by size exclusion chromatography (SEC) and 1H-NMR. Copolymerizations of PDXL macromonomers with styrene (St) and methyl methacrylate (MMA) were carried out using various feed molar ratios. Monomer reactivity ratios between the macromonomers and the comonomers were estimated from the copolymerization results. Glass transition temperatures of the copolymers were found to decrease with an increase in the amount of PDXL in the copolymers.

  20. Biodegradation of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly{(2-hydroxyethyl methacrylate)-co-[poly(ethylene glycol) methyl ether methacrylate]} hydrogels containing peptide-based cross-linking agents.

    PubMed

    Casadio, Ylenia S; Brown, David H; Chirila, Traian V; Kraatz, Heinz-Bernhard; Baker, Murray V

    2010-11-08

    PHEMA-peptide and P[HEMA-co-(MeO-PEGMA)]-peptide conjugate hydrogels [where PHEMA = poly(2-hydroxyethyl methacrylate; PEGMA = poly(ethylene glycol) methacrylate] were readily prepared via photoinitiated free-radical polymerization in water. The PHEMA-peptide hydrogels were opaque and had a heterogeneous morphology of interconnected polymer droplets, characteristic of polymers that separate from the aqueous phase during the polymerization experiment. The P[HEMA-co-(MeO-PEGMA)]-peptide conjugates were transparent gels with a homogeneous morphology when formed in water, but when formed in aqueous NaCl solutions the P[HEMA-co-(MeO-PEGMA)]-peptide conjugates were also opaque and exhibited the heterogeneous morphology of interconnected polymer droplets. When incubated in solutions containing activated papain, P[HEMA-co-(MeO-PEGMA)]-peptide conjugates underwent degradation that was characterized by macroscopic changes to sample shape and size, sample weight, and microscopic structure. PHEMA-peptide conjugates did not undergo any significant degradation when incubated with papain, although ninhydrin-staining experiments suggested that some peptide cross-linker groups were cleaved during the incubation. The difference in degradation behavior of PHEMA-peptide and P[HEMA-co-(MeO-PEGMA)]-peptide conjugates is attributed to differences in aqueous solubility of PHEMA and P[HEMA-co-(MeO-PEGMA)].

  1. Highly sensitive poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] brush-based flow-through microarray immunoassay device.

    PubMed

    Liu, Yingshuai; Wang, Wei; Hu, Weihua; Lu, Zhisong; Zhou, Xiaoqun; Li, Chang Ming

    2011-08-01

    Flow-through immunoassay is an attractive method for fast, inexpensive and high-throughput protein analyses. However, its practical application is limited by low sensitivity. In this work, a highly sensitive flow-through microarray immunoassay device is developed, in which a poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] (P(GMA-co-PEGMA)) brush as a flexible matrix is uniformly coated on a glass slide through a purge-free surface-initiated atom transfer radical polymerization (SI-ATRP) to immobilize capture proteins for a larger loading capacity and higher bioactivity while allowing easy target access to the brush-attached probes for efficient antibody-antigen (Ab-Ag) bindings. The integrated device is then constructed by simply laminating the protein-arrayed slide onto a ready-for-bonding double-sided adhesive tape-attached poly(methyl methacrylate) (PMMA) microfluidic structure. As a demonstration, a parallel microarray panel is designed to perform flow-through immunoassays for good detection flexibility and simultaneous analysis of various samples. The limit of detection (LOD) of 1-10 pg/mL for detected target proteins is achieved, which is one to two orders better than those of reported flow-through immunoassays. The device also demonstrates significantly reduced total assay time over the static microarray immunoassay. The rapid and sensitive detection can be mainly ascribed to the P(GMA-co-PEGMA) brushed substrate, of which both the hydrophilicity from its PEG component and the binding capability from its GMA moiety result in higher protein loading capacity, lower nonspecific adsorption, and higher Ab-Ag binding efficiency. The integrated microfluidic device was further used to detect an important cancer biomarker carcinoembryonic antigen (CEA) in serum and achieved a LOD of 10 pg/mL, demonstrating its great potential for clinical applications.

  2. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A.; Martinez, Rodolfo A.; Unkefer, Clifford J.

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  3. Synthesis and characterization of functionalized methacrylates for coatings and biomedical applications

    NASA Astrophysics Data System (ADS)

    Shemper, Bianca Sadicoff

    The research presented in this dissertation involves the design of polymers for biomaterials and for coatings applications. The development of non-wettable, hard UV-curing, or reactive coatings is discussed. The biomaterials section involves the syntheses of linear and star-like polymers of the functionalized monomer poly(propylene glycol) monomethacrylate (PPGM) via atom transfer radical polymerization (ATRP) (Chapter II). Its copolymerization with a perfluoroalkyl ethyl methacrylate monomer (1H,1H,2H,2H-heptadecafluorodecyl methacrylate) and the syntheses of linear and star-like amphiphilic copolymers containing the fluorinated monomer and poly(ethyleneglycol) methyl ether methacrylate (MPEGMA) are discussed in Chapter III. The four-arm amphiphilic block copolymer obtained showed unique associative properties leading to micellization in selective solvents. Chapter IV includes research involving the design of films with low surface energy by incorporating fluorine into the polymer. The synthesis, characterization and polymerization of a perfluoroalkylether-substituted methacrylic acid (C8F7) are discussed, and the properties of coatings obtained after its photopolymerization on different substrates are evaluated to confirm formation of low-surface energy polymeric coatings. Subsequently, hard coatings based on methyl (alpha-hydroxymethyl)acrylate (MHMA) were prepared via photopolymerization using UV-light. Firstly, mechanistic investigations into the photopolymerization behavior of (alpha-hydroxymethyl)acrylates (RHMA's) are reported (Chapter V). RHMA derivatives were photopolymerized with various multifunctional acrylates and methacrylates and the effect of crosslinker type and degree of functionality on photopolymerization rates and conversions was investigated. Then, in Chapter VI the synthesis of a series of new crosslinkers is described and their photopolymerization kinetics was investigated in bulk. The effect of these novel crosslinkers on the

  4. A rare case of pseudotumor formation associated with methyl methacrylate hypersensitivity in a patient following cemented total knee arthroplasty.

    PubMed

    Kenan, Shachar; Kahn, Leonard; Haramati, Noga; Kenan, Samuel

    2016-08-01

    Hypersensitivity to orthopedic implant materials has been well documented with potential catastrophic consequences if not addressed pre-operatively. The spectrum of reactions is wide, from mild non-specific pain with localized erythema to severe periprosthetic inflammatory destruction and pseudotumor formation. It is therefore essential to identify patients who have or are at risk for implant-associated hypersensitivity. Although metal sensitivity is commonly cited as the cause of these reactions, methyl methacrylate (MMA) has rarely been implicated. To the best of our knowledge, methyl methacrylate-associated pseudotumor formation has not yet been described. The following is a case report of a 68-year-old female who, after undergoing a routine cemented right total knee arthroplasty, developed a painless, enlarging mass during a 13-year period. This mass was found to be a pseudotumor in association with methyl methacrylate hypersensitivity. A review of pseudotumor pathogenesis, methyl methacrylate hypersensitivity, and preoperative preventative care is discussed.

  5. Process for producing a well-adhered durable optical coating on an optical plastic substrate. [abrasion resistant polymethyl methacrylate lenses

    NASA Technical Reports Server (NTRS)

    Kubacki, R. M. (Inventor)

    1978-01-01

    A low temperature plasma polymerization process is described for applying an optical plastic substrate, such as a polymethyl methacrylate lens, with a single layer abrasive resistant coating to improve the durability of the plastic.

  6. (1)H and (13)C NMR chemical shifts of methacrylate molecules associated with DMPC and/or DPPC liposomes.

    PubMed

    Fujisawa, Seiichiro; Ishihara, Mariko; Kadoma, Yoshinori

    2005-01-01

    In the light of recent developments, changes in (1)H and (13)C NMR chemical shifts of methacrylate molecule associated with DMPC (L-alpha dimyristoylphosphatidylcholine) or DPPC (L-alpha-dipalmitoylphosphatidylcholine) liposomes as a model for mimic native lipid bilayers were studied at 30, 37, and 52 degrees C. The chemical shifts of 3Ha, 3C, and 4C resonances in methacrylates (see Fig. 2) were greatly shifted higher field, suggesting the methacrylate molecule-lipid bilayer interaction. Comparison of the findings with methyl methacrylate (MMA), ethylene dimethacrylate (EDMA), and triethyleneglycol dimethacrylate (TEGDMA) revealed that the interaction of dimethacrylates (EDMA, TEGDMA) was greater than monomethacrylate, MMA. Their interaction with DMPC liposomes was also judged by a differential scanning calorimetry (DSC), indicating that the interaction was characterized by decreasing the enthalpy, entropy, and transition co-operativity. The evidence of the upfield NMR-shifts for methacrylate molecules was also judged by the descriptors such as the reactivity (HOMO-LUMO energy) and the electrostatic function (partial charges) between methacrylate molecules and DPPC, calculated by a PM 3 semiempirical MO method. The upfield NMR shifts were considerably well interpreted from the descriptors. NMR screening technique in methacrylates to phospholipid targets would be highly valuable in biomaterial developments. Figure 2 Changes in (1)H and (13)C NMR chemical shifts of methacrylate molecule associated with DMPC or DPPC liposomes. DMPC liposomes/MMA (1:1, molar ratio) and DMPC/TEGDMA (1:1) liposomes were measured at 30 degrees C. In DPPC liposome system, the rippled gel phase was measured at 30 degrees C, whereas the liquid crystalline phase for MMA and for both EDMA and TEGDMA were measured at 52 degrees C and 37 degrees C, respectively.

  7. Experimental and theoretical investigation of the complexation of methacrylic acid and diisopropyl urea

    NASA Astrophysics Data System (ADS)

    Pogány, Peter; Razali, Mayamin; Szekely, Gyorgy

    2017-01-01

    The present paper explores the complexation ability of methacrylic acid which is one of the most abundant functional monomer for the preparation of molecularly imprinted polymers. Host-guest interactions and the mechanism of complex formation between methacrylic acid and potentially genotoxic 1,3-diisopropylurea were investigated in the pre-polymerization solution featuring both experimental (NMR, IR) and in silico density functional theory (DFT) tools. The continuous variation method revealed the presence of higher-order complexes and the appearance of self-association which were both taken into account during the determination of the association constants. The quantum chemical calculations - performed at B3LYP 6-311 ++G(d,p) level with basis set superposition error (BSSE) corrections - are in agreement with the experimental observations, reaffirming the association constants and justifying the validity of computational investigation of such systems. Furthermore, natural bond orbital analysis was carried out to appraise the binding properties of the complexes.

  8. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz; Adam, Nurul Ilham; Yahya, Muhd Zu Azhan; Ali, Ab Malik Marwan

    2015-08-01

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance (1HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in 1HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF3SO3 show the highest conductivity. The complexation between EMG30 and LiCF3SO3 were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR).

  9. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    SciTech Connect

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz; Adam, Nurul Ilham; Yahya, Muhd Zu Azhan; Ali, Ab Malik Marwan

    2015-08-28

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance ({sup 1}HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in {sup 1}HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF{sub 3}SO{sub 3} show the highest conductivity. The complexation between EMG30 and LiCF{sub 3}SO{sub 3} were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR)

  10. Quaternary ammonium silane-functionalized, methacrylate resin composition with antimicrobial activities and self-repair potential

    PubMed Central

    Gong, Shi-qiang; Niu, Li-na; Kemp, Lisa K.; Yiu, Cynthia K.Y.; Ryou, Heonjune; Qi, Yi-pin; Blizzard, John D.; Nikonov, Sergey; Brackett, Martha G.; Messer, Regina L.W.; Wu, Christine D.; Mao, Jing; Brister, L. Bryan; Rueggeberg, Frederick A.; Arola, Dwayne D.; Pashley, David H.; Tay, Franklin R.

    2012-01-01

    Design of antimicrobial polymers for enhancing healthcare issues and minimizing environmental problems is an important endeavor with both fundamental and practical implications. Quaternary ammonium silane-functionalized methacrylate (QAMS) represents an example of antimicrobial macromonomers synthesized by a sol-gel chemical route; these compounds possess flexible Si-O-Si bonds. In present work, a partially-hydrolyzed QAMS copolymerized with bis-GMA is introduced. This methacrylate resin was shown to possess desirable mechanical properties with both a high degree of conversion and minimal polymerization shrinkage. Kill-on-contact microbiocidal activities of this resin were demonstrated using single-species biofilms of Streptococcus mutans (ATCC 36558), Actinomyces naeslundii (ATCC 12104) and Candida albicans (ATCC 90028). Improved mechanical properties after hydration provided the proof-of-concept that QAMS-incorporated resin exhibits self-repair potential via water-induced condensation of organic modified silicate (ormosil) phases within the polymerized resin matrix. PMID:22659173

  11. Surface-initiated Polymerization of Azidopropyl Methacrylate and its Film Elaboration via Click Chemistry.

    PubMed

    Saha, Sampa; Bruening, Merlin L; Baker, Gregory L

    2012-11-27

    Azidopropyl methacrylate (AzPMA), a functional monomer with a pendent azido group, polymerizes from surfaces and provides polymer brushes amenable to subsequent elaboration via click chemistry. In DMF at 50 °C, click reactions between poly(AzPMA) brushes and an alkynylated dye proceed with >90% conversion in a few minutes. However, in aqueous solutions, reaction with an alkyne-containing poly(ethylene glycol) methyl ether (mPEG, Mn=5000) gives <10% conversion after a 12-h reaction at room temperature. Formation of copolymers with AzPMA and polyethylene glycol methyl ether methacrylate (mPEGMA) enables control over the hydrophilicity and functional group density in the copolymer to increase the yield of aqueous click reactions. The copolymers show reaction efficiencies as high as 60%. These studies suggest that for aqueous applications such as bioconjugation via click chemistry, control over brush hydrophilicity is vital.

  12. Ab initio study of acrylate polymerization reactions: methyl methacrylate and methyl acrylate propagation.

    PubMed

    Yu, Xinrui; Pfaendtner, Jim; Broadbelt, Linda J

    2008-07-24

    The kinetic parameters of the free radical propagation of methyl methacrylate and methyl acrylate have been calculated using quantum chemistry and transition state theory. Multiple density functional theory (DFT) methods were used to calculate the activation energy, and it was found that MPWB1K/6-31G(d,p) yields results that are in very good agreement with experimental data. To obtain values of the kinetic parameters that were in the best agreement with experimental data, low frequencies were treated using a one-dimensional internal rotor model. Chain length effects were also explored by examining addition reactions of monomeric, dimeric, and trimeric radicals to monomer for both methyl methacrylate and methyl acrylate. The results show that the values for the addition of the trimeric radical to monomer are closest to experimental data. The kinetic parameters that were calculated using a continuum description of the monomer as a solvent were not significantly different from the vacuum results.

  13. Preparation of poly(methyl methacrylate) grafted hydroxyapatite nanoparticles via reverse ATRP.

    PubMed

    Wang, Yan; Xiao, Yan; Huang, Xiujuan; Lang, Meidong

    2011-08-15

    Surface-initiated reverse atom transfer radical polymerization (reverse ATRP) technical was successfully employed to modify hydroxyapatite (HAP) nanoparticles with poly(methyl methacrylate) (PMMA). The peroxide initiator moiety for reverse ATRP was covalently attached to the HAP surface through the surface hydroxyl groups. Reverse ATRP of methyl methacrylate (MMA) from the initiator-functionalized HAP was carried out, and the end bromide groups of grafted PMMA initiated ATRP of MMA subsequently. Fourier transformation infrared (FTIR) spectroscopy, thermal gravimetric analysis (TGA) and transmission electron microscopy (TEM) were employed to confirm the grafting and to characterize the nanoparticle structure. The grafted PMMA gave HAP nanoparticles excellent dispersibility in MMA monomer. As the amount of grafted PMMA increased, the dispersibility of surface-grafted HAP and the compressive strength of HAP/PMMA composites were improved.

  14. Grafting of Chitosan and Chitosantrimethoxylsilylpropyl Methacrylate on Single Walled Carbon Nanotubes-Synthesis and Characterization.

    PubMed

    Carson, Laura; Kelly-Brown, Cordella; Stewart, Melisa; Oki, Aderemi; Regisford, Gloria; Stone, Julia; Traisawatwong, Pasakorn; Durand-Rougely, Clarissa; Luo, Zhiping

    2010-09-01

    Acid functionalized single walled carbon nanotubes (CNTs) were grafted to chitosan by first reacting the oxidized CNTs with thionyl chloride to form acyl-chlorinated CNTs. This product was subsequently dispersed in chitosan and covalently grafted to form CNT-chitosan. CNT-chitosan was further grafted onto 3-trimethoxysilylpropyl methacrylate by free radical polymerization conditions, to yield CNT-g-chitosan-g-3-trimethoxysilylpropyl methacrylate (TMSPM), hereafter referred to as CNT-chitosan-3-TMSPM. These composites were characterized by Fourier Transform Infrared Resonance Spectroscopy (FTIR), carbon-13 nuclear magnetic resonance ((13)C NMR), Thermogravimetric Analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The composite showed improved thermal stability and could be of great potential use in bone tissue engineering.

  15. Combinatory approach of methacrylated alginate and acid monomers for concrete applications.

    PubMed

    Mignon, Arn; Devisscher, Dries; Graulus, Geert-Jan; Stubbe, Birgit; Martins, José; Dubruel, Peter; De Belie, Nele; Van Vlierberghe, Sandra

    2017-01-02

    Polysaccharides, and especially alginate, can be useful for self-healing of cracks in concrete. Instead of weak electrostatic bonds present within calcium alginate, covalent bonds, by methacrylation of the polysaccharides, will result in mechanically stronger superabsorbent polymers (SAPs). These methacrylated alginate chains as backbone are combined with two acrylic monomers in a varying molar fraction. These SAPs show a moisture uptake capacity up to 110% their own weight at a relative humidity of 95%, with a negligible hysteresis. The swelling capacity increased (up to 246 times its own weight) with a decreasing acrylic acid/2 acrylamido-2-methylpropane sulfonic acid ratio. The SAPs also showed a thermal stability up to 200°C. Interestingly, the SAP composed of alginate and acrylic acid exerted a very limited decrease in compressive strength (up to 7% with addition of 1wt% SAP) rendering this material interesting for the envisaged self-healing application.

  16. Preparation of poly(methyl methacrylate) grafted titanate nanotubes by in situ atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Gao, Xueping; Zhou, Yongfeng; Yan, Deyue

    2008-12-01

    This paper reports the successful preparation of core-shell hybrid nanocomposites by a 'grafting from' approach based on in situ atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) from titanate nanotubes (TNTs). Transmission electron microscope (TEM) images of the products provide direct evidence for the formation of a core-shell structure, possessing a hard core of TNTs and a soft shell of poly-MMA (PMMA). Fourier-transform infrared spectroscopy (FT-IR), hydrogen nuclear magnetic resonance (1H NMR), scanning electron microscopy (SEM), and thermal gravimetric analysis (TGA) were used to determine the chemical structure, morphology, and the grafted PMMA quantities of the resulting products. The grafted PMMA content was well controlled and increased with increasing monomer/initiator ratio. Further copolymerization of hydroxyethyl methacrylate (HEMA) with PMMA-coated TNTs as initiators was realized, illustrating the 'living' characteristics of the ATRP method used in this paper.

  17. RGDS- and SIKVAVS-Modified Superporous Poly(2-hydroxyethyl methacrylate) Scaffolds for Tissue Engineering Applications.

    PubMed

    Macková, Hana; Plichta, Zdeněk; Proks, Vladimír; Kotelnikov, Ilya; Kučka, Jan; Hlídková, Helena; Horák, Daniel; Kubinová, Šárka; Jiráková, Klára

    2016-11-01

    Three-dimensional hydrogel supports for mesenchymal and neural stem cells (NSCs) are promising materials for tissue engineering applications such as spinal cord repair. This study involves the preparation and characterization of superporous scaffolds based on a copolymer of 2-hydroxyethyl and 2-aminoethyl methacrylate (HEMA and AEMA) crosslinked with ethylene dimethacrylate. Ammonium oxalate is chosen as a suitable porogen because it consists of needle-like crystals, allowing their parallel arrangement in the polymerization mold. The amino group of AEMA is used to immobilize RGDS and SIKVAVS peptide sequences with an N-γ-maleimidobutyryloxy succinimide ester linker. The amount of the peptide on the scaffold is determined using (125) I radiolabeled SIKVAVS. Both RGDS- and SIKVAVS-modified poly(2-hydroxyethyl methacrylate) scaffolds serve as supports for culturing human mesenchymal stem cells (MSCs) and human fetal NSCs. The RGDS sequence is found to be better for MSC and NSC proliferation and growth than SIKVAVS.

  18. Fabrication slab waveguide based polymethyl methacrylate (PMMA) with spin coating method

    NASA Astrophysics Data System (ADS)

    Andriawan, Alan; Pramono, Yono Hadi; Masoed, Asnawi

    2016-11-01

    Fabrication and characterization slab waveguide based polymethyl methacrylate (PMMA) has been carried out. Slab waveguide fabrication done by the spin coating method. Slab waveguide fabrication process carried out by the rotational speed of 1000, 2000, and 3000 rpm respectively played for 10 seconds. Then the slab waveguides heated using a hot plate. Heating process starting from room temperature then increased 5°C to 70°C with a 5 minute warm-up time interval. From the results of characterization fabricated slab waveguides to determine the film thickness is made. Then made observations on the waveguide by passing the light beam He-Ne laser on the thin layer through a single mode optical fiber. From the results of characterization is known that the fabrication of a slab waveguide with a layer thickness of 166 μm. From this research it is known that polymethyl methacrylate (PMMA) can be used as a waveguide with a spin coating method.

  19. The color stability of silorane- and methacrylate-based resin composites.

    PubMed

    Kang, Aromi; Son, Sung-Ae; Hur, Bock; Kwon, Young Hoon; Ro, Jung Hoon; Park, Jeong-Kil

    2012-01-01

    The purpose of this study were to evaluate the discoloration of a silorane-based resin and two methacrylated-based resin composites upon exposure to different staining solutions coffee, red wine, porcine liver esterase and distilled water for 7 days. The colors of all specimens before and after storage in the solutions were measured by a spectrophotometer based on CIE Lab system, and the color differences thereby calculated. Data were statistically analyzed by ANOVA and Scheffe's test. For coffee and red wine, the mean color change in silorane-based resin was significantly lower than that in methacylate-based resin composites (p<0.05). For porcine liver esterase and distilled water, there was no significant difference in the mean values of color change between silorane- and methacrylate-based resin composites (p>0.05). In conclusion, the silorane-based resin composites exhibited better color stability (less ΔE) after exposure to the colored staining solutions.

  20. Preparation and Characterization of Poly(methyl methacrylate)-functionalized Carboxyl Multi-walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Meng, Qing-jie; Zhang, Xing-xiang; Bai, Shi-he; Wang, Xue-chen

    2007-12-01

    An in situ polymerization process was used to prepare poly (methyl methacrylate) (PMMA)-functionalized carboxyl multi-walled carbon nanotubes using carboxylate carbon nanotubes and methyl methacrylate as reactants and benzoyl peroxide as an initiator agent. The functionalized multi-walled carbon nanotubes were characterized using transmission electron microscope, scanning electron microscope, nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis and Raman. The results indicate that the PMMA chains are covalently linked with the surface of carboxylate carbon nanotubes. The surface morphology is controlled by the content of carboxylate carbon nanotubes in the reactants. The PMMA functionalized multi-walled carbon nanotubes are soluble in deuterated chloroform. The storage modulus and tanδ magnitude increase as the content of CCNTs increases up to 0.3%.

  1. Poly(methyl methacrylate)-cellulose nitrate copolymers. II. Physical and mechanical properties

    SciTech Connect

    Badran, B.M.; Sherif, S.; El-Sheltawi, S.T.; Abu-Sedira, A.A.

    1981-03-01

    Poly(methyl methacrylate)-cellulose nitrate copolymers were prepared by bulk polymerization using benzoyl peroxide as initiator. Cellulose nitrates of two different nitrogen contents (11.4 and 12.2%) were used. The prepared copolymers were ..gamma..-irradiated for specified periods of up to 11.83 Mrad. Their physical and mechanical properties were measured before and after irradiation. The title copolymers showed lower modulus, tensile strength, and elongation at break than poly(methyl methacrylate) itself, but they showed better hardness and abrasian. Irradiation of up to 6.57 Mrad improved the modulus of the copolymers. Hardness and abrasion were improved by increasing cellulose nitrate content. The prepared copolymers that contained cellulose nitrate of 11.4% nitrogen showed secondary transition points. The increase of cellulose nitrate concentration shifted both first and second transition points to relatively higher values.

  2. Novel antifouling oligo(ethylene glycol) methacrylate particles via surfactant-free emulsion polymerization.

    PubMed

    Buyukserin, Fatih; Camli, Sevket Tolga; Yavuz, Mustafa Selman; Budak, Gurer Guven

    2011-03-01

    The use of particle formulations with antifouling surface properties attracts increasing interest in several biotechnological applications. Majority of these studies utilize a poly(ethylene glycol) coating to render the corresponding surface nonrecognizable to biological macromolecules. Herein, we report a simple way to prepare novel antifouling colloids composed of oligo(ethylene glycol) backbones via surfactant-free emulsion polymerization. Monodisperse cross-linked poly(ethylene glycol) ethyl ether methacrylate particles were characterized by dynamic light scattering and transmission electron microscopy. The effects of monomer, cross-linker and initiator on particle characteristics were investigated. More importantly, a prominent blockage of bovine serum albumin adsorption was obtained for the poly(ethylene glycol)-based sub-micron (~200 nm) particles when compared with similar-sized poly(methyl methacrylate) counterparts.

  3. Grafting of Chitosan and Chitosantrimethoxylsilylpropyl Methacrylate on Single Walled Carbon Nanotubes-Synthesis and Characterization

    PubMed Central

    Carson, Laura; Kelly-Brown, Cordella; Stewart, Melisa; Oki, Aderemi; Regisford, Gloria; Stone, Julia; Traisawatwong, Pasakorn; Durand-Rougely, Clarissa; Luo, Zhiping

    2011-01-01

    Acid functionalized single walled carbon nanotubes (CNTs) were grafted to chitosan by first reacting the oxidized CNTs with thionyl chloride to form acyl-chlorinated CNTs. This product was subsequently dispersed in chitosan and covalently grafted to form CNT-chitosan. CNT-chitosan was further grafted onto 3-trimethoxysilylpropyl methacrylate by free radical polymerization conditions, to yield CNT-g-chitosan-g-3-trimethoxysilylpropyl methacrylate (TMSPM), hereafter referred to as CNT-chitosan-3-TMSPM. These composites were characterized by Fourier Transform Infrared Resonance Spectroscopy (FTIR), carbon-13 nuclear magnetic resonance (13C NMR), Thermogravimetric Analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The composite showed improved thermal stability and could be of great potential use in bone tissue engineering. PMID:21765959

  4. Atom transfer radical polymerization to fabricate monodisperse poly[glycidyl methacrylate-co-poly (ethylene glycol) methacrylate] microspheres and its application for protein affinity purification.

    PubMed

    Yu, Ling; Shi, Zhuan Zhuan; Li, Chang Ming

    2015-09-01

    Poly[glycidyl methacrylate-co-poly (ethylene glycol) methacrylate] microspheres for the first time were successfully synthesized by atom transfer radical polymerization (ATRP) method at room temperature. The co-polymerization approach was investigated to delicately control the microsphere morphology and size-distribution by reaction conditions including solvent percentage, monomer loading and rotation speed. The results show that the average size of the microspheres is ∼5.7 μm with coexistence of epoxy, hydroxyl and ether groups, which provide plentiful functional sites for protein anchoring. The mechanism of the microsphere formation is proposed. The microsphere successfully demonstrates its unique application for affinity purification of proteins, in which the functional epoxy group facilitates a simple and efficient protein covalent immobilization to purify immunoglobulin G on the microspheres, while the hydrophilic poly (ethylene glycol) motif can repulse nonspecific protein adsorption for good specificity. This microspheres can be used in broad protein biosensors due to their abundant functional groups and high surface to volume ratio.

  5. Poly(glycidyl methacrylate)-A soft template for the facile preparation of poly(glycidyl methacrylate) core-copper nanoparticle shell nanocomposite

    NASA Astrophysics Data System (ADS)

    Mohammed Safiullah, S.; Abdul Wasi, K.; Anver Basha, K.

    2015-12-01

    Poly(glycidyl methacrylate) core/copper nanoparticle shell nanocomposite (PGMA/Cu nanohybrid) was prepared by simple two step method (i) The synthesis of poly(glycidyl methacrylate) (PGMA) beads by free radical suspension polymerization followed by (ii) direct deposition of copper nanoparticles (CuNPs) on activated PGMA beads. The PGMA beads were used as a soft template to host the CuNPs without surface modification of it. In this method the CuNPs were formed by chemical reduction of copper salts using sodium borohydride in water medium and deposited directly on the activated PGMA. Two different concentrations of copper salts were employed to know the effect of concentration on the shape and size of nanoparticles. The results showed that, the different sizes and shapes of CuNPs were deposited on the PGMA matrix. The X-ray Diffraction study results showed that the CuNPs were embedded on the surface of the PGMA matrix. The scanning electron microscopic images revealed that the fabrication of CuNPs on the PGMA matrix possess different shapes and changes the morphology and nature of PGMA beads significantly. The fluorescent micrograph also confirmed that the CuNPs were doped on the PGMA surface. The thermal studies have demonstrated that the CuNPs deposition on the surface of PGMA beads had a significant effect.

  6. Relationship between water structure and properties of poly(methyl methacrylate-b-2-hydroxyethyl methacrylate) by solid-state NMR.

    PubMed

    Mochizuki, Akira; Miwa, Yuko; Miyoshi, Riko; Namiki, Takahiro

    2017-03-22

    We previously reported that the platelet compatibility of methyl methacrylate (MMA)-2-hydroxyethyl methacrylate (HEMA) diblock copolymers is related to the characteristic water structure in the copolymer, as the copolymer has an excess amount of nonfreezing water when compared with that estimated from the amounts of water in HEMA and MMA homopolymers. Thus, in this study, the relationship between water structure and polymer structure, including the heterogeneity and mobility of the copolymer, was investigated using differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR) spectroscopy. The prepared copolymers were classified into two groups: copolymers with a short, constant polyMMA segment length (Mn = ~2900) and copolymers with a constant polyHEMA segment length (Mn = ~9500), whereas the lengths of the counter segments varied. DSC analysis showed that when the polyMMA and polyHEMA segment lengths are similar, the amount of nonfreezing water increases, regardless of the total molecular weight of the copolymer. NMR analysis showed that heterogeneity of the copolymer is enhanced and the mobility of the copolymer decreases when the segment lengths are similar. These findings suggested that the excess amount of nonfreezing water is formed when the properties of water near the HEMA unit change from freezing to nonfreezing owing to interactions with the MMA unit. In addition, it is suggested that the heterogeneity of the copolymer structure or the mobility of the polymer are involved in the generation of excess nonfreezing water.

  7. Study of polymeric interactions of copolymers: 2-hydroxyethyl methacrylate (HEMA) and 2,3-dihydroxypropyl methacrylate (DHPMA) with copper hydroxylated nanoballs.

    PubMed

    McCann, Krystal; Knudsen, Bernard; Ananthoji, Ramakanth; Perry, John J; Hilker, Brent; Zaworotko, Michael J; Harmon, Julie P

    2010-09-01

    2-hydroxyethyl methacrylate (HEMA) and 2,3-dihydroxypropyl methacrylate (DHPMA) were used to synthesize novel nanocomposites containing 0.5% by weight of copper hydroxylated nanoballs. Glass transition temperatures of the copolymers and their respective nanocomposites were determined by using differential scanning calorimetry (DSC). Thermogravimetric analysis (TGA) was employed to measure the degradation temperatures of the samples and to determine if the degradation is a single step process or multiple step process. The dielectric permittivity (epsilon') and loss factor (epsilon") were measured via Dielectric Analysis (DEA) in the frequency range 0.1 Hz to 100 kHz and between the temperature -150 to 190 degrees C. gamma, beta, and alphabeta conductivity relaxations were revealed using the electric modulus formalism. The activation energies for the relaxations were calculated. Argand plots of M" versus M' were used to study the viscoelastic effects of both copolymer and the composites. Herein we show that it is possible to tune solubility and relaxation properties which are important to the design of new biomaterials.

  8. Methylation of acidic moieties in poly(methyl methacrylate-co-methacrylic acid) copolymers for end-group characterization by tandem mass spectrometry.

    PubMed

    Giordanengo, Rémi; Viel, Stéphane; Hidalgo, Manuel; Allard-Breton, Béatrice; Thévand, André; Charles, Laurence

    2010-07-30

    The complete structural characterization of a copolymer composed of methacrylic acid (MAA) and methyl methacrylate (MMA) units was achieved using tandem mass spectrometry. In a first step, collision-induced dissociation (CID) of sodiated MAA-MMA co-oligomers allowed us to determine the co-monomeric composition, the random nature of the copolymer and the sum of the end-group masses. However, dissociation reactions of MAA-based molecules mainly involve the acidic pendant groups, precluding individual characterization of the end groups. Therefore, methylation of all the acrylic acid moieties was performed to transform the MAA-MMA copolymer into a PMMA homopolymer, for which CID mainly proceeds via backbone cleavages. Using trimethylsilyldiazomethane as a derivatization agent, this methylation reaction was shown to be complete without affecting the end groups. Using fragmentation rules established for PMMA polymers together with accurate mass measurements of the product ions and knowledge of reagents used for the studied copolymer synthesis, a structure could be proposed for both end groups and it was found to be consistent with signals obtained in nuclear magnetic resonance spectra.

  9. Synthesis and applications of shell cross-linked thermoresponsive hybrid micelles based on poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b-poly(methyl methacrylate).

    PubMed

    Wei, Hua; Cheng, Cheng; Chang, Cong; Chen, Wen-Qin; Cheng, Si-Xue; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2008-05-06

    Shell cross-linked (SCL) thermoresponsive hybrid micelles consisting of a cross-linked thermoresponsive hybrid hydrophilic shell and a hydrophobic core domain were synthesized from poly(N-isopropylacrylamide-co-3- (trimethoxysilyl)propyl methacrylate)-b-polymethyl methacrylate (P(NIPAAm-co-MPMA)-b-PMMA) amphiphilic block copolymers. Transmission electron microscopy (TEM) images showed that the SCL micelles formed regularly globular nanoparticles. The SCL micelles showed reversible dispersion/aggregation in response to temperature cycles through an outer polymer shell lower critical solution temperature (LCST) for PNIPAAm at around 33 degrees C, observed by turbidity measurements and dynamic light scattering (DLS). The drug loading and in vitro drug release properties of the SCL micelles bearing a silica-reinforced PNIPAAm shell were further studied, which showed that the SCL micelles exhibited a much improved entrapment efficiency (EE) as well as a slower release rate which allowed the entrapped molecules to be slowly released over a much longer period of time as compared with pure PNIPAAm-b-PMMA micelles.

  10. Effect of mouse VEGF164 on the viability of hydroxyethyl methacrylate-methyl methacrylate-microencapsulated cells in vivo: bioluminescence imaging.

    PubMed

    Cheng, Dangxiao; Lo, Chuen; Sefton, Michael V

    2008-11-01

    Bioluminescent imaging was used to track the viability of luciferase transfected L929 cells in poly(hydroxyethyl methacrylate-co-methyl methacrylate) (HEMA-MMA) microcapsules. Bioluminescence, as determined by Xenogen imaging after addition of luciferin to microcapsules in vitro, increased with time, consistent with an increase in cell number. Capsules were suspended in Matrigel and injected subcutaneously. The bioluminesence in vivo increased over the first 3 weeks and then decreased, both with and without the delivery of mVEGF(164) (1.2 ng/24 h/200 microcapsules in vitro); VEGF delivery was from microencapsulated doubly transfected cells (both luciferase and mVEGF(164)). VEGF delivery was sufficient to generate a greater number of vascular structures, but this did not result in the expected increase in microencapsulated cell viability. Interestingly, the number of vessels at day 28 was less than at day 21, consistent with what would be an expected reduction in VEGF secretion when cell viability is lost. The results presented here do not support the hypothesis that transfection of microencapsulated cells with VEGF is sufficient to correct the oxygen transport limitation, at least with this type of tissue engineering construct. On the other hand, bioluminescent imaging proved to be a useful method of monitoring microencapsulated cell viability over many weeks in vivo.

  11. Surface segregation of fluorinated moieties on poly(methyl methacrylate-ran-2-perfluorooctylethyl methacrylate) films during film formation: Entropic or enthalpic influences.

    PubMed

    Ye, Xiuyun; Zuo, Biao; Deng, Mao; Hei, Yanlin; Ni, Huagang; Lu, Xiaolin; Wang, Xinping

    2010-09-01

    The effects of solvents, fluorinated monomer content and film-formation methods on the surface structures of random copolymers composed of methyl methacrylate (MMA) and 2-perfluorooctylethyl methacrylate (FMA) were investigated by contact angle goniometry, X-ray photoelectron spectroscopy, sum frequency generation (SFG) vibrational spectroscopy and surface tension measurement. It is found that, with cyclohexanone as the solvent, there is a critical FMA content of 9mol%, below which the copolymer films by spin coating have a more surface segregation extent of fluorinated moieties than those by solution casting; above which the copolymer films by solution casting have a more surface segregation extent of fluorinated moieties than those by spin coating. However, with toluene as solvent, the critical FMA content lowers down to 3mol%. We believe that the solvent nature and the content of fluorinated moieties in the random copolymer have the great effect because the combined effect of these two factors can determine the random copolymer chain conformations and their thermodynamic dominating factors in the solution and at the solution-air interface. A thermodynamic analysis combining the entropic and enthalpic effects is suggested to explain the observed phenomenon. This research is believed to obtain an enhanced understanding of the surface formation mechanism of the polymer films and thus demonstrate how to promote the segregation of fluorinated moieties at the polymer film surfaces.

  12. Protein-resistant polyurethane by sequential grafting of poly(2-hydroxyethyl methacrylate) and poly(oligo(ethylene glycol) methacrylate) via surface-initiated ATRP.

    PubMed

    Jin, Zhilin; Feng, Wei; Zhu, Shiping; Sheardown, Heather; Brash, John L

    2010-12-15

    Protein-resistant polyurethane (PU) surfaces were prepared by sequentially grafting poly(2-hydroxyethyl methacrylate) (poly(HEMA)) and poly(oligo(ethylene glycol) methacrylate) (poly(OEGMA)) via surface-initiated atom transfer radical polymerization (s-ATRP). The chain lengths of poly(HEMA) and poly(OEGMA) were regulated via the ratio of monomer to sacrificial initiator in solution. The surfaces were characterized by water contact angle and X-ray photoelectron spectroscopy (XPS). The protein resistant properties of the surfaces were assessed by single and binary adsorption experiments with fibrinogen (Fg), lysozyme (Lys), and lactalbumin (Lac). The adsorption of all three proteins on the sequentially grafted poly(HEMA)-poly(OEGMA) surfaces (PU/PH/PO) was greatly reduced compared with the unmodified PU. Adsorption decreased with increasing poly(OEGMA) chain length. On the PU/PH/PO surface with longest poly(OEGMA) chain length (∼100), the decrease in Lys adsorption was in the range of 95-98% and the decrease in Fg and Lac adsorption was >99% compared with the unmodified PU. Adsorption from binary protein solutions showed that the PU/PH/PO surfaces resisted these proteins more or less equally, that is, independent of protein size.

  13. Photophysical, photochemical and laser behavior of some diolefinic laser dyes in sol-gel and methyl methacrylate/2-hydroxyethyl methacrylate copolymer matrices

    NASA Astrophysics Data System (ADS)

    Sakr, Mahmoud A. S.; Abdel Gawad, El-Sayed A.; Abou Kana, Maram T. H.; Ebeid, El-Zeiny M.

    2015-08-01

    The photophysical properties such as singlet absorption, molar absorptivity, fluorescence spectra, dipole moment, fluorescence quantum yields, fluorescence lifetimes and laser activity of 1,4-bis (β-Pyridyl-2-Vinyl) Benzene (P2VB), 2,5-distyryl-pyrazine (DSP) and 1,4-bis(2-methylstyryl)benzene(MSB) diolefineic laser dyes have been measured in different restricted hosts. (P2VB), (DSP) and (MSB) are embedded in transparent sol-gel glass and a copolymer of methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) media. The absorption and fluorescence properties of these laser dyes in sol-gel glass matrices are compared with their respective properties in copolymer host. The photostability of these laser dyes in sol-gel glass and (MMA/HEMA) copolymer samples are measured in terms of half-life method (using nitrogen laser 337.1 nm in pumping), as the number of pulses necessary to reduce the dye laser intensity to 50% of its original value. The gel laser materials show improved photostability upon pumping by nitrogen laser compared with those in organic polymeric host matrix.

  14. Preparation and characterization of pH-sensitive and antifouling poly(vinylidene fluoride) microfiltration membranes blended with poly(methyl methacrylate-2-hydroxyethyl methacrylate-acrylic acid).

    PubMed

    Ju, Junping; Wang, Chao; Wang, Tingmei; Wang, Qihua

    2014-11-15

    Functional terpolymer of poly(methyl methacrylate-2-hydroxyethyl methacrylate-acrylic acid) (P(MMA-HEMA-AA)) was synthesized via a radical polymerization method. The terpolymer could be directly blended with poly(vinylidene fluoride) (PVDF) to prepare the microfiltration (MF) membranes via phase separate process. The synthesized polymers were characterized by Fourier transform infrared (FTIR), the nuclear magnetic resonance proton spectra ((1)H NMR). The membrane had the typical asymmetric structure and the hydrophilic side chains tended to aggregate on the membrane surface. The surface enrichment of amphiphilic copolymer and morphology of MF membranes were characterized by Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) and scanning electron microscopy (SEM). The contact angle (CA) and water uptake were also tested to assess the hydrophilicity and wetting characteristics of the polymer surface. The water filtration properties were measured. It was found the modified membranes showed excellent pH-sensitivity and pH-reversibility behavior. Furthermore, the hydrophilicity of the blended membranes increased, and the membranes showed good protein antifouling property.

  15. Study of the water structure in poly(methyl methacrylate-block-2-hydroxyethyl methacrylate) and its relationship to platelet adhesion on the copolymer surface.

    PubMed

    Mochizuki, Akira; Namiki, Takahiro; Nishimori, Yusuke; Ogawa, Haruki

    2015-01-01

    The water structure and platelet compatibility of poly(methyl methacrylate (MMA)-block-2-hydroxyethyl methacrylate (HEMA)) were investigated. The molecular weight (Mn) of the polyHEMA segment was kept constant (average: 9600), while the Mn of the polyMMA segment was varied from 1340 to 7390. The equilibrium water content of the copolymers was found to be mainly governed by the HEMA content. The water structure in the copolymers was characterized in terms of the amounts of non-freezing and freezing water (abbreviated as Wnf and Wfz, respectively) using differential scanning calorimetry. It was found that the Wnf for the copolymers were higher than those estimated from the Wnf for the HEMA and MMA homopolymers and that the amount of excess non-freezing water depended on the polyMMA segment length. In addition, X-ray diffraction analysis revealed that some of the copolymers had cold-crystallizable water. These facts suggested that the polyMMA segments were involved in determining the water structures in the copolymers. Furthermore, the platelet compatibility of the copolymers was improved as compared to that of the HEMA homopolymer. It was therefore concluded that the platelet compatibility of the copolymer was related to the amount of excess non-freezing water.

  16. Nonviral Plasmid DNA Carriers Based on N,N'-Dimethylaminoethyl Methacrylate and Di(ethylene glycol) Methyl Ether Methacrylate Star Copolymers.

    PubMed

    Mendrek, Barbara; Sieroń, Łukasz; Żymełka-Miara, Iwona; Binkiewicz, Paulina; Libera, Marcin; Smet, Mario; Trzebicka, Barbara; Sieroń, Aleksander L; Kowalczuk, Agnieszka; Dworak, Andrzej

    2015-10-12

    Star polymers with random and block copolymer arms made of cationic N,N'-dimethylaminoethyl methacrylate (DMAEMA) and nonionic di(ethylene glycol) methyl ether methacrylate (DEGMA) were synthesized via atom transfer radical polymerization (ATRP) and used for the delivery of plasmid DNA in gene therapy. All stars were able to form polyplexes with plasmid DNA. The structure and size of the polyplexes were precisely determined using light scattering and cryo-TEM microscopy. The hydrodynamic radius of a complex of DNA with star was dependent on the architecture of the star arms, the DEGMA content and the number of amino groups in the star compared to the number of phosphate groups of the nucleic acid (N/P ratio). The smallest polyplexes (Rh90°∼50 nm) with positive zeta potentials (∼15 mV) were formed of stars with N/P=6. The introduction of DEGMA into the star structure caused a decrease of polyplex cytotoxicity in comparison to DMAEMA homopolymer stars. The overall transfection efficiency using HT-1080 cells showed that the studied systems are prospective gene delivery agents. The most promising results were obtained for stars with random copolymer arms of high DEGMA content.

  17. Detection of leachables and cytotoxicity after exposure to methacrylate- and epoxy-based root canal sealers in vitro.

    PubMed

    Lodienė, Greta; Kopperud, Hilde M; Ørstavik, Dag; Bruzell, Ellen M

    2013-10-01

    Root canal sealing materials may have toxic potential in vitro depending on the cell line, cytotoxicity assay, material chemistry, and degree of polymer curing. The aims of the present study were to detect leaching components from epoxy- or methacrylate-based root canal sealers and to investigate the degree of cytotoxicity after exposure to extracts from these materials. Qualitative determination of substances released from the materials was performed by gas- and liquid chromatography/mass spectrometry. Submandibular salivary gland acinar cell death (apoptosis/necrosis) was determined using a fluorescence staining/microscopy technique. The major leachable monomer from the epoxy-based material was bisphenol-A diglycidyl ether (BADGE), whereas leachables from the methacrylate-based materials were mainly triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), hydroxyethyl methacrylate (HEMA), and polyethyleneglycol dimethacrylate (PEGDMA). Exposure to diluted extracts of cured methacrylate-based materials caused a postexposure time-dependent increase in cell death. This effect was not demonstrated as a result of exposure to undiluted extract of cured epoxy-based material. Extracts of all fresh materials induced apoptosis significantly, but at lower dilutions of the epoxy- than the methacrylate-based materials. The degree of leaching, determined from the relative chromatogram peak heights of eluates from the methacrylate-based sealer materials, corresponded with the degree of cell death induced by extracts of these materials.

  18. 2-(2-methoxyethoxy)ethyl methacrylate hydrogels with gradient of cross-link density

    NASA Astrophysics Data System (ADS)

    Kadlubowski, Slawomir; Matusiak, Malgorzata; Adamus, Agnieszka; Olejniczak, Magdalena N.; Kozanecki, Marcin

    2016-01-01

    Electron beam irradiation of 2-(2-methoxyethoxy)ethyl methacrylate and ethylene glycol dimethacrylate mixtures leads to the formation of cross-linked structures that exhibit a gradient of cross-link density, as demonstrated by gel fraction, swelling and Differential Scanning Calorimetry analysis. The reason for observed phase separation is formation of the high molecular weight clusters and its precipitation before gelation dose. This effect can be controlled/influenced by absorbed dose and cross-linker concentration.

  19. Biodegradable inorganic-organic hybrids of methacrylate star polymers for bone regeneration.

    PubMed

    Chung, Justin J; Fujita, Yuki; Li, Siwei; Stevens, Molly M; Kasuga, Toshihiro; Georgiou, Theoni K; Jones, Julian R

    2017-03-08

    Hybrids that are molecular scale co-networks of organic and inorganic components are promising biomaterials, improving the brittleness of bioactive glass and the strength of polymers. Methacrylate polymers have high potential as the organic source for hybrids since they can be produced, through controlled polymerization, with sophisticated polymer architectures that can bond to silicate networks. Previous studies showed the mechanical properties of hybrids can be modified by polymer architecture and molar mass (MM). However, biodegradability is critical if hybrids are to be used as tissue engineering scaffolds, since the templates must be remodelled by host tissue. Degradation by-products have to either completely biodegrade or be excreted by the kidneys. Enzyme, or bio-degradation is preferred to hydrolysis by water uptake as it is expected to give a more controlled degradation rate. Here, branched and star shaped poly(methyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate) (poly(MMA-co-TMSPMA)) were synthesized with disulphide based dimethacrylate (DSDMA) as a biodegradable branching agent. Biodegradability was confirmed by exposing the copolymers to glutathione, a tripeptide which is known to cleave disulphide bonds. Cleaved parts of the star polymer from the hybrid system were detected after 2weeks of immersion in glutathione solution, and MM was under threshold of kidney filtration. The presence of the branching agent did not reduce the mechanical properties of the hybrids and bone progenitor cells attached on the hybrids in vitro. Incorporation of the DSDMA branching agent has opened more possibilities to design biodegradable methacrylate polymer based hybrids for regenerative medicine.

  20. Fabrication of Poly(methyl Methacrylate) microfluidic chips by redox-initiated polymerization

    SciTech Connect

    Chen, Jiang; Lin, Yuehe; Chen, Gang

    2007-08-16

    In this report, a method based on the redox-initiated polymerization of methyl methacrylate (MMA) has been developed for the rapid fabrication of PMMA microfluidic chips.The new fabrication approach obviates the need for special equipment and significantly simplifies the process of fabricating microdevices. The attractive performance of the novel PMMA microchips has been demonstrated in connection with contactless conductivity detection for the separation and detection of ionic species.

  1. Durability of Poly(Methyl Methacrylate) Lenses Used in Concentrating Photovoltaic Technology (Revised) (Presentation)

    SciTech Connect

    Miller, D. C.; Carloni, J. D.; Pankow, J. W.; Gjersing, E. L.; To, B.; Packard, C. E.; Kennedy, C. E.; Kurtz, S. R.

    2012-01-01

    Concentrating photovoltaic (CPV) technology recently gained interest based on its expected low levelized cost of electricity, high efficiency, and scalability. Many CPV systems employ Fresnel lenses composed of poly(methyl methacrylate) (PMMA) to obtain a high optical flux density on the cell. The optical and mechanical durability of these lenses, however, is not well established relative to the desired surface life of 30 years. Our research aims to quantify the expected lifetime of PMMA in key market locations (FL, AZ, and CO).

  2. Organophosphazenes.22 Copolymerization of (Alpha-Methylethenylphenyl) Penta-fluorocyclotriphosphazenes with Styrene and Methyl Methacrylate.

    DTIC Science & Technology

    1988-03-15

    pennultimate effects , 19. BSTRACT (Continue on reverse it necessary and identify by block number) i ., i. Both 3- and 4- (l-Methylethenylphenyl...parameters for theA, styrene system show that the major perturbation produced by the phosphazene is a polar6 electron withdrawing effect . The methyl...methacrylate system was found to exhibit significant penultimate effects in its reactivity behavior. The copolymers were characteri-zed using elemental

  3. Radiation-grafting of ethylene glycol dimethacrylate (EGDMA) and glycidyl methacrylate (GMA) onto silicone rubber

    NASA Astrophysics Data System (ADS)

    Flores-Rojas, G. G.; Bucio, E.

    2016-10-01

    Silicone rubber (SR) was modified with a graft of ethylene glycol dimethacrylate (EGDMA) and glycidyl methacrylate (GMA) using either gamma-radiation or azobisisobutyronitrile (AIBN). The graft efficiency was evaluated as a function of monomer concentration, absorbed dose, reaction temperature, and concentration of AIBN. The hydrophilicity of the grafted films was measured by contact angle and their equilibrium swelling time in ethanol. Additional characterization by infrared (FTIR-ATR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) is also reported.

  4. Inhibition of the polymerization of methyl methacrylate and methyl acrylate by mixtures of chloranil with phenothiazine

    SciTech Connect

    Ivanov, A.A; Lysenko, G.M.; Zholina, I.N.

    1985-09-01

    This paper investigates the kinetic peculiarities of inhibited polymerization of methyl methacrylate and methyl acrylate in the presence of mixtures of chloranil with phenothiazine. It is shown that depending on the structure of the monomer and the concentrations of the electron donor and electron acceptor, the radicals of propagation may form complexes with chloranil or with phenothiazine at the first step of the inhibition reaction or may interact with the complex (phenothiazine to chloranil).

  5. Study on chemical, UV and gamma radiation-induced grafting of 2-hydroxyethyl methacrylate onto chitosan

    NASA Astrophysics Data System (ADS)

    Casimiro, M. H.; Botelho, M. L.; Leal, J. P.; Gil, M. H.

    2005-04-01

    In the present study, 2-hydroxyethyl methacrylate has been grafted onto chitosan by using either chemical initiation, or photo-induction or gamma radiation-induced polymerisation, all under heterogeneous conditions. The evidence of grafting was provided by Fourier transform infrared spectroscopy and thermal analysis. The results concerning the effect of initiator concentration, initial monomer concentration and dose rate influencing on the yield of grafting reactions are presented. These suggest that gamma irradiation is the method that leads to higher yields of grafting.

  6. Synthesis of poly (2-hydroxyethyl methacrylate) (PHEMA) based nanoparticles for biomedical and pharmaceutical applications.

    PubMed

    Saini, Rajesh; Bajpai, Jaya; Bajpai, Anil K

    2012-01-01

    The performance of polymeric nanomaterials relies greatly upon their properties which are intimately related to the methods of fabrication of the materials. Among various synthetic polymers, the polymers of 2-hydroxyetyhyl methacrylate (PHEMA) maintain a prime position in biomedical field due to their useful physicochemical properties and suitability for controlled drug delivery applications. Here we focus on three methods of preparation of PHEMA nanoparticles, by suspension polymerization, emulsion polymerization and dispersion polymerization without the use of any surfactants.

  7. Preliminary dose response study of a gel dosimeter using 2-Hydroxyethyl Methacrylate (HEMA).

    PubMed

    Trapp, J V; Leach, M O; Webb, S

    2005-09-01

    In this work we present a gel dosimeter based on 2-Hydroxyethyl Methacrylate (HEMA). The gel dosimeter is manufactured in normal atmospheric oxygen (normoxic) and undergoes a measurable change after irradiation. The gel is shown to provide a signal to noise ratio of up to at least 35 and have a linear change in transverse relaxation rate up to 70 Gy when measured with magnetic resonance imaging.

  8. Photoluminescence of Electrospun Poly-Methyl-Methacrylate:Alq3 Composite Fibres

    NASA Astrophysics Data System (ADS)

    Tong, Ke-Qin; Xu, Chun-Xian; Wang, Qiong; Gu, Bao-Xiang; Zheng, Ke; Ye, Li-Hua; Li, Xin-Song

    2008-12-01

    Tris(8-hydroxyquinoline) aluminium doped poly-methyl-methacrylate (PMMA:Alq3) composite nanofibres are fabricated by electrospinning. The morphology of fibres is characterized by scanning electron microscopy. The photoluminescence of a series of the nanofibres with various contents of Alqs to PMMA is investigated. UV-visible absorption and the PL spectra analysis are employed to analyse the interaction between the polymer and the luminescent molecule.

  9. Occupational exposure to methyl methacrylate monomer induces generalised neuropathy in a dental technician.

    PubMed

    Sadoh, D R; Sharief, M K; Howard, R S

    1999-04-24

    A 36-year-old dental technician for 14 years developed paraesthesia and numbness in her legs. Neurophysiological studies revealed absent sensory nerve action potentials (SNAPs) from her lower limbs and normal upper limb SNAPs on presentation. Motor nerve studies were normal. Repeat studies 2 months after leaving her job showed some improvement in the lower limb SNAPs. It is suggested that her symptoms were caused by occupational exposure to methyl methacrylate monomer.

  10. Characterization by Tin-Specific Size Exclusion Chromatography of the Free Radical Copolymerization of Tributyltin Methacrylate and Methyl Methacrylate,

    DTIC Science & Technology

    1980-12-11

    presence of a free radical initiator ( benzoyl peroxide ) at 80.1 OC. Aliquots, taken at preselected intervals from 0 to 1440 min, were fractionated by size...Commercial benzoyl peroxide was employed as the initiator. The THF employed as solvent and chromatographic eluent, containing butylated hydroxytoluene...liter, 3-neck flask equipped with a thermometer, septum, and condenser. To this mixture was added 4.29 g (.018 mole) of benzoyl peroxide . The flask and

  11. Mechanical Characterization of a Dynamic and Tunable Methacrylated Hyaluronic Acid Hydrogel

    PubMed Central

    Ondeck, Matthew G.; Engler, Adam J.

    2016-01-01

    Hyaluronic acid (HA) is a commonly used natural polymer for cell scaffolding. Modification by methacrylate allows it to be polymerized by free radicals via addition of an initiator, e.g., light-sensitive Irgacure, to form a methacrylated hyaluronic acid (MeHA) hydrogel. Light-activated crosslinking can be used to control the degree of polymerization, and sequential polymerization steps allow cells plated onto or in the hydrogel to initially feel a soft and then a stiff matrix. Here, the elastic modulus of MeHA hydrogels was systematically analyzed by atomic force microscopy (AFM) for a number of variables including duration of UV exposure, monomer concentration, and methacrylate functionalization. To determine how cells would respond to a specific two-step polymerization, NIH 3T3 fibroblasts were cultured on the stiffening MeHA hydrogels and found to reorganize their cytoskeleton and spread area upon hydrogel stiffening, consistent with cells originally cultured on substrates of the final elastic modulus. PMID:26746491

  12. Fabrication, Modeling and Characterization of Multi-Crosslinked Methacrylate Copolymeric Nanoparticles for Oral Drug Delivery

    PubMed Central

    Ngwuluka, Ndidi C.; Pillay, Viness; Choonara, Yahya E.; Modi, Girish; Naidoo, Dinesh; du Toit, Lisa C.; Kumar, Pradeep; Ndesendo, Valence M.K.; Khan, Riaz A.

    2011-01-01

    Nanotechnology remains the field to explore in the quest to enhance therapeutic efficacies of existing drugs. Fabrication of a methacrylate copolymer-lipid nanoparticulate (MCN) system was explored in this study for oral drug delivery of levodopa. The nanoparticles were fabricated employing multicrosslinking technology and characterized for particle size, zeta potential, morphology, structural modification, drug entrapment efficiency and in vitro drug release. Chemometric Computational (CC) modeling was conducted to deduce the mechanism of nanoparticle synthesis as well as to corroborate the experimental findings. The CC modeling deduced that the nanoparticles synthesis may have followed the mixed triangular formations or the mixed patterns. They were found to be hollow nanocapsules with a size ranging from 152 nm (methacrylate copolymer) to 321 nm (methacrylate copolymer blend) and a zeta potential range of 15.8–43.3 mV. The nanoparticles were directly compressible and it was found that the desired rate of drug release could be achieved by formulating the nanoparticles as a nanosuspension, and then directly compressing them into tablet matrices or incorporating the nanoparticles directly into polymer tablet matrices. However, sustained release of MCNs was achieved only when it was incorporated into a polymer matrix. The experimental results were well corroborated by the CC modeling. The developed technology may be potentially useful for the fabrication of multi-crosslinked polymer blend nanoparticles for oral drug delivery. PMID:22016653

  13. Radiation grafting of acrylic and methacrylic acid to cellulose fibers to impart high water sorbency

    SciTech Connect

    Zahran, A.H.; Williams, J.L.; Stannett, V.T.

    1980-04-01

    Acrylic and methacrylic acids have been directly grafted to rayon and cotton using the preirradiation technique with /sup 60/ Co gamma rays. The rate of grafting increased with increasing temperature and monomer concentration, as did the final degree of grafting. The amount and rate of grafting also increased with the total irradiation dose but tended to level off at higher doses, in agreement with the leveling off of the radical content reported previously. Methacrylic acid grafted more and faster than acrylic acid to both rayon and cotton. Methacrylic acid grafted more with rayon than cotton, but acrylic acid gave somewhat similar yields with both fibers. The water abosrbency of the grafted fibers depended strongly on their posttreatment. Decrystallizing with 70% zinc chloride or with hot sodium hydroxidy developed supersorbency. The two treatments in succession, respectively, gave the highest values. Metacrylic acid brought about less sorbency than the corrsponding acrylic acid grafts. Useful levels of grafting and supersorbency could be readily and practically achieved by the methods described.

  14. UV-cured methacrylic membranes as novel gel-polymer electrolyte for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Nair, J. R.; Gerbaldi, C.; Meligrana, G.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N.; Reale, P.; Gentili, V.

    In this paper, we report the synthesis and characterisation of novel methacrylic based polymer electrolyte membranes for lithium batteries. The method adopted for preparing the solid polymer electrolyte was the UV-curing process, which is well known for being easy, low cost, fast and reliable. It consists of a free radical photo polymerisation of poly-functional monomers: Bisphenol A ethoxylate (15 EO/phenol) dimethacrylate (BEMA) was chosen, as it can readily form flexible 3D networks and has long poly-ethoxy chains which can enhance the movement of Li +-ions inside the polymer matrix. The preliminary results reported here refer to systems where LiPF 6 solutions swelled the preformed polymer membranes. The tests on the conductivity, stability and cyclability of the membranes put in evidence the importance of the polymerisation in presence of mono-methacrylates acting as reactive diluents. Good values of ionic conductivity have been found, especially at ambient temperature. Much better results can be expected by choosing an appropriate mono-methacrylate to modify the polymeric membrane properties and by modifying the methodology of Li +-ions incorporation inside the polymer matrix.

  15. Hypercalcemia secondary to granulomatous disease caused by the injection of methacrylate: a case series

    PubMed Central

    Negri, Armando Luis; Rosa Diez, Guillermo; Del Valle, Elisa; Piulats, Elsa; Greloni, Gustavo; Quevedo, Alejandra; Varela, Federico; Diehl, Maria; Bevione, Pablo

    2014-01-01

    Summary Association of dysregulated calcium homeostasis and granulomatous disease is well established. There exist reports in the literature of granulomatous reactions produced by silicones associated with hypercalcemia. In this case series we report four young women that underwent methacrylate injections in gluteus, thighs and calves that developed granulomas with posterior appearance of hypercalcemia. This complication presented as subacute around 6 months after the procedure. The four patients have as common elements the presence of moderate to severe renal insufficiency, suppressed PTH and elevated calcitriol levels for the degree of renal function. In the image studies, two patients presented in the nuclear magnetic resonance of the gluteus hypodense nodular images compatible with granulomas. Two patients had a positron emission tomography performed showing increased metabolic activity in the muscles of the gluteal region compatible with granulomas. Two patients had a partial surgical resection of the gluteal lesions with the finding of methacrylate associated to foreign body granulomas. In these patients hypercalcemia was treated with oral or local injections of corticoids, intravenous bisphosphonates or ketoconazole with good response. Although the prevalence of this complication with methacrylate injection is not common, hypercalcemia secondary to granulomas should be considered in the differential diagnosis of patients with hypercalcemia when there is a history of this procedure, and especially if they have a reduction in their renal function. PMID:25002879

  16. Determination of thermodynamic properties of poly (cyclohexyl methacrylate) by inverse gas chromatography.

    PubMed

    Kaya, Ismet; Pala, Cigdem Yigit

    2014-07-01

    In this work, some thermodynamic properties of poly (cyclohexyl methacrylate) were studied by inverse gas chromatography (IGC). For this purpose, the polymeric substance was coated on Chromosorb W and which was filled into a glass column. The retention times (t(r)) of the probes were determined from the interactions of poly (cyclohexyl methacrylate) with n-pentane, n-hexane, n-heptane, n-octane, n-decane, methanol, ethanol, 2-propanol, butanol, acetone, ethyl methyl ketone, benzene, toluene and o-xylene by IGC technique. Then, the specific volume (Vg(0)) was determined for each probe molecule. By using (1/T; lnVg(0)) graphics, the glass transition temperature of poly (cyclohexyl methacrylate) was found to be 373 K. The adsorption heat under the glass transition temperature (deltaH(a)), and partial molar heat of sorption above the glass transition (deltaH1(S)), partial molar free energy of sorption (deltaG1(S)) and partial molar entropy of sorption (deltaS1(S)) belonging to sorption for every probe were calculated. The partial molar heat of mixing at infinite dilution (deltaH1(infinity)), partial molar free energy of mixing at infinite dilution (deltaG1(infinity)), Flory-Huggins interaction parameter (chi12(infinity)) and weight fraction activity coefficient (a1/w1)(infinity) values of polymer-solute systems were calculated at different column temperatures. The solubility parameters (delta2) of the polymer were obtained by IGC technique.

  17. Blends of isoprene-styrene/methacrylate monomer systems as denture soft lining material.

    PubMed

    Nazhat, S N; Parker, S; Riggs, P D; Braden, M

    2001-08-01

    This work further develops the concept of using an elastomer gelled with methacrylate monomers to produce a methacrylate-based soft lining material without the use of a plasticizer. An isoprene-styrene (SIS) block copolymer was mixed with methyl methacrylate (MMA) and 1,6-hexandiol dimethacrylate (HDMA). The HDMA was used as a cross-linking agent. The elastomer/monomer ratios were maintained at 50/50 whereas the monomers ranged from 0 to 100%) HDMA. Mechanical properties and water absorption/desorption characteristics were used to assess the effect of varying the monomer compositions. The results indicated that phase separation took place, in particular at high HDMA content. This significantly increased the Young's modulus and decreased the elongation to break. Generally, the water uptake tended to decrease with increasing HDMA content, reflecting the effect of modulus. Second absorption cycles gave higher uptake values compared to the first. Formulations with a high amount of HDMA gave materials with modulus values too high for soft lining applications. This suggests that the optimum formulation requires a compromise between modulus and water uptake.

  18. Physicochemical, mechanical, and biological properties of bone cements prepared with functionalized methacrylates.

    PubMed

    Sabino, Marco A; Ajami, Diana; Salih, Vehid; Nazhat, Showan N; Vargas-Coronado, Rossana; Cauich-Rodríguez, Juan V; Ginebra, Ma Pau

    2004-10-01

    Bone cements prepared with methyl methacrylate (MMA) as a base monomer and either methacrylic acid (MAA) or diethyl amino ethyl methacrylate (DEAEMA) as comonomers were characterized in terms of curing behavior, mechanical properties, and their in vitro biocompatibility. The curing time and setting temperature were found to be composition dependent while the residual monomer was not greatly affected by the presence of either acidic or alkaline comonomers in the bone cements. For samples with MAA comonomer, a faster curing time and higher setting temperature were observed when compared to the cement with DEAEMA comonomer. In terms of mechanical properties, the highest compressive strength was exhibited by formulations containing MAA, while the highest impact strength was shown by the formulations prepared with DEAEMA. There were no differences observed between the two formulations for tensile, shear, and bending strength values. Similarly, fatigue crack propagation studies did not reveal differences with the addition of either DEAEMA or MAA.No differences were observed in the initial number of attached primary rat femur osteoblasts on the different bone cements and positive controls. However, after 48 h there was a reduced proliferation in the cells grown on bone cements containing MAA.

  19. Fabrication, modeling and characterization of multi-crosslinked methacrylate copolymeric nanoparticles for oral drug delivery.

    PubMed

    Ngwuluka, Ndidi C; Pillay, Viness; Choonara, Yahya E; Modi, Girish; Naidoo, Dinesh; du Toit, Lisa C; Kumar, Pradeep; Ndesendo, Valence M K; Khan, Riaz A

    2011-01-01

    Nanotechnology remains the field to explore in the quest to enhance therapeutic efficacies of existing drugs. Fabrication of a methacrylate copolymer-lipid nanoparticulate (MCN) system was explored in this study for oral drug delivery of levodopa. The nanoparticles were fabricated employing multicrosslinking technology and characterized for particle size, zeta potential, morphology, structural modification, drug entrapment efficiency and in vitro drug release. Chemometric Computational (CC) modeling was conducted to deduce the mechanism of nanoparticle synthesis as well as to corroborate the experimental findings. The CC modeling deduced that the nanoparticles synthesis may have followed the mixed triangular formations or the mixed patterns. They were found to be hollow nanocapsules with a size ranging from 152 nm (methacrylate copolymer) to 321 nm (methacrylate copolymer blend) and a zeta potential range of 15.8-43.3 mV. The nanoparticles were directly compressible and it was found that the desired rate of drug release could be achieved by formulating the nanoparticles as a nanosuspension, and then directly compressing them into tablet matrices or incorporating the nanoparticles directly into polymer tablet matrices. However, sustained release of MCNs was achieved only when it was incorporated into a polymer matrix. The experimental results were well corroborated by the CC modeling. The developed technology may be potentially useful for the fabrication of multi-crosslinked polymer blend nanoparticles for oral drug delivery.

  20. Autonomous healing materials based on epoxidized natural rubber and ethylene methacrylic acid ionomers

    NASA Astrophysics Data System (ADS)

    Arifur Rahman, Md; Penco, Maurizio; Peroni, Isabella; Ramorino, Giorgio; Janszen, Gerardus; Di Landro, Luca

    2012-03-01

    The development of autonomous healing material has an enormous scientific and technological interest. In this context, this research work deals with the investigation of autonomous healing behavior of epoxidized natural rubber (ENR) and its blends with ethylene methacrylic acid ionomers. The autonomous healing behavior of ENR and its blends containing two different ionomers [poly(ethylene-co-methacrylic acid sodium salt) (EMNa) and poly(ethylene-co-methacrylic acid zinc salt) (EMZn)] has been studied by ballistic puncture tests. Interestingly, EMNa/ENR blends exhibit complete healing just after the ballistic test but EMZn/ENR blends do not show full self-repairing. The healing efficiency has been evaluated by optical microscopy and a depressurized air-flow test. The healing mechanism has been investigated by characterizing thermal and mechanical properties of the blends. The chemical structure studied by FTIR and thermal analysis show that the ion content of ionomers and functionality of ENR has a significant influence on the self-healing behavior.

  1. The electrochemical detection of Ru(II) in a methyl methacrylate solution.

    PubMed

    De Wael, Karolien; Adriaens, Annemie; Temmerman, Eduard

    2006-02-15

    This article describes the voltammetric behaviour of RuCl(2)(PPh(3))(3) in a methyl methacrylate (MMA) solution. Acquiring this type of information is only possible when the ohmic resistance can be kept sufficiently low. Therefore, the conductivity study of pure methyl methacrylate and a tetrabutylammonium tetrafluoroborate (TBABF(4)) methyl methacrylate solution has been described as well. Impedance measurements show an increase in conductivity by adding TBABF(4), while a conductometric curve illustrates the presence of ion pairs, triple ions and quadrupoles depending on the TBABF(4) concentration. The conductivity of a 0.1molL(-1) TBABF(4)-MMA solution (formation of charged triple ions) was high enough to perform electrochemical experiments and a calibration curve could be obtained. The ability of obtaining relevant electrochemical data in low conducting media opens up new perspectives, especially for electroanalytical purposes used to monitor polymer reactions, more specific atom transfer radical polymerization (ATRP) reactions. This method employs a redox process with transition metal complexes in which a halogen ion is transferred reversibly between the transition metal and the polymer chain end. The dynamic equilibrium can be monitored by measuring the ruthenium concentration.

  2. Development of microporous drug-releasing films cast from artificial nanosized latexes of poly(styrene-co-methyl methacrylate) or poly(styrene-co-ethyl methacrylate).

    PubMed

    Otto, Daniel P; Vosloo, Hermanus C M; Liebenberg, Wilna; de Villiers, Melgardt M

    2008-08-01

    Two sets of copolymers comprising of styrene and either methyl or ethyl methacrylate as comonomer were conveniently synthesized by microemulsion copolymerization. The purified materials were characterized by GPC-MALLS and were shown to form artificial nanolatexes in THF. ATR-FTIR analysis revealed differences in copolymer composition and based on the copolymer properties, a selection of copolymers was chosen to cast drug-loaded, microporous films that exhibit microencapsulation of drug agglomerates. The contact angles of the copolymers suggested potential applications in medical devices to prevent the formation of bacterial biofilms that commonly result in infections. Additionally, the different copolymeric films showed two phases of drug release characterized by a rapid initial drug release followed by a zero-order phase. Depending on the application, one could select the copolymer films that best suited the application i.e. for short-term drug release applications such as urinary catheters or long-term applications such as artificial implants.

  3. Identification of covalent binding sites of ethyl 2-cyanoacrylate, methyl methacrylate and 2-hydroxyethyl methacrylate in human hemoglobin using LC/MS/MS techniques.

    PubMed

    Jeppsson, Marina C; Mörtstedt, Harriet; Ferrari, Giovanni; Jönsson, Bo A G; Lindh, Christian H

    2010-10-01

    Acrylates are used in vast quantities, for instance in paints, adhesive glues, molding. They are potent contact allergens and known to cause respiratory hypersensitivity and asthma. Here we study ethyl 2-cyanoacrylate (ECA), methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA). There are only limited possibilities to measure the exposure to acrylates, especially for biological monitoring. The aim of the present study was to investigate the chemical structures of adducts formed after reaction of hemoglobin (Hb) with ECA, MMA, and HEMA. This information may be used to identify adducted Hb peptides for biological monitoring of exposure to acrylates. Hb-conjugates with ECA, MMA, and HEMA were synthesized in vitro. The conjugates were digested by trypsin and pronase E. Adducted peptides were characterized and analyzed by liquid chromatography and nano electro spray/hybrid quadrupole time-of-flight mass spectrometry (MS) as well as tandem quadrupole MS. The search for the adducted peptides was facilitated by visualizing the MS data by different computer programs. The results showed that ECA binds covalently to cysteines at the 104 position in the α and the position 112 in the β-chains in Hb. MMA and HEMA bound to all the cysteines in both chains, Cys(104) in the α-chain and Cys(93) and 112 in the β-chain. The full-length spectra of in un-digested Hb confirmed this binding pattern. There was no reaction with N-acetyl-L-lysine at physiological pH. The adducted peptides were possible to measure using LC/MS/MS in selected reaction monitoring mode. These peptides may be used for biological monitoring of exposure to ECA, MMA and HEMA.

  4. Amphiphilic model conetworks based on cross-linked star copolymers of benzyl methacrylate and 2-(dimethylamino)ethyl methacrylate: synthesis, characterization, and DNA adsorption studies.

    PubMed

    Achilleos, Demetra S; Georgiou, Theoni K; Patrickios, Costas S

    2006-12-01

    Six amphiphilic model conetworks of a new structure, that of cross-linked "in-out" star copolymers, were synthesized by the group transfer polymerization (GTP) of the hydrophobic monomer benzyl methacrylate (BzMA) and the ionizable hydrophilic monomer 2-(dimethylamino)ethyl methacrylate (DMAEMA) in a one-pot preparation. The synthesis took place in tetrahydrofuran (THF) using tetrabutylammonium bibenzoate (TBABB) as the catalyst, 1-methoxy-1-(trimethylsiloxy)-2-methyl-propene (MTS) as the initiator, and ethylene glycol dimethacrylate (EGDMA) as the cross-linker. Three heteroarm star-, two star block-, one statistical copolymer star-, and one homopolymer star-based networks were prepared. The synthesis of these star-based networks involved four to six steps, including the preparation of the linear (co)polymers, the "arm-first" and the "in-out" star copolymers, and finally the network. The precursors and the extractables were characterized using gel permeation chromatography (GPC) and proton nuclear magnetic resonance (1H NMR) spectroscopy. The degrees of swelling (DSs) of all the networks were measured in THF, while the aqueous DSs were measured as a function of pH. The DSs at low pH were higher than those at neutral or high pH because of the protonation of the DMAEMA units and were found to be dependent on the structure of the network. The DSs in THF were higher than those in neutral water and were independent of the structure. Finally, DNA adsorption studies onto the networks indicated that the DNA binding was governed by electrostatics.

  5. Facile construction of macroporous hybrid monoliths via thiol-methacrylate Michael addition click reaction for capillary liquid chromatography.

    PubMed

    Lin, Hui; Ou, Junjie; Liu, Zhongshan; Wang, Hongwei; Dong, Jing; Zou, Hanfa

    2015-01-30

    A facile approach based on thiol-methacrylate Michael addition click reaction was developed for construction of porous hybrid monolithic materials. Three hybrid monoliths were prepared via thiol-methacrylate click polymerization by using methacrylate-polyhedral oligomeric silsesquioxane (POSS) (cage mixture, n=8, 10, 12, POSS-MA) and three multi-thiol crosslinkers, 1,6-hexanedithiol (HDT), trimethylolpropane tris(3-mercaptopropionate) (TPTM) and pentaerythritol tetrakis(3-mercaptopropionate) (PTM), respectively, in the presence of porogenic solvents (n-propanol and PEG 200) and a catalyst (dimethylphenylphosphine, DMPP). The obtained monoliths possessed high thermal and chemical stabilities. Besides, they all exhibited high column efficiencies and excellent separation abilities in capillary liquid chromatography (cLC). The highest column efficiency could reach ca. 195,000N/m for butylbenzene on the monolith prepared with POSS-MA and TPTM (monolith POSS-TPTM) in reversed-phase (RP) mode at 0.64mm/s. Good chromatographic performance were all achieved in the separations of polycyclic aromatic hydrocarbons (PAHs), phenols, anilines, EPA 610 as well as bovine serum albumin (BSA) digest. The high column efficiencies in the range of 51,400-117,000N/m (achieved on the monolith POSS-PTM in RP mode) convincingly demonstrated the high separation abilities of these thiol-methacrylate based hybrid monoliths. All the results demonstrated the feasibility of the phosphines catalyzed thiol-methacrylate Michael addition click reaction in fabrication of monolithic columns with high efficiency for cLC applications.

  6. A new approach to network heterogeneity: Polymerization Induced Phase Separation in photo-initiated, free-radical methacrylic systems.

    PubMed

    Szczepanski, Caroline R; Pfeifer, Carmem S; Stansbury, Jeffrey W

    2012-09-28

    Non-reactive, thermoplastic prepolymers (poly- methyl, ethyl and butyl methacrylate) were added to a model homopolymer matrix composed of triethylene glycol dimethacrylate (TEGDMA) to form heterogeneous networks via polymerization induced phase separation (PIPS). PIPS creates networks with distinct phase structure that can partially compensate for volumetric shrinkage during polymerization through localized internal volume expansion. This investigation utilizes purely photo-initiated, free-radical systems, broadening the scope of applications for PIPS since these processing conditions have not been studied previously.The introduction of prepolymer into TEGDMA monomer resulted in stable, homogeneous monomer formulations, most of which underwent PIPS upon photo-irradiation, creating heterogeneous networks. During polymerization the presence of prepolymer enhanced autoacceleration, allowing for a more extensive ambient cure of the material. Phase separation, as characterized by dynamic changes in sample turbidity, was monitored simultaneously with monomer conversion and either preceded or was coincident with network gelation. Dynamic mechanical analysis shows a broadening of the tan delta peak and secondary peak formation, characteristic of phase-separated materials, indicating one phase rich in prepolymer and another depleted form upon phase separation. In certain cases, PIPS leads to an enhanced physical reduction of volumetric shrinkage, which is attractive for many applications including dental composite materials.

  7. A new approach to network heterogeneity: Polymerization Induced Phase Separation in photo-initiated, free-radical methacrylic systems

    PubMed Central

    Szczepanski, Caroline R.; Pfeifer, Carmem S.; Stansbury, Jeffrey W.

    2012-01-01

    Non-reactive, thermoplastic prepolymers (poly- methyl, ethyl and butyl methacrylate) were added to a model homopolymer matrix composed of triethylene glycol dimethacrylate (TEGDMA) to form heterogeneous networks via polymerization induced phase separation (PIPS). PIPS creates networks with distinct phase structure that can partially compensate for volumetric shrinkage during polymerization through localized internal volume expansion. This investigation utilizes purely photo-initiated, free-radical systems, broadening the scope of applications for PIPS since these processing conditions have not been studied previously. The introduction of prepolymer into TEGDMA monomer resulted in stable, homogeneous monomer formulations, most of which underwent PIPS upon photo-irradiation, creating heterogeneous networks. During polymerization the presence of prepolymer enhanced autoacceleration, allowing for a more extensive ambient cure of the material. Phase separation, as characterized by dynamic changes in sample turbidity, was monitored simultaneously with monomer conversion and either preceded or was coincident with network gelation. Dynamic mechanical analysis shows a broadening of the tan delta peak and secondary peak formation, characteristic of phase-separated materials, indicating one phase rich in prepolymer and another depleted form upon phase separation. In certain cases, PIPS leads to an enhanced physical reduction of volumetric shrinkage, which is attractive for many applications including dental composite materials. PMID:23109733

  8. Gene delivery efficacy of polyethyleneimine-introduced chitosan shell/poly(methyl methacrylate) core nanoparticles for rat mesenchymal stem cells.

    PubMed

    Pimpha, Nuttaporn; Sunintaboon, Panya; Inphonlek, Supharat; Tabata, Yasuhiko

    2010-01-01

    This work investigated polyethyleneimine (PEI)-introduced chitosan (CS) (CS/PEI) nanoparticles as non-viral carrier of plasmid DNA for rat mesenchymal stem cells (MSCs). The CS/PEI nanoparticles were prepared by the emulsifier-free emulsion polymerization of methyl methacrylate monomer induced by a small amount of t-butyl hydroperxide in the presence of different concentrations of PEI mixed with CS. The resulting nanoparticles were characterized by their surface properties and buffering capacity. In vitro gene transfection was also evaluated. The introduction of PEI affected the surface charge, dispersing stability and buffering capacity of the nanoparticles. The CS/PEI nanoparticles formed a complex upon mixing with a plasmid DNA of luciferase. The complex enhanced the level of gene transfection and prolonged the time period of expression for MSCs, compared with those of plasmid DNA-original CS and PEI nanoparticles. Cytotoxicity of CS/PEI complexes with plasmid DNA was significantly low, depending on the amount of PEI introduced. It is concluded that the CS/PEI nanoparticle was a promising carrier for gene delivery of MSCs.

  9. Controlling the surface chemistry and chromatographic properties of methacrylate-ester-based monolithic capillary columns via photografting.

    PubMed

    Eeltink, Sebastiaan; Hilder, Emily F; Geiser, Laurent; Svec, Frantisek; Fréchet, Jean M J; Rozing, Gerard P; Schoenmakers, Peter J; Kok, Wim Th

    2007-02-01

    Preparation of monolithic capillary columns for separations in the CEC mode using UV-initiated polymerization of the plain monolith followed by functionalization of its pore surface by photografting has been studied. The first step enabled the preparation of generic poly(butyl methacrylate-co-ethylene dimethacrylate) monoliths with optimized porous properties, controlled by the percentages of porogens 1-decanol and cyclohexanol in the polymerization mixture, irradiation time, and UV light intensity. Ionizable monomers [2-(methacryloyloxy)ethyl]trimethylammonium chloride or 2-acryloamido-2-methyl-1-propanesulfonic acid were then photografted onto the monolithic matrix, allowing us to control the direction of the EOF in CEC. Different strategies were applied to control the grafting density and, thereby, the magnitude of the EOF. To control the hydrophobic properties, two approaches were tested: (i) cografting of a mixture of the ionizable and hydrophobic monomers and (ii) sequential grafting of the ionizable and hydrophobic monomers. Cografting resulted in similar retention but higher EOF. With sequential grafting, more than 50% increase in retention factors was obtained and a slight decrease in EOF was observed due to shielding of the ionizable moieties.

  10. Effect of curing environment on mechanical properties and polymerizing behaviour of methyl-methacrylate autopolymerizing resin.

    PubMed

    Ogawa, T; Hasegawa, A

    2005-03-01

    Methyl-methacrylate autopolymerizing resin is used for multiple applications. Therefore, the mechanical properties of autopolymerizing resin should be assessed comprehensively including strength, stiffness and hardness. Any methods that effectively improve these mechanical properties are desirable. The objective of this study is to examine the effects of the curing environment: air or water with/without pressure, and air or water temperature during polymerization, on the strength, stiffness and hardness of autopolymerizing resin. In addition, we examined the polymerizing behaviour associated with the mechanical properties. Autopolymerizing methyl-methacrylate resin (Unifast II) was polymerized under the following conditions: in air and water with/without pressure at 10, 23, 30, 40, 60 and 80 degrees C. The resin specimens were subjected to a transverse test (three-point flexural test) and micro-Brinell surface hardness test. Fractured surfaces of the specimens after the transverse test were examined using a scanning electron microscope (SEM). The transverse strength and transverse modulus increased with increasing curing temperature in both wet and dry conditions. Pressured wet conditions increased transverse strength and transverse modulus over non-pressured wet and dry conditions. The resin polymerized in dry conditions showed higher surface hardness than the one polymerized in wet conditions at matching temperature. The SEM images of fractured surfaces cured at lower temperature exhibited porosity within the polymer base and cracks between the base and poly-methyl-methacrylate (PMMA) particulates. Surfaces of the resin polymerized in wet conditions were characterized with PMMA particulates having rougher surfaces suggestive of water incorporation. Raising temperature and pressuring during polymerization increase strength and stiffness of autopolymerizing resin. However, wet condition reduces surface hardness of resin compared with dry condition. These altered

  11. Flexural Strength Comparison of Silorane- and Methacrylate-Based Composites with Pre-impregnated Glass Fiber

    PubMed Central

    Doozandeh, Maryam; Alavi, Ali Asghar; Karimizadeh, Zahra

    2016-01-01

    Statement of the Problem Sufficient adhesion between silorane/methacrylate-based composites and methacrylate impregnated glass fiber increases the benefits of fibers and enhances the mechanical and clinical performance of both composites. Purpose The aim of this study was to evaluate the compatibility of silorane and methacrylate-based composites with pre-impregnated glass fiber by using flexural strength (FS) test. Materials and Method A total of 60 bar specimens were prepared in a split mold (25×2×2 mm) in 6 groups (n=10). In groups 1 and 4 (control), silorane-based (Filtek P90) and nanohybrid (Filtek Z350) composites were placed into the mold and photopolymerized with a high-intensity curing unit. In groups 2 and 5, pre-impregnated glass fiber was first placed into the mold and after two minutes of curing, the mold was filled with respective composites. Prior to filling the mold in groups 3 and 6, an intermediate adhesive layer was applied to the glass fiber. The specimens were stored in distilled water for 24 hours and then their flexural strength was measured by 3 point bending test, using universal testing machine at the crosshead speed of 1 mm/min. Two-way ANOVA and post-hoc test were used for analyzing the data (p< 0.05). Results A significant difference was observed between the groups (p< 0.05). The highest FS was registered for combination of Z350 composite, impregnated glass fiber, and application of intermediate adhesive layer .The lowest FS was obtained in Filtek P90 alone. Cohesive failure in composite was the predominant failure in all groups, except group 5 in which adhesive failure between the composite and fiber was exclusively observed. Conclusion Significant improvement in FS was achieved for both composites with glass fiber. Additional application of intermediate adhesive layer before composite build up seems to increase FS. Nanohybrid composite showed higher FS than silorane-based composite. PMID:27284555

  12. Addition of silver nanoparticles reduces the wettability of methacrylate and silorane-based composites.

    PubMed

    Kasraei, Shahin; Azarsina, Mohadese

    2012-01-01

    Incorporation of silver nanoparticles into composite resins is recommended for their reported antibacterial properties, but this incorporation can affect the wettability of such materials. Therefore, this study evaluated the effect of nano-silver addition to silorane-based and methacrylate-based composites on their contact angle. Nano-silver particles were added to Z250 (methacrylate-based) and P90 (silorane-based) composites at 0.5% and 1% by weight. The control group had no additions. SEM-EDX analysis was performed to confirm the homogeneity of the nano-silver distribution. Seventy-two composite discs were prepared and standardized to the identical surface roughness values, and then distributed randomly into 6 groups containing 12 samples each (N = 12). Two random samples from each group were observed by atomic force microscopy. Distilled water contact angle measurements were performed for the wettability measurement. Two-way ANOVA, followed by the Tukey-HSD test, with a significance level of 5%, were used for data analysis. It was observed that wettability was significantly different between the composites (p = 0.0001), and that the addition of nano-silver caused a significant reduction in the contact angle (p = 0.0001). Wettability varied depending on the concentration of the nano silver (p = 0.008). Silorane-based composites have a higher contact angle than methacrylate-based composites. Within the limitations of this study, it can be concluded that the addition of 0.5% nano-silver particles to the composites caused a decrease in the contact angle of water.

  13. Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces.

    PubMed

    Zhao, Chao; Li, Lingyan; Wang, Qiuming; Yu, Qiuming; Zheng, Jie

    2011-04-19

    The development of nonfouling biomaterials to prevent nonspecific protein adsorption and cell/bacterial adhesion is critical for many biomedical applications, such as antithrombogenic implants and biosensors. In this work, we polymerize two types of hydroxy-functional methacrylates monomers of 2-hydroxyethyl methacrylate (HEMA) and hydroxypropyl methacrylate (HPMA) into polymer brushes on the gold substrate via surface-initiated atom transfer radical polymerization (SI-ATRP). We systematically examine the effect of the film thickness of polyHEMA and polyHPMA brushes on their antifouling performance in a wide range of biological media including single-protein solution, both diluted and undiluted human blood serum and plasma, and bacteria culture. Surface plasmon resonance (SPR) results show a strong correlation between antifouling property and film thickness. Too thin or too thick polymer brushes lead to large protein adsorption. Surfaces with the appropriate film thickness of ∼25-45 nm for polyHPMA and ∼20-45 nm for polyHEMA can achieve almost zero protein adsorption (<0.3 ng/cm(2)) from single-protein solution and diluted human blood plasma and serum. For undiluted human blood serum and plasma, polyHEMA brushes at a film thickness of ∼20-30 nm adsorb only ∼3.0 and ∼3.5 ng/cm(2) proteins, respectively, while polyHPMA brushes at a film thickness of ∼30 nm adsorb more proteins of ∼13.5 and ∼50.0 ng/cm(2), respectively. Moreover, both polyHEMA and polyHPMA brushes with optimal film thickness exhibit very low bacteria adhesion. The excellent antifouling ability and long-term stability of polyHEMA and polyHPMA brushes make them, especially for polyHEMA, effective and stable antifouling materials for usage in blood-contacting devices.

  14. Utilization of Methacrylates and Polymer Matrices for the Synthesis of Ion Specific Resins

    SciTech Connect

    Czerwinski, Kenneth

    2013-10-29

    Disposal, storage, and/or transmutation of actinides such as americium (Am) will require the development of specific separation schemes. Existing efforts focus on solvent extraction systems for achieving suitable separation of actinide from lanthanides. However, previous work has shown the feasibility of ion-imprinting polymer-based resins for use in ion-exchange-type separations with metal ion recognition. Phenolic-based resins have been shown to function well for Am-Eu separations, but these resins exhibited slow kinetics and difficulties in the imprinting process. This project addresses the need for new and innovative methods for the selective separation of actinides through novel ion-imprinted resins. The project team will explore incorporation of metals into extended frameworks, including the possibility of 3D polymerized matrices that can serve as a solid-state template for specific resin preparation. For example, an anhydrous trivalent f-element chain can be formed directly from a metal carbonate, and methacrylic acid from water. From these simple coordination complexes, molecules of discrete size or shape can be formed via the utilization of coordinating ligands or by use of an anionic multi-ligand system incorporating methacrylate. Additionally, alkyl methyl methacrylates have been used successfully to create template nanospaces, which underscores their potential utility as 3D polymerized matrices. This evidence provides a unique route for the preparation of a specific metal ion template for the basis of ion-exchange separations. Such separations may prove to be excellent discriminators of metal ions, even between f-elements. Resins were prepared and evaluated for sorption behavior, column properties, and proton exchange capacity.

  15. Effect of Accelerated Artificial Aging on Translucency of Methacrylate and Silorane-Based Composite Resins

    PubMed Central

    Shirinzad, Mehdi; Rezaei-Soufi, Loghman; Mirtorabi, Maryam Sadat; Vahdatinia, Farshid

    2016-01-01

    Objectives: Composite restorations must have tooth-like optical properties namely color and translucency and maintain them for a long time. This study aimed to compare the effect of accelerated artificial aging (AAA) on the translucency of three methacrylate-based composites (Filtek Z250, Filtek Z250XT and Filtek Z350XT) and one silorane-based composite resin (Filtek P90). Materials and Methods: For this in vitro study, 56 composite discs were fabricated (n=14 for each group). Using scanning spectrophotometer, CIE L*a*b* parameters and translucency of each specimen were measured at 24 hours and after AAA for 384 hours. Data were analyzed using one-way ANOVA, Tukey's test and paired t-test at P=0.05 level of significance. Results: The mean (±standard deviation) translucency parameter for Filtek Z250, Filtek Z250XT, Filtek Z350XT and Filtek P90 was 5.67±0.64, 4.59±0.77, 7.87±0.82 and 4.21±0.71 before AAA and 4.25±0.615, 3.53±0.73, 5.94±0.57 and 4.12±0.54 after AAA, respectively. After aging, the translucency of methacrylate-based composites decreased significantly (P<0.05). However, the translucency of Filtek P90 did not change significantly (P>0.05). Conclusions: The AAA significantly decreased the translucency of methacrylate-based composites (Filtek Z250, Filtek Z250XT and Filtek Z350XT) but no change occurred in the translucency of Filtek P90 silorane-based composite. PMID:27928237

  16. Moleculary imprinted polymers with metalloporphyrin-based molecular recognition sites coassembled with methacrylic acid.

    PubMed

    Takeuchi, T; Mukawa, T; Matsui, J; Higashi, M; Shimizu, K D

    2001-08-15

    A diastereoselective molecularly imprinted polymer (MIP) for (-)-cinchonidine, PPM(CD), was prepared by the combined use of methacrylic acid and vinyl-substituted zinc(II) porphyrin as functional monomers. Compared to MIPs using only methacrylic acid or zinc porphyrin as a functional monomer, PM(CD) and PP(CD), respectively, PPM(CD) showed higher binding ability for (-)-cinchonidine in chromatographic tests using the MIP-packed columns. Scatchard analysis gave a higher association constant of PPM(CD) for (-)-cinchonidine (1.14 x 10(7) M(-1)) than those of PP(CD) (1.45 x 10(6) M(-1)) and PM(CD) (6.78 x 10(6) M(-1)). The affinity distribution of binding sites estimated by affinity spectrum analysis showed a higher percentage of high-affinity sites and a lower percentage of low-affinity sites in PPM(CD). The MIPs containing a zinc(II) porphyrin in the binding sites, PPM(CD) and PP(CD), showed fluorescence quenching according to the binding of (-)-cinchonidine, and the quenching was significant in the low-concentration range, suggesting that the high-affinity binding sites contain the porphyrin residue. The correlation of the relative fluorescence intensity against log of (-)-cinchonidine concentrations showed a linear relationship. These results revealed that the MIP having highly specific binding sites was assembled by the two functional monomers, vinyl-substituted zinc(II) porphyrin and methacrylic acid, and they cooperatively worked to yield the specific binding. In addition, the zinc(II) porphyrin-based MIPs appeared to act as fluorescence sensor selectively responded by binding events of the template molecule.

  17. Far infrared-assisted encapsulation of filter paper strips in poly(methyl methacrylate) for proteolysis.

    PubMed

    Chen, Qiwen; Bao, Huimin; Zhang, Luyan; Chen, Gang

    2016-02-01

    Filter paper strips were enclosed between two poly(methyl methacrylate) plates to fabricate paper-packed channel microchips under pressure in the presence of far infrared irradiation. After the enclosed paper strip was oxidized by periodate, trypsin was covalently immobilized in them to fabricate microfluidic proteolysis bioreactor. The feasibility and performance of the unique bioreactor were demonstrated by digesting BSA and lysozyme. The results were comparable to those of conventional in-solution proteolysis while the digestion time was significantly reduced to ∼18 s. The suitability of the microfluidic paper-based bioreactors to complex proteins was demonstrated by digesting human serum.

  18. Controlling of optical energy gap of Co-ferrite quantum dots in poly (methyl methacrylate) matrix

    NASA Astrophysics Data System (ADS)

    El-Sayed, H. M.; Agami, W. R.

    2015-07-01

    Different crystallite sizes of Co-ferrite nanoparticles were prepared and dispersed in the matrix of poly (methyl methacrylate) (PMMA) polymer. The effect of crystallite size on the structure and optical energy gap of Co-nanoferrite/PMMA composite has been studied. The optical energy gap of Co-ferrite was greatly affected by the crystallite size. This result was discussed in terms of the formation of electron-hole exciton using particle in a box model. The effective mass and the Bohr radius of the formed exciton have been calculated from the spectroscopic measurements.

  19. Generalized peripheral neuropathy in a dental technician exposed to methyl methacrylate monomer

    SciTech Connect

    Donaghy, M.; Rushworth, G.; Jacobs, J.M. )

    1991-07-01

    A 58-year-old dental prosthetic technician developed generalized sensorimotor peripheral neuropathy. Neurophysiologic studies showed a generalized sensorimotor neuropathy of axonal degeneration type. Examination of a sural nerve biopsy showed a moderately severe axonal neuropathy with loss of large myelinated fibers and unmyelinated axons. There was evidence of slow ongoing degeneration and considerable fiber regeneration. Electron microscopy showed increased numbers of filaments in a few fibers. These findings show resemblances to the nerve changes caused by another acrylic resin, acrylamide. They suggest that the neuropathy may have been caused by 30 years of occupational cutaneous and inhalational exposure to methyl methacrylate monomer since they excluded other recognized causes of neuropathy.

  20. Radiation synthesis of acrylamide/N,N-(dimethylamino) ethyl methacrylate grafted onto low density polyethylene films

    NASA Astrophysics Data System (ADS)

    Abdel Ghaffar, A. M.

    2011-02-01

    Radiation-induced graft copolymerization of acrylamide/N,N-(dimethylamino) ethyl methacrylate (AAm/DMAEMA) onto low density polyethylene films was carried out. The effect of grafting conditions such as solvent type and comonomer composition were studied. Characterization of the prepared films was investigated by Fourier transform infrared. Some selected properties such as thermal stability and swelling behavior were determined. It was found that grafting efficiency, swelling behavior and thermal stability increased with increasing DMAEMA content. Scanning electron microscopy was used for predicting the change in surface morphology via the grafted films. The improvement in properties of the prepared films make it possible to use them in some practical applications.

  1. Synthesis and swelling behavior of Protein-g-poly Methacrylic acid/kaolin superabsorbent hydrogel composites

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mohammad

    2008-08-01

    A novel superabsorbent hydrogel composite based on Collagen have been prepared via graft copolymerization of Methacrylic acid (MAA) in the presence of kaolin powder using methylenebisacrylamide (MBA) as a crosslinking agent and ammonium persulfate (APS) as an initiator. The composite structure was confirmed using FTIR spectroscopy. A new absorption band at 1728 cm-1 in the composite spectrum confirmed kaolin-organic polymer linkage. The effect of kaolin amount and MBA concentration showed that with increasing of these parameters, the water absorbency of the superabsorbent composite was decreased. The swelling measurements of the hydrogels were conducted in aqueous salt solutions.

  2. Thermal response of polystyrene/poly methyl methacrylate (PS/PMMA) polymeric blends

    NASA Astrophysics Data System (ADS)

    Mathur, Vishal; Sharma, Kananbala

    2016-12-01

    The present paper reports the investigationsto evaluate thermal behavior of polystyrene/poly methyl methacrylate (PS/PMMA) polymeric blends, prepared at different compositions through solution casting method. The glass transition temperatures have been obtained using dynamic mechanical analyzer. Simultaneous measurements of temperature dependentthermal transport properties (thermal conductivity and thermal diffusivity) have been made using Hot Disk Thermal Constants Analyzer based on transient plane source. The study reveals that blending of PS with PMMA leads to different phase morphologies corresponding to different composition range which further affects the thermal performance of respective blends.

  3. Turning electrospun poly(methyl methacrylate) nanofibers into graphitic nanostructures by in situ electron beam irradiation

    SciTech Connect

    Duan, H. G.; Xie, E. Q.; Han, L.

    2008-02-15

    Using ultrathin electrospun poly(methyl methacrylate) (PMMA) nanofibers as precursor, graphitic nanofibers, nanobridges, nanocones, and fullerenelike onions could be prepared by electron beam irradiation in a controlled manner. With the help of the high resolution transmission electron microscopy, the real time processing of the carbonization and graphitization of the PMMA nanofibers could be investigated. This way to obtain graphitic nanostructures has promising applications in graphitic carbon nanostructure electronics and devices. Because PMMA is a widely used standard high resolution electron resist, this graphitization could be combined with electron beam lithography to obtain high resolution patterned graphitic circuits.

  4. Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate).

    PubMed

    Zoubir, Arnaud; Lopez, Cedric; Richardson, Martin; Richardson, Kathleen

    2004-08-15

    Femtosecond laser direct writing is employed for the fabrication of buried tubular waveguides in bulk poly(methyl methacrylate). A novel technique using selective chemical etching is presented to resolve the two-dimensional refractive-index profile of the fabrication structures. End-to-end coupling in the waveguides reveals a near-field intensity distribution that results from the superimposition of several propagating modes with different azimuthal symmetries. Mode analysis of the tubular waveguides is performed using the finite-difference method, and the possible propagating mode profiles are compared with the experimental data.

  5. Structure/property relationships in methacrylate/dimethacrylate polymers for dental applications

    NASA Astrophysics Data System (ADS)

    Mehlem, Jeremy John

    Since its invention Bis-GMA or one of its analogs has been the main component of the polymer portion of composites for dental restorations. The need for dilution of Bis-GMA and its analogs to optimize its properties has long been recognized. Bis-GMA is a highly viscous monomer. This high viscosity leads to early vitrification, which limits conversion during cure. This viscosity also limits filler loading. Vitrification at low conversions leads to heterogeneous systems composed of low and high cross-link density phases. The low cross-link density phases behave as defects in the system; therefore, if the amount of low cross-link density phases in the system can be reduced and a more uniform network structure can be achieved, then the mechanical properties of the resin can be improved. Since the increase in viscosity during cure causes vitrification, it is logical that a system with a low initial viscosity will delay the onset of vitrification. Reactive diluents such as triethylene glycol dimethacrylate (TEGDMA) are effective at lower levels. However, large amounts negatively affect matrix properties by increasing polymerization shrinkage and water sorption. Shrinkage has been cited as one of the main deficiencies in dental composites. The goal of this project is to improve upon standard viscosity modifying comonomers such as triethylene glycol dimethacrylate. The comonomers that were explored were phenyloxyethyl methacrylate, cyclohexyl methacrylate, and tert-butylcylcohexyl methacrylate. Multicomponent systems based on analogs of ethylene glycol dimethacrylates with different length ethyl glycol chains were also examined. The substitution of monomethacrylates for TEGDMA as a comonomer resulted in enhanced or negligible affects on the mechanical properties of Bis-MEPP based polymer systems while reducing polymerization shrinkage. 129Xenon NMR and TappingMode(TM) AFM were used to characterize the heterogeneity of dimethacrylates systems during their cure cycle as well

  6. Photoinitiated polymerization of methyl methacrylate using Q-sized ZnO colloids

    SciTech Connect

    Hoffman, A.J.; Yee, H.; Mills, G.; Hoffmann, M.R.

    1992-06-25

    Q-sized ZnO particles are determined to be efficient photoinitiators of methyl methacrylate polymerization. The effects of semiconductor particle size, solvent, initiator concentration, monomer concentration, and light intensity on reaction rates are examined. The reaction path is initiated anionically, followed by free-radical propogation steps. Polymerization increases with increased photoinitiator and monomer concentration and particle size; it also has a dependence upon the square root of the light intensity. Illumination-induced holes are scavenged by the solvent. 29 refs., 8 figs., 2 tabs.

  7. Polyelectrolyte complexes based on (quaternized) poly[(2-dimethylamino)ethyl methacrylate]: behavior in contact with blood.

    PubMed

    Yancheva, Elena; Paneva, Dilyana; Danchev, Dobri; Mespouille, Laetitia; Dubois, Philippe; Manolova, Nevena; Rashkov, Iliya

    2007-07-09

    Polyelectrolyte complexes (PECs) between (quaternized) poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) and (crosslinked) N-carboxyethylchitosan (CECh) or poly(2-acrylamido-2-methylpropane sodium sulfonate) (PAMPSNa) were prepared and characterized in terms of their stability, equilibrium water content, and surface morphology. The evaluation of the behavior of the studied PECs in contact with blood revealed that the (crosslinked) CECh/(quaternized) PDMAEMA complexes had lost the inherent PDMAEMA cytotoxicity but still preserved haemostatic activity. In contrast, the complex formation between (quaternized) PDMAEMA and PAMPSNa allowed the preparation of materials with improved blood compatibility.

  8. Amine functionalization of cellulose surface grafted with glycidyl methacrylate by γ-initiated RAFT polymerization

    NASA Astrophysics Data System (ADS)

    Barsbay, Murat; Güven, Olgun; Kodama, Yasko

    2016-07-01

    This study presents the functionalization of poly(glycidyl methacrylate) (PGMA) grafted cellulose filter paper by a model compound, ethylenediamine (EDA), through the epoxy groups of PGMA. Cellulose based copolymers were prepared via the radiation-induced and RAFT-mediated graft polymerization. The samples were characterized by ATR-FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), elemental analysis, contact angle measurements and scanning electron microscopy (SEM). An efficient modification density of around 1 mmol EDA/mg copolymer was attained within ca. 8 h, indicating that chemical composition of well-defined copolymers may further be tuned by appropriately selecting the reactive agents for use in many emerging fields.

  9. Elaboration of ammonio methacrylate copolymer based spongy cationic particles via double emulsion solvent evaporation process.

    PubMed

    Zafar, Nadiah; Bitar, Ahmad; Valour, Jean Pierre; Fessi, Hatem; Elaissari, Abdelhamid

    2016-04-01

    The aim of present work is to investigate systematic study of the preparation of biodegradable particles via double emulsion solvent evaporation technique. The used formation is based on cationic ammonium methacrylate copolymer Eudragit® RS 100, without the use of any stabilizer. The effect of process parameters like ultra turrax® stirring speed and stirring time, ultrasonication time, polymer amount, and volume of outer aqueous phases on the colloidal properties of particles was investigated. All prepared dispersions were characterized in terms of size, size distribution, and electrokinetic properties, and surface morphology was investigated.

  10. In-situ photopolymerization of monodisperse and discoid oxidized methacrylated alginate microgels in a microfluidic channel

    DOE PAGES

    Wang, Shuo; Jeon, Oju; Shankles, Peter G.; ...

    2016-02-03

    Here, we present a simple microfluidic technique to in-situ photopolymerize (by 365 nm ultraviolet) monodisperse oxidized methacrylated alginate (OMA) microgels using a photoinitiator (VA-086). By this technique, we generated monodisperse spherical OMA beads and discoid non-spherical beads with better shape consistency than ionic crosslinking methods do. We found that a high monomer concentration (8 w/v %), a high photoinitiator concentration (1.5 w/v %) and absence of oxygen are critical factors to cure OMA microgels. This photopolymerizing method is an alternative to current methods to form alginate microgels and is a simpler approach to generate non-spherical alginate microgels.

  11. Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles.

    PubMed

    Kong, Hyeyoung; Jang, Jyongsik

    2008-03-04

    Poly(methyl methacrylate) (PMMA) nanofiber containing silver nanoparticles was synthesized by radical-mediated dispersion polymerization and applied to an antibacterial agent. UV-vis spectroscopic analysis indicated that the silver nanoparticles were continually released from the polymer nanofiber in aqueous solution. The antibacterial properties of silver/PMMA nanofiber against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria were evaluated using minimum inhibitory concentration (MIC), the modified Kirby-Bauer method, and a kinetic test. The MIC test demonstrated that the silver/PMMA nanofiber had enhanced antimicrobial efficacy compared to that of silver sulfadiazine and silver nitrate at the same silver concentration.

  12. Properties of cellulase as template molecule on chitosan—methyl methacrylate membrane

    NASA Astrophysics Data System (ADS)

    Lian, Qi; Zheng, Xuefang; Wu, Haixia; Song, Shitao; Wang, Dongjun

    2015-12-01

    In this study, a novel molecular imprinting membrane made of chitosan and methyl methacrylate (MMA) was fabricated with cellulase as template molecule and the thermal response to cellulase was characterized. The film was characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and the permeation experiment. The results showed that the space structure of the film was as similar as the cellulase. Moreover, the membrane had advanced molecular imprinting capability to cellulase comparing to pepsin and pectinase at any temperature and the film had excellent ability to identify specific template molecule (cellulase) at the synthesis temperature compared to other temperatures.

  13. Non-fouling hydrogels of 2-hydroxyethyl methacrylate and zwitterionic carboxybetaine (meth)acrylamides.

    PubMed

    Kostina, Nina Yu; Rodriguez-Emmenegger, Cesar; Houska, Milan; Brynda, Eduard; Michálek, Jiří

    2012-12-10

    Five poly(betaine) brushes were prepared, and their resistance to blood plasma fouling was studied. Two carboxybetaines monomers were copolymerized with 2-hydroxyethyl methacrylate (HEMA) to prepare novel hydrogels. By increasing the content of the zwitterionic comonomer, a 4-fold increase in the water content could be achieved while retaining mechanical properties close to the widely used poly(HEMA) hydrogels. All hydrogels showed an unprecedentedly low fouling from blood plasma. Remarkably, by copolymerization with 10 mol % of carboxybetaine acrylamide, hydrogels fully resistant to blood plasma were prepared.

  14. Poly (methyl methacrylate) Formation and Patterning Initiated by Synchrotron X-ray Illumination

    SciTech Connect

    Xiao, J.; Je, J. H.; Wang, C. H.; Yang, T. Y.; Hwu, Y.

    2007-01-19

    A facile radiation method was developed to obtain micro-sized poly (methyl methacrylate) (PMMA) particles and create patterned coating on different substrates by a synchrotron x-ray induced dispersion polymerization. The polymerization of MMA monomer and well defined patterning was successfully realized. The produced PMMA particles and patterning were characterized by Fourier transformation infrared (FTIR), 1H-Nuclear Magnetic Resonance (NMR), and Scanning Electron Microscope (SEM). The observed patterning contrast essentially derived from a variation of size, density and morphology of particles and the type of substrate materials used.

  15. Fracture resistance of Kevlar-reinforced poly(methyl methacrylate) resin: a preliminary study.

    PubMed

    Berrong, J M; Weed, R M; Young, J M

    1990-01-01

    The reinforcing effect of Kevlar fibers incorporated in processed poly(methyl methacrylate) resin samples was studied using 0% (controls), 0.5%, 1%, and 2% by weight of the added fibers. The samples were subjected to impact testing to determine fracture resistance, and sample groups were statistically compared using an ANOVA. Each reinforced sample had significantly greater fracture resistance (P less than 0.05) than the control, and no difference was found either within or between control groups. The use of reinforcing Kevlar fibers appears to enhance the fracture resistance of acrylic resin denture base materials.

  16. Vibrational overtone enhancement of methyl methacrylate polymerization initiated by benzoyl peroxide decomposition

    NASA Astrophysics Data System (ADS)

    Grinevich, Oleg; Snavely, D. L.

    1997-03-01

    Vibrational overtone initiated polymerization has been demonstrated using intracavity photolysis of a benzoyl peroxide/methyl methacrylate mixture. Excitation of the 6 νCH overtone transition of the ground electronic state of benzoyl peroxide creates radicals which subsequently begin the polymerization process. Polymer yield was monitored by comparison of the 2 νCH overtone absorptions for the methyl, methylenic and olefinic CH stretches at 5946 and 6170 cm -1, respectively. Plots of polymer yield versus time demonstrate an autoacceleration of the polymerization rate commencing many hours after the photolysis period. The delay before autoacceleration depends on the duration of the photolysis.

  17. Emission from Polymethyl Methacrylate Irradiated by a Beam of Runaway Electrons of Subnanosecond Pulse Durations

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Burachenko, A. G.; Beloplotov, D. V.; Tarasenko, V. F.

    2016-08-01

    Spectral and amplitude-temporal characteristics of emission from polymethyl methacrylate (fiberglass, PMMA) irradiated with a beam of runaway electrons of subnanosecond duration are investigated. It is found that at the beam current pulse duration within 200-600 ps at half maximum and the beam current density 10-200 A/cm2, the intensity maximum is registered at the wavelength ~490 nm and the emission pulse FWHM in the visible spectrum is ~1.5 ns at the half width. It is shown that the main contribution into the emission comes from luminescence.

  18. Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal.

    PubMed

    Salama, Ahmed; Shukry, Nadia; El-Sakhawy, Mohamed

    2015-02-01

    A novel adsorbent was prepared via crosslinking graft copolymerization of 2-(dimethylamino) ethyl methacrylate (DMAEMA) onto carboxymethyl cellulose (CMC) backbone. Ethylene glycol dimethacrylate and potassium persulphate were used as crosslinker and initiator, respectively. CMC-g-PDMAEMA hydrogel was used to remove methyl orange (MO) from aqueous solutions. The adsorption kinetics and isotherms were found to follow Pseudo-second-order kinetic model and Langmuir model, respectively. The high maximum adsorption capacity (1825 mg/g) implied that CMC-g-PDMAEMA can be used as promising adsorbent for the synthetic dyes removal from wastewater.

  19. Thermo-reversible gelation of atactic poly(methyl methacrylate) in poly(ethylene glycol) oligomers.

    PubMed

    Gao, Yun; Yu, Chunhong; Chen, Minzhi; Wang, Xiaoliang; Zhou, Dongshan; Xue, Gi

    2013-04-01

    The temperature-concentration behavior of physical gel by atactic poly(methyl methacrylate) (aPMMA) in poly(ethylene glycol) oligomer (PEG400) was investigated. A liquid-liquid demixing interferes with a glass transition during cooling. The combination of demixing and T g leads to the formation of amorphous gels at low temperature. We suggest that the gelation of aPMMA/PEG400 is a glassy gel, in which short-range attractive depletion interaction in the polymer/oligomer system was the driving force at molecular level.

  20. Proton nuclear magnetic resonance spectroscopic detection and determination of ethylene glycol dimethacrylate as a contaminant of methyl methacrylate raw material.

    PubMed

    Hanna, G M; Lau-Cam, C A

    1995-01-01

    A simple, specific, and accurate proton nuclear magnetic resonance (1H NMR) spectroscopic method is presented for detection and assay of ethylene glycol dimethacrylate dimer as a contaminant of methyl methacrylate monomer. In addition to minimizing exposure of the analyst to the irritant and toxic methacrylic acid esters, the proposed method requires no sample preparation. Quantitations are based on integrals for signals of methylene protons of ethylene glycol dimethacrylate at 4.37 ppm and methyl protons of methyl methacrylate at 3.70 ppm. Analysis of 10 synthetic mixtures of the monomer with 1-11% of dimer yielded a dimer recovery of 100.5 +/- 2.05% (mean +/- standard deviation). Correspondence (correlation coefficient, r = 0.9999) between the amount of dimer added and the amount found was excellent. The proposed method measures as little as 1% of dimer.

  1. Synthesis of nanoporous Al2O3 membranes from polybutyl methacrylate functionalized SiO2 particles as a sacrificial template.

    PubMed

    Tseng, Wenjea J; Guo, Shiuan-Fu

    2012-10-01

    SiO2 surface is first modified with 3-trimethoxysilyl propyl methacrylate (MPS) in order to graft with polymerized butyl methacrylate (BMA) to form SiO2@MPS-BMA core--shell hybrid particles. The polymeric BMA shell enables anchoring of aluminum ions in tetrachloroethylene solvent, results in SiO2 @Al2O3 composite particles upon subjected to calcination. Removal of the SiO2 core by acid etching forms nanoporous gamma-Al2O3 membrane with a Horvath-Kawazoe (HK) pore size of 1.4 nm and a Brunauer-Emmett-Teller (BET) surface area of 78.6 m2 x g(-1). Transmission electron microscopy reveals formation of interconnected pore channels in the membrane. It is interesting to note that the Al2O3 membrane remains at a reasonably high surface area (53.9 m2 x g(-1)) after an isothermal holding at 1200 degrees C, when gamma-Al2O3 changed into predominately alpha-Al2O3. The process is indeed general and can be extended to the synthesis of other inorganic porous solids.

  2. Periodontal repair in dogs: histologic observations of guided tissue regeneration with a prostaglandin E1 analog/methacrylate composite.

    PubMed

    Trombelli, L; Lee, M B; Promsudthi, A; Guglielmoni, P G; Wikesjö, U M

    1999-06-01

    This report describes observations of healing following guided tissue regeneration (GTR) including surgical implantation of the prostaglandin E1 analog misoprostol with calcium-layered methacrylate particles. Critical size, supra-alveolar periodontal defects were surgically created around the 3rd and 4th mandibular premolar teeth in 4 beagle dogs. Wound management included soaking with a 24 microg/ml misoprostol solution and implantation of the misoprostol/methacrylate composite. One jaw quadrant per animal was prepared for GTR using expanded polytetrafluoroethylene membranes. The gingival flaps were coronally advanced and sutured to submerge the teeth. The tissues covering the surgical sites daily received topical misoprostol in an oral adhesive over the 4-week healing interval. Upon euthanasia, tissue blocks were prepared for histometric analysis of regeneration of alveolar bone and cementum, root resorption and ankylosis. The defect area underneath the membrane and the density of methacrylate particles were recorded for the GTR defects. The methacrylate particles appeared encapsulated in a dense connective tissue without signs of an inflammatory reaction, some in contact to newly formed bone. Alveolar bone regeneration height averaged (+/-SD) 1.2+/-1.0 and 1.0+/-0.6 mm for GTR and non-GTR defects, respectively. Corresponding values for bone regeneration area were 1.3+/-1.0 and 0.7+/-0.5 mm2. Cementum regeneration was confined to the apical aspect of the defects. Small areas of root resorption and ankylosis were observed for all teeth. Bone regeneration area correlated positively to the defect area and negatively to the density of methacrylate particles in the GTR defects. The histologic observations suggest that the methacrylate composite has marginal potential to promote bone and cementum regeneration under provisions for GTR.

  3. 75 FR 770 - Acrylic acid-benzyl methacrylate-1-propanesulfonic acid, 2-methyl-2-[(1-oxo-2-propenyl)amino...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... AGENCY 40 CFR Part 180 Acrylic acid-benzyl methacrylate-1-propanesulfonic acid, 2- methyl-2... residues of acrylic acid-benzyl methacrylate-1- propanesulfonic acid, 2-methyl-2- -, monosodium salt... to establish a maximum permissible level for residues of acrylic acid-benzyl...

  4. Dynamic mechanical thermal analysis of dental polymers. I. Heat-cured poly(methyl methacrylate)-based materials.

    PubMed

    Clarke, R L

    1989-09-01

    The visco-elastic characteristics of homogeneous, heterogeneous and fibre-reinforced poly(methyl methacrylate) for use as denture base resins were measured by a dynamic mechanical thermal analyser in the frequency range 0.033-90 Hz. Dynamic Young's modulus of both polyethylene woven yarn and the polyaramid plain fabric-reinforced acrylics showed considerable improvement over the conventional denture base, whereas the carbon fibre-reinforced acrylic produced results lower than expected. From the loss tangent curves of the homogeneous and heterogeneous methacrylates their transition temperatures were recorded and the reciprocals of both the alpha and beta absorption temperatures were plotted against frequency to obtain their respective activation energies.

  5. The synthesis, properties, and applications of hydrophilic polymers and copolymers of hydroxyalkyl esters of acrylic and methacrylic acids

    NASA Astrophysics Data System (ADS)

    Asadov, Z. G.; Aliev, V. S.

    1992-05-01

    The scientific-technical and patent literature on the synthesis of hydroxyalkyl esters of acrylic and methacrylic acids by their catalytic reaction with epoxyalkanes, by the radical copolymerisation and polymerisation of presynthesised monomeric esters, and also by the chemical modification of polymerisation and copolymerisation products is surveyed. A wide variety of physicochemical properties of the polymers and copolymers based on the hydroxyalkyl esters of acrylic and methacrylic acids are described. The principal trends and prospects in the application of the high-molecular-weight products obtained in various branches of the national economy are indicated. The bibliography includes 158 references.

  6. Engineered Contractile Skeletal Muscle Tissue on a Microgrooved Methacrylated Gelatin Substrate

    PubMed Central

    Hosseini, Vahid; Ahadian, Samad; Ostrovidov, Serge; Camci-Unal, Gulden; Chen, Song; Kaji, Hirokazu; Ramalingam, Murugan

    2012-01-01

    To engineer tissue-like structures, cells must organize themselves into three-dimensional (3D) networks that mimic the native tissue microarchitecture. Microfabricated hydrogel substrates provide a potentially useful platform for directing cells into biomimetic tissue architecture in vitro. Here, we present microgrooved methacrylated gelatin hydrogels as a suitable platform to build muscle-like fibrous structures in a facile and highly reproducible fashion. Microgrooved hydrogel substrates with two different ridge sizes (50 and 100 μm) were fabricated to assess the effect of the distance between engineered myofibers on the orientation of the bridging C2C12 myoblasts and the formation of the resulting multinucleated myotubes. It was shown that although the ridge size did not significantly affect the C2C12 myoblast alignment, the wider-ridged micropatterned hydrogels generated more myotubes that were not aligned to the groove direction as compared to those on the smaller-ridge micropatterns. We also demonstrated that electrical stimulation improved the myoblast alignment and increased the diameter of the resulting myotubes. By using the microstructured methacrylated gelatin substrates, we built free-standing 3D muscle sheets, which contracted when electrically stimulated. Given their robust contractility and biomimetic microarchitecture, engineered tissues may find use in tissue engineering, biological studies, high-throughput drug screening, and biorobotics. PMID:22963391

  7. Poly(methyl methacrylate)-titania hybrid materials by sol-gel processing

    SciTech Connect

    Zhang, J.; Luo, S.; Gui, L.; Tang, Y.

    1996-12-31

    Sol-gel derived Poly(methyl methacrylate)-titania hybrid materials were synthesized by using acrylic acid or allyl acetylacetone (3-allyl-2,4-pentanedione) as coupling agents. Titanium butoxide modified with acrylic acid (or titanium isopropoxide modified with allyl acetylacetone) was hydrolyzed to produce a titania network, and then poly (methyl methacrylate) (PMMA) chains formed in situ through a radical polymerization were chemically bonded to the forming titania network to synthesize a hybrid material. Transparent hybrid materials with different contents of titania were achieved. With the increase of the titania content, the colors of the products changed form yellow to dark red. The synthesis process was investigated step by step by using FTIR spectroscopy, and the experimental results demonstrated that acrylate or acetylacetonato groups bound to titanium remain in the final hybrid materials. The thermal stability of the hybrid materials was considerably improved relative to pure PMMA. Field emission scanning electron microscopy (FE-SEM) analyses showed the hybrid materials are porous and pore diameters vary from 10nm to 100nm. The hybrid materials using allyl acetylacetone as the coupling agent exhibited thermochromic effects that both pure PMMA and titania do not have.

  8. Bond Strengths of Silorane- and Methacrylate-Based Composites to Various Underlying Materials

    PubMed Central

    Ozer, Sezin; Sen Tunc, Emine; Gonulol, Nihan

    2014-01-01

    Objective. To evaluate shear bond strength (SBS) values of a methacrylate (FZ 250) and a silorane-based (FS) resin composite to various underlying materials. Materials and Methods. A total of 80 samples were prepared with four different underlying materials; a flowable (FLC) and a bulk-fill flowable composite (BFC), and a conventional (CGIC) and resin modified glass-ionomer cement (RMGIC). These underlying materials were laminated plus to methacrylate or silorane-based resin composites (n = 10). To evaluate the specimens SBS values were evaluated with a universal testing machine (cross-head speed; 1.0 mm/min). Statistical comparisons were carried out using two-way ANOVA and Tukey's post hoc test with a significance level of P < 0.05. Results. SBS values for FZ250 were significantly higher than for FS for all of the underlying materials tested (P < 0.05). SBS values of FZ250 to BFC were significantly higher than to all other materials (P < 0.05), whereas SBS values of FS did not vary significantly according to underlying material (P > 0.05). Conclusion. The use of FS in conjunction with any of the tested materials showed lower SBS than the FZ 250. Also, new low elastic modulus liner BFC presented slightly good interfacial adhesion so, the usage of BFC as an underlying material may be preferable for FZ 250. PMID:24895608

  9. Low-cost fabrication of poly(methyl methacrylate) microchips using disposable gelatin gel templates.

    PubMed

    Chen, Zhi; Yu, Zhengyin; Chen, Gang

    2010-06-15

    A simple method based on disposable gelatin gel templates has been developed for the low-cost fabrication of poly(methyl methacrylate) (PMMA) microfluidic chips. Gelatin was dissolved in glycerol aqueous solution under heat to prepare a thermally reversible impression material. The molten gel was then sandwiched between a glass plate and a SU-8 template bearing negative relief of microstructure. After cooling, the negative SU-8 template could be easily separated from the solidified gelatin gel and a layer of gelatin template bearing positive relief of the microstructure was left on the glass plate. Subsequently, prepolymerized methyl methacrylate molding solution containing a UV-initiator was sandwiched between the gel template and a PMMA plate and was allowed to polymerize under UV light to fabricate PMMA channel plate at room temperature. Complete microchips could be obtained by bonding the channel plates with covers using plasticizer-assisted thermal bonding at 90 degrees C. Gelatin gel template can be mass-produced and will find application in the mass production of PMMA microchips at low cost. The prepared microfluidic microchips have been successfully employed in the capillary electrophoresis analysis of several ions in connection with contactless conductivity detection.

  10. Effects of star-shape poly(alkyl methacrylate) arm uniformity on lubricant properties

    DOE PAGES

    Robinson, Joshua W.; Qu, Jun; Erck, Robert; ...

    2016-03-29

    Star-shaped poly(alkyl methacrylate)s (PAMAs) were prepared and blended into an additive-free engine oil to assess the structure property relationship between macromolecular structure and lubricant performance. These additives were designed with a comparable number of repeating units per arm and the number of arms was varied between 3 and 6. Well-defined star-shaped PAMAs were synthesized by atom transfer radical polymerization (ATRP) via a core-first strategy from multi-functional headgroups. Observations of the polymer-oil blends suggest that stars with less than four arms are favorable as a viscosity index improver (VII), and molecular weight dominates viscosity-related effects over other structural features. Star-shaped PAMAs,more » as oil additives, effectively reduce the friction coefficient in both mixed and boundary lubrication regime. Several analogs outperformed commercial VIIs in both viscosity and friction performance. Furthermore, increased wear rates were observed for these star-shaped PAMAs in the boundary lubrication regime suggesting pressure-sensitive conformations may exist.« less

  11. Surface characterization and drug release from porous microparticles based on methacrylic monomers and xanthan.

    PubMed

    Lungan, Maria-Andreea; Popa, Marcel; Racovita, Stefania; Hitruc, Gabriela; Doroftei, Florica; Desbrieres, Jacques; Vasiliu, Silvia

    2015-07-10

    Porous crosslinked microparticles based on glycidyl methacrylate and xanthan were prepared by suspension polymerization and used for loading theophylline, a bronhodilatator drug, in order to obtain new drug delivery systems. The surface morphologies observed by means of SEM and AFM analysis demonstrated that microparticles show a spherical shape and are characterized by a porous structure. The presence of xanthan in the structure of microparticles leads to a decrease of surface roughness and pore diameters as well as to an increase of hydrophilicity degree compared to the micropaticles based only on glycidyl methacrylate. To analyze the in vitro release data various mathematical models were used, such as, first order, Higuchi model, Korsmeyer-Peppas model and Baker-Lonsdale model. Based on the highest values of the correlation coefficient, the analysis of the kinetic data indicate that drug release from G1 and X1 porous microparticles fits similarly well to the first order and Higuchi models and diffusion was the dominant mechanism of drug release.

  12. Syringyl Methacrylate, a Hardwood Lignin-Based Monomer for High-Tg Polymeric Materials

    PubMed Central

    2016-01-01

    As viable precursors to a diverse array of macromolecules, biomass-derived compounds must impart wide-ranging and precisely controllable properties to polymers. Herein, we report the synthesis and subsequent reversible addition–fragmentation chain-transfer polymerization of a new monomer, syringyl methacrylate (SM, 2,6-dimethoxyphenyl methacrylate), that can facilitate widespread property manipulations in macromolecules. Homopolymers and heteropolymers synthesized from SM and related monomers have broadly tunable and highly controllable glass transition temperatures ranging from 114 to 205 °C and zero-shear viscosities ranging from ∼0.2 kPa·s to ∼17,000 kPa·s at 220 °C, with consistent thermal stabilities. The tailorability of these properties is facilitated by the controlled polymerization kinetics of SM and the fact that one vs two o-methoxy groups negligibly affect monomer reactivity. Moreover, syringol, the precursor to SM, is an abundant component of depolymerized hardwood (e.g., oak) and graminaceous (e.g., switchgrass) lignins, making SM a potentially sustainable and low-cost candidate for tailoring macromolecular properties. PMID:27213117

  13. Effects of star-shape poly(alkyl methacrylate) arm uniformity on lubricant properties

    SciTech Connect

    Robinson, Joshua W.; Qu, Jun; Erck, Robert; Cosimbescu, Lelia; Zhou, Yan

    2016-03-29

    Star-shaped poly(alkyl methacrylate)s (PAMAs) were prepared and blended into an additive-free engine oil to assess the structure property relationship between macromolecular structure and lubricant performance. These additives were designed with a comparable number of repeating units per arm and the number of arms was varied between 3 and 6. Well-defined star-shaped PAMAs were synthesized by atom transfer radical polymerization (ATRP) via a core-first strategy from multi-functional headgroups. Observations of the polymer-oil blends suggest that stars with less than four arms are favorable as a viscosity index improver (VII), and molecular weight dominates viscosity-related effects over other structural features. Star-shaped PAMAs, as oil additives, effectively reduce the friction coefficient in both mixed and boundary lubrication regime. Several analogs outperformed commercial VIIs in both viscosity and friction performance. Furthermore, increased wear rates were observed for these star-shaped PAMAs in the boundary lubrication regime suggesting pressure-sensitive conformations may exist.

  14. Cold acetone fixation and methacrylate embedding. A suitable method for routine processing of bone marrow biopsies.

    PubMed

    Hantschick, M; Stosiek, P

    1998-01-01

    Here we report that acetone fixation at -18 degrees C with subsequent embedding in methyl-/butylmethacrylate is a reliable method for the routine processing of bone marrow biopsies. This method allows good conventional histological visualization of morphological details, which is comparable with other fixation procedures. The essential advantage of this method is that a wide range of monoclonal antibodies and polyclonal antisera can be used for immunohistochemical investigations for diagnostic and scientific purposes. The addition of 5% polyethylene glycol 400 to the acetone minimizes freeze-related artefacts. The immunohistochemical demonstration of a number of antigens is mostly affected by the medium used for slide preparation and to a lesser extent by the concentration of benzoylperoxide used for polymerization. Performing polymerization at 4 degrees C and using N, N-dimethyl-p-toluidine as accelerator allows the concentration of benzoylperoxide to be reduced to 0.2 g% (8.3 mmol). Under these conditions the methacrylate embedding procedure has only minimal effects on the quality of immuno- and enzyme histochemistry. Additionally, the simplified method for removing the polymerization inhibitor from the methacrylate components and the shortened impregnation step are further advantages of the embedding method described here.

  15. Radiation induced graft copolymerization of methyl methacrylate onto chrome-tanned pig skins

    NASA Astrophysics Data System (ADS)

    Pietrucha, K.; Pȩkala, W.; Kroh, J.

    Graft copolymerization of methyl methacrylate (MMA) onto chrome-tanned pig skins was carried out by the irradiation with 60Co ?-rays. The grafted polymethyl methacrylate (PMMA) chains were isolated by acid hydrolysis of the collagen backbone in order to characterize the graft copolymers. Proof of grafting was obtained through the detection of amino acid endgroups in the isolated grafts by reaction with ninhydrin. The grafting yield of MMA in aqueous emulsion was found to be higher than that for pure MMA and MMA in acetone. The degree of grafting increases with increasing monomer concentration in emulsion and reaches maximum at radiation dose ca 15 kGy. The yield of grafting is very high - ca 90% of monomer converts into copolymer and only 10% is converted into homopolymer. The present paper reports the physical properties of chrome-tanned pig skins after graft polymerization with MMA in emulsion. Modified leathers are more resistant against water absorption and abrasion in comparison with unmodified ones. They have more uniform structure over the whole surface, greater thickness and stiffness. The results reported seem to indicate that MMA may be used in the production of shoe upper and sole leathers. The mechanism of some of the processes occuring during radiation grafting of MMA in water emulsion on tanned leathers has been also suggested and discussed.

  16. Synthesis of Poly(Sorbitan Methacrylate) Hydrogel by Free-Radical Polymerization

    NASA Astrophysics Data System (ADS)

    Jeong, Gwi-Taek; Lee, Kyoung-Min; Yang, Hee-Seung; Park, Seok-Hwan; Park, Jae-Hee; Sunwoo, Changshin; Ryu, Hwa-Won; Kim, Doman; Lee, Woo-Tae; Kim, Hae-Sung; Cha, Wol-Seog; Park, Don-Hee

    Hydrogels are materials with the ability to swell in water through the retention of significant fractions of water within their structures. Owing to their relatively high degree of biocompatibility, hydrogels have been utilized in a host of biomedical applications. In an attempt to determine the optimum conditions for hydrogel synthesis by the free-radical polymerization of sorbitan methacrylate (SMA), the hydrogel used in this study was well polymerized under the following conditions: 50% (w/v) SMA as monomer, 1% (w/w) α, α'-azo-bis(isobutyro-nitrile) as thermal initiator, and 1% (w/w) ethylene glycol dimethacrylate as cross-liking agent. Under these conditions, the moisture content of the polymerized SMA hydrogel was higher than in the other conditions. Moreover, the moisture content of the poly(SMA) hydrogel was also found to be higher than that of the poly(methyl methacrylate [MMA]) hydrogel. When the Fourier transform-infrared spectrum of poly(SMA) hydrogel was compared with that of poly(MMA) hydrogel, we noted a band at 1735-1730/cm, which did not appear in the Fourier transform-infrared spectrum of poly(MMA). The surface of the poly(SMA) hydrogel was visualized through scanning electron microscopy, and was uniform and clear in appearance.

  17. Synthesis, characterization, and antibacterial activities of novel methacrylate polymers containing norfloxacin.

    PubMed

    Dizman, Bekir; Elasri, Mohamed O; Mathias, Lon J

    2005-01-01

    A novel methacrylate monomer containing a quinolone moiety was synthesized and homopolymerized in N,N-dimethylformamide (DMF) by using azobisisobutyronitrile (AIBN) as an initiator. The new monomer was copolymerized with poly(ethylene glycol) methyl ether methacrylate (MPEGMA) in DMF using the same initiator. The monomer, homopolymer, and copolymer were characterized by elemental analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), size exclusion chromatography (SEC), FTIR, (13)C NMR, and (1)H NMR. The antibacterial activities of the monomer as well as polymers were investigated against Staphylococcus aureus and Escherichia coli, which are representative of Gram-positive and Gram-negative bacteria, respectively. All compounds showed excellent antibacterial activities against these two types of bacteria. The antibacterial activities were determined using the shaking flask method, where 25 mg/mL concentrations of each compound were tested against 10(5) CFU/mL bacteria solutions. The number of viable bacteria was calculated by using the spread plate method, where 100 microL of the incubated antibacterial agent in bacteria solutions were spread on agar plates and the number of viable bacteria was counted after 24 h of incubation period at 37 degrees C.

  18. Computational evidence for self-initiation in spontaneous high-temperature polymerization of methyl methacrylate.

    PubMed

    Srinivasan, Sriraj; Lee, Myung Won; Grady, Michael C; Soroush, Masoud; Rappe, Andrew M

    2011-02-17

    This paper presents computational evidence for the occurrence of diradical mechanism of self-initiation in thermal polymerization of methyl methacrylate. Two self-initiation mechanisms of interest were explored with first-principles density functional theory calculations. Singlet and triplet potential energy surfaces were constructed. The formation of two Diels-Alder adducts, cis- and trans-dimethyl 1,2-dimethylcyclobutane-1,2-dicarboxylate and dimethyl 2-methyl-5-methylidene-hexanedioate, on the singlet surface was identified. Transition states were calculated using B3LYP/6-31G* and assessed using MP2/6-31G*. The calculated energy barriers and rate constants with different levels of theory were found to show good agreement to corresponding data obtained from laboratory experiments. The presence of a diradical intermediate on the triplet surface was identified. When MCSCF/6-31G* was used, the spin-orbit coupling constant for the singlet to triplet crossover was calculated to be 2.5 cm(-1). The mechanism of monoradical generation via a hydrogen abstraction by both triplet and singlet diradicals from a third monomer was identified to be the most likely mechanism of initiation in spontaneous polymerization of methyl methacrylate.

  19. Controllable surface morphology and properties via mist polymerization on a plasma-treated polymethyl methacrylate surface.

    PubMed

    Wan, S J; Wang, L; Xu, X J; Zhao, C H; Liu, X D

    2014-02-14

    Surface modification by grafting polymers on solid materials is an important strategy used to improve surface properties. This article reports that under appropriate conditions, very thin layers with desired morphologies may be constructed on a plasma-treated substrate by feeding a small quantity of a monomer with a mist stream carrying droplets produced from monomer solutions. We investigate the effects of process parameters that affect layer morphology, including exposure time to the mist stream, concentration of the monomer solution, and solvent selectivity. For a methyl methacrylate solution in ethanol, nanoparticles are uniformly grown with increasing monomer concentration or exposure time and finally form a porous layer at 3.65 mol L(-1) for 30 min. Decreasing solvent polarity not only affects surface morphology, but also increases hydrophobicity of the resulting surface. With 2,2,3,4,4,4-hexafluorobutyl methacrylate as the monomer, SEM and AFM micrographs indicated that mist polymerization results in numerous microspheres on the activated surface. These experimental results were interpreted by a mechanism in terms of an in situ polymerization accompanied by a phase transformation of the resulting polymer. Specifically, plasma treatment provides highly active cations and radicals to initiate very rapid polymerization, and the resulting polymers are consequently deposited from the liquid onto the surface under phase transition mechanisms.

  20. Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel

    PubMed Central

    Lin, Ruei-Zeng; Chen, Ying-Chieh; Moreno-Luna, Rafael; Khademhosseini, Ali; Melero-Martin, Juan M.

    2013-01-01

    The search for hydrogel materials compatible with vascular morphogenesis is an active area of investigation in tissue engineering. One candidate material is methacrylated gelatin (GelMA), a UV-photocrosslinkable hydrogel that is synthesized by adding methacrylate groups to the amine-containing side-groups of gelatin. GelMA hydrogels containing human endothelial colony-forming cells (ECFCs) and mesenchymal stem cells (MSCs) can be photopolymerized ex vivo and then surgically transplanted in vivo as a means to generate vascular networks. However, the full clinical potential of GelMA will be best captured by enabling minimally invasive implantation and in situ polymerization. In this study, we demonstrated the feasibility of bioengineering human vascular networks inside GelMA constructs that were first subcutaneously injected into immunodeficient mice while in liquid form, and then rapidly crosslinked via transdermal exposure to UV light. These bioengineered vascular networks developed within 7 days, formed functional anastomoses with the host vasculature, and were uniformly distributed throughout the constructs. Most notably, we demonstrated that the vascularization process can be directly modulated by adjusting the initial exposure time to UV light (15–45 s range), with constructs displaying progressively less vascular density and smaller average lumen size as the degree of GelMA crosslinking was increased. Our studies support the use of GelMA in its injectable form, followed by in situ transdermal photopolymerization, as a preferable means to deliver cells in applications that require the formation of vascular networks in vivo. PMID:23773819

  1. Effect of Montmorillonite Modification on Ultra Violet Radiation Cured Nanocomposite Filled with Glycidyl Methacrylate Modified Kenaf

    NASA Astrophysics Data System (ADS)

    Rozyanty, A. R.; Rozman, H. D.; Zhafer, S. F.; Musa, L.; Zuliahani, A.

    2016-06-01

    In this study nanocomposite cured by ultra violet radiation, were produced using modified montmorillonite (MMT) as reinforcing agent, chemically modified kenaf bast fiber as filler and unsaturated polyester as the matrix. Kenaf bast fiber was chemically modified with glycidyl methacrylate (GMA) whilst MMT were modified with cetyl trimethyl ammonium bromide (CTAB) and glycidyl methacrylate (GMA). Fixed 12 percent of GMA modified kenaf bast fiber with different percentage (i.e., 1, 3 and 5) of unmodified and modified MMT loading was used to produce the composite. The performed of GMA reaction with hydroxyl group of cellulose in kenaf bast fiber was evaluated using Fourier Transform infrared (FTIR) spectroscopy. GMA-MMT filled composite showed higher mechanical properties than MMT and CTAB-MMT filled composite. However, the increase of MMT, CTAB-MMT and GMA- MMT loading resulted in the reduction of mechanical properties. Scanning electron microscopy (SEM) analysis showed the evidence of compatibility enhancement between MMT and kenaf bast fiber with unsaturated polyester matrix.

  2. Radiopacity of Methacrylate and Silorane Composite Resins Using a Digital Radiographic System

    PubMed Central

    Firoozmand, Leily Macedo; Cordeiro, Mariana Gonçalves; Da Silva, Marcos André dos Santos

    2016-01-01

    The aim of this study was to evaluate the radiopacity of silorane and methacrylate resin composites, comparing them to the enamel, dentin, and aluminum penetrometer using a digital image. From six resin composites (Filtek™ P90, Filtek Z350, Filtek Z350 XT flow, Tetric Ceram, TPH Spectrum, and SureFil SDR flow) cylindrical disks (5 × 1 mm) were made and radiographed by a digital method, together with a 15-step aluminum step-wedge and a 1 mm slice of human tooth. The degree of radiopacity of each image was quantified using digital image processing. The mean values of the shades of gray of the tested materials were measured and the equivalent width of aluminum was calculated for each resin. The results of our work yielded the following radiopacity values, given here in descending order: Tetric Ceram > TPH > SDR > Z350 > Z350 flow > P90 > enamel > dentin. The radiopacity of the materials was different both for the enamel and for the dentin, except for resin P90, which was no different than enamel. In conclusion, silorane-based resin exhibited a radiopacity higher than dentin and closest to the enamel; a large portion of the methacrylate-based flow and conventional resins demonstrated greater radiopacity in comparison to dentin and enamel. PMID:27722199

  3. Photopolymerized multifunctional (meth)acrylates as model polymers for dental applications.

    PubMed

    Bland, M H; Peppas, N A

    1996-06-01

    Polymer networks that can serve as model systems for dental applications were prepared by photopolymerizations of 1,1,1-trimethylolpropane triacrylate, 1,1,1-trimethylolpropane trimethacrylate, 1,1,1-trimethylolethane trimethacrylate, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, Photomer 2028 and Photomer 3015. The UV polymerizations were initiated by 2,2-dimethoxy-2-phenyl-acetophenone. Volume shrinkage was followed over the course of polymerization using a dilatometric technique. Incident light intensities ranged from 1 mW cm-2 to 20 mW cm-2. The effects of monomer structure on % volume shrinkage, including pendant group size, molecular weight between reactive double bonds, and acrylate versus methacrylate monomers were investigated. In addition, the effect of incident light intensity on % volume shrinkage was studied. Typical volume shrinkage varied from 3.5% to 13.5%. The volume shrinkage decreased with increasing monomer rank and increased pendant group size; the shrinkage for methacrylates was less than that for acrylates. Increased incident light intensity resulted in increased shrinkage rate, but not in statistically significant increases of the volume shrinkage. Conversion was calculated from shrinkage data and compared to data from monomer extraction experiments. Results indicate that although double bond conversion is low, conversion of monomer units is significantly higher.

  4. Chalcogenide amorphous nanoparticles doped poly (methyl methacrylate) with high nonlinearity for optical waveguide

    NASA Astrophysics Data System (ADS)

    Xue, Xiaojie; Nagasaka, Kenshiro; Cheng, Tonglei; Deng, Dinghuan; Zhang, Lei; Liu, Lai; Suzuki, Takenobu; Ohishi, Yasutake

    2015-03-01

    Nonlinear optical polymers show promising potential applications in photonics, for example, electro-optical devices. Poly (methyl methacrylate) (PMMA) is widely used in optical waveguides, integrated optics and optical fibers. However, PMMA has not been used for nonlinear optical waveguides since it has a low nonlinear refractive index. We successfully prepared chalcogenide amorphous nanoparticles doped PMMA that had a high nonlinearity. The As3S7 bulk glass was dissolved in propylamine to form a cluster solution. Then the As3S7/propylamine solution was added into methyl methacrylate (MMA) containing photoinitiator Irgacure 184 about 0.5 wt%. After well mixing the As3S7 nanoparticle doped MMA was transparent. Under the irradiation by a 365 nm UV lamp, As3S7 nanoparticles doped PMMA was obtained with yellow color. The third-order nonlinear optical susceptibility of As3S7 nanoparticles doped PMMA was investigated. An optical waveguide array based on the As3S7 nanoparticles doped PMMA composite of high nonlinearity was fabricated.

  5. Role of thiol-complex formation in 2-hydroxyethyl- methacrylate-induced toxicity in vitro.

    PubMed

    Samuelsen, J T; Kopperud, H M; Holme, J A; Dragland, I S; Christensen, T; Dahl, J E

    2011-02-01

    Methacrylate monomers that are found to leach from cured resin-based dental materials induce biological effects in vitro. The underlying mechanisms have not been fully elucidated although involvement of increased cellular reactive oxygen species (ROS) and DNA-damage has been suggested. In this in vitro study we have elucidated the impact of a commonly used methacrylate monomer, HEMA, on the level and oxidation state of cellular glutathione, intracellular ROS level, as well as the formation of complex between HEMA and glutathione. HEMA exposure rapidly led to increased level of ROS and reduced level of GSH (reduced form of glutathione). Antioxidants effectively counteracted the ROS increase, but had no effect on the GSH depletion. No change in glutathione-disulphide (GSSG; oxidized form of glutathione) concentration was detected in the HEMA treated cells, showing that oxidation of glutathione was not responsible for the reduced GSH concentration. Further we demonstrated spontaneous formation of a complex between HEMA and GSH. In conclusion, we showed that exposure to HEMA led to drop in cellular glutathione level probably caused by complex formation with HEMA. A similar covalent binding of HEMA to macromolecules combined with increased level of cellular ROS due to lower levels of GSH is suggested to be important factors triggering the toxic response.

  6. Host reaction to poly(2-hydroxyethyl methacrylate) scaffolds in a small spinal cord injury model.

    PubMed

    Li, Hong Ying; Führmann, Tobias; Zhou, Yue; Dalton, Paul D

    2013-08-01

    Tissue engineered scaffolds and matrices have been investigated over the past decade for their potential in spinal cord repair. They provide a 3-D substrate that can be permissive for nerve regeneration yet have other roles including neuroprotection, altering the inflammatory cascade and mechanically stabilizing spinal cord tissue after injury. In this study we investigated very small lesions (approx. 0.25 μL in volume) of the dorsal column into which a phase-separated poly(2-hydroxyethyl methacrylate) hydrogel scaffold is implanted. Using fluorescent immunohistochemistry to quantify glial scarring, the poly(2-hydroxyethyl methacrylate) scaffold group showed reduced intensity compared to lesion controls for GFAP and the chondroitin sulfate proteoglycan neurocan after 6 days. However, the scaffold and tissue was also pushed dorsally after 6 days while the scaffold was not integrated into the spinal cord after 28 days. Overall, this small-lesion spinal cord injury model provided information on the host tissue reaction of a TE scaffold while reducing animal discomfort and care.

  7. Cell toxicity of 2-hydroxyethyl methacrylate (HEMA): the role of oxidative stress.

    PubMed

    Morisbak, Else; Ansteinsson, Vibeke; Samuelsen, Jan T

    2015-08-01

    2-Hydroxyethyl methacrylate (HEMA) is a methacrylate monomer used in polymer-based dental-restorative materials. In this study, the viability of human lung epithelial cells, BEAS-2B, was investigated after exposure to this monomer. Exposure to HEMA reduced the viability of the BEAS-2B cells as a result of increased apoptosis, interruption of the cell cycle, and decreased cell proliferation. Depletion of cellular glutathione and increased levels of reactive oxygen species (ROS) were seen after exposure of BEAS-2B cells to HEMA. The glutathione synthase inhibitor, L-buthioninesulfoximine (BSO), was used to study whether the reduced viability was caused by glutathione depletion and increased levels of ROS. Similarly to incubation with HEMA, incubation with BSO resulted in glutathione depletion and increased ROS levels, without increasing cell death or inhibiting cell growth. The results indicate that HEMA-induced cell damage is not caused exclusively by these mechanisms. Mechanisms other than glutathione depletion and ROS formation seem to be of importance for the toxic effect of HEMA on lung epithelial cells.

  8. Synthesis and Examination of Nanocomposites Based on Poly(2-hydroxyethyl methacrylate) for Medicinal Use.

    PubMed

    Kukolevska, Olena S; Gerashchenko, Igor I; Borysenko, Mykola V; Pakhlov, Evgenii M; Machovsky, Michal; Yushchenko, Tetyana I

    2017-12-01

    Preparation of poly(2-hydroxyethyl methacrylate) (PHEMA) based nanocomposites using different approaches such as synthesis with water as the porogen, filling of polymer matrix by silica and formation of interpenetrating polymer networks with polyurethane was demonstrated. Incorporation of various biologically active compounds (BAC) such as metronidazole, decamethoxin, zinc sulphate, silver nitrate or amino acids glycine and tryptophan into nanocomposites was achieved. BAC were introduced into the polymer matrix either (1) directly, or (2) with a solution of colloidal silica, or (3) through immobilization on silica (sol-densil). Morphology of prepared materials was investigated by laser scanning microscopy and low-vacuum scanning electron microscopy. In vacuum freeze-drying, prior imaging was proposed for improving visualization of the porous structure of composites. The interaction between PHEMA matrix and silica filler was investigated by IR spectroscopy. Adsorption of 2-hydroxyethyl methacrylate and BAC from aqueous solution on the silica surface was also examined. Phase composition and thermal stability of composites were studied by the differential thermogravimetry/differential thermal analysis. Release of BAC into water medium from prepared composites were shown to depend on the synthetic method and differed significantly. Obtained PHEMA-base materials which are characterized by controlled release of BAC have a strong potential for application in manufacturing of different surgical devices like implants, catheters and drainages.

  9. Binding of leachable components of polymethyl methacrylate (PMMA) and peptide on modified SPR chip

    NASA Astrophysics Data System (ADS)

    Szaloki, M.; Vitalyos, G.; Harfalvi, J.; Hegedus, Cs

    2013-12-01

    Many types of polymers are often used in dentistry, which may cause allergic reaction, mainly methyl methacrylate allergy due to the leachable, degradable components of polymerized dental products. The aim of this study was to investigate the interaction between the leachable components of PMMA and peptides by Fourier-transform Surface Plasmon Resonance (FT SPR). In our previous work binding of oligopeptides (Ph.D.-7 and Ph.D.-12 Peptide Library Kit) was investigated to PMMA surface by phage display technique. It was found that oligopeptides bounded specifically to PMMA surface. The most common amino acids were leucine and proline inside the amino acids sequences of DNA of phages. The binding of haptens, as formaldehyde and methacrylic acid, to frequent amino acids was to investigate on the modified gold SPR chip. Self assembled monolayer (SAM) modified the surface of gold chip and ensured the specific binding between the haptens and amino acids. It was found that amino acids bounded to modified SPR gold and the haptens bounded to amino acids by creating multilayer on the chip surface. By the application of phage display and SPR modern bioanalytical methods the interaction between allergens and peptides can be investigated.

  10. Photoinduced graft-copolymer synthesis and characterization of methacrylic acid onto natural biodegradable lignocellulose fiber.

    PubMed

    Khan, Ferdous

    2004-01-01

    UV radiation induced graft copolymerization of methacrylic acid onto natural lignocellulose (jute) fiber was carried out both by "simultaneous irradiation and grafting" and by preirradiation methods using 1-hydroxycyclohexyl-phenyl ketone as a photoinitiator. In the "simultaneous irradiation and grafting" method, the variation of graft weight with UV-radiation time, monomer concentration, and the concentration of photoinitiator was investigated. In the case of the preirradiation method, the incorporation of 2-methyl-2-propene 1-sulfonic acid, sodium salt, into the grafting reaction solution played a most important role in suppressing the homopolymer/gel formation and facilitating graft copolymerization. The optimum value of the reaction parameters on the percentage of grafting was evaluated. In comparison, results showed that the method of graft-copolymer synthesis has significant influence on graft weight. The study on the mechanical and thermal properties of grafted samples was conducted. The results showed that the percentage of grafting has a significant effect on the mechanical and thermal properties in the case of grafted samples. Considering the water absorption property, the jute-poly(methacrylic acid)-grafted sample showed a maximum up to 42% increase in hydrophilicity with respect to that of the "as received" sample. Attenuated total reflection infrared studies indicate that the estimation of the degree of grafting could be achieved by correlating band intensities with the percent graft weight.

  11. Synthesis and Examination of Nanocomposites Based on Poly(2-hydroxyethyl methacrylate) for Medicinal Use

    NASA Astrophysics Data System (ADS)

    Kukolevska, Olena S.; Gerashchenko, Igor I.; Borysenko, Mykola V.; Pakhlov, Evgenii M.; Machovsky, Michal; Yushchenko, Tetyana I.

    2017-02-01

    Preparation of poly(2-hydroxyethyl methacrylate) (PHEMA) based nanocomposites using different approaches such as synthesis with water as the porogen, filling of polymer matrix by silica and formation of interpenetrating polymer networks with polyurethane was demonstrated. Incorporation of various biologically active compounds (BAC) such as metronidazole, decamethoxin, zinc sulphate, silver nitrate or amino acids glycine and tryptophan into nanocomposites was achieved. BAC were introduced into the polymer matrix either (1) directly, or (2) with a solution of colloidal silica, or (3) through immobilization on silica (sol-densil). Morphology of prepared materials was investigated by laser scanning microscopy and low-vacuum scanning electron microscopy. In vacuum freeze-drying, prior imaging was proposed for improving visualization of the porous structure of composites. The interaction between PHEMA matrix and silica filler was investigated by IR spectroscopy. Adsorption of 2-hydroxyethyl methacrylate and BAC from aqueous solution on the silica surface was also examined. Phase composition and thermal stability of composites were studied by the differential thermogravimetry/differential thermal analysis. Release of BAC into water medium from prepared composites were shown to depend on the synthetic method and differed significantly. Obtained PHEMA-base materials which are characterized by controlled release of BAC have a strong potential for application in manufacturing of different surgical devices like implants, catheters and drainages.

  12. Effect of Nanoclay on Thermal Conductivity and Flexural Strength of Polymethyl Methacrylate Acrylic Resin

    PubMed Central

    Ghaffari, Tahereh; Barzegar, Ali; Hamedi Rad, Fahimeh; Moslehifard, Elnaz

    2016-01-01

    Statement of the Problem The mechanical and thermal properties of polymethyl methacrylate (PMMA) acrylic resin should be improved to counterweigh its structural deficiencies. Purpose The aim of this study was to compare the flexural strength and thermal conductivity of conventional acrylic resin and acrylic resin loaded with nanoclay. Materials and Method The methacrylate monomer containing the 0.5, 1 and 2 wt% of nanoclay was placed in an ultrasonic probe and mixed with the PMMA powder. Scanning electron microscopy was used to verify homogeneous distribution of particles. Twenty-four 20×20×200-mm cubic samples were prepared for flexural strength test; 18 samples containing nanoclay and 6 samples for the control group. Another 24 cylindrical samples of 38×25 mm were prepared for thermal conductivity test. One-way ANOVA was used for statistical analysis, followed by multiple-comparison test (Scheffé’s test). Statistical significance was set at p< 0.05. Results Increasing the concentration of nanoclay incorporated into the acrylic resin samples increased thermal conductivity but decreased flexural strength (p< 0.05). Conclusion Based on the results of this study, adding nanoclay particles to PMMA improved its thermal conductivity, while it had a negative effect on the flexural strength. PMID:27284557

  13. Quaternary ammonium silane-functionalized, methacrylate resin composition with antimicrobial activities and self-repair potential.

    PubMed

    Gong, Shi-qiang; Niu, Li-Na; Kemp, Lisa K; Yiu, Cynthia K Y; Ryou, Heonjune; Qi, Yi-Pin; Blizzard, John D; Nikonov, Sergey; Brackett, Martha G; Messer, Regina L W; Wu, Christine D; Mao, Jing; Bryan Brister, L; Rueggeberg, Frederick A; Arola, Dwayne D; Pashley, David H; Tay, Franklin R

    2012-09-01

    The design of antimicrobial polymers to address healthcare issues and minimize environmental problems is an important endeavor with both fundamental and practical implications. Quaternary ammonium silane-functionalized methacrylate (QAMS) represents an example of antimicrobial macromonomers synthesized by a sol-gel chemical route; these compounds possess flexible Si-O-Si bonds. In present work, a partially hydrolyzed QAMS co-polymerized with 2,2-[4(2-hydroxy 3-methacryloxypropoxy)-phenyl]propane is introduced. This methacrylate resin was shown to possess desirable mechanical properties with both a high degree of conversion and minimal polymerization shrinkage. The kill-on-contact microbiocidal activities of this resin were demonstrated using single-species biofilms of Streptococcus mutans (ATCC 36558), Actinomyces naeslundii (ATCC 12104) and Candida albicans (ATCC 90028). Improved mechanical properties after hydration provided the proof-of-concept that QAMS-incorporated resin exhibits self-repair potential via water-induced condensation of organic modified silicate (ormosil) phases within the polymerized resin matrix.

  14. Chemically induced graft copolymerization of 2-hydroxyethyl methacrylate onto polyurethane surface for improving blood compatibility

    NASA Astrophysics Data System (ADS)

    He, Chunli; Wang, Miao; Cai, Xianmei; Huang, Xiaobo; Li, Li; Zhu, Haomiao; Shen, Jian; Yuan, Jiang

    2011-11-01

    To improve hydrophilicity and blood compatibility properties of polyurethane (PU) film, we chemically induced graft copolymerization of 2-hydroxyethyl methacrylate (HEMA) onto the surface of polyurethane film using benzoyl peroxide as an initiator. The effects of grafting temperature, grafting time, monomer and initiator concentrations on the grafting yields were studied. The maximum grafting yield value was obtained 0.0275 g/cm2 for HEMA. Characterization of the films was carried out by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), water contact angle measurements. ATR-FTIR data showed that HEMA was successfully grafted onto the PU films surface. Water contact angle measurement demonstrated the grafted films possessed a relatively hydrophilic surface. The blood compatibility of the grafted films was preliminarily evaluated by a platelet-rich plasma adhesion test and hemolysis test. The results of platelet adhesion experiment showed that polyurethane grafted polymerization with monomer of 2-hydroxyethyl methacrylate had good blood compatibility featured by the low platelet adhesion. Hemolysis rate of the PU-g-PHEMA films was dramatically decreased than the ungrafted PU films. This kind of new biomaterials grafted with HEMA monomers might have a potential usage for biomedical applications.

  15. Synthesis of poly(sorbitan methacrylate) hydrogel by free-radical polymerization.

    PubMed

    Jeong, Gwi-Taek; Lee, Kyoung-Min; Yang, Hee-Seung; Park, Seok-Hwan; Park, Jae-Hee; Sunwoo, Changshin; Ryu, Hwa-Won; Kim, Doman; Lee, Woo-Tae; Kim, Hae-Sung; Cha, Wol-Seog; Park, Don-Hee

    2007-04-01

    Hydrogels are materials with the ability to swell in water through the retention of significant fractions of water within their structures. Owing to their relatively high degree of biocompatibility, hydrogels have been utilized in a host of biomedical applications. In an attempt to determine the optimum conditions for hydrogel synthesis by the free-radical polymerization of sorbitan methacrylate (SMA), the hydrogel used in this study was well polymerized under the following conditions: 50% (w/v) SMA as monomer, 1% (w/w) alpha, alpha'-azo-bis(isobutyro-nitrile) as thermal initiator, and 1% (w/w) ethylene glycol dimethacrylate as cross-liking agent. Under these conditions, the moisture content of the polymerized SMA hydrogel was higher than in the other conditions. Moreover, the moisture content of the poly(SMA) hydrogel was also found to be higher than that of the poly(methyl methacrylate [MMA]) hydrogel. When the Fourier transform-infrared spectrum of poly(SMA) hydrogel was compared with that of poly(MMA) hydrogel, we noted a band at 1735-1730/cm, which did not appear in the Fourier transform-infrared spectrum of poly(MMA). The surface of the poly(SMA) hydrogel was visualized through scanning electron microscopy, and was uniform and clear in appearance.

  16. Cellulose nanocrystal-poly(oligo(ethylene glycol) methacrylate) brushes with tunable LCSTs.

    PubMed

    Grishkewich, Nathan; Akhlaghi, Seyedeh Parinaz; Zhaoling, Yao; Berry, Richard; Tam, Kam C

    2016-06-25

    This paper reports on the synthesis of poly(oligoethylene glycol) methyl ether acrylate (POEGMA) grafted cellulose nanocrystals (CNCs) via surface initiated atom transfer radical polymerization (ATRP). An ATRP initiator (α-Bromoisobutyryl bromide) was covalently bonded to the surface of CNCs, followed by copolymerizing di(ethylene glycol) methyl ether methacrylate (MEO2MA) and oligoethylene glycol methyl ether methacrylate (OEGMA300) monomers from the surface using Cu(I)Br/2,2-dipyridal. Multiple POEGMA-g-CNC systems with varying MEO2MA/OEGMA300 content were synthesized, and they displayed a range of lower critical solution temperatures (LCSTs) in aqueous medium. μDSC endotherms and microstructural analysis indicated the collapse of POEGMA chains, followed by the aggregation of nanoparticles above their LCSTs. Cloud point measurements demonstrated a hysteresis in the heating and cooling of the POEGMA-g-CNC systems. It was found that the LCST of the nanoparticles could be tuned to between 23.8 to 63.8°C by adjusting the OEGMA300 content of the POEGMA brushes.

  17. Synthesis of methyl methacrylate from coal-derived syngas: Quarterly report,, October 1-December 31, 1997

    SciTech Connect

    1998-09-01

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of three steps of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Over the last quarter, Eastman developed two new processes which have resulted in two new invention reports. One process deals with carbonylation of benzyl ether which represents a model for coal liquefaction and the second focuses on the acceleration of carbonylation rates for propionic acid synthesis, via use of polar aprotic solvents. These two inventions are major improvements in the novel Mo-catalyzed homogeneous process for propionic acid synthesis technology, developed by Eastman. Over the last quarter, RTI completed three reaction cycles and two regeneration cycles as a part of long-term reaction regeneration cycle study on a 10% Nb{sub 2}O{sub 5}/Si0{sub 2} catalyst, for vapor phase condensation reaction of formaldehyde with propionic acid.

  18. Synthesis of acrylates and methacrylates from coal-derived syngas. Quarterly report, October--December 1996

    SciTech Connect

    1997-05-02

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the US Department of Energy, Federal Energy Technology Center. This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Eastman has focused on the propionate synthesis step. the resultant Mo catalysts work efficiently at much less severe conditions (170{degrees}C and 30 atm) than the conventional Ni catalysts (270{degrees}C and 180 atm). Bechtel has performed an extensive cost analysis which shows that Eastman`s propionate synthesis step is competitive with other technologies to produce the anhydride. In the second step, RTI and Eastman have developed active and stable V-Si-P ternary metal oxide catalysts Nb/SiO{sub 2} and Ta/SiO{sub 2} catalysts for the condensation of propionic anhydride and acid with formaldehyde. RTI has demonstrated a novel correlation among the catalyst acid-base properties, condensation reaction yield, and long-term catalyst activity. Current research focuses on enhancing the condensation reaction yields by better understanding of the acid-base property correlation, in situ condensation in a high-temperature, high- pressure (HTHP) slurry reactor, and alternate formaldehyde feedstocks. Based on Eastman and RTI laboratory data, a cost estimate is also being developed for the integrated process.

  19. Ionogels Based on Poly(methyl methacrylate) and Metal-Containing Ionic Liquids: Correlation between Structure and Mechanical and Electrical Properties

    PubMed Central

    Zehbe, Kerstin; Kollosche, Matthias; Lardong, Sebastian; Kelling, Alexandra; Schilde, Uwe; Taubert, Andreas

    2016-01-01

    Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs. PMID:26999112

  20. Click synthesis of quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide with improved antibacterial and antifouling ability.

    PubMed

    Tu, Qin; Tian, Chang; Ma, Tongtong; Pang, Long; Wang, Jinyi

    2016-05-01

    A quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide (GO-QPDMAEMA) was successfully prepared in this study via click chemistry. Alkyne-functionalized graphene oxide (GO-alkyne) was first synthesized through a two-step amidation reaction of GO-COOH. Meanwhile, azide-terminated poly(dimethylaminoethyl methacrylate) (PDMAEMA-N3) was prepared via the atom-transfer radical-polymerization of dimethylaminoethyl methacrylate (DMAEMA). Subsequently, PDMAEMA-N3 was grafted onto the GO-alkyne through click chemistry to obtain PDMAEMA modified graphene oxide (GO-PDMAEMA). Finally, the tertiary amino groups of GO-PDMAEMA were quaternized by ethyl bromide to provide a quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide (GO-QPDMAEMA). Various characterization techniques, including Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV-vis spectrometry, ζ potential, Raman, contact angle analyses and field emission scanning electron microscope were used to ascertain the successful preparation of the quaternized GO-QPDMAEMA. Furthermore, antibacterial and antifouling activities of GO-QPDMAEMA were investigated via protein adsorption, as well as bacterial and cell adhesion studies. The results suggest that the GO-QPDMAEMA surface exhibited significant antibacterial and antifouling properties, compared with the GO-COOH and GO-PDMAEMA surfaces.

  1. New Functionalities of PA6,6 Fabric Modified by Atmospheric Pressure Plasma and Grafted Glycidyl Methacrylate Derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidative atmospheric pressure plasma was utilized to activate surface of PA 6,6 fabrics followed by graft copolymerization of glycidyl methacrylate (GMA) and further reacted with triethylene tetramine (TETA), quaternary ammonium chitosan (HTCC) or cyclodextrin (CD). The inner CD cavity was complexe...

  2. The profile of adsorbed plasma and serum proteins on methacrylic acid copolymer beads: Effect on complement activation.

    PubMed

    Wells, Laura A; Guo, Hongbo; Emili, Andrew; Sefton, Michael V

    2017-02-01

    Polymer beads made of 45% methacrylic acid co methyl methacrylate (MAA beads) promote vascular regenerative responses in contrast to control materials without methacrylic acid (here polymethyl methacrylate beads, PMMA). In vitro and in vivo studies suggest that MAA copolymers induce differences in macrophage phenotype and polarization and inflammatory responses, presumably due to protein adsorption differences between the beads. To explore differences in protein adsorption in an unbiased manner, we used high resolution shotgun mass spectrometry to identify and compare proteins that adsorb from human plasma or serum onto MAA and PMMA beads. From plasma, MAA beads adsorbed many complement proteins, such as C1q, C4-related proteins and the complement inhibitor factor H, while PMMA adsorbed proteins, such as albumin, C3 and apolipoproteins. Because of the differences in complement protein adsorption, follow-up studies focused on using ELISA to assess complement activation. When incubated in serum, MAA beads generated significantly lower levels of soluble C5b9 and C3a/C3adesarg in comparison to PMMA beads, indicating a decrease in complement activation with MAA beads. The differences in adsorbed protein on the two materials likely alter subsequent cell-material interactions that ultimately result in different host responses and local vascularization.

  3. On the degelation of networks - Case of the radiochemical degradation of methyl methacrylate - ethylene glycol dimethacrylate copolymers

    NASA Astrophysics Data System (ADS)

    Richaud, Emmanuel; Gilormini, Pierre; Verdu, Jacques

    2016-05-01

    Methyl methacrylate networks were synthetized and submitted to radiochemical degradation. Ageing was monitored by means of sol-gel analysis and glass transition temperature measurements. Networks were shown to undergo exclusively chain scission process leading to the degelation of network. The critical conversion degree corresponding to degelation (loss of all elastically active chains) is discussed regarding a statistical theory.

  4. Methacrylic Zwitterionic, Thermoresponsive, and Hydrophilic (Co)Polymers via Cu(0)-Polymerization: The Importance of Halide Salt Additives.

    PubMed

    Simula, Alexandre; Anastasaki, Athina; Haddleton, David M

    2016-02-01

    The synthesis of hydrophilic, thermoresponsive, and zwitterionic polymethacrylates is reported by Cu(0)-mediated reversible deactivation radical polymerization in water and/or water/alcohol mixtures. The predisproportionation of [Cu(I) (PMDETA)Cl] in water prior to initiator and monomer addition is exploited to yield well-defined polymethacrylates with full monomer conversions in 30 min. The addition of supplementary halide salts (NaCl) enables the synthesis of various molecular weight poly[poly(ethylene glycol) methyl ether methacrylate] (PEGMA475) (DPn = 10-80, Mn ≈ 10,000-40 000 g mol(-1)) with full monomer conversion and narrow molecular weight distributions attained in all cases (Đ ≈ 1.20-1.30). A bifunctional PEG initiator (average Mn ≈ 1000 g mol(-1)) is utilized for the polymerization of a wide range of methacrylates including 2-dimethylaminoethyl methacrylate, 2-morpholinoethyl methacrylate, [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide, and 2-methacryloyloxyethyl phosphorylcholine. Despite the high water content, high end group fidelity is demonstrated by in situ chain extensions and block copolymerizations with PEGMA475 yielding well-defined functional telechelic pentablock copolymers within 2.5 h.

  5. Magnetic poly(2-hydroxyethyl methacrylate) microspheres for affinity purification of antibodies for early diagnosis of multiple sclerosis patients.

    PubMed

    Horak, Daniel; Hlidkova, Helena; Kit, Yurii; Stoika, Rostyslav; Antonyuk, Volodymyr; Myronovsky, Severyn

    2017-03-28

    The aim of this work is to develop new magnetic polymer microspheres with functional groups available for easy protein and antibody binding. Monodisperse macroporous poly(2-hydroxyethyl methacrylate) (PHEMA-COOH) microspheres ca. 4 µm in diameter and containing ~ 1 mmol COOH/g were synthesized by multistep swelling polymerization of 2-hydroxyethyl methacrylate (HEMA), ethylene dimethacrylate (EDMA), and [(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA), which was followed by MCMEMA hydrolysis. The microspheres were rendered magnetic by precipitation of iron oxide inside the pores, which made them easily separable in a magnetic field. Properties of the resulting magnetic poly(2-hydroxyethyl methacrylate) (mgt.PHEMA) particles with COOH functionality were examined by scanning and transmission electron microscopy (SEM and TEM), static volumetric adsorption of helium and nitrogen, mercury porosimetry, Fourier-transform infrared (FTIR) and atomic absorption spectroscopy (AAS), and elemental analysis. Mgt.PHEMA microspheres were coupled with p46/Myo1C protein purified from blood serum of multiple sclerosis (MS) patients, which enabled easy isolation of monospecific anti-p46/Myo1C immunoglobulin G (IgG) antibodies from crude antibody preparations of mouse blood serum. High efficiency of this approach was confirmed by SDS-PAGE, Western blot, and dot blot analyses. The newly developed mgt.PHEMA microspheres conjugated with a potential disease biomarker, p46/Myo1C protein, are thus a promising tool for affinity purification of antibodies, which can improve diagnosis and treatment of MS patients.

  6. NSAIDs bound to methacrylic carriers: microstructural characterization and in vitro release analysis.

    PubMed

    Gallardo, A; Parejo, C; San Román, J

    2001-03-12

    Chemically controlled drug delivery systems or 'polymeric drugs' based on copolymers of 2-hydroxyethyl methacrylate, HEMA, and five methacrylic derivatives which incorporate ibuprofen or ketoprofen in their chemical structure by means of labile ester bonds, MAI, MAK, MAEK, MEI and MEK, have been prepared by free radical polymerization in solution at 50 degrees C. Three different spacers have been incorporated to the monomer structure: an aromatic amide, an aliphatic ester and a combined aromatic amide/aliphatic ester. Copolymerization reactions of the methacrylamide derivatives with HEMA follow the terminal model with reactivity ratio values, determined by the Tidwell and Mortimer (J. Polym. Sci. A 1965;3:369-378) non-linear least-squares treatment, of r(MAI)=0.38, r(HEMA)=1.69; r(MAK)=0.30, r(HEMA)=0.48; and r(MAEK)=0.66, r(HEMA)=2.85. From these values and considering that the methacrylates MEI and MEK are structurally related to HEMA, the microstructural analysis give us a random distribution of the monomeric units. The HEMA-rich copolymers, used for the in vitro experiments, showed a very high population of sequences with the active residue isolated by HEMA units. The in vitro release experiments were carried out at pH 7.4 and 9, using six different compositions for each copolymer system (1, 2.5, 5, 10, 20 and 30 wt% of the active acrylic monomer). The results show a controlled release in terms of weeks with very different profiles which depend on the type of spacer (the aromatic ester is more susceptible to hydrolysis than the aliphatic one), drug (ketoprofen release rate is higher than the ibuprofen one), composition of the copolymer (as a general rule, the release rate increases with the content of the attached drug until some composition where this effect is reverted because of the global increase in hydrophobicity) and pH (the release rate is noticeably higher in a strong basic medium, pH 9).

  7. Adhesion of Escherichia coli on to a series of poly(methacrylates) differing in charge and hydrophobicity.

    PubMed

    Harkes, G; Feijen, J; Dankert, J

    1991-11-01

    The adhesion of three Escherichia coli strains on to six poly(methacrylates) differing in hydrophobicity and surface charge was measured as a function of time under laminar flow conditions. Polymers used were poly(methyl methacrylate) (PMMA), poly(hydroxyethyl methacrylate) (PHEMA) and copolymers of MMA or HEMA with either 15% methacrylic acid (MAA) or 15% trimethylaminoethyl methacrylate-HCl salt (TMAEMA-Cl). Bacterial and polymer surfaces were characterized by means of water contact angles and zeta potentials. Both the sessile drop contact angles and the zeta potentials of the bacterial surfaces were significantly different. No significant differences in the sessile drop contact angles of the polymer surfaces were observed. Using the Wilhelmy plate technique large contact angle hysteresis was observed for the different polymer surfaces. Surfaces of copolymers with MAA had more negative zeta potentials than those of the corresponding homopolymers. Surfaces of copolymers with TMAEMA-Cl had positive zeta potentials. The highest numbers of adherent bacteria were found on materials with positive zeta potentials, irrespective of the bacterial strain used. Bacterial adhesion on to copolymers with MAA was less than on to the corresponding homopolymers. Bacterial equilibrium adhesion values correlate with the zeta potentials of the polymer surfaces (r greater than 0.85). On substrates with less negative zeta potentials high numbers of adhered bacteria were observed. Additionally, the equilibrium bacterial adhesion values could be related with receding contact angles of polymer surfaces with negative zeta potentials (r greater than 0.86). High equilibrium adhesion values were obtained for polymers with high contact angles. No correlation between the zeta potentials and contact angles of the bacteria with the adhesion values was found.

  8. Glycol Methacrylate Embedding for the Histochemical Study of the Gastrointestinal Tract of Dogs Naturally Infected with Leishmania Infantum

    PubMed Central

    Pinto, A.J.W.; de Amorim, I.F.G.; Pinheiro, L.J.; Madeira, I.M.V.M.; Souza, C.C.; Chiarini-Garcia, H.; Caliari, M.V.

    2015-01-01

    In canine visceral leishmaniasis a diffuse chronic inflammatory exudate and an intense parasite load throughout the gastrointestinal tract (GIT) has been previously reported. However, these studies did not allow a properly description of canine cellular morphology details. The aim of our study was to better characterize these cells in carrying out a qualitative and quantitative histological study in the gastrointestinal tract of dogs naturally infected with Leishmania infantum by examining gut tissues embedded in glycol methacrylate. Twelve infected adult dogs were classified in asymptomatic and symptomatic. Five uninfected dogs were used as controls. After necropsy, three samples of each gut segment, including oesophagus, stomach, duodenum, jejunum, ileum, cecum, colon, and rectum were collected and fixed in Carnoy’s solution for glycol methacrylate protocols. Sections were stained with hematoxylin-eosin, toluidine blue borate, and periodic acid-Schiff stain. Leishmania amastigotes were detected by immunohistochemistry employed in both glycol methacrylate and paraffin embedded tissues. The quantitative histological analysis showed higher numbers of plasma cells, lymphocytes and macrophages in lamina propria of all segments of GIT of infected dogs compared with controls. The parasite load was more intense and cecum and colon, independently of the clinical status of these dogs. Importantly, glycol methacrylate embedded tissue stained with toluidine blue borate clearly revealed mast cell morphology, even after mast cell degranulation. Infected dogs showed lower numbers of mast cells in all gut segments than controls. Despite the glycol methacrylate (GMA) protocol requires more attention and care than the conventional paraffin processing, this embedding procedure proved to be especially suitable for the present histological study, where it allowed to preserve and observe cell morphology in fine detail. PMID:26708180

  9. Mechanisms of action of (meth)acrylates in hemolytic activity, in vivo toxicity and dipalmitoylphosphatidylcholine (DPPC) liposomes determined using NMR spectroscopy.

    PubMed

    Fujisawa, Seiichiro; Kadoma, Yoshinori

    2012-01-01

    We investigated the quantitative structure-activity relationships between hemolytic activity (log 1/H(50)) or in vivo mouse intraperitoneal (ip) LD(50) using reported data for α,β-unsaturated carbonyl compounds such as (meth)acrylate monomers and their (13)C-NMR β-carbon chemical shift (δ). The log 1/H(50) value for methacrylates was linearly correlated with the δC(β) value. That for (meth)acrylates was linearly correlated with log P, an index of lipophilicity. The ipLD(50) for (meth)acrylates was linearly correlated with δC(β) but not with log P. For (meth)acrylates, the δC(β) value, which is dependent on the π-electron density on the β-carbon, was linearly correlated with PM3-based theoretical parameters (chemical hardness, η; electronegativity, χ; electrophilicity, ω), whereas log P was linearly correlated with heat of formation (HF). Also, the interaction between (meth)acrylates and DPPC liposomes in cell membrane molecular models was investigated using (1)H-NMR spectroscopy and differential scanning calorimetry (DSC). The log 1/H(50) value was related to the difference in chemical shift (ΔδHa) (Ha: H (trans) attached to the β-carbon) between the free monomer and the DPPC liposome-bound monomer. Monomer-induced DSC phase transition properties were related to HF for monomers. NMR chemical shifts may represent a valuable parameter for investigating the biological mechanisms of action of (meth)acrylates.

  10. Comparison of human mesenchymal stem cells proliferation and differentiation on poly(methyl methacrylate) bone cements with and without mineralized collagen incorporation.

    PubMed

    Wu, Jingjing; Xu, Suju; Qiu, Zhiye; Liu, Peng; Liu, Huiying; Yu, Xiang; Cui, Fu-Zhai; Chunhua, Zhao Robert

    2016-01-01

    Poly(methyl methacrylate) bone cement is widely used in vertebroplasty, joint replacement surgery, and other orthopaedic surgeries, while it also exposed many problems on mechanical property and biocompatibility. Better performance in mechanical match and bone integration is highly desirable. Recently, there reported that incorporation of mineralized collagen into poly(methyl methacrylate) showed positive results in mechanical property and osteointegration ability in vivo. In the present study, we focused on the comparison of osteogenic behavior between mineralized collagen incorporated in poly(methyl methacrylate) and poly(methyl methacrylate). Human marrow mesenchymal stem cells are used in this experiment. Adhesion and proliferation were used to characterize biocompatibility. Activity of alkaline phosphatase was used to assess the differentiation of human marrow mesenchymal stem cells into osteoblasts. Real-time PCR was performed to detect the expression of osteoblast-related markers at messenger RNA level. The results show that osteogenic differentiation on mineralized collagen incorporated in poly(methyl methacrylate) bone cement is more than two times higher than that of poly(methyl methacrylate) after culturing for 21 days. Thus, important mechanism on mineralized collagen incorporation increasing the osteogenetic ability of poly(methyl methacrylate) bone cement may be understood in this concern.

  11. Poly(triallyl isocyanurate-co-ethylene dimethacrylate-co-alkyl methacrylate) stationary phases in the chromatographic separation of hydrophilic solutes.

    PubMed

    Lin, Cheng-Lan; Singco, Brenda; Wu, Ching-Yi; Liang, Pei-Zhu; Cheng, Yi-Jie; Huang, Hsi-Ya

    2013-01-11

    This study describes the ability of triallyl isocyanurate (TAIC)-co-methacrylate ester polymer monoliths as stationary phases for the separation of hydrophilic compounds (phenolic acids, amino acids and catecholamines) in capillary electrochromatography (CEC) and ultra high pressure liquid chromatography (UHPLC). Several TAIC-co-methacrylate ester polymer monoliths prepared by single-step in situ copolymerization of TAIC, ethylene dimethacrylate (EDMA) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS), with or without alkyl methacrylates were characterized by examining the SEM image, surface area, contact angle, and the thermal decomposition temperature. Compared to the conventional methacrylate ester-based monoliths, these proposed monoliths possessed hydrophilic character thus increased wettability which improved chromatographic separation selectivity of polar phenolic acids. Among the proposed TAIC-co-methacrylate monoliths, poly(TAIC-co-EDMA-AMPS-co-stearyl methacrylate (SMA)) showed separation selectivity with an increased analyte resolution from 0.0 to 0.92 for 4-hydroxybenzoic acid and vanillic acid, which were consistently difficult to resolve in the reversed-phase chromatographic mechanism of these monoliths in aqueous mobile phases. Moreover, stable ionization efficiencies were observed when this monolith was combined with ESI-MS detector possibly because an organic solvent-rich sheath liquid was used in the CEC-MS. This study demonstrates the potentiality of novel TAIC-co-methacrylate polymer monoliths in hydrophilic solute separation either in CEC or UHPLC mode.

  12. Facile One-step Micropatterning Using Photodegradable Methacrylated Gelatin Hydrogels for Improved Cardiomyocyte Organization and Alignment

    PubMed Central

    Tsang, Kelly M.C.; Annabi, Nasim; Ercole, Francesca; Zhou, Kun; Karst, Daniel; Li, Fanyi; Haynes, John M.; Evans, Richard A.; Thissen, Helmut

    2015-01-01

    Hydrogels are often employed as temporary platforms for cell proliferation and tissue organization in vitro. Researchers have incorporated photodegradable moieties into synthetic polymeric hydrogels as a means of achieving spatiotemporal control over material properties. In this study protein-based photodegradable hydrogels composed of methacrylated gelatin (GelMA) and a crosslinker containing o-nitrobenzyl ester groups have been developed. The hydrogels are able to degrade rapidly and specifically in response to UV light and can be photopatterned to a variety of shapes and dimensions in a one-step process. Micropatterned photodegradable hydrogels are shown to improve cell distribution, alignment and beating regularity of cultured neonatal rat cardiomyocytes. Overall this work introduces a new class of photodegradable hydrogel based on natural and biofunctional polymers as cell culture substrates for improving cellular organization and function. PMID:26327819

  13. Robust isocratic liquid chromatographic separation of functional poly(methyl methacrylate).

    PubMed

    Jiang, Xulin; Lima, Vincent; Schoenmakers, Peter J

    2003-11-07

    The separation of telechelic poly(methyl methacrylate) (PMMA) prepolymers based on the number of end-groups under critical liquid chromatography (LC) conditions has been studied using a bare-silica column, which can interact with polar functional groups. The critical solvent compositions for non-functional, mono-functional and bi-functional PMMAs were determined in normal-phase LC using mixtures of acetonitrile and dichloromethane (DCM) of varying composition as the mobile phase. The telechelic prepolymers were successfully separated according to hydroxyl (OH) functionality (with zero, one, or two OH groups, respectively) under the critical conditions, in which fast (5 min), base-line separations were obtained independent of molecular weight. Changing the column temperature, flow rate, and mobile-phase composition within a certain range did not affect the functionality separation. Therefore this isocratic LC separation method is quite robust. Evaporative light-scattering detector (ELSD) calibration curves were used for the quantitative analysis of functional PMMA prepolymers.

  14. Novel (meth)acrylate monomers for ultrarapid polymerization and enhanced polymer properties

    SciTech Connect

    Beckel, E. R.; Berchtold, K. A.; Nie, J.; Lu, H.; Stansbury, J. W.; Bowman, C. N.

    2002-01-01

    Ultraviolet light is known to be one of the most efficient methods to initiatc polymeric reactions in the presence of a photonitiator. Photopolymerizations are advantageous because the chemistry of the materials can be tailored to design liquid monomers for ultrarapid polymerization into a solid polymer material. One way to achieve rapid photopolymerizations is to utilize multifunctional (meth)acrylate monomers. which form highly crosslinked polymers; however, these monomers typically do not achieve complete functional group conversion. Recently, Decker et al. developed novel monovinyl acrylate monomers that display polyriicrization kinetics that rival those of multifunctional acrylate monomers. These novel acrylate monomers incorporate secondary functionalities and end groups such as carbonates, carbamates, cyclic carbonates and oxazolidone which promote the increased polymerization kinetics of these monomers. In addition to thc polynierization kinetics, these novel monovinyl monomers form crosslinked polymers, which are characterized by having high strength and high flexibility. Unfortunately, the exact mechanism or mechanisms responsible for the polymerization kinetics and crosslinking are not well understood.

  15. Laser-assisted high-pressure-induced polymerization of 2-(hydroxyethyl)methacrylate.

    PubMed

    Evlyukhin, E; Museur, L; Traore, M; Nikitin, S M; Zerr, A; Kanaev, A

    2015-02-26

    We report on a successful room-temperature polymerization of 2-(hydroxyethyl)methacrylate (HEMA) under high pressure. The polymerization is observed in a limited range of pressures 0.1 to 1.6 GPa without the use of any initiator. When the compressed sample is irradiated at 488 or 355 nm by a laser, the polymerization reaction rate is increased by a factor of 10 or 30, respectively. Moreover, the shift of the laser wavelength to the UV improves the polymerization yield of the recovered sample to 84%. The catalysis of the polymerization process by light results from a one-photon-assisted electron transfer to π* antibonding states of the monomer molecule. The observed polymerization is irreversible and almost complete, which makes this synthesis process suitable for applications.

  16. Facile Soap-Free Miniemulsion Polymerization of Methyl Methacrylate via Reverse Atom Transfer Radical Polymerization.

    PubMed

    Zhu, Gaohua; Zhang, Lifen; Pan, Xiangqiang; Zhang, Wei; Cheng, Zhenping; Zhu, Xiulin

    2012-12-21

    A facile soap-free miniemulsion polymerization of methyl methacrylate (MMA) was successfully carried out via a reverse ATRP technique, using a water-soluble potassium persulfate (KPS) or 2,2'-azobis(2-methylpropionamidine) dihydrochloride (V-50) both as the initiator and the stabilizer, and using an oil-soluble N,N-n-butyldithiocarbamate copper (Cu(S2CN(C4H9)2)2) as the catalyst without adding any additional ligand. Polymerization results demonstrated the "living"/controlled characteristics of ATRP and the resultant latexes showed good colloidal stability with average particle size around 300-700 nm in diameter. The monomer droplet nucleation mechanism was proposed. NMR spectroscopy and chain-extension experiments under UV light irradiation confirmed the attachment and livingness of UV light sensitive -S-C(=S)-N(C4H9)2 group in the chain end.

  17. Facile fabrication of superhydrophobic poly(methyl methacrylate) substrates using ultrasonic imprinting

    NASA Astrophysics Data System (ADS)

    Cho, Young Hak; Seo, Young Soo; Moon, In Yong; Kim, Bo Hyun; Park, Keun

    2013-05-01

    Superhydrophobic surfaces (SHSs) have received increasing attention in the last decade, and have been generally developed from hydrophobic materials. In this study, a facile fabrication method based on ultrasonic imprinting is proposed to develop SHSs from a hydrophilic polymer, poly(methyl methacrylate) (PMMA). To fabricate SHSs on PMMA substrates, micro electrical discharge machining, micromachining and ultrasonic imprinting were sequentially used. The ultrasonic imprinting was performed for various channel designs and imprinting conditions, and the resulting water contact angles were measured for the replicated samples. As a result, superhydrophobic characteristics could be obtained on a hydrophilic PMMA replica without any chemical treatments. The effects of nanoscale roughness on the replicated channel as well as composition change are discussed with respect to the analyses using an atomic force microscope, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy.

  18. Methacrylate-bonded covalent-organic framework monolithic columns for high performance liquid chromatography.

    PubMed

    Liu, Li-Hua; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2017-01-06

    Covalent-organic frameworks (COFs) are a newfangled class of intriguing microporous materials. Considering their unique properties, COFs should be promising as packing materials for high performance liquid chromatography (HPLC). However, the irregular shape and sub-micrometer size of COFs synthesized via the traditional methods render the main obstacles for the application of COFs in HPLC. Herein, we report the preparation of methacrylate-bonded COF monolithic columns for HPLC to overcome the above obstacles. The prepared COF bonded monolithic columns not only show good homogeneity and permeability, but also give high column efficiency, good resolution and precision for HPLC separation of small molecules including polycyclic aromatic hydrocarbons, phenols, anilines, nonsteroidal anti-inflammatory drugs and benzothiophenes. Compared with the bare polymer monolithic column, the COF bonded monolithic columns show enhanced hydrophobic, π-π and hydrogen bond interactions in reverse phase HPLC. The results reveal the great potential of COF bonded monoliths for HPLC and COFs in separation sciences.

  19. Dry-adhesives based on hierarchical poly(methyl methacrylate) electrospun fibers

    NASA Astrophysics Data System (ADS)

    Sahay, Rahul; Baji, Avinash; Parveen, Hashina; Ranganath, Anupama Sargur

    2017-03-01

    Here, we combine electrospinning and replica-molding to produce hierarchical poly(methyl methacrylate) structures and investigate its adhesion behavior. Normal and shear adhesion of these biomimetic hierarchical structures was measured using nanoindentaton and a custom-built apparatus attached to Zwick tensile testing machine, respectively. Shear adhesion was measured by sliding the samples along the glass slide under a predefined normal preload. Normal adhesion was measured by indenting the surface of the sample with the help of a diamond indenter tip and retracting it back to determine the pull-off force needed to detach it from the sample. These experiments were also conducted on neat PMMA fibers to investigate the effect of hierarchy on the adhesion performance of the samples. Our results show that the shear adhesion strength and pull-off forces recorded for the hierarchical samples are higher than those recorded for neat fibers.

  20. Poly(N-vinylcaprolactam-co-methacrylic acid) hydrogel microparticles for oral insulin delivery.

    PubMed

    Mundargi, Raghavendra C; Rangaswamy, Vidhya; Aminabhavi, Tejraj M

    2011-01-01

    pH-sensitive copolymeric hydrogels prepared from N-vinylcaprolactam and methacrylic acid monomers by free radical polymerization offered 52% encapsulation efficiency and evaluated for oral delivery of human insulin. The in vitro experiments performed on insulin-loaded microparticles in pH 1.2 media (stomach condition) demonstrated no release of insulin in the first 2 h, but almost 100% insulin was released in pH 7.4 media (intestinal condition) in 6 h. The carrier was characterized by Fourier transform infrared, differential scanning calorimeter, thermogravimetry and nuclear magnetic resonance techniques to confirm the formation of copolymer, while scanning electron microscopy was used to assess the morphology of hydrogel microparticles. The in vivo experiments on alloxan-induced diabetic rats showed the biological inhibition up to 50% and glucose tolerance tests exhibited 44% inhibition. The formulations of this study are the promising carriers for oral delivery of insulin.

  1. Crosslinked polymer gel electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium battery applications

    SciTech Connect

    Liao, Chen; Sun, Xiao-Guang; Dai, Sheng

    2013-01-01

    Gel polymer electrolytes were synthesized by copolymerization polyethylene glycol methyl ether methacrylate with polyethylene glycol dimethacrylate in the presence of a room temperature ionic liquid, methylpropylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPY TFSI). The physical properties of gel polymer electrolytes were characterized by thermal analysis, impedance spectroscopy, and electrochemical tests. The ionic conductivities of the gel polymer electrolytes increased linearly with the amount of MPPY TFSI and were mainly attributed to the increased ion mobility as evidenced by the decreased glass transition temperatures. Li||LiFePO4 cells were assembled using the gel polymer electrolytes containing 80 wt% MPPY TFSI via an in situ polymerization method. A reversible cell capacity of 90 mAh g 1 was maintained under the current density of C/10 at room temperature, which was increased to 130 mAh g 1 by using a thinner membrane and cycling at 50 C.

  2. Multipin peptide synthesis at the micromole scale using 2-hydroxyethyl methacrylate grafted polyethylene supports.

    PubMed

    Valerio, R M; Bray, A M; Campbell, R A; Dipasquale, A; Margellis, C; Rodda, S J; Geysen, H M; Maeji, N J

    1993-07-01

    The multipin peptide synthesis procedure has been adapted to allow the synthesis of peptides at micromole loadings. The original solid pin support was replaced with a detachable crown-shaped polyethylene support with an increased surface area. In addition, the polyethylene crowns were radiation-grafted with 2-hydroxyethyl methacrylate monomer instead of acrylic acid to yield hydroxy functionalized supports with a larger concentration of polymer and hence a larger peptide capacity. Fmoc-beta-Alanine was directly esterified to the HEMA hydroxy groups with subsequent addition of a diketopiperazine-forming handle for peptide attachment. Peptides varying in length from 10 to 25 residues were assembled at a number of loadings from 1.0 to 2.2 mumol. Purity of peptides at all loadings was equal to, and in some instances superior to, that achieved on conventional solid-phase supports.

  3. Cellulose functionalization via high-energy irradiation-initiated grafting of glycidyl methacrylate and cyclodextrin immobilization

    NASA Astrophysics Data System (ADS)

    Desmet, Gilles; Takács, Erzsébet; Wojnárovits, László; Borsa, Judit

    2011-12-01

    Cotton-cellulose was functionalized using gamma-irradiation-induced grafting of glycidyl methacrylate (GMA) to obtain a hydrophobic cellulose derivative with epoxy groups suitable for further chemical modification. Two grafting techniques were applied. In pre-irradiation grafting (PIG) cellulose was irradiated in air and then immersed in a GMA monomer solution, whereas in simultaneous grafting (SG) cellulose was irradiated in an inert atmosphere in the presence of the monomer. PIG led to a more homogeneous fiber surface, while SG resulted in higher grafting yield but showed clear indications of some GMA-homopolymerization. Effects of the reaction parameters (grafting method, absorbed dose, monomer concentration, solvent composition) were evaluated by SEM, gravimetry (grafting yield) and FTIR spectroscopy. Water uptake of the cellulose decreased while adsorption of a pesticide molecule increased upon grafting. The adsorption was further enhanced by β-cyclodextrin immobilization during SG. This method can be applied to produce adsorbents from cellulose based agricultural wastes.

  4. Functional polymeric microspheres based on 2-hydroxyethyl methacrylate for immunochemical studies

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Yen, S. P. S.; Cheong, E.; Wallace, S.; Molday, R. S.; Gordon, I. L.; Dreyer, W. J.

    1976-01-01

    Co gamma irradiation of 2-hydroxyethyl methacrylate in the presence or in the absence of other acrylic monomers was found to constitute an effective technique for the synthesis of hydrophilic functional microspheres in the size range of approximately 0.3 to 3 microns in diameter. The effect of monomer concentration, steric stabilization, and electrostatic interaction on the particle size was investigated. Experimental conditions were determined to obtain desired particle sizes of relatively narrow distribution. It was shown that particles may be formed without intermediate micelles, i.e., by homogeneous nucleation, and the rate of particle formation is affected primarily by the rate of particle coalescence in the initial stages of the reaction. When covalently bound to antibodies these microspheres were successfully used to label murine and human lymphocytes.

  5. Tensile behaviour of blends of poly(vinylidene fluoride) with poly(methyl methacrylate)

    NASA Technical Reports Server (NTRS)

    Cebe, Peggy; Chung, Shirley Y.

    1990-01-01

    Blends of poly(vinylidene fluoride) (PVF2) and poly(methyl methacrylate) (PMMA) were prepared over a wide concentration range and tested in tension at the same relative temperature below the glass transition. In nearly all blends, under conditions favoring disentanglement, (decrease in strain rate, or increase in test temperature), the yield stress and drawing stress decreased while the breaking strain increased. For materials with about the same degree of crystallinity, those with a higher proportion of amorphous PVF2 exhibited brittle-like behavior as a result of interlamellar tie molecules. In the semicrystalline blends, yield stress remains high as the test temperature approaches Tg, whereas in the amorphous blends the yield stress falls to zero near Tg. Results of physical aging support the role of interlamellar ties which cause semicrystalline blends to exhibit aging at temperatures above Tg.

  6. Raman spectra of bilayer graphene covered with Poly(methyl methacrylate) thin film

    SciTech Connect

    Xia Minggang; Su Zhidan; Zhang Shengli

    2012-09-15

    The Raman spectra of bilayer graphene covered with poly(methyl methacrylate) (PMMA) were investigated. Both the G and 2D peaks of PMMA-coated graphene were stiff and broad compared with those of uncovered graphene. This could be attributed to the residual strain induced by high-temperature baking during fabrication of the nanodevice. Furthermore, the two 2D peaks stiffened and broadened with increasing laser power, which is just the reverse to uncovered graphene. The stiffness is likely caused by graphene compression induced by the circular bubble of the thin PMMA film generated by laser irradiation. Our findings may contribute to the application of PMMA in the strain engineering of graphene nanodevices.

  7. Free Radical Polymerization of Styrene and Methyl Methacrylate in Various Room Temperature Ionic Liquids

    SciTech Connect

    Zhang, Hongwei; Hong, Kunlun; Mays, Jimmy

    2005-01-01

    Conventional free radical polymerization of styrene and methyl methacrylate was carried out in various room temperature ionic liquids (RTILs). The RTILs used in this research encompass a wide range of cations and anions. Typical cations include imidazolium, phosphonium, pyridinium, and pyrrolidinium; typical anions include amide, borate, chloride, imide, phosphate, and phosphinate. Reactions are faster and polymers obtained usually have higher molecular weights when compared to polymerizations carried out in volatile organic solvents under the same conditions. This shows that rapid rates of polymerization and high molecular weights are general features of conventional radical polymerizations in RTILs. Attempts to correlate the polarities and viscosities of the RTILs with the polymerization behavior fail to yield discernible trends.

  8. Tuning of cross-linking and mechanical properties of laser-deposited poly (methyl methacrylate) films

    SciTech Connect

    Sueske, Erik; Scharf, Thorsten; Krebs, Hans-Ulrich; Panchenko, Elena; Junkers, Thomas; Egorov, Mark; Buback, Michael; Kijewski, Harald

    2005-03-15

    The chemical composition, amount of cross-linking and its influence on the mechanical properties of poly(methyl methacrylate) (PMMA) thin films produced by pulsed laser deposition (PLD) at a wavelength of 248 nm under ultrahigh vacuum were investigated by infrared spectroscopy, scanning electron microscopy, size-exclusion chromatography, thermogravimetric analysis, and nanoindentation experiments. The films consist of two components, one fraction with a molecular weight well below that of the target material and a second fraction, which is cross-linked. Compared to bulk material, the Young's modulus of the film is increased. The amount of cross-linking in the film can be tuned by the applied laser fluence leading to changes of the mechanical properties.

  9. Visualisation of methacrylate-embedded human bone sections by infrared nanoscopy.

    PubMed

    Geith, Tobias; Amarie, Sergiu; Milz, Stefan; Bamberg, Fabian; Keilmann, Fritz

    2014-06-01

    A recently developed ultra-resolving near-field infrared nanoscope is applied to investigate methyl methacrylate embedded, un-decalcified human bone sections. Results show detail at a resolution of 30 nm. Specific contrasting of mineral components is enabled by choosing an appropriate infrared wavelength, here 9.47 μm, in the phosphate vibrational band. The method is surface-sensitive, probing to a depth of about 30 nm into the surface. The obtained infrared images are presented in direct comparison with optical and electron micrographs of the identical specimen. Lamellar bone organization, peri-cellular mineral deposition, and regional differences in mineral content are clearly detectable. Individual fibrils are resolved. - Infrared nanoscopy requires just standard hard tissue preparation techniques combined with section surface polishing. It can be integrated into existing laboratory environments without impeding subsequent routine staining and evaluation methods.

  10. Resonance light scattering method for the determination of DNA with cationic methacrylate based polymer nanoparticle probes.

    PubMed

    Zou, Qi-Chao; Zhang, Jin-Zhi; Chai, Shi-Gan

    2011-11-01

    Narrowly distributed cationic poly (methyl methacrylate-co-diacetone acrylamide) (P(MMA-DAAM)) nanoparticles were successfully prepared by microemulsion polymerization. Photon correlation spectrometer (PCS) measurement and transmission electron microscope (TEM) observation revealed that z-average particle size of P(MMA-DAAM) is ∼27.5 nm. It was found that these cationic nanoparticles interact with DNA through electrostatic interaction to form P(MMA-DAAM)-DNA complex, which significantly enhances the resonance light scattering (RLS) signal. Therefore, a novel method using this polymer nanoparticle as a new probe for the detection of DNA by RLS technique is developed in this paper. The results showed this method is very convenient, sensitive, and reproducible.

  11. Inhomogeneity of photoacid generators in methacrylate-type EUV resist film studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Toriumi, Minoru; Itani, Toshiro

    2015-06-01

    Extreme ultraviolet (EUV) resist materials are requested simultaneously to improve the resolution, line-edge roughness (LER), and sensitivity. In a resist film, inhomogeneous structures in the nanometer region may have large effects directly on the resolution and LER and indirectly on sensitivity. In this paper, we will focus on evaluating the inhomogeneity of photoacid generators (PAGs) in a methacrylate-type EUV resist film by molecular dynamics simulations. Results show the inhomogeneity of positions and motions of PAGs in the resist film. Moreover, PAG anions show larger diffusion constants than PAG cations. These properties can be elucidated qualitatively by considering the free volumes in the resist matrix and molecular structures such as bulky phenyl groups of PAG cations and chemical properties such as the fluorine atom interaction of PAG anions.

  12. Computational investigation of intermolecular interactions in polymer mixtures: Polycarbonate and poly(methyl methacrylate)

    SciTech Connect

    Fitzwater, S.

    1993-12-31

    Molecular modeling and semiempirical quantum mechanical calculations on model compounds can give us detailed information about specific interactions in polymer mixtures. This study examines interactions between a poly(methyl methacrylate) (PMMA) tetramer and the polycarbonate (PC) repeat unit. The results suggested that PC-PMMA mixtures are stabilizing by hydrogen bonds between a carbonyl oxygen on one polymer and a proton or protons on the other. Multiple hydrogen bonds occur; stabilized generally increases with the number of hydrogen bonds. Several configurations had a PMMA carbonyl O H-bonded to a PC ring H, and the adjacent PC carbyonyl O H-bonded to PMMA methyl and methylene H`s. This suggests that the reduced PC mobility observed in PC-PMMA mixtures arises from suppression of both ring flips and carbonate group motion.

  13. Tuning of cross-linking and mechanical properties of laser-deposited poly (methyl methacrylate) films

    NASA Astrophysics Data System (ADS)

    Süske, Erik; Scharf, Thorsten; Krebs, Hans-Ulrich; Panchenko, Elena; Junkers, Thomas; Egorov, Mark; Buback, Michael; Kijewski, Harald

    2005-03-01

    The chemical composition, amount of cross-linking and its influence on the mechanical properties of poly(methyl methacrylate) (PMMA) thin films produced by pulsed laser deposition (PLD) at a wavelength of 248nm under ultrahigh vacuum were investigated by infrared spectroscopy, scanning electron microscopy, size-exclusion chromatography, thermogravimetric analysis, and nanoindentation experiments. The films consist of two components, one fraction with a molecular weight well below that of the target material and a second fraction, which is cross-linked. Compared to bulk material, the Young's modulus of the film is increased. The amount of cross-linking in the film can be tuned by the applied laser fluence leading to changes of the mechanical properties.

  14. [Study on photoluminescence of 8-hydroxyquinaldine gallium acrylate and methyl methacrylate copolymer].

    PubMed

    Xiao, Zun-hong

    2006-03-01

    A new copolymer of 8-hydroxyquinaldine gallium acrylate and methyl methacrylate was prepared. The composition and properties of the copolymer were characterized by FTIR, UV-Vis, DSC, TG and fluorescence spectra. A strong blue-green photoluminescence, with the peak at 496 nm, was observed for the copolymer/CHCl3 solution. Effect of monomer ratio and concentration on the photoluminescence property of the copolymer was investigated. The results showed that the maximum fluorescence intensity was attained when Ga(Mq)2A: MMA was 1:20, the maximum excitation wavelength is approximately 263 nm when the concentration of the copolymer is under 2 g x L(-1), but the maximum excitation wavelength exceeds 365 nm when the concentration is above 4 g x L(-1). The copolymer was soluble in chloroform, acetone, and DMF at 25 degrees C, so it could be easier to prepare electroluminescent device by spin-coat technology.

  15. [Formation of stereocomplexes in atactic poly(methyl methacrylate) studied by FTIR].

    PubMed

    Gu, Q; Shen, D

    2000-10-01

    The stereocomplexation of atactic poly(methyl methacrylate) (a-PMMA) films after isolated from acetone, benzene, and chloroform solution, respectively, was studied by Fourier transformation infrared (FTIR). The results of spectra showed that the stereocomplex was formed for the films cast from acetone and benzene solutions with the appearance of the characteristic bands for the stereocomplex. The population of trans-trans conformers for the i- and s-sequences increased and the side chain preferred to its energetically optimized conformation during the formation of stereocomplex. The stereocomplexes may be formed by the interactions between the i- and s-sequences in the same molecular chain. During the annealing process the self-aggregation of s-sequences played a role in the aggregation process of stereocomplex, which was a function of annealing temperature and annealing time.

  16. Methyl methacrylate from iso-butylene via a vapor phase catalytic oxidation

    SciTech Connect

    Shimizu, N.; Yoshida, H.; Matsumoto, G.; Abe, T.

    1987-01-01

    Methyl methacrylate (MMA) is a useful chemical intermediate having many applications, particularly in polymers, by virtue of their excellent properties with regard to transparency and weatherability. The main current production route to MMA is the acetone cyanohydrin (ACn) process in which acetone and hydrogen cyanide are used as raw materials. This is the only process that was used for commercial production until recently. The annual production capacity in the world is estimated to be about one million metric tons. Annual growth rate will be expected to be more or less 4% in the near future. MMA is used in various products among which are acrylic sheets (casting and extrusion), acrylic moldings (molding and extrusion), surface coatings etc. The further application to high-technology products such as optical fiber and optical memory disk is being developed. The conventional ACH process has several drawbacks, in particular, (1) insufficient supply of by-product hydrogen cyanide, and (2) troublesome treatment of waste ammonium bisulfate.

  17. Gradient structure-induced temperature responsiveness in styrene/methyl methacrylate gradient copolymers micelles.

    PubMed

    Zheng, Chao; Huang, Haiying; He, Tianbai

    2014-02-01

    In this work, micelles are formed by gradient copolymer of styrene and methyl methacrylate in acetone-water mixture and their temperature responsiveness is investigated in a narrow range near room temperature. Three different kinds of structural transitions could be induced by temperature: unimers to micelle transition, shrinkage/stretching of micelles, and morphological transition from spherical micelles to vesicles. In addition, a model analysis on the interface of gradient copolymer micelle is made to better understand these phenomena. It is found that both position and composition of the interface could alter in response to the change in temperature. According to the experiments and model analysis, it is proposed that temperature responsiveness might be an intrinsic and universal property of gradient copolymer micelles, which only originates from the gradient structure.

  18. Floating-Gate Type Organic Memory with Organic Insulator Thin Film of Plasma Polymerized Methyl Methacrylate

    NASA Astrophysics Data System (ADS)

    Kim, Hee-sung; Lee, Boong-Joo; Kim, Gun-Su; Shin, Paik-Kyun

    2013-02-01

    To fabricate organic memory device by entirely dry process, plasma polymerized methyl methacrylate (ppMMA) thin films were prepared and they were used as both tunneling layer and gate insulator layer in a floating-gate type organic memory device. The ppMMA thin films were prepared with inductively coupled plasma (ICP) source combined with stabilized monomer vapor control. The ppMMA gate insulator thin film revealed dielectric constant of 3.75 and low leakage current of smaller than 10-9 A/cm. The floating-gate type organic memory device showed promising memory characteristics such as memory window value of 12 V and retention time of over 2 h, where 60 V of writing voltage and -30 V of erasing voltage were applied, respectively.

  19. Review of methyl methacrylate (MMA)/tributylborane (TBB)-initiated resin adhesive to dentin.

    PubMed

    Taira, Yohsuke; Imai, Yohji

    2014-01-01

    This review, focusing mainly on research related to methyl methacrylate/tributylborane (MMA/TBB) resin, presents the early history of dentin bonding and MMA/TBB adhesive resin, followed by characteristics of resin bonding to dentin. Bond strengths of MMA/TBB adhesive resin to different adherends were discussed and compared with other bonding systems. Factors affecting bond strength (such as conditioners, primers, and medicaments used for dental treatment), bonding mechanism, and polymerization characteristics of MMA/TBB resin were also discussed. This review further reveals the unique adhesion features between MMA/TBB resin and dentin: in addition to monomer diffusion into the demineralized dentin surface, graft polymerization of MMA onto dentin collagen and interfacial initiation of polymerization at the resin-dentin interface provide the key bonding mechanisms.

  20. Evaluation of methyl methacrylate monomer cytotoxicity in dental lab technicians using buccal micronucleus cytome assay.

    PubMed

    Azhar, Dawasaz Ali; Syed, Sadatullah; Luqman, Master; Ali, Assiry A

    2013-01-01

    Methyl methacrylate (MMA) monomer, a primary component of dental resins, is known to induce cytotoxicity, dermatitis, and neuropathy. The objective of this study was to assess the incidence of micronuclei (MN) in buccal mucosal cells of dental technicians exposed to MMA using Buccal Micronucleus Cytome (BMCyt) assay. The Risk Group (RG=13) consisted of all the technicians working in the prosthetic production laboratory of KKU-College of Dentistry. The Control Group (CG=14) consisted of healthy students and doctors matching the age of RG subjects. Buccal mucosa scrapes obtained from all the 27 RG and CG subjects were stained with Papanicolaou stain and observed under oil immersion lens (100×) for the presence of MN. There were no significant differences in the incidence of MN between RG and CG (p>0.05).

  1. Styrene and methyl methacrylate copolymer synthesized by RF inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Li, Z.; Gillon, X.; Diallo, M.; Houssiau, L.; Pireaux, J.-J.

    2011-01-01

    A series of random copolymers of styrene and methyl methacrylate was prepared on a silicon substrate by RF pulsed inductively coupled plasma. The plasma gas phase was investigated by optical emission spectroscopy (OES). The physico-chemical characteristics of the deposited copolymer films were analyzed by several surface techniques: X-ray photoelectron spectroscopy (XPS), Fourier-Transform infrared absorption (FT-IR), Time-of-flight secondary ion mass spectrometry (ToF-SIMS), etc. OES of the plasma and FT-IR spectra of the films are predictive: plasma emitting a higher relative benzyl radical signal results in the deposition of a more aromatic plasma polymer. The functional thin films can be deposited by selection of the co-monomers.

  2. Development of an anthropomorphic head phantom using dolomite and polymethyl methacrylate for dosimetry in computed tomography

    NASA Astrophysics Data System (ADS)

    Ximenes, R. E.; Silva, A.; Balbino, D.; Poletti, M. E.; Maia, A. F.

    2015-12-01

    A real human skull was selected to be a mold for the construction of an anthropomorphic head phantom with a mixture of dolomite and polymethyl methacrylate (PMMA). Using linear attenuation coefficients, we show that it is possible to use dolomite as a bone simulator as long as the proportion of the mixture is 1:1. Acrylic tubes were placed in the phantom constructed to enable the insertion of the ionization chamber to estimate the effective dose. Values for a typical head computed tomography examination found in the literature vary from 0.9 to 4.0 mSv. Dosimetric studies showed that the effective dose for the anthropomorphic phantom was (2.70±0.03) mSv and for the geometric PMMA phantom (3.67±0.04) mSv, values which are in agreement with the intervals reported in the literature. The investment to produce the phantom was approximately US160.00.

  3. Miscibility and Thermophysical Properties of Blend of Poly methyl methacrylate with Polyvinylchloride

    NASA Astrophysics Data System (ADS)

    Dixit, Manasvi; Mathur, Vishal; Baboo, Mahesh; Sharma, Kananbala; Saxena, N. S.

    2010-06-01

    The present paper reports the investigations on miscibility and thermophysical properties of blend of Poly methyl methacrylate with Polyvinylchloride, prepared by solution casting method. The miscibility of the samples is examined by dynamic mechanical analyzer (DMA) and the thermophysical properties (thermal conductivity (λ) and thermal diffusivity (χ)) have been measured using the transient plane source (TPS) technique from room temperature to 100 °C. The results of thermal transport properties of PMMA/PVC blend show an increasing trend of λ and χ upto Tg, beyond which they show a decreasing trend. The variation of thermal conductivity and diffusivity of PMMA, PVC and PMMA/PVC blend with temperature is explained on the basis of structural changes of the sample and mean free path of the phonons.

  4. Synthesis, characterization and stability of chitosan and poly(methyl methacrylate) grafted carbon nanotubes.

    PubMed

    Carson, Laura; Hibbert, Kemar; Akindoju, Feyisayo; Johnson, Chevaun; Stewart, Melisa; Kelly-Brown, Cordella; Beharie, Gavannie; Fisher, Tavis; Stone, Julia; Stoddart, Dahlia; Oki, Aderemi; Neelgund, Gururaj M; Regisford, Gloria; Traisawatwong, Pasakorn; Zhou, Jianren; Luo, Zhiping

    2012-10-01

    The single walled carbon nanotubes (CNTs) were effectively functionalized through grafting with chitosan (CTS) and poly(methyl methacrylate) (PMMA). Prior to grafting reaction, the carboxylated SWNCTs (SWNCTs-COOH) were obtained by treating pristine CNTs with a mixture of 3:1 (v/v) H(2)SO(4) and HNO(3), and the successive treatment of SWNCTs-COOH with SOCl(2) yielded the acylated CNTs (CNTs-COCl). The functionalized derivatives of CNTs were characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, atomic force microscopy, scanning electron microscopy and transmission electron microscopy. Both CTS and PMMA grafted CNTs showed better dispersability in acetic acid and tetrahydrofuran, in addition to higher stability in solution.

  5. Synthesis, characterization and stability of chitosan and poly(methyl methacrylate) grafted carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Carson, Laura; Hibbert, Kemar; Akindoju, Feyisayo; Johnson, Chevaun; Stewart, Melisa; Kelly-Brown, Cordella; Beharie, Gavannie; Fisher, Tavis; Stone, Julia; Stoddart, Dahlia; Oki, Aderemi; Neelgund, Gururaj M.; Regisford, Gloria; Traisawatwong, Pasakorn; Zhou, Jianren; Luo, Zhiping

    2012-10-01

    The single walled carbon nanotubes (CNTs) were effectively functionalized through grafting with chitosan (CTS) and poly(methyl methacrylate) (PMMA). Prior to grafting reaction, the carboxylated SWNCTs (SWNCTs-COOH) were obtained by treating pristine CNTs with a mixture of 3:1 (v/v) H2SO4 and HNO3, and the successive treatment of SWNCTs-COOH with SOCl2 yielded the acylated CNTs (CNTs-COCl). The functionalized derivatives of CNTs were characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, atomic force microscopy, scanning electron microscopy and transmission electron microscopy. Both CTS and PMMA grafted CNTs showed better dispersability in acetic acid and tetrahydrofuran, in addition to higher stability in solution.

  6. Effect of calcium sulphate nanorods on mechanical properties of chitosan-hydroxyethyl methacrylate (HEMA) copolymer nanocomposites.

    PubMed

    Bari, Sarang S; Mishra, Satyendra

    2017-02-10

    Copolymers of chitosan and hydroxyetheyl methacrylate (HEMA) were successfully synthesized using ceric ammonium nitrate (CAN) as an initiator, via in situ polymerization method, followed by efficacious preparation of their nanocomposites by incorporating calcium sulphate nanorods via solution blending process. Hydrophilicity studies confirmed that grafting of HEMA in the backbone of the hydrophobic chitosan chains induced the improvement in hydrophilicity of chitosan, while mechanical properties of the nanocomposites were also enhanced significantly up to 20%, due to availability of enlarged surface area and higher aspect ratio of CaSO4 nanorods. This was supported by FE-SEM and XRD analysis in terms of proper distribution of nanofiller through the copolymer matrix and corresponding rise in percentage crystallanity respectively. Results obtained from biodegradation studies proved the efficiency of CaSO4 nanofillers to improve biomechanical strength of chitosan nanocomposites, without affecting their normal degradation profile that renders the products to be applicable for biomedical applications.

  7. Corneal endothelial response to refitting polymethyl methacrylate wearers with rigid gas-permeable lenses.

    PubMed

    McLaughlin, R; Schoessler, J

    1990-05-01

    Thirteen persons who had been wearing only polymethyl methacrylate (PMMA) contact lenses for 3 years or more were switched to a contact lens material providing greater oxygen transmissibility (Itafocon A) while keeping other contact lens parameters the same. Monitoring of corneal endothelial cells during the first 4 months of the rigid gas-permeable (RGP) lens daily wear showed no significant change in the coefficient of variation of cell area (polymegethism) or percentage of hexagonal endothelial cells at the end of 4 months. However, paired data did show a small, but significant, decrease in cell density at the end of 4 months (3174 to 2908 cells/mm2). The results suggest that a sudden shift in the general corneal environment toward more available oxygen may have some early effect on endothelial cell density, but changes in endothelial cell size variation and form are not determined.

  8. Electron capture of dopants in two-photonic ionization in a poly(methyl methacrylate) solid

    SciTech Connect

    Tsuchida, Akira; Sakai, Wataru; Nakano, Mitsuru; Yamamoto, Masahide

    1992-10-29

    Behavior of the electron produced by two-photonic excitation of an aromatic donor in a poly(methyl methacrylate) solid was studied by the addition of the electron scavengers to the system. According to the Perrin type analysis for the two-photonically ejected electron, the capture radii (R{sub c}) of the scavengers examined were estimated to be from 8 to 40 {Angstrom}. For the two-photonically ejected electrons, R{sub c} is a capture radius for thermalized electrons. In this case the parent electron donor is not necessarily within this radius. On the other hand, for the fluorescence quenching, the distance between the donor and acceptor is within the static quenching radius (R{sub q}) of the donor. 13 refs., 4 figs., 2 tabs.

  9. Synthesis, characterization, and antimicrobial activity of poly(acrylonitrile-co-methyl methacrylate) with silver nanoparticles.

    PubMed

    El-Aassar, M R; Hafez, Elsayed E; Fouda, Moustafa M G; Al-Deyab, Salem S

    2013-10-01

    Nanotechnology is expected to open some new aspects to fight and prevent diseases using atomic-scale tailoring of materials. The main aim of this study is to biosynthesize silver nanoparticles (AgNPs) using Trichoderma viride (HQ438699); the metabolite of this fungus will help either in reduction of the silver nitrate-adding active materials which will be loaded on the surface of the produced AgNPs. Poly(acrylonitrile-co-methyl methacrylate) copolymer (poly (AN-co-MMA)) was grafted with the prepared AgNPs. The poly(AN-co-MMA)/AgNPs were examined against ten different pathogenic bacterial strains, and the result was compared with another four different generic antibiotics. The produced poly(AN-co-MMA)/AgNPs showed high antibacterial activity compared with the four standard antibiotics. Moreover, the grafting of these AgNPs into the copolymer has potential application in the biomedical field.

  10. Jet-Splitting Instability in Electrospinning of POLY(2-HYDROXYETHYL Methacrylate)

    NASA Astrophysics Data System (ADS)

    Koombhongse, Sureeporn; Reneker, Darrell H.

    2000-03-01

    The electrically charged surface of a polymer fluid becomes unstable when the electrical forces overcome forces of surface tension. A charged jet is then ejected from the surface. The electrical charge carried with the ejected jet can excite instabilities of the jet, which affect its path. A bending instability [1] is frequently observed. In some solutions of poly(2-hydroxyethyl methacrylate) (HEMA), high speed videographic images show that a splitting instability also occurs for the more concentrated solutions. In the splitting instability, a smaller, straight jet is ejected from the primary jet. The splitting instability may be observed before or while the bending instability is growing. In a 20instabilities are dominant. The bending instability became observable when the concentration was reduced to 16more dominant when the concentration was further reduced to 16 1. D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, J. App. Phys, to be published.

  11. Methyl methacrylate as a healing agent for self-healing cementitious materials

    NASA Astrophysics Data System (ADS)

    Van Tittelboom, K.; Adesanya, K.; Dubruel, P.; Van Puyvelde, P.; De Belie, N.

    2011-12-01

    Different types of healing agents have already been tested on their efficiency for use in self-healing cementitious materials. Generally, commercial healing agents are used while their properties are adjusted for manual crack repair and not for autonomous crack healing. Consequently, the amount of regain in properties due to self-healing of cracks is limited. In this research, a methyl methacrylate (MMA)-based healing agent was developed specifically for use in self-healing cementitious materials. Various parameters were optimized including the viscosity, curing time, strength, etc. After the desired properties were obtained, the healing agent was encapsulated and screened for its self-healing efficiency. The decrease in water permeability due to autonomous crack healing using MMA as a healing agent was similar to the results obtained for manually healed cracks. First results seem promising: however, further research needs to be undertaken in order to obtain an optimal healing agent ready for use in practice.

  12. Deposition of plasma-polymerized hydroxyethyl methacrylate (HEMA) on silicon in presence of argon plasma

    NASA Astrophysics Data System (ADS)

    Bodas, Dhananjay S.; Desai, Shrojal M.; Gangal, S. A.

    2005-05-01

    2-hydroxyethyl methacrylate (HEMA) has been deposited onto the surface of silicon substrate (thickness = 500 μm) using plasma polymerization technique. Polymerization process was carried out in an in-house developed inductively coupled plasma polymerization setup. The depositions were carried out using RF power supply (13.56 MHz) at power of 75 W for 10 and 40 min. The RF supply was coupled to the inductance through a matching network. The effect of plasma polymerization (surface grafting) on the degree of surface modification has been investigated. The chemical changes on the polymer backbone are followed from the results of Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS), which show the peaks corresponding to the functional groups of the HEMA polymerized onto the silicon surface. The morphology of the modified surfaces has also been investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The hydrophilicity was determined from the water contact angle measurements.

  13. Polymer brushes on carbon nanotubes by thiol-lactam initiated radical polymerization of 2-hydroxyethyl methacrylate.

    PubMed

    Rashid, Md Harun-Or; Lee, Won-Ki; Hong, Seong-Soo; Park, Jong Myung; Kim, Hyun Gyu; Lim, Kwon Taek

    2012-01-01

    Water-soluble polymer brushes with multi-walled carbon nanotubes (MWNTs) as backbones were synthesized by grafting 2-hydroxyethyl methacrylate (HEMA) from surface functionalized MWNTs via in situ surface thiol-lactam initiated radical polymerization. MWNTs were functionalized with 2-mercaptoethanol and used as initiators in the polymerization of HEMA in the presence of butyrolactam. FT-IR, XPS, 1H NMR, GPC and TGA were used to determine chemical structure and the grafted polymer quantities of the resulting product. The covalent bonding of PHEMA to the MWNTs dramatically improved the water dispersibility of MWNTs. The average thicknesses of the polymer brushes in the functionalized MWNTs were detected with electron microscopy (SEM and TEM) and images indicated that the nanotubes were coated with polymer layer.

  14. Radiation graft copolymerization of 2-hydroxyethyl methacrylate onto poly (γ-methyl L-glutamate) membrane

    NASA Astrophysics Data System (ADS)

    Yue-E, Fang; Xia, Zhao; Wu, Ge Xue

    1997-11-01

    Radiation-induced grafting Copolymerization of 2-hydroxyethyl methacrylate (HEMA) onto poly(γ-methyl L-glutamate)(PMLG) membrane was researched in aqueous solution in the absence of oxygen. The grafted weight increases with increasing water content in the grafting system. According to the values of the contact angles, the surface free energy, the interfacial free energy, and the adhesive work of the membranes with deionized water were calculated. Photoacoustic fourier transform infrared spectroscopy and electron spectroscopy were used for chemical analysis for the study of the surface composition of grafted membrane. From scanning electron micrographs and wide-angle X-ray diffraction profiles we found that the radiation-induced graft copolymerization of HEMA onto PMLG membrane in water as solvent was carried out to be a graft in bulk.

  15. Mechanisms of N-acetyl cysteine-mediated protection from 2-hydroxyethyl methacrylate-induced apoptosis.

    PubMed

    Paranjpe, Avina; Cacalano, Nicholas A; Hume, Wyatt R; Jewett, Anahid

    2008-10-01

    Resin-based materials are now commonly used in dentistry in restorative materials as well as in endodontic sealers. These materials have been shown to be cytotoxic. The mechanisms by which resin-based materials mediate their adverse effects have not been completely elucidated. Here we show that 2-hydroxyethyl methacrylate (HEMA) induces apoptotic cell death in oral keratinocytes and immune cells through the intrinsic cell death pathway. Functional loss and cell death induced by HEMA was significantly inhibited in the presence of N-acetyl cysteine (NAC) treatment. In addition, HEMA induced a decrease in mitochondrial membrane potential, and an increase in cleaved caspases was potently inhibited in the presence of NAC treatment. Overall, the results reported in this article indicate that NAC is an effective chemoprotectant that can safely be used to protect the pulp and the surrounding tissues from adverse effects of dental restorative and endodontic materials.

  16. Thermal behavior of poly(2-hydroxyethyl methacrylate-bis-[trimethoxysilylpropyl]amine) networks

    NASA Astrophysics Data System (ADS)

    Bustos Figueroa, L. A.; Salgado Delgado, R.; García Hernandez, E.; Vargas Galarza, Z.; Rubio Rosas, E.; Salgado Rodriguez, R.

    2013-06-01

    Poly(HEMA-BisSi) networks were prepared by using acid-catalyzed sol-gel of bis-[trimethoxysilylpropyl]amine (BisSi) and free radical polymerization of 2-hydroxyethyl methacrylate (HEMA). The thermal properties of the poly(HEMA-BisSi) networks were investigated with differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The thermal behavior of these networks was also compared with homopolymers (The networks formed in both PHEMA and PBisSi gels were identified). The glass transition temperature (Tg) of PHEMA homopolymer was found as 103.74 °C. The thermal degradation of the poly(HEMA-BisSi) networks with different silica contents (e.g. 10, 15 and 25 wt%) were evaluated with use of DTG. It was observed that the thermal degradation temperature of poly(HEMA-BisSi) networks changed much with the BisSi content.

  17. Optical absorption intensities of trivalent erbium in a 2-hydroxyethyl methacrylate (HEMA) polymeric host

    NASA Astrophysics Data System (ADS)

    Sardar, Dhiraj K.; Yow, Raylon M.; Gruber, John B.

    2008-02-01

    The standard Judd-Ofelt model has been applied to the room temperature absorption intensities of Er 3+(4f 11) transitions in a plastic host 2-hydroxyethyl methacrylate, referred to as HEMA, to determine the three phenomenological intensity parameters: Ω2, Ω4, and Ω6. Values are used to determine the spectroscopic quality factor for Er 3+ in HEMA and are compared to those for Er 3+ in crystalline hosts. The intensity parameters are subsequently used to determine the radiative decay rates and branching ratios of the Er 3+ transitions from the upper multiplet manifolds to the corresponding lower-lying multiplet manifolds 2 S+1 L J of Er 3+(4f 11) in HEMA. Using the radiative decay rates for Er 3+(4f 11) transitions between the corresponding excited states and the lower-lying states, the radiative lifetimes of eight excited states are determined.

  18. Fabrication of carbohydrate microarrays on a poly(2-hydroxyethyl methacrylate)-based photoactive substrate.

    PubMed

    Sundhoro, Madanodaya; Wang, Hui; Boiko, Scott T; Chen, Xuan; Jayawardena, H Surangi N; Park, JaeHyeung; Yan, Mingdi

    2016-01-21

    We report the fabrication of carbohydrate microarrays on a photoactive polymer, poly(HEMA-co-HEMA-PFPA), synthesized by RAFT copolymerization of 2-hydroxyethyl methacrylate (HEMA) and perfluorophenyl azide (PFPA)-derivatized HEMA (HEMA-PFPA). PFPA allows the covalent immobilization of carbohydrates whereas the HEMA polymer provides an antifouling surface, thus the microarrays can be used directly without pretreating the array with a blocking agent. The microarrays were prepared by spin-coating the polymer followed by printing the carbohydrates. Subsequent irradiation simultaneously immobilized the carbohydrates and crosslinked the polymer matrix. The obtained 3D carbohydrate microarrays showed enhanced fluorescence signals upon treating with a fluorescent lectin in comparison with a 2D microarray. The signals were acquired at a lower lectin concentration and a shorter incubation time. When treated with E. coli bacteria, the carbohydrate microarray showed results that were consistent with their binding patterns.

  19. Solid state dye lasers based on LDS 698 doped in modified polymethyl methacrylate.

    PubMed

    Fan, Rongwei; Xia, Yuanqin; Chen, Deying

    2008-06-23

    Broad band solid state dye lasers based on LDS 698 doped in modified polymethyl methacrylate (MPMMA) with laser wavelength about 650 nm were demonstrated. It was demonstrated that the fluorescence spectra of LDS 698 in solid host MPMMA displays an obvious blue shift about 50 nm comparing with that in ethanol solution. The dye concentration has great effect on the laser's performance including laser slope efficiency and lifetime. The lifetime increased dramatically with the increase of the LDS 698 concentration. With pump repetition rate of 10 Hz and intensity of 0.1 J/cm(2), the maximum lifetime 300,000 shots corresponding normalized photostability 102 GJ/mol was obtained with LDS 698 at 1.5 x 10(-4)mol/L.

  20. Synthesis and Characterization of Poly(hydroxyethyl methacrylate) Hydrogels Bearing Reversibly Associating Side Groups

    NASA Astrophysics Data System (ADS)

    Lewis, Christopher; Li, Jiahui; Anthamatten, Mitchell

    2012-02-01

    Poly(hydroxyethyl methacrylate) (poly(HEMA)) is a technologically important hydrogel that can be processed into different shapes and is best known for its role in contact lenses. However, applications of water swollen polyHEMA are limited by its poor mechanical properties. We are studying the influence of reversibly associating side groups on the behavior of poly(HEMA) hydrogels. In non-polar media, it is well known that ureidopyrimidinone (UPy) groups self-associate to form hydrogen bonded dimers (DDAA); however their behavior in water-swollen hydrogels is unclear. A series of poly(HEMA) linear polymers of controlled molecular weight with varying UPy content have been prepared using a reversible addition-fragmentation chain transfer (RAFT) polymerization technique. UPy content significantly reduces water swelling and improves mechanical properties. The degree of hydrogen bonding within water swollen hydrogels is studied, and properties of functional hydrogel polymers and networks are compared to an unswollen hydrophobic analog.

  1. Fabrication of Poly (methyl methacrylate) and Poly(vinyl alcohol) Thin Film Capacitors on Flexible Substrates

    NASA Astrophysics Data System (ADS)

    Salim, Bindu; Meenaa Pria KNJ, Jaisree; Alagappan, M.; Kandaswamy, A.

    2015-11-01

    Flexible electronics is becoming more popular with introduction of more and more organic conducting materials and processes for making thin films. The use of polymers as gate dielectric has over ruled the usage of conventional inorganic oxides in Organic Thin Film Transistors (OTFTs) on account of its solution process ability and ease of making highly insulating thin film. In this work Capacitance is fabricated with polymeric dielectrics namely poly (methyl methacrylate) - PMMA and poly (vinyl alcohol) - PVA. The electrodes used for these capacitors are Indium Tin Oxide (ITO) and Aluminium. Capacitance value of 9.5nF/cm2 and 33.12nF/cm2 is achieved for thickness of 510 nm of PMMA and 80 nm of PVA respectively. This study on capacitance can be used for assessing the suitability of these polymers as gate insulators in OTFTs.

  2. Air plasma processing of poly(methyl methacrylate) micro-beads: Surface characterisations

    NASA Astrophysics Data System (ADS)

    Liu, Chaozong; Cui, Nai-Yi; Osbeck, Susan; Liang, He

    2012-10-01

    This paper reports the surface processing of poly(methyl methacrylate) (PMMA) micro-beads by using a rotary air plasma reactor, and its effects on surface properties. The surface properties, including surface wettability, surface chemistry and textures of the PMMA beads, were characterised. It was observed that the air plasma processing can improve the surface wettability of the PMMA microbeads significantly. A 15 min plasma processing can reduce the surface water contact angle of PMMA beads to about 50° from its original value of 80.3°. This was accompanied by about 8% increase in surface oxygen concentration as confirmed by XPS analysis. The optical profilometry examination revealed the air plasma processing resulted in a rougher surface that has a “delicate” surface texture. It is concluded that the surface chemistry and texture, induced by air plasma processing, co-contributed to the surface wettability improvement of PMMA micro-beads.

  3. Thermal assisted ultrasonic bonding method for poly(methyl methacrylate) (PMMA) microfluidic devices.

    PubMed

    Zhang, Zongbo; Wang, Xiaodong; Luo, Yi; He, Shengqiang; Wang, Liding

    2010-06-15

    A thermal assisted ultrasonic bonding method for poly(methyl methacrylate) (PMMA) microfluidic devices has been presented. The substrates were preheated to 20-30 degrees C lower than glass transition temperature (T(g)) of the polymer. Then low amplitude ultrasonic vibration was employed to generate facial heat at the interface of PMMA substrates. PMMA microfluidic chips were successfully bonded with bulk temperature well below T(g) of the material and with pressure two orders lower than conventional thermal bonding, which was of great benefit to reduce the deformation of microstructures. The bonding process was optimized by Taguchi method. This bonding technique showed numerous superiorities including high bonding strength (0.95MPa), low dimension loss (0.3-0.8%) and short bonding time. Finally, a micromixer was successfully bonded by this method and its performance was demonstrated.

  4. Preparation of medical magnetic nanobeads with ferrite particles encapsulated in a polyglycidyl methacrylate (GMA) for bioscreening

    SciTech Connect

    Nishibiraki, H.; Kuroda, C.S.; Maeda, M.; Matsushita, N.; Abe, M.; Handa, H.

    2005-05-15

    Ferrite nanoparticles (an intermediate between Fe{sub 3}O{sub 4} and {gamma}-Fe{sub 2}O{sub 3}), {approx}7 nm in diameter, were embedded in beads of a mixed polymer of styrene (St) and glycidyl methacrylate (GMA) by emulsifier-free emulsion polymerization method. The beads were coated with GMA by a seeded polymerization method in order to suppress nonspecific protein binding on the surfaces; GMA exhibits very low nonspecific protein binding, which is required for carriers used for bioscreening. The beads have diameters of 180{+-}50 nm and saturation magnetizations of 28 emu/g, exceeding commercially available polymer-coated beads of micron size having a weaker saturation magnetization ({approx}12 emu/g)

  5. Hydrophobic modification of cellulose isolated from Agave angustifolia fibre by graft copolymerisation using methyl methacrylate.

    PubMed

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan; Mohamed, Faizal

    2015-07-10

    Graft copolymerisation of methyl methacrylate (MMA) onto Agave angustifolia was conducted with ceric ammonium nitrate (CAN) as the redox initiator. The maximum grafting efficiency was observed at CAN and MMA concentrations of 0.91 × 10(-3) and 5.63 × 10(-2)M, respectively, at 45°C for 3h reaction time. Four characteristic peaks at 2995, 1738, 1440, and 845 cm(-1), attributed to PMMA, were found in the IR spectrum of grafted cellulose. The crystallinity index dropped from 0.74 to 0.46, while the thermal stability improved upon grafting. The water contact angle increased with grafting yield, indicating increased hydrophobicity of cellulose. SEM images showed the grafted cellulose to be enlarged and rougher. The changes in the physical nature of PMMA-grafted cellulose can be attributed to the PMMA grafting in the amorphous regions of cellulose, causing it to expand at the expense of the crystalline component.

  6. Characteristics and crosstalk of optical waveguides fabricated in polymethyl methacrylate polymer circuit board.

    PubMed

    Hamid, Hanan H; Rüter, Christian E; Thiel, David V; Fickenscher, Thomas

    2016-11-10

    Electro-optical circuit boards should provide simple and cost-effective coupling techniques and crosstalk levels of less than -30  dB. A dicing saw was used to create waveguide grooves with a surface roughness of less than 183 nm in a 1.6-mm-thick polymethyl methacrylate polymer (PMMA) substrate. The buried optical waveguides were made from SU-8 in a PMMA substrate covered with a 1-mm PMMA sheet. The propagation loss for a 500  μm×570  μm straight waveguide was 0.9 dB/cm at 1310 nm. The coupling between parallel waveguides was measured at separation distances from 45 to 595 μm. The crosstalk was less than -40  dB for 65-mm-long waveguides. This fabrication method shows potential for dense optical interconnects with very low crosstalk.

  7. Self-initiation of UV photopolymerization reactions using tetrahalogenated bisphenol A (meth)acrylates.

    PubMed

    Pelras, Théophile; Knolle, Wolfgang; Naumov, Sergej; Heymann, Katja; Daikos, Olesya; Scherzer, Tom

    2017-02-17

    The potential of tetrachlorinated and tetrabrominated bisphenol A diacrylates and dimethacrylates for self-initiation of a radical photopolymerization was investigated. The kinetics of the photopolymerization of an acrylic model varnish containing halogenated monomers was studied by real-time FTIR spectroscopy, whereas the formation of reactive species and secondary products was elucidated by laser flash photolysis and product analysis by GC-MS after steady-state photolysis. The interpretation of the experimental data and the analysis of possible reaction pathways were assisted by quantum chemical calculations. It was shown that all halogenated monomers lead to a significant acceleration of the photopolymerization kinetics at a minimum concentration of 5 wt%. Steady-state and laser flash photolysis measurements as well as quantum chemical calculations showed that brominated and chlorinated samples do not follow the same pathway to generate radical species. Whereas chlorinated (meth)acrylates may cleave only at the C-O bonds of the carboxyl groups resulting in acrolein and oxyl radicals for initiation, brominated monomers may cleave either at the C-O bonds or at the C-Br bonds delivering aryl and bromine radicals. The quantum yields for the photolysis of the halogenated monomers were found to be in the order of 0.1 for acrylates and 0.2 for methacrylates (with an estimated error of 25%), independently of the attached Br and Cl halogens. Finally, the trihalogenated bisphenol A di(meth)acrylate radicals and the acrolein radicals were found to show the highest efficiencies for the reaction with another acrylic double bond leading to the formation of a polymer network.

  8. [Analysis of the character of film decomposition of methyl methacrylate (MMA) coated urea by infrared spectrum].

    PubMed

    Li, Dong-po; Wu, Zhi-jie; Liang, Cheng-hua; Chen, Li-jun; Zhang, Yu-lan; Nie, Yan-xi

    2012-03-01

    The degradability characteristics of film with 4 kinds of methyl methacrylate coated urea amended with inhibitors were analyzed by FITR, which was purposed to supply theoretical basis for applying the FITR analysis method to film decomposition and methyl methacrylate coated urea fertilizers on farming. The result showed that the chemical component, molecule structure and material form of the membrane were not changed because of adding different inhibitors to urea. the main peaks of expressing film degradation process were brought by the -C-H of CH3 & CH2, -OH, C-O, C-C, C-O-C, C=O, C=C flexing vibrancy in asymmetry and symmetry in 3 479-3 195, 2 993--2 873, 1 741-1 564, 1 461-925 and 850-650 cm(-1). The peak value changed from smooth to tip, and from width to narrow caused by chemical structural transform of film The infrared spectrum of 4 kinds of fertilizers was not different remarkably before 60 days, and the film was slowly degraded. But degradation of the film was expedited after 60 days, it was most quickened at 120 day, and the decomposition rate of film was decreased at 310 day. The substantiality change of film in main molecule structure of 4 kinds of fertilizers didn't happen in 310 days. The main component of film materials was degraded most slowly in brown soil. The speed of film degradation wasn't heavily impacted by different inhibitors. The characteristic of film degradation may be monitored entirely by infrared spectrum. The degradation dynamic, chemical structure change, degradation speed difference of the film could be represented through infrared spectrum.

  9. A thermally responsive injectable hydrogel incorporating methacrylate-polylactide for hydrolytic lability

    PubMed Central

    Ma, Zuwei; Nelson, Devin M.; Hong, Yi; Wagner, William R.

    2011-01-01

    Injectable thermoresponsive hydrogels are of interest for a variety of biomedical applications, including regional tissue mechanical support as well as drug and cell delivery. Within this class of materials there is a need to provide options for gels with stronger mechanical properties as well as variable degradation profiles. To address this need, the hydrolytically labile monomer, methacrylate-polylactide (MAPLA), with an average 2.8 lactic acid units, was synthesized and copolymerized with N-isopropylacrylamide (NIPAAm) and 2-hydroxyethyl methacrylate (HEMA) to obtain bioabsorbable thermally responsive hydrogels. Poly(NIPAAm-co-HEMA-co-MAPLA) with three monomer feed ratios (84/10/6, 82/10/8 and 80/10/10) was synthesized and characterized with NMR, FTIR and GPC. The copolymers were soluble in saline at reduced temperature (<10°C), forming clear solutions that increased in viscosity with the MAPLA feed ratio. The copolymers underwent sol-gel transition at lower critical solution temperatures of 12.4, 14.0 and 16.2°C respectively and solidified immediately upon being placed in a 37°C water bath. The warmed hydrogels gradually excluded water to reach final water contents of ~45%. The hydrogels as formed were mechanically strong, with tensile strengths as high as 100 kPa and shear moduli of 60 kPa. All three hydrogels were completely degraded (solubilized) in PBS over a 6–8 month period at 37°C, with a higher MAPLA feed ratio resulting in a faster degradation period. Culture of primary vascular smooth muscle cells with degradation solutions demonstrated a lack of cytotoxicity. The synthesized hydrogels provide new options for biomaterial injection therapy where increased mechanical strength and relatively slow resorption rates would be attractive. PMID:20575552

  10. Reinforcement of Dental Methacrylate with Glass Fiber after Heated Silane Application

    PubMed Central

    Fonseca, Rodrigo Borges; de Paula, Marcella Silva; Favarão, Isabella Negro; Kasuya, Amanda Vessoni Barbosa; de Almeida, Letícia Nunes; Mendes, Gustavo Adolfo Martins; Carlo, Hugo Lemes

    2014-01-01

    This study evaluated the influence of silane heat treatment and glass fiber fabrication type, industrially treated (I) or pure (P), on flexural and compressive strength of methacrylate resin bars (BISGMA/TEGDMA, 50/50%). Six groups (n = 10) were created: I-sil: I/silanated; P-sil: P-silanated; I-sil/heat: I/silanated heated to 100°; P-sil/heat: P/silanated heated to 100°; (I: I/not silanated; and P: P/not silanated. Specimens were prepared for flexural strength (10 × 2 × 1 mm) and for compressive strength 9.5 × 5.5 × 3 mm) and tested at 0.5 mm/min. Statistical analysis demonstrated the following for flexural strength (P < 0.05): I-sil: 155.89 ± 45.27BC; P-sil: 155.89 ± 45.27BC; I-sil/heat: 130.20 ± 22.11C; P-sil/heat: 169.86 ± 50.29AB; I: 131.87 ± 15.86C. For compressive strength, the following are demonstrated: I-sil: 1367.25 ± 188.77ab; P-sil: 867.61 ± 102.76d; I-sil/heat: 1162.98 ± 222.07c; P-sil/heat: 1499.35 ± 339.06a; and I: 1245.78 ± 211.16bc. Due to the impossibility of incorporating the stipulated amount of fiber, P group was excluded. Glass fiber treatment with heated silane enhanced flexural and compressive strength of a reinforced dental methacrylate. PMID:24967361

  11. Methyl methacrylate levels in orthopedic surgery: comparison of two conventional vacuum mixing systems.

    PubMed

    Jelecevic, Jasmin; Maidanjuk, Stanislaw; Leithner, Andreas; Loewe, Kai; Kuehn, Klaus-Dieter

    2014-05-01

    Poly-methyl methacrylate bone cements contain methyl methacrylate (MMA), which is known for its sensitizing and toxic properties. Therefore, in most European countries and in the USA, guidelines or regulations exist for occupational exposures. The use of vacuum mixing systems can significantly reduce airborne MMA concentrations during bone setting. Our goal was to test two commonly used vacuum mixing systems (Palamix(®) and Optivac(®)) using Palacos(®) R bone cement for their effectiveness at preventing MMA vapor release in a series of standardized trials in a laboratory as well as in an operating theatre. MMA was quantified every second over a period of 3 min using a photoionization detector (MiniRAE(®) 3000) device positioned in the breathing area of the user. Significant differences in MMA mean vapor concentrations over 180 s were observed in the two experimental spaces, with the highest mean concentrations (7.61 and 7.98 ppm for Palamix(®) and Optivac(®), respectively) observed in a laboratory with nine air changes per hour and the lowest average concentrations (1.06 and 1.12 ppm for Palamix(®) and Optivac(®), respectively) in an operating theatre with laminar flow ventilation and 22 air changes per hour. No significant differences in overall MMA concentrations were found between the two vacuum mixing systems in either location. Though, differences were found between both systems during single mixing phases. Thus, typical handling of MMA in orthopedic procedures must be seen as not harmful as concentrations do not reach the short-term exposure limit of 100 ppm. Additionally, laminar airflow seems to have an influence on lowering MMA concentrations in operation theatres.

  12. Characterization of metal chelate methacrylate monolithic disk for purification of polyclonal and monoclonal immunoglobulin G.

    PubMed

    Prasanna, Rajasekar R; Vijayalakshmi, Mookambeswaran A

    2010-06-04

    Dynamic binding capacity (DBC) of commercial metal-chelate methacrylate monolith-convective interaction media (CIM) was performed with commercial human immunoglobulin G (IgG) (Cohn fraction II, III). Monoliths are an attractive stationary phase for purification of large biomolecules because they exhibit very low back pressure even at high flow rates and flow-unaffected binding properties. Adsorption of IgG onto CIM-IDA disk immobilized with Cu(2+), Ni(2+) and Zn(2+) were studied with Tris-acetate (TA), phosphate-acetate (PA) and MMA (MES, MOPS and acetate) buffer systems at different flow rates. Adsorption and elution of IgG varied with different buffers and adsorption of IgG was maximum with MMA buffer. Adsorption of human IgG from Cohn fractions (II, III) was high when Cu(2+) was used as ligand. CIM-IDA disk showed dynamic binding capacity in the range of 14-16 mg/ml with Cu(2+) and 7-9 mg/ml with Ni(2+) for human IgG with MMA buffer. In the case of CIM-IDA-Zn(2+) column, the binding capacity was only about 0.5mg/ml of support. Different desorption strategies like lowering of pH and increasing of competitive agent were also studied to achieve maximum recovery. Chromatographic runs with human serum and mouse ascites fluid were also carried out with metal chelate methacrylate monolithic disk and the results indicate the potential of this technique for polyclonal human IgG and monoclonal IgG purification from complex biological samples.

  13. Robust naphthyl methacrylate monolithic column for high performance liquid chromatography of a wide range of solutes.

    PubMed

    Jonnada, Murthy; El Rassi, Ziad

    2015-08-28

    An organic monolithic column based on the co-polymerization of 2-naphthyl methacrylate (NAPM) as the functional monomer and trimethylolpropane trimethacrylate (TRIM) as the crosslinker was introduced for high performance reversed-phase liquid chromatography (RPC). The co-polymerization was performed in situ in a stainless steel column of 4.6mm i.d. in the presence of a ternary porogen consisting of 1-dodecanol and cyclohexanol. This monolithic column (referred to as naphthyl methacrylate monolithic column or NMM column) showed high mechanical stability at relatively high mobile phase flow velocity indicating that the column has excellent hydrodynamic characteristics. To characterize the NMM column, different probe molecules including alkyl benzenes, and aniline, benzene, toluene and phenol derivatives were chromatographed on the column and the results in terms of k, selectivity and plate counts were compared to those obtained on an octadecyl silica (ODS) column in order to assess the presence of π-π and hydrophobic interactions on the NMM column under otherwise the same elution conditions. The NMM column offered additional π-π interactions with aromatic molecules in addition to hydrophobic interactions under RPC elution conditions. Run-to-run and column-to-column reproducibility of solute k values were evaluated, and percent relative standard deviation of <1% and ∼2-3.5%, respectively, were obtained. Six standard proteins were readily separated on the NMM column using shallow (30min at 1.0mL/min), steep (10min at 1.0mL/min) and ultra steep (1min at 3.0mL/min) linear gradient elution at increasing ACN concentration in the mobile phase using a 10cm×4.6mm i.d. column in case of shallow and steep linear gradients and a 3cm×4.6mm i.d. column for ultra steep linear gradient.

  14. The Competing Effects of Hyaluronic and Methacrylic Acid in Model Contact Lenses.

    PubMed

    Weeks, Andrea; Subbaraman, Lakshman N; Jones, Lyndon; Sheardown, Heather

    2012-01-01

    The aim of this study was to determine the influence of hyaluronic acid (HA) on lysozyme sorption in model contact lenses containing varying amounts of methacrylic acid (MAA). One model conventional hydrogel (poly(2-hydroxyethyl methacrylate) (pHEMA)) and two model silicone hydrogels (pHEMA, methacryloxypropyltris(trimethylsiloxy)silane (pHEMA TRIS) and N,N-dimethylacrylamide, TRIS (DMAA TRIS)) lens materials were prepared with and without MAA at two different concentrations (1.7 and 5%). HA, along with dendrimers, was loaded into these model contact lens materials and then cross-linked with 1-ethyl-3-(3-dimethylamino propyl)-carbodiimide (EDC). Equilibrium water content (EWC), advancing water contact angle and lysozyme sorption on these lens materials were investigated. In the HA-containing materials, the presence (P < 0.05) and amount (P < 0.05) of MAA increased the EWC of the materials. For most materials, addition of MAA reduced the advancing contact angles (P < 0.05) and for all the materials, the addition of HA further improved hydrophilicity (P < 0.05). For the non-HA containing hydrogels, the presence (P < 0.05) and amount (P < 0.05) of MAA increased lysozyme sorption. The presence of HA decreased lysozyme sorption for all materials (P < 0.05). MAA appears to work synergistically with HA to increase the EWC in addition to improving the hydrophilicity of model pHEMA-based and silicone hydrogel contact lens materials. Hydrogel materials that contain HA have tremendous potential as hydrophilic, protein-resistant contact lens materials.

  15. Poly(glycerol methacrylate)-based degradable nanoparticles for delivery of small interfering RNA.

    PubMed

    Morsi, Noha G; Ali, Shimaa M; Elsonbaty, Sherouk S; Afifi, Ahmed A; Hamad, Mostafa A; Gao, Hui; Elsabahy, Mahmoud

    2017-04-07

    Nucleic acids therapeutic efficiency is generally limited by their low stability and intracellular bioavailability, and by the toxicity of the carriers used to deliver them to the target sites. Aminated poly(glycerol methacrylate) polymers are biodegradable and pH-sensitive polymers that have been used previously to deliver antisense oligonucleotide and show high transfection efficiency. The purpose of this study is to compare the efficiency and toxicity of aminated linear poly(glycerol methacrylate) (ALT) biodegradable polymer to the most commonly used cationic degradable (i.e. chitosan) and non-degradable (i.e. polyethylenimine (PEI)) polymers for delivery of short interfering RNA (siRNA). ALT, PEI and chitosan polymers were able to form nanosized particles with siRNA. Size, size-distribution and zeta-potential were measured over a wide range of nitrogen-to-phosphate (N/P) ratios, and the stability of the formed nanoparticles in saline and upon freeze-drying was also assessed. No significant cytotoxicity at the range of the tested concentrations of ALT and chitosan nanoparticles was observed, whereas the non-degradable PEI showed significant toxicity in huh-7 hepatocyte-derived carcinoma cell line. The safety profiles of the degradable polymers (ALT and chitosan) over non-degradable PEI were demonstrated in vitro and in vivo. In addition, ALT nanoparticles were able to deliver siRNA in vivo with significantly higher efficiency than chitosan nanoparticles. The results in the present study give evidence of the great implications of ALT nanoparticles in biomedical applications due to their biocompatibility, low cytotoxicity, high stability and simple preparation method.

  16. Reinforcement of dental methacrylate with glass fiber after heated silane application.

    PubMed

    Fonseca, Rodrigo Borges; de Paula, Marcella Silva; Favarão, Isabella Negro; Kasuya, Amanda Vessoni Barbosa; de Almeida, Letícia Nunes; Mendes, Gustavo Adolfo Martins; Carlo, Hugo Lemes

    2014-01-01

    This study evaluated the influence of silane heat treatment and glass fiber fabrication type, industrially treated (I) or pure (P), on flexural and compressive strength of methacrylate resin bars (BISGMA/TEGDMA, 50/50%). Six groups (n = 10) were created: I-sil: I/silanated; P-sil: P-silanated; I-sil/heat: I/silanated heated to 100°; P-sil/heat: P/silanated heated to 100°; (I: I/not silanated; and P: P/not silanated. Specimens were prepared for flexural strength (10 × 2 × 1 mm) and for compressive strength 9.5 × 5.5 × 3 mm) and tested at 0.5 mm/min. Statistical analysis demonstrated the following for flexural strength (P < 0.05): I-sil: 155.89 ± 45.27(BC); P-sil: 155.89 ± 45.27(BC); I-sil/heat: 130.20 ± 22.11(C); P-sil/heat: 169.86 ± 50.29(AB); I: 131.87 ± 15.86(C). For compressive strength, the following are demonstrated: I-sil: 1367.25 ± 188.77(ab); P-sil: 867.61 ± 102.76(d); I-sil/heat: 1162.98 ± 222.07(c); P-sil/heat: 1499.35 ± 339.06(a); and I: 1245.78 ± 211.16(bc). Due to the impossibility of incorporating the stipulated amount of fiber, P group was excluded. Glass fiber treatment with heated silane enhanced flexural and compressive strength of a reinforced dental methacrylate.

  17. Kinetics and mechanisms of flash pyrolysis of poly(methyl methacrylate) (PMMA)

    SciTech Connect

    Arisawa, H.; Brill, T.B.

    1997-05-01

    Flash pyrolysis (600--1,000 C/s) of a film of anionically polymerized poly(methyl methacrylate) (PMMA) was conducted at controlled temperatures in the 380--600 C range by T-jump/FTIR spectroscopy. In the endothermic decomposition process, the methyl methacrylate monomer (MMA {ge} 90%) and CO{sub 2} ({le} 10%) are the only pyrolysis products detected. Arrhenius parameters for evolution of MMA and CO{sub 2} were determined under a pressure of 2 and 11 atm Ar for PMMA with MW = 2,000 and 131,000. A zeroth-order rate model was used. A slope break occurs at 460--500 C in the Arrhenius plots. Below this range for MMA, E{sub a} = 43--66 kcal/mol and In(A/s) = 26--44, which are comparable to previous reports for random C-C scission kinetics. For CO{sub 2}, E{sub a} = 39--46 kcal/mol and In(A/s) = 23--27, which are comparable to the decarboxylation rates of other organic compounds. Above 460--500 C, increased control of the rates by desorption/diffusion of MMA and CO{sub 2} is suggested by the lower values of E{sub a} in the 12--30 kcal/mol range and In(A/s) in the 5.7--17 range. Thus, the limiting temperature of pyrolysis of PMMA is about 500 C before the deconsolidation rate of the pyrolysis products begins to take control from the bulk decomposition rate in determining the rate of product evolution.

  18. Smart poly(oligo(propylene glycol) methacrylate) hydrogel prepared by gamma radiation

    NASA Astrophysics Data System (ADS)

    Suljovrujic, E.; Micic, M.

    2015-01-01

    The synthesis of poly(oligo(propylene glycol) methacrylate) (POPGMA) from functionalised oligo(propylene glycol) methacrylate (OPGMA) monomers by gamma radiation-induced radical polymerisation is reported for the first time; POPGMA homopolymeric hydrogel with oligo(propylene glycol) (OPG) pendant chains, as a non-linear PPGMA-analogue, was synthesised from an monomer-solvent (OPGMA375-water/ethanol) mixture at different irradiation doses (5, 10, 25, and 40 kGy). Determination of the gel fraction was conducted after synthesis. The swelling properties of the POPGMA hydrogel were preliminarily investigated over wide pH (2.2-9.0) and temperature (4-70 °C) ranges. Additional characterisation of structure and properties was conducted by UV-vis and Fourier transform infrared (FTIR) spectroscopy as well as by differential scanning calorimetry (DSC). In order to evaluate the potential for biomedical applications, biocompatibility (cytocompatibility and haemolytic activity) studies were performed as well. Sol-gel conversion was relatively high for all irradiation doses, indicating radiation-induced synthesis as a good method for fabricating this hydrogel. Thermoresponsiveness and variations in swelling capacity as a result of thermosensitive OPG pendant chains with a lower critical solution temperature (LCST) were mainly observed below room temperature; thus, the volume phase transition temperature (VPTT) of POPGMA homopolymeric hydrogel is about 15 °C. Furthermore, POPGMA has satisfactory biocompatibility. The results indicate that the hydrogels with propylene glycol pendant chains can be easily prepared by gamma radiation and have potential for different applications as smart and biocompatible polymers.

  19. Different alkyl dimethacrylate mediated stearyl methacrylate monoliths for improving separation efficiency of typical alkylbenzenes and proteins.

    PubMed

    Xu, Zhendong; Yang, Limin; Wang, Qiuquan

    2009-04-10

    Monoliths were prepared in 530 microm I.D. fused silica capillaries via in situ copolymerization of stearyl methacrylate (SMA) with a dimethacrylate cross-linker in the presence of a binary porogenic solvent containing tert.-butanol and 1,4-butanediol. Alkyl dimethacrylate cross-linkers other than the monomer were used to tune the monolith properties, and, as a result, an increase in the hydrophobicity of the final monoliths (the methylene selectivity [Formula: see text] increased from 1.396 to 1.475) was observed through an increase in the molecular chain length between two methacrylate units from the 0.360 nm of ethylene glycol dimethacrylate to the 1.241 nm of 1.9-nonanediol dimethacrylate. Moreover, the hydrophobicity of the final monoliths was also greatly affected by the methyl group branch in the cross-linkers, among which the 2-methyl-1,8-octanediol dimethacrylate (2-Me-1,8-ODDMA) mediated monolith exhibited the highest hydrophobicity ( [Formula: see text] was 1.482) and fastest mass transfer kinetics (C-term was 9.14 ms). Besides the effective separation of six model proteins, the poly(SMA-co-2-Me-1,8-ODDMA) monolith also showed an improved performance in the separation of alkylbenzenes. The theoretical plate numbers reached 83000plates/m and 52000 plates/m for thiourea (nonretained compound) and butylbenzene (retained compound), respectively, when using acetonitrile-water (70:30, v/v) as the mobile phase at a typical linear velocity of 1mm/s. This improved performance towards small molecules was attributed to an increased mesopore proportion in the monolith and the faster dynamic process of mass transfer arising from novel tailoring of the monolith by choosing a suitable monomer/cross-linker pair.

  20. Efficient gene carriers composed of 2-hydroxypropyl-β-cyclodextrin, ethanolamine-functionalized poly(glycidyl methacrylate), and poly((2-dimethyl amino)ethyl methacrylate) by combination of ATRP and click chemistry.

    PubMed

    Zhu, Yun; Zheng, Xuefeng; Yu, Bingran; Yang, Wantai; Zhao, Nana; Xu, Fujian

    2014-08-01

    In this work, a simple one-step method is first employed to produce the bromoisobutyryl-terminated 2-hydroxypropyl-β-cyclodextrin (HPCD-Br). The pendant epoxy groups of poly(glycidyl methacrylate) block prepared via ATRP from HPCD-Br can be reacted with ethanolamine to produce HPCD-PGEA which exhibits much lower cytotoxicity and better gene transfection yield than polyethylenimine (25 kDa) in COS7 and HepG2 cell lines. Moreover, poly((2-dimethyl amino)ethyl methacrylate) blocks can be incorporated into low-molecular-weight HPCD-PGEA via "click" reaction to further enhance the gene transfection efficiency in HepG2 cell lines.