Sample records for methane fermentation process

  1. Enhanced coproduction of hydrogen and methane from cornstalks by a three-stage anaerobic fermentation process integrated with alkaline hydrolysis.

    PubMed

    Cheng, Xi-Yu; Liu, Chun-Zhao

    2012-01-01

    A three-stage anaerobic fermentation process including H(2) fermentation I, H(2) fermentation II, methane fermentation was developed for the coproduction of hydrogen and methane from cornstalks. Hydrogen production from cornstalks using direct microbial conversion by Clostridium thermocellum 7072 was markedly enhanced in the two-stage thermophilic hydrogen fermentation process integrated with alkaline treatment. The highest total hydrogen yield from cornstalks in the two-stage fermentation process reached 74.4 mL/g-cornstalk. The hydrogen fermentation effluents and alkaline hydrolyzate were further used for methane fermentation by anaerobic granular sludge, and the total methane yield reached 205.8 mL/g-cornstalk. The total energy recovery in the three-stage anaerobic fermentation process integrated with alkaline hydrolysis reached 70.0%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Methane fermentation process for utilization of organic waste

    NASA Astrophysics Data System (ADS)

    Frąc, M.; Ziemiński, K.

    2012-07-01

    Biogas is a renewable and sustainable energy carrier generated via anaerobic digestion of biomass. This fuel is derived from various biomass resources and depending on its origin it contains methane (40-75%), carbon dioxide (20-45%) and some other compounds. The aim of this paper is to present the current knowledge and prospects of using the methane fermentation process to dispose of various types of organic wastes as well as conditions and factors affecting the methane fermentation process.

  3. Dynamics of the microbial community during continuous methane fermentation in continuously stirred tank reactors.

    PubMed

    Tang, Yue-Qin; Shigematsu, Toru; Morimura, Shigeru; Kida, Kenji

    2015-04-01

    Methane fermentation is an attractive technology for the treatment of organic wastes and wastewaters. However, the process is difficult to control, and treatment rates and digestion efficiency require further optimization. Understanding the microbiology mechanisms of methane fermentation is of fundamental importance to improving this process. In this review, we summarize the dynamics of microbial communities in methane fermentation chemostats that are operated using completely stirred tank reactors (CSTRs). Each chemostat was supplied with one substrate as the sole carbon source. The substrates include acetate, propionate, butyrate, long-chain fatty acids, glycerol, protein, glucose, and starch. These carbon sources are general substrates and intermediates of methane fermentation. The factors that affect the structure of the microbial community are discussed. The carbon source, the final product, and the operation conditions appear to be the main factors that affect methane fermentation and determine the structure of the microbial community. Understanding the structure of the microbial community during methane fermentation will guide the design and operation of practical wastewater treatments. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Biogas production of Chicken Manure by Two-stage fermentation process

    NASA Astrophysics Data System (ADS)

    Liu, Xin Yuan; Wang, Jing Jing; Nie, Jia Min; Wu, Nan; Yang, Fang; Yang, Ren Jie

    2018-06-01

    This paper performs a batch experiment for pre-acidification treatment and methane production from chicken manure by the two-stage anaerobic fermentation process. Results shows that the acetate was the main component in volatile fatty acids produced at the end of pre-acidification stage, accounting for 68% of the total amount. The daily biogas production experienced three peak period in methane production stage, and the methane content reached 60% in the second period and then slowly reduced to 44.5% in the third period. The cumulative methane production was fitted by modified Gompertz equation, and the kinetic parameters of the methane production potential, the maximum methane production rate and lag phase time were 345.2 ml, 0.948 ml/h and 343.5 h, respectively. The methane yield of 183 ml-CH4/g-VSremoved during the methane production stage and VS removal efficiency of 52.7% for the whole fermentation process were achieved.

  5. LanzaTech- Capturing Carbon. Fueling Growth.

    ScienceCinema

    NONE

    2018-01-16

    LanzaTech will design a gas fermentation system that will significantly improve the rate at which methane gas is delivered to a biocatalyst. Current gas fermentation processes are not cost effective compared to other gas-to-liquid technologies because they are too slow for large-scale production. If successful, LanzaTech's system will process large amounts of methane at a high rate, reducing the energy inputs and costs associated with methane conversion.

  6. Developing a Decision Support Tool for Waste to Energy Calculations Using Energy Return on Investment

    DTIC Science & Technology

    2016-12-01

    Incinerator with Cogeneration. Source: Taylor (2016). 2. Anaerobic Digestion Anaerobic digestion uses a fermentation process to produce methane from...ANAEROBIC DIGESTION Anaerobic digestion uses a fermentation process to produce methane from organic waste inputs, resulting in a biogas that is then

  7. High-strength fermentable wastewater reclamation through a sequential process of anaerobic fermentation followed by microalgae cultivation.

    PubMed

    Qi, Wenqiang; Chen, Taojing; Wang, Liang; Wu, Minghong; Zhao, Quanyu; Wei, Wei

    2017-03-01

    In this study, the sequential process of anaerobic fermentation followed by microalgae cultivation was evaluated from both nutrient and energy recovery standpoints. The effects of different fermentation type on the biogas generation, broth metabolites' composition, algal growth and nutrients' utilization, and energy conversion efficiencies for the whole processes were discussed. When the fermentation was designed to produce hydrogen-dominating biogas, the total energy conversion efficiency (TECE) of the sequential process was higher than that of the methane fermentation one. With the production of hydrogen in anaerobic fermentation, more organic carbon metabolites were left in the broth to support better algal growth with more efficient incorporation of ammonia nitrogen. By applying the sequential process, the heat value conversion efficiency (HVCE) for the wastewater could reach 41.2%, if methane was avoided in the fermentation biogas. The removal efficiencies of organic metabolites and NH 4 + -N in the better case were 100% and 98.3%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Recent development of anaerobic digestion processes for energy recovery from wastes.

    PubMed

    Nishio, Naomichi; Nakashimada, Yutaka

    2007-02-01

    Anaerobic digestion leads to the overall gasification of organic wastewaters and wastes, and produces methane and carbon dioxide; this gasification contributes to reducing organic matter and recovering energy from organic carbons. Here, we propose three new processes and demonstrate the effectiveness of each process. By using complete anaerobic organic matter removal process (CARP), in which diluted wastewaters such as sewage and effluent from a methane fermentation digester were treated under anaerobic condition for post-treatment, the chemical oxygen demand (COD) in wastewater was decreased to less than 20 ppm. The dry ammonia-methane two-stage fermentation process (Am-Met process) is useful for the anaerobic treatment of nitrogen-rich wastes such as waste excess sludge, cow feces, chicken feces, and food waste without the dilution of the ammonia produced by water or carbon-rich wastes. The hydrogen-methane two-stage fermentation (Hy-Met process), in which the hydrogen produced in the first stage is used for a fuel cell system to generate electricity and the methane produced in the second stage is used to generate heat energy to heat the two reactors and satisfy heat requirements, is useful for the treatment of sugar-rich wastewaters, bread wastes, and biodiesel wastewaters.

  9. Methane and Hydrogen Production from Anaerobic Fermentation of Municipal Solid Wastes

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takuro; Lee, Dong-Yeol; Xu, Kaiqin; Li, Yu-You; Inamori, Yuhei

    Methane and hydrogen production was investigated in batch experiments of thermophilic methane and hydrogen fermentation, using domestic garbage and food processing waste classified by fat/carbohydrate balance as a base material. Methane production per unit of VS added was significantly positively correlated with fat content and negatively correlated with carbohydrate content in the substrate, and the average value of the methane production per unit of VS added from fat-rich materials was twice as large as that from carbohydrate-rich materials. By contrast, hydrogen production per unit of VS added was significantly positively correlated with carbohydrate content and negatively correlated with fat content. Principal component analysis using the results obtained in this study enable an evaluation of substrates for methane and hydrogen fermentation based on nutrient composition.

  10. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  11. Noteworthy Facts about a Methane-Producing Microbial Community Processing Acidic Effluent from Sugar Beet Molasses Fermentation.

    PubMed

    Chojnacka, Aleksandra; Szczęsny, Paweł; Błaszczyk, Mieczysław K; Zielenkiewicz, Urszula; Detman, Anna; Salamon, Agnieszka; Sikora, Anna

    2015-01-01

    Anaerobic digestion is a complex process involving hydrolysis, acidogenesis, acetogenesis and methanogenesis. The separation of the hydrogen-yielding (dark fermentation) and methane-yielding steps under controlled conditions permits the production of hydrogen and methane from biomass. The characterization of microbial communities developed in bioreactors is crucial for the understanding and optimization of fermentation processes. Previously we developed an effective system for hydrogen production based on long-term continuous microbial cultures grown on sugar beet molasses. Here, the acidic effluent from molasses fermentation was used as the substrate for methanogenesis in an upflow anaerobic sludge blanket bioreactor. This study focused on the molecular analysis of the methane-yielding community processing the non-gaseous products of molasses fermentation. The substrate for methanogenesis produces conditions that favor the hydrogenotrophic pathway of methane synthesis. Methane production results from syntrophic metabolism whose key process is hydrogen transfer between bacteria and methanogenic Archaea. High-throughput 454 pyrosequencing of total DNA isolated from the methanogenic microbial community and bioinformatic sequence analysis revealed that the domain Bacteria was dominated by Firmicutes (mainly Clostridia), Bacteroidetes, δ- and γ-Proteobacteria, Cloacimonetes and Spirochaetes. In the domain Archaea, the order Methanomicrobiales was predominant, with Methanoculleus as the most abundant genus. The second and third most abundant members of the Archaeal community were representatives of the Methanomassiliicoccales and the Methanosarcinales. Analysis of the methanogenic sludge by scanning electron microscopy with Energy Dispersive X-ray Spectroscopy and X-ray diffraction showed that it was composed of small highly heterogeneous mineral-rich granules. Mineral components of methanogenic granules probably modulate syntrophic metabolism and methanogenic pathways. A rough functional analysis from shotgun data of the metagenome demonstrated that our knowledge of methanogenesis is poor and/or the enzymes responsible for methane production are highly effective, since despite reasonably good sequencing coverage, the details of the functional potential of the microbial community appeared to be incomplete.

  12. Noteworthy Facts about a Methane-Producing Microbial Community Processing Acidic Effluent from Sugar Beet Molasses Fermentation

    PubMed Central

    Chojnacka, Aleksandra; Szczęsny, Paweł; Błaszczyk, Mieczysław K.; Zielenkiewicz, Urszula; Detman, Anna; Salamon, Agnieszka; Sikora, Anna

    2015-01-01

    Anaerobic digestion is a complex process involving hydrolysis, acidogenesis, acetogenesis and methanogenesis. The separation of the hydrogen-yielding (dark fermentation) and methane-yielding steps under controlled conditions permits the production of hydrogen and methane from biomass. The characterization of microbial communities developed in bioreactors is crucial for the understanding and optimization of fermentation processes. Previously we developed an effective system for hydrogen production based on long-term continuous microbial cultures grown on sugar beet molasses. Here, the acidic effluent from molasses fermentation was used as the substrate for methanogenesis in an upflow anaerobic sludge blanket bioreactor. This study focused on the molecular analysis of the methane-yielding community processing the non-gaseous products of molasses fermentation. The substrate for methanogenesis produces conditions that favor the hydrogenotrophic pathway of methane synthesis. Methane production results from syntrophic metabolism whose key process is hydrogen transfer between bacteria and methanogenic Archaea. High-throughput 454 pyrosequencing of total DNA isolated from the methanogenic microbial community and bioinformatic sequence analysis revealed that the domain Bacteria was dominated by Firmicutes (mainly Clostridia), Bacteroidetes, δ- and γ-Proteobacteria, Cloacimonetes and Spirochaetes. In the domain Archaea, the order Methanomicrobiales was predominant, with Methanoculleus as the most abundant genus. The second and third most abundant members of the Archaeal community were representatives of the Methanomassiliicoccales and the Methanosarcinales. Analysis of the methanogenic sludge by scanning electron microscopy with Energy Dispersive X-ray Spectroscopy and X-ray diffraction showed that it was composed of small highly heterogeneous mineral-rich granules. Mineral components of methanogenic granules probably modulate syntrophic metabolism and methanogenic pathways. A rough functional analysis from shotgun data of the metagenome demonstrated that our knowledge of methanogenesis is poor and/or the enzymes responsible for methane production are highly effective, since despite reasonably good sequencing coverage, the details of the functional potential of the microbial community appeared to be incomplete. PMID:26000448

  13. Enhanced Fermentative Hydrogen and Methane Production from an Inhibitory Fruit-Flavored Medium with Membrane-Encapsulated Cells

    PubMed Central

    Akinbomi, Julius; Wikandari, Rachman; Taherzadeh, Mohammad J.

    2015-01-01

    This study focused on the possibility of improving fermentative hydrogen and methane production from an inhibitory fruit-flavored medium using polyvinylidene fluoride (PVDF) membrane-encapsulated cells. Hexanal, myrcene, and octanol, which are naturally produced in fruits such as apple, grape, mango, orange, strawberry, and plum, were investigated. Batch and semi-continuous fermentation processes at 55 °C were carried out. Presence of 5 g/L of myrcene, octanol, and hexanal resulted in no methane formation by fermenting bacteria, while encapsulated cells in the membranes resulted in successful fermentation with 182, 111, and 150 mL/g COD of methane, respectively. The flavor inhibitions were not serious on hydrogen-producing bacteria. With free cells in the presence of 5 g/L (final concentration) of hexanal-, myrcene-, and octanol-flavored media, average daily yields of 68, 133, and 88 mL/g COD of hydrogen, respectively, were obtained. However, cell encapsulation further improved these hydrogen yields to 189, 179, and 198 mL/g COD. The results from this study indicate that the yields of fermentative hydrogen and methane productions from an inhibitory medium could be improved using encapsulated cells. PMID:26501329

  14. Coproduction of hydrogen and methane via anaerobic fermentation of cornstalk waste in continuous stirred tank reactor integrated with up-flow anaerobic sludge bed.

    PubMed

    Cheng, Xi-Yu; Li, Qian; Liu, Chun-Zhao

    2012-06-01

    A 10 L continuous stirred tank reactor (CSTR) system was developed for a two-stage hydrogen fermentation process with an integrated alkaline treatment. The maximum hydrogen production rate reached 218.5 mL/L h at a cornstalk concentration of 30 g/L, and the total hydrogen yield and volumetric hydrogen production rate reached 58.0 mL/g-cornstalk and 0.55-0.57 L/L d, respectively. A 10 L up-flow anaerobic sludge bed (UASB) was used for continuous methane fermentation of the effluents obtained from the two-stage hydrogen fermentation. At the optimal organic loading rate of 15.0 g-COD/Ld, the COD removal efficiency and volumetric biogas production rate reached 83.3% and 4.6L/Ld, respectively. Total methane yield reached 200.9 mL/g-cornstalk in anaerobic fermentation with the effluents and alkaline hydrolysate. As a result, the total energy recovery by coproduction of hydrogen and methane with anaerobic fermentation of cornstalk reached 67.1%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Ethanol fermentation characteristics of recycled water by Saccharomyces cerevisiae in an integrated ethanol-methane fermentation process.

    PubMed

    Yang, Xinchao; Wang, Ke; Wang, Huijun; Zhang, Jianhua; Mao, Zhonggui

    2016-11-01

    An process of integrated ethanol-methane fermentation with improved economics has been studied extensively in recent years, where the process water used for a subsequent fermentation of carbohydrate biomass is recycled. This paper presents a systematic study of the ethanol fermentation characteristics of recycled process water. Compared with tap water, fermentation time was shortened by 40% when mixed water was employed. However, while the maximal ethanol production rate increased from 1.07g/L/h to 2.01g/L/h, ethanol production was not enhanced. Cell number rose from 0.6×10(8) per mL in tap water to 1.6×10(8) per mL in mixed water but although biomass increased, cell morphology was not affected. Furthermore, the use of mixed water increased the glycerol yield but decreased that of acetic acid, and the final pH with mixed water was higher than when using tap water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Co-generation of biohydrogen and biomethane through two-stage batch co-fermentation of macro- and micro-algal biomass.

    PubMed

    Ding, Lingkan; Cheng, Jun; Xia, Ao; Jacob, Amita; Voelklein, Markus; Murphy, Jerry D

    2016-10-01

    Aquatic micro-algae can be used as feedstocks for gaseous biofuel production via biological fermentation. However, micro-algae usually have low C/N ratios, which are not advantageous for fermentation. In this study, carbon-rich macro-algae (Laminaria digitata) mixed with nitrogen-rich micro-algae (Chlorella pyrenoidosa and Nannochloropsis oceanica) were used to maintain a suitable C/N ratio of 20 for a two-stage process combining hydrogen and methane fermentation. Co-fermentation of L. digitata and micro-algae facilitated hydrolysis and acidogenesis, resulting in hydrogen yields of 94.5-97.0mL/gVS; these values were 15.5-18.5% higher than mono-fermentation using L. digitata. Through the second stage of methane co-fermentation, a large portion of energy remaining in the hydrogenogenic effluents was recovered in the form of biomethane. The two-stage batch co-fermentation markedly increased the energy conversion efficiencies (ECEs) from 4.6-6.6% during the hydrogen fermentation to 57.0-70.9% in the combined hydrogen and methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Preliminary study of acrylamide monomer decomposition during methane fermentation of dairy waste sludge.

    PubMed

    Mroczek, Ewelina; Konieczny, Piotr; Lewicki, Andrzej; Waśkiewicz, Agnieszka; Dach, Jacek

    2016-07-01

    Polyacrylamide (PAM) used in sludge dewatering exists widely in high-solid anaerobic digestion. Acrylamide is registered in the list of chemicals demonstrating toxic, carcinogenic and mutagenic properties. Therefore, it is reasonable to ask about the mobility of such residual substances in the environment. The study was carried out to assess the impact of the mesophilic (39±1°C) and thermophilic (54±1°C) fermentation process on the level of acrylamide monomer (AMD) content in the dairy sludge. The material was analysed using high-performance liquid chromatography (HPLC) for quantification of AMD. The results indicate that the process of methane fermentation continues regardless of the temperature effects on the degradation of AMD in dairy sludge. The degree of reduction of acrylamide monomer for thermophilic fermentation is 100%, while for mesophilic fermentation it is 91%. In practice, this means that biogas technology eliminates the risk of AMD migration to plant tissue. Moreover, it should be stressed that 90% of cumulative biogas and methane production was reached one week earlier under thermophilic conditions - the dynamics of the methanisation process were over 20% faster. Copyright © 2016. Published by Elsevier B.V.

  18. Semi-aerobic fermentation as a novel pre-treatment to obtain VFA and increase methane yield from primary sludge.

    PubMed

    Peces, M; Astals, S; Clarke, W P; Jensen, P D

    2016-01-01

    There is a growing trend to consider organic wastes as potential sources of renewable energy and value-add products. Fermentation products have emerged as attractive value-add option due to relative easy production and broad application range. However, pre-fermentation and extraction of soluble products may impact down-stream treatment processes, particularly energy recovery by anaerobic digestion. This paper investigates primary sludge pre-fermentation at different temperatures (20, 37, 55, and 70°C), treatment times (12, 24, 48, and 72h), and oxygen availability (semi-aerobic, anaerobic); and its impact on anaerobic digestion. Pre-fermentation at 20 and 37°C succeeded for VFA production with acetate and propionate being major products. Pre-fermentation at 37, 55, and 70°C resulted in higher solubilisation yield but it reduced sludge methane potential by 20%. Under semi-aerobic conditions, pre-fermentation allowed both VFA recovery (43gCODVFAkg(-1)VS) and improved methane potential. The latter phenomenon was linked to fungi that colonised the sludge top layer during pre-fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effect of propionic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Bao, Jia-Wei; Su, Xian-Feng; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-03-01

    In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.

  20. The effects of cathodic micro-voltage combined with hydrothermal pretreatment on methane fermentation of lignocellulose substrate

    NASA Astrophysics Data System (ADS)

    Liu, Dianxin; Ning, Ping; Qu, Guangfei; Huang, Xi; Liu, Yuhuan; Zhang, Jian

    2017-05-01

    The methane fermentation study assisted with cathodic micro-voltage was carried out to investigate the electric field effects on the fermentation of hydrothermally pretreated lignocellulose substrate. It was illustrated that a 0.25V cathode voltage and hydrothermal pretreatment could improve the biogas production, biogas quality and lignocellulose degradation ratio significantly. The cumulative biogas productions in the fermentation of hydrothermally pretreated cow dungs at 50°C, 150°C and 200°C with a 0.25V cathode voltage were observed in a total of 6640mL, 9218mL and 9456mL respectively over a detention time of 33 days. In comparison with the fermentation pretreated at 200°C without any voltage, nearly doubled of cumulative biogas production was obtained in the process of cathode-assisted fermentation. It was also observed that the daily methane content greater than or equal to 70% in the biogas generated with cathode voltage were clearly greater than that without voltages. Furthermore, the fermentation applied with a 0.25V cathode voltage had resulted into significant increases of 12.64% and 9.44% in lignin and cellulose degradation ratio relative to voltage free fermentation. And in the process of fermentation applied with cathode voltage, the final lignocellulose degradation ratio increased with the hydrothermal pretreatment temperature. Thus, the hydrothermal pretreatment and assisting fermentation with low cathode voltage can effectively promote the lignocellulose degradation. All results revealed that cathodic micro-voltage combined with hydrothermal pretreatment can remarkably improve the fermentation of lignocellulosic materials, indicating that a more effective fermentation technology can be developed by applying with cathodic micro-voltage.

  1. East Europe Report. Scientific Affairs, No. 785.

    DTIC Science & Technology

    1983-08-11

    in close cooperation with the Institute of Microbiology, is developing an ASU for fermentation processes. Contracts have already been entered into...and such sys- tems are being devised for the plants in Peshtera and in Razgrad. Associated with fermentation processes is the technology for...experimental fermentation system is already in operation in Vidin and methane is being produced. But a number of problems in optimizing these processes with

  2. A novel process for volatile fatty acids production from syngas by integrating with mesophilic alkaline fermentation of waste activated sludge.

    PubMed

    Rao, Yue; Wan, Jingjing; Liu, Yafeng; Angelidaki, Irini; Zhang, Shicheng; Zhang, Yalei; Luo, Gang

    2018-08-01

    The present study proposed and demonstrated a novel process for the bioconversion of syngas (mainly CO and H 2 ) to valuable volatile fatty acids (VFA) by integrating with mesophilic alkaline fermentation of waste activated sludge (WAS). The results showed that although pH 9 was suitable for VFA production from WAS, 62.5% of the consumed CO was converted to methane due to the presence of hydrogenogenic pathway for CO conversion. The increase of pH from 9 to 9.5 inhibited the methane production from CO because of the possible presence of only acetogenic pathway for CO conversion. However, methane was still produced from H 2 contained in syngas through hydrogenotrophic methanogenesis, and around 32-34% of the consumed syngas was converted to methane. At both pH 9 and 9.5, methane was produced by hydrogenotrophic methanogens Methanobacteriales. Further increase of pH to 10 effectively inhibited methane production from syngas, and efficient VFA (mainly acetate with the concentration of around 135 mM) production by simultaneous conversion of syngas and WAS was achieved. High acetate concentrations (>150 mM) were shown to have serious negative effects on the conversion of syngas. The addition of syngas to the mesophilic alkaline fermentation of WAS at pH 10 not only resulted in the enrichment of some known bacteria related with syngas conversion, but also changed the microbial community compositions for the fermentation of WAS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Health and Safety Management for Small-scale Methane Fermentation Facilities

    NASA Astrophysics Data System (ADS)

    Yamaoka, Masaru; Yuyama, Yoshito; Nakamura, Masato; Oritate, Fumiko

    In this study, we considered health and safety management for small-scale methane fermentation facilities that treat 2-5 ton of biomass daily based on several years operation experience with an approximate capacity of 5 t·d-1. We also took account of existing knowledge, related laws and regulations. There are no qualifications or licenses required for management and operation of small-scale methane fermentation facilities, even though rural sewerage facilities with a relative similar function are required to obtain a legitimate license. Therefore, there are wide variations in health and safety consciousness of the operators of small-scale methane fermentation facilities. The industrial safety and health laws are not applied to the operation of small-scale methane fermentation facilities. However, in order to safely operate a small-scale methane fermentation facility, the occupational safety and health management system that the law recommends should be applied. The aims of this paper are to clarify the risk factors in small-scale methane fermentation facilities and encourage planning, design and operation of facilities based on health and safety management.

  4. Production of citric acid using its extraction wastewater treated by anaerobic digestion and ion exchange in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-08-01

    In order to solve the problem of extraction wastewater pollution in citric acid industry, an integrated citric acid-methane fermentation process is proposed in this study. Extraction wastewater was treated by mesophilic anaerobic digestion and then used to make mash for the next batch of citric acid fermentation. The recycling process was done for seven batches. Citric acid production (82.4 g/L on average) decreased by 34.1 % in the recycling batches (2nd-7th) compared with the first batch. And the residual reducing sugar exceeded 40 g/L on average in the recycling batches. Pigment substances, acetic acid, ammonium, and metal ions in anaerobic digestion effluent (ADE) were considered to be the inhibitors, and their effects on the fermentation were studied. Results indicated that ammonium, Na(+) and K(+) in the ADE significantly inhibited citric acid fermentation. Therefore, the ADE was treated by acidic cation exchange resin prior to reuse to make mash for citric acid fermentation. The recycling process was performed for ten batches, and citric acid productions in the recycling batches were 126.6 g/L on average, increasing by 1.7 % compared with the first batch. This process could eliminate extraction wastewater discharge and reduce water resource consumption.

  5. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  6. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  7. Efficient production of ethanol from waste paper and the biochemical methane potential of stillage eluted from ethanol fermentation.

    PubMed

    Nishimura, Hiroto; Tan, Li; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji; Morimura, Shigeru

    2016-02-01

    Waste paper can serve as a feedstock for ethanol production due to being rich in cellulose and not requiring energy-intensive thermophysical pretreatment. In this study, an efficient process was developed to convert waste paper to ethanol. To accelerate enzymatic saccharification, pH of waste paper slurry was adjusted to 4.5-5.0 with H2SO4. Presaccharification and simultaneous saccharification and fermentation (PSSF) with enzyme loading of 40 FPU/g waste paper achieved an ethanol yield of 91.8% and productivity of 0.53g/(Lh) with an ethanol concentration of 32g/L. Fed-batch PSSF was used to decrease enzyme loading to 13 FPU/g waste paper by feeding two separate batches of waste paper slurry. Feeding with 20% w/w waste paper slurry increased ethanol concentration to 41.8g/L while ethanol yield decreased to 83.8%. To improve the ethanol yield, presaccharification was done prior to feeding and resulted in a higher ethanol concentration of 45.3g/L, a yield of 90.8%, and productivity of 0.54g/(Lh). Ethanol fermentation recovered 33.2% of the energy in waste paper as ethanol. The biochemical methane potential of the stillage eluted from ethanol fermentation was 270.5mL/g VTS and 73.0% of the energy in the stillage was recovered as methane. Integrating ethanol fermentation with methane fermentation, recovered a total of 80.4% of the energy in waste paper as ethanol and methane. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

    PubMed

    Xia, Ao; Cheng, Jun; Murphy, Jerry D

    2016-01-01

    Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Biogeochemical Carbon Cycling in Ultrabasic Reducing Springs in Sonoma County, CA

    NASA Astrophysics Data System (ADS)

    Cotton, J. M.; Morrill, P.; Johnson, O.; Nealson, K. H.; Sherwood Lollar, B.; Eigenbrode, J.; Fogel, M.

    2006-12-01

    Dissolved gases in the ultrabasic spring waters from The Cedars in Sonoma County, CA were analyzed for concentrations and carbon and hydrogen isotopic ratios in order to determine the geobiological processes occurring in this extreme environment of unknown biological activity. The ultrabasic, highly reducing conditions unique to these springs result from local serpentinization. Gases bubbling from the springs are mainly composed of methane, hydrogen, and nitrogen. Serpentinization is a process characteristic of early Earth, Mars and Titan that is thought to produce abiogenic hydrocarbons as well as provide geochemical energy for chemolithotrophic life. Methane, CO2, hydrogen and nitrogen were detected in the aqueous phases. Earlier work indicated that the primary source of the methane in the free gases bubbling from the springs was associated with microbial fermentation a suspected source of the dissolved methane. Here we report, a negative, linear correlation between concentrations of CO2 and methane that is an indicator of microbial anaerobic methane oxidation taking place in the ultrabasic waters. Furthermore, as the concentrations of methane decrease, the concentration of CO2 increases and both reactant and product become 13C-enriched. These observations are consistent with microbial oxidation of methane, suggesting a biogeochemical carbon cycle exists in these springs. We hypothesize that one group of microbes is breaking down organic matter by a process of fermentation to produce methane and CO2. The CO2 dissolves in the basic springs, while most of the methane escapes solution. The residual dissolved methane undergoes a conversion to CO2 by anaerobic methane oxidation.

  10. Evaluation of potato anaerobic digestate as a renewable alternative to peat moss in horticultural substrates

    USDA-ARS?s Scientific Manuscript database

    Potato peels and other low-value wastes from potato processing are currently being used as cattle feed or fermented to produce fuel-grade ethanol. The anaerobic fermentation of food wastes, including potato processing wastes, produces biogas (principally methane), which can be used directly for heat...

  11. Co-digestion of domestic kitchen waste and night soil sludge in a full-scale sludge treatment plant.

    PubMed

    Yoneyama, Y; Takeno, K

    2002-01-01

    A study was made on the domestic kitchen waste and night soil treatment performance of a full-scale sludge treatment plant. The sludge treatment at this plant was by thermophilic methane fermentation. The initial treatment, mesophilic to thermophilic fermentation, was able to be started up within a short time by adjusting the amount of influent waste. Thermophilic methane fermentation was carried out for five months (May-October) and the performance under a mean residual time of 22 days indicated a VTS decomposition of 42%, gas generation of 54-1,610 m3/day (average: 755 m3/day), and a mean methane concentration of 60%. The methane gas was used to generate power in the plant and the amount of power generated by methane gas was highest in October (average of 1,200 kWh/day). This was equivalent to about 7% of the power consumed at the entire sludge treatment plant. The BOD/NH4-N of the activated sludge influent water was lower, compared to a case where there is no recycle flow, due to the recycle flow from the methane fermentation process. There was, therefore, a tendency for an increase in the amount of methanol charged into the secondary denitrification tank. However, the quality of the effluent was satisfactory (BOD< 10 mg/L, SS< 5 mg/L, and T-N< 25 mg/L). Study results indicated that it was possible to implement a full-scale plant for recovering organic waste.

  12. Products derived from olive leaves and fruits can alter in vitro ruminal fermentation and methane production.

    PubMed

    Shakeri, Pirouz; Durmic, Zoey; Vadhanabhuti, Joy; Vercoe, Philip E

    2017-03-01

    The industrial processing of olive generates a high quantity of by-products. The objective of this study was to examine the effects of products derived from olive trees, i.e. leaves, fruits or kernels as a sole substrate (part A), and crude extract from leaves combined with a substrate (part B) on rumen microbial fermentation in an in vitro batch fermentation system. In this study, total gas production, methane production, and concentrations of volatile fatty acids (VFA) and ammonia in ruminal fluid were measured. In part A, in vitro fermentation of leaves or fruits yielded a gas and total VFA production that were comparable with control substrate, while most of them produced significantly less methane (up to 55.6%) when compared to control substrate. In part B, amongst leaf extracts, only addition of chloroform extract reduced methane production, which was also associated with a decrease (P < 0.01) in gas production. This effect was associated with a significant reduction (P < 0.01) in acetate to propionate ratio and ammonia production, but not in reduction in VFA concentrations. Olive leaf and olive leaf chloroform extract reduced ammonia production and increased the molar proportion of propionate in the rumen and can assist in developing novel feed additives for methane mitigation from the rumen. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Toward the complete utilization of rice straw: Methane fermentation and lignin recovery by a combinational process involving mechanical milling, supporting material and nanofiltration.

    PubMed

    Sasaki, Kengo; Okamoto, Mami; Shirai, Tomokazu; Tsuge, Yota; Fujino, Ayami; Sasaki, Daisuke; Morita, Masahiko; Matsuda, Fumio; Kikuchi, Jun; Kondo, Akihiko

    2016-09-01

    Rice straw was mechanically milled using a process consuming 1.9MJ/kg-biomass, and 10g/L of unmilled or milled rice straw was used as the carbon source for methane fermentation in a digester containing carbon fiber textile as the supporting material. Milling increased methane production from 226 to 419mL/L/day at an organic loading rate of 2180mg-dichromate chemical oxygen demand/L/day, corresponding to 260mLCH4/gVS. Storage of the fermentation effluent at room temperature decreased the weight of the milled rice straw residue from 3.81 to 1.00g/L. The supernatant of the effluent was subjected to nanofiltration. The black concentrates deposited on the nanofiltration membranes contained 53.0-57.9% lignin. Solution nuclear magnetic resonance showed that lignin aromatic components such as p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) were retained primarily, and major lignin interunit structures such as the β-O-4-H/G unit were absent. This combinational process will aid the complete utilization of rice straw. Copyright © 2016. Published by Elsevier Ltd.

  14. Thermophilic Dry Methane Fermentation of Distillation Residue Eluted from Ethanol Fermentation of Kitchen Waste and Dynamics of Microbial Communities.

    PubMed

    Huang, Yu-Lian; Tan, Li; Wang, Ting-Ting; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji

    2017-01-01

    Thermophilic dry methane fermentation is advantageous for feedstock with high solid content. Distillation residue with 65.1 % moisture content was eluted from ethanol fermentation of kitchen waste and subjected to thermophilic dry methane fermentation, after adjusting the moisture content to 75 %. The effect of carbon to nitrogen (C/N) ratio on thermophilic dry methane fermentation was investigated. Results showed that thermophilic dry methane fermentation could not be stably performed for >10 weeks at a C/N ratio of 12.6 and a volatile total solid (VTS) loading rate of 1 g/kg sludge/d; however, it was stably performed at a C/N ratio of 19.8 and a VTS loading rate of 3 g/kg sludge/d with 83.4 % energy recovery efficiency. Quantitative PCR analysis revealed that the number of bacteria and archaea decreased by two orders of magnitude at a C/N ratio of 12.6, whereas they were not influenced at a C/N ratio of 19.8. Microbial community analysis revealed that the relative abundance of protein-degrading bacteria increased and that of organic acid-oxidizing bacteria and acetic acid-oxidizing bacteria decreased at a C/N ratio of 12.6. Therefore, there was accumulation of NH 4 + and acetic acid, which inhibited thermophilic dry methane fermentation.

  15. Application of methane fermentation technology into organic wastes in closed agricultural system

    NASA Astrophysics Data System (ADS)

    Endo, Ryosuke; Kitaya, Yoshiaki

    Sustainable and recycling-based systems are required in space agriculture which takes place in an enclosed environment. Methane fermentation is one of the most major biomass conversion technologies, because (1) it provides a renewable energy source as biogas including methane, suitable for energy production, (2) the nutrient-rich solids left after digestion can be used as compost for agriculture. In this study, the effect of the application of methane fermentation technology into space agriculture on the material and energy cycle was investigated.

  16. Optimization of the integrated citric acid-methane fermentation process by air stripping and glucoamylase addition.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Wang, Ke; Tang, Lei; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-03-01

    To solve the problem of extraction wastewater in citric acid industry, an integrated citric acid-methane fermentation process was proposed. In the integrated process, extraction wastewater was treated by mesophilic anaerobic digestion and then reused to make mash for the next batch of citric acid fermentation. In this study, an Aspergillus niger mutant strain exhibiting resistance to high metal ions concentration was used to eliminate the inhibition of 200 mg/L Na(+) and 300 mg/L K(+) in anaerobic digestion effluent (ADE) and citric acid production increased by 25.0 %. Air stripping was used to remove ammonium, alkalinity, and part of metal ions in ADE before making mash. In consequence, citric acid production was significantly improved but still lower by 6.1 % than the control. Results indicated that metal ions in ADE synergistically inhibited the activity of glucoamylase, thus reducing citric acid production. When 130 U/g glucoamylase was added before fermentation, citric acid production was 141.5 g/L, which was even higher than the control (140.4 g/L). This process could completely eliminate extraction wastewater discharge and reduce water resource consumption.

  17. Field test of methane fermentation system for treating swine wastes.

    PubMed

    Kataoka, N; Suzuki, T; Ishida, K; Yamada, N; Kurata, N; Katayose, M; Honda, K

    2002-01-01

    A methane fermentation system for treating swine wastes was developed and successfully demonstrated in a field test plant (0.5 m3/d). The system was composed of a screw-press dehydrator, a methanogenic digester, a sludge separator, an oxidation ditch (OD) and composting equipment. A performance evaluation was carried out regarding physical pre-treatment using the screw-press dehydrator, methane fermentation for pre-treated slurry, and post-treatment for digested effluent by OD. Total solids (TS) and chemical oxygen demand (CODCr) removal by the screw-press pre-treatment were 38% and 22%, respectively. Properties of the screenings were as follows: water content 57%, ignition loss 93%, specific gravity 0.33. The pretreated strong slurry was digested under mesophilic conditions. Digestion gas (biogas) production rate was 25 m3/m3-slurry (NTP) and methane content of the biogas was 67%. CODCr removal of 65% with methane fermentation treatment of the slurry operating at 35 degrees C was observed. No inhibition of methane fermentation reaction occurred at the NH4(+)-N concentration of 3,000 mg/l or less during methane fermentation by the system. Mass balance from the present pilot-scale study showed that 1 m3 of mixture of excrement and urine of swine waste (TS 90 kg/m3) was biologically converted to 25 m3/m3-slurry (NTP) of biogas (methane content 67%), 100 kg of compost (water content 40%, ignition loss 75%), and 0.80 m3 of treated water (SS 30-70 mg/l).

  18. Methane production and methanogen levels in steers that differ in residual gain

    USDA-ARS?s Scientific Manuscript database

    Methane gas released by cattle is a product of fermentation in the digestive tract. The two primary sites of methane fermentation in ruminants are the reticulum-rumen complex, and the cecum. Methane release from cattle represents a 2 to 12% loss of the energy intake. Reducing the proportion of fe...

  19. From Waste to Watts: The fermentation of animal waste occuring in a digester producing methane gasses as a side product and converted to energy.

    NASA Astrophysics Data System (ADS)

    Weiss, S.

    2015-12-01

    The waste product from animals is readily available all over the world, including third world countries. Using animal waste to produce green energy would allow low cost energy sources and give independence from fossil fuels. But which animal produces the most methane and how hard is it to harvest? Before starting this experiment I knew that some cow farms in the northern part of the Central California basin were using some of the methane from the waste to power their machinery as a safer, cheaper and greener source through the harnessed methane gas in a digester. The fermentation process would occur in the digester producing methane gasses as a side product. Methane that is collected can later be burned for energy. I have done a lot of research on this experiment and found that many different farm and ranch animals produce methane, but it was unclear which produced the most. I decided to focus my study on the waste from cows, horses, pig and dogs to try to find the most efficient and strongest source of methane from animal waste. I produced an affordable methane digester from plastic containers with a valve to attach a hose. By putting in the waste product and letting it ferment with water, I was able to produce and capture methane, then measure the amount with a Gaslab meter. By showing that it is possible to create energy with this simple digester, it could reduce pollution and make green energy easily available to communities all over the world. Eventually this could result into our sewer systems converting waste to energy, producing an energy source right in your home.

  20. Implementation and process analysis of pilot scale multi-phase anaerobic fermentation and digestion of faecal sludge in Ghana

    PubMed Central

    Shih, Justin; Fanyin-Martin, Ato; Taher, Edris; Chandran, Kartik

    2017-01-01

    Background.  In Ghana, faecal sludge (FS) from on-site sanitation facilities is often discharged untreated into the environment, leading to significant insults to environmental and human health. Anaerobic digestion offers an attractive pathway for FS treatment with the concomitant production of energy in the form of methane. Another innovative option includes separating digestion into acidogenesis (production of volatile fatty acids (VFA)) and methanogenesis (production of methane), which could ultimately facilitate the production of an array of biofuels and biochemicals from the VFA. This work describes the development, implementation and modeling based analysis of a novel multiphase anaerobic fermentation-digestion process aimed at FS treatment in Kumasi, Ghana.  Methods.  A pilot-scale anaerobic fermentation process was implemented at the Kumasi Metropolitan Assembly’s Oti Sanitary Landfill Site at Adanse Dompoase.  The process consisted of six 10 m reactors in series, which were inoculated with bovine rumen and fed with fecal sludge obtained from public toilets.  The performance of the fermentation process was characterized in terms of both aqueous and gaseous variables representing the conversion of influent organic carbon to VFA as well as CH 4.  Using the operating data, the first-ever process model for FS fermentation and digestion was developed and calibrated, based on the activated sludge model framework. Results and Conclusions.  This work represents one of the first systematic efforts at integrated FS characterization and process modeling to enable anaerobic fermentation and digestion of FS. It is shown that owing to pre-fermentation of FS in public septage holding tanks, one could employ significantly smaller digesters (lower capital costs) or increased loading capabilities for FS conversion to biogas or VFA. Further, using the first-ever calibrated process model for FS fermentation and digestion presented herein, we expect improved and more mechanistically informed development and application of different process designs and configurations for global FS management practice. PMID:29528044

  1. Implementation and process analysis of pilot scale multi-phase anaerobic fermentation and digestion of faecal sludge in Ghana.

    PubMed

    Shih, Justin; Fanyin-Martin, Ato; Taher, Edris; Chandran, Kartik

    2017-11-06

    Background.  In Ghana, faecal sludge (FS) from on-site sanitation facilities is often discharged untreated into the environment, leading to significant insults to environmental and human health. Anaerobic digestion offers an attractive pathway for FS treatment with the concomitant production of energy in the form of methane. Another innovative option includes separating digestion into acidogenesis (production of volatile fatty acids (VFA)) and methanogenesis (production of methane), which could ultimately facilitate the production of an array of biofuels and biochemicals from the VFA. This work describes the development, implementation and modeling based analysis of a novel multiphase anaerobic fermentation-digestion process aimed at FS treatment in Kumasi, Ghana.  Methods.  A pilot-scale anaerobic fermentation process was implemented at the Kumasi Metropolitan Assembly's Oti Sanitary Landfill Site at Adanse Dompoase.  The process consisted of six 10 m reactors in series, which were inoculated with bovine rumen and fed with fecal sludge obtained from public toilets.  The performance of the fermentation process was characterized in terms of both aqueous and gaseous variables representing the conversion of influent organic carbon to VFA as well as CH 4 .  Using the operating data, the first-ever process model for FS fermentation and digestion was developed and calibrated, based on the activated sludge model framework. Results and Conclusions.  This work represents one of the first systematic efforts at integrated FS characterization and process modeling to enable anaerobic fermentation and digestion of FS. It is shown that owing to pre-fermentation of FS in public septage holding tanks, one could employ significantly smaller digesters (lower capital costs) or increased loading capabilities for FS conversion to biogas or VFA. Further, using the first-ever calibrated process model for FS fermentation and digestion presented herein, we expect improved and more mechanistically informed development and application of different process designs and configurations for global FS management practice.

  2. Modeling the Interaction of H2 on Root Exudate Degradation and Methanogenesis in Wetland Sediments

    NASA Astrophysics Data System (ADS)

    Pal, D. S.; Jaffe, P. R.

    2014-12-01

    CH4 is produced in wetland sediments from the microbial degradation of organic carbon through multiple fermentation steps and methanogenesis pathways. There are many potential sources of carbon for methananogenesis; in vegetated wetland sediments, microbial communities consume root exudates as a major source of organic carbon. In many methane models propionate is used as a model carbon molecule. This simple sugar is fermented into acetate and H2, acetate is transformed to methane and CO2 while the H2 and CO2 is synthesized to form an additional CH4 molecule. The hydrogenotrophic pathway involves the equilibrium of two dissolved gases, CH4 and H2. In an effort to limit CH4 emissions from wetlands, there has been growing interest in finding ways to limit plant transport of soil gases through root systems. While this may decrease the direct emissions of methane, there is little understanding about how H2 dynamics may feedback into overall methane production. Since H2 is used in methane production and produced in propionate fermentation, increased subsurface H2 concentrations can simultaneously inhibit propionate fermentation and acetate production and enhance hydrogenotrophic methanogenesis. For this study, we incubated soil samples from vegetated wetland sediments with propionate or acetate and four different hydrogen concentrations. The headspaces from these incubations were simultaneously analyzed for H2 and CH4 at multiple time points over two months. The comparison of methane production between different hydrogen concentrations and different carbon sources can indicate which process is most affected by increased hydrogen concentrations. The results from this study were combined with a newly formulated steady-state model of propionate degradation and formation of methane, that also accounts for the venting off both gases via plants. The resulting model indicates how methane production and emissions would be affected by plant volatilization.

  3. The influence of petroleum products on the methane fermentation process.

    PubMed

    Choromański, Paweł; Karwowska, Ewa; Łebkowska, Maria

    2016-01-15

    In this study the influence of the petroleum products: diesel fuel and spent engine oil on the sewage sludge digestion process and biogas production efficiency was investigated. Microbiological, chemical and enzymatic analyses were applied in the survey. It was revealed that the influence of the petroleum derivatives on the effectiveness of the methane fermentation of sewage sludge depends on the type of the petroleum product. Diesel fuel did not limit the biogas production and the methane concentration in the biogas, while spent engine oil significantly reduced the process efficacy. The changes in physical-chemical parameters, excluding COD, did not reflect the effect of the tested substances. The negative influence of petroleum products on individual bacterial groups was observed after 7 days of the process, while after 14 days probably some adaptive mechanisms appeared. The dehydrogenase activity assessment was the most relevant parameter to evaluate the effect of petroleum products contamination. Diesel fuel was probably used as a source of carbon and energy in the process, while the toxic influence was observed in case of spent engine oil. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Short-term effect of acetate and ethanol on methane formation in biogas sludge.

    PubMed

    Refai, Sarah; Wassmann, Kati; Deppenmeier, Uwe

    2014-08-01

    Biochemical processes in biogas plants are still not fully understood. Especially, the identification of possible bottlenecks in the complex fermentation processes during biogas production might provide potential to increase the performance of biogas plants. To shed light on the question which group of organism constitutes the limiting factor in the anaerobic breakdown of organic material, biogas sludge from different mesophilic biogas plants was examined under various conditions. Therefore, biogas sludge was incubated and analyzed in anaerobic serum flasks under an atmosphere of N2/CO2. The batch reactors mirrored the conditions and the performance of the full-scale biogas plants and were suitable test systems for a period of 24 h. Methane production rates were compared after supplementation with substrates for syntrophic bacteria, such as butyrate, propionate, or ethanol, as well as with acetate and H2+CO2 as substrates for methanogenic archaea. Methane formation rates increased significantly by 35 to 126 % when sludge from different biogas plants was supplemented with acetate or ethanol. The stability of important process parameters such as concentration of volatile fatty acids and pH indicate that ethanol and acetate increase biogas formation without affecting normally occurring fermentation processes. In contrast to ethanol or acetate, other fermentation products such as propionate, butyrate, or H2 did not result in increased methane formation rates. These results provide evidence that aceticlastic methanogenesis and ethanol-oxidizing syntrophic bacteria are not the limiting factor during biogas formation, respectively, and that biogas plant optimization is possible with special focus on methanogenesis from acetate.

  5. Effects of household detergent on anaerobic fermentation of kitchen wastewater from food waste disposer.

    PubMed

    Lee, K H; Park, K Y; Khanal, S K; Lee, J W

    2013-01-15

    This study examines the effects of household detergent on anaerobic methane fermentation of wastewater from food waste disposers (FWDs). Anaerobic toxicity assay (ATA) demonstrated that methane production substantially decreased at a higher detergent concentration. The Gompertz three-parameter model fitted well with the ATA results, and both the extent of methane production (M) and methane production rate (R(m)) obtained from the model were strongly affected by the concentration of the detergent. The 50% inhibitory concentration (IC(50)) of the detergent was 603 mg/L based on R(m). Results from fatty acid methyl esters (FAMEs) analysis of microbial culture revealed that deterioration of methane fermentation was attributed to impaired structure of anaerobic microbial membrane due to detergent. This study suggests that wastewater from FWD could be used for methane production, but it is necessary to reduce the concentration of detergent prior to anaerobic fermentation. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation.

    PubMed

    Wang, Dongbo; Liu, Yiwen; Ngo, Huu Hao; Zhang, Chang; Yang, Qi; Peng, Lai; He, Dandan; Zeng, Guangming; Li, Xiaoming; Ni, Bing-Jie

    2017-08-01

    In this work, a mathematical model was developed to describe the dynamics of fermentation products in sludge alkaline fermentation systems for the first time. In this model, the impacts of alkaline fermentation on sludge disintegration, hydrolysis, acidogenesis, acetogenesis, and methanogenesis processes are specifically considered for describing the high-level formation of fermentation products. The model proposed successfully reproduced the experimental data obtained from five independent sludge alkaline fermentation studies. The modeling results showed that alkaline fermentation largely facilitated the disintegration, acidogenesis, and acetogenesis processes and severely inhibited methanogenesis process. With the pH increase from 7.0 to 10.0, the disintegration, acidogenesis, and acetogenesis processes respectively increased by 53%, 1030%, and 30% while methane production decreased by 3800%. However, no substantial effect on hydrolysis process was found. The model also indicated that the pathway of acetoclastic methanogenesis was more severely inhibited by alkaline condition than that of hydrogentrophic methanogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effect of acetic acid in recycling water on ethanol production for cassava in an integrated ethanol-methane fermentation process.

    PubMed

    Yang, Xinchao; Wang, Ke; Zhang, Jianhua; Tang, Lei; Mao, Zhonggui

    2016-11-01

    Recently, the integrated ethanol-methane fermentation process has been studied to prevent wastewater pollution. However, when the anaerobic digestion reaction runs poorly, acetic acid will accumulate in the recycling water. In this paper, we studied the effect of low concentration of acetic acid (≤25 mM) on ethanol fermentation at different initial pH values (4.2, 5.2 or 6.2). At an initial pH of 4.2, ethanol yields increased by 3.0% and glycerol yields decreased by 33.6% as the acetic acid concentration was increased from 0 to 25 mM. Raising the concentration of acetic acid to 25 mM increased the buffering capacity of the medium without obvious effects on biomass production in the cassava medium. Acetic acid was metabolized by Saccharomyces cerevisiae for the reason that the final concentration of acetic acid was 38.17% lower than initial concentration at pH 5.2 when 25 mM acetic acid was added. These results confirmed that a low concentration of acetic acid in the process stimulated ethanol fermentation. Thus, reducing the acetic acid concentration to a controlled low level is more advantageous than completely removing it.

  8. Establishment and assessment of an integrated citric acid-methane production process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Bao, Jia-Wei; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the problem of extraction wastewater in citric acid industrial production, an improved integrated citric acid-methane production process was established in this study. Extraction wastewater was treated by anaerobic digestion and then the anaerobic digestion effluent (ADE) was stripped by air to remove ammonia. Followed by solid-liquid separation to remove metal ion precipitation, the supernatant was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. 130U/g glucoamylase was added to medium after inoculation and the recycling process performed for 10 batches. Fermentation time decreased by 20% in recycling and the average citric acid production (2nd-10th) was 145.9±3.4g/L, only 2.5% lower than that with tap water (149.6g/L). The average methane production was 292.3±25.1mL/g CODremoved and stable in operation. Excessive Na(+) concentration in ADE was confirmed to be the major challenge for the proposed process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Use of real time gas production data for more accurate comparison of continuous single-stage and two-stage fermentation.

    PubMed

    Massanet-Nicolau, Jaime; Dinsdale, Richard; Guwy, Alan; Shipley, Gary

    2013-02-01

    Changes in fermenter gas composition within a given 24h period can cause severe bias in calculations of biogas or energy yields based on just one or two measurements of gas composition per day, as is common in other studies of two-stage fermentation. To overcome this bias, real time recording of gas composition and production were used to undertake a detailed and controlled comparison of single-stage and two-stage fermentation using a real world substrate (wheat feed pellets). When a two-stage fermentation system was used, methane yields increased from 261 L kg(-1)VS using a 20 day HRT, single-stage fermentation, to 359 L kg(-1) VS using a two-stage fermentation with the same overall retention time--an increase of 37%. Additionally a hydrogen yield of 7 L kg(-1) VS was obtained when two-stage fermentation was used. The two-stage system could also be operated at a shorter, 12 day HRT and still produce higher methane yields (306 L kg(-1) VS). Both two-stage fermentation systems evaluated exhibited methane yields in excess of that predicted by a biological methane potential test (BMP) performed using the same feedstock (260 L kg(-1)VS). Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Enhancing methane production from U. lactuca using combined anaerobically digested sludge (ADS) and rumen fluid pre-treatment and the effect on the solubilization of microbial community structures.

    PubMed

    Zou, Yu; Xu, Xiaochen; Li, Liang; Yang, Fenglin; Zhang, Shushen

    2018-04-01

    Methane production by the anaerobic digestion of seaweed is restricted by the slow degradation caused by the influence of the rigid algal cell wall. At the present time, there has been no study focusing on the anaerobic digestion of U. lactuca by co-fermentation and pre-treatment with rumen fluid. Rumen fluid can favor methane production from algal biomass by utilizing the diversity and quantity of bacterial and archaeal communities in the rumen fluid. This research presents a novel method based on combined ADS and rumen fluid pre-treatment to improve the production of methane from seaweed. Biochemical methane potential (BMP) tests were performed to investigate the biogas production using combined ADS and rumen fluid pre-treatment at varied inoculum ratios on the performance of methane production from U. lactuca biomass. Compared to the control (no rumen fluid pre-treatment), the highest BMP yields of U. lactuca increased from 3%, 27.5% and 39.5% to 31.1%, 73% and 85.6%, respectively, for three different types of treatment. Microbial community analysis revealed that the Methanobrevibacter species, known to accept electrons to form methane, were only detected when rumen fluid was added. Together with the significant increase in species of Methanoculleus, Methanospirillum and Methanosaeta, rumen fluid improved the fermentation and degradation of the microalgae biomass not only by pre-treatment to foster cell-wall degradation but also by relying on methane production within itself during anaerobic processes. Batch experiments further indicated that rumen fluid applied to the co-fermentation and pre-treatment could increase the economic value and hold promise for enhancing biogas production from different seaweed species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Global tropospheric methane: An indication of atmosphere-biosphere-climate interactions?

    NASA Technical Reports Server (NTRS)

    Harriss, Robert C.; Sebacher, Daniel I.; Bartlett, Karen B.

    1985-01-01

    Methane is an important atmospheric gas with potentially critical roles in both photochemical and radiation transfer processes. A major natural source of atmospheric methane involves anaerobic fermentation of organic materials in wetland soils and sediments. A data base of field measurements of atmospheric methane was used in the development of a global methane emissions inventory. Calculations support the following hypotheses: (1) Human activities currently produce methane at a rate approximately equal to natural resources (these rapidly increasing anthropogenic sources can explain most of the recent increase observed in tropospheric methane); and (2) Prior to 200 B.P. (before the present), the influence of climate on wetland extent and distribution was probably a dominant factor controlling global biogenic methane emissions to the atmosphere.

  12. Potential use and the energy conversion efficiency analysis of fermentation effluents from photo and dark fermentative bio-hydrogen production.

    PubMed

    Zhang, Zhiping; Li, Yameng; Zhang, Huan; He, Chao; Zhang, Quanguo

    2017-12-01

    Effluent of bio-hydrogen production system also can be adopted to produce methane for further fermentation, cogeneration of hydrogen and methane will significantly improve the energy conversion efficiency. Platanus Orientalis leaves were taken as the raw material for photo- and dark-fermentation bio-hydrogen production. The resulting concentrations of acetic, butyric, and propionic acids and ethanol in the photo- and dark-fermentation effluents were 2966mg/L and 624mg/L, 422mg/L and 1624mg/L, 1365mg/L and 558mg/L, and 866mg/L and 1352mg/L, respectively. Subsequently, we calculated the energy conversion efficiency according to the organic contents of the effluents and their energy output when used as raw material for methane production. The overall energy conversion efficiencies increased by 15.17% and 22.28%, respectively, when using the effluents of photo and dark fermentation. This two-step bio-hydrogen and methane production system can significantly improve the energy conversion efficiency of anaerobic biological treatment plants. Copyright © 2017. Published by Elsevier Ltd.

  13. Cleaner production of citric acid by recycling its extraction wastewater treated with anaerobic digestion and electrodialysis in an integrated citric acid-methane production process.

    PubMed

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the pollution problem of extraction wastewater in citric acid production, an integrated citric acid-methane production process was proposed. Extraction wastewater was treated through anaerobic digestion and the anaerobic digestion effluent (ADE) was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. Excessive Na(+) contained in ADE could significantly inhibit citric acid fermentation in recycling and was removed by electrodialysis in this paper. Electrodialysis performance was improved after pretreatment of ADE with air stripping and activated carbon adsorption to remove precipitable metal ions and pigments. Moreover, the concentrate water was recycled and mixed with feed to improve the water recovery rate above 95% in electrodialysis treatment, while the dilute water was collected for citric acid fermentation. The removal rate of Na(+) in ADE was above 95% and the citric acid production was even higher than that with tap water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Feasibility of a peat biogasification process

    NASA Astrophysics Data System (ADS)

    Buivid, M. G.; Wise, D. L.; Rader, A. M.; McCarty, P. L.; Owen, W. F.

    1980-07-01

    The feasibility of a two-stage biogasification process for the conversion of peat reserves, the energy content of which in the United States is greater than that of uranium, shale oil or petroleum and natural gas combined, into pipeline-quality methane is investigated. Samples of wet-harvested reed-sedge peat were pretreated in alkaline and nonalkaline conditions in the presence and absence of oxidation in order to determine the most favorable conditions for the conversion of cellulosic and lignaceous fractions to water-soluble, fermentable compounds, and the resulting products were subjected to anaerobic fermentation to methane. Conversion efficiencies obtained reveal that up to 26% of the initial heat content of peat was converted to methane when alkaline heat pretreatment was employed. Analysis of the process parameters by a computer model to determine equipment sizes, mass and energy balances and costs indicates that for a 79,200 GJ/day plant the total capital requirement would be $323,000,000, annual operating costs would be $44,000,000 and average SNG cost would be $3.16/GJ, assuming a 90% stream factor with a delivered peat slurry costing $0.0033/kg.

  15. Impact of Adding Biopreparations on the Anaerobic Co-Digestion of Sewage Sludge with Grease Trap Waste

    NASA Astrophysics Data System (ADS)

    Worwąg, Małgorzata

    2016-09-01

    The aim of the study was to evaluate the effect of using biopreparations on efficiency of the co-fermentation process. Commercial bacterial biopreparations DBC Plus Type L, DBC Plus Type R5 and yeast biopreparations were used in the study. The process of cofermentation of sewage sludge with grease trap waste from a production plant that manufactured methyl esters of fatty acids was analysed in the laboratory environment under mesophilic conditions. The sludge in the reactor was replaced once a day, with hydraulic retention time of 10 days. Grease trap waste accounted for 35%wt. of the fermentation mixture. The stabilization process was monitored everyday based on the measurements of biogas volume. Addition of yeast biopreparation to methane fermentation of sewage sludge with grease trap waste caused an increase in mean daily biogas production from 6.9 dm3 (control mixture) to 9.21dm3 (mixture M3). No differences in biogas production were found for other cases (mixtures M1, M2). A similar relationship was observed for methane content in biogas.

  16. Methane production in the sulfate-depleted sediments of two marine basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuivila, K.M.; Murray, J.W.; Devol, A.H.

    1990-02-01

    Rates of methane production via both acetate fermentation and CO{sub 2} reduction were directly measured with radiotracer techniques in the sulfate-depleted sediments of Saanich and Princess Louisa Inlets. Comparison of measured and modeled rates suggests that these two pathways account for the majority of methane produced below the sulfate reduction zone in the sediments of both basins. Methane production via CO{sub 2} reduction was slightly more important than acetate fermentation with 57-58% of the methane in Saanich Inlet and 52-57% in Princess Louisa Inlet being produced from bicarbonate. The results from Saanich Inlet, a seasonally anoxic basin, are compared withmore » Princess Louisa Inlet, with a permanently oxic hypolimnion. Although the two basins have comparable organic-carbon rain rates, the rates of methanogenesis are much lower in Princess Louisa Inlet. This decrease in methane production can be attributed to the consumption of organic carbon via aerobic respiration occurring in the surface sediments of Princess Louisa Inlet, thereby decreasing the actual input of organic carbon to the zone of methane production. The relative importance of CO{sub 2} reduction and acetate fermentation in the production of methane was the same in both basins, suggesting that prior aerobic degradation of the organic matter has little influence on the pathways of methane production. The results from this study in the two marine systems (high sulfate) are also compared to published studies in freshwater environments (low sulfate) where acetate fermentation is the predominant pathway of methane production.« less

  17. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation.

    PubMed

    Kamke, Janine; Kittelmann, Sandra; Soni, Priya; Li, Yang; Tavendale, Michael; Ganesh, Siva; Janssen, Peter H; Shi, Weibing; Froula, Jeff; Rubin, Edward M; Attwood, Graeme T

    2016-10-19

    Enteric fermentation by farmed ruminant animals is a major source of methane and constitutes the second largest anthropogenic contributor to global warming. Reducing methane emissions from ruminants is needed to ensure sustainable animal production in the future. Methane yield varies naturally in sheep and is a heritable trait that can be used to select animals that yield less methane per unit of feed eaten. We previously demonstrated elevated expression of hydrogenotrophic methanogenesis pathway genes of methanogenic archaea in the rumens of high methane yield (HMY) sheep compared to their low methane yield (LMY) counterparts. Methane production in the rumen is strongly connected to microbial hydrogen production through fermentation processes. In this study, we investigate the contribution that rumen bacteria make to methane yield phenotypes in sheep. Using deep sequence metagenome and metatranscriptome datasets in combination with 16S rRNA gene amplicon sequencing from HMY and LMY sheep, we show enrichment of lactate-producing Sharpea spp. in LMY sheep bacterial communities. Increased gene and transcript abundances for sugar import and utilisation and production of lactate, propionate and butyrate were also observed in LMY animals. Sharpea azabuensis and Megasphaera spp. act as important drivers of lactate production and utilisation according to phylogenetic analysis and read mappings. Our findings show that the rumen microbiome in LMY animals supports a rapid heterofermentative growth, leading to lactate production. We postulate that lactate is subsequently metabolised mainly to butyrate in LMY animals, producing 2 mol of hydrogen and 0.5 mol of methane per mol hexose, which represents 24 % less than the 0.66 mol of methane formed from the 2.66 mol of hydrogen produced if hexose fermentation was directly to acetate and butyrate. These findings are consistent with the theory that a smaller rumen size with a higher turnover rate, where rapid heterofermentative growth would be an advantage, results in lower hydrogen production and lower methane formation. Together with previous methanogen gene expression data, this builds a strong concept of how animal traits and microbial communities shape the methane phenotype in sheep.

  18. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation

    DOE PAGES

    Kamke, Janine; Kittelmann, Sandra; Soni, Priya; ...

    2016-10-19

    Enteric fermentation by farmed ruminant animals is a major source of methane and constitutes the second largest anthropogenic contributor to global warming. Reducing methane emissions from ruminants is needed to ensure sustainable animal production in the future. Methane yield varies naturally in sheep and is a heritable trait that can be used to select animals that yield less methane per unit of feed eaten. We previously demonstrated elevated expression of hydrogenotrophic methanogenesis pathway genes of methanogenic archaea in the rumens of high methane yield (HMY) sheep compared to their low methane yield (LMY) counterparts. Methane production in the rumen ismore » strongly connected to microbial hydrogen production through fermentation processes. In this study, we investigate the contribution that rumen bacteria make to methane yield phenotypes in sheep. Using deep sequence metagenome and metatranscriptome datasets in combination with 16S rRNA gene amplicon sequencing from HMY and LMY sheep, we show enrichment of lactate-producing Sharpea spp. in LMY sheep bacterial communities. Increased gene and transcript abundances for sugar import and utilisation and production of lactate, propionate and butyrate were also observed in LMY animals. Sharpea azabuensis and Megasphaera spp. act as important drivers of lactate production and utilisation according to phylogenetic analysis and read mappings. Our findings show that the rumen microbiome in LMY animals supports a rapid heterofermentative growth, leading to lactate production. We postulate that lactate is subsequently metabolised mainly to butyrate in LMY animals, producing 2 mol of hydrogen and 0.5 mol of methane per mol hexose, which represents 24 % less than the 0.66 mol of methane formed from the 2.66 mol of hydrogen produced if hexose fermentation was directly to acetate and butyrate. These findings are consistent with the theory that a smaller rumen size with a higher turnover rate, where rapid heterofermentative growth would be an advantage, results in lower hydrogen production and lower methane formation. Together with previous methanogen gene expression data, this builds a strong concept of how animal traits and microbial communities shape the methane phenotype in sheep.« less

  19. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamke, Janine; Kittelmann, Sandra; Soni, Priya

    Enteric fermentation by farmed ruminant animals is a major source of methane and constitutes the second largest anthropogenic contributor to global warming. Reducing methane emissions from ruminants is needed to ensure sustainable animal production in the future. Methane yield varies naturally in sheep and is a heritable trait that can be used to select animals that yield less methane per unit of feed eaten. We previously demonstrated elevated expression of hydrogenotrophic methanogenesis pathway genes of methanogenic archaea in the rumens of high methane yield (HMY) sheep compared to their low methane yield (LMY) counterparts. Methane production in the rumen ismore » strongly connected to microbial hydrogen production through fermentation processes. In this study, we investigate the contribution that rumen bacteria make to methane yield phenotypes in sheep. Using deep sequence metagenome and metatranscriptome datasets in combination with 16S rRNA gene amplicon sequencing from HMY and LMY sheep, we show enrichment of lactate-producing Sharpea spp. in LMY sheep bacterial communities. Increased gene and transcript abundances for sugar import and utilisation and production of lactate, propionate and butyrate were also observed in LMY animals. Sharpea azabuensis and Megasphaera spp. act as important drivers of lactate production and utilisation according to phylogenetic analysis and read mappings. Our findings show that the rumen microbiome in LMY animals supports a rapid heterofermentative growth, leading to lactate production. We postulate that lactate is subsequently metabolised mainly to butyrate in LMY animals, producing 2 mol of hydrogen and 0.5 mol of methane per mol hexose, which represents 24 % less than the 0.66 mol of methane formed from the 2.66 mol of hydrogen produced if hexose fermentation was directly to acetate and butyrate. These findings are consistent with the theory that a smaller rumen size with a higher turnover rate, where rapid heterofermentative growth would be an advantage, results in lower hydrogen production and lower methane formation. Together with previous methanogen gene expression data, this builds a strong concept of how animal traits and microbial communities shape the methane phenotype in sheep.« less

  20. A novel cleaner production process of citric acid by recycling its treated wastewater.

    PubMed

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-07-01

    In this study, a novel cleaner production process of citric acid was proposed to completely solve the problem of wastewater management in citric acid industry. In the process, wastewater from citric acid fermentation was used to produce methane through anaerobic digestion and then the anaerobic digestion effluent was further treated with air stripping and electrodialysis before recycled as process water for the later citric acid fermentation. This proposed process was performed for 10 batches and the average citric acid production in recycling batches was 142.4±2.1g/L which was comparable to that with tap water (141.6g/L). Anaerobic digestion was also efficient and stable in operation. The average chemical oxygen demand (COD) removal rate was 95.1±1.2% and methane yield approached to 297.7±19.8mL/g TCODremoved. In conclusion, this novel process minimized the wastewater discharge and achieved the cleaner production in citric acid industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. [Effect of products of thermophilous methane fermentation on the fermentation of fruit must by Saccharomyces vini].

    PubMed

    Mikhlin, E D; Kotomina, E N; Pisarnitsky

    1975-01-01

    Experiments were carried out to study the effect of extracts from products of thermophilous methane fermentation at a dose of 0.7+2.0 ml/100 ml on the proliferation and fermentation activity of yeast Saccharomyces vini of the Yablochnaya-7 and Vishnevaya-33 race during their cultivation in the Hansen medium and in the apple and cranberry must with a normal and elevated content of sugar and acid. In some experiments the must was enriched in (NH4)2HPO4 at a dose of 0.3 g/l. Additions of small amounts of products of thermophilous methane fermentation accelerated fermentation of fruit musts with a normal sugar content and to a greater extent musts with an increased sugar content (27%). In the must enriched in (NH4)2HPO4 an almost complete (over 98%) fermentation of sugar developed for 27 days. In the must with an increased acidity (due to citric acid added to bring titrable acidity to 25 g/l) additions of the preparation also accerlerated the begining of the fermentation and increased its intensity.

  2. Effects of different nitrogen sources on the biogas production - a lab-scale investigation.

    PubMed

    Wagner, Andreas Otto; Hohlbrugger, Peter; Lins, Philipp; Illmer, Paul

    2012-12-20

    For anaerobic digestion processes nitrogen sources are poorly investigated although they are known as possible process limiting factors (in the hydrolysis phase) but also as a source for fermentations for subsequent methane production by methanogenic archaea. In the present study different complex and defined nitrogen sources were investigated in a lab-scale experiment in order to study their potential to build up methane. The outcome of the study can be summarised as follows: from complex nitrogen sources yeast extract and casamino acids showed the highest methane production with approximately 600 ml methane per mole of nitrogen, whereas by the use of skim milk no methane production could be observed. From defined nitrogen sources L-arginine showed the highest methane production with almost 1400 ml methane per mole of nitrogen. Moreover it could be demonstrated that the carbon content and therefore C/N-ratio has only minor influence for the methane production from the used substrates. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle.

    PubMed

    Detman, Anna; Mielecki, Damian; Pleśniak, Łukasz; Bucha, Michał; Janiga, Marek; Matyasik, Irena; Chojnacka, Aleksandra; Jędrysek, Mariusz-Orion; Błaszczyk, Mieczysław K; Sikora, Anna

    2018-01-01

    Anaerobic digestion, whose final products are methane and carbon dioxide, ensures energy flow and circulation of matter in ecosystems. This naturally occurring process is used for the production of renewable energy from biomass. Lactate, a common product of acidic fermentation, is a key intermediate in anaerobic digestion of biomass in the environment and biogas plants. Effective utilization of lactate has been observed in many experimental approaches used to study anaerobic digestion. Interestingly, anaerobic lactate oxidation and lactate oxidizers as a physiological group in methane-yielding microbial communities have not received enough attention in the context of the acetogenic step of anaerobic digestion. This study focuses on metabolic transformation of lactate during the acetogenic and methanogenic steps of anaerobic digestion in methane-yielding bioreactors. Methane-yielding microbial communities instead of pure cultures of acetate producers were used to process artificial lactate-rich media to methane and carbon dioxide in up-flow anaerobic sludge blanket reactors. The media imitated the mixture of acidic products found in anaerobic environments/digesters where lactate fermentation dominates in acidogenesis. Effective utilization of lactate and biogas production was observed. 16S rRNA profiling was used to examine the selected methane-yielding communities. Among Archaea present in the bioreactors, the order Methanosarcinales predominated. The acetoclastic pathway of methane formation was further confirmed by analysis of the stable carbon isotope composition of methane and carbon dioxide. The domain Bacteria was represented by Bacteroidetes , Firmicutes , Proteobacteria , Synergistetes , Actinobacteria , Spirochaetes , Tenericutes , Caldithrix , Verrucomicrobia , Thermotogae , Chloroflexi , Nitrospirae, and Cyanobacteria. Available genome sequences of species and/or genera identified in the microbial communities were searched for genes encoding the lactate-oxidizing metabolic machinery homologous to those of Acetobacterium woodii and Desulfovibrio vulgaris . Furthermore, genes for enzymes of the reductive acetyl-CoA pathway were present in the microbial communities. The results indicate that lactate is oxidized mainly to acetate during the acetogenic step of AD and this comprises the acetotrophic pathway of methanogenesis. The genes for lactate utilization under anaerobic conditions are widespread in the domain Bacteria. Lactate oxidation to the substrates for methanogens is the most energetically attractive process in comparison to butyrate, propionate, or ethanol oxidation.

  4. High Time Resolution Measurements of Methane Fluxes From Enteric Fermentation in Cattle Rumen

    NASA Astrophysics Data System (ADS)

    Floerchinger, C. R.; Herndon, S.; Fortner, E.; Roscioli, J. R.; Kolb, C. E.; Knighton, W. B.; Molina, L. T.; Zavala, M.; Castelán, O.; Ku Vera, J.; Castillo, E.

    2013-12-01

    Methane accounts for roughly 20% of the global radiative climate forcing in the last two and a half centuries. Methane emissions arise from a number of anthropogenic and biogenic sources. In some areas enteric fermentation in livestock produces over 90% of agricultural methane. In the spring of 2013, as a part of the Short Lived Climate Forcer-Mexico field campaign, the Aerodyne Mobile Laboratory in partnership with the Molina Center for the Environment studied methane production associated with enteric fermentation in the rumen of cattle. A variety of different breeds and stocks being raised in two agricultural and veterinary research facilities located in different areas of Mexico were examined. Methane fluxes were quantified using two methods: 1) an atmospherically stable gaseous tracer release was collocated with small herds in a pasture, allowing tracer ratio flux measurements; 2) respiratory CO2 was measured in tandem with methane in the breath of individual animals allowing methane production to be related to metabolism. The use of an extensive suite of very high time response instruments allows for differentiation of individual methane producing rumination events and respiratory CO2 from possible background interferences. The results of these studies will be presented and compared to data from traditional chamber experiments.

  5. A new process to improve short-chain fatty acids and bio-methane generation from waste activated sludge.

    PubMed

    Dong, Bin; Gao, Peng; Zhang, Dong; Chen, Yinguang; Dai, Lingling; Dai, Xiaohu

    2016-05-01

    As an important intermediate product, short-chain fatty acids (SCFAs) can be generated after hydrolysis and acidification from waste activated sludge, and then can be transformed to methane during anaerobic digestion process. In order to obtain more SCFA and methane, most studies in literatures were centered on enhancing the hydrolysis of sludge anaerobic digestion which was proved as un-efficient. Though the alkaline pretreatment in our previous study increased both the hydrolysis and acidification processes, it had a vast chemical cost which was considered uneconomical. In this paper, a low energy consumption pretreatment method, i.e. enhanced the whole three stages of the anaerobic fermentation processes at the same time, was reported, by which hydrolysis and acidification were both enhanced, and the SCFA and methane generation can be significantly improved with a small quantity of chemical input. Firstly, the effect of different pretreated temperatures and pretreatment time on sludge hydrolyzation was compared. It was found that sludge pretreated at 100°C for 60min can achieve the maximal hydrolyzation. Further, effects of different initial pHs on acidification of the thermal pretreated sludge were investigated and the highest SCFA was observed at initial pH9.0 with fermentation time of 6d, the production of which was 348.63mg COD/gVSS (6.8 times higher than the blank test) and the acetic acid was dominant acid. Then, the mechanisms for this new pretreatment significantly improving SCFA production were discussed. Finally, the effect of this low energy consumption pretreatment on methane generation was investigated. Copyright © 2015. Published by Elsevier B.V.

  6. Enteric methane production and ruminal fermentation from forage brassica diets fed in continuous culture

    USDA-ARS?s Scientific Manuscript database

    Brassicas provide forage for livestock during the late fall when traditional perennial cool-season forages are not productive. However, little research exists on ruminal fermentation and methane(CH4) production of brassicas fed as forage. A continuous culture fermentor system was used to assess nutr...

  7. Hydrogen and methane gases are frequently detected in the stomach.

    PubMed

    Urita, Yoshihisa; Ishihara, Susumu; Akimoto, Tatsuo; Kato, Hiroto; Hara, Noriko; Honda, Yoshiko; Nagai, Yoko; Nakanishi, Kazushige; Shimada, Nagato; Sugimoto, Motonobu; Miki, Kazumasa

    2006-05-21

    To investigate the incidence of bacterial overgrowth in the stomach by using a new endoscopic method in which intragastric hydrogen and methane gases are collected and analyzed. Studies were performed in 490 consecutive patients undergoing esophagogastroscopy. At endoscopy, we intubated the stomach without inflation by air, and 20 mL of intragastric gas was collected through the biopsy channel using a 30 mL syringe. Intragastric hydrogen and methane concentrations were immediately measured by gaschromatography. H pylori infection was also determined by serology. Most of intragastric hydrogen and methane levels were less than 15 ppm (parts per million). The median hydrogen and methane values (interquartile range) were 3 (1-8) ppm and 2 (1-5) ppm, respectively. The high hydrogen and methane levels for indication of fermentation were decided if the patient had the values more than 90 percentile range in each sample. When a patient had a high level of hydrogen or methane in one or more samples, the patient was considered to have fermentation. The overall incidence of intragastric fermentation was 15.4% (73/473). Intragastric methane levels were higher in the postoperative group than in other groups. None of the mean hydrogen or methane values was related to H pylori infection. Hydrogen and methane gases are more frequently detected in the stomach than expected, regardless of the presence of abdominal symptoms. Previous gastric surgery influences on the growth of methane-producing bacteria in the fasting stomach.

  8. Ethanol prefermentation of food waste in sequencing batch methane fermentation for improved buffering capacity and microbial community analysis.

    PubMed

    Yu, Miao; Wu, Chuanfu; Wang, Qunhui; Sun, Xiaohong; Ren, Yuanyuan; Li, Yu-You

    2018-01-01

    This study investigates the effects of ethanol prefermentation (EP) on methane fermentation. Yeast was added to the substrate for EP in the sequencing batch methane fermentation of food waste. An Illumina MiSeq high-throughput sequencing system was used to analyze changes in the microbial community. Methane production in the EP group (254mL/g VS) was higher than in the control group (35mL/g VS) because EP not only increased the buffering capacity of the system, but also increased hydrolytic acidification. More carbon source was converted to ethanol in the EP group than in the control group, and neutral ethanol could be converted continuously to acetic acid, which promoted the growth of Methanobacterium and Methanosarcina. As a result, the relative abundance of methane-producing bacteria was significantly higher than that of the control group. Kinetic modeling indicated that the EP group had a higher hydrolysis efficiency and shorter lag phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. [Estimating spatiotemporal dynamics of methane emissions from livestock in China].

    PubMed

    Lin, Yu; Zhang, Wen; Huang, Yao

    2011-08-01

    Combining Tier 2 method presented in the guidelines of the Intergovernmental Panel on Climate Change (IPCC, 2006) with GIS techniques, a primary estimation of methane emission from livestock in 2004 (including emission from enteric fermentation and manure management system) was made with county-level livestock statistics and 1 km x 1 km raster data. The results indicated that the methane emission from livestock was 12.79 x 10(6) tons totally in China, and 11.64 x 10(6) tons from enteric fermentation and 1.16 x 10(6) tons from manure management. The uncertainties of the methane emission from enteric fermentation and manure management were +/- 35.10% and +/- 14. 58% respectively. The high methane emission was at Yellow River basin, especially in the lower reaches of the Yellow River and the North China Plain. The Southwestern China also can be found with high emission. In accordance with the seasonal temperature changes, the temporal variation of manure management emission was estimated the highest in summer and the lowest in winter.

  10. Anaerobic degradation of renewable biomass for production of methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajoka, M.I.; Tabassum, R.; Malik, K.A.

    1996-12-31

    Anaerobic degradation of renewable biomass namely kallar grass (KG) (Leptochloafusca L. Kunth), Atriplex sp, wheat straw, cotton stalk, cotton lint and molasses was carried out at 37{degrees}C in a 15 litre fermentor, using laboratory enriched co-culture of fermentative, acetogenic and methanogenic organisms. Maximum reduction of volatile solids (VS) was from causticized KG, and cotton lint, followed by causticized wheat straw and Atriplex sp. followed by causticized wheat straw and Atriplex sp. Maximum production of methane was obtained from NaOH-pretreated KG with a process product yield (Y{sub p/s}) of 0.9 m{sup 3}/kg VS with a volumetric productivity (Q{sub p}) of 4.24more » L/day after 19 days of fermentation. Maximum methane content in the gas mixture was 96% with average of 78.6{+-}21.6. The Y{sub p/s} in 1000 litre digestor was 0.7 m{sup 3}/kg VS from a 3% suspension of uncaustisized kallar grass.« less

  11. Modification of ruminal fermentation and methane production by adding legumes containing condensed tannins to an orchardgrass diet in continuous culture systems

    USDA-ARS?s Scientific Manuscript database

    Condensed tannins (CT) can alter ruminal fermentation and enteric methane (CH4) production in ruminants; however, research is lacking on how increased CT levels affect nutrient digestibility, volatile fatty acid (VFA) production, bacterial protein synthesis, fatty acid (FA) profiles, protozoal popul...

  12. Ensiling of seaweed for a seaweed biofuel industry.

    PubMed

    Herrmann, Christiane; FitzGerald, Jamie; O'Shea, Richard; Xia, Ao; O'Kiely, Pádraig; Murphy, Jerry D

    2015-11-01

    Effective biogas production from seaweed necessitates harvest at times of peak quality of biomass and low-loss preservation for year-around supply. Ensiling of five seaweed species and storage up to 90days was investigated as a method to preserve the methane yield potential. Adequate acidification by natural lactic acid fermentation was difficult due to low rapidly fermentable carbohydrate contents, high buffering capacities and low initial numbers of lactic acid bacteria. Nevertheless, products of silage fermentation increased methane yields by up to 28% and compensated for volatile solid losses during ensiling. Preservation of the original methane yield potential was achieved for four of five seaweed species, provided that silage effluent is collected and utilised. 10-28% of the ensiled biomass was released as effluent with methane yields of 218-423LNkg(-1) VS. If further optimised, ensiling represents an effective method of preservation crucial for an efficient seaweed biofuel industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Nutrient and energy content, in vitro ruminal fermentation characteristics and methanogenic potential of alpine forage plant species during early summer.

    PubMed

    Jayanegara, Anuraga; Marquardt, Svenja; Kreuzer, Michael; Leiber, Florian

    2011-08-15

    Plants growing on alpine meadows are reported to be rich in phenols. Such compounds may affect ruminal fermentation and reduce the plants' methanogenic potential, making alpine grazing advantageous in this respect. The objective of this study was to quantify nutrients and phenols in Alpine forage grasses, herbs and trees collected over 2 years and, in a 24 h in vitro incubation, their effects on ruminal fermentation parameters. The highest in vitro gas production, resulting in metabolisable energy values around 10 MJ kg⁻¹, were found with Alchemilla xanthochlora and Crepis aurea (herbaceous species) and with Sambucus nigra leaves and flowers (tree species). Related to the amount of total gas production, methane formation was highest with Nardus stricta, and lowest with S. nigra and A. xanthochlora. In addition, Castanea sativa leaves led to an exceptional low methane production, but this was accompanied by severely impaired ruminal fermentation. When the data were analysed by principal component analysis, phenol concentrations were negatively related with methane proportion in total gas. Variation in methane production potential across the investigated forages was small. The two goals of limited methane production potential and high nutritive value for ruminants were met best by A. xanthochlora and S. nigra. Copyright © 2011 Society of Chemical Industry.

  14. Development of feeding systems and strategies of supplementation to enhance rumen fermentation and ruminant production in the tropics

    PubMed Central

    2013-01-01

    The availability of local feed resources in various seasons can contribute as essential sources of carbohydrate and protein which significantly impact rumen fermentation and the subsequent productivity of the ruminant. Recent developments, based on enriching protein in cassava chips, have yielded yeast fermented cassava chip protein (YEFECAP) providing up to 47.5% crude protein (CP), which can be used to replace soybean meal. The use of fodder trees has been developed through the process of pelleting; Leucaena leucocephala leaf pellets (LLP), mulberry leaf pellets (MUP) and mangosteen peel and/or garlic pellets, can be used as good sources of protein to supplement ruminant feeding. Apart from producing volatile fatty acids and microbial proteins, greenhouse gases such as methane are also produced in the rumen. Several methods have been used to reduce rumen methane. However, among many approaches, nutritional manipulation using feed formulation and feeding management, especially the use of plant extracts or plants containing secondary compounds (condensed tannins and saponins) and plant oils, has been reported. This approach could help todecrease rumen protozoa and methanogens and thus mitigate the production of methane. At present, more research concerning this burning issue - the role of livestock in global warming - warrants undertaking further research with regard to economic viability and practical feasibility. PMID:23981662

  15. Fermentation Enhancement of Methanogenic Archaea Consortia from an Illinois Basin Coalbed via DOL Emulsion Nutrition

    PubMed Central

    Xiao, Dong; Peng, Su-Ping; Wang, En-Yuan

    2015-01-01

    Microbially enhanced coalbed methane technology must be used to increase the methane content in mining and generate secondary biogenic gas. In this technology, the metabolic processes of methanogenic consortia are the basis for the production of biomethane from some of the organic compounds in coal. Thus, culture nutrition plays an important role in remediating the nutritional deficiency of a coal seam. To enhance the methane production rates for microorganism consortia, different types of nutrition solutions were examined in this study. Emulsion nutrition solutions containing a novel nutritional supplement, called dystrophy optional modification latex, increased the methane yield for methanogenic consortia. This new nutritional supplement can help methanogenic consortia form an enhanced anaerobic environment, optimize the microbial balance in the consortia, and improve the methane biosynthesis rate. PMID:25884952

  16. Metaproteomics analysis of the functional insights into microbial communities of combined hydrogen and methane production by anaerobic fermentation from reed straw.

    PubMed

    Jia, Xuan; Xi, Bei-Dou; Li, Ming-Xiao; Yang, Yang; Wang, Yong

    2017-01-01

    A metaproteomic approach was used to analyse the proteins expressed and provide functional evidence of key metabolic pathways in the combined production of hydrogen and methane by anaerobic fermentation (CHMP-AF) for reed straw utilisation. The functions and structures of bacteria and archaea populations show significant succession in the CHMP-AF process. There are many kinds of bacterial functional proteins, mainly belonging to phyla Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes, that are involved in carbohydrate metabolism, energy metabolism, lipid metabolism, and amino acid metabolism. Ferredoxin-NADP reductase, present in bacteria in genus Azotobacter, is an important enzyme for NADH/NAD+ equilibrium regulation in hydrogen production. The archaeal functional proteins are mainly involved in methane metabolism in energy metabolism, such as acetyl-CoA decarboxylase, and methyl-coenzyme M reductase, and the acetic acid pathway exhibited the highest proportion of the total. The archaea of genus Methanosarcina in phylum Euryarchaeota can produce methane under the effect of multi-functional proteins through acetic acid, CO2 reduction, and methyl nutrient pathways. The study demonstrates metaproteomics as a new way of uncovering community functional and metabolic activity. The combined information was used to identify the metabolic pathways and organisms crucial for lignocellulosic biomass degradation and biogas production. This also regulates the process from its protein levels and improves the efficiency of biogas production using reed straw biomass.

  17. Metaproteomics analysis of the functional insights into microbial communities of combined hydrogen and methane production by anaerobic fermentation from reed straw

    PubMed Central

    Yang, Yang; Wang, Yong

    2017-01-01

    A metaproteomic approach was used to analyse the proteins expressed and provide functional evidence of key metabolic pathways in the combined production of hydrogen and methane by anaerobic fermentation (CHMP-AF) for reed straw utilisation. The functions and structures of bacteria and archaea populations show significant succession in the CHMP-AF process. There are many kinds of bacterial functional proteins, mainly belonging to phyla Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes, that are involved in carbohydrate metabolism, energy metabolism, lipid metabolism, and amino acid metabolism. Ferredoxin-NADP reductase, present in bacteria in genus Azotobacter, is an important enzyme for NADH/NAD+ equilibrium regulation in hydrogen production. The archaeal functional proteins are mainly involved in methane metabolism in energy metabolism, such as acetyl-CoA decarboxylase, and methyl-coenzyme M reductase, and the acetic acid pathway exhibited the highest proportion of the total. The archaea of genus Methanosarcina in phylum Euryarchaeota can produce methane under the effect of multi-functional proteins through acetic acid, CO2 reduction, and methyl nutrient pathways. The study demonstrates metaproteomics as a new way of uncovering community functional and metabolic activity. The combined information was used to identify the metabolic pathways and organisms crucial for lignocellulosic biomass degradation and biogas production. This also regulates the process from its protein levels and improves the efficiency of biogas production using reed straw biomass. PMID:28817657

  18. From Animal Waste to Energy; A Study of Methane Gas converted to Energy.

    NASA Astrophysics Data System (ADS)

    Weiss, S.

    2016-12-01

    Does animal waste produce enough harvestable energy to power a household, and if so, what animal's waste can produce the most methane that is usable. What can we power using this methane and how can we power these appliances within an average household using the produced methane from animal waste. The waste product from animals is readily available all over the world, including third world countries. Using animal waste to produce green energy would allow low cost energy sources and give independence from fossil fuels. But which animal produces the most methane and how hard is it to harvest? Before starting this experiment I knew that some cow farms in the northern part of the Central California basin were using some of the methane from the waste to power their machinery as a safer, cheaper and greener source through the harnessed methane gas in a digester. The fermentation process would occur in the digester producing methane gasses as a side product. Methane that is collected can later be burned for energy. I have done a lot of research on this experiment and found that many different farm and ranch animals produce methane, but it was unclear which produced the most. I decided to focus my study on the waste from cows, horses, pig and dogs to try to find the most efficient and strongest source of methane from animal waste. I produced an affordable methane digester from plastic containers with a valve to attach a hose. By putting in the waste product and letting it ferment with water, I was able to produce and capture methane, then measure the amount with a Gaslab meter. By showing that it is possible to create energy with this simple digester, it could reduce pollution and make green energy easily available to communities all over the world. Eventually this could result into our sewer systems converting waste to energy, producing an energy source right in your home.

  19. Modeling of acetate-type fermentation of sugar-containing wastewater under acidic pH conditions.

    PubMed

    Huang, Liang; Pan, Xin-Rong; Wang, Ya-Zhou; Li, Chen-Xuan; Chen, Chang-Bin; Zhao, Quan-Bao; Mu, Yang; Yu, Han-Qing; Li, Wen-Wei

    2018-01-01

    In this study, a kinetic model was developed based on Anaerobic Digestion Model No. 1 to provide insights into the directed production of acetate and methane from sugar-containing wastewater under low pH conditions. The model sufficiently described the dynamics of liquid-phase and gaseous products in an anaerobic membrane bioreactor by comprehensively considering the syntrophic bioconversion steps of sucrose hydrolysis, acidogenesis, acetogenesis and methanogenesis under acidic pH conditions. The modeling results revealed a significant pH-dependency of hydrogenotrophic methanogenesis and ethanol-producing processes that govern the sucrose fermentative pathway through changing the hydrogen yield. The reaction thermodynamics of such acetate-type fermentation were evaluated, and the implications for process optimization by adjusting the hydraulic retention time were discussed. This work sheds light on the acid-stimulated acetate-type fermentation process and may lay a foundation for optimization of resource-oriented processes for treatment of food wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effect of oilseed source on ruminal fermentation and methane production of a grass-legume diet in continuous culture

    USDA-ARS?s Scientific Manuscript database

    Addition of oilseeds to pasture-based ruminant diets has been shown to decrease enteric CH4 emissions. However, little research has directly compared the effect of oilseed source on ruminal fermentation and Methane (CH4) production. A 4-unit continuous culture fermentor system was used to test 4 oil...

  1. Mutant strain of C. acetobutylicum and process for making butanol

    DOEpatents

    Jain, Mahendra K.; Beacom, Daniel; Datta, Rathin

    1993-01-01

    A biologically pure asporogenic mutant of Clostridium acetobutylicum is produced by growing sporogenic C. acetobutylicum ATCC 4259 and treating the parent strain with ethane methane sulfonate. The mutant which as been designated C. acetobutylicum ATCC 55025 is useful in an improved ABE fermentation process, and produces high concentrations of butanol and total solvents.

  2. Advances in Estimating Methane Emissions from Enteric Fermentation

    NASA Astrophysics Data System (ADS)

    Kebreab, E.; Appuhamy, R.

    2016-12-01

    Methane from enteric fermentation of livestock is the largest contributor to the agricultural GHG emissions. The quantification of methane emissions from livestock on a global scale relies on prediction models because measurements require specialized equipment and may be expensive. Most countries use a fixed number (kg methane/year) or calculate as a proportion of energy intake to estimate enteric methane emissions in national inventories. However, diet composition significantly regulates enteric methane production in addition to total feed intake and thus the main target in formulating mitigation options. The two current methodologies are not able to assess mitigation options, therefore, new estimation methods are required that can take feed composition into account. The availability of information on livestock production systems has increased substantially enabling the development of more detailed methane prediction models. Limited number of process-based models have been developed that represent biological relationships in methane production, however, these require extensive inputs and specialized software that may not be easily available. Empirical models may provide a better alternative in practical situations due to less input requirements. Several models have been developed in the last 10 years but none of them work equally well across all regions of the world. The more successful models particularly in North America require three major inputs: feed (or energy) intake, fiber and fat concentration of the diet. Given the significant variability of emissions within regions, models that are able to capture regional variability of feed intake and diet composition perform the best in model evaluation with independent data. The utilization of such models may reduce uncertainties associated with prediction of methane emissions and allow a better examination and representation of policies regulating emissions from cattle.

  3. Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows.

    PubMed

    Guyader, J; Eugène, M; Doreau, M; Morgavi, D P; Gérard, C; Martin, C

    2017-03-01

    The effect of tea saponin supplementation in the ruminant diet on methane emissions, rumen fermentation, and digestive processes is still under debate. The objective of this study was to assess the effect of this plant extract on methanogenesis, total-tract digestibility, and lactating performances of dairy cows. The work included 2 independent and successive experiments. First, the effect of 7 tea saponin doses (from 0 to 0.50 g/L) on methane emissions and protozoa concentrations was tested in 2 repeated in vitro batch culture incubations using bovine rumen contents as inoculum and a cereal mixture as substrate. After 18 h of incubation, total gas production and composition as well as rumen fermentation parameters and protozoa concentration were analyzed. Increasing dosage of the plant extract reduced methane production and protozoa concentration, with a maximum reduction of 29% for CH 4 (mL/g of substrate) and 51% for protozoa (10 5 /mL). Tea saponin did not affect volatile fatty acids concentration, but marginally decreased total gas production by 5% at the highest dose. Second, a 2-period crossover design experiment was carried out with 8 lactating dairy cows fed a basal diet (54% corn silage, 6% hay, and 40% pelleted concentrates on a dry matter basis) without (control) or with 0.52% tea saponin (TSP). Each experimental period lasted 5 wk. Animals were fed ad libitum during the first 3 wk of the period (wk 1, 2, and 3) and restricted (95% of ad libitum intake) during the last 2 wk (wk 4 and 5). Intake and milk production were recorded daily. Methane emissions were quantified using open chambers (2 d, wk 4). Total-tract digestibility and nitrogen balance were determined from total feces and urine collected separately (5 d, wk 5). Rumen fermentation parameters and protozoa concentration were analyzed from samples taken after morning feeding (1 d, wk 5). Milk production, dry matter intake, and feed efficiency were reduced with TSP (-18, -12, and -8%, respectively). As daily methane production (g/d) was not affected, methane emissions (g/kg of dry matter intake) increased by 14% with TSP. Total-tract digestibility and nitrogen balance were similar between diets, except for acid detergent fiber digestibility, which tended to be improved with TSP (+4 percentage units). Rumen fermentation parameters and protozoa concentration were relatively unchanged by diets. Under the conditions of this experiment, tea saponin is not efficient to reduce methane emissions from dairy cows. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Seeking key microorganisms for enhancing methane production in anaerobic digestion of waste sewage sludge.

    PubMed

    Mustapha, Nurul Asyifah; Hu, Anyi; Yu, Chang-Ping; Sharuddin, Siti Suhailah; Ramli, Norhayati; Shirai, Yoshihito; Maeda, Toshinari

    2018-06-01

    Efficient approaches for the utilization of waste sewage sludge have been widely studied. One of them is to use it for the bioenergy production, specifically methane gas which is well-known to be driven by complex bacterial interactions during the anaerobic digestion process. Therefore, it is important to understand not only microorganisms for producing methane but also those for controlling or regulating the process. In this study, azithromycin analogs belonging to macrolide, ketolide, and lincosamide groups were applied to investigate the mechanisms and dynamics of bacterial community in waste sewage sludge for methane production. The stages of anaerobic digestion process were evaluated by measuring the production of intermediate substrates, such as protease activity, organic acids, the quantification of bacteria and archaea, and its community dynamics. All azithromycin analogs used in this study achieved a high methane production compared to the control sample without any antibiotic due to the efficient hydrolysis process and the presence of important fermentative bacteria and archaea responsible in the methanogenesis stage. The key microorganisms contributing to the methane production may be Clostridia, Cladilinea, Planctomycetes, and Alphaproteobacteria as an accelerator whereas Nitrosomonadaceae and Nitrospiraceae may be suppressors for methane production. In conclusion, the utilization of antibiotic analogs of macrolide, ketolide, and lincosamide groups has a promising ability in finding the essential microorganisms and improving the methane production using waste sewage sludge.

  5. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    PubMed

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90 days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Are methane production and cattle performance related?

    USDA-ARS?s Scientific Manuscript database

    Methane is a product of fermentation of feed in ruminant animals. Approximately 2 -12% of the gross energy consumed by cattle is released through enteric methane production. There are three primary components that contribute to the enteric methane footprint of an animal. Those components are dry ...

  7. Clean fuels from biomass

    NASA Technical Reports Server (NTRS)

    Hsu, Y.-Y.

    1976-01-01

    The paper discusses the U.S. resources to provide fuels from agricultural products, the present status of conversion technology of clean fuels from biomass, and a system study directed to determine the energy budget, and environmental and socioeconomic impacts. Conversion processes are discussed relative to pyrolysis and anaerobic fermentation. Pyrolysis breaks the cellulose molecules to smaller molecules under high temperature in the absence of oxygen, wheras anaerobic fermentation is used to convert biomass to methane by means of bacteria. Cost optimization and energy utilization are also discussed.

  8. Ecosystem and physiological controls over methane production in northern wetlands

    NASA Technical Reports Server (NTRS)

    Valentine, David W.; Holland, Elisabeth A.; Schimel, David S.

    1994-01-01

    Peat chemistry appears to exert primary control over methane production rates in the Canadian Northern Wetlands Study (NOWES) area. We determined laboratory methane production rate potentials in anaerobic slurries of samples collected from a transect of sites through the NOWES study area. We related methane production rates to indicators of resistance to microbial decay (peat C: N and lignin: N ratios) and experimentally manipulated substrate availability for methanogenesis using ethanol (EtOH) and plant litter. We also determined responses of methane production to pH and temperature. Methane production potentials declined along the gradient of sites from high rates in the coastal fens to low rates in the interior bogs and were generally highest in surface layers. Strong relationships between CH4 production potentials and peat chemistry suggested that methanogenesis was limited by fermentation rates. Methane production at ambient pH responded strongly to substrate additions in the circumneutral fens with narrow lignin: N and C: N ratios (delta CH4/delta EtOH = 0.9-2.3 mg/g) and weakly in the acidic bogs with wide C: N and lignin: N ratios (delta CH4/delta EtOH = -0.04-0.02 mg/g). Observed Q(sub 10) values ranged from 1.7 to 4.7 and generally increased with increasing substrate availability, suggesting that fermentation rates were limiting. Titration experiments generally demonstrated inhibition of methanogenesis by low pH. Our results suggest that the low rates of methane emission observed in interior bogs during NOWES likely resulted from pH and substrate quality limitation of the fermentation step in methane production and thus reflect intrinsically low methane production potentials. Low methane emission rates observed during NOWES will likely be observed in other northern wetland regions with similar vegetation chemistry.

  9. Creating Economic Incentives for Waste Disposal in Developing Countries Using the MixAlco Process.

    PubMed

    Lonkar, Sagar; Fu, Zhihong; Wales, Melinda; Holtzapple, Mark

    2017-01-01

    In rapidly growing developing countries, waste disposal is a major challenge. Current waste disposal methods (e.g., landfills and sewage treatment) incur costs and often are not employed; thus, wastes accumulate in the environment. To address this challenge, it is advantageous to create economic incentives to collect and process wastes. One approach is the MixAlco process, which uses methane-inhibited anaerobic fermentation to convert waste biomass into carboxylate salts, which are chemically converted to industrial chemicals and fuels. In this paper, humanure (raw human feces and urine) is explored as a possible nutrient source for fermentation. This work focuses on fermenting municipal solid waste (energy source) and humanure (nutrient source) in batch fermentations. Using the Continuum Particle Distribution Model (CPDM), the performance of continuous countercurrent fermentation was predicted at different volatile solid loading rates (VSLR) and liquid residence times (LRT). For a four-stage countercurrent fermentation system at VSLR = 4 g/(L∙day), LRT = 30 days, and solids concentration = 100 g/L liquid, the model predicts carboxylic acid concentration of 68 g/L and conversion of 78.5 %.

  10. Elimination patterns of worldwide used sulfonamides and tetracyclines during anaerobic fermentation.

    PubMed

    Spielmeyer, Astrid; Breier, Bettina; Groißmeier, Kathrin; Hamscher, Gerd

    2015-10-01

    Antibiotics such as sulfonamides and tetracyclines are frequently used in veterinary medicine. Due to incomplete absorption in the animal gut and/or unmetabolized excretion, the substances can enter the environment by using manure as soil fertilizer. The anaerobic fermentation process of biogas plants is discussed as potential sink for antibiotic compounds. However, negative impacts of antibiotics on the fermentation process are suspected. The elimination of sulfadiazine, sulfamethazine, tetracycline and chlortetracycline in semi-continuous lab-scale fermenters was investigated. Both biogas production and methane yield were not negatively affected by concentrations up to 38 mg per kg for sulfonamides and 7 mg per kg for tetracyclines. All substances were partly eliminated with elimination rates between 14% and 89%. Both matrix and structure of the target molecule influenced the elimination rate. Chlortetracycline was mainly transformed into iso-chlortetracycline. In all other cases, the elimination pathways remained undiscovered; however, sorption processes seem to have a negligible impact. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effect of pH buffering capacity and sources of dietary sulfur on rumen fermentation, sulfide production, methane production, sulfate reducing bacteria, and total Archaea in in vitro rumen cultures.

    PubMed

    Wu, Hao; Meng, Qingxiang; Yu, Zhongtang

    2015-06-01

    The effects of three types of dietary sulfur on in vitro fermentation characteristics, sulfide production, methane production, and microbial populations at two different buffer capacities were examined using in vitro rumen cultures. Addition of dry distilled grain with soluble (DDGS) generally decreased total gas production, degradation of dry matter and neutral detergent fiber, and concentration of total volatile fatty acids, while increasing ammonia concentration. High buffering capacity alleviated these adverse effects on fermentation. Increased sulfur content resulted in decreased methane emission, but total Archaea population was not changed significantly. The population of sulfate reducing bacteria was increased in a sulfur type-dependent manner. These results suggest that types of dietary sulfur and buffering capacity can affect rumen fermentation and sulfide production. Diet buffering capacity, and probably alkalinity, may be increased to alleviate some of the adverse effects associated with feeding DDGS at high levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Changes in methane emission, rumen fermentation, and methanogenic community in response to silage and dry cornstalk diets.

    PubMed

    Chong, Liu; Zhuping, Zhu; Tongjun, Guo; Yongming, Luo; Hongmin, Dong

    2014-06-01

    This study aimed to investigate the effect of silage or dry cornstalk diets on methane emission, rumen fermentation, and methanogenic community, and reveal whether the change of methanogenic compositions was related to the methane production. A total of 39 sheep were divided into four groups, fed diets of different concentrate level based on silage or dry cornstalk roughage for 40 days. It was found that, at 20% concentrate level, the sheep fed silage could suppress methanogenesis significantly in contrast with the silage diet (p < 0.05). The ruminal acetate:propionate ratio was 3.17 in the silage-fed sheep significantly lower than 3.78 in the dry cornstalk-fed sheep (p < 0.05), reflecting the effect of fermentation on methane output was related to roughage types. Furthermore, the methanogens was found to be significantly lower abundance (p < 0.05), and showed a different pattern using multivariate statistical analysis in silage-fed sheep. Compared with dry cornstalk diet, silage diet of 20% concentrate reduced methane production, decreased methanogenic abundance, and induced change of Methanobrevibacter composition at strain levels. This study showed variation of methanogenic compositions at strain level and its probable relationship with methane production, and provided microbial information to explain the low methane output when the animals were fed silage. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The effect of an isoflavonid-rich liquorice extract on fermentation, methanogenesis and the microbiome in the rumen simulation technique.

    PubMed

    Ramos-Morales, E; Rossi, G; Cattin, M; Jones, E; Braganca, R; Newbold, C J

    2018-03-01

    Due to the antimicrobial activity of flavonoids, it has been suggested that they may provide a possible alternative to antibiotics to stimulate productivity and reduce the environmental load of ruminant agriculture. We hypothesised that an extract of liquorice, rich in prenylated isoflavonoids and particularly glabridin, might potentially improve the efficiency of nitrogen utilisation and reduce methane production in the rumen. When added to a long-term rumen simulating fermentor (RUSITEC), liquorice extract at 1 g L-1 decreased ammonia production (-51%; P < 0.001) without affecting the overall fermentation process. When added at 2 g L-1, decreases in not only ammonia production (-77%; P < 0.001), but also methane (-27%; P = 0.039) and total VFA production (-15%; P = 0.003) were observed. These effects in fermentation were probably related to a decrease in protozoa numbers, a less diverse bacteria population as well as changes in the structure of both the bacterial and archaeal communities. The inclusion of an isoflavonoid-rich extract from liquorice in the diet may potentially improve the efficiency of the feed utilisation by ruminants.

  14. Investigation of the microbial metabolism of carbon dioxide and hydrogen in the kangaroo foregut by stable isotope probing

    PubMed Central

    Godwin, Scott; Kang, Alicia; Gulino, Lisa-Maree; Manefield, Mike; Gutierrez-Zamora, Maria-Luisa; Kienzle, Marco; Ouwerkerk, Diane; Dawson, Kerri; Klieve, Athol V

    2014-01-01

    Kangaroos ferment forage material in an enlarged forestomach analogous to the rumen, but in contrast to ruminants, they produce little or no methane. The objective of this study was to identify the dominant organisms and pathways involved in hydrogenotrophy in the kangaroo forestomach, with the broader aim of understanding how these processes are able to predominate over methanogenesis. Stable isotope analysis of fermentation end products and RNA stable isotope probing (RNA-SIP) were used to investigate the organisms and biochemical pathways involved in the metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. Our results clearly demonstrate that the activity of bacterial reductive acetogens is a key factor in the reduced methane output of kangaroos. In in vitro fermentations, the microbial community of the kangaroo foregut produced very little methane, but produced a significantly greater proportion of acetate derived from carbon dioxide than the microbial community of the bovine rumen. A bacterial operational taxonomic unit closely related to the known reductive acetogen Blautia coccoides was found to be associated with carbon dioxide and hydrogen metabolism in the kangaroo foregut. Other bacterial taxa including members of the genera Prevotella, Oscillibacter and Streptococcus that have not previously been reported as containing hydrogenotrophic organisms were also significantly associated with metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. PMID:24621520

  15. Investigation of the microbial metabolism of carbon dioxide and hydrogen in the kangaroo foregut by stable isotope probing.

    PubMed

    Godwin, Scott; Kang, Alicia; Gulino, Lisa-Maree; Manefield, Mike; Gutierrez-Zamora, Maria-Luisa; Kienzle, Marco; Ouwerkerk, Diane; Dawson, Kerri; Klieve, Athol V

    2014-09-01

    Kangaroos ferment forage material in an enlarged forestomach analogous to the rumen, but in contrast to ruminants, they produce little or no methane. The objective of this study was to identify the dominant organisms and pathways involved in hydrogenotrophy in the kangaroo forestomach, with the broader aim of understanding how these processes are able to predominate over methanogenesis. Stable isotope analysis of fermentation end products and RNA stable isotope probing (RNA-SIP) were used to investigate the organisms and biochemical pathways involved in the metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. Our results clearly demonstrate that the activity of bacterial reductive acetogens is a key factor in the reduced methane output of kangaroos. In in vitro fermentations, the microbial community of the kangaroo foregut produced very little methane, but produced a significantly greater proportion of acetate derived from carbon dioxide than the microbial community of the bovine rumen. A bacterial operational taxonomic unit closely related to the known reductive acetogen Blautia coccoides was found to be associated with carbon dioxide and hydrogen metabolism in the kangaroo foregut. Other bacterial taxa including members of the genera Prevotella, Oscillibacter and Streptococcus that have not previously been reported as containing hydrogenotrophic organisms were also significantly associated with metabolism of hydrogen and carbon dioxide in the kangaroo forestomach.

  16. Lambs Fed Fresh Winter Forage Rape (Brassica napus L.) Emit Less Methane than Those Fed Perennial Ryegrass (Lolium perenne L.), and Possible Mechanisms behind the Difference

    PubMed Central

    Sun, Xuezhao; Henderson, Gemma; Cox, Faith; Molano, German; Harrison, Scott J.; Luo, Dongwen; Janssen, Peter H.; Pacheco, David

    2015-01-01

    The objectives of this study were to examine long-term effects of feeding forage rape (Brassica napus L.) on methane yields (g methane per kg of feed dry matter intake), and to propose mechanisms that may be responsible for lower emissions from lambs fed forage rape compared to perennial ryegrass (Lolium perenne L.). The lambs were fed fresh winter forage rape or ryegrass as their sole diet for 15 weeks. Methane yields were measured using open circuit respiration chambers, and were 22-30% smaller from forage rape than from ryegrass (averages of 13.6 g versus 19.5 g after 7 weeks, and 17.8 g versus 22.9 g after 15 weeks). The difference therefore persisted consistently for at least 3 months. The smaller methane yields from forage rape were not related to nitrate or sulfate in the feed, which might act as alternative electron acceptors, or to the levels of the potential inhibitors glucosinolates and S-methyl L-cysteine sulfoxide. Ruminal microbial communities in forage rape-fed lambs were different from those in ryegrass-fed lambs, with greater proportions of potentially propionate-forming bacteria, and were consistent with less hydrogen and hence less methane being produced during fermentation. The molar proportions of ruminal acetate were smaller and those of propionate were greater in forage rape-fed lambs, consistent with the larger propionate-forming populations and less hydrogen production. Forage rape contained more readily fermentable carbohydrates and less structural carbohydrates than ryegrass, and was more rapidly degraded in the rumen, which might favour this fermentation profile. The ruminal pH was lower in forage rape-fed lambs, which might inhibit methanogenic activity, shifting the rumen fermentation to more propionate and less hydrogen and methane. The significance of these two mechanisms remains to be investigated. The results suggest that forage rape is a potential methane mitigation tool in pastoral-based sheep production systems. PMID:25803688

  17. The effect of pectin, corn and wheat starch, inulin and pH on in vitro production of methane, short chain fatty acids and on the microbial community composition in rumen fluid.

    PubMed

    Poulsen, Morten; Jensen, Bent Borg; Engberg, Ricarda M

    2012-02-01

    Methane emission from livestock, ruminants in particular, contributes to the build up of greenhouse gases in the atmosphere. Therefore the focus on methane emission from ruminants has increased. The objective of this study was to investigate mechanisms for methanogenesis in a rumen fluid-based in vitro fermentation system as a consequence of carbohydrate source (pectin, wheat and corn starch and inulin) and pH (ranging from 5.5 to 7.0). Effects were evaluated with respect to methane and short chain fatty acid (SCFA) production, and changes in the microbial community in the ruminal fluid as assessed by terminal-restriction fragment length polymorphism (T-RFLP) analysis. Fermentation of pectin resulted in significantly lower methane production rates during the first 10 h of fermentation compared to the other substrates (P = 0.001), although total methane production was unaffected by carbohydrate source (P = 0.531). Total acetic acid production was highest for pectin and lowest for inulin (P < 0.001) and vice versa for butyric acid production from pectin and inulin (P < 0.001). Total propionic acid production was unaffected by the carbohydrate source (P = 0.791). Methane production rates were significantly lower for fermentations at pH 5.5 and 7.0 (P = 0.005), sustained as a trend after 48 h (P = 0.059), indicating that there was a general optimum for methanogenic activity in the pH range from 6.0 to 6.5. Decreasing pH from 7.0 to 5.5 significantly favored total butyric acid production (P < 0.001). Principle component analysis of T-RFLP patterns revealed that both pectin and pH 5.5 resulted in pronounced changes in the microbial community composition. This study demonstrates that both carbohydrate source and pH affect methane and SCFA production patterns, and the microbial community composition in rumen fluid. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. The quality of microorganism on coal bed methane processing with various livestock waste in laboratory scale

    NASA Astrophysics Data System (ADS)

    Marlina, E. T.; Kurnani, Tb. B. A.; Hidayati, Y. A.; Rahmah, K. N.; Joni, I. M.; Harlia, E.

    2018-02-01

    Coal-bed Methane (CBM) is a form of natural gas extracted from coal and has been developed as future energy source. Organic materials are required as nutrition source for methanogenic microbes. The addition of cattle waste in the formation of CBM on coal media can be utilized as organic materials as well as methanogenic microbe sources. This research covered study of total amount of anaerobic microbes, methane production, protozoa, fungi and endoparasites. Descriptive approach is conducted for this study. Media used for culturing methanogens is Nutrient Agar in powder form and Lactose Broth with the addition of rumen fluid. The technique for counting microbes is through Total Plate Count in anaerobic Hungate tube, methane was analyzed using Gas Chromatography (GC), while identification of protozoa, fungi and endoparasites based on its morphology is conducted before and after anaerobic fermentation process. Incubation period is 30 days. The results showed that growth of anaerobic microbes from dairy cattle waste i.e. biogas sludge is 3.57×103 CFU/ml and fresh feces is 3.38 × 104 CFU/ml, growth of anaerobic microbes from beef cattle waste i.e. biogas sludge is 7.0 × 105 CFU/ml; fresh feces is 7.5 x 104 CFU/ml; and rumen contents of about 1.33 × 108 CFU/ml. Methane production in dairy cattle waste in sludge and fresh feces amounted to 10.57% and 2.39%, respectively. Methane production in beef cattle waste in sludge accounted for 5.95%; in fresh feces it is about 0.41%; and rumen contents of 4.92%. Decreasing of protozoa during fermentation to 84.27%, dominated by Eimeria sp. Decreasing of fungi to 16%, dominated by A. Niger, A. Flavus, A. Fumigatus and Monilia sitophila. Decreasing of endoparasitic worms to 15%, dominated by Strongylus sp. and Fasciola sp. The growth of anaerobic microbes and methane production indicated that dairy cattle waste and beef cattle waste have potential as source of methanogenic microbes, meanwhile the decreasing amount of protozoa, fungi and endoparasites indicated that CBM formation process can reduce pollutants from microorganism in the environment.

  19. The effect of feed composition on anaerobic co-digestion of animal-processing by-products.

    PubMed

    Hidalgo, D; Martín-Marroquín, J M; Corona, F

    2018-06-15

    Four streams and their mixtures have been considered for anaerobic co-digestion, all of them generated during pig carcasses processing or in related industrial activities: meat flour (MF), process water (PW), pig manure (PM) and glycerin (GL). Biochemical methane potential assays were conducted at 37 °C to evaluate the effects of the substrate mix ratio on methane generation and process behavior. The results show that the co-digestion of these products favors the anaerobic fermentation process when limiting the amount of meat flour in the mixture to co-digest, which should not exceed 10%. The ratio of other tested substrates is less critical, because different mixtures reach similar values of methane generation. The presence in the mixture of process water contributes to a quick start of the digester, something very interesting when operating an industrial reactor. The analysis of the fraction digested reveals that the four analyzed streams can be, a priori, suitable for agronomic valorization once digested. Copyright © 2017. Published by Elsevier Ltd.

  20. Photoenhanced anaerobic digestion of organic acids

    DOEpatents

    Weaver, Paul F.

    1990-01-01

    A process is described for rapid conversion of organic acids and alcohols anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

  1. Gene network analysis identifies rumen epithelial cell proliferation, differentiation and metabolic pathways perturbed by diet and correlated with methane production

    PubMed Central

    Xiang, Ruidong; McNally, Jody; Rowe, Suzanne; Jonker, Arjan; Pinares-Patino, Cesar S.; Oddy, V. Hutton; Vercoe, Phil E.; McEwan, John C.; Dalrymple, Brian P.

    2016-01-01

    Ruminants obtain nutrients from microbial fermentation of plant material, primarily in their rumen, a multilayered forestomach. How the different layers of the rumen wall respond to diet and influence microbial fermentation, and how these process are regulated, is not well understood. Gene expression correlation networks were constructed from full thickness rumen wall transcriptomes of 24 sheep fed two different amounts and qualities of a forage and measured for methane production. The network contained two major negatively correlated gene sub-networks predominantly representing the epithelial and muscle layers of the rumen wall. Within the epithelium sub-network gene clusters representing lipid/oxo-acid metabolism, general metabolism and proliferating and differentiating cells were identified. The expression of cell cycle and metabolic genes was positively correlated with dry matter intake, ruminal short chain fatty acid concentrations and methane production. A weak correlation between lipid/oxo-acid metabolism genes and methane yield was observed. Feed consumption level explained the majority of gene expression variation, particularly for the cell cycle genes. Many known stratified epithelium transcription factors had significantly enriched targets in the epithelial gene clusters. The expression patterns of the transcription factors and their targets in proliferating and differentiating skin is mirrored in the rumen, suggesting conservation of regulatory systems. PMID:27966600

  2. Biohythane system using two steps of POME fermentation process for supplying electrical energi : economic evaluation

    NASA Astrophysics Data System (ADS)

    Zuldian, P.; Hastuti, Z. D.; Murti, S. D. S.; Adiarso

    2018-03-01

    Indonesia as the largest producer of palm oil in the world has the prospective to generate additional benefits such as electricity by utilizing Palm Oil Mill Effluent (POME). The high Chemical Oxygen Demand (COD) content of 35,000 ppm POME is a great potential for conversion to hydrogen and methane through a fermentation process. In this study, two stages of fermentation using a microbial consortium have been performed in the 1 m3 BioHythane reactor system to produce biohydrogen and biomethane. After two-stage fermentation process for 24 hours in this system, the microbial consortium succeeds in producing biohydrogen and biomethane of 32 and 60 vol. %, respectively. This gas product after the purification process could be converted to electricity to be 0.02 and 0.75 kWe, respectively. Furthermore, as result of economic calculation analysis, this biohythane system showed up the value of Capital Expenditures (CAPEX) of US 26,39540 and Operating Expenses (OPEX) of US 14,712 per year, and resulted total generated electricity cost of US 2.478 / kWh.

  3. Microbiological fermentation of lignocellulosic biomass: current state and prospects of mathematical modeling.

    PubMed

    Lübken, Manfred; Gehring, Tito; Wichern, Marc

    2010-02-01

    The anaerobic fermentation process has achieved growing importance in practice in recent years. Anaerobic fermentation is especially valuable because its end product is methane, a renewable energy source. While the use of renewable energy sources has accelerated substantially in recent years, their potential has not yet been sufficiently exploited. This is especially true for biogas technology. Biogas is created in a multistage process in which different microorganisms use the energy stored in carbohydrates, fats, and proteins for their metabolism. In order to produce biogas, any organic substrate that is microbiologically accessible can be used. The microbiological process in itself is extremely complex and still requires substantial research in order to be fully understood. Technical facilities for the production of biogas are thus generally scaled in a purely empirical manner. The efficiency of the process, therefore, corresponds to the optimum only in the rarest cases. An optimal production of biogas, as well as a stable plant operation requires detailed knowledge of the biochemical processes in the fermenter. The use of mathematical models can help to achieve the necessary deeper understanding of the process. This paper reviews both the history of model development and current state of the art in modeling anaerobic digestion processes.

  4. Shifts in Rumen Fermentation and Microbiota Are Associated with Dissolved Ruminal Hydrogen Concentrations in Lactating Dairy Cows Fed Different Types of Carbohydrates.

    PubMed

    Wang, Min; Wang, Rong; Xie, Tian Yu; Janssen, Peter H; Sun, Xue Zhao; Beauchemin, Karen A; Tan, Zhi Liang; Gao, Min

    2016-09-01

    Different carbohydrates ingested greatly influence rumen fermentation and microbiota and gaseous methane emissions. Dissolved hydrogen concentration is related to rumen fermentation and methane production. We tested the hypothesis that carbohydrates ingested greatly alter the rumen environment in dairy cows, and that dissolved hydrogen concentration is associated with these changes in rumen fermentation and microbiota. Twenty-eight lactating Chinese Holstein dairy cows [aged 4-5 y, body weight 480 ± 37 kg (mean ± SD)] were used in a randomized complete block design to investigate effects of 4 diets differing in forage content (45% compared with 35%) and source (rice straw compared with a mixture of rice straw and corn silage) on feed intake, rumen fermentation, and microbial populations. Feed intake (10.7-12.6 kg/d) and fiber degradation (0.584-0.692) greatly differed (P ≤ 0.05) between cows fed the 4 diets, leading to large differences (P ≤ 0.05) in gaseous methane yield (27.2-37.3 g/kg organic matter digested), dissolved hydrogen (0.258-1.64 μmol/L), rumen fermentation products, and microbiota. Ruminal dissolved hydrogen was negatively correlated (r < -0.40; P < 0.05) with molar proportion of acetate, numbers of fungi, abundance of Fibrobacter succinogenes, and methane yield, but positively correlated (r > 0.40; P < 0.05) with molar proportions of propionate and n-butyrate, numbers of methanogens, and abundance of Selenomonas ruminantium and Prevotella spp. Ruminal dissolved hydrogen was positively correlated (r = 0.93; P < 0.001) with Gibbs free energy changes of reactions producing greater acetate and hydrogen, but not correlated with those reactions producing more propionate without hydrogen. Changes in fermentation pathways from acetate toward propionate production and in microbiota from fibrolytic toward amylolytic species were closely associated with ruminal dissolved hydrogen in lactating dairy cows. An unresolved paradox was that greater dissolved hydrogen was associated with greater numbers of methanogens but with lower gaseous methane emissions. © 2016 American Society for Nutrition.

  5. Effects of oral nitroethane administration on enteric methane emissions and ruminal fermentation in cattle

    USDA-ARS?s Scientific Manuscript database

    Methane is a potent greenhouse gas and its release to the atmosphere is considered to contribute to global warming. Ruminal enteric methane production represents a loss of 2% to 15% of the animal’s energy intake and contributes nearly 20% of the United States total methane emissions. Studies have ...

  6. Microbial diversity and methanogenic activity of Antrim Shale formation waters from recently fractured wells

    PubMed Central

    Wuchter, Cornelia; Banning, Erin; Mincer, Tracy J.; Drenzek, Nicholas J.; Coolen, Marco J. L.

    2013-01-01

    The Antrim Shale in the Michigan Basin is one of the most productive shale gas formations in the U.S., but optimal resource recovery strategies must rely on a thorough understanding of the complex biogeochemical, microbial, and physical interdependencies in this and similar systems. We used Illumina MiSeq 16S rDNA sequencing to analyze the diversity and relative abundance of prokaryotic communities present in Antrim shale formation water of three closely spaced recently fractured gas-producing wells. In addition, the well waters were incubated with a suite of fermentative and methanogenic substrates in an effort to stimulate microbial methane generation. The three wells exhibited substantial differences in their community structure that may arise from their different drilling and fracturing histories. Bacterial sequences greatly outnumbered those of archaea and shared highest similarity to previously described cultures of mesophiles and moderate halophiles within the Firmicutes, Bacteroidetes, and δ- and ε-Proteobacteria. The majority of archaeal sequences shared highest sequence similarity to uncultured euryarchaeotal environmental clones. Some sequences closely related to cultured methylotrophic and hydrogenotrophic methanogens were also present in the initial well water. Incubation with methanol and trimethylamine stimulated methylotrophic methanogens and resulted in the largest increase in methane production in the formation waters, while fermentation triggered by the addition of yeast extract and formate indirectly stimulated hydrogenotrophic methanogens. The addition of sterile powdered shale as a complex natural substrate stimulated the rate of methane production without affecting total methane yields. Depletion of methane indicative of anaerobic methane oxidation (AMO) was observed over the course of incubation with some substrates. This process could constitute a substantial loss of methane in the shale formation. PMID:24367357

  7. Carbon and hydrogen isotopic characterization of methane from wetlands and lakes of the Yukon-Kuskokwim Delta, Western Alaska

    NASA Technical Reports Server (NTRS)

    Martens, Christopher S.; Kelley, Cheryl A.; Chanton, Jeffrey P.; Showers, William J.

    1992-01-01

    The results are reported of a study of the carbon and hydrogen isotopic composition of methane from tundra environments of the Yukon-Kuskokwin Delta of western Alaska. The delta C-13 value of diffusive methane emissions from wet meadow tundra of the Delta is -65.82 +/- 2.21 per mil (n=18). Detritus-rich sediments of tundra lakes are loaded with methane-rich gas bubbles during the warm season. Spatial trend is the major gas concentration and isotopic values of methane in these gas bubbles appear to reflect processes associated with production rate and mechanisms; high methane concentrations, lightest delta C-13 values, the heaviest delta D value occur in detritus-rich sediments isolated from emergent vegetation. Heavier delta C-13 and lighter delta D values in methane from heavily vegetated lake margins suggest a shift toward a larger role for acetate fermentation in association with aquatic plants and plant detritus. Bubble ebullition is estimated to account for up to 17 percent of total Delta methane emissions.

  8. Fermentation Kinetic of Maize Straw-Gliricidia Feed Mixture Supplemented by Fermentable Carbohydrate Measured by In Vitro Gas Production

    NASA Astrophysics Data System (ADS)

    Yulistiani, D.; Nurhayati

    2018-02-01

    Utilization of crop by-products such as maize straw mixed with legume is expected to be able to overcome the limitation of forage availability during dry season and have similar nutritional value with grass. Addition of fermentable carbohydrate in this diet can be improved fermentability and reduced methane production. The objective of this study was to evaluate supplementation of ground corn grain or rice bran as fermentable carbohydrate in maize straw-gliricidiamixture. Treatment diets evaluated were: Maize straw + gliricidialeaf meal (Control/RO); Control + 10% ground maize grain (ROC); Control + 10% rice bran (RORB). Maize straw was chopped and ground then mixed with gliricidia leaf meal at ratio 60:40% DM. Maize straw-gliricidia mixture then supplemented either with ground corn grain or rice bran at 10% of DM basal diet (control). Sample was incubated for 48 hours, gas production was recorded at 4, 8,12, 16, 24, 36 and 48 hours. Study was conducted in randomized complete design. Results of the study showed that supplementation of fermentable carbohydrate from corn grain or rice bran was able to increased (P<0.05) rate of gas production by 24 and 18% respectively. However only in ROC potential gas production was increased (P<0.05) by 32% and percentage of methane production was decreased. From this study it can be concluded that supplementation of ground corn grain at 10% in maize straw-gliricidia mixture was able to improve diet fermentation and reduced methane production.

  9. Effects of mineral salt supplement on enteric methane emissions, ruminal fermentation and methanogen community of lactating cows.

    PubMed

    Li, Xiaohua; Liu, Chong; Chen, Yongxing; Shi, Rongguang; Cheng, Zhenhua; Dong, Hongmin

    2017-08-01

    We evaluated the effects of mineral salt supplement on enteric methane emissions, ruminal fermentation and methanogen community of dairy cows over a whole lactation period. Ten Holstein cows fed a total mixed ration (TMR) diet were randomly allocated into two groups, one supplied with mineral salts as the treatment group and the other as the control group. The methane measurement showed that the ingestion of mineral salts lowered enteric methane emissions significantly (P < 0.05), with an average of 10.5% reduction over the whole lactation period. Ruminal fermentation analysis showed the mineral salt intake could significantly decrease the acetate : propionate ratio (P < 0.05). Real-time PCR assay showed that rumen methanogen abundance significantly reduced in the treatment group (P < 0.05) but was not significantly influenced by mineral salt intake over the whole lactation period. Intergroup methanogen community composition was influenced slightly by mineral salt intake; however, significantly different intragroup profiles were apparent throughout the whole lactation period, according to denaturing gradient gel electrophoresis analysis. In conclusion, these results suggested that the effective mitigation of enteric methane emissions by mineral salt intake could be attributed to decreased density of methanogenic archaea and that fluctuations in methane emission over the lactation period might be related to Methanobrevibacter diversity. © 2016 Japanese Society of Animal Science.

  10. Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: The geologic factor

    USGS Publications Warehouse

    Flores, R.M.; Rice, C.A.; Stricker, G.D.; Warden, A.; Ellis, M.S.

    2008-01-01

    Coal-bed gas of the Tertiary Fort Union and Wasatch Formations in the Powder River Basin in Wyoming and Montana, U.S. was interpreted as microbial in origin by previous studies based on limited data on the gas and water composition and isotopes associated with the coal beds. To fully evaluate the microbial origin of the gas and mechanisms of methane generation, additional data for 165 gas and water samples from 7 different coal-bed methane-bearing coal-bed reservoirs were collected basinwide and correlated to the coal geology and stratigraphy. The C1/(C2 + C3) ratio and vitrinite reflectance of coal and organic shale permitted differentiation between microbial gas and transitional thermogenic gas in the central part of the basin. Analyses of methane ??13C and ??D, carbon dioxide ??13C, and water ??D values indicate gas was generated primarily from microbial CO2 reduction, but with significant gas generated by microbial methyl-type fermentation (aceticlastic) in some areas of the basin. Microbial CO2 reduction occurs basinwide, but is generally dominant in Paleocene Fort Union Formation coals in the central part of the basin, whereas microbial methyl-type fermentation is common along the northwest and east margins. Isotopically light methane ??13C is distributed along the basin margins where ??D is also depleted, indicating that both CO2-reduction and methyl-type fermentation pathways played major roles in gas generation, but gas from the latter pathway overprinted gas from the former pathway. More specifically, along the northwest basin margin gas generation by methyl-type fermentation may have been stimulated by late-stage infiltration of groundwater recharge from clinker areas, which flowed through highly fractured and faulted coal aquifers. Also, groundwater recharge controlled a change in gas composition in the shallow Eocene Wasatch Formation with the increase of nitrogen and decrease of methane composition of the coal-bed gas. Other geologic factors, such as burial, thermal and maturation history, lateral and vertical continuity, and coalification of the coal beds, also played a significant role in controlling methanogenic pathways and provided new perspectives on gas evolution and emplacement. The early-stage gas produced by CO2 reduction has mixed with transitional thermogenic gas in the deeper, central parts of the Powder River Basin to form 'old' gas, whereas along the basin margins the overprint of gas from methyl-type fermentation represents 'new' gas. Thus, a clear understanding of these geologic factors is necessary to relate the microbiological, biogeochemical, and hydrological processes involved in the generation of coal-bed gas.

  11. Impacts of an ethanol-blended fuel release on groundwater and fate of produced methane: Simulation of field observations

    NASA Astrophysics Data System (ADS)

    Rasa, Ehsan; Bekins, Barbara A.; Mackay, Douglas M.; de Sieyes, Nicholas R.; Wilson, John T.; Feris, Kevin P.; Wood, Isaac A.; Scow, Kate M.

    2013-08-01

    In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10 (10% ethanol and 90% conventional gasoline), two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (no-ethanol lane) and BToX plus ethanol (with-ethanol lane) for 283 days. We developed a reactive transport model to understand processes controlling the fate of ethanol and BToX. The model was calibrated to the extensive field data set and accounted for concentrations of sulfate, iron, acetate, and methane along with iron-reducing bacteria, sulfate-reducing bacteria, fermentative bacteria, and methanogenic archaea. The benzene plume was about 4.5 times longer in the with-ethanol lane than in the no-ethanol lane. Matching this different behavior in the two lanes required inhibiting benzene degradation in the presence of ethanol. Inclusion of iron reduction with negligible growth of iron reducers was required to reproduce the observed constant degradation rate of benzene. Modeling suggested that vertical dispersion and diffusion of sulfate from an adjacent aquitard were important sources of sulfate in the aquifer. Matching of methane data required incorporating initial fermentation of ethanol to acetate, methane loss by outgassing, and methane oxidation coupled to sulfate and iron reduction. Simulation of microbial growth using dual Monod kinetics, and including inhibition by more favorable electron acceptors, generally resulted in reasonable yields for microbial growth of 0.01-0.05.

  12. Impacts of an ethanol-blended fuel release on groundwater and fate of produced methane: simulation of field observations

    USGS Publications Warehouse

    Rasa, Ehsan; Bekins, Barbara A.; Mackay, Douglas M.; de Sieyes, Nicholas R.; Wilson, John T.; Feris, Kevin P.; Wood, Isaac A.; Scow, Kate M.

    2013-01-01

    In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10 (10% ethanol and 90% conventional gasoline), two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (No-Ethanol Lane) and BToX plus ethanol (With-Ethanol Lane) for 283 days. We developed a reactive transport model to understand processes controlling the fate of ethanol and BToX. The model was calibrated to the extensive field dataset and accounted for concentrations of sulfate, iron, acetate, and methane along with iron-reducing bacteria, sulfate-reducing bacteria, fermentative bacteria, and methanogenic archaea. The benzene plume was about 4.5 times longer in the With-Ethanol Lane than in the No-Ethanol Lane. Matching this different behavior in the two lanes required inhibiting benzene degradation in the presence of ethanol. Inclusion of iron reduction with negligible growth of iron-reducers was required to reproduce the observed constant degradation rate of benzene. Modeling suggested that vertical dispersion and diffusion of sulfate from an adjacent aquitard were important sources of sulfate in the aquifer. Matching of methane data required incorporating initial fermentation of ethanol to acetate, methane loss by outgassing, and methane oxidation coupled to sulfate and iron reduction. Simulation of microbial growth using dual Monod kinetics, and including inhibition by more favorable electron acceptors, generally resulted in reasonable yields for microbial growth of 0.01-0.05.

  13. Improvement of the energy conversion efficiency of Chlorella pyrenoidosa biomass by a three-stage process comprising dark fermentation, photofermentation, and methanogenesis.

    PubMed

    Xia, Ao; Cheng, Jun; Ding, Lingkan; Lin, Richen; Huang, Rui; Zhou, Junhu; Cen, Kefa

    2013-10-01

    The effects of pre-treatment methods on saccharification and hydrogen fermentation of Chlorella pyrenoidosa biomass were investigated. When raw biomass and biomass pre-treated by steam heating, by microwave heating, and by ultrasonication were used as feedstock, the hydrogen yields were only 8.8-12.7 ml/g total volatile solids (TVS) during dark fermentation. When biomass was pre-treated by steam heating with diluted acid and by microwave heating with diluted acid, the dark hydrogen yields significantly increased to 75.6 ml/g TVS and 83.3 ml/g TVS, respectively. Steam heating with diluted acid is the preferred pre-treatment method of C. pyrenoidosa biomass to improve hydrogen yield during dark fermentation and photofermentation, which is followed by methanogenesis to increase energy conversion efficiency (ECE). A total hydrogen yield of 198.3 ml/g TVS and a methane yield of 186.2 ml/g TVS corresponding to an overall ECE of 34.0% were obtained through the three-stage process (dark fermentation, photofermentation, and methanogenesis). Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Testing of Co-Fermentation of Poultry Manure and Corn Silage

    NASA Astrophysics Data System (ADS)

    Jędrczak, Andrzej; Królik, Dariusz; Sądecka, Zofia; Myszograj, Sylwia; Suchowska-Kisielewicz, Monika; Bojarski, Jacek

    2014-12-01

    The development of the production of poultry meat is connected with an increase in the quantity of the manure. The chemical characteristics predisposes this waste to processing by methane fermentation method. This study investigated the influence of ammonia and volatile fat acids on mesophilic anaerobic digestion of poultry manure. The aim of the studies was: to determine the degree of biodegradation of the poultry manure as well as manure and corn silage mixed in various proportions in the process of mesophilic fermentation, to evaluate the impact of mineral nitrogen and volatile fat acids on the course of fermentation, and to establish optimum proportions of these types of waste. The tests confirmed the positive effect of co-fermentation of poultry manure with corn silage. The most favourable ratio for mixing the substrates is the equal percentage of their dry matter in the mixture. With such waste mixing proportions, the degree of degradation of organic substances contained in the manure amounted to 61.8% and was higher than in the mono-digestion of manure and corn silage.

  15. Tetracycline removal and effect on the formation and degradation of extracellular polymeric substances and volatile fatty acids in the process of hydrogen fermentation.

    PubMed

    Hou, Guangying; Hao, Xiaoyan; Zhang, Rui; Wang, Jing; Liu, Rutao; Liu, Chunguang

    2016-07-01

    Many research indicate antibiotics show adverse effect on methane fermentation, while few research focus on their effect on hydrogen fermentation. The present study aimed to gain insight of the effect of antibiotics on hydrogen fermentation with waste sludge and corn straw as substrate. For this purpose, tetracycline, as a model, was investigated with regard to tetracycline removal, hydrogen production, interaction with extracellular polymeric substances (EPSs) of substrate and volatile fatty acids (VFAs) on concentration and composition. Results show that tetracycline could be removed efficiently by hydrogen fermentation, and relative low-dose tetracycline (200mg/l) exposure affects little on hydrogen production. While tetracycline exposure could change hydrogen fermentation from butyric acid-type to propionic acid-type depending on tetracycline level. Based upon three-dimensional excitation-emission matrix fluorescence spectroscopy and UV-vis tetracycline changed the component and content of EPSs, and static quenching was the main mechanism between EPSs with tetracycline. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Relationship between selection for feed efficiency and methane production

    USDA-ARS?s Scientific Manuscript database

    Enteric methane is a product of fermentation in the gastro-intestinal tract of ruminants. A group of archaea bacteria collectively called “methanogens” are responsible for the synthesis of methane. In ruminants, the methanogens grow in the reticulum-rumen complex and in the cecum. Most of the met...

  17. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review.

    PubMed

    Poggi-Varaldo, Héctor M; Munoz-Paez, Karla M; Escamilla-Alvarado, Carlos; Robledo-Narváez, Paula N; Ponce-Noyola, M Teresa; Calva-Calva, Graciano; Ríos-Leal, Elvira; Galíndez-Mayer, Juvencio; Estrada-Vázquez, Carlos; Ortega-Clemente, Alfredo; Rinderknecht-Seijas, Noemí F

    2014-05-01

    Biohydrogen is a sustainable form of energy as it can be produced from organic waste through fermentation processes involving dark fermentation and photofermentation. Very often biohydrogen is included as a part of biorefinery approaches, which reclaim organic wastes that are abundant sources of renewable and low cost substrate that can be efficiently fermented by microorganisms. The aim of this work was to critically assess selected bioenergy alternatives from organic solid waste, such as biohydrogen and bioelectricity, to evaluate their relative advantages and disadvantages in the context of biorefineries, and finally to indicate the trends for future research and development. Biorefining is the sustainable processing of biomass into a spectrum of marketable products, which means: energy, materials, chemicals, food and feed. Dark fermentation of organic wastes could be the beach-head of complete biorefineries that generate biohydrogen as a first step and could significantly influence the future of solid waste management. Series systems show a better efficiency than one-stage process regarding substrate conversion to hydrogen and bioenergy. The dark fermentation also produces fermented by-products (fatty acids and solvents), so there is an opportunity for further combining with other processes that yield more bioenergy. Photoheterotrophic fermentation is one of them: photosynthetic heterotrophs, such as non-sulfur purple bacteria, can thrive on the simple organic substances produced in dark fermentation and light, to give more H2. Effluents from photoheterotrophic fermentation and digestates can be processed in microbial fuel cells for bioelectricity production and methanogenic digestion for methane generation, thus integrating a diverse block of bioenergies. Several digestates from bioenergies could be used for bioproducts generation, such as cellulolytic enzymes and saccharification processes, leading to ethanol fermentation (another bioenergy), thus completing the inverse cascade. Finally, biohydrogen, biomethane and bioelectricity could contribute to significant improvements for solid organic waste management in agricultural regions, as well as in urban areas.

  18. Electropolar effects on anaerobic fermentation of lignocellulosic materials in novel single-electrode cells.

    PubMed

    Qu, Guangfei; Qiu, Weixia; Liu, Yuhuan; Zhong, Dongwei; Ning, Ping

    2014-05-01

    As a promising renewable energy technology, anaerobic fermentation is consistently limited by low production and calorific value of biogas, along with the difficulty of lignocellulose degradation. The effects of polarity and micro-voltage on anaerobic fermentation from lignocellulosic materials were investigated in single-electrode fermenter to explore cost-efficient technology. The results illustrated that the biogas production and quality were significantly affected by electric polarity. And cathode-assisted fermentation led to more positive effects than anode-assisted. Compared with results in control group without electrode, the average biogas and methane yield under cathodic micro-voltage (-250 mV) were astonishingly improved by 2.82 and 2.44 mL g(-1)d(-1) respectively. Meanwhile, the degradation ratios of lignin and cellulose were also improved by 23.11% and 19.46%. It demonstrated that single micro-voltage can not only promote lignocellulose degradation but biogas production and calorific value. These micro-voltage effects on fermentation process also provided great opportunity to breakthrough the present limitation of lignocellulosic materials fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Energy from aquatic plant wastewater treatment systems

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Mcdonald, R. C.

    1979-01-01

    Water hyacinth (Eichhornia crassipes), duckweed (Spirodela sp. and Lemma sp.), water pennywort (Hydrocotyle ranunculoides), and kudzu (Pueraria lobata) were anaerobically fermented using an anaerobic filter technique that reduced the total digestion time from 90 days to an average of 23 days and produced 0.14-0.28 cu m CH4/kg (dry weight) (2.3-4.5 cu ft/lb) from mature filters. The anaerobic filter provided a large surface area for the anaerobic bacteria to establish and maintain an optimum balance of facultative, acid-forming, and methane-producing bacteria. Consequently the efficiency of the process was greatly improved over prior batch fermentations.

  20. The influence of fat and hemicellulose on methane production and energy utilization in lactating Jersey cattle

    USDA-ARS?s Scientific Manuscript database

    Feeding fat to lactating dairy cows may reduce methane production. Relative to cellulose, fermentation of hemicellulose is believed to result in less methane; however, these factors have not been studied simultaneously. Eight multiparous, lactating Jersey cows averaging 98 ± 30.8 DIM and BW of 439.3...

  1. Methane production from wheat straw with anaerobic sludge by heme supplementation.

    PubMed

    Xi, Yonglan; Chang, Zhizhou; Ye, Xiaomei; Xu, Rong; Du, Jing; Chen, Guangyin

    2014-11-01

    Wheat straw particles were directly used as substrate for batch anaerobic digestion with anaerobic sludge under 35°C to evaluate the effects of adding heme on methane production. When 1mg/l heme was added to the fermentation process with no agitated speed, a maximum cumulative methane production of 12227.8ml was obtained with cumulative methane yield of wheat straw was 257.4ml/g-TS (total solid), which was increased by 20.6% compared with 213.5ml/g-TS of no heme was added in the reactor. Meanwhile, oxido-reduction potential (ORP) level was decreased, the activity of coenzyme F420 was significantly improved and NADH/NAD(+) ratio were the highest than other experimental groups. These results suggest that heme-supplemented anaerobic sludge with no agitated speed may be providing a more reductive environment, which is a cost-effective method of anaerobic digestion from biomass waste to produce methane with less energy consuming. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Increase of methane formation by ethanol addition during continuous fermentation of biogas sludge.

    PubMed

    Refai, Sarah; Wassmann, Kati; van Helmont, Sebastian; Berger, Stefanie; Deppenmeier, Uwe

    2014-12-01

    Very recently, it was shown that the addition of acetate or ethanol led to enhanced biogas formation rates during an observation period of 24 h. To determine if increased methane production rates due to ethanol addition can be maintained over longer time periods, continuous reactors filled with biogas sludge were developed which were fed with the same substrates as the full-scale reactor from which the sludge was derived. These reactors are well reflected conditions of a full-scale biogas plant during a period of 14 days. When the fermenters were pulsed with 50-100 mM ethanol, biomethanation increased by 50-150 %, depending on the composition of the biogas sludge. It was also possible to increase methane formation significantly when 10-20 mM pure ethanol or ethanolic solutions (e.g. beer) were added daily. In summary, the experiments revealed that "normal" methane production continued to take place, but ethanol led to production of additional methane.

  3. Bioaugmentation with an acetate-type fermentation bacterium Acetobacteroides hydrogenigenes improves methane production from corn straw.

    PubMed

    Zhang, Jie; Guo, Rong-Bo; Qiu, Yan-Ling; Qiao, Jiang-Tao; Yuan, Xian-Zheng; Shi, Xiao-Shuang; Wang, Chuan-Shui

    2015-03-01

    The effect of bioaugmentation with an acetate-type fermentation bacterium in the phylum Bacteroidetes on the anaerobic digestion of corn straw was evaluated by batch experiments. Acetobacteroides hydrogenigenes is a promising strain for bioaugmentation with relatively high growth rate, hydrogen yields and acetate tolerance, which ferments a broad spectrum of pentoses, hexoses and polyoses mainly into acetate and hydrogen. During corn straw digestion, bioaugmentation with A. hydrogenigenes led to 19-23% increase of the methane yield, with maximum of 258.1 mL/g-corn straw achieved by 10% inoculation (control, 209.3 mL/g-corn straw). Analysis of lignocellulosic composition indicated that A. hydrogenigenes could increase removal rates of cellulose and hemicelluloses in corn straw residue by 12% and 5%, respectively. Further experiment verified that the addition of A. hydrogenigenes could improve the methane yields of methyl cellulose and xylan (models for cellulose and hemicelluloses, respectively) by 16.8% and 7.0%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Study of Methanogenesis while Bioutilisation of Plant Residuals

    NASA Astrophysics Data System (ADS)

    Ilyin, V. K.; Korniushenkova, I. N.; Starkova, L. V.; Lauriniavichius, K. S.

    respect principals of planet ecology, and compatibility with other habitability systems. For these purpose the waste management technologies, relevant to application of the biodegradation properties of bacteria are of great value. Biological treatment method is based upon the biodegradation of organic substances by various microorganisms. vegetable non-edible residual, using artificial inoculum; to study peculiarities of biogas, possibilities to optimize or to reduce the share of methane. fermentation. The biogas production achieved 46 l per 1 kg of substrate. The microbial studies of biodegradation process revealed following peculiarities: (i)gradual quantitative increasing of Lactobacillus sp. (from 103 to 105 colony forming units (CFU) per ml); (ii)activation of Clostridia sp. (from 102 to 104 CFU/ml); (iii) elimination of aerobic conventional pathogens (Enterobacteriaceae sp., Protea sp., staphylococci). methane content measures revealed traces 0.1-0.4%. granules, the amount of methane in biogas reached 80-90%. biodegradation of vegetable wastes. This inoculum consists of active sludge adapted to wastes mixed with excretes of insects which consume plant wastes. Using this inoculum the biodegradation process takes less time, then that using active sludge. Regulation of methane concentration from traces to 90% may be achieved by adding of methane reactor to the plant digester.

  5. Co-digestion, biostimulation and bioaugmentation to enhance methanation of brewer's spent grain.

    PubMed

    Goberna, Marta; Camacho, Maria del Mar; Lopez-Abadia, Juan Antonio; García, Carlos

    2013-08-01

    More than 300,000 tonnes of brewer's spent grain (BSG) is generated annually during beer production. This protein- and nutrient-rich by-product is mostly employed as an animal feedstuff. However, its marketability is compromised by its rapid deterioration owing to its high humidity and fermentable sugar content. Drying BSG can be achieved using the bio-energy generated from the anaerobic digestion of part of the BSG produced in the same brewery. We employed three types of strategies to enhance the biomethanation of BSG in mesophilic batch incubations. First, we co-digested BSG with peach flesh residues, juice residues, sewage sludge and pig slurry. Second, we supplemented BSG with chemical additives (carbon and energy sources) in order to biostimulate the methane-producing microbial communities. Finally, we used anaerobically acclimatised BSG to augment the initial microbial load in assays digesting BSG either alone or in co-digestion with sewage sludge. All co-substrates assayed were suitable to be fermented in combination with BSG, although methane production was highest for the mixtures with sewage sludge and pig slurry, with their high pH values and nutrient contents. Nine out of 14 combinations of stimulatory chemicals significantly enhanced BSG methanation compared with a non-supplemented control. Overall, bioaugmenting the anaerobic microbial consortia by using fermented BSG as an inoculum when co-digesting BSG with sewage sludge performed best in terms of methane yield.

  6. Antibiotic Fermentation Broth Treatment by a pilot upflow anaerobic sludge bed reactor and kinetic modeling.

    PubMed

    Coskun, T; Kabuk, H A; Varinca, K B; Debik, E; Durak, I; Kavurt, C

    2012-10-01

    In this study, an upflow anaerobic sludge blanket (UASB) mesophilic reactor was used to remove antibiotic fermentation broth wastewater. The hydraulic retention time was held constant at 13.3 days. The volumetric organic loading value increased from 0.33 to 7.43 kg(COD)m(-3)d(-1) using antibiotic fermentation broth wastewater gradually diluted with various ratios of domestic wastewater. A COD removal efficiency of 95.7% was obtained with a maximum yield of 3,700 L d(-1) methane gas production. The results of the study were interpreted using the modified Stover-Kincannon, first-order, substrate mass balance and Van der Meer and Heertjes kinetic models. The obtained kinetic coefficients showed that antibiotic fermentation broth wastewater can be successfully treated using a UASB reactor while taking COD removal and methane production into account. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Adaptation of continuous biogas reactors operating under wet fermentation conditions to dry conditions with corn stover as substrate.

    PubMed

    Kakuk, Balázs; Kovács, Kornél L; Szuhaj, Márk; Rákhely, Gábor; Bagi, Zoltán

    2017-08-01

    Corn stover (CS) is the agricultural by-product of maize cultivation. Due to its high abundance and high energy content it is a promising substrate for the bioenergy sector. However, it is currently neglected in industrial scale biogas plants, because of its slow decomposition and hydrophobic character. To assess the maximum biomethane potential of CS, long-term batch fermentations were carried out with various substrate concentrations and particle sizes for 72 days. In separate experiments we adapted the biogas producing microbial community in wet fermentation arrangement first to the lignocellulosic substrate, in Continuous Stirred Tank Reactor (CSTR), then subsequently, by continuously elevating the feed-in concentration, to dry conditions in solid state fermenters (SS-AD). In the batch tests, the <10 mm fraction of the grinded and sieved CS was amenable for biogasification, but it required 10% more time to produce 90% of the total biomethane yield than the <2 mm sized fraction, although in the total yields there was no significant difference between the two size ranges. We also observed that increasing amount of substrate added to the fermentation lowered the specific methane yield. In the CSTR experiment, the daily substrate loading was gradually increased from 1 to 2 g vs /L/day until the system produced signs of overloading. Then the biomass was transferred to SS-AD reactors and the adaptation process was studied. Although the specific methane yields were lower in the SS-AD arrangement (177 mL CH 4 /g vs in CSTR vs. 105 mL in SS-AD), the benefits of process operational parameters, i.e. lower energy consumption, smaller reactor volume, digestate amount generated and simpler configuration, may compensate the somewhat lower yield. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Biomass process handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    Descriptions are given of 42 processes which use biomass to produce chemical products. Marketing and economic background, process description, flow sheets, costs, major equipment, and availability of technology are given for each of the 42 processes. Some of the chemicals discussed are: ethanol, ethylene, acetaldehyde, butanol, butadiene, acetone, citric acid, gluconates, itaconic acid, lactic acid, xanthan gum, sorbitol, starch polymers, fatty acids, fatty alcohols, glycerol, soap, azelaic acid, perlargonic acid, nylon-11, jojoba oil, furfural, furfural alcohol, tetrahydrofuran, cellulose polymers, products from pulping wastes, and methane. Processes include acid hydrolysis, enzymatic hydrolysis, fermentation, distillation, Purox process, and anaerobic digestion.

  9. The digester modification for biogas production from palm oil mill effluent by Fed-batch

    NASA Astrophysics Data System (ADS)

    Aznury, M.; Amin, J. M.; Hasan, A.; Harsyah, A.

    2018-03-01

    The purpose of this research is to biogas production in the digester modification equipment by Fed-batch of the palm oil mill effluent (POME) to determine the quality of POME after a treatment and the concentration of biogas that is formed every 24 hours within 10 days. The raw materials used are POME from PT Mitra Ogan, Tbk. In the initial stage is sedimentation process in the first digester tank at a flow rate 6 liters/minute and then observing the retention time of 24 hours. POME flowed into the second digester tank for fermentation process with the addition of active microbes seed every 24 hours to produce biogas. After the fermentation process is complete, POME flowed to third digester tank for water treatment stage before being released into the environment. COD content test values obtained after processing are 766, 362 and 350 mg/L, approximately. While the BOD value is 212.75; 125 and 110.9 mg/L, approximately. Biogas production for 10 days fermentation are 10.88% methane, 19.2% oxygen and 75.83% nitrogen, approximately.

  10. First records of a field experiment on fertilizer effects on methane emission from rice fields in Hunan-Province (PR China)

    NASA Astrophysics Data System (ADS)

    Wassmann, R.; Wang, M. X.; Shangguan, X. J.; Xie, X. L.; Shen, R. X.; Wang, Y. S.; Papen, H.; Rennenberg, H.; Seiler, W.

    Fertilizer effects on methane emission from Chinese rice fields were investigated by a praxis-oriented approach applying balanced amendments of N, P and K. The data set obtained covered the emission rates of app. one month in early rice and one month in late rice 1991. An intercomparison between the 4 treatments showed pronounced differences in the magnitudes of methane emission rates. The combined organic/mineral fertilizer application, commonly used as local farming practice, resulted in relatively high seasonal averages of methane emission rates (26.5 mg CH4 m-2 h-1 in early rice and 50.1 mg CH4 m-2 h-1 in late rice). The lowest emission rates were observed in the plot with pure mineral fertilization (6.5 mg CH4 m-2 h-1 in early rice and 14.3 mg CH4 m-2 h-1 in late rice). Pure organic fertilizers by unfermented substances yielded the highest methane emission rates of all field trials (38.6 mg CH4 m-2 h-1 in early rice and 56.2 CH4 m-2 h-1 in late rice). The fertilization with fermented material derived from biogas generators resulted in substantially lower emission rates than the other trials with organic amendments, the seasonal averages corresponded to 15.9 mg CH4 m-2 h-1 (early rice) and 22.5 mg CH4 m-2 h-1 (late rice). Interpretation of the results can be obtained from the different potentials of these fertilizers for methane production. Based on this concept the different methane emission rates observed with organic/mineral, pure mineral and pure unfermented-organic fertilizers could directly be attributed to the different quantities of organic matter incorporated into the soil. The low methane emission from the plot treated with fermented material could be explained by a depletion of potential methane precursors resulting from the preceding fermentation. The results of this investigation provide evidence that the extensive use of specific chemical fertilizers and the application of sludge from the operation of biogas generators could lead to a net reduction of the methane emission from rice fields.

  11. Comparative and Joint Analysis of Two Metagenomic Datasets from a Biogas Fermenter Obtained by 454-Pyrosequencing

    PubMed Central

    Jaenicke, Sebastian; Ander, Christina; Bekel, Thomas; Bisdorf, Regina; Dröge, Marcus; Gartemann, Karl-Heinz; Jünemann, Sebastian; Kaiser, Olaf; Krause, Lutz; Tille, Felix; Zakrzewski, Martha; Pühler, Alfred

    2011-01-01

    Biogas production from renewable resources is attracting increased attention as an alternative energy source due to the limited availability of traditional fossil fuels. Many countries are promoting the use of alternative energy sources for sustainable energy production. In this study, a metagenome from a production-scale biogas fermenter was analysed employing Roche's GS FLX Titanium technology and compared to a previous dataset obtained from the same community DNA sample that was sequenced on the GS FLX platform. Taxonomic profiling based on 16S rRNA-specific sequences and an Environmental Gene Tag (EGT) analysis employing CARMA demonstrated that both approaches benefit from the longer read lengths obtained on the Titanium platform. Results confirmed Clostridia as the most prevalent taxonomic class, whereas species of the order Methanomicrobiales are dominant among methanogenic Archaea. However, the analyses also identified additional taxa that were missed by the previous study, including members of the genera Streptococcus, Acetivibrio, Garciella, Tissierella, and Gelria, which might also play a role in the fermentation process leading to the formation of methane. Taking advantage of the CARMA feature to correlate taxonomic information of sequences with their assigned functions, it appeared that Firmicutes, followed by Bacteroidetes and Proteobacteria, dominate within the functional context of polysaccharide degradation whereas Methanomicrobiales represent the most abundant taxonomic group responsible for methane production. Clostridia is the most important class involved in the reductive CoA pathway (Wood-Ljungdahl pathway) that is characteristic for acetogenesis. Based on binning of 16S rRNA-specific sequences allocated to the dominant genus Methanoculleus, it could be shown that this genus is represented by several different species. Phylogenetic analysis of these sequences placed them in close proximity to the hydrogenotrophic methanogen Methanoculleus bourgensis. While rarefaction analyses still indicate incomplete coverage, examination of the GS FLX Titanium dataset resulted in the identification of additional genera and functional elements, providing a far more complete coverage of the community involved in anaerobic fermentative pathways leading to methane formation. PMID:21297863

  12. Effect of sole or co-administration of the methane-inhibitors, nitrate and 3-nitro-1-propionate, on ruminal fermentation

    USDA-ARS?s Scientific Manuscript database

    Rumen methane production results in the loss of up to 12% of the host’s energy intake and contributes to global emissions of this greenhouse gas. Nitrate is being investigated as a feed supplement to reduce rumen methane production, but risks of methemoglobinemia due to accumulation of nitrite are ...

  13. Dietary sources and their effects on animal production and environmental sustainability.

    PubMed

    Wanapat, Metha; Cherdthong, Anusorn; Phesatcha, Kampanat; Kang, Sungchhang

    2015-09-01

    Animal agriculture has been an important component in the integrated farming systems in developing countries. It serves in a paramount diversified role in producing animal protein food, draft power, farm manure as well as ensuring social status-quo and enriching livelihood. Ruminants are importantly contributable to the well-being and the livelihood of the global population. Ruminant production systems can vary from subsistence to intensive type of farming depending on locality, resource availability, infrastructure accessibility, food demand and market potentials. The growing demand for sustainable animal production is compelling to researchers exploring the potential approaches to reduce greenhouse gases (GHG) emissions from livestock. Global warming has been an issue of concern and importance for all especially those engaged in animal agriculture. Methane (CH 4 ) is one of the major GHG accounted for at least 14% of the total GHG with a global warming potential 25-fold of carbon dioxide and a 12-year atmospheric lifetime. Agricultural sector has a contribution of 50 to 60% methane emission and ruminants are the major source of methane contribution (15 to 33%). Methane emission by enteric fermentation of ruminants represents a loss of energy intake (5 to 15% of total) and is produced by methanogens (archae) as a result of fermentation end-products. Ruminants׳ digestive fermentation results in fermentation end-products of volatile fatty acids (VFA), microbial protein and methane production in the rumen. Rumen microorganisms including bacteria, protozoa and fungal zoospores are closely associated with the rumen fermentation efficiency. Besides using feed formulation and feeding management, local feed resources have been used as alternative feed additives for manipulation of rumen ecology with promising results for replacement in ruminant feeding. Those potential feed additive practices are as follows: 1) the use of plant extracts or plants containing secondary compounds (e.g., condensed tannins and saponins) such as mangosteen peel powder, rain tree pod; 2) plants rich in minerals, e.g., banana flower powder; and 3) plant essential oils, e.g., garlic, eucalyptus leaf powder, etc. Implementation of the -feed-system using cash crop and leguminous shrubs or fodder trees are of promising results.

  14. Methane-free biogas for direct feeding of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Leone, P.; Lanzini, A.; Santarelli, M.; Calì, M.; Sagnelli, F.; Boulanger, A.; Scaletta, A.; Zitella, P.

    This paper deals with the experimental analysis of the performance and degradation issues of a Ni-based anode-supported solid oxide fuel cell fed by a methane-free biogas from dark-anaerobic digestion of wastes by pastry and fruit shops. The biogas is produced by means of an innovative process where the biomass is fermented with a pre-treated bacteria inoculum (Clostridia) able to completely inhibit the methanization step during the fermentation process and to produce a H 2/CO 2 mixture instead of conventional CH 4/CO 2 anaerobic digested gas (bio-methane). The proposed biogas production route leads to a biogas composition which avoids the need of introducing a reformer agent into or before the SOFC anode in order to reformate it. In order to analyse the complete behaviour of a SOFC with the bio-hydrogen fuel, an experimental session with several H 2/CO 2 synthetic mixtures was performed on an anode-supported solid oxide fuel cell with a Ni-based anode. It was found that side reactions occur with such mixtures in the typical thermodynamic conditions of SOFCs (650-800 °C), which have an effect especially at high currents, due to the shift to a mixture consisting of hydrogen, carbon monoxide, carbon dioxide and water. However, cells operated with acceptable performance and carbon deposits (typical of a traditional hydrocarbon-containing biogas) were avoided after 50 h of cell operation even at 650 °C. Experiments were also performed with traditional bio-methane from anaerobic digestion with 60/40 vol% of composition. It was found that the cell performance dropped after few hours of operation due to the formation of carbon deposits. A short-term test with the real as-produced biogas was also successfully performed. The cell showed an acceptable power output (at 800 °C, 0.35 W cm -2 with biogas, versus 0.55 W cm -2 with H 2) although a huge quantity of sulphur was present in the feeding fuel (hydrogen sulphide at 103 ppm and mercaptans up to 10 ppm). Therefore, it was demonstrated the interest relying on a sustainable biomass processing which produces a biogas which can be directly fed to SOFC using traditional anode materials and avoiding the reformer component since the methane-free mixture is already safe for carbon deposition.

  15. Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis.

    PubMed

    Cai, Weiwei; Han, Tingting; Guo, Zechong; Varrone, Cristiano; Wang, Aijie; Liu, Wenzong

    2016-05-01

    Anaerobic digestion (AD) represents a potential way to achieve energy recovery from waste organics. In this study, a novel bioelectrochemically-assisted anaerobic reactor is assembled by two AD systems separated by anion exchange membrane, with the cathode placing in the inside cylinder (cathodic AD) and the anode on the outside cylinder (anodic AD). In cathodic AD, average methane production rate goes up to 0.070 mL CH4/mL reactor/day, which is 2.59 times higher than AD control reactor (0.027 m(3) CH4/m(3)/d). And COD removal is increased ∼15% over AD control. When changing to sludge fermentation liquid, methane production rate has been further increased to 0.247 mL CH4/mL reactor/day (increased by 51.53% comparing with AD control). Energy recovery efficiency presents profitable gains, and economic revenue from increased methane totally self-cover the cost of input electricity. The study indicates that cathodic AD could cost-effectively enhance methane production rate and degradation of glucose and fermentative liquid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effects of Flavonoid-rich Plant Extracts on In vitro Ruminal Methanogenesis, Microbial Populations and Fermentation Characteristics.

    PubMed

    Kim, Eun T; Guan, Le Luo; Lee, Shin J; Lee, Sang M; Lee, Sang S; Lee, Il D; Lee, Su K; Lee, Sung S

    2015-04-01

    The objective of this study was to evaluate the in vitro effects of flavonoid-rich plant extracts (PE) on ruminal fermentation characteristics and methane emission by studying their effectiveness for methanogenesis in the rumen. A fistulated Holstein cow was used as a donor of rumen fluid. The PE (Punica granatum, Betula schmidtii, Ginkgo biloba, Camellia japonica, and Cudrania tricuspidata) known to have high concentrations of flavonoid were added to an in vitro fermentation incubated with rumen fluid. Total gas production and microbial growth with all PE was higher than that of the control at 24 h incubation, while the methane emission was significantly lower (p<0.05) than that of the control. The decrease in methane accumulation relative to the control was 47.6%, 39.6%, 46.7%, 47.9%, and 48.8% for Punica, Betula, Ginkgo, Camellia, and Cudrania treatments, respectively. Ciliate populations were reduced by more than 60% in flavonoid-rich PE treatments. The Fibrobacter succinogenes diversity in all added flavonoid-rich PE was shown to increase, while the Ruminoccocus albus and R. flavefaciens populations in all PE decreased as compared with the control. In particular, the F. succinogenes community with the addition of Birch extract increased to a greater extent than that of others. In conclusion, the results of this study showed that flavonoid-rich PE decreased ruminal methane emission without adversely affecting ruminal fermentation characteristics in vitro in 24 h incubation time, suggesting that the flavonoid-rich PE have potential possibility as bio-active regulator for ruminants.

  17. Study on improving anaerobic co-digestion of cow manure and corn straw by fruit and vegetable waste: Methane production and microbial community in CSTR process.

    PubMed

    Wang, Xuemei; Li, Zifu; Bai, Xue; Zhou, Xiaoqin; Cheng, Sikun; Gao, Ruiling; Sun, Jiachen

    2018-02-01

    Based on continuous anaerobic co-digestion of cow manure with available carbon slowly released corn straw, the effect of adding available carbon quickly released fruit and vegetable waste (FVW) was explored, meanwhile microbial community variation was studied in this study. When the FVW added was 5% and 1%, the methane production of the cow manure and corn straw was improved, and the start-up process was shortened. With higher proportion of FVW to 5%, the performance was superior with a mean methane yield increase of 22.4%, and a greater variation of bacterial communities was observed. FVW enhanced the variation of the bacterial communities. The microbial community structure changed during fermentation and showed a trend toward a diverse and balance system. Therefore, the available carbon quickly released FVW was helpful to improve the anaerobic co-digestion of the cow manure and available carbon slowly released corn straw. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Mesophilic-hydrothermal-thermophilic (M-H-T) digestion of green corn straw.

    PubMed

    Li, Dong; Wang, Qingjing; Li, Jiang; Li, Zhidong; Yuan, Yuexiang; Yan, Zhiying; Mei, Zili; Liu, Xiaofeng

    2016-02-01

    Mesophilic-hydrothermal (80-160 °C, 30 min)-thermophilic (M-H-T) digestion and control tests of mesophilic (M), thermophilic (T), hydrothermal-mesophilic (H-M), and mesophilic-thermophilic digestion (M-T) of green corn straw were conducted for a 20-day fermentation period. The results indicate that M-H-T is an efficient method to improve methane production. A maximum methane yield of 371.74 mL/g volatile solid was obtained by the M (3 days)-H (140 °C)-T (17 days) process, which was 20.44%, 16.55%, 31.44%, and 14.31% higher than the yields of the M, T, 140-M, and M-T processes. The enhanced methane production was attributed to (1) the improved hemicellulose degradation and lignin disorganization; (2) prevention of the degradation of soluble sugar, easily hydrolyzed hemicellulose and cellulose into furfural and methylfurfural; and (3) lack of formation of Maillard reaction products during initial hydrothermal treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Recent developments in biohythane production from household food wastes: A review.

    PubMed

    Bolzonella, David; Battista, Federico; Cavinato, Cristina; Gottardo, Marco; Micolucci, Federico; Lyberatos, Gerasimos; Pavan, Paolo

    2018-06-01

    Biohythane is a hydrogen-methane blend with hydrogen concentration between 10 and 30% v/v. It can be produced from different organic substrates by two sequential anaerobic stages: a dark fermentation step followed by a second an anaerobic digestion step, for hydrogen and methane production, respectively. The advantages of this blend compared to either hydrogen or methane, as separate biofuels, are first presented in this work. The two-stage anaerobic process and the main operative parameters are then discussed. Attention is focused on the production of biohythane from household food wastes, one of the most abundant organic substrate available for anaerobic digestion: the main milestones and the future trends are exposed. In particular, the possibility to co-digest food wastes and sewage sludge to improve the process yield is discussed. Finally, the paper illustrates the developments of biohythane application in the automotive sector as well as its reduced environmental burden. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Effect of ferrous chloride on biogas production and enzymatic activities during anaerobic fermentation of cow dung and Phragmites straw.

    PubMed

    Zhang, Huayong; Tian, Yonglan; Wang, Lijun; Mi, Xueyue; Chai, Yang

    2016-06-01

    The effect of ferrous (added as FeCl2) on the anaerobic co-digestion of Phragmites straw and cow dung was studied by investigating the biogas properties, pH values, organic matter degradation (COD) and enzyme activities (cellulase, protease and dehydrogenase) at different stages of mesophilic fermentation. The results showed that Fe(2+) addition increased the cumulative biogas yields by 18.1 % by extending the peak period with high daily biogas yields. Meanwhile, the methane (CH4) contents in the Fe(2+) added groups were generally higher than the control group before the 15th day. The pH values were not significantly impacted by Fe(2+) concentrations during the fermentation process. The COD concentrations, cellulase, protease and dehydrogenase activities varied with the added Fe(2+) concentrations and the stages of the fermentation process. At the beginning stage of fermentation (4th day), Fe(2+) addition increased the biogas production by improving the cellulase and dehydrogenase activities which caused a decline in COD. At the peak stage of fermentation (8th day), Fe(2+) addition enhanced the cellulase and protease activities, and resulted in lower COD contents than the control group. When the biogas yields decreased again (13th day), the COD contents varied similar with the protease and dehydrogenase activities, whilst cellulase activities were not sensitive to Fe(2+) concentrations. At the end of fermentation (26th day), Fe(2+) addition decreased the cellulase activities, led to lower COD contents and finally resulted the lower biogas yields than the control group. Taking the whole fermentation process into account, the promoting effect of Fe(2+) addition on biogas yields was mainly attributed to the extension of the gas production peak stage and the improvement of cellulase activities.

  1. Effect of sole or combined administration of nitrate and 3-nitro-1-propionic acid on fermentation and Salmonella survivability in alfalfa-fed rumen cultures in vitro.

    PubMed

    Correa, Alejandro Castañeda; Trachsel, Julian; Allen, Heather K; Corral-Luna, Agustin; Gutierrez-Bañuelos, Hector; Ochoa-Garcia, Pedro Antonia; Ruiz-Barrera, Oscar; Hume, Michael E; Callaway, Todd R; Harvey, Roger B; Beier, Ross C; Anderson, Robin C; Nisbet, David J

    2017-04-01

    Ruminal methanogenesis is a digestive inefficiency resulting in the loss of dietary energy consumed by the host and contributing to environmental methane emission. Nitrate is being investigated as a feed supplement to reduce rumen methane emissions but safety and efficacy concerns persist. To assess potential synergies of co-administering sub-toxic amounts of nitrate and 3-nitro-1-propionate (NPA) on fermentation and Salmonella survivability with an alfalfa-based diet, ruminal microbes were cultured with additions of 8 or 16mM nitrate, 4 or 12mM NPA or their combinations. All treatments decreased methanogenesis compared to untreated controls but volatile fatty acid production and fermentation of hexose were also decreased. Nitrate was converted to nitrite, which accumulated to levels inhibitory to digestion. Salmonella populations were enriched in nitrate only-treated cultures but not in cultures co- or solely treated with NPA. These results reveal a need for dose optimization to safely reduce methane production with forage-based diets. Published by Elsevier Ltd.

  2. Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques.

    PubMed

    Patra, Amlan Kumar; Yu, Zhongtang

    2013-07-01

    Headspace gas composition and bicarbonate concentrations in media can affect methane production and other characteristics of rumen fermentation in in vitro gas production systems, but these 2 important factors have not been evaluated systematically. In this study, these 2 factors were investigated with respect to gas and methane production, in vitro digestibility of feed substrate, and volatile fatty acid (VFA) profile using in vitro gas production techniques. Three headspace gas compositions (N2+ CO2+ H2 in the ratio of 90:5:5, CO2, and N2) with 2 substrate types (alfalfa hay only, and alfalfa hay and a concentrate mixture in a 50:50 ratio) in a 3×2 factorial design (experiment 1) and 3 headspace compositions (N2, N2 + CO2 in a 50:50 ratio, and CO2) with 3 bicarbonate concentrations (80, 100, and 120 mM) in a 3×3 factorial design (experiment 2) were evaluated. In experiment 1, total gas production (TGP) and net gas production (NGP) was the lowest for CO2, followed by N2, and then the gas mixture. Methane concentration in headspace gas after fermentation was greater for CO2 than for N2 and the gas mixture, whereas total methane production (TMP) and net methane production (NMP) were the greatest for CO2, followed by the gas mixture, and then N2. Headspace composition did not affect in vitro digestibility or the VFA profile, except molar percentages of propionate, which were greater for CO2 and N2 than for the gas mixture. Methane concentration in headspace gas, TGP, and NGP were affected by the interaction of headspace gas composition and substrate type. In experiment 2, increasing concentrations of CO2 in the headspace decreased TGP and NGP quadratically, but increased the concentrations of methane, NMP, and in vitro fiber digestibility linearly, and TMP quadratically. Fiber digestibility, TGP, and NGP increased linearly with increasing bicarbonate concentrations in the medium. Concentrations of methane and NMP were unaffected by bicarbonate concentration, but TMP tended to increase due to increasing bicarbonate concentration. Although total VFA concentration and molar percentage of butyrate were unchanged, the molar percentage of acetate, and acetate-to-propionate ratio decreased, whereas the molar percentage of propionate increased quadratically with increasing bicarbonate concentration. This study demonstrated for the first time that headspace composition, especially CO2 content, and bicarbonate concentration in media could significantly influence gas and methane production, and rumen fermentation in gas production techniques. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. China Report, Science and Technology, White Paper, No. 1

    DTIC Science & Technology

    1987-04-02

    traditional biotechnology to produce liquor, soy sauce, vinegar and other fermented food products. In the late fifties, China established an antibiotic...to transform the traditional fermentation industry, including the use of fixed fungi or fixed cells to make alcohol, beer, soy sauce, vinegar , and...use. We should also improve the techniques and equipment of fermentation , develop 35 the technologies of central heating and small-scale methane

  4. Biologically Produced Methane as a Renewable Energy Source.

    PubMed

    Holmes, D E; Smith, J A

    2016-01-01

    Methanogens are a unique group of strictly anaerobic archaea that are more metabolically diverse than previously thought. Traditionally, it was thought that methanogens could only generate methane by coupling the oxidation of products formed by fermentative bacteria with the reduction of CO 2 . However, it has recently been observed that many methanogens can also use electrons extruded from metal-respiring bacteria, biocathodes, or insoluble electron shuttles as energy sources. Methanogens are found in both human-made and natural environments and are responsible for the production of ∼71% of the global atmospheric methane. Their habitats range from the human digestive tract to hydrothermal vents. Although biologically produced methane can negatively impact the environment if released into the atmosphere, when captured, it can serve as a potent fuel source. The anaerobic digestion of wastes such as animal manure, human sewage, or food waste produces biogas which is composed of ∼60% methane. Methane from biogas can be cleaned to yield purified methane (biomethane) that can be readily incorporated into natural gas pipelines making it a promising renewable energy source. Conventional anaerobic digestion is limited by long retention times, low organics removal efficiencies, and low biogas production rates. Therefore, many studies are being conducted to improve the anaerobic digestion process. Researchers have found that addition of conductive materials and/or electrically active cathodes to anaerobic digesters can stimulate the digestion process and increase methane content of biogas. It is hoped that optimization of anaerobic digesters will make biogas more readily accessible to the average person. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Investigation of a new acetogen isolated from an enrichment of the tammar wallaby forestomach.

    PubMed

    Gagen, Emma J; Wang, Jiakun; Padmanabha, Jagadish; Liu, Jing; de Carvalho, Isabela Pena Carvalho; Liu, Jianxin; Webb, Richard I; Al Jassim, Rafat; Morrison, Mark; Denman, Stuart E; McSweeney, Christopher S

    2014-12-11

    Forestomach fermentation in Australian marsupials such as wallabies and kangaroos, though analogous to rumen fermentation, results in lower methane emissions. Insights into hydrogenotrophy in these systems could help in devising strategies to reduce ruminal methanogenesis. Reductive acetogenesis may be a significant hydrogen sink in these systems and previous molecular analyses have revealed a novel diversity of putative acetogens in the tammar wallaby forestomach. Methanogen-inhibited enrichment cultures prepared from tammar wallaby forestomach contents consumed hydrogen and produced primarily acetate. Functional gene (formyltetrahydrofolate synthetase and acetyl-CoA synthase) analyses revealed a restricted diversity of Clostridiales species as the putative acetogens in the cultures. A new acetogen (growth on H2/CO2 with acetate as primary end product) designated isolate TWA4, was obtained from the cultures. Isolate TWA4 classified within the Lachnospiraceae and demonstrated >97% rrs identity to previously isolated kangaroo acetogens. Isolate TWA4 was a potent hydrogenotroph and demonstrated excellent mixotrophic growth (concomitant consumption of hydrogen during heterotrophic growth) with glycerol. Mixotrophic growth of isolate TWA4 on glycerol resulted in increased cell densities and acetate production compared to autotrophic growth. Co-cultures with an autotrophic methanogen Methanobrevibacter smithii revealed that isolate TWA4 performed reductive acetogenesis under high hydrogen concentration (>5 mM), but not at low concentrations. Under heterotrophic growth conditions, isolate TWA4 did not significantly stimulate methanogenesis in a co-culture with M. smithii contrary to the expectation for organisms growing fermentatively. The unique properties of tammar wallaby acetogens might be contributing factors to reduced methanogen numbers and methane emissions from tammar wallaby forestomach fermentation, compared to ruminal fermentation. The macropod forestomach may be a useful source of acetogens for future strategies to reduce methane emissions from ruminants, particularly if these strategies also include some level of methane suppression and/or acetogen stimulation, for example by harnessing mixotrophic growth capabilities.

  6. MAL73, a novel regulator of maltose fermentation, is functionally impaired by single nucleotide polymorphism in sake brewing yeast.

    PubMed

    Ohdate, Takumi; Omura, Fumihiko; Hatanaka, Haruyo; Zhou, Yan; Takagi, Masami; Goshima, Tetsuya; Akao, Takeshi; Ono, Eiichiro

    2018-01-01

    For maltose fermentation, budding yeast Saccharomyces cerevisiae operates a mechanism that involves transporters (MALT), maltases (MALS) and regulators (MALR) collectively known as MAL genes. However, functional relevance of MAL genes during sake brewing process remains largely elusive, since sake yeast is cultured under glucose-rich condition achieved by the co-culture partner Aspergillus spp.. Here we isolated an ethyl methane sulfonate (EMS)-mutagenized sake yeast strain exhibiting enhanced maltose fermentation compared to the parental strain. The mutant carried a single nucleotide insertion that leads to the extension of the C-terminal region of a previously uncharacterized MALR gene YPR196W-2, which was renamed as MAL73. Introduction of the mutant allele MAL73L with extended C-terminal region into the parental or other sake yeast strains enhanced the growth rate when fed with maltose as the sole carbon source. In contrast, disruption of endogenous MAL73 in the sake yeasts decreased the maltose fermentation ability of sake yeast, confirming that the original MAL73 functions as a MALR. Importantly, the MAL73L-expressing strain fermented more maltose in practical condition compared to the parental strain during sake brewing process. Our data show that MAL73(L) is a novel MALR gene that regulates maltose fermentation, and has been functionally attenuated in sake yeast by single nucleotide deletion during breeding history. Since the MAL73L-expressing strain showed enhanced ability of maltose fermentation, MAL73L might also be a valuable tool for enhancing maltose fermentation in yeast in general.

  7. Evaluation of the Green Microalga Monoraphidium sp. Dek19 Growth Utilizing Ethanol Plant Side Streams and Potential for Biofuel Production

    NASA Astrophysics Data System (ADS)

    Colson, David Michael

    This research was conducted to evaluate the potential for growth of Monoraphidium sp. Dek19 using side streams from an ethanol plant for culture medium. Additionally, the potential of using enzymes to break down the cell wall material to release fermentable sugars and oil was examined. The ethanol streams selected were methanator influent, methanator effluent, and thin stillage. This species of microalgae has been previously studied and found to have the ability to grow in and remediate the effluent water from the DeKalb Sanitary District (DSD). The Monoraphidium sp. Dek19 was grown in various concentrations of the ethanol plant side streams concurrently with algae cultures grown in the DSD effluent. The algae cultures were grown in 250ml flasks to determine the optimal concentrations of the ethanol streams. The concentrations with the growth rate and cell counts closest to or higher than the DSD effluents were selected for further examination. These concentrations were repeated to evaluate the most optimal growth conditions using the ethanol streams in comparison to the DSD effluent grown algae. The selected growth condition for the ethanol streams was determined to be using the methanator effluent as the base water component with the thin stillage added to a 2% concentration. The 2% concentration showed an average increase in cell count to be 8.49% higher than the control cell count. The methanator influent was discarded as a base water component, as the growth of the algae was 40.18% less than that of the control. Other concentrations considered resulted in a decrease in cell. count ranging from 9.20-48.97%. The three closest growth results of the concentration of thin stillage and methanator effluent (1%, 2%, and 4%) were scaled up to 2L flasks to confirm the results on a larger scale. The results showed a greater reduction in the cell count of the 1% and 4% concentrations, 23.52% and 16.31% reduction in cell count respectively. The 2% concentration showed a similar increase in cell count as before at 12.59% increase in cell count over the control. The 2% concentration algae growth cultures were grown exclusively alongside of the control group of DSD effluent grown algae. The solutions were grown to carrying capacity and the algae biomass was extracted from the solution by centrifugation and air drying in a dehydrator. This was repeated until enough biomass was collected to conduct rehydration and a typical anaerobic fermentation process. The resuspended algae were pH adjusted to a pH of 5.2 ±0.2. The algae were treated with a combination of cellulase and alpha-amylase, and put through a liquefaction process at 80°C for 3 hours. The resulting solutions were analyzed using High Performance Liquid Chromatography (HPLC) to evaluate the sugar profile of each treatment. The liquefaction solutions were treated with further enzymes, nutrients, and yeast and ran through an anaerobic fermentation process. The fermentations were allowed to progress for 72 hours, and were again analyzed using an HPLC for ethanol and sugar profile. The fermentation results showed a potential of up to 0.587%w/v ethanol production in a 10% solids microalgae slurry. The remaining fermentation products were analyzed using a petroleum ether lipid extraction unit. This analysis showed that the DSD effluent microalgae had an average of 15.53% lipid content on a dry matter basis, and the methanator effluent with 2% thin stillage added resulted in 28.02% lipid content on a dry matter basis. The fermentation products were also treated with a demulsifier, spun down with a centrifuge, and examination of a released lipid layer was conducted. This analysis showed that there was a thin layer of oil on almost all treatments of the algae solutions when spun down in a centrifuge. These. results indicate that the cellulosic enzymes broke down the cell wall material sufficiently for the quick extraction of the oil without the use of hexane. The entirety of the resulting analysis showed that Monoraphidium sp. Dek19 is a viable option for growth using the side streams from an ethanol plant and the use of enzymes will breakdown the biomass of the algae for production of cellulosic ethanol. Additionally, the extraction of oil can be performed in a quicker and safer manner.

  8. Short chain fatty acid production and glucose responses by methane producers

    USDA-ARS?s Scientific Manuscript database

    Fermentation by gut microbiota has been linked to physiologic responses in the host. Methanogenic gut bacteria may remove more carbon from indigestible food matrices especially poorly digested carbohydrates. We sought to assess the effects of methane production on short chain fatty acid (SCFA) con...

  9. Biological Hydrogen Production: Simultaneous Saccharification and Fermentation with Nitrogen and Phosphorus Removal from Wastewater Effluent

    DTIC Science & Technology

    2012-03-01

    the Haber - Bosch process, in which hydrogen is first produced from methane (eq. 1), then ammonia is produced from nitrogen and hydrogen: N2 (g...3H2 (g) - 2NH3 (g) (5) Agronomists have calculated that well over one-third of the world’s present population is fed by virtue of the Haber - Bosch ...fixation of nitrogen through the Haber - Bosch process, leading to a potential confluence of energy and fertilizer crises. Biological nitrogen fixation

  10. Dispersed, Decentralized and Renewable Energy Sources: Alternatives to National Vulnerability and War.

    DTIC Science & Technology

    1980-12-01

    yields. Figure 3.11-3 shcws this process. Figure 3.11-3220 METHANE FERMENTATION (ANAEROBIC DIGESTION ) A THREE STAGE PROCESS ORGANICS LCOMPOUNDS ACI DS...plant will provide electricity for about 45,000 people, and is scheduled for completion in 1982. Figure 3.12-4 illustrates a two - stage (high pressure and...condensed. The brine, after passing through the heat exchanger, is reinjected into the ground. 4 238 )- I Figure 3.124239 TWO STAGE , FLASHED STEAM POWER

  11. Respirometric studies on the effectiveness of biogas production from wastewaters originating from dairy, sugar and tanning industry.

    PubMed

    Debowski, M; Krzemieniewski, M; Zieliński, M; Dudek, M; Grala, A

    2013-01-01

    The objective of the present study was to determine the effectiveness of biogas production during methane fermentation of wastewaters originating from the dairy, tanning and sugar industries, by means ofrespirometric measurements conducted at a temperature of 35 degrees C. Experiments were carried out with the use of model tanks of volume 0.5 dm3. A high production yield of biogas, with methane content exceeding 60%, was achieved in the case of the anaerobic treatment of wastewaters from the dairy and sugar industries. A significantly lower effect was observed in the case of tanning wastewaters. The effectiveness of the fermentation process decreased with increasing loading of the tanks with a feedstock of organic compounds. By loading a model tank with this feedstock, the effectiveness of treatment ranged from 62.8% to 71.4% residual chemical oxygen demand for dairy wastewaters and from 57.9% to 64.1% for sugar industry wastewaters. The efficiency of organic compound removal from tanning wastewaters was below 50%, regardless of the method applied.

  12. Future methane emissions from animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anastasi, C.; Simpson, V.J.

    1993-04-20

    The authors project future methane emissions from animals to the year 2025. They review the present estimated sources of methane from enteric fermentation in animals. Ruminant animals produce the highest concentrations of methane. Methane is a byproduct of anaerobic breakdown of carbohydrates by microbes in the digestive tract of herbatious animals. In general the methane production depends on the variety of animal, the quality of the feed, and the feeding level. Since cattle, sheep, and buffalo account for roughly 91% of all animal methane emission, they only study these animals in detail. Results suggest a rise in methane production ofmore » roughly 1% per year averaged through 2025. Increasing levels are found to originate from developed countries even though the feedstock levels are lower.« less

  13. Gut microbiota influences low fermentable substrate diet efficacy in children with irritable bowel syndrome

    USDA-ARS?s Scientific Manuscript database

    We sought to determine whether a low fermentable substrate diet (LFSD) decreases abdominal pain frequency in children with irritable bowel syndrome (IBS) and to identify potential microbial factors related to diet efficacy. Pain symptoms, stooling characteristics, breath hydrogen and methane, whole ...

  14. Effects of Cordyceps militaris on the growth of rumen microorganisms and in vitro rumen fermentation with respect to methane emissions.

    PubMed

    Kim, W Y; Hanigan, M D; Lee, S J; Lee, S M; Kim, D H; Hyun, J H; Yeo, J M; Lee, S S

    2014-11-01

    This experiment was designed to investigate the effects of different concentrations (0.00, 0.10, 0.15, 0.20, 0.25, and 0.30 g/L) of dried Cordyceps militaris mushroom on in vitro anaerobic ruminal microbe fermentation and methane production using soluble starch as a substrate. Ruminal fluids were collected from Korean native cattle, mixed with phosphate buffer (1:2), and incubated anaerobically at 38 °C for 3, 6, 9, 12, 24, 36, 48, and 72 h. The addition of C. militaris significantly increased total volatile fatty acid and total gas production. The molar proportion of acetate was decreased and that of propionate was increased, with a corresponding decrease in the acetate:propionate ratio. As the concentration of C. militaris increased from 0.10 to 0.30 g/L, methane and hydrogen production decreased. The decrease in methane accumulation relative to the control was 14.1, 22.0, 24.9, 39.7, and 40.9% for the 0.10, 0.15, 0.20, 0.25, and 0.30 g/L treatments, respectively. Ammonia-N concentration and numbers of live protozoa decreased linearly with increasing concentrations of C. militaris. The pH of the medium significantly decreased at the highest level of C. militaris compared with the control. In conclusion, C. militaris stimulated mixed ruminal microorganism fermentation and inhibited methane production in vitro. Therefore, C. militaris could be developed as a novel compound for antimethanogenesis. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. In vitro methane and gas production with inocula from cows and goats fed an identical diet.

    PubMed

    Mengistu, Genet; Hendriks, Wouter H; Pellikaan, Wilbert F

    2018-03-01

    Fermentative capacity among ruminants can differ depending on the type of ruminant species and the substrate fermented. The aim was to compare in vitro cow and goat rumen inocula in terms of methane (CH 4 ) and gas production (GP), fermentation kinetics and 72 h volatile fatty acids (VFA) production using the browse species Acacia etbaica, Capparis tomentosa, Dichrostachys cinerea, Rhus natalensis, freeze-dried maize silage and grass silage, and a concentrate as substrates. Total GP, CH 4 and VFA were higher (P ≤ 0.008) in goat inoculum than cows across substrates. The half-time for asymptotic GP was lower (P < 0.0001) in phase 1 and higher (P < 0.012) in phase 2, and the maximum rate of GP was higher (P < 0.0001) in phase 1 and phase 3 (P < 0.0001) in goats compared to cows. Methane production and as a percentage of total GP was higher (P < 0.0001) and the half-time tended (P = 0.059) to be at a later time for goats compared to cows. Goat inoculum showed higher fermentative activity with a concomitant higher CH 4 production compared to cows. This difference highlights the ability of goats to better utilise browse species and other roughage types. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. The Potential Role of Seaweeds in the Natural Manipulation of Rumen Fermentation and Methane Production.

    PubMed

    Maia, Margarida R G; Fonseca, António J M; Oliveira, Hugo M; Mendonça, Carla; Cabrita, Ana R J

    2016-08-30

    This study is the first to evaluate the effects of five seaweeds (Ulva sp., Laminaria ochroleuca, Saccharina latissima, Gigartina sp., and Gracilaria vermiculophylla) on gas and methane production and ruminal fermentation parameters when incubated in vitro with two substrates (meadow hay and corn silage) for 24 h. Seaweeds led to lower gas production, with Gigartina sp. presenting the lowest value. When incubated with meadow hay, Ulva sp., Gigartina sp. and G. vermiculophylla decreased methane production, but with corn silage, methane production was only decreased by G. vermiculophylla. With meadow hay, L. ochroleuca and S. latissima promoted similar methane production as the control, but with corn silage, L. ochroleuca increased it. With the exception of S. latissima, all seaweeds promoted similar levels of total volatile fatty acid production. The highest proportion of acetic acid was produced with Ulva sp., G. vermiculophylla, and S. latissima; the highest proportion of butyric acid with the control and L. ochroleuca; and the highest proportion of iso-valeric acid with Gigartina sp. These results reveal the potential of seaweeds to mitigate ruminal methane production and the importance of the basal diet. To efficiently use seaweeds as feed ingredients with nutritional and environmental benefits, more research is required to determine the mechanisms underlying seaweed and substrate interactions.

  17. The Potential Role of Seaweeds in the Natural Manipulation of Rumen Fermentation and Methane Production

    PubMed Central

    Maia, Margarida R. G.; Fonseca, António J. M.; Oliveira, Hugo M.; Mendonça, Carla; Cabrita, Ana R. J.

    2016-01-01

    This study is the first to evaluate the effects of five seaweeds (Ulva sp., Laminaria ochroleuca, Saccharina latissima, Gigartina sp., and Gracilaria vermiculophylla) on gas and methane production and ruminal fermentation parameters when incubated in vitro with two substrates (meadow hay and corn silage) for 24 h. Seaweeds led to lower gas production, with Gigartina sp. presenting the lowest value. When incubated with meadow hay, Ulva sp., Gigartina sp. and G. vermiculophylla decreased methane production, but with corn silage, methane production was only decreased by G. vermiculophylla. With meadow hay, L. ochroleuca and S. latissima promoted similar methane production as the control, but with corn silage, L. ochroleuca increased it. With the exception of S. latissima, all seaweeds promoted similar levels of total volatile fatty acid production. The highest proportion of acetic acid was produced with Ulva sp., G. vermiculophylla, and S. latissima; the highest proportion of butyric acid with the control and L. ochroleuca; and the highest proportion of iso-valeric acid with Gigartina sp. These results reveal the potential of seaweeds to mitigate ruminal methane production and the importance of the basal diet. To efficiently use seaweeds as feed ingredients with nutritional and environmental benefits, more research is required to determine the mechanisms underlying seaweed and substrate interactions. PMID:27572486

  18. The Potential Role of Seaweeds in the Natural Manipulation of Rumen Fermentation and Methane Production

    NASA Astrophysics Data System (ADS)

    Maia, Margarida R. G.; Fonseca, António J. M.; Oliveira, Hugo M.; Mendonça, Carla; Cabrita, Ana R. J.

    2016-08-01

    This study is the first to evaluate the effects of five seaweeds (Ulva sp., Laminaria ochroleuca, Saccharina latissima, Gigartina sp., and Gracilaria vermiculophylla) on gas and methane production and ruminal fermentation parameters when incubated in vitro with two substrates (meadow hay and corn silage) for 24 h. Seaweeds led to lower gas production, with Gigartina sp. presenting the lowest value. When incubated with meadow hay, Ulva sp., Gigartina sp. and G. vermiculophylla decreased methane production, but with corn silage, methane production was only decreased by G. vermiculophylla. With meadow hay, L. ochroleuca and S. latissima promoted similar methane production as the control, but with corn silage, L. ochroleuca increased it. With the exception of S. latissima, all seaweeds promoted similar levels of total volatile fatty acid production. The highest proportion of acetic acid was produced with Ulva sp., G. vermiculophylla, and S. latissima; the highest proportion of butyric acid with the control and L. ochroleuca; and the highest proportion of iso-valeric acid with Gigartina sp. These results reveal the potential of seaweeds to mitigate ruminal methane production and the importance of the basal diet. To efficiently use seaweeds as feed ingredients with nutritional and environmental benefits, more research is required to determine the mechanisms underlying seaweed and substrate interactions.

  19. Dry fermentation of agricultural residues

    NASA Astrophysics Data System (ADS)

    Jewell, W. J.; Chandler, J. A.; Dellorto, S.; Fanfoni, K. J.; Fast, S.; Jackson, D.; Kabrick, R. M.

    1981-09-01

    A dry fermentation process is discussed which converts agricultural residues to methane, using the residues in their as produced state. The process appears to simplify and enhance the possibilities for using crop residues as an energy source. The major process variables investigated include temperature, the amount and type of inoculum, buffer requirements, compaction, and pretreatment to control the initial available organic components that create pH problems. A pilot-scale reactor operation on corn stover at a temperature of 550 C, with 25 percent initial total solids, a seed-to-feed ratio of 2.5 percent, and a buffer-to-feed ratio of 8 percent achieved 33 percent total volatile solids destruction in 60 days. Volumetric biogas yields from this unit were greater than 1 vol/vol day for 12 days, and greater than 0.5 vol/vol day for 32 days, at a substrate density of 169 kg/m (3).

  20. Comparison of Landfill Methane Oxidation Measured Using Stable Isotope Analysis and CO2/CH4 Fluxes Measured by the Eddy Covariance Method

    NASA Astrophysics Data System (ADS)

    Xu, L.; Chanton, J.; McDermitt, D. K.; Li, J.; Green, R. B.

    2015-12-01

    Methane plays a critical role in the radiation balance and chemistry of the atmosphere. Globally, landfill methane emission contributes about 10-19% of the anthropogenic methane burden into the atmosphere. In the United States, 18% of annual anthropogenic methane emissions come from landfills, which represent the third largest source of anthropogenic methane emissions, behind enteric fermentation and natural gas and oil production. One uncertainty in estimating landfill methane emissions is the fraction of methane oxidized when methane produced under anaerobic conditions passes through the cover soil. We developed a simple stoichiometric model to estimate methane oxidation fraction when the anaerobic CO2 / CH4 production ratio is known, or can be estimated. The model predicts a linear relationship between CO2 emission rates and CH4 emission rates, where the slope depends on anaerobic CO2 / CH4 production ratio and the fraction of methane oxidized, and the intercept depends on non-methane-dependent oxidation processes. The model was tested using carbon dioxide emission rates (fluxes) and methane emission rates (fluxes) measured using the eddy covariance method over a one year period at the Turkey Run landfill in Georgia, USA. The CO2 / CH4 production ratio was estimated by measuring CO2 and CH4 concentrations in air sampled under anaerobic conditions deep inside the landfill. We also used a mass balance approach to independently estimate fractional oxidation based on stable isotope measurements (δ13C of methane) of gas samples taken from deep inside the landfill and just above the landfill surface. Results from the two independent methods agree well. The model will be described and methane oxidation will be discussed in relation to wind direction, location at the landfill, and age of the deposited refuse.

  1. Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions

    PubMed Central

    Belanche, Alejandro; de la Fuente, Gabriel; Newbold, Charles J.

    2014-01-01

    Rumen methanogenesis represents an energy waste for the ruminant and an important source of greenhouse gas; thus, integrated studies are needed to fully understand this process. Eight fauna-free sheep were used to investigate the effect of successive inoculation with holotrich protozoa then with total fauna on rumen methanogenesis. Holotrichs inoculation neither altered rumen fermentation rate nor diet digestibility, but increased concentrations of acetate (+15%), butyrate (+57%), anaerobic fungi (+0.82 log), methanogens (+0.41 log) and methanogenesis (+54%). Further inoculation with total fauna increased rumen concentrations of protozoa (+1.0 log), bacteria (+0.29 log), anaerobic fungi (+0.78 log), VFA (+8%), ammonia and fibre digestibility (+17%) without affecting levels of methanogens or methanogenesis. Rumen methanogens population was fairly stable in terms of structure and diversity, while the bacterial community was highly affected by the treatments. Inoculation with holotrich protozoa increased bacterial diversity. Further inoculation with total fauna lowered bacterial diversity but increased concentrations of certain propionate and lactate-producing bacteria, suggesting that alternative H2 sinks could be relevant. This experiment suggests that holotrich protozoa have a greater impact on rumen methanogenesis than entodiniomorphids. Thus, further research is warranted to understand the effect of holotrich protozoa on methane formation and evaluate their elimination from the rumen as a potential methane mitigation strategy. PMID:25764558

  2. Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions.

    PubMed

    Belanche, Alejandro; de la Fuente, Gabriel; Newbold, Charles J

    2015-03-01

    Rumen methanogenesis represents an energy waste for the ruminant and an important source of greenhouse gas; thus, integrated studies are needed to fully understand this process. Eight fauna-free sheep were used to investigate the effect of successive inoculation with holotrich protozoa then with total fauna on rumen methanogenesis. Holotrichs inoculation neither altered rumen fermentation rate nor diet digestibility, but increased concentrations of acetate (+15%), butyrate (+57%), anaerobic fungi (+0.82 log), methanogens (+0.41 log) and methanogenesis (+54%). Further inoculation with total fauna increased rumen concentrations of protozoa (+1.0 log), bacteria (+0.29 log), anaerobic fungi (+0.78 log), VFA (+8%), ammonia and fibre digestibility (+17%) without affecting levels of methanogens or methanogenesis. Rumen methanogens population was fairly stable in terms of structure and diversity, while the bacterial community was highly affected by the treatments. Inoculation with holotrich protozoa increased bacterial diversity. Further inoculation with total fauna lowered bacterial diversity but increased concentrations of certain propionate and lactate-producing bacteria, suggesting that alternative H2 sinks could be relevant. This experiment suggests that holotrich protozoa have a greater impact on rumen methanogenesis than entodiniomorphids. Thus, further research is warranted to understand the effect of holotrich protozoa on methane formation and evaluate their elimination from the rumen as a potential methane mitigation strategy. © Federation of European Microbiological Society 2014.

  3. Rumen fermentation and production effects of Origanum vulgare L. leaves in lactating dairy cows

    USDA-ARS?s Scientific Manuscript database

    A lactating cow trial was conducted to study the effects of dietary addition of oregano leaf material (Origanum vulgare L.; 0, control vs. 500 g/d, OV) on ruminal fermentation, methane production, total tract digestibility, manure gas emissions, N metabolism, organoleptic characteristics of milk, an...

  4. Potential of tannin-rich plants for modulating ruminal microbes and ruminal fermentation in sheep.

    PubMed

    Rira, M; Morgavi, D P; Archimède, H; Marie-Magdeleine, C; Popova, M; Bousseboua, H; Doreau, M

    2015-01-01

    The objective of this work was to study nutritional strategies for decreasing methane production by ruminants fed tropical diets, combining in vitro and in vivo methods. The in vitro approach was used to evaluate the dose effect of condensed tannins (CT) contained in leaves of Gliricidia sepium, Leucaena leucocephala, and Manihot esculenta (39, 75, and 92 g CT/kg DM, respectively) on methane production and ruminal fermentation characteristics. Tannin-rich plants (TRP) were incubated for 24 h alone or mixed with a natural grassland hay based on Dichanthium spp. (control plant), so that proportions of TRP were 0, 0.25, 0.5, 0.75, and 1.0. Methane production, VFA concentration, and fermented OM decreased with increased proportions of TRP. Numerical differences on methane production and VFA concentration among TRP sources may be due to differences in their CT content, with greater effects for L. leucocephala and M. esculenta than for G. sepium. Independently of TRP, the response to increasing doses of CT was linear for methane production but quadratic for VFA concentration. As a result, at moderate tannin dose, methane decreased more than VFA. The in vivo trial was conducted to investigate the effect of TRP on different ruminal microbial populations. To this end, 8 rumen-cannulated sheep from 2 breeds (Texel and Blackbelly) were used in two 4 × 4 Latin square designs. Diets were fed ad libitum and were composed of the same feeds used for the in vitro trial: control plant alone or combined with pellets made from TRP leaves at 44% of the diet DM. Compared to TRP, concentration of Ruminococcus flavefaciens was greater for the control diet and concentration of Ruminococcus albus was least for the control diet. The methanogen population was greater for Texel than for Blackbelly. By contrast, TRP-containing diets did not affect protozoa or Fibrobacter succinogenes numbers. Hence, TRP showed potential for mitigating methane production by ruminants. These findings suggest that TRP fed as pellets could be used to decrease methane production.

  5. Lactic acid and methane: improved exploitation of biowaste potential.

    PubMed

    Dreschke, G; Probst, M; Walter, A; Pümpel, T; Walde, J; Insam, H

    2015-01-01

    This feasibility study investigated a two-step biorefining approach to increase the value gained by recycling of organic municipal solid waste. Firstly, lactic acid was produced via batch fermentation at 37°C using the indigenous microbiome. Experiments revealed an optimal fermentation period of 24h resulting in high yields of lactic acid (up to 37gkg(-1)). The lactic acid proportion of total volatile fatty acid content reached up to 83%. Lactobacilli were selectively enriched to up to 75% of the bacterial community. Additionally conversion of organic matter to lactic acid was increased from 22% to 30% through counteracting end product inhibition by continuous lactic acid extraction. Secondly, fermentation residues were used as co-substrate in biomethane production yielding up to 618±41Nmlbiomethaneg(-1) volatile solids. Digestate, the only end product of this process can be used as organic fertilizer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Comparison of thermophilic anaerobic digestion characteristics between single-phase and two-phase systems for kitchen garbage treatment.

    PubMed

    Park, YongJin; Hong, Feng; Cheon, JiHoon; Hidaka, Taira; Tsuno, Hiroshi

    2008-01-01

    Lab-scale single-phase and two-phase thermophilic methane fermentation systems (SPS and TPS, respectively) were operated and fed with artificial kitchen waste. In both SPS and TPS, the highest methane recovery ratio of 90%, in terms of chemical oxygen demand by dichromate (CODcr), was observed at an organic loading rate (OLR) of 15 gCODcr/(l.d). The ratio of particle CODcr remaining to total CODcr in the influent was 0.1 and the ratio of NH(4)-N concentration to the input total nitrogen concentration was 0.5 in both SPS and TPS. However, the propionate concentration in the SPS reactor fluctuated largely and was 2 gCODcr/l higher than that in TPS, indicating less stable digestion. Regardless, efficient kitchen waste degradation can be accomplished in both SPS and TPS at an OLR of <20 gCODcr/(l.d), even though TPS may be more stable and easier to maintain. Bacillus coagulans predominated with an occupied ratio of approximately 90% in the acid fermentation reactor of TPS, and then a richer microbial community with a higher Shannon index value was maintained in the methane fermentation reactor of TPS than in the SPS reactor.

  7. Establishment and assessment of a novel cleaner production process of corn grain fuel ethanol.

    PubMed

    Wang, Ke; Zhang, Jianhua; Tang, Lei; Zhang, Hongjian; Zhang, Guiying; Yang, Xizhao; Liu, Pei; Mao, Zhonggui

    2013-11-01

    An integrated corn ethanol-methane fermentation system was proposed to solve the problem of stillage handling, where thin stillage was treated by anaerobic digestion and then reused to make mash for the following ethanol fermentation. This system was evaluated at laboratory and pilot scale. Anaerobic digestion of thin stillage ran steadily with total chemical oxygen demand removal efficiency of 98% at laboratory scale and 97% at pilot scale. Ethanol production was not influenced by recycling anaerobic digestion effluent at laboratory and pilot scale. Compared with dried distillers' grains with solubles produced in conventional process, dried distillers' grains in the proposed system exhibited higher quality because of increased protein concentration and decreased salts concentration. Energetic assessment indicated that application of this novel process enhanced the net energy balance ratio from 1.26 (conventional process) to 1.76. In conclusion, the proposed system possessed technical advantage over the conventional process for corn fuel ethanol production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Reduction in environmental impact of sulfuric acid hydrolysis of bamboo for production of fuel ethanol.

    PubMed

    Sun, Zhao-Yong; Tang, Yue-Qin; Morimura, Shigeru; Kida, Kenji

    2013-01-01

    Fuel ethanol can be produced from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. To reduce the environmental impact of this process, treatment of the stillage, reuse of the sulfuric acid and reduction of the process water used were studied. The total organic carbon (TOC) concentration of stillage decreased from 29,688 to 269 mg/l by thermophilic methane fermentation followed by aerobic treatment. Washing the solid residue from acid hydrolysis with effluent from the biological treatment increased the sugar recovery from 69.3% to 79.3%. Sulfuric acid recovered during the acid-sugar separation process was condensed and reused for hydrolysis, resulting in a sugar recovery efficiency of 76.8%, compared to 80.1% when fresh sulfuric acid was used. After acetate removal, the condensate could be reused as elution water in the acid-sugar separation process. As much as 86.3% of the process water and 77.6% of the sulfuric acid could be recycled. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Emission of Methane by Eudrilus eugeniae and Other Earthworms from Brazil

    PubMed Central

    Depkat-Jakob, Peter S.; Hunger, Sindy; Schulz, Kristin; Brown, George G.; Tsai, Siu M.

    2012-01-01

    Earthworms emit denitrification-derived nitrous oxide and fermentation-derived molecular hydrogen. The present study demonstrated that the earthworm Eudrilus eugeniae, obtained in Brazil, emitted methane. Other worms displayed a lesser or no capacity to emit methane. Gene and transcript analyses of mcrA (encoding the alpha subunit of methyl-CoM reductase) in gut contents of E. eugeniae suggested that Methanosarcinaceae, Methanobacteriaceae, and Methanomicrobiaceae might be associated with this emission. PMID:22344639

  10. Enhancing phosphorus release from waste activated sludge containing ferric or aluminum phosphates by EDTA addition during anaerobic fermentation process.

    PubMed

    Zou, Jinte; Zhang, Lili; Wang, Lin; Li, Yongmei

    2017-03-01

    The effect of ethylene diamine tetraacetic acid (EDTA) addition on phosphorus release from biosolids and phosphate precipitates during anaerobic fermentation was investigated. Meanwhile, the impact of EDTA addition on the anaerobic fermentation process was revealed. The results indicate that EDTA addition significantly enhanced the release of phosphorus from biosolids, ferric phosphate precipitate and aluminum phosphate precipitate during anaerobic fermentation, which is attributed to the complexation of metal ions and damage of cell membrane caused by EDTA. With the optimal EDTA addition of 19.5 mM (0.41 gEDTA/gSS), phosphorus release efficiency from biosolids was 82%, which was much higher than that (40%) without EDTA addition. Meanwhile, with 19.5 mM EDTA addition, almost all the phosphorus in ferric phosphate precipitate was released, while only 57% of phosphorus in aluminum phosphate precipitate was released. This indicates that phosphorus in ferric phosphate precipitate was much easier to be released than that in aluminum phosphate precipitate during anaerobic fermentation of sludge. In addition, proper EDTA addition facilitated the production of soluble total organic carbon and volatile fatty acids, as well as solid reduction during sludge fermentation, although methane production could be inhibited. Therefore, EDTA addition can be used as an alternative method for recovering phosphorus from waste activated sludge containing ferric or aluminum precipitates, as well as recovery of soluble carbon source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. TECHNICAL NOTE: Effect of bait delivery interval in an automated head-chamber system on respiration gas estimates when cattle are grazing rangeland

    USDA-ARS?s Scientific Manuscript database

    Agricultural methane emissions account for approximately 43% of all anthropogenic methane emissions and the majority of agricultural CH4 emissions are attributed to enteric fermentation within ruminant livestock, therefor interest is heightened in quantifying and mitigating this source. An automate...

  12. Effect of feeding legumes containing condensed tannins with orchardgrass on ruminal fermentation and methane production in continuous culture

    USDA-ARS?s Scientific Manuscript database

    Developing feeding strategies that allow farmers to reduce methane (CH4) emissions from livestock is gaining interest worldwide. Legumes containing condensed tannins (CT) have been shown to decrease enteric CH4 in ruminants; however, research is lacking on how increased CT levels affect ruminal ferm...

  13. Characterisation of water hyacinth with microwave-heated alkali pretreatment for enhanced enzymatic digestibility and hydrogen/methane fermentation.

    PubMed

    Lin, Richen; Cheng, Jun; Song, Wenlu; Ding, Lingkan; Xie, Binfei; Zhou, Junhu; Cen, Kefa

    2015-04-01

    Microwave-heated alkali pretreatment (MAP) was investigated to improve enzymatic digestibility and H2/CH4 production from water hyacinth. SEM revealed that MAP deconstructed the lignocellulose matrix and swelled the surfaces of water hyacinth. XRD indicated that MAP decreased the crystallinity index from 16.0 to 13.0 because of cellulose amorphisation. FTIR indicated that MAP effectively destroyed the lignin structure and disrupted the crystalline cellulose to reduce crystallinity. The reducing sugar yield of 0.296 g/gTVS was achieved at optimal hydrolysis conditions (microwave temperature = 190°C, time = 10 min, and cellulase dosage = 5 wt%). The sequentially fermentative hydrogen and methane yields from water hyacinth with MAP and enzymatic hydrolysis were increased to 63.9 and 172.5 mL/gTVS, respectively. The energy conversion efficiency (40.0%) in the two-stage hydrogen and methane cogeneration was lower than that (49.5%) in the one-stage methane production (237.4 mL/gTVS) from water hyacinth with MAP and enzymatic hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A two-stage bioprocess for hydrogen and methane production from rice straw bioethanol residues.

    PubMed

    Cheng, Hai-Hsuan; Whang, Liang-Ming; Wu, Chao-Wei; Chung, Man-Chien

    2012-06-01

    This study evaluates a two-stage bioprocess for recovering hydrogen and methane while treating organic residues of fermentative bioethanol from rice straw. The obtained results indicate that controlling a proper volumetric loading rate, substrate-to-biomass ratio, or F/M ratio is important to maximizing biohydrogen production from rice straw bioethanol residues. Clostridium tyrobutyricum, the identified major hydrogen-producing bacteria enriched in the hydrogen bioreactor, is likely utilizing lactate and acetate for biohydrogen production. The occurrence of acetogenesis during biohydrogen fermentation may reduce the B/A ratio and lead to a lower hydrogen production. Organic residues remained in the effluent of hydrogen bioreactor can be effectively converted to methane with a rate of 2.8 mmol CH(4)/gVSS/h at VLR of 4.6 kg COD/m(3)/d. Finally, approximately 75% of COD in rice straw bioethanol residues can be removed and among that 1.3% and 66.1% of COD can be recovered in the forms of hydrogen and methane, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Biogas production from oil palm empty fruit bunches of post mushroom cultivation media

    NASA Astrophysics Data System (ADS)

    Purnomo, Agus; Suprihatin; Romli, M.; Hasanudin, Udin

    2018-03-01

    The Empty fruit bunches are one of the palm oil industry wastes, which can be used for mushroom cultivation. Post-cultivation of mushroom from former EFB-mushroom media (EFBMM) has the potential to be processed into biogas. The purpose of this research was to examine optimum co-digestion conditions for biogas production of EFBMM.The research was carried out in an anaerobic digester with three different conditions - dry fermentation (Water content (WC)/Total Solid (TS) ratio 1.5 - 3.5), semi-wet fermentation (WC/TS ratio = 4.0 - 5.7) and wet fermentation (WC/TS ratio> 9.0) conditions. Digester of capacity 50L was used. Fermentation was done using 20% cow feces as inoculum which then added with circulation system for 70 days. The results showed that optimum biogas production were produced in semi-wet fermentation conditions (WC/TS ratio = 4). It was produced 37.462 liters (2.420 liters CH4/Kg Volatile Solid (VS)) of biogas with methane contain about 26.231%. Total volume of inoculum during process was 19.6 liters (1: 4 w/v) with absorbed TS inoculum ratio, TS/I = 0.4 (1:2.5 w/v). The result of research also showed that biogas which was produced from control about 2.865 liters (0.041 liters CH4/KgVS), with TS absorbed inoculum ratio, TS/I = 0.5 (1: 5w/v).

  16. Effect of summer annuals on ruminal fermentation and methane output in continuous culture

    USDA-ARS?s Scientific Manuscript database

    Summer annuals (SA) provide forage during the summer “forage slump”, yet research on ruminal fermentation and CH4 output of SA is lacking. A 4-unit, dual-flow continuous culture fermentor system was used to assess nutrient digestibility, VFA production, bacterial protein synthesis, and CH4 output of...

  17. In situ Removal of Hydrogen Sulfide During Biogas Fermentation at Microaerobic Condition.

    PubMed

    Wu, Mengmeng; Zhang, Yima; Ye, Yuanyuan; Lin, Chunmian

    2016-11-01

    In this paper, rice straw was used as a raw material to produce biogas by anaerobic batch fermentation at 35 °C (mesophilic) or 55 °C (thermophilic). The hydrogen sulfide in biogas can be converted to S 0 or sulfate and removed in-situ under micro-oxygen environment. Trace oxygen was conducted to the anaerobic fermentation tank in amount of 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, or 10.0 times stoichiometric equivalence, respectively, and the control experiment without oxygen addition was carried out. The results showed that the initial H 2 S concentrations of biogas are about 3235 ± 185 mg/m 3 (mesophilic) or 3394 ± 126 mg/m 3 (thermophilic), respectively. The desulfurization efficiency is 72.3 % (mesophilic) or 65.6 % (thermophilic), respectively, with oxygen addition by stoichiometric relation. When the oxygen feeded in amount of 2∼4 times, theoretical quantity demanded the removal efficiency of hydrogen sulfide could be over 92 %, and the oxygen residue in biogas could be maintained less than 0.5 %, which fit the requirement of biogas used as vehicle fuel or combined to the grid. Though further more oxygen addition could promote the removal efficiency of hydrogen sulfide (about 93.6 %), the oxygen residue in biogas would be higher than the application limit concentration (0.5 %). Whether mesophilic or thermophilic fermentation with the extra addition of oxygen, there were no obvious changes in the gas production and methane concentration. In conclusion, in-situ desulfurization can be achieved in the anaerobic methane fermentation system under micro-oxygen environment. In addition, air could be used as a substitute oxygen resource on the situation without strict demand for the methane content of biogas.

  18. Integrated Process for Ethanol, Biogas, and Edible Filamentous Fungi-Based Animal Feed Production from Dilute Phosphoric Acid-Pretreated Wheat Straw.

    PubMed

    Nair, Ramkumar B; Kabir, Maryam M; Lennartsson, Patrik R; Taherzadeh, Mohammad J; Horváth, Ilona Sárvári

    2018-01-01

    Integration of wheat straw for a biorefinery-based energy generation process by producing ethanol and biogas together with the production of high-protein fungal biomass (suitable for feed application) was the main focus of the present study. An edible ascomycete fungal strain Neurospora intermedia was used for the ethanol fermentation and subsequent biomass production from dilute phosphoric acid (0.7 to 1.2% w/v) pretreated wheat straw. At optimum pretreatment conditions, an ethanol yield of 84 to 90% of the theoretical maximum, based on glucan content of substrate straw, was observed from fungal fermentation post the enzymatic hydrolysis process. The biogas production from the pretreated straw slurry showed an improved methane yield potential up to 162% increase, as compared to that of the untreated straw. Additional biogas production, using the syrup, a waste stream obtained post the ethanol fermentation, resulted in a combined total energy output of 15.8 MJ/kg wheat straw. Moreover, using thin stillage (a waste stream from the first-generation wheat-based ethanol process) as a co-substrate to the biogas process resulted in an additional increase by about 14 to 27% in the total energy output as compared to using only wheat straw-based substrates. ᅟ.

  19. Enhancing methane production from food waste fermentate using biochar: the added value of electrochemical testing in pre-selecting the most effective type of biochar.

    PubMed

    Cruz Viggi, Carolina; Simonetti, Serena; Palma, Enza; Pagliaccia, Pamela; Braguglia, Camilla; Fazi, Stefano; Baronti, Silvia; Navarra, Maria Assunta; Pettiti, Ida; Koch, Christin; Harnisch, Falk; Aulenta, Federico

    2017-01-01

    Recent studies have suggested that addition of electrically conductive biochar particles is an effective strategy to improve the methanogenic conversion of waste organic substrates, by promoting syntrophic associations between acetogenic and methanogenic organisms based on interspecies electron transfer processes. However, the underlying fundamentals of the process are still largely speculative and, therefore, a priori identification, screening, and even design of suitable biochar materials for a given biotechnological process are not yet possible. Here, three charcoal-like products (i.e., biochars) obtained from the pyrolysis of different lignocellulosic materials, (i.e., wheat bran pellets, coppiced woodlands, and orchard pruning) were tested for their capacity to enhance methane production from a food waste fermentate. In all biochar-supplemented (25 g/L) batch experiments, the complete methanogenic conversion of fermentate volatile fatty acids proceeded at a rate that was up to 5 times higher than that observed in the unamended (or sand-supplemented) controls. Fluorescent in situ hybridization analysis coupled with confocal laser scanning microscopy revealed an intimate association between archaea and bacteria around the biochar particles and provided a clear indication that biochar also shaped the composition of the microbial consortium. Based on the application of a suite of physico-chemical and electrochemical characterization techniques, we demonstrated that the positive effect of biochar is directly related to the electron-donating capacity (EDC) of the material, but is independent of its bulk electrical conductivity and specific surface area. The latter properties were all previously hypothesized to play a major role in the biochar-mediated interspecies electron transfer process in methanogenic consortia. Collectively, these results of this study suggest that for biochar addition in anaerobic digester operation, the screening and identification of the most suitable biochar material should be based on EDC determination, via simple electrochemical tests.

  20. Fermentation quality and in vitro methane production of sorghum silage prepared with cellulase and lactic acid bacteria

    PubMed Central

    Khota, Waroon; Pholsen, Suradej; Higgs, David; Cai, Yimin

    2017-01-01

    Objective The effects of lactic acid bacteria (LAB) and cellulase enzyme on fermentation quality, microorganism population, chemical composition and in vitro gas production of sorghum silages were studied. Methods Commercial inoculant Lactobacillus plantarum Chikuso 1 (CH), local selected strain Lactobacillus casei (L. casei) TH 14 and Acremonium cellulase (AC) were used as additives in sorghum silage preparation. Results Prior to ensiling Sorghum contained 104 LAB and 106 cfu/g fresh matter coliform bacteria. The chemical compositions of sorghum was 26.6% dry matter (DM), 5.2% crude protein (CP), and 69.7% DM for neutral detergent fiber. At 30 days of fermentation after ensiling, the LAB counts increased to a dominant population; the coliform bacteria and molds decreased to below detectable level. All sorghum silages were good quality with a low pH (<3.5) and high lactic acid content (>66.9 g/kg DM). When silage was inoculated with TH14, the pH value was significantly (p<0.05) lower and the CP content significantly (p<0.05) higher compared to control, CH and AC-treatments. The ratio of in vitro methane production to total gas production and DM in TH 14 and TH 14+AC treatments were significantly (p<0.05) reduced compared with other treatments while in vitro dry matter digestibility and gas production did not differ among treatments. Conclusion The results confirmed that L. casei TH14 could improve sorghum silage fermentation, inhibit protein degradation and decrease methane production. PMID:28728399

  1. Effects of essential oils from medicinal plants acclimated to Benin on in vitro ruminal fermentation of Andropogon gayanus grass.

    PubMed

    Kouazounde, Jacques B; Jin, Long; Assogba, Fidele M; Ayedoun, Marc A; Wang, Yuxi; Beauchemin, Karen A; McAllister, Tim A; Gbenou, Joachim D

    2015-03-30

    Plants from West Africa commonly used in both human and veterinary medicine contain various secondary metabolites. However, their potential in mitigating ruminal methane production has not been explored. This study examined the effects of seven essential oils (EOs) from plants acclimated to Benin at four dosages (100, 200, 300 and 400 mg L(-1)), on in vitro rumen microbial fermentation and methane production using Andropogon gayanus grass as a substrate. Compared to control, Laurus nobilis (300-400 mg L(-1) ), Citrus aurantifolia (300-400 mg L(-1)) and Ocimum gratissimum (200-400 mg L(-1)) decreased (P < 0.05) methane production (mL g(-1) DM) by 8.1-11.8%, 11.9-17.8% and 7.9-30.6%, respectively. Relative to the control, reductions in methane (mL g(-1) DM) of 11.4%, 13.5% and 14.2% were only observed at 400 mg L(-1) for Eucalyptus citriodora, Ocimum basilicum and Cymbopogon citratus, respectively. These EOs lowered methane without reducing concentrations of total volatile fatty acids or causing a shift from acetate to propionate production. All EOs (except M. piperita) reduced (P < 0.05) apparent dry matter (DM) disappearance of A. gayanus. The current study demonstrated that EOs from plants grown in Benin inhibited in vitro methane production mainly through a reduction in apparent DM digestibility. © 2014 Society of Chemical Industry.

  2. Effects of three methane mitigation agents on parameters of kinetics of total and hydrogen gas production, ruminal fermentation and hydrogen balance using in vitro technique.

    PubMed

    Wang, Min; Wang, Rong; Yang, Shan; Deng, Jin Ping; Tang, Shao Xun; Tan, Zhi Liang

    2016-02-01

    Methane (CH4 ) can be mitigated through directly inhibiting methanogen activity and starving methanogens by hydrogen (H2 ) sink. Three types of mechanism (i.e. bromoethanesulphonate (BES), nitrate and emodin) and doses of CH4 mitigation agents were employed to investigate their pathways of CH4 inhibition. Results indicated that both BES and emodin inhibited CH4 production and altered H2 balance, which could be accompanied by decreased dry matter disappearance (DMD), fractional rate of gH2 formation, volatile fatty acid (VFA) production, ability to produce and use reducing equivalences and molecular H2 , and increased final asymptotic gH2 production, time to the peak of gH2 , discrete lag time of gH2 production and fermentation efficiency. However, emodin decreased gas volume produced by rapidly fermentable components of substrate and the rate of fermentation at early stage of incubation, while BES supplementation inhibited gas volume produced by both rapidly and slowly fermentable components of substrate and the rate of fermentation at middle or late stage of incubation. The nitrate supplementation inhibited CH4 production without affecting VFA profile, because of its dual role as H2 sink and being toxic to methanogens. Nitrate supplementation had more complicated pattern of fermentation, VFA production and profile and H2 balance in comparison to BES and emodin supplementation. © 2015 Japanese Society of Animal Science.

  3. Anaerobic digestion of agricultural and other substrates--implications for greenhouse gas emissions.

    PubMed

    Pucker, J; Jungmeier, G; Siegl, S; Pötsch, E M

    2013-06-01

    The greenhouse gas (GHG) emissions, expressed in carbon dioxide equivalents (CO2-eq), of different Austrian biogas systems were analyzed and evaluated using life-cycle assessment (LCA) as part of a national project. Six commercial biogas plants were investigated and the analysis included the complete process chain: viz., the production and collection of substrates, the fermentation of the substrates in the biogas plant, the upgrading of biogas to biomethane (if applicable) and the use of the biogas or biomethane for heat and electricity or as transportation fuel. Furthermore, the LCA included the GHG emissions of construction, operation and dismantling of the major components involved in the process chain, as well as the use of by-products (e.g. fermentation residues used as fertilizers). All of the biogas systems reduced GHG emissions (in CO2-eq) compared with fossil reference systems. The potential for GHG reduction of the individual biogas systems varied between 60% and 100%. Type of feedstock and its reference use, agricultural practices, coverage of storage tanks for fermentation residues, methane leakage at the combined heat and power plant unit and the proportion of energy used as heat were identified as key factors influencing the GHG emissions of anaerobic digestion processes.

  4. Material and microbial changes during corn stalk silage and their effects on methane fermentation.

    PubMed

    Zhao, Yubin; Yu, Jiadong; Liu, Jingjing; Yang, HongYan; Gao, Lijuan; Yuan, XuFeng; Cui, Zong-Jun; Wang, Xiaofen

    2016-12-01

    Silage efficiency is crucial for corn stalk storage in methane production. This study investigated characteristics of dynamic changes in materials and microbes during the silage process of corn stalks from the initial to stable state. We conducted laboratory-scale study of different silage corn stalks, and optimized silage time (0, 2, 5, 10, 20, and 30days) for methane production and the endogenous microbial community. The volatile fatty acid concentration increased to 3.00g/L on Day 10 from 0.42g/L on Day 0, and the pH remained below 4.20 from 5.80. The lactic acid concentration (44%) on Day 10 lowered the pH and inhibited the methane yield, which gradually decreased from 229mL/g TS at the initial state (Day 0, 2) to 207mL/g TS at the stable state (Day 10, 20, 30). Methanosaeta was the predominant archaea in both fresh and silage stalks; however, richness decreased from 14.11% to 4.75%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Stable acetate production in extreme-thermophilic (70°C) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Zhang, Yan; Ding, Jing; Dai, Kun; van Loosdrecht, Mark C. M.; Zeng, Raymond J.

    2014-06-01

    The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in extreme-thermophilic (70°C) mixed culture fermentation. The continuous stirred tank reactor (CSTR) was stable operated during 100 days, in which acetate accounted for more than 90% of metabolites in liquid solutions. The yields of acetate, methane and biomass in CSTR were 1.5 +/- 0.06, 1.0 +/- 0.13 and 0.4 +/- 0.05 mol/mol glucose, respectively, close to the theoretical expected values. The CSTR effluent was stable and no further conversion occurred when incubated for 14 days in a batch reactor. In fed-batch experiments, acetate could be produced up to 34.4 g/L, significantly higher than observed in common hydrogen producing fermentations. Acetate also accounted for more than 90% of soluble products formed in these fed-batch fermentations. The microbial community analysis revealed hydrogenotrophic methanogens (mainly Methanothermobacter thermautotrophicus and Methanobacterium thermoaggregans) as 98% of Archaea, confirming that high temperature will select hydrogenotrophic methanogens over aceticlastic methanogens effectively. This work demonstrated a potential application to effectively produce acetate as a value chemical and methane as an energy gas together via mixed culture fermentation.

  6. Stable acetate production in extreme-thermophilic (70°C) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens

    PubMed Central

    Zhang, Fang; Zhang, Yan; Ding, Jing; Dai, Kun; van Loosdrecht, Mark C. M.; Zeng, Raymond J.

    2014-01-01

    The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in extreme-thermophilic (70°C) mixed culture fermentation. The continuous stirred tank reactor (CSTR) was stable operated during 100 days, in which acetate accounted for more than 90% of metabolites in liquid solutions. The yields of acetate, methane and biomass in CSTR were 1.5 ± 0.06, 1.0 ± 0.13 and 0.4 ± 0.05 mol/mol glucose, respectively, close to the theoretical expected values. The CSTR effluent was stable and no further conversion occurred when incubated for 14 days in a batch reactor. In fed-batch experiments, acetate could be produced up to 34.4 g/L, significantly higher than observed in common hydrogen producing fermentations. Acetate also accounted for more than 90% of soluble products formed in these fed-batch fermentations. The microbial community analysis revealed hydrogenotrophic methanogens (mainly Methanothermobacter thermautotrophicus and Methanobacterium thermoaggregans) as 98% of Archaea, confirming that high temperature will select hydrogenotrophic methanogens over aceticlastic methanogens effectively. This work demonstrated a potential application to effectively produce acetate as a value chemical and methane as an energy gas together via mixed culture fermentation. PMID:24920064

  7. Methane production from bicarbonate and acetate in an anoxic marine sediment

    NASA Technical Reports Server (NTRS)

    Crill, P. M.; Martens, C. S.

    1986-01-01

    Methane production from C-14 labeled bicarbonate and acetate was measured over the top 28 cm of anoxic Cape Lookout Bight sediments during the summer of 1983. The depth distribution and magnitude of summed radioisotopically determined rates compare well with previous measurements of total methane production and the sediment-water methane flux. Methane production from CO2 reduction and acetate fermentation accounts for greater than 80 percent of the total production rate and sediment-water flux. Methane production from bicarbonate was found to occur in all depth intervals sampled except those in the top 2 cm, whereas significant methane production from acetate only occurred at depths below 10 cm where sulfate was exhausted. Acetate provided 20 to 29 percent of the measured methane production integrated over the top 30 cm of the sediments.

  8. Boosting dark fermentation with co-cultures of extreme thermophiles for biohythane production from garden waste.

    PubMed

    Abreu, Angela A; Tavares, Fábio; Alves, Maria Madalena; Pereira, Maria Alcina

    2016-11-01

    Proof of principle of biohythane and potential energy production from garden waste (GW) is demonstrated in this study in a two-step process coupling dark fermentation and anaerobic digestion. The synergistic effect of using co-cultures of extreme thermophiles to intensify biohydrogen dark fermentation is demonstrated using xylose, cellobiose and GW. Co-culture of Caldicellulosiruptor saccharolyticus and Thermotoga maritima showed higher hydrogen production yields from xylose (2.7±0.1molmol(-1) total sugar) and cellobiose (4.8±0.3molmol(-1) total sugar) compared to individual cultures. Co-culture of extreme thermophiles C. saccharolyticus and Caldicellulosiruptor bescii increased synergistically the hydrogen production yield from GW (98.3±6.9Lkg(-1) (VS)) compared to individual cultures and co-culture of T. maritima and C. saccharolyticus. The biochemical methane potential of the fermentation end-products was 322±10Lkg(-1) (CODt). Biohythane, a biogas enriched with 15% hydrogen could be obtained from GW, yielding a potential energy generation of 22.2MJkg(-1) (VS). Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Biorefinery of cellulosic primary sludge towards targeted Short Chain Fatty Acids, phosphorus and methane recovery.

    PubMed

    Crutchik, Dafne; Frison, Nicola; Eusebi, Anna Laura; Fatone, Francesco

    2018-06-01

    Cellulose from used toilet paper is a major untapped resource embedded in municipal wastewater which recovery and valorization to valuable products can be optimized. Cellulosic primary sludge (CPS) can be separated by upstream dynamic sieving and anaerobically digested to recover methane as much as 4.02 m 3 /capita·year. On the other hand, optimal acidogenic fermenting conditions of CPS allows the production of targeted short-chain fatty acids (SCFAs) as much as 2.92 kg COD/capita·year. Here propionate content can be more than 30% and can optimize the enhanced biological phosphorus removal (EBPR) processes or the higher valuable co-polymer of polyhydroxyalkanoates (PHAs). In this work, first a full set of batch assays were used at three different temperatures (37, 55 and 70 °C) and three different initial pH (8, 9 and 10) to identify the best conditions for optimizing both the total SCFAs and propionate content from CPS fermentation. Then, the optimal conditions were applied in long term to a Sequencing Batch Fermentation Reactor where the highest propionate production (100-120 mg COD/g TVS fed ·d) was obtained at 37 °C and adjusting the feeding pH at 8. This was attributed to the higher hydrolysis efficiency of the cellulosic materials (up to 44%), which increased the selective growth of Propionibacterium acidopropionici in the fermentation broth up to 34%. At the same time, around 88% of the phosphorus released during the acidogenic fermentation was recovered as much as 0.15 kg of struvite per capita·year. Finally, the potential market value was preliminary estimated for the recovered materials that can triple over the conventional scenario of biogas recovery in existing municipal wastewater treatment plants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Effect of incremental flaxseed supplementation of an herbage diet on methane output and ruminal fermentation in continuous culture

    USDA-ARS?s Scientific Manuscript database

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of increasing flax supplementation of an herbage-based diet on nutrient digestibility, bacterial N synthesis and methane output. Treatments were randomly assigned to fermentors in a 4 x 4 Latin square design with 7 ...

  11. Effect of sprouted barley grain supplementation of an herbage or haylage diet on ruminal fermentation and methane output in continuous culture

    USDA-ARS?s Scientific Manuscript database

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley (SB) or barley grain (BG), with a pasture (orchardgrass) or haylage diet, on nutrient digestibility, VFA production, bacterial protein synthesis, and methane production. Treatmen...

  12. New method of dual media fermentation can produced quality methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaseen, D.A.

    The production of high quality methane by anaerobic digestion of organic wastes can be achieved by the use of a water substrate nutrient media plus an inert media to absorb surplus organic acid and carbon dioxide. Two types of media are available: polyorganosiloxanes and fluorocarbons. The physical characteristics which make these types suitable are tabulated. (JSR)

  13. Effects of dietary tannin source on performance, feed efficiency, ruminal fermentation, and carcass and non-carcass traits in steers fed a high-grain diet

    USDA-ARS?s Scientific Manuscript database

    Tannins are polyphenolic secondary plant compounds that have been shown to affect microbial activity to impact fermentation, protein degradation, methane production, and potential to mitigate foodborne pathogens. This study was conducted to examine the effects of source of tannin (condensed, CT, vs....

  14. Potential contributions of food consumption patterns to climate change.

    PubMed

    Carlsson-Kanyama, Annika; González, Alejandro D

    2009-05-01

    Anthropogenic warming is caused mainly by emissions of greenhouse gases (GHGs), such as carbon dioxide, methane, and nitrous oxide, with agriculture as a main contributor for the latter 2 gases. Other parts of the food system contribute carbon dioxide emissions that emanate from the use of fossil fuels in transportation, processing, retailing, storage, and preparation. Food items differ substantially when GHG emissions are calculated from farm to table. A recent study of approximately 20 items sold in Sweden showed a span of 0.4 to 30 kg CO(2) equivalents/kg edible product. For protein-rich food, such as legumes, meat, fish, cheese, and eggs, the difference is a factor of 30 with the lowest emissions per kilogram for legumes, poultry, and eggs and the highest for beef, cheese, and pork. Large emissions for ruminants are explained mainly by methane emissions from enteric fermentation. For vegetables and fruits, emissions usually are

  15. Nitrate but not tea saponin feed additives decreased enteric methane emissions in nonlactating cows.

    PubMed

    Guyader, J; Eugène, M; Doreau, M; Morgavi, D P; Gérard, C; Loncke, C; Martin, C

    2015-11-01

    Tea saponin is considered a promising natural compound for reducing enteric methane emissions in ruminants. A trial was conducted to study the effect of this plant extract fed alone or in combination with nitrate on methane emissions, total tract digestive processes, and ruminal characteristics in cattle. The experiment was conducted as a 2 × 2 factorial design with 4 ruminally cannulated nonlactating dairy cows. Feed offer was restricted to 90% of voluntary intake and diets consisted of (DM basis): 1) control (CON; 50% hay and 50% pelleted concentrates), 2) CON with 0.5% tea saponin (TEA), 3) CON with 2.3% nitrate (NIT), and 4) CON with 0.5% tea saponin and 2.3% nitrate (TEA+NIT). Tea saponin and nitrate were included in pelleted concentrates. Diets contained similar amounts of CP (12.2%), starch (26.0%), and NDF (40.1%). Experimental periods lasted 5 wk including 2 wk of measurement (wk 4 and 5), during which intake was measured daily. In wk 4, daily methane emissions were quantified for 4 d using open circuit respiratory chambers. In wk 5, total tract digestibility, N balance, and urinary excretion of purine derivatives were determined from total feces and urine collected separately for 6 d. Ruminal fermentation products and protozoa concentration were analyzed from samples taken after morning feeding for 2 nonconsecutive days in wk 5. Tea saponin and nitrate supplementation decreased feed intake ( < 0.05), with an additive effect when fed in combination. Compared with CON, tea saponin did not modify methane emissions (g/kg DMI; > 0.05), whereas nitrate-containing diets (NIT and TEA+NIT) decreased methanogenesis by 28%, on average ( < 0.001). Total tract digestibility, N balance, and urinary excretion of purine derivatives were similar among diets. Ruminal fermentation products were not affected by tea saponin, whereas nitrate-containing diets increased acetate proportion and decreased butyrate proportion and ammonia concentration ( < 0.05). Under the experimental conditions tested, we confirmed the antimethanogenic effect of nitrate, whereas tea saponin alone included in pelleted concentrates failed to decrease enteric methane emissions in nonlactating dairy cows.

  16. Effects of plants containing secondary compounds and plant oils on rumen fermentation and ecology.

    PubMed

    Wanapat, Metha; Kongmun, Pongthon; Poungchompu, Onanong; Cherdthong, Anusorn; Khejornsart, Pichad; Pilajun, Ruangyote; Kaenpakdee, Sujittra

    2012-03-01

    A number of experiments have been conducted to investigate effects of tropical plants containing condensed tannins and/or saponins present in tropical plants and some plant oils on rumen fermentation and ecology in ruminants. Based on both in vitro and in vivo trials, the results revealed important effects on rumen microorganisms and fermentation including methane production. Incorporation and/or supplementation of these plants containing secondary metabolites have potential for improving rumen ecology and subsequently productivity in ruminants.

  17. Ginkgo fruit extract as an additive to modify rumen microbiota and fermentation and to mitigate methane production.

    PubMed

    Oh, S; Shintani, R; Koike, S; Kobayashi, Y

    2017-03-01

    Ginkgo fruit, an unused byproduct of the ginkgo nut industry, contains antimicrobial compounds known as anacardic acids. Two major cultivars of ginkgo, Kyuju (K) and Tokuro (T), were evaluated for their potential as a feed additive for ruminants. In batch culture, we incubated a mixture of hay and concentrate in diluted rumen fluid with or without 1.6% (fruit equivalent) ginkgo fruit extract. We conducted another series of batch culture studies to determine the dose response of fermentation. We also conducted continuous culture using the rumen simulation technique (RUSITEC) with cultivar K and carried out a pure culture study to monitor the sensitivity of 17 representative rumen bacterial species to ginkgo extract and component phenolics. Although both K and T extracts led to decreased methane and increased propionate production, changes were more apparent with K extract, and were dose-dependent. Total gas production was depressed at doses ≥3.2%, suggesting that 1.6% was the optimal supplementation level. In RUSITEC fermentation supplemented with 1.6% ginkgo K, methane decreased by 53% without affecting total gas or total VFA production, but with decreased acetate and increased propionate. Disappearance of dry matter, neutral detergent fiber, and acid detergent fiber were not affected by ginkgo, but ammonia levels were decreased. Quantitative PCR indicated that the abundance of protozoa, fungi, methanogens, and bacteria related to hydrogen and formate production decreased, but the abundance of bacteria related to propionate production increased. MiSeq analysis (Illumina Inc., San Diego, CA) confirmed these bacterial changes and identified archaeal community changes, including a decrease in Methanobrevibacter and Methanomassiliicoccaceae and an increase in Methanoplanus. Pure culture study results supported the findings for the above bacterial community changes. These results demonstrate that ginkgo fruit can modulate rumen fermentation toward methane mitigation and propionate enhancement via microbial selection. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Estimating Landfill Methane Oxidation Using the Information of CO2/CH4 Fluxes Measured By the Eddy Covariance Method

    NASA Astrophysics Data System (ADS)

    Xu, L.; McDermitt, D. K.; Li, J.; Green, R. B.

    2016-12-01

    Methane plays a critical role in the radiation balance and chemistry of the atmosphere. Globally, landfill methane emission contributes about 10-19% of the anthropogenic methane burden into the atmosphere. In the United States, 18% of annual anthropogenic methane emissions come from landfills, which represent the third largest source of anthropogenic methane emissions, behind enteric fermentation and natural gas and oil production. One uncertainty in estimating landfill methane emissions is the fraction of methane oxidized when methane produced under anaerobic conditions passes through the cover soil. We developed a simple stoichiometric model to estimate the landfill methane oxidation fraction when the anaerobic CO2/CH4 production ratio is known. The model predicts a linear relationship between CO2 emission rates and CH4 emission rates, where the slope depends on anaerobic CO2/CH4 production ratio and the fraction of methane oxidized, and the intercept depends on non-methane-dependent oxidation processes. The model was tested with eddy covariance CO2 and CH4 emission rates at Bluff Road Landfill in Lincoln Nebraska. It predicted zero oxidation rate in the northern portion of this landfill where a membrane and vents were present. The zero oxidation rate was expected because there would be little opportunity for methane to encounter oxidizing conditions before leaving the vents. We also applied the model at the Turkey Run Landfill in Georgia to estimate the CH4 oxidation rate over a one year period. In contrast to Bluff Road Landfill, the Turkey Run Landfill did not have a membrane or vents. Instead, methane produced in the landfill had to diffuse through a 0.5 m soil cap before release to the atmosphere. We observed evidence for methane oxidation ranging from about 18% to above 60% depending upon the age of deposited waste material. The model will be briefly described, and results from the two contrasting landfills will be discussed in this presentation.

  19. Meta-analysis of the effects of essential oils and their bioactive compounds on rumen fermentation characteristics and feed efficiency in ruminants.

    PubMed

    Khiaosa-ard, R; Zebeli, Q

    2013-04-01

    The present study aimed at investigating the effects of essential oils and their bioactive compounds (EOBC) on rumen fermentation in vivo as well as animal performance and feed efficiency in different ruminant species, using a meta-analysis approach. Ruminant species were classified into 3 classes consisting of beef cattle, dairy cattle, and small ruminants. Two datasets (i.e., rumen fermentation and animal performance) were constructed, according to the available dependent variables within each animal class, from 28 publications (34 experiments) comprising a total of 97 dietary treatments. In addition, changes in rumen fermentation parameters relative to controls (i.e., no EOBC supplementation) of all animal classes were computed. Data were statistically analyzed within each animal class to evaluate the EOBC dose effect, taking into account variations of other variables across experiments (e.g., diet, feeding duration). The dose effect of EOBC on relative changes in fermentation parameters were analyzed across all animal classes. The primary results were that EOBC at doses <0.75 g/kg diet DM acted as a potential methane inhibitor in the rumen as a result of decreased acetate to propionate ratio. These responses were more pronounced in beef cattle (methane, P = 0.001; acetate to propionate ratio, P = 0.005) than in small ruminants (methane, P = 0.068; acetate to propionate ratio, P = 0.056) and in dairy cattle (P > 0.05), respectively. The analysis of relative changes in rumen fermentation variables suggests that EOBC affected protozoa numbers (P < 0.001) but only high doses (>0.20 g/kg DM) of EOBC had an inhibitory effect on this variable whereas lower doses promoted the number. For performance data, because numbers of observations in beef cattle and small ruminants were small, only those of dairy cattle (DMI, milk yield and milk composition, and feed efficiency) were analyzed. The results revealed no effect of EOBC dose on most parameters, except increased milk protein percentage (P< 0.001) and content (P = 0.006). It appears that EOBC supplementation can enhance rumen fermentation in such a way (i.e., decreased acetate to propionate ratio) that may favor beef production. High doses of EOBC do not necessarily modify rumen fermentation or improve animal performance and feed efficiency. Furthermore, additional attention should be paid to diet composition and supplementation period when evaluating the effects of EOBC in ruminants.

  20. Producing methane, methanol and electricity from organic waste of fermentation reaction using novel microbes.

    PubMed

    Dhiman, Saurabh Sudha; Shrestha, Namita; David, Aditi; Basotra, Neha; Johnson, Glenn R; Chadha, Bhupinder S; Gadhamshetty, Venkataramana; Sani, Rajesh K

    2018-06-01

    Residual solid and liquid streams from the one-pot CRUDE (Conversion of Raw and Untreated Disposal into Ethanol) process were treated with two separate biochemical routes for renewable energy transformation. The solid residual stream was subjected to thermophilic anaerobic digestion (TAD), which produced 95 ± 7 L methane kg -1 volatile solid with an overall energy efficiency of 12.9 ± 1.7%. A methanotroph, Methyloferula sp., was deployed for oxidation of mixed TAD biogas into methanol. The residual liquid stream from CRUDE process was used in a Microbial Fuel Cell (MFC) to produce electricity. Material balance calculations confirmed the integration of biochemical routes (i.e. CRUDE, TAD, and MFC) for developing a sustainable approach of energy regeneration. The current work demonstrates the utilization of different residual streams originated after food waste processing to release minimal organic load to the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Upflow anaerobic sludge blanket reactor--a review.

    PubMed

    Bal, A S; Dhagat, N N

    2001-04-01

    Biological treatment of wastewater basically reduces the pollutant concentration through microbial coagulation and removal of non-settleable organic colloidal solids. Organic matter is biologically stabilized so that no further oxygen demand is exerted by it. The biological treatment requires contact of the biomass with the substrate. Various advances and improvements in anaerobic reactors to achieve variations in contact time and method of contact have resulted in development of in suspended growth systems, attached growth or fixed film systems or combinations thereof. Although anaerobic systems for waste treatment have been used since late 19th century, they were considered to have limited treatment efficiencies and were too slow to serve the needs of a quickly expanding wastewater volume, especially in industrialized and densely populated areas. At present aerobic treatment is the most commonly used process to reduce the organic pollution level of both domestic and industrial wastewaters. Aerobic techniques, such as activated sludge process, trickling filters, oxidation ponds and aerated lagoons, with more or less intense mixing devices, have been successfully installed for domestic wastewater as well as industrial wastewater treatment. Anaerobic digestion systems have undergone modifications in the last two decades, mainly as a result of the energy crisis. Major developments have been made with regard to anaerobic metabolism, physiological interactions among different microbial species, effects of toxic compounds and biomass accumulation. Recent developments however, have demonstrated that anaerobic processes might be an economically attractive alternative for the treatment of different types of industrial wastewaters and in (semi-) tropical areas also for domestic wastewaters. The anaerobic degradation of complex, particulate organic matter has been described as a multistep process of series and parallel reactions. It involves the decomposition of organic and inorganic matter in the absence of molecular oxygen. Complex polymeric materials such as polysaccharides, proteins, and lipids (fat and grease) are first hydrolyzed to soluble products by extracellular enzymes, secreted by microorganisms, so as to facilitate their transport or diffusion across the cell membrane. These relatively simple, soluble compounds are fermented or anaerobically oxidized, further to short-chain fatty acids, alcohols, carbon dioxide, hydrogen, and ammonia. The short-chain fatty acids (other than acetate) are converted to acetate, hydrogen gas, and carbon dioxide. Methanogenesis finally occurs from the reduction of carbon dioxide and acetate by hydrogen. The initial stage of anaerobic degradation, i.e. acid fermentation is essentially a constant BOD stage because the organic molecules are only rearranged. The first stage does not stabilize the organics in the waste. However this step is essential for the initiation of second stage methane fermentation as it converts the organic material to a form, usable by the methane producing bacteria. The second reaction is initiated when anaerobic methane forming bacteria act upon the short chain organic acids produced in the 1st stage. Here these acids undergo methane fermentation with carbon dioxide acting as hydrogen acceptor and getting reduced to methane. The methane formed, being insoluble in water, escapes from the system and can be tapped and used as an energy source. The production and subsequent escape of methane causes the stabilization of the organic material. The methane-producing bacteria consist of several different groups. Each group has the ability to ferment only specific compounds. Therefore, the bacterial consortia in a methane producing system should include a number of different groups. When the rate of bacterial growth is considered, then the retention time of the solids becomes important parameter. The acid fermentation stage is faster as compared to the methane fermentation stage. This means that a sudden increase in the easily degradable organics will result in increased acid production with subsequent accumulation of acids. This inhibits the methanogenesis step. Acclimatization of the microorganisms to a substrate has been reported to take more than five weeks. Sufficiently acclimated bacteria have shown greater stability towards stress-inducing events such as hydraulic overloads, fluctuations in temperature, fluctuations in volatile acid and ammonia concentrations etc. Several environmental factors can affect anaerobic digestion, by altering the parameters such as specific growth rate, decay rate, gas production, substrate utilization, start-up and response to changes in input. It has long been recognized that an anaerobic process is in many ways ideal for wastewater treatment and has following merits: A high degree of waste stabilization A low production of excess A low nutrient requirements No oxygen requirement Production of methane gas Anaerobic microorganisms, especially methanogens have a slow growth rate. At lower HRTs, the possibility of washout of biomass is more prominent. This makes it difficult to maintain the effective number of useful microorganisms in the system. To maintain the population of anaerobes, large reactor volumes or higher HRTs are required. This may ultimately provide longer SRTs upto 20 days for high rate systems. Thus, provision of larger reactor volumes or higher HRTs ultimately lead to higher capital cost. Among notable disadvantages, it has low synthesis/reaction rate hence long start up periods and difficulty in recovery from upset conditions. Special attention is, therefore, warranted towards, controlling the factors that affect process adversely; important among them being environmental factors such as temperature, pH and concentration of toxic substances. The conventional anaerobic treatment process consists of a reactor containing waste and biological solids (bacteria) responsible for the digestion process. Concentrated waste (usually sewage sludge) can be added continuously or periodically (semi-batch operation), where it is mixed with the contents of the reactor. Theoretically, the conventional digester is operated as a once-through, completely mixed, reactor. In this particular mode of operation the hydraulic retention time (HRT) is equal to the solids retention time (SRT). Basically, the required process efficiency is related to the sludge retention time (SRT), and hence longer SRT provided, results in satisfactory population (by reproduction) for further waste stabilization. By reducing the hydraulic retention time (HRT) in the conventional mode reactor, the quantity of biological solids within the reactor is also decreased as the solids escape with the effluent. The limiting HRT is reached when the bacteria are removed from the reactor faster than they can grow. Methanogenic bacteria are slow growers and are considered the rate-limiting component in the anaerobic digestion process. The first anaerobic process developed, which separated the SRT from the HRT was the anaerobic contact process. In 1963, Young and McCarty (1968) began work, which eventually led to the development of the anaerobic upflow filter (AF) process. The anaerobic filter represented a significant advance in anaerobic waste treatment, since the filter can trap and maintain a high concentration of biological solids. By trapping these solids, long SRT's could be obtained at large waste flows, necessary to anaerobically treat low strength wastes at nominal temperatures economically. Another anaerobic process which relies on the development of biomass on the surfaces of a media is an expanded bed upflow reactor. The primary concept of the process consists of passing wastewater up through a bed of inert sand sized particles at sufficient velocities to fluidize and partially expand the sand bed. One of the more interesting new processes is the upflow anaerobic sludge blanket process (UASB), which was developed by Lettinga and his co-workers in Holland in the early 1970's. The key to the process was the discovery that anaerobic sludge inherently has superior flocculation and settling characteristics, provided the physical and chemical conditions for sludge flocculation are favorable. When these conditions are met, a high solids retention time (at high HRT loadings) can be achieved, with separation of the gas from the sludge solids. The UASB reactor is one of the reactor types with high loading capacity. It differs from other processes by the simplicity of its design. UASB process is a combination of physical & biological processes. The main feature of physical process is separation of solids and gases from the liquid and that of biological process is degradation of decomposable organic matter under anaerobic conditions. No separate settler with sludge return pump is required, as in the anaerobic contact process. There is no loss of reactor volume through filter or carrier material, as in the case with the anaerobic filter and fixed film reactor types, and there is no need for high rate effluent recirculation and concomitant pumping energy, as in the case with fluidized bed reactor. Anaerobic sludge inherently possesses good settling properties, provided the sludge is not exposed to heavy mechanical agitation. For this reason mechanical mixing is generally omitted in UASB-reactors. At high organic loading rates, the biogas production guarantees sufficient contact between substrate and biomass. Regarding the dynamic behaviour of the water phase UASB reactor approaches the completely mixed reactor. For achieving the required sufficient contact between sludge and wastewater, the UASB-system relies on the agitation brought about by the natural gas production and on an even feed inlet distribution at the bottom of the reactor. (ABSTRACT TRUNCATED)

  2. Fermentation, degradation and microbial nitrogen partitioning for three forage colour phenotypes within anthocyanidin-accumulating Lc-alfalfa progeny.

    PubMed

    Jonker, Arjan; Gruber, Margaret Y; Wang, Yuxi; Narvaez, Nelmy; Coulman, Bruce; McKinnon, John J; Christensen, David A; Azarfar, Arash; Yu, Peiqiang

    2012-08-30

    Alfalfa has the disadvantage of having a rapid initial rate of protein degradation, which results in pasture bloat, low efficiency of protein utilisation and excessive nitrogen (N) pollution into the environment for cattle. Introducing a gene that stimulates the accumulation of monomeric/polymeric anthocyanidins might reduce the ruminal protein degradation rate (by fixing protein and/or direct interaction with microbes) and additionally reduce methane emission. The objectives of this study were to evaluate in vitro fermentation, degradation and microbial N partitioning of three forage colour phenotypes (green, light purple-green (LPG) and purple-green (PG)) within newly developed Lc-progeny and to compare them with those of parental green non-transgenic (NT) alfalfa. PG-Lc accumulated more anthocyanidin compared with Green-Lc (P < 0.05), with LPG-Lc intermediate. Volatile fatty acids and potentially degradable dry matter (DM) and N were similar among the four phenotypes. Gas, methane and ammonia accumulation rates were slower for the two purple-Lc phenotypes compared with NT-alfalfa (P < 0.05), while Green-Lc was intermediate. Effective degradable DM and N were lower in the three Lc-phenotypes (P < 0.05) compared with NT-alfalfa. Anthocyanidin concentration was negatively correlated (P < 0.05) with gas and methane production rates and effective degradability of DM and N. The Lc-alfalfa phenotypes accumulated anthocyanidin. Fermentation and degradation parameters indicated a reduced rate of fermentation and effective degradability for both purple anthocyanidin-accumulating Lc-alfalfa phenotypes compared with NT-alfalfa. Copyright © 2012 Society of Chemical Industry.

  3. Lower Methane Emissions from Yak Compared with Cattle in Rusitec Fermenters

    PubMed Central

    Mi, Jiandui; Zhou, Jianwei; Huang, Xiaodan; Long, Ruijun

    2017-01-01

    Globally methane (CH4) emissions from ruminant livestock account for 29% of total CH4 emissions. Inherited variation about CH4 emissions of different animal species might provide new opportunity for manipulating CH4 production. Six rumen-simulating fermenters (Rusitec) were set up for this study lasting for 16 d. The diet consisted of forage to concentrate ratio of 50:50 with barley straw as the forage. Treated vessels were supplied with rumen fluid from yak or cattle (3 vessels per animal species). Microbial growth was measured using 15N as a marker. The microbial community structure from liquid- and solid-fraction of each vessel was determined based on the 16S rRNA genes targeting both bacteria and archaea with MiSeq platform. CH4 yield was lower when the inoculum used from yak than that from cattle (0.26 and 0.33 mmol CH4/g dry matter intake, respectively). Lower H2 production was observed in Rusitec fermenters with rumen fluid from yak compare with that from cattle (0.28 and 0.86 mmol/d, respectively). The apparent digestibility of neutral detergent fiber, the isovalerate percentage with respect to the total amount of volatile fatty acids, the hydrogen recovery, and the proportion of liquid-associated microbial nitrogen derived from ammonia-nitrogen were higher in Rusitec fermenters incubated with rumen fluid from cattle than that from yak. The relative abundances of methanogens were no difference between two animal species. We hypothesize that more H2 production contributes to the higher methane emissions in cattle compare with yak. PMID:28076447

  4. Lower Methane Emissions from Yak Compared with Cattle in Rusitec Fermenters.

    PubMed

    Mi, Jiandui; Zhou, Jianwei; Huang, Xiaodan; Long, Ruijun

    2017-01-01

    Globally methane (CH4) emissions from ruminant livestock account for 29% of total CH4 emissions. Inherited variation about CH4 emissions of different animal species might provide new opportunity for manipulating CH4 production. Six rumen-simulating fermenters (Rusitec) were set up for this study lasting for 16 d. The diet consisted of forage to concentrate ratio of 50:50 with barley straw as the forage. Treated vessels were supplied with rumen fluid from yak or cattle (3 vessels per animal species). Microbial growth was measured using 15N as a marker. The microbial community structure from liquid- and solid-fraction of each vessel was determined based on the 16S rRNA genes targeting both bacteria and archaea with MiSeq platform. CH4 yield was lower when the inoculum used from yak than that from cattle (0.26 and 0.33 mmol CH4/g dry matter intake, respectively). Lower H2 production was observed in Rusitec fermenters with rumen fluid from yak compare with that from cattle (0.28 and 0.86 mmol/d, respectively). The apparent digestibility of neutral detergent fiber, the isovalerate percentage with respect to the total amount of volatile fatty acids, the hydrogen recovery, and the proportion of liquid-associated microbial nitrogen derived from ammonia-nitrogen were higher in Rusitec fermenters incubated with rumen fluid from cattle than that from yak. The relative abundances of methanogens were no difference between two animal species. We hypothesize that more H2 production contributes to the higher methane emissions in cattle compare with yak.

  5. Microbial methane formation in deep aquifers of a coal-bearing sedimentary basin, Germany

    PubMed Central

    Gründger, Friederike; Jiménez, Núria; Thielemann, Thomas; Straaten, Nontje; Lüders, Tillmann; Richnow, Hans-Hermann; Krüger, Martin

    2015-01-01

    Coal-bearing sediments are major reservoirs of organic matter potentially available for methanogenic subsurface microbial communities. In this study the specific microbial community inside lignite-bearing sedimentary basin in Germany and its contribution to methanogenic hydrocarbon degradation processes was investigated. The stable isotope signature of methane measured in groundwater and coal-rich sediment samples indicated methanogenic activity. Analysis of 16S rRNA gene sequences showed the presence of methanogenic Archaea, predominantly belonging to the orders Methanosarcinales and Methanomicrobiales, capable of acetoclastic or hydrogenotrophic methanogenesis. Furthermore, we identified fermenting, sulfate-, nitrate-, and metal-reducing, or acetogenic Bacteria clustering within the phyla Proteobacteria, complemented by members of the classes Actinobacteria, and Clostridia. The indigenous microbial communities found in the groundwater as well as in the coal-rich sediments are able to degrade coal-derived organic components and to produce methane as the final product. Lignite-bearing sediments may be an important nutrient and energy source influencing larger compartments via groundwater transport. PMID:25852663

  6. Effect of sole or combined administration of nitrate and 3-nitro-1-propionic acid on fermentation and Salmonella survivability in alfalfa-fed rumen cultures in vitro

    USDA-ARS?s Scientific Manuscript database

    Ruminal methanogenesis is a digestive inefficiency resulting in the loss of dietary energy consumed by the host and contributing to environmental methane emission. Nitrate is being investigated as a feed supplement to reduce rumen methane emissions, but safety and efficacy concerns persist. To ass...

  7. Microbial Methane Fermentation Kinetics for Toxicant Exposure.

    DTIC Science & Technology

    1981-08-31

    percent of digester contents daily. Bauchcp (1967) used chloroform as a specific inhibitor for methane formation in suspensions of rumen fluid. Other...washout. -wt 113 ,YO. it i L ,. . , . . . - _ TABLE OF CONTENTS I temn Page ABSTRACT................ . . ...... . ... .. .. .. .. .. .. .. INTRODUCTION...several environmental factors (McCarty, 1964; Dague, 1968; Metcalf and Eddy, 1979). The reactor contents should be free of dis- solved oxygen and other

  8. Effect of sprouted barley grain supplementation of an herbage-based or haylage-based diet on ruminal fermentation and methane output in continuous culture

    USDA-ARS?s Scientific Manuscript database

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley (SB) or barley grain (BG) with an herbage-based or haylage-based diet on nutrient digestibility, volatile fatty acid (VFA) profiles, bacterial protein synthesis, and methane outp...

  9. Estimation of potential biomass resource and biogas production from aquatic plants in Argentina

    NASA Astrophysics Data System (ADS)

    Fitzsimons, R. E.; Laurino, C. N.; Vallejos, R. H.

    1982-08-01

    The use of aquatic plants in artificial lakes as a biomass source for biogas and fertilizer production through anaerobic fermentation is evaluated, and the magnitude of this resource and the potential production of biogas and fertilizer are estimated. The specific case considered is the artificial lake that will be created by the construction of Parana Medio Hydroelectric Project on the middle Parana River in Argentina. The growth of the main aquatic plant, water hyacinth, on the middle Parana River has been measured, and its conversion to methane by anaerobic fermentation is determined. It is estimated that gross methane production may be between 1.0-4.1 x 10 to the 9th cu cm/year. The fermentation residue can be used as a soil conditioner, and it is estimated production of the residue may represent between 54,900-221,400 tons of nitrogen/year, a value which is 2-8 times the present nitrogen fertilizer demand in Argentina.

  10. Sequential high gravity ethanol fermentation and anaerobic digestion of steam explosion and organosolv pretreated corn stover.

    PubMed

    Katsimpouras, Constantinos; Zacharopoulou, Maria; Matsakas, Leonidas; Rova, Ulrika; Christakopoulos, Paul; Topakas, Evangelos

    2017-11-01

    The present work investigates the suitability of pretreated corn stover (CS) to serve as feedstock for high gravity (HG) ethanol production at solids-content of 24wt%. Steam explosion, with and without the addition of H 2 SO 4 , and organosolv pretreated CS samples underwent a liquefaction/saccharification step followed by simultaneous saccharification and fermentation (SSF). Maximum ethanol concentration of ca. 76g/L (78.3% ethanol yield) was obtained from steam exploded CS (SECS) with 0.2% H 2 SO 4 . Organosolv pretreated CS (OCS) also resulted in high ethanol concentration of ca. 65g/L (62.3% ethanol yield). Moreover, methane production through anaerobic digestion (AD) was conducted from fermentation residues and resulted in maximum methane yields of ca. 120 and 69mL/g volatile solids (VS) for SECS and OCS samples, respectively. The results indicated that the implementation of a liquefaction/saccharification step before SSF employing a liquefaction reactor seemed to handle HG conditions adequately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. End product yields from the extraruminal fermentation of various polysaccharide, protein and nucleic acid components of biofuels feedstocks.

    PubMed

    Weimer, Paul J

    2011-02-01

    "Extraruminal" fermentations employing in vitro incubation of mixed ruminal bacterial consortia, are capable of converting a complex array of biomass materials to mixtures of volatile fatty acids (VFA), methane, and carbon dioxide. Most of the potential energy in the biomass feedstock is retained in the VFA products, which are potential reactants for electrochemical conversion to hydrocarbon fuels. Quantitative data on VFA yields and proportions from biomass components are necessary for determining industrial feasibility, but such measurements have not been systematically reported. VFA yields and proportions were determined for a variety of carbohydrates, proteins and nucleic acids. Carbohydrates yielded primarily acetic and propionic acids, while proteins also yielded a more favorable product mix (longer average chain length and branched chain VFAs). Addition of certain co-substrates (e.g., glycerol) favorably improved the VFA product mix. The results have implications for hydrocarbon fuel generation from biomass materials by hybrid fermentation/chemical processes. Published by Elsevier Ltd.

  12. Revised methane emissions factors and spatially distributed annual carbon fluxes for global livestock.

    PubMed

    Wolf, Julie; Asrar, Ghassem R; West, Tristram O

    2017-09-29

    Livestock play an important role in carbon cycling through consumption of biomass and emissions of methane. Recent research suggests that existing bottom-up inventories of livestock methane emissions in the US, such as those made using 2006 IPCC Tier 1 livestock emissions factors, are too low. This may be due to outdated information used to develop these emissions factors. In this study, we update information for cattle and swine by region, based on reported recent changes in animal body mass, feed quality and quantity, milk productivity, and management of animals and manure. We then use this updated information to calculate new livestock methane emissions factors for enteric fermentation in cattle, and for manure management in cattle and swine. Using the new emissions factors, we estimate global livestock emissions of 119.1 ± 18.2 Tg methane in 2011; this quantity is 11% greater than that obtained using the IPCC 2006 emissions factors, encompassing an 8.4% increase in enteric fermentation methane, a 36.7% increase in manure management methane, and notable variability among regions and sources. For example, revised manure management methane emissions for 2011 in the US increased by 71.8%. For years through 2013, we present (a) annual livestock methane emissions, (b) complete annual livestock carbon budgets, including carbon dioxide emissions, and (c) spatial distributions of livestock methane and other carbon fluxes, downscaled to 0.05 × 0.05 degree resolution. Our revised bottom-up estimates of global livestock methane emissions are comparable to recently reported top-down global estimates for recent years, and account for a significant part of the increase in annual methane emissions since 2007. Our results suggest that livestock methane emissions, while not the dominant overall source of global methane emissions, may be a major contributor to the observed annual emissions increases over the 2000s to 2010s. Differences at regional and local scales may help distinguish livestock methane emissions from those of other sectors in future top-down studies. The revised estimates allow improved reconciliation of top-down and bottom-up estimates of methane emissions, will facilitate the development and evaluation of Earth system models, and provide consistent regional and global Tier 1 estimates for environmental assessments.

  13. High-rate two-phase process for the anaerobic degradation of cellulose, employing rumen microorganisms for an efficient acidogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gijzen, H.J.; Zwart, K.B.; Verhagen, F.J.M.

    1988-04-05

    A novel two-stage anaerobic process for the microbial conversion of cellulose into biogas has been developed. In the first phase, a mixed population of rumen bacteria and ciliates was used in the hydrolysis and fermentation of cellulose. The volatile fatty acids (VFA) produced in this acidogenic reactor were subsequently converted into biogas in a UASB-type methanogenic reactor. A stepwise increase of the loading rate from 11.9 to 25.8 g volatile solids/L reactor volume/day (g VS/L/day) did not affect the degradation efficiency in the acidogenic reactor, whereas the methanogenic reactor appeared to be overloaded at the highest loading rate. Cellulose digestionmore » was almost complete at all loading rates applied. The two-stage anaerobic process was also tested with a closed fluid circuit. In this instance total methane production was 0.438 L CH/sub 4//g VS added, which is equivalent to 98% of the theoretical value. The application of rumen microorganisms in combination with a high-rate methane reactor is proposed as a means of efficient anaerobic degradation of cellulosic residues to methane. Because this newly developed two-phase system is based on processes and microorganisms from the ruminant, it will be referred to as Rumen Derived Anaerobic Digestion (RUDAD)-process.« less

  14. Anaerobic digestion of pre-fermented potato peel wastes for methane production.

    PubMed

    Liang, Shaobo; McDonald, Armando G

    2015-12-01

    This study investigated the feasibility of anaerobic digestion (AD) of potato peel waste (PPW) and its lactic acid fermentation residue (PPW-FR) for methane (CH4) production. The experimental results showed that about 60-70% CH4 content was obtained. The digester using PPW-FR as feedstock exhibited better performance and produced a highest cumulative CH4 production of 273 L/kg VS fed, followed by 239 L/kg VS fed using PPW under the same conditions. However, with increasing solid loadings of PPW-FR feedstock from 6.4% to 9.1%, the CH4 production was inhibited. The generation, accumulation, and degradation of volatile fatty acids (VFAs) in digesters were also investigated in this research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows.

    PubMed

    Olijhoek, D W; Hellwing, A L F; Brask, M; Weisbjerg, M R; Højberg, O; Larsen, M K; Dijkstra, J; Erlandsen, E J; Lund, P

    2016-08-01

    Nitrate may lower methane production in ruminants by competing with methanogenesis for available hydrogen in the rumen. This study evaluated the effect of 4 levels of dietary nitrate addition on enteric methane production, hydrogen emission, feed intake, rumen fermentation, nutrient digestibility, microbial protein synthesis, and blood methemoglobin. In a 4×4 Latin square design 4 lactating Danish Holstein dairy cows fitted with rumen, duodenal, and ileal cannulas were assigned to 4 calcium ammonium nitrate addition levels: control, low, medium, and high [0, 5.3, 13.6, and 21.1g of nitrate/kg of dry matter (DM), respectively]. Diets were made isonitrogenous by replacing urea. Cows were fed ad libitum and, after a 6-d period of gradual introduction of nitrate, adapted to the corn-silage-based total mixed ration (forage:concentrate ratio 50:50 on DM basis) for 16d before sampling. Digesta content from duodenum, ileum, and feces, and rumen liquid were collected, after which methane production and hydrogen emissions were measured in respiration chambers. Methane production [L/kg of dry matter intake (DMI)] linearly decreased with increasing nitrate concentrations compared with the control, corresponding to a reduction of 6, 13, and 23% for the low, medium, and high diets, respectively. Methane production was lowered with apparent efficiencies (measured methane reduction relative to potential methane reduction) of 82.3, 71.9, and 79.4% for the low, medium, and high diets, respectively. Addition of nitrate increased hydrogen emissions (L/kg of DMI) quadratically by a factor of 2.5, 3.4, and 3.0 (as L/kg of DMI) for the low, medium, and high diets, respectively, compared with the control. Blood methemoglobin levels and nitrate concentrations in milk and urine increased with increasing nitrate intake, but did not constitute a threat for animal health and human food safety. Microbial crude protein synthesis and efficiency were unaffected. Total volatile fatty acid concentration and molar proportions of acetate, butyrate, and propionate were unaffected, whereas molar proportions of formate increased. Milk yield, milk composition, DMI and digestibility of DM, organic matter, crude protein, and neutral detergent fiber in rumen, small intestine, hindgut, and total tract were unaffected by addition of nitrate. In conclusion, nitrate lowered methane production linearly with minor effects on rumen fermentation and no effects on nutrient digestibility. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Shifting the balance of fermentation products between hydrogen and volatile fatty acids: microbial community structure and function.

    PubMed

    Miceli, Joseph F; Torres, César I; Krajmalnik-Brown, Rosa

    2016-12-01

    Fermentation is a key process in many anaerobic environments. Varying the concentration of electron donor fed to a fermenting community is known to shift the distribution of products between hydrogen, fatty acids and alcohols. Work to date has focused mainly on the fermentation of glucose, and how the microbial community structure is affected has not been explored. We fed ethanol, lactate, glucose, sucrose or molasses at 100 me- eq. L -1 , 200 me- eq. L -1 or 400 me- eq. L -1 to batch-fed cultures with fermenting, methanogenic communities. In communities fed high concentrations of electron donor, the fraction of electrons channeled to methane decreased, from 34% to 6%, while the fraction of electrons channeled to short chain fatty acids increased, from 52% to 82%, averaged across all electron donors. Ethanol-fed cultures did not produce propionate, but did show an increase in electrons directed to acetate as initial ethanol concentration increased. In glucose, sucrose, molasses and lactate-fed cultures, propionate accumulation co-occurred with known propionate producing organisms. Overall, microbial communities were determined by the substrate provided, rather than its initial concentration, indicating that a change in community function, rather than community structure, is responsible for shifts in the fermentation products produced. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Acetylene as fast food: implications for development of life on anoxic primordial Earth and in the outer solar system.

    PubMed

    Oremland, Ronald S; Voytek, Mary A

    2008-02-01

    Acetylene occurs, by photolysis of methane, in the atmospheres of jovian planets and Titan. In contrast, acetylene is only a trace component of Earth's current atmosphere. Nonetheless, a methane-rich atmosphere has been hypothesized for early Earth; this atmosphere would also have been rich in acetylene. This poses a paradox, because acetylene is a potent inhibitor of many key anaerobic microbial processes, including methanogenesis, anaerobic methane oxidation, nitrogen fixation, and hydrogen oxidation. Fermentation of acetylene was discovered approximately 25 years ago, and Pelobacter acetylenicus was shown to grow on acetylene by virtue of acetylene hydratase, which results in the formation of acetaldehyde. Acetaldehyde subsequently dismutates to ethanol and acetate (plus some hydrogen). However, acetylene hydratase is specific for acetylene and does not react with any analogous compounds. We hypothesize that microbes with acetylene hydratase played a key role in the evolution of Earth's early biosphere by exploiting an available source of carbon from the atmosphere and in so doing formed protective niches that allowed for other microbial processes to flourish. Furthermore, the presence of acetylene in the atmosphere of a planet or planetoid could possibly represent evidence for an extraterrestrial anaerobic ecosystem.

  18. Acetylene as fast food: Implications for development of life on anoxic primordial earth and in the outer solar system

    USGS Publications Warehouse

    Oremland, R.S.; Voytek, M.A.

    2008-01-01

    Acetylene occurs, by photolysis of methane, in the atmospheres of jovian planets and Titan. In contrast, acetylene is only a trace component of Earth's current atmosphere. Nonetheless, a methane-rich atmosphere has been hypothesized for early Earth; this atmosphere would also have been rich in acetylene. This poses a paradox, because acetylene is a potent inhibitor of many key anaerobic microbial processes, including methanogenesis, anaerobic methane oxidation, nitrogen fixation, and hydrogen oxidation. Fermentation of acetylene was discovered 25 years ago, and Pelobacter acetylenicus was shown to grow on acetylene by virtue of acetylene hydratase, which results in the formation of acetaldehyde. Acetaldehyde subsequently dismutates to ethanol and acetate (plus some hydrogen). However, acetylene hydratase is specific for acetylene and does not react with any analogous compounds. We hypothesize that microbes with acetylene hydratase played a key role in the evolution of Earth's early biosphere by exploiting an available source of carbon from the atmosphere and in so doing formed protective niches that allowed for other microbial processes to flourish. Furthermore, the presence of acetylene in the atmosphere of a planet or planetoid could possibly represent evidence for an extraterrestrial anaerobic ecosystem. ?? Mary Ann Liebert, Inc.

  19. Bio-conversion of water hyacinths into methane gas, part 1

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Mcdonald, R. C.; Gordon, J.

    1974-01-01

    Bio-gas and methane production from the microbial anaerobic decomposition of water hyacinths (Eichhornia crassipes) (Mart) Solms was investigated. These experiments demonstrated the ability of water hyacinths to produce an average of 13.9 ml of methane gas per gram of wet plant weight. This study revealed that sample preparation had no significant effect on bio-gas and/or methane production. Pollution of water hyacinths by two toxic heavy materials, nickel and cadmium, increased the rate of methane production from 51.8 ml/day for non-contaminated plants incubated at 36 C to 81.0 ml/day for Ni-Cd contaminated plants incubated at the same temperature. The methane content of bio-gas evolved from the anaerobic decomposition of Ni-Cd contaminated plants was 91.1 percent as compared to 69.2 percent methane content of bio-gas collected from the fermentation of non-contaminated plants.

  20. Production of a raw material for energy production in agriculture

    NASA Astrophysics Data System (ADS)

    Hellstroem, G.

    1980-04-01

    The total amount of energy in products produced by Swedish agriculture was estimated to 80 TWH: 30 TWh for cereals, 15 TWh for grass and leguminosae, and 35 TWh for straw and other agricultural wastes. Of this production a large part will be used as food even in the future. New plants that would produce more energy than the ones traditionally grown in Sweden are discussed. Also other types of energy from agriculture are discussed such as methane from manure, methanol from gasification processes, and ethanol from fermentative processes. Costs were estimated from different alternatives.

  1. Vertical profiles of community abundance and diversity of anaerobic methanotrophic archaea (ANME) and bacteria in a simple waste landfill in north China.

    PubMed

    Dong, Jun; Ding, Linjie; Wang, Xu; Chi, Zifang; Lei, Jiansen

    2015-03-01

    Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms.

  2. Assessment of hydrogen metabolism in commercial anaerobic digesters.

    PubMed

    Kern, Tobias; Theiss, Juliane; Röske, Kerstin; Rother, Michael

    2016-05-01

    Degradation of biomass in the absence of exogenous electron acceptors via anaerobic digestion involves a syntrophic association of a plethora of anaerobic microorganisms. The commercial application of this process is the large-scale production of biogas from renewable feedstock as an alternative to fossil fuels. After hydrolysis of polymers, monomers are fermented to short-chain fatty acids and alcohols, which are further oxidized to acetate. Carbon dioxide, molecular hydrogen (H2), and acetate generated during the process are converted to methane by methanogenic archaea. Since many of the metabolic pathways as well as the syntrophic interactions and dependencies during anaerobic digestion involve formation, utilization, or transfer of H2, its metabolism and the methanogenic population were assessed in various samples from three commercial biogas plants. Addition of H2 significantly increased the rate of methane formation, which suggested that hydrogenotrophic methanogenesis is not a rate-limiting step during biogas formation. Methanoculleus and Methanosarcina appeared to numerically dominate the archaeal population of the three digesters, but their proportion and the Bacteria-to-Archaea ratio did not correlate with the methane productivity. Instead, hydrogenase activity in cell-free extracts from digester sludge correlated with methane productivity in a positive fashion. Since most microorganisms involved in biogas formation contain this activity, it approximates the overall anaerobic metabolic activity and may, thus, be suitable for monitoring biogas reactor performance.

  3. Effect of monensin on in vitro fermentation of silages and microbial protein synthesis.

    PubMed

    Wischer, Gerald; Boguhn, Jeannette; Steingaß, Herbert; Schollenberger, Margit; Hartung, Karin; Rodehutscord, Markus

    2013-06-01

    The objective of the study was to investigate the effects of monensin on silage fermentation and microbial net protein synthesis. In Experiment 1, monensin (0.5, 1, 2, 4, 6, or 10 µg) was added to syringes that contained 120 mg of grass silage (GS), grass silage and concentrate (GS + C), or maize silage (MS), resulting in concentrations of 4.2, 8.3, 16.7, 33.3, 50.0 and 83.3 mg monensin/kg feed. Samples were incubated for 24 h to determine the monensin concentration that resulted in the maximum reduction in methane production without effects on the total gas production. In Experiment 2, GS and GS + C were incubated in a rumen simulation technique (Rusitec) to assess the monensin effects (133 and 266 mg/kg feed) on the production of total gas, methane and volatile fatty acids (VFA), degradation of nutrients and microbial net protein synthesis. In Experiment 1, methane production was reduced without significant effects on the total gas production; the reductions were 17% (GS), 10% (GS + C) and 13% (MS) with 16.7 (GS), 50.0 (GS + C) and 33.3 (MS) mg monensin/kg feed. Monensin reduced the total gas and methane production in GS and GS + C in Experiment 2. Propionate production was enhanced by monensin, accompanied by a decrease in acetate production. Along with a reduction in crude protein (CP) degradation, monensin reduced the ammonia nitrogen concentration in the effluent of both treatments. While the protein produced by liquid-associated microbes increased with monensin, protein production by solid-associated microbes was reduced. Total microbial net protein synthesis increased in the presence of monensin. Monensin influenced the production of total gas, methane and VFA from the silages without an effect on the degradation of organic matter (OM). Different microbial fractions were affected differently by monensin supplementation. If monensin is used as a tool to reduce methane emission, the supplementation level must be carefully chosen to avoid negative effects on overall fermentation in the rumen.

  4. Ruminal Fermentation of Anti-Methanogenic Nitrate- and Nitro-Containing Forages In Vitro

    PubMed Central

    Anderson, Robin C.; Ripley, Laura H.; Bowman, Jan G. P.; Callaway, Todd R.; Genovese, Kenneth J.; Beier, Ross C.; Harvey, Roger B.; Nisbet, David J.

    2016-01-01

    Nitrate, 3-nitro-1-propionic acid (NPA) and 3-nitro-1-propanol (NPOH) can accumulate in forages and be poisonous to animals if consumed in high enough amounts. These chemicals are also recognized as potent anti-methanogenic compounds, but plants naturally containing these chemicals have been studied little in this regard. Presently, we found that nitrate-, NPA-, or NPOH-containing forages effectively decreased methane production, by 35–87%, during in vitro fermentation by mixed cultures of ruminal microbes compared to fermentation by cultures incubated similarly with alfalfa. Methane production was further decreased during the incubation of mixed cultures also inoculated with Denitrobacterium detoxificans, a ruminal bacterium known to metabolize nitrate, NPA, and NPOH. Inhibition of methanogens within the mixed cultures was greatest with the NPA- and NPOH-containing forages. Hydrogen accumulated in all the mixed cultures incubated with forages containing nitrate, NPA or NPOH and was dramatically higher, exceeding 40 μmol hydrogen/mL, in mixed cultures incubated with NPA-containing forage but not inoculated with D. detoxificans. This possibly reflects the inhibition of hydrogenase-catalyzed uptake of hydrogen produced via conversion of 50 μmol added formate per milliliter to hydrogen. Accumulations of volatile fatty acids revealed compensatory changes in fermentation in mixed cultures incubated with the nitrate-, NPA-, and NPOH-containing forages as evidenced by lower accumulations of acetate, and in some cases, higher accumulations of butyrate and lower accumulations of ammonia, iso-buytrate, and iso-valerate compared to cultures incubated with alfalfa. Results reveal that nitrate, NPA, and NPOH that accumulate naturally in forages can be made available within ruminal incubations to inhibit methanogenesis. Further research is warranted to determine if diets can be formulated with nitrate-, NPA-, and NPOH-containing forages to achieve efficacious mitigation in ruminant methane emissions without adversely affecting fermentative efficiency or risking toxicity to animals. PMID:27563646

  5. The bacterial and archaeal community structures and methanogenic potential of the cecal microbiota of goats fed with hay and high-grain diets.

    PubMed

    Jin, Wei; Li, Yin; Cheng, Yanfen; Mao, Shengyong; Zhu, Weiyun

    2018-05-17

    The cecum plays an important role in the feed fermentation of ruminants. However, information is very limited regarding the cecal microbiota and their methane production. In the present study, the cecal content from twelve local Chinese goats, fed with either a hay diet (0% grain) or a high-grain diet (71.5% grain), were used to investigate the bacterial and archaeal community and their methanogenic potential. Microbial community analysis was determined using high-throughput sequencing of 16S rRNA genes and real-time PCR, and the methanogenesis potential was assessed by in vitro fermentation with ground corn or hay as substrates. Compared with the hay group, the high-grain diet significantly increased the length and weight of the cecum, the proportions of starch and crude protein, the concentrations of volatile fatty acids and ammonia nitrogen, but decreased the pH values (P < 0.05). The high-grain diet significantly increased the abundances of bacteria and archaea (P < 0.05) and altered their community. For the bacterial community, the genera Bifidobacterium, Prevotella, and Treponema were significantly increased in the high-grain group (P < 0.05), while Akkermansia, Oscillospira, and Coprococcus were significantly decreased (P < 0.05). For the archaeal community, Methanosphaera stadtmanae was significantly increased in the high-grain group (P < 0.05), while Methanosphaera sp. ISO3-F5 was significantly decreased (P < 0.05). In the in vitro fermentation with grain as substrate, the cecal microorganisms from the high-grain group produced a significantly higher amount of methane and volatile fatty acids (P < 0.05), and produced significantly lower amount of lactate (P < 0.05). Conclusively, high-grain diet led to more fermentable substrates flowing into the hindgut of goats, resulting in an enhancement of microbial fermentation and methane production in the cecum.

  6. Methane flux from coastal salt marshes

    NASA Technical Reports Server (NTRS)

    Bartlett, K. B.; Harriss, R. C.; Sebacher, D. I.

    1985-01-01

    It is thought that biological methanogenesis in natural and agricultural wetlands and enteric fermentation in animals are the dominant sources of global tropospheric methane. It is pointed out that the anaerobic soils and sediments, where methanogenesis occurs, predominate in coastal marine wetlands. Coastal marine wetlands are generally believed to be approximately equal in area to freshwater wetlands. For this reason, coastal marine wetlands may be a globally significant source of atmospheric methane. The present investigation is concerned with the results of a study of direct measurements of methane fluxes to the atmosphere from salt marsh soils and of indirect determinations of fluxes from tidal creek waters. In addition, measurements of methane distributions in coastal marine wetland sediments and water are presented. The results of the investigation suggest that marine wetlands provide only a minor contribution to atmospheric methane on a global scale.

  7. Study of methanogenesis during bioutilization of plant residuals

    NASA Astrophysics Data System (ADS)

    Ilyin, V. K.; Korniushenkova, I. N.; Starkova, L. V.; Lauriniavichius, K. S.

    2005-02-01

    The waste management strategy for the future should meet the benefits of human safety, respect principles of planet ecology, and compatibility with other habitability systems. For these purposes waste management technologies relevant to application of the biodegradation properties of bacteria are of great value. Biological treatment method is based on the biodegradation of organic substances by various microorganisms. The objectives of our study were: to evaluate the effectiveness of microbial biodegradation of vegetable non-edible residual, using artificial inoculum, and to study the peculiarities of biogas, and possibilities of optimizing or reducing the share of methane. The diminution rate of organic gained 76% from initial mass within 9 days of fermentation. The biogas production achieved 46 l/kg of substrate. The microbial studies of biodegradation process revealed the following peculiarities: (i) gradual quantitative increase of Lactobacillus sp. (from 103 to 105 colony-forming units (CFU) per ml); (ii) activation of Clostridia sp. (from 102 to 10 4 CFU/ml); and (iii) elimination of aerobic conventional pathogens (Enterobacteriaceae, Protea sp., Staphylococci). Chromatography analysis revealed the constant presence of carbon dioxide (up to 90.9%). The methane content measures revealed traces 0.1-0.4%. However, when we optimized the methane production in "boiling layer" using methanogenic granules, the amount of methane in biogas reached 80-90%. Based on the results obtained the artificial inoculum was created which was capable of initiating biodegradation of vegetable wastes. This inoculum consisted of active sludge adapted to wastes mixed with excretea of insects which consume plant wastes. Using this inoculum the biodegradation process takes less time than that using active sludge. Regulation of methane concentration from traces to 90% may be achieved by adding methane reactor to the plant digester.

  8. Optimal Design of Biomass Utilization System for Rural Area Includes Technical and Economic Dimensions

    NASA Astrophysics Data System (ADS)

    Morioka, Yasuki; Nakata, Toshihiko

    In order to design optimal biomass utilization system for rural area, OMNIBUS (The Optimization Model for Neo-Integrated Biomass Utilization System) has been developed. OMNIBUS can derive the optimal system configuration to meet different objective function, such as current account balance, amount of biomass energy supply, and CO2 emission. Most of biomass resources in a focused region e.g. wood biomass, livestock biomass, and crop residues are considered in the model. Conversion technologies considered are energy utilization technologies e.g. direct combustion and methane fermentation, and material utilization technologies e.g. composting and carbonization. Case study in Miyakojima, Okinawa prefecture, has been carried out for several objective functions and constraint conditions. Considering economics of the utilization system as a priority requirement, composting and combustion heat utilization are mainly chosen in the optimal system configuration. However gasification power plant and methane fermentation are included in optimal solutions, only when both biomass energy utilization and CO2 reduction have been set as higher priorities. External benefit of CO2 reduction has large impacts on the system configuration. Provided marginal external benefit of more than 50,000 JPY/t-C, external benefit becomes greater than the revenue from electricity and compost etc. Considering technological learning in the future, expensive technologies such as gasification power plant and methane fermentation will have economic feasibility as well as market competitiveness.

  9. Invited review: Essential oils as modifiers of rumen microbial fermentation.

    PubMed

    Calsamiglia, S; Busquet, M; Cardozo, P W; Castillejos, L; Ferret, A

    2007-06-01

    Microorganisms in the rumen degrade nutrients to produce volatile fatty acids and synthesize microbial protein as an energy and protein supply for the ruminant, respectively. However, this fermentation process has energy (losses of methane) and protein (losses of ammonia N) inefficiencies that may limit production performance and contribute to the release of pollutants to the environment. Antibiotic ionophores have been very successful in reducing these energy and protein losses in the rumen, but the use of antibiotics in animal feeds is facing reduced social acceptance, and their use has been banned in the European Union since January 2006. For this reason, scientists have become interested in evaluating other alternatives to control specific microbial populations to modulate rumen fermentation. Essential oils can interact with microbial cell membranes and inhibit the growth of some gram-positive and gram-negative bacteria. As a result of such inhibition, the addition of some plant extracts to the rumen results in an inhibition of deamination and methanogenesis, resulting in lower ammonia N, methane, and acetate, and in higher propionate and butyrate concentrations. Results have indicated that garlic oil, cinnamaldehyde (the main active component of cinnamon oil), eugenol (the main active component of the clove bud), capsaicin (the active component of hot peppers), and anise oil, among others, may increase propionate production, reduce acetate or methane production, and modify proteolysis, peptidolysis, or deamination in the rumen. However, the effects of some of these essential oils are pH and diet dependent, and their use may be beneficial only under specific conditions and production systems. For example, capsaicin appears to have small effects in high-forage diets, whereas the changes observed in high-concentrate diets (increases in dry matter intake and total VFA, and reduction in the acetateto-propionate ratio and ammonia N concentration) may be beneficial. Because plant extracts may act at different levels in the carbohydrate and protein degradation pathways, their careful selection and combination may provide a useful tool to manipulate rumen microbial fermentation effectively. However, additional research is required to establish the optimal dose in vivo in units of the active component, to consider the potential adaptation of microbial populations to their activities, to examine the presence of residues in the products (milk or meat), and to demonstrate improvements in animal performance.

  10. On the Origin of Heterotrophy.

    PubMed

    Schönheit, Peter; Buckel, Wolfgang; Martin, William F

    2016-01-01

    The theory of autotrophic origins of life posits that the first cells on Earth satisfied their carbon needs from CO2. At hydrothermal vents, spontaneous synthesis of methane via serpentinization links an energy metabolic reaction with a geochemical homologue. If the first cells were autotrophs, how did the first heterotrophs arise, and what was their substrate? We propose that cell mass roughly similar to the composition of Escherichia coli was the substrate for the first chemoorganoheterotrophs. Amino acid fermentations, pathways typical of anaerobic clostridia and common among anaerobic archaea, in addition to clostridial type purine fermentations, might have been the first forms of heterotrophic carbon and energy metabolism. Ribose was probably the first abundant sugar, and the archaeal type III RubisCO pathway of nucleoside monophosphate conversion to 3-phosphoglycerate might be a relic of ancient heterotrophy. Participation of chemiosmotic coupling and flavin-based electron bifurcation--a soluble energy coupling process--in clostridial amino acid and purine fermentations is consistent with an autotrophic origin of both metabolism and heterotrophy, as is the involvement of S(0) as an electron acceptor in the facilitated fermentations of anaerobic heterotrophic archaea. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH.

    PubMed

    Zhang, Peng; Chen, Yinguang; Zhou, Qi

    2009-08-01

    The effect of pH (4.0-11.0) on waste activated sludge (WAS) hydrolysis and short-chain fatty acids (SCFAs) accumulation under mesophilic and thermophilic conditions were investigated. The WAS hydrolysis increased markedly in thermophilic fermentation compared to mesophilic fermentation at any pH investigated. The hydrolysis at alkaline pHs (8.0-11.0) was greater than that at acidic pHs, but both of the acidic and alkaline hydrolysis was higher than that pH uncontrolled under either mesophilic or thermophilic conditions. No matter in mesophilic or thermophilic fermentation, the accumulation of SCFAs at alkaline pHs was greater than at acidic or uncontrolled pHs. The optimum SCFAs accumulation was 0.298g COD/g volatile suspended solids (VSS) with mesophilic fermentation, and 0.368 with thermophilic fermentation, which was observed respectively at pH 9.0 and fermentation time 5 d and pH 8.0 and time 9 d. The maximum SCFAs productions reported in this study were much greater than that in the literature. The analysis of the SCFAs composition showed that acetic acid was the prevalent acid in the accumulated SCFAs at any pH investigated under both temperatures, followed by propionic acid and n-valeric acid. Nevertheless, during the entire mesophilic and thermophilic fermentation the activity of methanogens was inhibited severely at acid or alkaline pHs, and the highest methane concentration was obtained at pH 7.0 in most cases. The studies of carbon mass balance showed that during WAS fermentation the reduction of VSS decreased with the increase of pH, and the thermophilic VSS reduction was greater than the mesophilic one. Further investigation indicated that most of the reduced VSS was converted to soluble protein and carbohydrate and SCFAs in two fermentations systems, while little formed methane and carbon dioxide.

  12. Effect of Sunflower and Marine Oils on Ruminal Microbiota, In vitro Fermentation and Digesta Fatty Acid Profile

    PubMed Central

    Vargas, Julio E.; Andrés, Sonia; Snelling, Timothy J.; López-Ferreras, Lorena; Yáñez-Ruíz, David R.; García-Estrada, Carlos; López, Secundino

    2017-01-01

    This study using the rumen simulation technique (RUSITEC) investigated the changes in the ruminal microbiota and anaerobic fermentation in response to the addition of different lipid supplements to a ruminant diet. A basal diet with no oil added was the control, and the treatment diets were supplemented with sunflower oil (2%) only, or sunflower oil (2%) in combination with fish oil (1%) or algae oil (1%). Four fermentation units were used per treatment. RUSITEC fermenters were inoculated with rumen digesta. Substrate degradation, fermentation end-products (volatile fatty acids, lactate, gas, methane, and ammonia), and microbial protein synthesis were determined. Fatty acid profiles and microbial community composition were evaluated in digesta samples. Numbers of representative bacterial species and microbial groups were determined using qPCR. Microbial composition and diversity were based on T-RFLP spectra. The addition of oils had no effect on substrate degradation or microbial protein synthesis. Differences among diets in neutral detergent fiber degradation were not significant (P = 0.132), but the contrast comparing oil–supplemented diets with the control was significant (P = 0.039). Methane production was reduced (P < 0.05) with all oil supplements. Propionate production was increased when diets containing oil were fermented. Compared with the control, the addition of algae oil decreased the percentage C18:3 c9c12c15 in rumen digesta, and that of C18:2 c9t11 was increased when the control diet was supplemented with any oil. Marine oils decreased the hydrogenation of C18 unsaturated fatty acids. Microbial diversity was not affected by oil supplementation. Cluster analysis showed that diets with additional fish or algae oils formed a group separated from the sunflower oil diet. Supplementation with marine oils decreased the numbers of Butyrivibrio producers of stearic acid, and affected the numbers of protozoa, methanogens, Selenomonas ruminantium and Streptococcus bovis, but not total bacteria. In conclusion, there is a potential to manipulate the rumen fermentation and microbiota with the addition of sunflower, fish or algae oils to ruminant diets at appropriate concentrations. Specifically, supplementation of ruminant mixed rations with marine oils will reduce methane production, the acetate to propionate ratio and the fatty acid hydrogenation in the rumen. PMID:28676798

  13. Dose-response effects of dietary pequi oil on fermentation characteristics and microbial population using a rumen simulation technique (Rusitec).

    PubMed

    Duarte, Andrea Camacho; Durmic, Zoey; Vercoe, Philip E; Chaves, Alexandre V

    2017-12-01

    The effect of increasing the concentration of commercial pequi (Caryocar brasiliense) oil on fermentation characteristics and abundance of methanogens and fibrolityc bacteria was evaluated using the rumen simulation technique (Rusitec). In vitro incubation was performed over 15 days using a basal diet consisting of ryegrass, maize silage and concentrate in equal proportions. Treatments consisted of control diet (no pequi oil inclusion, 0 g/kg DM), pequi dose 1 (45 g/kg DM), and pequi dose 2 (91 g/kg DM). After a 7 day adaptation period, samples for fermentation parameters (total gas, methane, and VFA production) were taken on a daily basis. Quantitative real time PCR (q-PCR) was used to evaluate the abundance of the main rumen cellulolytic bacteria, as well as abundance of methanogens. Supplementation with pequi oil did not reduce overall methane production (P = 0.97), however a tendency (P = 0.06) to decrease proportion of methane in overall microbial gas was observed. Increasing addition of pequi oil was associated with a linear decrease (P < 0.01) in dry matter disappearance of maize silage. The abundance of total methanogens was unchanged by the addition of pequi oil, but numbers of those belonging to Methanomassiliicoccaceae decreased in liquid-associated microbes (LAM) samples (P < 0.01) and solid-associated microbes (SAM) samples (P = 0.09) respectively, while Methanobrevibacter spp. increased (P < 0.01) only in SAM samples. Fibrobacter succinogenes decreased (P < 0.01) in both LAM and SAM samples when substrates were supplemented with pequi oil. In conclusion, pequi oil was ineffective in mitigating methane emissions and had some adverse effects on digestibility and selected fibrolytic bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. In vitro study of the age-dependent caecal fermentation pattern and methanogenesis in young rabbits.

    PubMed

    Piattoni, F; Demeyer, D I; Maertens, L

    1996-01-01

    The caecal fermentation pattern, including methanogenesis, was studied in young rabbits using in vitro batch incubations. Six conventional litters of eight rabbits each were used. At the age of 22, 25, 28, 32, 36, 42 and 56 days, an animal was slaughtered from each litter and its caecal contents were used for in vitro batch incubations at 39 degrees C/24 h. The incubated samples were analysed for volatile fatty acids (VFA), methane, hydrogen, ammonia nitrogen (NH3-N) and lactic acid (LA). The net total in vitro VFA production did not differ clearly with age, although a significant decrease was observed on day 36, reflecting the reduced zootechnical performances probably related to an infection with Clostridium spiroforme that occurred in the same period. The molar proportions of butyrate and propionate formed a change in the opposite direction with age, starting with a sudden shift from propionate to butyrate at day 25. In vitro NH3-N production was suggestive of a progressive and significant decrease with age; in vitro LA production was always low. Methane production was almost absent from fermentation until 32 days of age, after which it suddenly shifted from 1.6 to 52.0 mumol/flask/day and increased further with age. A significant litter effect on methanogenesis was observed which suggested the existence of a genetic effect. The hydrogen production was quite low and decreased significantly from day 36 with increasing methanogenesis. The calculated hydrogen recoveries showed a gradual increase from day 32 and were positively correlated (r = 0.92) with methane production. In conclusion, it would seem that in young suckling rabbits, reductive acetogenesis is a major characteristic of caecal fermentation, to be replaced gradually and partially by methanogenesis with the increasing intake of solid feed.

  15. Rumen protozoa and methanogenesis: not a simple cause-effect relationship.

    PubMed

    Morgavi, Diego P; Martin, Cécile; Jouany, Jean-Pierre; Ranilla, Maria José

    2012-02-01

    Understanding the interactions between hydrogen producers and consumers in the rumen ecosystem is important for ruminant production and methane mitigation. The present study explored the relationships between rumen protozoa, methanogens and fermentation characteristics. A total of six donor sheep harbouring (F, faunated) or not (D, defaunated) protozoa in their rumens (D animals were kept without protozoa for a period of a few months (D - ) or for more than 2 years (D+)) were used in in vitro and in vivo experiments. In vitro the absence of protozoa decreased NH3 and butyrate production and had no effect on methane. In contrast, the liquid-associated bacterial and methanogens fraction of D+ inocula produced more methane than D -  and F inoculum (P < 0·05). In vivo fermentation parameters of donor animals showed the same trend on NH3 and butyrate and showed that D+ animals were high methane emitters, while D -  were the lowest ( - 35 %). The concentration of dissolved dihydrogen measured after feeding followed the opposite trend. Methane emissions did not correlate with the relative abundance of methanogens in the rumen measured by quantitative PCR, but there was a trend for higher methanogens concentration in the solid-associated population of D+ animals compared with D -  animals. In contrast, PCR-denaturing gradient gel electrophoresis profiles of methanogens' methyl coenzyme-M reductase A gene showed a clear clustering in liquid-associated fractions for all three groups of donors but fewer differences in solid-associated fractions. These results show that the absence of protozoa may affect differently the methanogen community and methane emissions in wethers.

  16. Distinct Anaerobic Bacterial Consumers of Cellobiose-Derived Carbon in Boreal Fens with Different CO2/CH4 Production Ratios

    PubMed Central

    Eiler, Alexander; Biasi, Christina; Tuittila, Eeva-Stiina; Yrjälä, Kim; Fritze, Hannu

    2016-01-01

    ABSTRACT Northern peatlands in general have high methane (CH4) emissions, but individual peatlands show considerable variation as CH4 sources. Particularly in nutrient-poor peatlands, CH4 production can be low and exceeded by carbon dioxide (CO2) production from unresolved anaerobic processes. To clarify the role anaerobic bacterial degraders play in this variation, we compared consumers of cellobiose-derived carbon in two fens differing in nutrient status and the ratio of CO2 to CH4 produced. After [13C]cellobiose amendment, the mesotrophic fen produced equal amounts of CH4 and CO2. The oligotrophic fen had lower CH4 production but produced 3 to 59 times more CO2 than CH4. RNA stable-isotope probing revealed that in the mesotrophic fen with higher CH4 production, cellobiose-derived carbon was mainly assimilated by various recognized fermenters of Firmicutes and by Proteobacteria. The oligotrophic peat with excess CO2 production revealed a wider variety of cellobiose-C consumers, including Firmicutes and Proteobacteria, but also more unconventional degraders, such as Telmatobacter-related Acidobacteria and subphylum 3 of Verrucomicrobia. Prominent and potentially fermentative Planctomycetes and Chloroflexi did not appear to process cellobiose-C. Our results show that anaerobic degradation resulting in different levels of CH4 production can involve distinct sets of bacterial degraders. By distinguishing cellobiose degraders from the total community, this study contributes to defining anaerobic bacteria that process cellulose-derived carbon in peat. Several of the identified degraders, particularly fermenters and potential Fe(III) or humic substance reducers in the oligotrophic peat, represent promising candidates for resolving the origin of excess CO2 production in peatlands. IMPORTANCE Peatlands are major sources of the greenhouse gas methane (CH4), yet in many peatlands, CO2 production from unresolved anaerobic processes exceeds CH4 production. Anaerobic degradation produces the precursors of CH4 production but also represents competing processes. We show that anaerobic degradation leading to high or low CH4 production involved distinct sets of bacteria. Well-known fermenters dominated in a peatland with high CH4 production, while novel and unconventional degraders could be identified in a site where CO2 production greatly exceeds CH4 production. Our results help identify and assign functions to uncharacterized bacteria that promote or inhibit CH4 production and reveal bacteria potentially producing the excess CO2 in acidic peat. This study contributes to understanding the microbiological basis for different levels of CH4 emission from peatlands. PMID:27913414

  17. Distinct Anaerobic Bacterial Consumers of Cellobiose-Derived Carbon in Boreal Fens with Different CO2/CH4 Production Ratios.

    PubMed

    Juottonen, Heli; Eiler, Alexander; Biasi, Christina; Tuittila, Eeva-Stiina; Yrjälä, Kim; Fritze, Hannu

    2017-02-15

    Northern peatlands in general have high methane (CH 4 ) emissions, but individual peatlands show considerable variation as CH 4 sources. Particularly in nutrient-poor peatlands, CH 4 production can be low and exceeded by carbon dioxide (CO 2 ) production from unresolved anaerobic processes. To clarify the role anaerobic bacterial degraders play in this variation, we compared consumers of cellobiose-derived carbon in two fens differing in nutrient status and the ratio of CO 2 to CH 4 produced. After [ 13 C]cellobiose amendment, the mesotrophic fen produced equal amounts of CH 4 and CO 2 The oligotrophic fen had lower CH 4 production but produced 3 to 59 times more CO 2 than CH 4 RNA stable-isotope probing revealed that in the mesotrophic fen with higher CH 4 production, cellobiose-derived carbon was mainly assimilated by various recognized fermenters of Firmicutes and by Proteobacteria The oligotrophic peat with excess CO 2 production revealed a wider variety of cellobiose-C consumers, including Firmicutes and Proteobacteria, but also more unconventional degraders, such as Telmatobacter-related Acidobacteria and subphylum 3 of Verrucomicrobia Prominent and potentially fermentative Planctomycetes and Chloroflexi did not appear to process cellobiose-C. Our results show that anaerobic degradation resulting in different levels of CH 4 production can involve distinct sets of bacterial degraders. By distinguishing cellobiose degraders from the total community, this study contributes to defining anaerobic bacteria that process cellulose-derived carbon in peat. Several of the identified degraders, particularly fermenters and potential Fe(III) or humic substance reducers in the oligotrophic peat, represent promising candidates for resolving the origin of excess CO 2 production in peatlands. Peatlands are major sources of the greenhouse gas methane (CH 4 ), yet in many peatlands, CO 2 production from unresolved anaerobic processes exceeds CH 4 production. Anaerobic degradation produces the precursors of CH 4 production but also represents competing processes. We show that anaerobic degradation leading to high or low CH 4 production involved distinct sets of bacteria. Well-known fermenters dominated in a peatland with high CH 4 production, while novel and unconventional degraders could be identified in a site where CO 2 production greatly exceeds CH 4 production. Our results help identify and assign functions to uncharacterized bacteria that promote or inhibit CH 4 production and reveal bacteria potentially producing the excess CO 2 in acidic peat. This study contributes to understanding the microbiological basis for different levels of CH 4 emission from peatlands. Copyright © 2017 American Society for Microbiology.

  18. The design of a PC-based real-time system for monitoring Methane and Oxygen concentration in biogas production

    NASA Astrophysics Data System (ADS)

    Yantidewi, M.; Muntini, M. S.; Deta, U. A.; Lestari, N. A.

    2018-03-01

    Limited fossil fuels nowadays trigger the development of alternative energy, one of which is biogas. Biogas is one type of bioenergy in the form of fermented gases of organic materials such as animal waste. The components of gases present in biogas and affect the biogas production are various, such as methane and oxygen. The biogas utilization will be more optimal if both gases concentration (in this case is methane and oxygen concentration) can be monitored. Therefore, this research focused on designing the monitoring system of methane and oxygen concentration in biogas production in real-time. The results showed that the instrument system was capable of monitoring and recording the data of gases (methane and oxygen) concentration in biogas production in every second.

  19. Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies.

    PubMed

    Pope, P B; Smith, W; Denman, S E; Tringe, S G; Barry, K; Hugenholtz, P; McSweeney, C S; McHardy, A C; Morrison, M

    2011-07-29

    The Tammar wallaby (Macropus eugenii) harbors unique gut bacteria and produces only one-fifth the amount of methane produced by ruminants per unit of digestible energy intake. We have isolated a dominant bacterial species (WG-1) from the wallaby microbiota affiliated with the family Succinivibrionaceae and implicated in lower methane emissions from starch-containing diets. This was achieved by using a partial reconstruction of the bacterium's metabolism from binned metagenomic data (nitrogen and carbohydrate utilization pathways and antibiotic resistance) to devise cultivation-based strategies that produced axenic WG-1 cultures. Pure-culture studies confirm that the bacterium is capnophilic and produces succinate, further explaining a microbiological basis for lower methane emissions from macropodids. This knowledge also provides new strategic targets for redirecting fermentation and reducing methane production in livestock.

  20. Effects of Different Material Total Solid on Biogas Production Characteristics

    NASA Astrophysics Data System (ADS)

    Sun, Yu-Ming; Huang, Xiao-Mei; Kang, Yin-Hu

    2018-06-01

    In China, livestock manure emission has resulted in severe pollution to the environment and it is an efficient spreading agent of diseases. For this reason, the biogas has gotten a rapid development in the past few decades. As a kind of renewable and clean energy, many studies have indicated the prospect of biogas to replace fossil fuels in the future. However, the methane industrial production process is unstable due to various factors. Therefore, it is necessary to enhance the biogas fermentation efficiency. In this paper, the influences of the raw materials and the total solids (TS) concentration on biogas production characteristics are studied, where the utilization of raw materials can be reflected by the biogas production rate in the results. The results showed the anaerobic fermentation cycle is prolonged and biogas yield increases, but the utilization decreases with TS increases.

  1. NREL Advancements in Methane Conversion Lead to Cleaner Air, Useful Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-06-01

    Researchers at NREL leveraged the recent on-site development of gas fermentation capabilities and novel genetic tools to directly convert methane to lactic acid using an engineered methanotrophic bacterium. The results provide proof-of-concept data for a gas-to-liquids bioprocess that concurrently produces fuels and chemicals from methane. NREL researchers developed genetic tools to express heterologous genes in methanotrophic organisms, which have historically been difficult to genetically engineer. Using these tools, researchers demonstrated microbial conversion of methane to lactate, a high-volume biochemical precursor predominantly utilized for the production of bioplastics. Methane biocatalysis offers a means to concurrently liquefy and upgrade natural gas andmore » renewable biogas, enabling their utilization in conventional transportation and industrial manufacturing infrastructure. Producing chemicals and fuels from methane expands the suite of products currently generated from biorefineries, municipalities, and agricultural operations, with the potential to increase revenue and significantly reduce greenhouse gas emissions.« less

  2. Microbial Community Composition and Functional Capacity in a Terrestrial Ferruginous, Sulfate-Depleted Mud Volcano

    PubMed Central

    Tu, Tzu-Hsuan; Wu, Li-Wei; Lin, Yu-Shih; Imachi, Hiroyuki; Lin, Li-Hung; Wang, Pei-Ling

    2017-01-01

    Terrestrial mud volcanoes (MVs) are an important natural source of methane emission. The role of microbial processes in methane cycling and organic transformation in such environments remains largely unexplored. In this study, we aim to uncover functional potentials and community assemblages across geochemical transitions in a ferruginous, sulfate-depleted MV of eastern Taiwan. Geochemical profiles combined with 16S rRNA gene abundances indicated that anaerobic oxidation of methane (AOM) mediated by ANME-2a group coincided with iron/manganese reduction by Desulfuromonadales at shallow depths deprived of sulfate. The activity of AOM was stimulated either by methane alone or by methane and a range of electron acceptors, such as sulfate, ferrihydrite, and artificial humic acid. Metagenomic analyses revealed that functional genes for AOM and metal reduction were more abundant at shallow intervals. In particular, genes encoding pili expression and electron transport through multi-heme cytochromes were prevalent, suggesting potential intercellular interactions for electron transport involved in AOM. For comparison, genes responsible for methanogenesis and degradation of chitin and plant-derived molecules were more abundant at depth. The gene distribution combined with the enhanced proportions of 16S rRNA genes related to methanogens and heterotrophs, and geochemical characteristics suggest that particulate organic matter was degraded into various organic entities that could further fuel in situ methanogenesis. Finally, genes responsible for aerobic methane oxidation were more abundant in the bubbling pool and near-surface sediments. These methane oxidizers account for the ultimate attenuation of methane discharge into the atmosphere. Overall, our results demonstrated that various community members were compartmentalized into stratified niches along geochemical gradients. These community members form a metabolic network that cascades the carbon transformation from the upstream degradation of recalcitrant organic carbon with fermentative production of labile organic entities and methane to downstream methane oxidation and metal reduction near the surface. Such a metabolic architecture enables effective methane removal under ferruginous, sulfate-depleted conditions in terrestrial MVs. PMID:29163423

  3. Microbial Community Composition and Functional Capacity in a Terrestrial Ferruginous, Sulfate-Depleted Mud Volcano.

    PubMed

    Tu, Tzu-Hsuan; Wu, Li-Wei; Lin, Yu-Shih; Imachi, Hiroyuki; Lin, Li-Hung; Wang, Pei-Ling

    2017-01-01

    Terrestrial mud volcanoes (MVs) are an important natural source of methane emission. The role of microbial processes in methane cycling and organic transformation in such environments remains largely unexplored. In this study, we aim to uncover functional potentials and community assemblages across geochemical transitions in a ferruginous, sulfate-depleted MV of eastern Taiwan. Geochemical profiles combined with 16S rRNA gene abundances indicated that anaerobic oxidation of methane (AOM) mediated by ANME-2a group coincided with iron/manganese reduction by Desulfuromonadales at shallow depths deprived of sulfate. The activity of AOM was stimulated either by methane alone or by methane and a range of electron acceptors, such as sulfate, ferrihydrite, and artificial humic acid. Metagenomic analyses revealed that functional genes for AOM and metal reduction were more abundant at shallow intervals. In particular, genes encoding pili expression and electron transport through multi-heme cytochromes were prevalent, suggesting potential intercellular interactions for electron transport involved in AOM. For comparison, genes responsible for methanogenesis and degradation of chitin and plant-derived molecules were more abundant at depth. The gene distribution combined with the enhanced proportions of 16S rRNA genes related to methanogens and heterotrophs, and geochemical characteristics suggest that particulate organic matter was degraded into various organic entities that could further fuel in situ methanogenesis. Finally, genes responsible for aerobic methane oxidation were more abundant in the bubbling pool and near-surface sediments. These methane oxidizers account for the ultimate attenuation of methane discharge into the atmosphere. Overall, our results demonstrated that various community members were compartmentalized into stratified niches along geochemical gradients. These community members form a metabolic network that cascades the carbon transformation from the upstream degradation of recalcitrant organic carbon with fermentative production of labile organic entities and methane to downstream methane oxidation and metal reduction near the surface. Such a metabolic architecture enables effective methane removal under ferruginous, sulfate-depleted conditions in terrestrial MVs.

  4. Effects of garlic oil, nitrate, saponin and their combinations supplemented to different substrates on in vitro fermentation, ruminal methanogenesis, and abundance and diversity of microbial populations.

    PubMed

    Patra, A K; Yu, Z

    2015-07-01

    To investigate the effect of garlic oil (G), nitrate (N), saponin (S) and their combinations supplemented to different forage to concentrate substrates on methanogenesis, fermentation, diversity and abundances of bacteria and Archaea in vitro. The study was conducted in an 8 × 2 factorial design with eight treatments and two substrates using mixed ruminal batch cultures obtained. Quillaja S (0·6 g l(-1) ), N (5 mmol l(-1) ) and G (0·27 g l(-1) ) were used separately or in binary and tertiary combinations. The two substrates contained grass hay and a dairy concentrate mixture at a 70 : 30 (high-forage substrate) ratio or a 30 : 70 (high-concentrate substrate) ratio. Ruminal fermentation and cellulolytic bacterial populations were affected by interaction between substrate and anti-methanogenic compounds. The inhibitor combinations decreased the methane production additively regardless of substrate. For the high-concentrate substrate, S decreased methane production to a greater extent, so did G and N individually for the high-forage substrate. Feed degradability and total volatile fatty acid (VFA) concentrations were not decreased by any of the treatments. Fibre degradability was actually improved by N+S for the high-forage substrate. VFA concentrations and profiles were affected differently by different anti-methanogenic inhibitors and their combinations. All treatments inhibited the growth of Archaea, but the effect on Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens varied. The results suggest that substrate influences the efficacy of these inhibitors when they are used separately, but in combinations, they can lower methanogenesis additively without much influence from the substrate. The presented research provided evidence that binary and tertiary combination of garlic oil, nitrate and saponin can lower the methane production additively without adversely impacting rumen fermentation and degradability, and forage to concentrate ratio does not change the above effects. These anti-methanogenic inhibitors in combination may have practical application to mitigate methane emission from ruminants. © 2015 The Society for Applied Microbiology.

  5. Relations between transit time, fermentation products, and hydrogen consuming flora in healthy humans.

    PubMed

    El Oufir, L; Flourié, B; Bruley des Varannes, S; Barry, J L; Cloarec, D; Bornet, F; Galmiche, J P

    1996-06-01

    To investigate whether transit time could influence H2 consuming flora and certain indices of colonic bacterial fermentation. Eight healthy volunteers (four methane excretors and four non-methane excretors) were studied for three, three week periods during which they received a controlled diet alone (control period), and then the same diet with cisapride or loperamide. At the end of each period, mean transit time (MTT) was estimated, an H2 lactulose breath test was performed, and stools were analysed. In the control period, transit time was inversely related to faecal weight, sulphate reducing bacteria counts, concentrations of total short chain fatty acids (SCFAs), propionic and butyric acids, and H2 excreted in breath after lactulose ingestion. Conversely, transit time was positively related to faecal pH and tended to be related to methanogen counts. Methanogenic bacteria counts were inversely related to those of sulphate reducing bacteria and methane excretors had slower MTT and lower sulphate reducing bacteria counts than non-methane excretors. Compared with the control period, MTT was significantly shortened (p < 0.05) by cisapride and prolonged (p < 0.05) by loperamide (73 (11) hours, 47 (5) hours and 147 (12) hours for control, cisapride, and loperamide, respectively, mean (SD)). Cisapride reduced transit time was associated with (a) a significant rise in faecal weight, sulphate reducing bacteria, concentrations of total SCFAs, and propionic and butyric acids and breath H2 as well as (b) a significant fall in faecal pH and breath CH4 excretion, and (c) a non-significant decrease in the counts of methanogenic bacteria. Reverse relations were roughly the same during the loperamide period including a significant rise in the counts of methanogenic bacteria and a significant fall in those of sulphate reducing bacteria. Transit time differences between healthy volunteers are associated with differences in H2 consuming flora and certain indices of colonic fermentation. Considering the effects of some fermentation products on intestinal morphology and function, these variations may be relevant to the pathogenesis of colorectal diseases.

  6. Relations between transit time, fermentation products, and hydrogen consuming flora in healthy humans.

    PubMed Central

    El Oufir, L; Flourié, B; Bruley des Varannes, S; Barry, J L; Cloarec, D; Bornet, F; Galmiche, J P

    1996-01-01

    BACKGROUND/AIMS: To investigate whether transit time could influence H2 consuming flora and certain indices of colonic bacterial fermentation. METHODS: Eight healthy volunteers (four methane excretors and four non-methane excretors) were studied for three, three week periods during which they received a controlled diet alone (control period), and then the same diet with cisapride or loperamide. At the end of each period, mean transit time (MTT) was estimated, an H2 lactulose breath test was performed, and stools were analysed. RESULTS: In the control period, transit time was inversely related to faecal weight, sulphate reducing bacteria counts, concentrations of total short chain fatty acids (SCFAs), propionic and butyric acids, and H2 excreted in breath after lactulose ingestion. Conversely, transit time was positively related to faecal pH and tended to be related to methanogen counts. Methanogenic bacteria counts were inversely related to those of sulphate reducing bacteria and methane excretors had slower MTT and lower sulphate reducing bacteria counts than non-methane excretors. Compared with the control period, MTT was significantly shortened (p < 0.05) by cisapride and prolonged (p < 0.05) by loperamide (73 (11) hours, 47 (5) hours and 147 (12) hours for control, cisapride, and loperamide, respectively, mean (SD)). Cisapride reduced transit time was associated with (a) a significant rise in faecal weight, sulphate reducing bacteria, concentrations of total SCFAs, and propionic and butyric acids and breath H2 as well as (b) a significant fall in faecal pH and breath CH4 excretion, and (c) a non-significant decrease in the counts of methanogenic bacteria. Reverse relations were roughly the same during the loperamide period including a significant rise in the counts of methanogenic bacteria and a significant fall in those of sulphate reducing bacteria. CONCLUSIONS: Transit time differences between healthy volunteers are associated with differences in H2 consuming flora and certain indices of colonic fermentation. Considering the effects of some fermentation products on intestinal morphology and function, these variations may be relevant to the pathogenesis of colorectal diseases. PMID:8984026

  7. Effect of 3-nitrooxypropanol on methane and hydrogen emissions, methane isotopic signature, and ruminal fermentation in dairy cows.

    PubMed

    Lopes, J C; de Matos, L F; Harper, M T; Giallongo, F; Oh, J; Gruen, D; Ono, S; Kindermann, M; Duval, S; Hristov, A N

    2016-07-01

    The objective of this crossover experiment was to investigate the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission, methane isotopic composition, and rumen fermentation and microbial profile in lactating dairy cows. The experiment involved 6 ruminally cannulated late-lactation Holstein cows assigned to 2 treatments: control and 3NOP (60 mg/kg of feed dry matter). Compared with the control, 3NOP decreased methane emission by 31% and increased hydrogen emission from undetectable to 1.33 g/d. Methane emissions per kilogram of dry matter intake and milk yield were also decreased 34% by 3NOP. Milk production and composition were not affected by 3NOP, except milk fat concentration was increased compared with the control. Concentrations of total VFA and propionate in ruminal fluid were not affected by treatment, but acetate concentration tended to be lower and acetate-to-propionate ratio was lower for 3NOP compared with the control. The 3NOP decreased the molar proportion of acetate and increase those of propionate, butyrate, valerate, and isovalerate. Deuterium-to-hydrogen ratios of methane and the abundance of (13)CH3D were similar between treatments. Compared with the control, minor (4‰) depletion in the (13)C/(12)C ratio was observed for 3NOP. Genus composition of methanogenic archaea (Methanobrevibacter, Methanosphaera, and Methanomicrobium) was not affected by 3NOP, but the proportion of methanogens in the total cell counts tended to be decreased by 3NOP. Prevotella spp., the predominant bacterial genus in ruminal contents in this experiment, was also not affected by 3NOP. Compared with the control, Ruminococcus and Clostridium spp. were decreased and Butyrivibrio spp. was increased by 3NOP. This experiment demonstrated that a substantial inhibition of enteric methane emission by 3NOP in dairy cows was accompanied with increased hydrogen emission and decreased acetate-to-propionate ratio; however, neither an effect on rumen archaeal community composition nor a significant change in the isotope composition of methane was observed. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Bioconversion of natural gas to liquid fuel: opportunities and challenges.

    PubMed

    Fei, Qiang; Guarnieri, Michael T; Tao, Ling; Laurens, Lieve M L; Dowe, Nancy; Pienkos, Philip T

    2014-01-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Bioconversion of Natural Gas to Liquid Fuel. Opportunities and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Qiang; Guarnieri, Michael T.; Tao, Ling

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Moreover, methanotrophic bacteria are capable of convertingmore » methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. Our review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel.« less

  10. Environmental Isotope Characteristics of Landfill Leachates and Gases

    USGS Publications Warehouse

    Hackley, Keith C.; Liu, Chao-Li; Coleman, D.D.

    1996-01-01

    The isotopic characteristics of municipal landfill leachate and gases (carbon dioxide and methane) are unique relative to the aqueous and gaseous media in most other natural geologic environments. The ??13 C of the CO2 in landfills is significantly enriched in 13C, with values as high as +20??? reported. The ?? 13C and ??D values of the methane fall within a range of values representative of microbial methane produced primarily by the acetate-fermentation process. The ??D of landfill leachate is strongly enriched in deuterium, by approximately 30??? to nearly 60??? relative to local average precipitation values. This deuterium enrichment is undoubtedly due to the extensive production of microbial methane within the limited reservoir of a landfill. The concentration of the radiogenic isotopes, 14C and 3H, are significantly elevated in both landfill leachate and methane. The 14C values range between approximately 120 and 170 pMC and can be explained by the input of organic material that was affected by the increased 14C content of atmospheric CO2 caused by atmospheric testing of nuclear devices. The tritium measured in leachate, however, is often too high to be explained by previous atmospheric levels and must come from material buried within the landfill. The unique isotopic characteristics observed in landfill leachates and gases provide a very useful technique for confirming whether contamination is from a municipal landfill or some other local source.

  11. Biohythane production from marine macroalgae Sargassum sp. coupling dark fermentation and anaerobic digestion.

    PubMed

    Costa, José C; Oliveira, João V; Pereira, Maria A; Alves, Maria M; Abreu, Angela A

    2015-08-01

    Potential biohythane production from Sargassum sp. was evaluated in a two stage process. In the first stage, hydrogen dark fermentation was performed by Caldicellulosiruptor saccharolyticus. Sargassum sp. concentrations (VS) of 2.5, 4.9 and 7.4gL(-1) and initial inoculum concentrations (CDW) of 0.04 and 0.09gL(-1) of C. saccharolyticus were used in substrate/inoculum ratios ranging from 28 to 123. The end products from hydrogen production process were subsequently used for biogas production. The highest hydrogen and methane production yields, 91.3±3.3Lkg(-1) and 541±10Lkg(-1), respectively, were achieved with 2.5gL(-1) of Sargassum sp. (VS) and 0.09gL(-1)of inoculum (CDW). The biogas produced contained 14-20% of hydrogen. Potential energy production from Sargassum sp. in two stage process was estimated in 242GJha(-1)yr(-1). A maximum energy supply of 600EJyr(-1) could be obtained from the ocean potential area for macroalgae production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Photocatalytic degradation of lignin on synthesized Ag-AgCl/ZnO nanorods under solar light and preliminary trials for methane fermentation.

    PubMed

    Li, Huifang; Lei, Zhongfang; Liu, Chunguang; Zhang, Zhenya; Lu, Baowang

    2015-01-01

    New photocatalysts, Ag-AgCl/ZnO nanorods, were successfully synthesized in this study by using microwave assisted chemical precipitation and deposition-precipitation-photoreduction methods. The optimal preparation condition was determined as pH 9 in distilled water and 40min for UV light photoreduction of Ag (i.e. Ag40-AgCl/ZnO) by degradation of methyl orange. This work investigated the feasibility of using Ag40-AgCl/ZnO to degrade lignin under natural solar light and then subsequent methane production with influencing factors like solution pH, dosage of catalyst and initial lignin concentration being considered. OH radicals were found to play the most important role in the photocatalytic process, and the new prepared catalyst possessed stable photocatalytic activity after 7 cycles' utilization. During the subsequent biogasification, the degraded lignin obtained from 120min photocatalysis yielded 184ml methane and 325ml biogas for per gram of removed total organic carbon, increased by 10.9% and 23.1%, respectively compared to the control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Bio-conversion of water hyacinths into methane gas. Part 1. [Effects of cadmium and nickel pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolverton, B.C.; Mcdonald, R.C.; Gordon, J.

    1974-07-01

    Bio-gas and methane production from the microbial anaerobic decomposition of water hyacinths (Eichhornia crassipes) (Mart) Solms was investigated. These experiments demonstrated the ability of water hyacinths to produce an average of 13.9 ml of methane gas per gram of wet plant weight. This study revealed that sample preparation had no significant effect on bio-gas and/or methane production. Pollution of water hyacinths by two toxic heavy materials, nickel and cadmium, increased the rate of methane production from 51.8 ml/day for non-contaminated plants incubated at 36 C to 81.0 ml/day for Ni-Cd contaminated plants incubated at the same temperature. The methane contentmore » of bio-gas evolved from the anaerobic decomposition of Ni-Cd contaminated plants was 91.1 percent as compared to 69.2 percent methane content of bio-gas collected from the fermentation of non-contaminated plants. (Author) (GRA)« less

  14. Fuel gas production from animal and agricultural residues and biomass. Quarterly coordination meeting, December 11-12, 1978, Denver, Colorado. Second Quarterly progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, D L; Ashare, E; Wentworth, R L

    1979-01-05

    The tenth quarterly coordination meeting of the methane production group of the Fuels from Biomass Systems Branch, US Department of Energy was held at Denver, Colorado, December 11-12, 1978. Progress reports were presented by the contractors and a site visit was made to the Solar Energy Research Institute, Golden, Colorado. A meeting agenda, a list of attendees, and progress are presented. Report titles are: pipeline fuel gas from an environmental feedlot; operation of a 50,000 gallon anaerobic digester at the Monroe State Dairy Farm near Monroe, Washington; anaerobic fermentation of livestock and crop residues; anaerobic fermentation of agricultural residues -more » potential for improvement and implementation; heat treatment of organics for increasing anaerobic biodegradability; and biological conversion of biomass to methane. (DC)« less

  15. Evaluation of nano zero valent iron effects on fermentation of municipal anaerobic sludge and inducing biogas production

    NASA Astrophysics Data System (ADS)

    Amen, Tareq W. M.; Eljamal, Osama; Khalil, Ahmed M. E.; Matsunaga, Nobuhiro

    2017-05-01

    The application of nano size materials on wastewater is going extensive because its high reactivity compared with other materials. As a result, numerous research studies investigated the effectiveness of dosing nano zero valent iron (nZVI) or micro zero valent iron (mZVI) on anaerobic digestion (AD) of sludge and production of biogas as promising renewable energy but inconsistent outcomes have appeared. In this paper, different dosing concentrations of nZVI were applied on anaerobic activated municipal sludge to examine the impact of nZVI on sludge fermentation, biogas generation, and methane (CH4) content stimulation. The results showed that addition 250 mg/L nZVI nanoparticles could enhance 25.23% biogas production and the methane content reached 94.05% after one week of digestion compared with 62.67% without adding iron nanoparticles.

  16. Seasonal C-13 variations of methane from an anoxic marine sediment

    NASA Technical Reports Server (NTRS)

    Blair, Neal; Desmarais, David S.; Martens, Christopher S.

    1985-01-01

    Recent analyses of glacial ice suggest that the atmospheric concentration of methane has doubled in the last several hundred years, presumably due to anthropogenic perturbations of the relevant biogeochemical cycles. In principal, carbon isotopic measurements of atmospheric methane would provide information concerning changes in the sources and sinks of methane. The isotopic composition of methane is dependent on the source of the methane carbon, the mechanism of methane synthesis, and the degree and mode of oxidation which the methane has experienced. Unfortunately, few carbon isotopic measurements of atmospheric variations have been reported, so conclusions about temporal isotopic variations cannot be made. Also, before isotopic measurements of atmospheric methane can be used to identify changes in methane isotopic composition from different sources must be obtained. Methane bubbles from the anoxic sediments of Cape Lookout Bight, NC exhibit seasonal C-13 variations. The C-13 values ranged from -58 in August to -64 in the winter months with the evolution of the C-13 enriched gas occurring during periods of peak methane production. Even though a few intramolecular C-13 measurements of the pore water acetate have been made (methyl group, -26 per mil; carbonyl, -6 per mil), it is not clear how the acetate fermentation pathway affects the methane C-13/C-12 composition.

  17. Does Dietary Mitigation of Enteric Methane Production Affect Rumen Function and Animal Productivity in Dairy Cows?

    PubMed Central

    Veneman, Jolien B.; Muetzel, Stefan; Hart, Kenton J.; Faulkner, Catherine L.; Moorby, Jon M.; Perdok, Hink B.; Newbold, Charles J.

    2015-01-01

    It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/ g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations. PMID:26509835

  18. Does Dietary Mitigation of Enteric Methane Production Affect Rumen Function and Animal Productivity in Dairy Cows?

    PubMed

    Veneman, Jolien B; Muetzel, Stefan; Hart, Kenton J; Faulkner, Catherine L; Moorby, Jon M; Perdok, Hink B; Newbold, Charles J

    2015-01-01

    It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations.

  19. Acetylene Fermentation: Relevance to Primordial Biogeochemistry and the Search for Life in the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.

    2013-12-01

    Acetylene is a highly reactive component of planet(oid)s with anoxic, methane-rich atmospheres, such as Jupiter, Saturn, Titan, and perhaps the primordial Earth. Included in this group is Enceladus, although it is not clear if the acetylene detected within its jets by Cassini was formed by photolysis of methane, from thermo-catalysis of organic matter in the orb's interior, or a fragmentation artifact of the mass spectrum of a larger hydrocarbon. Acetylene inhibits many microbial processes (e.g., methanogenesis, methane oxidation, hydrogen metabolism, denitrification) yet a number of anaerobes can use it as a carbon and energy source to support growth. The best studied is Pelobacter acetylenicus, which carries out a two-step reaction involving the enzymes acetylene hydratase and acetaldehyde dismutase. The former, a low potential W-containing enzyme, forms acetaldehyde while the latter produces ethanol and acetate. Metabolism of acetylene by mixed microbial communities (sediments and/or enrichment cultures) produces these intermediates, and when coupled with sulfate-reduction or methanogenesis respectively forms CO2 or an equal mixtures of CO2 plus CH4. It is not inconceivable that such an anaerobic, microbial food chain could exist in the waters beneath the ice cap of Enceladus, Titan, or even in the mesothermal atmospheric regions of the gas giants. Detection of the identified intermediate products of acetylene fermentation, namely acetaldehyde, ethanol, acetate and formate in the atmospheres of these planet(oid)s would constitute evidence for a microbial life signature. This evidence would be strongly reinforced if a stable carbon isotope fractionation was identified as well, whereby the products of acetylene fermentation were enriched in 12C relative to 13C (i.e., had a lighter δ13C signal) when compared to that of the starting acetylene. The most practical target to test this hypothesis would be Enceladus (if the detected acetylene is shown to be a real presence in the jet vapors) owing to the relative ease of sample collection and analysis either in future flybys or lander/collector missions.

  20. Using slaughterhouse waste in a biochemical-based biorefinery - results from pilot scale tests.

    PubMed

    Schwede, Sebastian; Thorin, Eva; Lindmark, Johan; Klintenberg, Patrik; Jääskeläinen, Ari; Suhonen, Anssi; Laatikainen, Reino; Hakalehto, Elias

    2017-05-01

    A novel biorefinery concept was piloted using protein-rich slaughterhouse waste, chicken manure and straw as feedstocks. The basic idea was to provide a proof of concept for the production of platform chemicals and biofuels from organic waste materials at non-septic conditions. The desired biochemical routes were 2,3-butanediol and acetone-butanol fermentation. The results showed that hydrolysis resulted only in low amounts of easily degradable carbohydrates. However, amino acids released from the protein-rich slaughterhouse waste were utilized and fermented by the bacteria in the process. Product formation was directed towards acidogenic compounds rather than solventogenic products due to increasing pH-value affected by ammonia release during amino acid fermentation. Hence, the process was not effective for 2,3-butanediol production, whereas butyrate, propionate, γ-aminobutyrate and valerate were predominantly produced. This offered fast means for converting tedious protein-rich waste mixtures into utilizable chemical goods. Furthermore, the residual liquid from the bioreactor showed significantly higher biogas production potential than the corresponding substrates. The combination of the biorefinery approach to produce chemicals and biofuels with anaerobic digestion of the residues to recover energy in form of methane and nutrients that can be utilized for animal feed production could be a feasible concept for organic waste utilization.

  1. Methanogenic food web in the gut contents of methane-emitting earthworm Eudrilus eugeniae from Brazil

    PubMed Central

    Schulz, Kristin; Hunger, Sindy; Brown, George G; Tsai, Siu M; Cerri, Carlos C; Conrad, Ralf; Drake, Harold L

    2015-01-01

    The anoxic saccharide-rich conditions of the earthworm gut provide an ideal transient habitat for ingested microbes capable of anaerobiosis. It was recently discovered that the earthworm Eudrilus eugeniae from Brazil can emit methane (CH4) and that ingested methanogens might be associated with this emission. The objective of this study was to resolve trophic interactions of bacteria and methanogens in the methanogenic food web in the gut contents of E. eugeniae. RNA-based stable isotope probing of bacterial 16S rRNA as well as mcrA and mrtA (the alpha subunit of methyl-CoM reductase and its isoenzyme, respectively) of methanogens was performed with [13C]-glucose as a model saccharide in the gut contents. Concomitant fermentations were augmented by the rapid consumption of glucose, yielding numerous products, including molecular hydrogen (H2), carbon dioxide (CO2), formate, acetate, ethanol, lactate, succinate and propionate. Aeromonadaceae-affiliated facultative aerobes, and obligate anaerobes affiliated to Lachnospiraceae, Veillonellaceae and Ruminococcaceae were associated with the diverse fermentations. Methanogenesis was ongoing during incubations, and 13C-labeling of CH4 verified that supplemental [13C]-glucose derived carbon was dissimilated to CH4. Hydrogenotrophic methanogens affiliated with Methanobacteriaceae and Methanoregulaceae were linked to methanogenesis, and acetogens related to Peptostreptoccocaceae were likewise found to be participants in the methanogenic food web. H2 rather than acetate stimulated methanogenesis in the methanogenic gut content enrichments, and acetogens appeared to dissimilate supplemental H2 to acetate in methanogenic enrichments. These findings provide insight on the processes and associated taxa potentially linked to methanogenesis and the turnover of organic carbon in the alimentary canal of methane-emitting E. eugeniae. PMID:25615437

  2. Methane emissions, body composition, and rumen fermentation traits of beef heifers differing in residual feed intake.

    PubMed

    Fitzsimons, C; Kenny, D A; Deighton, M H; Fahey, A G; McGee, M

    2013-12-01

    This study examined the relationship of residual feed intake (RFI) and performance with methane emissions, rumen fermentation, and digestion in beef heifers. Individual DMI and growth performance were measured for 22 Simmental heifers (mean initial BW 449 kg, SD = 46.2 kg) offered grass silage ad libitum for 120 d. Ultrasonically scanned muscle and fat depth, BCS, muscularity score, skeletal measurements, blood variables, rumen fermentation (via stomach tube), and total tract digestibility (indigestible marker) were measured. Methane production was estimated using the sulfur hexafluoride tracer gas technique over two 5-d periods beginning on d 20 and 75 of the RFI measurement period. Phenotypic RFI was calculated as actual DMI minus expected DMI. The residuals of the regression of DMI on ADG and midtest metabolic body weight, using all heifers, were used to compute individual RFI coefficients. Heifers were ranked by RFI and assigned to low (efficient), medium, or high (inefficient) groupings. Overall ADG and DMI were 0.58 kg (SD = 0.18) and 7.40 kg (SD = 0.72), respectively. High-RFI heifers consumed 9 and 15% more (P < 0.05) than medium- and low-RFI groups, respectively. Body weight, growth, skeletal, and composition traits did not differ (P > 0.05) between low- and high-RFI groups. High-RFI heifers had higher concentrations of plasma glucose (6%) and urea (13%) and lower concentrations of plasma creatinine (9%) than low-RFI heifers (P < 0.05). Rumen pH and apparent in vivo digestibility did not differ (P > 0.05) between RFI groups, although acetate:propionate ratio was lowest (P = 0.07) for low-RFI (3.5) and highest for high-RFI (4.6) heifers. Methane production expressed as grams per day or grams per kilogram metabolic body weight was greater (P < 0.05) for high (297 g/d and 2.9 g/kg BW0.75) compared with low (260 g/d and 2.5 g/kg BW0.75) RFI heifers, with medium (275 g/d and 2.7 g/kg BW0.75) RFI heifers being intermediate. Regression analysis indicated that a 1 kg DM/d increase in RFI was associated with a 23 g/d increase (P = 0.09) in methane emissions. Results suggest that improved RFI will reduce methane emissions without affecting productivity of growing beef cattle.

  3. The Methane to Carbon Dioxide Ratio Produced during Peatland Decomposition and a Simple Approach for Distinguishing This Ratio

    NASA Astrophysics Data System (ADS)

    Chanton, J.; Hodgkins, S. B.; Cooper, W. T.; Glaser, P. H.; Corbett, J. E.; Crill, P. M.; Saleska, S. R.; Rich, V. I.; Holmes, B.; Hines, M. E.; Tfaily, M.; Kostka, J. E.

    2014-12-01

    Peatland organic matter is cellulose-like with an oxidation state of approximately zero. When this material decomposes by fermentation, stoichiometry dictates that CH4 and CO2 should be produced in a ratio approaching one. While this is generally the case in temperate zones, this production ratio is often departed from in boreal peatlands, where the ratio of belowground CH4/CO2 production varies between 0.1 and 1, indicating CO2 production by a mechanism in addition to fermentation. The in situ CO2/CH4 production ratio may be ascertained by analysis of the 13C isotopic composition of these products, because CO2 production unaccompanied by methane production produces CO2 with an isotopic composition similar to the parent organic matter while methanogenesis produces 13C depleted methane and 13C enriched CO2. The 13C enrichment in the subsurface CO2 pool is directly related to the amount of if formed from methane production and the isotopic composition of the methane itself. Excess CO2 production is associated with more acidic conditions, Sphagnum vegetation, high and low latitudes, methane production dominated by hydrogenotrophic methane production, 13C depleted methane, and generally, more nutrient depleted conditions. Three theories have been offered to explain these observations— 1) inhibition of acetate utilization, acetate build-up and diffusion to the surface and eventual aerobic oxidation, 2) the use of humic acids as electron acceptors, and the 3) utilization of organic oxygen to produce CO2. In support of #3, we find that 13C-NMR, Fourier transform infrared (FT IR) spectroscopy, and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) clearly show the evolution of polysaccharides and cellulose towards more decomposed humified alkyl compounds stripped of organic oxygen utilized to form CO2. Such decomposition results in more negative carbon oxidation states varying from -1 to -2. Coincident with this reduction in oxidation state, is the greater production of methane. Changing climatic conditions may alter the balance of the factors which affect the CO2/CH4 ratio by changing the water balance of the peatland, nutrient status, or temperature.

  4. Energy from vascular plant wastewater treatment systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolverton, B.C.; McDonald, R.C.

    1981-04-01

    Water hyacinth (Eichhornia crassipes) duckweed (Spirodela sp. and Lemna sp.), water pennywort (Hydrocotyle ranunculoides), and kudzu (Pueraria lobata) were anaerobically fermented using an anaerobic filter technique that reduced the total digestion time from 90 d to an average of 23 d and produced 0.14 to 0.22 m/sup 3/ CH/sub 4//kg (dry weight) (2.3 to 3.6 ft/sup 3//lb) from mature filters for the 3 aquatic species. Kudzu required an average digestion time of 33 d and produced an average of 0.21 m/sup 3/ CH/sub 4//kg (dry weight) (3.4 ft/sup 3//lb). The anaerobic filter provided a large surface area for the anaerobicmore » bacteria to establish and maintain an optimal balance of facultative, acid-forming, and methane-producing bacteria. Consequently the efficiency of the process was greatly improved over prior batch fermentations.« less

  5. Investigation of methanogenic community structures in rural biogas digesters from different climatic regions in Yunnan, southwest China.

    PubMed

    Dong, Minghua; Wu, Yan; Li, Qiumin; Tian, Guangliang; Yang, Bin; Li, Yingjuan; Zhang, Lijuan; Wang, Yongxia; Xiao, Wei; Yin, Fang; Zhao, Xingling; Zhang, Wudi; Cui, Xiaolong

    2015-05-01

    Understanding of the microbial community structures of the biogas digesters in different climatic regions can help improve the methane production in the fermentation process. The methanogenic archaeal diversity in four rural biogas digesters (BNA, JSA, LJA, and XGA) was investigated by a culture-independent rRNA approach in different climatic regions in Yunnan. Community structure composed of 711 clones in the all libraries. A total of 33 operational taxonomic units (OTUs) were detected, and major groups of methanogens were the orders Methanosarcinales and Methanomicrobiales. 63.2 % of all archaeal OTUs belong to the order Methanosarcinales which mostly contain acetotrophic methanogens. Methanomicrobiales (19.5 % in all OTUs) were detected in considerable number. Additionally, there were minor rates of uncultured archaea. The principal component analysis indicated that the genus Methanosaeta was mainly affected by the fermentation temperatures.

  6. Enhanced power generation and energy conversion of sewage sludge by CEA-microbial fuel cells.

    PubMed

    Abourached, Carole; Lesnik, Keaton Larson; Liu, Hong

    2014-08-01

    The production of methane from sewage sludge through the use of anaerobic digestion has been able to effectively offset energy costs for wastewater treatment. However, significant energy reserves are left unrecovered and effluent standards are not met necessitating secondary processes such as aeration. In the current study a novel cloth-electrode assembly microbial fuel cell (CEA-MFC) was used to generate electricity from sewage sludge. Fermentation pretreatment of the sludge effectively increased the COD of the supernatant and improved reactor performance. Using the CEA-MFC design, a maximum power density of 1200 mW m(-2) was reached after a fermentation pre-treatment time of 96 h. This power density represents a 275% increase over those previously observed in MFC systems. Results indicate continued improvements are possible and MFCs may be a viable modification to existing wastewater treatment infrastructure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Aerobic composting of digested residue eluted from dry methane fermentation to develop a zero-emission process.

    PubMed

    Huang, Yu-Lian; Sun, Zhao-Yong; Zhong, Xiao-Zhong; Wang, Ting-Ting; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2017-03-01

    Digested residue remained at the end of a process for the production of fuel ethanol and methane from kitchen garbage. To develop a zero-emission process, the compostability of the digested residue was assessed to obtain an added-value fertilizer. Composting of the digested residue by adding matured compost and a bulking agent was performed using a lab-scale composting reactor. The composting process showed that volatile total solid (VTS) degradation mainly occurred during the first 13days, and the highest VTS degradation efficiency was about 27% at the end. The raw material was not suitable as a fertilizer due to its high NH 4 + and volatile fatty acids (VFAs) concentration. However, the composting process produced remarkable results; the physicochemical properties indicated that highly matured compost was obtained within 62days of the composting process, and the final N concentration, NO 3 - concentration, and the germination index (GI) at the end of the composting process was 16.4gkg -1 -TS, 9.7gkg -1 -TS, and 151%, respectively. Real-time quantitative PCR (qPCR) analysis of ammonia oxidizers indicated that the occurrence of nitrification during the composting of digested residue was attributed to the activity of ammonia-oxidizing bacteria (AOB). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Breeding maize as biogas substrate in Central Europe: I. Quantitative-genetic parameters for testcross performance.

    PubMed

    Grieder, Christoph; Dhillon, Baldev S; Schipprack, Wolfgang; Melchinger, Albrecht E

    2012-04-01

    Biofuels have gained importance recently and the use of maize biomass as substrate in biogas plants for production of methane has increased tremendously in Germany. The objectives of our research were to (1) estimate variance components and heritability for different traits relevant to biogas production in testcrosses (TCs) of maize, (2) study correlations among traits, and (3) discuss strategies to breed maize as a substrate for biogas fermenters. We evaluated 570 TCs of 285 diverse dent maize lines crossed with two flint single-cross testers in six environments. Data were recorded on agronomic and quality traits, including dry matter yield (DMY), methane fermentation yield (MFY), and methane yield (MY), the product of DMY and MFY, as the main target trait. Estimates of variance components showed general combining ability (GCA) to be the major source of variation. Estimates of heritability exceeded 0.67 for all traits and were even much greater in most instances. Methane yield was perfectly correlated with DMY but not with MFY, indicating that variation in MY is primarily determined by DMY. Further, DMY had a larger heritability and coefficient of genetic variation than MFY. Hence, for improving MY, selection should primarily focus on DMY rather than MFY. Further, maize breeding for biogas production may diverge from that for forage production because in the former case, quality traits seem to be of much lower importance.

  9. Method of making compost and spawned compost, mushroom spawn and generating methane gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoller, B.B.

    1981-04-28

    Newly designed ribbon-type mixers provide an improved method for making composts, aerating composts, growing mushroom spawn, generating methane gas, and filling conveyors in the mushroom-growing industry. The mixers may be the double-ribbon type for purely mixing operations or the single-ribbon type for moving the material from one place to another. Both types can operate under pressure. In preparing compost for mushroom growing, operators can first use the airtight mixers for a preliminary anaerobic fermentation to produce methane, then by changing the atmosphere to an oxidizing one, complete the compost preparation under the necessary aerobic conditions.

  10. Methane emissions, feed intake, performance, digestibility, and rumen fermentation of finishing beef cattle offered whole-crop wheat silages differing in grain content.

    PubMed

    Mc Geough, E J; O'Kiely, P; Hart, K J; Moloney, A P; Boland, T M; Kenny, D A

    2010-08-01

    This study aimed to quantify the methane emissions and feed intake, performance, carcass traits, digestibility, and rumen fermentation characteristics of finishing beef cattle offered diets based on whole-crop wheat (WCW) silages differing in grain content and to rank these relative to diets based on grass silage (GS) and ad libitum concentrates (ALC). In Exp. 1, a total of 90 continental crossbred steers [538 +/- 27.6 kg of BW (mean +/- SD)] were blocked by BW and assigned in a randomized complete block design to 1 of 6 treatments based on 4 WCW silages [grain-to-straw plus chaff ratios of 11:89 (WCW I), 21:79 (WCW II), 31:69 (WCW III), and 47:53 (WCW IV)], GS, and ALC. Increasing grain content in WCW silage resulted in a quadratic (P = 0.01) response in DMI, with a linear (P < 0.001) increase in carcass gain [CG; 577 (WCW I), 650 (WCW II), 765 (WCW III), and 757 g/d (WCW IV)]. The G:F also increased linearly (P < 0.001) in response to increasing the grain content of WCW silage. A quadratic (P < 0.01) response in daily methane output [295 (WCW I), 315 (WCW II), 322 (WCW III), and 273 g/d (WCW IV)], measured using the sulfur hexafluoride tracer technique, was observed in response to increasing the grain content of WCW; however, linear decreases were observed when expressed relative to DMI (P = 0.01) and CG (P < 0.001). Cattle offered GS exhibited carcass gains similar to those offered WCW silage diets and had greater methane emissions than cattle in any other treatment when expressed relative to DMI. Cattle offered ALC exhibited greater (P < 0.01) carcass gains and decreased (P < 0.001) methane emissions, irrespective of the unit of expression, compared with cattle in any of the silage-based treatments. In Exp. 2, rumen fermentation parameters were determined using 4 ruminally cannulated Rotbunde-Holstein steers (413 +/- 30.1 kg of BW) randomly allocated among WCW I, the average of WCW II and III (WCW II/III), WCW IV, and GS in a 4 x 4 Latin square design. Ruminal pH and total VFA concentration did not differ across dietary treatments. Molar proportion of acetic acid decreased (P = 0.01), with propionic acid tending to increase (P = 0.06) with increasing grain content. It was concluded that increasing the grain content of WCW silage reduced methane emissions relative to DMI and CG and improved animal performance. However, the relativity of GS to WCW in terms of methane emissions was dependent on the unit of expression used. Cattle offered ALC exhibited decreased methane emissions and greater performance than those offered any of the silage-based treatments.

  11. A novel one-stage cultivation/fermentation strategy for improved biogas production with microalgal biomass.

    PubMed

    Klassen, Viktor; Blifernez-Klassen, Olga; Hoekzema, Yoep; Mussgnug, Jan H; Kruse, Olaf

    2015-12-10

    The use of alga biomass for biogas generation has been studied for over fifty years but until today, several distinct features, like inefficient degradation and low C/N ratios, limit the applicability of algal biomass for biogas production in larger scale. In this work we investigated a novel, one-stage combined cultivation/fermentation strategy including inherently progressing nitrogen starvation conditions to generate improved microalgal biomass substrates. For this strategy, comparable low amounts of nitrogen fertilizers were applied during cultivation and no additional enzymatic, chemical or physical pretreatments had to be performed. The results of this study demonstrate that progressing nitrogen limitation leads to continuously increasing C/N ratios of the biomass up to levels of 24-26 for all three tested alga strains (Chlamydomonas reinhardtii, Parachlorella kessleri and Scenedesmus obliquus). Importantly, the degradation efficiency of the algal cells increased with progressing starvation, leading to strain-specific cell disintegration efficiencies of 35%-100% during the fermentation process. Nitrogen limitation treatment resulted in a 65% increase of biogas yields for C. reinhardtii biomass (max. 698±23mL biogas g(-1) VS) when compared to replete conditions. For P. kessleri and S. obliquus, yields increased by 94% and 106% (max. 706±39mL and 586±36mL biogas g(-1) VS, respectively). From these results we conclude that this novel one-stage cultivation strategy with inherent nitrogen limitation can be used as a pretreatment for microalgal biomass generation, in order to produce accessible substrates with optimized C/N ratios for the subsequent anaerobic fermentation process, thus increasing methane production and avoiding the risk of ammonia inhibition effects within the fermenter. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Efficacy of different methanolic plant extracts on anti-methanogenesis, rumen fermentation and gas production kinetics in vitro

    PubMed Central

    Sirohi, S.K.; Goel, N.; Pandey, P.

    2012-01-01

    The present study was carried out to evaluate the effect of methanolic extracts of three plants, mehandi (Lawsonia inermis), jaiphal (Myristica fragrans) and green chili (Capsicum annuum) on methanogenesis, rumen fermentation and fermentation kinetic parameters by in vitro gas production techniques. Single dose of each plant extract (1 ml / 30 ml buffered rumen fluid) and two sorghum fodder containing diets (high and low fiber diets) were used for evaluating the effect on methanogenesis and rumen fermentation pattern, while sequential incubations (0, 1, 2, 3, 6 9, 12, 24, 36, 48, 60, 72 and 96 h) were carried out for gas production kinetics. Results showed that methane production was reduced, ammonia nitrogen was increased significantly, while no significant effect was found on pH and protozoal population following addition of different plant extracts in both diets except mehandi. Green chili significantly reduced digestibility of dry matter, total fatty acid and acetate concentration at incubation with sorghum based high and low fiber diets. Among all treatments, green chili increased potential gas production, while jaiphal decreased the gas production rate constant significantly. The present results demonstrate that methanolic extracts of different plants are promising rumen modifying agents. They have the potential to modulate the methane production, potential gas production, gas production rate constant, dry matter digestibility and microbial biomass synthesis. PMID:26623296

  13. Efficacy of different methanolic plant extracts on anti-methanogenesis, rumen fermentation and gas production kinetics in vitro.

    PubMed

    Sirohi, S K; Goel, N; Pandey, P

    2012-01-01

    The present study was carried out to evaluate the effect of methanolic extracts of three plants, mehandi (Lawsonia inermis), jaiphal (Myristica fragrans) and green chili (Capsicum annuum) on methanogenesis, rumen fermentation and fermentation kinetic parameters by in vitro gas production techniques. Single dose of each plant extract (1 ml / 30 ml buffered rumen fluid) and two sorghum fodder containing diets (high and low fiber diets) were used for evaluating the effect on methanogenesis and rumen fermentation pattern, while sequential incubations (0, 1, 2, 3, 6 9, 12, 24, 36, 48, 60, 72 and 96 h) were carried out for gas production kinetics. Results showed that methane production was reduced, ammonia nitrogen was increased significantly, while no significant effect was found on pH and protozoal population following addition of different plant extracts in both diets except mehandi. Green chili significantly reduced digestibility of dry matter, total fatty acid and acetate concentration at incubation with sorghum based high and low fiber diets. Among all treatments, green chili increased potential gas production, while jaiphal decreased the gas production rate constant significantly. The present results demonstrate that methanolic extracts of different plants are promising rumen modifying agents. They have the potential to modulate the methane production, potential gas production, gas production rate constant, dry matter digestibility and microbial biomass synthesis.

  14. Pathways and Bioenergetics of Anaerobic Carbon Monoxide Fermentation.

    PubMed

    Diender, Martijn; Stams, Alfons J M; Sousa, Diana Z

    2015-01-01

    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.

  15. Pathways and Bioenergetics of Anaerobic Carbon Monoxide Fermentation

    PubMed Central

    Diender, Martijn; Stams, Alfons J. M.; Sousa, Diana Z.

    2015-01-01

    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved. PMID:26635746

  16. Anaerobic oxidation of methane (AOM) in marine sediments from the Skagerrak (Denmark): II. Reaction-transport modeling

    NASA Astrophysics Data System (ADS)

    Dale, A. W.; Regnier, P.; Knab, N. J.; Jørgensen, B. B.; Van Cappellen, P.

    2008-06-01

    A steady-state reaction-transport model is applied to sediments retrieved by gravity core from two stations (S10 and S13) in the Skagerrak to determine the main kinetic and thermodynamic controls on anaerobic oxidation of methane (AOM). The model considers an extended biomass-implicit reaction network for organic carbon degradation, which includes extracellular hydrolysis of macromolecular organic matter, fermentation, sulfate reduction, methanogenesis, AOM, acetogenesis and acetotrophy. Catabolic reaction rates are determined using a modified Monod rate expression that explicitly accounts for limitation by the in situ catabolic energy yields. The fraction of total sulfate reduction due to AOM in the sulfate-methane transition zone (SMTZ) at each site is calculated. The model provides an explanation for the methane tailing phenomenon which is observed here and in other marine sediments, whereby methane diffuses up from the SMTZ to the top of the core without being consumed. The tailing is due to bioenergetic limitation of AOM in the sulfate reduction zone, because the methane concentration is too low to engender favorable thermodynamic drive. AOM is also bioenergetically inhibited below the SMTZ at both sites because of high hydrogen concentrations (∼3-6 nM). The model results imply there is no straightforward relationship between pore water concentrations and the minimum catabolic energy needed to support life because of the highly coupled nature of the reaction network. Best model fits are obtained with a minimum energy for AOM of ∼11 kJ mol-1, which is within the range reported in the literature for anaerobic processes.

  17. Effects of dietary addition of cellulase and a Saccharomyces cerevisiae fermentation product on nutrient digestibility, rumen fermentation and enteric methane emissions in growing goats.

    PubMed

    Lu, Qi; Wu, Jian; Wang, Min; Zhou, Chuanshe; Han, Xuefeng; Odongo, Edwin Nicholas; Tan, Zhiliang; Tang, Shaoxun

    2016-01-01

    This study was designed to assess the effectiveness of dietary cellulase (243 U/g, derived from Neocallimastix patriciarum) and a Saccharomyces cerevisiae fermentation product (yeast product) on ruminal fermentation characteristics, enteric methane (CH4) emissions and methanogenic community in growing goats. The experiment was conducted in a 5 × 5 Latin square design using five Xiangdong black wether goats. The treatments included a Control and two levels of cellulase (0.8 g and 1.6 g/kg dry matter intake (DMI), i.e. 194 U/kg and 389 U/kg DMI, respectively) crossed over with two levels (6 g or 12 g/kg DMI) of the yeast product. There were no significant differences regarding feed intake, apparent digestibility of organic matter, neutral detergent fibre and acid detergent fibre among all the treatments. In comparison with the Control, the ruminal ammonia N concentration was decreased (p = 0.001) by cellulase and yeast product addition. The activities of carboxymethylcellulase and xylanase were decreased after cellulase addition. Moreover, dietary cellulase and yeast product addition led to a significant reduction (p < 0.05) of enteric CH4 emissions although the diversity and copy numbers of methanogens among treatments were not dissimilar. The present results indicate that the combination of cellulase and yeast fermentation product can reduce the production of CH4 energy and mitigate the enteric CH4 emissions to a certain degree.

  18. Effects of wheat dried distillers' grains with solubles and cinnamaldehyde on in vitro fermentation and protein degradation using the Rusitec technique.

    PubMed

    Lia, Yangling; He, Maolong; Li, Chun; Forster, Robert; Beauchemin, Karen Anne; Yang, Wenzhu

    2012-04-01

    This study was conducted to evaluate the effect of wheat dried distillers' grains with solubles (DDGS) and cinnamaldehyde (CIN) on in vitro fermentation and microbial profiles using the rumen simulation technique. The control substrate (10% barley silage, 85% barley grain and 5% supplement, on dry matter basis) and the wheat DDGS substrate (30% wheat DDGS replaced an equal portion of barley grain) were combined with 0 and 300 mg CIN/l of culture fluid. The inclusion of DDGS increased (p < 0.05) the concentration of volatile fatty acids (VFA) and the molar proportion of acetate and propionate. Dry matter disappearance (p = 0.03) and production of bacterial protein (p < 0.01) were greater, whereas the disappearances of crude protein (CP) and neutral detergent fibre were less (p < 0.01) for the DDGS than for the control substrate. With addition of CIN, concentration of total VFA decreased and fermentation pattern changed to greater acetate and less propionate proportions (p < 0.01). The CIN reduced (p < 0.01) methane production and CP degradability. The copy numbers of Fibrobacter, Prevotella and Archaea were not affected by DDGS but were reduced (p < 0.05) by CIN. The results indicate that replacing barley grain by DDGS increased nutrient fermentability and potentially increase protein flows to the intestine. Supplementation of high-grain substrates with CIN reduced methane production and potentially increased the true protein reaching the small intestine; however, overall reduction of feed fermentation may lower the feeding value of a high-grain diet.

  19. A study of the sources and sinks of methane and methyl chloroform using a global three-dimensional Lagrangian tropospheric tracer transport model

    NASA Technical Reports Server (NTRS)

    Taylor, John A.; Brasseur, G. P.; Zimmerman, P. R.; Cicerone, R. J.

    1991-01-01

    Sources and sinks of methane and methyl chloroform are investigated using a global three-dimensional Lagrangian tropospheric tracer transport model with parameterized hydroxyl and temperature fields. Using the hydroxyl radical field calibrated to the methyl chloroform observations, the globally averaged release of methane and its spatial and temporal distribution were investigated. Two source function models of the spatial and temporal distribution of the flux of methane to the atmosphere were developed. The first model was based on the assumption that methane is emitted as a proportion of net primary productivity (NPP). The second model identified source regions for methane from rice paddies, wetlands, enteric fermentation, termites, and biomass burning based on high-resolution land use data. The most significant difference between the two models were predictions of methane fluxes over China and South East Asia, the location of most of the world's rice paddies, indicating that either the assumption that a uniform fraction of NPP is converted to methane is not valid for rice paddies, or that NPP is underestimated for rice paddies, or that present methane emission estimates from rice paddies are too high.

  20. Revised methane emissions factors and spatially distributed annual carbon fluxes for global livestock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Julie; Asrar, Ghassem R.; West, Tristram O.

    Background: Livestock play an important role in carbon cycling through consumption of biomass and emissions of methane. Recent research suggests that existing bottom-up inventories of livestock methane emissions in the US, such as those made using 2006 IPCC Tier 1 livestock emissions factors, are too low. This may be due to outdated information used to develop these emissions factors. In this study, we update information for cattle and swine by region, based on reported recent changes in animal body mass, feed quality and quantity, milk productivity, and management of animals and manure. We then use this updated information to calculatemore » new livestock methane emissions factors for enteric fermentation in cattle, and for manure management in cattle and swine.« less

  1. Long-term effect of the antibiotic cefalexin on methane production during waste activated sludge anaerobic digestion.

    PubMed

    Lu, Xueqin; Zhen, Guangyin; Liu, Yuan; Hojo, Toshimasa; Estrada, Adriana Ledezma; Li, Yu-You

    2014-10-01

    Long-term experiments herein were conducted to investigate the effect of cefalexin (CLX) on methane production during waste activated sludge (WAS) anaerobic digestion. CLX exhibited a considerable inhibition in methane production during the initial 25 days while the negative effect attenuated subsequently and methane production recovered depending on CLX doses used (600 and 1000 mg/L). The highest methane yield reached 450 mL at 1000 mg-CLX/L after 157 days of digestion, 63.8% higher than CLX-free one. Stimulated excretion of extracellular polymeric substances (EPS) by CLX served as microbial protecting layers, creating a suitable environment for microbes' growth and fermentation. Further examination via ultraviolet visible (UV-Vis) spectra also verified the elevated slime EPS, LB-EPS and TB-EPS indicated by UV-254 in the presence of CLX. Unlike the commonly accepted adverse effect, this study demonstrated the beneficial role of CLX in methane production, providing new insights into its true environmental impacts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Isolation, characterization and strain selection of a Paenibacillus species for use as a probiotic to aid in ruminal methane mitigation, nitrate/nitrite detoxification and food safety.

    PubMed

    Latham, Elizabeth A; Pinchak, William E; Trachsel, Julian; Allen, Heather K; Callaway, Todd R; Nisbet, David J; Anderson, Robin C

    2018-04-30

    The effects of dietary nitrate and Paenibacillus 79R4 (79R4), a denitrifying bacterium, when co-administered as a probiotic, on methane emissions, nitrate and nitrite-metabolizing capacity and fermentation characteristics were studied in vitro. Mixed populations of rumen microbes inoculated with 79R4 metabolized all levels of nitrite studied after 24 h in vitro incubation. Results from in vitro simulations resulted in up to 2 log 10 colony forming unit reductions in E. coli O157:H7 and Campylobacter jejuni when these were co-cultured with 79R4. Nitrogen gas was the predominant final product of nitrite reduction by 79R4. When tested with nitrate-treated incubations of rumen microbes, 79R4 inoculation (provided to achieve 10 6  cells/mL rumen fluid volume) complemented the ruminal methane-decreasing potential of nitrate (P < 0.05) while concurrently increasing fermentation efficiency and enhancing ruminal nitrate and nitrite-metabolizing activity (P < 0.05) compared to untreated and nitrate only-treated incubations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Renewable energy: energy from agricultural products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-06-01

    This study discusses major issues concerning fuels derived from agricultural products. Agricultural products, particularly sugarcane and corn, are currently meeting major energy needs in Florida. Recent figures indicate that about 10% of the gasoline sold in Florida is ethanol enriched. This gasohol contains a 10% mix of ethanol, which is generally produced from corn or sugarcane molasses. Sugarcane residues (bagasse) also supply most of the fuel to power Florida's large sugar processing industry. These products have the potential to play an expanded role in Florida's energy future. Principle areas of interest are: Growing crops such as napier grass or harvestingmore » water hyacinths to produce methane that can be substituted for natural gas; expanded use of sugar, starch, and industrial and agricultural wastes as raw materials for ethanol production; improved efficiency in conversion processes such as anaerobic digestion and fermentation. The Institute of Food and Agricultural Sciences at the University of Florida plays a leading national role in energy crops research, while Walt Disney World is using a demonstration project to convert water hyacinths into methane. Increased use of fuels produced from agricultural products depends largely on their costs compared to other fuels. Ethanol is currently attractive because of federal and state tax incentives. The growth potential of ethanol and methane is enhanced by the ease with which they can be blended with fossil fuels and thereby utilize the current energy distribution system. Neither ethanol nor methane appear able to compete in the free market for mass distribution at present, although studies indicate that genetic engineering and more efficient conversion processes may lower prices to cost effective levels. These fuels will be most cost effective in cases where waste products are utilized and the fuel is used close to the site of production.« less

  4. Renewable energy: energy from agricultural products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-06-01

    This report discusses the major issues concerning fuels derived from agricultural products. Agricultural products, particularly sugarcane and corn, are currently meeting major energy needs in Florida. Recent figures indicate that about 10 percent of the gasoline sold in Florida is ethanol enriched. This gasohol contains a 10 percent mix of ethanol, which is generally produced from corn or sugarcane molasses. Sugarcane residues (bagasse) also supply most of the fuel to power Florida's large sugar processing industry. These products have the potential to play an expanded role in Florida's energy future. Principle areas of interest are: growing crops such as napiermore » grass or harvesting water hyacinths to produce methane that can be substituted for natural gas; expanded use of sugar, starch, and industrial and agricultural wastes as raw materials for ethanol production; and improved efficiency in conversion processes such as anaerobic digestion and fermentation. The Institute of Food and Agricultural Sciences at the University of Florida plays a leading national role in energy crops research, while Walt Disney World is using a demonstration project to convert water hyacinths into methane. Increased use of fuels produced from agricultural products depends largely on their costs compared to other fuels. Ethanol is currently attractive because of federal and state tax incentives. The growth potential of ethanol and methane is enhanced by the ease with which they can be blended with fossil fuels and thereby utilize the current energy distribution system. Neither ethanol nor methane appear able to compete in the free market for mass distribution at present, although studies indicate that genetic engineering and more efficient conversion processes may lower prices to cost effective levels. These fuels will be most cost effective in cases where waste products are utilized and the fuel is used close to the site of production.« less

  5. Optimization of solid state anaerobic digestion of the OFMSW by digestate recirculation: A new approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michele, Pognani, E-mail: michele.pognani@unimi.it; Giuliana, D’Imporzano, E-mail: giuliana.dimporzano@unimi.it; Gruppo Ricicla - DiSAA, Università degli Studi di Milano, Biomass and Bioenergy Lab., Parco Tecnologico Padano, Via Einstein, Loc. C.na Codazza, 26900 Lodi

    2015-01-15

    Highlights: • Solid State Anaerobic Digestion (SSAD) of OFMSW can be optimized by irrigation with digestate. • Digestate spreading allows keeping optimal process parameters and high hydrolysis rate. • The 18.4% of CH{sub 4} was produced in the reactor, leaving the 49.7% in the percolate. • Successive CSTR feed with percolate shows a biogas enriched in methane (more than 80%). • The proposed process allow producing the 68% of OFMSW potential CH{sub 4}, getting high quality organic amendment. - Abstract: Dry anaerobic digestion (AD) of OFMSW was optimized in order to produce biogas avoiding the use of solid inoculum. Doingmore » so the dry AD was performed irrigating the solid waste with liquid digestate (flow rate of 1:1.18–1:0.9 w/w waste/digestate; 21 d of hydraulic retention time – HRT) in order to remove fermentation products inhibiting AD process. Results indicated that a high hydrolysis rate of organic matter (OM) and partial biogas production were obtained directly during the dry AD. Hydrolysate OM was removed from digester by the percolate flow and it was subsequently used to feed a liquid anaerobic digester. During dry AD a total loss of 36.9% of total solids was recorded. Methane balance indicated that 18.4% of potential methane can be produced during dry AD and 49.7% by the percolate. Nevertheless results obtained for liquid AD digestion indicated that only 20.4% and 25.7% of potential producible methane was generated by adopting 15 and 20 days of HRT, probably due to the AD inhibition due to high presence of toxic ammonia forms in the liquid medium.« less

  6. Comparative Analysis of Performance and Microbial Characteristics Between High-Solid and Low-Solid Anaerobic Digestion of Sewage Sludge Under Mesophilic Conditions.

    PubMed

    Lu, Qin; Yi, Jing; Yang, Dianhai

    2016-01-01

    High-solid anaerobic digestion of sewage sludge achieves highly efficient volatile solid reduction, and production of volatile fatty acid (VFA) and methane compared with conventional low-solid anaerobic digestion. In this study, the potential mechanisms of the better performance in high-solid anaerobic digestion of sewage sludge were investigated by using 454 high-throughput pyrosequencing and real-time PCR to analyze the microbial characteristics in sewage sludge fermentation reactors. The results obtained by 454 high-throughput pyrosequencing revealed that the phyla Chloroflexi, Bacteroidetes, and Firmicutes were the dominant functional microorganisms in high-solid and low-solid anaerobic systems. Meanwhile, the real-time PCR assays showed that high-solid anaerobic digestion significantly increased the number of total bacteria, which enhanced the hydrolysis and acidification of sewage sludge. Further study indicated that the number of total archaea (dominated by Methanosarcina) in a high-solid anaerobic fermentation reactor was also higher than that in a low-solid reactor, resulting in higher VFA consumption and methane production. Hence, the increased key bacteria and methanogenic archaea involved in sewage sludge hydrolysis, acidification, and methanogenesis resulted in the better performance of high-solid anaerobic sewage sludge fermentation.

  7. Anaerobic co-digestion of Tunisian green macroalgae Ulva rigida with sugar industry wastewater for biogas and methane production enhancement.

    PubMed

    Karray, Raida; Karray, Fatma; Loukil, Slim; Mhiri, Najla; Sayadi, Sami

    2017-03-01

    Ulva rigida is a green macroalgae, abundantly available in the Mediterranean which offers a promising source for the production of valuable biomaterials, including methane. In this study, anaerobic digestion assays in a batch mode was performed to investigate the effects of various inocula as a mixture of fresh algae, bacteria, fungi and sediment collected from the coast of Sfax, on biogas production from Ulva rigida. The results revealed that the best inoculum to produce biogas and feed an anaerobic reactor is obtained through mixing decomposed macroalgae with anaerobic sludge and water, yielding into 408mL of biogas. The process was then investigated in a sequencing batch reactor (SBR) which led to an overall biogas production of 375mL with 40% of methane. Further co-digestion studies were performed in an anaerobic up-flow bioreactor using sugar wastewater as a co-substrate. A high biogas production yield of 114mL g -1 VS added was obtained with 75% of methane. The co-digestion proposed in this work allowed the recovery of natural methane, providing a promising alternative to conventional anaerobic microbial fermentation using Tunisian green macroalgae. Finally, in order to identify the microbial diversity present in the reactor during anaerobic digestion of Ulva rigida, the prokaryotic diversity was investigated in this bioreactor by the denaturing gradient gel electrophoresis (DGGE) method targeting the 16S rRNA gene. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Supplementation of Flemingia macrophylla and cassava foliage as a rumen enhancer on fermentation efficiency and estimated methane production in dairy steers.

    PubMed

    Phesatcha, Burarat; Wanapat, Metha; Phesatcha, Kampanat; Ampapon, Thiwakorn; Kang, Sungchhang

    2016-10-01

    Four rumen-fistulated dairy steers, 3 years old with 180 ± 15 kg body weight (BW), were randomly assigned according to a 4 × 4 Latin square design to investigate on the effect of Flemingia macrophylla hay meal (FMH) and cassava hay meal (CH) supplementation on rumen fermentation efficiency and estimated methane production. The treatments were as follows: T1 = non-supplement, T2 = CH supplementation at 150 g/head/day, T3 = FMH supplementation at 150 g/head/day, and T4 = CH + FMH supplementation at 75 and 75 g/head/day. All steers were fed rice straw ad libitum and concentrate was offered at 0.5 % of BW. Results revealed that supplementation of CH and/or FMH did not affect on feed intake (P > 0.05) while digestibility of crude protein and neutral detergent fiber were increased especially in steers receiving FMH and CH+FMH (P < 0.05). Ruminal pH, temperature, and blood urea nitrogen were similar among treatments while ammonia nitrogen was increased in all supplemented groups (P < 0.05). Furthermore, propionic acid (C3) was increased while acetic acid (C2), C2:C3 ratio, and estimated methane production were decreased by dietary treatments. Protozoa and fungi population were not affected by dietary supplement while viable bacteria count increased in steers receiving FMH. Supplementation of FMH and/or FMH+CH increased microbial crude protein and efficiency of microbial nitrogen supply. This study concluded FMH (150 g/head/day) and/or CH+FMH (75 and 75 g/head/day) supplementation could be used as a rumen enhancer for increasing nutrient digestibility, rumen fermentation efficiency, and microbial protein synthesis while decreasing estimated methane production without adverse effect on voluntary feed intake of dairy steers fed rice straw.

  9. Validation and Recommendation of Methods to Measure Biogas Production Potential of Animal Manure

    PubMed Central

    Pham, C. H.; Triolo, J. M.; Cu, T. T. T.; Pedersen, L.; Sommer, S. G.

    2013-01-01

    In developing countries, biogas energy production is seen as a technology that can provide clean energy in poor regions and reduce pollution caused by animal manure. Laboratories in these countries have little access to advanced gas measuring equipment, which may limit research aimed at improving local adapted biogas production. They may also be unable to produce valid estimates of an international standard that can be used for articles published in international peer-reviewed science journals. This study tested and validated methods for measuring total biogas and methane (CH4) production using batch fermentation and for characterizing the biomass. The biochemical methane potential (BMP) (CH4 NL kg−1 VS) of pig manure, cow manure and cellulose determined with the Moller and VDI methods was not significantly different in this test (p>0.05). The biodegradability using a ratio of BMP and theoretical BMP (TBMP) was slightly higher using the Hansen method, but differences were not significant. Degradation rate assessed by methane formation rate showed wide variation within the batch method tested. The first-order kinetics constant k for the cumulative methane production curve was highest when two animal manures were fermented using the VDI 4630 method, indicating that this method was able to reach steady conditions in a shorter time, reducing fermentation duration. In precision tests, the repeatability of the relative standard deviation (RSDr) for all batch methods was very low (4.8 to 8.1%), while the reproducibility of the relative standard deviation (RSDR) varied widely, from 7.3 to 19.8%. In determination of biomethane concentration, the values obtained using the liquid replacement method (LRM) were comparable to those obtained using gas chromatography (GC). This indicates that the LRM method could be used to determine biomethane concentration in biogas in laboratories with limited access to GC. PMID:25049861

  10. Can a fermentation gas mainly produced by rumen Isotrichidae ciliates be a potential source of biohydrogen and a fuel for a chemical fuel cell?

    PubMed

    Piela, Piotr; Michałowski, Tadeusz; Miltko, Renata; Szewczyk, Krzysztof; Sikora, Radosław; Grzesiuk, Elzbieta; Sikora, Anna

    2010-07-01

    Bacteria, fungi and protozoa inhabiting the rumen, the largest chamber of the ruminants' stomach, release large quantities of hydrogen during the fermentation of carbohydrates. The hydrogen is used by coexisting methanogens to produce methane in energy-yielding processes. This work shows, for the first time, a fundamental possibility of using a hydrogen-rich fermentation gas produced by selected rumen ciliates to feed a low-temperature hydrogen fuel cell. A biohydrogen fuel cell (BHFC) was constructed consisting of (i) a bioreactor, in which a hydrogen-rich gas was produced from glucose by rumen ciliates, mainly of the Isotrichidae family, deprived of intra- and extracellular bacteria, methanogens, and fungi, and (ii) a chemical fuel cell of the polymer-electrolyte type (PEFC). The fuel cell was used as a tester of the technical applicability of the fermentation gas produced by the rumen ciliates for power generation. The average estimated hydrogen yield was ca. 1.15 mol H2 per mol of fermented glucose. The BHFC performance was equal to the performance of the PEFC running on pure hydrogen. No fuel cell poisoning effects were detected. A maximum power density of 1.66 kW/m2 (PEFC geometric area) was obtained at room temperature. The maximum volumetric power density was 128 W/m3 but the coulombic efficiency was only ca. 3.8%. The configuration of the bioreactor limited the continuous operation time of this BHFC to ca. 14 hours.

  11. Development of a novel three-stage fermentation system converting food waste to hydrogen and methane.

    PubMed

    Kim, Dong-Hoon; Kim, Mi-Sun

    2013-01-01

    In this study, a novel three-stage (lactate-+photo-H(2)+CH(4)) fermentation system was developed, which converts food waste to H(2) and CH(4), with an emphasis on achieving high H(2) yield. The system begins by first fermenting food waste to lactate, rather than acetate and butyrate, using indigenous lactic acid bacteria. Lactate fermentation effluent was then centrifuged, and the supernatant was used for H(2) production by photo-fermentation, while the residue was used for CH(4) production by anaerobic digestion. Overall, via the three-stage fermentation system, 41% and 37% of the energy content in the food waste was converted to H(2) and CH(4), respectively, corresponding to the electrical energy yield of 1146 MJ/ton-food waste, which is 1.4 times higher value than that of previous two-stage dark (H(2)+CH(4)) fermentation system. The H(2) yield based on hexose input was 8.35 mol H(2)/mol hexose(added), the highest value ever reported from actual organic waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, J.A.; Brasseur, G.P.; Zimmerman, P.R.

    Using the hydroxyl radical field calibrated to the methyl chloroform observations, the globally averaged release of methane and its spatial and temporal distribution were investigated. Two source function models of the spatial and temporal distribution of the flux of methane to the atmosphere were developed. The first model was based on the assumption that methane is emitted as a proportion of net primary productivity (NPP). With the average hydroxyl radical concentration fixed, the methane source term was computed as {approximately}623 Tg CH{sub 4}, giving an atmospheric lifetime for methane {approximately}8.3 years. The second model identified source regions for methane frommore » rice paddies, wetlands, enteric fermentation, termites, and biomass burning based on high-resolution land use data. This methane source distribution resulted in an estimate of the global total methane source of {approximately}611 Tg CH{sub 4}, giving an atmospheric lifetime for methane {approximately}8.5 years. The most significant difference between the two models were predictions of methane fluxes over China and South East Asia, the location of most of the world's rice paddies. Using a recent measurement of the reaction rate of hydroxyl radical and methane leads to estimates of the global total methane source for SF1 of {approximately}524 Tg CH{sub 4} giving an atmospheric lifetime of {approximately}10.0 years and for SF2{approximately}514 Tg CH{sub 4} yielding a lifetime of {approximately}10.2 years.« less

  13. Utilization of solid and liquid waste generated during ethanol fermentation process for production of gaseous fuel through anaerobic digestion--a zero waste approach.

    PubMed

    Narra, Madhuri; Balasubramanian, Velmurugan

    2015-03-01

    Preliminary investigations were performed in the laboratory using batch reactors at 10% solid concentration for the assessment of the biogas production at thermophilic and mesophilic temperatures using solid residues generated during ethanol fermentation process. One kg of solid residues (left after enzyme extraction and enzymatic hydrolysis) from thermophilic reactors (TR1 and TR2) produced around 131 and 84L of biogas, respectively, whereas biogas production from mesophilic reactors (MR1 and MR2) was 86 and 62L, respectively. After 20 and 35days of retention time, the TS and VS reductions from TR1, TR2 and MR1, MR2 were found to be 39.2% and 35.0%, 67.3% and 61.0%, 21.0% and 18.0%, 34.7% and 27.8%, respectively. Whereas the liquid waste was treated using four laboratory anaerobic hybrid reactors (AHRs) with two different natural and synthetic packing media at 15-3days HRTs. AHRs packed with natural media showed better COD removal efficiency and methane yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Stable isotope and microbial analyses of methane-producing process in a geothermal aquifer associated with the subsurface of the accretionary prism, Japan

    NASA Astrophysics Data System (ADS)

    Hattori, S.; Kimura, H.; Nashimoto, H.; Koba, K.; Yamada, K.; Shimizu, M.; Watanabe, H.; Yoh, M.; Yoshida, N.

    2009-04-01

    The sedimentary layer in the southern part of Japan is accretionary prism which includes enriched organic materials derived from sediment on oceanic plate. There is geothermal aquifer in which a large amount of methane (CH4) dissolved. Since CH4 is important as a greenhouse gas and an important natural gas fuel, revealing CH4-producing process in subsurface environment is required. To understand the process of the CH4 production, we collected the groundwater from the aquifer of 1,189-1,489 m depth, and analyzed by using stable isotope and microbial analyses. 16S rRNA gene analysis showed a dominancy of hydrogenotrophic methanogens in domain Archaea and a dominancy of anaerobic heterotrophes to be known to produce H2 and CO2 by fermentation process in domain Bacteria. The anaerobic enrichment cultures with the groundwater amended with organic substrates showed that CH4 was produced by co-culture between the fermenters and hydrogenotrophic methanogens. On the other hand, conventional isotopic estimations for the origin of CH4 using δ13C-CH4 and δD-CH4 as well as δ13C-CH4and molecular ratio of C1/(C2+C3) indicated that CH4 was derived from thermogenic pathway. The values of δ13C-CO2, however, had higher values and carbon isotope fractionation factors between CH4 and CO2(α(CO2-CH4)) were approximately 1.05 to 1.06 indicating the possibility of biogenic CH4 production. Therefore, the origin of CH4 production was estimated as mixing both thermogenic and CO2 reduction from isotopic data. Furthermore, we incubated these enriched co-cultures and measure stable carbon isotope ratios of CH4 and CO2 and stable hydrogen isotope ratios of H2O and CH4. We revealed that concentration of H2 were kept lower by these co-cultures between fermenters and hydrogenotrophic methanogens and α(CO2-CH4) values were higher than that of cultures with the ground water amended with high concentration of H2+ CO2. Hydrogen isotope fractionation factor between H2O and CH4 by these co-culture increased (αH values decreased) with increasing H2 concentration.

  15. Contribution of Anthropogenic and Natural Emissions to Global CH4 Balances by Utilizing δ13C-CH4 Observations in CarbonTracker Data Assimilation System (CTDAS)

    NASA Astrophysics Data System (ADS)

    Kangasaho, V. E.; Tsuruta, A.; Aalto, T.; Backman, L. B.; Houweling, S.; Krol, M. C.; Peters, W.; van der Laan-Luijkx, I. T.; Lienert, S.; Joos, F.; Dlugokencky, E. J.; Michael, S.; White, J. W. C.

    2017-12-01

    The atmospheric burden of CH4 has more than doubled since preindustrial time. Evaluating the contribution from anthropogenic and natural emissions to the global methane budget is of great importance to better understand the significance of different sources at the global scale, and their contribution to changes in growth rate of atmospheric CH4 before and after 2006. In addition, observations of δ13C-CH4 suggest an increase in natural sources after 2006, which matches the observed increase and variation of CH4 abudance. Methane emission sources can be identified using δ13C-CH4, because different sources produce methane with process-specific isotopic signatures. This study focuses on inversion model based estimates of global anthropogenic and natural methane emission rates to evaluate the existing methane emission estimates with a new δ13C-CH4 inversion system. In situ measurements of atmospheric methane and δ13C-CH4 isotopic signature, provided by the NOAA Global Monitoring Division and the Institute of Arctic and Alpine Research, will be assimilated into the CTDAS-13C-CH4. The system uses the TM5 atmospheric transport model as an observation operator, constrained by ECMWF ERA Interim meteorological fields, and off-line TM5 chemistry fields to account for the atmospheric methane sink. LPX-Bern DYPTOP ecosystem model is used for prior natural methane emissions from wetlands, peatlands and mineral soils, GFED v4 for prior fire emissions and EDGAR v4.2 FT2010 inventory for prior anthropogenic emissions. The EDGAR antropogenic emissions are re-divided into enteric fermentation and manure management, landfills and waste water, rice, coal, oil and gas, and residential emissions, and the trend of total emissions is scaled to match optimized anthropogenic emissions from CTE-CH4. In addition to these categories, emissions from termites and oceans are included. Process specific δ13C-CH4 isotopic signatures are assigned to each emission source to estimate 13CH4 fraction in CH4 emissions. Among the priors, anthropogenic and natural emissions are optimized and others are directly imposed from the prior. A detailed emission estimates of antropogenic and natural CH4 emissions will be constructed in order to provide a more comprehensive understanding of methane emission source divisions.

  16. Effect of different pH-values on process parameters in two-phase anaerobic digestion of high-solid substrates.

    PubMed

    Lindner, Jonas; Zielonka, Simon; Oechsner, Hans; Lemmer, Andreas

    2015-01-01

    In many publications, primary fermentation is described as a limiting step in the anaerobic digestion of fibre-rich biomass [Eastman JA, Ferguson JF. Solubilization of particulacte carbon during the anaerobic digeston. J WPCF. 1981;53:352-366; Noike T, Endo G, Chang J, Yaguchi J, Matsumoto J. Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion. Biotechnol Bioeng. 1985;27:1482-1489; Arntz HJ, Stoppok E, Buchholz K. Anaerobic hydroysis of beet pulp-discontiniuous experiments. Biotechnol Lett. 1985;7:113-118]. The microorganisms of the primary fermentation process differ widely from the methanogenic microorganisms [Pohland FG, Ghosh S. Developments in anaerobic stabilization of organic wastes-the two-phase concept. Environ Lett. 1971;1:255-266]. To optimize the biogas process, a separation in two phases is suggested by many authors [Fox P, Pohland GK. Anaerobic treatment applications and fundamentals: substrate specificity during phase separation. Water Environ Res. 1994;66:716-724; Cohen A, Zoetemeyer RJ, van Deursen A, van Andel JG. Anaerobic digestion of glucose with separated acid production and methane formation. Water Res. 1979;13:571-580]. To carry out the examination, a two-phase laboratory-scale biogas plant was established, with a physical phase separation. In previous studies, the regulation of the pH-value during the acid formation was usually carried out by the addition of sodium hydroxide [Cohen A, Zoetemeyer RJ, van Deursen A, van Andel JG. Anaerobic digestion of glucose with separated acid production and methane formation. Water Res. 1979;13:571-580; Ueno Y, Tatara M, Fukui H, Makiuchi T, Goto M, Sode K. Production of hydrogen and methane from organic solid wastes by phase separation of anaerobic process. Bioresour Technol. 2007;98:1861-1865; Zoetemeyer RJ, van den Heuvel JC, Cohen A. pH influence on acidogenic dissimilation of glucose in an anaerobic digestor. Water Res. 1982;16:303-311]. A new technology without the use of additives was developed in which the pH-regulation is executed by the pH-dependent recycling of effluent from the anaerobic filter into the acidification reactor. During this investigation, the influence of the different target pH-values (5.5, 6.0, 7.0 and 7.5) on the degradation rate, the gas composition and the methane yield of the substrate maize silage was determined. With an increase in the target pH-value from 5.5 to 7.5, the acetic acid equivalent decreased by 88.1% and the chemical oxygen demand-concentration by 18.3% in the hydrolysate. In response, there was a 58% increase in the specific methane yield of the overall system. Contrary to earlier studies, a marked increase in biogas production and in substrate degradation was determined with increasing pH-values. However, these led to a successive approximation of a single-phase process. Based on these results, pH-values above 7.0 seem to be favourable for the digestion of fibre-rich substrates.

  17. Anaerobic digestion of stillage to produce bioenergy in the sugarcane-to-ethanol industry.

    PubMed

    Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro

    2014-01-01

    Stillage is the main wastewater from ethanol production, containing a high chemical oxygen demand in addition to acidic and corrosive characteristics. Though stillage may be used as a soil fertilizer, its land application may be considered problematic due its high polluting potential. Anaerobic digestion represents an effective alternative treatment to reduce the pollution load of stillage. In addition, the methane gas produced within the process may be converted to energy, which can be directly applied to the treatment plant. The objective of this paper was to investigate the energetic potential of anaerobic digestion applied to stillage in the sugarcane ethanol industry. An overall analysis of the results indicates energy recovery capacity (ERC) values for methane ranging from 3.5% to 10%, respectively, for sugarcane juice and molasses. The processes employed to obtain the fermentable broth, as well as the distillation step, represent the main limiting factors to the energetic potential feasibility. Considering financial aspects the annual savings could reach up to US$ 30 million due to anaerobic digestion of stillage in relatively large-scale distilleries (365,000 m3 of ethanol per year). The best scenarios were verified for the association between anaerobic digestion of stillage and combustion of bagasse. In this case, the fossil fuels consumption in distilleries could be fully ceased, such the ERC of methane could reach values ranging from 140% to 890%.

  18. Secondary fermentation in the runen of a sheep given a diet based on molasses.

    PubMed

    Rowe, J B; Loughnan, M L; Nolan, J V; Leng, R A

    1979-03-01

    1. The extent of conversion of acetate-carbon to carbon dioxide in the rumen of a 40 kg wether consuming 1 kg molasses/d was estimated using isotope-tracer-dilution techniques. 2. There was a high rate of conversion of acetate to CO2 (6.0 g C/d) in the rumen. There were high concentrations in the rumen of Methanosarcina approximately 6 x 10(9)/ml which represents a significant proportion of the rumen bacterial biomass. These organisms are usually found in mud and sludge and are capable of oxidizing acetate. 3. The most likely explanation of these results was that there was an extensive secondary or sludge-type fermentation occurring in the rumen which results in volatile fatty acids being converted to CO2 and methane. In similar studies with sheep given lucerne (Medicago sativa) diets, conversion of acetate-C to CO2 within the rumen was not evident. 4. It is suggested that a major effect of the presence of secondary fermentation processes in the rumen may be to reduce availability of energy nutrients to the animal, and to alter the ratio protein:energy in the absorbed nutrients.

  19. Feeding of tropical trees and shrub foliages as a strategy to reduce ruminal methanogenesis: studies conducted in Cuba.

    PubMed

    Delgado, Denia Caridad; Galindo, Juana; González, Rogelio; González, Niurca; Scull, Idania; Dihigo, Luís; Cairo, Juan; Aldama, Ana Irma; Moreira, Onidia

    2012-06-01

    The aim of this paper was to present the main results obtained in Cuba on the effects of feeding tropical trees and shrubs on rumen methanogenesis in animals fed with low quality fibrous diets. More than 20 tree and shrub foliages were screened for phytochemicals and analyzed for chemical constituents. From these samples, seven promising plants (Samanea saman, Albizia lebbeck, Tithonia diversifolia, Leucaena leucocephala, Trichantera gigantea, Sapindus saponaria, and Morus alba) were evaluated for methane reduction using an in vitro rumen fermentation system. Results indicated that the inclusion levels of 25% of Sapindo, Morus, or Trichantera foliages in the foliages/grass mixtures (grass being Pennisetum purpureum) reduced (P < 0.01) methane production in vitro when compared to Pennisetum alone (17.0, 19.1, and 18.0 versus 26.2 mL CH(4)/g fermented dry matter, respectively). It was demonstrated that S. saman, A. lebbeck, or T. diversifolia accession 23 foliages when mixed at the rate of 30% in Cynodon nlemfuensis grass produced lower methane compared to the grass alone. Inclusion levels of 15% and 25% of a ruminal activator supplement containing 29% of L. leucocehala foliage meal reduced methane by 37% and 42% when compared to the treatment without supplementation. In vivo experiment with sheep showed that inclusion of 27% of L. leucocephala in the diet increased the DM intake but did not show significant difference in methane production compared to control diet without this foliage. The results of these experiments suggest that the feeding of tropical tree and shrub foliages could be an attractive strategy for reduction of ruminal methanogenesis from animals fed with low-quality forage diets and for improving their productivity.

  20. Bioconversion of natural gas to liquid fuel: Opportunities and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Q; Guarnieri, MT; Tao, L

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methanemore » into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. (C) 2014 The Authors. Published by Elsevier Inc.« less

  1. Determination of dominant biogeochemical processes in a contaminated aquifer-wetland system using multivariate statistical analysis

    USGS Publications Warehouse

    Baez-Cazull, S. E.; McGuire, J.T.; Cozzarelli, I.M.; Voytek, M.A.

    2008-01-01

    Determining the processes governing aqueous biogeochemistry in a wetland hydrologically linked to an underlying contaminated aquifer is challenging due to the complex exchange between the systems and their distinct responses to changes in precipitation, recharge, and biological activities. To evaluate temporal and spatial processes in the wetland-aquifer system, water samples were collected using cm-scale multichambered passive diffusion samplers (peepers) to span the wetland-aquifer interface over a period of 3 yr. Samples were analyzed for major cations and anions, methane, and a suite of organic acids resulting in a large dataset of over 8000 points, which was evaluated using multivariate statistics. Principal component analysis (PCA) was chosen with the purpose of exploring the sources of variation in the dataset to expose related variables and provide insight into the biogeochemical processes that control the water chemistry of the system. Factor scores computed from PCA were mapped by date and depth. Patterns observed suggest that (i) fermentation is the process controlling the greatest variability in the dataset and it peaks in May; (ii) iron and sulfate reduction were the dominant terminal electron-accepting processes in the system and were associated with fermentation but had more complex seasonal variability than fermentation; (iii) methanogenesis was also important and associated with bacterial utilization of minerals as a source of electron acceptors (e.g., barite BaSO4); and (iv) seasonal hydrological patterns (wet and dry periods) control the availability of electron acceptors through the reoxidation of reduced iron-sulfur species enhancing iron and sulfate reduction. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  2. Effects of illite supplementation on in vitro and in vivo rumen fermentation, microbial population and methane emission of Hanwoo steers fed high concentrate diets.

    PubMed

    Biswas, Ashraf A; Lee, Sung-Sill; Mamuad, Lovelia L; Kim, Seon-Ho; Choi, Yeon-Jae; Lee, Chanhee; Lee, Kichoon; Bae, Gui-Seck; Lee, Sang-Suk

    2018-01-01

    This study was conducted to evaluate the effects of feeding supplemental illite to Hanwoo steers on methane (CH 4 ) emission and rumen fermentation parameters. An in vitro ruminal fermentation technique was conducted using a commercial concentrate as substrate and illite was added at different concentrations as treatments: 0%, 0.5%, 1.0%, and 2.0% illite. Total volatile fatty acids (VFA) were different (P < 0.05) at 24 h of incubation where the highest total VFA was observed at 1.0% of illite. Conversely, lowest CH 4 production (P < 0.01) was found at 1.0% of illite. In the in vivo experiment, two diets were provided, without illite and with addition of 1% illite. An automated head chamber (GreenFeed) system was used to measure enteric CH 4 production. Cattle received illite supplemented feed increased (P < 0.05) total VFA concentrations in the rumen compared with those fed control. Feeding illite numerically decreased CH 4 production (g/day) and yield (g/kg dry matter intake). Rumen microbial population analysis indicated that the population of total bacteria, protozoa and methanogens were lower (P < 0.05) for illite compared with the control. Accordingly, overall results suggested that feeding a diet supplemented with 1% illite can have positive effects on feed fermentation in the rumen and enteric CH 4 mitigation in beef cattle. © 2017 Japanese Society of Animal Science.

  3. Anaerobic Degradation of Phthalate Isomers by Methanogenic Consortia

    PubMed Central

    Kleerebezem, Robbert; Pol, Look W. Hulshoff; Lettinga, Gatze

    1999-01-01

    Three methanogenic enrichment cultures, grown on ortho-phthalate, iso-phthalate, or terephthalate were obtained from digested sewage sludge or methanogenic granular sludge. Cultures grown on one of the phthalate isomers were not capable of degrading the other phthalate isomers. All three cultures had the ability to degrade benzoate. Maximum specific growth rates (μSmax) and biomass yields (YXtotS) of the mixed cultures were determined by using both the phthalate isomers and benzoate as substrates. Comparable values for these parameters were found for all three cultures. Values for μSmax and YXtotS were higher for growth on benzoate compared to the phthalate isomers. Based on measured and estimated values for the microbial yield of the methanogens in the mixed culture, specific yields for the phthalate and benzoate fermenting organisms were calculated. A kinetic model, involving three microbial species, was developed to predict intermediate acetate and hydrogen accumulation and the final production of methane. Values for the ratio of the concentrations of methanogenic organisms, versus the phthalate isomer and benzoate fermenting organisms, and apparent half-saturation constants (KS) for the methanogens were calculated. By using this combination of measured and estimated parameter values, a reasonable description of intermediate accumulation and methane formation was obtained, with the initial concentration of phthalate fermenting organisms being the only variable. The energetic efficiency for growth of the fermenting organisms on the phthalate isomers was calculated to be significantly smaller than for growth on benzoate. PMID:10049876

  4. [Effect of NaOH-treatment on advanced anaerobic biogasification of Spartina alterniflora].

    PubMed

    Chen, Guang-Yin; Zheng, Zheng; Chang, Zhi-Zhou; Ye, Xiao-Mei

    2011-08-01

    In order to improve the biotransformation rate of Sparnina alterniflora, effect of NaOH-treatment on anaerobic dry-mesophilic digestion of Spartina alterniflora and feasibility of NaOH-treatment as a pretreatment of biogas residues of Spartina alterniflora for advanced anaerobic biogasification were conducted under lab-scale conditions. The results indicated that there was less improvement to biogas yield with NaOH-treatment and the cumulative biogas yield of Spartina alterniflora was 358.94 mL/g TS which was 92.42% to that of control (CK). However, the average methane content was improved slightly with 1.84% improvement. After solid-state pretreatment with 5% NaOH solution for 48 h, the biogas residue of Spartina alterniflora was used for advanced biogasification. This experiment was conducted under 35 degrees C +/- 1 degrees C with initial total solid loading of 8%. The cumulative biogas yield was 209.73 mL/g TS with 70.78% of average methane content, but the biotransformation rate was only 23.29% which was much lower than that of Spartina alterniflora. The fermentation type was propionic acid type fermentation. After two-phase fermentation treatment, cellulose content was decreased significantly while lignin and hemicellulose content were increased. The crystalinity of cellulose of biogas residue decreased after two-phase anaerobic fermentation which was consistent to result of FTIR. The comprehensive analysis of experiment indicated that biogas residue of Spartina alterniflora was still a good material for biogas production and NaOH-treatment was a good pretreatment for biogas production.

  5. A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor

    PubMed Central

    2013-01-01

    Background A solid-state anaerobic digestion method is used to produce biogas from various solid wastes in China but the efficiency of methane production requires constant improvement. The diversity and abundance of relevant microorganisms play important roles in methanogenesis of biomass. The next-generation high-throughput pyrosequencing platform (Roche/454 GS FLX Titanium) provides a powerful tool for the discovery of novel microbes within the biogas-generating microbial communities. Results To improve the power of our metagenomic analysis, we first evaluated five different protocols for extracting total DNA from biogas-producing mesophilic solid-state fermentation materials and then chose two high-quality protocols for a full-scale analysis. The characterization of both sequencing reads and assembled contigs revealed that the most prevalent microbes of the fermentation materials are derived from Clostridiales (Firmicutes), which contribute to degrading both protein and cellulose. Other important bacterial species for decomposing fat and carbohydrate are Bacilli, Gammaproteobacteria, and Bacteroidetes (belonging to Firmicutes, Proteobacteria, and Bacteroidetes, respectively). The dominant bacterial species are from six genera: Clostridium, Aminobacterium, Psychrobacter, Anaerococcus, Syntrophomonas, and Bacteroides. Among them, abundant Psychrobacter species, which produce low temperature-adaptive lipases, and Anaerococcus species, which have weak fermentation capabilities, were identified for the first time in biogas fermentation. Archaea, represented by genera Methanosarcina, Methanosaeta and Methanoculleus of Euryarchaeota, constitute only a small fraction of the entire microbial community. The most abundant archaeal species include Methanosarcina barkeri fusaro, Methanoculleus marisnigri JR1, and Methanosaeta theromphila, and all are involved in both acetotrophic and hydrogenotrophic methanogenesis. Conclusions The identification of new bacterial genera and species involved in biogas production provides insights into novel designs of solid-state fermentation under mesophilic or low-temperature conditions. PMID:23320936

  6. Rumen microbial abundance and fermentation profile during severe subacute ruminal acidosis and its modulation by plant derived alkaloids in vitro.

    PubMed

    Mickdam, Elsayed; Khiaosa-Ard, Ratchaneewan; Metzler-Zebeli, Barbara U; Klevenhusen, Fenja; Chizzola, Remigius; Zebeli, Qendrim

    2016-06-01

    Rumen microbiota have important metabolic functions for the host animal. This study aimed at characterizing changes in rumen microbial abundances and fermentation profiles using a severe subacute ruminal acidosis (SARA) in vitro model, and to evaluate a potential modulatory role of plant derived alkaloids (PDA), containing quaternary benzophenanthridine and protopine alkaloids, of which sanguinarine and chelerythrine were the major bioactive compounds. Induction of severe SARA strongly affected the rumen microbial composition and fermentation variables without suppressing the abundance of total bacteria. Protozoa and fungi were more sensitive to the low ruminal pH condition than bacteria. Induction of severe SARA clearly depressed degradation of fiber (P < 0.001), which came along with a decreased relative abundance of fibrolytic Ruminococcus albus and Fibrobacter succinogenes (P < 0.001). Under severe SARA conditions, the genus Prevotella, Lactobacillus group, Megasphaera elsdenii, and Entodinium spp. (P < 0.001) were more abundant, whereas Ruminobacter amylophilus was less abundant. SARA largely suppressed methane formation (-70%, P < 0.001), although total methanogenic 16S rRNA gene abundance was not affected. According to principal component analysis, Methanobrevibacter spp. correlated to methane concentration. Addition of PDA modulated ruminal fermentation under normal conditions such as enhanced (P < 0.05) concentration of total SCFA, propionate and valerate, and increased (P < 0.05) degradation of crude protein compared with the unsupplemented control diet. Our results indicate strong shifts in the microbial community during severe SARA compared to normal conditions. Supplementation of PDA positively modulates ruminal fermentation under normal ruminal pH conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Methanogenic Hydrocarbon Degradation: Evidence from Field and Laboratory Studies.

    PubMed

    Jiménez, Núria; Richnow, Hans H; Vogt, Carsten; Treude, Tina; Krüger, Martin

    2016-01-01

    Microbial transformation of hydrocarbons to methane is an environmentally relevant process taking place in a wide variety of electron acceptor-depleted habitats, from oil reservoirs and coal deposits to contaminated groundwater and deep sediments. Methanogenic hydrocarbon degradation is considered to be a major process in reservoir degradation and one of the main processes responsible for the formation of heavy oil deposits and oil sands. In the absence of external electron acceptors such as oxygen, nitrate, sulfate or Fe(III), fermentation and methanogenesis become the dominant microbial metabolisms. The major end product under these conditions is methane, and the only electron acceptor necessary to sustain the intermediate steps in this process is CO2, which is itself a net product of the overall reaction. We are summarizing the state of the art and recent advances in methanogenic hydrocarbon degradation research. Both the key microbial groups involved as well as metabolic pathways are described, and we discuss the novel insights into methanogenic hydrocarbon-degrading populations studied in laboratory as well as environmental systems enabled by novel cultivation-based and molecular approaches. Their possible implications on energy resources, bioremediation of contaminated sites, deep-biosphere research, and consequences for atmospheric composition and ultimately climate change are also addressed. © 2016 S. Karger AG, Basel.

  8. Methane generation from cattle residue at a dirt feedlot. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lizdas, D.J.; Coe, W.B.; Turk, M.

    1980-08-01

    In order to investigate the feasibility of producing fuel gas and an energy-intensive refeed product from dirt feedlot residues by anaerobic fermentation, the Department of Energy awarded Hamilton Standard a contract to operate the Hamilton Standard mobile processing unit at the Monfort of Colorado Kuner feedlot. During the test program a stable fermentation was achieved utilizing aged feedlot pen residue after a sufficient adaption period was provided. Methane yields varied considerably as a function of feedstock source; as low as 1.3 cubic feet per pound of volatile solids from the feedlot stockpile, and as high as 3.5 cubic feet frommore » one of the feedlot pens. Average yield from all pens was 2.5 cubic feed of methane per pound of volatile solids processed. The fermentor liquid effluent and dewatered effluent were acceptable to cattle as a feed ingredient and were used to provide one-half the daily supplemental protein for two groups of twenty steers each. Weight gains and feed conversion were nearly the same as for cattle fed the normal ration. Data from the test program were used to evaluate the economics of producing fuel gas at a large dirt feedlot. A preliminary design for a full scale system to produce unscrubbed fuel gas for the Monfort Kuner feedlot was developed, from which capital and operating costs were estimated. The production cost of fuel gas was then established as a function of byproduct credit given to the fermentor residue as a refeed product. With zero credit, gas can be produced at $6.30 per million Btu. When a credit is assigned to the refeed product based on the cost of urea as a protein source, the production cost falls to $2.70 per million Btu. When a credit is assigned to the refeed product based on the cost of cottonseed meal as a protein source, the production cost is -$21, indicating that the system produces a net income from the value of the refeed product.« less

  9. A new method of two-phase anaerobic digestion for fruit and vegetable waste treatment.

    PubMed

    Wu, Yuanyuan; Wang, Cuiping; Liu, Xiaoji; Ma, Hailing; Wu, Jing; Zuo, Jiane; Wang, Kaijun

    2016-07-01

    A novel method of two-phase anaerobic digestion where the acid reactor is operated at low pH 4.0 was proposed and investigated. A completely stirred tank acid reactor and an up-flow anaerobic sludge bed methane reactor were operated to examine the possibility of efficient degradation of lactate and to identify their optimal operating conditions. Lactate with an average concentration of 14.8g/L was the dominant fermentative product and Lactobacillus was the predominant microorganism in the acid reactor. The effluent from the acid reactor was efficiently degraded in the methane reactor and the average methane yield was 261.4ml/gCOD removed. Organisms of Methanosaeta were the predominant methanogen in granular sludge of methane reactor, however, after acclimation hydrogenotrophic methanogens enriched, which benefited for the conversion of lactate to acetate. The two-phase AD system exhibited a low hydraulic retention time of 3.56days and high methane yield of 348.5ml/g VS removed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell.

    PubMed

    Zeppilli, Marco; Villano, Marianna; Aulenta, Federico; Lampis, Silvia; Vallini, Giovanni; Majone, Mauro

    2015-05-01

    A methane-producing microbial electrolysis cell (MEC) was continuously fed at the anode with a synthetic solution of soluble organic compounds simulating the composition of the soluble fraction of a municipal wastewater. The MEC performance was assessed at different anode potentials in terms of chemical oxygen demand (COD) removal efficiency, methane production, and energy efficiency. As a main result, about 72-80% of the removed substrate was converted into current at the anode, and about 84-86% of the current was converted into methane at the cathode. Moreover, even though both COD removed and methane production slightly decreased as the applied anode potential decreased, the energy efficiency (i.e., the energy recovered as methane with respect to the energy input into the system) increased from 54 to 63%. Denaturing gradient gel electrophoresis (DGGE) analyses revealed a high diversity in the anodic bacterial community with the presence of both fermentative (Proteiniphilum acetatigenes and Petrimonas sulphurifila) and aerobic (Rhodococcus qingshengii) microorganisms, whereas only two microorganisms (Methanobrevibacter arboriphilus and Methanosarcina mazei), both assignable to methanogens, were observed in the cathodic community.

  11. Effects of Gelidium amansii extracts on in vitro ruminal fermentation characteristics, methanogenesis, and microbial populations

    PubMed Central

    2018-01-01

    Objective Gelidium amansii (Lamouroux) is a red alga belonging to the family Gelidaceae and is commonly found in the shallow coasts of many East Asian countries, including Korea, China, and Japan. G. amansii has traditionally been utilized as an edible alga, and has various biological activities. The objective of this study was to determine whether dietary supplementation of G. amansii could be useful for improving ruminal fermentation. Methods As assessed by in vitro fermentation parameters such as pH, total gas, volatile fatty acid (VFA) production, gas profile (methane, carbon dioxide, hydrogen, and ammonia), and microbial growth rate was compared to a basal diet with timothy hay. Cannulated Holstein cows were used as rumen fluid donors and 15 mL rumen fluid: buffer (1:2) was incubated for up to 72 h with four treatments with three replicates. The treatments were: control (timothy only), basal diet with 1% G. amansii extract, basal diet with 3% G. amansii extract, and basal diet with 5% G. amansii extract. Results Overall, the results of our study indicate that G. amansii supplementation is potentially useful for improving ruminant growth performance, via increased total gas and VFA production, but does come with some undesirable effects, such as increasing pH, ammonia concentration, and methane production. In particular, real-time polymerase chain reaction indicated that the methanogenic archaea and Fibrobacter succinogenes populations were significantly reduced, while the Ruminococcus flavefaciens populations were significantly increased at 24 h, when supplemented with G. amansii extracts as compared with controls. Conclusion More research is required to elucidate what G. amansii supplementation can do to improve growth performance, and its effect on methane production in ruminants. PMID:29295611

  12. Effects of Gelidium amansii extracts on in vitro ruminal fermentation characteristics, methanogenesis, and microbial populations.

    PubMed

    Lee, Shin Ja; Shin, Nyeon Hak; Jeong, Jin Suk; Kim, Eun Tae; Lee, Su Kyoung; Lee, Il Dong; Lee, Sung Sill

    2018-01-01

    Gelidium amansii (Lamouroux) is a red alga belonging to the family Gelidaceae and is commonly found in the shallow coasts of many East Asian countries, including Korea, China, and Japan. G. amansii has traditionally been utilized as an edible alga, and has various biological activities. The objective of this study was to determine whether dietary supplementation of G. amansii could be useful for improving ruminal fermentation. As assessed by in vitro fermentation parameters such as pH, total gas, volatile fatty acid (VFA) production, gas profile (methane, carbon dioxide, hydrogen, and ammonia), and microbial growth rate was compared to a basal diet with timothy hay. Cannulated Holstein cows were used as rumen fluid donors and 15 mL rumen fluid: buffer (1:2) was incubated for up to 72 h with four treatments with three replicates. The treatments were: control (timothy only), basal diet with 1% G. amansii extract, basal diet with 3% G. amansii extract, and basal diet with 5% G. amansii extract. Overall, the results of our study indicate that G. amansii supplementation is potentially useful for improving ruminant growth performance, via increased total gas and VFA production, but does come with some undesirable effects, such as increasing pH, ammonia concentration, and methane production. In particular, real-time polymerase chain reaction indicated that the methanogenic archaea and Fibrobacter succinogenes populations were significantly reduced, while the Ruminococcus flavefaciens populations were significantly increased at 24 h, when supplemented with G. amansii extracts as compared with controls. More research is required to elucidate what G. amansii supplementation can do to improve growth performance, and its effect on methane production in ruminants.

  13. Nutritive value of methane fermentation residue in diets fed to feedlot steers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, J.M.; Shirley, R.L.; Palmer, A.Z.

    1982-12-01

    Nutritive value of the methane fermentation residue (MFR) from the effluent of a large scale thermophilic methane generator was determined in diets fed to feedlot steers. The MFR contained 22.2% dry matter and 21.9% crude protein (dry basis). Two diets containing 10.6% (dry basis) MFR were formulated using the Urea Fermentation Potential (UFP) system such that in one diet N was in excess (-1.6 UFP) while in the other diet energy was in excess (+2.6 UFP). These two diets were compared in a California Net Energy trial with a feedlot diet (-.3 UFP) containing the same ingredients except the MFR.more » Six steers were fed in a replicated 3(2) Latin square metabolism trial and 70 steers were fed in a 118-d comparative-slaughter, feedlot trial. Digestibilities of dry matter, organic matter, crude protein, acid detergent fiber, ash, total digestible nutrients (TDN) and metabolizable energy were depressed (all P less than .05) in the MFR-containing diets. Steers fed the MFR-containing diets had lower (P less than .05) rates of gain and increased (P less than .05) feed requirements per unit gain. Net energies for maintenance and gain were slightly lower for the MFR-containing diets than the control diet. Crude protein digestibility for the MFR calculated by difference, for the -UFP and the +UFP diets were 37.8 and 50.7%, while corresponding values for TDN were 28.8 and 12.8%, respectively. Concentrations of potentially toxic elements in kidney, liver and muscle as well as flavor and tenderness of steaks were not affected by feeding MFR.« less

  14. Improving the methane yield of maize straw: Focus on the effects of pretreatment with fungi and their secreted enzymes combined with sodium hydroxide.

    PubMed

    Zhao, Xiaoling; Luo, Kai; Zhang, Yue; Zheng, Zehui; Cai, Yafan; Wen, Boting; Cui, Zongjun; Wang, Xiaofen

    2018-02-01

    In order to improve the methane yield, the alkaline and biological pretreatments on anaerobic digestion (AD) were investigated. Three treatments were tested: NaOH, biological (enzyme and fungi), and combined NaOH with biological. The maximum reducing sugar concentrations were obtained using Enzyme T (2.20 mg/mL) on the 6th day. The methane yield of NaOH + Enzyme A was 300.85 mL/g TS, 20.24% higher than the control. Methane yield obtained from Enzyme (T + A) and Enzyme T pretreatments were 277.03 and 273.75 mL/g TS, respectively, which were as effective as 1% NaOH (276.16 mL/g TS) in boosting methane production, and are environmentally friendly and inexpensive biological substitutes. Fungal pretreatment inhibited methane fermentation of maize straw, 15.68% was reduced by T + A compared with the control. The simultaneous reduction of DM, cellulose and hemicellulose achieved high methane yields. This study provides important guidance for the application of enzymes to AD from lignocellulosic agricultural waste. Copyright © 2017. Published by Elsevier Ltd.

  15. Field-Scale Treatability Study for Enhanced In Situ Bioremediation of Explosives in Groundwater: BioBarrier Installation and Hot Spot Treatment Using DPT Injection

    DTIC Science & Technology

    2012-05-24

    carbon is consumed, O2 is depleted until the system becomes anaerobic ►After O2 is consumed, anaerobic fermentation begins and H2 is released into...Degradation and TNT Biodegradation Pathway 10 Carbon source water Lactic acid propionic and pyruvic acids acetic acid fermentation methane TNT...A total of 32,791 lbs of SRS was mixed with potable water to provide 20,000 gallons of solution for injection ► 197 lbs of yeast extract was added

  16. Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk.

    PubMed

    Zhang, Tong; Mao, Chunlan; Zhai, Ningning; Wang, Xiaojiao; Yang, Gaihe

    2015-01-01

    The contradictions between the increasing energy demand and decreasing fossil fuels are making the use of renewable energy the key to the sustainable development of energy in the future. Biogas, a renewable clean energy, can be obtained by the anaerobic fermentation of manure waste and agricultural straw. This study examined the initial pH value had obvious effect on methane production and the process in the thermophilic anaerobic co-digestion. Five different initial pH levels with three different manure ratios were tested. All digesters in different initial pH showed a diverse methane production after 35 days. The VFA/alkalinity ratio of the optimum reaction condition for methanogens activity was in the range of 0.1-0.3 and the optimal condition that at the 70% dung ratio and initial pH 6.81, was expected to achieve maximum total biogas production (146.32 mL/g VS). Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell.

    PubMed

    Sugnaux, Marc; Happe, Manuel; Cachelin, Christian Pierre; Gloriod, Olivier; Huguenin, Gérald; Blatter, Maxime; Fischer, Fabian

    2016-12-01

    Ethanol, electricity, hydrogen and methane were produced in a two stage bioethanol refinery setup based on a 10L microbial fuel cell (MFC) and a 33L microbial electrolysis cell (MEC). The MFC was a triple stack for ethanol and electricity co-generation. The stack configuration produced more ethanol with faster glucose consumption the higher the stack potential. Under electrolytic conditions ethanol productivity outperformed standard conditions and reached 96.3% of the theoretically best case. At lower external loads currents and working potentials oscillated in a self-synchronized manner over all three MFC units in the stack. In the second refining stage, fermentation waste was converted into methane, using the scale up MEC stack. The bioelectric methanisation reached 91% efficiency at room temperature with an applied voltage of 1.5V using nickel cathodes. The two stage bioethanol refining process employing bioelectrochemical reactors produces more energy vectors than is possible with today's ethanol distilleries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Impact of temperature, microwave radiation and organic loading rate on methanogenic community and biogas production during fermentation of dairy wastewater.

    PubMed

    Zielińska, Magdalena; Cydzik-Kwiatkowska, Agnieszka; Zieliński, Marcin; Dębowski, Marcin

    2013-02-01

    This study analyzed dairy wastewater fermentation in convection- and microwave-heated hybrid reactors at loadings of 1 and 2 kg COD/(m3 d) and temperatures of 35 and 55 °C. The biomass was investigated at a molecular level to determine the links between the operational parameters of anaerobic digestion and methanogenic Archaea structure. The highest production of biogas with methane content of ca. 67% was noted in the mesophilic microwave-heated reactors. The production of methane-rich biogas and the overall diversity of Archaea was determined by Methanosarcinaceae presence. The temperature and the application of microwaves were the main factors explaining the variations in the methanogen community. At 35 °C, the microwave heating stimulated the growth of highly diverse methanogen assemblages, promoting Methanosarcina barkeri presence and excluding Methanosarcina harudinacea from the biomass. A temperature increase to 55 °C lowered Methanosarcinaceae abundance and induced a replacement of Methanoculleus palmolei by Methanosarcina thermophila. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. High-solid mesophilic methane fermentation of food waste with an emphasis on Iron, Cobalt, and Nickel requirements.

    PubMed

    Qiang, Hong; Lang, Dong-Li; Li, Yu-You

    2012-01-01

    The effect of trace metals on the mesophilic methane fermentation of high-solid food waste was investigated using both batch and continuous experiments. The continuous experiment was conducted by using a CSTR-type reactor with three run. During the first run, the HRT of the reactor was stepwise decreased from 100 days to 30 days. From operation day 50, the reactor efficiency deteriorated due to the lack of trace metals. The batch experiment showed that iron, cobalt, and nickel combinations had a significant effect on food waste. According to the results of the batch experiment, a combination of iron, cobalt, and nickel was added into the CSTR reactor by two different methods at run II, and III. Based on experimental results and theoretical calculations, the most suitable values of Fe/COD, Co/COD, and Ni/COD in the substrate were identified as 200, 6.0, and 5.7 mg/kg COD, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Production of Excess CO2 relative to methane in peatlands: a new H2 sink

    NASA Astrophysics Data System (ADS)

    Wilson, R.; Woodcroft, B. J.; Varner, R. K.; Tyson, G. W.; Tfaily, M. M.; Sebestyen, S.; Saleska, S. R.; Rogers, K.; Rich, V. I.; McFarlane, K. J.; Kostka, J. E.; Kolka, R. K.; Keller, J.; Iversen, C. M.; Hodgkins, S. B.; Hanson, P. J.; Guilderson, T. P.; Griffiths, N.; de La Cruz, F.; Crill, P. M.; Chanton, J.; Bridgham, S. D.; Barlaz, M.

    2015-12-01

    Methane is generated as the end product of anaerobic organic matter degradation following a series of reaction pathways including fermentation and syntrophy. Along with acetate and CO2, syntrophic reactions generate H2 and are only thermodynamically feasible when coupled to an exothermic reaction that consumes H2. The usual model of organic matter degradation in peatlands has assumed that methanogenesis is that exothermic H2-consuming reaction. If correct, this paradigm should ultimately result in equimolar production of CO2 and methane from the degradation of the model organic compound cellulose: i.e. C6H12O6 à 3CO2 + 3CH4. However, dissolved gas measurement and modeling results from field and incubation experiments spanning peatlands across the northern hemisphere have failed to demonstrate equimolar production of CO2 and methane. Instead, in a flagrant violation of thermodynamics, these studies show a large bias favoring CO2 production over methane generation. In this talk, we will use an array of complementary analytical techniques including FT-IR, cellulose and lignin measurements, 13C-NMR, fluorescence spectroscopy, and ultra-high resolution mass spectrometry to describe organic matter degradation within a peat column and identify the important degradation mechanisms. Hydrogenation was the most common transformation observed in the ultra-high resolution mass spectrometry data. From these results we propose a new mechanism for consuming H2 generated during CO2 production, without concomitant methane formation, consistent with observed high CO2/CH4 ratios. While homoacetogenesis is a known sink for H2 in these systems, this process also consumes CO2 and therefore does not explain the excess CO2 measured in field and incubation samples. Not only does the newly proposed mechanism consume H2 without generating methane, but it also yields enough energy to balance the coupled syntrophic reactions, thereby restoring thermodynamic order. Schematic of organic matter degradation. Solid lines indicate traditional pathways from Conrad (1999), dashed lines indicates new proposed mechanism.

  1. The presence of bromuconazole fungicide pollutant in organic waste anaerobic fermentation

    NASA Astrophysics Data System (ADS)

    Hariyadi, H. R.

    2017-03-01

    The presence of bromuconazole fungicide pollutant in organic waste anaerobic fermentation was carried out as well as the influence phenol and benzoate, and biodegradation of bromuconazole. Bromuconazole is a fungicide effective against Ascomycetes, Basidiomycetes and fungi imperfecti in cereals, grapes, top fruits and vegetables. It is also effective against Alternaria and Fusarium sp. The remaining fungicide in leaves might contaminates landfill. One month of organic waste added with bromuconazole was anaerobically incubated in 500 mL bottles at 30°C without shaking in dark room. High-Performance Liquid Chromatography (HPLC) with UV detector and a 100 RP 185μm Lichrosphere column was used to determine bromuconazole concentration. Methane content was determined by Gas Chromatography (GC) method equipped with a flame ionization detector and a metal column packed with 5% neopentyl glycol sebacate and 1% H3PO4 on Chromosorb W-AW (mesh 80-100). After incubation for 225 days, bromuconazole of 200 mg/L inhibited the production of methane (99.5 mM) significantly, but did not inhibit the production of volatile fatty acids. The addition of 100 mg/L phenol or 146 mg/L benzoate increased the production of methane, 143 mM and 135.2 mM, respectively compared with control (121.8 mM). In anaerobic conditions, the presence of toxic pollutants such as fungicide bromuconazole in landfills sites may cause further problems with the accumulation of volatile fatty acids in leachate. Further study to determine the threshold, the presence of bromconazole in low concentration (less than 200 mg/L) on the methane production is recommended.

  2. Pilot-scale conversion of lime-treated wheat straw into bioethanol: quality assessment of bioethanol and valorization of side streams by anaerobic digestion and combustion

    PubMed Central

    Maas, Ronald HW; Bakker, Robert R; Boersma, Arjen R; Bisschops, Iemke; Pels, Jan R; de Jong, Ed; Weusthuis, Ruud A; Reith, Hans

    2008-01-01

    Introduction The limited availability of fossil fuel sources, worldwide rising energy demands and anticipated climate changes attributed to an increase of greenhouse gasses are important driving forces for finding alternative energy sources. One approach to meeting the increasing energy demands and reduction of greenhouse gas emissions is by large-scale substitution of petrochemically derived transport fuels by the use of carbon dioxide-neutral biofuels, such as ethanol derived from lignocellulosic material. Results This paper describes an integrated pilot-scale process where lime-treated wheat straw with a high dry-matter content (around 35% by weight) is converted to ethanol via simultaneous saccharification and fermentation by commercial hydrolytic enzymes and bakers' yeast (Saccharomyces cerevisiae). After 53 hours of incubation, an ethanol concentration of 21.4 g/liter was detected, corresponding to a 48% glucan-to-ethanol conversion of the theoretical maximum. The xylan fraction remained mostly in the soluble oligomeric form (52%) in the fermentation broth, probably due to the inability of this yeast to convert pentoses. A preliminary assessment of the distilled ethanol quality showed that it meets transportation ethanol fuel specifications. The distillation residue, which contained non-hydrolysable and non-fermentable (in)organic compounds, was divided into a liquid and solid fraction. The liquid fraction served as substrate for the production of biogas (methane), whereas the solid fraction functioned as fuel for thermal conversion (combustion), yielding thermal energy, which can be used for heat and power generation. Conclusion Based on the achieved experimental values, 16.7 kg of pretreated wheat straw could be converted to 1.7 kg of ethanol, 1.1 kg of methane, 4.1 kg of carbon dioxide, around 3.4 kg of compost and 6.6 kg of lignin-rich residue. The higher heating value of the lignin-rich residue was 13.4 MJ thermal energy per kilogram (dry basis). PMID:18699996

  3. Acetylene Fermentation: Relevance to Primordial Biogeochemistry and the Search for Life in the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.

    2014-02-01

    Acetylene supports the growth of some terrestrial anaerobes. The reaction is highly exothermic. The abundance of acetylene in the methane-rich planet(oid)s of the outer solar system could represent a means of nourishment for resident alien microbes.

  4. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production

    PubMed Central

    Hristov, Alexander N.; Oh, Joonpyo; Giallongo, Fabio; Frederick, Tyler W.; Harper, Michael T.; Weeks, Holley L.; Branco, Antonio F.; Moate, Peter J.; Deighton, Matthew H.; Williams, S. Richard O.; Kindermann, Maik; Duval, Stephane

    2015-01-01

    A quarter of all anthropogenic methane emissions in the United States are from enteric fermentation, primarily from ruminant livestock. This study was undertaken to test the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission in lactating Holstein cows. An experiment was conducted using 48 cows in a randomized block design with a 2-wk covariate period and a 12-wk data collection period. Feed intake, milk production, and fiber digestibility were not affected by the inhibitor. Milk protein and lactose yields were increased by 3NOP. Rumen methane emission was linearly decreased by 3NOP, averaging about 30% lower than the control. Methane emission per unit of feed dry matter intake or per unit of energy-corrected milk were also about 30% less for the 3NOP-treated cows. On average, the body weight gain of 3NOP-treated cows was 80% greater than control cows during the 12-wk experiment. The experiment demonstrated that the methane inhibitor 3NOP, applied at 40 to 80 mg/kg feed dry matter, decreased methane emissions from high-producing dairy cows by 30% and increased body weight gain without negatively affecting feed intake or milk production and composition. The inhibitory effect persisted over 12 wk of treatment, thus offering an effective methane mitigation practice for the livestock industries. PMID:26229078

  5. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production.

    PubMed

    Hristov, Alexander N; Oh, Joonpyo; Giallongo, Fabio; Frederick, Tyler W; Harper, Michael T; Weeks, Holley L; Branco, Antonio F; Moate, Peter J; Deighton, Matthew H; Williams, S Richard O; Kindermann, Maik; Duval, Stephane

    2015-08-25

    A quarter of all anthropogenic methane emissions in the United States are from enteric fermentation, primarily from ruminant livestock. This study was undertaken to test the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission in lactating Holstein cows. An experiment was conducted using 48 cows in a randomized block design with a 2-wk covariate period and a 12-wk data collection period. Feed intake, milk production, and fiber digestibility were not affected by the inhibitor. Milk protein and lactose yields were increased by 3NOP. Rumen methane emission was linearly decreased by 3NOP, averaging about 30% lower than the control. Methane emission per unit of feed dry matter intake or per unit of energy-corrected milk were also about 30% less for the 3NOP-treated cows. On average, the body weight gain of 3NOP-treated cows was 80% greater than control cows during the 12-wk experiment. The experiment demonstrated that the methane inhibitor 3NOP, applied at 40 to 80 mg/kg feed dry matter, decreased methane emissions from high-producing dairy cows by 30% and increased body weight gain without negatively affecting feed intake or milk production and composition. The inhibitory effect persisted over 12 wk of treatment, thus offering an effective methane mitigation practice for the livestock industries.

  6. Effects of pure plant secondary metabolites on methane production, rumen fermentation and rumen bacteria populations in vitro.

    PubMed

    Joch, M; Mrázek, J; Skřivanová, E; Čermák, L; Marounek, M

    2018-04-29

    In this study, the effects of seven pure plant secondary metabolites (PSMs) on rumen fermentation, methane (CH 4 ) production and rumen bacterial community composition were determined. Two in vitro trials were conducted. In trial 1, nine concentrations of 8-hydroxyquinoline, α-terpineol, camphor, bornyl acetate, α-pinene, thymoquinone and thymol were incubated on separate days using in vitro 24-hr batch incubations. All compounds tested demonstrated the ability to alter rumen fermentation parameters and decrease CH 4 production. However, effective concentrations differed among individual PSMs. The lowest concentrations that reduced (p < .05) CH 4 production were as follows: 8 mg/L of 8-hydroxyquinoline, 120 mg/L of thymoquinone, 240 mg/L of thymol and 480 mg/L of α-terpineol, camphor, bornyl acetate and α-pinene. These concentrations were selected for use in trial 2. In trial 2, PSMs were incubated in one run. Methane was decreased (p < .05) by all PSMs at selected concentrations. However, only 8-hydroxyquinoline, bornyl acetate and thymoquinone decreased (p < .05) CH 4 relative to volatile fatty acids (VFAs). Based on denaturing gradient gel electrophoresis analysis, different PSMs changed the composition of bacterial communities to different extents. As revealed by Ion Torrent sequencing, the effects of PSMs on relative abundance were most pronounced in the predominant families, especially in Lachnospiraceae, Succinivibrionaceae, Prevotellaceae, unclassified Clostridiales and Ruminococcaceae. The CH 4 production was correlated negatively (-.72; p < .05) with relative abundance of Succinivibrionaceae and positively with relative abundance of Ruminococcaceae (.86; p < .05). In summary, this study identified three pure PSMs (8hydroxyquinoline, bornyl acetate and thymoquinone) with potentially promising effects on rumen CH 4 production. The PSMs tested in this study demonstrated considerable impact on rumen bacterial communities even at the lowest concentrations that decreased CH 4 production. The findings from this study may help to elucidate how PSMs affect rumen bacterial fermentation. © 2018 Blackwell Verlag GmbH.

  7. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    NASA Technical Reports Server (NTRS)

    Alperin, M. J.; Blair, Neal E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1993-01-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from 'noncompetitive' substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94 per thousand. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in C-13, reaching a maximum delta(C-13) value of -42 per thousand. Third, the acetate pool experienced a precipitous decline from greater than 5 mM to less than 20 micro-M and methane production was again dominated by CO2 reduction. The delta(C-13) of methane produced during this final phase ranged from -46 to -58 per thousand. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8 percent of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane emitted from undisturbed Cape Lookout Bight sediment.

  8. Fifteenth symposium on biotechnology for fuels and chemicals: Program and abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-07-01

    This collection contains 173 abstracts from presented papers and poster sessions. The five sessions of the conference were on the subjects of: (1) Thermal, Chemical, and Biological Processing, (2) Applied Biological Research, (3) Bioprocessing Research (4), Process Economics and Commercialization, and (5) Environmental Biotechnology. Examples of specific topics in the first session include the kinetics of ripening cheese, microbial liquefaction of lignite, and wheat as a feedstock for fuel ethanol. Typical topics in the second session were synergism studies of bacterial and fungal celluloses, conversion of inulin from jerusalem artichokes to sorbitol and ethanol by saccharomyces cerevisiae, and microbial conversionmore » of high rank coals to methane. The third session entertained topics such as hydrodynamic modeling of a liquid fluidized bed bioreactor for coal biosolubilization, aqueous biphasic systems for biological particle partitioning, and arabinose utilization by xylose-fermenting yeast and fungi. The fourth session included such topics as silage processing of forage biomass to alcohol fuels, economics of molasses to ethanol in India, and production of lactic acid from renewable resources. the final session contained papers on such subjects as bioluminescent detection of contaminants in soils, characterization of petroleum contaminated soils in coral atolls in the south Pacific, and landfill management for methane generation and emission control.« less

  9. Anaerobic co-digestion of sewage sludge and molasses

    NASA Astrophysics Data System (ADS)

    Kalemba, Katarzyna; Barbusiński, Krzysztof

    2017-11-01

    The efficiency of simultaneous digestion of sewage sludge and by-product of refining sugar beets (molasses) was investigated. The study was conducted for 28 days under mesophilic conditions. 0.5%, 1%, 1.5%, 2% and 3% (m/m) of molasses was added to the mixture of sludge. The result of the study showed that addition of molasses had positive effect the biogas production. The biggest biogas yield was achieved in sample with 0.5% of molasses (95.69 mL/g VS). In this sample biogas production increased by 21% in comparison with reference sample (without molasses). The biggest methane content (73%) was also observed in the sample with 0.5% of molasses. For comparison in reference sample was produced biogas with 70% content of methane. The dose over 0.5% of molasses caused inhibition of fermentation process. The minimal degree (38%) of degradation of organic matter was achieved in reference sample (38.53%) and in sample with 0.5% of molasses (39.71%) but in other samples was in the range of 35.61-36.76 % (from 3% to 1%, respectively). Digestion process have adverse effect on dewatering properties of sludge. Before co-digestion capillary suction time was from 31 s to 55 s, and after process increased from 36 s to 556 s (from 0% to 3% of molasses, respectively).

  10. Thermophilic microbial cellulose decomposition and methanogenesis pathways recharacterized by metatranscriptomic and metagenomic analysis

    PubMed Central

    Xia, Yu; Wang, Yubo; Fang, Herbert H. P.; Jin, Tao; Zhong, Huanzi; Zhang, Tong

    2014-01-01

    The metatranscriptomic recharacterization in the present study captured microbial enzymes at the unprecedented scale of 40,000 active genes belonged to 2,269 KEGG functions were identified. The novel information obtained herein revealed interesting patterns and provides an initial transcriptional insight into the thermophilic cellulose methanization process. Synergistic beta-sugar consumption by Thermotogales is crucial for cellulose hydrolysis in the thermophilic cellulose-degrading consortium because the primary cellulose degraders Clostridiales showed metabolic incompetence in subsequent beta-sugar pathways. Additionally, comparable transcription of putative Sus-like polysaccharide utilization loci (PULs) was observed in an unclassified order of Bacteroidetes suggesting the importance of PULs mechanism for polysaccharides breakdown in thermophilic systems. Despite the abundance of acetate as a fermentation product, the acetate-utilizing Methanosarcinales were less prevalent by 60% than the hydrogenotrophic Methanobacteriales. Whereas the aceticlastic methanogenesis pathway was markedly more active in terms of transcriptional activities in key genes, indicating that the less dominant Methanosarcinales are more active than their hydrogenotrophic counterparts in methane metabolism. These findings suggest that the minority of aceticlastic methanogens are not necessarily associated with repressed metabolism, in a pattern that was commonly observed in the cellulose-based methanization consortium, and thus challenge the causal likelihood proposed by previous studies. PMID:25330991

  11. Anaerobic co-digestion of vegetable waste and swine wastewater in high-rate horizontal reactors with fixed bed.

    PubMed

    Mazareli, Raissa Cristina da Silva; Duda, Rose Maria; Leite, Valderi Duarte; Oliveira, Roberto Alves de

    2016-06-01

    Considering the high waste generation that comes from agriculture and livestock farming, as well as the demand for natural gas, it is necessary to develop sustainable technologies which can reduce environmental impact. There is no available literature on the use of high-rate horizontal anaerobic reactors with fixed bed (HARFB) and continuous feed for the co-digestion of vegetable wastes (VW) and swine wastewater (SW). The aim of this work was to evaluate the reactor performance in terms of methane production, organic matter consumption, and removal of total and thermotolerant coliforms under different proportions of SW and VW, and organic loading rates (OLR) of 4.0, 5.2 and 11.0g COD (Ld)(-)(1). The mixture of SW and VW in the proportions of 90:10, 80:20 and 70:30 (SW:VW) with those OLRs provided great buffering capacity, with partial alkalinity reaching 3552mgL(-1), thereby avoiding the inhibition of methane production by volatile fatty acids produced during the fermentation process. Higher proportions of VW and higher OLR improved volumetric methane production with a maximum value of 1.08LCH4 (Ld)(-)(1), organic matter removal rates up to 98% and total and thermotolerant coliform removal rates of 99% were also observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Methane Production Pathways in a California Rice Paddy: Isotopic Evidence for Substantial CO2 Reduction as Cause for Isotopically Light Emitted CH4 Carbon

    NASA Astrophysics Data System (ADS)

    Tyler, S. C.; McMillan, A. M.; Bearden, K.; Chidthaisong, A.; Macalady, J.

    2003-12-01

    We report measurements of δ 13C of emitted CH4 and sediment CH4 and CO2 during the 1999 rice-growing season near Maxwell, CA. Two treatments, one with rice straw incorporated from the previous season and one without rice straw were studied. The δ 13C value of emitted CH4 was consistently lighter isotopically (-67‰ to -83‰ throughout the season) in both straw incorporated and straw removed (burned) plots than in fields we have studied in Texas, Kenya, and Japan. Measured isotopic values of the production zone CH4 were compared to a two-point mixing curve representative of isotopic CH4 produced from either pure methyl-group fermentation or CO2 reduction pathways to partition the production pathways and to track seasonal changes in the production processes. Our sediment CH4 and CO2 isotope data indicate that fermentation was rarely the dominant methanogenic pathway - on the contrary CO2 reduction with H2 was more prevalent than fermentation methanogenesis throughout most of the season. The relatively isotopically light CH4 emitted by the paddy fields is also a product of oxidation and stem-transport processes which have isotopic effects of their own. These effects are discussed in context with the methanogenic isotope effects to provide a complete picture of the paddy field CH4 carbon isotope system.

  13. Use of a novel continuous culture fermentor system for in vitro determination of enteric methane output from ruminants

    USDA-ARS?s Scientific Manuscript database

    Continuous culture fermentor systems (CCFS) serve to evaluate the effect of diet on in vitro nutrient digestibility, fermentation, and microbial protein synthesis. Limitations of CCFS are: maintaining protozoa populations, and avoiding accumulation of undigested material in the vessels. Therefore, a...

  14. Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanakya, H.N.; Sharma, Isha; Ramachandra, T.V.

    The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their compositionmore » was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.« less

  15. Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste.

    PubMed

    Chanakya, H N; Sharma, Isha; Ramachandra, T V

    2009-04-01

    The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.

  16. Evaluation of Mediterranean Agricultural Residues as a Potential Feedstock for the Production of Biogas via Anaerobic Fermentation.

    PubMed

    Nitsos, Christos; Matsakas, Leonidas; Triantafyllidis, Kostas; Rova, Ulrika; Christakopoulos, Paul

    2015-01-01

    Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones.

  17. Evaluation of Mediterranean Agricultural Residues as a Potential Feedstock for the Production of Biogas via Anaerobic Fermentation

    PubMed Central

    Nitsos, Christos; Triantafyllidis, Kostas

    2015-01-01

    Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones. PMID:26609521

  18. Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization.

    PubMed

    Whitaker, William B; Sandoval, Nicholas R; Bennett, Robert K; Fast, Alan G; Papoutsakis, Eleftherios T

    2015-06-01

    Synthetic methylotrophy is the development of non-native methylotrophs that can utilize methane and methanol as sole carbon and energy sources or as co-substrates with carbohydrates to produce metabolites as biofuels and chemicals. The availability of methane (from natural gas) and its oxidation product, methanol, has been increasing, while prices have been decreasing, thus rendering them as attractive fermentation substrates. As they are more reduced than most carbohydrates, methane and methanol, as co-substrates, can enhance the yields of biologically produced metabolites. Here we discuss synthetic biology and metabolic engineering strategies based on the native biology of aerobic methylotrophs for developing synthetic strains grown on methanol, with Escherichia coli as the prototype. Copyright © 2015. Published by Elsevier Ltd.

  19. Stable Carbon Isotope Fractionation during Bacterial Acetylene Fermentation: Potential for Life Detection in Hydrocarbon-Rich Volatiles of Icy Planet(oid)s.

    PubMed

    Miller, Laurence G; Baesman, Shaun M; Oremland, Ronald S

    2015-11-01

    We report the first study of stable carbon isotope fractionation during microbial fermentation of acetylene (C2H2) in sediments, sediment enrichments, and bacterial cultures. Kinetic isotope effects (KIEs) averaged 3.7 ± 0.5‰ for slurries prepared with sediment collected at an intertidal mudflat in San Francisco Bay and 2.7 ± 0.2‰ for a pure culture of Pelobacter sp. isolated from these sediments. A similar KIE of 1.8 ± 0.7‰ was obtained for methanogenic enrichments derived from sediment collected at freshwater Searsville Lake, California. However, C2H2 uptake by a highly enriched mixed culture (strain SV7) obtained from Searsville Lake sediments resulted in a larger KIE of 9.0 ± 0.7‰. These are modest KIEs when compared with fractionation observed during oxidation of C1 compounds such as methane and methyl halides but are comparable to results obtained with other C2 compounds. These observations may be useful in distinguishing biologically active processes operating at distant locales in the Solar System where C2H2 is present. These locales include the surface of Saturn's largest moon Titan and the vaporous water- and hydrocarbon-rich jets emanating from Enceladus. Acetylene-Fermentation-Isotope fractionation-Enceladus-Life detection.

  20. Synergistic dark and photo-fermentation continuous system for hydrogen production from molasses by Clostridium acetobutylicum ATCC 824 and Rhodobacter capsulatus DSM 1710.

    PubMed

    Morsy, Fatthy Mohamed

    2017-04-01

    This study investigated synergistic dark and photo-fermentation using continuous fermentation system (CFS). The system relies on connecting several fermenters from bottom of one to top culture level of the next in a manner that allows for delaying movement of the substrate and thus for its full consumption. While H 2 was collected, CFS allowed for moving liquid byproducts toward the outlet and hence continuous productivity. CFS could be efficiently used for: (1) Continuous dark and photo-fermentation H 2 production by Clostridium acetobutylicum and Rhodobacter capsulatus producing 5.65moleH 2 mole -1 hexose; (2) Continuous dark-fermentation synergistic H 2 , acetone, butanol and ethanol (ABE) production by C. acetobutylicum which produced per mole hexose, 2.43mol H 2 along with 73.08g ABE (3) Continuous H 2 and methane production by C. acetobutylicum and bacterial sludge producing, per mole hexose, 1.64mol pure H 2 and 2.56mol CH 4 mixed with 0.37mol H 2 ·The hydraulic retention time (HRT) for whole system was short where organic acids produced in dark-fermentation in first fermenter were synergistically utilized for H 2 production by R. capsulatus in subsequent fermenters. CFS is suitable for fast-digestible sugars but not lignocelluloses or other hard-digestible organics, requiring prolonged HRT, unless such polymeric organics were hydrolyzed prior to fermentation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Between-cow variation in digestion and rumen fermentation variables associated with methane production.

    PubMed

    Cabezas-Garcia, E H; Krizsan, S J; Shingfield, K J; Huhtanen, P

    2017-06-01

    A meta-analysis based on an individual-cow data set was conducted to investigate the effects of between-cow variation and related animal variables on predicted CH 4 emissions from dairy cows. Data were taken from 40 change-over studies consisting of a total of 637 cow/period observations. Animal production and rumen fermentation characteristics were measured for 154 diets in 40 studies; diet digestibility was measured for 135 diets in 34 studies, and ruminal digestion kinetics was measured for 56 diets in 15 studies. The experimental diets were based on grass silage, with cereal grains or by-products as energy supplements, and soybean or canola meal as protein supplements. Average forage:concentrate ratio across all diets on a dry matter basis was 59:41. Methane production was predicted from apparently fermented substrate using stoichiometric principles. Data were analyzed by mixed-model regression using diet and period within experiment as random effects, thereby allowing the effect of experiment, diet, and period to be excluded. Dry matter intake and milk yield were more repeatable experimental measures than rumen fermentation, nutrient outflow, diet digestibility, or estimated CH 4 yield. Between-cow coefficient of variation (CV) was 0.010 for stoichiometric CH 4 per mol of volatile fatty acids and 0.067 for predicted CH 4 yield (CH 4 /dry matter intake). Organic matter digestibility (OMD) also displayed little between-cow variation (CV = 0.013), indicating that between-cow variation in diet digestibility and rumen fermentation pattern do not markedly contribute to between cow-variation in CH 4 yield. Digesta passage rate was much more variable (CV = 0.08) between cows than OMD or rumen fermentation pattern. Increased digesta passage rate is associated with improved energetic efficiency of microbial N synthesis, which partitions fermented substrate from volatile fatty acids and gases to microbial cells that are more reduced than fermented carbohydrates. Positive relationships were observed between CH 4 per mol of volatile fatty acids versus OMD and rumen ammonia N concentration versus OMD; and negative relationships between the efficiency of microbial N synthesis versus OMD and digesta passage rate versus OMD, suggesting that the effects of these variables on CH 4 yield were additive. It can be concluded that variations in OMD and efficiency in microbial N synthesis resulting from variations in digesta passage contribute more to between-animal variation in CH 4 emissions than rumen fermentation pattern. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Comparison of emission estimates for non-CO2 greenhouse gases from livestock and poultry in Korea from 1990 to 2010.

    PubMed

    Paik, Chunhyun; Chung, Yongjoo; Kim, Hugon; Kim, Young Jin

    2016-04-01

    It has often been claimed that non-carbon dioxide greenhouse gases (NCGGs), such as methane, nitrous oxide and fluorinated greenhouse gases, are significant contributors to climate change. Here we nvestigate emission estimates of methane and nitrous oxide from livestock and poultry production, which is recognized as a major source of those NCGGs, in Korea over the period of 1990 through 2010. Based on the data on livestock and poultry populations, emission estimates of methane and nitrous oxide are first derived based on the Tier 1 approach. Then, the Tier 2 approach is adopted to obtain emission estimates of methane and nitrous oxide from cattle, which are known to be the largest sources of these NCGGs and account for about 70% of emissions from livestock and poultry in Korea. The result indicates that the Tier 2 estimates of methane and nitrous oxide emissions from enteric fermentation and manure management are significantly different from the Tier 1 estimates over the analysis period. © 2015 Japanese Society of Animal Science.

  3. Dry fermentation of manure with straw in continuous plug flow reactor: Reactor development and process stability at different loading rates.

    PubMed

    Patinvoh, Regina J; Kalantar Mehrjerdi, Adib; Sárvári Horváth, Ilona; Taherzadeh, Mohammad J

    2017-01-01

    In this work, a plug flow reactor was developed for continuous dry digestion processes and its efficiency was investigated using untreated manure bedded with straw at 22% total solids content. This newly developed reactor worked successfully for 230days at increasing organic loading rates of 2.8, 4.2 and 6gVS/L/d and retention times of 60, 40 and 28days, respectively. Organic loading rates up to 4.2gVS/L/d gave a better process stability, with methane yields up to 0.163LCH 4 /gVS added /d which is 56% of the theoretical yield. Further increase of organic loading rate to 6gVS/L/d caused process instability with lower volatile solid removal efficiency and cellulose degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effects of Flavonoids on Rumen Fermentation Activity, Methane Production, and Microbial Population

    PubMed Central

    Abdullah, Norhani; Oskoueian, Armin

    2013-01-01

    This research was carried out to evaluate the effects of flavone, myricetin, naringin, catechin, rutin, quercetin, and kaempferol at the concentration of 4.5% of the substrate (dry matter basis) on the rumen microbial activity in vitro. Mixture of guinea grass and concentrate (60 : 40) was used as the substrate. The results showed that all the flavonoids except naringin and quercetin significantly (P < 0.05) decreased the dry matter degradability. The gas production significantly (P < 0.05) decreased by flavone, myricetin, and kaempferol, whereas naringin, rutin, and quercetin significantly (P < 0.05) increased the gas production. The flavonoids suppressed methane production significantly (P < 0.05). The total VFA concentration significantly (P < 0.05) decreased in the presence of flavone, myricetin, and kaempferol. All flavonoids except naringin and quercetin significantly (P < 0.05) reduced the carboxymethyl cellulase, filter paperase, xylanase, and β-glucosidase activities, purine content, and the efficiency of microbial protein synthesis. Flavone, myricetin, catechin, rutin, and kaempferol significantly (P < 0.05) reduced the population of rumen microbes. Total populations of protozoa and methanogens were significantly (P < 0.05) suppressed by naringin and quercetin. The results of this research demonstrated that naringin and quercetin at the concentration of 4.5% of the substrate (dry matter basis) were potential metabolites to suppress methane production without any negative effects on rumen microbial fermentation. PMID:24175289

  5. Graded replacement of maize grain with molassed sugar beet pulp modulated ruminal microbial community and fermentation profile in vitro.

    PubMed

    Münnich, Matthias; Khol-Parisini, Annabella; Klevenhusen, Fenja; Metzler-Zebeli, Barbara U; Zebeli, Qendrim

    2018-02-01

    Molassed sugar beet pulp (Bp) is a viable alternative to grains in cattle nutrition for reducing human edible energy input. Yet little is known about the effects of high inclusion rates of Bp on rumen microbiota. This study used an in vitro approach and the quantitative polymerase chain reaction technique to establish the effects of a graded replacement of maize grain (MG) by Bp on the ruminal microbial community, fermentation profile and nutrient degradation. Six different amounts of Bp (0-400 g kg -1 ), which replaced MG in the diet, were tested using the in vitro semi-continuous rumen simulation technique. The increased inclusion of Bp resulted in greater dietary content and degradation of neutral detergent fibre (P < 0.01). Further, Bp feeding enhanced (P < 0.01) the abundance of genus Prevotella and shifted (P < 0.01) the short-chain fatty acid patterns in favour of acetate and propionate and at the expense of butyrate. A total replacement of MG with Bp resulted in an increased daily methane production (P < 0.01). Results suggest positive effects of the replacement of MG by Bp especially in terms of stimulating ruminal acetate and propionate fermentation. However, high replacement rates of Bp resulted in lowered utilization of ammonia and higher ruminal methane production. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation

    PubMed Central

    Kaur, Parwinder; Appels, Rudi; Bayer, Philipp E.; Keeble-Gagnere, Gabriel; Wang, Jiankang; Hirakawa, Hideki; Shirasawa, Kenta; Vercoe, Philip; Stefanova, Katia; Durmic, Zoey; Nichols, Phillip; Revell, Clinton; Isobe, Sachiko N.; Edwards, David; Erskine, William

    2017-01-01

    Mitigating methane production by ruminants is a significant challenge to global livestock production. This research offers a new paradigm to reduce methane emissions from ruminants by breeding climate-clever clovers. We demonstrate wide genetic diversity for the trait methanogenic potential in Australia’s key pasture legume, subterranean clover (Trifolium subterraneum L.). In a bi-parental population the broadsense heritability in methanogenic potential was moderate (H2 = 0.4) and allelic variation in a region of Chr 8 accounted for 7.8% of phenotypic variation. In a genome-wide association study we identified four loci controlling methanogenic potential assessed by an in vitro fermentation system. Significantly, the discovery of a single nucleotide polymorphism (SNP) on Chr 5 in a defined haplotype block with an upstream putative candidate gene from a plant peroxidase-like superfamily (TSub_g18548) and a downstream lectin receptor protein kinase (TSub_g18549) provides valuable candidates for an assay for this complex trait. In this way haplotype variation can be tracked to breed pastures with reduced methanogenic potential. Of the quantitative trait loci candidates, the DNA-damage-repair/toleration DRT100-like protein (TSub_g26967), linked to avoid the severity of DNA damage induced by secondary metabolites, is considered central to enteric methane production, as are disease resistance (TSub_g26971, TSub_g26972, and TSub_g18549) and ribonuclease proteins (TSub_g26974, TSub_g26975). These proteins are good pointers to elucidate the genetic basis of in vitro microbial fermentability and enteric methanogenic potential in subterranean clover. The genes identified allow the design of a suite of markers for marker-assisted selection to reduce rumen methane emission in selected pasture legumes. We demonstrate the feasibility of a plant breeding approach without compromising animal productivity to mitigate enteric methane emissions, which is one of the most significant challenges to global livestock production. PMID:28928752

  7. Incubation Temperature, But Not Pequi Oil Supplementation, Affects Methane Production, and the Ruminal Microbiota in a Rumen Simulation Technique (Rusitec) System.

    PubMed

    Duarte, Andrea C; Holman, Devin B; Alexander, Trevor W; Kiri, Kerstin; Breves, Gerhard; Chaves, Alexandre V

    2017-01-01

    Lipid supplementation is a promising strategy for methane mitigation in cattle and has been evaluated using several different lipid sources. However, limited studies have assessed the effect of temperature on methane emissions from cattle and changes in incubation temperature have also not been extensively evaluated. The aim of this study was to evaluate the combined effect of pequi oil (high in unsaturated fatty acids) and incubation temperature on fermentation characteristics and microbial communities using the rumen simulation technique. A completely randomized experiment was conducted over a 28-day period using a Rusitec system. The experiment was divided into four periods of 7 days each, the first of which was a 7-day adaptation period followed by three experimental periods. The two treatments consisted of a control diet (no pequi oil inclusion) and a diet supplemented with pequi oil (1.5 mL/day) which increased the dietary fat content to 6% (dry matter, DM-basis). Three fermenter vessels (i.e., replicates) were allocated to each treatment. In the first experimental period, the incubation temperature was maintained at 39°C, decreased to 35°C in the second experimental period and then increased again to 39°C in the third. Pequi oil was continuously supplemented during the experiment. Microbial communities were assessed using high-throughput sequencing of the archaeal and bacterial 16S rRNA gene. Methane production was reduced by 57% following a 4°C decrease in incubation temperature. Supplementation with pequi oil increased the dietary fat content to 6% (DM-basis) but did not affect methane production. Analysis of the microbiota revealed that decreasing incubation temperature to 35°C affected the archaeal and bacterial diversity and richness of liquid-associated microbes, but lipid supplementation did not change microbial diversity.

  8. The Structural and Functional Capacity of Ruminal and Cecal Microbiota in Growing Cattle Was Unaffected by Dietary Supplementation of Linseed Oil and Nitrate

    PubMed Central

    Popova, Milka; McGovern, Emily; McCabe, Matthew S.; Martin, Cécile; Doreau, Michel; Arbre, Marie; Meale, Sarah J.; Morgavi, Diego P.; Waters, Sinéad M.

    2017-01-01

    Microorganisms in the digestive tract of ruminants differ in their functionality and ability to use feed constituents. While cecal microbiota play an important role in post-rumen fermentation of residual substrates undigested in the rumen, limited knowledge exists regarding its structure and function. In this trial we investigated the effect of dietary supplementation with linseed oil and nitrate on methane emissions and on the structure of ruminal and cecal microbiota of growing bulls. Animals were allocated to either a CTL (control) or LINNIT (CTL supplemented with 1.9% linseed and 1.0% nitrates) diet. Methane emissions were measured using the GreenFeed system. Microbial diversity was assessed using amplicon sequencing of microbial genomic DNA. Additionally, total RNA was extracted from ruminal contents and functional mcrA and mtt genes were targeted in amplicon sequencing approach to explore the diversity of functional gene expression in methanogens. LINNIT had no effect on methane yield (g/kg DMI) even though it decreased methane production by 9% (g/day; P < 0.05). Methanobrevibacter- and Methanomassiliicoccaceae-related OTUs were more abundant in cecum (72 and 24%) compared to rumen (60 and 11%) irrespective of the diet (P < 0.05). Feeding LINNIT reduced the relative abundance of Methanomassiliicoccaceae mcrA cDNA reads in the rumen. Principal component analysis revealed significant differences in taxonomic composition and abundance of bacterial communities between rumen and cecum. Treatment decreased the relative abundance of a few Ruminococcaceae genera, without affecting global bacterial community structure. Our research confirms a high level of heterogeneity in species composition of microbial consortia in the main gastrointestinal compartments where feed is fermented in ruminants. There was a parallel between the lack of effect of LINNIT on ruminal and cecal microbial community structure and functions on one side and methane emission changes on the other. These results suggest that the sequencing strategy used here to study microbial diversity and function accurately reflected the absence of effect on methane phenotypes in bulls treated with linseed plus nitrate. PMID:28596764

  9. Influence of Albizia lebbeck Saponin and Its Fractions on In Vitro Gas Production Kinetics, Rumen Methanogenesis, and Rumen Fermentation Characteristics.

    PubMed

    Sirohi, Sunil Kumar; Goel, Navneet; Singh, Nasib

    2014-01-01

    The present study was undertaken to investigate the effect of crude seed powder (CSP) and gross saponins extract (GSE) of seeds of Albizia lebbeck on antimicrobial activity by taking two Gram-positive (Staphylococcus aureus and Bacillus cereus), two Gram-negative (Escherichia coli and Salmonella Typhi) bacteria, and two fungi species (Aspergillus niger and Candida butyric) were taken at 25, 50, 100, 250, and 500 µg levels using agar well diffusion method. Zone of inhibition was increased with increasing of concentration of CSP and saponins which indicates that Gram-negative bacteria (E. coli), Gram-positive bacteria (B. cereus), and A. niger were significantly susceptible to inhibition. Another experiment was conducted to study the effect of GSE and saponins fraction A and B of A. lebbeck supplementation at 6% on DM basis on methane production and other rumen fermentation parameters using in vitro gas production test, by taking three different type diets, that is, high fiber diet (D1, 60R : 40C), medium fiber diet (D2, 50R : 50C), and low fiber diet (D3, 40R : 60C). Significant (P ≤ 0.05) increase was seen in IVDMD, methane production; however ammonia nitrogen concentration decreased as compared to control. The methane production was reduced in a range between 12 and 49% by saponin supplemented diets except in case of GSE in D2. Sap A showed the highest methane reduction per 200 mg of truly digested substrate (TDS) than other treatment groups. Results in relation with quantification of methanogens and protozoa by qPCR indicated the decreasing trend with saponins of A. lebbek in comparison with control except total methanogen quantified using mcr-A based primer.

  10. Use of black soldier fly larvae (Hermetia illucens) to substitute soybean meal in ruminant diet: An in vitro rumen fermentation study

    PubMed Central

    Jayanegara, Anuraga; Novandri, Briliannanda; Yantina, Nover; Ridla, Muhammad

    2017-01-01

    Aim: This experiment aimed to evaluate substitution of soybean meal (SBM) by black soldier fly (BSF) larvae meal in a napier grass diet as performed by an in vitro rumen fermentation system. Materials and Methods: Samples of napier grass, SBM, and BSF larvae age 1 week (BSF1) and 2 weeks (BSF2) were arranged according to the following dietary treatments (dry matter [DM] basis): T1, 100% napier grass; T2, 60% napier grass + 40% SBM; T3, 60% napier grass + 40% BSF1; T4, 60% napier grass + 40% BSF2; T5, 60% napier grass + 20% SBM + 20% BSF1; and T6, 60% napier grass + 20% SBM + 20% BSF2. The samples were determined for their chemical composition and were incubated in vitro using buffered rumen fluid for 48 h at 39°C. In vitro incubation was carried out in three runs and represented by two incubation bottles per run. Results: Supplementation of BSF, both BSF1 and BSF2, increased ether extract, neutral- and acid-detergent insoluble crude protein contents of T3-T6 diets. The T3 or T4 diet resulted in lower ruminal ammonia concentration, in vitro DM digestibility, and in vitro organic matter (OM) digestibility as compared to those in T2 (p<0.05). Diet supplemented with BSF produced lower methane emission in comparison to that of supplemented with SBM (p<0.05). Diet containing BSF2 produced lower methane and methane per digestible OM than that containing BSF1 (p<0.05). Conclusion: Substitution of SBM by BSF in ruminant diet results in a lower nutritional value in vitro but with an advantage of lowering ruminal methane emission. PMID:29391684

  11. Influence of Albizia lebbeck Saponin and Its Fractions on In Vitro Gas Production Kinetics, Rumen Methanogenesis, and Rumen Fermentation Characteristics

    PubMed Central

    Sirohi, Sunil Kumar; Goel, Navneet; Singh, Nasib

    2014-01-01

    The present study was undertaken to investigate the effect of crude seed powder (CSP) and gross saponins extract (GSE) of seeds of Albizia lebbeck on antimicrobial activity by taking two Gram-positive (Staphylococcus aureus and Bacillus cereus), two Gram-negative (Escherichia coli and Salmonella Typhi) bacteria, and two fungi species (Aspergillus niger and Candida butyric) were taken at 25, 50, 100, 250, and 500 µg levels using agar well diffusion method. Zone of inhibition was increased with increasing of concentration of CSP and saponins which indicates that Gram-negative bacteria (E. coli), Gram-positive bacteria (B. cereus), and A. niger were significantly susceptible to inhibition. Another experiment was conducted to study the effect of GSE and saponins fraction A and B of A. lebbeck supplementation at 6% on DM basis on methane production and other rumen fermentation parameters using in vitro gas production test, by taking three different type diets, that is, high fiber diet (D1, 60R : 40C), medium fiber diet (D2, 50R : 50C), and low fiber diet (D3, 40R : 60C). Significant (P ≤ 0.05) increase was seen in IVDMD, methane production; however ammonia nitrogen concentration decreased as compared to control. The methane production was reduced in a range between 12 and 49% by saponin supplemented diets except in case of GSE in D2. Sap A showed the highest methane reduction per 200 mg of truly digested substrate (TDS) than other treatment groups. Results in relation with quantification of methanogens and protozoa by qPCR indicated the decreasing trend with saponins of A. lebbek in comparison with control except total methanogen quantified using mcr-A based primer. PMID:24977047

  12. Supplementation of banana flower powder pellet and plant oil sources on in vitro ruminal fermentation, digestibility, and methane production.

    PubMed

    Kang, Sungchhang; Wanapat, Metha; Viennasay, Bounnaxay

    2016-12-01

    The objective of this study was to evaluate the effects of banana flower power pellet (BAFLOP-pellet) and plant oil source on in vitro gas production, fermentation efficiency, and methane (CH 4 ) production. Rumen fluid was collected from two rumen-fistulated dairy steers fed on rice straw-based diet with concentrate supplement to maintain normal rumen ecology. All supplemented feed were added to respective treatments in the 30:70 roughage to concentrate-based substrate. The treatments were arranged according to a 3 × 3 factorial arrangement in a completely randomized design. First factor was different levels of BAFLOP-pellet supplementation (0, 30, and 60 g/kg of dietary substrate) and second factor was plant oil source supplementation [non-supplemented, 20 g/kg krabok seed oil (KSO), and 20 g/kg coconut oil (CO) of dietary substrate, respectively]. Under this investigation, BAFLOP-pellet supplementation increased gas production kinetics and in vitro digestibility (P < 0.05). Ruminal pH was dropped post incubation time in the non-supplemented group but was enhanced in BAFLOP-pellet-supplemented treatments. On the other hand, supplementation of KSO and CO depressed gas production and digestibility, but did not influence ruminal pH. In addition, protozoal population and CH 4 production were decreased by BAFLOP-pellet and plant oil addition (P < 0.05). Based on this study, it could be concluded that supplementation of BAFLOP-pellet and plant oil source could enhance the in vitro fermentation efficiency while reduced protozoal population and CH 4 production. It is suggested that BAFLOP-pellet (60 g/kg of dietary substrate) and KSO/CO (20 g/kg of dietary substrate) could be used to manipulate rumen fermentation characteristics fed on high-concentrate diet.

  13. Effects of mass air flow rate through an open-circuit gas quantification system when measuring carbon emissions

    USDA-ARS?s Scientific Manuscript database

    Methane (CH4) and carbon dioxide (CO2) represent 11 and 81%, respectively, of all anthropogenic greenhouse gas emissions. Agricultural CH4 emissions account for approximately 43% of all anthropogenic CH4 emissions. Most agricultural CH4 emissions are attributed to enteric fermentation within rumin...

  14. Enteric methane production and ruminal fermentation of forage brassica diets fed in continuous culture

    USDA-ARS?s Scientific Manuscript database

    The aim of the current study was to determine nutrient digestibility, VFA production, N metabolism, and CH4 production of canola (Brassica napus L.), rapeseed (B. napus L.), turnip (B. rapa L.), and annual ryegrass (Lolium multiflorum Lam.) fed with orchardgrass (Dactylis glomerata L.) in continuous...

  15. Effects of spent craft brewers’ yeast on fermentation and methane production by rumen microorganisms

    USDA-ARS?s Scientific Manuscript database

    Saccharomyces cerevisiae is a key component of beer brewing and a major by-product. The leftover, spent brewers’ yeast, from large breweries has been used for some time as a protein supplement in cattle, however the possible advantages of spent yeast from smaller craft breweries, containing much hig...

  16. Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henard, Calvin A.; Smith, Holly K.; Guarnieri, Michael T.

    Microbial conversion of methane to high-value bio-based chemicals and materials offers a path to mitigate GHG emissions and valorize this abundant-yet -underutilized carbon source. In addition to fermentation optimization strategies, rational methanotrophic bacterial strain engineering offers a means to reach industrially relevant titers, carbon yields, and productivities of target products. The phosphoketolase pathway functions in heterofermentative bacteria where carbon flux through two sugar catabolic pathways to mixed acids (lactic acid and acetic acid) increases cellular ATP production. Importantly, this pathway also serves as an alternative route to produce acetyl-CoA that bypasses the CO 2 lost through pyruvate decarboxylation in themore » Embden-Meyerhof-Parnas pathway. Thus, the phosphoketolase pathway can be leveraged for carbon efficient biocatalysis to acetyl-CoA-derived intermediates and products. Here, we show that the industrially promising methane biocatalyst, Methylomicrobium buryatense, encodes two phosphoketolase isoforms that are expressed in methanol- and methane-grown cells. Overexpression of the PktB isoform led to a 2-fold increase in intracellular acetyl-CoA concentration, and a 2.6-fold yield enhancement from methane to microbial biomass and lipids compared to wild-type, increasing the potential for methanotroph lipid-based fuel production. Off-gas analysis and metabolite profiling indicated that global metabolic rearrangements, including significant increases in post-translational protein acetylation and gene expression of the tetrahydromethanopterin-linked pathway, along with decreases in several excreted products, coincided with the superior biomass and lipid yield observed in the engineered strain. Further, these data suggest that phosphoketolase may play a key regulatory role in methanotrophic bacterial metabolism. As a result, given that acetyl-CoA is a key intermediate in several biosynthetic pathways, phosphoketolase overexpression offers a viable strategy to enhance the economics of an array of biological methane conversion processes.« less

  17. The Genome Sequence of the Rumen Methanogen Methanobrevibacter ruminantium Reveals New Possibilities for Controlling Ruminant Methane Emissions

    PubMed Central

    Leahy, Sinead C.; Kelly, William J.; Altermann, Eric; Ronimus, Ron S.; Yeoman, Carl J.; Pacheco, Diana M.; Li, Dong; Kong, Zhanhao; McTavish, Sharla; Sang, Carrie; Lambie, Suzanne C.; Janssen, Peter H.; Dey, Debjit; Attwood, Graeme T.

    2010-01-01

    Background Methane (CH4) is a potent greenhouse gas (GHG), having a global warming potential 21 times that of carbon dioxide (CO2). Methane emissions from agriculture represent around 40% of the emissions produced by human-related activities, the single largest source being enteric fermentation, mainly in ruminant livestock. Technologies to reduce these emissions are lacking. Ruminant methane is formed by the action of methanogenic archaea typified by Methanobrevibacter ruminantium, which is present in ruminants fed a wide variety of diets worldwide. To gain more insight into the lifestyle of a rumen methanogen, and to identify genes and proteins that can be targeted to reduce methane production, we have sequenced the 2.93 Mb genome of M. ruminantium M1, the first rumen methanogen genome to be completed. Methodology/Principal Findings The M1 genome was sequenced, annotated and subjected to comparative genomic and metabolic pathway analyses. Conserved and methanogen-specific gene sets suitable as targets for vaccine development or chemogenomic-based inhibition of rumen methanogens were identified. The feasibility of using a synthetic peptide-directed vaccinology approach to target epitopes of methanogen surface proteins was demonstrated. A prophage genome was described and its lytic enzyme, endoisopeptidase PeiR, was shown to lyse M1 cells in pure culture. A predicted stimulation of M1 growth by alcohols was demonstrated and microarray analyses indicated up-regulation of methanogenesis genes during co-culture with a hydrogen (H2) producing rumen bacterium. We also report the discovery of non-ribosomal peptide synthetases in M. ruminantium M1, the first reported in archaeal species. Conclusions/Significance The M1 genome sequence provides new insights into the lifestyle and cellular processes of this important rumen methanogen. It also defines vaccine and chemogenomic targets for broad inhibition of rumen methanogens and represents a significant contribution to worldwide efforts to mitigate ruminant methane emissions and reduce production of anthropogenic greenhouse gases. PMID:20126622

  18. Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst.

    PubMed

    Henard, Calvin A; Smith, Holly K; Guarnieri, Michael T

    2017-05-01

    Microbial conversion of methane to high-value bio-based fuels, chemicals, and materials offers a path to mitigate GHG emissions and valorize this abundant-yet -underutilized carbon source. In addition to fermentation optimization strategies, rational methanotrophic bacterial strain engineering offers a means to reach industrially relevant titers, carbon yields, and productivities of target products. The phosphoketolase pathway functions in heterofermentative bacteria where carbon flux through two sugar catabolic pathways to mixed acids (lactic acid and acetic acid) increases cellular ATP production. Importantly, this pathway also serves as an alternative route to produce acetyl-CoA that bypasses the CO 2 lost through pyruvate decarboxylation in the Embden-Meyerhof-Parnas pathway. Thus, the phosphoketolase pathway can be leveraged for carbon efficient biocatalysis to acetyl-CoA-derived intermediates and products. Here, we show that the industrially promising methane biocatalyst, Methylomicrobium buryatense, encodes two phosphoketolase isoforms that are expressed in methanol- and methane-grown cells. Overexpression of the PktB isoform led to a 2-fold increase in intracellular acetyl-CoA concentration, and a 2.6-fold yield enhancement from methane to microbial biomass and lipids compared to wild-type, increasing the potential for methanotroph lipid-based fuel production. Off-gas analysis and metabolite profiling indicated that global metabolic rearrangements, including significant increases in post-translational protein acetylation and gene expression of the tetrahydromethanopterin-linked pathway, along with decreases in several excreted products, coincided with the superior biomass and lipid yield observed in the engineered strain. Further, these data suggest that phosphoketolase may play a key regulatory role in methanotrophic bacterial metabolism. Given that acetyl-CoA is a key intermediate in several biosynthetic pathways, phosphoketolase overexpression offers a viable strategy to enhance the economics of an array of biological methane conversion processes. Copyright © 2017. Published by Elsevier Inc.

  19. Methane Ebullition During Simulated Lake Expansion and Permafrost Degradation

    NASA Astrophysics Data System (ADS)

    Mazéas, O.; von Fischer, J. C.; Whelan, M.; Rhew, R.

    2007-12-01

    Methane, a potent greenhouse gas, is emitted by Arctic tundra and lakes. Ebullition, or bubbling, of methane from Arctic lakes has been shown to be a major transport mechanism from the sediment to the atmosphere, and ebullition rates are greatest near the edges of the lakes where active erosion is occurring. In regions of continuous permafrost, Arctic lakes have been expanding in recent decades, attributed to permafrost melting and development of thermokarst. Lake expansion occurs when the margins erode into water, supplying large amounts of organic rich material to the sediment-water interface. This allows carbon that was previously stored in the soil (active layer and permafrost) to become bioavailable and subject to decomposition. An increase in Arctic methane emissions as a result of permafrost thawing and lake expansion would constitute a positive feedback to Arctic warming. In order to better understand these processes, an experiment was initiated in July 2007 at the Barrow Environmental Observatory, Barrow, AK. Different layers of locally collected tundra soil were placed into incubation chambers at the bottom of a shallow (about 1 m deep) lake. Each experimental chamber consists of a bucket fixed underneath an inverted funnel, with a sampling port on top to capture and collect the emitted gases. Gas samples are analyzed for methane and carbon dioxide concentrations, as well as relevant isotopic compositions. Gas sampling has occurred at frequent intervals during the late summer and will continue through the early winter. Three replicates of each layer (active layer, seasonally frozen active layer and permafrost) were incubated, as well as an empty control chamber. An additional chamber containing thawed permafrost and cellulose-rich sawdust was placed for comparison, as cellulose is a major component of plant tissue and the fermentation of the cellulose should yield substrates for methanogenesis. Total production of methane versus organic carbon content of initial sample, kinetics of ebullition, and relative potential emissions from each tundra layer will be assessed.

  20. Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst

    DOE PAGES

    Henard, Calvin A.; Smith, Holly K.; Guarnieri, Michael T.

    2017-04-02

    Microbial conversion of methane to high-value bio-based chemicals and materials offers a path to mitigate GHG emissions and valorize this abundant-yet -underutilized carbon source. In addition to fermentation optimization strategies, rational methanotrophic bacterial strain engineering offers a means to reach industrially relevant titers, carbon yields, and productivities of target products. The phosphoketolase pathway functions in heterofermentative bacteria where carbon flux through two sugar catabolic pathways to mixed acids (lactic acid and acetic acid) increases cellular ATP production. Importantly, this pathway also serves as an alternative route to produce acetyl-CoA that bypasses the CO 2 lost through pyruvate decarboxylation in themore » Embden-Meyerhof-Parnas pathway. Thus, the phosphoketolase pathway can be leveraged for carbon efficient biocatalysis to acetyl-CoA-derived intermediates and products. Here, we show that the industrially promising methane biocatalyst, Methylomicrobium buryatense, encodes two phosphoketolase isoforms that are expressed in methanol- and methane-grown cells. Overexpression of the PktB isoform led to a 2-fold increase in intracellular acetyl-CoA concentration, and a 2.6-fold yield enhancement from methane to microbial biomass and lipids compared to wild-type, increasing the potential for methanotroph lipid-based fuel production. Off-gas analysis and metabolite profiling indicated that global metabolic rearrangements, including significant increases in post-translational protein acetylation and gene expression of the tetrahydromethanopterin-linked pathway, along with decreases in several excreted products, coincided with the superior biomass and lipid yield observed in the engineered strain. Further, these data suggest that phosphoketolase may play a key regulatory role in methanotrophic bacterial metabolism. As a result, given that acetyl-CoA is a key intermediate in several biosynthetic pathways, phosphoketolase overexpression offers a viable strategy to enhance the economics of an array of biological methane conversion processes.« less

  1. Physiology and Genetics of Biogenic Methane-Production from Acetate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowers, Kevin R

    Biomass conversion catalyzed by methanogenic consortia is a widely available, renewable resource for both energy production and waste treatment. The efficiency of this process is directly dependent upon the interaction of three metabolically distinct groups of microorganisms; the fermentative and acetogenic Bacteria and the methanogenic Archaea. One of the rate limiting steps in the degradation of soluble organic matter is the dismutation of acetate, a predominant intermediate in the process, which accounts for 70 % or more of the methane produced by the methanogens. Acetate utilization is controlled by regulation of expression of carbon monoxide dehydrogensase (COdh), which catalyzes themore » dismutation of acetate. However, physiological and molecular factors that control differential substrate utilization have not been identified in these Archaea. Our laboratory has identified sequence elements near the promoter of the gene (cdh) encoding for COdh and we have confirmed that these sequences have a role in the in vivo expression of cdh. The current proposal focuses on identifying the regulatory components that interact with DNA and RNA elements, and identifying the mechanisms used to control cdh expression. We will determine whether expression is controlled at the level of transcription or if it is mediated by coordinate interaction of transcription initiation with other processes such as transcription elongation rate and differential mRNA stability. Utilizing recently sequenced methanosarcinal genomes and a DNA microarray currently under development genes that encode regulatory proteins and transcription factors will be identified and function confirmed by gene disruption and subsequent screening on different substrates. Functional interactions will be determined in vivo by assaying the effects of gene dosage and site-directed mutagenesis of the regulatory gene on the expression of a cdh::lacZ operon fusion. Results of this study will reveal whether this critical catabolic pathway is controlled by mechanisms similar to those employed by the Bacteria and Eukarya, or by a regulatory paradigm that is unique to the Archaea. The mechanism(s) revealed by this investigation will provide insight into the regulatory strategies employed by the aceticlastic methanogenic Archaea to efficiently direct carbon and electron flow in anaerobic consortia during fermentative processes.« less

  2. Effects of coconut and fish oils on ruminal methanogenesis, fermentation, and abundance and diversity of microbial populations in vitro.

    PubMed

    Patra, A K; Yu, Z

    2013-03-01

    Coconut (CO) and fish (FO) oils were previously shown to inhibit rumen methanogenesis and biohydrogenation, which mitigates methane emission and helps improve beneficial fatty acids in meat and milk. This study aimed at investigating the comparative effects of CO and FO on the methanogenesis, fermentation, and microbial abundances and diversity in vitro rumen cultures containing different doses (0, 3.1, and 6.2 mL/L) of each oil and 400mg feed substrate using rumen fluid from lactating dairy cows as inocula. Increasing doses of CO and FO quadratically decreased concentrations of methane, but hydrogen concentrations were only increased quadratically by CO. Both oils linearly decreased dry matter and neutral detergent fiber digestibility of feeds but did not affect the concentration of total volatile fatty acids. However, CO reduced acetate percentage and acetate to propionate ratio and increased the percentages of propionate and butyrate to a greater extent than FO. Ammonia concentration was greater for CO than FO. As determined by quantitative real-time PCR, FO had greater inhibition to methanogens than CO, but the opposite was true for protozoal, Ruminococcus flavefaciens, and Fibrobacter succinogenes. Ruminococcus albus was not affected by either oil. Denaturing gradient gel electrophoresis (DGGE) profiles revealed that bacterial and archaeal community composition were changed differently by oil type. Based on Pareto-Lorenz evenness curve analysis of the DGGE profiles, CO noticeably changed the functional organization of archaea compared with FO. In conclusion, although both CO and FO decreased methane concentrations to a similar extent, the mode of reduction and the effect on abundances and diversity of archaeal and bacterial populations differed between the oils. Thus, the use of combination of CO and FO at a low dose may additively lower methanogenesis in the rumen while having little adverse effect on rumen fermentation. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Integrated agricultural energy system

    NASA Astrophysics Data System (ADS)

    Taylor, R. M.

    1985-08-01

    The purpose of this program is to show New England farmers and other New England energy users how they can use alternative energy sources to reduce their energy cost and dependency on conventional sources. The project demonstrates alternative energy technologies in solar, alcohol and methane. Dissemination is planned through tours to be conducted by the Worcester County Extension Service. Most of these goals were completed as planned. A few things have yet to be completed. The solar panels and solar hot water tanks have to be installed. The fermenter's agitating and cooling system have to be secured inside the fermenter. Once these items are complete tours will begin early in the spring.

  4. A multidisciplinary research program directed toward utilization of solar energy through bioconversion of renewable resources

    NASA Astrophysics Data System (ADS)

    Finnerty, W. R.

    1980-07-01

    Cellulytic bacteria, cellobiose fermentors, sulfate-reducing bacteria and methanogenic bacteria were isolated from established anaerobic mesophilic and thermophilic cellulose methane fermentations and these isolates, plus known laboratory strains, were employed to partially reconstitute highly active cellulose fermentations. These mixed cultures are utilized as model systems to study the parameters required for maximum production of CH4, H2 and chemical feedstocks such as acetate, ethanol, propionate, etc., from cellulose. The physiology of these reconstituted cultures is investigated as regards cultural conditions, microbial types, inoculum size, interspecies H2 transfer and specific regulatory phenomena, the accumulation of cellobiose and acetate.

  5. Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid

    PubMed Central

    2013-01-01

    Background Lignocellulosic biomass, such as corn stover, is a potential raw material for ethanol production. One step in the process of producing ethanol from lignocellulose is enzymatic hydrolysis, which produces fermentable sugars from carbohydrates present in the corn stover in the form of cellulose and hemicellulose. A pretreatment step is crucial to achieve efficient conversion of lignocellulosic biomass to soluble sugars, and later ethanol. This study has investigated steam pretreatment of corn stover, with and without sulphuric acid as catalyst, and examined the effect of residence time (5–10 min) and temperature (190–210°C) on glucose and xylose recovery. The pretreatment conditions with and without dilute acid that gave the highest glucose yield were then used in subsequent experiments. Materials pretreated at the optimal conditions were subjected to simultaneous saccharification and fermentation (SSF) to produce ethanol, and remaining organic compounds were used to produce biogas by anaerobic digestion (AD). Results The highest glucose yield achieved was 86%, obtained after pretreatment at 210°C for 10 minutes in the absence of catalyst, followed by enzymatic hydrolysis. The highest yield using sulphuric acid, 78%, was achieved using pretreatment at 200°C for 10 minutes. These two pretreatment conditions were investigated using two different process configurations. The highest ethanol and methane yields were obtained from the material pretreated in the presence of sulphuric acid. The slurry in this case was split into a solid fraction and a liquid fraction, where the solid fraction was used to produce ethanol and the liquid fraction to produce biogas. The total energy recovery in this case was 86% of the enthalpy of combustion energy in corn stover. Conclusions The highest yield, comprising ethanol, methane and solids, was achieved using pretreatment in the presence of sulphuric acid followed by a process configuration in which the slurry from the pretreatment was divided into a solid fraction and a liquid fraction. The solid fraction was subjected to SSF, while the liquid fraction, together with the filtered residual from SSF, was used in AD. Using sulphuric acid in AD did not inhibit the reaction, which may be due to the low concentration of sulphuric acid used. In contrast, a pretreatment step without sulphuric acid resulted not only in higher concentrations of inhibitors, which affected the ethanol yield, but also in lower methane production. PMID:23356481

  6. Acetylene fermentation: An Earth-based analog of biological carbon cycling on Titan

    NASA Astrophysics Data System (ADS)

    Miller, L. G.; Baesman, S. M.; Hoeft, S. E.; Kirshtein, J.; Wolf, K.; Voytek, M. A.; Oremland, R. S.

    2009-12-01

    Acetylene (C2H2) is present in part per million quantities in the atmosphere of Titan; conceivably as an intermediate product of methane photolysis. Currently, Earth’s atmosphere contains only trace amounts of C2H2 (~40 pptv), however higher concentrations likely prevailed during the Hadean and early Archean eons (4.5 - 3.5 Ga). We isolated C2H2-fermenting microbes from various aquatic and sedimentary environments. Acetylene fermentation proceeds via acetylene hydratase (AH) through acetaldehyde, which dismutates to ethanol and acetate, and if oxidants are present (e.g., sulfate) eventually to CO2. Thus, the remnants of a C2H2 cycle exists today on Earth but may also occur on Titan and/or Enceladus, both being planetary bodies hypothesized to have liquid water underlying their frozen surfaces. We developed a molecular method for AH by designing PCR primers to target the functional gene in Pelobacter acetylenicus. We used this method to scan new environments for the presence of AH and we employed DNA sequencing of the 16S rRNA gene in order to positively identify pelobacters in environmental samples. Acetylene fermentation was documented in five diverse salt-, fresh-, and ground-water sites. Pelobacter was identified as the genus responsible for acetylene fermentation in some, but not all, of these sites. Successful probing for AH preceded the discovery of acetylene consumption in a contaminated groundwater site, demonstrating the utility of functional gene probing. A pure culture of a C2H2-fermenting pelobacter was obtained from an intertidal mudflat. We also obtained an enrichment culture (co-cultured with a sulfate reducer) from freshwater lake sediments, but neither was pelobacter nor AH detected in this sample, suggesting that an alternative pathway may be involved here. Slurry experiments using these lake sediments either with or without added C2H2 or sulfate showed that sulfate reduction and acetylene fermentation were independent processes. In general, the ubiquity of acetylene fermentation as well as the presence of AH (an enzyme specific to acetylene) begs the questions; 1) why has this ability persisted on Earth for so long in the absence of significant atmospheric acetylene? 2) does C2H2-fermentation represent a possible means of sustaining growth in the anoxic, aqueous subsurface regions of Titan (and Enceladus)?

  7. Rice Cluster I, an Important Group of Archaea Producing Methane in Rice Fields

    NASA Astrophysics Data System (ADS)

    Conrad, R.

    2006-12-01

    Rice fields are an important source for the greenhouse gas methane. Methane is a major degradation product of organic matter in the anoxic soil, is partially oxidized in the rhizosphere and is emitted into the atmosphere through the aerenchyma system of the plants. Anaerobic degradation of organic matter by fermenting bacteria eventually results in the production of acetate and hydrogen, the two major substrates for microbial methanogenesis. The community of methanogenic archaea consists of several major orders or families including hydrogen-utilizing Rice Cluster-I (RC-I). Environmental conditions affect the methanogenic degradation process and the community structure of the methanogenic archaea in soil and rhizosphere. For example, populations of acetoclastic Methanosaetaceae and Methanosarcinaceae are enhanced by low and high acetate concentrations, respectively. Stable isotope probing of 16S rRNA showed that RC-I methanogens are mainly active on rice roots and at low H2 concentrations. Growth and population size is largely consistent with energetic conditions. RC-I methanogens on roots seem to be responsible for methane production from plant photosynthates that account for a major part of the emitted methane. Populations of RC-I methanogens in rice field soil are also enhanced at elevated temperatures (40-50°C). Moderately thermophilic members of RC-I methanogens or other methanogenic families were found to be ubiquitously present in soils from rice fields and river marshes. The genome of a RC-I methanogen was completely sequenced out of an enrichment culture using a metagenome approach. Genes found are consistent with life in the rhizosphere and in temporarily drained, oxic soil. We found that the methanogenic community structure on the rice roots is mainly determined by the respective community structure of the soil, but is in addition affected by the rice cultivar. Rice microcosms in which soil and rice roots are mainly colonized by RC-I methanogens produce and emit more methane than when inhabited by Methanomicrobiales, indicating that the methanogenic archaeal community is an important factor for methane emission from rice fields.

  8. Geochemical impacts of waste disposal on the abyssal seafloor

    NASA Astrophysics Data System (ADS)

    Jahnke, Richard A.

    1998-05-01

    The response of pore water oxygen, nitrate, sulfate, sulfide, ammonium and methane and particulate organic carbon distributions to the input of 8.5 million m 3 (3.8×10 12 g) of organic-rich waste materials is simulated. The deposit is assumed to be conical with a maximum thickness of approximately 20 m. Remineralization reactions within the deposit rapidly deplete any initially available pore water oxidants such as oxygen, nitrate and sulfate, and are subsequently dominated by fermentation reactions. Diffusion downward of reduced metabolites, sulfide, ammonium and methane, depletes the available oxidants in the pore waters below the waste pile, increasing the thickness of the anoxic layer. While the impacted region is limited to essentially the deposition site, recovery of the pore waters is estimated to be >10 4 years. The overall computational results are corroborated by the pore water distributions observed at turbidite boundaries. Numerous uncertainties in the parameterizations limit the overall accuracy of the calculations presented. The most significant of these are: (1) A quantitatively accurate assessment of the remineralization rate of the deposited organic matter including its rate of inoculation by abyssal microorganisms; (2) a detailed assessment of potential non-diffusive pore water transport processes including advection due to compaction and buoyancy-driven flows and enhanced exchange due to macrobenthic irrigation activities and (3) an assessment of the potential alteration of pore space and methane reactivity due to gas hydrate formation.

  9. Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production.

    PubMed

    Zheng, Xiong; Su, Yinglong; Li, Xiang; Xiao, Naidong; Wang, Dongbo; Chen, Yinguang

    2013-05-07

    Short-chain fatty acids (SCFAs) have been regarded as the excellent carbon source of wastewater biological nutrient removal, and sludge alkaline (pH 10) fermentation has been reported to achieve highly efficient SCFAs production. In this study, the underlying mechanisms for the improved SCFAs production at pH 10 were investigated by using 454 pyrosequencing and fluorescent in situ hybridization (FISH) to analyze the microbial community structures in sludge fermentation reactors. It was found that sludge fermentation at pH 10 increased the abundances of Pseudomonas sp. and Alcaligenes sp., which were able to excrete extracellular proteases and depolymerases, and thus enhanced the hydrolysis of insoluble sludge protein and polyhydroxyalkanoates (PHA). Meanwhile, the abundance of acid-producing bacteria (such as Clostridium sp.) in the reactor of pH 10 was also higher than that of uncontrolled pH, which benefited the acidification of soluble organic substrates. Further study indicated that sludge fermentation at pH 10 significantly decreased the number of methanogenic archaea, resulting in lower SCFAs consumption and lower methane production. Therefore, anaerobic sludge fermentation under alkaline conditions increased the abundances of bacteria involved in sludge hydrolysis and acidification, and decreased the abundance of methanogenic archaea, which favored the competition of bacteria over methanogens and resulted in the efficient production of SCFAs.

  10. Techno-economics of integrating bioethanol production from spent sulfite liquor for reduction of greenhouse gas emissions from sulfite pulping mills.

    PubMed

    Petersen, Abdul M; Haigh, Kate; Görgens, Johann F

    2014-01-01

    Flow sheet options for integrating ethanol production from spent sulfite liquor (SSL) into the acid-based sulfite pulping process at the Sappi Saiccor mill (Umkomaas, South Africa) were investigated, including options for generation of thermal and electrical energy from onsite bio-wastes, such as bark. Processes were simulated with Aspen Plus® for mass- and energy-balances, followed by an estimation of the economic viability and environmental impacts. Various concentration levels of the total dissolved solids in magnesium oxide-based SSL, which currently fuels a recovery boiler, prior to fermentation was considered, together with return of the fermentation residues (distillation bottoms) to the recovery boiler after ethanol separation. The generation of renewable thermal and electrical energy from onsite bio-wastes were also included in the energy balance of the combined pulping-ethanol process, in order to partially replace coal consumption. The bio-energy supplementations included the combustion of bark for heat and electricity generation and the bio-digestion of the calcium oxide SSL to produce methane as additional energy source. Ethanol production from SSL at the highest substrate concentration was the most economically feasible when coal was used for process energy. However this solution did not provide any savings in greenhouse gas (GHG) emissions for the concentration-fermentation-distillation process. Maximizing the use of renewable energy sources to partially replace coal consumption yielded a satisfactory economic performance, with a minimum ethanol selling price of 0.83 US$/l , and a drastic reduction in the overall greenhouse gas emissions for the entire facility. High substrate concentrations and conventional distillation should be used when considering integrating ethanol production at sulfite pulping mills. Bio-wastes generated onsite should be utilized at their maximum potential for energy generation in order to maximize the GHG emissions reduction.

  11. In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation.

    PubMed

    Durmic, Zoey; Moate, Peter J; Eckard, Richard; Revell, Dean K; Williams, Richard; Vercoe, Philip E

    2014-04-01

    Ruminants produce large quantities of methane in their rumen as a by-product of microbial digestion of feed. Antibiotics are added to ruminant feed to reduce wasteful production of methane; however, this practice has some downsides. A search for safer and natural feed additives with anti-methanogenic properties is under way. The objective of this research was to examine selected feed additives, plant essential oils and plant extracts for their anti-methanogenic potential in the rumen using an in vitro batch fermentation system. A significant reduction (P < 0.05) in methane production was observed with nine feed additives (up to 40% reduction), all eight essential oils (up to 75% reduction) and two plant extracts (14% reduction) when compared to their respective controls. Amongst these, only an algal meal high in docosahexaenoic acid, preparations of Nannochloropsis oculata, calcareous marine algae, yeast metabolites and two tannins did not inhibit microbial gas and volatile acid production. The current study identified some potent dietary ingredients or plant compounds that can assist in developing novel feed additives for methane mitigation from the rumen. © 2013 Society of Chemical Industry.

  12. Effects of plants and essential oils on ruminal in vitro batch culture methane production and fermentation

    USDA-ARS?s Scientific Manuscript database

    In this study, plants (14) and essential oils (EO; 88) from plants that are naturalized to, or can be successfully grown in North America were evaluated in a batch culture in vitro screening experiments with ruminal fluid as potential anti-methanogenic additives for ruminant diets. Essential oils we...

  13. Biodegradation of rocket propellant waste, ammonium perchlorate

    NASA Technical Reports Server (NTRS)

    Naqvi, S. M. Z.; Latif, A.

    1975-01-01

    The short term effects of ammonium perchlorate on selected organisms were studied. A long term experiment was also designed to assess the changes incurred by ammonium perchlorate on the nitrogen and chloride contents of soil within a period of 3 years. In addition, an attempt was made to produce methane gas from anaerobic fermentation of the aquatic weed, Alternanthera philoxeroides.

  14. Effect of feeding warm-season annuals with orchardgrass on ruminal fermentation and methane output in continuous culture

    USDA-ARS?s Scientific Manuscript database

    A 4-unit, dual-flow continuous culture fermentor system was used to assess nutrient digestibility, volatile fatty acids (VFA) production, bacterial protein synthesis and CH4 output of warm-season summer annual grasses. Treatments were randomly assigned to fermentors in a 4 × 4 Latin square design us...

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    ARCTECH has developed a novel process (MicGAS) for direct, anaerobic biomethanation of coals. Biomethanation potential of coals of different ranks (Anthracite, bitumious, sub-bitumious, and lignites of different types), by various microbial consortia, was investigated. Studies on biogasification of Texas Lignite (TxL) were conducted with a proprietary microbial consortium, Mic-1, isolated from hind guts of soil eating termites (Zootermopsis and Nasutitermes sp.) and further improved at ARCTECH. Various microbial populations of the Mic-1 consortium carry out the multi-step MicGAS Process. First, the primary coal degraders, or hydrolytic microbes, degrade the coal to high molecular weight (MW) compounds. Then acedogens ferment themore » high MW compounds to low MW volatile fatty acids. The volatile fatty acids are converted to acetate by acetogens, and the methanogens complete the biomethanation by converting acetate and CO{sub 2} to methane.« less

  16. Evaluation of Different Yeast Species for Improving In vitro Fermentation of Cereal Straws

    PubMed Central

    Wang, Zuo; He, Zhixiong; Beauchemin, Karen A.; Tang, Shaoxun; Zhou, Chuanshe; Han, Xuefeng; Wang, Min; Kang, Jinhe; Odongo, Nicholas E.; Tan, Zhiliang

    2016-01-01

    Information on the effects of different yeast species on ruminal fermentation is limited. This experiment was conducted in a 3×4 factorial arrangement to explore and compare the effects of addition of three different live yeast species (Candida utilis 1314, Saccharomyces cerevisiae 1355, and Candida tropicalis 1254) at four doses (0, 0.25×107, 0.50×107, and 0.75×107 colony-forming unit [cfu]) on in vitro gas production kinetics, fiber degradation, methane production and ruminal fermentation characteristics of maize stover, and rice straw by mixed rumen microorganisms in dairy cows. The maximum gas production (Vf), dry matter disappearance (IVDMD), neutral detergent fiber disappearance (IVNDFD), and methane production in C. utilis group were less (p<0.01) than other two live yeast supplemented groups. The inclusion of S. cerevisiae reduced (p<0.01) the concentrations of ammonia nitrogen (NH3-N), isobutyrate, and isovalerate compared to the other two yeast groups. C. tropicalis addition generally enhanced (p<0.05) IVDMD and IVNDFD. The NH3-N concentration and CH4 production were increased (p<0.05) by the addition of S. cerevisiae and C. tropicalis compared with the control. Supplementation of three yeast species decreased (p<0.05) or numerically decreased the ratio of acetate to propionate. The current results indicate that C. tropicalis is more preferred as yeast culture supplements, and its optimal dose should be 0.25×107 cfu/500 mg substrates in vitro. PMID:26732448

  17. Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro.

    PubMed

    Hassanat, Fadi; Benchaar, Chaouki

    2013-01-01

    Tannins added to animal diets may have a positive effect on energy and protein utilisation in the rumen. The objective of this study was to examine the impact of different sources and concentrations (20, 50, 100, 150 and 200 g kg⁻¹ dry matter (DM)) of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen microbial fermentation in vitro. The experiment also included a negative control with no tannins (control) and a positive control with monensin (10 mg L⁻¹). In vitro gas production and total volatile fatty acid (VFA) concentration decreased as tannin concentration increased. Addition of acacia, chestnut or valonea tannins at ≥ 50 g kg⁻¹ or quebracho tannins at ≥ 100 g kg⁻¹ resulted in a decrease (up to 40%) in methane (CH₄) production compared with the control. Valonea tannins were the only tannin source that reduced (-11%) CH₄ production at 50 g kg⁻¹ without affecting VFA concentration. Tannin treatments reduced ammonia (NH₃) and branched-chain VFA concentrations, indicating a reduction in ruminal protein degradation. Monensin reduced CH₄ production (-37%) and NH₃ concentration (-20%) without affecting total VFA concentration. Supplying acacia, chestnut or valonea tannins at 50 g kg⁻¹ has the potential to reduce CH₄ production and ruminal protein degradation with minimum detrimental effects on efficiency of ruminal fermentation. Copyright © 2012 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.

  18. Utilization of acetone-butanol-ethanol-water mixture obtained from biomass fermentation as renewable feedstock for hydrogen production via steam reforming: Thermodynamic and energy analyses.

    PubMed

    Kumar, Brajesh; Kumar, Shashi; Sinha, Shishir; Kumar, Surendra

    2018-08-01

    A thermodynamic equilibrium analysis on steam reforming process to utilize acetone-butanol-ethanol-water mixture obtained from biomass fermentation as biorenewable fuel has been performed to produce clean energy carrier H 2 via non-stoichiometric approach namely Gibbs free energy minimization method. The effect of process variables such as temperature (573-1473 K), pressure (1-10 atm), and steam/fuel molar feed ratio (F ABE  = 5.5-12) have been investigated on equilibrium compositions of products, H 2 , CO, CO 2 , CH 4 and solid carbon. The best suitable conditions for maximization of desired product H 2 , suppression of CH 4 , and inhibition of solid carbon are 973 K, 1 atm, steam/fuel molar feed ratio = 12. Under these conditions, the maximum molar production of hydrogen is 8.35 with negligible formation of carbon and methane. Furthermore, the energy requirement per mol of H 2 (48.96 kJ), thermal efficiency (69.13%), exergy efficiency (55.09%), exergy destruction (85.36 kJ/mol), and generated entropy (0.29 kJ/mol.K) have been achieved at same operating conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Biohydrogen production from tequila vinasses using a fixed bed reactor.

    PubMed

    Buitrón, Germán; Prato-Garcia, Dorian; Zhang, Axue

    2014-01-01

    In Mexico, the industrial production of tequila leads to the discharge of more than 31.2 million of m(3) of vinasse, which causes serious environmental issues because of its acidity, high organic load and the presence of recalcitrant compounds. The aim of this research was to study the feasibility of a fixed bed reactor for the production of biohydrogen by using tequila vinasse as substrate. The experiments were carried out in a continuous mode under mesophilic and acidic conditions. The maximum hydrogen yield and hydrogen production rate were 1.3 mol H2 mol/mol glucose and 72 ± 9 mL H2/(Lreactor h), respectively. Biogas consisted of carbon dioxide (36%) and hydrogen (64%); moreover methane was not observed. The electron-equivalent mass balance fitted satisfactorily (sink of electrons from 0.8 to 7.6%). For vinasses, hydrogen production accounted for 10.9% of the total available electron-equivalents. In the liquid phase, the principal metabolites identified were acetic, butyric and iso-butyric acids, which indicated a butyrate-acetate type fermentation. Tequila vinasses did not result in potential inhibition of the fermentative process. Considering the process as a water treatment system, only 20% of the original carbon was removed (as carbon dioxide and biomass) when the tequila vinasses are used.

  20. Application of the Initial Rate Method in Anaerobic Digestion of Kitchen Waste

    PubMed Central

    Lang, Xianming; Liu, Yiwei; Li, Rundong; Yu, Meiling; Shao, Lijie; Wang, Xiaoming

    2017-01-01

    This article proposes a methane production approach through sequenced anaerobic digestion of kitchen waste, determines the hydrolysis constants and reaction orders at both low total solid (TS) concentrations and high TS concentrations using the initial rate method, and examines the population growth model and first-order hydrolysis model. The findings indicate that the first-order hydrolysis model better reflects the kinetic process of gas production. During the experiment, all the influential factors of anaerobic fermentation retained their optimal values. The hydrolysis constants and reaction orders at low TS concentrations are then employed to demonstrate that the first-order gas production model can describe the kinetics of the gas production process. At low TS concentrations, the hydrolysis constants and reaction orders demonstrated opposite trends, with both stabilizing after 24 days at 0.99 and 1.1252, respectively. At high TS concentrations, the hydrolysis constants and the reaction orders stabilized at 0.98 (after 18 days) and 0.3507 (after 14 days), respectively. Given sufficient reaction time, the hydrolysis involved in anaerobic fermentation of kitchen waste can be regarded as a first-order reaction in terms of reaction kinetics. This study serves as a good reference for future studies regarding the kinetics of anaerobic digestion of kitchen waste. PMID:28546964

  1. Application of the Initial Rate Method in Anaerobic Digestion of Kitchen Waste.

    PubMed

    Feng, Lei; Gao, Yuan; Kou, Wei; Lang, Xianming; Liu, Yiwei; Li, Rundong; Yu, Meiling; Shao, Lijie; Wang, Xiaoming

    2017-01-01

    This article proposes a methane production approach through sequenced anaerobic digestion of kitchen waste, determines the hydrolysis constants and reaction orders at both low total solid (TS) concentrations and high TS concentrations using the initial rate method, and examines the population growth model and first-order hydrolysis model. The findings indicate that the first-order hydrolysis model better reflects the kinetic process of gas production. During the experiment, all the influential factors of anaerobic fermentation retained their optimal values. The hydrolysis constants and reaction orders at low TS concentrations are then employed to demonstrate that the first-order gas production model can describe the kinetics of the gas production process. At low TS concentrations, the hydrolysis constants and reaction orders demonstrated opposite trends, with both stabilizing after 24 days at 0.99 and 1.1252, respectively. At high TS concentrations, the hydrolysis constants and the reaction orders stabilized at 0.98 (after 18 days) and 0.3507 (after 14 days), respectively. Given sufficient reaction time, the hydrolysis involved in anaerobic fermentation of kitchen waste can be regarded as a first-order reaction in terms of reaction kinetics. This study serves as a good reference for future studies regarding the kinetics of anaerobic digestion of kitchen waste.

  2. Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process.

    PubMed

    Kumari, Sinu; Das, Debabrata

    2015-10-01

    The aim of the present study was to enhance the gaseous energy recovery from sugarcane bagasse. The two stage (biohydrogen and biomethanation) batch process was considered under mesophilic condition. Alkali pretreatment (ALP) was used to remove lignin from sugarcane bagasse. This enhanced the enzymatic digestibility of bagasse to a great extent. The maximum lignin removal of 60% w/w was achieved at 0.25 N NaOH concentration (50°C, 30 min). The enzymatic hydrolysis efficiency was increased to about 2.6-folds with alkali pretreated sugarcane bagasse as compared to untreated one. The maximum hydrogen and methane yields from the treated sugarcane bagasse by biohydrogen and biomethanation processes were 93.4 mL/g-VS and 221.8 mL/g-VS respectively. This process resulted in significant increase in energy conversion efficiency (44.8%) as compared to single stage hydrogen production process (5.4%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Enhanced energy recovery from cassava ethanol wastewater through sequential dark hydrogen, photo hydrogen and methane fermentation combined with ammonium removal.

    PubMed

    Lin, Richen; Cheng, Jun; Yang, Zongbo; Ding, Lingkan; Zhang, Jiabei; Zhou, Junhu; Cen, Kefa

    2016-08-01

    Cassava ethanol wastewater (CEW) was subjected to sequential dark H2, photo H2 and CH4 fermentation to maximize H2 production and energy yield. A relatively low H2 yield of 23.6mL/g soluble chemical oxygen demand (CODs) was obtained in dark fermentation. To eliminate the inhibition of excessive NH4(+) on sequential photo fermentation, zeolite was used to remove NH4(+) in residual dark solution (86.5% removal efficiency). The treated solution from 5gCODs/L of CEW achieved the highest photo H2 yield of 369.7mL/gCODs, while the solution from 20gCODs/L gave the lowest yield of 259.6mL/gCODs. This can be explained that photo H2 yield was correlated to soluble metabolic products (SMPs) yield in dark fermentation, and specific SMPs yield decreased from 38.0 to 18.1mM/g CODs. The total energy yield significantly increased to 8.39kJ/gCODs by combining methanogenesis with a CH4 yield of 117.9mL/gCODs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach.

    PubMed

    Guyader, J; Eugène, M; Nozière, P; Morgavi, D P; Doreau, M; Martin, C

    2014-11-01

    A meta-analysis was conducted to evaluate the effects of protozoa concentration on methane emission from ruminants. A database was built from 59 publications reporting data from 76 in vivo experiments. The experiments included in the database recorded methane production and rumen protozoa concentration measured on the same groups of animals. Quantitative data such as diet chemical composition, rumen fermentation and microbial parameters, and qualitative information such as methane mitigation strategies were also collected. In the database, 31% of the experiments reported a concomitant reduction of both protozoa concentration and methane emission (g/kg dry matter intake). Nearly all of these experiments tested lipids as methane mitigation strategies. By contrast, 21% of the experiments reported a variation in methane emission without changes in protozoa numbers, indicating that methanogenesis is also regulated by other mechanisms not involving protozoa. Experiments that used chemical compounds as an antimethanogenic treatment belonged to this group. The relationship between methane emission and protozoa concentration was studied with a variance-covariance model, with experiment as a fixed effect. The experiments included in the analysis had a within-experiment variation of protozoa concentration higher than 5.3 log10 cells/ml corresponding to the average s.e.m. of the database for this variable. To detect potential interfering factors for the relationship, the influence of several qualitative and quantitative secondary factors was tested. This meta-analysis showed a significant linear relationship between methane emission and protozoa concentration: methane (g/kg dry matter intake)=-30.7+8.14×protozoa (log10 cells/ml) with 28 experiments (91 treatments), residual mean square error=1.94 and adjusted R 2=0.90. The proportion of butyrate in the rumen positively influenced the least square means of this relationship.

  5. Role of microorganisms for cycling of atmospheric constituents, emphasizing the greenhouse gas methane (Invited)

    NASA Astrophysics Data System (ADS)

    Conrad, R.

    2013-12-01

    Microorganisms have contributed significantly to the formation of the atmosphere and the habitability of Earth. Microbial methanogenesis probably helped overcoming the faint sun problem on young Earth. Later on, cyanobacterial photosynthesis produced oxygen and thus restricted the life zone of methanogenic microbial communities, which nowadays contribute only about 1% to total carbon cycle. Nevertheless, methanogenesis still dominates the budget of atmospheric methane and contributes significantly to the greenhouse effect. There are numerous habitats, which exchange methane with the atmosphere, and even more in which methane is intensively cycled albeit little emitted. Methane can be a byproduct of chemical reactions in plant leaves, or of aerobic methyl phosphonate consumption in ocean water. Most commonly, however, methane is a stoichiometric catabolic product in the degradation of organic matter by anaerobic microorganisms. The degradation is achieved by a complex microbial community consisting of various species of hydrolytic and fermentative Bacteria that produce hydrogen, carbon dioxide and acetate as major end products, and of methanogenic Archaea that eventually convert these compounds to methane and carbon dioxide. The composition of such methanogenic microbial communities, the rates and paths of methane formation, and the isotopic composition of the produced methane all exhibit quite some variability across the different habitats in which methane is produced from organic matter decomposition, such as flooded soils, lake sediments, peatlands, animal gut systems. The structure of the microbial communities often strongly affects their function. It is a challenging task to understand the environmental and biochemical basis of the interactions of abiotic factors and microorganisms shaping the structure and function of the microbial communities in the different methanogenic habitats.

  6. [Sources of Methane in the Boreal Region

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In determining the global methane budget the sources of methane must be balanced with the sinks and atmospheric inventory. The approximate contribution of the different methane sources to the budget has been establish showing the major terrestrial inputs as rice, wetlands, bogs, fens, and tundra. Measurements and modeling of production in these sources suggest that temperature, water table height and saturation along with substratum composition are important in controlling methane production and emission. The isotopic budget of 13 C and D/H in methane can be used as a tool to clarify the global budget. This approach has achieved success at constraining the inputs. Studies using the isotopic approach place constraints on global methane production from different sources. Also, the relation between the two biogenic production pathways, acetate fermentation and CO2 reduction, and the effect of substratum composition can be made using isotope measurements shows the relation between the different biogenic, thermogenic and anthropogenic sources of methane as a function of the carbon and hydrogen isotope values for each source and the atmosphere, tropospheric composition. Methane emissions from ponds and fens are a significant source in the methane budget of the boreal region. An initial study in 1993 and 1994 on the isotopic composition of this methane source and the isotopic composition in relation to oxidation of methane at the sediment surface of the ponds or fen was conducted as part of our BOREAS project. The isotopic composition of methane emitted by saturated anoxic sediment is dependent on the sediment composition and geochemistry, but will be influenced by in situ oxidation, in part, a function of rooted plant activity. The influence of oxidation mediated by rooted plant activities on the isotopic composition of methane is not well known and will depend on the plant type, sediment temperature, and numerous other variables. Information on this isotopic composition is important in both understanding the bio-geochemistry of the system and also in determining the regional and global inputs for the methane isotope budget. In determining the destruction of methane for balancing the atmospheric methane budget soil oxidation must be considered.

  7. In vitro fermentation pattern of D-tagatose is affected by adaptation of the microbiota from the gastrointestinal tract of pigs.

    PubMed

    Laerke, H N; Jensen, B B; Højsgaard, S

    2000-07-01

    Knowledge of the fermentation pattern of D-tagatose is important for the assessment of energy value and compliance of D-tagatose. In vitro fermentation experiments with pig intestinal contents and bacteria harvested from the gastrointestinal tract of pigs were used to investigate the degradation of D-tagatose and the formation of fermentation products. Two groups of eight pigs were fed either a control diet containing 150 g/kg sucrose or a diet which had 100 g/kg of the sucrose replaced by D-tagatose. After 18 d the pigs were killed and the gastrointestinal contents collected for in vitro studies. No microbial fermentation of D-tagatose occurred in the stomach or in the small intestine, whereas the sugar was fermented in the cecum and colon. Formate, acetate, propionate, butyrate, valerate, caproate and some heptanoate were produced by the microbial fermentation of D-tagatose by gut microbiota. Hydrogen and methane were also produced. The population of D-tagatose-degrading bacteria in fecal samples and the capacity of bacteria from the hindgut to degrade D-tagatose were higher in the pigs adapted to D-tagatose compared with unadapted pigs. In unadapted pigs, the major fermentation product from D-tagatose was acetic acid. Much more butyric and valeric acids were produced from D-tagatose by bacterial slurries of tagatose-adapted pigs compared with unadapted pigs; this was especially the case for samples from the colon. We conclude that D-tagatose is not fermented in the upper gastrointestinal tract, and the ability of the large intestinal microbiota to ferment D-tagatose is dependent on adaptation.

  8. Use of pressure manifestations following the water plasma expansion for phytomass disintegration.

    PubMed

    Maroušek, Josef; Kwan, Jason Tai Hong

    2013-01-01

    A prototype capable of generating underwater high-voltage discharges (3.5 kV) coupled with water plasma expansion was constructed. The level of phytomass disintegration caused by transmission of the pressure shockwaves (50-60 MPa) followed by this expansion was analyzed using gas adsorption techniques. The dynamics of the external surface area and the micropore volume on multiple pretreatment stages of maize silage and sunflower seeds was approximated with robust analytical techniques. The multiple increases on the reaction surface were manifest in up to a 15% increase in cumulative methane production, which was itself manifest in the overall acceleration of the anaerobic fermentation process. Disintegration of the sunflower seeds allowed up to 45% higher oil yields using the same operating pressure.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brauman, A.; Labat, M.; Kane, M.D.

    The evolution of different feeding guilds in termites is paralleled by differences in the activity of their gut microbiota. In wood-feeding termites, carbon dioxide-reducing acetogenic bacteria were found to generally outprocess carbon dioxide-reducing methanogenic bacteria for reductant (presumably hydrogen) generated during microbial fermentation in the hindgut. By contrast, acetogenesis from hydrogen and carbon dioxide was of little significance in fungus-growing and soil-feeding termites, which evolved more methane than their wood- and grass-feeding counterparts. Given the large biomass of termites on the earth and especially in the tropics, these findings should help refine global estimates of carbon dioxide reduction in anoxicmore » habitats and the contribution of termite emissions to atmospheric methane concentrations.« less

  10. Effect of starchy or fibrous carbohydrate supplementation of orchardgrass on ruminal fermentation and methane output in continuous culture

    USDA-ARS?s Scientific Manuscript database

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing an orchardgrass (Dactylis glomerata L.) herbage diet with 2 levels [5 and 10% of total dry matter (DM) fed] of starchy (barley grain; BAR) or fibrous (beet pulp; BP) carbohydrates on nutrient diges...

  11. Effect of starchy or fibrous carbohydrate supplementation of an herbage diet on ruminal fermentation and methane output in continuous culture

    USDA-ARS?s Scientific Manuscript database

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 2 levels (5 and 10% of diet DM) of starchy (barley grain: BAR) or fibrous (beet pulp: BP) carbohydrate (CHO) to an orchardgrass diet on nutrient digestibility, VFA production, bacterial protein synt...

  12. Effect of starchy or fibrous carbohydrate supplementation of an herbage diet on ruminal fermentation and methane output in continuous culture

    USDA-ARS?s Scientific Manuscript database

    A dual-flow continuous culture fermentor system was used to assess the effect of supplementing 2 levels (5 or 10% of diet DM) of starchy (barley: BAR) or fibrous (beet pulp: BP) carbohydrate (CHO) to an orchardgrass diet on nutrient digestibility, VFA production, bacterial protein synthesis, and met...

  13. Geochemical indicators of the origins and evolution of methane in groundwater: Gippsland Basin, Australia.

    PubMed

    Currell, Matthew; Banfield, Dominic; Cartwright, Ian; Cendón, Dioni I

    2017-05-01

    Recent expansion of shale and coal seam gas production worldwide has increased the need for geochemical studies in aquifers near gas deposits, to determine processes impacting groundwater quality and better understand the origins and behavior of dissolved hydrocarbons. We determined dissolved methane concentrations (n = 36) and δ 13 C and δ 2 H values (n = 31) in methane and groundwater from the 46,000-km 2 Gippsland Basin in southeast Australia. The basin contains important water supply aquifers and is a potential target for future unconventional gas development. Dissolved methane concentrations ranged from 0.0035 to 30 mg/L (median = 8.3 mg/L) and were significantly higher in the deep Lower Tertiary Aquifer (median = 19 mg/L) than the shallower Upper Tertiary Aquifer (median = 3.45 mg/L). Groundwater δ 13 C DIC values ranged from -26.4 to -0.4 ‰ and were generally higher in groundwater with high methane concentrations (mean δ 13 C DIC  = -9.5 ‰ for samples with >3 mg/L CH 4 vs. -16.2 ‰ in all others), which is consistent with bacterial methanogenesis. Methane had δ 13 C CH4 values of -97.5 to -31.8 ‰ and δ 2 H CH4 values of -391 to -204 ‰ that were also consistent with bacterial methane, excluding one site with δ 13 C CH4 values of -31.8 to -37.9 ‰, where methane may have been thermogenic. Methane from different regions and aquifers had distinctive stable isotope values, indicating differences in the substrate and/or methanogenesis mechanism. Methane in the Upper Tertiary Aquifer in Central Gippsland had lower δ 13 C CH4 (-83.7 to -97.5 ‰) and δ 2 H CH4 (-236 to -391 ‰) values than in the deeper Lower Tertiary Aquifer (δ 13 C CH4  = -45.8 to -66.2 ‰ and δ 2 H CH4  = -204 to -311 ‰). The particularly low δ 13 C CH4 values in the former group may indicate methanogenesis at least partly through carbonate reduction. In deeper groundwater, isotopic values were more consistent with acetate fermentation. Not all methane at a given depth and location is interpreted as being necessarily produced in situ. We propose that high dissolved sulphate concentrations in combination with high methane concentrations can indicate gas resulting from contamination and/or rapid migration as opposed to in situ bacterial production or long-term migration. Isotopes of methane and dissolved inorganic carbon (DIC) serve as further lines of evidence to distinguish methane sources. The study demonstrates the value of isotopic characterisation of groundwater including dissolved gases in basins containing hydrocarbons.

  14. Dark fermentation, anaerobic digestion and microbial fuel cells: An integrated system to valorize swine manure and rice bran.

    PubMed

    Schievano, Andrea; Sciarria, Tommy Pepè; Gao, Yong Chang; Scaglia, Barbara; Salati, Silvia; Zanardo, Marina; Quiao, Wei; Dong, Renjie; Adani, Fabrizio

    2016-10-01

    This work describes how dark fermentation (DF), anaerobic digestion (AD) and microbial fuel cells (MFC) and solid-liquid separation can be integrated to co-produce valuable biochemicals (hydrogen and methane), bioelectricity and biofertilizers. Two integrated systems (System 1: AD+MFC, and System 2: DF+AD+MFC) are described and compared to a traditional one-stage AD system in converting a mixture (COD=124±8.1gO2kg(-1)Fresh Matter) of swine manure and rice bran. System 1 gave a biomethane yield of 182 LCH4kg(-1)COD-added, while System 2 gave L yields of bio-hydrogen and bio-methane of 27.3±7.2LH2kg(-1)COD-added and 154±14LCH4kg(-1)COD-added, respectively. A solid-liquid separation (SLS) step was applied to the digested slurry, giving solid and liquid fractions. The liquid fraction was treated via the MFC-steps, showing power densities of 12-13Wm(-3) (500Ω) and average bioelectricity yields of 39.8Whkg(-1)COD to 54.2Whkg(-1)COD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Microbial communities along biogeochemical gradients in a hydrocarbon-contaminated aquifer.

    PubMed

    Tischer, Karolin; Kleinsteuber, Sabine; Schleinitz, Kathleen M; Fetzer, Ingo; Spott, Oliver; Stange, Florian; Lohse, Ute; Franz, Janett; Neumann, Franziska; Gerling, Sarah; Schmidt, Christian; Hasselwander, Eyk; Harms, Hauke; Wendeberg, Annelie

    2013-09-01

    Micro-organisms are known to degrade a wide range of toxic substances. How the environment shapes microbial communities in polluted ecosystems and thus influences degradation capabilities is not yet fully understood. In this study, we investigated microbial communities in a highly complex environment: the capillary fringe and subjacent sediments in a hydrocarbon-contaminated aquifer. Sixty sediment sections were analysed using terminal restriction fragment length polymorphism (T-RFLP) fingerprinting, cloning and sequencing of bacterial and archaeal 16S rRNA genes, complemented by chemical analyses of petroleum hydrocarbons, methane, oxygen and alternative terminal electron acceptors. Multivariate statistics revealed concentrations of contaminants and the position of the water table as significant factors shaping the microbial community composition. Micro-organisms with highest T-RFLP abundances were related to sulphate reducers belonging to the genus Desulfosporosinus, fermenting bacteria of the genera Sedimentibacter and Smithella, and aerobic hydrocarbon degraders of the genus Acidovorax. Furthermore, the acetoclastic methanogens Methanosaeta, and hydrogenotrophic methanogens Methanocella and Methanoregula were detected. Whereas sulphate and sulphate reducers prevail at the contamination source, the detection of methane, fermenting bacteria and methanogenic archaea further downstream points towards syntrophic hydrocarbon degradation. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. Screening of bacterial direct-fed microbials for their antimethanogenic potential in vitro and assessment of their effect on ruminal fermentation and microbial profiles in sheep.

    PubMed

    Jeyanathan, J; Martin, C; Morgavi, D P

    2016-02-01

    Direct-fed microbials (DFM) are used to modulate ruminal function and induce beneficial effects on ruminants. The objectives of this work were to 1) screen bacterial strains for their antimethanogenic potential in vitro and 2) assess the effect of 3 selected DFM on ruminal methane (CH) emissions, fermentation parameters, and microbial profiles in sheep. Forty-five bacterial strains were preselected based on their metabolism and fermentation characteristics. These bacteria were screened for their ability to reduce ruminal methanogenesis using 24-h batch incubations and an inoculum of 10 cfu/mL of medium. The addition of bacterial strains stimulated ruminal fermentation with increases in total gas production for 41 strains ( < 0.05) without a concomitant increase in CH production (only 9 strains had higher CH than the controls without DFM; < 0.05). 53-W, D31, and D1 had the greatest difference between total gas and CH production and were selected for further in vivo testing. Twelve rumen-cannulated Texel wethers were divided into 3 groups and were treated daily for 4 wk with 6 × 10 cfu/animal for and and 3 × 10 cfu/animal for . Measures of enteric CH, ruminal fermentation, and ruminal microbial traits were performed before, at 2 and 4 wk during the treatment period, and at 2 wk after the DFM treatment stopped. Methane production was reduced by 13% ( < 0.05) with after 2 wk of DFM administration, and this effect was maintained throughout the treatment and posttreatment periods. In contrast, had no effect on CH production, and increased it by 16% ( < 0.05) after 4 wk of DFM administration. There was no effect on other fermentation parameters or on the bacterial, archaeal, and protozoal numbers monitored by quantitative PCR. However, denaturing gradient gel electrophoresis profiles indicated changes in bacterial and archaeal diversity in the and groups. Although added bacteria were unable to permanently colonize the rumen, had a greater 24-h survival rate than the others, implying that the persistence of DFM may be important for modulating ruminal traits of interest. These results suggest that bacterial DFM used in this trial were able to modify CH emissions, although correlated changes in other ruminal parameters studied were minor.

  17. Lactulose Breath Test Gas Production in Childhood IBS Is Associated With Intestinal Transit and Bowel Movement Frequency.

    PubMed

    Chumpitazi, Bruno P; Weidler, Erica M; Shulman, Robert J

    2017-04-01

    In adults with irritable bowel syndrome (IBS), bacterial gas production (colonic fermentation) is related to both symptom generation and intestinal transit. Whether gas production affects symptom generation, psychosocial distress, or intestinal transit in childhood IBS is unknown. Children (ages 7-17 years) with pediatric Rome III IBS completed validated psychosocial questionnaires and a 2-week daily diary capturing pain and stooling characteristics. Stool form determined IBS subtype. Subjects then completed a 3-hour lactulose breath test for measurement of total breath hydrogen and methane production. Carmine red was used to determine whole intestinal transit time. A total of 87 children (mean age 13 ± 2.6 [standard deviation] years) were enrolled, of whom 50 (57.5%) were girls. All children produced hydrogen and 51 (58.6%) produced methane. Hydrogen and methane production did not correlate with either abdominal pain frequency/severity or psychosocial distress. Hydrogen and methane production did not differ significantly by IBS subtype. Methane production correlated positively with whole intestinal transit time (r = 0.31, P < 0.005) and inversely with bowel movement frequency (r = -0.245, P < 0.05). Methane production (threshold 3 ppm) as a marker for identifying IBS-C had a sensitivity of 60% and specificity of 42.9%. Lactulose breath test total methane production may serve as a biomarker of whole intestinal transit time and bowel movement frequency in children with IBS. In children with IBS, lactulose breath test hydrogen and methane production did not, however, correlate with abdominal pain, IBS subtype, or psychosocial distress.

  18. Trimethylamine and Organic Matter Additions Reverse Substrate Limitation Effects on the δ13C Values of Methane Produced in Hypersaline Microbial Mats

    PubMed Central

    Nicholson, Brooke E.; Beaudoin, Claire S.; Detweiler, Angela M.; Bebout, Brad M.

    2014-01-01

    Methane production has been observed in a number of hypersaline environments, and it is generally thought that this methane is produced through the use of noncompetitive substrates, such as the methylamines, dimethylsulfide and methanol. Stable isotope measurements of the produced methane have also suggested that the methanogens are operating under conditions of substrate limitation. Here, substrate limitation in gypsum-hosted endoevaporite and soft-mat hypersaline environments was investigated by the addition of trimethylamine, a noncompetitive substrate for methanogenesis, and dried microbial mat, a source of natural organic matter. The δ13C values of the methane produced after amendments were compared to those in unamended control vials. At all hypersaline sites investigated, the δ13C values of the methane produced in the amended vials were statistically lower (by 10 to 71‰) than the unamended controls, supporting the hypothesis of substrate limitation at these sites. When substrates were added to the incubation vials, the methanogens within the vials fractionated carbon isotopes to a greater degree, resulting in the production of more 13C-depleted methane. Trimethylamine-amended samples produced lower methane δ13C values than the mat-amended samples. This difference in the δ13C values between the two types of amendments could be due to differences in isotope fractionation associated with the dominant methane production pathway (or substrate used) within the vials, with trimethylamine being the main substrate used in the trimethylamine-amended vials. It is hypothesized that increased natural organic matter in the mat-amended vials would increase fermentation rates, leading to higher H2 concentrations and increased CO2/H2 methanogenesis. PMID:25239903

  19. Effect of unconventional oilseeds (safflower, poppy, hemp, camelina) on in vitro ruminal methane production and fermentation.

    PubMed

    Wang, Shaopu; Kreuzer, Michael; Braun, Ueli; Schwarm, Angela

    2017-08-01

    Dietary supplementation with oilseeds can reduce methane emission in ruminants, but only a few common seeds have been tested so far. This study tested safflower (Carthamus tinctorius), poppy (Papaver somniferum), hemp (Cannabis sativa), and camelina (Camelina sativa) seeds in vitro using coconut (Cocos nucifera) oil and linseed (Linum usitatissimum) as positive controls. All the tested oilseeds suppressed methane yield (mL g -1 dry matter, up to 21%) compared to the non-supplemented control when provided at 70 g oil kg -1 dry matter, and they were as effective as coconut oil. Safflower and hemp were more effective than linseed (21% and 18% vs. 10%), whereas the effects of poppy and camelina were similar to linseed. When methane was related to digestible organic matter, only hemp and safflower seeds and coconut oil were effective compared to the non-supplemented control (up to 11%). The level of methanogenesis and the ratios of either the n-6:n-3 fatty acids or C 18 :2 :C 18 :3 in the seed lipids were not related. Unconventional oilseeds widen the spectrum of oilseeds that can be used in dietary methane mitigation. In vivo confirmation of their methane mitigating effect is still needed, and their effects on animal performance still must be determined. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. In vitro-in vivo study on the effects of plant compounds on rumen fermentation, microbial abundances and methane emissions in goats.

    PubMed

    Martínez-Fernández, G; Abecia, L; Martín-García, A I; Ramos-Morales, E; Hervás, G; Molina-Alcaide, E; Yáñez-Ruiz, D R

    2013-12-01

    Two in vitro and one in vivo experiments were conducted to investigate the effects of a selection of plant compounds on rumen fermentation, microbial concentration and methane emissions in goats. Treatments were: control (no additive), carvacrol (CAR), cinnamaldehyde (CIN), eugenol (EUG), propyl propane thiosulfinate (PTS), propyl propane thiosulfonate (PTSO), diallyl disulfide (DDS), a mixture (40 : 60) of PTS and PTSO (PTS+PTSO), and bromochloromethane (BCM) as positive control with proven antimethanogenic effectiveness. Four doses (40, 80, 160 and 320 µl/l) of the different compounds were incubated in vitro for 24 h in diluted rumen fluid from goats using two diets differing in starch and protein source within the concentrate (Experiment 1).The total gas production was linearly decreased (P<0.012) by all compounds, with the exception of EUG and PTS+PTSO (P≥ 0.366). Total volatile fatty-acid (VFA) concentration decreased (P≤ 0.018) only with PTS, PTSO and CAR, whereas the acetate:propionate ratio decreased (P≤ 0.002) with PTS, PTSO and BCM, and a tendency (P=0.064) was observed for DDS. On the basis of results from Experiment 1, two doses of PTS, CAR, CIN, BCM (160 and 320 µl/l), PTSO (40 and 160 µl/l) and DDS (80 and 320 µl/l) were further tested in vitro for 72 h (Experiment 2). The gas production kinetics were affected (P≤ 0.045) by all compounds, and digested NDF (DNDF) after 72 h of incubation was only linearly decreased (P≤ 0.004) by CAR and PTS. The addition of all compounds linearly decreased (P≤ 0.009) methane production, although the greatest reductions were observed for PTS (up to 96%), DDS (62%) and BCM (95%). No diet-dose interaction was observed. To further test the results obtained in vitro, two groups of 16 adult non-pregnant goats were used to study in vivo the effect of adding PTS (50, 100 and 200 mg/l rumen content per day) and BCM (50, 100 and 160 mg/l rumen content per day) during the 9 days on methane emissions (Experiment 3). The addition of PTS and BCM resulted in linear reductions (33% and 64%, respectively, P≤ 0.002) of methane production per unit of dry matter intake, which were lower than the maximum inhibition observed in vitro (87% and 96%, respectively). We conclude that applying the same doses in vivo as in vitro resulted in a proportional lower extent of methane decrease, and that PTS at 200 mg/l rumen content per day has the potential to reduce methane emissions in goats. Whether the reduction in methane emission observed in vivo persists over longer periods of treatments and improves feed conversion efficiency requires further research.

  1. Secondary gas emissions during coal desorption, Marathon Grassim Oskolkoff-1 Well, Cook Inlet Basin, Alaska: Implications for resource assessment

    USGS Publications Warehouse

    Barker, C.E.; Dallegge, T.

    2006-01-01

    Cuttings samples of sub-bituminous humic coals from the Oligocene to Pliocene Tyonek Formation, Cook Inlet Basin, Alaska show secondary gas emissions whose geochemistry is consistent with renewed microbial methanogenesis during canister desorption. The renewed methanogenesis was noted after initial desorption measurements had ceased and a canister had an air and desorbed gas mixture backflow into the canister during a measurement. About a week after this event, a secondary emission of gas began and continued for over two years. The desorbed gas volume reached a new maximum, increasing the total from 3.3 to 4.9 litres, some 48% above the pre-contamination total volume. The gases released during desorption show a shift in the isotopic signature over time of methane from ??13CCH4 of -53.60 ??? and ??DCH4 of -312.60 ??? at the first day to ??13CCH4 of -57.06 ??? and ??DCH4 of -375.80 ??? after 809 days, when the experiment was arbitrarily stopped and the canister opened to study the coal. These isotopic data, interpreted using a Bernard Diagram, indicate a shift from a mixed thermogenic and biogenic source typical of natural gases in the coals and conventional gas reservoirs of the Cook Inlet Basin to a likely biogenic acetate-fermentation methane source. However, the appearance of CO2 during the renewed gas emissions with a ??13CCO2 of +26.08 to +21.72 ???, interpreted using the carbon isotope fractions found for acetate fermentation and CO2 reduction between CO2 and CH4 by Jenden and Kaplan (1986), indicates a biogenic CO2-reduction pathway may also be operative during renewed gas emission. Adding nutrients to the coal cuttings and canister water and culturing the microbial consortia under anaerobic conditions led to additional methane-rich gas generation in the laboratory. After this anaerobic culturing, ultraviolet microscopy showed that canister water contained common, fluorescent, rod-like microbes comparable to Methanobacterium sp. Scanning electron microscope investigations of the coal matrix showed several morphological types of microbes, including rod, cocci and spherical forms attached to the coal surface. These microbes apparently represent at least a portion of the microbial consortia needed to depolymerize coal, as well as to generate the observed secondary methane emission from the canister. The introduction of 48% more methane from secondary sources has a major impact on coal-bed methane resource assessments and also in determining the true, in-situ degree of methane saturation in coal-beds using isotherms. Canister and isotherm measurements that show "supersaturation" of methane may actually be the result of additional gases generated during secondary methanogenesis.

  2. Should We Build “Obese” or “Lean” Anaerobic Digesters?

    PubMed Central

    Briones, Aurelio; Coats, Erik; Brinkman, Cynthia

    2014-01-01

    Conventional anaerobic digesters (ADs) treating dairy manure are fed with raw or fermented manure rich in volatile fatty acids (VFAs). In contrast, pre-fermented AD (PF-AD) is fed with the more recalcitrant, fiber-rich fraction of manure that has been pre-fermented and depleted of VFAs. Thus, the substrate of PF-AD may be likened to a lean diet rich in fibers while the pre-fermentation stage fermenter is fed a relatively rich diet containing labile organic substances. Previous results have shown that conventional and pre-fermented ADs fed with raw or pre-fermented manure, respectively, produced comparable methane yields. The primary objective of this study was to characterize, using next-generation DNA sequencing, the bacterial communities in various bioreactors (pre-fermentation stage fermenter; various operational arrangements PF-AD; conventional single-stage AD; and a full scale AD) and compare the Firmicutes to Bacteroidetes (F/B) ratios in these different systems. Firmicutes and Bacteroidetes constituted the two most abundant phyla in all AD samples analyzed, as well as most of the samples analyzed in the fermenters and manure samples. Higher relative abundance of Bacteroidetes, ranging from 26% to 51% of bacteria, tended to be associated with PF-AD samples, while the highest relative abundance of Firmicutes occurred in the fermenter (maximum of 76% of bacteria) and manure (maximum of 66% of bacteria) samples. On average, primary stage fermenters exhibited microbiological traits linked to obesity: higher F/B ratios and a ‘diet’ that is less fibrous and more labile compared to that fed to PF-AD. On the other hand, microbial characteristics associated with leanness (lower F/B ratios combined with fibrous substrate) were associated with PF-AD. We propose that bacterial communities in AD shift depending on the quality of substrate, which ultimately results in maintaining VFA yields in PF-AD, similar to the role of bacterial communities and a high fiber diet in lean mice. PMID:24831948

  3. Biohydrogen and biomethane production sustained by untreated matrices and alternative application of compost waste.

    PubMed

    Arizzi, Mariaconcetta; Morra, Simone; Pugliese, Massimo; Gullino, Maria Lodovica; Gilardi, Gianfranco; Valetti, Francesca

    2016-10-01

    Biohydrogen and biomethane production offers many advantages for environmental protection over the fossil fuels or the existing physical-chemical methods for hydrogen and methane synthesis. The aim of this study is focused on the exploitation of several samples from the composting process: (1) a mixture of waste vegetable materials ("Mix"); (2) an unmatured compost sample (ACV15); and (3) three types of green compost with different properties and soil improver quality (ACV1, ACV2 and ACV3). These samples were tested for biohydrogen and biomethane production, thus obtaining second generation biofuels and resulting in a novel possibility to manage renewable waste biomasses. The ability of these substrates as original feed during dark fermentation was assayed anaerobically in batch, in glass bottles, in order to determine the optimal operating conditions for hydrogen and/or methane production using "Mix" or ACV1, ACV2 or ACV3 green compost and a limited amount of water. Hydrogen could be produced with a fast kinetic in the range 0.02-2.45mLH2g(-1)VS, while methane was produced with a slower kinetic in the range 0.5-8mLCH4g(-1)VS. It was observed that the composition of each sample influenced significantly the gas production. It was also observed that the addition of different water amounts play a crucial role in the development of hydrogen or methane. This parameter can be used to push towards the alternative production of one or another gas. Hydrogen and methane production was detected spontaneously from these matrices, without additional sources of nutrients or any pre-treatment, suggesting that they can be used as an additional inoculum or feed into single or two-stage plants. This might allow the use of compost with low quality as soil improver for alternative and further applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Research on soybean protein wastewater treatment by the integrated two-phase anaerobic reactor

    PubMed Central

    Yu, Yaqin

    2015-01-01

    The start-up tests of treating soybean protein wastewater by the integrated two-phase anaerobic reactor were studied. The results showed that the soybean protein wastewater could be successfully processed around 30 days when running under the situation of dosing seed sludge with the influent of approximately 2000 mg/L and an HRT of 40 h. When the start-up was finished, the removal rate of COD by the reactor was about 80%. In the zone I, biogas mainly revealed carbon dioxide (CO2) and hydrogen (H2). Methane was the main component in the zone 2 which ranged from 53% to 59% with an average of 55%. The methane content in biogas increased from the zone I to II. It indicated that the methane-producing capacity of the anaerobic sludge increased. It was found that the uniquely designed two-phase integrated anaerobic reactor played a key role in treating soybean protein wastewater. The acidogenic fermentation bacteria dominated in the zone I, while methanogen became dominant in the zone II. It realized the relatively effective separation of hydrolysis acidification and methanogenesis process in the reactor, which was benefit to promote a more reasonable space distribution of the microbial communities in the reactor. There were some differences between the activities of the sludge in the two reaction zones of the integrated two-phase anaerobic reactor. The activity of protease was higher in the reaction zone I. And the coenzyme F420 in the reaction zone II was twice than that in the reaction zone I, which indicated that the activity of the methanogens was stronger in the reaction zone II. PMID:26288554

  5. Laboratory controls of precursor and temperature on the kinetics and isotopic fractionations of microbial methane for deep subsurface environments

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Lin, L.; Wang, P.; Sun, C.

    2009-12-01

    In subsurface environments, the mineralization of organic carbon involves complex interactions among geological and microbial processes. As the most reduced form and the shortest hydrocarbon chain, methane, is the final product of both microbial degradation and thermal-cracking of organic matter, it serves as the connection of carbon cycles between different reservoirs. Of various mechanisms for methane formation, microbial methane constitutes 85% of the total methane inventory investigated by far. However, the mechanisms and resultant carbon isotope fingerprints of methanogenesis in environments still remained largely unknown. The types of precursors and temperature might be the most critical factors governing methanogenesis. Lots of studies have been investigating the mechanisms responsible for methanogenesis by pure cultures, but it still remains obscure with regard to which precursors are predominantly utilized by methanogens in natural settings. The effect of temperature is especially prominent for anoxic sediments within which the temperature increases with depth in accordance with the local geotherm. Commonly observed temperatures for methanogenesis span from ambient temperature to 90OC, a temperature range for most diagenetic reactions. In order to address how different precursors would be activated for microbially catalytic methane formation upon different temperatures, we incubated the sediments collected from Kuan-Tzu-Ling hot spring at temperatures up to 90OC. Five precursors including acetate, formate, methanol, methylamine, and hydrogen were added with the inocula to stimulate methanogenesis and inhibit fermentation, and were monitored together with methane production through time. Results of this experiments indicated that methanogenesis was positive at temperatures from room temperature to 80OC and precursors investigated despite substantial variations in the maximum rates and yields. In the experiment supplied with hydrogen and formate, methanogenic rates were rapid at all temperatures. Maximum methane production rates occurred at 40~50OC for incubations with methanol, 40~60OC for incubation with acetate, and 50OC for those with methylamine. The patterns of carbon isotopic compositions on methane were either consistent with the prediction of the Rayleigh fractionation in a closed system, trending toward more depleted through time or invariant through time, suggesting variable physiological responses and microbial assemblages to precursor additions. The obtained ɛ values were 0~-12‰ for incubations with acetate, -16~-45‰ for incubations with hydrogen, -50~-80‰ for incubations with methanol, and -87~-115‰ for incubations with methylamine. Acetoclastic methanogenesis appears to fractionate carbon isotopes at the smallest magnitude. This when combined with the results from positive controls and the field observation suggests that acetoclastic methanogenesis produced methane with isotopic signatures comparable with those with thermogenic in origin and contributed significantly to the total methane inventory in the Kuan-Tzu-Ling hotspring area.

  6. Effect of garlic oil and four of its compounds on rumen microbial fermentation.

    PubMed

    Busquet, M; Calsamiglia, S; Ferret, A; Carro, M D; Kamel, C

    2005-12-01

    Different concentrations (3, 30, 300, and 3000 mg/L of culture fluid) of garlic oil (GAR), diallyl sulfide (DAS), diallyl disulfide (DAD), allicin (ALL), and allyl mercaptan (ALM) were incubated for 24 h in diluted ruminal fluid with a 50:50 forage:concentrate diet (17.7% crude protein; 30.7% neutral detergent fiber) to evaluate their effects on rumen microbial fermentation. Garlic oil (30 and 300 mg/L), DAD (30 and 300 mg/L), and ALM (300 mg/L) resulted in lower molar proportion of acetate and higher proportions of propionate and butyrate. In contrast, at 300 mg/L, DAS only increased the proportion of butyrate, and ALL had no effects on volatile fatty acid proportions. In a dual-flow continuous culture of rumen fluid fed the same 50:50 forage:concentrate diet, addition of GAR (312 mg/L), DAD (31.2 and 312 mg/L), and ALM (31.2 and 312 mg/L) resulted in similar changes to those observed in batch culture, with the exception of the lack of effect of DAD on the proportion of propionate. In a third in vitro study, the potential of GAR (300 mg/L), DAD (300 mg/L), and ALM (300 mg/L) to decrease methane production was evaluated. Treatments GAR, DAD, and ALM resulted in a decrease in methane production of 73.6, 68.5, and 19.5%, respectively, compared with the control. These results confirm the ability of GAR, DAD, and ALM to decrease methane production, which may help to improve the efficiency of energy use in the rumen.

  7. Fibrolytic potential of anaerobic fungi (Piromyces sp.) isolated from wild cattle and blue bulls in pure culture and effect of their addition on in vitro fermentation of wheat straw and methane emission by rumen fluid of buffaloes.

    PubMed

    Paul, Shyam S; Deb, Sitangshu M; Punia, Balbir S; Singh, Dharminder; Kumar, Rajiv

    2010-05-01

    Ten isolates of anaerobic fungi of Piromyces genus from wild cattle and blue bulls (five isolates from each host species) were evaluated for their fibrolytic ability in pure culture, their suitability for use as a microbial additive in buffaloes and their effect on methane emission. In pure culture, only two out of five isolates from wild cattle degraded wheat straw efficiently, whereas all five isolates from wild blue bulls did. Isolate CF1 (from cattle) showed the highest apparent digestibility (53.4%), true digestibility (70.8%) and neutral detergent fibre digestibility (75.0%) of wheat straw after 5 days of incubation. When added to buffalo rumen fluid, all five isolates from cattle increased (P < 0.05) in vitro apparent digestibility of wheat straw compared with the control (received autoclaved culture), but all five isolates from blue bulls failed to influence in vitro digestibility of wheat straw. Isolate CF1 showed the highest stimulating effect on straw digestion by buffalo rumen fluid microbes and increased apparent digestibility (51.9 vs 29.4%, P < 0.05), true digestibility (57.9 vs 36.5%, P < 0.05) and neutral detergent fibre digestibility (51.5 vs 26.9%, P < 0.05) of wheat straw compared with the control after 24 h of fermentation. There were also significant increases in fungal count and enzyme activities of carboxymethylcellulase and xylanase in the CF1-added group compared with the control group. Gas and methane production g(-1) truly digested dry matter of straw were comparable among all groups including the control. Wild cattle and blue bulls harbour some anaerobic fungal strains with strong capability to hydrolyse fibre. The fungal isolate CF1 has high potential for use as a microbial feed additive in buffaloes to improve digestibility of fibrous feeds without increasing methane emission per unit of digested feed.

  8. Impact of different antibiotics on methane production using waste-activated sludge: mechanisms and microbial community dynamics.

    PubMed

    Mustapha, Nurul Asyifah; Sakai, Kenji; Shirai, Yoshihito; Maeda, Toshinari

    2016-11-01

    Anaerobic digestion is an effective method for reducing the by-product of waste-activated sludge (WAS) from wastewater treatment plants and for producing bioenergy from WAS. However, only a limited number of studies have attempted to improve anaerobic digestion by targeting the microbial interactions in WAS. In this study, we examined whether different antibiotics positively, negatively, or neutrally influence methane fermentation by evaluating changes in the microbial community and functions in WAS. Addition of azithromycin promoted the microbial communities related to the acidogenic and acetogenic stages, and a high concentration of soluble proteins and a high activity of methanogens were detected. Chloramphenicol inhibited methane production but did not affect the bacteria that contribute to the hydrolysis, acidogenesis, and acetogenesis digestion stages. The addition of kanamycin, which exhibits the same methane productivity as a control (antibiotic-free WAS), did not affect all of the microbial communities during anaerobic digestion. This study demonstrates the simultaneous functions and interactions of diverse bacteria and methanogenic Archaea in different stages of the anaerobic digestion of WAS. The ratio of Caldilinea, Methanosarcina, and Clostridium may correspond closely to the trend of methane production in each antibiotic. The changes in microbial activities and function by antibiotics facilitate a better understanding of bioenergy production.

  9. Effects of Marine and Freshwater Macroalgae on In Vitro Total Gas and Methane Production

    PubMed Central

    Machado, Lorenna; Magnusson, Marie; Paul, Nicholas A.; de Nys, Rocky; Tomkins, Nigel

    2014-01-01

    This study aimed to evaluate the effects of twenty species of tropical macroalgae on in vitro fermentation parameters, total gas production (TGP) and methane (CH4) production when incubated in rumen fluid from cattle fed a low quality roughage diet. Primary biochemical parameters of macroalgae were characterized and included proximate, elemental, and fatty acid (FAME) analysis. Macroalgae and the control, decorticated cottonseed meal (DCS), were incubated in vitro for 72 h, where gas production was continuously monitored. Post-fermentation parameters, including CH4 production, pH, ammonia, apparent organic matter degradability (OMd), and volatile fatty acid (VFA) concentrations were measured. All species of macroalgae had lower TGP and CH4 production than DCS. Dictyota and Asparagopsis had the strongest effects, inhibiting TGP by 53.2% and 61.8%, and CH4 production by 92.2% and 98.9% after 72 h, respectively. Both species also resulted in the lowest total VFA concentration, and the highest molar concentration of propionate among all species analysed, indicating that anaerobic fermentation was affected. Overall, there were no strong relationships between TGP or CH4 production and the >70 biochemical parameters analysed. However, zinc concentrations >0.10 g.kg−1 may potentially interact with other biochemical components to influence TGP and CH4 production. The lack of relationship between the primary biochemistry of species and gas parameters suggests that significant decreases in TGP and CH4 production are associated with secondary metabolites produced by effective macroalgae. The most effective species, Asparagopsis, offers the most promising alternative for mitigation of enteric CH4 emissions. PMID:24465524

  10. Hydrogen and carbon isotope systematics in hydrogenotrophic methanogenesis under H2-limited and H2-enriched conditions: implications for the origin of methane and its isotopic diagnosis

    NASA Astrophysics Data System (ADS)

    Okumura, Tomoyo; Kawagucci, Shinsuke; Saito, Yayoi; Matsui, Yohei; Takai, Ken; Imachi, Hiroyuki

    2016-12-01

    Hydrogen and carbon isotope systematics of H2O-H2-CO2-CH4 in hydrogenotrophic methanogenesis and their relation to H2 availability were investigated. Two H2-syntrophic cocultures of fermentatively hydrogenogenic bacteria and hydrogenotrophic methanogens under conditions of <102 Pa-H2 and two pure cultures of hydrogenotrophic methanogens under conditions of 105 Pa-H2 were tested. Carbon isotope fractionation between CH4 and CO2 during hydrogenotrophic methanogenesis was correlated with pH2, as indicated in previous studies. The hydrogen isotope ratio of CH4 produced during rapid growth of the thermophilic methanogen Methanothermococcus okinawensis under high pH2 conditions ( 105 Pa) was affected by the isotopic composition of H2, as concluded in a previous study of Methanothermobacter thermautotrophicus. This " {δ D}_{{H}_2} effect" is a possible cause of the diversity of previously reported values for hydrogen isotope fractionation between CH4 and H2O examined in H2-enriched culture experiments. Hydrogen isotope fractionation between CH4 and H2O, defined by (1000 + {δ D}_{{CH}_4} )/(1000 + {δ D}_{{H}_2O} ), during hydrogenotrophic methanogenesis of the H2-syntrophic cocultures was in the range 0.67-0.69. The hydrogen isotope fractionation of our H2-syntrophic dataset overlaps with those obtained not only from low- pH2 experiments reported so far but also from natural samples of "young" methane reservoirs (0.66-0.74). Conversely, such hydrogen isotope fractionation is not consistent with that of "aged" methane in geological samples (≥0.79), which has been regarded as methane produced via hydrogenotrophic methanogenesis from the carbon isotope fractionation. As a possible process inducing the inconsistency in hydrogen isotope signatures between experiments and geological samples, we hypothesize that the hydrogen isotope signature of CH4 imprinted at the time of methanogenesis, as in the experiments and natural young methane, may be altered by diagenetic hydrogen isotope exchange between extracellular CH4 and H2O through reversible reactions of the microbial methanogenic pathway in methanogenic region and/or geological methane reservoirs.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapleton, J.

    Apple pomace, the solid residue from juice production, is a solid waste problem in the Hudson Valley. This study investigates possibilities for converting it to a resource. The characteristics of the region's apple growing and processing industries are examined at length, including their potential for converting waste biomass. The properties of apple pomace are described. From interviews with Hudson Valley apple processors the following information is presented: quantities of pomace produced; seasonality of production; disposal procedures, costs, and revenues; trends in juice production; and attitudes toward alternatives. Literature research resulted in a list of more than 25 end uses formore » apple pomace of which eight were selected for analysis. Landfilling, landspreading, composting, animal feed, direct burning, gasification, anaerobic digestion (methane generation), and fermentation (ethanol production) were analyzed with regard to technical availability, regulatory and environmental impact, attitudes toward end use, and energetic and economic feasibility (See Table 19). The study recommends (1) a pilot anaerobic digestion plant be set up, (2) the possibility of extracting methane from the Marlborough landfill be investigated, (3) a study of the mid-Hudson waste conversion potential be conducted, and (4) an education program in alternative waste management be carried out for the region's industrial and agricultural managers.« less

  12. Study of Local Herb Potency as Rumen Modifier: The Effect of Red Ginger (Zingiber officinale Var.Rubrum) on Parameters of Ruminal Fermentation In Vitro

    NASA Astrophysics Data System (ADS)

    Kurniawati, A.; Widodo; Artama, W. T.; Yusiati, L. M.

    2018-02-01

    Essential oil is one of rumen modifier alternatives due to its antimicrobial property. Red ginger is one of local herbs with high essential oil content. The effect of red ginger on rumen fermentation parameters was studied in this research using in vitro gas production method. Five level of red ginger meal was added to the diet to meet final essential oil concentration in fermentation medium of 0, 25, 50, 75 and 100 mg/L. Substrate of fermentation as microbial feed composed of Penisetum hybride, rice bran, and wheat pollard in ratio 60:20:20 DM basis. Fermentation was carried out for 24 h at 39°C. Total gas production was measured at the end of incubation and sample for methane analysis was taken. Medium sample was taken for analysis of pH, ammonium and VFA concentration, microbial protein and protozoa number. Data showed that addition of red ginger in the diet did not affect the pH, ammonia and VFA concentration, microbial protein and also protozoa number. However, red ginger addition significantly decrease ammonia concentration in all treatment. It could be concluded that addition of red ginger in the diet reduced degradation protein in the rumen as illustrated in lower ammonia concentration.

  13. Nitroethane, 2-nitro-methyl-propionate and dimethyl-2-nitroglutarate markedly reduce ruminal methane production without adversely affecting ruminal fermentation

    USDA-ARS?s Scientific Manuscript database

    Ruminal methanogenesis is considered a digestive inefficiency that results in the loss of 2-12% of the host’s gross energy intake and accounts for nearly 20% of the United States’ annual CH4 emissions. The objective of the present experiment was to evaluate the effects of the known CH4 inhibitor, n...

  14. Co-ensiling as a new technique for long-term storage of agro-industrial waste with low sugar content prior to anaerobic digestion.

    PubMed

    Hillion, Marie-Lou; Moscoviz, Roman; Trably, Eric; Leblanc, Yoann; Bernet, Nicolas; Torrijos, Michel; Escudié, Renaud

    2018-01-01

    Biodegradable wastes produced seasonally need an upstream storage, because of the requirement for a constant feeding of anaerobic digesters. In the present article, the potential of co-ensiling biodegradable agro-industrial waste (sugar beet leaves) and lignocellulosic agricultural residue (wheat straw) to obtain a mixture with low soluble sugar content was evaluated for long-term storage prior to anaerobic digestion. The aim is to store agro-industrial waste while pretreating lignocellulosic biomass. The dynamics of co-ensiling was evaluated in vacuum-packed bags at lab-scale during 180 days. Characterization of the reaction by-products and microbial communities showed a succession of metabolic pathways. Even though the low initial sugars content was not sufficient to lower the pH under 4.5 and avoid undesirable fermentations, the methane potential was not substantially impacted all along the experiment. No lignocellulosic damages were observed during the silage process. Overall, it was shown that co-ensiling was effective to store highly fermentable fresh waste evenly with low sugar content and offers new promising possibilities for constant long-term supply of industrial anaerobic digesters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Revised spatially distributed global livestock emissions

    NASA Astrophysics Data System (ADS)

    Asrar, G.; Wolf, J.; West, T. O.

    2015-12-01

    Livestock play an important role in agricultural carbon cycling through consumption of biomass and emissions of methane. Quantification and spatial distribution of methane and carbon dioxide produced by livestock is needed to develop bottom-up estimates for carbon monitoring. These estimates serve as stand-alone international emissions estimates, as input to global emissions modeling, and as comparisons or constraints to flux estimates from atmospheric inversion models. Recent results for the US suggest that the 2006 IPCC default coefficients may underestimate livestock methane emissions. In this project, revised coefficients were calculated for cattle and swine in all global regions, based on reported changes in body mass, quality and quantity of feed, milk production, and management of living animals and manure for these regions. New estimates of livestock methane and carbon dioxide emissions were calculated using the revised coefficients and global livestock population data. Spatial distribution of population data and associated fluxes was conducted using the MODIS Land Cover Type 5, version 5.1 (i.e. MCD12Q1 data product), and a previously published downscaling algorithm for reconciling inventory and satellite-based land cover data at 0.05 degree resolution. Preliminary results for 2013 indicate greater emissions than those calculated using the IPCC 2006 coefficients. Global total enteric fermentation methane increased by 6%, while manure management methane increased by 38%, with variation among species and regions resulting in improved spatial distributions of livestock emissions. These new estimates of total livestock methane are comparable to other recently reported studies for the entire US and the State of California. These new regional/global estimates will improve the ability to reconcile top-down and bottom-up estimates of methane production as well as provide updated global estimates for use in development and evaluation of Earth system models.

  16. Effect of Nitrooxy Compounds with Different Molecular Structures on the Rumen Methanogenesis, Metabolic Profile, and Methanogenic Community.

    PubMed

    Jin, Wei; Meng, Zhenxiang; Wang, Jing; Cheng, Yanfen; Zhu, Weiyun

    2017-08-01

    Rumen in vitro fermentation was used to evaluate the capacity of nitrooxy compounds to mitigate rumen methane production. The following three nitrooxy compounds, each with different molecular structures, were evaluated: 2,2-dimethyl-3-(nitrooxy) propanoic (DNP), N-[2-(Nitrooxy)ethyl]-3-pyridinecarboxamide (NPD), and nitroglycerin (NG). All three compounds substantially decreased the total gas production, methane production, and the acetate:propionate ratio, while increasing hydrogen production. The growth of methanogens was specifically inhibited by all three compounds, without affecting the abundance of bacteria, anaerobic fungi, or protozoa. However, inhibition of methanogenesis required a much higher dose of DNP when compared to NPD or NG. Further investigations were conducted on NG to determine its effects on the methanogenic community. NG reduced the relative abundance of Methanomassiliicoccales, while increasing the relative abundance of Methanobrevibacter and Methanosphaera. Overall, the results suggested that all three of these nitrooxy compounds could specifically inhibit rumen methanogenesis, but NPD and NG were much more efficient than DNP at rumen methane mitigation.

  17. Anaerobic bioassay of methane potential of microalgal biomass

    NASA Astrophysics Data System (ADS)

    Yen, Hong-Wei

    This study was undertaken to investigate the feasibility of using anaerobic digestion as a technique to recover solar energy embodied in excess algal biomass production harvested from Clemson University's high rate algal based Partitioned Aquaculture System (PAS) as an energy source to support PAS operations. In this study, four different organic substrates were loaded to anaerobic digesters in eight experimental trials, to ascertain the optimal combination of operational variables and effect of algal, or modified algal substrate upon methane production rate. The four substrates used in this study were: (1) a synthetic feedstock consisting of molasses and dog food, (2) a commercially obtained, readily degradable algal biomass (Spirulina ) in dry form, (3) PAS harvested and dewatered algal sludge, and (4) algal biomass blended with shredded waste paper or molasses as a carbon supplement for the adjustment of algal C/N ratio. Eight experimental trials using combinations of the four substrates were conducted in 15 liter digesters to investigate the effects of controlled digester parameters upon digester performance. Digesters operating at 20 days HRT, mesophilic digestion (35°C), and twice per day mixing at maximal loading rates produced maximal methane gas using PAS algal sludge. However, under these conditions overall methane production was less than 1000 ml CH4/l day. This low level of energy recovery from the fermentation of algal biomass (alone) is not energetically or economically favorable. Co-digestion of algal sludge and waste paper was investigated as a way to increase methane production. The data obtained from these trials suggest an optimum C/N ratio for co-digestion of algal sludge and waste paper in the range of 20--25/l. A balanced C/N ratio along with the stimulated increase in cellulase activity is suggested as likely reasons for increased methane production seen in co-digestion of algal sludge and waste paper. Yeast extract addition to anaerobic digesters was also seen to be beneficial to the process resulting in an increase in methane production. Similar performances in digesters fed Spirulina plus paper and yeast extract plus paper suggests that yeast extract served a similar function as Spirulina in anaerobic digestion. Digestion of algal sludge alone was not energetically or economically favorable. However, co-digestion of algal sludge and paper improves the methane production rate. At 4 g VS/l/day loading rate with 50% paper fraction, methane production rate at 10 days HRT was 1170 +/- 75 ml CH4/l day. A maximum methane production rate was observed at 10 days HRT with a combined paper and algal sludge loading of 5 g VS/l/day (60% paper fraction), yielding 1607 +/- 17 ml/l. (Abstract shortened by UMI.)

  18. Investigating options for attenuating methane emission from Indian rice fields.

    PubMed

    Singh, S N; Verma, Amitosh; Tyagi, Larisha

    2003-08-01

    The development of methods and strategies to reduce the emission of methane from paddy fields is a central component of ongoing efforts to protect the Earth's atmosphere and to avert a possible climate change. It appears from this investigation that there can be more than one strategy to contain methane emission from paddy fields, which are thought to be a major source of methane emission in tropical Asia. Promising among the mitigating options may be water management, organic amendments, fertilizer application and selection of rice cultivars. It is always better to adopt multi-pronged strategies to contain CH4 efflux from rice wetlands. Use of fermented manures with low C/N ratio, application of sulfate-containing chemical fertilizers, selection of low CH4 emitting rice cultivars, and implementation of one or two short aeration periods before the heading stage can be effective options to minimize CH4 emission from paddy fields. Among these strategies, water management, which appears to be the best cost-effective and eco-friendly way for methane mitigation, is only possible when excess water is available for reflooding after short soil drying at the right timing and stage. However, in tropical Asia, rice fields are naturally flooded during the monsoonal rainy season and fully controlled drainage is often impossible. In such situation, water deficits during the vegetative and reproductive stage may drastically affect the rice yields. Thus, care must be taken to mitigate methane emission without affecting rice yields.

  19. Fermentation by the human large intestine microbial community in an in vitro semicontinuous culture system.

    PubMed Central

    Miller, T L; Wolin, M J

    1981-01-01

    A semicontinuous culture of the microbial community of the human large intestine that was maintained over 81 days is described. The initial inoculum was feces, and about 200 ml of nutrient suspension was fed to 500 ml of fermentor contents once or twice daily. The nutrient suspension contained comminuted fibrous food, sodium deoxycholate, urea, acid-hydrolyzed casein, vitamins, and salts. The fermentation was monitored, and the major products were acetate, propionate, butyrate, methane, hydrogen, and carbon dioxide. The concentration of anaerobic bacteria was 2 X 10(9) per ml of culture contents and was 100 times that of fecal coliforms. When the nutrient suspension contained lettuce, celery, carrots, and unsweetened applesauce, the predominant nonsporeforming anaerobes isolated were Bacteroides species. When carrots and applesauce were omitted, the predominant nonsporeforming isolates were Fusobacterium species. On both diets, clostridia were isolated that resembled Clostridium clostridiiforme. The fermentation and bacteriological analyses indicated that the in vitro ecosystem appears to be a reasonable facsimile of the large intestine ecosystem. Images PMID:7027952

  20. Industrial symbiosis: corn ethanol fermentation, hydrothermal carbonization, and anaerobic digestion.

    PubMed

    Wood, Brandon M; Jader, Lindsey R; Schendel, Frederick J; Hahn, Nicholas J; Valentas, Kenneth J; McNamara, Patrick J; Novak, Paige M; Heilmann, Steven M

    2013-10-01

    The production of dry-grind corn ethanol results in the generation of intermediate products, thin and whole stillage, which require energy-intensive downstream processing for conversion into commercial animal feed products. Hydrothermal carbonization of thin and whole stillage coupled with anaerobic digestion was investigated as alternative processing methods that could benefit the industry. By substantially eliminating evaporation of water, reductions in downstream energy consumption from 65% to 73% were achieved while generating hydrochar, fatty acids, treated process water, and biogas co-products providing new opportunities for the industry. Processing whole stillage in this manner produced the four co-products, eliminated centrifugation and evaporation, and substantially reduced drying. With thin stillage, all four co-products were again produced, as well as a high quality animal feed. Anaerobic digestion of the aqueous product stream from the hydrothermal carbonization of thin stillage reduced chemical oxygen demand (COD) by more than 90% and converted 83% of the initial COD to methane. Internal use of this biogas could entirely fuel the HTC process and reduce overall natural gas usage. Copyright © 2013 Wiley Periodicals, Inc.

  1. Computational Modeling of Fluctuations in Energy and Metabolic Pathways of Methanogenic Archaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luthey-Schulten, Zaida

    The methanogenic archaea, anaerobic microbes that convert CO2 and H2 and/or other small organic fermentation products into methane, play an unusually large role in the global carbon cycle. As they perform the final step in the anaerobic breakdown of biomass, methanogens are a biogenic source of an estimated one billion tons methane each year. Depending on the location, produced methane can be considered as either a greenhouse gas (agricultural byproduct), sequestered carbon storage (methane hydrate deposits), or a potential energy source (organic wastewater treatment). These microbes therefore represent an important target for biotechnology applications. Computational models of methanogens with predictivemore » power are useful aids in the adaptation of methanogenic systems, but need to connect processes of wide-ranging time and length scales. In this project, we developed several computational methodologies for modeling the dynamic behavior of entire cells that connects stochastic reaction-diffusion dynamics of individual biochemical pathways with genome-scale modeling of metabolic networks. While each of these techniques were in the realm of well-defined computational methods, here we integrated them to develop several entirely new approaches to systems biology. The first scientific aim of the project was to model how noise in a biochemical pathway propagates into cellular phenotypes. Genetic circuits have been optimized by evolution to regulate molecular processes despite stochastic noise, but the effect of such noise on a cellular biochemical networks is currently unknown. An integrated stochastic/systems model of Escherichia coli species was created to analyze how noise in protein expression gives—and therefore noise in metabolic fluxes—gives rise to multiple cellular phenotype in isogenic population. After the initial work developing and validating methods that allow characterization of the heterogeneity in the model organism E. coli, the project shifted toward investigations of the methanogen Methanosarcina acetivorans. By integrating an unprecedented transcriptomics dataset for growth of the methanogen on many substrates with an in silico model, heterogeneity in metabolic pathway usage and methane production were examined. This lent insight into the physiological requirements of the organism under different environmental conditions and uncovered the unique regulatory role that mRNA half-life has in shaping metabolic flux distributions in this organism.« less

  2. Gene and transcript abundances of bacterial type III secretion systems from the rumen microbiome are correlated with methane yield in sheep.

    PubMed

    Kamke, Janine; Soni, Priya; Li, Yang; Ganesh, Siva; Kelly, William J; Leahy, Sinead C; Shi, Weibing; Froula, Jeff; Rubin, Edward M; Attwood, Graeme T

    2017-08-08

    Ruminants are important contributors to global methane emissions via microbial fermentation in their reticulo-rumens. This study is part of a larger program, characterising the rumen microbiomes of sheep which vary naturally in methane yield (g CH 4 /kg DM/day) and aims to define differences in microbial communities, and in gene and transcript abundances that can explain the animal methane phenotype. Rumen microbiome metagenomic and metatranscriptomic data were analysed by Gene Set Enrichment, sparse partial least squares regression and the Wilcoxon Rank Sum test to estimate correlations between specific KEGG bacterial pathways/genes and high methane yield in sheep. KEGG genes enriched in high methane yield sheep were reassembled from raw reads and existing contigs and analysed by MEGAN to predict their phylogenetic origin. Protein coding sequences from Succinivibrio dextrinosolvens strains were analysed using Effective DB to predict bacterial type III secreted proteins. The effect of S. dextrinosolvens strain H5 growth on methane formation by rumen methanogens was explored using co-cultures. Detailed analysis of the rumen microbiomes of high methane yield sheep shows that gene and transcript abundances of bacterial type III secretion system genes are positively correlated with methane yield in sheep. Most of the bacterial type III secretion system genes could not be assigned to a particular bacterial group, but several genes were affiliated with the genus Succinivibrio, and searches of bacterial genome sequences found that strains of S. dextrinosolvens were part of a small group of rumen bacteria that encode this type of secretion system. In co-culture experiments, S. dextrinosolvens strain H5 showed a growth-enhancing effect on a methanogen belonging to the order Methanomassiliicoccales, and inhibition of a representative of the Methanobrevibacter gottschalkii clade. This is the first report of bacterial type III secretion system genes being associated with high methane emissions in ruminants, and identifies these secretions systems as potential new targets for methane mitigation research. The effects of S. dextrinosolvens on the growth of rumen methanogens in co-cultures indicate that bacteria-methanogen interactions are important modulators of methane production in ruminant animals.

  3. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE.

    PubMed

    Lee, Il-Su; Bae, Jae-Ho; McCarty, Perry L

    2007-10-30

    Bioremediation by reductive dehalogenation of groundwater contaminated with tetrachloroethene (PCE) or trichloroethene (TCE) is generally carried out through the addition of a fermentable electron donor such as lactate, benzoate, carbohydrates or vegetable oil. These fermentable donors are converted by fermenting organisms into acetate and hydrogen, either of which might be used by dehalogenating microorganisms. Comparisons were made between H2 and acetate on the rate and extent of reductive dehalogenation of PCE. PCE dehalogenation with H2 alone was complete to ethene, but with acetate alone it generally proceeded only about half as fast and only to cis-1,2-dichloroethene (cDCE). Additionally, acetate was not used as an electron donor in the presence of H2. These findings suggest the fermentable electron donor requirement for PCE dehalogenation to ethene can be reduced up to 50% by separating PCE dehalogenation into two stages, the first of which uses acetate for the conversion of PCE to cDCE, and the second uses H2 for the conversion of cDCE to ethene. This can be implemented with a recycle system in which the fermentable substrate is added down-gradient, where the hydrogen being produced by fermentation effects cDCE conversion into ethene. The acetate produced is recycled up-gradient to achieve PCE conversion into cDCE. With the lower electron donor usage required, potential problems of aquifer clogging, excess methane production, and high groundwater chemical oxygen demand (COD) can be greatly reduced.

  4. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE

    NASA Astrophysics Data System (ADS)

    Lee, Il-Su; Bae, Jae-Ho; McCarty, Perry L.

    2007-10-01

    Bioremediation by reductive dehalogenation of groundwater contaminated with tetrachloroethene (PCE) or trichloroethene (TCE) is generally carried out through the addition of a fermentable electron donor such as lactate, benzoate, carbohydrates or vegetable oil. These fermentable donors are converted by fermenting organisms into acetate and hydrogen, either of which might be used by dehalogenating microorganisms. Comparisons were made between H 2 and acetate on the rate and extent of reductive dehalogenation of PCE. PCE dehalogenation with H 2 alone was complete to ethene, but with acetate alone it generally proceeded only about half as fast and only to cis-1,2-dichloroethene (cDCE). Additionally, acetate was not used as an electron donor in the presence of H 2. These findings suggest the fermentable electron donor requirement for PCE dehalogenation to ethene can be reduced up to 50% by separating PCE dehalogenation into two stages, the first of which uses acetate for the conversion of PCE to cDCE, and the second uses H 2 for the conversion of cDCE to ethene. This can be implemented with a recycle system in which the fermentable substrate is added down-gradient, where the hydrogen being produced by fermentation effects cDCE conversion into ethene. The acetate produced is recycled up-gradient to achieve PCE conversion into cDCE. With the lower electron donor usage required, potential problems of aquifer clogging, excess methane production, and high groundwater chemical oxygen demand (COD) can be greatly reduced.

  5. Effects of condensed tannin fractions of different molecular weights from a Leucaena leucocephala hybrid on in vitro methane production and rumen fermentation.

    PubMed

    Saminathan, Mookiah; Sieo, Chin Chin; Abdullah, Norhani; Wong, Clemente Michael Vui Ling; Ho, Yin Wan

    2015-10-01

    Molecular weights (MWs) and their chemical structures are the primary factors determining the influence of condensed tannins (CTs) on animal nutrition and methane (CH4 ) production in ruminants. In this study the MWs of five CT fractions from Leucaena leucocephala hybrid-Rendang (LLR) were determined and the CT fractions were investigated for their effects on CH4 production and rumen fermentation. The number-average molecular weight (Mn ) of fraction F1 (1265.8 Da), which was eluted first, was the highest, followed by those of fractions F2 (1028.6 Da), F3 (652.2 Da), F4 (562.2 Da) and F5 (469.6 Da). The total gas (mL g(-1) dry matter (DM)) and CH4 production decreased significantly (P < 0.05) with increasing MWs of the CT fractions, but there were no significant (P > 0.05) differences between the CT fractions and control on DM degradation. However, the in vitro N disappearance decreased significantly (P < 0.05) with the inclusion of CT fraction F1 (highest MW) compared with the control and other fractions (F2-F5). The inclusion of CT fraction F1 also significantly decreased (P < 0.05) total volatile fatty acid and acetic acid concentrations compared with the control. The acetic/propionic acid ratio was significantly decreased (P < 0.05) by fraction F1 but not by the control and other fractions (F2-F5). The CT fractions of different MWs from LLR could affect rumen fermentation and CH4 production, and the impact was more pronounced for the CT fraction with a higher MW. © 2014 Society of Chemical Industry.

  6. Studies on potential effects of fumaric acid on rumen microbial fermentation, methane production and microbial community.

    PubMed

    Riede, Susanne; Boguhn, Jeannette; Breves, Gerhard

    2013-01-01

    The greenhouse gas methane (CH4) contributes substantially to global climate change. As a potential approach to decrease ruminal methanogenesis, the effects of different dosages of fumaric acid (FA) on ruminal microbial metabolism and on the microbial community (archaea, bacteria) were studied using a rumen simulation technique (RUSITEC). FA acts as alternative hydrogen acceptor diverting 2H from methanogenesis of archaea towards propionate formation of bacteria. Three identical trials were conducted with 12 fermentation vessels over a period of 14 days. In each trial, four fermentation vessels were assigned to one of the three treatment groups differing in FA dosage: low fumaric acid (LFA), high fumaric acid (HFA) and without FA (control). FA was continuously infused with the buffer. Grass silage and concentrate served as substrate. FA led to decreases in pH and to higher production rates of total short chain fatty acids (SCFA) mediated by increases in propionate for LFA of 1.69 mmol d(-1) and in propionate and acetate production for HFA of 4.49 and 1.10 mmol d(-1), respectively. Concentrations of NH3-N, microbial crude protein synthesis, their efficiency, degradation of crude nutrients and detergent fibre fraction were unchanged. Total gas and CH4 production were not affected by FA. Effects of FA on structure of microbial community by means of single strand conformation polymorphism (SSCP) analyses could not be detected. Given the observed increase in propionate production and the unaffected CH4 production it can be supposed that the availability of reduction equivalents like 2H was not limited by the addition of FA in this study. It has to be concluded from the present study that the application of FA is not an appropriate approach to decrease the ruminal CH4 production.

  7. Contributions of available substrates and activities of trophic microbial community to methanogenesis in vegetative and reproductive rice rhizospheric soil.

    PubMed

    Chawanakul, Sansanee; Chaiprasert, Pawinee; Towprayoon, Sirintornthep; Tanticharoen, Morakot

    2009-01-01

    Potential of methane production and trophic microbial activities at rhizospheric soil during rice cv. Supanbunri 1 cultivation were determined by laboratory anaerobic diluents vials. The methane production was higher from rhizospheric than non-rhizospheric soil, with the noticeable peaks during reproductive phase (RP) than vegetative phase (VP). Glucose, ethanol and acetate were the dominant available substrates found in rhizospheric soil during methane production at both phases. The predominance activities of trophic microbial consortium in methanogenesis, namely fermentative bacteria (FB), acetogenic bacteria (AGB), acetate utilizing bacteria (AB) and acetoclastic methanogens (AM) were also determined. At RP, these microbial groups were enhanced in the higher of methane production than VP. This correlates with our finding that methane production was greater at the rhizospheric soil with the noticeable peaks during RP (1,150 +/- 60 nmol g dw(-1) d(-1)) compared with VP (510 +/- 30 nmol g dw(-1) d(-1)). The high number of AM showed the abundant (1.1x10(4) cell g dw(-1)) with its high activity at RP, compared to the less activity with AM number at VP (9.8x10(2) cell g dw(-1)). Levels of AM are low in the total microbial population, being less than 1% of AB. These evidences revealed that the microbial consortium of these two phases were different.

  8. Metabolite profiling of the fermentation process of "yamahai-ginjo-shikomi" Japanese sake.

    PubMed

    Tatsukami, Yohei; Morisaka, Hironobu; Aburaya, Shunsuke; Aoki, Wataru; Kohsaka, Chihiro; Tani, Masafumi; Hirooka, Kiyoo; Yamamoto, Yoshihiro; Kitaoka, Atsushi; Fujiwara, Hisashi; Wakai, Yoshinori; Ueda, Mitsuyoshi

    2018-01-01

    Sake is a traditional Japanese alcoholic beverage prepared by multiple parallel fermentation of rice. The fermentation process of "yamahai-ginjo-shikomi" sake is mainly performed by three microbes, Aspergillus oryzae, Saccharomyces cerevisiae, and Lactobacilli; the levels of various metabolites fluctuate during the fermentation of sake. For evaluation of the fermentation process, we monitored the concentration of moderate-sized molecules (m/z: 200-1000) dynamically changed during the fermentation process of "yamahai-ginjo-shikomi" Japanese sake. This analysis revealed that six compounds were the main factors with characteristic differences in the fermentation process. Among the six compounds, four were leucine- or isoleucine-containing peptides and the remaining two were predicted to be small molecules. Quantification of these compounds revealed that their quantities changed during the month of fermentation process. Our metabolomic approach revealed the dynamic changes observed in moderate-sized molecules during the fermentation process of sake, and the factors found in this analysis will be candidate molecules that indicate the progress of "yamahai-ginjo-shikomi" sake fermentation.

  9. Combining tracer flux ratio methodology with low-flying aircraft measurements to estimate dairy farm CH4 emissions

    NASA Astrophysics Data System (ADS)

    Daube, C.; Conley, S.; Faloona, I. C.; Yacovitch, T. I.; Roscioli, J. R.; Morris, M.; Curry, J.; Arndt, C.; Herndon, S. C.

    2017-12-01

    Livestock activity, enteric fermentation of feed and anaerobic digestion of waste, contributes significantly to the methane budget of the United States (EPA, 2016). Studies question the reported magnitude of these methane sources (Miller et. al., 2013), calling for more detailed research of agricultural animals (Hristov, 2014). Tracer flux ratio is an attractive experimental method to bring to this problem because it does not rely on estimates of atmospheric dispersion. Collection of data occurred during one week at two dairy farms in central California (June, 2016). Each farm varied in size, layout, head count, and general operation. The tracer flux ratio method involves releasing ethane on-site with a known flow rate to serve as a tracer gas. Downwind mixed enhancements in ethane (from the tracer) and methane (from the dairy) were measured, and their ratio used to infer the unknown methane emission rate from the farm. An instrumented van drove transects downwind of each farm on public roads while tracer gases were released on-site, employing the tracer flux ratio methodology to assess simultaneous methane and tracer gas plumes. Flying circles around each farm, a small instrumented aircraft made measurements to perform a mass balance evaluation of methane gas. In the course of these two different methane quantification techniques, we were able to validate yet a third method: tracer flux ratio measured via aircraft. Ground-based tracer release rates were applied to the aircraft-observed methane-to-ethane ratios, yielding whole-site methane emission rates. Never before has the tracer flux ratio method been executed with aircraft measurements. Estimates from this new application closely resemble results from the standard ground-based technique to within their respective uncertainties. Incorporating this new dimension to the tracer flux ratio methodology provides additional context for local plume dynamics and validation of both ground and flight-based data.

  10. Fermentation process improvement of a Chinese traditional food: soybean residue cake.

    PubMed

    Yao, Yingzheng; Pan, Siyi; Wang, Kexing; Xu, Xiaoyun

    2010-09-01

    Fermentation process improvement of soybean residue cake, a Chinese traditional fermented food, and its physicochemical analysis during fermentation were studied. One of the dominant strains in the fermentation was isolated and identified as Mucor racemosus Fresenius. The fermentation process was improved by subsection fermentation. The crude protein content decreased from 19.95 ± 0.03% in the raw soybean residue to 16.85 ± 0.10% in the fermented products, and the formaldehyde nitrogen content increased from 0.068 ± 0.004% to 0.461 ± 0.022% in final fermented cakes. Hardness of samples significantly (P < 0.05) increased whereas springiness, cohesiveness, and resilience significantly (P < 0.05) decreased with increasing fermentation time, respectively. Microstructure observations showed obvious change of the surface of cake samples during the fermentation process. During the soybean processing, it will produce plenty of by-products, and the most part of them is soybean residue. The discarded soybean residue causes economic loss. Fortunately, we can obtain nutritious and delicious fermented soybean residue cakes by fermenting soybean residue as raw material.

  11. Exploring the metabolic potential of microbial communities in ultra-basic, reducing springs at The Cedars, CA, USA: Experimental evidence of microbial methanogenesis and heterotrophic acetogenesis

    NASA Astrophysics Data System (ADS)

    Kohl, Lukas; Cumming, Emily; Cox, Alison; Rietze, Amanda; Morrissey, Liam; Lang, Susan Q.; Richter, Andreas; Suzuki, Shino; Nealson, Kenneth H.; Morrill, Penny L.

    2016-04-01

    Present-day serpentinization generates groundwaters with conditions (pH > 11, Eh < -550 mV) favorable for the microbial and abiotic production of organic compounds from inorganic precursors. Elevated concentrations of methane, C2-C6 alkanes, acetate, and formate have been detected at these sites, but the microbial or abiotic origin of these compounds remains unclear. While geochemical data indicate that methane at most sites of present-day serpentinization is abiogenic, the stable carbon, hydrogen, and clumped isotope data as well as the hydrocarbon gas composition from The Cedars, CA, USA, are consistent with a microbial origin for methane. However, there is no direct evidence of methanogenesis at this site of serpentinization. We report on laboratory experiments in which the microbial communities in fluids and sediments from The Cedars were incubated with 13C labeled substrates. Increasing methane concentrations and the incorporation of 13C into methane in live experiments, but not in killed controls, demonstrated that methanogens converted methanol, formate, acetate (methyl group), and bicarbonate to methane. The apparent fractionation between methane and potential substrates (α13CCH4-CO2(g) = 1.059 to 1.105, α13CCH4-acetate = 1.042 to 1.119) indicated that methanogenesis was dominated by the carbonate reduction pathway. Increasing concentrations of volatile organic acid anions indicated microbial acetogenesis. α13CCO2(g)-acetate values (0.999 to 1.000), however, were inconsistent with autotrophic acetogenesis, thus suggesting that acetate was produced through fermentation. This is the first study to show direct evidence of microbial methanogenesis and acetogenesis by the native microbial community at a site of present-day serpentinization.

  12. Process for separating nitrogen from methane using microchannel process technology

    DOEpatents

    Tonkovich, Anna Lee [Marysville, OH; Qiu, Dongming [Dublin, OH; Dritz, Terence Andrew [Worthington, OH; Neagle, Paul [Westerville, OH; Litt, Robert Dwayne [Westerville, OH; Arora, Ravi [Dublin, OH; Lamont, Michael Jay [Hilliard, OH; Pagnotto, Kristina M [Cincinnati, OH

    2007-07-31

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  13. A combined approach of generalized additive model and bootstrap with small sample sets for fault diagnosis in fermentation process of glutamate.

    PubMed

    Liu, Chunbo; Pan, Feng; Li, Yun

    2016-07-29

    Glutamate is of great importance in food and pharmaceutical industries. There is still lack of effective statistical approaches for fault diagnosis in the fermentation process of glutamate. To date, the statistical approach based on generalized additive model (GAM) and bootstrap has not been used for fault diagnosis in fermentation processes, much less the fermentation process of glutamate with small samples sets. A combined approach of GAM and bootstrap was developed for the online fault diagnosis in the fermentation process of glutamate with small sample sets. GAM was first used to model the relationship between glutamate production and different fermentation parameters using online data from four normal fermentation experiments of glutamate. The fitted GAM with fermentation time, dissolved oxygen, oxygen uptake rate and carbon dioxide evolution rate captured 99.6 % variance of glutamate production during fermentation process. Bootstrap was then used to quantify the uncertainty of the estimated production of glutamate from the fitted GAM using 95 % confidence interval. The proposed approach was then used for the online fault diagnosis in the abnormal fermentation processes of glutamate, and a fault was defined as the estimated production of glutamate fell outside the 95 % confidence interval. The online fault diagnosis based on the proposed approach identified not only the start of the fault in the fermentation process, but also the end of the fault when the fermentation conditions were back to normal. The proposed approach only used a small sample sets from normal fermentations excitements to establish the approach, and then only required online recorded data on fermentation parameters for fault diagnosis in the fermentation process of glutamate. The proposed approach based on GAM and bootstrap provides a new and effective way for the fault diagnosis in the fermentation process of glutamate with small sample sets.

  14. Development of optimal enzymatic and microbial conversion systems for biofuel production

    NASA Astrophysics Data System (ADS)

    Aramrueang, Natthiporn

    The increase in demand for fuels, along with the concerns over the depletion of fossil fuels and the environmental problems associated with the use of the petroleum-based fuels, has driven the exploitation of clean and renewable energy. Through a collaboration project with Mendota Bioenergy LLC to produce advanced biofuel from sugar beet and other locally grown crops in the Central Valley of California through demonstration and commercial-scale biorefineries, the present study focused on the investigation of selected potential biomass as biofuel feedstock and development of bioconversion systems for sustainable biofuel production. For an efficient biomass-to-biofuel conversion process, three important steps, which are central to this research, must be considered: feedstock characterization, enzymatic hydrolysis of the feedstock, and the bioconversion process. The first part of the research focused on the characterization of various lignocellulosic biomass as feedstocks and investigated their potential ethanol yields. Physical characteristics and chemical composition were analyzed for four sugar beet varieties, three melon varieties, tomato, Jose tall wheatgrass, wheat hay, and wheat straw. Melons and tomato are those products discarded by the growers or processors due to poor quality. The mass-based ethanol potential of each feedstock was determined based on the composition. The high sugar-containing feedstocks are sugar beet roots, melons, and tomato, containing 72%, 63%, and 42% average soluble sugars on a dry basis, respectively. Thus, for these crops, the soluble sugars are the main substrate for ethanol production. The potential ethanol yields, on average, for sugar beet roots, melons, and tomato are 591, 526, and 448 L ethanol/metric ton dry basis (d.b.), respectively. Lignocellulosic biomass, including Jose Tall wheatgrass and wheat straw, are composed primarily of cellulose (27-39% d.b.) and hemicellulose (26-30% d.b.). The ethanol yields from these materials can range from 470 to 533 L ethanol/metric ton (d.b.) Sugar beet leaves contain nearly equal amounts of cellulose (13%), hemicellulose (16%), and pectin (17%). The potential ethanol yield of sugar beet leaves is 340 L ethanol/metric ton (d.b.). As remaining unused in great quantities during the production of sugar beet as a sugar and energy crop, sugar beet leaves was studied as a potential feedstock for the production of biofuel and valuable products. The enzymatic hydrolysis of sugar beet leaves was optimized for fermentable sugar production. Optimization of enzyme usage was performed to make the biorefinery process more cost- and energy-effective. In this research, response surface methodology was used to study the effects of enzyme loadings during the hydrolysis of sugar beet leaves at 10% total solids content, using a mix of cellulases, hemicellulases, and pectinases. The effects of enzyme loadings were studied with a five-level rotatable central composite design for maximum conversion of sugar beet leaves to fermentable sugars. The last part of this study investigated biogas production through the anaerobic digestion of microalgae as they have received much attention as another potential biofuel feedstock. Anaerobic digestion of Spirulina ( Arthrospira platensis) was conducted in batch reactors for the study of the kinetics and, in continuous stirred tank reactors (CSTR), for the study of the two important operating parameters: hydraulic retention time (HRT) and organic loading rate (OLR). The kinetics study on methane production from batch experiments shows first order kinetics and a reaction rate constant of 0.382 d-1. The maximum biogas and methane yields for Spirulina are 0.514 L/gVS and 0.360 L CH4/gVS, respectively. The methane content of the biogas is 68%. During the continuous anaerobic digestion in CSTR for OLR in the range of 1.0-4.0 gVS/L/d, biogas and methane yields are in the ranges of 0.276-0.502 L/ gVS and 0.163-0.342 L CH4/gVS, respectively. Methane content is 59-70% of the biogas. Methane yield decreases with an increase in OLR and a decrease in HRT. The maximum methane production is 0.342 L CH4/gVS at OLR of 1.0 gVS/L d and 25d-HRT, achieving 94% of the maximum yield produced by batch digestion. Ammonia inhibition and the accumulation of volatile fatty acids (VFA) were observed at high OLR. According to the results from the continuous digestion of Spirulina, the recommended HRT should be sufficient at least 15d, with the OLRmax of 2.0 gVS/L to prevent ammonia inhibition at higher feed concentrations. The OLR can be increased when the digester is operated at longer HRT since a long HRT provides a more stable operation. A mathematical model, based on the kinetics study from the batch process, was developed for the prediction of methane production during a continuous digestion process, in relation to HRT. Further improvement of the model may have to include the effects of ammonia inhibition and low solids retention time (SRT) to overcome these limitations. (Abstract shortened by UMI.).

  15. Bioconversion of Coal: Hydrologic indicators of the extent of coal biodegradation under different redox conditions and coal maturity, Velenje Basin case study, Slovenia

    NASA Astrophysics Data System (ADS)

    Kanduč, Tjaša; Grassa, Fausto; Lazar, Jerneja; Jamnikar, Sergej; Zavšek, Simon; McIntosh, Jennifer

    2014-05-01

    Underground mining of coal and coal combustion for energy has significant environmental impacts. In order to reduce greenhouse gas emissions, other lower -carbon energy sources must be utilized. Coalbed methane (CBM) is an important source of relatively low-carbon energy. Approximately 20% of world's coalbed methane is microbial in origin (Bates et al., 2011). Interest in microbial CBM has increased recently due to the possibility of stimulating methanogenesis. Despite increasing interest, the hydrogeochemical conditions and mechanisms for biodegradation of coal and microbial methane production are poorly understood. This project aims to examine geochemical characteristics of coalbed groundwater and coalbed gases in order to constrain biogeochemical processes to better understand the entire process of coal biodegradation of coal to coalbed gases. A better understanding of geochemical processes in CBM areas may potentially lead to sustainable stimulation of microbial methanogenesis at economical rates. Natural analogue studies of carbon dioxide occurring in the subsurface have the potential to yield insights into mechanisms of carbon dioxide storage over geological time scales (Li et al., 2013). In order to explore redox processes related to methanogenesis and determine ideal conditions under which microbial degradation of coal is likely to occur, this study utilizes groundwater and coalbed gas samples from Velenje Basin. Determination of the concentrations of methane, carbondioxide, nitrogen, oxygen, argon was performed with homemade NIER mass spectrometer. Isotopic composition of carbon dioxide, isotopic composition of methane, isotopic composition of deuterium in methane was determined with Europa-Scientific IRMS with an ANCA-TG preparation module and Thermo Delta XP GC-TC/CF-IRMS coupled to a TRACE GC analyzer. Total alkalinity of groundwater was measured by Gran titration. Major cations were analyzed by ICP-OES and anions by IC method. Isotopic composition of dissolved inorganic carbon was determined by MultiflowBio preparation module. The stable isotope composition of sulphur was determined with a Europa Scientific 20-20 continuous flow IRMS ANCA-SL preparation module. Concentrations of tritium were determined with the electrolytic enrichment method. PHREEQC for Windows was used to perform thermodynamic modelling. The average coalbed gas composition in the coalbed seam is approximately carbon dioxide: methane > 2:1, where a high proportion of CO2 is adsorbed on the lignite structure, while methane is present free in coal fractures. It can be concluded that isotopic composition of carbon in methane from -70.4‰ to -50.0‰ is generated via acetate fermentation and via reduction of carbon dioxide, while isotopic composition of carbon in methane values range from -50.0‰ to -18.8‰, thermogenic methane can be explained by secondary processes, causing enrichment of residual methane with the heavier carbon isotope. Isotopic composition of deuterium in methane range from -343.9‰ to -223.1‰. Isotopic composition of carbon in carbon dioxide values at excavation fields range from -11.0‰ to +5‰ and are endogenic and microbial in origin. The major ion chemistry, redox conditions, stable isotopes and tritium measured in groundwater from the Velenje Basin, suggest that the Pliocene and Triassic aquifers contain distinct water bodies. Groundwater in the Triassic aquifer is dominated by hydrogen carbonate, calcium, magnesium and isotopic composition of dissolved inorganic carbon indicating degradation of soil organic matter and dissolution of carbonate minerals, similar to surface waters. In addition, groundwater in the Triassic aquifer has isotopic composition of oxygen and isotopic composition of deuterium values which plot near surface waters on the local and global meteoric water lines and detectable tritium reflects recent recharge. In contrast, groundwater in the Pliocene aquifers is enriched in magnesium, sodium, calcium, potassium, and silica and has alkalinity and isotopic composition of dissolved inorganic carbon values with low sulphate and nitrate concentrations. These waters have likely been influenced by sulfate reduction and microbial methanogenesis associated with coal seams and dissolution of feldspars and magnesium-rich clay minerals. Pliocene aquifer waters are also depleted in heavier oxygen isotope and heavier deuterium isotope and have tritium concentrations near the detection limit, suggesting these waters are older. References Bates, B.L., McIntosh J.C., Lohse K.A., Brooks P.D. 2011: Influence of groundwater flowpaths, residence times, and nutrients on the extent of microbial methanogenesis in coal beds: Powder River Basin, USA, Chemical geology, 284, 45-61. Li, W., Cheng Y., Wang L., Zhou H., Wang H., Wang L. 2013: Evaluating the security of geological coalbed sequestration of supercritical CO2 reservoirs: The Haishiwan coalfield, China as a natural analogue, International Journal of Greenhouse Gas Control, 13, 102-111.

  16. Metabolite profiling of the fermentation process of "yamahai-ginjo-shikomi" Japanese sake

    PubMed Central

    Tatsukami, Yohei; Morisaka, Hironobu; Aburaya, Shunsuke; Aoki, Wataru; Kohsaka, Chihiro; Tani, Masafumi; Hirooka, Kiyoo; Yamamoto, Yoshihiro; Kitaoka, Atsushi; Fujiwara, Hisashi; Wakai, Yoshinori

    2018-01-01

    Sake is a traditional Japanese alcoholic beverage prepared by multiple parallel fermentation of rice. The fermentation process of “yamahai-ginjo-shikomi” sake is mainly performed by three microbes, Aspergillus oryzae, Saccharomyces cerevisiae, and Lactobacilli; the levels of various metabolites fluctuate during the fermentation of sake. For evaluation of the fermentation process, we monitored the concentration of moderate-sized molecules (m/z: 200–1000) dynamically changed during the fermentation process of “yamahai-ginjo-shikomi” Japanese sake. This analysis revealed that six compounds were the main factors with characteristic differences in the fermentation process. Among the six compounds, four were leucine- or isoleucine-containing peptides and the remaining two were predicted to be small molecules. Quantification of these compounds revealed that their quantities changed during the month of fermentation process. Our metabolomic approach revealed the dynamic changes observed in moderate-sized molecules during the fermentation process of sake, and the factors found in this analysis will be candidate molecules that indicate the progress of “yamahai-ginjo-shikomi” sake fermentation. PMID:29298316

  17. Clean fuels from biomass. [cellulose fermentation to methane

    NASA Technical Reports Server (NTRS)

    Hsu, Y. Y.

    1974-01-01

    The potential of growing crops as a source of fuels is examined, and it is shown that enough arable land is available in the U.S. so that, even with a modest rate of crop yield, the nation could be supplied by fuel crops. The technologies for fuel conversion are available; however, some R&D efforts are needed for scaling up design. Fuel crop economics are discussed and shown to be nonprohibitive.

  18. Microbial and biogeochernical processes Soda Lake, Nevada

    USGS Publications Warehouse

    Oremland, R.S.; Cloern, J.E.; Sofer, Z.; Smith, R.L.; Culbertson, C.W.; Zehr, J.; Miller, L.; Cole, B.; Harvey, R.; Iversen, N.; Klug, M.; Des Marais, D J; Rau, G.

    1988-01-01

    Meromictic, alkaline lakes represent modern-day analogues of lacustrine source rock depositional environments. In order to further our understanding of how these lakes function in terms of limnological and biogeochemical processes, we have conducted an interdisciplinary study of Big Soda Lake. Annual mixolimnion productivity (ca. 500 g m-2) is dominated by a winter diatom bloom (60% of annual) caused by upward transport of ammonia to the epilimnion. The remainder of productivity is attributable to chemoautotrophs (30%) and photosynthetic bacteria (10%) present at the oxic -anoxic interface from May to November. Studies of bacterial heterotrophy and particulate fluxes in the water column indicate that about 90% of annual productivity is remineralized in the mixolimnion, primarily by fermentative bacteria. However, high rates of sulphate reduction (9-29 mmol m-2 yr-1) occur in the monimolimnion waters, which could remineralize most (if not all) of the primary productivity. This discrepancy has not as yet been fully explained. Low rates of methanogenesis also occur in the monimolimnion waters and sediments. Most of the methane is consumed by anaerobic methane oxidation occurring in the monimolimnion water column. Other bacterial processes occurring in the lake are also discussed. Preliminary studies have been made on the organic geochemistry of the monimolimnion sediments. Carbon-14-dating indicates a lower depositional rate prior to meromixis and a downcore enrichment in 13C of organic carbon and chlorophyll derivatives. Hydrous pyrolysis experiments indicate that the sediment organic matter is almost entirely derived from the water column with little or no contribution from terrestrial sources. The significance of the organics released by hydrous pyrolysis is discussed.

  19. Extractive Fermentation of Sugarcane Juice to Produce High Yield and Productivity of Bioethanol

    NASA Astrophysics Data System (ADS)

    Rofiqah, U.; Widjaja, T.; Altway, A.; Bramantyo, A.

    2017-04-01

    Ethanol production by batch fermentation requires a simple process and it is widely used. Batch fermentation produces ethanol with low yield and productivity due to the accumulation of ethanol in which poisons microorganisms in the fermenter. Extractive fermentation technique is applied to solve the microorganism inhibition problem by ethanol. Extractive fermentation technique can produce ethanol with high yield and productivity. In this process raffinate still, contains much sugar because conversion in the fermentation process is not perfect. Thus, to enhance ethanol yield and productivity, recycle system is applied by returning the raffinate from the extraction process to the fermentation process. This raffinate also contains ethanol which would inhibit the performance of microorganisms in producing ethanol during the fermentation process. Therefore, this study aims to find the optimum condition for the amount of solvent to broth ratio (S: B) and recycle to fresh feed ratio (R: F) which enter the fermenter to produce high yield and productivity. This research was carried out by experiment. In the experiment, sugarcane juice was fermented using Zymomonasmobilis mutant. The fermentation broth was extracted using amyl alcohol. The process was integrated with the recycle system by varying the recycle ratio. The highest yield and productivity is 22.3901% and 103.115 g / L.h respectively, obtained in a process that uses recycle to fresh feed ratio (R: F) of 50:50 and solvents to both ratio of 1.

  20. Effect of bioaugmented inoculation on microbiota dynamics during solid-state fermentation of Daqu starter using autochthonous of Bacillus, Pediococcus, Wickerhamomyces and Saccharomycopsis.

    PubMed

    Li, Pan; Lin, Weifeng; Liu, Xiong; Wang, Xiaowen; Gan, Xing; Luo, Lixin; Lin, Wei-Tie

    2017-02-01

    Daqu, a traditional fermentation starter that is used for Chinese liquor and vinegar production, is still manufactured through a traditional spontaneous solid-state fermentation process with no selected microorganisms are intentionally inoculated. The aim of this work was to analyze the microbiota dynamics during the solid-state fermentation process of Daqu using a traditional and bioaugmented inoculation with autochthonous of Bacillus, Pediococcus, Saccharomycopsis and Wickerhamomyces at an industrial scale. Highly similar dynamics of physicochemical parameters, enzymatic activities and microbial communities were observed during the traditional and bioaugmented solid-state fermentation processes. Both in the two cases, groups of Streptophyta, Rickettsiales and Xanthomonadales only dominated the first two days, but Bacillales and Eurotiales became predominant members after 2 and 10 days fermentation, respectively. Phylotypes of Enterobacteriales, Lactobacillales, Saccharomycetales and Mucorales dominated the whole fermentation process. No significant difference (P > 0.05) in microbial structure was observed between the traditional and bioaugmented fermentation processes. However, slightly higher microbial richness was found during the bioaugmented fermentation process after 10 days fermentation. Our results reinforced the microbiota dynamic stability during the solid-state fermentation process of Daqu, and might aid in controlling the traditional Daqu manufacturing process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Kinetics of methane production and biodegradation of linear alkylbenzene sulfonate from laundry wastewater.

    PubMed

    Motteran, Fabrício; Braga, Juliana K; Silva, Edson L; Varesche, Maria Bernadete A

    2016-12-05

    This study evaluates the kinetics of methane production and degradation of standard linear alkylbenzene sulfonate (LAS) (50 ± 3.5 mg/L) and LAS from laundry wastewater (85 ± 2.1 mg/L) in anaerobic batch reactors at 30°C with different sources of inoculum. The inocula were obtained by auto-fermentation (AFM) and UASB reactors from wastewater treatment of poultry slaughterhouse (SGH), swine production (SWT) and wastewater treatment thermophilic of sugarcane industry (THR). The study was divided into three phases: synthetic substrate (Phase I), standard LAS (Phase II) and LAS from laundry wastewater (Phase III). For SGH, the highest values for cumulative methane productions (1,844.8 ± 149 µmol-Phase II), methane production rate (70.8 ± 88 µmol/h-Phase II and 4.01 ± 07 µmol/h-Phase III) were observed. The use of thermophilic biomass (THR) incubated at 30°C was not favorable for methane production and LAS biodegradation, but the highest kinetic coefficient degradation (k 1 app ) was obtained for LAS (0.33 ± 0.3 h) compared with mesophilic biomass (SGH and SWT) (0.13 ± 0.02 h). Therefore, both LAS sources influenced the kinetics of methane production and organic matter degradation. For SGH, inoculum obtained the highest LAS degradation. In the SGH inoculum sequenced by MiSeq-Illumina was identified genera (VadinCA02, Candidatus Cloacamonas, VadinHB04, PD-UASB-13) related to degrade toxic compounds. Therefore, it recommended the reactor mesophilic inoculum UASB (SGH) for the LAS degradation.

  2. Exploring the influence of ancient and historic megaherbivore extirpations on the global methane budget

    NASA Astrophysics Data System (ADS)

    Smith, Felisa A.; Hammond, John I.; Balk, Meghan A.; Elliott, Scott M.; Lyons, S. Kathleen; Pardi, Melissa I.; Tomé, Catalina P.; Wagner, Peter J.; Westover, Marie L.

    2016-01-01

    Globally, large-bodied wild mammals are in peril. Because "megamammals" have a disproportionate influence on vegetation, trophic interactions, and ecosystem function, declining populations are of considerable conservation concern. However, this is not new; trophic downgrading occurred in the past, including the African rinderpest epizootic of the 1890s, the massive Great Plains bison kill-off in the 1860s, and the terminal Pleistocene extinction of megafauna. Examining the consequences of these earlier events yields insights into contemporary ecosystem function. Here, we focus on changes in methane emissions, produced as a byproduct of enteric fermentation by herbivores. Although methane is ∼200 times less abundant than carbon dioxide in the atmosphere, the greater efficiency of methane in trapping radiation leads to a significant role in radiative forcing of climate. Using global datasets of late Quaternary mammals, domestic livestock, and human population from the United Nations as well as literature sources, we develop a series of allometric regressions relating mammal body mass to population density and CH4 production, which allows estimation of methane production by wild and domestic herbivores for each historic or ancient time period. We find the extirpation of megaherbivores reduced global enteric emissions between 2.2-69.6 Tg CH4 y-1 during the various time periods, representing a decrease of 0.8-34.8% of the overall inputs to tropospheric input. Our analyses suggest that large-bodied mammals have a greater influence on methane emissions than previously appreciated and, further, that changes in the source pool from herbivores can influence global biogeochemical cycles and, potentially, climate.

  3. Exploring the influence of ancient and historic megaherbivore extirpations on the global methane budget

    PubMed Central

    Smith, Felisa A.; Hammond, John I.; Balk, Meghan A.; Elliott, Scott M.; Lyons, S. Kathleen; Pardi, Melissa I.; Tomé, Catalina P.; Wagner, Peter J.; Westover, Marie L.

    2016-01-01

    Globally, large-bodied wild mammals are in peril. Because “megamammals” have a disproportionate influence on vegetation, trophic interactions, and ecosystem function, declining populations are of considerable conservation concern. However, this is not new; trophic downgrading occurred in the past, including the African rinderpest epizootic of the 1890s, the massive Great Plains bison kill-off in the 1860s, and the terminal Pleistocene extinction of megafauna. Examining the consequences of these earlier events yields insights into contemporary ecosystem function. Here, we focus on changes in methane emissions, produced as a byproduct of enteric fermentation by herbivores. Although methane is ∼200 times less abundant than carbon dioxide in the atmosphere, the greater efficiency of methane in trapping radiation leads to a significant role in radiative forcing of climate. Using global datasets of late Quaternary mammals, domestic livestock, and human population from the United Nations as well as literature sources, we develop a series of allometric regressions relating mammal body mass to population density and CH4 production, which allows estimation of methane production by wild and domestic herbivores for each historic or ancient time period. We find the extirpation of megaherbivores reduced global enteric emissions between 2.2–69.6 Tg CH4 y−1 during the various time periods, representing a decrease of 0.8–34.8% of the overall inputs to tropospheric input. Our analyses suggest that large-bodied mammals have a greater influence on methane emissions than previously appreciated and, further, that changes in the source pool from herbivores can influence global biogeochemical cycles and, potentially, climate. PMID:26504225

  4. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides.

    PubMed

    Yadav, Jay Shankar Singh; Yan, Song; Pilli, Sridhar; Kumar, Lalit; Tyagi, R D; Surampalli, R Y

    2015-11-01

    The byproduct of cheese-producing industries, cheese whey, is considered as an environmental pollutant due to its high BOD and COD concentrations. The high organic load of whey arises from the presence of residual milk nutrients. As demand for milk-derived products is increasing, it leads to increased production of whey, which poses a serious management problem. To overcome this problem, various technological approaches have been employed to convert whey into value-added products. These technological advancements have enhanced whey utilization and about 50% of the total produced whey is now transformed into value-added products such as whey powder, whey protein, whey permeate, bioethanol, biopolymers, hydrogen, methane, electricity bioprotein (single cell protein) and probiotics. Among various value-added products, the transformation of whey into proteinaceous products is attractive and demanding. The main important factor which is attractive for transformation of whey into proteinaceous products is the generally recognized as safe (GRAS) regulatory status of whey. Whey and whey permeate are biotransformed into proteinaceous feed and food-grade bioprotein/single cell protein through fermentation. On the other hand, whey can be directly processed to obtain whey protein concentrate, whey protein isolate, and individual whey proteins. Further, whey proteins are also transformed into bioactive peptides via enzymatic or fermentation processes. The proteinaceous products have applications as functional, nutritional and therapeutic commodities. Whey characteristics, and its transformation processes for proteinaceous products such as bioproteins, functional/nutritional protein and bioactive peptides are covered in this review. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Biogas and energy production from cattle waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarthi, J.

    1997-12-31

    Biomass is one of the longest used energy sources employed in human activity. The bioconversion of organic matter to biogas is a complex anaerobic fermentation process involving the action of microorganisms such as methane producing bacteria. In this paper, biogas and energy production from cattle waste is investigated. There are two significant reasons that motivate this study. First, treating animal waste with the technology of anaerobic digestion can reduce environmental pollution and generate a relatively cheap and easily available source of energy in dairy farms. The gas produced can be used for space and water heating of farm houses, cooking,more » lighting, grain drying and as a fuel for heating greenhouses during cold weather. It also has the potential to run other small industries. Second, it is an effective way of managing cattle waste as well as producing a quick acting, non-toxic fertilizer for agricultural use. A working model of biogas plant is studied in this paper and its economic value as an alternative energy source is examined. An alternative to direct generation of electricity, is to convert the methane from the biomass to methanol. Methanol is an excellent fuel for internal combustion engines and can easily compete with gasoline in many nations where gasoline costs over $4 per US gallon.« less

  6. Metagenome changes in the mesophilic biogas-producing community during fermentation of the green alga Scenedesmus obliquus.

    PubMed

    Wirth, Roland; Lakatos, Gergely; Böjti, Tamás; Maróti, Gergely; Bagi, Zoltán; Kis, Mihály; Kovács, Attila; Ács, Norbert; Rákhely, Gábor; Kovács, Kornél L

    2015-12-10

    A microalgal biomass offers a potential alternative to the maize silage commonly used in biogas technology. In this study, photoautotrophically grown Scenedesmus obliquus was used as biogas substrate. This microalga has a low C/N ratio of 8.5 relative to the optimum 20-30. A significant increase in the ammonium ion content was not observed. The methane content of the biogas generated from Sc. obliquus proved to be higher than that from maize silage, but the specific biogas yield was lower. Semi-continuous steady biogas production lasted for 2 months. Because of the thick cell wall of Sc. obliquus, the biomass-degrading microorganisms require additional time to digest its biomass. The methane concentration in the biogas was also high, in co-digestion (i.e., 52-56%) as in alga-fed anaerobic digestion (i.e., 55-62%). These results may be related to the relative predominance of the order Clostridiales in co-digestion and to the more balanced C/N ratio of the mixed algal-maize biomass. Predominance of the order Methanosarcinales was observed in the domain Archaea, which supported the diversity of metabolic pathways in the process. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Insights into biomethane production and microbial community succession during semi-continuous anaerobic digestion of waste cooking oil under different organic loading rates.

    PubMed

    He, Jing; Wang, Xing; Yin, Xiao-Bo; Li, Qiang; Li, Xia; Zhang, Yun-Fei; Deng, Yu

    2018-06-01

    High content of lipids in food waste could restrict digestion rate and give rise to the accumulation of long chain fatty acids in anaerobic digester. In the present study, using waste cooking oil skimmed from food waste as the sole carbon source, the effect of organic loading rate (OLR) on the methane production and microbial community dynamics were well investigated. Results showed that stable biomethane production was obtained at an organic loading rate of 0.5-1.5 g VS L -1  days -1 . The specific biogas/methane yield values at OLR of 1.0 were 1.44 ± 0.15 and 0.98 ± 0.11 L g VS -1 , respectively. The amplicon pyrosequencing revealed the distinct microbial succession in waste cooking oil AD reactors. Acetoclastic methanogens belonging to the genus Methanosaeta were the most dominant archaea, while the genera Syntrophomona, Anaerovibrio and Synergistaceae were the most common bacteria during AD process. Furthermore, redundancy analysis indicated that OLR showed more significant effect on the bacterial communities than that of archaeal communities. Additionally, whether the OLR of lipids increased had slight influence on the acetate fermentation pathway.

  8. [Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang Oilfield (China)].

    PubMed

    Nazina, T N; Shestakova, N M; Grigor'ian, A A; Mikhaĭlova, E M; Turova, T P; Poltaraus, A B; Feng, C; Ni, F; Beliaev, S S

    2006-01-01

    The number of microorganisms of major metabolic groups and the rates of sulfate-reducing and methanogenic processes in the formation waters of the high-temperature horizons of Dagang oilfield have been determined. Using cultural methods, it was shown that the microbial community contained aerobic bacteria oxidizing crude oil, anaerobic fermentative bacteria, sulfate-reducing bacteria, and methanogenic bacteria. Using cultural methods, the possibility of methane production from a mixture of hydrogen and carbon dioxide (H2 + CO2) and from acetate was established, and this result was confirmed by radioassays involving NaH14CO3 and 14CH3COONa. Analysis of 16S rDNA of enrichment cultures of methanogens demonstrated that these microorganisms belong to Methanothermobacter sp. (M. thermoautotrophicus), which consumes hydrogen and carbon dioxide as basic substrates. The genes of acetate-utilizing bacteria were not identified. Phylotypes of the representatives of Thermococcus spp. were found among 16S rDNAs of archaea. 16S rRNA genes of bacterial clones belong to the orders Thermoanaerobacteriales (Thermoanaerobacter, Thermovenabulum, Thermacetogenium, and Coprothermobacter spp.), Thermotogales, Nitrospirales (Thermodesulfovibrio sp.) and Planctomycetales. 16S rDNA of a bacterium capable of oxidizing acetate in the course of syntrophic growth with H2-utilizing methanogens was found at high-temperature petroleum reservoirs for the first time. These results provide further insight into the composition of microbial communities of high-temperature petroleum reservoirs, indicating that syntrophic processes play an important part in acetate degradation accompanied by methane production.

  9. Lipolytic Changes in Fermented Sausages Produced with Turkey Meat: Effects of Starter Culture and Heat Treatment

    PubMed Central

    Kolsarici, Nuray; Candoğan, Kezban

    2014-01-01

    In this study, the effects of two different commercial starter culture mixes and processing methodologies (traditional and heat process) on the lipolytic changes of fermented sausages manufactured with turkey meat were evaluated during processing stages and storage. Free fatty acid (FFA) value increased with fermentation and during storage over 120 d in all fermented sausage groups produced with both processing methodologies (p<0.05). After drying stage, free fatty acid values of traditional style and heat processed fermented sausages were between 10.54-13.01% and 6.56-8.49%, respectively. Thiobarbituric acid (TBA) values of traditionally processed fermented sausages were between 0.220-0.450 mg·kg-1, and TBA values of heat processed fermented sausages were in a range of 0.405-0.795 mg·kg-1. Oleic and linoleic acids were predominant fatty acids in all fermented sausages. It was seen that fermented sausage groups produced with starter culture had lower TBA and FFA values in comparison with the control groups, and heat application inhibited the lipase enzyme activity and had an improving effect on lipid oxidation. As a result of these effects, heat processed fermented sausages had lower FFA and higher TBA values than the traditionally processed groups. PMID:26760744

  10. Lipolytic Changes in Fermented Sausages Produced with Turkey Meat: Effects of Starter Culture and Heat Treatment.

    PubMed

    Karsloğlu, Betül; Çiçek, Ümran Ensoy; Kolsarici, Nuray; Candoğan, Kezban

    2014-01-01

    In this study, the effects of two different commercial starter culture mixes and processing methodologies (traditional and heat process) on the lipolytic changes of fermented sausages manufactured with turkey meat were evaluated during processing stages and storage. Free fatty acid (FFA) value increased with fermentation and during storage over 120 d in all fermented sausage groups produced with both processing methodologies (p<0.05). After drying stage, free fatty acid values of traditional style and heat processed fermented sausages were between 10.54-13.01% and 6.56-8.49%, respectively. Thiobarbituric acid (TBA) values of traditionally processed fermented sausages were between 0.220-0.450 mg·kg(-1), and TBA values of heat processed fermented sausages were in a range of 0.405-0.795 mg·kg(-1). Oleic and linoleic acids were predominant fatty acids in all fermented sausages. It was seen that fermented sausage groups produced with starter culture had lower TBA and FFA values in comparison with the control groups, and heat application inhibited the lipase enzyme activity and had an improving effect on lipid oxidation. As a result of these effects, heat processed fermented sausages had lower FFA and higher TBA values than the traditionally processed groups.

  11. Methane Pyrolysis and Disposing Off Resulting Carbon

    NASA Technical Reports Server (NTRS)

    Sharma, P. K.; Rapp, D.; Rahotgi, N. K.

    1999-01-01

    Sabatier/Electrolysis (S/E) is a leading process for producing methane and oxygen for application to Mars ISPP. One significant problem with this process is that it produces an excess of methane for combustion with the amount of oxygen that is produced. Therefore, one must discard roughly half of the methane to obtain the proper stoichiometric methane/oxygen mixture for ascent from Mars. This is wasteful of hydrogen, which must be brought from Earth and is difficult to transport to Mars and store on Mars. To reduced the problem of transporting hydrogen to Mars, the S/E process can be augmented by another process which reduces overall hydrogen requirement. Three conceptual approaches for doing this are (1) recover hydrogen from the excess methane produced by the S/E process, (2) convert the methane to a higher hydrocarbon or other organic with a lower H/C ratio than methane, and (3) use a separate process (such as zirconia or reverse water gas shift reaction) to produce additional oxygen, thus utilizing all the methane produced by the Sabatier process. We report our results here on recovering hydrogen from the excess methane using pyrolysis of methane. Pyrolysis has the advantage that it produces almost pure hydrogen, and any unreacted methane can pass through the S/E process reactor. It has the disadvantage that disposing of the carbon produced by pyrolysis presents difficulties. Hydrogen may be obtained from methane by pyrolysis in the temperature range 10000-12000C. The main reaction products are hydrogen and carbon, though very small amounts of higher hydrocarbons, including aromatic hydrocarbons are formed. The conversion efficiency is about 95% at 12000C. One needs to distinguish between thermodynamic equilibrium conversion and conversion limited by kinetics in a finite reactor.

  12. Inhibition of microbial metabolism in anaerobic lagoons by selected sulfonamides, tetracyclines, lincomycin, and tylosin tartrate

    USGS Publications Warehouse

    Loftin, Keith A.; Henny, Cynthia; Adams, Craig D.; Surampali, Rao; Mormile, Melanie R.

    2005-01-01

    Antibiotics are used to maintain healthy livestock and to promote weight gain in concentrated animal feed operations. Antibiotics rarely are metabolized completely by livestock and, thus, are often present in livestock waste and in waste-treatment lagoons. The introduction of antibiotics into anaerobic lagoons commonly used for swine waste treatment has the potential for negative impacts on lagoon performance, which relies on a consortium of microbes ranging from fermentative microorganisms to methanogens. To address this concern, the effects of eight common veterinary antibiotics on anaerobic activity were studied. Anaerobic microcosms, prepared from freshly collected lagoon slurries, were amended with individual antibiotics at 10 mg/L for the initial screening study and at 1, 5, and 25 mg/L for the dose-response study. Monitored metabolic indicators included hydrogen, methane, and volatile fatty acid concentrations as well as chemical oxygen demand. The selected antibiotics significantly inhibited methane production relative to unamended controls, thus indicating that antibiotics at concentrations commonly found in swine lagoons can negatively impact anaerobic metabolism. Additionally, historical antibiotic usage seems to be a potential factor in affecting methane production. Specifically, less inhibition of methane production was noted in samples taken from the lagoon with a history of multiple-antibiotic use.

  13. Methane and benzene in drinking-water wells overlying the Eagle Ford, Fayetteville, and Haynesville Shale hydrocarbon production areas

    USGS Publications Warehouse

    McMahon, Peter B.; Barlow, Jeannie R.; Engle, Mark A.; Belitz, Kenneth; Ging, Patricia B.; Hunt, Andrew G.; Jurgens, Bryant; Kharaka, Yousif K.; Tollett, Roland W.; Kresse, Timothy M.

    2017-01-01

    Water wells (n = 116) overlying the Eagle Ford, Fayetteville, and Haynesville Shale hydrocarbon production areas were sampled for chemical, isotopic, and groundwater-age tracers to investigate the occurrence and sources of selected hydrocarbons in groundwater. Methane isotopes and hydrocarbon gas compositions indicate most of the methane in the wells was biogenic and produced by the CO2 reduction pathway, not from thermogenic shale gas. Two samples contained methane from the fermentation pathway that could be associated with hydrocarbon degradation based on their co-occurrence with hydrocarbons such as ethylbenzene and butane. Benzene was detected at low concentrations (<0.15 μg/L), but relatively high frequencies (2.4–13.3% of samples), in the study areas. Eight of nine samples containing benzene had groundwater ages >2500 years, indicating the benzene was from subsurface sources such as natural hydrocarbon migration or leaking hydrocarbon wells. One sample contained benzene that could be from a surface release associated with hydrocarbon production activities based on its age (10 ± 2.4 years) and proximity to hydrocarbon wells. Groundwater travel times inferred from the age-data indicate decades or longer may be needed to fully assess the effects of potential subsurface and surface releases of hydrocarbons on the wells.

  14. Methane and Benzene in Drinking-Water Wells Overlying the Eagle Ford, Fayetteville, and Haynesville Shale Hydrocarbon Production Areas.

    PubMed

    McMahon, Peter B; Barlow, Jeannie R B; Engle, Mark A; Belitz, Kenneth; Ging, Patricia B; Hunt, Andrew G; Jurgens, Bryant C; Kharaka, Yousif K; Tollett, Roland W; Kresse, Timothy M

    2017-06-20

    Water wells (n = 116) overlying the Eagle Ford, Fayetteville, and Haynesville Shale hydrocarbon production areas were sampled for chemical, isotopic, and groundwater-age tracers to investigate the occurrence and sources of selected hydrocarbons in groundwater. Methane isotopes and hydrocarbon gas compositions indicate most of the methane in the wells was biogenic and produced by the CO 2 reduction pathway, not from thermogenic shale gas. Two samples contained methane from the fermentation pathway that could be associated with hydrocarbon degradation based on their co-occurrence with hydrocarbons such as ethylbenzene and butane. Benzene was detected at low concentrations (<0.15 μg/L), but relatively high frequencies (2.4-13.3% of samples), in the study areas. Eight of nine samples containing benzene had groundwater ages >2500 years, indicating the benzene was from subsurface sources such as natural hydrocarbon migration or leaking hydrocarbon wells. One sample contained benzene that could be from a surface release associated with hydrocarbon production activities based on its age (10 ± 2.4 years) and proximity to hydrocarbon wells. Groundwater travel times inferred from the age-data indicate decades or longer may be needed to fully assess the effects of potential subsurface and surface releases of hydrocarbons on the wells.

  15. Inhibition of microbial metabolism in anaerobic lagoons by selected sulfonamides, tetracyclines, lincomycin, and tylosin tartrate.

    PubMed

    Loftin, Keith A; Henny, Cynthia; Adams, Craig D; Surampali, Rao; Mormile, Melanie R

    2005-04-01

    Antibiotics are used to maintain healthy livestock and to promote weight gain in concentrated animal feed operations. Antibiotics rarely are metabolized completely by livestock and, thus, are often present in livestock waste and in waste-treatment lagoons. The introduction of antibiotics into anaerobic lagoons commonly used for swine waste treatment has the potential for negative impacts on lagoon performance, which relies on a consortium of microbes ranging from fermentative microorganisms to methanogens. To address this concern, the effects of eight common veterinary antibiotics on anaerobic activity were studied. Anaerobic microcosms, prepared from freshly collected lagoon slurries, were amended with individual antibiotics at 10 mg/L for the initial screening study and at 1, 5, and 25 mg/L for the dose-response study. Monitored metabolic indicators included hydrogen, methane, and volatile fatty acid concentrations as well as chemical oxygen demand. The selected antibiotics significantly inhibited methane production relative to unamended controls, thus indicating that antibiotics at concentrations commonly found in swine lagoons can negatively impact anaerobic metabolism. Additionally, historical antibiotic usage seems to be a potential factor in affecting methane production. Specifically, less inhibition of methane production was noted in samples taken from the lagoon with a history of multiple-antibiotic use.

  16. Assessment of application of selected waste for production of biogas

    NASA Astrophysics Data System (ADS)

    Pawlita-Posmyk, Monika; Wzorek, Małgorzata

    2017-10-01

    Recently, the idea of biogas production has become a popular topic in Poland. Biogas is a valuable source of renewable energy with a potential application in electricity and heat production. Numerous types of technological solutions of biogas production are closely linked to the availability of substrates in the area, as well as their quantity and their properties. The paper presents the assessment of application in biogas production selected wastes such as communal and household sewage sludge and waste from a paper production in Opole region (Poland). The annual productions of methane, biogas and electricity were estimated. Chosen physico-chemical properties important in fermentation process were taken into consideration in the assessment. The highest value of potential energy was obtained using waste from the paper industry but the most appropriate parameters for this process has sewage sludge from the municipal sewage treatment plant. The use of sewage sludge from domestic and municipal sewage and waste from the paper industry creates the opportunity to reduce the amount of waste materials.

  17. Characterization of wastewater treatment by two microbial fuel cells in continuous flow operation.

    PubMed

    Kubota, Keiichi; Watanabe, Tomohide; Yamaguchi, Takashi; Syutsubo, Kazuaki

    2016-01-01

    A two serially connected single-chamber microbial fuel cell (MFC) was applied to the treatment of diluted molasses wastewater in a continuous operation mode. In addition, the effect of series and parallel connection between the anodes and the cathode on power generation was investigated experimentally. The two serially connected MFC process achieved 79.8% of chemical oxygen demand removal and 11.6% of Coulombic efficiency when the hydraulic retention time of the whole process was 26 h. The power densities were 0.54, 0.34 and 0.40 W m(-3) when electrodes were in individual connection, serial connection and parallel connection modes, respectively. A high open circuit voltage was obtained in the serial connection. Power density decreased at low organic loading rates (OLR) due to the shortage of organic matter. Power generation efficiency tended to decrease as a result of enhancement of methane fermentation at high OLRs. Therefore, high power density and efficiency can be achieved by using a suitable OLR range.

  18. Relationship between fermentation index and other biochemical changes evaluated during the fermentation of Mexican cocoa (Theobroma cacao) beans.

    PubMed

    Romero-Cortes, Teresa; Salgado-Cervantes, Marco Antonio; García-Alamilla, Pedro; García-Alvarado, Miguel Angel; Rodríguez-Jimenes, Guadalupe del C; Hidalgo-Morales, Madeleine; Robles-Olvera, Víctor

    2013-08-15

    During traditional cocoa processing, the end of fermentation is empirically determined by the workers; consequently, a high variability on the quality of fermented cocoa beans is observed. Some physicochemical properties (such as fermentation index) have been used to measure the degree of fermentation and changes in quality, but only after the fermentation process has concluded, using dried cocoa beans. This would suggest that it is necessary to establish a relationship between the chemical changes inside the cocoa bean and the fermentation conditions during the fermentation in order to standardize the process. Cocoa beans were traditionally fermented inside wooden boxes, sampled every 24 h and analyzed to evaluate fermentation changes in complete bean, cotyledon and dried beans. The value of the fermentation index suggested as the minimal adequate (≥1) was observed at 72 h in all bean parts analyzed. At this time, values of pH, spectral absorption, total protein hydrolysis and vicilin-class globulins of fermented beans suggested that they were well fermented. Since no difference was found between the types of samples, the pH value could be used as a first indicator of the end of the fermentation and confirmed by evaluation of the fermentation index using undried samples, during the process. © 2013 Society of Chemical Industry.

  19. Abiotic vs biological sources and fates of organic compounds in a low temperature continental serpentinizing system

    NASA Astrophysics Data System (ADS)

    Robinson, K.; Noble, S. M.; Shock, E.

    2016-12-01

    Serpentinization is likely the most common water-rock reaction in our solar system. During this process ultramafic silicates are hydrated, a calcium hydroxide solution is formed, and H2O is reduced to H2 coupled to the oxidation of Fe2+ to Fe3+. The resulting hyper-alkaline, reduced conditions generate thermodynamic drives for numerous carbon compound reactions, including the precipitation of various carbonate minerals and the reduction of inorganic carbonate to organic carbon. Testing the extent to which these thermodynamic drives lead to observable results led to the present study of the flow and transformations of carbon through the active continental serpentinizing system at the Samail Ophiolite in the Sultanate of Oman. Water samples were collected from shallow groundwater (representing system input), hyper-alkaline seeps (system output), boreholes (system intermediate), and surface fluid mixing zones, and analyzed for concentrations of dissolved inorganic carbon (DIC + δ13C), organic carbon (+ δ13C), formate, acetate, H2, methane (+ δ13C), ethane, and an accompanying suite of other geochemical solutes. These analyses indicate that the vast majority of DIC in these serpentinizing fluids precipitates in the subsurface as carbonate minerals; however, a significant amount of DIC is converted into organic acids and light hydrocarbons and expelled at the surface in hyper-alkaline seeps. Based on thermodynamic calculations, it seems most likely that formate last equilibrated with dolomite (CaMg[CO3]2) in the subsurface, acetate last equilibrated with calcite (CaCO3) near the surface, and methane and ethane last equilibrated in a distinct carbon-limited region of the subsurface. As for the fates of these compounds, energetic calculations reveal that a combination of oxidative, reductive, and fermentative metabolisms are thermodynamically favorable. Indeed, δ13C trends record microbial methane oxidation at the surface and cannot rule out methane as biologically sourced from the subsurface.

  20. Bioelectrochemical methane (CH4) production in anaerobic digestion at different supplemental voltages.

    PubMed

    Choi, Kwang-Soon; Kondaveeti, Sanath; Min, Booki

    2017-12-01

    Microbial electrolysis cells (MECs) at various cell voltages (0.5, 0.7 1.0 and 1.5V) were operated in anaerobic fermentation. During the start-up period, the cathode potential decreased from -0.63 to -1.01V, and CH 4 generation increased from 168 to 199ml. At an applied voltage of 1.0V, the highest methane yields of 408.3ml CH 4 /g COD glucose was obtained, which was 30.3% higher than in the control tests (313.4ml CH 4 /g COD glucose). The average current of 5.1mA was generated at 1.0V at which the maximum methane yield was obtained. The other average currents were 1.42, 3.02, 0.53mA at 0.5, 0.7, and 1.5V, respectively. Cyclic voltammetry and EIS analysis revealed that enhanced reduction currents were present at all cell voltages with biocatalyzed cathode electrodes (no reduction without biofilm), and the highest value was obtained with 1V external voltage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Microbial ecology of anaerobic digesters: the key players of anaerobiosis.

    PubMed

    Ali Shah, Fayyaz; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Ahmad Asad, Saeed

    2014-01-01

    Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed.

  2. Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis

    PubMed Central

    Ali Shah, Fayyaz; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Ahmad Asad, Saeed

    2014-01-01

    Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed. PMID:24701142

  3. Using carbon isotopes of methane from porewater to understand methane emissions across a permafrost thaw gradient

    NASA Astrophysics Data System (ADS)

    Varner, R. K.; McCalley, C. K.; Clarizia, P. E.; Verbeke, B. A.; Werner, S. L.; Burke, S. A.; Malhotra, A.; Rocci, K.

    2016-12-01

    Methane (CH4) emissions from high latitude ecosystems are controlled in part by the presence/absence of permafrost and concomitant modifications in vegetation composition. Rapid transitions in habitat impact CH4 emissions both by changing the moisture regime as well as the production and emission pathways. Measurement of the isotopic composition of CH4 in porewater in these thawed ecosystems can indicate shifts in production pathways of CH4. We measured CH4 and carbon dioxide (CO2) emission, belowground CH4 concentration and 13CH4 of porewater, vegetative type, and vascular greenness area (VGA) along a thaw gradient during summers 2012-2016 in Stordalen Mire, Sweden. Concentrations of CH4 belowground showed positive correlation with aboveground emissions. Carbon isotopic signatures of CH4 varied varied between sites with more hydrogenotrophic signatures in sites dominated by Sphagnum spp. and acetate fermentation signatures in sedge dominated sites (Carex and Eriophorum spp.). These data indicate that these ecosystems transition from thaw, their 13CH4 emissions will change and therefore need to be accounted for in global atmospheric budgets and models.

  4. Hops (Humulus lupulus L.) Bitter Acids: Modulation of Rumen Fermentation and Potential As an Alternative Growth Promoter

    PubMed Central

    Flythe, Michael D.; Kagan, Isabelle A.; Wang, Yuxi; Narvaez, Nelmy

    2017-01-01

    Antibiotics can improve ruminant growth and efficiency by altering rumen fermentation via selective inhibition of microorganisms. However, antibiotic use is increasingly restricted due to concerns about the spread of antibiotic-resistance. Plant-based antimicrobials are alternatives to antibiotics in animal production. The hops plant (Humulus lupulus L.) produces a range of bioactive secondary metabolites, including antimicrobial prenylated phloroglucinols, which are commonly called alpha- and beta-acids. These latter compounds can be considered phyto-ionophores, phytochemicals with a similar antimicrobial mechanism of action to ionophore antibiotics (e.g., monensin, lasalocid). Like ionophores, the hop beta-acids inhibit rumen bacteria possessing a classical Gram-positive cell envelope. This selective inhibition causes several effects on rumen fermentation that are beneficial to finishing cattle, such as decreased proteolysis, ammonia production, acetate: propionate ratio, and methane production. This article reviews the effects of hops and hop secondary metabolites on rumen fermentation, including the physiological mechanisms on specific rumen microorganisms, and consequences for the ruminant host and ruminant production. Further, we propose that hop beta-acids are useful model natural products for ruminants because of (1) the ionophore-like mechanism of action and spectrum of activity and (2) the literature available on the plant due to its use in brewing. PMID:28871284

  5. Strategic supplementation of cassava top silage to enhance rumen fermentation and milk production in lactating dairy cows in the tropics.

    PubMed

    Wanapat, Metha; Phesatcha, Kampanat; Viennasay, Bounnaxay; Phesatcha, Burarat; Ampapon, Thiwakorn; Kang, Sungchhang

    2018-04-19

    High-quality protein roughage is an important feed for productive ruminants. This study examined the effects of strategic feeding of lactating cows with cassava (Manihot esculenta) top silage (CTS) on rumen fermentation, feed intake, milk yield, and quality. Four early lactating crossbred dairy cows (75% Holstein-Friesian and 25% Thai) with body weight (BW) 410 ± 30 kg and milk yield 12 ± 2 kg/day were randomly allotted in a 4 × 4 Latin square design to four different supplementation levels of CTS namely, 0, 0.75, 1.50, and 2.25 kg/day of dry matter (DM). Strategic supplementation of CTS significantly affected ruminal fermentation end-products, especially increased propionate production, decreased protozoal population and suppressed methane production (P < 0.05). Increasing the CTS supplementation level substantially enhanced milk yield and the 3.5% FCM from 12.7 to 14.0 kg/day and from 14.6 to 17.2 kg/day (P < 0.05) for non-supplemented group and for the 2.25 kg/day supplemented group, respectively. We conclude that high-quality protein roughage significantly enhances rumen fermentation end-products, milk yield, and quality in dairy cows.

  6. High value added lipids produced by microorganisms: a potential use of sugarcane vinasse.

    PubMed

    Fernandes, Bruna Soares; Vieira, João Paulo Fernandes; Contesini, Fabiano Jares; Mantelatto, Paulo Eduardo; Zaiat, Marcelo; Pradella, José Geraldo da Cruz

    2017-12-01

    This review aims to present an innovative concept of high value added lipids produced by heterotrophic microorganisms, bacteria and fungi, using carbon sources, such as sugars, acids and alcohols that could come from sugarcane vinasse, which is the main byproduct from ethanol production that is released in the distillation step. Vinasse is a rich carbon source and low-cost feedstock produced in large amounts from ethanol production. In 2019, the Brazilian Ministry of Agriculture, Livestock and Food Supply estimates that growth of ethanol domestic consumption will be 58.8 billion liters, more than double the amount in 2008. This represents the annual production of more than 588 billion liters of vinasse, which is currently used as a fertilizer in the sugarcane crop, due to its high concentration of minerals, mainly potassium. However, studies indicate some disadvantages such as the generation of Greenhouse Gas emission during vinasse distribution in the crop, as well as the possibility of contaminating the groundwater and soil. Therefore, the development of programs for sustainable use of vinasse is a priority. One profitable alternative is the fermentation of vinasse, followed by an anaerobic digester, in order to obtain biomaterials such as lipids, other byproducts, and methane. Promising high value added lipids, for instance carotenoids and polyunsaturated fatty acids (PUFAS), with a predicted market of millions of US$, could be produced using vinasse as carbon source, to guide an innovative concept for sustainable production. Example of lipids obtained from the fermentation of compounds present in vinasse are vitamin D, which comes from yeast sucrose fermentation and Omega 3, which can be obtained by bacteria and fungi fermentation. Additionally, several other compounds present in vinasse can be used for this purpose, including sucrose, ethanol, lactate, pyruvate, acetate and other carbon sources. Finally, this paper illustrates the potential market and microbial processes, using microorganisms, for lipid production.

  7. Countercurrent extraction of soluble sugars from almond hulls and assessment of the bioenergy potential.

    PubMed

    Holtman, Kevin M; Offeman, Richard D; Franqui-Villanueva, Diana; Bayati, Andre K; Orts, William J

    2015-03-11

    Almond hulls contain considerable proportions (37% by dry weight) of water-soluble, fermentable sugars (sucrose, glucose, and fructose), which can be extracted for industrial purposes. The maximum optimal solids loading was determined to be 20% for sugar extraction, and the addition of 0.5% (w/v) pectinase aided in maintaining a sufficient free water volume for sugar recovery. A laboratory countercurrent extraction experiment utilizing a 1 h steep followed by three extraction (wash) stages produced a high-concentration (131 g/L fermentable sugar) syrup. Overall, sugar recovery efficiency was 88%. The inner stage washing efficiencies were compatible with solution equilibrium calculations, indicating that efficiency was high. The concentrated sugar syrup was fermented to ethanol at high efficiency (86% conversion), and ethanol concentrations in the broth were 7.4% (v/v). Thin stillage contained 233 g SCOD/L, which was converted to biomethane at an efficiency of 90% with a biomethane potential of 297 mL/g SCODdestroyed. Overall, results suggested that a minima of 49 gal (185 L) ethanol and 75 m(3) methane/t hulls (dry whole hull basis) are achievable.

  8. Effect of influent COD/SO4(2-) ratios on UASB treatment of a synthetic sulfate-containing wastewater.

    PubMed

    Hu, Yong; Jing, Zhaoqian; Sudo, Yuta; Niu, Qigui; Du, Jingru; Wu, Jiang; Li, Yu-You

    2015-07-01

    The effect of the chemical oxygen demand/sulfate (COD/SO4(2-)) ratio on the anaerobic treatment of synthetic chemical wastewater containing acetate, ethanol, and sulfate, was investigated using a UASB reactor. The experimental results show that at a COD/SO4(2-) ratio of 20 and a COD loading rate of 25.2gCODL(-1)d(-1), a COD removal of as high as 87.8% was maintained. At a COD/SO4(2-) ratio of 0.5 (sulfate concentration 6000mgL(-1)), however, the COD removal was 79.2% and the methane yield was 0.20LCH4gCOD(-1). The conversion of influent COD to methane dropped from 80.5% to 54.4% as the COD/SO4(2-) ratio decreased from 20 to 0.5. At all the COD/SO4(2-) ratios applied, over 79.4% of the total electron flow was utilized by methane-producing archaea (MPA), indicating that methane fermentation was the predominant reaction. The majority of the methane was produced by acetoclastic MPA at high COD/SO4(2-) ratios and both acetoclastic and hydrogenthrophic MPA at low COD/SO4(2-) ratios. Only at low COD/SO4(2-) ratios were SRB species such as Desulfovibrio found to play a key role in ethanol degradation, whereas all the SRB species were found to be incomplete oxidizers at both high and low COD/SO4(2-) ratios. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Limits to Dihydrogen Incorporation into Electron Sinks Alternative to Methanogenesis in Ruminal Fermentation

    PubMed Central

    Ungerfeld, Emilio M.

    2015-01-01

    Research is being conducted with the objective of decreasing methane (CH4) production in the rumen, as methane emissions from ruminants are environmentally damaging and a loss of digestible energy to ruminants. Inhibiting ruminal methanogenesis generally results in accumulation of dihydrogen (H2), which is energetically inefficient and can inhibit fermentation. It would be nutritionally beneficial to incorporate accumulated H2 into propionate or butyrate production, or reductive acetogenesis. The objective of this analysis was to examine three possible physicochemical limitations to the incorporation of accumulated H2 into propionate and butyrate production, and reductive acetogenesis, in methanogenesis-inhibited ruminal batch and continuous cultures: (i) Thermodynamics; (ii) Enzyme kinetics; (iii) Substrate kinetics. Batch (N = 109) and continuous (N = 43) culture databases of experiments with at least 50% inhibition in CH4 production were used in this meta-analysis. Incorporation of accumulated H2 into propionate production and reductive acetogenesis seemed to be thermodynamically feasible but quite close to equilibrium, whereas this was less clear for butyrate. With regard to enzyme kinetics, it was speculated that hydrogenases of ruminal microorganisms may have evolved toward high-affinity and low maximal velocity to compete for traces of H2, rather than for high pressure accumulated H2. Responses so far obtained to the addition of propionate production intermediates do not allow distinguishing between thermodynamic and substrate kinetics control. PMID:26635743

  10. Reducing methane production by supplementation of Terminalia chebula RETZ. containing tannins and saponins.

    PubMed

    Anantasook, Nirawan; Wanapat, Metha; Gunun, Pongsatorn; Cherdthong, Anusorn

    2016-06-01

    This study investigates the effects of Terminalia chebula Retz. meal supplementation on rumen fermentation and methane (CH4 ) production by using an in vitro gas technique. The experimental design was a completely randomized design (CRD) and the dietary treatments were T. chebula supplementation at 0, 4, 8, 12, 16 and 20 mg with 0.5 g of roughage and concentrate ratio at 60:40. The results revealed that cumulative gas production (96 h of incubation) were higher (P < 0.01) with T. chebula supplementation at 12, 16 and 20 mg than other treatments. However, in vitro dry matter degradability (IVDMD) and in vitro organic matter digestibility (IVOMD) were not significantly different among treatments (P > 0.05). The NH3 -N concentrations tended to quadratically increase with increasing levels of T. chebula in the diet. In addition, total volatile fatty acids (VFA) and propionate concentrations were increased (P < 0.01), while acetate concentration, acetate-to-propionate ratio, CH4 production and protozoal populations were decreased (P < 0.01) when supplemented with T. chebula at 8, 12 and 16 mg, respectively. Based on this study, it could be concluded that supplementation of T. chebula at 12 mg could improve rumen fermentation by reducing CH4 production and protozoa populations, thus improving in vitro gas production and VFA profiles. © 2015 Japanese Society of Animal Science.

  11. Factors affecting methane production and mitigation in ruminants.

    PubMed

    Shibata, Masaki; Terada, Fuminori

    2010-02-01

    Methane (CH(4)) is the second most important greenhouse gas (GHG) and that emitted from enteric fermentation in livestock is the single largest source of emissions in Japan. Many factors influence ruminant CH(4) production, including level of intake, type and quality of feeds and environmental temperature. The objectives of this review are to identify the factors affecting CH(4) production in ruminants, to examine technologies for the mitigation of CH(4) emissions from ruminants, and to identify areas requiring further research. The following equation for CH(4) prediction was formulated using only dry matter intake (DMI) and has been adopted in Japan to estimate emissions from ruminant livestock for the National GHG Inventory Report: Y = -17.766 + 42.793X - 0.849X(2), where Y is CH(4) production (L/day) and X is DMI (kg/day). Technologies for the mitigation of CH(4) emissions from ruminants include increasing productivity by improving nutritional management, the manipulation of ruminal fermentation by changing feed composition, the addition of CH(4) inhibitors, and defaunation. Considering the importance of ruminant livestock, it is essential to establish economically feasible ways of reducing ruminant CH(4) production while improving productivity; it is therefore critical to conduct a full system analysis to select the best combination of approaches or new technologies to be applied under long-term field conditions.

  12. Methane/nitrogen separation process

    DOEpatents

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  13. Methane/nitrogen separation process

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Pinnau, Ingo; Segelke, Scott

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  14. Impact of osmotic stress and ethanol inhibition in yeast cells on process oscillation associated with continuous very-high-gravity ethanol fermentation

    PubMed Central

    2013-01-01

    Background VHG fermentation is a promising process engineering strategy aiming at improving ethanol titer, and thus saving energy consumption for ethanol distillation and distillage treatment. However, sustained process oscillation was observed during continuous VHG ethanol fermentation, which significantly affected ethanol fermentation performance of the system. Results Sustained process oscillation was investigated in continuous VHG ethanol fermentation, and stresses exerted on yeast cells by osmotic pressure from unfermented sugars and ethanol inhibition developed within the fermentation system were postulated to be major factors triggering this phenomenon. In this article, steady state was established for continuous ethanol fermentation with LG medium containing 120 g/L glucose, and then 160 g/L non-fermentable xylose was supplemented into the LG medium to simulate the osmotic stress on yeast cells under the VHG fermentation condition, but the fermentation process was still at steady state, indicating that the impact of osmotic stress on yeast cells was not the main reason for the process oscillation. However, when 30 g/L ethanol was supplemented into the LG medium to simulate the ethanol inhibition in yeast cells under the VHG fermentation condition, process oscillation was triggered, which was augmented with extended oscillation period and exaggerated oscillation amplitude as ethanol supplementation was increased to 50 g/L, but the process oscillation was gradually attenuated when the ethanol supplementations were stopped, and the steady state was restored. Furthermore, gas stripping was incorporated into the continuous VHG fermentation system to in situ remove ethanol produced by Saccharomyces cerevisiae, and the process oscillation was also attenuated, but restored after the gas stripping was interrupted. Conclusions Experimental results indicated that ethanol inhibition rather than osmotic stress on yeast cells is one of the main factors triggering the process oscillation under the VHG fermentation condition, and in the meantime gas stripping was validated to be an effective strategy for attenuating the process oscillation. PMID:24041271

  15. Geomicrobiological Features of Ferruginous Sediments from Lake Towuti, Indonesia

    PubMed Central

    Vuillemin, Aurèle; Friese, André; Alawi, Mashal; Henny, Cynthia; Nomosatryo, Sulung; Wagner, Dirk; Crowe, Sean A.; Kallmeyer, Jens

    2016-01-01

    Lake Towuti is a tectonic basin, surrounded by ultramafic rocks. Lateritic soils form through weathering and deliver abundant iron (oxy)hydroxides but very little sulfate to the lake and its sediment. To characterize the sediment biogeochemistry, we collected cores at three sites with increasing water depth and decreasing bottom water oxygen concentrations. Microbial cell densities were highest at the shallow site—a feature we attribute to the availability of labile organic matter (OM) and the higher abundance of electron acceptors due to oxic bottom water conditions. At the two other sites, OM degradation and reduction processes below the oxycline led to partial electron acceptor depletion. Genetic information preserved in the sediment as extracellular DNA (eDNA) provided information on aerobic and anaerobic heterotrophs related to Nitrospirae, Chloroflexi, and Thermoplasmatales. These taxa apparently played a significant role in the degradation of sinking OM. However, eDNA concentrations rapidly decreased with core depth. Despite very low sulfate concentrations, sulfate-reducing bacteria were present and viable in sediments at all three sites, as confirmed by measurement of potential sulfate reduction rates. Microbial community fingerprinting supported the presence of taxa related to Deltaproteobacteria and Firmicutes with demonstrated capacity for iron and sulfate reduction. Concomitantly, sequences of Ruminococcaceae, Clostridiales, and Methanomicrobiales indicated potential for fermentative hydrogen and methane production. Such first insights into ferruginous sediments showed that microbial populations perform successive metabolisms related to sulfur, iron, and methane. In theory, iron reduction could reoxidize reduced sulfur compounds and desorb OM from iron minerals to allow remineralization to methane. Overall, we found that biogeochemical processes in the sediments can be linked to redox differences in the bottom waters of the three sites, like oxidant concentrations and the supply of labile OM. At the scale of the lacustrine record, our geomicrobiological study should provide a means to link the extant subsurface biosphere to past environments. PMID:27446046

  16. Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies.

    PubMed

    Güllert, Simon; Fischer, Martin A; Turaev, Dmitrij; Noebauer, Britta; Ilmberger, Nele; Wemheuer, Bernd; Alawi, Malik; Rattei, Thomas; Daniel, Rolf; Schmitz, Ruth A; Grundhoff, Adam; Streit, Wolfgang R

    2016-01-01

    The diverse microbial communities in agricultural biogas fermenters are assumed to be well adapted for the anaerobic transformation of plant biomass to methane. Compared to natural systems, biogas reactors are limited in their hydrolytic potential. The reasons for this are not understood. In this paper, we show that a typical industrial biogas reactor fed with maize silage, cow manure, and chicken manure has relatively lower hydrolysis rates compared to feces samples from herbivores. We provide evidence that on average, 2.5 genes encoding cellulolytic GHs/Mbp were identified in the biogas fermenter compared to 3.8 in the elephant feces and 3.2 in the cow rumen data sets. The ratio of genes coding for cellulolytic GH enzymes affiliated with the Firmicutes versus the Bacteroidetes was 2.8:1 in the biogas fermenter compared to 1:1 in the elephant feces and 1.4:1 in the cow rumen sample. Furthermore, RNA-Seq data indicated that highly transcribed cellulases in the biogas fermenter were four times more often affiliated with the Firmicutes compared to the Bacteroidetes, while an equal distribution of these enzymes was observed in the elephant feces sample. Our data indicate that a relatively lower abundance of bacteria affiliated with the phylum of Bacteroidetes and, to some extent, Fibrobacteres is associated with a decreased richness of predicted lignocellulolytic enzymes in biogas fermenters. This difference can be attributed to a partial lack of genes coding for cellulolytic GH enzymes derived from bacteria which are affiliated with the Fibrobacteres and, especially, the Bacteroidetes. The partial deficiency of these genes implies a potentially important limitation in the biogas fermenter with regard to the initial hydrolysis of biomass. Based on these findings, we speculate that increasing the members of Bacteroidetes and Fibrobacteres in biogas fermenters will most likely result in an increased hydrolytic performance.

  17. Study on fermentation kinetics and extraction process of rhamnolipid production by papermaking wastewater

    NASA Astrophysics Data System (ADS)

    Yu, Keer

    2018-01-01

    Paper mill wastewater (PMW) is the outlet water generated during pulp and papermaking process in the paper industry. Fermentation by wastewater can lower the cost of production as well as alleviate the pressure of wastewater treatment. Rhamnolipids find broad placations as natural surfactants. This paper studied the rhamnolipids fermentation by employing Pseudomonas aeruginosa isolated by the laboratory, and determined to use wastewater which filtered by medium speed filter paper and strain Z2, the culture conditions were optimized, based on the flask shaking fermentation. On the basis of 5L tank fermentation, batch fermentation was carried out, the yield of fermentation reached 7.067g/L and the fermentation kinetics model of cell growth, product formation and substrate consumption was established by using origin software, and the fermentation process could be simulated well. And studied on the extraction process of rhamnolipids, through fermentation dynamic equation analysis can predict the in fill material yield can be further improved. Research on the extraction process of rhamnolipid simplifies the operation of extraction, and lays the foundation for the industrial extraction.

  18. Inverse Modeling of Tropospheric Methane Constrained by 13C Isotope in Methane

    NASA Astrophysics Data System (ADS)

    Mikaloff Fletcher, S. E.; Tans, P. P.; Bruhwiler, L. M.

    2001-12-01

    Understanding the budget of methane is crucial to predicting climate change and managing earth's carbon reservoirs. Methane is responsible for approximately 15% of the anthropogenic greenhouse forcing and has a large impact on the oxidative capacity of Earth's atmosphere due to its reaction with hydroxyl radical. At present, many of the sources and sinks of methane are poorly understood, due in part to the large spatial and temporal variability of the methane flux. Model calculations of methane mixing ratios using most process-based source estimates typically over-predict the inter-hemispheric gradient of atmospheric methane. Inverse models, which estimate trace gas budgets by using observations of atmospheric mixing ratios and transport models to estimate sources and sinks, have been used to incorporate features of the atmospheric observations into methane budgets. While inverse models of methane generally tend to find a decrease in northern hemisphere sources and an increase in southern hemisphere sources relative to process-based estimates,no inverse study has definitively associated the inter-hemispheric gradient difference with a specific source process or group of processes. In this presentation, observations of isotopic ratios of 13C in methane and isotopic signatures of methane source processes are used in conjunction with an inverse model of methane to further constrain the source estimates of methane. In order to investigate the advantages of incorporating 13C, the TM3 three-dimensional transport model was used. The methane and carbon dioxide measurements used are from a cooperative international effort, the Cooperative Air Sampling Network, lead by the Climate Monitoring Diagnostics Laboratory (CMDL) at the National Oceanic and Atmospheric Administration (NOAA). Experiments using model calculations based on process-based source estimates show that the inter-hemispheric gradient of δ 13CH4 is not reproduced by these source estimates, showing that the addition of observations of δ 13CH4 should provide unique insight into the methane problem.

  19. Generalised additive modelling approach to the fermentation process of glutamate.

    PubMed

    Liu, Chun-Bo; Li, Yun; Pan, Feng; Shi, Zhong-Ping

    2011-03-01

    In this work, generalised additive models (GAMs) were used for the first time to model the fermentation of glutamate (Glu). It was found that three fermentation parameters fermentation time (T), dissolved oxygen (DO) and oxygen uptake rate (OUR) could capture 97% variance of the production of Glu during the fermentation process through a GAM model calibrated using online data from 15 fermentation experiments. This model was applied to investigate the individual and combined effects of T, DO and OUR on the production of Glu. The conditions to optimize the fermentation process were proposed based on the simulation study from this model. Results suggested that the production of Glu can reach a high level by controlling concentration levels of DO and OUR to the proposed optimization conditions during the fermentation process. The GAM approach therefore provides an alternative way to model and optimize the fermentation process of Glu. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  20. Recent trends in bioethanol production from food processing byproducts.

    PubMed

    Akbas, Meltem Yesilcimen; Stark, Benjamin C

    2016-11-01

    The widespread use of corn starch and sugarcane as sources of sugar for the production of ethanol via fermentation may negatively impact the use of farmland for production of food. Thus, alternative sources of fermentable sugars, particularly from lignocellulosic sources, have been extensively investigated. Another source of fermentable sugars with substantial potential for ethanol production is the waste from the food growing and processing industry. Reviewed here is the use of waste from potato processing, molasses from processing of sugar beets into sugar, whey from cheese production, byproducts of rice and coffee bean processing, and other food processing wastes as sugar sources for fermentation to ethanol. Specific topics discussed include the organisms used for fermentation, strategies, such as co-culturing and cell immobilization, used to improve the fermentation process, and the use of genetic engineering to improve the performance of ethanol producing fermenters.

  1. REDUCING WASTEWATER FROM CUCUMBER PICKLING PROCESS BY CONTROLLED CULTURE FERMENTATION

    EPA Science Inventory

    On a demonstration scale, the controlled culture fermentation process (CCF) developed by the U.S. Food Fermentation Laboratory was compared with the conventional natural fermentation process (NF) in regard to product quality and yield and volume and concentration of wastewaters. ...

  2. Processing of palm oil mill wastes based on zero waste technology

    NASA Astrophysics Data System (ADS)

    Irvan

    2018-02-01

    Indonesia is currently the main producer of palm oil in the world with a total production reached 33.5 million tons per year. In the processing of fresh fruit bunches (FFB) besides producing palm oil and kernel oil, palm oil mills also produce liquid and solid wastes. The increase of palm oil production will be followed by an increase in the production of waste generated. It will give rise to major environmental issues especially the discharge of liquid waste to the rivers, the emission of methane from digestion pond and the incineration of empty fruit bunches (EFB). This paper describes a zero waste technology in processing palm oil mill waste after the milling process. The technology involves fermentation of palm oil mill effluent (POME) to biogas by using continuous stirred tank reactor (CSTR) in the presence of thermophilic microbes, producing activated liquid organic fertilizer (ALOF) from discharge of treated waste effluent from biogas digester, composting EFB by spraying ALOF on the EFB in the composter, and producing pellet or biochar from EFB by pyrolysis process. This concept can be considered as a promising technology for palm oil mills with the main objective of eliminating the effluent from their mills.

  3. [In situ Raman spectroscopic observation of micro-processes of methane hydrate formation and dissociation].

    PubMed

    Liu, Chang-Ling; Ye, Yu-Guang; Meng, Qing-Guo; Lü, Wan-Jun; Wang, Fei-Fei

    2011-06-01

    Micro laser Raman spectroscopic technique was used for in situ observation of the micro-processes of methane hydrate formed and decomposed in a high pressure transparent capillary. The changes in clathrate structure of methane hydrate were investigated during these processes. The results show that, during hydrate formation, the Raman peak (2 917 cm(-1)) of methane gas gradually splits into two peaks (2 905 and 2 915 cm(-1)) representing large and small cages, respectively, suggesting that the dissolved methane molecules go into two different chemical environments. In the meantime, the hydrogen bonds interaction is strengthened because water is changing from liquid to solid state gradually. As a result, the O-H stretching vibrations of water shift to lower wavenumber. During the decomposition process of methane hydrates, the Raman peaks of the methane molecules both in the large and small cages gradually clear up, and finally turn into a single peak of methane gas. The experimental results show that laser Raman spectroscopy can accurately demonstrate some relevant information of hydrate crystal structure changes during the formation and dissociation processes of methane hydrate.

  4. A membrane-integrated fermentation reactor system: its effects in reducing the amount of sub-raw materials for D-lactic acid continuous fermentation by Sporolactobacillus laevolacticus.

    PubMed

    Mimitsuka, Takashi; Na, Kyungsu; Morita, Ken; Sawai, Hideki; Minegishi, Shinichi; Henmi, Masahiro; Yamada, Katsushige; Shimizu, Sakayu; Yonehara, Tetsu

    2012-01-01

    Continuous fermentation by retaining cells with a membrane-integrated fermentation reactor (MFR) system was found to reduce the amount of supplied sub-raw material. If the amount of sub-raw material can be reduced, continuous fermentation with the MFR system should become a more attractive process for industrialization, due to decreased material costs and loads during the refinement process. Our findings indicate that the production rate decreased when the amount of the sub-raw material was reduced in batch fermentation, but did not decrease during continuous fermentation with Sporolactobacillus laevolacticus. Moreover, continuous fermentation with a reduced amount of sub-raw material resulted in a productivity of 11.2 g/L/h over 800 h. In addition, the index of industrial process applicability used in the MFR system increased by 6.3-fold as compared with the conventional membrane-based fermentation reactor previously reported, suggesting a potential for the industrialization of this D-lactic acid continuous fermentation process.

  5. Mechanistic simulation of batch acetone-butanol-ethanol (ABE) fermentation with in situ gas stripping using Aspen Plus™.

    PubMed

    Darkwah, Kwabena; Nokes, Sue E; Seay, Jeffrey R; Knutson, Barbara L

    2018-05-22

    Process simulations of batch fermentations with in situ product separation traditionally decouple these interdependent steps by simulating a separate "steady state" continuous fermentation and separation units. In this study, an integrated batch fermentation and separation process was simulated for a model system of acetone-butanol-ethanol (ABE) fermentation with in situ gas stripping, such that the fermentation kinetics are linked in real-time to the gas stripping process. A time-dependent cell growth, substrate utilization, and product production is translated to an Aspen Plus batch reactor. This approach capitalizes on the phase equilibria calculations of Aspen Plus to predict the effect of stripping on the ABE fermentation kinetics. The product profiles of the integrated fermentation and separation are shown to be sensitive to gas flow rate, unlike separate steady state fermentation and separation simulations. This study demonstrates the importance of coupled fermentation and separation simulation approaches for the systematic analyses of unsteady state processes.

  6. Study on color identification for monitoring and controlling fermentation process of branched chain amino acid

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Wang, Yizhong; Chen, Ning; Liu, Tiegen; Xu, Qingyang; Kong, Fanzhi

    2008-12-01

    In this paper, a new method for monitoring and controlling fermentation process of branched chain amino acid (BCAA) was proposed based on color identification. The color image of fermentation broth of BCAA was firstly taken by a CCD camera. Then, it was changed from RGB color model to HIS color model. Its histograms of hue H and saturation S were calculated, which were used as the input of a designed BP network. The output of the BP network was the description of the color of fermentation broth of BCAA. After training, the color of fermentation broth was identified by the BP network according to the histograms of H and S of a fermentation broth image. Along with other parameters, the fermentation process of BCAA was monitored and controlled to start the stationary phase of fermentation soon. Experiments were conducted with satisfied results to show the feasibility and usefulness of color identification of fermentation broth in fermentation process control of BCAA.

  7. Enzymes in Fermented Fish.

    PubMed

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  8. Fermentation process for the production of organic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermann, Theron; Reinhardt, James; Yu, Xiaohui

    This invention relates to improvements in the fermentation process used in the production of organic acids from biological feedstock using bacterial catalysts. The improvements in the fermentation process involve providing a fermentation medium comprising an appropriate form of inorganic carbon, an appropriate amount of aeration and a biocatalyst with an enhanced ability to uptake and assimilate the inorganic carbon into the organic acids. This invention also provides, as a part of an integrated fermentation facility, a novel process for producing a solid source of inorganic carbon by sequestering carbon released from the fermentation in an alkali solution.

  9. Performance comparison of ethanol and butanol production in a continuous and closed-circulating fermentation system with membrane bioreactor.

    PubMed

    Chen, Chunyan; Long, Sihua; Li, Airong; Xiao, Guoqing; Wang, Linyuan; Xiao, Zeyi

    2017-03-16

    Since both ethanol and butanol fermentations are urgently developed processes with the biofuel-demand increasing, performance comparison of aerobic ethanol fermentation and anerobic butanol fermentation in a continuous and closed-circulating fermentation (CCCF) system was necessary to achieve their fermentation characteristics and further optimize the fermentation process. Fermentation and pervaporation parameters including the average cell concentration, glucose consumption rate, cumulated production concentration, product flux, and separation factor of ethanol fermentation were 11.45 g/L, 3.70 g/L/h, 655.83 g/L, 378.5 g/m 2 /h, and 4.83, respectively, the corresponding parameters of butanol fermentation were 2.19 g/L, 0.61 g/L/h, 28.03 g/L, 58.56 g/m 2 /h, and 10.62, respectively. Profiles of fermentation and pervaporation parameters indicated that the intensity and efficiency of ethanol fermentation was higher than butanol fermentation, but the stability of butanol fermentation was superior to ethanol fermentation. Although the two fermentation processes had different features, the performance indicated the application prospect of both ethanol and butanol production by the CCCF system.

  10. Improved methane removal in exhaust gas from biogas upgrading process using immobilized methane-oxidizing bacteria.

    PubMed

    Sun, Meng-Ting; Yang, Zhi-Man; Fu, Shan-Fei; Fan, Xiao-Lei; Guo, Rong-Bo

    2018-05-01

    Methane in exhaust gas from biogas upgrading process, which is a greenhouse gas, could cause global warming. The biofilter with immobilized methane-oxidizing bacteria (MOB) is a promising approach for methane removal, and the selections of inoculated MOB culture and support material are vital for the biofilter. In this work, five MOB consortia were enriched at different methane concentrations. The MOB-20 consortium enriched at the methane concentration of 20.0% (v/v) was then immobilized on sponge and two particle sizes of volcanic rock in biofilters to remove methane in exhaust gas from biogas upgrading process. Results showed that the immobilized MOB performed more admirable methane removal capacity than suspended cells. The immobilized MOB on sponge reached the highest methane removal efficiency (RE) of 35%. The rough surface, preferable hydroscopicity, appropriate pore size and particle size of support material might favor the MOB immobilization and accordingly methane removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Comparative Analysis of the Microbiota Between Sheep Rumen and Rabbit Cecum Provides New Insight Into Their Differential Methane Production

    PubMed Central

    Mi, Lan; Yang, Bin; Hu, Xialu; Luo, Yang; Liu, Jianxin; Yu, Zhongtang; Wang, Jiakun

    2018-01-01

    The rumen and the hindgut represent two different fermentation organs in herbivorous mammals, with the former producing much more methane than the latter. The objective of this study was to elucidate the microbial underpinning of such differential methane outputs between these two digestive organs. Methane production was measured from 5 adult sheep and 15 adult rabbits, both of which were placed in open-circuit respiratory chambers and fed the same diet (alfalfa hay). The sheep produced more methane than the rabbits per unit of metabolic body weight, digestible neutral detergent fiber, and acid detergent fiber. pH in the sheep rumen was more than 1 unit higher than that in the rabbit cecum. The acetate to propionate ratio in the rabbit cecum was more than threefold greater than that in the sheep rumen. Comparative analysis of 16S rRNA gene amplicon libraries revealed distinct microbiota between the rumen of sheep and the cecum of rabbits. Hydrogen-producing fibrolytic bacteria, especially Butyrivibrio, Succiniclastium, Mogibacterium, Prevotella, and Christensenellaceae, were more predominant in the sheep rumen, whereas non-hydrogen producing fibrolytic bacteria, such as Bacteroides, were more predominant in the rabbit cecum. The rabbit cecum had a greater predominance of acetogens, such as those in the genus Blautia, order Clostridiales, and family Ruminococcaceae. The differences in the occurrence of hydrogen-metabolizing bacteria probably explain much of the differential methane outputs from the rumen and the cecum. Future research using metatranscriptomics and metabolomics shall help confirm this premise and understand the factors that shape the differential microbiota between the two digestive organs. Furthermore, our present study strongly suggests the presence of new fibrolytic bacteria in the rabbit cecum, which may explain the stronger fibrolytic activities therein. PMID:29662480

  12. Comparison of various microbial inocula for the efficient anaerobic digestion of Laminaria hyperborea.

    PubMed

    Sutherland, Alastair D; Varela, Joao C

    2014-01-23

    The hydrolysis of seaweed polysaccharides is the rate limiting step in anaerobic digestion (AD) of seaweeds. Seven different microbial inocula and a mixture of these (inoculum 8) were therefore compared in triplicate, each grown over four weeks in static culture for the ability to degrade Laminaria hyperborea seaweed and produce methane through AD. All the inocula could degrade L. hyperborea and produce methane to some extent. However, an inoculum of slurry from a human sewage anaerobic digester, one of rumen contents from seaweed-eating North Ronaldsay sheep and inoculum 8 used most seaweed volatile solids (VS) (means ranged between 59 and 68% used), suggesting that these each had efficient seaweed polysaccharide digesting bacteria. The human sewage inoculum, an inoculum of anaerobic marine mud mixed with rotting seaweed and inoculum 8 all developed to give higher volumes of methane (means between 41 and 62.5 ml g-1 of seaweed VS by week four) ,compared to other inocula (means between 3.5 and 27.5 ml g-1 VS). Inoculum 8 also gave the highest acetate production (6.5 mmol g-1 VS) in a single-stage fermenter AD system and produced most methane (8.4 mL mmol acetate-1) in phase II of a two-stage AD system. Overall inoculum 8 was found to be the most efficient inoculum for AD of seaweed. The study therefore showed that selection and inclusion of efficient polysaccharide hydrolysing bacteria and methanogenic archaea in an inoculum offer increased methane productivity in AD of L. hyperborea. This inoculum will now being tested in larger scale (10L) continuously stirred reactors optimised for feed rate and retention time to determine maximum methane production under single-stage and two-stage AD systems.

  13. Comparison of various microbial inocula for the efficient anaerobic digestion of Laminaria hyperborea

    PubMed Central

    2014-01-01

    Background The hydrolysis of seaweed polysaccharides is the rate limiting step in anaerobic digestion (AD) of seaweeds. Seven different microbial inocula and a mixture of these (inoculum 8) were therefore compared in triplicate, each grown over four weeks in static culture for the ability to degrade Laminaria hyperborea seaweed and produce methane through AD. Results All the inocula could degrade L. hyperborea and produce methane to some extent. However, an inoculum of slurry from a human sewage anaerobic digester, one of rumen contents from seaweed-eating North Ronaldsay sheep and inoculum 8 used most seaweed volatile solids (VS) (means ranged between 59 and 68% used), suggesting that these each had efficient seaweed polysaccharide digesting bacteria. The human sewage inoculum, an inoculum of anaerobic marine mud mixed with rotting seaweed and inoculum 8 all developed to give higher volumes of methane (means between 41 and 62.5 ml g-1 of seaweed VS by week four) ,compared to other inocula (means between 3.5 and 27.5 ml g-1 VS). Inoculum 8 also gave the highest acetate production (6.5 mmol g-1 VS) in a single-stage fermenter AD system and produced most methane (8.4 mL mmol acetate-1) in phase II of a two-stage AD system. Conclusions Overall inoculum 8 was found to be the most efficient inoculum for AD of seaweed. The study therefore showed that selection and inclusion of efficient polysaccharide hydrolysing bacteria and methanogenic archaea in an inoculum offer increased methane productivity in AD of L. hyperborea. This inoculum will now being tested in larger scale (10L) continuously stirred reactors optimised for feed rate and retention time to determine maximum methane production under single-stage and two-stage AD systems. PMID:24456825

  14. Moisture content during extrusion of oats impacts the initial fermentation metabolites and probiotic bacteria during extended fermentation by human fecal microbiota.

    PubMed

    Brahma, Sandrayee; Weier, Steven A; Rose, Devin J

    2017-07-01

    Extrusion exposes flour components to high pressure and shear during processing, which may affect the dietary fiber fermentability by human fecal microbiota. The objective of this study was to determine the effect of flour moisture content during extrusion on in vitro fermentation properties of whole grain oats. Extrudates were processed at three moisture levels (15%, 18%, and 21%) at fixed screw speed (300rpm) and temperature (130°C). The extrudates were then subjected to in vitro digestion and fermentation. Extrusion moisture significantly affected water-extractable β-glucan (WE-BG) in the extrudates, with samples processed at 15% moisture (lowest) and 21% moisture (highest) having the highest concentration of WE-BG. After the first 8h of fermentation, more WE-BG remained in fermentation media in samples processed at 15% moisture compared with the other conditions. Also, extrusion moisture significantly affected the production of acetate, butyrate, and total SCFA by the microbiota during the first 8h of fermentation. Microbiota grown on extrudates processed at 18% moisture had the highest production of acetate and total SCFA, whereas bacteria grown on extrudates processed at 15% and 18% moisture had the highest butyrate production. After 24h of fermentation, samples processed at 15% moisture supported lower Bifidobacterium counts than those produced at other conditions, but had among the highest Lactobacillus counts. Thus, moisture content during extrusion significantly affects production of fermentation metabolites by the gut microbiota during the initial stages of fermentation, while also affecting probiotic bacteria counts during extended fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of laser radiation on the cultivation rate of the microalga Chlorella sorokiniana as a source of biofuel

    NASA Astrophysics Data System (ADS)

    Politaeva, N.; Smyatskaya, Y.; Slugin, V.; Toumi, A.; Bouabdelli, M.

    2018-01-01

    This article studies the influence of laser radiation on the growth of micro-algal biomass of Chlorella sorokiniana. The composition of nutrient medium and the effect the laser beam (2 and 5 cm diameter, 1, 5, 10, 15 and 20 minutes exposure time) for accelerated cultivation of microalgal biomass were studied. The source of laser radiation (LR) was a helium-neon laser with a nominal output power of 1.6 mW and a wavelength of 0.63 μm. The greatest increase in biomass was observed when LR was applied to a suspension of microalga Chlorella sorokiniana with a beam of 5 cm diameter for a time of 10, 15 and 20 minutes. The results of the microscopic study of the microalga cells show a significant increase in the number of cells after an exposure to LR with a beam diameter of 5 cm in diameter. These cells were characterized by a large vacuole, a thickened lipid shell and a large accumulation of metabolites prone to agglutination. This study proposed to obtain valuable components (lipids, carotenoids, and pectin) from the obtained biomass by extraction method and to use the residual biomass formed wastes, after the extraction of valuable components, as a co-substrate for anaerobic digestion to produce biogas. The composition of biogas consists mainly of methane and carbon dioxide. Methane is recommended to be used for economic needs in supplying the whole process with heat and electricity. The carbon dioxide formed during fermentation and after combustion of methane for energy production, is planned to be used as a carbon source in the cultivation of Chlorella sorokiniana for photoautotrophic biomass production.

  16. Anaerobic sludge digestion with a biocatalytic additive. [Lactobacillus acidophilus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S.; Henry, M.P.; Fedde, P.A.

    1982-01-01

    Aimed at improving the process operating characteristics of anaerobic digestion for sludge stabilization and SNG production, this study evaluates the effects of a lactobacillus additive under normal, variable, and overload conditions. This whey fermentation product of an acid-tolerant strain of L. acidophilus fortified with CoCO/sub 3/, (NH/sub 4/)/sub 2/HPO/sub 4/, ferrous lactate, and lactic acid provides growth factors, metabolic intermediates, and enzymes needed for substrate degradation and cellular synthesis. Data indicate that the biochemical additive increases methane yield, gas production rate, and volatile solids reduction; decreases volatile acids accumulation; enhances the digester buffer capacity; and improves the fertilizer value andmore » dewatering characteristics of the digested residue. Digester capacities could be potentially doubled when the feed is so treated. Results of field tests with six full-scale digesters confirm observations made with bench-scale digesters.« less

  17. Bioethanol production: an integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue.

    PubMed

    Chu, Qiulu; Li, Xin; Ma, Bin; Xu, Yong; Ouyang, Jia; Zhu, Junjun; Yu, Shiyuan; Yong, Qiang

    2012-11-01

    An integrated process of enzymatic hydrolysis and fermentation was investigated for high ethanol production. The combination of enzymatic hydrolysis at low substrate loading, liquid fermentation of high sugars concentration and solid state fermentation of enzymatic hydrolysis residue was beneficial for conversion of steam explosion pretreated corn stover to ethanol. The results suggested that low substrate loading hydrolysis caused a high enzymatic hydrolysis yield; the liquid fermentation of about 200g/L glucose by Saccharomyces cerevisiae provided a high ethanol concentration which could significantly decrease cost of the subsequent ethanol distillation. A solid state fermentation of enzymatic hydrolysis residue was combined, which was available to enhance ethanol production and cellulose-to-ethanol conversion. The results of solid state fermentation demonstrated that the solid state fermentation process accompanied by simultaneous saccharification and fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Chemical and isotopic evidence for hydrogeochemical processes occurring in the Lincolnshire Limestone

    NASA Astrophysics Data System (ADS)

    Bishop, Philip K.; Lloyd, John W.

    1990-12-01

    Over 150 groundwater samples from the Lincolnshire Limestone have been analysed for pH, major ions and δ 13C ratios. Where possible, field E h and iodide concentrations were measured and methane concentrations were determined for 12 samples. Stable isotope ratios were determined for soil and rock carbonate samples. A system of zonation allows the division of hydrogeochemical processes occurring in the aquifer. The use of hydrochemical and isotope data in modelling exercises enables the re-evaluation and possible enhancement of the understanding of hydrogeochemical processes. The carbonate chemistry of outcrop groundwaters is explained by calcite saturation being achieved under open-system conditions in the soil zone. δ 13C ratios in the range - 15.99 to - 10.57‰ may be generated from a stoichiometric reaction with possible additional partial and/or simultaneous exchange with soil CO 2 or carbonate. The isotopic composition of soil carbonate shows the effects of precipitation from soil waters. The incongruent dissolution of primary depositional limestone carbonate results in increasing magnesium and strontium concentrations and increasing δ 13C ratios for the groundwaters with flow down the hydraulic gradient. As a result of incongruent dissolution, secondary calcite may be precipitated onto fissure surfaces. Significant nitrate and sulphate reduction in non-saline groundwaters is not supported by the results of hydrochemical and isotope modelling exercises. However, sulphate reduction and methane fermentation may be affecting the isotopic and chemical compositions of saline groundwaters. Sodium-calcium ion exchange leads to limited calcite dissolution deep in the aquifer, but the evolution of these groundwaters is confused by the uncertain effects of oxidation of organic carbon and mixing with a saline end-member solution.

  19. Tree-mediated methane emissions from tropical and temperate peatlands.

    NASA Astrophysics Data System (ADS)

    Pangala, S. R.; Gauci, V.; Hornibrook, E. R. C.; Gowing, D. J.

    2012-04-01

    Methane production and transport processes in peatlands are fairly well understood, but growing evidence for emission of methane through trees has highlighted the need to revisit methane transport processes. In wetland trees, morphological adaptations such as development of hypertrophied lenticels, aerenchyma and adventitious roots in response to soil anoxia mediates gas transport, transporting both oxygen from the atmosphere to oxygen-deprived roots and soil-produced methane from the root-zone to the atmosphere. Although, tree-mediated methane emissions from temperate tree species have been confirmed, methane emissions from tropical tree species and processes that control tree-mediated methane emissions remain unclear. This study explains the role of trees in transporting soil-produced methane to the atmosphere and uncovers the principal mechanisms of tree-mediated methane emissions. Methane emissions from eight tropical tree species and two temperate tree species were studied in situ. The mechanisms and controls on tree-mediated methane emissions were investigated using three year old common alder (Alnus glutinosa; 50 trees) grown under two artificially controlled water-table positions. Methane fluxes from whole mesocosms, the soil surface and tree stems were measured using static closed chambers. Both temperate and tropical tree species released significant quantities of methane, with tropical trees dominating ecosystem level methane fluxes. In temperate peatlands, both the methane gas transport mechanism and quantity of methane emitted from stems is tree-species dependent. In Alnus glutinosa, no correlations were observed between stomatal behaviour and tree-mediated methane emissions, however, stem methane emissions were positively correlated with both stem lenticel density and dissolved soil methane concentration. In Alnus glutinosa, no emissions were observed from leaf surfaces. The results demonstrate that exclusion of tree-mediated methane emissions from flux measurement campaigns in forested peatlands will lead to an underestimation of ecosystem-wide methane emissions.

  20. Ammonia and methane emissions from cattle and dairy feedlots in Colorado

    NASA Astrophysics Data System (ADS)

    Golston, L.; Pan, D.; Stanton, L. G.; Tao, L.; Sun, K.; Zondlo, M. A.

    2014-12-01

    Concentrated animal feeding operations (CAFOs) are recognized as a major contributor of both methane and ammonia to the atmosphere. Ammonia is released by volatilization of urea and nitrogen containing wastes from the feedlot surface and waste management systems, while methane is produced from enteric fermentation and primarily exhaled into the atmosphere. Our objective was to survey plumes downwind of open lot feedyards near Greeley, Colorado and surrounding areas, to quantify the spatial and temporal variability of agricultural emissions in this area. Research was conducted during the month-long NASA DISCOVER-AQ campaign in July-August 2014, with over 4000 km of on-road measurements. Methane and ammonia concentrations were measured using open-path laser spectroscopy, along with water vapor, carbon monoxide, and carbon dioxide on a roof-mounted, mobile platform. The open-path design enables high resolution measurements of ammonia with minimized sampling issues. Concurrent measurements during the campaign by other groups on stationary and aircraft platforms help characterize the meteorological conditions and atmospheric chemistry. We present measurements from 65 of the 67 registered CAFOs in Weld County, which contain up to 660,000 cattle-equivalent animals units. The ammonia to methane enhancement ratio, ΔNH3:ΔCH4, was positively skewed with a median of 0.14 ± 0.04 ppmv/ppmv, consistent with our previous measurements during DISCOVER-AQ California. Due to the much greater variability of ammonia compared to methane, the emissions ratio is used to provide an estimate of feedyard ammonia emissions, with results divided for cattle, dairy, and sheep. Using the most recent emissions estimates of methane, we calculated a total of ≈28.8 TgNH3/yr released globally from feedlots alone, nearly as large as the IPCC's estimate of 30.4 Tg/yr from all agriculture sources. This discrepancy suggests feedyard ammonia is underrepresented in current inventories and models, and its environmental effects on air quality and nitrogen deposition are not fully accounted for.

Top