Sample records for methane moderator system

  1. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  2. Solid methane in neutron radiation: Cryogenic moderators and cometary cryo volcanism

    NASA Astrophysics Data System (ADS)

    Kirichek, O.; Lawson, C. R.; Jenkins, D. M.; Ridley, C. J. T.; Haynes, D. J.

    2017-12-01

    The effect of ionizing radiation on solid methane has previously been an area of interest in the astrophysics community. In the late 1980s this interest was further boosted by the possibility of using solid methane as a moderating medium in spallation neutron sources. Here we present test results of solid methane moderators commissioned at the ISIS neutron source, and compare them with a model based on the theory of thermal explosion. Good agreement between the moderator test data and our model suggests that the process of radiolysis defect recombination happens at two different temperature ranges: the ;lower temperature; recombination process occurs at around 20 K, with the ;higher temperature; process taking place between 50 and 60 K. We discuss consequences of this mechanism for the designing and operation of solid methane moderators used in advanced neutron sources. We also discuss the possible role of radiolysis defect recombination processes in cryo-volcanism on comets, and suggest an application based on this phenomenon.

  3. High pressure flame system for pollution studies with results for methane-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.; Maahs, H. G.

    1977-01-01

    A high pressure flame system was designed and constructed for studying nitrogen oxide formation in fuel air combustion. Its advantages and limitations were demonstrated by tests with a confined laminar methane air diffusion flame over the pressure range from 1 to 50 atm. The methane issued from a 3.06 mm diameter port concentrically into a stream of air contained within a 20.5 mm diameter chimney. As the combustion pressure is increased, the flame changes in shape from wide and convex to slender and concave, and there is a marked increase in the amount of luminous carbon. The height of the flame changes only moderately with pressure.

  4. Methane oxidation at a surface-sealed boreal landfill.

    PubMed

    Einola, Juha; Sormunen, Kai; Lensu, Anssi; Leiskallio, Antti; Ettala, Matti; Rintala, Jukka

    2009-07-01

    Methane oxidation was studied at a closed boreal landfill (area 3.9 ha, amount of deposited waste 200,000 tonnes) equipped with a passive gas collection and distribution system and a methane oxidative top soil cover integrated in a European Union landfill directive-compliant, multilayer final cover. Gas wells and distribution pipes with valves were installed to direct landfill gas through the water impermeable layer into the top soil cover. Mean methane emissions at the 25 measuring points at four measurement times (October 2005-June 2006) were 0.86-6.2 m(3) ha(-1) h(-1). Conservative estimates indicated that at least 25% of the methane flux entering the soil cover at the measuring points was oxidized in October and February, and at least 46% in June. At each measurement time, 1-3 points showed significantly higher methane fluxes into the soil cover (20-135 m(3) ha(-1) h(-1)) and methane emissions (6-135 m(3) ha(-1) h(-1)) compared to the other points (< 20 m(3) ha(-1) h(-1) and < 10 m(3) ha(-1) h(-1), respectively). These points of methane overload had a high impact on the mean methane oxidation at the measuring points, resulting in zero mean oxidation at one measurement time (November). However, it was found that by adjusting the valves in the gas distribution pipes the occurrence of methane overload can be to some extent moderated which may increase methane oxidation. Overall, the investigated landfill gas treatment concept may be a feasible option for reducing methane emissions at landfills where a water impermeable cover system is used.

  5. Diamond-anvil cell observations of a new methane hydrate phase in the 100-MPa pressure range

    USGS Publications Warehouse

    Chou, I.-Ming; Sharma, A.; Burruss, R.C.; Hemley, R.J.; Goncharov, A.F.; Stern, L.A.; Kirby, S.H.

    2001-01-01

    A new high-pressure phase of methane hydrate has been identified based on its high optical relief, distinct pressure-temperature phase relations, and Raman spectra. In-situ optical observations were made in a hydrothermal diamond-anvil cell at temperatures between -40?? and 60 ??C and at pressures up to 900 MPa. Two new invariant points were located at -8.7 ??C and 99 MPa for the assemblage consisting of the new phase, structure I methane hydrate, ice Ih, and water, and at 35.3 ??C and 137 MPa for the new phase-structure I methane hydrate-water-methane vapor. Existence of the new phase is critical for understanding the phase relations among the hydrates at low to moderate pressures, and may also have important implications for understanding the hydrogen bonding in H2O and the behavior of water in the planetary bodies, such as Europa, of the outer solar system.

  6. Acid-Tolerant Moderately Thermophilic Methanotrophs of the Class Gammaproteobacteria Isolated From Tropical Topsoil with Methane Seeps

    PubMed Central

    Islam, Tajul; Torsvik, Vigdis; Larsen, Øivind; Bodrossy, Levente; Øvreås, Lise; Birkeland, Nils-Kåre

    2016-01-01

    Terrestrial tropical methane seep habitats are important ecosystems in the methane cycle. Methane oxidizing bacteria play a key role in these ecosystems as they reduce methane emissions to the atmosphere. Here, we describe the isolation and initial characterization of two novel moderately thermophilic and acid-tolerant obligate methanotrophs, assigned BFH1 and BFH2 recovered from a tropical methane seep topsoil habitat. The new isolates were strictly aerobic, non-motile, coccus-shaped and utilized methane and methanol as sole carbon and energy source. Isolates grew at pH range 4.2–7.5 (optimal 5.5–6.0) and at a temperature range of 30–60°C (optimal 51–55°C). 16S rRNA gene phylogeny placed them in a well-separated branch forming a cluster together with the genus Methylocaldum as the closest relatives (93.1–94.1% sequence similarity). The genes pmoA, mxaF, and cbbL were detected, but mmoX was absent. Strains BFH1 and BFH2 are, to our knowledge, the first isolated acid-tolerant moderately thermophilic methane oxidizers of the class Gammaproteobacteria. Each strain probably denotes a novel species and they most likely represent a novel genus within the family Methylococcaceae of type I methanotrophs. Furthermore, the isolates increase our knowledge of acid-tolerant aerobic methanotrophs and signify a previously unrecognized biological methane sink in tropical ecosystems. PMID:27379029

  7. Surface Interactions and Confinement of Methane: A High Pressure Magic Angle Spinning NMR and Computational Chemistry Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ok, Salim; Hoyt, David W.; Andersen, Amity

    Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nanoporous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, we observed changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed nonporous, 12 nm particle size silica and a mesoporous silica with 200more » nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. There was no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2, 32.6, 56.4, 65.1, 112.7, and 130.3 bar) for pure methane. However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD, and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.« less

  8. Surface Interactions and Confinement of Methane: A High Pressure Magic Angle Spinning NMR and Computational Chemistry Study

    DOE PAGES

    Ok, Salim; Hoyt, David W.; Andersen, Amity; ...

    2017-01-18

    Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nanoporous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, we observed changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed nonporous, 12 nm particle size silica and a mesoporous silica with 200more » nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. There was no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2, 32.6, 56.4, 65.1, 112.7, and 130.3 bar) for pure methane. However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD, and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.« less

  9. Surface Interactions and Confinement of Methane: A High Pressure Magic Angle Spinning NMR and Computational Chemistry Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ok, Salim; Hoyt, David W.; Andersen, Amity

    Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nano-porous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) were observed with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed non-porous, 12 nm particle size silica and a mesoporous silica with 200more » nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. For pure methane, no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2 bar, 32.6 bar, 56.4 bar, 65.1 bar, 112.7 bar, and 130.3 bar). However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.« less

  10. Using Methane Absorption to Probe Jupiter's Atmosphere

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaics of a belt-zone boundary near Jupiter's equator in near-infrared light moderately absorbed by atmospheric methane (top panel), and strongly absorbed by atmospheric methane (bottom panel). The four images that make up each of these mosaics were taken within a few minutes of each other. Methane in Jupiter's atmosphere absorbs light at specific wavelengths called absorption bands. By detecting light close and far from these absorption bands, Galileo can probe to different depths in Jupiter's atmosphere. Sunlight near 732 nanometers (top panel) is moderately absorbed by methane. Some of the light reflected from clouds deep in Jupiter's troposphere is absorbed, enhancing the higher features. Sunlight at 886 nanometers (bottom panel) is strongly absorbed by methane. Most of the light reflected from the deeper clouds is absorbed, making these clouds invisible. Features in the diffuse cloud layer higher in Jupiter's atmosphere are greatly enhanced.

    North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 282 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on November 5th, 1996, at a range of 1.2 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  11. CVF spectrophotometry of Pluto - Correlation of composition with albedo. [circularly variable filter

    NASA Technical Reports Server (NTRS)

    Marcialis, Robert L.; Lebofsky, Larry A.

    1991-01-01

    The present time-resolved, 0.96-2.65-micron spectrophotometry for the Pluto-Charon system indicates night-to-night variations in the depths of the methane absorptions such that the bands' equivalent width is near minimum light. The interpretation of these data in terms of a depletion of methane in dark regions of the planet, relative to bright ones, is consistent with the Buie and Fink (1987) observations. The near-IR spectrum of Pluto seems to be dominated by surface frost. It is suggested that the dark equatorial regions of Pluto are redder than those of moderate albedo.

  12. The interaction of climate change and methane hydrates

    USGS Publications Warehouse

    Ruppel, Carolyn D.; Kessler, John D.

    2017-01-01

    Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perception that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.

  13. The interaction of climate change and methane hydrates

    NASA Astrophysics Data System (ADS)

    Ruppel, Carolyn D.; Kessler, John D.

    2017-03-01

    Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perception that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.

  14. The interaction of climate change and methane hydrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruppel, Carolyn D.; Kessler, John D.

    Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perceptionmore » that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.« less

  15. The interaction of climate change and methane hydrates

    DOE PAGES

    Ruppel, Carolyn D.; Kessler, John D.

    2016-12-14

    Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perceptionmore » that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacFarlane, R. E.

    An accurate representation of the scattering of neutrons by the materials used to build cold sources at neutron scattering facilities is important for the initial design and optimization of a cold source, and for the analysis of experimental results obtained using the cold source. In practice, this requires a good representation of the physics of scattering from the material, a method to convert this into observable quantities (such as scattering cross sections), and a method to use the results in a neutron transport code (such as the MCNP Monte Carlo code). At Los Alamos, the authors have been developing thesemore » capabilities over the last ten years. The final set of cold-moderator evaluations, together with evaluations for conventional moderator materials, was released in 1994. These materials have been processed into MCNP data files using the NJOY Nuclear Data Processing System. Over the course of this work, they were able to develop a new module for NJOY called LEAPR based on the LEAP + ADDELT code from the UK as modified by D.J. Picton for cold-moderator calculations. Much of the physics for methane came from Picton`s work. The liquid hydrogen work was originally based on a code using the Young-Koppel approach that went through a number of hands in Europe (including Rolf Neef and Guy Robert). It was generalized and extended for LEAPR, and depends strongly on work by Keinert and Sax of the University of Stuttgart. Thus, their collection of cold-moderator scattering kernels is truly an international effort, and they are glad to be able to return the enhanced evaluations and processing techniques to the international community. In this paper, they give sections on the major cold moderator materials (namely, solid methane, liquid methane, and liquid hydrogen) using each section to introduce the relevant physics for that material and to show typical results.« less

  17. Theoretical Insights into Direct Methane to Methanol Conversion over Supported Dicopper Oxo Nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doan, Hieu A.; Li, Zhanyong; Farha, Omar K.

    In this study, the prospect of using copper oxide nanoclusters grown by atomic layer deposition on a porphyrin support for selective oxidation of methane to methanol was examined by means of density functional theory (DFT) calculations. Ab initio thermodynamic analysis indicates that an active site in the form of Cu(μ-O)Cu can be stabilized by activation in O2 at 465K. Furthermore, a moderate methane activation energy barrier (Ea=54kJ/mol) is predicted, and the hydrogen abstraction activity of the active site could be attributed to the radical character of the bridging oxygen. Methanol extraction in this system is limited by a thermodynamic barriermore » to desorption of ΔG=57kJ/mol at 473K; however, desorption can be facilitated by the addition of water in a “stepped conversion” process. Overall, our results indicate similar activity between porphyrin-supported copper oxide nanoclusters and existing Cu-exchanged zeolites and provide a computational proof-of-concept for utilizing functionalized organic linkers in metal-organic frameworks (MOFs) for selective oxidation of methane to methanol.« less

  18. Theoretical Insights into Direct Methane to Methanol Conversion over Supported Dicopper Oxo Nanoclusters

    DOE PAGES

    Doan, Hieu A.; Li, Zhanyong; Farha, Omar K.; ...

    2018-04-08

    In this study, the prospect of using copper oxide nanoclusters grown by atomic layer deposition on a porphyrin support for selective oxidation of methane to methanol was examined by means of density functional theory (DFT) calculations. Ab initio thermodynamic analysis indicates that an active site in the form of Cu(μ-O)Cu can be stabilized by activation in O2 at 465K. Furthermore, a moderate methane activation energy barrier (Ea=54kJ/mol) is predicted, and the hydrogen abstraction activity of the active site could be attributed to the radical character of the bridging oxygen. Methanol extraction in this system is limited by a thermodynamic barriermore » to desorption of ΔG=57kJ/mol at 473K; however, desorption can be facilitated by the addition of water in a “stepped conversion” process. Overall, our results indicate similar activity between porphyrin-supported copper oxide nanoclusters and existing Cu-exchanged zeolites and provide a computational proof-of-concept for utilizing functionalized organic linkers in metal-organic frameworks (MOFs) for selective oxidation of methane to methanol.« less

  19. Linseed plus nitrate in the diet for fattening bulls: effects on methane emission, animal health and residues in offal.

    PubMed

    Doreau, M; Arbre, M; Popova, M; Rochette, Y; Martin, C

    2018-03-01

    The combination of linseed and nitrate is known to decrease enteric methane emission in dairy cows but few studies have been carried out in fattening cattle for animal liveweight gain, enteric methane emission, animal health and presence of residues in beef products. To address this gap, 16 young bulls received a control (C) diet between weaning at 9 months and 14 months, then were split into two groups of eight balanced on feed intake, BW gain and methane emission to receive either the C diet or a diet moderately supplemented with extruded linseed and calcium nitrate (LN) for 2 months before being slaughtered. On a dry matter (DM) basis, the C diet contained 70% baled grass silage and 30% concentrate mainly made of maize, wheat and rapeseed meal. In the LN diet, rapeseed meal and a fraction of cereals were replaced by 35% extruded linseed and 6% calcium nitrate; linseed fatty acids and nitrate supply in the LN diet were 1.9% and 1.0%, respectively. Methane emission was measured continuously using the GreenFeed system. Methaemoglobin was determined every week in peripheral blood from bulls receiving the LN diet. Nitrate and nitrite concentrations were determined in rumen, liver and tongue sampled at slaughter. Dry matter intake tended to be lower for LN diet (P=0.10). Body weight gain was lower for LN diet (P=0.01; 1.60 and 1.26 kg/day for C and LN diet, respectively). Daily methane emission was 9% lower (P<0.001) for LN than C diet (249 and 271 g/day, respectively) but methane yield did not differ between diets (24.1 and 23.2 g/kg DM intake for C and LN diet, respectively, P=0.34). Methaemoglobin was under the limit of detection (<2% of total haemoglobin) for most animals and was always lower than 5.6%, suggesting an absence of risk to animal health. Nitrite and nitrate concentrations in offal did not differ between C and LN diets. In conclusion, a moderate supply of linseed and nitrate in bull feed failed to decrease enteric methane yield and impaired bull liveweight gain but without adverse effects for animal health and food safety.

  20. Evaluation of Mediterranean Agricultural Residues as a Potential Feedstock for the Production of Biogas via Anaerobic Fermentation.

    PubMed

    Nitsos, Christos; Matsakas, Leonidas; Triantafyllidis, Kostas; Rova, Ulrika; Christakopoulos, Paul

    2015-01-01

    Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones.

  1. Evaluation of Mediterranean Agricultural Residues as a Potential Feedstock for the Production of Biogas via Anaerobic Fermentation

    PubMed Central

    Nitsos, Christos; Triantafyllidis, Kostas

    2015-01-01

    Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones. PMID:26609521

  2. Isotopic Composition of Methane and Inferred Methanogenic Substrates Along a Salinity Gradient in a Hypersaline Microbial Mat System

    NASA Astrophysics Data System (ADS)

    Potter, Elyn G.; Bebout, Brad M.; Kelley, Cheryl A.

    2009-05-01

    The importance of hypersaline environments over geological time, the discovery of similar habitats on Mars, and the importance of methane as a biosignature gas combine to compel an understanding of the factors important in controlling methane released from hypersaline microbial mat environments. To further this understanding, changes in stable carbon isotopes of methane and possible methanogenic substrates in microbial mat communities were investigated as a function of salinity here on Earth. Microbial mats were sampled from four different field sites located within salterns in Baja California Sur, Mexico. Salinities ranged from 50 to 106 parts per thousand (ppt). Pore water and microbial mat samples were analyzed for the carbon isotopic composition of dissolved methane, dissolved inorganic carbon (DIC), and mat material (particulate organic carbon or POC). The POC δ13C values ranged from -6.7 to -13.5%, and DIC δ13C values ranged from -1.4 to -9.6%. These values were similar to previously reported values. The δ13C values of methane ranged from -49.6 to -74.1%; the methane most enriched in 13C was obtained from the highest salinity area. The apparent fractionation factors between methane and DIC, and between methane and POC, within the mats were also determined and were found to change with salinity. The apparent fractionation factors ranged from 1.042 to 1.077 when calculated using DIC and from 1.038 to 1.068 when calculated using POC. The highest-salinity area showed the least fractionation, the moderate-salinity area showed the highest fractionation, and the lower-salinity sites showed fractionations that were intermediate. These differences in fractionation are most likely due to changes in the dominant methanogenic pathways and substrates used at the different sites because of salinity differences.

  3. Methane in Sediments From Three Tropical, Coastal Lagoons on the Yucatan Peninsula, Mexico

    NASA Astrophysics Data System (ADS)

    Young, B.; Paytan, A.; Miller, L.; Herrera-Silveira, J.

    2002-12-01

    Tropical wetlands are significant sources of methane (CH4) to the atmosphere, and the majority of research on methane flux and cycling in the tropics has been conducted in fresh-water wetlands and lakes. However, several previous studies have shown that tropical coastal ecosystems can produce significant methane flux to the atmosphere despite the presence of moderate to marine salinities. Information regarding methane cycling within the sediments is crucial to understanding how natural and anthropogenic changes may influence these systems. We measured methane concentrations in sediments from two tropical coastal lagoons during different seasons, as well as in a third, heavily polluted, lagoon (Terminos) during the rainy season. These three lagoons, Celestun, Chelem, and Terminos, have similar vegetation, seasonal temperature and rainfall patterns, and substrate geology, but very different levels of ground water discharge and pollution. Methane concentrations in Celestun and Terminos lagoon showed high spatial variability(> 0.001 to 5 mmol kg-1 wet sediment), while sediments in Chelem Lagoon, which has near marine salinities and little sewage discharge, showed much lower variability of methane concentrations. Methane concentrations in Celestun sediments displayed two predominant patterns: some profiles contained a peak in methane concentration (1 to 2 mmole methane kg-1 wet sediment) between 5 and 15 cm below the surface while the other sediment profiles instead displayed a steady or monotonic increase in methane concentration with depth to approximately 0.025-0.080 mmol kg-1 at 10-15cm below surface followed by stable methane concentrations to the bottom of the cores (20-45 cm below the surface). A subsurface peak in methane concentrations was also found in some locations in Chelem, however, the concentrations were much lower than those measured in Celestun. Previous studies have shown that sewage pollution may drastically increase methane production in tropical coastal ecosystems. Laboratory experiments using sediment from the upper 20 cm in Celestun lagoon resulted in high rates of biogenic production of methane from the addition of trimethylamine, hydrogen, and, while additions of formate and acetate stimulated methane production to a lesser extent. This indicates that methane production in these sediments may be highly responsive to natural or anthropogenic changes in substrate availability. By synthesizing laboratory data and extensive field measurements from the lagoons, we hope to shed light on the factors controlling methane cycling in these sediments, and to better estimate methane flux to the atmosphere from these ecosystems.

  4. Chemical pretreatment of lignocellulosic agroindustrial waste for methane production.

    PubMed

    Pellera, Frantseska-Maria; Gidarakos, Evangelos

    2018-01-01

    This study investigates the effect of different chemical pretreatments on the solubilization and the degradability of different solid agroindustrial waste, namely winery waste, cotton gin waste, olive pomace and juice industry waste. Eight different reagents were investigated, i.e. sodium hydroxide (NaOH), sodium bicarbonate (NaHCO 3 ), sodium chloride (NaCl), citric acid (H 3 Cit), acetic acid (AcOH), hydrogen peroxide (H 2 O 2 ), acetone (Me 2 CO) and ethanol (EtOH), under three condition sets resulting in treatments of varying intensity, depending on process duration, reagent dosage and temperature. Results indicated that chemical pretreatment under more severe conditions is more effective on the solubilization of lignocellulosic substrates, such as those of the present study and among the investigated reagents, H 3 Cit, H 2 O 2 and EtOH appeared to be the most effective to this regard. At the same time, although chemical pretreatment in general did not improve the methane potential of the substrates, moderate to high severity conditions were found to generally be the most satisfactory in terms of methane production from pretreated materials. In fact, moderate severity treatments using EtOH for winery waste, H 3 Cit for olive pomace and H 2 O 2 for juice industry waste and a high severity treatment with EtOH for cotton gin waste, resulted in maximum specific methane yield values. Ultimately, the impact of pretreatment parameters on the different substrates seems to be dependent on their characteristics, in combination with the specific mode of action of each reagent. The overall energy balance of such a system could probably be improved by using lower operating powers and higher solid to liquid ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Isotopic composition of methane and inferred methanogenic substrates along a salinity gradient in a hypersaline microbial mat system.

    PubMed

    Potter, Elyn G; Bebout, Brad M; Kelley, Cheryl A

    2009-05-01

    The importance of hypersaline environments over geological time, the discovery of similar habitats on Mars, and the importance of methane as a biosignature gas combine to compel an understanding of the factors important in controlling methane released from hypersaline microbial mat environments. To further this understanding, changes in stable carbon isotopes of methane and possible methanogenic substrates in microbial mat communities were investigated as a function of salinity here on Earth. Microbial mats were sampled from four different field sites located within salterns in Baja California Sur, Mexico. Salinities ranged from 50 to 106 parts per thousand (ppt). Pore water and microbial mat samples were analyzed for the carbon isotopic composition of dissolved methane, dissolved inorganic carbon (DIC), and mat material (particulate organic carbon or POC). The POC delta(13)C values ranged from -6.7 to -13.5 per thousand, and DIC delta(13)C values ranged from -1.4 to -9.6 per thousand. These values were similar to previously reported values. The delta(13)C values of methane ranged from -49.6 to -74.1 per thousand; the methane most enriched in (13)C was obtained from the highest salinity area. The apparent fractionation factors between methane and DIC, and between methane and POC, within the mats were also determined and were found to change with salinity. The apparent fractionation factors ranged from 1.042 to 1.077 when calculated using DIC and from 1.038 to 1.068 when calculated using POC. The highest-salinity area showed the least fractionation, the moderate-salinity area showed the highest fractionation, and the lower-salinity sites showed fractionations that were intermediate. These differences in fractionation are most likely due to changes in the dominant methanogenic pathways and substrates used at the different sites because of salinity differences.

  6. Microbial diversity and methanogenic activity of Antrim Shale formation waters from recently fractured wells

    PubMed Central

    Wuchter, Cornelia; Banning, Erin; Mincer, Tracy J.; Drenzek, Nicholas J.; Coolen, Marco J. L.

    2013-01-01

    The Antrim Shale in the Michigan Basin is one of the most productive shale gas formations in the U.S., but optimal resource recovery strategies must rely on a thorough understanding of the complex biogeochemical, microbial, and physical interdependencies in this and similar systems. We used Illumina MiSeq 16S rDNA sequencing to analyze the diversity and relative abundance of prokaryotic communities present in Antrim shale formation water of three closely spaced recently fractured gas-producing wells. In addition, the well waters were incubated with a suite of fermentative and methanogenic substrates in an effort to stimulate microbial methane generation. The three wells exhibited substantial differences in their community structure that may arise from their different drilling and fracturing histories. Bacterial sequences greatly outnumbered those of archaea and shared highest similarity to previously described cultures of mesophiles and moderate halophiles within the Firmicutes, Bacteroidetes, and δ- and ε-Proteobacteria. The majority of archaeal sequences shared highest sequence similarity to uncultured euryarchaeotal environmental clones. Some sequences closely related to cultured methylotrophic and hydrogenotrophic methanogens were also present in the initial well water. Incubation with methanol and trimethylamine stimulated methylotrophic methanogens and resulted in the largest increase in methane production in the formation waters, while fermentation triggered by the addition of yeast extract and formate indirectly stimulated hydrogenotrophic methanogens. The addition of sterile powdered shale as a complex natural substrate stimulated the rate of methane production without affecting total methane yields. Depletion of methane indicative of anaerobic methane oxidation (AMO) was observed over the course of incubation with some substrates. This process could constitute a substantial loss of methane in the shale formation. PMID:24367357

  7. In situ Raman and X-ray diffraction studies on the high pressure and temperature stability of methane hydrate up to 55 GPa.

    PubMed

    Kadobayashi, Hirokazu; Hirai, Hisako; Ohfuji, Hiroaki; Ohtake, Michika; Yamamoto, Yoshitaka

    2018-04-28

    High-temperature and high-pressure experiments were performed under 2-55 GPa and 298-653 K using in situ Raman spectroscopy and X-ray diffraction combined with externally heated diamond anvil cells to investigate the stability of methane hydrate. Prior to in situ experiments, the typical C-H vibration modes of methane hydrate and their pressure dependence were measured at room temperature using Raman spectroscopy to make a clear discrimination between methane hydrate and solid methane which forms through the decomposition of methane hydrate at high temperature. The sequential in situ Raman spectroscopy and X-ray diffraction revealed that methane hydrate survives up to 633 K and 40.3 GPa and then decomposes into solid methane and ice VII above the conditions. The decomposition curve of methane hydrate estimated by the present experiments is >200 K lower than the melting curves of solid methane and ice VII, and moderately increases with increasing pressure. Our result suggests that although methane hydrate may be an important candidate for major constituents of cool exoplanets and other icy bodies, it is unlikely to be present in the ice mantle of Neptune and Uranus, where the temperature is expected to be far beyond the decomposition temperatures.

  8. In situ Raman and X-ray diffraction studies on the high pressure and temperature stability of methane hydrate up to 55 GPa

    NASA Astrophysics Data System (ADS)

    Kadobayashi, Hirokazu; Hirai, Hisako; Ohfuji, Hiroaki; Ohtake, Michika; Yamamoto, Yoshitaka

    2018-04-01

    High-temperature and high-pressure experiments were performed under 2-55 GPa and 298-653 K using in situ Raman spectroscopy and X-ray diffraction combined with externally heated diamond anvil cells to investigate the stability of methane hydrate. Prior to in situ experiments, the typical C-H vibration modes of methane hydrate and their pressure dependence were measured at room temperature using Raman spectroscopy to make a clear discrimination between methane hydrate and solid methane which forms through the decomposition of methane hydrate at high temperature. The sequential in situ Raman spectroscopy and X-ray diffraction revealed that methane hydrate survives up to 633 K and 40.3 GPa and then decomposes into solid methane and ice VII above the conditions. The decomposition curve of methane hydrate estimated by the present experiments is >200 K lower than the melting curves of solid methane and ice VII, and moderately increases with increasing pressure. Our result suggests that although methane hydrate may be an important candidate for major constituents of cool exoplanets and other icy bodies, it is unlikely to be present in the ice mantle of Neptune and Uranus, where the temperature is expected to be far beyond the decomposition temperatures.

  9. Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens

    NASA Astrophysics Data System (ADS)

    Valentine, David L.; Chidthaisong, Amnat; Rice, Andrew; Reeburgh, William S.; Tyler, Stanley C.

    2004-04-01

    A series of laboratory studies were conducted to increase understanding of stable carbon (13C/12C) and hydrogen (D/H) isotope fractionation arising from methanogenesis by moderately thermophilic acetate- and hydrogen-consuming methanogens. Studies of the aceticlastic reaction were conducted with two closely related strains of Methanosaeta thermophila. Results demonstrate a carbon isotope fractionation of only 7‰ (α = 1.007) between the methyl position of acetate and the resulting methane. Methane formed by this process is enriched in 13C when compared with other natural sources of methane; the magnitude of this isotope effect raises the possibility that methane produced at elevated temperature by the aceticlastic reaction could be mistaken for thermogenic methane based on carbon isotopic content. Studies of H2/CO2 methanogenesis were conducted with Methanothermobacter marburgensis. The fractionation of carbon isotopes between CO2 and CH4 was found to range from 22 to 58‰ (1.023 ≤ α ≤ 1.064). Greater fractionation was associated with low levels of molecular hydrogen and steady-state metabolism. The fractionation of hydrogen isotopes between source H2O and CH4 was found to range from 127 to 275‰ (1.16 ≤ α ≤ 1.43). Fractionation was dependent on growth phase with greater fractionation associated with later growth stages. The maximum observed fractionation factor was 1.43, independent of the δD-H2 supplied to the culture. Fractionation was positively correlated with temperature and/or metabolic rate. Results demonstrate significant variability in both hydrogen and carbon isotope fractionation during methanogenesis from H2/CO2. The relatively small fractionation associated with deuterium during H2/CO2 methanogenesis provides an explanation for the relatively enriched deuterium content of biogenic natural gas originating from a variety of thermal environments. Results from these experiments are used to develop a hypothesis that differential reversibility in the enzymatic steps of the H2/CO2 pathway gives rise to variability in the observed carbon isotope fractionation. Results are further used to constrain the overall efficiency of electron consumption by way of the hydrogenase system in M. marburgensis, which is calculated to be less than 55%.

  10. 2015-16 ENSO Drove Tropical Soil Moisture Dynamics and Methane Fluxes

    NASA Astrophysics Data System (ADS)

    Aronson, E. L.; Dierick, D.; Botthoff, J.; Swanson, A. C.; Johnson, R. F.; Allen, M. F.

    2017-12-01

    The El Niño/Southern Oscillation Event (ENSO) cycle drives large-scale climatic trends globally. Within the new world tropics, El Niño brings dryer weather than the counterpart La Niña. Atmospheric methane growth rates have shown extreme variability over the past three decades. One proposed driver is the proportion of tropical land surface saturated, affecting methane production or consumption. We measured methane flux bimonthly through the transition of 2015-16 ENSO. The date of measurement, across El Niño and La Niña within the typical "rainy" and "dry" seasons, to be the most significant driver of methane flux. Soil moisture varied across this time period, and regulated methane flux. During the strong El Niño, extreme dry soil conditions occurred in a typical "rainy" season month reducing soil moisture. Wetter than usual soil conditions appeared during the "rainy" season month of the moderate La Niña. The dry El Niño soils corresponded to greater methane consumption by tropical forest soils, and a reduced local atmospheric column methane concentration. Conversely, the wet La Niña soils had lower methane consumption and higher local atmospheric column methane concentrations. The ENSO cycle is a strong driver of tropical terrestrial and wetland soil moisture conditions, and can regulate global atmospheric methane dynamics.

  11. Mud extrusion and ring-fault gas seepage - upward branching fluid discharge at a deep-sea mud volcano.

    PubMed

    Loher, M; Pape, T; Marcon, Y; Römer, M; Wintersteller, P; Praeg, D; Torres, M; Sahling, H; Bohrmann, G

    2018-04-19

    Submarine mud volcanoes release sediments and gas-rich fluids at the seafloor via deeply-rooted plumbing systems that remain poorly understood. Here the functioning of Venere mud volcano, on the Calabrian accretionary prism in ~1,600 m water depth is investigated, based on multi-parameter hydroacoustic and visual seafloor data obtained using ship-borne methods, ROVs, and AUVs. Two seepage domains are recognized: mud breccia extrusion from a summit, and hydrocarbon venting from peripheral sites, hosting chemosynthetic ecosystems and authigenic carbonates indicative of long-term seepage. Pore fluids in freshly extruded mud breccia (up to 13 °C warmer than background sediments) contained methane concentrations exceeding saturation by 2.7 times and chloride concentrations up to five times lower than ambient seawater. Gas analyses indicate an underlying thermogenic hydrocarbon source with potential admixture of microbial methane during migration along ring faults to the peripheral sites. The gas and pore water analyses point to fluids sourced deep (>3 km) below Venere mud volcano. An upward-branching plumbing system is proposed to account for co-existing mud breccia extrusion and gas seepage via multiple surface vents that influence the distribution of seafloor ecosystems. This model of mud volcanism implies that methane-rich fluids may be released during prolonged phases of moderate activity.

  12. Comparison of Iron and Tungsten Based Oxygen Carriers for Hydrogen Production Using Chemical Looping Reforming

    NASA Astrophysics Data System (ADS)

    Khan, M. N.; Shamim, T.

    2017-08-01

    Hydrogen production by using a three reactor chemical looping reforming (TRCLR) technology is an innovative and attractive process. Fossil fuels such as methane are the feedstocks used. This process is similar to a conventional steam-methane reforming but occurs in three steps utilizing an oxygen carrier. As the oxygen carrier plays an important role, its selection should be done carefully. In this study, two oxygen carrier materials of base metal iron (Fe) and tungsten (W) are analysed using a thermodynamic model of a three reactor chemical looping reforming plant in Aspen plus. The results indicate that iron oxide has moderate oxygen carrying capacity and is cheaper since it is abundantly available. In terms of hydrogen production efficiency, tungsten oxide gives 4% better efficiency than iron oxide. While in terms of electrical power efficiency, iron oxide gives 4.6% better results than tungsten oxide. Overall, a TRCLR system with iron oxide is 2.6% more efficient and is cost effective than the TRCLR system with tungsten oxide.

  13. Methane fluxes above the Hainich forest by True Eddy Accumulation and Eddy Covariance

    NASA Astrophysics Data System (ADS)

    Siebicke, Lukas; Gentsch, Lydia; Knohl, Alexander

    2016-04-01

    Understanding the role of forests for the global methane cycle requires quantifying vegetation-atmosphere exchange of methane, however observations of turbulent methane fluxes remain scarce. Here we measured turbulent fluxes of methane (CH4) above a beech-dominated old-growth forest in the Hainich National Park, Germany, and validated three different measurement approaches: True Eddy Accumulation (TEA, closed-path laser spectroscopy), and eddy covariance (EC, open-path and closed-path laser spectroscopy, respectively). The Hainich flux tower is a long-term Fluxnet and ICOS site with turbulent fluxes and ecosystem observations spanning more than 15 years. The current study is likely the first application of True Eddy Accumulation (TEA) for the measurement of turbulent exchange of methane and one of the very few studies comparing open-path and closed-path eddy covariance (EC) setups side-by-side. We observed uptake of methane by the forest during the day (a methane sink with a maximum rate of 0.03 μmol m-2 s-1 at noon) and no or small fluxes of methane from the forest to the atmosphere at night (a methane source of typically less than 0.01 μmol m-2 s-1) based on continuous True Eddy Accumulation measurements in September 2015. First results comparing TEA to EC CO2 fluxes suggest that True Eddy Accumulation is a valid option for turbulent flux quantifications using slow response gas analysers (here CRDS laser spectroscopy, other potential techniques include mass spectroscopy). The TEA system was one order of magnitude more energy efficient compared to closed-path eddy covariance. The open-path eddy covariance setup required the least amount of user interaction but is often constrained by low signal-to-noise ratios obtained when measuring methane fluxes over forests. Closed-path eddy covariance showed good signal-to-noise ratios in the lab, however in the field it required significant amounts of user intervention in addition to a high power consumption. We conclude, based on preliminary evidence, that the Hainich forest acted as a moderate net sink for methane during the investigation. This supports earlier findings from chamber measurements at the Hainich forest site and is similar to findings from other forest sites. Our observations will be continued through 2016 and beyond to provide longer-term methane flux time series spanning entire seasons. However, the current data set already provides a basis for further consolidating methods of measurements and analysis of turbulent methane fluxes using eddy covariance and true eddy accumulation.

  14. 30 CFR 27.21 - Methane-monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane-monitoring system. 27.21 Section 27.21... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.21 Methane-monitoring system. (a) A methane-monitoring system shall be so designed that any machine or equipment, which...

  15. 30 CFR 27.21 - Methane-monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methane-monitoring system. 27.21 Section 27.21... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.21 Methane-monitoring system. (a) A methane-monitoring system shall be so designed that any machine or equipment, which...

  16. 30 CFR 27.21 - Methane-monitoring system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Methane-monitoring system. 27.21 Section 27.21... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.21 Methane-monitoring system. (a) A methane-monitoring system shall be so designed that any machine or equipment, which...

  17. 30 CFR 27.21 - Methane-monitoring system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Methane-monitoring system. 27.21 Section 27.21... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.21 Methane-monitoring system. (a) A methane-monitoring system shall be so designed that any machine or equipment, which...

  18. 30 CFR 27.21 - Methane-monitoring system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Methane-monitoring system. 27.21 Section 27.21... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.21 Methane-monitoring system. (a) A methane-monitoring system shall be so designed that any machine or equipment, which...

  19. Long-lasting Microbial Methane Release at the Aquitaine Shelf Break (Bay of Biscay): Relation with the (Plio)-Pleistocene Sedimentary Progradation of the Continental Margin

    NASA Astrophysics Data System (ADS)

    Dupré, S.; Michel, G.; Pierre, C.; Ruffine, L.; Scalabrin, C.; Ehrhold, A.; Loubrieu, B.; Gautier, E.; Baltzer, A.; Imbert, P.; Battani, A.; Deville, E.; Dupont, P.; Thomas, Y.; Théréau, E.

    2017-12-01

    The recent identification of acoustic and visual gas release in the water column at the Aquitaine Shelf (140 and 220 m water depths) led to the discovery of a 200 km2 fluid system at the seafloor with 3000 bubbling sites associated with microbial methane (Dupré et al 2014; Ruffine et al. 2017). The moderate methane fluxes (measured in situ, on average 200 mLn/min per bubbling site) contribute to the formation of small-scale sub-circular authigenic carbonate mounds (with reliefs < 1 m in height) (Pierre et al. 2017). The emitted gases have neither a genetic link with thermogenic hydrocarbons from the Parentis Basin beneath, nor are issued from gas hydrate dissociation, but originate from microbial CO2 reduction. Based on estimated thickness and growth rate of authigenic carbonates, this system has lasted for at least several tens to possibly hundreds of kyears with a volume of escaping methane reaching 3.1012 Ln per 10 kyr. Seismic evidences for gas-charged layers and fossil authigenic carbonates point to organic matter source levels within the sedimentary deposits of the Late Pleistocene progradation system. The Aquitaine Shelf fluid system highlights the edge of continental shelves as preferential areas for bio-geological processes. The GAZCOGNE project is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project. References Dupré S, Berger L, Le Bouffant N, Scalabrin C, Bourillet J-F (2014) Fluid emissions at the Aquitaine Shelf (Bay of Biscay, France): a biogenic origin or the expression of hydrocarbon leakage? Cont. Shelf Res. 88:24-33 Pierre C, Demange J, Blanc-Valleron M-M, Dupré S (2017) Authigenic carbonate mounds from active methane seeps on the southern Aquitaine Shelf (Bay of Biscay, France): Evidence for anaerobic oxidation of biogenic methane and submarine groundwater discharge during formation. Cont. Shelf Res. 133:13-25 Ruffine L, Donval J-P, Croguennec C, Bignon L, Birot D, Battani A, Bayon G, Caprais J-C, Lantéri N, Levaché D, Dupré S (2017) Gas Seepage along the Edge of the Aquitaine Shelf (France): Origin and Local Fluxes. Geofluids 2017:13

  20. Tetraperchlorate of methane

    NASA Technical Reports Server (NTRS)

    Schack, C. J.

    1972-01-01

    The preparation of the tetraperchlorate of methane (TPM) was attempted. Displacement of halogen from carbon tetrahalides was accomplished with either CCl4 or CBr4 using the halogen perchlorates, ClOClO3, and BOClO3. Although the displacement process was successful, the generated carbon perchlorate intermediates were not isolated. Instead, these species decomposed to COCl2, CO2, and Cl2O7. The vigorous displacement reaction that often occurred required moderation. Fluorocarbon solvents and chlorine perchlorate were successfully tested for compatibility, permitting their use in these synthetic reactions. While the sought for moderating effect was obtained, the net result of the displacement of halogen from CX sub 4 substrates was the same as before. Thus only CO2, COCl2, and Cl2O7 were isolated.

  1. Using a Network of Flux Towers to Investigate the Effects of Wetland Restoration on Greenhouse Gas Fluxes

    NASA Astrophysics Data System (ADS)

    Baldocchi, D. D.; Hatala, J.; Knox, S.; Verfaillie, J. G.; Anderson, F.

    2012-12-01

    The Sacramento-San Joaquin Delta, a peatland and former wetland, was drained a 100 years ago for intensive agriculture. In the interim, over 10 m of peat has been lost, mostly through oxidation. Current land use is not sustainable, if this region is to maintain its integrity and serve as a conduit for freshwater pumped from northern to southern California. There is great interest in restoring this disturbed landscape with tule wetlands or rice; one is an effective carbon sink, the other an economically viable alternative. Questions arise to how effective are these new landscapes in sequestering carbon and what are the unintended consequences, such as the production of methane and high rates of evaporation from flooded lands, in a semi-arid climate? We are currently operating 6 eddy covariance flux systems that measure short and long term fluxes of carbon dioxide, water vapor and methane. We are making flux measurements over landscapes that represent business as usual (irrigated pasture and corn) and new alternatives (rice, a newly restored wetland and a 14 year old wetland). The pasture and corn operate as carbon sources and are weak emitters of methane on annual time scales. The rice is a modest sink of carbon dioxide, but becomes a carbon source when harvesting is considered. It is a smaller source of methane compared to rice growing in the Sacramento Valley on clay. It seems that there are sufficient alternative electron acceptors (iron, nitrate) that moderate methane production for rice growing on peat soils. The newly restored wetland is a huge methane source, with fluxes exceeding 300 nmol m-2 s-1. In the first two years of functioning, following disturbance, it is switching from being a carbon source to a sink, as tules fill the landscape. The older wetland remains a strong methane source, and its carbon dioxide sink potential is diminishing at it becomes derelict with much undecomposed vegetation.

  2. Temperature and hydrology affect methane emissions from Prairie Pothole Wetlands

    USGS Publications Warehouse

    Bansal, Sheel; Tangen, Brian; Finocchiaro, Raymond

    2016-01-01

    The Prairie Pothole Region (PPR) in central North America consists of millions of depressional wetlands that each have considerable potential to emit methane (CH4). Changes in temperature and hydrology in the PPR from climate change may affect methane fluxes from these wetlands. To assess the potential effects of changes in climate on methane emissions, we examined the relationships between flux rates and temperature or water depth using six years of bi-weekly flux measurements during the snow-free period from six temporarily ponded and six permanently ponded wetlands in North Dakota, USA. Methane flux rates were among the highest reported for freshwater wetlands, and had considerable spatial and temporal variation. Methane flux rates increased with increasing temperature and water depth, and were especially high when conditions were warmer and wetter than average (163 ± 28 mg CH4 m−2 h−1) compared to warmer and drier (37 ± 7 mg CH4 m−2 h−1). Methane emission rates from permanent wetlands were less sensitive to changes in temperature and water depth compared to temporary wetlands, likely due to higher sulfate concentrations in permanent wetlands. While the predicted increase in temperature with climate change will likely increase methane emission rates from PPR wetlands, drier conditions could moderate these increases.

  3. Chemical composition and methane yield of reed canary grass as influenced by harvesting time and harvest frequency.

    PubMed

    Kandel, Tanka P; Sutaryo, Sutaryo; Møller, Henrik B; Jørgensen, Uffe; Lærke, Poul E

    2013-02-01

    This study examined the influence of harvest time on biomass yield, dry matter partitioning, biochemical composition and biological methane potential of reed canary grass harvested twice a month in one-cut (OC) management. The regrowth of biomass harvested in summer was also harvested in autumn as a two-cut management with (TC-F) or without (TC-U) fertilization after summer harvest. The specific methane yields decreased significantly with crop maturity that ranged from 384 to 315 and from 412 to 283 NL (normal litre) (kgVS)(-1) for leaf and stem, respectively. Approximately 45% more methane was produced by the TC-F management (5430Nm(3)ha(-1)) as by the OC management (3735Nm(3)ha(-1)). Specific methane yield was moderately correlated with the concentrations of fibre components in the biomass. Larger quantity of biogas produced at the beginning of the biogas assay from early harvested biomass was to some extent off-set by lower concentration of methane. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Recombination of radiation defects in solid methane: neutron sources and cryo-volcanism on celestial bodies

    NASA Astrophysics Data System (ADS)

    Kirichek, O.; Savchenko, E. V.; Lawson, C. R.; Khyzhniy, I. V.; Jenkins, D. M.; Uyutnov, S. A.; Bludov, M. A.; Haynes, D. J.

    2018-03-01

    Physicochemical properties of solid methane exposed to ionizing radiation have attracted significant interest in recent years. Here we present new trends in the study of radiation effects in solid methane. We particularly focus on relaxation phenomena in solid methane pre-irradiated by energetic neutrons and electron beam. We compare experimental results obtained in the temperature range from 10K to 100K with a model based on the assumption that radiolysis defect recombinations happen in two stages, at two different temperatures. In the case of slow heating up of the solid methane sample, irradiated at 10K, the first wave of recombination occurs around 20K with a further second wave taking place between 50 and 60K. We also discuss the role of the recombination mechanisms in “burp” phenomenon discovered by J. Carpenter in the late 1980s. An understanding of these mechanisms is vital for the designing and operation of solid methane moderators used in advanced neutron sources and could also be a possible explanation for the driving forces behind cryo-volcanism on celestial bodies.

  5. Conversion of Methane to Methanol and Ethanol over Nickel Oxide on Ceria-Zirconia Catalysts in a Single Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okolie, Chukwuemeka; Belhseine, Yasmeen F.; Lyu, Yimeng

    Here, the conversion of methane into alcohols under moderate reaction conditions is a promising technology for converting stranded methane reserves into liquids that can be transported in pipelines and upgraded to value-added chemicals. We demonstrate that a catalyst consisting of small nickel oxide clusters supported on ceria-zirconia (NiO/CZ) can convert methane to methanol and ethanol in a single, steady-state process at 723 K using O 2 as an abundantly available oxidant. The presence of steam is required to obtain alcohols rather than CO 2 as the product of catalytic combustion. The unusual activity of this catalyst is attributed to themore » synergy between the small Lewis acidic NiO clusters and the redox-active CZ support, which also stabilizes the small NiO clusters.« less

  6. Conversion of Methane to Methanol and Ethanol over Nickel Oxide on Ceria-Zirconia Catalysts in a Single Reactor

    DOE PAGES

    Okolie, Chukwuemeka; Belhseine, Yasmeen F.; Lyu, Yimeng; ...

    2017-08-08

    Here, the conversion of methane into alcohols under moderate reaction conditions is a promising technology for converting stranded methane reserves into liquids that can be transported in pipelines and upgraded to value-added chemicals. We demonstrate that a catalyst consisting of small nickel oxide clusters supported on ceria-zirconia (NiO/CZ) can convert methane to methanol and ethanol in a single, steady-state process at 723 K using O 2 as an abundantly available oxidant. The presence of steam is required to obtain alcohols rather than CO 2 as the product of catalytic combustion. The unusual activity of this catalyst is attributed to themore » synergy between the small Lewis acidic NiO clusters and the redox-active CZ support, which also stabilizes the small NiO clusters.« less

  7. Eddy Covariance Measurements of Methane Flux Using an Open-Path Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Burba, G.; Anderson, T.; Zona, D.; Schedlbauer, J.; Anderson, D.; Eckles, R.; Hastings, S.; Ikawa, H.; McDermitt, D.; Oberbauer, S.; Oechel, W.; Riensche, B.; Starr, G.; Sturtevant, C.; Xu, L.

    2008-12-01

    Methane is an important greenhouse gas with a warming potential of about 23 times that of carbon dioxide over a 100-year cycle (Houghton et al., 2001). Measurements of methane fluxes from the terrestrial biosphere have mostly been made using flux chambers, which have many advantages, but are discrete in time and space and may disturb surface integrity and air pressure. Open-path analyzers offer a number of advantages for measuring methane fluxes, including undisturbed in- situ flux measurements, spatial integration using the Eddy Covariance approach, zero frequency response errors due to tube attenuation, confident water and thermal density terms from co-located fast measurements of water and sonic temperature, and remote deployment due to lower power demands in the absence of a pump. The prototype open-path methane analyzer is a VCSEL (vertical-cavity surface-emitting laser)-based instrument. It employs an open Herriott cell and measures levels of methane with RMS noise below 6 ppb at 10 Hz sampling in controlled laboratory environment. Field maintenance is minimized by a self-cleaning mechanism to keep the lower mirror free of contamination. Eddy Covariance measurements of methane flux using the prototype open-path methane analyzer are presented for the period between 2006 and 2008 in three ecosystems with contrasting weather and moisture conditions: (1) Fluxes over a short-hydroperiod sawgrass wetland in the Florida Everglades were measured in a warm and humid environment with temperatures often exceeding 25oC, variable winds, and frequent heavy dew at night; (2) Fluxes over coastal wetlands in an Arctic tundra were measured in an environment with frequent sub-zero temperatures, moderate winds, and ocean mist; (3) Fluxes over pacific mangroves in Mexico were measured in an environment with moderate air temperatures high winds, and sea spray. Presented eddy covariance flux data were collected from a co-located prototype open-path methane analyzer, LI-7500, and sonic anemometer at a 10 Hz rate. Data were processed using EdiRe software following standard FluxNet methodology, including stationarity tests, frequency response, and Webb- Pearman-Leuning density terms. Further details are provided in the extended conference paper at: ftp://ftp.licor.com/public/GBurba/AGU LI- 7700 Paper-2008.pdf

  8. Methane flux from the Amazon River floodplain - Emissions during rising water

    NASA Technical Reports Server (NTRS)

    Bartlett, Karen B.; Crill, Patrick M.; Bonassi, Jose A.; Richey, Jeffrey E.; Harriss, Robert C.

    1990-01-01

    Methane flux data obtained during a period of high and falling water level in the course of the dry season of 1985 (the Amazon Boundary Layer Experiment, ABLE 2A) and a period of moderate and rising water during the wet season of 1987 (ABLE 2B) were used to characterize the influence of seasonal variations in the vegetation, water column depth, and chemistry, as well as atmospheric dynamics, on the methane flux from the Amazon River floodplain. It was found that the annual estimate of methane from wetlands is identical to the annual estimate made by Matthews and Fung (1987) (both at 111 Tg). However, it was found that peatlands between 50 and 70 N contribute 39 Tg, with the large areas of forested and nonforested bogs making up 37 Tg of this figure, while the figures of Matthews and Fung were 63 and 62 Tg, respectively.

  9. Co-aromatization of olefin and methane over Ag-Ga/ZSM-5 catalyst at low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Peng; Gatip, Richard; Yung, Matthew

    The massive exploitation of shale gas in the past decade has boosted the production of natural gas and reduced its price dramatically. The methane activation and following conversion into more valuable fuels and chemicals have thus become more and more attractive, while the introduction of hydrocarbons to enhance the methane activation at mild conditions represents a promising approach. In the present work, the co-aromatization of methane with propylene has been studied at 400 °C. The presence of methane would increase the toluene to benzene ratio as well as the average carbon number of the formed liquid aromatic products compared tomore » its propylene alone counterpart. Among the gas products, the formations of C 3H 8, C 4H 8 and C 4H 10 also get promoted when methane is present. The incorporation of methane into the product molecules is also directly evidenced by the 1H, 2D and 13C NMR spectroscopy of the liquid products obtained from the reaction between propylene (or styrene) and isotope labelled methane. Hydrogen from methane would contribute a large portion of the hydrogen in the product molecules, while the benzylic and aromatic hydrogen sites are favored compared with those on the alkyl side chains. The activation of methane is also observed in the DRIFT spectra when deuterium enriched methane is engaged as the methane source and evidenced by the escalated exothermic feature when olefin aromatization takes place under methane environment. The excellent catalytic performance of Ag-Ga/ZSM-5 might be because of the better dispersion of Ag and Ga on the ZSM-5 surface and moderate amount of strong Brosted and Lewis surface acid sites. All the observations suggest that methane might be activated nonoxidatively and converted into aromatics if suitable catalyst is charged under the assistance of co-existing olefin. In conclusion, the reported synergetic effect could potentially lead to the more economic utilization of abundant natural gas and petrochemical intermediates.« less

  10. Co-aromatization of olefin and methane over Ag-Ga/ZSM-5 catalyst at low temperature

    DOE PAGES

    He, Peng; Gatip, Richard; Yung, Matthew; ...

    2017-04-22

    The massive exploitation of shale gas in the past decade has boosted the production of natural gas and reduced its price dramatically. The methane activation and following conversion into more valuable fuels and chemicals have thus become more and more attractive, while the introduction of hydrocarbons to enhance the methane activation at mild conditions represents a promising approach. In the present work, the co-aromatization of methane with propylene has been studied at 400 °C. The presence of methane would increase the toluene to benzene ratio as well as the average carbon number of the formed liquid aromatic products compared tomore » its propylene alone counterpart. Among the gas products, the formations of C 3H 8, C 4H 8 and C 4H 10 also get promoted when methane is present. The incorporation of methane into the product molecules is also directly evidenced by the 1H, 2D and 13C NMR spectroscopy of the liquid products obtained from the reaction between propylene (or styrene) and isotope labelled methane. Hydrogen from methane would contribute a large portion of the hydrogen in the product molecules, while the benzylic and aromatic hydrogen sites are favored compared with those on the alkyl side chains. The activation of methane is also observed in the DRIFT spectra when deuterium enriched methane is engaged as the methane source and evidenced by the escalated exothermic feature when olefin aromatization takes place under methane environment. The excellent catalytic performance of Ag-Ga/ZSM-5 might be because of the better dispersion of Ag and Ga on the ZSM-5 surface and moderate amount of strong Brosted and Lewis surface acid sites. All the observations suggest that methane might be activated nonoxidatively and converted into aromatics if suitable catalyst is charged under the assistance of co-existing olefin. In conclusion, the reported synergetic effect could potentially lead to the more economic utilization of abundant natural gas and petrochemical intermediates.« less

  11. 30 CFR 27.32 - Tests to determine performance of the system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.32... durability of a methane-monitoring system. The tests shall be conducted as follows: 2 Normal replacements and... gas (containing a high percentage of methane) is a satisfactory substitute for pure methane in these...

  12. Associations among methane emission traits measured in the feedlot and in respiration chambers in Angus cattle bred to vary in feed efficiency.

    PubMed

    Herd, R M; Velazco, J I; Arthur, P F; Hegarty, R F

    2016-11-01

    The objective of the study was to evaluate associations among animal performance and methane emission traits under feedlot conditions and in respiration chambers in Angus cattle bred to vary in residual feed intake (RFI), which is a measure of feed efficiency. Fifty-nine cattle were tested for feedlot RFI, of which 41 had methane production recorded on an ad libitum grain-based ration in the feedlot, 59 on a restricted grain-based ration in respiration chambers, and 57 on a restricted roughage ration in respiration chambers. The cattle became older and heavier as they went through the different phases of the experiment, but their feed intake (expressed as DMI) and daily emission of enteric methane (methane production rate; MPR) did not increase proportionally, as feed offered was restricted in the respiration chamber tests. Methane emissions by individual animals relative to their DMI were calculated as methane yield (MY; MPR/DMI) and as 2 measures of residual methane production (RMP and RMP), which were calculated as the difference between measured MPR and that predicted from feed intake by 2 different equations. Within each test regime, MPR was positively correlated ( = 0.28 to 0.61) with DMI. Phenotypic correlations for MY, RMP, and RMP between the feedlot test and the restricted grain test ( = 0.40 to 0.43) and between the restricted grain test and the restricted roughage test were moderate ( = 0.36 to 0.41) and moderate to strong between the feedlot test and the restricted roughage test ( = 0.54 to 0.58). These results indicate that the rankings of animals for methane production relative to feed consumed are relatively stable over the 3 test phases. Feedlot feed conversion ratio and RFI were not correlated with MPR in the feedlot test and grain-based chamber test but were negatively correlated with MPR in the chamber roughage test ( = -0.31 and -0.37). Both were negatively correlated with MY and RMP in the feedlot test ( = -0.42 to -0.54) and subsequent chamber roughage test ( = -0.27 to -0.49). Midparent estimated breeding values for RFI tended to be negatively correlated with MY and RMP in the feedlot test ( = -0.27 and -0.27) and were negatively correlated with MY, RMP, and RMP in the chamber roughage test ( = -0.33 to -0.36). These results showed that in young growing cattle, lower RFI was associated with higher MY, RMP, and RMP but had no significant association with MPR.

  13. Genetic and phenotypic variance and covariance components for methane emission and postweaning traits in Angus cattle.

    PubMed

    Donoghue, K A; Bird-Gardiner, T; Arthur, P F; Herd, R M; Hegarty, R F

    2016-04-01

    Ruminants contribute 80% of the global livestock greenhouse gas (GHG) emissions mainly through the production of methane, a byproduct of enteric microbial fermentation primarily in the rumen. Hence, reducing enteric methane production is essential in any GHG emissions reduction strategy in livestock. Data on 1,046 young bulls and heifers from 2 performance-recording research herds of Angus cattle were analyzed to provide genetic and phenotypic variance and covariance estimates for methane emissions and production traits and to examine the interrelationships among these traits. The cattle were fed a roughage diet at 1.2 times their estimated maintenance energy requirements and measured for methane production rate (MPR) in open circuit respiration chambers for 48 h. Traits studied included DMI during the methane measurement period, MPR, and methane yield (MY; MPR/DMI), with means of 6.1 kg/d (SD 1.3), 132 g/d (SD 25), and 22.0 g/kg (SD 2.3) DMI, respectively. Four forms of residual methane production (RMP), which is a measure of actual minus predicted MPR, were evaluated. For the first 3 forms, predicted MPR was calculated using published equations. For the fourth (RMP), predicted MPR was obtained by regression of MPR on DMI. Growth and body composition traits evaluated were birth weight (BWT), weaning weight (WWT), yearling weight (YWT), final weight (FWT), and ultrasound measures of eye muscle area, rump fat depth, rib fat depth, and intramuscular fat. Heritability estimates were moderate for MPR (0.27 [SE 0.07]), MY (0.22 [SE 0.06]), and the RMP traits (0.19 [SE 0.06] for each), indicating that genetic improvement to reduce methane emissions is possible. The RMP traits and MY were strongly genetically correlated with each other (0.99 ± 0.01). The genetic correlation of MPR with MY as well as with the RMP traits was moderate (0.32 to 0.63). The genetic correlation between MPR and the growth traits (except BWT) was strong (0.79 to 0.86). These results indicate that selection for lower MPR may have undesired effect on animal productivity. On the other hand, MY and the RMPR were either not genetically correlated or weakly correlated with BWT, YWT, and FWT (-0.06 to 0.23) and body composition traits (-0.18 to 0.18). Therefore, selection for lower MY or RMPR would lead to lower MPR without impacting animal productivity. Where the use of a ratio trait (e.g., MY) is not desirable, selection on any of the forms of RMP would be an alternative.

  14. Rice Cluster I, an Important Group of Archaea Producing Methane in Rice Fields

    NASA Astrophysics Data System (ADS)

    Conrad, R.

    2006-12-01

    Rice fields are an important source for the greenhouse gas methane. Methane is a major degradation product of organic matter in the anoxic soil, is partially oxidized in the rhizosphere and is emitted into the atmosphere through the aerenchyma system of the plants. Anaerobic degradation of organic matter by fermenting bacteria eventually results in the production of acetate and hydrogen, the two major substrates for microbial methanogenesis. The community of methanogenic archaea consists of several major orders or families including hydrogen-utilizing Rice Cluster-I (RC-I). Environmental conditions affect the methanogenic degradation process and the community structure of the methanogenic archaea in soil and rhizosphere. For example, populations of acetoclastic Methanosaetaceae and Methanosarcinaceae are enhanced by low and high acetate concentrations, respectively. Stable isotope probing of 16S rRNA showed that RC-I methanogens are mainly active on rice roots and at low H2 concentrations. Growth and population size is largely consistent with energetic conditions. RC-I methanogens on roots seem to be responsible for methane production from plant photosynthates that account for a major part of the emitted methane. Populations of RC-I methanogens in rice field soil are also enhanced at elevated temperatures (40-50°C). Moderately thermophilic members of RC-I methanogens or other methanogenic families were found to be ubiquitously present in soils from rice fields and river marshes. The genome of a RC-I methanogen was completely sequenced out of an enrichment culture using a metagenome approach. Genes found are consistent with life in the rhizosphere and in temporarily drained, oxic soil. We found that the methanogenic community structure on the rice roots is mainly determined by the respective community structure of the soil, but is in addition affected by the rice cultivar. Rice microcosms in which soil and rice roots are mainly colonized by RC-I methanogens produce and emit more methane than when inhabited by Methanomicrobiales, indicating that the methanogenic archaeal community is an important factor for methane emission from rice fields.

  15. Biogeochemistry of dissolved methane and hydrogen in basement fluids of the sediment-buried Juan de Fuca Ridge flank at Boreholes (CORKs) 1301A, 1362A and 1362B: methane isotopic compositions

    NASA Astrophysics Data System (ADS)

    Lin, H.; Cowen, J. P.; Olson, E. J.; Lilley, M. D.; Jungbluth, S.; Rappe, M. S.

    2013-12-01

    The ocean crust is the largest aquifer system on Earth. Within the sediment-buried 3.5 Myr basaltic crust of the eastern Juan de Fuca Ridge (JFR) flank, the circulating basement fluids have moderate temperature (~65°C) and potentially harbor a substantial subseafloor biosphere. With dissolved oxygen and nitrate exhausted, sulfate may serve as the major electron acceptor in this environment. This study aims to evaluate the availability and the biogeochemistry of two important electron donors, methane and hydrogen, for the subseafloor biosphere. Basement fluids were collected via stainless steel and ethylene-tetrafluoroethylene fluoropolymer (ETFE) fluid delivery lines associated with Integrated Ocean Drilling Program (IODP) Circulation Obviation Retrofit Kits (CORKs) that extend from basement depths to outlet ports at the seafloor. Three CORKs were visited; 1301A, 1362A and 1362B lie within 200 to 500 m of each other, and their fluid intakes lie at ~30, ~60, and ~50 m below the sediment-basement interface (mbs), respectively. In addition, CORK 1362A contains a second intake at a deep (~200 mbs) horizon. The basement fluids from the three CORKs contained significantly higher concentrations of methane (1.5-13μM) and hydrogen (0.05-1.1 μM) than in bottom seawater (0.002 and 0.0004, respectively), indicating that prevalence and availability of both methane and hydrogen as electron donors for the subseafloor biosphere. Thermodynamic calculations show that sulfate reduction coupled with either methane or hydrogen oxidation is energy yielding in the oceanic basement. The δ13C values of methane ranged from -43×1‰ to -58×0.3‰; the δ2H values of methane in CORKs 1301A, 1362A and 1362B fluids were 57×5‰, -262×2‰, -209×2‰, respectively. The isotopic compositions suggest that methane in the basement fluid is of biogenic origin. Interestingly, the δ2H value of methane in the CORK 1301A fluids is far more positive than that in other marine environments investigated so far (Martens et al., 1999; Kessler et al., 2006; Kessler et al., 2008). The positive δ2H value of methane is best explained by partial microbial oxidation of biogenic methane, which has an initial isotopic composition similar to that from CORK 1362A and 1362B borehole fluid. High-throughput sequencing of the small subunit ribosomal RNA gene indicates the presence of methanogenic Euryarchaeota (e.g. Methanobacteria) in each of the borehole fluid samples described here. On average, fluid samples from boreholes 1362A and 1362B possessed a relatively higher abundance of known methanogens compared to borehole 1301A, consistent with higher methane concentration in 1362A and 1362B relative to 1301A fluids. Methane-oxidizing bacterial lineages from the phyla Proteobacteria and Verrucomicrobia were also detected; however, these groups were less abundant relative to the putative methane-producing groups. In conclusion, our study shows that methane and hydrogen are available electron donors and that methane is produced and potentially consumed by microorganisms in the oceanic basement. The data presented will guide incubation experiments using basement fluid in order to better understand the methane production/utilization processes within the oceanic basement.

  16. Environmental controls over methane emissions from bromeliad phytotelmata: The role of phosphorus and nitrogen availability, temperature, and water content

    NASA Astrophysics Data System (ADS)

    Kotowska, Martyna M.; Werner, Florian A.

    2013-12-01

    bromeliads are common epiphytic plants throughout neotropical forests that store significant amounts of water in phytotelmata (tanks) formed by highly modified leafs. Methanogenic archaea in these tanks have recently been identified as a significant source of atmospheric methane. We address the effects of environmental drivers (temperature, tank water content, sodium phosphate [P], and urea [N] addition) on methane production in anaerobically incubated bromeliad slurry and emissions from intact bromeliad tanks in montane Ecuador. N addition ≥ 1 mg g-1 had a significantly positive effect on headspace methane concentrations in incubation jars while P addition did not affect methane production at any dosage (≤ 1 mg g-1). Tank bromeliads (Tillandsia complanata) cultivated in situ showed significantly increased effluxes of methane in response to the addition of 26 mg N addition per tank but not to lower dosage of N or any dosage of P (≤ 5.2 mg plant-1). There was no significant interaction between N and P addition. The brevity of the stimulatory effect of N addition on plant methane effluxes (1-2 days) points at N competition by other microorganisms or bromeliads. Methane efflux from plants closely followed within-day temperature fluctuations over 24 h cycles, yet the dependency of temperature was not exponential as typical for terrestrial wetlands but instead linear. In simulated drought, methane emission from bromeliad tanks was maintained with minimum amounts of water and regained after a short lag phase of approximately 24 h. Our results suggest that methanogens in bromeliads are primarily limited by N and that direct effects of global change (increasing temperature and seasonality, remote fertilization) on bromeliad methane emissions are of moderate scale.

  17. Investigation on the light alkanes aromatization over Zn and Ga modified HZSM-5 catalysts in the presence of methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qingyin; Zhang, Fengqi; Jarvis, Jack

    The catalytic co-aromatization of methane and paraffin-rich raffinate oil was investigated along with hexane, heptane and octane as its model compounds over zinc and gallium modified ZSM-5 zeolite catalysts. The benzene, toluene and xylene (BTX) components derived from light alkane aromatization were highly promoted with the assistance of methane. The co-existence of Zn and Ga metal species has a positive effect on the formation of BTX components, whereas the individual metal loaded catalyst resulted in the production of heavy aromatics, suggesting that zinc and gallium have a synergistic effect on the formation of BTX under the methane environment. When concernedmore » with gaseous analysis, the introduced methane might interact with smaller intermediates and then transform into larger hydrocarbons. From the DRIFT observation, it was witnessed that the interaction between light alkane and methane occurred on the surface of the charged Zn-Ga/ZSM-5 catalyst. According to the comprehensive catalyst characterizations, the excellent catalytic performance may be closely associated with greatly dispersed metal species on the zeolite support, improved microporous characteristic, moderate Bronsted and increased Lewis acidic sites during the paraffin-rich liquid feedstock aromatization under methane environment. This research provides a promising pathway for the highly effective and profitable utilization of petrochemical resources and natural gas.« less

  18. Investigation on the light alkanes aromatization over Zn and Ga modified HZSM-5 catalysts in the presence of methane

    DOE PAGES

    Li, Qingyin; Zhang, Fengqi; Jarvis, Jack; ...

    2018-03-16

    The catalytic co-aromatization of methane and paraffin-rich raffinate oil was investigated along with hexane, heptane and octane as its model compounds over zinc and gallium modified ZSM-5 zeolite catalysts. The benzene, toluene and xylene (BTX) components derived from light alkane aromatization were highly promoted with the assistance of methane. The co-existence of Zn and Ga metal species has a positive effect on the formation of BTX components, whereas the individual metal loaded catalyst resulted in the production of heavy aromatics, suggesting that zinc and gallium have a synergistic effect on the formation of BTX under the methane environment. When concernedmore » with gaseous analysis, the introduced methane might interact with smaller intermediates and then transform into larger hydrocarbons. From the DRIFT observation, it was witnessed that the interaction between light alkane and methane occurred on the surface of the charged Zn-Ga/ZSM-5 catalyst. According to the comprehensive catalyst characterizations, the excellent catalytic performance may be closely associated with greatly dispersed metal species on the zeolite support, improved microporous characteristic, moderate Bronsted and increased Lewis acidic sites during the paraffin-rich liquid feedstock aromatization under methane environment. This research provides a promising pathway for the highly effective and profitable utilization of petrochemical resources and natural gas.« less

  19. Engineering of Methane Metabolism in Pichia Pastoris Through Methane Monooxygenase Expression

    NASA Technical Reports Server (NTRS)

    Fleury, Samantha T.; Neff, Lily S.; Galazka, Jonathan M.

    2017-01-01

    Exploration of the solar system is constrained by the cost of moving mass off Earth. Producing materials in situ will reduce the mass that must be delivered from earth. CO2 is abundant on Mars and manned spacecraft. On the ISS, NASA reacts excess CO2 with H2 to generate CH4 and H2O using the Sabatier System. The resulting water is recovered into the ISS, but the methane is vented to space. Thus, there is a capability need for systems that convert methane into valuable materials. Methanotrophic bacteria consume methane but these are poor synthetic biology platforms. Thus, there is a knowledge gap in utilizing methane in a robust and flexible synthetic biology platform. The yeast Pichia pastoris is a refined microbial factory that is used widely by industry because it efficiently secretes products. Pichia could produce a variety of useful products in space. Pichia does not consume methane but robustly consumes methanol, which is one enzymatic step removed from methane. Our goal is to engineer Pichia to consume methane thereby creating a powerful methane-consuming microbial factory.

  20. Colors of Alien Worlds from Direct Imaging Exoplanet Missions

    NASA Astrophysics Data System (ADS)

    Hu, Renyu

    2016-01-01

    Future direct-imaging exoplanet missions such as WFIRST will measure the reflectivity of exoplanets at visible wavelengths. Most of the exoplanets to be observed will be located further away from their parent stars than is Earth from the Sun. These "cold" exoplanets have atmospheric environments conducive for the formation of water and/or ammonia clouds, like Jupiter in the Solar System. I find the mixing ratio of methane and the pressure level of the uppermost cloud deck on these planets can be uniquely determined from their reflection spectra, with moderate spectral resolution, if the cloud deck is between 0.6 and 1.5 bars. The existence of this unique solution is useful for exoplanet direct imaging missions for several reasons. First, the weak bands and strong bands of methane enable the measurement of the methane mixing ratio and the cloud pressure, although an overlying haze layer can bias the estimate of the latter. Second, the cloud pressure, once derived, yields an important constraint on the internal heat flux from the planet, and thus indicating its thermal evolution. Third, water worlds having H2O-dominated atmospheres are likely to have water clouds located higher than the 10-3 bar pressure level, and muted spectral absorption features. These planets would occupy a confined phase space in the color-color diagrams, likely distinguishable from H2-rich giant exoplanets by broadband observations. Therefore, direct-imaging exoplanet missions may offer the capability to broadly distinguish H2-rich giant exoplanets versus H2O-rich super-Earth exoplanets, and to detect ammonia and/or water clouds and methane gas in their atmospheres.

  1. Continuous in-situ methane measurements at paddy fields in a rural area of India with poor electric infrastructure, using a low-cost instrument based on open-path near-IR laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hidemori, T.; Matsumi, Y.; Nakayama, T.; Kawasaki, M.; Sasago, H.; Takahashi, K.; Imasu, R.; Takeuchi, W.; Adachi, M.; Machida, T.; Terao, Y.; Nomura, S.; Dhaka, S. K.; Singh, J.

    2015-12-01

    In southeast and south Asia, the previous satellite observations suggest that the methane emission from rice paddies is significant and important source of methane during rainy season. Since it is difficult to measure methane stably and continuously at rural areas such as the paddy fields in terms of infrastructures and maintenances, there are large uncertainties in quantitative estimation of methane emission in these areas and there are needs for more certification between satellite and ground based measurements. To measure methane concentrations continuously at difficult situations such as the center of paddy fields and wetlands, we developed the continuous in-situ measurement system, not to look for your lost keys under the streetlight. The methane gas sensor is used an open-path laser based measurement instrument (LaserMethane, ANRITSU CORPORATION), which can quickly and selectively detect average methane concentrations on the optical path of the laser beam. The developed system has the power supply and telecommunication system to run the laser gas sensor in rural areas with poor electricity infrastructure.The methane measurement system was installed at paddy fields of Sonepat, Haryana on the north of Delhi in India and has been operated from the end of 2014. The air sampling along with our measurement has been carried out once a week during daytime to calibrate the laser instrument. We found that the seasonal variation of methane concentrations was different from the satellite observations and there were significant diurnal variations, which it was difficult to detect from occasional air samplings. We will present details of the measurement system and recent results of continuous methane measurements in India.

  2. Effects of cattle husbandry on abundance and activity of methanogenic archaea in upland soils.

    PubMed

    Radl, Viviane; Gattinger, Andreas; Chronáková, Alica; Nemcová, Anna; Cuhel, Jiri; Simek, Miloslav; Munch, Jean Charles; Schloter, Michael; Elhottová, Dana

    2007-09-01

    In the present study, we tested the hypothesis that animal treading associated with a high input of organic matter would favour methanogenesis in soils used as overwintering pasture. Hence, methane emissions and methanogen populations were examined at sections with different degree of cattle impact in a Farm in South Bohemia, Czech Republic. In spring, methane emission positively corresponded to the gradient of animal impact. Applying phospholipid etherlipid analysis, the highest archaeal biomass was found in section severe impact (SI), followed by moderate impact (MI) and no impact. The same trend was observed for the methanogens as showed by real-time quantitative PCR analyses of methyl coenzyme M reductase (mcrA) genes. The detection of monounsaturated isoprenoid side chain hydrocarbons (i20:1) indicated the presence of acetoclastic methanogens in the cattle-impacted sites. This result was corroborated by the phylogenetic analysis of mcrA gene sequences obtained from section SI, which showed that 33% of the analysed clones belonged to the genus Methanosarcina. The majority of the sequenced clones (41%) showed close affiliations with uncultured rumen archaeons. This leads to the assumption that a substantial part of the methanogenic community in plot SI derived from the grazing cattle itself. Compared to the spring sampling, in autumn, a significant reduction in archaeal biomass and number of copies of mcrA genes was observed mainly for section MI. It can be concluded that after 5 months without cattle impact, the severely impact section maintained its methane production potential, whereas the methane production potential under moderate impact returned to background values.

  3. Integrated Pressure-Fed Liquid Oxygen / Methane Propulsion Systems - Morpheus Experience, MARE, and Future Applications

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric; Morehead, Robert; Melcher, John C.; Atwell, Matt

    2016-01-01

    An integrated liquid oxygen (LOx) and methane propulsion system where common propellants are fed to the reaction control system and main engines offers advantages in performance, simplicity, reliability, and reusability. LOx/Methane provides new capabilities to use propellants that are manufactured on the Mars surface for ascent return and to integrate with power and life support systems. The clean burning, non-toxic, high vapor pressure propellants provide significant advantages for reliable ignition in a space vacuum, and for reliable safing or purging of a space-based vehicle. The NASA Advanced Exploration Systems (AES) Morpheus lander demonstrated many of these key attributes as it completed over 65 tests including 15 flights through 2014. Morpheus is a prototype of LOx/Methane propellant lander vehicle with a fully integrated propulsion system. The Morpheus lander flight demonstrations led to the proposal to use LOx/Methane for a Discovery class mission, named Moon Aging Regolith Experiment (MARE) to land an in-situ science payload for Southwest Research Institute on the Lunar surface. Lox/Methane is extensible to human spacecraft for many transportation elements of a Mars architecture. This paper discusses LOx/Methane propulsion systems in regards to trade studies, the Morpheus project experience, the MARE NAVIS (NASA Autonomous Vehicle for In-situ Science) lander, and future possible applications. The paper also discusses technology research and development needs for Lox/Methane propulsion systems.

  4. 30 CFR 57.22237 - Actions at 2.0 to 2.5 percent methane in bleeder systems (I-A and III mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....22237 Actions at 2.0 to 2.5 percent methane in bleeder systems (I-A and III mines). If methane reaches 2... reduced to less than 2.0 percent within 30 minutes, or if methane levels reach 2.5 percent, all persons...

  5. 30 CFR 57.22237 - Actions at 2.0 to 2.5 percent methane in bleeder systems (I-A and III mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Actions at 2.0 to 2.5 percent methane in...-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22237 Actions at 2.0 to 2.5 percent methane in bleeder systems (I-A and III mines). If methane reaches 2...

  6. Determination of the Zone Endangered by Methane Explosion in Goaf with Caving of Longwalls Ventilated on "Y" System

    NASA Astrophysics Data System (ADS)

    Brodny, Jarosław; Tutak, Magdalena

    2016-12-01

    One of the most dangerous and most commonly present risks in hard coal mines is methane hazard. During exploitation by longwall system with caving, methane is emitted to mine heading from the mined coal and coal left in a pile. A large amount of methane also flows from neighboring seams through cracks and fissures formed in rock mass. In a case of accumulation of explosive methane concentration in goaf zone and with appropriate oxygen concentration and occurrence of initials (e.g. spark or endogenous fire), it may come to the explosion of this gas. In the paper there are presented results of numerical analysis of mixture of air and methane streams flow through the real heading system of a mine, characterized by high methane hazard. The aim of the studies was to analyze the ventilation system of considered heading system and determination of braking zones in goaf zone, in which dangerous and explosive concertation of methane can occur with sufficient oxygen concentration equal to at least 12%. Determination of position of these zones is necessary for the selection of appropriate parameters of the ventilation system to ensure safety of the crew. Analysis of the scale of methane hazard allows to select such a ventilation system of exploitation and neighboring headings that ensures chemical composition of mining atmosphere required by regulation, and required efficiency of methane drainage. The obtained results clearly show that numerical methods, combined with the results of tests in real conditions can be successfully used for the analysis of variants of processes related to ventilation of underground mining, and also in the analysis of emergency states.

  7. Methane Production by Microbial Mats Under Low Sulfate Concentrations

    NASA Technical Reports Server (NTRS)

    Bebout, Brad M.; Hoehler, Tori M.; Thamdrup, Bo; Albert, Dan; Carpenter, Steven P.; Hogan, Mary; Turk, Kendra; DesMarais, David J.

    2003-01-01

    Cyanobacterial mats collected in hypersaline salterns were incubated in a greenhouse under low sulfate concentrations ([SO4]) and examined for their primary productivity and emissions of methane and other major carbon species. Atmospheric greenhouse warming by gases such as carbon dioxide and methane must have been greater during the Archean than today in order to account for a record of moderate to warm paleoclemates, despite a less luminous early sun. It has been suggested that decreased levels of oxygen and sulfate in Archean oceans could have significantly stimulated microbial methanogenesis relative to present marine rates, with a resultant increase in the relative importance of methane in maintaining the early greenhouse. We maintained modern microbial mats, models of ancient coastal marine communities, in artificial brine mixtures containing both modern [SO4=] (ca. 70 mM) and "Archean" [SO4] (less than 0.2 mM). At low [SO4], primary production in the mats was essentially unaffected, while rates of sulfate reduction decreased by a factor of three, and methane fluxes increased by up to ten-fold. However, remineralization by methanogenesis still amounted to less than 0.4 % of the total carbon released by the mats. The relatively low efficiency of conversion of photosynthate to methane is suggested to reflect the particular geometry and chemical microenvironment of hypersaline cyanobacterial mats. Therefore, such mats w-ere probably relatively weak net sources of methane throughout their 3.5 Ga history, even during periods of low- environmental levels oxygen and sulfate.

  8. 30 CFR 27.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINING PRODUCTS METHANE-MONITORING SYSTEMS General Provisions § 27.2 Definitions. As used in this part... designs, manufactures, or assembles and that seeks certification or preliminary testing of a methane-monitoring system or component. (c) Methane-monitoring system means a complete assembly of one or more...

  9. Emerging Methane Sources: A Bang or Whimper? (Invited)

    NASA Astrophysics Data System (ADS)

    Harriss, R. C.

    2013-12-01

    In this presentation we examine two emerging methane emission sources that may further accelerate climate change in the 21st century: 1) Will fugitive methane emissions associated with the development of unconventional natural gas resources pose a significant threat of accelerating climate change? 2) Will continued warming of Arctic regions destabilize permafrost and methane hydrates rapidly increasing global atmospheric methane that results in a catastrophic climate change emergency? These risks are currently described in two different guises, with unconventional gas as persistent and gradually unfolding threat and Arctic rapid warming and release of methane as a low-probability event that could in an instant change everything. Current research is far from answering the question of whether these emerging methane sources will lead to a climate change bang or whimper. Both issues reflect the need to understand complex environmental and engineered systems as they interact with social and economic forces. While the evolution of energy systems favors methane as a contemporary transition fuel, researchers and practitioners need to address the fugitive methane leakage, reliability, and safety of natural gas systems. The concept of a methane bridge as a viable direction to decarbonization is appealing; it's just not as big or fast a step as many scientists want.

  10. Feasibility of atmospheric methane removal using methanotrophic biotrickling filters.

    PubMed

    Yoon, Sukhwan; Carey, Jeffrey N; Semrau, Jeremy D

    2009-07-01

    Methane is a potent greenhouse gas with a global warming potential ~23 times that of carbon dioxide. Here, we describe the modeling of a biotrickling filtration system composed of methane-consuming bacteria, i.e., methanotrophs, to assess the utility of these systems in removing methane from the atmosphere. Model results indicate that assuming the global average atmospheric concentration of methane, 1.7 ppmv, methane removal is ineffective using these methanotrophic biofilters as the methane concentration is too low to enable cell survival. If the concentration is increased to 500-6,000 ppmv, however, similar to that found above landfills and in concentrated animal feeding operations (factory farms), 4.98-35.7 tons of methane can be removed per biofilter per year assuming biotrickling filters of typical size (3.66 m in diameter and 11.5 m in height). Using reported ranges of capital, operational, and maintenance costs, the cost of the equivalent ton of CO(2) removal using these systems is $90-$910 ($2,070-$20,900 per ton of methane), depending on the influent concentration of methane and if heating is required. The use of methanotrophic biofilters for controlling methane emissions is technically feasible and, provided that either the costs of biofilter construction and operation are reduced or the value of CO(2) credits is increased, can also be economically attractive.

  11. UNDERSTANDING METHANE EMISSIONS SOURCES AND VIABLE MITIGATION MEASURES IN THE NATURAL GAS TRANSMISSION SYSTEMS: RUSSIAN AND U.S. EXPERIENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishkov, A.; Akopova, Gretta; Evans, Meredydd

    This article will compare the natural gas transmission systems in the U.S. and Russia and review experience with methane mitigation technologies in the two countries. Russia and the United States (U.S.) are the world's largest consumers and producers of natural gas, and consequently, have some of the largest natural gas infrastructure. This paper compares the natural gas transmission systems in Russia and the U.S., their methane emissions and experiences in implementing methane mitigation technologies. Given the scale of the two systems, many international oil and natural gas companies have expressed interest in better understanding the methane emission volumes and trendsmore » as well as the methane mitigation options. This paper compares the two transmission systems and documents experiences in Russia and the U.S. in implementing technologies and programs for methane mitigation. The systems are inherently different. For instance, while the U.S. natural gas transmission system is represented by many companies, which operate pipelines with various characteristics, in Russia predominately one company, Gazprom, operates the gas transmission system. However, companies in both countries found that reducing methane emissions can be feasible and profitable. Examples of technologies in use include replacing wet seals with dry seals, implementing Directed Inspection and Maintenance (DI&M) programs, performing pipeline pump-down, applying composite wrap for non-leaking pipeline defects and installing low-bleed pneumatics. The research methodology for this paper involved a review of information on methane emissions trends and mitigation measures, analytical and statistical data collection; accumulation and analysis of operational data on compressor seals and other emission sources; and analysis of technologies used in both countries to mitigate methane emissions in the transmission sector. Operators of natural gas transmission systems have many options to reduce natural gas losses. Depending on the value of gas, simple, low-cost measures, such as adjusting leaking equipment components, or larger-scale measures, such as installing dry seals on compressors, can be applied.« less

  12. Detection of Abiotic Methane in Terrestrial Continental Hydrothermal Systems: Implications for Methane on Mars

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Niles, Paul B.; Gibson, Everett K., Jr.; Romanek, Christopher S.; Zhang, Chuanlun L.; Bissada, Kadry K.

    2008-01-01

    The recent detection of methane in the Martian atmosphere and the possibility that its origin could be attributed to biological activity, have highlighted the importance of understanding the mechanisms of methane formation and its usefulness as a biomarker. Much debate has centered on the source of the methane in hydrothermal fluids, whether it is formed biologically by microorganisms, diagenetically through the decomposition of sedimentary organic matter, or inorganically via reduction of CO2 at high temperatures. Ongoing research has now shown that much of the methane present in sea-floor hydrothermal systems is probably formed through inorganic CO2 reduction processes at very high temperatures (greater than 400 C). Experimental results have indicated that methane might form inorganically at temperatures lower still, however these results remain controversial. Currently, methane in continental hydrothermal systems is thought to be formed mainly through the breakdown of sedimentary organic matter and carbon isotope equilibrium between CO2 and CH4 is thought to be rarely present if at all. Based on isotopic measurements of CO2 and CH4 in two continental hydrothermal systems, we suggest that carbon isotope equilibration exists at temperatures as low as 155 C. This would indicate that methane is forming through abiotic CO2 reduction at lower temperatures than previously thought and could bolster arguments for an abiotic origin of the methane detected in the martian atmosphere.

  13. Oxygen-Promoted Methane Activation on Copper

    DOE PAGES

    Niu, Tianchao; Jiang, Zhao; Zhu, Yaguang; ...

    2017-11-01

    The role of oxygen in the activation of C–H bonds in methane on clean and oxygen-precovered Cu(111) and Cu 2O(111) surfaces was studied with combined in situ near-ambient-pressure scanning tunneling microscopy and X-ray photoelectron spectroscopy. Activation of methane at 300 K and “moderate pressures” was only observed on oxygen-precovered Cu(111) surfaces. Density functional theory calculations reveal that the lowest activation energy barrier of C–H on Cu(111) in the presence of chemisorbed oxygen is related to a two-active-site, four-centered mechanism, which stabilizes the required transition-state intermediate by dipole–dipole attraction of O–H and Cu–CH 3 species. Furthermore, the C–H bond activation barriersmore » on Cu 2O(111) surfaces are large due to the weak stabilization of H and CH 3 fragments.« less

  14. Oxygen-Promoted Methane Activation on Copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Tianchao; Jiang, Zhao; Zhu, Yaguang

    The role of oxygen in the activation of C–H bonds in methane on clean and oxygen-precovered Cu(111) and Cu 2O(111) surfaces was studied with combined in situ near-ambient-pressure scanning tunneling microscopy and X-ray photoelectron spectroscopy. Activation of methane at 300 K and “moderate pressures” was only observed on oxygen-precovered Cu(111) surfaces. Density functional theory calculations reveal that the lowest activation energy barrier of C–H on Cu(111) in the presence of chemisorbed oxygen is related to a two-active-site, four-centered mechanism, which stabilizes the required transition-state intermediate by dipole–dipole attraction of O–H and Cu–CH 3 species. Furthermore, the C–H bond activation barriersmore » on Cu 2O(111) surfaces are large due to the weak stabilization of H and CH 3 fragments.« less

  15. Visible-light-driven methane formation from CO2 with a molecular iron catalyst.

    PubMed

    Rao, Heng; Schmidt, Luciana C; Bonin, Julien; Robert, Marc

    2017-08-03

    Converting CO 2 into fuel or chemical feedstock compounds could in principle reduce fossil fuel consumption and climate-changing CO 2 emissions. One strategy aims for electrochemical conversions powered by electricity from renewable sources, but photochemical approaches driven by sunlight are also conceivable. A considerable challenge in both approaches is the development of efficient and selective catalysts, ideally based on cheap and Earth-abundant elements rather than expensive precious metals. Of the molecular photo- and electrocatalysts reported, only a few catalysts are stable and selective for CO 2 reduction; moreover, these catalysts produce primarily CO or HCOOH, and catalysts capable of generating even low to moderate yields of highly reduced hydrocarbons remain rare. Here we show that an iron tetraphenylporphyrin complex functionalized with trimethylammonio groups, which is the most efficient and selective molecular electro- catalyst for converting CO 2 to CO known, can also catalyse the eight-electron reduction of CO 2 to methane upon visible light irradiation at ambient temperature and pressure. We find that the catalytic system, operated in an acetonitrile solution containing a photosensitizer and sacrificial electron donor, operates stably over several days. CO is the main product of the direct CO 2 photoreduction reaction, but a two-pot procedure that first reduces CO 2 and then reduces CO generates methane with a selectivity of up to 82 per cent and a quantum yield (light-to-product efficiency) of 0.18 per cent. However, we anticipate that the operating principles of our system may aid the development of other molecular catalysts for the production of solar fuels from CO 2 under mild conditions.

  16. Visible-light-driven methane formation from CO2 with a molecular iron catalyst

    NASA Astrophysics Data System (ADS)

    Rao, Heng; Schmidt, Luciana C.; Bonin, Julien; Robert, Marc

    2017-08-01

    Converting CO2 into fuel or chemical feedstock compounds could in principle reduce fossil fuel consumption and climate-changing CO2 emissions. One strategy aims for electrochemical conversions powered by electricity from renewable sources, but photochemical approaches driven by sunlight are also conceivable. A considerable challenge in both approaches is the development of efficient and selective catalysts, ideally based on cheap and Earth-abundant elements rather than expensive precious metals. Of the molecular photo- and electrocatalysts reported, only a few catalysts are stable and selective for CO2 reduction; moreover, these catalysts produce primarily CO or HCOOH, and catalysts capable of generating even low to moderate yields of highly reduced hydrocarbons remain rare. Here we show that an iron tetraphenylporphyrin complex functionalized with trimethylammonio groups, which is the most efficient and selective molecular electro- catalyst for converting CO2 to CO known, can also catalyse the eight-electron reduction of CO2 to methane upon visible light irradiation at ambient temperature and pressure. We find that the catalytic system, operated in an acetonitrile solution containing a photosensitizer and sacrificial electron donor, operates stably over several days. CO is the main product of the direct CO2 photoreduction reaction, but a two-pot procedure that first reduces CO2 and then reduces CO generates methane with a selectivity of up to 82 per cent and a quantum yield (light-to-product efficiency) of 0.18 per cent. However, we anticipate that the operating principles of our system may aid the development of other molecular catalysts for the production of solar fuels from CO2 under mild conditions.

  17. Implementation of methane cycling for deep-time global warming simulations with the DCESS Earth system model (version 1.2)

    NASA Astrophysics Data System (ADS)

    Shaffer, Gary; Fernández Villanueva, Esteban; Rondanelli, Roberto; Olaf Pepke Pedersen, Jens; Malskær Olsen, Steffen; Huber, Matthew

    2017-11-01

    Geological records reveal a number of ancient, large and rapid negative excursions of the carbon-13 isotope. Such excursions can only be explained by massive injections of depleted carbon to the Earth system over a short duration. These injections may have forced strong global warming events, sometimes accompanied by mass extinctions such as the Triassic-Jurassic and end-Permian extinctions 201 and 252 million years ago, respectively. In many cases, evidence points to methane as the dominant form of injected carbon, whether as thermogenic methane formed by magma intrusions through overlying carbon-rich sediment or from warming-induced dissociation of methane hydrate, a solid compound of methane and water found in ocean sediments. As a consequence of the ubiquity and importance of methane in major Earth events, Earth system models for addressing such events should include a comprehensive treatment of methane cycling but such a treatment has often been lacking. Here we implement methane cycling in the Danish Center for Earth System Science (DCESS) model, a simplified but well-tested Earth system model of intermediate complexity. We use a generic methane input function that allows variation in input type, size, timescale and ocean-atmosphere partition. To be able to treat such massive inputs more correctly, we extend the model to deal with ocean suboxic/anoxic conditions and with radiative forcing and methane lifetimes appropriate for high atmospheric methane concentrations. With this new model version, we carried out an extensive set of simulations for methane inputs of various sizes, timescales and ocean-atmosphere partitions to probe model behavior. We find that larger methane inputs over shorter timescales with more methane dissolving in the ocean lead to ever-increasing ocean anoxia with consequences for ocean life and global carbon cycling. Greater methane input directly to the atmosphere leads to more warming and, for example, greater carbon dioxide release from land soils. Analysis of synthetic sediment cores from the simulations provides guidelines for the interpretation of real sediment cores spanning the warming events. With this improved DCESS model version and paleo-reconstructions, we are now better armed to gauge the amounts, types, timescales and locations of methane injections driving specific, observed deep-time, global warming events.

  18. Methane drainage with horizontal boreholes in advance of longwall mining: an analysis. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabello, D.P.; Felts, L.L.; Hayoz, F.P.

    1981-05-01

    The US Department of Energy (DOE) Morgantown Energy Technology Center has implemented a comprehensive program to demonstrate the technical and economic viability of coalbed methane as an energy resource. The program is directed toward solution of technical and institutional problems impeding the recovery and use of large quantities of methane contained in the nation's minable and unminable coalbeds. Conducted in direct support of the DOE Methane Recovery from Coalbeds Project, this study analyzes the economic aspects of a horizontal borehole methane recovery system integrated as part of a longwall mine operation. It establishes relationships between methane selling price and annualmore » mine production, methane production rate, and the methane drainage system capital investment. Results are encouraging, indicating that an annual coal production increase of approximately eight percent would offset all associated drainage costs over the range of methane production rates and capital investments considered.« less

  19. Methane-Powered Vehicles

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Liquid methane is beginning to become an energy alternative to expensive oil as a power source for automotive vehicles. Methane is the principal component of natural gas, costs less than half as much as gasoline, and its emissions are a lot cleaner than from gasoline or diesel engines. Beech Aircraft Corporation's Boulder Division has designed and is producing a system for converting cars and trucks to liquid methane operation. Liquid methane (LM) is a cryogenic fuel which must be stored at a temperature of 260 degrees below zero Fahrenheit. The LM system includes an 18 gallon fuel tank in the trunk and simple "under the hood" carburetor conversion equipment. Optional twin-fuel system allows operator to use either LM or gasoline fuel. Boulder Division has started deliveries for 25 vehicle conversions and is furnishing a liquid methane refueling station. Beech is providing instruction for Northwest Natural Gas, for conversion of methane to liquid state.

  20. Method for Determining the Coalbed Methane Content with Determination the Uncertainty of Measurements

    NASA Astrophysics Data System (ADS)

    Szlązak, Nikodem; Korzec, Marek

    2016-06-01

    Methane has a bad influence on safety in underground mines as it is emitted to the air during mining works. Appropriate identification of methane hazard is essential to determining methane hazard prevention methods, ventilation systems and methane drainage systems. Methane hazard is identified while roadways are driven and boreholes are drilled. Coalbed methane content is one of the parameters which is used to assess this threat. This is a requirement according to the Decree of the Minister of Economy dated 28 June 2002 on work safety and hygiene, operation and special firefighting protection in underground mines. For this purpose a new method for determining coalbed methane content in underground coal mines has been developed. This method consists of two stages - collecting samples in a mine and testing the sample in the laboratory. The stage of determining methane content in a coal sample in a laboratory is essential. This article presents the estimation of measurement uncertainty of determining methane content in a coal sample according to this methodology.

  1. Methane turnover and methanotrophic communities in arctic aquatic ecosystems of the Lena Delta, Northeast Siberia.

    PubMed

    Osudar, Roman; Liebner, Susanne; Alawi, Mashal; Yang, Sizhong; Bussmann, Ingeborg; Wagner, Dirk

    2016-08-01

    Large amounts of organic carbon are stored in Arctic permafrost environments, and microbial activity can potentially mineralize this carbon into methane, a potent greenhouse gas. In this study, we assessed the methane budget, the bacterial methane oxidation (MOX) and the underlying environmental controls of arctic lake systems, which represent substantial sources of methane. Five lake systems located on Samoylov Island (Lena Delta, Siberia) and the connected river sites were analyzed using radiotracers to estimate the MOX rates, and molecular biology methods to characterize the abundance and the community composition of methane-oxidizing bacteria (MOB). In contrast to the river, the lake systems had high variation in the methane concentrations, the abundance and composition of the MOB communities, and consequently, the MOX rates. The highest methane concentrations and the highest MOX rates were detected in the lake outlets and in a lake complex in a flood plain area. Though, in all aquatic systems, we detected both, Type I and II MOB, in lake systems, we observed a higher diversity including MOB, typical of the soil environments. The inoculation of soil MOB into the aquatic systems, resulting from permafrost thawing, might be an additional factor controlling the MOB community composition and potentially methanotrophic capacity. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. MethaneSat: Detecting Methane Emissions in the Barnett Shale Region

    NASA Astrophysics Data System (ADS)

    Propp, A. M.; Benmergui, J. S.; Turner, A. J.; Wofsy, S. C.

    2017-12-01

    In this study, we investigate the new information that will be provided by MethaneSat, a proposed satellite that will measure the total column dry-air mole fraction of methane at 1x1 km or 2x2 km spatial resolution with 0.1-0.2% random error. We run an atmospheric model to simulate MethaneSat's ability to characterize methane emissions from the Barnett Shale, a natural gas province in Texas. For comparison, we perform observation system simulation experiments (OSSEs) for MethaneSat, the National Oceanic and Atmospheric administration (NOAA) surface and aircraft network, and Greenhouse Gases Observing Satellite (GOSAT). The results demonstrate the added benefit that MethaneSat would provide in our efforts to monitor and report methane emissions. We find that MethaneSat successfully quantifies total methane emissions in the region, as well as their spatial distribution and steep gradients. Under the same test conditions, both the NOAA network and GOSAT fail to capture this information. Furthermore, we find that the results for MethaneSat depend far less on the prior emission estimate than do those for the other observing systems, demonstrating the benefit of high sampling density. The results suggest that MethaneSat would be an incredibly useful tool for obtaining detailed methane emission information from oil and gas provinces around the world.

  3. Lightweight mid-infrared methane sensor for unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Golston, Levi M.; Tao, Lei; Brosy, Caroline; Schäfer, Klaus; Wolf, Benjamin; McSpiritt, James; Buchholz, Bernhard; Caulton, Dana R.; Pan, Da; Zondlo, Mark A.; Yoel, David; Kunstmann, Harald; McGregor, Marty

    2017-06-01

    The design and field performance of a compact diode laser-based instrument for measuring methane on unmanned aerial systems (UAS) is described. The system is based on open-path, wavelength modulation spectroscopy with a 3.27 µm GaSb laser. We design two versions of the sensor for a long-endurance fixed wing UAS and a rotary wing hexacopter, with instrument masses of 4.6 and 1.6 kg, respectively. The long-endurance platform was used to measure vertical profiles of methane up to 600 m in altitude and showed repeatability of 13 ppbv between multiple profiles. Additionally, the hexacopter system was used to evaluate the evolution of methane in the nocturnal boundary layer during the ScaleX field campaign in Germany, where measured data is consistent with supporting ground-based methane and meteorological measurements. Testing results on both platforms demonstrated our lightweight methane sensor had an in-flight precision of 5-10 ppbv Hz-1/2.

  4. Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation

    PubMed Central

    Kaur, Parwinder; Appels, Rudi; Bayer, Philipp E.; Keeble-Gagnere, Gabriel; Wang, Jiankang; Hirakawa, Hideki; Shirasawa, Kenta; Vercoe, Philip; Stefanova, Katia; Durmic, Zoey; Nichols, Phillip; Revell, Clinton; Isobe, Sachiko N.; Edwards, David; Erskine, William

    2017-01-01

    Mitigating methane production by ruminants is a significant challenge to global livestock production. This research offers a new paradigm to reduce methane emissions from ruminants by breeding climate-clever clovers. We demonstrate wide genetic diversity for the trait methanogenic potential in Australia’s key pasture legume, subterranean clover (Trifolium subterraneum L.). In a bi-parental population the broadsense heritability in methanogenic potential was moderate (H2 = 0.4) and allelic variation in a region of Chr 8 accounted for 7.8% of phenotypic variation. In a genome-wide association study we identified four loci controlling methanogenic potential assessed by an in vitro fermentation system. Significantly, the discovery of a single nucleotide polymorphism (SNP) on Chr 5 in a defined haplotype block with an upstream putative candidate gene from a plant peroxidase-like superfamily (TSub_g18548) and a downstream lectin receptor protein kinase (TSub_g18549) provides valuable candidates for an assay for this complex trait. In this way haplotype variation can be tracked to breed pastures with reduced methanogenic potential. Of the quantitative trait loci candidates, the DNA-damage-repair/toleration DRT100-like protein (TSub_g26967), linked to avoid the severity of DNA damage induced by secondary metabolites, is considered central to enteric methane production, as are disease resistance (TSub_g26971, TSub_g26972, and TSub_g18549) and ribonuclease proteins (TSub_g26974, TSub_g26975). These proteins are good pointers to elucidate the genetic basis of in vitro microbial fermentability and enteric methanogenic potential in subterranean clover. The genes identified allow the design of a suite of markers for marker-assisted selection to reduce rumen methane emission in selected pasture legumes. We demonstrate the feasibility of a plant breeding approach without compromising animal productivity to mitigate enteric methane emissions, which is one of the most significant challenges to global livestock production. PMID:28928752

  5. Methane emissions from boreal peatlands in a changing climate: Quantifying the sensitivity of methane fluxes to experimental manipulations of water table and soil temperature regimes in an Alaskan boreal fen

    NASA Astrophysics Data System (ADS)

    Treat, C. C.; Turetsky, M.; Harden, J.; McGuire, A.

    2006-12-01

    Peatlands cover only 3-5 % of the world's land surface but store 30 % of the world's soil carbon (C) pool. Peatlands currently are thought to function globally as a net sink for atmospheric CO2, sequestering approximately 76 Tg (1012 g) C yr-1. However, peatlands also function as a net source of atmospheric CH4. Approximately 25% of the 270 Tg CH4 yr-1 emitted from natural sources are emitted from northern wetlands. Methane production (methanogenesis) and consumption (methane oxidation) in peatlands are sensitive to both fluctuations in soil moisture and temperature. Boreal regions already are experiencing rapid changes in climate, including longer and drier growing seasons and the degradation of permafrost. Changes in peat environments in response to these climate changes could have significant implications for CH4 emissions to the atmosphere, and thus the radiative forcing of high latitude regions. In 2005, we initiated a large scale in situ climate experiment in a moderately rich fen near the Bonanza Creek LTER site in central Alaska (APEX: www.apex.msu.edu). The goal of our project is to understand vegetation and C cycling processes under altered water table and soil thermal regimes. We established three water table plots (control, raised, lowered), each about 120 m2 in area, using drainage ditches to lower the water table by 5-10 cm and solar powered pumps to raise the water table by about 5-15 cm. Within each water table plot, we constructed replicate open top chambers (OTCs) to passively increase surface temperatures by about 1 ° C. We used static chambers and gas chromatography to quantify methane fluxes at each water table x soil warming plot through the growing seasons of 2005 and 2006. Additionally, we quantified seasonal CH4 fluxes along an adjacent moisture gradient that included four distinct soil moisture and vegetation zones, including a moderately rich fen (APEX site), an emergent macrophyte marsh, a shrubby permafrost fen, and a black spruce permafrost forest. Our results thus far show that methane fluxes varied by a warming x water table interaction across our experimental treatments (Proc Mixed SAS Repeated Measures ANOVA; F2,8=4.07; p=0.05), with the largest methane fluxes in the warm, wet peatland plots and the lowest methane fluxes in the unwarmed, dry peatland plots. Sites along the moisture gradient transitioned from methane sources in the rich fen site (APEX plots) to small sinks of CH4 in the permafrost forest under drying soil moisture conditions. Our soil climate manipulations allow us to quantify interactions among biogeophysical variables that control CH4 emissions from peatlands. Our coupled experimental and gradient based measurements allow us to explore controls on microbial populations and methane emissions across a wider range of terrestrial boreal environments. This work so far shows that methane cycling in interior Alaskan ecosystems is extremely sensitive to soil climate conditions, and that the fate of methane emissions from high latitudes will be affected primarily by changes in precipitation and soil drainage that control water table position in peatlands and permafrost ecosystems.

  6. Methane yield in source-sorted organic fraction of municipal solid waste.

    PubMed

    Davidsson, Asa; Gruvberger, Christopher; Christensen, Thomas H; Hansen, Trine Lund; Jansen, Jes la Cour

    2007-01-01

    Treating the source-separated organic fraction of municipal solid waste (SS-OFMSW) by anaerobic digestion is considered by many municipalities in Europe as an environmentally friendly means of treating organic waste and simultaneously producing methane gas. Methane yield can be used as a parameter for evaluation of the many different systems that exist for sorting and pre-treating waste. Methane yield from the thermophilic pilot scale digestion of 17 types of domestically SS-OFMSW originating from seven full-scale sorting systems was found. The samples were collected during 1 year using worked-out procedures tested statistically to ensure representative samples. Each waste type was identified by its origin and by pre-sorting, collection and pre-treatment methods. In addition to the pilot scale digestion, all samples were examined by chemical analyses and methane potential measurements. A VS-degradation rate of around 80% and a methane yield of 300-400Nm(3) CH(4)/ton VS(in) were achieved with a retention time of 15 days, corresponding to approximately 70% of the methane potential. The different waste samples gave minor variation in chemical composition and thus also in methane yield and methane potential. This indicates that sorting and collection systems in the present study do not significantly affect the amount of methane produced per VS treated.

  7. 30 CFR 57.22308 - Methane monitors (III mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane monitors (III mines). 57.22308 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22308 Methane monitors (III mines). (a) Methane monitors shall be installed on continuous mining machines and longwall mining systems. (b) The...

  8. 30 CFR 27.22 - Methane detector component.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane detector component. 27.22 Section 27.22... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.22 Methane detector component. (a) A methane detector component shall be suitably constructed for incorporation in or...

  9. 30 CFR 57.22308 - Methane monitors (III mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methane monitors (III mines). 57.22308 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22308 Methane monitors (III mines). (a) Methane monitors shall be installed on continuous mining machines and longwall mining systems. (b) The...

  10. Martian dust storms as a possible sink of atmospheric methane

    NASA Astrophysics Data System (ADS)

    Farrell, W. M.; Delory, G. T.; Atreya, S. K.

    2006-11-01

    Recent laboratory tests, analog studies and numerical simulations all suggest that Martian dust devils and larger dusty convective storms generate and maintain large-scale electric fields. Such expected E-fields will have the capability to create significant electron drift motion in the collisional gas and to form an extended high energy (u $\\gg$ kT) electron tail in the distribution. We demonstrate herein that these energetic electrons are capable of dissociating any trace CH4 in the ambient atmosphere thereby acting as an atmospheric sink of this important gas. We demonstrate that the methane destruction rate increases by a factor of 1012 as the dust storm E-fields, E, increase from 5 to 25 kV/m, resulting in an apparent decrease in methane stability from ~ 1010 sec to a value of ~1000 seconds. While destruction in dust storms is severe, the overall methane lifetime is expected to decrease only moderately due to recycling of products, heterogeneous effects from localized sinks, etc. We show further evidence that the electrical activity anticipated in Martian dust storms creates a new harsh electro-chemical environment.

  11. Gene and transcript abundances of bacterial type III secretion systems from the rumen microbiome are correlated with methane yield in sheep.

    PubMed

    Kamke, Janine; Soni, Priya; Li, Yang; Ganesh, Siva; Kelly, William J; Leahy, Sinead C; Shi, Weibing; Froula, Jeff; Rubin, Edward M; Attwood, Graeme T

    2017-08-08

    Ruminants are important contributors to global methane emissions via microbial fermentation in their reticulo-rumens. This study is part of a larger program, characterising the rumen microbiomes of sheep which vary naturally in methane yield (g CH 4 /kg DM/day) and aims to define differences in microbial communities, and in gene and transcript abundances that can explain the animal methane phenotype. Rumen microbiome metagenomic and metatranscriptomic data were analysed by Gene Set Enrichment, sparse partial least squares regression and the Wilcoxon Rank Sum test to estimate correlations between specific KEGG bacterial pathways/genes and high methane yield in sheep. KEGG genes enriched in high methane yield sheep were reassembled from raw reads and existing contigs and analysed by MEGAN to predict their phylogenetic origin. Protein coding sequences from Succinivibrio dextrinosolvens strains were analysed using Effective DB to predict bacterial type III secreted proteins. The effect of S. dextrinosolvens strain H5 growth on methane formation by rumen methanogens was explored using co-cultures. Detailed analysis of the rumen microbiomes of high methane yield sheep shows that gene and transcript abundances of bacterial type III secretion system genes are positively correlated with methane yield in sheep. Most of the bacterial type III secretion system genes could not be assigned to a particular bacterial group, but several genes were affiliated with the genus Succinivibrio, and searches of bacterial genome sequences found that strains of S. dextrinosolvens were part of a small group of rumen bacteria that encode this type of secretion system. In co-culture experiments, S. dextrinosolvens strain H5 showed a growth-enhancing effect on a methanogen belonging to the order Methanomassiliicoccales, and inhibition of a representative of the Methanobrevibacter gottschalkii clade. This is the first report of bacterial type III secretion system genes being associated with high methane emissions in ruminants, and identifies these secretions systems as potential new targets for methane mitigation research. The effects of S. dextrinosolvens on the growth of rumen methanogens in co-cultures indicate that bacteria-methanogen interactions are important modulators of methane production in ruminant animals.

  12. Forest cockchafer larvae as methane production hotspots in soils and their importance for net soil methane fluxes

    NASA Astrophysics Data System (ADS)

    Görres, Carolyn-Monika; Kammann, Claudia; Murphy, Paul; Müller, Christoph

    2016-04-01

    Certain groups of soil invertebrates, namely scarab beetles and millipedes, are capable of emitting considerable amounts of methane due to methanogens inhabiting their gut system. It was already pointed out in the early 1990's, that these groups of invertebrates may represent a globally important source of methane. However, apart from termites, the importance of invertebrates for the soil methane budget is still unknown. Here, we present preliminary results of a laboratory soil incubation experiment elucidating the influence of forest cockchafer larvae (Melolontha hippocastani FABRICIUS) on soil methane cycling. In January/February 2016, two soils from two different management systems - one from a pine forest (extensive use) and one from a vegetable field (intensive use) - were incubated for 56 days either with or without beetle larvae. Net soil methane fluxes and larvae methane emissions together with their stable carbon isotope signatures were quantified at regular intervals to estimate gross methane production and gross methane oxidation in the soils. The results of this experiment will contribute to testing the hypothesis of whether methane production hotspots can significantly enhance the methane oxidation capacity of soils. Forest cockchafer larvae are only found in well-aerated sandy soils where one would usually not suspect relevant gross methane production. Thus, besides quantifying their contribution to net soil methane fluxes, they are also ideal organisms to study the effect of methane production hotspots on overall soil methane cycling. Funding support: Reintegration grant of the German Academic Exchange Service (DAAD) (#57185798).

  13. New Frontiers in Synthetic Biology for Spaceflight

    NASA Technical Reports Server (NTRS)

    Galazka, Jonathan M.

    2017-01-01

    Exploration of the solar system is constrained by the cost of moving mass off Earth. Producing materials in situ will reduce the mass that must be delivered from earth. CO2 is abundant on Mars and manned spacecraft. On the ISS, NASA reacts excess CO2 with H2 to generate CH4 and H2O using the Sabatier System. The resulting water is recovered into the ISS, but the methane is vented to space. Thus, there is a capability need for systems that convert methane into valuable materials. Methanotrophic bacteria consume methane but these are poor synthetic biology platforms. Thus, there is a knowledge gap in utilizing methane in a robust and flexible synthetic biology platform. The yeast Pichia pastoris is a refined microbial factory that is used widely by industry because it efficiently secretes products. Pichia could produce a variety of useful products in space. Pichia does not consume methane but robustly consumes methanol, which is one enzymatic step removed from methane. Our goal is to engineer Pichia to consume methane thereby creating a powerful methane-consuming microbial factory.

  14. Colors of Alien Worlds from Direct Imaging Exoplanet Missions

    NASA Astrophysics Data System (ADS)

    Hu, Renyu

    2015-08-01

    Future direct-imaging exoplanet missions such as WFIRST/AFTA, Exo-C, and Exo-S will measure the reflectivity of exoplanets at visible wavelengths. Most of the exoplanets to be observed will be located further away from their parent stars than is Earth from the Sun. These “cold” exoplanets have atmospheric environments conducive for the formation of water and/or ammonia clouds, like Jupiter in the Solar System. I find the mixing ratio of methane and the pressure level of the uppermost cloud deck on these planets can be uniquely determined from their reflection spectra, with moderate spectral resolution, if the cloud deck is between 0.6 and 1.5 bars. The existence of this unique solution is useful for exoplanet direct imaging missions for several reasons. First, the weak bands and strong bands of methane enable the measurement of the methane mixing ratio and the cloud pressure, although an overlying haze layer can bias the estimate of the latter. Second, the cloud pressure, once derived, yields an important constraint on the internal heat flux from the planet, and thus indicating its thermal evolution. Third, water worlds having H2O-dominated atmospheres are likely to have water clouds located higher than the 10-3 bar pressure level, and muted spectral absorption features. These planets would occupy a confined phase space in the color-color diagrams, likely distinguishable from H2-rich giant exoplanets by broadband observations. Therefore, direct-imaging exoplanet missions may offer the capability to broadly distinguish H2-rich giant exoplanets versus H2O-rich super-Earth exoplanets, and to detect ammonia and/or water clouds and methane gas in their atmospheres.

  15. Molecular mechanism of hydrocarbons binding to the metal–organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiuquan; Wick, Collin D.; Thallapally, Praveen K.

    The adsorption and diffusivity of methane, ethane, n-butane, n-hexane and cyclohexane in a metal organic framework (MOF) with the organic linker tetrakis[4-(carboxyphenyl)oxamethyl]methane, the metal salt, Zn2+, and organic pillar, 4,4’-bipyridin was studied using molecular dynamics simulations. For the n-alkanes, the longer the chain, the lower the free energy of adsorption, which was attributed to a greater number of contacts between the alkane and MOF. Cyclohexane had a slightly higher adsorption free energy than n-hexane. Furthermore, for cyclo- and n-hexane, there were no significant differences in adsorption free energies between systems with low to moderate loadings. The diffusivity of the n-alkanesmore » was found to strongly depend on chain length with slower diffusion for longer chains. Cyclohexane had no effective diffusion, suggesting that the selectivity the MOF has towards n-hexane over cyclohexane is the result of kinetics instead of energetics. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.« less

  16. Composition, texture and methane potential of cellulosic residues from Lewis acids organosolv pulping of wheat straw.

    PubMed

    Constant, Sandra; Barakat, Abdellatif; Robitzer, Mike; Di Renzo, Francesco; Dumas, Claire; Quignard, Françoise

    2016-09-01

    Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility. Surface area and pore volume increased with the hardness of the Lewis acid, in correspondence with the decrease of the amount of lignin and hemicellulose in the pulp. The non linearity of the correlation between porosity and composition suggests that an agglomeration of cellulose fibrils occurs in the early stages of pulping. All organosolv pulps presented a significantly higher methane potential than the parent straw. A methane evolution of 295Ncm(3)/g OM was reached by a moderate improvement of the accessibility of the native straw. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. 30 CFR 57.22306 - Methane monitors (I-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane monitors (I-A mines). 57.22306 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22306 Methane monitors (I-A mines). (a) Methane monitors shall be installed on continuous mining machines, longwall mining systems, and on loading...

  18. 30 CFR 57.22307 - Methane monitors (II-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane monitors (II-A mines). 57.22307 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22307 Methane monitors (II-A mines). (a) Methane monitors shall be installed on continuous mining machines, longwall mining systems, bench and face...

  19. 30 CFR 57.22306 - Methane monitors (I-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methane monitors (I-A mines). 57.22306 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22306 Methane monitors (I-A mines). (a) Methane monitors shall be installed on continuous mining machines, longwall mining systems, and on loading...

  20. 30 CFR 57.22307 - Methane monitors (II-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methane monitors (II-A mines). 57.22307 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22307 Methane monitors (II-A mines). (a) Methane monitors shall be installed on continuous mining machines, longwall mining systems, bench and face...

  1. Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments.

    PubMed

    Delsontro, Tonya; McGinnis, Daniel F; Sobek, Sebastian; Ostrovsky, Ilia; Wehrli, Bernhard

    2010-04-01

    Methane emission pathways and their importance were quantified during a yearlong survey of a temperate hydropower reservoir. Measurements using gas traps indicated very high ebullition rates, but due to the stochastic nature of ebullition a mass balance approach was crucial to deduce system-wide methane sources and losses. Methane diffusion from the sediment was generally low and seasonally stable and did not account for the high concentration of dissolved methane measured in the reservoir discharge. A strong positive correlation between water temperature and the observed dissolved methane concentration enabled us to quantify the dissolved methane addition from bubble dissolution using a system-wide mass balance. Finally, knowing the contribution due to bubble dissolution, we used a bubble model to estimate bubble emission directly to the atmosphere. Our results indicated that the total methane emission from Lake Wohlen was on average >150 mg CH(4) m(-2) d(-1), which is the highest ever documented for a midlatitude reservoir. The substantial temperature-dependent methane emissions discovered in this 90-year-old reservoir indicate that temperate water bodies can be an important but overlooked methane source.

  2. Quorum Sensing in a Methane-Oxidizing Bacterium.

    PubMed

    Puri, Aaron W; Schaefer, Amy L; Fu, Yanfen; Beck, David A C; Greenberg, E Peter; Lidstrom, Mary E

    2017-03-01

    Aerobic methanotrophic bacteria use methane as their sole source of carbon and energy and serve as a major sink for the potent greenhouse gas methane in freshwater ecosystems. Dissecting the molecular details of how these organisms interact in the environment may increase our understanding of how they perform this important ecological role. Many bacterial species use quorum sensing (QS) systems to regulate gene expression in a cell density-dependent manner. We have identified a QS system in the genome of Methylobacter tundripaludum , a dominant methane oxidizer in methane enrichments of sediment from Lake Washington (Seattle, WA). We determined that M. tundripaludum produces primarily N -3-hydroxydecanoyl-l-homoserine lactone (3-OH-C 10 -HSL) and that its production is governed by a positive feedback loop. We then further characterized this system by determining which genes are regulated by QS in this methane oxidizer using transcriptome sequencing (RNA-seq) and discovered that this system regulates the expression of a putative nonribosomal peptide synthetase biosynthetic gene cluster. Finally, we detected an extracellular factor that is produced by M. tundripaludum in a QS-dependent manner. These results identify and characterize a mode of cellular communication in an aerobic methane-oxidizing bacterium. IMPORTANCE Aerobic methanotrophs are critical for sequestering carbon from the potent greenhouse gas methane in the environment, yet the mechanistic details of chemical interactions in methane-oxidizing bacterial communities are not well understood. Understanding these interactions is important in order to maintain, and potentially optimize, the functional potential of the bacteria that perform this vital ecosystem function. In this work, we identify a quorum sensing system in the aerobic methanotroph Methylobacter tundripaludum and use both chemical and genetic methods to characterize this system at the molecular level. Copyright © 2017 American Society for Microbiology.

  3. Methane clathrates in the solar system.

    PubMed

    Mousis, Olivier; Chassefière, Eric; Holm, Nils G; Bouquet, Alexis; Waite, Jack Hunter; Geppert, Wolf Dietrich; Picaud, Sylvain; Aikawa, Yuri; Ali-Dib, Mohamad; Charlou, Jean-Luc; Rousselot, Philippe

    2015-04-01

    We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form into the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined. In the case of Titan, most of its methane probably originates from the protosolar nebula, where it would have been trapped in the clathrates agglomerated by the satellite's building blocks. Methane clathrates are still believed to play an important role in the present state of Titan. Their presence is invoked in the satellite's subsurface as a means of replenishing its atmosphere with methane via outgassing episodes. The internal oceans of Enceladus and Europa also provide appropriate thermodynamic conditions that allow formation of methane clathrates. In turn, these clathrates might influence the composition of these liquid reservoirs. Finally, comets and Kuiper Belt Objects might have formed from the agglomeration of clathrates and pure ices in the nebula. The methane observed in comets would then result from the destabilization of clathrate layers in the nuclei concurrent with their approach to perihelion. Thermodynamic equilibrium calculations show that methane-rich clathrate layers may exist on Pluto as well. Key Words: Methane clathrate-Protosolar nebula-Terrestrial planets-Outer Solar System. Astrobiology 15, 308-326.

  4. Source apportionment of methane using a triple isotope approach - Method development and application in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Steinbach, Julia; Holmstrand, Henry; Semiletov, Igor; Shakhova, Natalia; Shcherbakova, Kseniia; Kosmach, Denis; Sapart, Célia J.; Gustafsson, Örjan

    2015-04-01

    We present a method for measurements of the stable and radiocarbon isotope systems of methane in seawater and sediments. The triple isotope characterization of methane is useful in distinguishing different sources and for improving our understanding of biogeochemical processes affecting methane in the water column. D14C-CH4 is an especially powerful addition to stable isotope analyses in distinguishing between thermogenic and biogenic origins of the methane. Such measurements require large sample sizes, due to low natural abundance of the radiocarbon in CH4. Our system for sample collection, methane extraction and purification builds on the approach by Kessler and Reeburgh (Limn. & Ocean. Meth., 2005). An in-field system extracts methane from 30 -120 l water or 1-2 l sediment (depending on the in-situ methane concentration) by purging the samples with Helium to transfer the dissolved methane to the headspace and circulating it through cryogenically cooled absorbent traps where methane is collected. The in-field preparation eliminates the risks of storage and transport of large seawater quantities and subsequent leakage of sample gas as well as ongoing microbial processes and chemical reactions that may alter the sample composition. In the subsequent shore-based treatment, a laboratory system is used to purify and combust the collected CH4 to AMS-amenable CO2. Subsamples from the methane traps are analyzed for stable isotopes and compared to stable isotope measurements directly measured from small water samples taken in parallel, to correct for any potential fractionation occurring during this process. The system has been successfully tested and used on several shorter shipboard expeditions in the Baltic Sea and on a long summer expedition across the Arctic Ocean. Here we present the details of the method and testing, as well as first triple isotope field data from two cruises to the Landsort Deep area in the Central Baltic Sea.

  5. Type and amount of organic amendments affect enhanced biogenic methane production from coal and microbial community structure

    USGS Publications Warehouse

    Davis, Katherine J.; Lu, Shipeng; Barnhart, Elliott P.; Parker, Albert E.; Fields, Matthew W.; Gerlach, Robin

    2018-01-01

    Slow rates of coal-to-methane conversion limit biogenic methane production from coalbeds. This study demonstrates that rates of coal-to-methane conversion can be increased by the addition of small amounts of organic amendments. Algae, cyanobacteria, yeast cells, and granulated yeast extract were tested at two concentrations (0.1 and 0.5 g/L), and similar increases in total methane produced and methane production rates were observed for all amendments at a given concentration. In 0.1 g/L amended systems, the amount of carbon converted to methane minus the amount produced in coal only systems exceeded the amount of carbon added in the form of amendment, suggesting enhanced coal-to-methane conversion through amendment addition. The amount of methane produced in the 0.5 g/L amended systems did not exceed the amount of carbon added. While the archaeal communities did not vary significantly, the bacterial populations appeared to be strongly influenced by the presence of coal when 0.1 g/L of amendment was added; at an amendment concentration of 0.5 g/L the bacterial community composition appeared to be affected most strongly by the amendment type. Overall, the results suggest that small amounts of amendment are not only sufficient but possibly advantageous if faster in situcoal-to-methane production is to be promoted.

  6. Incentives for methane mitigation and energy-efficiency improvements in the case of Ukraine's natural gas transmission system

    NASA Astrophysics Data System (ADS)

    Roshchanka, Volha; Evans, Meredydd

    2014-06-01

    Reducing methane losses is a concern for climate change policy and energy policy. The energy sector is the major source of anthropogenic methane emissions into the atmosphere in Ukraine. Reducing methane emissions and avoiding combustion can be very cost-effective, but various barriers prevent such energy-efficiency measures from taking place. To date, few examples of industry-wide improvements exist. One example of substantial investments into upgrading natural gas transmission system comes from Ukraine's natural gas transmission company, Ukrtransgaz. The company's investments into system upgrades, along with a 34% fall in throughput, resulted in reduction of Ukrtransgaz system's own consumption of natural gas by 68% in 2011 compared to the level in 2005. Evaluating reductions in methane emissions is challenging because of lack of accurate data and gaps in accounting methodologies. At the same time, Ukraine's transmission system has undergone improvements that, at the very least, have contained methane emissions, if not substantially reduced them. In this paper, we describe recent developments in Ukraine's natural gas transmission system and analyze the incentives that forced the sector to pay close attention to its methane losses. Ukraine is one of the most energy-intensive countries, among the largest natural gas consumers in the world, and a significant emitter of methane. The country is also dependent on imports of natural gas. A combination of several factors has created conditions for successful reductions in methane emissions and combustion. These factors include: an eightfold increase in the price of imported natural gas; comprehensive domestic environmental and energy policies, such as the Laws of Ukraine on Protecting the Natural Environment and on Air Protection; policies aimed at integration with European Union's energy market and accession to the Energy Community Treaty; and the country's participation in international cooperation on environment, such as through the Joint Implementation mechanism and the voluntary Global Methane Initiative. Learning about such case studies can help policymakers and sustainability professionals design better policies elsewhere.

  7. Cryptic Methane Emissions from Upland Forest Ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Megonigal, Patrick; Pitz, Scott

    This exploratory research on Cryptic Methane Emissions from Upland Forest Ecosystems was motivated by evidence that upland ecosystems emit 36% as much methane to the atmosphere as global wetlands, yet we knew almost nothing about this source. The long-term objective was to refine Earth system models by quantifying methane emissions from upland forests, and elucidate the biogeochemical processes that govern upland methane emissions. The immediate objectives of the grant were to: (i) test the emerging paradigm that upland trees unexpectedly transpire methane, (ii) test the basic biogeochemical assumptions of an existing global model of upland methane emissions, and (iii) developmore » the suite of biogeochemical approaches that will be needed to advance research on upland methane emissions. We instrumented a temperate forest system in order to explore the processes that govern upland methane emissions. We demonstrated that methane is emitted from the stems of dominant tree species in temperate upland forests. Tree emissions occurred throughout the growing season, while soils adjacent to the trees consumed methane simultaneously, challenging the concept that forests are uniform sinks of methane. High frequency measurements revealed diurnal cycling in the rate of methane emissions, pointing to soils as the methane source and transpiration as the most likely pathway for methane transport. We propose the forests are smaller methane sinks than previously estimated due to stem emissions. Stem emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration, resolving differences between models and measurements. The methods we used can be effectively implemented in order to determine if the phenomenon is widespread.« less

  8. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheutz, Charlotte; Pedersen, Rasmus Broe; Petersen, Per Haugsted

    Highlights: • An innovative biocover system was constructed on a landfill cell to mitigate the methane emission. • The biocover system had a mitigation efficiently of typically 80%. • The system also worked efficiently at ambient temperatures below freezing. • A whole landfill emission measurement tool was required to document the biocover system efficiency. - Abstract: Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The systemmore » was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options.« less

  9. Methane Hydrate in Confined Spaces: An Alternative Storage System.

    PubMed

    Borchardt, Lars; Casco, Mirian Elizabeth; Silvestre-Albero, Joaquin

    2018-06-05

    Methane hydrate inheres the great potential to be a nature-inspired alternative for chemical energy storage, as it allows to store large amounts of methane in a dense solid phase. The embedment of methane hydrate in the confined environment of porous materials can be capitalized for potential applications as its physicochemical properties, such as the formation kinetics or pressure and temperature stability, are significantly changed compared to the bulk system. We review this topic from a materials scientific perspective by considering porous carbons, silica, clays, zeolites, and polymers as host structures for methane hydrate formation. We discuss the contribution of advanced characterization techniques and theoretical simulations towards the elucidation of the methane hydrate formation and dissociation process within the confined space. We outline the scientific challenges this system is currently facing and look on possible future applications for this technology. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Need for a marginal methodology in assessing natural gas system methane emissions in response to incremental consumption.

    PubMed

    Mac Kinnon, Michael; Heydarzadeh, Zahra; Doan, Quy; Ngo, Cuong; Reed, Jeff; Brouwer, Jacob

    2018-05-17

    Accurate quantification of methane emissions from the natural gas system is important for establishing greenhouse gas inventories and understanding cause and effect for reducing emissions. Current carbon intensity methods generally assume methane emissions are proportional to gas throughput so that increases in gas consumption yield linear increases in emitted methane. However, emissions sources are diverse and many are not proportional to throughput. Insights into the causal drivers of system methane emissions, and how system-wide changes affect such drivers are required. The development of a novel cause-based methodology to assess marginal methane emissions per unit of fuel consumed is introduced. The carbon intensities of technologies consuming natural gas are critical metrics currently used in policy decisions for reaching environmental goals. For example, the low-carbon fuel standard in California uses carbon intensity to determine incentives provided. Current methods generally assume methane emissions from the natural gas system are completely proportional to throughput. The proposed cause-based marginal emissions method will provide a better understanding of the actual drivers of emissions to support development of more effective mitigation measures. Additionally, increasing the accuracy of carbon intensity calculations supports the development of policies that can maximize the environmental benefits of alternative fuels, including reducing greenhouse gas emissions.

  11. Methane fluxes and inventories in the accretionary prism of southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, L. H.; Chen, N. C.; Yang, T. F.; Hong, W. L.; Chen, H. W.; Chen, H. C.; Hu, C. Y.; Huang, Y. C.; Lin, S.; Su, C. C.; Liao, W. Z.; Sun, C. H.; Wang, P. L.; Yang, T.; Jiang, S. Y.; Liu, C. S.; Wang, Y.; Chung, S. H.

    2017-12-01

    Sediments distributed across marine and terrestrial realms represent the largest methane reservoir on Earth. The degassing of methane facilitated through either geological structures or perturbation would contribute significantly to global climatic fluctuation and elemental cycling. The exact fluxes and processes governing methane production, consumption and transport in a geological system remain largely unknown in part due to the limited coverage and access of samples. In this study, more than 200 sediment cores were collected from offshore and onshore southwestern Taiwan and analyzed for their gas and aqueous geochemistry. These data combined with published data and existing parameters of subduction system were used to calculate methane fluxes across different geochemical transitions and to develop scenarios of mass balance to constrain deep microbial and thermogenic methane production rates within the Taiwanese accretionary prism. The results showed that high methane fluxes tend to be associated with structural features, suggesting a strong structural control on methane transport. A significant portion of ascending methane (>50%) was consumed by anaerobic oxidation of methane at most sites. Gas compositions and isotopes revealed a transition from the predominance of microbial methane in the passive margin to thermogenic methane at the upper slope of the active margin and onshore mud volcanoes. Methane production and consumption at shallow depths were nearly offset with a small fraction of residual methane discharged into seawater or the atmosphere. The flux imbalance arose primarily from the deep microbial and thermogenic production and could be likely accounted for by the sequestration of methane into hydrate forms, and clay absorption.

  12. Measuring the respiratory gas exchange of grazing cattle using the GreenFeed emissions monitoring system

    USDA-ARS?s Scientific Manuscript database

    Ruminants are a significant source of enteric methane, which has been identified as a powerful greenhouse gas that contributes to climate change. With interest in developing technologies to decrease enteric methane emission, systems are currently being developed to measure the methane emission by c...

  13. Metabolic activity of subterranean microbial communities in deep granitic groundwater supplemented with methane and H2

    PubMed Central

    Pedersen, Karsten

    2013-01-01

    It was previously concluded that opposing gradients of sulphate and methane, observations of 16S ribosomal DNA sequences displaying great similarity to those of anaerobic methane-oxidizing Archaea and a peak in sulphide concentration in groundwater from a depth of 250–350 m in Olkiluoto, Finland, indicated proper conditions for methane oxidation with sulphate. In the present research, pressure-resistant, gas-tight circulating systems were constructed to enable the investigation of attached and unattached anaerobic microbial populations from a depth of 327 m in Olkiluoto under in situ pressure (2.4 MPa), diversity, dissolved gas and chemistry conditions. Three parallel flow cell cabinets were configured to allow observation of the influence on microbial metabolic activity of 11 mℳ methane, 11 mℳ methane plus 10 mℳ H2 or 2.1 mℳ O2 plus 7.9 mℳ N2 (that is, air). The concentrations of these gases and of organic acids and carbon, sulphur chemistry, pH and Eh, ATP, numbers of cultivable micro-organisms, and total numbers of cells and bacteriophages were subsequently recorded under batch conditions for 105 days. The system containing H2 and methane displayed microbial reduction of 0.7 mℳ sulphate to sulphide, whereas the system containing only methane resulted in 0.2 mℳ reduced sulphate. The system containing added air became inhibited and displayed no signs of microbial activity. Added H2 and methane induced increasing numbers of lysogenic bacteriophages per cell. It appears likely that a microbial anaerobic methane-oxidizing process coupled to acetate formation and sulphate reduction may be ongoing in aquifers at a depth of 250–350 m in Olkiluoto. PMID:23235288

  14. Termite assemblages, forest disturbance and greenhouse gas fluxes in Sabah, East Malaysia.

    PubMed

    Eggleton, P; Homathevi, R; Jones, D T; MacDonald, J A; Jeeva, D; Bignell, D E; Davies, R G; Maryati, M

    1999-11-29

    A synthesis is presented of sampling work conducted under a UK government-funded Darwin Initiative grant undertaken predominantly within the Danum Valley Conservation Area (DVCA), Sabah, East Malaysia. The project concerned the assemblage structure, gas physiology and landscape gas fluxes of termites in pristine and two ages of secondary, dipterocarp forest. The DVCA termite fauna is typical of the Sunda region, dominated by Termes-group soil-feeders and Nasutitermitinae. Selective logging appears to have relatively little effect on termite assemblages, although soil-feeding termites may be moderately affected by this level of disturbance. Species composition changes, but to a small extent when considered against the background level of compositional differences within the Sunda region. Physiologically the assemblage is very like others that have been studied, although there are some species that do not fit on the expected body size-metabolic rate curve. As elsewhere, soil-feeders and soil-wood interface-feeders tend to produce more methane. As with the termite assemblage characteristics, gross gas and energy fluxes do not differ significantly between logged and unlogged sites. Although gross methane fluxes are high, all the soils at DVCA were methane sinks, suggesting that methane oxidation by methanotrophic bacteria was a more important process than methane production by gut archaea. This implies that methane production by termites in South-East Asia is not contributing significantly to the observed increase in levels of methane production worldwide. Biomass density, species richness, clade complement and energy flow were much lower at DVCA than at a directly comparable site in southern Cameroon. This is probably due to the different biogeographical histories of the areas.

  15. Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries.

    PubMed

    Hwang, In Yeub; Lee, Seung Hwan; Choi, Yoo Seong; Park, Si Jae; Na, Jeong Geol; Chang, In Seop; Kim, Choongik; Kim, Hyun Cheol; Kim, Yong Hwan; Lee, Jin Won; Lee, Eun Yeol

    2014-12-28

    Methane is considered as a next-generation carbon feedstock owing to the vast reserves of natural and shale gas. Methane can be converted to methanol by various methods, which in turn can be used as a starting chemical for the production of value-added chemicals using existing chemical conversion processes. Methane monooxygenase is the key enzyme that catalyzes the addition of oxygen to methane. Methanotrophic bacteria can transform methane to methanol by inhibiting methanol dehydrogenase. In this paper, we review the recent progress made on the biocatalytic conversion of methane to methanol as a key step for methane-based refinery systems and discuss future prospects for this technology.

  16. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system.

    PubMed

    Scheutz, Charlotte; Pedersen, Rasmus Broe; Petersen, Per Haugsted; Jørgensen, Jørgen Henrik Bjerre; Ucendo, Inmaculada Maria Buendia; Mønster, Jacob G; Samuelsson, Jerker; Kjeldsen, Peter

    2014-07-01

    Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The system was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Monodeuterated Methane, an Isotopic Tool To Assess Biological Methane Metabolism Rates

    PubMed Central

    Steele, Joshua A.; Ziebis, Wiebke; Scheller, Silvan; Case, David; Reynard, Linda M.; Orphan, Victoria J.

    2017-01-01

    ABSTRACT Biological methane oxidation is a globally relevant process that mediates the flux of an important greenhouse gas through both aerobic and anaerobic metabolic pathways. However, measuring these metabolic rates presents many obstacles, from logistical barriers to regulatory hurdles and poor precision. Here we present a new approach for investigating microbial methane metabolism based on hydrogen atom dynamics, which is complementary to carbon-focused assessments of methanotrophy. The method uses monodeuterated methane (CH3D) as a metabolic substrate, quantifying the aqueous D/H ratio over time using off-axis integrated cavity output spectroscopy. This approach represents a nontoxic, comparatively rapid, and straightforward approach that supplements existing radiotopic and stable carbon isotopic methods; by probing hydrogen atoms, it offers an additional dimension for examining rates and pathways of methane metabolism. We provide direct comparisons between the CH3D procedure and the well-established 14CH4 radiotracer method for several methanotrophic systems, including type I and II aerobic methanotroph cultures and methane-seep sediment slurries and carbonate rocks under anoxic and oxic incubation conditions. In all applications tested, methane consumption values calculated via the CH3D method were directly and consistently proportional to 14C radiolabel-derived methane oxidation rates. We also employed this method in a nontraditional experimental setup, using flexible, gas-impermeable bags to investigate the role of pressure on seep sediment methane oxidation rates. Results revealed an 80% increase over atmospheric pressure in methanotrophic rates the equivalent of ~900-m water depth, highlighting the importance of this parameter on methane metabolism and exhibiting the flexibility of the newly described method. IMPORTANCE Microbial methane consumption is a critical component of the global carbon cycle, with wide-ranging implications for climate regulation and hydrocarbon exploitation. Nonetheless, quantifying methane metabolism typically involves logistically challenging methods and/or specialized equipment; these impediments have limited our understanding of methane fluxes and reservoirs in natural systems, making effective management difficult. Here, we offer an easily implementable, precise method using monodeuterated methane (CH3D) that advances three specific aims. First, it allows users to directly compare methane consumption rates between different experimental treatments of the same inoculum. Second, by empirically linking the CH3D procedure with the well-established 14C radiocarbon approach, we determine absolute scaling factors that facilitate rate measurements for several aerobic and anaerobic systems of interest. Third, CH3D represents a helpful tool in evaluating the relationship between methane activation and full oxidation in methanotrophic metabolisms. The procedural advantages, consistency, and novel research questions enabled by the CH3D method should prove useful in a wide range of culture-based and environmental microbial systems to further elucidate methane metabolism dynamics. PMID:28861523

  18. Monodeuterated Methane, an Isotopic Tool To Assess Biological Methane Metabolism Rates.

    PubMed

    Marlow, Jeffrey J; Steele, Joshua A; Ziebis, Wiebke; Scheller, Silvan; Case, David; Reynard, Linda M; Orphan, Victoria J

    2017-01-01

    Biological methane oxidation is a globally relevant process that mediates the flux of an important greenhouse gas through both aerobic and anaerobic metabolic pathways. However, measuring these metabolic rates presents many obstacles, from logistical barriers to regulatory hurdles and poor precision. Here we present a new approach for investigating microbial methane metabolism based on hydrogen atom dynamics, which is complementary to carbon-focused assessments of methanotrophy. The method uses monodeuterated methane (CH 3 D) as a metabolic substrate, quantifying the aqueous D/H ratio over time using off-axis integrated cavity output spectroscopy. This approach represents a nontoxic, comparatively rapid, and straightforward approach that supplements existing radiotopic and stable carbon isotopic methods; by probing hydrogen atoms, it offers an additional dimension for examining rates and pathways of methane metabolism. We provide direct comparisons between the CH 3 D procedure and the well-established 14 CH 4 radiotracer method for several methanotrophic systems, including type I and II aerobic methanotroph cultures and methane-seep sediment slurries and carbonate rocks under anoxic and oxic incubation conditions. In all applications tested, methane consumption values calculated via the CH 3 D method were directly and consistently proportional to 14 C radiolabel-derived methane oxidation rates. We also employed this method in a nontraditional experimental setup, using flexible, gas-impermeable bags to investigate the role of pressure on seep sediment methane oxidation rates. Results revealed an 80% increase over atmospheric pressure in methanotrophic rates the equivalent of ~900-m water depth, highlighting the importance of this parameter on methane metabolism and exhibiting the flexibility of the newly described method. IMPORTANCE Microbial methane consumption is a critical component of the global carbon cycle, with wide-ranging implications for climate regulation and hydrocarbon exploitation. Nonetheless, quantifying methane metabolism typically involves logistically challenging methods and/or specialized equipment; these impediments have limited our understanding of methane fluxes and reservoirs in natural systems, making effective management difficult. Here, we offer an easily implementable, precise method using monodeuterated methane (CH 3 D) that advances three specific aims. First, it allows users to directly compare methane consumption rates between different experimental treatments of the same inoculum. Second, by empirically linking the CH 3 D procedure with the well-established 14 C radiocarbon approach, we determine absolute scaling factors that facilitate rate measurements for several aerobic and anaerobic systems of interest. Third, CH 3 D represents a helpful tool in evaluating the relationship between methane activation and full oxidation in methanotrophic metabolisms. The procedural advantages, consistency, and novel research questions enabled by the CH 3 D method should prove useful in a wide range of culture-based and environmental microbial systems to further elucidate methane metabolism dynamics.

  19. Biogas production enhancement using semi-aerobic pre-aeration in a hybrid bioreactor landfill.

    PubMed

    Cossu, Raffaello; Morello, Luca; Raga, Roberto; Cerminara, Giulia

    2016-09-01

    Landfilling continues to be one of the main methods used in managing Municipal Solid Waste (MSW) worldwide, particularly in developing countries. Although in many countries national legislation aims to reduce this practice as much as possible, landfill is a necessary and unavoidable step in closing the material cycle. The need for innovative waste management techniques to improve landfill management and minimize the adverse environmental impact produced has resulted in an increasing interest in innovative systems capable of accelerating waste stabilization. Landfill bioreactors allow decomposition kinetics to be increased and post-operational phase to be shortened; in particular, hybrid bioreactors combine the benefits afforded by both aerobic and anaerobic processes. Six bioreactor simulators were used in the present study: four managed as hybrid, with an initial semi-aerobic phase and a second anaerobic phase, and two as anaerobic control bioreactors. The main goal of the first aerated phase is to reduce Volatile Fatty Acids (VFA) in order to increase pH and enhance methane production during the anaerobic phase; for this reason, air injection was stopped only when these parameters reached the optimum range for methanogenic bacteria. Biogas and leachate were constantly monitored throughout the entire methanogenic phase with the aim of calibrating a Gompertz Model and evaluating the effects of pre-aeration on subsequent methane production. The results showed that moderate and intermittent pre-aeration produces a positive effect both on methane potential and in the kinetics of reaction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The design of a PC-based real-time system for monitoring Methane and Oxygen concentration in biogas production

    NASA Astrophysics Data System (ADS)

    Yantidewi, M.; Muntini, M. S.; Deta, U. A.; Lestari, N. A.

    2018-03-01

    Limited fossil fuels nowadays trigger the development of alternative energy, one of which is biogas. Biogas is one type of bioenergy in the form of fermented gases of organic materials such as animal waste. The components of gases present in biogas and affect the biogas production are various, such as methane and oxygen. The biogas utilization will be more optimal if both gases concentration (in this case is methane and oxygen concentration) can be monitored. Therefore, this research focused on designing the monitoring system of methane and oxygen concentration in biogas production in real-time. The results showed that the instrument system was capable of monitoring and recording the data of gases (methane and oxygen) concentration in biogas production in every second.

  1. Microbiology of Ultrabasic Groundwaters of the Coast Range Ophiolite, California

    NASA Astrophysics Data System (ADS)

    Schrenk, M. O.; Brazelton, W. J.; Twing, K. I.; Kubo, M.; Cardace, D.; Hoehler, T. M.; McCollom, T. M.

    2013-12-01

    Upon exposure to water, ultramafic rocks characteristic of the Earth's mantle undergo a process known as serpentinization. These water-rock reactions lead to highly reducing conditions and some of the highest pH values reported in nature. In contrast to alkaline soda lakes, actively serpentinizing environments exposed on land are commonly associated with low salinity freshwaters, imparting unique challenges upon their resident microbial communities. These environments are especially prevalent along continental margins, and cover extensive portions of the west coast of North America. Most studies of serpentinizing environments have focused upon springs that emanate from fractures in the subsurface. Here, we present microbiological data from a series of groundwater wells associated with active serpentinization in the California Coast Range, an ophiolite complex near Lower Lake, California. Waters from ultrabasic wells had lower microbial cell concentrations and diversity than were found in moderate pH wells in the same area. Bacteria consistently made up a higher proportion of the microbial communities compared to Archaea as determined by qPCR. High pH wells were dominated by taxa within the Betaproteobacteria and Clostridia, whereas moderate pH wells predominantly contained common soil taxa related to Gammaproteobacteria and Bacilli. Multivariate statistical analyses incorporating key environmental parameters supported these observations and also highlighted correlations between the high-pH taxa and the abundance of hydrogen and methane gas. Similarly, colony forming units of alkaliphilic microorganisms were consistently 1-2 orders of magnitude higher in the ultrabasic wells and were taxonomically distinct from the moderate pH groundwaters. Together, these results show that distinct populations inhabit subsurface environments associated with active serpentinization, consistent with previous observations, and suggest that Betaproteobacteria and Clostridia probably play significant roles in the microbiology of these ecosystems. The low diversity microbial communities of serpentinizing subsurface habitats are likely sustained by the high hydrogen and methane fluxes that emanate from such systems and further investigations will directly test their roles in mediating biogeochemical cycles in these environments.

  2. A post-Cassini view of Titan's methane-based hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Hayes, Alexander G.; Lorenz, Ralph D.; Lunine, Jonathan I.

    2018-05-01

    The methane-based hydrologic cycle on Saturn's largest moon, Titan, is an extreme analogue to Earth's water cycle. Titan is the only planetary body in the Solar System, other than Earth, that is known to have an active hydrologic cycle. With a surface pressure of 1.5 bar and temperatures of 90 to 95 K, methane and ethane condense out of a nitrogen-based atmosphere and flow as liquids on the moon's surface. Exchange processes between atmospheric, surface and subsurface reservoirs produce methane and ethane cloud systems, as well as erosional and depositional landscapes that have strikingly similar forms to their terrestrial counterparts. Over its 13-year exploration of the Saturn system, the Cassini-Huygens mission revealed that Titan's hydrocarbon-based hydrology is driven by nested methane cycles that operate over a range of timescales, including geologic, orbital (for example, Croll-Milankovitch cycles), seasonal and that of a single convective storm. In this Review Article, we describe the dominant exchange processes that operate over these timescales and present a post-Cassini view of Titan's methane-based hydrologic system.

  3. Application of methane fermentation technology into organic wastes in closed agricultural system

    NASA Astrophysics Data System (ADS)

    Endo, Ryosuke; Kitaya, Yoshiaki

    Sustainable and recycling-based systems are required in space agriculture which takes place in an enclosed environment. Methane fermentation is one of the most major biomass conversion technologies, because (1) it provides a renewable energy source as biogas including methane, suitable for energy production, (2) the nutrient-rich solids left after digestion can be used as compost for agriculture. In this study, the effect of the application of methane fermentation technology into space agriculture on the material and energy cycle was investigated.

  4. A Multifaceted Study of Methane Adsorption in Metal-Organic Frameworks by Using Three Complementary Techniques.

    PubMed

    Zhang, Yue; Lucier, Bryan E G; Fischer, Michael; Gan, Zhehong; Boyle, Paul D; Desveaux, Bligh; Huang, Yining

    2018-03-25

    Methane is a promising clean and inexpensive energy alternative to traditional fossil fuels, however, its low volumetric energy density at ambient conditions has made devising viable, efficient methane storage systems very challenging. Metal-organic frameworks (MOFs) are promising candidates for methane storage. In order to improve the methane storage capacity of MOFs, a better understanding of the methane adsorption, mobility, and host-guest interactions within MOFs must be realized. In this study, methane adsorption within α-Mg 3 (HCO 2 ) 6 , α-Zn 3 (HCO 2 ) 6 , SIFSIX-3-Zn, and M-MOF-74 (M=Mg, Zn, Ni, Co) has been comprehensively examined. Single-crystal X-ray diffraction (SCXRD) experiments and DFT calculations of the methane adsorption locations were performed for α-Mg 3 (HCO 2 ) 6 , α-Zn 3 (HCO 2 ) 6 , and SIFSIX-3-Zn. The SCXRD thermal ellipsoids indicate that methane possesses significant mobility at the adsorption sites in each system. 2 H solid-state NMR (SSNMR) experiments targeting deuterated CH 3 D guests in α-Mg 3 (HCO 2 ) 6 , α-Zn 3 (HCO 2 ) 6 , SIFSIX-3-Zn, and MOF-74 yield an interesting finding: the 2 H SSNMR spectra of methane adsorbed in these MOFs are significantly influenced by the chemical shielding anisotropy in addition to the quadrupolar interaction. The chemical shielding anisotropy contribution is likely due mainly to the nuclear independent chemical shift effect on the MOF surfaces. In addition, the 2 H SSNMR results and DFT calculations strongly indicate that the methane adsorption strength is linked to the MOF pore size and that dispersive forces are responsible for the methane adsorption in these systems. This work lays a very promising foundation for future studies of methane adsorption locations and dynamics within adsorbent MOF materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. 30 CFR 27.24 - Power-shutoff component.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.24 Power... the machine or equipment when actuated by the methane detector at a methane concentration of 2.0... actuated by the methane detector, cause a control circuit to shut down the machine or equipment on which it...

  6. Methane and carbon at equilibrium in source rocks

    PubMed Central

    2013-01-01

    Methane in source rocks may not exist exclusively as free gas. It could exist in equilibrium with carbon and higher hydrocarbons: CH4 + C < = > Hydrocarbon. Three lines of evidence support this possibility. 1) Shales ingest gas in amounts and selectivities consistent with gas-carbon equilibrium. There is a 50% increase in solid hydrocarbon mass when Fayetteville Shale is exposed to methane (450 psi) under moderate conditions (100°C): Rock-Eval S2 (mg g-1) 8.5 = > 12.5. All light hydrocarbons are ingested, but with high selectivity, consistent with competitive addition to receptor sites in a growing polymer. Mowry Shale ingests butane vigorously from argon, for example, but not from methane under the same conditions. 2) Production data for a well producing from Fayetteville Shale declines along the theoretical curve for withdrawing gas from higher hydrocarbons in equilibrium with carbon. 3) A new general gas-solid equilibrium model accounts for natural gas at thermodynamic equilibrium, and C6-C7 hydrocarbons constrained to invariant compositions. The results make a strong case for methane in equilibrium with carbon and higher hydrocarbons. If correct, the higher hydrocarbons in source rocks are gas reservoirs, raising the possibility of substantially more gas in shales than analytically apparent, and far more gas in shale deposits than currently recognized. PMID:24330266

  7. Steam Methane Reformation Testing for Air-Independent Solid Oxide Fuel Cell Systems

    NASA Technical Reports Server (NTRS)

    Mwara, Kamwana N.

    2015-01-01

    Recently, NASA has been looking into utilizing landers that can be propelled by LOX-CH (sub 4), to be used for long duration missions. Using landers that utilize such propellants, also provides the opportunity to use solid oxide fuel cells as a power option, especially since they are able to process methane into a reactant through fuel reformation. One type of reformation, called steam methane reformation, is a process to reform methane into a hydrogen-rich product by reacting methane and steam (fuel cell exhaust) over a catalyst. A steam methane reformation system could potentially use the fuel cell's own exhaust to create a reactant stream that is hydrogen-rich, and requires less internal reforming of the incoming methane. Also, steam reformation may hold some advantages over other types of reforming, such as partial oxidation (PROX) reformation. Steam reformation does not require oxygen, while up to 25 percent can be lost in PROX reformation due to unusable CO (sub 2) reformation. NASA's Johnson Space Center has conducted various phases of steam methane reformation testing, as a viable solution for in-space reformation. This has included using two different types of catalysts, developing a custom reformer, and optimizing the test system to find the optimal performance parameters and operating conditions.

  8. Direct catalytic conversion of methane and light hydrocarbon gases. Quarterly report No. 9, October 1--December 31, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, R.B. Jr.; Posin, B.M.; Chan, Yee Wai

    The goal of this research is to develop catalysts that directly convert methane and light hydrocarbons to intermediates that later can be converted to either liquid fuels or value-added chemicals, as economics dictate. During this reporting period, we completed our IR spectroscopic examination of the Ru{sub 4}/MgO and FeRu{sub 3}/MgO systems under nitrogen and methane by examining FeRu{sub 3}/MgO under methane. This system behaved quite differently than the same system under nitrogen. Under methane, only one very broad peak is observed at room temperature. Upon heating, the catalyst transformed so that by 300{degrees}C, the spectrum of FeRu{sub 3}/MgO under methanemore » was the same as that of Ru{sub 4}/MgO. This suggests that methane promotes the segregation of the metals in the mixed metal system. The differences in catalytic activity between the FeRu{sub 3}/MgO and Ru{sub 4}/MgO systems may then be due to the presence of IR transparent species such as iron ions which cause different nucleation in the ruthenium clusters. We examined several systems for activity in the methane dehydrogenation reaction. Focusing on systems which produce C{sub 6} hydrocarbons since this is the most useful product. These systems all displayed low activity so that the amount of hydrocarbon product is very low. Some C{sub 6} hydrocarbon is observed over zeolite supports, but its production ceases after the first few hours of reaction. We prepared a new system, Ru{sub 4} supported on carbon, and examined its reactivity. Its activity was very low and in fact the carbon support had the same level of activity. We synthesized four new systems for examination as catalysts in the partial oxidation of methane. Three of these (PtTSPC/MgO, PtTSPC and PdTSPC on carbon) are analogs of PdTSPC/MgO. This system is of interest because we have observed the production of ethane from methane oxidation over PdTSPC/MgO at relatively low temperatures and we wished to explore its generality among close analogs.« less

  9. Chamber-Based Estimates of Methane Production in Coastal Estuarine Systems in Southern California

    NASA Astrophysics Data System (ADS)

    Brigham, B.; Lipson, D.; Lai, C.

    2008-12-01

    Wetland systems are believed to produce between 100 - 231 Tg CH4 yr-1 which is roughly 20% of global methane emissions. The uncertainty in methane emissions models stem from the lack of detailed information about methane gas production within regional wetland systems. The aim of this study is to report the range of methane fluxes observed along salinity gradients at two San Diego coastal wetland systems, the Tijuana Estuary (Tijuana River National Estuarine Research Reserve) and the Peñasquitos Lagoon (Torrey Pines State Park Reserve). Soil water samples are used to elucidate factors responsible for the observed variation in methane fluxes. Air samples were subsequently collected from the headspace of a static soil chamber and stored in pre- evacuated vials. Methane concentrations were analyzed within hours after collection by gas chromatography in the laboratory. The chemical and physical properties of the soil, including salinity, pH, redox potential and temperature are measured with a hand-held probe nearby soil collars. The biological properties of the soil, including dissolved organic carbon, nitrate, and ammonia levels are measured from soil water samples in the laboratory. We find that saline sites under direct tidal influence produced methane fluxes ranging from -3.10 to 9.10 (mean 2.18) mg CH4 m-2 day-1. We also find that brackish sites (0.6 to 3.2 ppt in salinity) with fresh water input from residential runoff at the Peñasquitos Lagoon produced methane fluxes ranging from 0.53 to 192.10 (mean 33.34) mg CH4 m-2 day-1. Sampling was done over the course of 5 weeks during August-September of 2008. We hypothesize that the contrasting methane fluxes found between the saline and the brackish sites is due primarily to the different salinity, and in turn sulfate levels found at the two sites. The reduction of sulfate to produce energy is more energetically favorable than the reduction of carbon dioxide to produce methane. Thus the presence of sulfate may act as a methanogensis inhibitor resulting in higher methane flux in low salinity conditions such as those found at the brackish sites.

  10. Field test of methane fermentation system for treating swine wastes.

    PubMed

    Kataoka, N; Suzuki, T; Ishida, K; Yamada, N; Kurata, N; Katayose, M; Honda, K

    2002-01-01

    A methane fermentation system for treating swine wastes was developed and successfully demonstrated in a field test plant (0.5 m3/d). The system was composed of a screw-press dehydrator, a methanogenic digester, a sludge separator, an oxidation ditch (OD) and composting equipment. A performance evaluation was carried out regarding physical pre-treatment using the screw-press dehydrator, methane fermentation for pre-treated slurry, and post-treatment for digested effluent by OD. Total solids (TS) and chemical oxygen demand (CODCr) removal by the screw-press pre-treatment were 38% and 22%, respectively. Properties of the screenings were as follows: water content 57%, ignition loss 93%, specific gravity 0.33. The pretreated strong slurry was digested under mesophilic conditions. Digestion gas (biogas) production rate was 25 m3/m3-slurry (NTP) and methane content of the biogas was 67%. CODCr removal of 65% with methane fermentation treatment of the slurry operating at 35 degrees C was observed. No inhibition of methane fermentation reaction occurred at the NH4(+)-N concentration of 3,000 mg/l or less during methane fermentation by the system. Mass balance from the present pilot-scale study showed that 1 m3 of mixture of excrement and urine of swine waste (TS 90 kg/m3) was biologically converted to 25 m3/m3-slurry (NTP) of biogas (methane content 67%), 100 kg of compost (water content 40%, ignition loss 75%), and 0.80 m3 of treated water (SS 30-70 mg/l).

  11. Presumed PDF Modeling of Early Flame Propagation in Moderate to Intense Turbulence Environments

    NASA Technical Reports Server (NTRS)

    Carmen, Christina; Feikema, Douglas A.

    2003-01-01

    The present paper describes the results obtained from a one-dimensional time dependent numerical technique that simulates early flame propagation in a moderate to intense turbulent environment. Attention is focused on the development of a spark-ignited, premixed, lean methane/air mixture with the unsteady spherical flame propagating in homogeneous and isotropic turbulence. A Monte-Carlo particle tracking method, based upon the method of fractional steps, is utilized to simulate the phenomena represented by a probability density function (PDF) transport equation. Gaussian distributions of fluctuating velocity and fuel concentration are prescribed. Attention is focused on three primary parameters that influence the initial flame kernel growth: the detailed ignition system characteristics, the mixture composition, and the nature of the flow field. The computational results of moderate and intense isotropic turbulence suggests that flames within the distributed reaction zone are not as vulnerable, as traditionally believed, to the adverse effects of increased turbulence intensity. It is also shown that the magnitude of the flame front thickness significantly impacts the turbulent consumption flame speed. Flame conditions studied have fuel equivalence ratio s in the range phi = 0.6 to 0.9 at standard temperature and pressure.

  12. Performance Simulations for a Spaceborne Methane Lidar Mission

    NASA Technical Reports Server (NTRS)

    Kiemle, C.; Kawa, Stephan Randolph; Quatrevalet, Mathieu; Browell, Edward V.

    2014-01-01

    Future spaceborne lidar measurements of key anthropogenic greenhouse gases are expected to close current observational gaps particularly over remote, polar, and aerosol-contaminated regions, where actual in situ and passive remote sensing observation techniques have difficulties. For methane, a "Methane Remote Lidar Mission" was proposed by Deutsches Zentrum fuer Luft- und Raumfahrt and Centre National d'Etudes Spatiales in the frame of a German-French climate monitoring initiative. Simulations assess the performance of this mission with the help of Moderate Resolution Imaging Spectroradiometer and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations of the earth's surface albedo and atmospheric optical depth. These are key environmental parameters for integrated path differential absorption lidar which uses the surface backscatter to measure the total atmospheric methane column. Results showthat a lidar with an average optical power of 0.45W at 1.6 µm wavelength and a telescope diameter of 0.55 m, installed on a low Earth orbit platform(506 km), will measure methane columns at precisions of 1.2%, 1.7%, and 2.1% over land, water, and snow or ice surfaces, respectively, for monthly aggregated measurement samples within areas of 50 × 50 km2. Globally, the mean precision for the simulated year 2007 is 1.6%, with a standard deviation of 0.7%. At high latitudes, a lower reflectance due to snow and ice is compensated by denser measurements, owing to the orbital pattern. Over key methane source regions such as densely populated areas, boreal and tropical wetlands, or permafrost, our simulations show that the measurement precision will be between 1 and 2%.

  13. Could Methane Oxidation in Lakes Be Enhanced by Eutrophication?

    NASA Astrophysics Data System (ADS)

    Van Grinsven, S.; Villanueva, L.; Harrison, J.; S Sinninghe Damsté, J.

    2017-12-01

    Climate change and eutrophication both affect aquatic ecosystems. Eutrophication is caused by high nutrient inputs, leading to algal blooms, oxygen depletion and disturbances of the natural balances in aquatic systems. Methane, a potent greenhouse gas produced biologically by anaerobic degradation of organic matter, is often released from the sediments of lakes and marine systems to overlying water and the atmosphere. Methane oxidation, a microbial methane consumption process, can limit methane emission from lakes and reservoirs by 50-80%. Here, we studied methane oxidation in a seasonally stratified reservoir: Lacamas Lake in Washington, USA. We found this lake has a large summer storage capacity of methane in its deep water layer, with a very active microbial community capable of oxidizing exceptionally high amounts of methane. The natural presence of terminal electron acceptors is, however, too low to support these high potential rates. Addition of eutrophication-related nutrients such as nitrate and sulfate increased the methane removal rates by 4 to 7-fold. The microbial community was studied using 16S rRNA gene amplicon sequencing and preliminary results indicate the presence of a relatively unknown facultative anaerobic methane oxidizer of the genus Methylomonas, capable of using nitrate as an electron donor. Experiments in which anoxic and oxic conditions were rapidly interchanged showed this facultative anaerobic methane oxidizer has an impressive flexibility towards large, rapid changes in environmental conditions and this feature might be key to the unexpectedly high methane removal rates in eutrophied and anoxic watersheds.

  14. Phenotypic relationships among methane production traits assessed under ad libitum feeding of beef cattle.

    PubMed

    Bird-Gardiner, T; Arthur, P F; Barchia, I M; Donoghue, K A; Herd, R M

    2017-10-01

    Angus cattle from 2 beef cattle projects in which daily methane production (MPR) was measured were used in this study to examine the nature of the relationships among BW, DMI, and methane traits of beef cattle fed ad libitum on a roughage diet or a grain-based feedlot diet. In both projects methane was measured using the GreenFeed Emission Monitoring system, which provides multiple short-term breath measures of methane production. The data used for this study were from 119 Angus heifers over 15 d on a roughage diet and 326 Angus steers over 70 d on a feedlot diet. Mean (±SD) age, BW, and DMI were 372 ± 28 d, 355 ± 37 kg, and 8.1 ± 1.3 kg/d for the heifers and 554 ± 86 d, 577 ± 69 kg, and 13.3 ± 2.0 kg/d for the steers, respectively. The corresponding mean MPR was 212 g/d for heifers and 203 g/d for steers. Additional traits studied included methane yield (MY; MPR/DMI), methane intensity (MPR/BW), and 3 forms of residual methane production (RMP), which is a measure of actual minus predicted MPR. For RMP, RMP, and RMP predicted MPR were obtained by regression of MPR on BW, on DMI, and on both DMI and BW, respectively. The 2 data sets were analyzed separately using the same statistical procedures. For both feed types the relationships between MPR and DMI and between MPR and BW were both positive and linear. The correlation between MPR and DMI was similar to that between MPR and BW, although the correlations were stronger for the roughage diet ( = 0.75 for MPR vs. DMI; = 0.74 for MPR vs. BW) than the grain-based diet ( = 0.62 for MPR vs. DMI; = 0.66 for MPR vs. BW). The correlation between MY and DMI was negative and moderate for the roughage ( = -0.68) and grain-based ( = -0.59) diets, a finding that is different from the nonsignificant correlations reported in studies of cattle on a restricted roughage diet. The 3 RMP traits were strongly correlated ( values from 0.76 to 0.99) with each other for both the roughage and the grain-based diets, which indicates that using RMP to lower MPR could provide a result similar to using RMP in cattle. As feed intake (DMI) is more difficult to measure than BW, this result implies that under ad libitum feeding situations in which DMI cannot be measured, RMP can be used to identify higher- or lower-RMP animals with similar levels of effectiveness as RMP.

  15. Solubility of crude oil in methane as a function of pressure and temperature

    USGS Publications Warehouse

    Price, L.C.; Wenger, L.M.; Ging, T.; Blount, C.W.

    1983-01-01

    The solubility of a 44?? API (0.806 sp. gr.) whole crude oil has been measured in methane with water present at temperatures of 50 to 250??C and pressures of 740 to 14,852 psi, as have the solubilities of two high molecular weight petroleum distillation fractions at temperatures of 50 to 250??C and pressures of 4482 to 25,266 psi. Both increases in pressure and temperature increase the solubility of crude oil and petroleum distillation fractions in methane, the effect of pressure being greater than that of temperature. Unexpectedly high solubility levels (0.5-1.5 grams of oil per liter of methane-at laboratory temperature and pressure) were measured at moderate conditions (50-200??C and 5076-14504 psi). Similar results were found for the petroleum distillation fractions, one of which was the highest molecular weight material of petroleum (material boiling above 266??C at 6 microns pressure). Unexpectedly mild conditions (100??C and 15,200 psi; 200??C and 7513 psi) resulted in cosolubility of crude oil and methane. Under these conditions, samples of the gas-rich phase gave solubility values of 4 to 5 g/l, or greater. Qualitative analyses of the crude-oil solute samples showed that at low pressure and temperature equilibration conditions, the solute condensate would be enriched in C5-C15 range hydrocarbons and in saturated hydrocarbons in the C15+ fraction. With increases in temperature and especially pressure, these tendencies were reversed, and the solute condensate became identical to the starting crude oil. The data of this study, compared to that of previous studies, shows that methane, with water present, has a much greater carrying capacity for crude oil than in dry systems. The presence of water also drastically lowers the temperature and pressure conditions required for cosolubility. The data of this and/or previous studies demonstrate that the addition of carbon dioxide, ethane, propane, or butane to methane also has a strong positive effect on crude oil solubility, as does the presence of fine grained rocks. The n-paraffin distributions (as well as the overall composition) of the solute condensates are controlled by the temperature and pressure of solution and exsolution, as well as by the composition of the original starting material. It appears quite possible that primary migration by gaseous solution could 'strip' a source rock of crude-oil like components leaving behind a bitumen totally unlike the migrated crude oil. The data of this study demonstrate previous criticisms of primary petroleum migration by gas solution are invalid; that primary migration by gaseous solution cannot occur because methane cannot dissolve sufficient volumes of crude oil or cannot dissolve the highest molecular weight components of petroleum (tars and asphaltenes). ?? 1983.

  16. 46 CFR 154.1854 - Methane (LNG) as fuel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Methane (LNG) as fuel. 154.1854 Section 154.1854... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1854 Methane (LNG) as fuel. (a) If methane (LNG) vapors are used as fuel in the main propulsion system of a vessel, the...

  17. 46 CFR 154.1854 - Methane (LNG) as fuel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ventilation or detection of gas, the master shall ensure that the methane (LNG) fuel supply is not used until... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1854 Methane (LNG) as fuel. (a) If methane (LNG) vapors are used as fuel in the main propulsion system of a vessel, the...

  18. 46 CFR 154.1854 - Methane (LNG) as fuel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ventilation or detection of gas, the master shall ensure that the methane (LNG) fuel supply is not used until... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1854 Methane (LNG) as fuel. (a) If methane (LNG) vapors are used as fuel in the main propulsion system of a vessel, the...

  19. 46 CFR 154.1854 - Methane (LNG) as fuel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ventilation or detection of gas, the master shall ensure that the methane (LNG) fuel supply is not used until... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1854 Methane (LNG) as fuel. (a) If methane (LNG) vapors are used as fuel in the main propulsion system of a vessel, the...

  20. 46 CFR 154.1854 - Methane (LNG) as fuel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ventilation or detection of gas, the master shall ensure that the methane (LNG) fuel supply is not used until... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1854 Methane (LNG) as fuel. (a) If methane (LNG) vapors are used as fuel in the main propulsion system of a vessel, the...

  1. Effects of granular activated carbon on methane removal performance and methanotrophic community of a lab-scale bioreactor.

    PubMed

    Lee, Eun-Hee; Choi, Sun-Ah; Yi, Taewoo; Kim, Tae Gwan; Lee, Sang-Don; Cho, Kyung-Suk

    2015-01-01

    Two identical lab-scale bioreactor systems were operated to examine the effects of granular activated carbon (GAC) on methane removal performance and methanotrophic community. Both bioreactor systems removed methane completely at a CH4 loading rate of 71.2 g-CH4·d(-1) for 17 days. However, the methane removal efficiency declined to 88% in the bioreactor without GAC, while the bioreactor amended with GAC showed greater methane removal efficiency of 97% at a CH4 loading rate of 107.5 g-CH4·d(-1). Although quantitative real-time PCR showed that methanotrophic populations were similar levels of 5-10 × 10(8) pmoA gene copy number·VSS(-1) in both systems, GAC addition changed the methanotrophic community composition of the bioreactor systems. Microarray assay revealed that GAC enhanced the type I methanotrophic genera including Methylobacter, Methylomicrobium, and Methylomonas of the system, which suggests that GAC probably provided a favorable environment for type I methanotrophs. These results indicated that GAC is a promising support material in bioreactor systems for CH4 mitigation.

  2. [Acclimatization and characteristics of microbial community in sulphate-dependent anaerobic methane oxidation].

    PubMed

    Xi, Jing-Ru; Liu, Su-Qin; Li, Lin; Liu, Jun-Xin

    2014-12-01

    The greenhouse effect of methane is 26 times worse than that of carbon dioxide, and wastewater containing high concentrations of sulfate is harmful to water, soil and plants. Therefore, anaerobic oxidation of methane driven by sulfate is one of the effective ways for methane reduction. In this paper, with sulfate as the electron accepter, a microbial consortium capable of oxidating methane under anaerobic condition was cultured. The diversity and characteristics of bacterial and archaeal community were investigated by PCR-DGGE, and phylogenetic analysis of the dominant microorganisms was also carried out. The DGGE fingerprints showed that microbial community structure changed distinctly, and the abundance of methane-oxidizing archea and sulfate-reducing bacteria increased in the acclimatization system added sulfate. After acclimatization, the bacterial diversity increased, while archaea diversity decreased slightly. The representative bands in the DGGE profiles were excised and sequenced. Results indicated that the dominant species in the acclimatization system were Spirochaetes, Desulfuromonadales, Methanosarcinales, Methanosaeta. Methane converted into carbon dioxide while sulfate transformed into hydrogen sulfide and sulfur in the process of anaerobic methane oxidation accompanied by sulphate reduction.

  3. Methane emission from flooded soils - from microorganisms to the atmosphere

    NASA Astrophysics Data System (ADS)

    Conrad, Ralf

    2016-04-01

    Methane is an important greenhouse gas that is affected by anthropogenic activity. The annual budget of atmospheric methane, which is about 600 million tons, is by more than 75% produced by methanogenic archaea. These archaea are the end-members of a microbial community that degrades organic matter under anaerobic conditions. Flooded rice fields constitute a major source (about 10%) of atmospheric methane. After flooding of soil, anaerobic processes are initiated, finally resulting in the disproportionation of organic matter to carbon dioxide and methane. This process occurs in the bulk soil, on decaying organic debris and in the rhizosphere. The produced methane is mostly ventilated through the plant vascular system into the atmosphere. This system also allows the diffusion of oxygen into the rizosphere, where part of the produced methane is oxidized by aerobic methanotrophic bacteria. More than 50% of the methane production is derived from plant photosynthetic products and is formed on the root surface. Methanocellales are an important group of methanogenic archaea colonizing rice roots. Soils lacking this group seem to result in reduced root colonization and methane production. In rice soil methane is produced by two major paths of methanogenesis, the hydrogenotrophic one reducing carbon dioxide to methane, and the aceticlastic one disproportionating acetate to methane and carbon dioxide. Theoretically, at least two third of the methane should be produced by aceticlastic and the rest by hydrogenotrophic methanogenesis. In nature, however, the exact contribution of the two paths can vary from zero to 100%. Several environmental factors, such as temperature and quality of organic matter affect the path of methane production. The impact of these factors on the composition and activity of the environmental methanogenic microbial community will be discussed.

  4. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol.

    PubMed

    Grundner, Sebastian; Markovits, Monica A C; Li, Guanna; Tromp, Moniek; Pidko, Evgeny A; Hensen, Emiel J M; Jentys, Andreas; Sanchez-Sanchez, Maricruz; Lercher, Johannes A

    2015-06-25

    Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon-hydrogen bonds in methane and its subsequent transformation to methanol. The similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towards methanol, in both the enzyme system and copper-exchanged mordenite.

  5. Pretreatment of Cottage Cheese to Enhance Biogas Production

    PubMed Central

    Salgaonkar, Bhakti; Mutnuri, Srikanth

    2014-01-01

    This study evaluated the possibility of pretreating selected solid fraction of an anaerobic digester treating food waste to lower the hydraulic retention time and increase the methane production. The study investigated the effect of different pretreatments (thermal, chemical, thermochemical and enzymatic) for enhanced methane production from cottage cheese. The most effective pretreatments were thermal and enzymatic. Highest solubilisation of COD was observed in thermal pretreatment, followed by thermochemical. In single enzyme systems, lipase at low concentration gave significantly higher methane yield than for the experiments without enzyme additions. The highest lipase dosages decreased methane yield from cottage cheese. However, in case of protease enzyme an increase in concentration of the enzyme showed higher methane yield. In the case of mixed enzyme systems, pretreatment at 1 : 2 ratio of lipase : protease showed higher methane production in comparison with 1 : 1 and 2 : 1 ratios. Methane production potentials for different pretreatments were as follows: thermal 357 mL/g VS, chemical 293 mL/g VS, and thermochemical 441 mL/g VS. The average methane yield from single enzyme systems was 335 mL/g VS for lipase and 328 mL/g VS for protease. Methane potentials for mixed enzyme ratios were 330, 360, and 339 mL/g VS for 1 : 1, 1 : 2, and 2 : 1 lipase : protease, respectively. PMID:24995288

  6. Laboratory Studies of Methane and Its Relationship to Prebiotic Chemistry.

    PubMed

    Kobayashi, Kensei; Geppert, Wolf D; Carrasco, Nathalie; Holm, Nils G; Mousis, Olivier; Palumbo, Maria Elisabetta; Waite, J Hunter; Watanabe, Naoki; Ziurys, Lucy M

    2017-08-01

    To examine how prebiotic chemical evolution took place on Earth prior to the emergence of life, laboratory experiments have been conducted since the 1950s. Methane has been one of the key molecules in these investigations. In earlier studies, strongly reducing gas mixtures containing methane and ammonia were used to simulate possible reactions in the primitive atmosphere of Earth, producing amino acids and other organic compounds. Since Earth's early atmosphere is now considered to be less reducing, the contribution of extraterrestrial organics to chemical evolution has taken on an important role. Such organic molecules may have come from molecular clouds and regions of star formation that created protoplanetary disks, planets, asteroids, and comets. The interstellar origin of organics has been examined both experimentally and theoretically, including laboratory investigations that simulate interstellar molecular reactions. Endogenous and exogenous organics could also have been supplied to the primitive ocean, making submarine hydrothermal systems plausible sites of the generation of life. Experiments that simulate such hydrothermal systems where methane played an important role have consequently been conducted. Processes that occur in other Solar System bodies offer clues to the prebiotic chemistry of Earth. Titan and other icy bodies, where methane plays significant roles, are especially good targets. In the case of Titan, methane is both in the atmosphere and in liquidospheres that are composed of methane and other hydrocarbons, and these have been studied in simulation experiments. Here, we review the wide range of experimental work in which these various terrestrial and extraterrestrial environments have been modeled, and we examine the possible role of methane in chemical evolution. Key Words: Methane-Interstellar environments-Submarine hydrothermal systems-Titan-Origin of life. Astrobiology 17, 786-812.

  7. Geology, mineralization, and fluid inclusion characteristics of the Skrytoe reduced-type W skarn and stockwork deposit, Sikhote-Alin, Russia

    NASA Astrophysics Data System (ADS)

    Soloviev, Serguei G.; Kryazhev, Sergey G.

    2017-08-01

    The Skrytoe deposit (>145 Kt WO3, average grade 0.449% WO3) in the Sikhote-Alin orogenic system (Eastern Russia) is situated in a metallogenic belt of W, Sn-W, Au, and Au-W deposits formed in a late to post-collisional tectonic environment after cessation of active subduction. It is localized within a mineralized district of reduced-type skarn W and veined Au (±W) deposits and occurrences related to the Early Cretaceous ilmenite-series plutonic suite. The deposit incorporates large stockworks of scheelite-bearing veinlets related to propylitic (amphibole, chlorite, quartz) and phyllic (quartz, sericite, albite, apatite, and carbonate) hydrothermal alteration. The stockwork cuts flat-lying mafic volcanic rocks and limestone partially replaced by pyroxene skarn that host the major W orebodies. Scheelite is associated with pyrrhotite and/or arsenopyrite, with minor chalcopyrite and other sulfide minerals; the late phyllic stage assemblages hosts Bi and Au mineralization. The fluid evolution included low-salinity moderate-temperature, moderate-pressure (˜370-390 °C, ˜800 bars) methane-dominated carbonic-aqueous fluids that formed post-skarn propylitic alteration assemblages. Then, at the phyllic stage, there has been an evolution from methane-dominated, moderate-temperature (330-360 °C), low-salinity (<12.3 wt% NaCl equiv.) fluids forming the early quartz-sericite-albite-arsenopyrite assemblage, through lower temperature (290-330 °C) methane-dominated, low-salinity (˜9-10 wt% NaCl equiv.) fluids forming the intermediate quartz-sericite-albite-scheelite-pyrrhotite assemblage, to yet lower temperature (245-320 °C) CO2-dominated carbonic-aqueous low-salinity (˜1-7 wt% NaCl equiv.) fluids forming the late quartz-sericite-sulfide-Bi-Au assemblage. Recurrent fluid immiscibility (phase separation) and cooling probably affected W solubility and promoted scheelite deposition. The stable isotope data support a sedimentary source of carbon (δ13Cfluid = ˜-21 to -10 ‰), a magmatic source for water (δ18OH2O = +7.4 to +7.7 ‰), and dominantly crustal-derived source of sulfur (δ34S = -4.6 to -2.9 ‰) in the hydrothermal fluids. This is consistent with the development of larger, longer crystallizing crustal intermediate to felsic magma chambers in the late to post-collisional tectonic environment, with their protracted magmatic evolution advancing magmatic differentiation and partitioning of W into magmatic-hydrothermal fluid. The dominating role of the crustal-derived magmatic water, sulfur, and carbon appears to be an important feature of reduced W skarn deposits related to ilmenite-series granitoids.

  8. 30 CFR 27.3 - Consultation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINING PRODUCTS METHANE-MONITORING SYSTEMS General Provisions § 27.3 Consultation. By appointment... qualified MSHA personnel proposed methane-monitoring systems to be submitted in accordance with the...

  9. Biochemical methane potential (BMP) tests: Reducing test time by early parameter estimation.

    PubMed

    Da Silva, C; Astals, S; Peces, M; Campos, J L; Guerrero, L

    2018-01-01

    Biochemical methane potential (BMP) test is a key analytical technique to assess the implementation and optimisation of anaerobic biotechnologies. However, this technique is characterised by long testing times (from 20 to >100days), which is not suitable for waste utilities, consulting companies or plants operators whose decision-making processes cannot be held for such a long time. This study develops a statistically robust mathematical strategy using sensitivity functions for early prediction of BMP first-order model parameters, i.e. methane yield (B 0 ) and kinetic constant rate (k). The minimum testing time for early parameter estimation showed a potential correlation with the k value, where (i) slowly biodegradable substrates (k≤0.1d -1 ) have a minimum testing times of ≥15days, (ii) moderately biodegradable substrates (0.1

  10. The relative abundances of resolved l2CH2D2 and 13CH3D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases

    NASA Astrophysics Data System (ADS)

    Young, E. D.; Kohl, I. E.; Lollar, B. Sherwood; Etiope, G.; Rumble, D.; Li, S.; Haghnegahdar, M. A.; Schauble, E. A.; McCain, K. A.; Foustoukos, D. I.; Sutclife, C.; Warr, O.; Ballentine, C. J.; Onstott, T. C.; Hosgormez, H.; Neubeck, A.; Marques, J. M.; Pérez-Rodríguez, I.; Rowe, A. R.; LaRowe, D. E.; Magnabosco, C.; Yeung, L. Y.; Ash, J. L.; Bryndzia, L. T.

    2017-04-01

    We report measurements of resolved 12CH2D2 and 13CH3D at natural abundances in a variety of methane gases produced naturally and in the laboratory. The ability to resolve 12CH2D2 from 13CH3D provides unprecedented insights into the origin and evolution of CH4. The results identify conditions under which either isotopic bond order disequilibrium or equilibrium are expected. Where equilibrium obtains, concordant Δ12CH2D2 and Δ13CH3D temperatures can be used reliably for thermometry. We find that concordant temperatures do not always match previous hypotheses based on indirect estimates of temperature of formation nor temperatures derived from CH4/H2 D/H exchange, underscoring the importance of reliable thermometry based on the CH4 molecules themselves. Where Δ12CH2D2 and Δ13CH3D values are inconsistent with thermodynamic equilibrium, temperatures of formation derived from these species are spurious. In such situations, while formation temperatures are unavailable, disequilibrium isotopologue ratios nonetheless provide novel information about the formation mechanism of the gas and the presence or absence of multiple sources or sinks. In particular, disequilibrium isotopologue ratios may provide the means for differentiating between methane produced by abiotic synthesis vs. biological processes. Deficits in 12CH2D2 compared with equilibrium values in CH4 gas made by surface-catalyzed abiotic reactions are so large as to point towards a quantum tunneling origin. Tunneling also accounts for the more moderate depletions in 13CH3D that accompany the low 12CH2D2 abundances produced by abiotic reactions. The tunneling signature may prove to be an important tracer of abiotic methane formation, especially where it is preserved by dissolution of gas in cool hydrothermal systems (e.g., Mars). Isotopologue signatures of abiotic methane production can be erased by infiltration of microbial communities, and Δ12CH2D2 values are a key tracer of microbial recycling.

  11. The Relative Abundances of Resolved 12CH2D2 and 13CH3D and Mechanisms Controlling Isotopic Bond Ordering in Abiotic and Biotic Methane Gases

    NASA Astrophysics Data System (ADS)

    Young, E. D.; Kohl, I. E.; Sherwood Lollar, B.; Etiope, G.; Rumble, D.; Li, S.; Haghnegahdar, M. A.; Schauble, E. A.; McCain, K.; Foustoukos, D.; Sutcliffe, C. N.; Warr, O.; Ballentine, C. J.; Onstott, T. C.; Hosgormez, H.; Neubeck, A.; Marques, J. M.; Perez-Rodriguez, I. M.; Rowe, A. R.; LaRowe, D.; Magnabosco, C.; Bryndzia, T.

    2016-12-01

    We report measurements of resolved 12CH2D2 and 13CH3D at natural abundances in a variety of methane gases produced naturally and in the laboratory. The ability to resolve 12CH2D2 from 13CH3D provides unprecedented insights into the origin and evolution of CH4. The results identify conditions under which either isotopic bond order disequilibrium or equilibrium are expected. Where equilibrium obtains, concordant Δ12CH2D2 and Δ13CH3D temperatures can be used reliably for thermometry. We find that concordant temperatures do not always match previous hypotheses based on indirect estimates of temperature of formation nor temperatures derived from CH4/H2 D/H exchange, underscoring the importance of reliable thermometry based on the CH4 molecules themselves. Where Δ12CH2D2 and Δ13CH3D values are inconsistent with thermodynamic equilibrium, temperatures of formation derived from these species are spurious. In such situations, while formation temperatures are unavailable, disequilibrium isotopologue ratios nonetheless provide important information about the formation mechanism of the gas and the presence or absence of multiple sources or sinks. In particular, disequilibrium isotopologue ratios may provide the means for differentiating between methane produced by abiotic synthesis versus biological processes. Deficits in 12CH2D2 compared with equilibrium values in CH4 gas made by surface-catalyzed abiotic reactions are so large as to point towards a quantum tunneling origin. Tunneling also accounts for the more moderate depletions in 13CH3D that accompany the low 12CH2D2 abundances produced by abiotic reactions. The tunneling signature of abiotic CH4 formation may prove to be an important tracer of abiotic methane formation, especially where it is preserved by dissolution of gas in cool hydrothermal systems (e.g., Mars). Isotopologue signatures of abiotic methane production can be erased by infiltration of microbial communities, and Δ12CH2D2 values are a key tracer of microbial recycling.

  12. Spatial and temporal dependencies of structure II to structure I methane hydrate transformation in porous media under moderate pressure and temperature conditions

    NASA Astrophysics Data System (ADS)

    Dong, T.; Lin, J. F.; Gu, J. T.; Polito, P. J.; O'Connell, J.; Flemings, P. B.

    2017-12-01

    We used Raman spectroscopy to monitor methane hydrates transforming from structure II to structure I at the pore scale as a function of space and time. It is well documented that structure I hydrate is the thermodynamically stable phase for pure methane hydrate (<100 MPa, < 20 °C), but due to kinetic limitation, initial methane hydrate formation produces a mixture of structure I and structure II hydrates. We observed that the structure transformation originated around the porous medium grains and over time slowly migrated into the pore space. We synthesized methane hydrates in spherical glass beads (210-297 µm in diameter) in a pressure cell with a sapphire window to integrate optical observations with Raman measurements. We injected CH4 vapor into the cell and supplied only deionized water thereafter to maintain a constant pressure of 14.6 MPa at 3.5 °C, with 14.5 °C subcooling. We used Raman spectroscopy to map the methane hydrates in pore spaces at 5-25 µm resolution, in order to monitor the occupancy ratio of CH4 in large cages to CH4 in small cages, by their Raman peak intensity ratio, i.e., I( 2905 cm-1)/I( 2915 cm-1). We identified 3 stages of hydrate formation at the pore scale: (1) after the initial hydrate formation, Raman mapping revealed that the occupancy ratio ranged from 0.5 to 3, indicating a mixture of structure I and II hydrates; (2) within 1 week, we observed that all structure I hydrates occurred on the glass bead surfaces and structure II hydrates occupied the pore spaces; (3) over the following 2 weeks, structure II hydrates gradually recrystallized into structure I hydrates from glass bead surfaces towards the pore space. These results imply that (1) due to kinetics, the formation of methane hydrate in porous media is more complex than previously thought, and (2) the bulk physical and chemical properties of laboratory-synthesized methane hydrates in porous media may drift over time, as methane hydrates recrystallize from a metastable phase (structure II) to the thermodynamically stable phase (structure I).

  13. Identifying Methane Sources with an Airborne Pulsed IPDA Lidar System Operating near 1.65 µm

    NASA Astrophysics Data System (ADS)

    Yerasi, A.; Bartholomew, J.; Tandy, W., Jr.; Emery, W. J.

    2016-12-01

    Methane is a powerful greenhouse gas that is predicted to play an important role in future global climate trends. It would therefore be beneficial to locate areas that produce methane in significant amounts so that these trends can be better understood. In this investigation, some initial performance test results of a lidar system called the Advanced Leak Detector Lidar - Natural Gas (ALDL-NG) are discussed. The feasibility of applying its fundamental principle of operation to methane source identification is also explored. The ALDL-NG was originally created by the Ball Aerospace & Technologies Corp. to reveal leaks emanating from pipelines that transport natural gas, which is primarily composed of methane. It operates in a pulsed integrated path differential absorption (IPDA) configuration and it is carried by a piloted, single-engine aircraft. In order to detect the presence of natural gas leaks, the laser wavelengths of its online and offline channels operate in the 1.65 µm region. The functionality of the ALDL-NG was tested during a recent field campaign in Colorado. It was determined that the ambient concentration of methane in the troposphere ( 1.8 ppm) could indeed be retrieved from ALDL-NG data with a lower-than-expected uncertainty ( 0.2 ppm). Furthermore, when the ALDL-NG scanned over areas that were presumed to be methane sources (feedlots, landfills, etc.), significantly higher concentrations of methane were retrieved. These results are intriguing because the ALDL-NG was not specifically designed to observe anything beyond natural gas pipelines. Nevertheless, they strongly indicate that utilizing an airborne pulsed IPDA lidar system operating near 1.65 µm may very well be a viable technique for identifying methane sources. Perhaps future lidar systems could build upon the heritage of the ALDL-NG and measure methane concentration with even better precision for a variety of scientific applications.

  14. Efficient 1.6 Micron Laser Source for Methane DIAL

    NASA Technical Reports Server (NTRS)

    Shuman, Timothy; Burnham, Ralph; Nehrir, Amin R.; Ismail, Syed; Hair, Johnathan W.

    2013-01-01

    Methane is a potent greenhouse gas and on a per molecule basis has a warming influence 72 times that of carbon dioxide over a 20 year horizon. Therefore, it is important to look at near term radiative effects due to methane to develop mitigation strategies to counteract global warming trends via ground and airborne based measurements systems. These systems require the development of a time-resolved DIAL capability using a narrow-line laser source allowing observation of atmospheric methane on local, regional and global scales. In this work, a demonstrated and efficient nonlinear conversion scheme meeting the performance requirements of a deployable methane DIAL system is presented. By combining a single frequency 1064 nm pump source and a seeded KTP OPO more than 5 mJ of 1.6 µm pulse energy is generated with conversion efficiencies in excess of 20%. Even without active cavity control instrument limited linewidths (50 pm) were achieved with an estimated spectral purity of 95%. Tunable operation over 400 pm (limited by the tuning range of the seed laser) was also demonstrated. This source demonstrated the critical needs for a methane DIAL system motivating additional development of the technology.

  15. A VCSEL based system for on-site monitoring of low level methane emission

    NASA Astrophysics Data System (ADS)

    Kannath, A.; Hodgkinson, J.; Gillard, R. G.; Riley, R. J.; Tatam, R. P.

    2011-03-01

    Continuous monitoring of methane emissions has assumed greater significance in the recent past due to increasing focus on global warming issues. Many industries have also identified the need for ppm level methane measurement as a means of gaining carbon credits. Conventional instruments based on NDIR spectroscopy are unable to offer the high selectivity and sensitivity required for such measurements. Here we discuss the development of a robust VCSEL based system for accurate low level measurements of methane. A possible area of application is the measurement of residual methane whilst monitoring the output of flare stacks and exhaust gases from methane combustion engines. The system employs a Wavelength Modulation Spectroscopy (WMS) scheme with second harmonic detection at 1651 nm. Optimum modulation frequency and ramp rates were chosen to maintain high resolution and fast response times which are vital for the intended application. Advanced data processing techniques were used to achieve long term sensitivity of the order of 10-5 in absorbance. The system is immune to cross interference from other gases and its inherent design features makes it ideal for large scale commercial production. The instrument maintains its calibration and offers a completely automated continuous monitoring solution for remote on site deployment.

  16. Liquid Methane Conditioning Capabilities Developed at the NASA Glenn Research Center's Small Multi- Purpose Research Facility (SMiRF) for Accelerated Lunar Surface Storage Thermal Testing

    NASA Technical Reports Server (NTRS)

    Bamberger, Helmut H.; Robinson, R. Craig; Jurns, John M.; Grasl, Steven J.

    2011-01-01

    Glenn Research Center s Creek Road Cryogenic Complex, Small Multi-Purpose Research Facility (SMiRF) recently completed validation / checkout testing of a new liquid methane delivery system and liquid methane (LCH4) conditioning system. Facility checkout validation was conducted in preparation for a series of passive thermal control technology tests planned at SMiRF in FY10 using a flight-like propellant tank at simulated thermal environments from 140 to 350K. These tests will validate models and provide high quality data to support consideration of LCH4/LO2 propellant combination option for a lunar or planetary ascent stage.An infrastructure has been put in place which will support testing of large amounts of liquid methane at SMiRF. Extensive modifications were made to the test facility s existing liquid hydrogen system for compatibility with liquid methane. Also, a new liquid methane fluid conditioning system will enable liquid methane to be quickly densified (sub-cooled below normal boiling point) and to be quickly reheated to saturation conditions between 92 and 140 K. Fluid temperatures can be quickly adjusted to compress the overall test duration. A detailed trade study was conducted to determine an appropriate technique to liquid conditioning with regard to the SMiRF facility s existing infrastructure. In addition, a completely new roadable dewar has been procured for transportation and temporary storage of liquid methane. A new spherical, flight-representative tank has also been fabricated for integration into the vacuum chamber at SMiRF. The addition of this system to SMiRF marks the first time a large-scale liquid methane propellant test capability has been realized at Glenn.This work supports the Cryogenic Fluid Management Project being conducted under the auspices of the Exploration Technology Development Program, providing focused cryogenic fluid management technology efforts to support NASA s future robotic or human exploration missions.

  17. Bioenergetics of Continental Serpentinites

    NASA Astrophysics Data System (ADS)

    Cardace, D.; Meyer-Dombard, D. R.

    2011-12-01

    Serpentinization is the aqueous alteration of ultramafic (Fe- and Mg-rich) rocks, resulting in secondary mineral assemblages of serpentine, brucite, iron oxyhydroxides and magnetite, talc, and possibly carbonate and silica-rich veins and other minor phases-all depending on the evolving pressure-temperature-composition of the system. The abiotic evolution of hydrogen and possibly organic compounds via serpentinization (McCollom and Bach, 2009) highlights the relevance of this geologic process to carbon and energy sources for the deep biosphere. Serpentinization may fuel life over long stretches of geologic time, throughout the global seabed and in exposed, faulted peridotite blocks (as at Lost City Hydrothermal Field, Kelley et al., 2005), and in obducted oceanic mantle units in ophiolites (e.g., Tiago et al., 2004). Relatively little work has been published on life in continental serpentinite settings, though they likely host a unique resident microbiota. In this work, we systematically model the serpentinizing fluid as an environmental niche. Reported field data for high and moderate pH serpentinizing fluids were modeled from Cyprus, the Philippines, Oman, Northern California, New Caledonia, Yugoslavia, Portugal, Italy, Newfoundland Canada, New Zealand, and Turkey. Values for Gibbs Energy of reaction (ΔGr), kJ per mole of electrons transferred for a given metabolism, are calculated for each field site. Cases are considered both for (1) modest assumptions of 1 nanomolar hydrogen and 1 micromolar methane, based on unpublished data for a similar northern California field site (Cardace and Hoehler, in prep.) and (2) an upper estimate of 10 nanomolar hydrogen and 500 micromolar methane. We survey the feasibility of microbial metabolisms for key steps in the nitrogen cycle, oxidation of sulfur in pyrite, iron oxidation or reduction reactions, sulfate reduction coupled to hydrogen or methane oxidation, methane oxidation coupled to the reduction of oxygen, and methanogenesis. We find that there is strong energetic yield from most reactions considered, except for transformation of nitrite to nitrate, ammonia to nitrite, ferrous to ferric iron, and carbon dioxide to methane. Laying out foundational metabolic models for microbiological communities sustained by chemosynthesis in this setting (mining energy from ultramafic rocks and chemical systems, not tied to photosynthesis in any way) has enticing relevance to the search for extraterrestrial life, in that similar rocks have been detected on our sibling planet Mars, with transient atmospheric detection of hydrogen and methane (Schulte et al., 2006, Mumma et al., 2009). To a first order, this work explores the intersection of serpentinite groundwater chemistry and bioenergetics to determine what kinds of life can be sustained in these significant subsurface settings. References cited: Kelley et al. 2005. Science 307:1428-1434. McCollom and Bach. 2009. GCA 73:856-875. Mumma et al., 2009. Science 323:1041-1045. Schulte et al., 2006. Astrobiology 6:364-376.

  18. Detecting Methane Leaks

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Hinkley, E. D.

    1984-01-01

    Remote sensor uses laser radiation backscattered from natural targets. He/Ne Laser System for remote scanning of Methane leaks employs topographic target to scatter light to receiver near laser transmitter. Apparatus powered by 1.5kW generator transported to field sites and pointed at suspected methane leaks. Used for remote detection of natural-gas leaks and locating methane emissions in landfill sites.

  19. Heterogeneous Nucleation of Methane Hydrate in a Water-Decane-Methane Emulsion

    NASA Astrophysics Data System (ADS)

    Shestakov, V. A.; Kosyakov, V. I.; Manakov, A. Yu.; Stoporev, A. S.; Grachev, E. V.

    2018-07-01

    Heterogeneous nucleation in disperse systems with metastable disperse phases plays an important role in the mechanisms of environmental and technological processes. The effect the concentration and activity of particles that initiate the formation of a new phase have on nucleation processes in such systems is considered. An approach is proposed that allows construction of a spectrum of particle activity characterizing the features of nucleation in a sample, based on the fraction of crystallized droplets depending on the level of supercooling and the use of Weibull's distribution. The proposed method is used to describe experimental data on the heterogeneous nucleation of methane hydrate in an emulsion in a water-decane-methane system.

  20. 30 CFR 27.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PRODUCTS METHANE-MONITORING SYSTEMS General Provisions § 27.1 Purpose. The regulations in this part set forth the requirements for methane-monitoring systems or components thereof to procure certification for...

  1. 30 CFR 27.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PRODUCTS METHANE-MONITORING SYSTEMS General Provisions § 27.1 Purpose. The regulations in this part set forth the requirements for methane-monitoring systems or components thereof to procure certification for...

  2. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    DOEpatents

    Tonkovich, Anna Lee Y [Dublin, OH; Litt, Robert D [Westerville, OH; Dongming, Qiu [Dublin, OH; Silva, Laura J [Plain City, OH; Lamont, Micheal Jay [Plain City, OH; Fanelli, Maddalena [Plain City, OH; Simmons, Wayne W [Plain city, OH; Perry, Steven [Galloway, OH

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  3. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol

    DOE PAGES

    Grundner, Sebastian; Markovits, Monica A. C.; Li, Guanna; ...

    2015-06-25

    Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon–hydrogen bonds in methane and its subsequent transformation to methanol. In conclusion, the similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towardsmore » methanol, in both the enzyme system and copper-exchanged mordenite.« less

  4. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol

    PubMed Central

    Grundner, Sebastian; Markovits, Monica A.C.; Li, Guanna; Tromp, Moniek; Pidko, Evgeny A.; Hensen, Emiel J.M.; Jentys, Andreas; Sanchez-Sanchez, Maricruz; Lercher, Johannes A.

    2015-01-01

    Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon–hydrogen bonds in methane and its subsequent transformation to methanol. The similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towards methanol, in both the enzyme system and copper-exchanged mordenite. PMID:26109507

  5. Performance evaluation of a 1.6-µm methane DIAL system from ground, aircraft and UAV platforms.

    PubMed

    Refaat, Tamer F; Ismail, Syed; Nehrir, Amin R; Hair, John W; Crawford, James H; Leifer, Ira; Shuman, Timothy

    2013-12-16

    Methane is an efficient absorber of infrared radiation and a potent greenhouse gas with a warming potential 72 times greater than carbon dioxide on a per molecule basis. Development of methane active remote sensing capability using the differential absorption lidar (DIAL) technique enables scientific assessments of the gas emission and impacts on the climate. A performance evaluation of a pulsed DIAL system for monitoring atmospheric methane is presented. This system leverages a robust injection-seeded pulsed Nd:YAG pumped Optical Parametric Oscillator (OPO) laser technology operating in the 1.645 µm spectral band. The system also leverages an efficient low noise, commercially available, InGaAs avalanche photo-detector (APD). Lidar signals and error budget are analyzed for system operation on ground in the range-resolved DIAL mode and from airborne platforms in the integrated path DIAL (IPDA) mode. Results indicate system capability of measuring methane concentration profiles with <1.0% total error up to 4.5 km range with 5 minute averaging from ground. For airborne IPDA, the total error in the column dry mixing ratio is less than 0.3% with 0.1 sec average using ground returns. This system has a unique capability of combining signals from the atmospheric scattering from layers above the surface with ground return signals, which provides methane column measurement between the atmospheric scattering layer and the ground directly. In such case 0.5% and 1.2% total errors are achieved with 10 sec average from airborne platforms at 8 km and 15.24 km altitudes, respectively. Due to the pulsed nature of the transmitter, the system is relatively insensitive to aerosol and cloud interferences. Such DIAL system would be ideal for investigating high latitude methane releases over polar ice sheets, permafrost regions, wetlands, and over ocean during day and night. This system would have commercial potential for fossil fuel leaks detection and industrial monitoring applications.

  6. 30 CFR 27.5 - Letter of certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS General Provisions § 27.5 Letter of certification. (a) Upon completion of investigation of a methane-monitoring system, or component or subassembly...

  7. 30 CFR 27.5 - Letter of certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS General Provisions § 27.5 Letter of certification. (a) Upon completion of investigation of a methane-monitoring system, or component or subassembly...

  8. Novel Anaerobic Wastewater Treatment System for Energy Generation at Forward Operating Bases

    DTIC Science & Technology

    2016-08-01

    AnMBR) technology with clinoptilolite ion exchange and GreenBox™ ammonia electrolysis. The system generates both methane and hydrogen fuels...experimental setup. ................................................ 21 Figure 10. Methane phase semi batch experimental setup, a total of three reactors were...set up for PS + solid, Bioc and ADS methane phase reactors. .................... 21 Figure 11. Dried PS solid for the control, Bioc blend for the

  9. Sea-floor methane blow-out and global firestorm at the K-T boundary

    USGS Publications Warehouse

    Max, M.D.; Dillon, William P.; Nishimura, C.; Hurdle, B.G.

    1999-01-01

    A previously unsuspected source of fuel for the global firestorm recorded by soot in the Cretaceous-Tertiary impact layer may have resided in methane gas associated with gas hydrate in the end-Cretaceous seafloor. End-Cretaceous impact-generated shock and megawaves would have had the potential to initiate worldwide oceanic methane gas blow-outs from these deposits. The methane would likely have ignited and incompletely combusted. This large burst of methane would have been followed by longer-term methane release as a part of a positive thermal feedback in the disturbed ocean-atmosphere system.

  10. 30 CFR 27.7 - Certification plate or label.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS General Provisions § 27.7 Certification plate or label. A certified methane-monitoring system or component thereof shall be identified with a...

  11. 30 CFR 27.7 - Certification plate or label.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS General Provisions § 27.7 Certification plate or label. A certified methane-monitoring system or component thereof shall be identified with a...

  12. An analytical solubility model for nitrogen-methane-ethane ternary mixtures

    NASA Astrophysics Data System (ADS)

    Hartwig, Jason; Meyerhofer, Peter; Lorenz, Ralph; Lemmon, Eric

    2018-01-01

    Saturn's moon Titan has surface liquids of liquid hydrocarbons and a thick, cold, nitrogen atmosphere, and is a target for future exploration. Critical to the design and operation of vehicles for this environment is knowledge of the amount of dissolved nitrogen gas within the cryogenic liquid methane and ethane seas. This paper rigorously reviews experimental data on the vapor-liquid equilibrium of nitrogen/methane/ethane mixtures, noting the possibility for split liquid phases, and presents simple analytical models for conveniently predicting solubility of nitrogen in pure liquid ethane, pure liquid methane, and a mixture of liquid ethane and methane. Model coefficients are fit to three temperature ranges near the critical point, intermediate range, and near the freezing point to permit accurate predictions across the full range of thermodynamic conditions. The models are validated against the consolidated database of 2356 experimental data points, with mean absolute error between data and model less than 8% for both binary nitrogen/methane and nitrogen/ethane systems, and less than 17% for the ternary nitrogen/methane/ethane system. The model can be used to predict the mole fractions of ethane, methane, and nitrogen as a function of location within the Titan seas.

  13. Experimental and modeling study on decomposition kinetics of methane hydrates in different media.

    PubMed

    Liang, Minyan; Chen, Guangjin; Sun, Changyu; Yan, Lijun; Liu, Jiang; Ma, Qinglan

    2005-10-13

    The decomposition kinetic behaviors of methane hydrates formed in 5 cm3 porous wet activated carbon were studied experimentally in a closed system in the temperature range of 275.8-264.4 K. The decomposition rates of methane hydrates formed from 5 cm3 of pure free water and an aqueous solution of 650 g x m(-3) sodium dodecyl sulfate (SDS) were also measured for comparison. The decomposition rates of methane hydrates in seven different cases were compared. The results showed that the methane hydrates dissociate more rapidly in porous activated carbon than in free systems. A mathematical model was developed for describing the decomposition kinetic behavior of methane hydrates below ice point based on an ice-shielding mechanism in which a porous ice layer was assumed to be formed during the decomposition of hydrate, and the diffusion of methane molecules through it was assumed to be one of the control steps. The parameters of the model were determined by correlating the decomposition rate data, and the activation energies were further determined with respect to three different media. The model was found to well describe the decomposition kinetic behavior of methane hydrate in different media.

  14. A Long-Term Cultivation of an Anaerobic Methane-Oxidizing Microbial Community from Deep-Sea Methane-Seep Sediment Using a Continuous-Flow Bioreactor

    PubMed Central

    Aoki, Masataka; Ehara, Masayuki; Saito, Yumi; Yoshioka, Hideyoshi; Miyazaki, Masayuki; Saito, Yayoi; Miyashita, Ai; Kawakami, Shuji; Yamaguchi, Takashi; Ohashi, Akiyoshi; Nunoura, Takuro; Takai, Ken; Imachi, Hiroyuki

    2014-01-01

    Anaerobic oxidation of methane (AOM) in marine sediments is an important global methane sink, but the physiological characteristics of AOM-associated microorganisms remain poorly understood. Here we report the cultivation of an AOM microbial community from deep-sea methane-seep sediment using a continuous-flow bioreactor with polyurethane sponges, called the down-flow hanging sponge (DHS) bioreactor. We anaerobically incubated deep-sea methane-seep sediment collected from the Nankai Trough, Japan, for 2,013 days in the bioreactor at 10°C. Following incubation, an active AOM activity was confirmed by a tracer experiment using 13C-labeled methane. Phylogenetic analyses demonstrated that phylogenetically diverse Archaea and Bacteria grew in the bioreactor. After 2,013 days of incubation, the predominant archaeal components were anaerobic methanotroph (ANME)-2a, Deep-Sea Archaeal Group, and Marine Benthic Group-D, and Gammaproteobacteria was the dominant bacterial lineage. Fluorescence in situ hybridization analysis showed that ANME-1 and -2a, and most ANME-2c cells occurred without close physical interaction with potential bacterial partners. Our data demonstrate that the DHS bioreactor system is a useful system for cultivating fastidious methane-seep-associated sedimentary microorganisms. PMID:25141130

  15. Mars methane engine

    NASA Technical Reports Server (NTRS)

    Bui, Hung; Coletta, Chris; Debois, Alain

    1994-01-01

    The feasibility of an internal combustion engine operating on a mixture of methane, carbon dioxide, and oxygen has been verified by previous design groups for the Mars Methane Engine Project. Preliminary stoichiometric calculations examined the theoretical fuel-air ratios needed for the combustion of methane. Installation of a computer data acquisition system along with various ancillary components will enable the performance of the engine, running on the described methane mixture, to be optimized with respect to minimizing excess fuel. Theoretical calculations for stoichiometric combustion of methane-oxygen-carbon dioxide mixtures yielded a ratio of 1:2:4.79 for a methane-oxygen-carbon dioxide mixture. Empirical data shows the values to be closer to 1:2.33:3.69 for optimum operation.

  16. Direct Quantification of Methane Emissions Across the Supply Chain: Identification of Mitigation Targets

    NASA Astrophysics Data System (ADS)

    Darzi, M.; Johnson, D.; Heltzel, R.; Clark, N.

    2017-12-01

    Researchers at West Virginia University's Center for Alternative Fuels, Engines, and Emissions have recently participated in a variety of studies targeted at direction quantification of methane emissions from across the natural gas supply chain. These studies included assessing methane emissions from heavy-duty vehicles and their fuel stations, active unconventional well sites - during both development and production, natural gas compression and storage facilities, natural gas engines - both large and small, two- and four-stroke, and low-throughput equipment associated with coal bed methane wells. Engine emissions were sampled using conventional instruments such as Fourier transform infrared spectrometers and heated flame ionization detection analyzers. However, to accurately quantify a wide range of other sources beyond the tailpipe (both leaks and losses), a full flow sampling system was developed, which included an integrated cavity-enhanced absorption spectrometer. Through these direct quantification efforts and analysis major sources of methane emissions were identified. Technological solutions and best practices exist or could be developed to reduce methane emissions by focusing on the "lowest-hanging fruit." For example, engine crankcases from across the supply chain should employ vent mitigation systems to reduce methane and other emissions. An overview of the direct quantification system and various campaign measurements results will be presented along with the identification of other targets for additional mitigation.

  17. A case study of methane gas migration through sealed mine GOB into active mine workings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, F.; McCall, F.E.; Trevits, M.A.

    1995-12-31

    The U.S. Bureau of Mines investigated the influence of atmospheric pressure changes on methane gas migration through mine seals at a mine site located in the Pittsburgh Coalbed. The mine gained access to a coal reserve through part of an abandoned mine and constructed nine seals to isolate the extensive old workings from the active mine area. Underground problems were experienced when atmospheric pressure fell, causing methane gas to migrate around the seals and into the active workings. During mining operations, methane gas levels exceeded legal limits and coal production was halted until the ventilation system could be improved. Whenmore » mining resumed with increased air flow, methane gas concentrations occasionally exceeded the legal limits and production had to be halted until the methane level fell within the mandated limit. To assist the ventilation system, a pressure relief borehole located in the abandoned workings near the mine seals was proposed. Preliminary estimates by a gob gas simulator (computer model) suggested that a 0.76 m (2.5 ft) diameter pressure relief borehole with an exhaust fan would be necessary to remove enough methane from the abandoned area so that the ventilation system could dilute the gas in the active workings. However, by monitoring methane gas emissions and seal pressure, during periods of low atmospheric pressure, the amount of methane gas that migrated into the active mine workings was calculated. Researchers then determined that a relief borehole, 20.3 cm (8-in) with an exhaust fan could remove at least twice the maximum measured volume of migrating methane gas. Because gas concentrations in the abandoned workings could potentially reach explosive limits, it was proposed that the mine eliminate the exhaust fan. Installation of the recommended borehole and enlarging two other ventilation boreholes located In the abandoned area reduced methane gas leakage through the seals by at least 63%.« less

  18. Study of methane fuel for subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Carson, L. K.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Daniels, E. J.

    1980-01-01

    The cost and performance were defined for commercial transport using liquid methane including its fuel system and the ground facility complex required for the processing and storage of methane. A cost and performance comparison was made with Jet A and hydrogen powered aircraft of the same payload and range capability. Extensive design work was done on cryogenic fuel tanks, insulation systems as well as the fuel system itself. Three candidate fuel tank locations were evaluated, i.e., fuselage tanks, wing tanks or external pylon tanks.

  19. The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure.

    PubMed

    Chae, K J; Jang, Am; Yim, S K; Kim, In S

    2008-01-01

    In order to obtain basic design criteria for anaerobic digesters of swine manure, the effects of different digesting temperatures, temperature shocks and feed loads, on the biogas yields and methane content were evaluated. The digester temperatures were set at 25, 30 and 35 degrees C, with four feed loads of 5%, 10%, 20% and 40% (feed volume/digester volume). At a temperature of 30 degrees C, the methane yield was reduced by only 3% compared to 35 degrees C, while a 17.4% reduction was observed when the digestion was performed at 25 degrees C. Ultimate methane yields of 327, 389 and 403 mL CH(4)/g VS(added) were obtained at 25, 30 and 35 degrees C, respectively; with moderate feed loads from 5% to 20% (V/V). From the elemental analysis of swine manure, the theoretical biogas and methane yields at standard temperature and pressure were 1.12L biogas/g VS(destroyed) and 0.724 L CH(4)/g VS(destroyed), respectively. Also, the methane content increased with increasing digestion temperatures, but only to a small degree. Temperature shocks from 35 to 30 degrees C and again from 30 to 32 degrees C led to a decrease in the biogas production rate, but it rapidly resumed the value of the control reactor. In addition, no lasting damage was observed for the digestion performance, once it had recovered.

  20. 30 CFR 27.6 - Certification of components.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS General Provisions § 27.6 Certification of... intended for use in a certified methane-monitoring system as evidence that further inspection and test of...

  1. 30 CFR 27.6 - Certification of components.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS General Provisions § 27.6 Certification of... intended for use in a certified methane-monitoring system as evidence that further inspection and test of...

  2. α-Fluoro-α-nitro(phenylsulfonyl)methane as a fluoromethyl pronucleophile: Efficient stereoselective Michael addition to chalcones

    PubMed Central

    Prakash, G. K. Surya; Wang, Fang; Stewart, Timothy; Mathew, Thomas; Olah, George A.

    2009-01-01

    Highly efficient stereoselective 1,4-addition of racemic α-fluoro-α-nitro(phenylsulfonyl)methane (FNSM) as a fluoromethyl pronucleophile to α,β-unsaturated ketones using a wide range of chiral organobifunctional catalysts under moderate conditions in the absence of an additional base has been achieved. A series of catalysts was screened for the enantioselective addition of FNSM to chalcones and the catalysts CN I, CD I, QN I-IV, and QD I were found to enable this reaction, successfully providing exclusive 1,4-addition products stereoselectively in high yields (conversion, diastereomeric ratio, and enantiomeric excess). Studies involving a model reaction and systematic analysis of the absolute configuration support the suggested mechanism. PMID:19237559

  3. Origin of minerals in joint and cleat systems of the Pottsville Formation, Black Warrior basin, Alabama: Implications for coalbed methane generation and production

    USGS Publications Warehouse

    Pitman, Janet K.; Pashin, J.C.; Hatch, J.R.; Goldhaber, M.B.

    2003-01-01

    Coalbed methane is produced from naturally fractured strata in the lower Pennsylvanian Pottsville Formation in the eastern part of the Black Warrior basin, Alabama. Major fracture systems include orthogonal fractures, which consist of systematic joints in siliciclastic strata and face cleats in coal that strike northeast throughout the basin. Calcite and minor amounts of pyrite commonly fill joints in sandstone and shale and, less commonly, cleats in coal. Joint-fill calcite postdates most pyrite and is a weakly ferroan, coarse-crystalline variety that formed during a period of uplift and erosion late in the burial history. Pyrite forms fine to coarse euhedral crystals that line jointwalls or are complexly intergrown with calcite. Stable-isotope data reveal large variations in the carbon isotope composition of joint- and cleat-fill calcite (-10.3 to +24.3 per mil Peedee belemnite [PDB]) but only a relatively narrow range in the oxygen-isotope composition of this calcite (-16.2 to -4.1 per mil PDB). Negative carbon values can be attributed to (super 13) C-depleted CO (sub 2) derived from the oxidation of organic matter, and moderately to highly positive carbon values can be attributed to bacterial methanogenesis. Assuming crystallization temperatures of 20-50 degrees C, most joint- and cleat-fill calcite precipitated from fluids with delta (super 18) O ratios ranging from about -11 to +2 per mil standard mean ocean water (SMOW). Uplift and unroofing since the Mesozoic led to meteoric recharge of Pottsville strata and development of freshwater plumes that were fed by meteoric recharge along the structurally upturned, southeastern margin of the basin. Influxes of fresh water into the basin via faults and coalbeds facilitated late-stage bacterial methanogenesis, which accounts for the high gas content in coal and the carbonate cementation of joints and cleats. Diagenetic and epigenetic minerals can affect the transmissivity and storage capacity of joints and cleats, and they appear to contribute significantly to interwell heterogeneity in the Pottsville Formation. In highly productive coalbed methane fields, joint- and cleat-fill calcite have strongly positive delta (super 13) C values, whereas calcite fill has lower delta (super 13) C values in fields that are shut in or abandoned. Petrographic analysis and stable-isotope geochemistry of joint- and cleat-fill cements provide insight into coalbed methane reservoir quality and the nature and extent of reservoir compartmentalization, which are important factors governing methane production.

  4. Sensitivity of the global submarine hydrate inventory to scenarios of future climate change

    NASA Astrophysics Data System (ADS)

    Hunter, S. J.; Goldobin, D. S.; Haywood, A. M.; Ridgwell, A.; Rees, J. G.

    2013-04-01

    The global submarine inventory of methane hydrate is thought to be considerable. The stability of marine hydrates is sensitive to changes in temperature and pressure and once destabilised, hydrates release methane into sediments and ocean and potentially into the atmosphere, creating a positive feedback with climate change. Here we present results from a multi-model study investigating how the methane hydrate inventory dynamically responds to different scenarios of future climate and sea level change. The results indicate that a warming-induced reduction is dominant even when assuming rather extreme rates of sea level rise (up to 20 mm yr-1) under moderate warming scenarios (RCP 4.5). Over the next century modelled hydrate dissociation is focussed in the top ˜100m of Arctic and Subarctic sediments beneath <500m water depth. Predicted dissociation rates are particularly sensitive to the modelled vertical hydrate distribution within sediments. Under the worst case business-as-usual scenario (RCP 8.5), upper estimates of resulting global sea-floor methane fluxes could exceed estimates of natural global fluxes by 2100 (>30-50TgCH4yr-1), although subsequent oxidation in the water column could reduce peak atmospheric release rates to 0.75-1.4 Tg CH4 yr-1.

  5. Direct Conversion of Methane to Methanol on Ni-Ceria Surfaces: Metal-Support Interactions and Water-enabled Catalytic Conversion by Site Blocking

    DOE PAGES

    Lustemberg, Pablo G.; Palomino, Robert M.; Gutierrez, Ramon A.; ...

    2018-05-28

    The transformation of methane into methanol or higher alcohols at moderate temperature and pressure conditions is of great environmental interest and remains a challenge despite many efforts. Extended surfaces of metallic nickel are inactive for a direct CH 4 → CH 3OH conversion. This experimental and computational study provides clear evidence that low Ni loadings on a CeO 2(111) support can perform a direct catalytic cycle for the generation of methanol at low temperature using oxygen and water as reactants, with a higher selectivity than ever reported for ceria-based catalysts. On the basis of ambient pressure X-ray photoemission spectroscopy andmore » density functional theory calculations, we demonstrate that water plays a crucial role in blocking catalyst sites where methyl species could fully decompose, an essential factor for diminishing the production of CO and CO 2, and in generating sites on which methoxy species and ultimately methanol can form. In addition to water-site blocking, one needs the effects of metal-support interactions to bind and activate methane and water. Lastly, these findings should be considered when designing metal/oxide catalysts for converting methane to value-added chemicals and fuels.« less

  6. On direct internal methane steam reforming kinetics in operating solid oxide fuel cells with nickel-ceria anodes

    NASA Astrophysics Data System (ADS)

    Thallam Thattai, A.; van Biert, L.; Aravind, P. V.

    2017-12-01

    Major operating challenges remain to safely operate methane fuelled solid oxide fuel cells due to undesirable temperature gradients across the porous anode and carbon deposition. This article presents an experimental study on methane steam reforming (MSR) global kinetics for single operating SOFCs with Ni-GDC (gadolinium doped ceria) anodes for low steam to carbon (S/C) ratios and moderate current densities. The study points out the hitherto insufficient research on MSR global and intrinsic kinetics for operating SOFCs with complete Ni-ceria anodes. Further, it emphasizes the need to develop readily applicable global kinetic models as a subsequent step from previously reported state-of-art and complex intrinsic models. Two rate expressions of the Power law (PL) and Langmuir-Hinshelwood (LH) type have been compared and based on the analysis, limitations of using previously proposed rate expressions for Ni catalytic beds to study MSR kinetics for complete cermet anodes have been identified. Firstly, it has been shown that methane reforming on metallic (Ni) current collectors may not be always negligible, contrary to literature reports. Both PL and LH kinetic models predict significantly different local MSR reaction rate and species partial pressure distributions along the normalized reactor length, indicating a strong need for further experimental verifications.

  7. Direct Conversion of Methane to Methanol on Ni-Ceria Surfaces: Metal-Support Interactions and Water-enabled Catalytic Conversion by Site Blocking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lustemberg, Pablo G.; Palomino, Robert M.; Gutierrez, Ramon A.

    The transformation of methane into methanol or higher alcohols at moderate temperature and pressure conditions is of great environmental interest and remains a challenge despite many efforts. Extended surfaces of metallic nickel are inactive for a direct CH 4 → CH 3OH conversion. This experimental and computational study provides clear evidence that low Ni loadings on a CeO 2(111) support can perform a direct catalytic cycle for the generation of methanol at low temperature using oxygen and water as reactants, with a higher selectivity than ever reported for ceria-based catalysts. On the basis of ambient pressure X-ray photoemission spectroscopy andmore » density functional theory calculations, we demonstrate that water plays a crucial role in blocking catalyst sites where methyl species could fully decompose, an essential factor for diminishing the production of CO and CO 2, and in generating sites on which methoxy species and ultimately methanol can form. In addition to water-site blocking, one needs the effects of metal-support interactions to bind and activate methane and water. Lastly, these findings should be considered when designing metal/oxide catalysts for converting methane to value-added chemicals and fuels.« less

  8. Design and operation of an anaerobic digester for waste management and fuel generation during long term lunar mission

    NASA Astrophysics Data System (ADS)

    Dhoble, Abhishek S.; Pullammanappallil, Pratap C.

    2014-10-01

    Waste treatment and management for manned long term exploratory missions to moon will be a challenge due to longer mission duration. The present study investigated appropriate digester technologies that could be used on the base. The effect of stirring, operation temperature, organic loading rate and reactor design on the methane production rate and methane yield was studied. For the same duration of digestion, the unmixed digester produced 20-50% more methane than mixed system. Two-stage design which separated the soluble components from the solids and treated them separately had more rapid kinetics than one stage system, producing the target methane potential in one-half the retention time than the one stage system. The two stage system degraded 6% more solids than the single stage system. The two stage design formed the basis of a prototype digester sized for a four-person crew during one year exploratory lunar mission.

  9. Mitigation options for methane emissions from rice fields in the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantin, R.S.; Buendia, L.V.; Wassmann, R.

    1996-12-31

    The contribution of Philippine rice production to global methane emission and breakthroughs in methane emission studies conducted in the country are presented in this paper. A significant impact in the reduction of GHG emissions from agriculture can be achieved if methane emissions from ricefields can be abated. This study presents the contribution of Philippine rice cultivation to global methane emission and breakthroughs in methane emission studies in the country which address the issue of mitigation. Using the derived emission factors from local measurements, rice cultivation contributes 566.6 Gg of methane emission in the Philippines. This value is 62% of themore » total methane emitted from the agriculture sector. The emission factors employed which are 78% of the IPCC value for irrigated rice and 95% for rainfed rice were derived from measurements with an automatic system taken during the growth duration in the respective ecosystems. Plots drained for 2 weeks at midtillering and before harvest gave a significant reduction in methane emission as opposed to continuously flooded plots and plots drained before harvest. The cultivar Magat reduced methane emission by 50% as compared to the check variety IR72. The application of ammonium sulfate instead of urea reduced methane emission by 10% to 34%. Addition of 6 t ha{sup {minus}1} phosphogypsum in combination with urea reduced emission by 74% as opposed to plots applied with urea alone. It is also from the results of such measurements that abatement strategies are based as regards to modifying treatments such as water management, fertilization, and choice of rice variety. It is not easy to identify and recommend mitigation strategies that will fit a particular cropping system. However, the identified mitigation options provide focus for the abatement of methane emission from ricefields.« less

  10. The Extent of CH4 Emission and Oxidation in Thermogenic and Biogenic Gas Hydrate Environments

    NASA Astrophysics Data System (ADS)

    Kastner, M.; Solem, C.; Bartlett, D.; MacDonald, I.; Valentine, D.

    2003-12-01

    The role of methane hydrate in the global methane budget is poorly understood, because relatively little is known about the transport of gaseous and dissolved methane through the seafloor into the ocean, from the water column into the atmosphere, and the extent of water-column methanotrophy that occurs en route. We characterize the transport and consumption of methane in three distinct gas hydrate environments, spanning the spectrum of thermogenic and biogenic methane occurrences: Bush Hill in the Gulf of Mexico, Eel River off the coast of Northern California, and the Noth and South Hydrate Ridges on the Cascadia Oregon margin. At all the sites studied a significant enrichment in δ 13CH4 with distance along isopycnals away from the methane source is observed, indicative of extensive aerobic bacterial methane oxidation in the water column. The effects of this process are principally pronounced in the mostly biogenic methane setting, with δ 13C-CH4 measured as high as -12 permil (PDB) between North and South Hydrate Ridge. The δ 13C-CH4 values ranged from -12 to -67 permil at Hydrate Ridge, -34 to -52 permil at Eel River, and -41 to -49 permil at Bush Hill. The large variation in methane carbon isotope ranges between the sites suggest that major differences exist in both the rates of aerobic methane oxidation and system openness at the studied locations. A mean kinetic isotope fractionation factor is being determined using a closed-system Rayleigh distillation model. An approximate regional methane flux from the ocean into the atmosphere is being estimated for the Gulf of Mexico, by extrapolation of the flux value from the Bush Hill methane plume over 390 plume locations having persistent oil slicks on the ocean surface, mapped by time series satellite data.

  11. Clumped isotope effects during OH and Cl oxidation of methane

    NASA Astrophysics Data System (ADS)

    Whitehill, Andrew R.; Joelsson, Lars Magnus T.; Schmidt, Johan A.; Wang, David T.; Johnson, Matthew S.; Ono, Shuhei

    2017-01-01

    A series of experiments were carried out to determine the clumped (13CH3D) methane kinetic isotope effects during oxidation of methane by OH and Cl radicals, the major sink reactions for atmospheric methane. Experiments were performed in a 100 L quartz photochemical reactor, in which OH was produced from the reaction of O(1D) (from O3 photolysis) with H2O, and Cl was from photolysis of Cl2. Samples were taken from the reaction cell and analyzed for methane (12CH4, 12CH3D, 13CH4, 13CH3D) isotopologue ratios using tunable infrared laser direct absorption spectroscopy. Measured kinetic isotope effects for singly substituted species were consistent with previous experimental studies. For doubly substituted methane, 13CH3D, the observed kinetic isotope effects closely follow the product of the kinetic isotope effects for the 13C and deuterium substituted species (i.e., 13,2KIE = 13KIE × 2KIE). The deviation from this relationship is 0.3‰ ± 1.2‰ and 3.5‰ ± 0.7‰ for OH and Cl oxidation, respectively. This is consistent with model calculations performed using quantum chemistry and transition state theory. The OH and Cl reactions enrich the residual methane in the clumped isotopologue in open system reactions. In a closed system, however, this effect is overtaken by the large D/H isotope effect, which causes the residual methane to become anti-clumped relative to the initial methane. Based on these results, we demonstrate that oxidation of methane by OH, the predominant oxidant for tropospheric methane, will only have a minor (∼0.3‰) impact on the clumped isotope signature (Δ13CH3D, measured as a deviation from a stochastic distribution of isotopes) of tropospheric methane. This paper shows that Δ13CH3D will provide constraints on methane source strengths, and predicts that Δ12CH2D2 can provide information on methane sink strengths.

  12. New insights into the transport processes controlling the sulfate-methane-transition-zone near methane vents.

    PubMed

    Sultan, Nabil; Garziglia, Sébastien; Ruffine, Livio

    2016-05-27

    Over the past years, several studies have raised concerns about the possible interactions between methane hydrate decomposition and external change. To carry out such an investigation, it is essential to characterize the baseline dynamics of gas hydrate systems related to natural geological and sedimentary processes. This is usually treated through the analysis of sulfate-reduction coupled to anaerobic oxidation of methane (AOM). Here, we model sulfate reduction coupled with AOM as a two-dimensional (2D) problem including, advective and diffusive transport. This is applied to a case study from a deep-water site off Nigeria's coast where lateral methane advection through turbidite layers was suspected. We show by analyzing the acquired data in combination with computational modeling that a two-dimensional approach is able to accurately describe the recent past dynamics of such a complex natural system. Our results show that the sulfate-methane-transition-zone (SMTZ) is not a vertical barrier for dissolved sulfate and methane. We also show that such a modeling is able to assess short timescale variations in the order of decades to centuries.

  13. Portable remote laser sensor for methane leak detection

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Hinkley, E. D., Jr. (Inventor)

    1984-01-01

    A portable laser system for remote detection of methane gas leaks and concentrations is disclosed. The system transmitter includes first and second lasers, tuned respectively to a wavelength coincident with a strong absorption line of methane and a reference wavelength which is weakly absorbed by methane gas. The system receiver includes a spherical mirror for collecting the reflected laser radiation and focusing the collected radiation through a narrowband optical filter onto an optial detector. The filter is tuned to the wavelength of the two lasers, and rejects background noise. The output of the optical detector is processed by a lock-in detector synchronized to the chopper, and which measures the difference between the first wavelength signal and the reference wavelength signal.

  14. Determining Methane Leak Locations and Rates with a Wireless Network Composed of Low-Cost, Printed Sensors

    NASA Astrophysics Data System (ADS)

    Smith, C. J.; Kim, B.; Zhang, Y.; Ng, T. N.; Beck, V.; Ganguli, A.; Saha, B.; Daniel, G.; Lee, J.; Whiting, G.; Meyyappan, M.; Schwartz, D. E.

    2015-12-01

    We will present our progress on the development of a wireless sensor network that will determine the source and rate of detected methane leaks. The targeted leak detection threshold is 2 g/min with a rate estimation error of 20% and localization error of 1 m within an outdoor area of 100 m2. The network itself is composed of low-cost, high-performance sensor nodes based on printed nanomaterials with expected sensitivity below 1 ppmv methane. High sensitivity to methane is achieved by modifying high surface-area-to-volume-ratio single-walled carbon nanotubes (SWNTs) with materials that adsorb methane molecules. Because the modified SWNTs are not perfectly selective to methane, the sensor nodes contain arrays of variously-modified SWNTs to build diversity of response towards gases with adsorption affinity. Methane selectivity is achieved through advanced pattern-matching algorithms of the array's ensemble response. The system is low power and designed to operate for a year on a single small battery. The SWNT sensing elements consume only microwatts. The largest power consumer is the wireless communication, which provides robust, real-time measurement data. Methane leak localization and rate estimation will be performed by machine-learning algorithms built with the aid of computational fluid dynamics simulations of gas plume formation. This sensor system can be broadly applied at gas wells, distribution systems, refineries, and other downstream facilities. It also can be utilized for industrial and residential safety applications, and adapted to other gases and gas combinations.

  15. Optical fiber network sensor system for monitoring methane concentration

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-wei; Zhang, Ji-long

    2011-08-01

    With regard to the high accuracy optic-fiber sensor for monitoring methane concentration, the choice of light source depends on methane peak values. Besides, the environment of mine should be considered, that is to say other gas should be considered, such as vapor, CO and CO2 etc, without absorbent spectrum in the decided wavelength. It has been reported that vapor, CO and CO2 have no obvious absorption in 0.85μm, 1.3μm and 1.66μm area, CH4 has no obvious absorption in 0.85μm area. So diode laser with 1.3μm or 1.66μm peak wavelength is chosen as the optic-fiber sensor's light source for detecting methane concentration. On the basis of the principle of optic absorption varied with methane concentration at its characteristic absorbent wavelength, the advantage of optic-fiber sensor technology and the circumstance characteristic of the coal mine. An optic-fiber sensor system is presented for monitoring methane concentration. Space Division Multiple Access Technology (SDMAT) and long optical path absorbent pool technology are combined in the study. Considering the circumstance characteristic of the coal mine, the optic-fiber network sensors for detecting methane concentration from mix gas of vapor, CO, CH4 and CO2 are used. It introduces the principle of an optic-fiber sensor system for monitoring methane concentration in coal mine. It contains the structure block diagram of monitoring system, the system is mainly made up of diode laser for monitoring methane concentration, Y-shaped photo-coupler with coupled rate 50:50, optical switch 1×2, gas absorbent cell, the computer data process and control system and photoelectric transformer. In this study, in order to decrease to the influence of the dark-current of photodiode, intensity in light sources and temperature drifts of processing circuit on the system accuracy in measurement, a beam of light is broken down into two beams in the coupler of Y-shaped coupler, the one acts as the reference optical path, the other is known as the sensing optical path. The experimental result shows that diode laser with 1654.141nm in wavelength is taken as the optic source for detecting methane concentration, the detective limit of the sensor is below 4.274mg/m3 when the optical path of absorbent pool is 20 centimeters, and the prevision and stability could satisfy practical application. The whole instrument can also reach on-line measurement with multiple points on different spot.

  16. LanzaTech- Capturing Carbon. Fueling Growth.

    ScienceCinema

    NONE

    2018-01-16

    LanzaTech will design a gas fermentation system that will significantly improve the rate at which methane gas is delivered to a biocatalyst. Current gas fermentation processes are not cost effective compared to other gas-to-liquid technologies because they are too slow for large-scale production. If successful, LanzaTech's system will process large amounts of methane at a high rate, reducing the energy inputs and costs associated with methane conversion.

  17. LOX/Methane In-Space Propulsion Systems Technology Status and Gaps

    NASA Technical Reports Server (NTRS)

    Klem, Mark D.

    2017-01-01

    Human exploration architecture studies have identified liquid oxygen (LOX)Methane (LCH4) as a strong candidate for both interplanetary and descent ascent propulsion solutions. Significant research efforts into methane propulsion have been conducted for over 50 years, ranging from fundamental combustion mixing efforts to rocket chamber and system level demonstrations. Over the past 15 years NASA and its partners have built upon these early activities that have demonstrated practical components and sub-systems needed to field future methane space transportation elements. These advanced development efforts have formed a foundation of LOXLCH4 propulsion knowledge that has significantly reduced the development risks of future methane based space transportation elements for human exploration beyond earth orbit. As a bipropellant propulsion system, LOXLCH4 has some favorable characteristics for long life and reusability, which are critical to lunar and Mars missions. Non-toxic, non-corrosive, self-venting, and simple to purge. No extensive decontamination process required as with toxic propellants. High vapor pressure provides for excellent vacuum ignition characteristics. Performance is better than current earth storable propellants for human scale spacecraft. Provides the capability for future Mars exploration missions to use propellants that are produced in-situ on Mars Liquid Methane is thermally similar to O2 as a cryogenic propellant, 90,111 K (LO2, LCH4 respectively) instead of the 23 K of LH2. Allows for common components and thus providing cost savings as compared to liquid hydrogen (LH2). Due to liquid methane having a 6x higher density than hydrogen, it can be stored in much smaller volumes. Cryogenic storage aspect of these propellants needs to be addressed. Passive techniques using shielding and orientations to deep space Refrigeration may be required to maintain both oxygen and methane in liquid forms

  18. Methane storage in nanoporous material at supercritical temperature over a wide range of pressures

    PubMed Central

    Wu, Keliu; Chen, Zhangxin; Li, Xiangfang; Dong, Xiaohu

    2016-01-01

    The methane storage behavior in nanoporous material is significantly different from that of a bulk phase, and has a fundamental role in methane extraction from shale and its storage for vehicular applications. Here we show that the behavior and mechanisms of the methane storage are mainly dominated by the ratio of the interaction between methane molecules and nanopores walls to the methane intermolecular interaction, and a geometric constraint. By linking the macroscopic properties of the methane storage to the microscopic properties of a system of methane molecules-nanopores walls, we develop an equation of state for methane at supercritical temperature over a wide range of pressures. Molecular dynamic simulation data demonstrates that this equation is able to relate very well the methane storage behavior with each of the key physical parameters, including a pore size and shape and wall chemistry and roughness. Moreover, this equation only requires one fitted parameter, and is simple, reliable and powerful in application. PMID:27628747

  19. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 1. System design and gas distribution.

    PubMed

    Cassini, Filippo; Scheutz, Charlotte; Skov, Bent H; Mou, Zishen; Kjeldsen, Peter

    2017-05-01

    Greenhouse gas mitigation at landfills by methane oxidation in engineered biocover systems is believed to be a cost effective technology, but so far a full quantitative evaluation of the efficiency of the technology in full scale has only been carried out in a few cases. A third generation semi-passive biocover system was constructed at the AV Miljø Landfill, Denmark. The biocover system was fed by landfill gas pumped out of three leachate collection wells. An innovative gas distribution system was used to overcome the commonly observed surface emission hot spot areas resulting from an uneven gas distribution to the active methane oxidation layer, leading to areas with methane overloading. Performed screening of methane and carbon dioxide surface concentrations, as well as flux measurement using a flux chamber at the surface of the biocover, showed homogenous distributions indicating an even gas distribution. This was supported by results from a tracer gas test where the compound HFC-134a was added to the gas inlet over an adequately long time period to obtain tracer gas stationarity in the whole biocover system. Studies of the tracer gas movement within the biocover system showed a very even gas distribution in gas probes installed in the gas distribution layer. Also the flux of tracer gas out of the biocover surface, as measured by flux chamber technique, showed a spatially even distribution. Installed probes logging the temperature and moisture content of the methane oxidation layer at different depths showed elevated temperatures in the layer with temperature differences to the ambient temperature in the range of 25-50°C at the deepest measuring point due to the microbial processes occurring in the layer. The moisture measurements showed that infiltrating precipitation was efficiently drained away from the methane oxidation layer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Kinetic modelling of methane production during bio-electrolysis from anaerobic co-digestion of sewage sludge and food waste.

    PubMed

    Prajapati, Kalp Bhusan; Singh, Rajesh

    2018-05-10

    In present study batch tests were performed to investigate the enhancement in methane production under bio-electrolysis anaerobic co-digestion of sewage sludge and food waste. The bio-electrolysis reactor system (B-EL) yield more methane 148.5 ml/g COD in comparison to reactor system without bio-electrolysis (B-CONT) 125.1 ml/g COD. Whereas bio-electrolysis reactor system (C-EL) Iron Scraps amended yield lesser methane (51.2 ml/g COD) in comparison to control bio-electrolysis reactor system without Iron scraps (C-CONT - 114.4 ml/g COD). Richard and Exponential model were best fitted for cumulative methane production and biogas production rates respectively as revealed modelling study. The best model fit for the different reactors was compared by Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC). The bioelectrolysis process seems to be an emerging technology with lesser the loss in cellulase specific activity with increasing temperature from 50 to 80 °C. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Abiotic production of methane in terrestrial planets.

    PubMed

    Guzmán-Marmolejo, Andrés; Segura, Antígona; Escobar-Briones, Elva

    2013-06-01

    On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×10(8) and 1.3×10(9) molecules cm(-2) s(-1) for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life.

  2. Methane emissions from the global oil and gas supply chain: recent advances and next steps

    NASA Astrophysics Data System (ADS)

    Zavala Araiza, D.; Herndon, S. C.; Roscioli, J. R.; Yacovitch, T. I.; Knighton, W. B.; Johnson, M.; Tyner, D. R.; Hamburg, S.

    2017-12-01

    A wide body of research has characterized methane emissions from the oil and gas system in the US. In contrast, empirical data is limited for other significant oil and gas producing regions across the world. As a consequence, measuring and characterizing methane emissions across global oil and gas operations will be crucial to the design of effective mitigation strategies. Several countries have announced pledges to reduce methane emissions from this system (e.g., North America, Climate and Clean Air Coalition [CCAC] ministers). In the case of Canada, the federal government recently announced regulations supporting a 40-45% reduction of methane emissions from the oil and gas production systems. For these regulations to be effective, it is critical to understand the current methane emission patterns. We present results from a coordinated multiscale (i.e., airborne-based, ground-based) measurement campaign in Alberta, Canada. We use empirically derived emission estimates to characterize site-level emissions and derive an emissions distribution. Our work shows that many major sources of emissions are unmeasured or underreported. Consistent with previous studies in the US, a small fraction of sites disproportionately account for the majority of emissions: roughly 20% of sites accounted for 75% of emissions. An independent airborne-based regional estimate was 40% lower than the ground-based regional estimate, but not statistically different. Finally, we summarize next steps as part of the CCAC Oil and Gas Methane Study: ongoing work that is targeting oil and gas sectors/production regions with limited empirical data on methane emissions. This work builds on the approach deployed in quantifying methane emissions from the oil and gas supply chain in the US, underscoring the commitment to transparency of the collected data, external review, deployment of multiple methodologies, and publication of results in peer-reviewed journals.

  3. A conduit dilation model of methane venting from lake sediments

    USGS Publications Warehouse

    Scandella, B.P.; Varadharajan, C.; Hemond, Harold F.; Ruppel, C.; Juanes, R.

    2011-01-01

    Methane is a potent greenhouse gas, but its effects on Earth's climate remain poorly constrained, in part due to uncertainties in global methane fluxes to the atmosphere. An important source of atmospheric methane is the methane generated in organic-rich sediments underlying surface water bodies, including lakes, wetlands, and the ocean. The fraction of the methane that reaches the atmosphere depends critically on the mode and spatiotemporal characteristics of free-gas venting from the underlying sediments. Here we propose that methane transport in lake sediments is controlled by dynamic conduits, which dilate and release gas as the falling hydrostatic pressure reduces the effective stress below the tensile strength of the sediments. We test our model against a four-month record of hydrostatic load and methane flux in Upper Mystic Lake, Mass., USA, and show that it captures the complex episodicity of methane ebullition. Our quantitative conceptualization opens the door to integrated modeling of methane transport to constrain global methane release from lakes and other shallow-water, organic-rich sediment systems, and to assess its climate feedbacks.

  4. Methane Post-Processing and Hydrogen Separation for Spacecraft Oxygen Loop Closure

    NASA Technical Reports Server (NTRS)

    Greenwood, Zachary W.; Abeny, Morgan B.; Wall, Terry; Miller, Lee A.; Wheeler, Richard R., Jr.

    2017-01-01

    State-of-the-art life support oxygen recovery technology on the International Space Station is based on the Sabatier reaction where only about half of the oxygen required for the crew is recovered from metabolic carbon dioxide (CO2). The Sabatier reaction produces water as the primary product and methane as a byproduct. Oxygen recovery is constrained by both the limited availability of reactant hydrogen from water electrolysis and Sabatier methane (CH4) being vented as a waste product resulting in a continuous loss of reactant hydrogen. Post-processing methane with the Plasma Pyrolysis Assembly (PPA) to recover this hydrogen has the potential to substantially increase oxygen recovery and thus dramatically reduce the logistical challenges associated with oxygen resupply. The PPA decomposes methane into predominantly hydrogen and acetylene. A purification system is necessary to purify hydrogen before it is recycled back to the Sabatier reactor. Testing and evaluation of acetylene removal systems and PPA system architectures are presented and discussed.

  5. Catalytic conversion of methane to methanol using Cu-zeolites.

    PubMed

    Alayon, Evalyn Mae C; Nachtegaal, Maarten; Ranocchiari, Marco; van Bokhoven, Jeroen A

    2012-01-01

    The conversion of methane to value-added liquid chemicals is a promising answer to the imminent demand for fuels and chemical synthesis materials in the advent of a dwindling petroleum supply. Current technology requires high energy input for the synthesis gas production, and is characterized by low overall selectivity, which calls for alternative reaction routes. The limitation to achieve high selectivity is the high C-H bond strength of methane. High-temperature reaction systems favor gas-phase radical reactions and total oxidation. This suggests that the catalysts for methane activation should be active at low temperatures. The enzymatic-inspired metal-exchanged zeolite systems apparently fulfill this need, however, methanol yield is low and a catalytic process cannot yet be established. Homogeneous and heterogeneous catalytic systems have been described which stabilize the intermediate formed after the first C-H activation. The understanding of the reaction mechanism and the determination of the active metal sites are important for formulating strategies for the upgrade of methane conversion catalytic technologies.

  6. 30 CFR 27.39 - Tests to determine resistance to vibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.39 Tests to... to verify the reliability and durability of a methane-monitoring system or component(s) thereof where...

  7. Characterization of methane oxidation in a simulated landfill cover system by comparing molecular and stable isotope mass balances.

    PubMed

    Schulte, Marcel; Jochmann, Maik A; Gehrke, Tobias; Thom, Andrea; Ricken, Tim; Denecke, Martin; Schmidt, Torsten C

    2017-11-01

    Biological methane oxidation may be regarded as a method of aftercare treatment for landfills to reduce climate relevant methane emissions. It is of social and economic interest to estimate the behavior of bacterial methane oxidation in aged landfill covers due to an adequate long-term treatment of the gas emissions. Different approaches assessing methane oxidation in laboratory column studies have been investigated by other authors recently. However, this work represents the first study in which three independent approaches, ((i) mass balance, (ii) stable isotope analysis, and (iii) stoichiometric balance of product (CO 2 ) and reactant (CH 4 ) by CO 2 /CH 4 -ratio) have been compared for the estimation of the biodegradation by a robust statistical validation on a rectangular, wide soil column. Additionally, an evaluation by thermal imaging as a potential technique for the localization of the active zone of bacterial methane oxidation has been addressed in connection with stable isotope analysis and CO 2 /CH 4 -ratios. Although landfills can be considered as open systems the results for stable isotope analysis based on a closed system correlated better with the mass balance than calculations based on an open system. CO 2 /CH 4 -ratios were also in good agreement with mass balance. In general, highest values for biodegradation were determined from mass balance, followed by CO 2 /CH 4 -ratio, and stable isotope analysis. The investigated topsoil proved to be very suitable as a potential cover layer by removing up to 99% of methane for CH 4 loads of 35-65gm -2 d -1 that are typical in the aftercare phase of landfills. Finally, data from stable isotope analysis and the CO 2 /CH 4 -ratios were used to trace microbial activity within the reactor system. It was shown that methane consumption and temperature increase, as a cause of high microbial activity, correlated very well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Potential of tannin-rich plants for modulating ruminal microbes and ruminal fermentation in sheep.

    PubMed

    Rira, M; Morgavi, D P; Archimède, H; Marie-Magdeleine, C; Popova, M; Bousseboua, H; Doreau, M

    2015-01-01

    The objective of this work was to study nutritional strategies for decreasing methane production by ruminants fed tropical diets, combining in vitro and in vivo methods. The in vitro approach was used to evaluate the dose effect of condensed tannins (CT) contained in leaves of Gliricidia sepium, Leucaena leucocephala, and Manihot esculenta (39, 75, and 92 g CT/kg DM, respectively) on methane production and ruminal fermentation characteristics. Tannin-rich plants (TRP) were incubated for 24 h alone or mixed with a natural grassland hay based on Dichanthium spp. (control plant), so that proportions of TRP were 0, 0.25, 0.5, 0.75, and 1.0. Methane production, VFA concentration, and fermented OM decreased with increased proportions of TRP. Numerical differences on methane production and VFA concentration among TRP sources may be due to differences in their CT content, with greater effects for L. leucocephala and M. esculenta than for G. sepium. Independently of TRP, the response to increasing doses of CT was linear for methane production but quadratic for VFA concentration. As a result, at moderate tannin dose, methane decreased more than VFA. The in vivo trial was conducted to investigate the effect of TRP on different ruminal microbial populations. To this end, 8 rumen-cannulated sheep from 2 breeds (Texel and Blackbelly) were used in two 4 × 4 Latin square designs. Diets were fed ad libitum and were composed of the same feeds used for the in vitro trial: control plant alone or combined with pellets made from TRP leaves at 44% of the diet DM. Compared to TRP, concentration of Ruminococcus flavefaciens was greater for the control diet and concentration of Ruminococcus albus was least for the control diet. The methanogen population was greater for Texel than for Blackbelly. By contrast, TRP-containing diets did not affect protozoa or Fibrobacter succinogenes numbers. Hence, TRP showed potential for mitigating methane production by ruminants. These findings suggest that TRP fed as pellets could be used to decrease methane production.

  9. A novel thermophilic methane-oxidizing bacteria from thermal springs of Uzon volcano caldera, Kamchatka

    NASA Astrophysics Data System (ADS)

    Dvorianchikova, E.; Kizilova, A.; Kravchenko, I.; Galchenko, V.

    2012-04-01

    Methane is a radiatively active trace gas, contributing significantly to the greenhouse effect. It is 26 times more efficient in absorbing and re-emitting infrared radiation than carbon dioxide. Methanotrophs play an essential role in the global carbon cycle by oxidizing 50-75% of the biologically produced methane in situ, before it reaches the atmosphere. Methane-oxidizing bacteria are isolated from the various ecosystems and described at present. Their biology, processes of methane oxidation in fresh-water, marsh, soil and marine habitats are investigated quite well. Processes of methane oxidation in places with extreme physical and chemical conditions (high or low , salinity and temperature values) are studied in much smaller degree. Such ecosystems occupy a considerable part of the Earth's surface. The existence of aerobic methanotrophs inhabiting extreme environments has been verified so far by cultivation experiments and direct detection of methane monooxygenase genes specific to almost all aerobic methanotrophs. Thermophilic and thermotolerant methanotrophs have been isolated from such extreme environments and consist of the gammaproteobacterial (type I) genera Methylothermus, Methylocaldum, Methylococcus and the verrucomicrobial genus Methylacidiphilum. Uzon volcano caldera is a unique area, where volcanic processes still happen today. Hydrothermal springs of the area are extreme ecosystems which microbial communities represent considerable scientific interest of fundamental and applied character. A thermophilic aerobic methane-oxidising bacterium was isolated from a sediment sample from a hot spring (56.1; 5.3) of Uzon caldera. Strain S21 was isolated using mineral low salt medium. The headspace gas was composed of CH4, Ar, CO2, and O2 (40:40:15:5). The temperature of cultivation was 50, pH 5.5. Cells of strain S21 in exponential and early-stationary phase were coccoid bacilli, about 1 μm in diameter, and motile with a single polar flagellum. PCR and molecular cloning of a pmoA gene fragment have shown that strain S21 was moderately related to the genus Methylothermus; the closest organism is Methylothermus subterraneus. The further studying of strain S21 will expand our knowledge of this group of organisms, important from the ecological point of view.

  10. Methane Upgrading of Acetic Acid as a Model Compound for a Biomass-Derived Liquid over a Modified Zeolite Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Aiguo; Austin, Danielle; Karmakar, Abhoy

    The technical feasibility of coaromatization of acetic acid derived from biomass and methane was investigated under mild reaction conditions (400 °C and 30 bar) over silver-, zinc-, and/or gallium-modified zeolite catalysts. On the basis of GC-MS, Micro-GC, and TGA analysis, more light aromatic hydrocarbons, less phenol formation, lower coke production, and higher methane conversion are observed over 5%Zn-1%Ga/ZSM-5 catalyst in comparison with catalytic performance over the other catalysts. Direct evidence of methane incorporation into aromatics over 5%Zn-1%Ga/ZSM-5 catalyst is witnessed in 1H, 2H, and 13C NMR spectra, revealing that the carbon from methane prefers to occupy the phenyl carbon sitesmore » and the benzylic carbon sites, and the hydrogen of methane favors the aromatic and benzylic substitutions of product molecules. In combination with the 13C NMR results for isotopically labeled acetic acid ( 13CH 3COOH and CH 3 13COOH), it can be seen that the methyl and carbonyl carbons of acetic acid are equally involved in the formation of ortho, meta and para carbons of the aromatics, whereas the phenyl carbons directly bonded with alkyl substituent groups and benzylic carbons are derived mainly from the carboxyl carbon of acetic acid. After various catalyst characterizations by using TEM, XRD, DRIFT, NH 3-TPD, and XPS, the excellent catalytic performance might be closely related to the highly dispersed zinc and gallium species on the zeolite support, moderate surface acidity, and an appropriate ratio of weak acidic sites to strong acidic sites as well as the fairly stable oxidation state during acetic acid conversion under a methane environment. Two mechanisms of the coaromatization of acetic acid and methane have also been proposed after consulting all the collected data in this study. In conclusion, the results reported in this paper could potentially lead to more cost-effective utilization of abundant natural gas and biomass.« less

  11. Methane Upgrading of Acetic Acid as a Model Compound for a Biomass-Derived Liquid over a Modified Zeolite Catalyst

    DOE PAGES

    Wang, Aiguo; Austin, Danielle; Karmakar, Abhoy; ...

    2017-04-19

    The technical feasibility of coaromatization of acetic acid derived from biomass and methane was investigated under mild reaction conditions (400 °C and 30 bar) over silver-, zinc-, and/or gallium-modified zeolite catalysts. On the basis of GC-MS, Micro-GC, and TGA analysis, more light aromatic hydrocarbons, less phenol formation, lower coke production, and higher methane conversion are observed over 5%Zn-1%Ga/ZSM-5 catalyst in comparison with catalytic performance over the other catalysts. Direct evidence of methane incorporation into aromatics over 5%Zn-1%Ga/ZSM-5 catalyst is witnessed in 1H, 2H, and 13C NMR spectra, revealing that the carbon from methane prefers to occupy the phenyl carbon sitesmore » and the benzylic carbon sites, and the hydrogen of methane favors the aromatic and benzylic substitutions of product molecules. In combination with the 13C NMR results for isotopically labeled acetic acid ( 13CH 3COOH and CH 3 13COOH), it can be seen that the methyl and carbonyl carbons of acetic acid are equally involved in the formation of ortho, meta and para carbons of the aromatics, whereas the phenyl carbons directly bonded with alkyl substituent groups and benzylic carbons are derived mainly from the carboxyl carbon of acetic acid. After various catalyst characterizations by using TEM, XRD, DRIFT, NH 3-TPD, and XPS, the excellent catalytic performance might be closely related to the highly dispersed zinc and gallium species on the zeolite support, moderate surface acidity, and an appropriate ratio of weak acidic sites to strong acidic sites as well as the fairly stable oxidation state during acetic acid conversion under a methane environment. Two mechanisms of the coaromatization of acetic acid and methane have also been proposed after consulting all the collected data in this study. In conclusion, the results reported in this paper could potentially lead to more cost-effective utilization of abundant natural gas and biomass.« less

  12. 30 CFR 27.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINING PRODUCTS METHANE-MONITORING SYSTEMS General Provisions § 27.2 Definitions. As used in this part... a gas, such as methane, natural gas, or similar hydrocarbon gas with normal air, that can be ignited... designs, manufactures, or assembles and that seeks certification or preliminary testing of a methane...

  13. 30 CFR 27.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINING PRODUCTS METHANE-MONITORING SYSTEMS General Provisions § 27.2 Definitions. As used in this part... a gas, such as methane, natural gas, or similar hydrocarbon gas with normal air, that can be ignited... designs, manufactures, or assembles and that seeks certification or preliminary testing of a methane...

  14. 30 CFR 27.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINING PRODUCTS METHANE-MONITORING SYSTEMS General Provisions § 27.2 Definitions. As used in this part... a gas, such as methane, natural gas, or similar hydrocarbon gas with normal air, that can be ignited... designs, manufactures, or assembles and that seeks certification or preliminary testing of a methane...

  15. 30 CFR 27.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINING PRODUCTS METHANE-MONITORING SYSTEMS General Provisions § 27.2 Definitions. As used in this part... a gas, such as methane, natural gas, or similar hydrocarbon gas with normal air, that can be ignited... designs, manufactures, or assembles and that seeks certification or preliminary testing of a methane...

  16. Carbon Dioxide Reduction Post-Processing Sub-System Development

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Miller, Lee A.; Greenwood, Zachary; Barton, Katherine

    2012-01-01

    The state-of-the-art Carbon Dioxide (CO2) Reduction Assembly (CRA) on the International Space Station (ISS) facilitates the recovery of oxygen from metabolic CO2. The CRA utilizes the Sabatier process to produce water with methane as a byproduct. The methane is currently vented overboard as a waste product. Because the CRA relies on hydrogen for oxygen recovery, the loss of methane ultimately results in a loss of oxygen. For missions beyond low earth orbit, it will prove essential to maximize oxygen recovery. For this purpose, NASA is exploring an integrated post-processor system to recover hydrogen from CRA methane. The post-processor, called a Plasma Pyrolysis Assembly (PPA) partially pyrolyzes methane to recover hydrogen with acetylene as a byproduct. In-flight operation of post-processor will require a Methane Purification Assembly (MePA) and an Acetylene Separation Assembly (ASepA). Recent efforts have focused on the design, fabrication, and testing of these components. The results and conclusions of these efforts will be discussed as well as future plans.

  17. Methane Sensitivity to Perturbations in Tropospheric Oxidizing Capacity

    NASA Technical Reports Server (NTRS)

    Yegorova, Elena; Duncan, Bryan

    2011-01-01

    Methane is an important greenhouse gas and has a 25 times greater global warming potential than CO2 on a century timescale. Yet there are considerable uncertainties in the magnitude and variability of its sources and sinks. The response of the coupled non-linear methane-carbon monoxide-hydroxyl radical (OH) system is important in determining the tropospheric oxidizing capacity. Using the NASA Goddard Earth Observing System, Version 5 (GEOS-5) chemistry climate model, we study the response of methane to perturbations of OH and wetland emissions. We use a computationally-efficient option of the GEOS-5 CCM that includes an OH parameterization that accurately represents OH predicted by a full chemical mechanism. The OH parameterization allows for studying non-linear CH4-CO-OH feedbacks in computationally fast sensitivity experiments. We compare our results with surface observations (GMD) and discuss the range of uncertainty in OH and wetland emissions required to bring modeling results in better agreement with surface observations. Our results can be used to improve projections of methane emissions and methane growth.

  18. Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet

    PubMed Central

    Crémière, Antoine; Lepland, Aivo; Chand, Shyam; Sahy, Diana; Condon, Daniel J.; Noble, Stephen R.; Martma, Tõnu; Thorsnes, Terje; Sauer, Simone; Brunstad, Harald

    2016-01-01

    Gas hydrates stored on continental shelves are susceptible to dissociation triggered by environmental changes. Knowledge of the timescales of gas hydrate dissociation and subsequent methane release are critical in understanding the impact of marine gas hydrates on the ocean–atmosphere system. Here we report a methane efflux chronology from five sites, at depths of 220–400 m, in the southwest Barents and Norwegian seas where grounded ice sheets led to thickening of the gas hydrate stability zone during the last glaciation. The onset of methane release was coincident with deglaciation-induced pressure release and thinning of the hydrate stability zone. Methane efflux continued for 7–10 kyr, tracking hydrate stability changes controlled by relative sea-level rise, bottom water warming and fluid pathway evolution in response to changing stress fields. The protracted nature of seafloor methane emissions probably attenuated the impact of hydrate dissociation on the climate system. PMID:27167635

  19. Methane Propulsion Elements for Mars

    NASA Technical Reports Server (NTRS)

    Percy, Tom; Polsgrove, Tara; Thomas, Dan

    2017-01-01

    Human exploration beyond LEO relies on a suite of propulsive elements to: (1) Launch elements into space, (2) Transport crew and cargo to and from various destinations, (3) Provide access to the surface of Mars, (4) Launch crew from the surface of Mars. Oxygen/Methane propulsion systems meet the unique requirements of Mars surface access. A common Oxygen/Methane propulsion system is being considered to reduce development costs and support a wide range of primary & alternative applications.

  20. Evidence of sulfate-dependent anaerobic methane oxidation ...

    EPA Pesticide Factsheets

    The rapid development of unconventional gas resources has been accompanied by an increase in public awareness regarding the potential effects of drilling operations on drinking water sources. Incidents have been reported involving blowouts (e.g., Converse County, WY; Lawrence Township, PA; Aliso Canyon, CA) and home/property explosions (e.g., Bainbridge Township, OH; Dimock, PA; Huerfano County, CO) caused by methane migration in the subsurface within areas of natural gas development. We evaluated water quality characteristics in the northern Raton Basin of Colorado and documented the response of the Poison Canyon aquifer system several years after upward migration of methane gas occurred from the deeper Vermejo Formation coalbed production zone. Results show persistent secondary water quality impacts related to the biodegradation of methane. We identify four distinct characteristics of groundwater methane attenuation in the Poison Canyon aquifer: (i) consumption of methane and sulfate and production of sulfide and bicarbonate, (ii) methane loss coupled to production of higher-molecular-weight (C2+) gaseous hydrocarbons, (iii) patterns of 13C enrichment and depletion in methane and dissolved inorganic carbon, and (iv) a systematic shift in sulfur and oxygen isotope ratios of sulfate, indicative of microbial sulfate reduction. We also show that the biogeochemical response of the aquifer system has not mobilized naturally occurring trace metals, including arsenic,

  1. Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment.

    PubMed

    Yacob, Shahrakbah; Ali Hassan, Mohd; Shirai, Yoshihito; Wakisaka, Minato; Subash, Sunderaj

    2006-07-31

    The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Malaysia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil. This paper will focus on palm oil mill effluent (POME) as the source of renewable energy from the generation of methane and establish the current methane emission from the anaerobic treatment facility. The emission was measured from two anaerobic ponds in Felda Serting Palm Oil Mill for 52 weeks. The results showed that the methane content was between 35.0% and 70.0% and biogas flow rate ranged between 0.5 and 2.4 L/min/m(2). Total methane emission per anaerobic pond was 1043.1 kg/day. The total methane emission calculated from the two equations derived from relationships between methane emission and total carbon removal and POME discharged were comparable with field measurement. This study also revealed that anaerobic pond system is more efficient than open digesting tank system for POME treatment. Two main factors affecting the methane emission were mill activities and oil palm seasonal cropping.

  2. [Remote system of natural gas leakage based on multi-wavelength characteristics spectrum analysis].

    PubMed

    Li, Jing; Lu, Xu-Tao; Yang, Ze-Hui

    2014-05-01

    In order to be able to quickly, to a wide range of natural gas pipeline leakage monitoring, the remote detection system for concentration of methane gas was designed based on static Fourier transform interferometer. The system used infrared light, which the center wavelength was calibrated to absorption peaks of methane molecules, to irradiated tested area, and then got the interference fringes by converging collimation system and interference module. Finally, the system calculated the concentration-path-length product in tested area by multi-wavelength characteristics spectrum analysis algorithm, furthermore the inversion of the corresponding concentration of methane. By HITRAN spectrum database, Selected wavelength position of 1. 65 microm as the main characteristic absorption peaks, thereby using 1. 65 pm DFB laser as the light source. In order to improve the detection accuracy and stability without increasing the hardware configuration of the system, solved absorbance ratio by the auxiliary wave-length, and then get concentration-path-length product of measured gas by the method of the calculation proportion of multi-wavelength characteristics. The measurement error from external disturbance is caused by this innovative approach, and it is more similar to a differential measurement. It will eliminate errors in the process of solving the ratio of multi-wavelength characteristics, and can improve accuracy and stability of the system. The infrared absorption spectrum of methane is constant, the ratio of absorbance of any two wavelengths by methane is also constant. The error coefficients produced by the system is the same when it received the same external interference, so the measured noise of the system can be effectively reduced by the ratio method. Experimental tested standards methane gas tank with leaking rate constant. Using the tested data of PN1000 type portable methane detector as the standard data, and were compared to the tested data of the system, while tested distance of the system were 100, 200 and 500 m. Experimental results show that the methane concentration detected value was stable after a certain time leakage, the concentration-path-length product value of the system was stable. For detection distance of 100 m, the detection error of the concentration-path-length product was less than 1. 0%. With increasing distance from tested area, the detection error is increased correspondingly. When the distance was 500 m, the detection error was less than 4. 5%. In short, the detected error of the system is less than 5. 0% after the gas leakage stable, to meet the requirements of the field of natural gas leakage remote sensing.

  3. Coal gasification systems engineering and analysis. Appendix C: Alternate product facility designs

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The study of the production of methane, methanol, gasoline, and hydrogen by an add-on facility to a Koppers-Totzek based MBG plant is presented. Applications to a Texaco facility are inferred by evaluation of delta effects from the K-T cases. The production of methane from an add-on facility to a Lurgi based MBG plant and the co-production of methane and methanol from a Lurgi based system is studied. Studies are included of the production of methane from up to 50 percent of the MBG produced in an integrated K-T based plant and the production of methane from up to 50 percent of the MBG produced from an integrated plant in which module 1 is based on K-T technology and modules 2, 3, and 4 are based on Texaco technology.

  4. A GLOBAL METHANE EMISSIONS PROGRAM FOR LANDFILLS, COAL MINES, AND NATURAL GAS SYSTEMS

    EPA Science Inventory

    The paper gives the scope and methodology of EPA/AEERL's methane emissions studies and discloses data accumulated thus far in the program. Anthropogenic methane emissions are a principal focus in AEERL's global climate research program, including three major sources: municipal so...

  5. Secondary migration and leakage of methane from a major tight-gas system

    NASA Astrophysics Data System (ADS)

    Wood, James M.; Sanei, Hamed

    2016-11-01

    Tight-gas and shale-gas systems can undergo significant depressurization during basin uplift and erosion of overburden due primarily to the natural leakage of hydrocarbon fluids. To date, geologic factors governing hydrocarbon leakage from such systems are poorly documented and understood. Here we show, in a study of produced natural gas from 1,907 petroleum wells drilled into a Triassic tight-gas system in western Canada, that hydrocarbon fluid loss is focused along distinct curvilinear pathways controlled by stratigraphic trends with superior matrix permeability and likely also structural trends with enhanced fracture permeability. Natural gas along these pathways is preferentially enriched in methane because of selective secondary migration and phase separation processes. The leakage and secondary migration of thermogenic methane to surficial strata is part of an ongoing carbon cycle in which organic carbon in the deep sedimentary basin transforms into methane, and ultimately reaches the near-surface groundwater and atmosphere.

  6. Secondary migration and leakage of methane from a major tight-gas system

    PubMed Central

    Wood, James M.; Sanei, Hamed

    2016-01-01

    Tight-gas and shale-gas systems can undergo significant depressurization during basin uplift and erosion of overburden due primarily to the natural leakage of hydrocarbon fluids. To date, geologic factors governing hydrocarbon leakage from such systems are poorly documented and understood. Here we show, in a study of produced natural gas from 1,907 petroleum wells drilled into a Triassic tight-gas system in western Canada, that hydrocarbon fluid loss is focused along distinct curvilinear pathways controlled by stratigraphic trends with superior matrix permeability and likely also structural trends with enhanced fracture permeability. Natural gas along these pathways is preferentially enriched in methane because of selective secondary migration and phase separation processes. The leakage and secondary migration of thermogenic methane to surficial strata is part of an ongoing carbon cycle in which organic carbon in the deep sedimentary basin transforms into methane, and ultimately reaches the near-surface groundwater and atmosphere. PMID:27874012

  7. High resolution and comprehensive techniques to analyze aerobic methane oxidation in mesocosm experiments

    NASA Astrophysics Data System (ADS)

    Chan, E. W.; Kessler, J. D.; Redmond, M. C.; Shiller, A. M.; Arrington, E. C.; Valentine, D. L.; Colombo, F.

    2015-12-01

    Many studies of microbially mediated aerobic methane oxidation in oceanic environments have examined the many different factors that control the rates of oxidation. However, there is debate on how quickly methane is oxidized once a microbial population is established and what factor(s) are limiting in these types of environments. These factors include the availability of CH4, O2, trace metals, nutrients, and the density of cell population. Limits to these factors can also control the temporal aspects of a methane oxidation event. In order to look at this process in its entirety and with higher temporal resolution, a mesocosm incubation system was developed with a Dissolved Gas Analyzer System (DGAS) coupled with a set of analytical tools to monitor aerobic methane oxidation in real time. With the addition of newer laser spectroscopy techniques (cavity ringdown spectroscopy), stable isotope fractionation caused by microbial processes can also be examined on a real time and automated basis. Cell counting, trace metal, nutrient, and DNA community analyses have also been carried out in conjunction with these mesocosm samples to provide a clear understanding of the biology in methane oxidation dynamics. This poster will detail the techniques involved to provide insights into the chemical and isotopic kinetics controlling aerobic methane oxidation. Proof of concept applications will be presented from seep sites in the Hudson Canyon and the Sleeping Dragon seep field, Mississippi Canyon 118 (MC 118). This system was used to conduct mesocosm experiments to examine methane consumption, O2 consumption, nutrient consumption, and biomass production.

  8. Laboratory Studies of Methane and Its Relationship to Prebiotic Chemistry

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Geppert, Wolf D.; Carrasco, Nathalie; Holm, Nils G.; Mousis, Olivier; Palumbo, Maria Elisabetta; Waite, J. Hunter; Watanabe, Naoki; Ziurys, Lucy M.

    2017-08-01

    To examine how prebiotic chemical evolution took place on Earth prior to the emergence of life, laboratory experiments have been conducted since the 1950s. Methane has been one of the key molecules in these investigations. In earlier studies, strongly reducing gas mixtures containing methane and ammonia were used to simulate possible reactions in the primitive atmosphere of Earth, producing amino acids and other organic compounds. Since Earth's early atmosphere is now considered to be less reducing, the contribution of extraterrestrial organics to chemical evolution has taken on an important role. Such organic molecules may have come from molecular clouds and regions of star formation that created protoplanetary disks, planets, asteroids, and comets. The interstellar origin of organics has been examined both experimentally and theoretically, including laboratory investigations that simulate interstellar molecular reactions. Endogenous and exogenous organics could also have been supplied to the primitive ocean, making submarine hydrothermal systems plausible sites of the generation of life. Experiments that simulate such hydrothermal systems where methane played an important role have consequently been conducted. Processes that occur in other Solar System bodies offer clues to the prebiotic chemistry of Earth. Titan and other icy bodies, where methane plays significant roles, are especially good targets. In the case of Titan, methane is both in the atmosphere and in liquidospheres that are composed of methane and other hydrocarbons, and these have been studied in simulation experiments. Here, we review the wide range of experimental work in which these various terrestrial and extraterrestrial environments have been modeled, and we examine the possible role of methane in chemical evolution.

  9. Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system.

    PubMed

    Fu, Shan-Fei; Ding, Jian-Nan; Zhang, Yun; Li, Yi-Fei; Zhu, Rong; Yuan, Xian-Zheng; Zou, Hua

    2018-06-01

    In this study, impacts of nanoplastic on the pure and mixed anaerobic digestion systems were investigated. Results showed the growth and metabolism of Acetobacteroides hydrogenigenes were partly inhibited by nanoplastic existed in the pure anaerobic digestion system. The anaerobic digestion of sewage sludge was also obviously inhibited by nanoplastic existed in the mixed anaerobic digestion system. Both the methane yield and methane production rate of the mixed anaerobic digestion system showed negative correlation with the nanoplastic concentration. Compared with anaerobic digestion system without nanoplastic, methane yield and maximum daily methane yield at the nanoplastic concentration of 0.2g/L decreased for 14.4% and 40.7%, respectively. In addition, the start-up of mixed anaerobic digestion system was prolonged by addition of nanoplastic. Microbial community structure analysis indicated the microbial community structures were also affected by nanoplastic existed in the system. At the nanoplastic concentration of 0.2g/L, the relative abundances of family Cloacamonaceae, Porphyromonadaceae, Anaerolinaceae and Gracilibacteraceae decreased partly. Conversely, the relative abundances of family Anaerolinaceae, Clostridiaceae, Geobacteraceae, Dethiosulfovibrionaceae and Desulfobulbaceae improved partly. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Analysis of Decomposition for Structure I Methane Hydrate by Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Wei, Na; Sun, Wan-Tong; Meng, Ying-Feng; Liu, An-Qi; Zhou, Shou-Wei; Guo, Ping; Fu, Qiang; Lv, Xin

    2018-05-01

    Under multi-nodes of temperatures and pressures, microscopic decomposition mechanisms of structure I methane hydrate in contact with bulk water molecules have been studied through LAMMPS software by molecular dynamics simulation. Simulation system consists of 482 methane molecules in hydrate and 3027 randomly distributed bulk water molecules. Through analyses of simulation results, decomposition number of hydrate cages, density of methane molecules, radial distribution function for oxygen atoms, mean square displacement and coefficient of diffusion of methane molecules have been studied. A significant result shows that structure I methane hydrate decomposes from hydrate-bulk water interface to hydrate interior. As temperature rises and pressure drops, the stabilization of hydrate will weaken, decomposition extent will go deep, and mean square displacement and coefficient of diffusion of methane molecules will increase. The studies can provide important meanings for the microscopic decomposition mechanisms analyses of methane hydrate.

  11. [Moderately haloalkaliphilic aerobic methylobacteria].

    PubMed

    Trotsenko, Iu A; Doronina, N V; Li, Ts D; Reshetnikov, A S

    2007-01-01

    Aerobic methylobacteria utilizing oxidized and substituted methane derivatives as carbon and energy sources are widespread in nature and involved in the global carbon cycle, being a unique biofilter on the path of these C1 compounds from different ecosystems to the atmosphere. New data on the biological features of moderately halophilic, neutrophilic, and alkaliphilic methylobacteria isolated from biotopes with higher osmolarity (seas, saline and soda lakes, saline soils, and deteriorating marble) are reviewed. Particular attention is paid to the latest advances in the study of the mechanisms of osmoadaptation of aerobic moderately haloalkaliphilic methylobacteria: formation of osmolytes, in particular, molecular and genetic aspects of biosynthesis of the universal bioprotectant ectoine. The prospects for further studies of the physiological and biochemical principles of haloalkalophily and for the application of haloalkaliphilic aerobic methylobacteria in biosynthesis and biodegradation are discussed.

  12. Modeling of termokinetic oscillations at partial oxidation of methane

    NASA Astrophysics Data System (ADS)

    Arutyunov, A. V.; Belyaev, A. A.; Inovenkov, I. N.; Nefedov, V. V.

    2017-12-01

    Partial oxidation of natural gas at moderate temperatures below 1500 K has significant interest for a number of industrial applications. But such processes can proceed at different unstable regimes including oscillating modes. Nonlinear phenomena at partial oxidation of methane were observed at different conditions. The investigation of the complex nonlinear system of equations that describes this process is a real method to insure its stability at industrial conditions and, at the same time, is an effective tool for its further enhancement. Numerical analysis of methane oxidation kinetics in the continuous stirred-tank reactor, with the use of detailed kinetic model has shown the possibility of the appearance of oscillating modes in the appropriate range of reaction parameters that characterize the composition, pressure, reagents flow, thermophysical features of the system, and geometry of the reactor. The appearance of oscillating modes is connected both with the reaction kinetics, heat release and sink and reagents introduction and removing. At that, oscillations appear only at a limited range of parameters, but can be accompanied by significant change in the yield of products. We have determined the range of initial temperature and pressure at which oscillations can be observed, if all other parameters remained fixed. The boundaries of existence of oscillations on the phase plane were calculated. It was shown that depending on the position inside the oscillation region the oscillations have different frequency and amplitude. It was reviled the role of heat exchange with the environment: at the absence of heat exchange the oscillating modes are impossible. In the vicinity of the boundary of phase range, where oscillations exist, significant change of concentration of some products were observed, for example, that of CO2, which in this case one of the principal products is. At that, insignificant increase in pressure not only change the character of CO2 behaving with time, but as well lead to significant increase of its mole fraction simultaneously twice decreasing the mole fraction of CO.

  13. Methane emissions from oceans, coasts, and freshwater habitats: New perspectives and feedbacks on climate

    USGS Publications Warehouse

    Hamdan, Leila J.; Wickland, Kimberly P.

    2016-01-01

    Methane is a powerful greenhouse gas, and atmospheric concentrations have risen 2.5 times since the beginning of the Industrial age. While much of this increase is attributed to anthropogenic sources, natural sources, which contribute between 35% and 50% of global methane emissions, are thought to have a role in the atmospheric methane increase, in part due to human influences. Methane emissions from many natural sources are sensitive to climate, and positive feedbacks from climate change and cultural eutrophication may promote increased emissions to the atmosphere. These natural sources include aquatic environments such as wetlands, freshwater lakes, streams and rivers, and estuarine, coastal, and marine systems. Furthermore, there are significant marine sediment stores of methane in the form of clathrates that are vulnerable to mobilization and release to the atmosphere from climate feedbacks, and subsurface thermogenic gas which in exceptional cases may be released following accidents and disasters (North Sea blowout and Deepwater Horizon Spill respectively). Understanding of natural sources, key processes, and controls on emission is continually evolving as new measurement and modeling capabilities develop, and different sources and processes are revealed. This special issue of Limnology and Oceanography gathers together diverse studies on methane production, consumption, and emissions from freshwater, estuarine, and marine systems, and provides a broad view of the current science on methane dynamics of aquatic ecosystems. Here, we provide a general overview of aquatic methane sources, their contribution to the global methane budget, and key uncertainties. We then briefly summarize the contributions to and highlights of this special issue.

  14. Isocyanate asthma: respiratory symptoms caused by diphenyl-methane di-isocyanate

    PubMed Central

    Tanser, A. R.; Bourke, M. P.; Blandford, A. G.

    1973-01-01

    Tanser, A. R., Bourke, M. P., and Blandford, A. G. (1973).Thorax, 28, 596-600. Isocyanate asthma: respiratory symptoms caused by diphenyl-methane di-isocyanate. We investigated 57 employees of a factory where diphenyl-methane di-isocyanate (MDI) was used to prepare the materials for making rigid polyurethane foam. Four employees had developed hypersensitivity to MDI. Two had severe, and one moderate asthma, while the fourth had symptoms resembling the delayed hypersensitivity type of reaction. Ten other employees had experienced unpleasant, mainly respiratory, irritant effects from MDI vapour. A past history of bronchitis or of allergy was found more commonly in those with symptoms from MDI than in those without symptoms. It is not known if MDI causes permanent damage to the respiratory tract. The most severely affected cases in the present series had normal spirometric values after recovery, and no persisting symptoms. MDI is safer than other isocyanates used in industry but may cause both major and minor illness. It should be handled with the same precautions as those used with the more toxic compounds. PMID:4784381

  15. Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review

    PubMed Central

    Laanbroek, Hendrikus J.

    2010-01-01

    Background According to the Intergovernmental Panel on Climate Change (IPCC) 2007, natural wetlands contribute 20–39 % to the global emission of methane. The range in the estimated percentage of the contribution of these systems to the total release of this greenhouse gas is large due to differences in the nature of the emitting vegetation including the soil microbiota that interfere with the production and consumption of methane. Scope Methane is a dominant end-product of anaerobic mineralization processes. When all electron acceptors except carbon dioxide are used by the microbial community, methanogenesis is the ultimate pathway to mineralize organic carbon compounds. Emergent wetland plants play an important role in the emission of methane to the atmosphere. They produce the carbon necessary for the production of methane, but also facilitate the release of methane by the possession of a system of interconnected internal gas lacunas. Aquatic macrophytes are commonly adapted to oxygen-limited conditions as they prevail in flooded or waterlogged soils. By this system, oxygen is transported to the underground parts of the plants. Part of the oxygen transported downwards is released in the root zone, where it sustains a number of beneficial oxidation processes. Through the pores from which oxygen escapes from the plant into the root zone, methane can enter the plant aerenchyma system and subsequently be emitted into the atmosphere. Part of the oxygen released into the root zone can be used to oxidize methane before it enters the atmosphere. However, the oxygen can also be used to regenerate alternative electron acceptors. The continuous supply of alternative electron acceptors will diminish the role of methanogenesis in the anaerobic mineralization processes in the root zone and therefore repress the production and emission of methane. The role of alternative element cycles in the inhibition of methanogenesis is discussed. Conclusions The role of the nitrogen cycle in repression of methane production is probably low. In contrast to wetlands particularly created for the purification of nitrogen-rich waste waters, concentrations of inorganic nitrogen compounds are low in the root zones in the growing season due to the nitrogen-consuming behaviour of the plant. Therefore, nitrate hardly competes with other electron acceptors for reduced organic compounds, and repression of methane oxidation by the presence of higher levels of ammonium will not be the case. The role of the iron cycle is likely to be important with respect to the repression of methane production and oxidation. Iron-reducing and iron-oxidizing bacteria are ubiquitous in the rhizosphere of wetland plants. The cycling of iron will be largely dependent on the size of the oxygen release in the root zone, which is likely to be different between different wetland plant species. The role of the sulfur cycle in repression of methane production is important in marine, sulfate-rich ecosystems, but might also play a role in freshwater systems where sufficient sulfate is available. Sulfate-reducing bacteria are omnipresent in freshwater ecosystems, but do not always react immediately to the supply of fresh sulfate. Hence, their role in the repression of methanogenesis is still to be proven in freshwater marshes. PMID:19689973

  16. Laboratory formation of non-cementing, methane hydrate-bearing sands

    USGS Publications Warehouse

    Waite, William F.; Bratton, Peter M.; Mason, David H.

    2011-01-01

    Naturally occurring hydrate-bearing sands often behave as though methane hydrate is acting as a load-bearing member of the sediment. Mimicking this behavior in laboratory samples with methane hydrate likely requires forming hydrate from methane dissolved in water. To hasten this formation process, we initially form hydrate in a free-gas-limited system, then form additional hydrate by circulating methane-supersaturated water through the sample. Though the dissolved-phase formation process can theoretically be enhanced by increasing the pore pressure and flow rate and lowering the sample temperature, a more fundamental concern is preventing clogs resulting from inadvertent methane bubble formation in the circulation lines. Clog prevention requires careful temperature control throughout the circulation loop.

  17. Optical constants of liquid and solid methane

    NASA Technical Reports Server (NTRS)

    Martonchik, John V.; Orton, Glenn S.

    1994-01-01

    The optical constants n(sub r) + in(sub i) of liquid methane and phase 1 solid methane were determined over the entire spectral range by the use of various data sources published in the literature. Kramers-Kronig analyses were performed on the absorption spectra of liquid methane at the boiling point (111 K) and the melting point (90 K) and on the absorption spectra of phase 1 solid methane at the melting point and at 30 K. Measurements of the static dielectric constant at these temperatures and refractive indices determined over limited spectral ranges were used as constraints in the analyses. Applications of methane optical properties to studies of outer solar system bodies are described.

  18. Methane emissions measurements of natural gas components using a utility terrain vehicle and portable methane quantification system

    NASA Astrophysics Data System (ADS)

    Johnson, Derek; Heltzel, Robert

    2016-11-01

    Greenhouse Gas (GHG) emissions are a growing problem in the United States (US). Methane (CH4) is a potent GHG produced by several stages of the natural gas sector. Current scrutiny focuses on the natural gas boom associated with unconventional shale gas; however, focus should still be given to conventional wells and outdated equipment. In an attempt to quantify these emissions, researchers modified an off-road utility terrain vehicle (UTV) to include a Full Flow Sampling system (FFS) for methane quantification. GHG emissions were measured from non-producing and remote low throughput natural gas components in the Marcellus region. Site audits were conducted at eleven locations and leaks were identified and quantified at seven locations including at a low throughput conventional gas and oil well, two out-of-service gathering compressors, a conventional natural gas well, a coalbed methane well, and two conventional and operating gathering compressors. No leaks were detected at the four remaining sites, all of which were coal bed methane wells. The total methane emissions rate from all sources measured was 5.3 ± 0.23 kg/hr, at a minimum.

  19. 30 CFR 75.351 - Atmospheric monitoring systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... methane concentration at any sensor reaches the alert level as specified in § 75.351(i). These signals... carbon monoxide, smoke, or methane concentration at any sensor reaches the alarm level as specified in... methane concentration at any sensor reaches the alarm level as specified in § 75.351(i). These signals...

  20. 30 CFR 75.351 - Atmospheric monitoring systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... methane concentration at any sensor reaches the alert level as specified in § 75.351(i). These signals... carbon monoxide, smoke, or methane concentration at any sensor reaches the alarm level as specified in... methane concentration at any sensor reaches the alarm level as specified in § 75.351(i). These signals...

  1. 30 CFR 75.351 - Atmospheric monitoring systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... methane concentration at any sensor reaches the alert level as specified in § 75.351(i). These signals... carbon monoxide, smoke, or methane concentration at any sensor reaches the alarm level as specified in... methane concentration at any sensor reaches the alarm level as specified in § 75.351(i). These signals...

  2. 78 FR 11643 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... monitoring, accumulated refuse, surface methane monitoring, and collection and control system exceedances... included a burden item for Agency review of surface methane monitoring reports. Respondents, however, are... adjusted the calculations to exclude any Agency burden associated with surface methane monitoring. We have...

  3. 30 CFR 27.23 - Automatic warning device.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.23... function automatically at a methane content of the mine atmosphere between 1.0 to 1.5 volume percent and at all higher concentrations of methane. (c) It is recommended that the automatic warning device be...

  4. PORTABLE METHANE FLUX METER - PHASE I

    EPA Science Inventory

    This Phase I project will investigate achieving a low power, portable system for measuring methane concentrations and fluxes. The system will combine diode laser-based trace gas concentration measurements with rapid wind speed measurements to determine fluxes using eddy cor...

  5. Macroscopic biofilms in fracture-dominated sediment that anaerobically oxidize methane

    USGS Publications Warehouse

    Briggs, B.R.; Pohlman, J.W.; Torres, M.; Riedel, M.; Brodie, E.L.; Colwell, F.S.

    2011-01-01

    Methane release from seafloor sediments is moderated, in part, by the anaerobic oxidation of methane (AOM) performed by consortia of archaea and bacteria. These consortia occur as isolated cells and aggregates within the sulfate-methane transition (SMT) of diffusion and seep-dominant environments. Here we report on a new SMT setting where the AOM consortium occurs as macroscopic pink to orange biofilms within subseafloor fractures. Biofilm samples recovered from the Indian and northeast Pacific Oceans had a cellular abundance of 10 7 to 10 8 cells cm -3. This cell density is 2 to 3 orders of magnitude greater than that in the surrounding sediments. Sequencing of bacterial 16S rRNA genes indicated that the bacterial component is dominated by Deltaproteobacteria, candidate division WS3, and Chloroflexi, representing 46%, 15%, and 10% of clones, respectively. In addition, major archaeal taxa found in the biofilm were related to the ANME-1 clade, Thermoplasmatales, and Desulfurococcales, representing 73%, 11%, and 10% of archaeal clones, respectively. The sequences of all major taxa were similar to sequences previously reported from cold seep environments. PhyloChip microarray analysis detected all bacterial phyla identified by the clone library plus an additional 44 phyla. However, sequencing detected more archaea than the PhyloChip within the phyla of Methanosarcinales and Desulfurococcales. The stable carbon isotope composition of the biofilm from the SMT (-35 to-43%) suggests that the production of the biofilm is associated with AOM. These biofilms are a novel, but apparently widespread, aggregation of cells represented by the ANME-1 clade that occur in methane-rich marine sediments. ?? 2011, American Society for Microbiology.

  6. Heavy-machinery traffic impacts methane emissions as well as methanogen abundance and community structure in oxic forest soils.

    PubMed

    Frey, Beat; Niklaus, Pascal A; Kremer, Johann; Lüscher, Peter; Zimmermann, Stephan

    2011-09-01

    Temperate forest soils are usually efficient sinks for the greenhouse gas methane, at least in the absence of significant amounts of methanogens. We demonstrate here that trafficking with heavy harvesting machines caused a large reduction in CH(4) consumption and even turned well-aerated forest soils into net methane sources. In addition to studying methane fluxes, we investigated the responses of methanogens after trafficking in two different forest sites. Trafficking generated wheel tracks with different impact (low, moderate, severe, and unaffected). We found that machine passes decreased the soils' macropore space and lowered hydraulic conductivities in wheel tracks. Severely compacted soils yielded high methanogenic abundance, as demonstrated by quantitative PCR analyses of methyl coenzyme M reductase (mcrA) genes, whereas these sequences were undetectable in unaffected soils. Even after a year after traffic compression, methanogen abundance in compacted soils did not decline, indicating a stability of methanogens here over time. Compacted wheel tracks exhibited a relatively constant community structure, since we found several persisting mcrA sequence types continuously present at all sampling times. Phylogenetic analysis revealed a rather large methanogen diversity in the compacted soil, and most mcrA gene sequences were mostly similar to known sequences from wetlands. The majority of mcrA gene sequences belonged either to the order Methanosarcinales or Methanomicrobiales, whereas both sites were dominated by members of the families Methanomicrobiaceae Fencluster, with similar sequences obtained from peatland environments. The results show that compacting wet forest soils by heavy machinery causes increases in methane production and release.

  7. Methane generation from waste materials

    DOEpatents

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  8. Evidence of Sulfate-Dependent Anaerobic Methane Oxidation within an Area Impacted by Coalbed Methane-Related Gas Migration

    NASA Astrophysics Data System (ADS)

    Wolfe, A. L.; Wikin, R. T.

    2017-12-01

    We evaluated water quality characteristics in the northern Raton Basin of Colorado and documented the response of the Poison Canyon aquifer system several years after upward migration of methane gas occurred from the deeper Vermejo Formation coalbed production zone. Over a 17-month study period, water samples were obtained from domestic water wells and monitoring wells located within the impacted area, and analyzed for 245 constituents, including organic compounds, nutrients, major and trace elements, dissolved gases, and isotopic tracers for carbon, sulfur, oxygen, and hydrogen. Multiple lines of evidence suggest that sulfate-dependent methane biodegradation, which involves the oxidation of methane (CH4) to carbon dioxide (CO2) using sulfate (SO42-) as the terminal electron acceptor, is occurring: (i) consumption of methane and sulfate and production of sulfide and bicarbonate, (ii) methane loss coupled to production of higher molecular weight (C2+) gaseous hydrocarbons, (iii) patterns of 13C enrichment and depletion in methane and dissolved inorganic carbon, and (iv) a systematic shift in sulfur and oxygen isotope ratios of sulfate, indicative of microbial sulfate reduction. Groundwater-methane attenuation is linked to the production of dissolved sulfide, and elevated dissolved sulfide concentrations represent an undesirable secondary water quality impact. The biogeochemical response of the aquifer system has not mobilized naturally occurring trace metals, including arsenic, chromium, cobalt, nickel, and lead, likely due to the microbial production of hydrogen sulfide, which favors stabilization of metals in aquifer solids.

  9. Abiotic Production of Methane in Terrestrial Planets

    PubMed Central

    Guzmán-Marmolejo, Andrés; Escobar-Briones, Elva

    2013-01-01

    Abstract On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×108 and 1.3×109 molecules cm−2 s−1 for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life. Key Words: Serpentinization—Exoplanets—Biosignatures—Planetary atmospheres. Astrobiology 13, 550–559. PMID:23742231

  10. Time lapse survey plan on the first offshore methane hydrate production test in 2013 around the eastern Nankai Trough area by multi-component OBC seismic tool

    NASA Astrophysics Data System (ADS)

    Inamori, T.; Hayashi, T.; Asakawa, E.; Takahashi, H.; Saeki, T.

    2011-12-01

    We are planning to conduct the multi-component ocean bottom cable (hereafter OBC) seismic survey to monitor the methane hydrate dissociation zone at the 1st offshore methane hydrate production test site in the eastern Nankai Trough, Japan, in 2013. We conducted the first OBC survey in the methane hydrate concentrated zone around the eastern Nankai Trough area in 2006 by RSCS which we developed. We obtained to the good image of methane hydrate bearing layer by P-P section as similar as the conventional surface seismic survey. However, we could not obtain the good image from P-S section compared with P-P section. On the other hand, we studied the sonic velocity distribution at the Mallik 2nd production test before and after in 2007, by the sonic tool data. We could clearly delineate the decrease of S-wave velocity, however, we could not detect the decrease of P-wave velocity because of the presence of the dissociated methane gas from methane hydrate. From these reason we guess the S-wave data is more proper to delineate the condition of the methane hydrate zone at the methane hydrate production tests than P-wave data. We are now developing the new OBC system, which we call Deep-sea Seismic System (hereafter DSS). The sensor of the DSS will install three accelerometers and one hydrophone. A feasibility study to detect the methane hydrate dissociation with the DSS was carried out and we found that the methane hydrate dissociation could be detected with the DSS depending on the zone of the dissociation. And the baseline survey will be held at the 1st offshore methane hydrate production test site in summer 2012. Two monitoring surveys are planned after the methane hydrate production test in 2013. We believe that we will get the good images to delineate the methane hydrate dissociated zone from this time lapse survey. The Authors would like to thank METI, MH21 consortium and JOGMEC for permissions to publish this paper.

  11. Reduced description of reactive flows with tabulation of chemistry

    NASA Astrophysics Data System (ADS)

    Ren, Zhuyin; Goldin, Graham M.; Hiremath, Varun; Pope, Stephen B.

    2011-12-01

    The direct use of large chemical mechanisms in multi-dimensional Computational Fluid Dynamics (CFD) is computationally expensive due to the large number of chemical species and the wide range of chemical time scales involved. To meet this challenge, a reduced description of reactive flows in combination with chemistry tabulation is proposed to effectively reduce the computational cost. In the reduced description, the species are partitioned into represented species and unrepresented species; the reactive system is described in terms of a smaller number of represented species instead of the full set of chemical species in the mechanism; and the evolution equations are solved only for the represented species. When required, the unrepresented species are reconstructed assuming that they are in constrained chemical equilibrium. In situ adaptive tabulation (ISAT) is employed to speed the chemistry calculation through tabulating information of the reduced system. The proposed dimension-reduction / tabulation methodology determines and tabulates in situ the necessary information of the nr-dimensional reduced system based on the ns-species detailed mechanism. Compared to the full description with ISAT, the reduced descriptions achieve additional computational speed-up by solving fewer transport equations and faster ISAT retrieving. The approach is validated in both a methane/air premixed flame and a methane/air non-premixed flame. With the GRI 1.2 mechanism consisting of 31 species, the reduced descriptions (with 12 to 16 represented species) achieve a speed-up factor of up to three compared to the full description with ISAT, with a relatively moderate decrease in accuracy compared to the full description.

  12. Methane emission from sewers.

    PubMed

    Liu, Yiwen; Ni, Bing-Jie; Sharma, Keshab R; Yuan, Zhiguo

    2015-08-15

    Recent studies have shown that sewer systems produce and emit a significant amount of methane. Methanogens produce methane under anaerobic conditions in sewer biofilms and sediments, and the stratification of methanogens and sulfate-reducing bacteria may explain the simultaneous production of methane and sulfide in sewers. No significant methane sinks or methanotrophic activities have been identified in sewers to date. Therefore, most of the methane would be emitted at the interface between sewage and atmosphere in gravity sewers, pumping stations, and inlets of wastewater treatment plants, although oxidation of methane in the aeration basin of a wastewater treatment plant has been reported recently. Online measurements have also revealed highly dynamic temporal and spatial variations in methane production caused by factors such as hydraulic retention time, area-to-volume ratio, temperature, and concentration of organic matter in sewage. Both mechanistic and empirical models have been proposed to predict methane production in sewers. Due to the sensitivity of methanogens to environmental conditions, most of the chemicals effective in controlling sulfide in sewers also suppress or diminish methane production. In this paper, we review the recent studies on methane emission from sewers, including the production mechanisms, quantification, modeling, and mitigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Biogenic coal-to-methane conversion efficiency decreases after repeated organic amendment

    USGS Publications Warehouse

    Davis, Katherine J.; Barnhart, Elliott P.; Fields, Matthew W.; Gerlach, Robin

    2018-01-01

    Addition of organic amendments to coal-containing systems can increase the rate and extent of biogenic methane production for 60–80 days before production slows or stops. Understanding the effect of repeated amendment additions on the rate and extent of enhanced coal-dependent methane production is important if biological coal-to-methane conversion is to be enhanced on a commercial scale. Microalgal biomass was added at a concentration of 0.1 g/L to microcosms with and without coal on days 0, 76, and 117. Rates of methane production were enhanced after the initial amendment but coal-containing treatments produced successively decreasing amounts of methane with each amendment. During the first amendment period, 113% of carbon added as amendment was recovered as methane, whereas in the second and third amendment periods, 39% and 32% of carbon added as amendment was recovered as methane, respectively. Additionally, algae-amended coal treatments produced ∼38% more methane than unamended coal treatments and ∼180% more methane than amended coal-free treatments after one amendment. However, a second amendment addition resulted in only an ∼25% increase in methane production for coal versus noncoal treatments and a third amendment addition resulted in similar methane production in both coal and noncoal treatments. Successive amendment additions appeared to result in a shift from coal-to-methane conversion to amendment-to-methane conversion. The reported results indicate that a better understanding is needed of the potential impacts and efficiencies of repeated stimulation for enhanced coal-to-methane conversion.

  14. Raman and FTIR spectroscopy of methane in olivine

    NASA Astrophysics Data System (ADS)

    Smith, A.; Oze, C.; Rossman, G. R.; Celestian, A. J.

    2017-12-01

    Olivine has been proposed to be a direct source of methane (CH4) in serpentinization systems and experiments. Here, Raman and Fourier Transform Infrared (FTIR) spectroscopy were used to verify the presence and abundance of CH4 in olivine samples from nine localities, including the San Carlos olivine. Raman analyses did not identify any methane in the olivine samples. As olivine is orthorhombic, three polarized FTIR spectra were obtained for the olivine samples. No methane was detected in any of the olivine samples using FTIR. Overall, olivine investigated in this study does not appear to be a primary source of methane.

  15. Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization.

    PubMed

    Pan, Xiaofang; Angelidaki, Irini; Alvarado-Morales, Merlin; Liu, Houguang; Liu, Yuhong; Huang, Xu; Zhu, Gefu

    2016-10-01

    For evaluating the methanogenesis from typical methanogenic precursors (formate, acetate and H2/CO2), CH4 production kinetics were investigated at 37±1°C in batch anaerobic digestion tests and stimulated by modified Gompertz model. The results showed that maximum methanation rate from formate, acetate and H2/CO2 were 19.58±0.49, 42.65±1.17 and 314.64±3.58NmL/gVS/d in digested manure system and 6.53±0.31, 132.04±3.96 and 640.16±19.92NmL/gVS/d in sewage sludge system during second generation incubation. Meanwhile the model could not fit well in granular sludge system, while the rate of formate methanation was faster than from H2/CO2 and acetate. Considering both the kinetic results and microbial assay we could conclude that H2/CO2 methanation was the fastest methanogenic step in digested manure and sewage sludge system with Methanomicrobiales as dominant methanogens, while granular sludge with Methanobacteriales as dominant methanogens contributed to the fastest formate methanation. Copyright © 2016. Published by Elsevier Ltd.

  16. Methane Post-Processor Development to Increase Oxygen Recovery beyond State-of-the-Art Carbon Dioxide Reduction Technology

    NASA Technical Reports Server (NTRS)

    Abney, Morgan; Miller, Lee; Greenwood, Zach; Iannantuono, Michelle; Jones, Kenny

    2013-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported.

  17. Methane Post-Processor Development to Increase Oxygen Recovery beyond State-of-the-Art Carbon Dioxide Reduction Technology

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Greenwood, Zachary; Miller, Lee A.; Alvarez, Giraldo; Iannantuono, Michelle; Jones, Kenny

    2013-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported

  18. Liquid Methane Testing With a Large-Scale Spray Bar Thermodynamic Vent System

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Bolshinskiy, L. G.; Hedayat, A.; Flachbart, R. H.; Sisco, J. D.; Schnell. A. R.

    2014-01-01

    NASA's Marshall Space Flight Center conducted liquid methane testing in November 2006 using the multipurpose hydrogen test bed outfitted with a spray bar thermodynamic vent system (TVS). The basic objective was to identify any unusual or unique thermodynamic characteristics associated with densified methane that should be considered in the design of space-based TVSs. Thirteen days of testing were performed with total tank heat loads ranging from 720 to 420 W at a fill level of approximately 90%. It was noted that as the fluid passed through the Joule-Thompson expansion, thermodynamic conditions consistent with the pervasive presence of metastability were indicated. This Technical Publication describes conditions that correspond with metastability and its detrimental effects on TVS performance. The observed conditions were primarily functions of methane densification and helium pressurization; therefore, assurance must be provided that metastable conditions have been circumvented in future applications of thermodynamic venting to in-space methane storage.

  19. Solid methane on Triton and Pluto - 3- to 4-micron spectrophotometry

    NASA Technical Reports Server (NTRS)

    Spencer, John R.; Buie, Marc W.; Bjoraker, Gordon L.

    1990-01-01

    Methane has been identified in the Pluto/Charon system on the basis of absorption features in the reflectance spectrum at 1.5 and 2.3 microns; attention is presently given to observations of a 3.25 micron-centered deep absorption feature in Triton and Pluto/Charon system reflectance spectra. This absorption may indicate the presence of solid methane, constituting either the dominant surface species or a mixture with a highly transparent substance, such as N2 frost.

  20. Methanator Fueled Engines for Pollution Control

    NASA Technical Reports Server (NTRS)

    Cagliostro, D. E.; Winkler, E. L.

    1973-01-01

    A methanator fueled Otto-cycle engine is compared with other methods proposed to control pollution due to automobile exhaust emissions. The comparison is made with respect to state of development, emission factors, capital cost, operational and maintenance costs, performance, operational limitations, and impact on the automotive industries. The methanator fueled Otto-cycle engine is projected to meet 1975 emission standards and operate at a lower relative total cost compared to the catalytic muffler system and to have low impact. Additional study is required for system development.

  1. Controls on Methane Occurrences in Shallow Aquifers Overlying the Haynesville Shale Gas Field, East Texas.

    PubMed

    Nicot, Jean-Philippe; Larson, Toti; Darvari, Roxana; Mickler, Patrick; Slotten, Michael; Aldridge, Jordan; Uhlman, Kristine; Costley, Ruth

    2017-07-01

    Understanding the source of dissolved methane in drinking-water aquifers is critical for assessing potential contributions from hydraulic fracturing in shale plays. Shallow groundwater in the Texas portion of the Haynesville Shale area (13,000 km 2 ) was sampled (70 samples) for methane and other dissolved light alkanes. Most samples were derived from the fresh water bearing Wilcox formations and show little methane except in a localized cluster of 12 water wells (17% of total) in a approximately 30 × 30 km 2 area in Southern Panola County with dissolved methane concentrations less than 10 mg/L. This zone of elevated methane is spatially associated with the termination of an active fault system affecting the entire sedimentary section, including the Haynesville Shale at a depth more than 3.5 km, and with shallow lignite seams of Lower Wilcox age at a depth of 100 to 230 m. The lignite spatial extension overlaps with the cluster. Gas wetness and methane isotope compositions suggest a mixed microbial and thermogenic origin with contribution from lignite beds and from deep thermogenic reservoirs that produce condensate in most of the cluster area. The pathway for methane from the lignite and deeper reservoirs is then provided by the fault system. © 2017, National Ground Water Association.

  2. A Calibration-Capture-Recapture Model for Inferring Natual Gas Leak Population Characteristics Using Data from Google Street View Cars

    NASA Astrophysics Data System (ADS)

    Weller, Z.; Hoeting, J.; von Fischer, J.

    2017-12-01

    Pipeline systems that distribute natural gas (NG) within cities can leak, leading to safety hazards and wasted product. Moreover, these leaks are climate-altering because NG is primarily composed of methane, a potent greenhouse gas. Scientists have recently developed an innovative method for mapping NG leak locations by installing atmospheric methane analyzers on Google Street View cars. We develop new statistical methodology to answer key inferential questions using data collected by these mobile air monitors. The new calibration-capture-recapture (CCR) model utilizes data from controlled methane releases and data collected by GSV cars to provide inference for several desired quantities, including the number of undetected methane sources and the total methane output rate in a surveyed region. The CCR model addresses challenges associated with using a capture-recapture model to analyze data collected by a mobile detection system including variable sampling effort and lack of physically marking individuals. We develop a Markov chain Monte Carlo algorithm for parameter estimation and apply the CCR model to methane data collected in two U.S. cities. The CCR model provides a new framework for inferring the total number of leaks in NG distribution systems and offers critical insights for informing intelligent repair policy that is both cost-effective and environmentally friendly.

  3. Testing of a Methane Cryogenic Heat Pipe with a Liquid Trap Turn-Off Feature for use on Space Interferometer Mission (SIM)

    NASA Technical Reports Server (NTRS)

    Cepeda-Rizo, Juan; Krylo, Robert; Fisher, Melanie; Bugby, David C.

    2011-01-01

    Camera cooling for SIM presents three thermal control challenges; stable operation at 163K (110 C), decontamination heating to +20 C, and a long span from the cameras to the radiator. A novel cryogenic cooling system based on a methane heat pipe meets these challenges. The SIM thermal team, with the help of heat pipe vendor ATK, designed and tested a complete, low temperature, cooling system. The system accommodates the two SIM cameras with a double-ended conduction bar, a single methane heat pipe, independent turn-off devices, and a flight-like radiator. The turn ]off devices consist of a liquid trap, for removing the methane from the pipe, and an electrical heater to raise the methane temperature above the critical point thus preventing two-phase operation. This is the first time a cryogenic heat pipe has been tested at JPL and is also the first heat pipe to incorporate the turn-off features. Operation at 163K with a methane heat pipe is an important new thermal control capability for the lab. In addition, the two turn-off technologies enhance the "bag of tricks" available to the JPL thermal community. The successful test program brings this heat pipe to a high level of technology readiness.

  4. Cassini’s Discoveries at Saturn and the Proposed Cassini Solstice Mission

    NASA Astrophysics Data System (ADS)

    Pappalardo, R. T.; Spilker, L. J.; Mitchell, R. T.; Cuzzi, J.; Gombosi, T. I.; Ingersoll, A. P.; Lunine, J. I.

    2009-12-01

    Understanding of the Saturn system has been greatly enhanced by the Cassini-Huygens mission. Fundamental discoveries have altered our views of Saturn, Titan and the other icy satellites, the rings, and magnetosphere of the system. Key discoveries include: water-rich plumes emanating from the south pole of Enceladus; hints of possible activity on Dione and of rings around Rhea; a methane hydrological cycle on Titan complete with fluvial erosion, lakes, and seas of liquid methane and ethane; non-axisymmetric ring microstructure in all moderate optical depth rings; south polar vortices on Saturn; and a unique magnetosphere that shares characteristics with both Earth’s and Jupiter’s magnetospheres. These new discoveries are directly relevant to current Solar System science goals including: planet and satellite formation processes, formation of gas giants, the nature of organic material, the history of volatiles, habitable zones and processes for life, processes that shape planetary bodies, and evolution of exoplanets. The proposed 7-year Cassini Solstice Mission would address new questions that have arisen during the Cassini Prime and Equinox Missions, and would observe seasonal and temporal change in the Saturn system to prepare for future missions to Saturn, Titan, and Enceladus. The proposed Cassini Solstice Mission would provide new science in three ways. First, it would observe seasonally and temporally dependent processes on Saturn, Titan and other icy satellites, and within the rings and magnetosphere, in a hitherto unobserved seasonal phase from equinox to solstice. Second, it would address new questions that have arisen during the mission thus far, providing qualitatively new measurements (e.g. of Enceladus and Titan) which could not be accommodated in the earlier mission phases. Tthird, it would conduct a close-in mission phase at Saturn that would provide unique science including comparison to the Juno observations at Jupiter.

  5. Jupiter's Northern Hemisphere in a Methane Band (Time Set 2)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers. Light at 727 nanometers is moderately absorbed by atmospheric methane. This mosaic shows the features of Jupiter's main visible cloud deck and upper-tropospheric haze, with higher features enhanced in brightness over lower features.

    North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  6. A novel metal-organic framework for high storage and separation of acetylene at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Xing, E-mail: star1987@hdu.edu.cn; Wang, Huizhen; Ji, Zhenguo

    2016-09-15

    A novel 3D microporous metal-organic framework with NbO topology, [Cu{sub 2}(L)(H{sub 2}O){sub 2}]∙(DMF){sub 6}·(H{sub 2}O){sub 2} (ZJU-10, ZJU = Zhejiang University; H{sub 4}L =2′-hydroxy-[1,1′:4′,1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid; DMF =N,N-dimethylformamide), has been synthesized and structurally characterized. With suitable pore sizes and open Cu{sup 2+} sites, ZJU-10a exhibits high BET surface area of 2392 m{sup 2}/g, as well as moderately high C{sub 2}H{sub 2} volumetric uptake capacity of 132 cm{sup 3}/cm{sup 3}. Meanwhile, ZJU-10a is a promising porous material for separation of acetylene from methane and carbon dioxide gas mixtures at room temperature. - Graphical abstract: A new NbO-type microporous metal-organic framework ZJU-10 withmore » suitable pore size and open Cu{sup 2+} sites was synthesized to realize the strong interaction with acetylene molecules, which can separate the acetylene from methane and carbon dioxane gas mixtures at room temperature. Display Omitted - Highlights: • A novel 3D NbO-type microporous metal-organic framework ZJU-10 was solvothermally synthesized and structurally characterized. • ZJU-10a exhibits high BET surface area of 2392 m{sup 2}/g. • ZJU-10a shows a moderately high C{sub 2}H{sub 2} gravimetric (volumetric) uptake capacity of 174 (132) cm{sup 3}/g at 298 K and 1 bar. • ZJU-10a can separate acetylene from methane and carbon dioxide gas mixtures at room temperature.« less

  7. Production of H2 from aluminium/water reaction and its potential for CO2 methanation

    NASA Astrophysics Data System (ADS)

    Khai Phung, Khor; Sethupathi, Sumathi; Siang Piao, Chai

    2018-04-01

    Carbon dioxide (CO2) is a natural gas that presents in excess in the atmosphere. Owing to its ability to cause global warming, capturing and conversion of CO2 have attracted much attention worldwide. CO2 methanation using hydrogen (H2) is believed to be a promising route for CO2 removal. In the present work, H2 is produced using aluminum-water reaction and tested for its ability to convert CO2 to methane (CH4). Different type of water i.e. tap water, distilled water, deionized water and ultrapure water, concentration of sodium hydroxide (NaOH) (0.2 M to 1.0 M) and particle size of aluminum (45 m to 500 μm) were varied as parameter study. It was found that the highest yield of H2 was obtained using distilled water, 1.0 M of NaOH and 45μm particle size of aluminium. However, the highest yield of methane was achieved using a moderate and progressive H2 production (distilled water, 0.6 M of NaOH and 45 μm particle size of aluminium) which allowed sufficient time for H2 to react with CO2. It was concluded that 1130 ml of H2 can produce about 560 ppm of CH4 within 25 min of batch reaction using nickel catalyst.

  8. Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland

    Treesearch

    M.R. Turetsky; C.C. Treat; M. Waldrop; J.M. Waddington; J.W. Harden; A.D. McGuire

    2008-01-01

    Growing season CH4 fluxes were monitored over a two year period following the start of ecosystem-scale manipulations of water table position and surface soil temperatures in a moderate rich fen in interior Alaska. The largest CH4 fluxes occurred in plots that received both flooding (raised water table position) and soil...

  9. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    DOE PAGES

    Locatelli, R.; Bousquet, P.; Chevallier, F.; ...

    2013-10-08

    A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System) inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10more » synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure) is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. Here in our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr -1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr -1 in North America to 7 Tg yr -1 in Boreal Eurasia (from 23 to 48%, respectively). At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly question the consistency of transport model errors in current inverse systems.« less

  10. Aqueous Mesocosm Techniques Enabling the Real-Time Measurement of the Chemical and Isotopic Kinetics of Dissolved Methane and Carbon Dioxide.

    PubMed

    Chan, Eric W; Kessler, John D; Shiller, Alan M; Joung, DongJoo; Colombo, Frank

    2016-03-15

    Previous studies of microbially mediated methane oxidation in oceanic environments have examined the many different factors that control the rates of oxidation. However, there is debate on what factor(s) are limiting in these types of environments. These factors include the availability of methane, O2, trace metals, nutrients, the density of cell population, and the influence that CO2 production may have on pH. To look at this process in its entirety, we developed an automated mesocosm incubation system with a Dissolved Gas Analysis System (DGAS) coupled to a myriad of analytical tools to monitor chemical changes during methane oxidation. Here, we present new high temporal resolution techniques for investigating dissolved methane and carbon dioxide concentrations and stable isotopic dynamics during aqueous mesocosm and pure culture incubations. These techniques enable us to analyze the gases dissolved in solution and are nondestructive to both the liquid media and the analyzed gases enabling the investigation of a mesocosm or pure culture experiment in a completely closed system, if so desired.

  11. Advanced Fire Detector for Space Applications

    NASA Technical Reports Server (NTRS)

    Kutzner, Joerg

    2012-01-01

    A document discusses an optical carbon monoxide sensor for early fire detection. During the sensor development, a concept was implemented to allow reliable carbon monoxide detection in the presence of interfering absorption signals. Methane interference is present in the operating wavelength range of the developed prototype sensor for carbon monoxide detection. The operating parameters of the prototype sensor have been optimized so that interference with methane is minimized. In addition, simultaneous measurement of methane is implemented, and the instrument automatically corrects the carbon monoxide signal at high methane concentrations. This is possible because VCSELs (vertical cavity surface emitting lasers) with extended current tuning capabilities are implemented in the optical device. The tuning capabilities of these new laser sources are sufficient to cover the wavelength range of several absorption lines. The delivered carbon monoxide sensor (COMA 1) reliably measures low carbon monoxide levels even in the presence of high methane signals. The signal bleed-over is determined during system calibration and is then accounted for in the system parameters. The sensor reports carbon monoxide concentrations reliably for (interfering) methane concentrations up to several thousand parts per million.

  12. Herbage intake, methane emissions and animal performance of steers grazing dwarf elephant grass v. dwarf elephant grass and peanut pastures.

    PubMed

    Andrade, E A; Almeida, E X; Raupp, G T; Miguel, M F; de Liz, D M; Carvalho, P C F; Bayer, C; Ribeiro-Filho, H M N

    2016-10-01

    Management strategies for increasing ruminant legume consumption and mitigating methane emissions from tropical livestock production systems require further study. The aim of this work was to evaluate the herbage intake, animal performance and enteric methane emissions of cattle grazing dwarf elephant grass (DEG) (Pennisetum purpureum cv. BRS Kurumi) alone or DEG with peanut (Arachis pintoi cv. Amarillo). The experimental treatments were the following: DEG pastures receiving nitrogen fertilization (150 kg N/ha as ammonium nitrate) and DEG intercropped with peanut plus an adjacent area of peanut that was accessible to grazing animals for 5 h/day (from 0700 to 1200 h). The animals grazing legume pastures showed greater average daily gain and herbage intake, and shorter morning and total grazing times. Daily methane emissions were greater from the animals grazing legume pastures, whereas methane emissions per unit of herbage intake did not differ between treatments. Allowing animals access to an exclusive area of legumes in a tropical grass-pasture-based system can improve animal performance without increasing methane production per kg of dry matter intake.

  13. A tiered observational system for anthropogenic methane emissions

    NASA Astrophysics Data System (ADS)

    Duren, R. M.; Miller, C. E.; Hulley, G. C.; Hook, S. J.; Sander, S. P.

    2014-12-01

    Improved understanding of anthropogenic methane emissions is required for closing the global carbon budget and addressing priority challenges in climate policy. Several decades of top-down and bottom-up studies show that anthropogenic methane emissions are systematically underestimated in key regions and economic sectors. These uncertainties have been compounded by the dramatic rise of disruptive technologies (e.g., the transformation in the US energy system due to unconventional gas and oil production). Methane flux estimates derived from inverse analyses and aircraft-based mass balance approaches underscore the disagreement in nationally and regionally reported methane emissions as well as the possibility of a long-tail distribution in fugitive emissions spanning the US natural gas supply chain; i.e. a small number of super-emitters may be responsible for most of the observed anomalies. Other studies highlight the challenges of sectoral and spatial attribution of fugitive emissions - including the relative contributions of dairies vs oil and gas production or disentangling the contributions of natural gas transmission, distribution, and consumption or landfill emissions in complex urban environments. Limited observational data remains a foundational barrier to resolving these challenges. We present a tiered observing system strategy for persistent, high-frequency monitoring over large areas to provide remote detection, geolocation and quantification of significant anthropogenic methane emissions across cities, states, basins and continents. We describe how this would both improve confidence in methane emission estimates and expedite resolution of fugitive emissions and leaks. We summarize recent prototype field campaigns that employ multiple vantage points and measurement techniques (including NASA's CARVE and HyTES aircraft and PanFTS instrument on Mt Wilson). We share preliminary results of this tiered observational approach including examples of individual methane point sources associated with oil and gas production and distribution, feedlots, and urban landfills in California.

  14. Mobile Measurement of Methane and Ethane for the Detection and Attribution of Natural Gas Pipeline Leaks Using Off-Axis Integrated Output Spectroscopy

    NASA Astrophysics Data System (ADS)

    Leen, J. B.; Spillane, S.; Gardner, A.; Hansen, P. C.; Gupta, M.; Baer, D. S.

    2015-12-01

    Natural gas leaks pose a risk to public safety both because of potential explosions as well as from the greenhouse gas potential of fugitive methane. The rapid and cost effective detection of leaks in natural gas distribution is critical to providing a system that is safe for the public and the environment. Detection of methane from a mobile platform (vehicles, aircraft, etc.) is an accepted method of identifying leaks. A robust approach to differentiating pipeline gas (thermogenic) from other biogenic sources is the detection of ethane along with methane. Ethane is present in nearly all thermogenic gas but not in biogenic sources and its presence can be used to positively identify a gas sample. We present a mobile system for the simultaneous measurement of methane and ethane that is capable of detecting pipeline leaks and differentiating pipeline gas from other biogenic sources such as landfills, swamps, sewers, and enteric fermentation. The mobile system consists of a high precision GPS, sonic anemometer, and methane/ethane analyzer based on off-axis integrated cavity output spectroscopy (OA-ICOS). In order to minimize the system cost and facilitate the wide use of mobile leak detection, the analyzer operates in the near-infrared portion of the spectrum where lasers and optics are significantly less costly than in the mid-infrared. The analyzer is capable of detecting methane with a precision of <2 ppb (1σ in 1 sec) and detecting ethane with a precision of <30 ppb (1σ in 1 sec). Additionally, measurement rates of 5 Hz allow for detection of leaks at speeds up to 50 mph. The sonic anemometer, GPS and analyzer inlet are mounted to a generic roof rack for attachment to available fleet vehicles. The system can detect leaks having a downwind concentration of as little as 10 ppb of methane above ambient, while leaks 500 ppb above ambient can be identified as thermogenic with greater than 99% certainty (for gas with 6% ethane). Finally, analysis of wind data provides an estimate of leak direction and distance. The system presented provides a robust, cost effective solution to natural gas leak detection and attribution to maximize safety and minimize greenhouse gas impacts of distribution systems.

  15. Factors Controlling Methane in Arctic Lakes of Southwest Greenland.

    PubMed

    Northington, Robert M; Saros, Jasmine E

    2016-01-01

    We surveyed 15 lakes during the growing season of 2014 in Arctic lakes of southwest Greenland to determine which factors influence methane concentrations in these systems. Methane averaged 2.5 μmol L-1 in lakes, but varied a great deal across the landscape with lakes on older landscapes farther from the ice sheet margin having some of the highest values of methane reported in lakes in the northern hemisphere (125 μmol L-1). The most important factors influencing methane in Greenland lakes included ionic composition (SO4, Na, Cl) and chlorophyll a in the water column. DOC concentrations were also related to methane, but the short length of the study likely underestimated the influence and timing of DOC on methane concentrations in the region. Atmospheric methane concentrations are increasing globally, with freshwater ecosystems in northern latitudes continuing to serve as potentially large sources in the future. Much less is known about how freshwater lakes in Greenland fit in the global methane budget compared to other, more well-studied areas of the Arctic, hence our work provides essential data for a more complete view of this rapidly changing region.

  16. Methane clumped isotopes: Progress and potential for a new isotopic tracer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, Peter M. J.; Stolper, Daniel A.; Eiler, John M.

    The isotopic composition of methane is of longstanding geochemical interest, with important implications for understanding hydrocarbon systems, atmospheric greenhouse gas concentrations, the global carbon cycle, and life in extreme environments. Recent analytical developments focusing on multiply substituted isotopologues (‘clumped isotopes’) are opening a potentially valuable new window into methane geochemistry. When methane forms in internal isotopic equilibrium, clumped isotopes can provide a direct record of formation temperature, making this property particularly valuable for identifying different methane origins. However, it has also become clear that in certain settings methane clumped isotope measurements record kinetic rather than equilibrium isotope effects. Here wemore » present a substantially expanded dataset of methane clumped isotope analyses, and provide a synthesis of the current interpretive framework for this parameter. We review different processes affecting methane clumped isotope compositions, describe the relationships between conventional isotope and clumped isotope data, and summarize the types of information that this measurement can provide in different Earth and planetary environments.« less

  17. Halite as a Methane Sequestration Host: A Possible Explanation for Periodic Methane Release on Mars, and a Surface-accessible Source of Ancient Martian Carbon

    NASA Technical Reports Server (NTRS)

    Fries, M. D.; Steele, Andrew; Hynek, B. M.

    2015-01-01

    We present the hypothesis that halite may play a role in methane sequestration on the martian surface. In terrestrial examples, halite deposits sequester large volumes of methane and chloromethane. Also, examples of chloromethane-bearing, approximately 4.5 Ga old halite from the Monahans meteorite show that this system is very stable unless the halite is damaged. On Mars, methane may be generated from carbonaceous material trapped in ancient halite deposits and sequestered. The methane may be released by damaging its halite host; either by aqueous alteration, aeolian abrasion, heating, or impact shock. Such a scenario may help to explain the appearance of short-lived releases of methane on the martian surface. The methane may be of either biogenic or abiogenic origin. If this scenario plays a significant role on Mars, then martian halite deposits may contain samples of organic compounds dating to the ancient desiccation of the planet, accessible at the surface for future sample return missions.

  18. Self-Referenced Fiber Optic System For Remote Methane Detection

    NASA Astrophysics Data System (ADS)

    Zientkiewicz, Jacek K.

    1989-10-01

    The paper discusses a fiber optic multisensor methane detection system matched to topology and environment of the underground mine. The system involves time domain multiplexed (TDM) methane sensors based on selective absorption of source radiation by atomic/molecular species in the gas sensing heads. A two-wavelength ratiometric approach allows simple self-referencing, cancels out errors arising from other contaminants, and improves the measurement contrast. The laboratory system consists of a high radiance LED source, multimode fiber, optical sensing head, optical bandpass filters, and involves synchronous detection with low noise photodiodes and a lock-in amplifier. Detection sensitivity versus spectral resolution of the optical filters has also been investigated and described. The system performance was evaluated and the results are presented.

  19. Perspectives on geopressured resources within the geothermal program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dibona, B.

    1980-06-01

    This work reviews the potential of geothermal energy in the U.S. Current sources of and uses for geothermal energy are described. The study outlines how geopressured resources fit into the geothermal program of the U.S. Department of Energy (DOE). Description of the program status includes progress in drilling and assessing geopressured resources. The Division of Geothermal Energy within DOE is responsible for geothermal resources comprising point heat sources (igneous); high heat flow regions such as those between the Sierras and the Rockies; radiogenic heat sources of moderate temperatures of the eastern U.S. coast; geopressured zones; and hot dry rock systems.more » Interest in these resources focuses on electric power production, direct heat application, and methane production from the geopressured aquifers.« less

  20. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts

    USGS Publications Warehouse

    Lu, W.; Chou, I.-Ming; Burruss, R.C.; Song, Y.

    2007-01-01

    A unified equation has been derived by using all available data for calculating methane vapor pressures with measured Raman shifts of C-H symmetric stretching band (??1) in the vapor phase of sample fluids near room temperature. This equation eliminates discrepancies among the existing data sets and can be applied at any Raman laboratory. Raman shifts of C-H symmetric stretching band of methane in the vapor phase of CH4-H2O mixtures prepared in a high-pressure optical cell were also measured at temperatures between room temperature and 200 ??C, and pressures up to 37 MPa. The results show that the CH4 ??1 band position shifts to higher wavenumber as temperature increases. We also demonstrated that this Raman band shift is a simple function of methane vapor density, and, therefore, when combined with equation of state of methane, methane vapor pressures in the sample fluids at elevated temperatures can be calculated from measured Raman peak positions. This method can be applied to determine the pressure of CH4-bearing systems, such as methane-rich fluid inclusions from sedimentary basins or experimental fluids in hydrothermal diamond-anvil cell or other types of optical cell. ?? 2007 Elsevier Ltd. All rights reserved.

  1. Recovery and biological oxidation of dissolved methane in effluent from UASB treatment of municipal sewage using a two-stage closed downflow hanging sponge system.

    PubMed

    Matsuura, Norihisa; Hatamoto, Masashi; Sumino, Haruhiko; Syutsubo, Kazuaki; Yamaguchi, Takashi; Ohashi, Akiyoshi

    2015-03-15

    A two-stage closed downflow hanging sponge (DHS) reactor was used as a post-treatment to prevent methane being emitted from upflow anaerobic sludge blanket (UASB) effluents containing unrecovered dissolved methane. The performance of the closed DHS reactor was evaluated using real municipal sewage at ambient temperatures (10-28 °C) for one year. The first stage of the closed DHS reactor was intended to recover dissolved methane from the UASB effluent and produce a burnable gas with a methane concentration greater than 30%, and its recovery efficiency was 57-88%, although the amount of dissolved methane in the UASB effluent fluctuated in the range of 46-68 % of methane production greatly depending on the temperature. The residual methane was oxidized and the remaining organic carbon was removed in the second closed DHS reactor, and this reactor performed very well, removing more than 99% of the dissolved methane during the experimental period. The rate at which air was supplied to the DHS reactor was found to be one of the most important operating parameters. Microbial community analysis revealed that seasonal changes in the methane-oxidizing bacteria were key to preventing methane emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Design and Use of a Full Flow Sampling System (FFS) for the Quantification of Methane Emissions

    PubMed Central

    Johnson, Derek R.; Covington, April N.; Clark, Nigel N.

    2016-01-01

    The use of natural gas continues to grow with increased discovery and production of unconventional shale resources. At the same time, the natural gas industry faces continued scrutiny for methane emissions from across the supply chain, due to methane's relatively high global warming potential (25-84x that of carbon dioxide, according to the Energy Information Administration). Currently, a variety of techniques of varied uncertainties exists to measure or estimate methane emissions from components or facilities. Currently, only one commercial system is available for quantification of component level emissions and recent reports have highlighted its weaknesses. In order to improve accuracy and increase measurement flexibility, we have designed, developed, and implemented a novel full flow sampling system (FFS) for quantification of methane emissions and greenhouse gases based on transportation emissions measurement principles. The FFS is a modular system that consists of an explosive-proof blower(s), mass airflow sensor(s) (MAF), thermocouple, sample probe, constant volume sampling pump, laser based greenhouse gas sensor, data acquisition device, and analysis software. Dependent upon the blower and hose configuration employed, the current FFS is able to achieve a flow rate ranging from 40 to 1,500 standard cubic feet per minute (SCFM). Utilization of laser-based sensors mitigates interference from higher hydrocarbons (C2+). Co-measurement of water vapor allows for humidity correction. The system is portable, with multiple configurations for a variety of applications ranging from being carried by a person to being mounted in a hand drawn cart, on-road vehicle bed, or from the bed of utility terrain vehicles (UTVs). The FFS is able to quantify methane emission rates with a relative uncertainty of ± 4.4%. The FFS has proven, real world operation for the quantification of methane emissions occurring in conventional and remote facilities. PMID:27341646

  3. Design and Use of a Full Flow Sampling System (FFS) for the Quantification of Methane Emissions.

    PubMed

    Johnson, Derek R; Covington, April N; Clark, Nigel N

    2016-06-12

    The use of natural gas continues to grow with increased discovery and production of unconventional shale resources. At the same time, the natural gas industry faces continued scrutiny for methane emissions from across the supply chain, due to methane's relatively high global warming potential (25-84x that of carbon dioxide, according to the Energy Information Administration). Currently, a variety of techniques of varied uncertainties exists to measure or estimate methane emissions from components or facilities. Currently, only one commercial system is available for quantification of component level emissions and recent reports have highlighted its weaknesses. In order to improve accuracy and increase measurement flexibility, we have designed, developed, and implemented a novel full flow sampling system (FFS) for quantification of methane emissions and greenhouse gases based on transportation emissions measurement principles. The FFS is a modular system that consists of an explosive-proof blower(s), mass airflow sensor(s) (MAF), thermocouple, sample probe, constant volume sampling pump, laser based greenhouse gas sensor, data acquisition device, and analysis software. Dependent upon the blower and hose configuration employed, the current FFS is able to achieve a flow rate ranging from 40 to 1,500 standard cubic feet per minute (SCFM). Utilization of laser-based sensors mitigates interference from higher hydrocarbons (C2+). Co-measurement of water vapor allows for humidity correction. The system is portable, with multiple configurations for a variety of applications ranging from being carried by a person to being mounted in a hand drawn cart, on-road vehicle bed, or from the bed of utility terrain vehicles (UTVs). The FFS is able to quantify methane emission rates with a relative uncertainty of ± 4.4%. The FFS has proven, real world operation for the quantification of methane emissions occurring in conventional and remote facilities.

  4. Direct methane solid oxide fuel cells and their related applications

    NASA Astrophysics Data System (ADS)

    Lin, Yuanbo

    Solid oxide fuel cells (SOFCs), renowned for their high electrical generation efficiency with low pollutant production, are promising for reducing global energy and environmental concerns. However, there are major barriers for SOFC commercialization. A primary challenge is reducing the capital cost of SOFC power plants to levels that can compete with other generation methods. While the focus of this thesis research was on operation of SOFCs directly with methane fuel, the underlying motivation was to make SOFCs more competitive by reducing their cost. This can be achieved by making SOFCs that reduce the size and complexity of the required "balance of plant". Firstly, direct operation of SOFCs on methane is desirable since it can eliminate the external reformer. However, effective means must be found to suppress deleterious anode coking in methane. In this thesis, the operating conditions under which SOFCs can operate stably and without anode coking were investigated in detail, and the underlying mechanisms of coking and degradation were determined. Furthermore, a novel design utilizing an inert anode barrier layer was developed and shown to substantially improve stability against coking. Secondly, the direct methane SOFCs were investigated for use as electrochemical partial oxidation (EPOx) reactors that can co-generate electricity and synthesis gas (CO+H2) from methane. The results indicated that conventional SOFCs work quite well as methane partial oxidation reactors, producing syngas at relatively high rates. While this approach would not decrease the cost of SOFC power plant, it would improve prospects for commercialization by increasing the value of the power plant, because two products, electricity and syngas, can be sold. Thirdly, SOFCs utilizing thin (La,Sr)(Ga,Mg)O3 electrolytes were demonstrated. This highly conductive material allows lower SOFC operation temperature, leading to the use of lower-cost materials for sealing, interconnection, and balance of plant. Deleterious electrolyte/electrode reactions and electrolyte La loss were avoided during high-temperature co-firing by using thin La-doped ceria barrier layers, allowing very high power densities at moderate operating temperatures. (La,Sr)(Ga,Mg)O3-(La,Sr)(Fe,Co)O3 composite cathodes were investigated and optimal processing parameters that yield low interfacial polarization resistance at intermediate temperature were determined.

  5. Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review.

    PubMed

    Crone, Brian C; Garland, Jay L; Sorial, George A; Vane, Leland M

    2016-11-01

    The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10-30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11-100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Microporous membranes can recover up to 98.9% of dissolved methane in AnMBR effluents which have low COD and SS concentrations. Sequential Down-flow Hanging Sponge (DHS) reactors have been used to recover between 57 and 88% of dissolved methane from Upflow Anaerobic Sludge Blanket (UASB) reactor effluent at concentrations of greater than 30% and oxidize the rest for a 99% removal of total dissolved methane. They can also remove 90% of suspended solids and COD in UASB effluents and produce a high quality effluent. In situ degassing can increase process stability, COD removal, biomass retention, and headspace methane concentrations. A model for estimating energy consumption associated with membrane-based dissolved methane recovery predicts that recovered dissolved and headspace methane may provide all the energy required for operation of an anaerobic system treating DWW at psychrophilic temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Using In Situ Eddy Covariance Flux Measurements from a Low Flying Aircraft in the Arctic to Measure Regional Methane Fluxes.

    NASA Astrophysics Data System (ADS)

    Sayres, D. S.; Dobosy, R.; Healy, C. E.; Dumas, E. J.; Kochendorfer, J.; Munster, J. B.; Wilkerson, J.; Baker, B.; Anderson, J. G.

    2016-12-01

    The Arctic terrestrial and subsea permafrost region contains approximately 30% of the global carbon stock and therefore understanding Arctic methane emissions and how they might change with a changing climate is important for quantifying the global methane budget and understanding its growth in the atmosphere. Here we present measurements from a new in situ flux observation system designed for use on a small, low-flying aircraft that flew over the North Slope of Alaska during August of 2013. The system combines a small methane instrument based on Integrated Cavity Output Spectroscopy (ICOS) with an air turbulence probe to calculate methane fluxes based on eddy covariance. Surface fluxes are grouped by ecotope using a map based on LandSat 30 meter resolution data. We find that wet sedge areas dominate the methane fluxes during the first part of August, with methane emissions from the Sagavanirktok river being the second highest. We compare the aircraft measurements with an eddy covariance flux tower located in a wet sedge area and show that the two measurements agree quantitatively when the footprints of both overlap. However, fluxes from sedge vary at times by a factor of two or more even within a few kilometers of the tower demonstrating the importance of making regional measurements to map out methane emission spatial heterogeneity. Aircraft measurements of surface flux can play an important role in bridging the gap between ground-based measurements and regional measurements from remote sensing instruments and models.

  7. Tidal influence on subtropical estuarine methane emissions

    NASA Astrophysics Data System (ADS)

    Sturm, Katrin; Grinham, Alistair; Werner, Ursula; Yuan, Zhiguo

    2014-05-01

    The relatively unstudied subtropical estuaries, particularly in the Southern Hemisphere, represent an important gap in our understanding of global greenhouse gas (GHG) emissions. These systems are likely to form an important component of GHG budgets as they occupy a relatively large surface area, over 38 000 km2 in Australia. Here, we present studies conducted in the Brisbane River estuary, a representative system within the subtropical region of Queensland, Australia. This is a highly modified system typical of 80% of Australia's estuaries. Generally, these systems have undergone channel deepening and straightening for safer shipping access and these modifications have resulted in large increases in tidal reach. The Brisbane River estuary's natural tidal reach was 16 km and this is now 85 km and tidal currents influence double the surface area (9 km2 to 18 km2) in this system. Field studies were undertaken to improve understanding of the driving factors behind methane water-air fluxes. Water-air fluxes in estuaries are usually calculated with the gas exchange coefficient (k) for currents and wind as well as the concentration difference across the water-air interface. Tidal studies in the lower and middle reaches of the estuary were performed to monitor the influence of the tidal stage (a proxy for kcurrent) on methane fluxes. Results for both investigated reaches showed significantly higher methane fluxes during the transition time of tides, the time of greatest tidal currents, than during slack tide periods. At these tidal transition times with highest methane chamber fluxes, lowest methane surface water concentrations were monitored. Modelled fluxes using only wind speed (kwind) were at least one order of magnitude lower than observed from floating chambers, demonstrating that current speed was likely the driving factor of water-air fluxes. An additional study was then conducted sampling the lower, middle and upper reaches during a tidal transition period. Although dissolved methane surface water concentrations were highest in the upper reaches of the estuary, experiencing the lowest tidal currents, fluxes measured using chambers were lower relative to middle and lower reaches. This supports the tidal study findings as higher tidal currents were experienced in the middle and lower reaches. The dominant driver behind estuarine methane water-air fluxes in this system was tidal current speed. Future studies need to take into account flux rates during both transition and slack tide periods to quantify total flux rates.

  8. Methane drainage at the Minerales Monclova mines in the Sabinas coal basin, Coahuila, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunner, D.J.; Ponce, J.R.

    Minerales Monclova S.A. De C.V. (MIMOSA) operates five underground longwall mines in the Gassy Los Olmos Coals of the Sabinas Basin in the state of Coahuila in Northern Mexico. Because of high in-situ gas contents and high cleat and natural fracture permeability, MIMOSA has had to incorporate a system of methane drainage in advance of mining in order to safely and cost effectively exploit their reserves. In the early 1990s Resource Enterprises (REI) conducted reservoir characterization tests, numerical simulations, and Coal Mine Methane (CMM) production tests at a nearby mine property in the same basin. Using this information REI approachedmore » MIMOSA and recommended the mine-wide implementation of a degasification system that involves long in-seam directionally drilled boreholes. REI was contracted to conduct the drilling, and to date has drilled over 26,000 m (85,000 ft) of in-seam borehole in advance of mining developments, reducing gas contents significantly below in-situ values. This paper discusses the basis for the degasification program recommended at the MIMOSA mines, and presents the impact of its mine-wide application on MIMOSA's mining operations over the last six years. The paper focuses on the degasification system's impacts on methane emissions into mine workings, coal production, and ventilation demands. It also presents lessons learned by the degasification planners in implementing in-seam methane drainage. The paper presents actual CMM production data, measurements of methane emissions and advance rates at development sections, and mine methane liberations.« less

  9. The Application of Methane Clumped Isotope Measurements to Determine the Source of Large Methane Seeps in Alaskan Lakes

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Stolper, D. A.; Eiler, J. M.; Sessions, A. L.; Walter Anthony, K. M.

    2014-12-01

    Natural methane emissions from the Arctic present an important potential feedback to global warming. Arctic methane emissions may come from either active microbial sources or from deep fossil reservoirs released by the thawing of permafrost and melting of glaciers. It is often difficult to distinguish between and quantify contributions from these methane sources based on stable isotope data. Analyses of methane clumped isotopes (isotopologues with two or more rare isotopes such as 13CH3D) can complement traditional stable isotope-based classifications of methane sources. This is because clumped isotope abundances (for isotopically equilibrated systems) are a function of temperature and can be used to identify pathways of methane generation. Additionally, distinctive effects of mixing on clumped isotope abundances make this analysis valuable for determining the origins of mixed gasses. We find large variability in clumped isotope compositions of methane from seeps in several lakes, including thermokarst lakes, across Alaska. At Lake Sukok in northern Alaska we observe the emission of dominantly thermogenic methane, with a formation temperature of at least 100° C. At several other lakes we find evidence for mixing between thermogenic methane and biogenic methane that forms in low-temperature isotopic equilibrium. For example, at Eyak Lake in southeastern Alaska, analysis of three methane samples results in a distinctive isotopic mixing line between a high-temperature end-member that formed between 100-170° C, and a biogenic end-member that formed in isotopic equilibrium between 0-20° C. In this respect, biogenic methane in these lakes resembles observations from marine gas seeps, oil degradation, and sub-surface aquifers. Interestingly, at Goldstream Lake in interior Alaska, methane with strongly depleted clumped-isotope abundances, indicative of disequilibrium gas formation, is found, similar to observations from methanogen culture experiments.

  10. Todd Vander Wall | NREL

    Science.gov Websites

    and implemented methanogenesis systems for the growth and collection of biogenic methane from municipal solid waste. Following that, he performed in-situ investigations on thermogenic methane from

  11. Optimising stocking rate and grazing management to enhance environmental and production outcomes for native temperate grasslands

    NASA Astrophysics Data System (ADS)

    Badgery, Warwick; Zhang, Yingjun; Huang, Ding; Broadfoot, Kim; Kemp, David; Mitchell, David

    2015-04-01

    Stocking rate and grazing management can be altered to enhance the sustainable production of grasslands but the relative influence of each has not often been determined for native temperate grasslands. Grazing management can range from seasonal rests through to intensive rotational grazing involving >30 paddocks. In large scale grazing, it can be difficult to segregate the influence of grazing pressure from the timing of utilisation. Moreover, relative grazing pressure can change between years as seasonal conditions influence grassland production compared to the relative constant requirements of animals. This paper reports on two studies in temperate native grasslands of northern China and south eastern Australia that examined stocking rate and regionally relevant grazing management strategies. In China, the grazing experiment involved combinations of a rest, moderate or heavy grazing pressure of sheep in spring, then moderate or heavy grazing in summer and autumn. Moderate grazing pressure at 50% of the current district average, resulted in the better balance between maintaining productive and diverse grasslands, a profitable livestock system, and mitigation of greenhouse gases through increased soil carbon, methane uptake by the soil, and efficient methane emissions per unit of weight gain. Spring rests best maintained a desirable grassland composition, but had few other benefits and reduced livestock productivity due to lower feed quality from grazing later in the season. In Australia, the grazing experiment compared continuous grazing to flexible 4- and 20-paddock rotational grazing systems with sheep. Stocking rates were adjusted between systems biannually based on the average herbage mass of the grassland. No treatment degraded the perennial pasture composition, but ground cover was maintained at higher levels in the 20-paddock system even though this treatment had a higher stocking rate. Overall there was little difference in livestock production (e.g. kg lamb/ha), because individual animal performance was greater for continuous grazing than higher intensity grazing systems (4-Paddock and 20-Paddock). Differences in SOC, CO2 flux and erosion were determined by landscape position rather than grazing treatment. To remove the confounding influences of stocking rate and grazing management, the Ausfarm biophysical model, calibrated to the experimental treatments, examined the interaction between grazing management and stocking rates. Ground cover and profitability were similar between grazing systems at lower stocking rates (3 ewes per ha), but continuous grazing had higher profitability and lower ground cover above the optimum stocking rate of 4 ewes per ha. The findings of these two studies suggest that optimising stocking rate is more important than grazing management for a sustainable and profitable grazing system. Grazing management can further enhance environmental outcomes for an optimal stocking rate, but the findings from the Chinese study particularly highlight the need to look at multiple ecosystem services, when optimising systems. The Australian study also suggests the optimum stocking rate is dependent on the intensity of grazing management. Further work is required to understand the influence of landscape on grassland production and how stocking rates and grazing management can be sustainably optimised for different landscape areas to utilise this variation more effectively.

  12. Potential of Svalbard reindeer winter droppings for emission/absorption of methane and nitrous oxide during summer

    NASA Astrophysics Data System (ADS)

    Hayashi, Kentaro; Cooper, Elisabeth J.; Loonen, Maarten J. J. E.; Kishimoto-Mo, Ayaka W.; Motohka, Takeshi; Uchida, Masaki; Nakatsubo, Takayuki

    2014-06-01

    Droppings of Svalbard reindeer (Rangifer tarandus platyrhynchus) could affect the carbon and nitrogen cycles in tundra ecosystems. The aim of this study was to evaluate the potential of reindeer droppings originating from the winter diet for emission and/or absorption of methane (CH4) and nitrous oxide (N2O) in summer. An incubation experiment was conducted over 14 days using reindeer droppings and mineral subsoil collected from a mound near Ny-Ålesund, Svalbard, to determine the potential exchanges of CH4 and N2O for combinations of two factors, reindeer droppings (presence or absence) and soil moisture (dry, moderate, or wet). A line transect survey was conducted to determine the distribution density of winter droppings at the study site. The incubation experiment showed a weak absorption of CH4 and a weak emission of N2O. Reindeer droppings originating from the winter diet had a negligible effect on the exchange fluxes of both CH4 and N2O. Although the presence of droppings resulted in a short-lasting increase in N2O emissions on day 1 (24 h from the start) for moderate and wet conditions, the emission rates were still very small, up to 3 μg N2O m-2 h-1.

  13. Reconstructing Methane Emission Events in the Arctic Ocean: Observations from the Past to Present

    NASA Astrophysics Data System (ADS)

    Panieri, G.; Mienert, J.; Fornari, D. J.; Torres, M. E.; Lepland, A.

    2015-12-01

    Methane hydrates are ice-like crystals that are present along continental margins, occurring in the pore space of deep sediments or as massive blocks near the seafloor. They form in high pressure and low temperature environments constrained by thermodynamic stability, and supply of methane. In the Arctic, gas hydrates are abundant, and the methane released by their destabilization can affect local to global carbon budgets and cycles, ocean acidification, and benthic community survival. With the aim to locate in space and time the periodicity of methane venting, CAGE is engaged in a vast research program in the Arctic, a component of which comprises the analyses of numerous sediment cores and correlative geophysical and geochemical data from different areas. Here we present results from combined analyses of biogenic carbonate archives along the western Svalbard Margin, which reveal past methane venting events in this region. The reconstruction of paleo-methane discharge is complicated by precipitation of secondary carbonate on foraminifera shells, driven by an increase in alkalinity during anaerobic oxidation of methane (AOM). The biogeochemical processes involved in methane cycling and processes that drive methane migration affect the depth where AOM occurs, with relevance to secondary carbonate formation. Our results show the value and complexity of separating primary vs. secondary signals in bioarchives with relevance to understanding fluid-burial history in methane seep provinces. Results from our core analyses are integrated with observations made during the CAGE15-2 cruise in May 2015, when we deployed a towed vehicle equipped with camera, multicore and water sampling capabilities. The instrument design was based on the Woods Hole Oceanographic Institution (WHOI) MISO TowCam sled equipped with a deep-sea digital camera and CTD real-time system. Sediment sampling was visually-guided using this system. In one of the pockmarks along the Vestnesa Ridge where high methane discharge was measured, we deployed the CAGE 888 marker as our first step in conducting time series studies to establish temporal variability going forward. This research is partially supported by the Research Council of Norway through its Centres of Excellence funding scheme, project number 223259.

  14. Final Report Systems Level Analysis of the Function and Adaptive Responses of Methanogenic Consortia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovley, Derek R.

    The purpose of this research was to determine whether the syntrophic microbial associations that are central to the functioning of methane-producing terrestrial wetlands can be predictively modeled with coupled multi-species genome-scale metabolic models. Such models are important because methane is an important greenhouse gas and there is a need to predictively model how the methane-producing microbial communities will respond to environmental perturbations, such as global climate change. The research discovered that the most prodigious methane-producing microorganisms on earth participate in a previously unrecognized form of energy exchange. The methane-producers Methanosaeta and Methanosarcina forge biological electrical connections with other microbes inmore » order to obtain electrons to reduce carbon dioxide to methane. This direct interspecies electron transfer (DIET) was demonstrated in complex microbial communities as well as in defined co-cultures. For example, metatranscriptomic analysis of gene expression in both natural communities and defined co-cultures demonstrated that Methanosaeta species highly expressed genes for the enzymes for the reduction of carbon dioxide to methane. Furthermore, Methanosaeta’s electron-donating partners highly expressed genes for the biological electrical connections known as microbial nanowires. A series of studies involving transcriptomics, genome resequencing, and analysis of the metabolism of a series of strains with targeted gene deletions, further elucidated the mechanisms and energetics of DIET in methane-producing co-cultures, as well as in a co-culture of Geobacter metallireducens and Geobacter sulfurreducens, which provided a system for studying DIET with two genetically tractable partners. Genome-scale modeling of DIET in the G. metallireducens/G. sulfurreducens co-culture suggested that DIET provides more energy to the electron-donating partner that electron exchange via interspecies hydrogen transfer, but that the performance of DIET may be strongly influenced by environmental factors. These studies have significantly modified conceptual models for carbon and electron flow in methane-producing environments and have developed a computational framework for predictive modeling the influence of environmental perturbations on methane-producing microbial communities. The results have important implications for modeling the response of methane-producing microbial communities to climate change as well as for the bioenergy strategy of converting wastes and biomass to methane.« less

  15. A new approach to evaluate regional methane emission from irrigated rice paddies: Combining process study, modeling and remote sensing into GIS

    NASA Astrophysics Data System (ADS)

    Ding, Aiju

    2000-10-01

    A large seasonal variation in methane emission from Texas rice fields was observed in most of the growing seasons from 1989 through 1997. In general, the pattern showed small fluxes in the early season of cultivation and reached maximum at post-heading time, then declined and stopped after fields were drained. The amount of methane emission positively relates to the aboveground biomass, the number of effective stems and tillers, and nitrogen addition. The day-to-day pattern of methane emissions was similar among all cultivars. The seasonal total methane emission shows a significant positive correlation with post-heading plant height. The total methane emission from Texas rice fields was estimated as 33.25 × 109 g in 1993, ranging from 25.85 × 109 g/yr to 40.65 × 109 g/yr. A mitigation technique was developed to obtain both high yield and less methane emission from Texas rice fields. A new approach was also developed to evaluate regional to large-scale methane emission from irrigated rice paddies. By combining modeling, ground truth information and remote sensing into a Geographic Information System (GIS)-a computer based system, the seasonal methane emission from a large area can be calculated efficiently and more accurately. The methodology was tested at the Richmond Irrigation District (RID) site in Texas. The average daily methane emission varied from field to field and even within a single field. The calculated seasonal total methane emission from RID rice fields was as low as 3.34 × 108 g CH4 in 1996 and as high as 7.80 × 108 g CH4 in 1998. To support the application of the estimation method in a worldwide study, an algorithm describing the mapping of irrigated rice paddies from Landsat TM data was demonstrated. The accuracy in 1998- supervised classification approached 95% when cloud cover was taken into account. Model uncertainty and data availability are the two major potential problems in worldwide application of the new approach. A potential alternative model is proposed which allows estimation of regional methane emission from rice plant height.

  16. Ethanol prefermentation of food waste in sequencing batch methane fermentation for improved buffering capacity and microbial community analysis.

    PubMed

    Yu, Miao; Wu, Chuanfu; Wang, Qunhui; Sun, Xiaohong; Ren, Yuanyuan; Li, Yu-You

    2018-01-01

    This study investigates the effects of ethanol prefermentation (EP) on methane fermentation. Yeast was added to the substrate for EP in the sequencing batch methane fermentation of food waste. An Illumina MiSeq high-throughput sequencing system was used to analyze changes in the microbial community. Methane production in the EP group (254mL/g VS) was higher than in the control group (35mL/g VS) because EP not only increased the buffering capacity of the system, but also increased hydrolytic acidification. More carbon source was converted to ethanol in the EP group than in the control group, and neutral ethanol could be converted continuously to acetic acid, which promoted the growth of Methanobacterium and Methanosarcina. As a result, the relative abundance of methane-producing bacteria was significantly higher than that of the control group. Kinetic modeling indicated that the EP group had a higher hydrolysis efficiency and shorter lag phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Irradiation Products On Dwarf Planet Makemake

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; Schaller, E. L.; Blake, G. A.

    2015-03-01

    The dark, reddish tinged surfaces of icy bodies in the outer solar system are usually attributed to the long term irradiation of simple hydrocarbons leading to the breaking of C-H bonds, loss of hydrogen, and the production of long carbon chains. While the simple hydrocarbon methane is stable and detected on the most massive bodies in the Kuiper Belt, evidence of active irradiation chemistry is scant except for the presence of ethane on methane-rich Makemake and the possible detections of ethane on more methane-poor Pluto and Quaoar. We have obtained deep high signal-to-noise spectra of Makemake from 1.4 to 2.5 μm in an attempt to trace the radiation chemistry in the outer solar system beyond the initial ethane formation. We present the first astrophysical detection of solid ethylene and evidence for acetylene and high-mass alkanes—all expected products of the continued irradiation of methane, and use these species to map the chemical pathway from methane to long-chain hydrocarbons.

  18. GM(1,N) method for the prediction of anaerobic digestion system and sensitivity analysis of influential factors.

    PubMed

    Ren, Jingzheng

    2018-01-01

    Anaerobic digestion process has been recognized as a promising way for waste treatment and energy recovery in a sustainable way. Modelling of anaerobic digestion system is significantly important for effectively and accurately controlling, adjusting, and predicting the system for higher methane yield. The GM(1,N) approach which does not need the mechanism or a large number of samples was employed to model the anaerobic digestion system to predict methane yield. In order to illustrate the proposed model, an illustrative case about anaerobic digestion of municipal solid waste for methane yield was studied, and the results demonstrate that GM(1,N) model can effectively simulate anaerobic digestion system at the cases of poor information with less computational expense. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Using Unmanned Air Systems to Monitor Methane in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Clow, Jacqueline; Smith, Jeremy Christopher

    2016-01-01

    Methane is likely to be an important contributor to global warming, and our current knowledge of its sources, distributions, and transport is insufficient. It is estimated that there could be from 7.5 to 400 billion tons carbon-equivalent of methane in the arctic region, a broad range that is indicative of the uncertainty within the Earth Science community. Unmanned Air Systems (UASs) are often used for combat or surveillance by the military, but they also have been used for Earth Science field missions. In this study, we will analyze the utility of the NASA Global Hawk and the Aurora Flight Sciences Orion UASs compared to the manned DC-8 aircraft for conducting a methane monitoring mission. The mission will focus on the measurement of methane along the boundaries of Arctic permafrost thaw and melting glaciers. The use of Long Endurance UAS brings a new range of possibilities including the ability to obtain long- term and persistent observations and to significantly augment methane measurements/retrievals collected by satellite. Furthermore, we discuss the future of long endurance UAS and their potential for science applications in the next twenty to twenty-five years.

  20. Study of the genetics and regulation of methane oxidation. Progress report, second year and a half, August 1, 1981-January 31, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose is to develop mutagenesis, gene transfer and cloning systems in methanotrophic bacteria, and use these techniques to study the methane oxidation genes. Although we have been successful in the first part of these objectives, the study of methane oxidation genes has proven difficult. Problems arose due to the discovery that the culture, Methylobacterium ethanolicum, is in reality a stable coculture between two methylotrophs. These partners are Methylocystis POC, an obligate methanotroph and Xanthobacter H4.14, and autotrophic methanolutilizer. The Methylocystis strain contains the three plasmids we had observed previously in methane-grown cultures, while the Xanthobacter strain contains no detectiblemore » plasmids. Therefore, our original approach to studying the methane oxidation genes, that of isolating plasmid mutants, is no longer valid. However, our discovery of the nature of this culture has led to some interesting results which show promise in elucidating the genetic structure of the methane oxidation genes in obligate methanotrophs. In addition, we have been successful in developing mutagenesis, gene transfer and cloning systems that are applicable to a wide variety of methanotrophs.« less

  1. Methane monooxygenase gene expression mediated by methanobactin in the presence of mineral copper sources

    PubMed Central

    Knapp, Charles W.; Fowle, David A.; Kulczycki, Ezra; Roberts, Jennifer A.; Graham, David W.

    2007-01-01

    Methane is a major greenhouse gas linked to global warming; however, patterns of in situ methane oxidation by methane-oxidizing bacteria (methanotrophs), nature's main biological mechanism for methane suppression, are often inconsistent with laboratory predictions. For example, one would expect a strong relationship between methanotroph ecology and Cu level because methanotrophs require Cu to sustain particulate methane monooxygenase (pMMO), the most efficient enzyme for methane oxidation. However, no correlation has been observed in nature, which is surprising because methane monooxygenase (MMO) gene expression has been unequivocally linked to Cu availability. Here we provide a fundamental explanation for this lack of correlation. We propose that MMO expression in nature is largely controlled by solid-phase Cu geochemistry and the relative ability of Cu acquisition systems in methanotrophs, such as methanobactins (mb), to obtain Cu from mineral sources. To test this hypothesis, RT-PCR expression assays were developed for Methylosinus trichosporium OB3b (which produces mb) to quantify pMMO, soluble MMO (the alternate MMO expressed when Cu is “unavailable”), and 16S-rRNA gene expression under progressively more stringent Cu supply conditions. When Cu was provided as CuCl2, pMMO transcript levels increased significantly consistent with laboratory work. However, when Cu was provided as Cu-doped iron oxide, pMMO transcript levels increased only when mb was also present. Finally, when Cu was provided as Cu-doped borosilicate glass, pMMO transcription patterns varied depending on the ambient mb:Cu supply ratio. Cu geochemistry clearly influences MMO expression in terrestrial systems, and, as such, local Cu mineralogy might provide an explanation for methane oxidation patterns in the natural environment. PMID:17615240

  2. Formation temperatures of thermogenic and biogenic methane

    USGS Publications Warehouse

    Stolper, D.A.; Lawson, M.; Davis, C.L.; Ferreira, A.A.; Santos Neto, E. V.; Ellis, G.S.; Lewan, M.D.; Martini, Anna M.; Tang, Y.; Schoell, M.; Sessions, A.L.; Eiler, J.M.

    2014-01-01

    Methane is an important greenhouse gas and energy resource generated dominantly by methanogens at low temperatures and through the breakdown of organic molecules at high temperatures. However, methane-formation temperatures in nature are often poorly constrained. We measured formation temperatures of thermogenic and biogenic methane using a “clumped isotope” technique. Thermogenic gases yield formation temperatures between 157° and 221°C, within the nominal gas window, and biogenic gases yield formation temperatures consistent with their comparatively lower-temperature formational environments (<50°C). In systems where gases have migrated and other proxies for gas-generation temperature yield ambiguous results, methane clumped-isotope temperatures distinguish among and allow for independent tests of possible gas-formation models.

  3. Zero valent iron significantly enhances methane production from waste activated sludge by improving biochemical methane potential rather than hydrolysis rate.

    PubMed

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-02-05

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.

  4. Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate

    PubMed Central

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-01-01

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system. PMID:25652244

  5. Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate

    NASA Astrophysics Data System (ADS)

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-02-01

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.

  6. In situ measurement of methane oxidation in groundwater by using natural-gradient tracer tests

    USGS Publications Warehouse

    Smith, R.L.; Howes, B.L.; Garabedian, S.P.

    1991-01-01

    Methane oxidation was measured in an unconfined sand and gravel aquifer (Cape Cod, Mass.) by using in situ natural-gradient tracer tests at both a pristine, oxygenated site and an anoxic, sewage-contaminated site. The tracer sites were equipped with multilevel sampling devices to create target grids of sampling points; the injectate was prepared with groundwater from the tracer site to maintain the same geochemical conditions. Methane oxidation was calculated from breakthrough curves of methane relative to halide and inert gas (hexafluoroethane) tracers and was confirmed by the appearance of 13C-enriched carbon dioxide in experiments in which 13C-enriched methane was used as the tracer. A V(max) for methane oxidation could be calculated when the methane concentration was sufficiently high to result in zero-order kinetics throughout the entire transport interval. Methane breakthrough curves could be simulated by modifying a one-dimensional advection-dispersion transport model to include a Michaelis-Menten-based consumption term for methane oxidation. The K(m) values for methane oxidation that gave the best match for the breakthrough curve peaks were 6.0 and 9.0 ??M for the uncontaminated and contaminated sites, respectively. Natural-gradient tracer tests are a promising approach for assessing microbial processes and for testing in situ bioremediation potential in groundwater systems.

  7. In situ measurement of methane oxidation in groundwater by using natural-gradient tracer tests.

    PubMed Central

    Smith, R L; Howes, B L; Garabedian, S P

    1991-01-01

    Methane oxidation was measured in an unconfined sand and gravel aquifer (Cape Cod, Mass.) by using in situ natural-gradient tracer tests at both a pristine, oxygenated site and an anoxic, sewage-contaminated site. The tracer sites were equipped with multilevel sampling devices to create target grids of sampling points; the injectate was prepared with groundwater from the tracer site to maintain the same geochemical conditions. Methane oxidation was calculated from breakthrough curves of methane relative to halide and inert gas (hexafluroethane) tracers and was confirmed by the appearance of 13C-enriched carbon dioxide in experiments in which 13C-enriched methane was used as the tracer. A Vmax for methane oxidation could be calculated when the methane concentration was sufficiently high to result in zero-order kinetics throughout the entire transport interval. Methane breakthrough curves could be simulated by modifying a one-dimensional adevection-dispersion transport model to include a Michaelis-Menten-based consumption term for methane oxidation. The Km values for methane oxidation that gave the best match for the breakthrough curve peaks were 6.0 and 9.0 microM for the uncontaminated and contaminated sites, respectively. Natural-gradient tracer tests are a promising approach for assessing microbial processes and for testing in situ bioremediation potential in groundwater systems. PMID:1892389

  8. Factors Controlling Methane in Arctic Lakes of Southwest Greenland

    PubMed Central

    2016-01-01

    We surveyed 15 lakes during the growing season of 2014 in Arctic lakes of southwest Greenland to determine which factors influence methane concentrations in these systems. Methane averaged 2.5 μmol L-1 in lakes, but varied a great deal across the landscape with lakes on older landscapes farther from the ice sheet margin having some of the highest values of methane reported in lakes in the northern hemisphere (125 μmol L-1). The most important factors influencing methane in Greenland lakes included ionic composition (SO4, Na, Cl) and chlorophyll a in the water column. DOC concentrations were also related to methane, but the short length of the study likely underestimated the influence and timing of DOC on methane concentrations in the region. Atmospheric methane concentrations are increasing globally, with freshwater ecosystems in northern latitudes continuing to serve as potentially large sources in the future. Much less is known about how freshwater lakes in Greenland fit in the global methane budget compared to other, more well-studied areas of the Arctic, hence our work provides essential data for a more complete view of this rapidly changing region. PMID:27454863

  9. Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane.

    PubMed

    Gebert, J; Gröngröft, A

    2006-01-01

    An upflow biofilter system was operated on a passively vented landfill for the treatment of residual landfill methane. Biofilter methane emissions as a basis for determining methane removal rates were assessed by manual and automated chamber measurements, by measuring methane concentrations in the top layer gaseous phase in combination with gas flow rates, and by evaluating the methane load in the reverse gas flow following the change of landfill gas flux direction as governed by the course of barometric pressure. Methane removal rates were very high with maximum values of 80 g h(-1) m(-3). For the observed cases, the limit of biofilter methane oxidation capacity was not reached and absolute removal rates were thus linearly correlated to the amount of methane entering the filter. The analysis of methane loads flowing back from the biofilter following phases of longer, continuous and non-oscillating landfill gas emission, however, revealed that in these situations biofilter performance is restricted by deficient oxygen supply. At the oxygen-restricted capacity limit, removal rates are influenced by temperature (positively), methane influx (negatively) and flow rate (negatively) as a measure for the displacement of oxygen. These situations, however, account for only 12% of all emission phases. The investigated biofilter capacity, as derived from laboratory analyses of methanotrophic activities, is sufficient to oxidise 62% of the methane load emitted annually. Field and laboratory data provide a stable basis for the dimensioning of filters in future applications.

  10. Methodology of Estimation of Methane Emissions from Coal Mines in Poland

    NASA Astrophysics Data System (ADS)

    Patyńska, Renata

    2014-03-01

    Based on a literature review concerning methane emissions in Poland, it was stated in 2009 that the National Greenhouse Inventory 2007 [13] was published. It was prepared firstly to meet Poland's obligations resulting from point 3.1 Decision no. 280/2004/WE of the European Parliament and of the Council of 11 February 2004, concerning a mechanism for monitoring community greenhouse gas emissions and for implementing the Kyoto Protocol and secondly, for the United Nations Framework Convention on Climate Change (UNFCCC) and Kyoto Protocol. The National Greenhouse Inventory states that there are no detailed data concerning methane emissions in collieries in the Polish mining industry. That is why the methane emission in the methane coal mines of Górnośląskie Zagłębie Węglowe - GZW (Upper Silesian Coal Basin - USCB) in Poland was meticulously studied and evaluated. The applied methodology for estimating methane emission from the GZW coal mining system was used for the four basic sources of its emission. Methane emission during the mining and post-mining process. Such an approach resulted from the IPCC guidelines of 2006 [10]. Updating the proposed methods (IPCC2006) of estimating the methane emissions of hard coal mines (active and abandoned ones) in Poland, assumes that the methane emission factor (EF) is calculated based on methane coal mine output and actual values of absolute methane content. The result of verifying the method of estimating methane emission during the mining process for Polish coal mines is the equation of methane emission factor EF.

  11. Methane on Mars: Measurements and Possible Origins

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.; Villanueva, Geronimo L.; Novak, Robert E.; Radeva, Yana L.; Kaufl, H. Ulrich; Tokunaga, Alan; Encrenaz, Therese; Hartogh, Paul

    2011-01-01

    The presence of abundant methane in Earth's atmosphere (1.6 parts per million) requires sources other than atmospheric chemistry. Living systems produce more than 90% of Earth's atmospheric methane; the balance is of geochemical origin. On Mars, methane has been sought for nearly 40 years because of its potential biological significance, but it was detected only recently [1-5]. Its distribution on the planet is found to be patchy and to vary with time [1,2,4,5], suggesting that methane is released recently from the subsurface in localized areas, and is then rapidly destroyed [1,6]. Before 2000, searchers obtained sensitive upper limits for methane by averaging over much of Mars' dayside hemisphere, using data acquired by Marsorbiting spacecraft (Mariner 9) and Earth-based observatories (Kitt Peak National Observatory, Canada- France-Hawaii Telescope, Infrared Space Observatory). These negative findings suggested that methane should be searched at higher spatial resolution since the local abundance could be significantly larger at active sites. Since 2001, searches for methane have emphasized spatial mapping from terrestrial observatories and from Mars orbit (Mars Express).

  12. A method for the calculation of anaerobic oxidation of methane rates across regional scales: an example from the Belt Seas and The Sound (North Sea-Baltic Sea transition)

    NASA Astrophysics Data System (ADS)

    Mogollón, José M.; Dale, Andrew W.; Jensen, Jørn B.; Schlüter, Michael; Regnier, Pierre

    2013-08-01

    Estimating the amount of methane in the seafloor globally as well as the flux of methane from sediments toward the ocean-atmosphere system are important considerations in both geological and climate sciences. Nevertheless, global estimates of methane inventories and rates of methane production and consumption through anaerobic oxidation in marine sediments are very poorly constrained. Tools for regionally assessing methane formation and consumption rates would greatly increase our understanding of the spatial heterogeneity of the methane cycle as well as help constrain the global methane budget. In this article, an algorithm for calculating methane consumption rates in the inner shelf is applied to the gas-rich sediments of the Belt Seas and The Sound (North Sea-Baltic Sea transition). It is based on the depth of free gas determined by hydroacoustic techniques and the local methane solubility concentration. Due to the continuous nature of shipboard hydroacoustic measurements, this algorithm captures spatial heterogeneities in methane fluxes better than geochemical analyses of point sources such as observational/sampling stations. The sensibility of the algorithm with respect to the resolution of the free gas depth measurements (2 m vs. 50 cm) is proven of minor importance (a discrepancy of <10%) for a small part of the study area. The algorithm-derived anaerobic methane oxidation rates compare well with previous measured and modeling studies. Finally, regional results reveal that contemporary anaerobic methane oxidation in worldwide inner-shelf sediments may be an order of magnitude lower (ca. 0.24 Tmol year-1) than previous estimates (4.6 Tmol year-1). These algorithms ultimately help improve regional estimates of anaerobic oxidation of methane rates.

  13. Climate-methane cycle feedback in global climate model model simulations forced by RCP scenarios

    NASA Astrophysics Data System (ADS)

    Eliseev, Alexey V.; Denisov, Sergey N.; Arzhanov, Maxim M.; Mokhov, Igor I.

    2013-04-01

    Methane cycle module of the global climate model of intermediate complexity developed at the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM) is extended by coupling with a detailed module for thermal and hydrological processes in soil (Deep Soil Simulator, (Arzhanov et al., 2008)). This is an important improvement with respect with the earlier IAP RAS CM version (Eliseev et al., 2008) which has employed prescribed soil hydrology to simulate CH4 emissions from soil. Geographical distribution of water inundated soil in the model was also improved by replacing the older Olson's ecosystem data base by the data based on the SCIAMACHY retrievals (Bergamaschi et al., 2007). New version of the IAP RAS CM module for methane emissions from soil is validated by using the simulation protocol adopted in the WETCHIMP (Wetland and Wetland CH4 Inter-comparison of Models Project). In addition, atmospheric part of the IAP RAS CM methane cycle is extended by temperature dependence of the methane life-time in the atmosphere in order to mimic the respective dependence of the atmospheric methane chemistry (Denisov et al., 2012). The IAP RAS CM simulations are performed for the 18th-21st centuries according with the CMIP5 protocol taking into account natural and anthropogenic forcings. The new IAP RAS CM version realistically reproduces pre-industrial and present-day characteristics of the global methane cycle including CH4 concentration qCH4 in the atmosphere and CH4 emissions from soil. The latter amounts 150 - 160 TgCH4-yr for the late 20th century and increases to 170 - 230 TgCH4-yr in the late 21st century. Atmospheric methane concentration equals 3900 ppbv under the most aggressive anthropogenic scenario RCP 8.5 and 1850 - 1980 ppbv under more moderate scenarios RCP 6.0 and RCP 4.5. Under the least aggressive scenario RCP 2.6 qCH4 reaches maximum 1730 ppbv in 2020s and declines afterwards. Climate change impact on the methane emissions from soil enhances build up of the methane stock in the atmosphere by 10 - 25% depending on anthropogenic scenario and time instant. In turn, decrease of methane life-time in the atmosphere suppresses this build up by 5 - 40%. The net effect is uncertain but small in terms of resulting additional greenhouse radiative forcing. This smallness is reflected in small additional (relative to the model version with both methane emissions from soil and methane life-time in the atmosphere fixed at their preindustrial values) near-surface warming which globally is not larger than 1 K, i.e, ˜ 4% of warming exhibited by the model version neglecting climate-methane cycle interaction. References [1] M.M. Arzhanov, P.F. Demchenko, A.V. Eliseev, and I.I. Mokhov. Simulation of characteristics of thermal and hydrologic soil regimes in equilibrium numerical experiments with a climate model of intermediate complexity. Izvestiya, Atmos. Ocean. Phys., 44(5):279-287, 2008. doi: 10.1134/S0001433808050022. [2] P. Bergamaschi, C. Frankenberg, J.F. Meirink, M. Krol, F. Dentener, T. Wagner, U. Platt, J.O. Kaplan, S. Körner, M. Heimann, E.J. Dlugokencky, and A. Goede. Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations. J. Geophys. Res., 112(D2):D02304, 2007. doi: 10.1029/2006JD007268. [3] S.N. Denisov, A.V. Eliseev, and I.I. Mokhov. Climate change in the IAP RAS global model with interactive methane cycle under RCP anthropogenic scenarios. Rus. Meteorol. Hydrol., 2012. [submitted]. [4] A.V. Eliseev, I.I. Mokhov, M.M. Arzhanov, P.F. Demchenko, and S.N. Denisov. Interaction of the methane cycle and processes in wetland ecosystems in a climate model of intermediate complexity. Izvestiya, Atmos. Ocean. Phys., 44(2):139-152, 2008. doi: 10.1134/S0001433808020011.

  14. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application.

    PubMed

    Ho, Adrian; Reim, Andreas; Kim, Sang Yoon; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; van der Putten, Wim H; Bodelier, Paul L E

    2015-10-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may compensate for the loss of the methane sink function following land-use change. © 2015 John Wiley & Sons Ltd.

  15. Quantification of methane fluxes from industrial sites using a combination of a tracer release method and a Gaussian model

    NASA Astrophysics Data System (ADS)

    Ars, S.; Broquet, G.; Yver-Kwok, C.; Wu, L.; Bousquet, P.; Roustan, Y.

    2015-12-01

    Greenhouse gas (GHG) concentrations keep on increasing in the atmosphere since industrial revolution. Methane (CH4) is the second most important anthropogenic GHG after carbon dioxide (CO2). Its sources and sinks are nowadays well identified however their relative contributions remain uncertain. The industries and the waste treatment emit an important part of the anthropogenic methane that is difficult to quantify because the sources are fugitive and discontinuous. A better estimation of methane emissions could help industries to adapt their mitigation's politic and encourage them to install methane recovery systems in order to reduce their emissions while saving money. Different methods exist to quantify methane emissions. Among them is the tracer release method consisting in releasing a tracer gas near the methane source at a well-known rate and measuring both their concentrations in the emission plume. The methane rate is calculated using the ratio of methane and tracer concentrations and the emission rate of the tracer. A good estimation of the methane emissions requires a good differentiation between the methane actually emitted by the site and the methane from the background concentration level, but also a good knowledge of the sources distribution over the site. For this purpose, a Gaussian plume model is used in addition to the tracer release method to assess the emission rates calculated. In a first step, the data obtained for the tracer during a field campaign are used to tune the model. Different model's parameterizations have been tested to find the best representation of the atmospheric dispersion conditions. Once these parameters are set, methane emissions are estimated thanks to the methane concentrations measured and a Bayesian inversion. This enables to adjust the position and the emission rate of the different methane sources of the site and remove the methane background concentration.

  16. Global Molecular Analyses of Methane Metabolism in Methanotrophic Alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: Transcriptomic Study

    PubMed Central

    Matsen, Janet B.; Yang, Song; Stein, Lisa Y.; Beck, David; Kalyuzhnaya, Marina G.

    2013-01-01

    Methane utilizing bacteria (methanotrophs) are important in both environmental and biotechnological applications, due to their ability to convert methane to multicarbon compounds. However, systems-level studies of methane metabolism have not been carried out in methanotrophs. In this work we have integrated genomic and transcriptomic information to provide an overview of central metabolic pathways for methane utilization in Methylosinus trichosporium OB3b, a model alphaproteobacterial methanotroph. Particulate methane monooxygenase, PQQ-dependent methanol dehydrogenase, the H4MPT-pathway, and NAD-dependent formate dehydrogenase are involved in methane oxidation to CO2. All genes essential for operation of the serine cycle, the ethylmalonyl-CoA (EMC) pathway, and the citric acid (TCA) cycle were expressed. PEP-pyruvate-oxaloacetate interconversions may have a function in regulation and balancing carbon between the serine cycle and the EMC pathway. A set of transaminases may contribute to carbon partitioning between the pathways. Metabolic pathways for acquisition and/or assimilation of nitrogen and iron are discussed. PMID:23565111

  17. Development of TGS2611 methane sensor and SHT11 humidity and temperature sensor for measuring greenhouse gas on peatlands in south kalimantan, indonesia

    NASA Astrophysics Data System (ADS)

    Sugriwan, I.; Soesanto, O.

    2017-05-01

    The research was focused on development of data acquisition system to monitor the content of methane, relative humidity and temperature on peatlands in South Kalimantan, Indonesia. Methane is one of greenhouse gases that emitted from peatlands; while humidity and temperature are important parameters of microclimate on peatlands. The content of methane, humidity and temperature are three parameters were monitored digitally, real time, continuously and automatically record by data acquisition systems that interfaced to the personal computer. The hardware of data acquisition system consists of power supply unit, TGS2611 methane gas sensor, SHT11 humidity and temperature sensors, voltage follower, ATMega8535 microcontroller, 16 × 2 LCD character and personal computer. ATMega8535 module is a device to manage all part in measuring instrument. The software which is responsible to take sensor data, calculate characteristic equation and send data to 16 × 2 LCD character are Basic Compiler. To interface between measuring instrument and personal computer is maintained by Delphi 7. The result of data acquisition showed on 16 × 2 LCD characters, PC monitor and database with developed by XAMPP. Methane, humidity, and temperature which release from peatlands are trapped by Closed-Chamber Measurement with dimension 60 × 50 × 40 cm3. TGS2611 methane gas sensor and SHT11 humidity and temperature sensor are calibrated to determine transfer function used to data communication between sensors and microcontroller and integrated into ATMega8535 Microcontroller. Calculation of RS and RL of TGS2611 methane gas sensor refer to data sheet and obtained respectively 1360 ohm and 905 ohm. The characteristic equation of TGS2611 satisfies equation VRL = 0.561 ln n - 2.2641 volt, with n is a various concentrations and VRL in volt. The microcontroller maintained the voltage signal than interfaced it to liquid crystal displays and personal computer (laptop) to display result of the measurement. The result of data acquisition saved on excels and database format.

  18. Granular Carbon-Based Electrodes as Cathodes in Methane-Producing Bioelectrochemical Systems

    PubMed Central

    Liu, Dandan; Roca-Puigros, Marta; Geppert, Florian; Caizán-Juanarena, Leire; Na Ayudthaya, Susakul P.; Buisman, Cees; ter Heijne, Annemiek

    2018-01-01

    Methane-producing bioelectrochemical systems generate methane by using microorganisms to reduce carbon dioxide at the cathode with external electricity supply. This technology provides an innovative approach for renewable electricity conversion and storage. Two key factors that need further attention are production of methane at high rate, and stable performance under intermittent electricity supply. To study these key factors, we have used two electrode materials: granular activated carbon (GAC) and graphite granules (GG). Under galvanostatic control, the biocathodes achieved methane production rates of around 65 L CH4/m2catproj/d at 35 A/m2catproj, which is 3.8 times higher than reported so far. We also operated all biocathodes with intermittent current supply (time-ON/time-OFF: 4–2′, 3–3′, 2–4′). Current-to-methane efficiencies of all biocathodes were stable around 60% at 10 A/m2catproj and slightly decreased with increasing OFF time at 35 A/m2catproj, but original performance of all biocathodes was recovered soon after intermittent operation. Interestingly, the GAC biocathodes had a lower overpotential than the GG biocathodes, with methane generation occurring at −0.52 V vs. Ag/AgCl for GAC and at −0.92 V for GG at a current density of 10 A/m2catproj. 16S rRNA gene analysis showed that Methanobacterium was the dominant methanogen and that the GAC biocathodes experienced a higher abundance of proteobacteria than the GG biocathodes. Both cathode materials show promise for the practical application of methane-producing BESs. PMID:29946543

  19. Seasonal methane and nitrous oxide emissions of several rice cultivars in direct-seeded systems

    USDA-ARS?s Scientific Manuscript database

    Understanding cultivar effects on field greenhouse gas (GHG) emissions in rice (Oryza sativa L.) systems is needed to improve the accuracy of predictive models used for estimating GHG emissions and determine to what extent choice of cultivar may have on GHG mitigation. We compared methane (CH4) and...

  20. Electron impact cross-sections and cooling rates for methane. [in thermal balance of electrons in atmospheres and ionospheres of planets and satellites in outer solar system

    NASA Technical Reports Server (NTRS)

    Gan, L.; Cravens, T. E.

    1992-01-01

    Energy transfer between electrons and methane gas by collisional processes plays an important role in the thermal balance of electrons in the atmospheres and ionospheres of planets and satellites in the outer solar system. The literature is reviewed for electron impact cross-sections for methane in this paper. Energy transfer rates are calculated for elastic and inelastic processes using a Maxwellian electron distribution. Vibrational, rotational, and electronic excitation and ionization are included. Results are presented for a wide range of electron temperatures and neutral temperatures.

  1. Evaluation of Sorbents for Acetylene Separation in Atmosphere Revitalization Loop Closure

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Miller, Lee A.; Barton, Katherine

    2012-01-01

    State-of-the-art carbon dioxide reduction technology uses a Sabatier reactor to recover water from metabolic carbon dioxide. In order to maximize oxygen loop closure, a byproduct of the system, methane, must be reduced to recover hydrogen. NASA is currently exploring a microwave plasma methane pyrolysis system for this purpose. The resulting product stream of this technology includes unreacted methane, product hydrogen, and acetylene. The hydrogen and the small amount of unreacted methane resulting from the pyrolysis process can be returned to the Sabatier reactor thereby substantially improving the overall efficiency of the system. However, the acetylene is a waste product that must be removed from the pyrolysis product. Two materials have been identified as potential sorbents for acetylene removal: zeolite 4A, a commonly available commercial sorbent, and HKUST-1, a newly developed microporous metal. This paper provides an explanation of the rationale behind acetylene removal and the results of separation testing with both materials

  2. Evaluation of Sorbents for Acetylene Separation in Atmosphere Revitalization Loop Closure

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Miller, Lee A.; Barton, Katherine

    2011-01-01

    State-of-the-art carbon dioxide reduction technology uses a Sabatier reactor to recover water from metabolic carbon dioxide. In order to maximize oxygen loop closure, a byproduct of the system, methane, must be reduced to recover hydrogen. NASA is currently exploring a microwave plasma methane pyrolysis system for this purpose. The resulting product stream of this technology includes unreacted methane, product hydrogen, and acetylene. The hydrogen and the small amount of unreacted methane resulting from the pyrolysis process can be returned to the Sabatier reactor thereby substantially improving the overall efficiency of the system. However, the acetylene is a waste product that must be removed from the pyrolysis product. Two materials have been identified as potential sorbents for acetylene removal: zeolite 4A, a commonly available commercial sorbent, and HKUST-1, a newly developed microporous metal. This paper provides an explanation of the rationale behind acetylene removal and the results of separation testing with both materials.

  3. Leak localization and quantification with a small unmanned aerial system

    NASA Astrophysics Data System (ADS)

    Golston, L.; Zondlo, M. A.; Frish, M. B.; Aubut, N. F.; Yang, S.; Talbot, R. W.

    2017-12-01

    Methane emissions from oil and gas facilities are a recognized source of greenhouse gas emissions, requiring cost-effective and reliable monitoring systems to support leak detection and repair programs. We describe a set of methods for locating and quantifying natural gas leaks using a small unmanned aerial system (sUAS) equipped with a path-integrated methane sensor along with ground-based wind measurements. The algorithms are developed as part of a system for continuous well pad scale (100 m2 area) monitoring, supported by a series of over 200 methane release trials covering multiple release locations and flow rates. Test measurements include data obtained on a rotating boom platform as well as flight tests on a sUAS. The system is found throughout the trials to reliably distinguish between cases with and without a methane release down to 6 scfh (0.032 g/s). Among several methods evaluated for horizontal localization, the location corresponding to the maximum integrated methane reading have performed best with a median error of ± 1 m if two or more flights are averaged, or ± 1.2 m for individual flights. Additionally, a method of rotating the data around the estimated leak location is developed, with the leak magnitude calculated as the average crosswind integrated flux in the region near the source location. Validation of these methods will be presented, including blind test results. Sources of error, including GPS uncertainty, meteorological variables, and flight pattern coverage, will be discussed.

  4. Leachate properties as indicators of methane production process in MSW anaerobic digestion bioreactor landfill

    NASA Astrophysics Data System (ADS)

    Zeng, Yunmin; Wang, Li'ao; Xu, Tengtun; Li, Jiaxiang; Song, Xue; Hu, Chaochao

    2018-03-01

    In this paper, bioreactor was used to simulate the municipal solid waste (MSW) biodegradation process of landfill, tracing and testing trash methanogenic process and characteristics of leachate during anaerobic digestion, exploring the relationship between the two processes, aiming to screen out the indicators that can predict the methane production process of anaerobic digestion, which provides the support for real-time adjustment of technological parameters of MSW anaerobic digestion system and ensures the efficient operation of bioreactor landfill. The results showed that MSW digestion gas production rate constant is 0.0259 1/d, biogas production potential is 61.93 L/kg. The concentration of TN in leachate continued to increase, showing the trend of nitrogen accumulation. "Ammonia poisoning" was an important factor inhibiting waste anaerobic digestion gas production. In the anaerobic digestion system, although pH values of leachate can indicate methane production process to some degree, there are obvious lagging behind, so it cannot be used as indicator alone. The TOC/TN value of leachate has a certain indication on the stability of the methane production system. When TOC/TN value was larger than12, anaerobic digestion system was stable along with normal production of biogas. However, when TOC/TN value was lower than 12, the digestive system is unstable and the gas production is small. In the process of anaerobic digestion, the synthesis and transformation of valeric acid is more active. HAc/HVa changed greatly and had obvious inflection points, from which methane production period can be predicted.

  5. 30 CFR 27.10 - Conduct of investigations, tests, and demonstrations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS General Provisions § 27.10... letter of certification, MSHA may conduct such public demonstrations and tests of the certified methane...

  6. 30 CFR 27.10 - Conduct of investigations, tests, and demonstrations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS General Provisions § 27.10... letter of certification, MSHA may conduct such public demonstrations and tests of the certified methane...

  7. Comparing laser-based open- and closed-path gas analyzers to measure methane fluxes using the eddy covariance method

    USGS Publications Warehouse

    Detto, Matteo; Verfaillie, Joseph; Anderson, Frank; Xu, Liukang; Baldocchi, Dennis

    2011-01-01

    Closed- and open-path methane gas analyzers are used in eddy covariance systems to compare three potential methane emitting ecosystems in the Sacramento-San Joaquin Delta (CA, USA): a rice field, a peatland pasture and a restored wetland. The study points out similarities and differences of the systems in field experiments and data processing. The closed-path system, despite a less intrusive placement with the sonic anemometer, required more care and power. In contrast, the open-path system appears more versatile for a remote and unattended experimental site. Overall, the two systems have comparable minimum detectable limits, but synchronization between wind speed and methane data, air density corrections and spectral losses have different impacts on the computed flux covariances. For the closed-path analyzer, air density effects are less important, but the synchronization and spectral losses may represent a problem when fluxes are small or when an undersized pump is used. For the open-path analyzer air density corrections are greater, due to spectroscopy effects and the classic Webb–Pearman–Leuning correction. Comparison between the 30-min fluxes reveals good agreement in terms of magnitudes between open-path and closed-path flux systems. However, the scatter is large, as consequence of the intensive data processing which both systems require.

  8. The Boston Methane Project: Mapping Surface Emissions to Inform Atmospheric Estimation of Urban Methane Flux

    NASA Astrophysics Data System (ADS)

    Phillips, N.; Crosson, E.; Down, A.; Hutyra, L.; Jackson, R. B.; McKain, K.; Rella, C.; Raciti, S. M.; Wofsy, S. C.

    2012-12-01

    Lost and unaccounted natural gas can amount to over 6% of Massachusetts' total annual greenhouse gas inventory (expressed as equivalent CO2 tonnage). An unknown portion of this loss is due to natural gas leaks in pipeline distribution systems. The objective of the Boston Methane Project is to estimate the overall leak rate from natural gas systems in metropolitan Boston, and to compare this flux with fluxes from the other primary methane emissions sources. Companion talks at this meeting describe the atmospheric measurement and modeling framework, and chemical and isotopic tracers that can partition total atmospheric methane flux into natural gas and non-natural gas components. This talk focuses on estimation of surface emissions that inform the atmospheric modeling and partitioning. These surface emissions include over 3,300 pipeline natural gas leaks in Boston. For the state of Massachusetts as a whole, the amount of natural gas reported as lost and unaccounted for by utility companies was greater than estimated landfill emissions by an order of magnitude. Moreover, these landfill emissions were overwhelmingly located outside of metro Boston, while gas leaks are concentrated in exactly the opposite pattern, increasing from suburban Boston toward the urban core. Work is in progress to estimate spatial distribution of methane emissions from wetlands and sewer systems. We conclude with a description of how these spatial data sets will be combined and represented for application in atmospheric modeling.

  9. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina.

    PubMed

    Yin, Qi; Zhu, Xiaoyu; Zhan, Guoqiang; Bo, Tao; Yang, Yanfei; Tao, Yong; He, Xiaohong; Li, Daping; Yan, Zhiying

    2016-04-01

    The anaerobic digestion (AD) and microbial electrolysis cell (MEC) coupled system has been proved to be a promising process for biomethane production. In this paper, it was found that by co-cultivating Geobacter with Methanosarcina in an AD-MEC coupled system, methane yield was further increased by 24.1%, achieving to 360.2 mL/g-COD, which was comparable to the theoretical methane yield of an anaerobic digester. With the presence of Geobacter, the maximum chemical oxygen demand (COD) removal rate (216.8 mg COD/(L·hr)) and current density (304.3A/m(3)) were both increased by 1.3 and 1.8 fold compared to the previous study without Geobacter, resulting in overall energy efficiency reaching up to 74.6%. Community analysis demonstrated that Geobacter and Methanosarcina could coexist together in the biofilm, and the electrochemical activities of both were confirmed by cyclic voltammetry. Our study observed that the carbon dioxide content in total gas generated from the AD reactor with Geobacter was only half of that generated from the same reactor without Geobacter, suggesting that Methanosarcina may obtain the electron transferred from Geobacter for the reduction of carbon dioxide to methane. Taken together, Geobacter not only can improve the performance of the MEC system, but also can enhance methane production. Copyright © 2015. Published by Elsevier B.V.

  10. Some advantages of methane in an aircraft gas turbine

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Glassman, A. J.

    1980-01-01

    Liquid methane, which can be manufactured from any of the hydrocarbon sources such as coal, shale biomass, and organic waste considered as a petroleum replacement for aircraft fuels. A simple cycle analysis is carried out for a turboprop engine flying a Mach 0.8 and 10, 688 meters (35,000 ft.) altitude. Cycle performance comparisions are rendered for four cases in which the turbine cooling air is cooled or not cooled by the methane fuel. The advantages and disadvantages of involving the fuel in the turbine cooling system are discussed. Methane combustion characteristics are appreciably different from Jet A and will require different combustor designs. Although a number of similar difficult technical problems exist, a highly fuel efficient turboprop engine burning methane appear to be feasible.

  11. Methane Emissions from Landfill: Isotopic Evidence for Low Percentage of Oxidation from Gas Wells, Active and Closed Cells

    NASA Astrophysics Data System (ADS)

    Lowry, David; Fisher, Rebecca; Zazzeri, Giulia; al-Shalaan, Aalia; France, James; Lanoisellé, Mathias; Nisbet, Euan

    2017-04-01

    Large landfill sites remain a significant source of methane emissions in developed and developing countries, with a global estimated flux of 29 Tg / yr in the EDGAR 2008 database. This is significantly lower than 20 years ago due to the introduction of gas extraction systems, but active cells still emit significant amounts of methane before the gas is ready for extraction. Historically the methane was either passively oxidized through topsoil layers or flared. Oxidation is still the primary method of methane removal in many countries, and covered, remediated cells across the world continue to emit small quantities of methane. The isotopic signatures of methane from landfill gas wells, and that emitted from active and closed cells have been characterized for more than 20 UK landfills since 2011, with more recent work in Kuwait and Hong Kong. Since 2013 the emission plumes have been identified by a mobile measurement system (Zazzeri et al., 2015). Emissions in all 3 countries have a characteristic δ13C signature of -58 ± 3 ‰ dominated by emissions from the active cells, despite the hot, dry conditions of Kuwait and the hot, humid conditions of Hong Kong. Gas well samples define a similar range. Surface emissions from closed cells and closed landfills are mostly in the range -56 to -52 ‰Ṫhese are much more depleted values than those observed in the 1990s (up to -35 ) when soil oxidation was the dominant mechanism of methane removal. Calculations using isotopic signatures of the amount of methane oxidised in these closed areas before emission to atmosphere range from 5 to 15%, but average less than 10%, and are too small to calculate from the high-emitting active cells. Compared to other major methane sources, landfills have the most consistent isotopic signature globally, and are distinct from the more 13C-enriched natural gas, combustion and biomass burning sources. Zazzeri, G. et al. (2015) Plume mapping and isotopic characterization of anthropogenic methane sources, Atmospheric Environment, 110, 151-162, doi.org/10.1016/j.atmosenv.2015.03.029.

  12. Photodissociation Dye Laser Studies and High Pressure Discharge Conditioning Studies

    DTIC Science & Technology

    1976-11-01

    overnight to complete the formation of the Grignard reagent . The mixture was then cooled to room temperature and the solution was decanted ’.rom the...the Grignard reagent . A solution of the commercially available bromodiphenyl- methane (12.35 g) in the minimum quantity of dry benzene was then added...fairly rapidly into the reformed Hrignard reagent . A moderate exotherm was noted during this addition. The mixture was refluxed for two hours

  13. Sorghums for methane production. Final report, April 1983 to March 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiler, E.A.; Miller, F.R.; Dominy, R.E.

    1986-06-01

    The objective of the research is to develop an integrated system for methane production utilizing high-energy sorghum as the feedstock. The report provides specifics of research activities in the sorghums-for-methane production program sponsored by Gas Research Institute and co-funded by Texas Agricultural Experiment Station. Emphasis is placed on third-year results in the report since first- and second-year results are given in earlier reports. Researchers in the program include plant geneticists, sorghum physiologists, chemists, agronomists, ruminant physiologists, agricultural and systems engineers, and agricultural economists. Major research emphasis is on genetic manipulation, physiology and production systems, harvesting, storage, processing and conversion systems,more » inhibitors, and economic and systems analyses. During the third year, increasing emphasis continued on the storage, processing, and conversion aspects of the program because of the critical importance of high efficiency and conversion to the economic implementation of the system.« less

  14. Structural transformations of sVI tert-butylamine hydrates to sII binary hydrates with methane.

    PubMed

    Prasad, Pinnelli S R; Sugahara, Takeshi; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2009-10-22

    Binary clathrate hydrates with methane (CH(4), 4.36 A) and tert-butylamine (t-BuNH(2), 6.72 A) as guest molecules were synthesized at different molar concentrations of t-BuNH(2) (1.00-9.31 mol %) with methane at 7.0 MPa and 250 K, and were characterized by powder X-ray diffraction (PXRD) and Raman microscopy. A structural transformation from sVI to sII of t-BuNH(2) hydrate was clearly observed on pressurizing with methane. The PXRD showed sII signatures and the remnant sVI signatures were insignificant, implying the metastable nature of sVI binary hydrates. Raman spectroscopic data on these binary hydrates suggest that the methane molecules occupy the small cages and vacant large cages. The methane storage capacity in this system was nearly doubled to approximately 6.86 wt % for 5.56 mol % > t-BuNH(2) > 1.0 mol %.

  15. Enhanced methane emissions from oil and gas exploration areas to the atmosphere--the central Bohai Sea.

    PubMed

    Zhang, Yong; Zhao, Hua-de; Zhai, Wei-dong; Zang, Kun-peng; Wang, Ju-ying

    2014-04-15

    The distributions of dissolved methane in the central Bohai Sea were investigated in November 2011, May 2012, July 2012, and August 2012. Methane concentration in surface seawater, determined using an underway measurement system combined with wavelength-scanned cavity ring-down spectroscopy, showed marked spatiotemporal variations with saturation ratio from 107% to 1193%. The central Bohai Sea was thus a source of atmospheric methane during the survey periods. Several episodic oil and gas spill events increased surface methane concentration by up to 4.7 times and raised the local methane outgassing rate by up to 14.6 times. This study demonstrated a method to detect seafloor CH4 leakages at the sea surface, which may have applicability in many shallow sea areas with oil and gas exploration activities around the world. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Reduction of ruminant methane emissions - a win-win-win opportunity for business, development, and the environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingston, R.

    1997-12-31

    This paper describes research efforts of The Global Livestock Producers Program (GLPP) in establishing self-sustaining enterprises for cost-effective technologies (i.e., animal nutrition and genetic improvement) and global methane emissions reductions in developing world nations. The US Environmental Protection Agency has funded several studies to examine the possibilities of reducing ruminant methane emissions in India, Tanzania, Bangladesh, and Brazil. The results of the studies showed that: (1) many developing countries` production systems are inefficient, and (2) great potential exists for decreasing global methane emissions through increasing animal productivity. From this effort, the GLPP established livestock development projects in India, Zimbabwe, andmore » Tanzania, and is developing projects for Bangladesh, Nepal, and Brazil. The GLPP has developed a proven methodology for assessing ruminant methane and incorporating methane emissions monitoring into viable projects.« less

  17. Coal-Packed Methane Biofilter for Mitigation of Green House Gas Emissions from Coal Mine Ventilation Air

    PubMed Central

    Limbri, Hendy; Gunawan, Cindy; Thomas, Torsten; Smith, Andrew; Scott, Jason; Rosche, Bettina

    2014-01-01

    Methane emitted by coal mine ventilation air (MVA) is a significant greenhouse gas. A mitigation strategy is the oxidation of methane to carbon dioxide, which is approximately twenty-one times less effective at global warming than methane on a mass-basis. The low non-combustible methane concentrations at high MVA flow rates call for a catalytic strategy of oxidation. A laboratory-scale coal-packed biofilter was designed and partially removed methane from humidified air at flow rates between 0.2 and 2.4 L min−1 at 30°C with nutrient solution added every three days. Methane oxidation was catalysed by a complex community of naturally-occurring microorganisms, with the most abundant member being identified by 16S rRNA gene sequence as belonging to the methanotrophic genus Methylocystis. Additional inoculation with a laboratory-grown culture of Methylosinus sporium, as investigated in a parallel run, only enhanced methane consumption during the initial 12 weeks. The greatest level of methane removal of 27.2±0.66 g methane m−3 empty bed h−1 was attained for the non-inoculated system, which was equivalent to removing 19.7±2.9% methane from an inlet concentration of 1% v/v at an inlet gas flow rate of 1.6 L min−1 (2.4 min empty bed residence time). These results show that low-cost coal packing holds promising potential as a suitable growth surface and contains methanotrophic microorganisms for the catalytic oxidative removal of methane. PMID:24743729

  18. Effects of Environmental Conditions on an Urban Wetland's Methane Fluxes

    NASA Astrophysics Data System (ADS)

    Naor Azrieli, L.; Morin, T. H.; Bohrer, G.; Schafer, K. V.; Brooker, M.; Mitsch, W. J.

    2013-12-01

    Methane emissions from wetlands are the largest natural source of uncertainty in the global methane (CH4) budget. Wetlands are highly productive ecosystems with a large carbon sequestration potential. While wetlands are a net sink for carbon dioxide, they also release methane, a potent greenhouse gas. To effectively develop wetland management techniques, it is important to properly calculate the carbon budget of wetlands by understand the driving factors of methane fluxes. We constructed an eddy flux covariance system in the Olentangy River Wetland Research Park, a series of created and restored wetland in Columbus Ohio. Through the use of high frequency open path infrared gas analyzer (IRGA) sensors, we have continuously monitored the methane fluxes associated with the wetland since May 2011. To account for the heterogeneous landscape surrounding the tower, a footprint analysis was used to isolate data originating from within the wetland. Continuous measurements of the meteorological and environmental conditions at the wetlands coinciding with the flux measurements allow the interactions between methane fluxes and the climate and ecological forcing to be studied. The wintertime daily cycle of methane peaks around midday indicating a typical diurnal pattern in cold months. In the summer, the peak shifts to earlier in the day and also includes a daily peak occurring at approximately 10 AM. We believe this peak is associated with the onset of photosynthesis in Typha latifolia flushing methane from the plant's air filled tissue. Correlations with methane fluxes include latent heat flux, soil temperature, and incoming radiation. The connection to radiation may be further evidence of plant activity as a driver of methane fluxes. Higher methane fluxes corresponding with higher soil temperature indicates that warmer days stimulate the methanogenic consortium. Further analysis will focus on separating the methane fluxes into emissions from different terrain types within the wetland.

  19. Real-time drilling mud gas monitoring for qualitative evaluation of hydrocarbon gas composition during deep sea drilling in the Nankai Trough Kumano Basin.

    PubMed

    Hammerschmidt, Sebastian B; Wiersberg, Thomas; Heuer, Verena B; Wendt, Jenny; Erzinger, Jörg; Kopf, Achim

    2014-01-01

    Integrated Ocean Drilling Program Expedition 338 was the second scientific expedition with D/V Chikyu during which riser drilling was conducted as part of the Nankai Trough Seismogenic Zone Experiment. Riser drilling enabled sampling and real-time monitoring of drilling mud gas with an onboard scientific drilling mud gas monitoring system ("SciGas"). A second, independent system was provided by Geoservices, a commercial mud logging service. Both systems allowed the determination of (non-) hydrocarbon gas, while the SciGas system also monitored the methane carbon isotope ratio (δ(13)CCH4). The hydrocarbon gas composition was predominated by methane (> 1%), while ethane and propane were up to two orders of magnitude lower. δ(13)CCH4 values suggested an onset of thermogenic gas not earlier than 1600 meter below seafloor. This study aims on evaluating the onboard data and subsequent geological interpretations by conducting shorebased analyses of drilling mud gas samples. During shipboard monitoring of drilling mud gas the SciGas and Geoservices systems recorded up to 8.64% and 16.4% methane, respectively. Ethane and propane concentrations reached up to 0.03 and 0.013%, respectively, in the SciGas system, but 0.09% and 0.23% in the Geoservices data. Shorebased analyses of discrete samples by gas chromatography showed a gas composition with ~0.01 to 1.04% methane, 2 - 18 ppmv ethane, and 2 - 4 ppmv propane. Quadruple mass spectrometry yielded similar results for methane (0.04 to 4.98%). With δD values between -171‰ and -164‰, the stable hydrogen isotopic composition of methane showed little downhole variability. Although the two independent mud gas monitoring systems and shorebased analysis of discrete gas sample yielded different absolute concentrations they all agree well with respect to downhole variations of hydrocarbon gases. The data point to predominantly biogenic methane sources but suggest some contribution from thermogenic sources at depth, probably due to mixing. In situ thermogenic gas production at depths shallower 2000 mbsf is unlikely based on in situ temperature estimations between 81°C and 85°C and a cumulative time-temperature index of 0.23. In conclusion, the onboard SciGas data acquisition helps to provide a preliminary, qualitative evaluation of the gas composition, the in situ temperature and the possibility of gas migration.

  20. Methane storage in flexible metal-organic frameworks with intrinsic thermal management

    NASA Astrophysics Data System (ADS)

    Mason, Jarad A.; Oktawiec, Julia; Taylor, Mercedes K.; Hudson, Matthew R.; Rodriguez, Julien; Bachman, Jonathan E.; Gonzalez, Miguel I.; Cervellino, Antonio; Guagliardi, Antonietta; Brown, Craig M.; Llewellyn, Philip L.; Masciocchi, Norberto; Long, Jeffrey R.

    2015-11-01

    As a cleaner, cheaper, and more globally evenly distributed fuel, natural gas has considerable environmental, economic, and political advantages over petroleum as a source of energy for the transportation sector. Despite these benefits, its low volumetric energy density at ambient temperature and pressure presents substantial challenges, particularly for light-duty vehicles with little space available for on-board fuel storage. Adsorbed natural gas systems have the potential to store high densities of methane (CH4, the principal component of natural gas) within a porous material at ambient temperature and moderate pressures. Although activated carbons, zeolites, and metal-organic frameworks have been investigated extensively for CH4 storage, there are practical challenges involved in designing systems with high capacities and in managing the thermal fluctuations associated with adsorbing and desorbing gas from the adsorbent. Here, we use a reversible phase transition in a metal-organic framework to maximize the deliverable capacity of CH4 while also providing internal heat management during adsorption and desorption. In particular, the flexible compounds Fe(bdp) and Co(bdp) (bdp2- = 1,4-benzenedipyrazolate) are shown to undergo a structural phase transition in response to specific CH4 pressures, resulting in adsorption and desorption isotherms that feature a sharp ‘step’. Such behaviour enables greater storage capacities than have been achieved for classical adsorbents, while also reducing the amount of heat released during adsorption and the impact of cooling during desorption. The pressure and energy associated with the phase transition can be tuned either chemically or by application of mechanical pressure.

  1. Optical sensor system for time-resolved quantification of methane concentrations: Validation measurements in a rapid compression machine

    NASA Astrophysics Data System (ADS)

    Bauke, Stephan; Golibrzuch, Kai; Wackerbarth, Hainer; Fendt, Peter; Zigan, Lars; Seefeldt, Stefan; Thiele, Olaf; Berg, Thomas

    2018-05-01

    Lowering greenhouse gas emissions is one of the most challenging demands of today's society. Especially, the automotive industry struggles with the development of more efficient internal combustion (IC) engines. As an alternative to conventional fuels, methane has the potential for a significant emission reduction. In methane fuelled engines, the process of mixture formation, which determines the properties of combustion after ignition, differs significantly from gasoline and diesel engines and needs to be understood and controlled in order to develop engines with high efficiency. This work demonstrates the development of a gas sensing system that can serve as a diagnostic tool for measuring crank-angle resolved relative air-fuel ratios in methane-fuelled near-production IC engines. By application of non-dispersive infrared absorption spectroscopy at two distinct spectral regions in the ν3 absorption band of methane around 3.3 μm, the system is able to determine fuel density and temperature simultaneously. A modified spark plug probe allows for straightforward application at engine test stations. Here, the application of the detection system in a rapid compression machine is presented, which enables validation and characterization of the system on well-defined gas mixtures under engine-like dynamic conditions. In extension to a recent proof-of-principle study, a refined data analysis procedure is introduced that allows the correction of artefacts originating from mechanical distortions of the sensor probe. In addition, the measured temperatures are compared to data obtained with a commercially available system based on the spectrally resolved detection of water absorption in the near infrared.

  2. Direct Measure of the Dense Methane Phase in Gas Shale Organic Porosity by Neutron Scattering

    DOE PAGES

    Eberle, Aaron P. R.; King, Hubert E.; Ravikovitch, Peter I.; ...

    2016-08-30

    Here, we report the first direct measurements of methane density in shale gas using small-angle neutron scattering. At a constant pressure, the density of methane in the inorganic pores is similar to the gas bulk density of the system conditions. Conversely, the methane density is 2.1 ± 0.2 times greater in the organic mesopores. Furthermore, classical density functional theory calculations show that this excess density in the organic pores persists to elevated temperatures, typical of shale gas reservoir conditions, providing new insight into the hydrocarbon storage mechanisms within these reservoirs.

  3. Preliminary scattering kernels for ethane and triphenylmethane at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Cantargi, F.; Granada, J. R.; Damián, J. I. Márquez

    2017-09-01

    Two potential cold moderator materials were studied: ethane and triphenylmethane. The first one, ethane (C2H6), is an organic compound which is very interesting from the neutronic point of view, in some respects better than liquid methane to produce subthermal neutrons, not only because it remains in liquid phase through a wider temperature range (Tf = 90.4 K, Tb = 184.6 K), but also because of its high protonic density together with its frequency spectrum with a low rotational energy band. Another material, Triphenylmethane is an hydrocarbon with formula C19H16 which has already been proposed as a good candidate for a cold moderator. Following one of the main research topics of the Neutron Physics Department of Centro Atómico Bariloche, we present here two ways to estimate the frequency spectrum which is needed to feed the NJOY nuclear data processing system in order to generate the scattering law of each desired material. For ethane, computer simulations of molecular dynamics were done, while for triphenylmethane existing experimental and calculated data were used to produce a new scattering kernel. With these models, cross section libraries were generated, and applied to neutron spectra calculation.

  4. Cordierite-supported metal oxide for non-methane hydrocarbon oxidation in cooking oil fumes.

    PubMed

    Huang, Yonghai; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Gao, Fengyu; Wang, Jiangen; Yang, Zhongyu

    2018-05-21

    Cooking emission is an important reason for the air quality deterioration in the metropolitan area in China. Transition metal oxide and different loading of manganese oxide supported on cordierite were prepared by incipient wetness impregnation method and were used for non-methane hydrocarbon (NMHC) oxidation in cooking oil fumes (COFs). The effects of different calcination temperature and different Mn content were also studied. The SEM photographs and CO 2 temperature-programmed desorption revealed 5 wt% Mn/cordierite had the best pore structure and the largest number of the weak and moderate basic sites so it showed the best performance for NMHC oxidation. XRD analysis exhibited 5 wt% Mn/cordierite had the best dispersion of active phase and the active phase was MnO 2 when the calcination temperature was 400℃ which were good for the catalytic oxidation of NMHC.

  5. Crystal structure of 3-benzamido-1-(4-nitro-benz-yl)quinolinium tri-fluoro-methane-sulfonate.

    PubMed

    Nicolas-Gomez, Mariana; Bazany-Rodríguez, Iván J; Plata-Vargas, Eduardo; Hernández-Ortega, Simón; Dorazco-González, Alejandro

    2016-05-01

    In the title compound, C23H18N3O3 (+)·CF3SO3 (-), the asymmetric unit contains two crystallographically independent organic cations with similar conformations. Each cation shows a moderate distortion between the planes of the amide groups and the quinolinium rings with dihedral angles of 14.90 (2) and 31.66 (2)°. The quinolinium and phenyl rings are slightly twisted with respect to each other at dihedral angles of 6.99 (4) and 8.54 (4)°. The tri-fluoro-methane-sulfonate anions are linked to the organic cations via N-H⋯O hydrogen-bonding inter-actions involving the NH amide groups. In the crystal, the organic cations are linked by weak C-H⋯O(nitro group) inter-actions into supramol-ecular chains propagating along the b-axis direction.

  6. Potential impact of salinity on methane production from food waste anaerobic digestion.

    PubMed

    Zhao, Jianwei; Liu, Yiwen; Wang, Dongbo; Chen, Fei; Li, Xiaoming; Zeng, Guangming; Yang, Qi

    2017-09-01

    Previous studies have demonstrated that the presence of sodium chloride (NaCl) inhibited the production of methane from food waste anaerobic digestion. However, the details of how NaCl affects methane production from food waste remain unknown by now and the efficient approach to mitigate the impact of NaCl on methane production was seldom reported. In this paper, the details of how NaCl affects methane production was first investigated via a series of batch experiments. Experimental results showed the effect of NaCl on methane production was dosage dependent. Low level of NaCl improved the hydrolysis and acidification but inhibited the process of methanogenesis whereas high level of NaCl inhibit both steps of acidification and methanogenesis. Then an efficient approach, i.e. co-digestion of food waste and waste activated sludge, to mitigate the impact of NaCl on methane production was reported. Finally, the mechanisms of how co-digestion mitigates the effect on methane production caused by NaCl in co-digestion system were revealed. These findings obtained in this work might be of great importance for the operation of methane recovery from food waste in the presence of NaCl. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Sabatier Reactor System Integration with Microwave Plasma Methane Pyrolysis Post-Processor for Closed-Loop Hydrogen Recovery

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Miller, Lee A.; Williams, Tom

    2010-01-01

    The Carbon Dioxide Reduction Assembly (CRA) designed and developed for the International Space Station (ISS) represents the state-of-the-art in carbon dioxide reduction (CDRe) technology. The CRA produces water and methane by reducing carbon dioxide with hydrogen via the Sabatier reaction. The water is recycled to the Oxygen Generation Assembly (OGA) and the methane is vented overboard resulting in a net loss of hydrogen. The proximity to earth and the relative ease of logistics resupply from earth allow for a semi-closed system on ISS. However, long-term manned space flight beyond low earth orbit (LEO) dictates a more thoroughly closed-loop system involving significantly higher recovery of hydrogen, and subsequent recovery of oxygen, to minimize costs associated with logistics resupply beyond LEO. The open-loop ISS system for CDRe can be made closed-loop for follow-on missions by further processing methane to recover hydrogen. For this purpose, a process technology has been developed that employs a microwave-generated plasma to reduce methane to hydrogen and acetylene resulting in 75% theoretical recovery of hydrogen. In 2009, a 1-man equivalent Plasma Pyrolysis Assembly (PPA) was delivered to the National Aeronautics and Space Administration (NASA) for technical evaluation. The PPA has been integrated with a Sabatier Development Unit (SDU). The integrated process configuration incorporates a sorbent bed to eliminate residual carbon dioxide and water vapor in the Sabatier methane product stream before it enters the PPA. This paper provides detailed information on the stand-alone and integrated performance of both the PPA and SDU. Additionally, the integrated test stand design and anticipated future work are discussed.

  8. Methane, Ethane, and Nitrogen Stability on Titan

    NASA Astrophysics Data System (ADS)

    Hanley, J.; Grundy, W. M.; Thompson, G.; Dustrud, S.; Pearce, L.; Lindberg, G.; Roe, H. G.; Tegler, S.

    2017-12-01

    Many outer solar system bodies are likely to have a combination of methane, ethane and nitrogen. In particular the lakes of Titan are known to consist of these species. Understanding the past and current stability of these lakes requires characterizing the interactions of methane and ethane, along with nitrogen, as both liquids and ices. Our cryogenic laboratory setup allows us to explore ices down to 30 K through imaging, and transmission and Raman spectroscopy. Our recent work has shown that although methane and ethane have similar freezing points, when mixed they can remain liquid down to 72 K. Concurrently with the freezing point measurements we acquire transmission or Raman spectra of these mixtures to understand how the structural features change with concentration and temperature. Any mixing of these two species together will depress the freezing point of the lake below Titan's surface temperature, preventing them from freezing. We will present new results utilizing our recently acquired Raman spectrometer that allow us to explore both the liquid and solid phases of the ternary system of methane, ethane and nitrogen. In particular we will explore the effect of nitrogen on the eutectic of the methane-ethane system. At high pressure we find that the ternary creates two separate liquid phases. Through spectroscopy we determined the bottom layer to be nitrogen rich, and the top layer to be ethane rich. Identifying the eutectic, as well as understanding the liquidus and solidus points of combinations of these species, has implications for not only the lakes on the surface of Titan, but also for the evaporation/condensation/cloud cycle in the atmosphere, as well as the stability of these species on other outer solar system bodies. These results will help interpretation of future observational data, and guide current theoretical models.

  9. Fluxes of dissolved methane from the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard

    NASA Astrophysics Data System (ADS)

    Graves, Carolyn; Steinle, Lea; Niemann, Helge; Rehder, Gregor; Fisher, Rebecca; Lowry, Dave; Connelly, Doug; James, Rachael

    2015-04-01

    Seepage of methane from seafloor sediments offshore Svalbard may partly be driven by destabilization of gas hydrates as a result of bottom water warming. As the world's oceans are expected to continue to warm, in particular in the Arctic, destabilization of hydrate may become an important source of methane to ocean bottom waters and potentially to the overlying atmosphere where it contributes to further warming. In order to quantify the fate of methane from seafloor seeps, we have determined the distribution of dissolved methane in the water column on the upper slope and shelf offshore western Svalbard during three research cruises with RRS James Clark Ross (JR253) in 2011 and R/V Maria S. Merian (MSM21/4) and Heincke (HE387) in 2012. Combining discrete depth profile methane concentration data and surface seawater concentrations from an equilibrator-online system with oxidation rate measurements and atmospheric methane observations allows insight into the fate of methane input from the seafloor, and evaluation of the potential contributions of other methane sources. A simple box model considering oxidation and horizontal and vertical mixing indicates that the majority of seep methane is oxidized at depth. A plume of high methane concentrations is expected to persist more than 100 km downstream of the seepage area in the rapid barotropic West Spitsbergen Current, which flows northward towards the Arctic Ocean. We calculate that the diffusive sea-air flux of methane is largest on the shallow shelf, reaching 36 μmol m-2 day-1. Over the entire western Svalbard region there is a persistent, but small, source of methane from surface seawater to the overlying atmosphere. Measurements of the atmospheric methane carbon isotope signature indicate that the seafloor seeps do not make a significant contribution to atmospheric methane in this region, which is consistent with earlier studies. Observations downstream of the seepage region are necessary to further constrain potential for transport of previously hydrate-bound methane to the atmosphere, which would require a mechanism for enhanced vertical mixing of dissolved methane from bottom waters into the surface mixed layer.

  10. Annual variability and regulation of methane and sulfate fluxes in Baltic Sea estuarine sediments

    NASA Astrophysics Data System (ADS)

    Sawicka, Joanna E.; Brüchert, Volker

    2017-01-01

    Marine methane emissions originate largely from near-shore coastal systems, but emission estimates are often not based on temporally well-resolved data or sufficient understanding of the variability of methane consumption and production processes in the underlying sediment. The objectives of our investigation were to explore the effects of seasonal temperature, changes in benthic oxygen concentration, and historical eutrophication on sediment methane concentrations and benthic fluxes at two type localities for open-water coastal versus eutrophic, estuarine sediment in the Baltic Sea. Benthic fluxes of methane and oxygen and sediment pore-water concentrations of dissolved sulfate, methane, and 35S-sulfate reduction rates were obtained over a 12-month period from April 2012 to April 2013. Benthic methane fluxes varied by factors of 5 and 12 at the offshore coastal site and the eutrophic estuarine station, respectively, ranging from 0.1 mmol m-2 d-1 in winter at an open coastal site to 2.6 mmol m-2 d-1 in late summer in the inner eutrophic estuary. Total oxygen uptake (TOU) and 35S-sulfate reduction rates (SRRs) correlated with methane fluxes showing low rates in the winter and high rates in the summer. The highest pore-water methane concentrations also varied by factors of 6 and 10 over the sampling period with the lowest values in the winter and highest values in late summer-early autumn. The highest pore-water methane concentrations were 5.7 mM a few centimeters below the sediment surface, but they never exceeded the in situ saturation concentration. Of the total sulfate reduction, 21-24 % was coupled to anaerobic methane oxidation, lowering methane concentrations below the sediment surface far below the saturation concentration. The data imply that bubble emission likely plays no or only a minor role in methane emissions in these sediments. The changes in pore-water methane concentrations over the observation period were too large to be explained by temporal changes in methane formation and methane oxidation rates due to temperature alone. Additional factors such as regional and local hydrostatic pressure changes and coastal submarine groundwater flow may also affect the vertical and lateral transport of methane.

  11. [Sources of Methane in the Boreal Region

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In determining the global methane budget the sources of methane must be balanced with the sinks and atmospheric inventory. The approximate contribution of the different methane sources to the budget has been establish showing the major terrestrial inputs as rice, wetlands, bogs, fens, and tundra. Measurements and modeling of production in these sources suggest that temperature, water table height and saturation along with substratum composition are important in controlling methane production and emission. The isotopic budget of 13 C and D/H in methane can be used as a tool to clarify the global budget. This approach has achieved success at constraining the inputs. Studies using the isotopic approach place constraints on global methane production from different sources. Also, the relation between the two biogenic production pathways, acetate fermentation and CO2 reduction, and the effect of substratum composition can be made using isotope measurements shows the relation between the different biogenic, thermogenic and anthropogenic sources of methane as a function of the carbon and hydrogen isotope values for each source and the atmosphere, tropospheric composition. Methane emissions from ponds and fens are a significant source in the methane budget of the boreal region. An initial study in 1993 and 1994 on the isotopic composition of this methane source and the isotopic composition in relation to oxidation of methane at the sediment surface of the ponds or fen was conducted as part of our BOREAS project. The isotopic composition of methane emitted by saturated anoxic sediment is dependent on the sediment composition and geochemistry, but will be influenced by in situ oxidation, in part, a function of rooted plant activity. The influence of oxidation mediated by rooted plant activities on the isotopic composition of methane is not well known and will depend on the plant type, sediment temperature, and numerous other variables. Information on this isotopic composition is important in both understanding the bio-geochemistry of the system and also in determining the regional and global inputs for the methane isotope budget. In determining the destruction of methane for balancing the atmospheric methane budget soil oxidation must be considered.

  12. Methane utilization in Methylomicrobium alcaliphilum 20ZR: a systems approach.

    PubMed

    Akberdin, Ilya R; Thompson, Merlin; Hamilton, Richard; Desai, Nalini; Alexander, Danny; Henard, Calvin A; Guarnieri, Michael T; Kalyuzhnaya, Marina G

    2018-02-06

    Biological methane utilization, one of the main sinks of the greenhouse gas in nature, represents an attractive platform for production of fuels and value-added chemicals. Despite the progress made in our understanding of the individual parts of methane utilization, our knowledge of how the whole-cell metabolic network is organized and coordinated is limited. Attractive growth and methane-conversion rates, a complete and expert-annotated genome sequence, as well as large enzymatic, 13 C-labeling, and transcriptomic datasets make Methylomicrobium alcaliphilum 20Z R an exceptional model system for investigating methane utilization networks. Here we present a comprehensive metabolic framework of methane and methanol utilization in M. alcaliphilum 20Z R . A set of novel metabolic reactions governing carbon distribution across central pathways in methanotrophic bacteria was predicted by in-silico simulations and confirmed by global non-targeted metabolomics and enzymatic evidences. Our data highlight the importance of substitution of ATP-linked steps with PPi-dependent reactions and support the presence of a carbon shunt from acetyl-CoA to the pentose-phosphate pathway and highly branched TCA cycle. The diverged TCA reactions promote balance between anabolic reactions and redox demands. The computational framework of C 1 -metabolism in methanotrophic bacteria can represent an efficient tool for metabolic engineering or ecosystem modeling.

  13. 30 CFR 27.37 - Tests to determine adequacy of safety devices for bulbs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements... filament incandescent at normal operating voltage shall be broken in flammable methane-air or natural gas...

  14. Urban Methane Point Sources Detected by Tiered System of Remote-sensing Observations

    NASA Image and Video Library

    2015-07-10

    This image captured by a prototype NASA satellite instrument at NASA California Laboratory for Atmospheric Remote Sensing CLARS shows a persistent methane hotspot central red area over Los Angeles basin.

  15. 30 CFR 27.37 - Tests to determine adequacy of safety devices for bulbs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements... filament incandescent at normal operating voltage shall be broken in flammable methane-air or natural gas...

  16. Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system.

    PubMed

    Burkhardt, M; Koschack, T; Busch, G

    2015-02-01

    A new type of anaerobic trickle-bed reactor was used for biocatalytic methanation of hydrogen and carbon dioxide under mesophilic temperatures and ambient pressure in a continuous process. The conversion of gaseous substrates through immobilized hydrogenotrophic methanogenic archaea in a biofilm is a unique feature of this type of reactor. Due to the formation of a three-phase system on the carrier surface and operation as a plug flow reactor without gas recirculation, a complete reaction could be observed. With a methane concentration higher than c(CH4) = 98%, the product gas exhibits a very high quality. A specific methane production of P(CH4) = 1.49 Nm(3)/(m(3)(SV) d) was achieved at a hydraulic loading rate of LR(H2) = 6.0 Nm(3)/(m(3)(SV) d). The relation between trickle flow through the reactor and productivity could be shown. An application for methane enrichment in combination with biogas facilities as a source of carbon dioxide has also been positively proven. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Vehicle-based Methane Mapping Helps Find Natural Gas Leaks and Prioritize Leak Repairs

    NASA Astrophysics Data System (ADS)

    von Fischer, J. C.; Weller, Z.; Roscioli, J. R.; Lamb, B. K.; Ferrara, T.

    2017-12-01

    Recently, mobile methane sensing platforms have been developed to detect and locate natural gas (NG) leaks in urban distribution systems and to estimate their size. Although this technology has already been used in targeted deployment for prioritization of NG pipeline infrastructure repair and replacement, one open question regarding this technology is how effective the resulting data are for prioritizing infrastructure repair and replacement. To answer this question we explore the accuracy and precision of the natural gas leak location and emission estimates provided by methane sensors placed on Google Street View (GSV) vehicles. We find that the vast majority (75%) of methane emitting sources detected by these mobile platforms are NG leaks and that the location estimates are effective at identifying the general location of leaks. We also show that the emission rate estimates from mobile detection platforms are able to effectively rank NG leaks for prioritizing leak repair. Our findings establish that mobile sensing platforms are an efficient and effective tool for improving the safety and reducing the environmental impacts of low-pressure NG distribution systems by reducing atmospheric methane emissions.

  18. Understanding Methane Emission from Natural Gas Activities Using Inverse Modeling Techniques

    NASA Astrophysics Data System (ADS)

    Abdioskouei, M.; Carmichael, G. R.

    2015-12-01

    Natural gas (NG) has been promoted as a bridge fuel that can smooth the transition from fossil fuels to zero carbon energy sources by having lower carbon dioxide emission and lower global warming impacts in comparison to other fossil fuels. However, the uncertainty around the estimations of methane emissions from NG systems can lead to underestimation of climate and environmental impacts of using NG as a replacement for coal. Accurate estimates of methane emissions from NG operations is crucial for evaluation of environmental impacts of NG extraction and at larger scale, adoption of NG as transitional fuel. However there is a great inconsistency within the current estimates. Forward simulation of methane from oil and gas operation sites for the US is carried out based on NEI-2011 using the WRF-Chem model. Simulated values are compared against measurements of observations from different platforms such as airborne (FRAPPÉ field campaign) and ground-based measurements (NOAA Earth System Research Laboratory). A novel inverse modeling technique is used in this work to improve the model fit to the observation values and to constrain methane emission from oil and gas extraction sites.

  19. Titan and habitable planets around M-dwarfs.

    PubMed

    Lunine, Jonathan I

    2010-01-01

    The Cassini-Huygens mission discovered an active "hydrologic cycle" on Saturn's giant moon Titan, in which methane takes the place of water. Shrouded by a dense nitrogen-methane atmosphere, Titan's surface is blanketed in the equatorial regions by dunes composed of solid organics, sculpted by wind and fluvial erosion, and dotted at the poles with lakes and seas of liquid methane and ethane. The underlying crust is almost certainly water ice, possibly in the form of gas hydrates (clathrate hydrates) dominated by methane as the included species. The processes that work the surface of Titan resemble in their overall balance no other moon in the solar system; instead, they are most like that of the Earth. The presence of methane in place of water, however, means that in any particular planetary system, a body like Titan will always be outside the orbit of an Earth-type planet. Around M-dwarfs, planets with a Titan-like climate will sit at 1 AU--a far more stable environment than the approximately 0.1 AU where Earth-like planets sit. However, an observable Titan-like exoplanet might have to be much larger than Titan itself to be observable, increasing the ratio of heat contributed to the surface atmosphere system from internal (geologic) processes versus photons from the parent star.

  20. Surface modification processes during methane decomposition on Cu-promoted Ni–ZrO2 catalysts

    PubMed Central

    Wolfbeisser, Astrid; Klötzer, Bernhard; Mayr, Lukas; Rameshan, Raffael; Zemlyanov, Dmitry; Bernardi, Johannes; Rupprechter, Günther

    2015-01-01

    The surface chemistry of methane on Ni–ZrO2 and bimetallic CuNi–ZrO2 catalysts and the stability of the CuNi alloy under reaction conditions of methane decomposition were investigated by combining reactivity measurements and in situ synchrotron-based near-ambient pressure XPS. Cu was selected as an exemplary promoter for modifying the reactivity of Ni and enhancing the resistance against coke formation. We observed an activation process occurring in methane between 650 and 735 K with the exact temperature depending on the composition which resulted in an irreversible modification of the catalytic performance of the bimetallic catalysts towards a Ni-like behaviour. The sudden increase in catalytic activity could be explained by an increase in the concentration of reduced Ni atoms at the catalyst surface in the active state, likely as a consequence of the interaction with methane. Cu addition to Ni improved the desired resistance against carbon deposition by lowering the amount of coke formed. As a key conclusion, the CuNi alloy shows limited stability under relevant reaction conditions. This system is stable only in a limited range of temperature up to ~700 K in methane. Beyond this temperature, segregation of Ni species causes a fast increase in methane decomposition rate. In view of the applicability of this system, a detailed understanding of the stability and surface composition of the bimetallic phases present and the influence of the Cu promoter on the surface chemistry under relevant reaction conditions are essential. PMID:25815163

  1. An OPO-Based Lidar System for Differential Absorption Measurements of Methane in the 3 micron region

    NASA Technical Reports Server (NTRS)

    Lee, S. W.; Zenker, T.; Chyba, T. H.

    1998-01-01

    A ground-based lidar system in the wavelength region of 1.45-4 microns for the remote measurement of methane is described. The laser transmitter consists of an injection-seeded Nd:YAG laser which pumps an OPO (optical parametric oscillator). The OPO output is tunable from 1.45-4 microns, with a bandwidth less than 500 MHz, and a pulse energy of 1 to 3 mJ at 3.29 microns. The receiver is cart-mounted and consists of a 14" telescope with 1.57 and 3.29 micron detector channels. A fast oscilloscope is used for data acquisition. The system performance will be tested through measurements of sources of atmospheric methane.

  2. Evaluating methane inventories by isotopic analysis in the London region.

    PubMed

    Zazzeri, G; Lowry, D; Fisher, R E; France, J L; Lanoisellé, M; Grimmond, C S B; Nisbet, E G

    2017-07-07

    A thorough understanding of methane sources is necessary to accomplish methane reduction targets. Urban environments, where a large variety of methane sources coexist, are one of the most complex areas to investigate. Methane sources are characterised by specific δ 13 C-CH 4 signatures, so high precision stable isotope analysis of atmospheric methane can be used to give a better understanding of urban sources and their partition in a source mix. Diurnal measurements of methane and carbon dioxide mole fraction, and isotopic values at King's College London, enabled assessment of the isotopic signal of the source mix in central London. Surveys with a mobile measurement system in the London region were also carried out for detection of methane plumes at near ground level, in order to evaluate the spatial allocation of sources suggested by the inventories. The measured isotopic signal in central London (-45.7 ±0.5‰) was more than 2‰ higher than the isotopic value calculated using emission inventories and updated δ 13 C-CH 4 signatures. Besides, during the mobile surveys, many gas leaks were identified that are not included in the inventories. This suggests that a revision of the source distribution given by the emission inventories is needed.

  3. Origin of methane and sources of high concentrations in Los Angeles groundwater

    USGS Publications Warehouse

    Kulongoski, Justin; McMahon, Peter B.; Land, Michael; Wright, Michael; Johnson, Theodore; Landon, Matthew K.

    2018-01-01

    In 2014, samples from 37 monitoring wells at 17 locations, within or near oil fields, and one site >5 km from oil fields, in the Los Angeles Basin, California, were analyzed for dissolved hydrocarbon gas isotopes and abundances. The wells sample a variety of depths of an aquifer system composed of unconsolidated and semiconsolidated sediments under various conditions of confinement. Concentrations of methane in groundwater samples ranged from 0.002 to 150 mg/L—some of the highest concentrations reported in a densely populated urban area. The δ13C and δ2H of the methane ranged from −80.8 to −45.5 per mil (‰) and −249.8 to −134.9‰, respectively, and, along with oxidation‐reduction processes, helped to identify the origin of methane as microbial methanogenesis and CO2 reduction as its main formation pathway. The distribution of methane concentrations and isotopes is consistent with the high concentrations of methane in Los Angeles Basin groundwater originating from relatively shallow microbial production in anoxic or suboxic conditions. Source of the methane is the aquifer sediments rather than the upward migration or leakage of thermogenic methane associated with oil fields in the basin.

  4. Origin of Methane and Sources of High Concentrations in Los Angeles Groundwater

    NASA Astrophysics Data System (ADS)

    Kulongoski, J. T.; McMahon, P. B.; Land, M.; Wright, M. T.; Johnson, T. A.; Landon, M. K.

    2018-03-01

    In 2014, samples from 37 monitoring wells at 17 locations, within or near oil fields, and one site >5 km from oil fields, in the Los Angeles Basin, California, were analyzed for dissolved hydrocarbon gas isotopes and abundances. The wells sample a variety of depths of an aquifer system composed of unconsolidated and semiconsolidated sediments under various conditions of confinement. Concentrations of methane in groundwater samples ranged from 0.002 to 150 mg/L—some of the highest concentrations reported in a densely populated urban area. The δ13C and δ2H of the methane ranged from -80.8 to -45.5 per mil (‰) and -249.8 to -134.9‰, respectively, and, along with oxidation-reduction processes, helped to identify the origin of methane as microbial methanogenesis and CO2 reduction as its main formation pathway. The distribution of methane concentrations and isotopes is consistent with the high concentrations of methane in Los Angeles Basin groundwater originating from relatively shallow microbial production in anoxic or suboxic conditions. Source of the methane is the aquifer sediments rather than the upward migration or leakage of thermogenic methane associated with oil fields in the basin.

  5. Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion

    PubMed Central

    Lawton, Thomas J.; Rosenzweig, Amy C.

    2017-01-01

    Biological conversion of natural gas to liquids (Bio-GTL) represents an immense economic opportunity. In nature, aerobic methanotrophic bacteria and anaerobic archaea are able to selectively oxidize methane using methane monooxygenase (MMO) and methyl coenzyme M reductase (MCR) enzymes. Although significant progress has been made toward genetically manipulating these organisms for biotechnological applications, the enzymes themselves are slow, complex, and not recombinantly tractable in traditional industrial hosts. With turnover numbers of 0.16–13 s−1, these enzymes pose a considerable upstream problem in the biological production of fuels or chemicals from methane. Methane oxidation enzymes will need to be engineered to be faster to enable high volumetric productivities; however, efforts to do so and to engineer simpler enzymes have been minimally successful. Moreover, known methane-oxidizing enzymes have different expression levels, carbon and energy efficiencies, require auxiliary systems for biosynthesis and function, and vary considerably in terms of complexity and reductant requirements. The pros and cons of using each methane-oxidizing enzyme for Bio-GTL are considered in detail. The future for these enzymes is bright, but a renewed focus on studying them will be critical to the successful development of biological processes that utilize methane as a feedstock. PMID:27366961

  6. Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion.

    PubMed

    Lawton, Thomas J; Rosenzweig, Amy C

    2016-08-03

    Biological conversion of natural gas to liquids (Bio-GTL) represents an immense economic opportunity. In nature, aerobic methanotrophic bacteria and anaerobic archaea are able to selectively oxidize methane using methane monooxygenase (MMO) and methyl coenzyme M reductase (MCR) enzymes. Although significant progress has been made toward genetically manipulating these organisms for biotechnological applications, the enzymes themselves are slow, complex, and not recombinantly tractable in traditional industrial hosts. With turnover numbers of 0.16-13 s(-1), these enzymes pose a considerable upstream problem in the biological production of fuels or chemicals from methane. Methane oxidation enzymes will need to be engineered to be faster to enable high volumetric productivities; however, efforts to do so and to engineer simpler enzymes have been minimally successful. Moreover, known methane-oxidizing enzymes have different expression levels, carbon and energy efficiencies, require auxiliary systems for biosynthesis and function, and vary considerably in terms of complexity and reductant requirements. The pros and cons of using each methane-oxidizing enzyme for Bio-GTL are considered in detail. The future for these enzymes is bright, but a renewed focus on studying them will be critical to the successful development of biological processes that utilize methane as a feedstock.

  7. Exploratory study of atmospheric methane enhancements derived from natural gas use in the Houston urban area

    DOE PAGES

    Sanchez, Nancy P.; Zheng, Chuantao; Ye, Weilin; ...

    2018-01-04

    Here, the extensive use of natural gas (NG) in urban areas for heating, cooking and as a vehicular fuel is associated with potentially significant emissions of methane (CH 4) to the atmosphere. Methane, a potent greenhouse gas that influences the chemistry of the atmosphere, can be emitted from different sources including leakage from NG infrastructure, transportation activities, end-use uncombusted NG, landfills and livestock. Although significant CH 4 leakage associated with aging local NG distribution systems in the U.S. has been reported, further investigation is required to study the role of this infrastructure component and other NG-related sources in atmospheric CHmore » 4 enhancements in urban centers. In this study, neighborhood-scale mobile-based monitoring of potential CH 4 emissions associated with NG in the Greater Houston area (GHA) is reported. A novel dual-gas 3.337 μm interband cascade laser-based sensor system was developed and mobile-mode deployed for simultaneous CH 4 and ethane (C 2H 6) monitoring during a period of over 14 days, corresponding to ~ 90 hours of effective data collection during summer 2016. The sampling campaign covered ~ 250 road miles and was primarily concentrated on eight residential zones with distinct infrastructure age and NG usage levels. A moderate number of elevated CH 4 concentration events (37 episodes) with mixing ratios not exceeding 3.60 ppmv and associated with atmospheric background enhancements below 1.21 ppmv were observed during the field campaign. Source discrimination analyses based on the covariance between CH 4 and C 2H 6 levels indicated the predominance of thermogenic sources (e.g., NG) in the elevated CH 4 concentration episodes. The volumetric fraction of C 2H 6 in the sources associated with the thermogenic CH 4 spikes varied between 2.7 and 5.9%, concurring with the C 2H 6 content in NG distributed in the GHA. Isolated CH 4 peak events with significantly higher C 2H 6 enhancements (~11 %) were observed at industrial areas and locations with high density of petroleum and gas pipelines in the GHA, indicating potential variability in Houston’s thermogenic CH 4 sources.« less

  8. Exploratory study of atmospheric methane enhancements derived from natural gas use in the Houston urban area

    NASA Astrophysics Data System (ADS)

    Sanchez, Nancy P.; Zheng, Chuantao; Ye, Weilin; Czader, Beata; Cohan, Daniel S.; Tittel, Frank K.; Griffin, Robert J.

    2018-03-01

    The extensive use of natural gas (NG) in urban areas for heating and cooking and as a vehicular fuel is associated with potentially significant emissions of methane (CH4) to the atmosphere. Methane, a potent greenhouse gas that influences the chemistry of the atmosphere, can be emitted from different sources including leakage from NG infrastructure, transportation activities, end-use uncombusted NG, landfills and livestock. Although significant CH4 leakage associated with aging local NG distribution systems in the U.S. has been reported, further investigation is required to study the role of this infrastructure component and other NG-related sources in atmospheric CH4 enhancements in urban centers. In this study, neighborhood-scale mobile-based monitoring of potential CH4 emissions associated with NG in the Greater Houston area (GHA) is reported. A novel dual-gas 3.337 μm interband cascade laser-based sensor system was developed and mobile-mode deployed for simultaneous CH4 and ethane (C2H6) monitoring during a period of over 14 days, corresponding to ∼ 90 h of effective data collection during summer 2016. The sampling campaign covered ∼250 exclusive road miles and was primarily concentrated on eight residential zones with distinct infrastructure age and NG usage levels. A moderate number of elevated CH4 concentration events (37 episodes) with mixing ratios not exceeding 3.60 ppmv and associated with atmospheric background enhancements below 1.21 ppmv were observed during the field campaign. Source discrimination analyses based on the covariance between CH4 and C2H6 levels indicated the predominance of thermogenic sources (e.g., NG) in the elevated CH4 concentration episodes. The volumetric fraction of C2H6 in the sources associated with the thermogenic CH4 spikes varied between 2.7 and 5.9%, concurring with the C2H6 content in NG distributed in the GHA. Isolated CH4 peak events with significantly higher C2H6 enhancements (∼11%) were observed at industrial areas and locations with high density of petroleum and gas pipelines in the GHA, indicating potential variability in Houston's thermogenic CH4 sources.

  9. Exploratory study of atmospheric methane enhancements derived from natural gas use in the Houston urban area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Nancy P.; Zheng, Chuantao; Ye, Weilin

    Here, the extensive use of natural gas (NG) in urban areas for heating, cooking and as a vehicular fuel is associated with potentially significant emissions of methane (CH 4) to the atmosphere. Methane, a potent greenhouse gas that influences the chemistry of the atmosphere, can be emitted from different sources including leakage from NG infrastructure, transportation activities, end-use uncombusted NG, landfills and livestock. Although significant CH 4 leakage associated with aging local NG distribution systems in the U.S. has been reported, further investigation is required to study the role of this infrastructure component and other NG-related sources in atmospheric CHmore » 4 enhancements in urban centers. In this study, neighborhood-scale mobile-based monitoring of potential CH 4 emissions associated with NG in the Greater Houston area (GHA) is reported. A novel dual-gas 3.337 μm interband cascade laser-based sensor system was developed and mobile-mode deployed for simultaneous CH 4 and ethane (C 2H 6) monitoring during a period of over 14 days, corresponding to ~ 90 hours of effective data collection during summer 2016. The sampling campaign covered ~ 250 road miles and was primarily concentrated on eight residential zones with distinct infrastructure age and NG usage levels. A moderate number of elevated CH 4 concentration events (37 episodes) with mixing ratios not exceeding 3.60 ppmv and associated with atmospheric background enhancements below 1.21 ppmv were observed during the field campaign. Source discrimination analyses based on the covariance between CH 4 and C 2H 6 levels indicated the predominance of thermogenic sources (e.g., NG) in the elevated CH 4 concentration episodes. The volumetric fraction of C 2H 6 in the sources associated with the thermogenic CH 4 spikes varied between 2.7 and 5.9%, concurring with the C 2H 6 content in NG distributed in the GHA. Isolated CH 4 peak events with significantly higher C 2H 6 enhancements (~11 %) were observed at industrial areas and locations with high density of petroleum and gas pipelines in the GHA, indicating potential variability in Houston’s thermogenic CH 4 sources.« less

  10. Subtropical freshwater storages: a major source of nitrous oxide and methane?

    NASA Astrophysics Data System (ADS)

    Sturm, Katrin; Grinham, Alistair; Yuan, Zhiguo

    2013-04-01

    Studies of greenhouse gas cycling in subtropical water bodies, particularly in the Southern Hemisphere, are very limited. This represents an important gap in our understanding of global emissions as the higher temperatures experienced in the subtropics will likely accelerate greenhouse gas production and consumption. Critical to understanding the net impact of these accelerated rates are detailed studies of representative systems within this region. In this paper we present a model artificial freshwater storage: Gold Creek Dam in South East Queensland, Australia. Freshwater storages are commonplace for drinking water and irrigation purposes in Australia as unpredictable rainfall patterns make river and ground water sources unreliable. Over 85 % of Australian rivers are modified with weirs and dams providing permanent inundation of previously terrestrial environments. The higher temperatures experienced at these latitudes drive thermal stratification of these systems as well as rapidly deoxygenate bottom waters. High organic matter availability in the sediment zone as well as the anoxic overlying water provide ideal conditions for reduced products (including methane and ammonia) from microbial processing to be formed and diffuse into bottom waters. A mid-water metalimnion is generally associated with large gradients in dissolved oxygen availability and reduced metabolites undergo oxidation prior to their emission from water surface. An intensive field study was undertaken to improve understanding of production and transformation rates of methane and nitrous oxide from the sediments, through the water column and to the atmosphere. Sediment nutrient (ammonia, nitrite/nitrate and filterable reactive phosphorus) and greenhouse gas (methane and nitrous oxide) porewater samples were collected at selected sites. To determine the magnitude of the benthic sediment contribution of methane and nitrous oxide to the water column sediment incubations were conducted in the laboratory. To determine the likely atmospheric flux from this water body surface floating chambers were used to collect gas. Results showed maximum methane concentrations in the sediment porewaters and deeper water column, both anoxic environments. However, nitrous oxide had highest concentrations at the oxycline zone of the water column. Sediment incubations showed clear methane efflux demonstrating the sediments to be a consistent source of methane. Sediments were either a source or sink of nitrous oxide depending on overlying dissolved oxygen concentration. Floating chamber incubations clearly demonstrated Gold Creek Dam was a source of both methane and nitrous oxide with methane an order of magnitude higher expressed as CO2 equivalents. Diffusive atmospheric fluxes of methane ranged from 20 to 450 mg m-2 d-1 and were comparable to tropical reservoirs rather than temperate reservoirs (LOUIS et al., 2000). Results are likely to be globally relevant as an increasing number of large dams are being constructed to meet growing water demand and under a warming climate process occurring in subtropical systems can give insights into future changes likely to occur in temperate systems.

  11. A Densified Liquid Methane Delivery System for the Altair Ascent Stage

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.; Johnson, Wesley L.; Smudde, Todd D.; Femminineo, Mark F.; Schnell, Andrew R.

    2010-01-01

    The Altair Lunar Lander is currently carrying options for both cryogenic and hypergolic ascent stage propulsion modules. The cryogenic option uses liquid methane and liquid oxygen to propel Altair from the lunar surface back to rendezvous with the Orion command module. Recent studies have determined that the liquid methane should be densified by subcooling it to 93 K in order to prevent over-pressurization of the propellant tanks during the 210 day stay on the lunar surface. A trade study has been conducted to determine the preferred method of producing; loading, and maintaining the subcooled, densified liquid methane onboard Altair from a ground operations perspective. The trade study took into account the limitations in mass for the launch vehicle and the mobile launch platform as well as the historical reliability of various components and their thermal efficiencies. Several unique problems were encountered, namely delivering a small amount of a cryogenic propellant to a flight tank that is positioned over 350 ft above the launch pad as well as generating the desired delivery temperature of the methane at 93 K which is only 2.3 K above the methane triple point of 90.7 K. Over 20 methods of subcooled liquid methane production and delivery along with the associated system architectures were investigated to determine the best solutions to the problem. The top four cryogenic processing solutions were selected for further evaluation and detailed thermal modeling. This paper describes the results of the preliminary trade analysis of the 20 plus methane densification methods considered. The results of the detailed analysis will be briefed to the Altair Project Office and their propulsion team as well as the Ground Operations Project Office before the down-select is made between cryogenic and hypergolic ascent stages in August 2010.

  12. Freshwater bacteria release methane as a byproduct of phosphorus acquisition.

    PubMed

    Yao, Mengyin; Henny, Cynthia; Maresca, Julia A

    2016-09-30

    Freshwater lakes emit large amounts of methane, some of which is produced in oxic surface waters. Two potential pathways for aerobic methane production exist: methanogenesis in oxygenated water, which has been observed in some lakes, or demethylation of small organic molecules. Although methane is produced via demethylation in oxic marine environments, this mechanism of methane release has not yet been demonstrated in freshwater systems. Genes related to the C-P lyase pathway, which cleaves C-P bonds in phosphonate compounds, were found in a metagenomic survey of the surface water of Lake Matano, which is chronically P-starved and methane-rich. We demonstrate that four bacterial isolates from Lake Matano obtain P from methylphosphonate and release methane, and that this activity is repressed by phosphate. We further demonstrate that expression of phnJ, which encodes the enzyme that releases methane, is higher in the presence of methylphosphonate and lower when both methylphosphonate and phosphate are added. This gene is also found in most of the metagenomic data sets from freshwater environments. These experiments link methylphosphonate degradation and methane production with gene expression and phosphate availability in freshwater organisms, and suggest that some of the excess methane in the Lake Matano surface water, and in other methane-rich lakes, may be produced by P-starved bacteria. Methane is an important greenhouse gas, and contributes substantially to global warming. Although freshwater environments are known to release methane into the atmosphere, estimates of the amount of methane emitted by freshwater lakes vary from 8 to 73 Tg per year. Methane emissions are difficult to predict in part because the source of the methane can vary: it is the end product of the energy-conserving pathway in methanogenic archaea, which predominantly live in anoxic sediments or waters, but have also been identified in some oxic freshwater environments. More recently, methane release from small organic molecules has been observed in oxic marine environments. Here we show that demethylation of methylphosphonate may also contribute to methane release from lakes, and that phosphate can repress this activity. Since lakes are typically phosphorus-limited, some methane release in these environments may be a byproduct of phosphorus metabolism, rather than carbon or energy metabolism. Methane emissions from lakes are currently predicted using primary production, eutrophication status, extent of anoxia, and the shape and size of the lake; to improve prediction of methane emissions, phosphorus availability and sources may also need to be included in these models. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Escherichia coli inactivation kinetics in anaerobic digestion of dairy manure under moderate, mesophilic and thermophilic temperatures

    PubMed Central

    2011-01-01

    Batch anaerobic digestion experiments using dairy manure as feedstocks were performed at moderate (25°C), mesophilic (37°C), and thermophilic (52.5°C) temperatures to understand E. coli, an indicator organism for pathogens, inactivation in dairy manure. Incubation periods at 25, 37, and 52.5°C, were 61, 41, and 28 days respectively. Results were used to develop models for predicting E. coli inactivation and survival in anaerobic digestion. For modeling we used the decay of E. coli at each temperature to calculate the first-order inactivation rate coefficients, and these rates were used to formulate the time - temperature - E. coli survival relationships. We found the inactivation rate coefficient at 52.5°C was 17 and 15 times larger than the inactivation rate coefficients at 25 and 37°C, respectively. Decimal reduction times (D10; time to achieve one log removal) at 25, 37, and 52.5°C, were 9 -10, 7 - 8 days, and < 1 day, respectively. The Arrhenius correlation between inactivation rate coefficients and temperatures over the range 25 -52.5°C was developed to understand the impacts of temperature on E. coli inactivation rate. Using this correlation, the time - temperature - E. coli survival relationships were derived. Besides E. coli inactivation, impacts of temperature on biogas production, methane content, pH change, ORP, and solid reduction were also studied. At higher temperatures, biogas production and methane content was greater than that at low temperatures. While at thermophilic temperature pH was increased, at mesophilic and moderate temperatures pH were reduced over the incubation period. These results can be used to understand pathogen inactivation during anaerobic digestion of dairy manure, and impacts of temperatures on performance of anaerobic digesters treating dairy manure. PMID:21906374

  14. Laser system for natural gas detection. Phase 1: Laboratory feasibility studies

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Hinkley, E. D., Jr.

    1982-01-01

    This project demonstrated the feasibility of using laser remote sensing technology as a tool for leak survey work in natural gas distribution systems. A laboratory device was assembled using a pair of helium neon (HeNe) lasers to measure methane. One HeNe laser emits radiation at a wavelength of 3.3922 micrometers, which corresponds to a strong absorption feature of methane, while the other emits radiation at a wavelength of 3.3911 micrometers, which corresponds to a weak absorption by methane. As a particular area is scanned for leaks, the laser is pointed at convenient topographic targets within its operating range, about 25 m. A portion of the backscattered radiation is collected by a receiver and focused onto an indium antimonide (InSb) photodetector, cooled to 77K. Methane concentrations were determined from the differential absorption at the two wavelengths for the backscattered radiation.

  15. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    PubMed

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler.

    PubMed

    You, Changfu; Xu, Xuchang

    2008-04-01

    Ventilation air methane (VAM) accounts for 60-80% of the total emissions from coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible.

  17. Dense ceramic membranes for converting methane to syngas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balachandran, U.; Dusek, J.T.; Picciolo, J.J.

    1995-07-01

    Dense mixed-oxide ceramics capable of conducting both electrons and oxygen ions are promising materials for partial oxygenation of methane to syngas. We are particularly interested in an oxide based on the Sr-Fe-Co-O system. Dense ceramic membrane tubes have been fabricated by a plastic extrusion technique. The sintered tubes were then used to selectively transport oxygen from air through the membrane to make syngas without the use of external electrodes. The sintered tubes have operated for >1000 h, and methane conversion efficiencies of >98% have been observed. Mechanical properties, structural integrity of the tubes during reactor operation, results of methane conversion,more » selectivity of methane conversion products, oxygen permeation, and fabrication of multichannel configurations for large-scale production of syngas will be presented.« less

  18. National Gas Hydrate Program Expedition 01 offshore India; gas hydrate systems as revealed by hydrocarbon gas geochemistry

    USGS Publications Warehouse

    Lorenson, Thomas; Collett, Timothy S.

    2018-01-01

    The National Gas Hydrate Program Expedition 01 (NGHP-01) targeted gas hydrate accumulations offshore of the Indian Peninsula and along the Andaman convergent margin. The primary objectives of coring were to understand the geologic and geochemical controls on the accumulation of methane hydrate and their linkages to underlying petroleum systems. Four areas were investigated: 1) the Kerala-Konkan Basin in the eastern Arabian Sea, 2) the Mahanadi and 3) Krishna-Godavari Basins in the western Bay of Bengal, and 4) the Andaman forearc Basin in the Andaman Sea.Upward flux of methane at three of the four of the sites cored during NGHP-01 is apparent from the presence of seafloor mounds, seismic evidence for upward gas migration, shallow sub-seafloor geochemical evidence of methane oxidation, and near-seafloor gas composition that resembles gas from depth.The Kerala-Konkan Basin well contained only CO2 with no detectable hydrocarbons suggesting there is no gas hydrate system here. Gas and gas hydrate from the Krishna-Godavari Basin is mainly microbial methane with δ13C values ranging from −58.9 to −78.9‰, with small contributions from microbial ethane (−52.1‰) and CO2. Gas from the Mahanadi Basin was mainly methane with lower concentrations of C2-C5 hydrocarbons (C1/C2 ratios typically >1000) and CO2. Carbon isotopic compositions that ranged from −70.7 to −86.6‰ for methane and −62.9 to −63.7‰ for ethane are consistent with a microbial gas source; however deeper cores contained higher molecular weight hydrocarbon gases suggesting a small contribution from a thermogenic gas source. Gas composition in the Andaman Basin was mainly methane with lower concentrations of ethane to isopentane and CO2, C1/C2 ratios were mainly >1000 although deeper samples were <1000. Carbon isotopic compositions range from −65.2 to −80.7‰ for methane, −53.1 to −55.2‰ for ethane is consistent with mainly microbial gas sources, although one value recorded of −35.4‰ for propane suggests a thermogenic source. Gas hydrate accumulations in the Krishna-Godavari and Mahanadi Basins are the result of a microbially sourced gas hydrate system. The system is enhanced by the migration of microbial gas from surrounding areas through pathways including high-porosity delta sands, shale diapirism, faulting and folding of sediment due to the local processes associated with rapid sediment deposition, sediment overpressure, and the recycling of methane from a rapidly upward moving gas hydrate stability zone. The gas hydrate system in the Andaman Basin is less well constrained due to lack of exploration and occurs in a forearc basin. Each of these hydrate-bearing systems overlies and is likely supported by the presence and possible migration of gas from deeper gas-prone petroleum systems currently generating thermogenic hydrocarbons at much greater depths.

  19. Biologically derived fertilizer: A multifaceted bio-tool in methane mitigation.

    PubMed

    Singh, Jay Shankar; Strong, P J

    2016-02-01

    Methane emissions are affected by agricultural practices. Agriculture has increased in scale and intensity because of greater food, feed and energy demands. The application of chemical fertilizers in agriculture, particularly in paddy fields, has contributed to increased atmospheric methane emissions. Using organic fertilizers may improve crop yields and the methane sink potential within agricultural systems, which may be further improved when combined with beneficial microbes (i.e. biofertilizers) that improve the activity of methane oxidizing bacteria such as methanotrophs. Biofertilizers may be an effective tool for agriculture that is environmentally beneficial compared to conventional inorganic fertilizers. This review highlights and discusses the interplay between ammonia and methane oxidizing bacteria, the potential interactions of microbial communities with microbially-enriched organic amendments and the possible role of these biofertilizers in augmenting the methane sink potential of soils. It is suggested that biofertilizer applications should not only be investigated in terms of sustainable agriculture productivity and environmental management, but also in terms of their effects on methanogen and methanotroph populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Polluting a microbial methane sink. [Effect of nitrogen in acid rain on reducing removal of methane from the atmosphere by soil bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-03-01

    Excess nitrogen, whether from fertilization or from acid rain, seems to reduce the amount of methane that soil organisms can remove from the atmosphere. Methane, an important greenhouse gas, contributes to global warming by acting as an atmospheric blanket. The gas has been increasing approximately 1% a year for the past decade, due either to increases in global sources or decrease in biological sinks. The largest such sinks are the microorganisms in aerobic soils. Recent research by P.A. Steudler, R.D. Bowden, and J.M. Melillo of the Marine Biological Laboratory, Woods Hole, Massachusetts, and J.D. Aber of the University of Newmore » Hampshire, Durham, has shown that added nitrogen significantly decreases the rates at which temperate forest soils can take up methane. Laboratory studies with soil microorganisms support the field observations, suggesting that high nitrogen suppresses methane uptake. The researchers say further measurements in agroecosystems, pastures, and other high-nitrogen systems are needed to clarify the nitrogen-methane interaction before extrapolation to a global basis.« less

  1. Health and Safety Management for Small-scale Methane Fermentation Facilities

    NASA Astrophysics Data System (ADS)

    Yamaoka, Masaru; Yuyama, Yoshito; Nakamura, Masato; Oritate, Fumiko

    In this study, we considered health and safety management for small-scale methane fermentation facilities that treat 2-5 ton of biomass daily based on several years operation experience with an approximate capacity of 5 t·d-1. We also took account of existing knowledge, related laws and regulations. There are no qualifications or licenses required for management and operation of small-scale methane fermentation facilities, even though rural sewerage facilities with a relative similar function are required to obtain a legitimate license. Therefore, there are wide variations in health and safety consciousness of the operators of small-scale methane fermentation facilities. The industrial safety and health laws are not applied to the operation of small-scale methane fermentation facilities. However, in order to safely operate a small-scale methane fermentation facility, the occupational safety and health management system that the law recommends should be applied. The aims of this paper are to clarify the risk factors in small-scale methane fermentation facilities and encourage planning, design and operation of facilities based on health and safety management.

  2. The future of methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, D.G.

    1995-12-31

    Natural gas, mainly methane, produces lower CO{sub 2}, CO, NO{sub x}, SO{sub 2} and particulate emissions than either oil or coal; thus further substitutions of methane for these fuels could help mitigate air pollution. Methane is, however, a potent greenhouse gas and the domestication of ruminants, cultivation of rice, mining of coal, drilling for oil, and transportation of natural gas have all contributed to a doubling of the amount of atmospheric methane since 1800. Today nearly 300,000 wells yearly produce ca. 21 trillion cubic feet of methane. Known reserves suggest about a 10 year supply at the above rates ofmore » recovery; and the potential for undiscovered resources is obscured by uncertainty involving price, new technologies, and environmental restrictions steming from the need to drill an enormous number of wells, many in ecologically sensitive areas. Until all these aspects of methane are better understood, its future role in the world`s energy mix will remain uncertain. The atomic simplicity of methane, composed of one carbon and four hydrogen atoms, may mask the complexity and importance of this, the most basic of organic molecules. Within the Earth, methane is produced through thermochemical alteration of organic materials, and by biochemical reactions mediated by metabolic processes of archaebacteria; some methane may even be primordial, a residue of planetary accretion. Methane also occurs in smaller volumes in landfills, rice paddies, termite complexes, ruminants, and even many humans. As an energy source, its full energy potential is controversial. Methane is touted by some as a viable bridge to future energy systems, fueled by the sun and uranium and carried by electricity and hydrogen.« less

  3. Methane production and isotopic fingerprinting in ethanol fuel contaminated sites.

    PubMed

    Freitas, Juliana G; Fletcher, Barbara; Aravena, Ramon; Barker, James F

    2010-01-01

    Biodegradation of organic compounds in groundwater can be a significant source of methane in contaminated sites. Methane might accumulate in indoor spaces posing a hazard. The increasing use of ethanol as a gasoline additive is a concern with respect to methane production since it is easily biodegraded and has a high oxygen demand, favoring the development of anaerobic conditions. This study evaluated the use of stable carbon isotopes to distinguish the methane origin between gasoline and ethanol biodegradation, and assessed the occurrence of methane in ethanol fuel contaminated sites. Two microcosm tests were performed under anaerobic conditions: one test using ethanol and the other using toluene as the sole carbon source. The isotopic tool was then applied to seven field sites known to be impacted by ethanol fuels. In the microcosm tests, it was verified that methane from ethanol (δ¹³C = -11.1‰) is more enriched in ¹³C, with δ¹³C values ranging from -20‰ to -30‰, while the methane from toluene (δ¹³C = -28.5‰) had a carbon isotopic signature of -55‰. The field samples had δ¹³C values varying over a wide range (-10‰ to -80‰), and the δ¹³C values allowed the methane source to be clearly identified in five of the seven ethanol/gasoline sites. In the other two sites, methane appears to have been produced from both sources. Both gasoline and ethanol were sources of methane in potentially hazardous concentrations and methane could be produced from organic acids originating from ethanol along the groundwater flow system even after all the ethanol has been completed biodegraded. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  4. Molecular dynamics study of structure H clathrate hydrates of methane and large guest molecules.

    PubMed

    Susilo, Robin; Alavi, Saman; Ripmeester, John A; Englezos, Peter

    2008-05-21

    Methane storage in structure H (sH) clathrate hydrates is attractive due to the relatively higher stability of sH as compared to structure I methane hydrate. The additional stability is gained without losing a significant amount of gas storage density as happens in the case of structure II (sII) methane clathrate. Our previous work has showed that the selection of a specific large molecule guest substance (LMGS) as the sH hydrate former is critical in obtaining the optimum conditions for crystallization kinetics, hydrate stability, and methane content. In this work, molecular dynamics simulations are employed to provide further insight regarding the dependence of methane occupancy on the type of the LMGS and pressure. Moreover, the preference of methane molecules to occupy the small (5(12)) or medium (4(3)5(6)6(3)) cages and the minimum cage occupancy required to maintain sH clathrate mechanical stability are examined. We found that thermodynamically, methane occupancy depends on pressure but not on the nature of the LMGS. The experimentally observed differences in methane occupancy for different LMGS may be attributed to the differences in crystallization kinetics and/or the nonequilibrium conditions during the formation. It is also predicted that full methane occupancies in both small and medium clathrate cages are preferred at higher pressures but these cages are not fully occupied at lower pressures. It was found that both small and medium cages are equally favored for occupancy by methane guests and at the same methane content, the system suffers a free energy penalty if only one type of cage is occupied. The simulations confirm the instability of the hydrate when the small and medium cages are empty. Hydrate decomposition was observed when less than 40% of the small and medium cages are occupied.

  5. Variability of methane fluxes over high latitude permafrost wetlands

    NASA Astrophysics Data System (ADS)

    Serafimovich, Andrei; Hartmann, Jörg; Larmanou, Eric; Sachs, Torsten

    2013-04-01

    Atmospheric methane plays an important role in the global climate system. Due to significant amounts of organic material stored in the upper layers of high latitude permafrost wetlands and a strong Arctic warming trend, there is concern about potentially large methane emissions from Arctic and sub-Arctic areas. The quantification of methane fluxes and their variability from these regions therefore plays an important role in understanding the Arctic carbon cycle and changes in atmospheric methane concentrations. However, direct measurements of methane fluxes in permafrost regions are sparse, very localized, inhomogeneously distributed in space, and thus difficult to use for accurate model representation of regional to global methane contributions from the Arctic. We aim to contribute to reducing uncertainty and improve spatial coverage and spatial representativeness of flux estimates by using airborne eddy covariance measurements across large areas. The research aircraft POLAR 5 was equipped with a turbulence nose boom and a fast response methane analyzer and served as the platform for measurements of methane emissions. The measuring campaign was carried out from 28 June to 10 July 2012 across the entire North Slope of Alaska and the Mackenzie Delta in Canada. The supplemented simulations from the Weather Research and Forecasting (WRF) model exploring the dynamics of the atmospheric boundary layer were used to analyze high methane concentrations occasionally observed within the boundary layer with a distinct drop to background level above. Strong regional differences were detected over both investigated areas showing the non-uniform distribution of methane sources. In order to cover the whole turbulent spectrum and at the same time to resolve methane fluxes on a regional scale, different integration paths were analyzed and validated through spectral analysis. Methane emissions measured over the Mackenzie Delta were higher and generally more variable in space, especially in the outer Delta with known geogenic methane seepage. On the North Slope, methane fluxes were larger in the western part than in the central and eastern parts. The obtained results are essential for the advanced, scale dependent quantification of methane emissions. Our contribution will present an overview of the experiment as well as preliminary results from more than 52 flight hours over high latitude permafrost wetlands.

  6. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mønster, Jacob; Samuelsson, Jerker, E-mail: jerker.samuelsson@fluxsense.se; Kjeldsen, Peter

    2015-01-15

    Highlights: • Quantification of whole landfill site methane emission at 15 landfills. • Multiple on-site source identification and quantification. • Quantified methane emission from shredder waste and composting. • Large difference between measured and reported methane emissions. - Abstract: Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FTIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were chosen to represent the different stages of the lifetime of a landfill, including open, active, and closed coveredmore » landfills, as well as those with and without gas extraction for utilisation or flaring. Measurements also included landfills with biocover for oxidizing any fugitive methane. Methane emission rates ranged from 2.6 to 60.8 kg h{sup −1}, corresponding to 0.7–13.2 g m{sup −2} d{sup −1}, with the largest emission rates per area coming from landfills with malfunctioning gas extraction systems installed, and the smallest emission rates from landfills closed decades ago and landfills with an engineered biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41–81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills was 154 tons y{sup −1}. This average was obtained from a few measurement campaigns conducted at each of the 15 landfills and extrapolating to annual emissions requires more measurements. Assuming that these landfills are representative of the average Danish landfill, the total emission from Danish landfills were calculated at 20,600 tons y{sup −1}, which is significantly lower than the 33,300 tons y{sup −1} estimated for the national greenhouse gas inventory for 2011.« less

  7. Arctic regional methane fluxes by ecotope as derived using eddy covariance from a low-flying aircraft

    NASA Astrophysics Data System (ADS)

    Sayres, David S.; Dobosy, Ronald; Healy, Claire; Dumas, Edward; Kochendorfer, John; Munster, Jason; Wilkerson, Jordan; Baker, Bruce; Anderson, James G.

    2017-07-01

    The Arctic terrestrial and sub-sea permafrost region contains approximately 30 % of the global carbon stock, and therefore understanding Arctic methane emissions and how they might change with a changing climate is important for quantifying the global methane budget and understanding its growth in the atmosphere. Here we present measurements from a new in situ flux observation system designed for use on a small, low-flying aircraft that was deployed over the North Slope of Alaska during August 2013. The system combines a small methane instrument based on integrated cavity output spectroscopy (ICOS) with an air turbulence probe to calculate methane fluxes based on eddy covariance. We group surface fluxes by land class using a map based on LandSat Thematic Mapper (TM) data with 30 m resolution. We find that wet sedge areas dominate the methane fluxes with a mean flux of 2.1 µg m-2 s-1 during the first part of August. Methane emissions from the Sagavanirktok River have the second highest at almost 1 µg m-2 s-1. During the second half of August, after soil temperatures had cooled by 7 °C, methane emissions fell to between 0 and 0.5 µg m-2 s-1 for all areas measured. We compare the aircraft measurements with an eddy covariance flux tower located in a wet sedge area and show that the two measurements agree quantitatively when the footprints of both overlap. However, fluxes from sedge vary at times by a factor of 2 or more even within a few kilometers of the tower demonstrating the importance of making regional measurements to map out methane emissions spatial heterogeneity. Aircraft measurements of surface flux can play an important role in bridging the gap between ground-based measurements and regional measurements from remote sensing instruments and models.

  8. Investigation of Wyoming Bentonite Hydration in Dry to Water-Saturated Supercritical CH4 and CH4/CO2 Mixtures: Implications for CO2-Enhanced Gas Production

    NASA Astrophysics Data System (ADS)

    Loring, J.; Thompson, C.; Ilton, E. S.; McGrail, B. P.; Schaef, T.

    2014-12-01

    Injection of CO2 into low permeability shale formations leads to additional gas recovery and reduces the flux of CO2 into the atmosphere, thus combining a strong economic incentive with a permanent storage option for CO2. Reduced formation transmissivity due to clay swelling is a concern in CO2 -enhanced gas production. Clay minerals partly determine the physical (i.e. permeability, brittleness) and certain chemical properties (i.e. wetting ability, gas adsorption) of shales, and montmorillonites are of particular interest because they swell by the uptake of species in their interlayer. In this study, the hydration and expansion of a Na-saturated montmorillonite (Na-SWy-2) in high-pressure (90 bar) and moderate temperature (50 °C) methane and mixtures of methane and carbon dioxide were investigated usingCH4 IR spectroscopic titrations andCH4 XRD. The goals were to (1) determine if the hydration/expansion behavior of the clay in supercritical methane is different than in supercritical CO2, (2) determine if methane intercalates the clay, and (3) probe the effects of increasing CO2 concentrations. IR spectra were collected as Na-SWy-2 was titrated with water under several fluid exposures: pure methane, 25, 50, and 75 mole% CO2 in methane, and pure CO2. ComplementaryCH4 XRD experiments were conducted in the same fluids at discrete dissolved water concentrations to measure the d001 values of the clay and thus its volume change on hydration and CH4 and/or CO2 intercalation. In pure methane, no direct evidence of CH4 intercalation was detected in CH bending or stretching regions of the IR spectra. Similarly, in situ XRD indicated the montmorillonite structure was stable in the presence of CH4 and no measurable changes to the basal spacing were observed. However, under low water conditions where the montmorillonite structure was partially expanded (~sub 1W), the IR data indicated a rapid intercalation of CO2 into the interlayer, even with fluid mixtures containing the lowest concentrations of CO2. Likewise,CH4 XRD showed indirect evidence of CO2 intercalation from an increase in the basal spacing from 11.8 to 12.3 under identical conditions. These findings demonstrate that water and CO2 intercalation processes could lead to permeability changes that directly impact methane transmissivity in shales.

  9. Genome-Scale Metabolic Reconstructions and Theoretical Investigation of Methane Conversion in Methylomicrobium buryatense Strain 5G(B1)

    DOE PAGES

    de la Torre, Andrea; Metivier, Aisha; Chu, Frances; ...

    2015-11-25

    Methane-utilizing bacteria (methanotrophs) are capable of growth on methane and are attractive systems for bio-catalysis. However, the application of natural methanotrophic strains to large-scale production of value-added chemicals/biofuels requires a number of physiological and genetic alterations. An accurate metabolic model coupled with flux balance analysis can provide a solid interpretative framework for experimental data analyses and integration.

  10. Post-Shock Sampling of Shock-Heated Hydrocarbon Fuels

    DTIC Science & Technology

    2016-07-07

    on the ability to measure key hydrocarbon fragments (e.g. ethylene , methane, and acetylene) over a wide range of temperatures and pressures. The...series of experiments was conducted to validate the sampling system results and explore the thermal decomposition of ethylene and methane. Initially, a...1% ethylene /0.1% methane/balance argon fuel mixture was shock-heated to ~960 K – a temperature low enough that no reaction would occur. GC analysis

  11. Modeling of simultaneous anaerobic methane and ammonium oxidation in a membrane biofilm reactor.

    PubMed

    Chen, Xueming; Guo, Jianhua; Shi, Ying; Hu, Shihu; Yuan, Zhiguo; Ni, Bing-Jie

    2014-08-19

    Nitrogen removal by using the synergy of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) microorganisms in a membrane biofilm reactor (MBfR) has previously been demonstrated experimentally. In this work, a mathematical model is developed to describe the simultaneous anaerobic methane and ammonium oxidation by DAMO and Anammox microorganisms in an MBfR for the first time. In this model, DAMO archaea convert nitrate, both externally fed and/or produced by Anammox, to nitrite, with methane as the electron donor. Anammox and DAMO bacteria jointly remove the nitrite fed/produced, with ammonium and methane as the electron donor, respectively. The model is successfully calibrated and validated using the long-term (over 400 days) dynamic experimental data from the MBfR, as well as two independent batch tests at different operational stages of the MBfR. The model satisfactorily describes the methane oxidation and nitrogen conversion data from the system. Modeling results show the concentration gradients of methane and nitrogen would cause stratification of the biofilm, where Anammox bacteria mainly grow in the biofilm layer close to the bulk liquid and DAMO organisms attach close to the membrane surface. The low surface methane loadings result in a low fraction of DAMO microorganisms, but the high surface methane loadings would lead to overgrowth of DAMO bacteria, which would compete with Anammox for nitrite and decrease the fraction of Anammox bacteria. The results suggest an optimal methane supply under the given condition should be applied not only to benefit the nitrogen removal but also to avoid potential methane emissions.

  12. The effects and mechanism of action of methane on ileal motor function.

    PubMed

    Park, Y M; Lee, Y J; Hussain, Z; Lee, Y H; Park, H

    2017-09-01

    Methane has been associated with constipation-predominant irritable bowel syndrome, slowing intestinal transit time by augmenting contractile activity. However, the precise mechanism underlying this effect remains unclear. Therefore, we investigated the mechanisms underlying the effect of methane on contractile activity, and whether such effects are mediated by nerve impulses or muscular contraction. We connected guinea pig ileal muscle strips to a force/tension transducer and measured amplitudes of contraction in response to electrical field stimulation (EFS; 1, 2, 8, 16 Hz) following methane infusion in the presence of tetradotoxin (TTX), atropine, guanethidine, or GR 113808. We then performed calcium imaging using Oregon Green 488 BAPTA-1 AM in order to visualize changes in calcium fluorescence in response to EFS following methane infusion in the presence of TTX, atropine, or a high K + solution. Methane significantly increased amplitudes of contraction (P<.05), while treatment with TTX abolished such contraction. Methane-induced increases in amplitude were inhibited when lower-frequency (1, 2 Hz) EFS was applied following atropine infusion (P<.05). Neither guanethidine nor GR 113808 significantly altered contraction amplitudes. Methane significantly increased calcium fluorescence, while this increase was attenuated following atropine infusion (P<.05). Although calcium fluorescence was increased by the high K + solution under pretreatment with TTX, the intensity of fluorescence remained unchanged after methane infusion. The actions of methane on the intestine are influenced by the cholinergic pathway of the enteric nervous system. Our findings support the classification of methane as a gasotransmitter. © 2017 John Wiley & Sons Ltd.

  13. Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl

    PubMed Central

    Turner, Alexander J.; Wennberg, Paul O.; Jacob, Daniel J.

    2017-01-01

    Methane is the second strongest anthropogenic greenhouse gas and its atmospheric burden has more than doubled since 1850. Methane concentrations stabilized in the early 2000s and began increasing again in 2007. Neither the stabilization nor the recent growth are well understood, as evidenced by multiple competing hypotheses in recent literature. Here we use a multispecies two-box model inversion to jointly constrain 36 y of methane sources and sinks, using ground-based measurements of methane, methyl chloroform, and the C13/C12 ratio in atmospheric methane (δ13CH4) from 1983 through 2015. We find that the problem, as currently formulated, is underdetermined and solutions obtained in previous work are strongly dependent on prior assumptions. Based on our analysis, the mathematically most likely explanation for the renewed growth in atmospheric methane, counterintuitively, involves a 25-Tg/y decrease in methane emissions from 2003 to 2016 that is offset by a 7% decrease in global mean hydroxyl (OH) concentrations, the primary sink for atmospheric methane, over the same period. However, we are still able to fit the observations if we assume that OH concentrations are time invariant (as much of the previous work has assumed) and we then find solutions that are largely consistent with other proposed hypotheses for the renewed growth of atmospheric methane since 2007. We conclude that the current surface observing system does not allow unambiguous attribution of the decadal trends in methane without robust constraints on OH variability, which currently rely purely on methyl chloroform data and its uncertain emissions estimates. PMID:28416668

  14. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Bauder

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial wastemore » product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when water supplies sourced from coalbed methane extraction are plentiful. Constructed wetlands, planted to native, salt tolerant species demonstrated potential to utilize substantial volumes of coalbed methane product water, although plant community transitions to mono-culture and limited diversity communities is a likely consequence over time. Additionally, selected, cultured forage quality barley varieties and native plant species such as Quail bush, 4-wing saltbush, and seaside barley are capable of sustainable, high quality livestock forage production, when irrigated with coalbed methane product water sourced from the Powder River Basin. A consequence of long-term plant water use which was enumerated is elevated salinity and sodicity concentrations within soil and shallow alluvial groundwater into which coalbed methane product water might drain. The most significant conclusion of these investigations was the understanding that phytoremediation is not a viable, effective technique for management of coalbed methane product water under the present circumstances of produced water within the Powder River Basin. Phytoremediation is likely an effective approach to sodium and salt removal from salt-impaired sites after product water discharges are discontinued and site reclamation is desired. Coalbed methane product water of the Powder River Basin is most frequently impaired with respect to beneficial use quality by elevated sodicity, a water quality constituent which can cause swelling, slaking, and dispersion of smectite-dominated clay soils, such as commonly occurring within the Powder River Basin. To address this issue, a commercial-scale fluid-bed, cationic resin exchange treatment process and prototype operating treatment plant was developed and beta-tested by Drake Water Technologies under subcontract to this award. Drake Water Technologies secured U.S. Patent No. 7,368,059-B2, 'Method for removal of benevolent cations from contaminated water', a beta Drake Process Unit (DPU) was developed and deployed for operation in the Powder River Basin. First year operation demonstrated an 84% sodium removal capacity. Greenhouse, laboratory and field research documented substantial likelihood of measurable alteration in soil chemistry, soil physical properties, and shallow alluvial aquifers in and below areas of sustained surface application through irrigation or water spreading or impoundment of coalbed methane product water in evaporation reservoirs within the Basin. Events of repeated wetting and drying of agricultural soils characteristic of the Powder River Basin with coalbed methane product water, followed by infrequent rainfall events, presents high probability circumstances of significant reductions in infiltration capacity and hydraulic conductivity of agricultural soils containing more than 34% smectite clay.« less

  15. Vehicle-Level Oxygen/Methane Propulsion System Hotfire Testing at Thermal Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Morehead, Robert L.; Melcher, J. C.; Atwell, Matthew J.; Hurlbert, Eric A.; Desai, Pooja; Werlink, Rudy

    2017-01-01

    A prototype integrated liquid oxygen/liquid methane propulsion system was hot-fire tested at a variety of simulated altitude and thermal conditions in the NASA Glenn Research Center Plum Brook Station In-Space Propulsion Thermal Vacuum Chamber (formerly B2). This test campaign served two purposes: 1) Characterize the performance of the Plum Brook facility in vacuum accumulator mode and 2) Collect the unique data set of an integrated LOX/Methane propulsion system operating in high altitude and thermal vacuum environments (a first). Data from this propulsion system prototype could inform the design of future spacecraft in-space propulsion systems, including landers. The test vehicle for this campaign was the Integrated Cryogenic Propulsion Test Article (ICPTA), which was constructed for this project using assets from the former Morpheus Project rebuilt and outfitted with additional new hardware. The ICPTA utilizes one 2,800 lbf main engine, two 28 lbf and two 7 lbf reaction control engines mounted in two pods, four 48-inch propellant tanks (two each for liquid oxygen and liquid methane), and a cold helium system for propellant tank pressurization. Several hundred sensors on the ICPTA and many more in the test cell collected data to characterize the operation of the vehicle and facility. Multiple notable experiments were performed during this test campaign, many for the first time, including pressure-fed cryogenic reaction control system characterization over a wide range of conditions, coil-on-plug ignition system demonstration at the vehicle level, integrated main engine/RCS operation, and a non-intrusive propellant mass gauging system. The test data includes water-hammer and thermal heat leak data critical to validating models for use in future vehicle design activities. This successful test campaign demonstrated the performance of the updated Plum Brook In-Space Propulsion thermal vacuum chamber and incrementally advanced the state of LOX/Methane propulsion technology through numerous system-level and subsystem experiments.

  16. Comparison of five methods for the estimation of methane production from vented in vitro systems.

    PubMed

    Alvarez Hess, P S; Eckard, R J; Jacobs, J L; Hannah, M C; Moate, P J

    2018-05-23

    There are several methods for estimating methane production (MP) from feedstuffs in vented in vitro systems. One method (A; "gold standard") measures methane proportions in the incubation bottle's head space (HS) and in the vented gas collected in gas bags. Four other methods (B, C, D and E) measure methane proportion in a single gas sample from HS. Method B assumes the same methane proportion in the vented gas as in HS, method C assumes constant methane to carbon dioxide ratio, method D has been developed based on empirical data and method E assumes constant individual venting volumes. This study aimed to compare the MP predictions from these methods to that of the gold standard method under different incubation scenarios, to validate these methods based on their concordance with a gold standard method. Methods C, D and E had greater concordance (0.85, 0.88 and 0.81), lower root mean square error (RMSE) (0.80, 0.72 and 0.85) and lower mean bias (0.20, 0.35, -0.35) with the gold standard than did method B (concordance 0.67, RMSE 1.49 and mean bias 1.26). Methods D and E were simpler to perform than method C and method D was slightly more accurate than method E. Based on precision, accuracy and simplicity of implementation, it is recommended that, when method A cannot be used, methods D and E are preferred to estimate MP from vented in vitro systems. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Methane production in the sulfate-depleted sediments of two marine basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuivila, K.M.; Murray, J.W.; Devol, A.H.

    1990-02-01

    Rates of methane production via both acetate fermentation and CO{sub 2} reduction were directly measured with radiotracer techniques in the sulfate-depleted sediments of Saanich and Princess Louisa Inlets. Comparison of measured and modeled rates suggests that these two pathways account for the majority of methane produced below the sulfate reduction zone in the sediments of both basins. Methane production via CO{sub 2} reduction was slightly more important than acetate fermentation with 57-58% of the methane in Saanich Inlet and 52-57% in Princess Louisa Inlet being produced from bicarbonate. The results from Saanich Inlet, a seasonally anoxic basin, are compared withmore » Princess Louisa Inlet, with a permanently oxic hypolimnion. Although the two basins have comparable organic-carbon rain rates, the rates of methanogenesis are much lower in Princess Louisa Inlet. This decrease in methane production can be attributed to the consumption of organic carbon via aerobic respiration occurring in the surface sediments of Princess Louisa Inlet, thereby decreasing the actual input of organic carbon to the zone of methane production. The relative importance of CO{sub 2} reduction and acetate fermentation in the production of methane was the same in both basins, suggesting that prior aerobic degradation of the organic matter has little influence on the pathways of methane production. The results from this study in the two marine systems (high sulfate) are also compared to published studies in freshwater environments (low sulfate) where acetate fermentation is the predominant pathway of methane production.« less

  18. International Space Exploration Coordination Group Assessment of Technology Gaps for LOx/Methane Propulsion Systems for the Global Exploration Roadmap

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric A.; Whitley, Ryan; Klem, Mark D.; Johnson, Wesley; Alexander, Leslie; D'Aversa, Emanuela; Ruault, Jean-Marc; Manfletti, Chiara; Caruana, Jean-Noel; Ueno, Hiroshi; hide

    2016-01-01

    As part of the Global Exploration Roadmap (GER), the International Space Exploration Coordination Group (ISECG) formed two technology gap assessment teams to evaluate topic discipline areas that had not been worked at an international level to date. The participating agencies were ASI, CNES, DLR, ESA, JAXA, and NASA. Accordingly, the ISECG Technology Working Group (TWG) recommended two discipline areas based on Critical Technology Needs reflected within the GER Technology Development Map (GTDM): Dust Mitigation and LOX/Methane Propulsion. LOx/Methane propulsion systems are enabling for future human missions Mars by significantly reducing the landed mass of the Mars ascent stage through the use of in-situ propellant production, for improving common fluids for life support, power and propulion thus allowing for diverse redundancy, for eliminating the corrosive and toxic propellants thereby improving surface operations and resusabilty, and for inceasing the performance of propulsion systems. The goals and objectives of the international team are to determine the gaps in technology that must be closed for LOx/Methane to be used in human exploration missions in cis-lunar, lunar, and Mars mission applications. An emphasis is placed on near term lunar lander applications with extensibility to Mars. Each agency provided a status of the substantial amount of Lox/Methane propulsion system development to date and their inputs on the gaps in the technology that are remaining. The gaps, which are now opportunities for collaboration, are then discussed.

  19. Effect of bait delivery rate in a GreenFeed system on methane emission estimates from cattle grazing rangeland

    USDA-ARS?s Scientific Manuscript database

    Two experiments were conducted to evaluate the effect of bait delivery rate on methane emission estimates measured by a GreenFeed system (GFS; C-Lock, Inc., Rapid City, SD). The manufacture recommends that cattle have a minimum visit time of 3 minutes so that at least 3 eructations are captured to ...

  20. Clay enhancement of methane, low molecular weight hydrocarbon and halocarbon conversion by methanotrophic bacteria

    DOEpatents

    Apel, William A.; Dugan, Patrick R.

    1995-01-01

    An apparatus and method for increasing the rate of oxidation of toxic vapors by methanotrophic bacteria. The toxic vapors of interest are methane and trichloroethylene. The apparatus includes a gas phase bioreactor within a closed loop pumping system or a single pass system. The methanotrophic bacteria include Methylomonas methanica, Methylosinus trichosporium, and uncharacterized environmental enrichments.

  1. Clay enhancement of methane, low molecular weight hydrocarbon and halocarbon conversion by methanotrophic bacteria

    DOEpatents

    Apel, William A.; Dugan, Patrick R.

    1995-04-04

    An apparatus and method for increasing the rate of oxidation of toxic vapors by methanotrophic bacteria. The toxic vapors of interest are methane and trichloroethylene. The apparatus includes a gas phase bioreactor within a closed loop pumping system or a single pass system. The methanotrophic bacteria include Methylomonas methanica, Methylosinus trichosporium, and uncharacterized environmental enrichments.

  2. Long-range open-path greenhouse gas monitoring using mid-infrared laser dispersion spectroscopy

    NASA Astrophysics Data System (ADS)

    Daghestani, Nart; Brownsword, Richard; Weidmann, Damien

    2015-04-01

    Accurate and sensitive methods of monitoring greenhouse gas (GHG) emission over large areas has become a pressing need to deliver improved estimates of both human-made and natural GHG budgets. These needs relate to a variety of sectors including environmental monitoring, energy, oil and gas industry, waste management, biogenic emission characterization, and leak detection. To address the needs, long-distance open-path laser spectroscopy methods offer significant advantages in terms of temporal resolution, sensitivity, compactness and cost effectiveness. Path-integrated mixing ratio measurements stemming from long open-path laser spectrometers can provide emission mapping when combined with meteorological data and/or through tomographic approaches. Laser absorption spectroscopy is the predominant method of detecting gasses over long integrated path lengths. The development of dispersion spectrometers measuring tiny refractive index changes, rather than optical power transmission, may offer a set of specific advantages1. These include greater immunity to laser power fluctuations, greater dynamic range due to the linearity of dispersion, and ideally a zero baseline signal easing quantitative retrievals of path integrated mixing ratios. Chirped laser dispersion spectrometers (CLaDS) developed for the monitoring of atmospheric methane and carbon dioxide will be presented. Using quantum cascade laser as the source, a minimalistic and compact system operating at 7.8 μm has been developed and demonstrated for the monitoring of atmospheric methane over a 90 meter open path2. Through full instrument modelling and error propagation analysis, precision of 3 ppm.m.Hz-0.5 has been established (one sigma precision for atmospheric methane normalized over a 1 m path and 1 s measurement duration). The system was fully functional in the rain, sleet, and moderate fog. The physical model and system concept of CLaDS can be adapted to any greenhouse gas species. Currently we are developing an in-lab instrument that can measure carbon dioxide using a quantum cascade laser operating in the 4 μm range. In this case, the dynamic range benefit of CLaDS is used to provide high precision even when peak absorbance in the CO2 spectrum gets greater than 2. Development for this deployable CO2 measurement system is still at an early stage. So far laboratory gas cell experiments have demonstrated a 9.3 ppm.m.Hz-0.5 for CO2 monitoring. This corresponds to about 0.02% relative precision in measuring CO2 atmospheric background over a 100 m open-path in one second. 1 G. Wysocki and D. Weidmann, "Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser," Opt. Express 18(25), 26123-26140 (2010). 2 N.S. Daghestani, R. Brownsword, D. Weidmann, 'Analysis and demonstration of atmospheric methane monitoring by mid-infrared open-path chirped dispersion spectroscopy' Opt. Express 22(25), A1731-A1743 (2014).

  3. The importance of Titan's current mass loss processes to understanding the evolution of Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Mandt, Kathleen; Waite, J. Hunter, Jr.; Bell, Jared; Mousis, Olivier

    2010-04-01

    Current isotopic ratios in planetary atmospheres have played an important role in determining how that atmosphere has evolved over geologic time scales (e.g. Donahue et al. 1997, Lunine et al. 1999). The current 12C/13C ratio in methane is a particularly useful indicator of Titan's atmospheric evolutionary history (Mandt et al. 2009). Primordial 12C/13C ratios throughout the solar system are limited to 89.01+4.45-2.67. (Alexander et al. 2007, Martins et al. 2008), while the methane 12C/13C ratio measured by GCMS and CIRS are 82.3+/-1.0 and 76.6+/-2.7 respectively (Niemann et al. 2005, Nixon et al. 2008). This is well below the primordial range, suggesting fractionation of the isotopes by atmospheric processes. A number of atmospheric mass loss processes can fractionate the isotopes over geologic time scales. Photochemistry and escape are of particular importance (Donahue et al 1997, Mandt et al. 2009). Measurements of the 12C/13C ratios in C2 hydrocarbons show evidence of fractionation due to photochemistry (Nixon et al. 2008) that is most likely due to a kinetic isotope effect (KIE). A KIE is a mildly efficient fractionating process in which reactions involving 12C occur 1.04 times faster than reactions involving 13C. A moderate time scale, on the order of 50 to 400 million years, is required to change the 12C/13C ratio of the atmospheric methane inventory. The exact length of this time scale depends directly on the methane photochemical loss rate. Titan's photochemistry is extremely complex, and although the total photochemical loss rate is photon-limited (Lorenz et al. 1997), the literature provides a range of loss rates between 4.9 x 10^9 cm-2s-1 (Wilson and Atreya 2004) and 3.4 x 10^10 cm-2s-1 (Lebonnois et al. 2003). This range can alter the time scale for fractionation in the carbon isotopes by as much as a factor of 8. INMS measurements of the methane 12C/13C ratio in the upper atmosphere show that atmospheric escape is a more efficient fractionating process than photochemistry (Mandt et al. 2009). The literature provides a range of possible values for the methane escape rates that depend on the input parameters to upper atmospheric models (Bell et al. 2010). The escape rate of methane could be as little as 2.75 x 10^7 cm-2s-1 (de la Haye et al. 2007) or as great as 3.0 x 10^9 cm-2s-1 (Yelle et al. 2008). This range of loss rates can alter the time scale for fractionation by as much as a factor of 5. Although the photochemical fractionation is less efficient than the escape rate, variance in its value has a greater impact on the time required to fractionate the isotopes because the magnitude of the photochemical loss is much greater than that of the escape rate. Thus, a better quantification of both mass loss rates is key to understanding the evolutionary history of Titan's atmosphere.

  4. Atmospheric Gas Concentrations in the pre- and post-production Phases of an Unconventional Oil and Gas Recovery Operation at the MSEEL Test Site, West Virginia

    NASA Astrophysics Data System (ADS)

    Williams, J. P.; Reeder, M.; Pekney, N.; Osborne, J.; Risk, D. A.; McCawley, M.

    2016-12-01

    The Marcellus Shale Energy and Environment Laboratory (MSEEL) in West Virginia provides a unique opportunity in the field of unconventional energy research. By studying near-surface atmospheric chemistry over several phases of a hydraulic fracturing event, the project will help evaluate the impact of current practices, as well as new techniques and mitigation technologies. A total of 10 mobile surveys were conducted around the MSEEL site that contains 3 test wells (1 science well and 2 natural gas producing wells) and over several miles of nearby regional routes. Our surveying technique involved using a vehicle-mounted Los Gatos Research Ultraportable Methane/Acetylene Analyzer that provided geo-located measurements of methane (CH4) and carbon dioxide (CO2). The ratios of super-ambient concentrations of CO2 and CH4 were used to separate drilling- and fracturing-related observations from the natural background concentrations over the various well pad developmental stages. We found that regional background methane concentrations were elevated in all surveys, with a mean concentration of 3.21ppm (n = 99376), which simply reflected the mix of anthropogenic and natural CH4 sources in this riverine urban location. Over time and through successive stages of well development, we noted a progressive rise in the occurrence of enriched methane in the vicinity of the developed wells. While there was a moderate degree of variability over time, we did observe a higher occurrence of CH4-enriched observations during and after production began at the test site ( 25% of measurements within 500 meters of the test wells) compared to the baseline surveys (>10% of measurements). This change was expected, as we anticipated some level of increased emissions from the well pads as production began. However, we did not expect the rise to be so noticeable. The results of this study show that there is a statistically significant increase in the occurrence of enriched methane values in the vicinity of the well locations when we compare pre-production to post-production surveys, and that pre-existing methane sources in the immediate vicinity must be accounted for when assessing environmental impacts.

  5. Assessing the impact of rumen microbial communities on methane emissions and production traits in Holstein cows in a tropical climate.

    PubMed

    Cunha, Camila S; Veloso, Cristina M; Marcondes, Marcos I; Mantovani, Hilario C; Tomich, Thierry R; Pereira, Luiz Gustavo R; Ferreira, Matheus F L; Dill-McFarland, Kimberly A; Suen, Garret

    2017-12-01

    The evaluation of how the gut microbiota affects both methane emissions and animal production is necessary in order to achieve methane mitigation without production losses. Toward this goal, the aim of this study was to correlate the rumen microbial communities (bacteria, archaea, and fungi) of high (HP), medium (MP), and low milk producing (LP), as well as dry (DC), Holstein dairy cows in an actual tropical production system with methane emissions and animal production traits. Overall, DC cows emitted more methane, followed by MP, HP and LP cows, although HP and LP cow emissions were similar. Using next-generation sequencing, it was found that bacteria affiliated with Christensenellaceae, Mogibacteriaceae, S24-7, Butyrivibrio, Schwartzia, and Treponema were negatively correlated with methane emissions and showed positive correlations with digestible dry matter intake (dDMI) and digestible organic matter intake (dOMI). Similar findings were observed for archaea in the genus Methanosphaera. The bacterial groups Coriobacteriaceae, RFP12, and Clostridium were negatively correlated with methane, but did not correlate with dDMI and dOMI. For anaerobic fungal communities, no significant correlations with methane or animal production traits were found. Based on these findings, it is suggested that manipulation of the abundances of these microbial taxa may be useful for modulating methane emissions without negatively affecting animal production. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Contribution of Anthropogenic and Natural Emissions to Global CH4 Balances by Utilizing δ13C-CH4 Observations in CarbonTracker Data Assimilation System (CTDAS)

    NASA Astrophysics Data System (ADS)

    Kangasaho, V. E.; Tsuruta, A.; Aalto, T.; Backman, L. B.; Houweling, S.; Krol, M. C.; Peters, W.; van der Laan-Luijkx, I. T.; Lienert, S.; Joos, F.; Dlugokencky, E. J.; Michael, S.; White, J. W. C.

    2017-12-01

    The atmospheric burden of CH4 has more than doubled since preindustrial time. Evaluating the contribution from anthropogenic and natural emissions to the global methane budget is of great importance to better understand the significance of different sources at the global scale, and their contribution to changes in growth rate of atmospheric CH4 before and after 2006. In addition, observations of δ13C-CH4 suggest an increase in natural sources after 2006, which matches the observed increase and variation of CH4 abudance. Methane emission sources can be identified using δ13C-CH4, because different sources produce methane with process-specific isotopic signatures. This study focuses on inversion model based estimates of global anthropogenic and natural methane emission rates to evaluate the existing methane emission estimates with a new δ13C-CH4 inversion system. In situ measurements of atmospheric methane and δ13C-CH4 isotopic signature, provided by the NOAA Global Monitoring Division and the Institute of Arctic and Alpine Research, will be assimilated into the CTDAS-13C-CH4. The system uses the TM5 atmospheric transport model as an observation operator, constrained by ECMWF ERA Interim meteorological fields, and off-line TM5 chemistry fields to account for the atmospheric methane sink. LPX-Bern DYPTOP ecosystem model is used for prior natural methane emissions from wetlands, peatlands and mineral soils, GFED v4 for prior fire emissions and EDGAR v4.2 FT2010 inventory for prior anthropogenic emissions. The EDGAR antropogenic emissions are re-divided into enteric fermentation and manure management, landfills and waste water, rice, coal, oil and gas, and residential emissions, and the trend of total emissions is scaled to match optimized anthropogenic emissions from CTE-CH4. In addition to these categories, emissions from termites and oceans are included. Process specific δ13C-CH4 isotopic signatures are assigned to each emission source to estimate 13CH4 fraction in CH4 emissions. Among the priors, anthropogenic and natural emissions are optimized and others are directly imposed from the prior. A detailed emission estimates of antropogenic and natural CH4 emissions will be constructed in order to provide a more comprehensive understanding of methane emission source divisions.

  7. Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors.

    PubMed

    Yeshanew, Martha M; Frunzo, Luigi; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni

    2016-11-01

    The continuous production of biohythane (mixture of biohydrogen and methane) from food waste using an integrated system of a continuously stirred tank reactor (CSTR) and anaerobic fixed bed reactor (AFBR) was carried out in this study. The system performance was evaluated for an operation period of 200days, by stepwise shortening the hydraulic retention time (HRT). An increasing trend of biohydrogen in the CSTR and methane production rate in the AFBR was observed regardless of the HRT shortening. The highest biohydrogen yield in the CSTR and methane yield in the AFBR were 115.2 (±5.3)L H2/kgVSadded and 334.7 (±18.6)L CH4/kgCODadded, respectively. The AFBR presented a stable operation and excellent performance, indicated by the increased methane production rate at each shortened HRT. Besides, recirculation of the AFBR effluent to the CSTR was effective in providing alkalinity, maintaining the pH in optimal ranges (5.0-5.3) for the hydrogen producing bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Passive drainage and biofiltration of landfill gas: Australian field trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dever, S.A.; Swarbrick, G.E.; Stuetz, R.M.

    2007-07-01

    In Australia a significant number of landfill waste disposal sites do not incorporate measures for the collection and treatment of landfill gas. This includes many old/former landfill sites, rural landfill sites, non-putrescible solid waste and inert waste landfill sites, where landfill gas generation is low and it is not commercially viable to extract and beneficially utilize the landfill gas. Previous research has demonstrated that biofiltration has the potential to degrade methane in landfill gas, however, the microbial processes can be affected by many local conditions and factors including moisture content, temperature, nutrient supply, including the availability of oxygen and methane,more » and the movement of gas (oxygen and methane) to/from the micro-organisms. A field scale trial is being undertaken at a landfill site in Sydney, Australia, to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions at low to moderate gas generation landfill sites. The design and construction of the trial is described and the experimental results will provide in-depth knowledge on the application of passive gas drainage and landfill gas biofiltration under Sydney (Australian) conditions, including the performance of recycled materials for the management of landfill gas emissions.« less

  9. Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea.

    PubMed

    Lazar, Cassandre Sara; Parkes, R John; Cragg, Barry A; L'Haridon, Stéphane; Toffin, Laurent

    2011-08-01

    Submarine mud volcanoes are a significant source of methane to the atmosphere. The Napoli mud volcano, situated in the brine-impacted Olimpi Area of the Eastern Mediterranean Sea, emits mainly biogenic methane particularly at the centre of the mud volcano. Temperature gradients support the suggestion that Napoli is a cold mud volcano with moderate fluid flow rates. Biogeochemical and molecular genetic analyses were carried out to assess the methanogenic activity rates, pathways and diversity in the hypersaline sediments of the centre of the Napoli mud volcano. Methylotrophic methanogenesis was the only significant methanogenic pathway in the shallow sediments (0-40 cm) but was also measured throughout the sediment core, confirming that methylotrophic methanogens could be well adapted to hypersaline environments. Hydrogenotrophic methanogenesis was the dominant pathway below 50 cm; however, low rates of acetoclastic methanogenesis were also present, even in sediment layers with the highest salinity, showing that these methanogens can thrive in this extreme environment. PCR-DGGE and methyl coenzyme M reductase gene libraries detected sequences affiliated with anaerobic methanotrophs (mainly ANME-1) as well as Methanococcoides methanogens. Results show that the hypersaline conditions in the centre of the Napoli mud volcano influence active biogenic methane fluxes and methanogenic/methylotrophic diversity. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. Phase and flow behavior of mixed gas hydrate systems during gas injection

    NASA Astrophysics Data System (ADS)

    Darnell, K.; Flemings, P. B.; DiCarlo, D. A.

    2017-12-01

    We present one-dimensional, multi-phase flow model results for injections of carbon dioxide and nitrogen mixtures, or flue gas, into methane hydrate bearing reservoirs. Our flow model is coupled to a thermodynamic simulator that predicts phase stabilities as a function of composition, so multiple phases can appear, disappear, or change composition as the injection invades the reservoir. We show that the coupling of multi-phase fluid flow with phase behavior causes preferential phase fractionation in which each component flows through the system at different speeds and in different phases. We further demonstrate that phase and flow behavior within the reservoir are driven by hydrate stability of each individual component in addition to the hydrate stability of the injection composition. For example, if carbon dioxide and nitrogen are both individually hydrate stable at the reservoir P-T conditions, then any injection composition will convert all available water into hydrate and plug the reservoir. In contrast, if only carbon dioxide is hydrate stable at the reservoir P-T conditions, then nitrogen preferentially stays in the gaseous phase, while the carbon dioxide partitions into the hydrate and liquid water phases. For all injections of this type, methane originally held in hydrate is released by dissociation into the nitrogen-rich gaseous phase. The net consequence is that a gas phase composed of nitrogen and methane propagates through the reservoir in a fast-moving front. A slower-moving front lags behind where carbon dioxide and nitrogen form a mixed hydrate, but methane is absent due to dissociation-induced methane stripping from the first, fast-moving front. The entire composition path traces through the phase space as the flow develops with each front moving at different, constant velocities. This behavior is qualitatively similar to the dynamics present in enhanced oil recovery or enhanced coalbed methane recovery. These results explain why the inclusion of nitrogen in mixed gas injection into methane hydrate reservoirs has been far more successful at producing methane than pure carbon dioxide injections. These results also provide a test for the validity of equilibrium thermodynamics in transport-dominated mixed hydrate systems that can be validated by laboratory-scale flow-through experiments.

  11. Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand

    USGS Publications Warehouse

    Waite, W.F.; deMartin, B.J.; Kirby, S.H.; Pinkston, J.; Ruppel, C.D.

    2002-01-01

    Using von Herzen and Maxwell's needle probe method, we measured thermal conductivity in four porous mixtures of quartz sand and methane gas hydrate, with hydrate composing 0, 33, 67 and 100% of the solid volume. Thermal conductivities were measured at a constant methane pore pressure of 24.8 MPa between -20 and +15??C, and at a constant temperature of -10??C between 3.5 and 27.6 MPa methane pore pressure. Thermal conductivity decreased with increasing temperature and increased with increasing methane pore pressure. Both dependencies weakened with increasing hydrate content. Despite the high thermal conductivity of quartz relative to methane hydrate, the largest thermal conductivity was measured in the mixture containing 33% hydrate rather than in hydrate-free sand. This suggests gas hydrate enhanced grain-to-grain heat transfer, perhaps due to intergranular contact growth during hydrate synthesis. These results for gas-filled porous mixtures can help constrain thermal conductivity estimates in porous, gas hydrate-bearing systems.

  12. Temperature regulates methane production through the function centralization of microbial community in anaerobic digestion.

    PubMed

    Lin, Qiang; De Vrieze, Jo; He, Guihua; Li, Xiangzhen; Li, Jiabao

    2016-09-01

    Temperature is crucial for the performance of anaerobic digestion process. In this study of anaerobic digestion of swine manure, the relationship between the microbial gene expression and methane production at different temperatures (25-55°C) was revealed through metatranscriptomic analysis. Daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. The functional gene expression showed great variation at different temperatures. The function centralization (opposite to alpha-diversity), assessed by the least proportions of functional pathways contributing for at least 50% of total reads positively correlated to methane production. Temperature regulated methane production probably through reducing the diversity of functional pathways, but enhancing central functional pathways, so that most of cellular activities and resource were invested in methanogenesis and related pathways, enhancing the efficiency of conversion of substrates to methane. This research demonstrated the importance of function centralization for efficient system functioning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angle, Jordan C.; Morin, Timothy H.; Solden, Lindsey M.

    The current paradigm, widely incorporated in soil biogeochemical models, is that microbial methanogenesis can only occur in anoxic habitats. In contrast, here we show clear geochemical and biological evidence for methane production in well-oxygenated soils of a freshwater wetland. A comparison of oxic to anoxic soils reveal up to ten times greater methane production and nine times more methanogenesis activity in oxygenated soils. Metagenomic and metatranscriptomic sequencing recover the first near-complete genomes for a novel methanogen species, and show acetoclastic production from this organism was the dominant methanogenesis pathway in oxygenated soils. This organism, Candidatus Methanothrix paradoxum, is prevalent acrossmore » methane emitting ecosystems, suggesting a global significance. Moreover, in this wetland, we estimate that up to 80% of methane fluxes could be attributed to methanogenesis in oxygenated soils. Together, our findings challenge a widely held assumption about methanogenesis, with significant ramifications for global methane estimates and Earth system modeling.« less

  14. Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angle, Jordan C.; Morin, Timothy H.; Solden, Lindsey M.

    The current paradigm, widely incorporated in soil biogeochemical models, is that microbial methanogenesis can only occur in anoxic habitats1-4. In contrast, here porewater and greenhouse-gas flux measurements show clear evidence for methane production in well-oxygenated soils from a freshwater wetland. A comparison of oxic to anoxic soils revealed up to ten times greater methane production and nine times more methanogenesis activity in oxygenated soils. Metagenomic and metatranscriptomic sequencing recovered the first near complete genomes for a novel methanogen species, and showed acetoclastic production from this organism was the dominant methanogenesis pathway in oxygenated soils. This organism, Candidatus Methanosaeta oxydurans, ismore » prevalent across methane emitting ecosystems, suggesting a global significance. Moreover, in this wetland, we estimated that a dominant fraction of methane fluxes could be attributed to methanogenesis in oxygenated soils. Together our findings challenge a widely-held assumption about methanogenesis, with significant ramifications for global methane estimates and Earth system modeling.« less

  15. Molecular insights into the heterogeneous crystal growth of si methane hydrate.

    PubMed

    Vatamanu, Jenel; Kusalik, Peter G

    2006-08-17

    In this paper we report a successful molecular simulation study exploring the heterogeneous crystal growth of sI methane hydrate along its [001] crystallographic face. The molecular modeling of the crystal growth of methane hydrate has proven in the past to be very challenging, and a reasonable framework to overcome the difficulties related to the simulation of such systems is presented. Both the microscopic mechanisms of heterogeneous crystal growth as well as interfacial properties of methane hydrate are probed. In the presence of the appropriate crystal template, a strong tendency for water molecules to organize into cages around methane at the growing interface is observed; the interface also demonstrates a strong affinity for methane molecules. The maximum growth rate measured for a hydrate crystal is about 4 times higher than the value previously determined for ice I in a similar framework (Gulam Razul, M. S.; Hendry, J. G.; Kusalik, P. G. J. Chem. Phys. 2005, 123, 204722).

  16. Origins, characteristics, controls, and economic viabilities of deep- basin gas resources

    USGS Publications Warehouse

    Price, L.C.

    1995-01-01

    Dry-gas deposits (methane ???95% of the hydrocarbon (HC) gases) are thought to originate from in-reservoir thermal cracking of oil and C2+ HC gases to methane. However, because methanes from Anadarko Basin dry-gas deposits do not carry the isotopic signature characteristics of C15+ HC destruction, an origin of these methanes from this process is considered improbable. Instead, the isotopic signature of these methanes suggests that they were cogenerated with C15+ HC's. Only a limited resource of deep-basin gas deposits may be expected by the accepted model for the origin of dry-gas deposits because of a limited number of deep-basin oil deposits originally available to be thermally converted to dry gas. However, by the models of this paper (inefficient source-rock oil and gas expulsion, closed fluid systems in petroleum-basin depocenters, and most dry-gas methane cogenerated with C15+ HC's), very large, previously unrecognized, unconventional, deep-basin gas resources are expected. -from Author

  17. Open-path spectroscopic methane detection using a broadband monolithic distributed feedback-quantum cascade laser array.

    PubMed

    Michel, Anna P M; Kapit, Jason; Witinski, Mark F; Blanchard, Romain

    2017-04-10

    Methane is a powerful greenhouse gas that has both natural and anthropogenic sources. The ability to measure methane using an integrated path length approach such as an open/long-path length sensor would be beneficial in several environments for examining anthropogenic and natural sources, including tundra landscapes, rivers, lakes, landfills, estuaries, fracking sites, pipelines, and agricultural sites. Here a broadband monolithic distributed feedback-quantum cascade laser array was utilized as the source for an open-path methane sensor. Two telescopes were utilized for the launch (laser source) and receiver (detector) in a bistatic configuration for methane sensing across a 50 m path length. Direct-absorption spectroscopy was utilized with intrapulse tuning. Ambient methane levels were detectable, and an instrument precision of 70 ppb with 100 s averaging and 90 ppb with 10 s averaging was achieved. The sensor system was designed to work "off the grid" and utilizes batteries that are rechargeable with solar panels and wind turbines.

  18. Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions

    DOE PAGES

    Angle, Jordan C.; Morin, Timothy H.; Solden, Lindsey M.; ...

    2017-11-16

    The current paradigm, widely incorporated in soil biogeochemical models, is that microbial methanogenesis can only occur in anoxic habitats. In contrast, here we show clear geochemical and biological evidence for methane production in well-oxygenated soils of a freshwater wetland. A comparison of oxic to anoxic soils reveal up to ten times greater methane production and nine times more methanogenesis activity in oxygenated soils. Metagenomic and metatranscriptomic sequencing recover the first near-complete genomes for a novel methanogen species, and show acetoclastic production from this organism was the dominant methanogenesis pathway in oxygenated soils. This organism, Candidatus Methanothrix paradoxum, is prevalent acrossmore » methane emitting ecosystems, suggesting a global significance. Moreover, in this wetland, we estimate that up to 80% of methane fluxes could be attributed to methanogenesis in oxygenated soils. Together, our findings challenge a widely held assumption about methanogenesis, with significant ramifications for global methane estimates and Earth system modeling.« less

  19. Systems level insights into alternate methane cycling modes in a freshwater lake via community transcriptomics, metabolomics and nano-SIMS analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lidstrom, Mary E.; Chistoserdova, Ludmila; Kalyuzhnaya, Marina G.

    2014-08-07

    The research conducted as part of this project contributes significantly to the understanding of the microbes and their activities involved in methane metabolism in freshwater lake sediments and in the environment in a more global sense. Significant new insights have been gained into the identity of the species that are most active in methane oxidation. New concepts have been developed based on the new data on how these organisms metabolize methane, impacting not only environmental microbiology but also biotechnology, including biotechnology of next generation biofuels. Novel approaches have been developed for studying functional microbial communities, via holistic approaches, such asmore » metagenomics, metatrancriptomics and metabolite analysis. As a result, a novel outlook has been obtained at how such communities operate in nature. Understanding methane-oxidizing communities in lakes and other environments is of significant benefit to the public, in terms of methane emission mitigation and in terms of potential biotechnological applications.« less

  20. Potential methane production and oxidation in soil reclamation covers of an oil sands mining site in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Pum, Lisa; Reichenauer, Thomas; Germida, Jim

    2015-04-01

    Anthropogenic activities create a number of significant greenhouse gases and thus potentially contribute to global warming. Methane production is significant in some agricultural production systems and from wetlands. In soil, methane can be oxidised by methanotrophic bacteria. However, little is known about methane production and oxidation in oil sand reclamation covers. The purpose of this study was to investigate methane production and oxidation potential of tailing sands and six different reclamation layers of oil sands mining sites in Alberta, Canada. Methane production and oxidation potential were investigated in laboratory scale microcosms through continuous headspace analysis using gas chromatography. Samples from a reclamation layer were collected at the Canadian Natural Resources Limited (CNRL) reclamation site at depths of 0-10 cm, 10-20 cm and 20-40 cm in October 2014. In addition, tailing sands provided by Suncor Energy Inc. and soil from a CNRL wetland were studied for methane production. Samples were dried, crushed and sieved to 4 mm, packed into serum bottle microcosms and monitored for eight weeks. Methane production potential was assessed by providing an anoxic environment and by adjusting the samples to a moisture holding capacity of 100 %. Methane oxidation potential was examined by an initial application of 2 vol % methane to the microcosms and by adjusting the samples to a moisture holding capacity of 50 %. Microcosm headspace gas was analysed for methane, carbon dioxide, nitrous oxide and oxygen. All experiments were carried out in triplicates, including controls. SF6 and Helium were used as internal standards to detect potential leaks. Our results show differences for methane production potential between the soil depths, tailing sands and wetlands. Moreover, there were differences in the methane oxidation potential of substrate from the three depths investigated and between the reclamation layers. In conclusion, the present study shows that reclamation layers for oil sands mining sites in Alberta, Canada have the potential to oxidize on-site produced methane emissions to the less harmful greenhouse gas carbon dioxide. Such oxidation might mitigate impacts of methane production from these sites.

  1. Coal gasification systems engineering and analysis. Appendix D: Cost and economic studies

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The detailed cost estimate documentation for the designs prepared in this study are presented. The include: (1) Koppers-Totzek, (2) Texaco (3) Babcock and Wilcox, (4) BGC-Lurgi, and (5) Lurgi. The alternate product cost estimates include: (1) Koppers-Totzek and Texaco single product facilities (methane, methanol, gasoline, hydrogen), (2) Kopers-Totzek SNG and MBG, (3) Kopers-Totzek and Texaco SNG and MBG, and (4) Lurgi-methane and Lurgi-methane and methanol.

  2. Investigation of the Methane Hydrate Formation by Cavitation Jet

    NASA Astrophysics Data System (ADS)

    Morita, H.; Nagao, J.

    2015-12-01

    Methane hydrate (hereafter called "MH") is crystalline solid compound consisting of hydrogen-bonded water molecules forming cages and methane gas molecules enclosed in the cage. When using MH as an energy resource, MH is dissociated to methane gas and water and collect only the methane gas. The optimum MH production method was the "depressurization method". Here, the production of MH means dissociating MH in the geologic layers and collecting the resultant methane gas by production systems. In the production of MH by depressurization method, MH regeneration was consider to important problem for the flow assurance of MH production system. Therefore, it is necessary to clarify the effect of flow phenomena in the pipeline on hydrate regeneration. Cavitation is one of the flow phenomena which was considered a cause of MH regeneration. Large quantity of microbubbles are produced by cavitation in a moment, therefore, it is considered to promote MH formation. In order to verify the possible of MH regeneration by cavitation, it is necessary to detailed understanding the condition of MH formation by cavitation. As a part of a Japanese National hydrate research program (MH21, funded by METI), we performed a study on MH formation using by cavitation. The primary objective of this study is to demonstrate the formation MH by using cavitation in the various temperature and pressure condition, and to clarify the condition of MH formation by using observation results.

  3. Methane utilization in Methylomicrobium alcaliphilum 20Z R: a systems approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akberdin, Ilya R.; Thompson, Merlin; Hamilton, Richard

    Biological methane utilization, one of the main sinks of the greenhouse gas in nature, represents an attractive platform for production of fuels and value-added chemicals. Despite the progress made in our understanding of the individual parts of methane utilization, our knowledge of how the whole-cell metabolic network is organized and coordinated is limited. Attractive growth and methane-conversion rates, a complete and expert-annotated genome sequence, as well as large enzymatic, 13C-labeling, and transcriptomic datasets make Methylomicrobium alcaliphilum 20Z R an exceptional model system for investigating methane utilization networks. Here we present a comprehensive metabolic framework of methane and methanol utilization inmore » M. alcaliphilum 20Z R. A set of novel metabolic reactions governing carbon distribution across central pathways in methanotrophic bacteria was predicted by in-silico simulations and confirmed by global non-targeted metabolomics and enzymatic evidences. Our data highlight the importance of substitution of ATP-linked steps with PPi-dependent reactions and support the presence of a carbon shunt from acetyl-CoA to the pentose-phosphate pathway and highly branched TCA cycle. The diverged TCA reactions promote balance between anabolic reactions and redox demands. As a result, the computational framework of C 1-metabolism in methanotrophic bacteria can represent an efficient tool for metabolic engineering or ecosystem modeling.« less

  4. Methane utilization in Methylomicrobium alcaliphilum 20Z R: a systems approach

    DOE PAGES

    Akberdin, Ilya R.; Thompson, Merlin; Hamilton, Richard; ...

    2018-02-06

    Biological methane utilization, one of the main sinks of the greenhouse gas in nature, represents an attractive platform for production of fuels and value-added chemicals. Despite the progress made in our understanding of the individual parts of methane utilization, our knowledge of how the whole-cell metabolic network is organized and coordinated is limited. Attractive growth and methane-conversion rates, a complete and expert-annotated genome sequence, as well as large enzymatic, 13C-labeling, and transcriptomic datasets make Methylomicrobium alcaliphilum 20Z R an exceptional model system for investigating methane utilization networks. Here we present a comprehensive metabolic framework of methane and methanol utilization inmore » M. alcaliphilum 20Z R. A set of novel metabolic reactions governing carbon distribution across central pathways in methanotrophic bacteria was predicted by in-silico simulations and confirmed by global non-targeted metabolomics and enzymatic evidences. Our data highlight the importance of substitution of ATP-linked steps with PPi-dependent reactions and support the presence of a carbon shunt from acetyl-CoA to the pentose-phosphate pathway and highly branched TCA cycle. The diverged TCA reactions promote balance between anabolic reactions and redox demands. As a result, the computational framework of C 1-metabolism in methanotrophic bacteria can represent an efficient tool for metabolic engineering or ecosystem modeling.« less

  5. From Animal Waste to Energy; A Study of Methane Gas converted to Energy.

    NASA Astrophysics Data System (ADS)

    Weiss, S.

    2016-12-01

    Does animal waste produce enough harvestable energy to power a household, and if so, what animal's waste can produce the most methane that is usable. What can we power using this methane and how can we power these appliances within an average household using the produced methane from animal waste. The waste product from animals is readily available all over the world, including third world countries. Using animal waste to produce green energy would allow low cost energy sources and give independence from fossil fuels. But which animal produces the most methane and how hard is it to harvest? Before starting this experiment I knew that some cow farms in the northern part of the Central California basin were using some of the methane from the waste to power their machinery as a safer, cheaper and greener source through the harnessed methane gas in a digester. The fermentation process would occur in the digester producing methane gasses as a side product. Methane that is collected can later be burned for energy. I have done a lot of research on this experiment and found that many different farm and ranch animals produce methane, but it was unclear which produced the most. I decided to focus my study on the waste from cows, horses, pig and dogs to try to find the most efficient and strongest source of methane from animal waste. I produced an affordable methane digester from plastic containers with a valve to attach a hose. By putting in the waste product and letting it ferment with water, I was able to produce and capture methane, then measure the amount with a Gaslab meter. By showing that it is possible to create energy with this simple digester, it could reduce pollution and make green energy easily available to communities all over the world. Eventually this could result into our sewer systems converting waste to energy, producing an energy source right in your home.

  6. The future of energy gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, D.G.

    1995-04-01

    Natural gas, mainly methane, produces lower CO {sub 2}, CO, NO{sub x}, SO {sub 2} and particulate emissions than either oil or coal; thus further substitutions of methane for these fuels could help mitigate air pollution. Methane is, however, a potent greenhouse gas and the domestication of ruminants, cultivation of rice, mining of coal, drilling for oil, and transportation of natural gas have all contributed to a doubling of the amount of atmospheric methane since 1800. Today nearly 300,000 wells yearly produce each 21 trillion cubic feet of methane. Known reserves suggest about a 10 year supply at the abovemore » rates of recovery; and the potential for undiscovered resources is obscured by uncertainty involving price, new technologies, and environmental restrictions stemming from the need to drill an enormous number of wells, many in ecologically sensitive areas. The atomic simplicity of methane, composed of one carbon and four hydrogen atoms, may mask the complexity of this, the most basic of organic molecules. Within the Earth, methane is produced through thermochemical alteration of organic materials, and by biochemical reactions mediated by metabolic processes of archaebacteria; some methane may even be primordial, a residue of planetary accretion. Methane is known to exist in the mantle and lower crust. Near the Earth`s surface, methane occurs in enormous oil and/or gas reservoirs in rock, and is absorbed in coal, dissolved in water, and trapped in a latticework of ice-like material called gas hydrate. Methane also occurs in smaller volumes in landfills, rice paddies, termite complexes, ruminants, and even many humans. As an energy source, methane accounts for roughly 25 percent of current U.S. consumption, but its full energy potential is controversial. Methane is touted by some as a viable bridge to future energy systems, fueled by the sun and uranium and carried by electricity and hydrogen.« less

  7. Thermal properties of methane gas hydrates

    USGS Publications Warehouse

    Waite, William F.

    2007-01-01

    Gas hydrates are crystalline solids in which molecules of a “guest” species occupy and stabilize cages formed by water molecules. Similar to ice in appearance (fig. 1), gas hydrates are stable at high pressures and temperatures above freezing (0°C). Methane is the most common naturally occurring hydrate guest species. Methane hydrates, also called simply “gas hydrates,” are extremely concentrated stores of methane and are found in shallow permafrost and continental margin sediments worldwide. Brought to sea-level conditions, methane hydrate breaks down and releases up to 160 times its own volume in methane gas. The methane stored in gas hydrates is of interest and concern to policy makers as a potential alternative energy resource and as a potent greenhouse gas that could be released from sediments to the atmosphere and ocean during global warming. In continental margin settings, methane release from gas hydrates also is a potential geohazard and could cause submarine landslides that endanger offshore infrastructure. Gas hydrate stability is sensitive to temperature changes. To understand methane release from gas hydrate, the U.S. Geological Survey (USGS) conducted a laboratory investigation of pure methane hydrate thermal properties at conditions relevant to accumulations of naturally occurring methane hydrate. Prior to this work, thermal properties for gas hydrates generally were measured on analog systems such as ice and non-methane hydrates or at temperatures below freezing; these conditions limit direct comparisons to methane hydrates in marine and permafrost sediment. Three thermal properties, defined succinctly by Briaud and Chaouch (1997), are estimated from the experiments described here: - Thermal conductivity, λ: if λ is high, heat travels easily through the material. - Thermal diffusivity, κ: if κ is high, it takes little time for the temperature to rise in the material. - Specific heat, cp: if cp is high, it takes a great deal of heat to raise the temperature of the material.

  8. Dissolved methane in groundwater, Upper Delaware River Basin, Pennsylvania and New York, 2007-12

    USGS Publications Warehouse

    Kappel, William M.

    2013-01-01

    The prospect of natural gas development from the Marcellus and Utica Shales has raised concerns about freshwater aquifers being vulnerable to contamination. Well owners are asking questions about subsurface methane, such as, “Does my well water have methane and is it safe to drink the water?” and “Is my well system at risk of an explosion hazard associated with a combustible gas like methane in groundwater?” This newfound awareness of methane contamination of water wells by stray gas migration is based upon studies such as Molofsky and others (2011) who document the widespread natural occurrence of methane in drinking-water wells in Susquehanna County, Pennsylvania. In the same county, Osborn and others (2011) identified elevated methane concentrations in selected drinking-water wells in the vicinity of Marcellus Shale gas-development activities, although pre-development groundwater samples were not available for comparison. A compilation of dissolved methane concentrations in groundwater for New York State was published by Kappel and Nystrom (2012). Recent work documenting the occurrence and distribution of methane in groundwater was completed in southern Sullivan County, Pennsylvania (Sloto, 2013). Additional work is ongoing with respect to monitoring for stray gases in groundwater (Jackson and others, 2013). These studies and their results indicate the importance of collecting baseline or pre-development data. While such data are being collected in some areas, published data on methane in groundwater are sparse in the Upper Delaware River Basin of Pennsylvania, New York, and New Jersey. To manage drinking-water resources in areas of gas-well drilling and hydraulic fracturing in the Upper Delaware River Basin, the natural occurrence of methane in the tri-state aquifers needs to be documented. The purpose of this report is to present data on dissolved methane concentrations in the groundwater in the Upper Delaware River Basin. The scope is restricted to data for Pennsylvania and New York, no U.S. Geological Survey (USGS) methane analyses are presently available for northwestern New Jersey.

  9. MEASUREMENT OF METHANE EMISSIONS FROM UNDERGROUND DISTRIBUTION MAINS AND SERVICES

    EPA Science Inventory

    The paper reports results of measurements of methane emissions from underground distribution mains and services. In the program, leakage from underground distribution systems is estimated by combining leak measurements with historical leak record data and the length of undergroun...

  10. METHANE PHYTOREMEDIATION BY VEGETATIVE LANDFILL COVER SYSTEMS

    EPA Science Inventory

    Landfill gas, consisting of methane and other gases, is produced from organic compounds degrading in landfills, contributes to global climate change, is toxic to various types of vegetation, and may pose a combustion hazard at higher concentrations. New landfills are required to ...

  11. The Application of a Jet Fan for the Control of Air and Methane Streams Mixing at the Excavations Cross - The Results of Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Wrona, Paweł; Różański, Zenon; Pach, Grzegorz; Domagała, Lech

    2016-09-01

    The paper presents the results of numerical simulations into the distribution of methane concentration at the intersection of two excavations with a fan (turned on) giving the air stream to the area of the crossing. Assumed case represents emergency situation related to the unexpected flow of methane from an excavation and its mixing with fresh air. It is possible when sudden gas outburst takes place, methane leaks from methane drainage system or gas leaks out the pipelines of underground coal gasification devices. Three options were considered - corresponding to three different speeds of the jet fan. They represent three stages of fan work. First - low air speed is forced by a pneumatic fan, when electricity is cut off after high methane concentration detection. Medium speed can be forced by pneumatic-electric device when methane concentration allows to turn on the electricity. Third, the highest speed is for electric fans. Simulations were carried out in the Fire Dynamics Simulator (FDS) belongs to the group of programs Computational Fluid Dynamics (CFD). The governing equations are being solved in a numerical way. It was shown that proposed solution allows partial dilution of methane in every variant of speed what should allow escape of the miners from hazardous area.

  12. Significance of dissolved methane in effluents of anaerobically ...

    EPA Pesticide Factsheets

    The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10–30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11–100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Micro

  13. Theoretical and Experimental Approaches towards study of Methane Occupation Dynamics within Gas Hydrates

    NASA Astrophysics Data System (ADS)

    Mendonca, P.; Shemella, P.; Nayak, S.; Sharma, A.

    2006-12-01

    Hydrate structures of hydrocarbon (commonly methane hydrates) within the continental shelf regions are considered a huge energy resource since they are a significant reservoir for terrestrial carbon. Any changes, abrupt or continual, will have an impact on the carbon (as well as water) cycle. However, tapping into this reservoir for energy resource has been challenging from both technical and scientific fronts primarily because any rapid release of methane (CH4) will likely have serious impact on the global climate of Earth as well as the stability of the continental shelf. While fossil fuel combustion derived CO2 in the atmosphere is considered a major contributor to global warming, the massive amounts of methane release from the gas hydrates has been a point of debate for its impact on the global climate. Due to the lack of a clear physical mechanism for such structural destabilization, environmental changes within the ocean setting (viz. temperature, salinity or biology) are typically assigned as possible causes. A good kinetic model that ties into structural instability of these essentially non-stoichiometric compounds at both the macromolecular (thermodynamic) and nanometric scale is essential. Preliminary experiments on single crystal methane hydrate high pressure phase (~1.0GPa) indicate a measurable kinetics of methane diffusion upon bringing structural disorder to the single crystal. Although there have been several kinetic studies of gas-hydrate nucleation and dissociation, systematic study of kinetics (and dynamics) of diffusion based changes within the gas hydrates has been lacking. In addition to experimental data on single crystal methane hydrates, we will present a first principle study on the structure, energetic, and dynamics of sI phase methane hydrate. We use density functional theory to study the energetic effect of the occupancy of neighboring cages in a cluster model system consisting of two sI gas hydrates. In this situation there can be two, one, or no methane, and we find that the binding for the first methane is exothermic. The second methane binding is endothermic, suggesting that the stability of a methane molecule is determined by the occupancy of adjacent cages. Using these results, we will present the calculated binding energies of a periodic system based on crystal structure data and compare them to the cluster method. This combined experimental and theoretical investigation is aimed at generating fundamental dataset that can be tested for the broader impact of such processes on the global carbon cycle.

  14. Engineered Sulfur‐Resistant Catalyst System with an Assisted Regeneration Strategy for Lean‐Burn Methane Combustion

    PubMed Central

    Kallinen, Kauko; Maunula, Teuvo; Suvanto, Mika

    2018-01-01

    Abstract Catalytic combustion of methane, the main component of natural gas, is a challenge under lean‐burn conditions and at low temperatures owing to sulfur poisoning of the Pd‐rich catalyst. This paper introduces a more sulfur‐resistant catalyst system that can be regenerated during operation. The developed catalyst system lowers the barrier that has restrained the use of liquefied natural gas as a fuel in energy production. PMID:29780434

  15. Effect of diluted and preheated oxidizer on the emission of methane flameless combustion

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Ehsan; Salehirad, Saber; Wahid, M. A.; Sies, Mohsin Mohd; Saat, Aminuddin

    2012-06-01

    In combustion process, reduction of emissions often accompanies with output efficiency reduction. It means, by using current combustion technique it is difficult to obtainlow pollution and high level of efficiency in the same time. In new combustion system, low NOxengines and burners are studied particularly. Recently flameless or Moderate and Intensive Low oxygen Dilution (MILD) combustion has received special attention in terms of low harmful emissions and low energy consumption. Behavior of combustion with highly preheated air was analyzed to study the change of combustion regime and the reason for the compatibility of high performance and low NOx production. Sustainability of combustion under low oxygen concentration was examined when; the combustion air temperature was above the self-ignition temperature of the fuel. This paper purposes to analyze the NOx emission quantity in conventional combustion and flameless combustion by Chemical Equilibrium with Applications (CEA) software.

  16. W14_greenhousegas Multi-scale Atmospheric Modeling of Green House Gas Dispersion in Complex Terrain: Controlled Release Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costigan, Keeley Rochelle; Sauer, Jeremy A.; Travis, Bryan J.

    2016-07-18

    This slide deals with the following: Affordable artificial neural network and mini-sensor system to locate and quantify methane leaks on a well pad; ARPA-e project schematic for monitoring methane leaks

  17. Methane on the greenhouse agenda

    NASA Technical Reports Server (NTRS)

    Hogan, Kathleen B.; Hoffman, John S.; Thompson, Anne M.

    1991-01-01

    Options for reducing methane emissions, which could have a significant effect on global warming, are addressed. Emissions from landfills, coal mining, oil and natural gas systems, ruminants, animal wastes and wastewater, rice cultivation, and biomass burning are considered. Methods for implementing these emission reductions are discussed.

  18. Copper enhances the activity and salt resistance of mixed methane-oxidizing communities.

    PubMed

    van der Ha, David; Hoefman, Sven; Boeckx, Pascal; Verstraete, Willy; Boon, Nico

    2010-08-01

    Effluents of anaerobic digesters are an underestimated source of greenhouse gases, as they are often saturated with methane. A post-treatment with methane-oxidizing bacterial consortia could mitigate diffuse emissions at such sites. Semi-continuously fed stirred reactors were used as model systems to characterize the influence of the key parameters on the activity of these mixed methanotrophic communities. The addition of 140 mg L(-1) NH (4) (+) -N had no significant influence on the activity nor did a temperature increase from 28 degrees C to 35 degrees C. On the other hand, addition of 0.64 mg L(-1) of copper(II) increased the methane removal rate by a factor of 1.5 to 1.7 since the activity of particulate methane monooxygenase was enhanced. The influence of different concentrations of NaCl was also tested, as effluents of anaerobic digesters often contain salt levels up to 10 g NaCl L(-1). At a concentration of 11 g NaCl L(-1), almost no methane-oxidizing activity was observed in the reactors without copper addition. Yet, reactors with copper addition exhibited a sustained activity in the presence of NaCl. A colorimetric test based on naphthalene oxidation showed that soluble methane monooxygenase was inhibited by copper, suggesting that the particulate methane monooxygenase was the active enzyme and thus more salt resistant. The results obtained demonstrate that the treatment of methane-saturated effluents, even those with increased ammonium (up to 140 mg L(-1) NH (4) (+) -N) and salt levels, can be mitigated by implementation of methane-oxidizing microbial consortia.

  19. Thermodynamic properties of hydrate phases immersed in ice phase

    NASA Astrophysics Data System (ADS)

    Belosludov, V. R.; Subbotin, O. S.; Krupskii, D. S.; Ikeshoji, T.; Belosludov, R. V.; Kawazoe, Y.; Kudoh, J.

    2006-01-01

    Thermodynamic properties and the pressure of hydrate phases immersed in the ice phase with the aim to understand the nature of self-preservation effect of methane hydrate in the framework of macroscopic and microscopic molecular models was studied. It was show that increasing of pressure is happen inside methane hydrate phases immersed in the ice phase under increasing temperature and if the ice structure does not destroy, the methane hydrate will have larger pressure than ice phase. This is because of the thermal expansion of methane hydrate in a few times larger than ice one. The thermal expansion of the hydrate is constrained by the thermal expansion of ice because it can remain in a region of stability within the methane hydrate phase diagram. The utter lack of preservation behavior in CS-II methane- ethane hydrate can be explain that the thermal expansion of ethane-methane hydrate coincide with than ice one it do not pent up by thermal expansion of ice. The pressure and density during the crossing of interface between ice and hydrate was found and dynamical and thermodynamic stability of this system are studied in accordance with relation between ice phase and hydrate phase.

  20. Observations of mass fractionation of noble gases in synthetic methane hydrate

    USGS Publications Warehouse

    Hunt, Andrew G.; Pohlman, John; Stern, Laura A.; Ruppel, Carolyn D.; Moscati, Richard J.; Landis, Gary P.; Pinkston, John C.

    2011-01-01

    As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings are presently dissociating and releasing methane and other gases to the oceanatmosphere system. A key challenge in assessing the susceptibility of gas hydrates to warming climate is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sublake and subseafloor sediments, coalbeds, and other sources. Carbon and deuterium stable isotopic data provide only a first-order characterization of methane sources, while gas hydrate can sequester any type of methane. Here, we investigate the possibility of exploiting the pattern of noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under careful laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.

  1. An advanced carbon reactor subsystem for carbon dioxide reduction

    NASA Technical Reports Server (NTRS)

    Noyes, Gary P.; Cusick, Robert J.

    1986-01-01

    An evaluation is presented of the development status of an advanced carbon-reactor subsystem (ACRS) for the production of water and dense, solid carbon from CO2 and hydrogen, as required in physiochemical air revitalization systems for long-duration manned space missions. The ACRS consists of a Sabatier Methanation Reactor (SMR) that reduces CO2 with hydrogen to form methane and water, a gas-liquid separator to remove product water from the methane, and a Carbon Formation Reactor (CFR) to pyrolize methane to carbon and hydrogen; the carbon is recycled to the SMR, while the produce carbon is periodically removed from the CFR. A preprototype ACRS under development for the NASA Space Station is described.

  2. Methane distribution and oxidation around the Lena Delta in summer 2013

    NASA Astrophysics Data System (ADS)

    Bussmann, Ingeborg; Hackbusch, Steffen; Schaal, Patrick; Wichels, Antje

    2017-11-01

    The Lena River is one of the largest Russian rivers draining into the Laptev Sea. The predicted increases in global temperatures are expected to cause the permafrost areas surrounding the Lena Delta to melt at increasing rates. This melting will result in high amounts of methane reaching the waters of the Lena and the adjacent Laptev Sea. The only biological sink that can lower methane concentrations within this system is methane oxidation by methanotrophic bacteria. However, the polar estuary of the Lena River, due to its strong fluctuations in salinity and temperature, is a challenging environment for bacteria. We determined the activity and abundance of aerobic methanotrophic bacteria by a tracer method and by the quantitative polymerase chain reaction. We described the methanotrophic population with a molecular fingerprinting method (monooxygenase intergenic spacer analysis), as well as the methane distribution (via a headspace method) and other abiotic parameters, in the Lena Delta in September 2013. The median methane concentrations were 22 nmol L-1 for riverine water (salinity (S) < 5), 19 nmol L-1 for mixed water (5 < S < 20) and 28 nmol L-1 for polar water (S > 20). The Lena River was not the source of methane in surface water, and the methane concentrations of the bottom water were mainly influenced by the methane concentration in surface sediments. However, the bacterial populations of the riverine and polar waters showed similar methane oxidation rates (0.419 and 0.400 nmol L-1 d-1), despite a higher relative abundance of methanotrophs and a higher estimated diversity in the riverine water than in the polar water. The methane turnover times ranged from 167 days in mixed water and 91 days in riverine water to only 36 days in polar water. The environmental parameters influencing the methane oxidation rate and the methanotrophic population also differed between the water masses. We postulate the presence of a riverine methanotrophic population that is limited by sub-optimal temperatures and substrate concentrations and a polar methanotrophic population that is well adapted to the cold and methane-poor polar environment but limited by a lack of nitrogen. The diffusive methane flux into the atmosphere ranged from 4 to 163 µmol m2 d-1 (median 24). The diffusive methane flux accounted for a loss of 8 % of the total methane inventory of the investigated area, whereas the methanotrophic bacteria consumed only 1 % of this methane inventory. Our results underscore the importance of measuring the methane oxidation activities in polar estuaries, and they indicate a population-level differentiation between riverine and polar water methanotrophs.

  3. Revised methane emissions factors and spatially distributed annual carbon fluxes for global livestock.

    PubMed

    Wolf, Julie; Asrar, Ghassem R; West, Tristram O

    2017-09-29

    Livestock play an important role in carbon cycling through consumption of biomass and emissions of methane. Recent research suggests that existing bottom-up inventories of livestock methane emissions in the US, such as those made using 2006 IPCC Tier 1 livestock emissions factors, are too low. This may be due to outdated information used to develop these emissions factors. In this study, we update information for cattle and swine by region, based on reported recent changes in animal body mass, feed quality and quantity, milk productivity, and management of animals and manure. We then use this updated information to calculate new livestock methane emissions factors for enteric fermentation in cattle, and for manure management in cattle and swine. Using the new emissions factors, we estimate global livestock emissions of 119.1 ± 18.2 Tg methane in 2011; this quantity is 11% greater than that obtained using the IPCC 2006 emissions factors, encompassing an 8.4% increase in enteric fermentation methane, a 36.7% increase in manure management methane, and notable variability among regions and sources. For example, revised manure management methane emissions for 2011 in the US increased by 71.8%. For years through 2013, we present (a) annual livestock methane emissions, (b) complete annual livestock carbon budgets, including carbon dioxide emissions, and (c) spatial distributions of livestock methane and other carbon fluxes, downscaled to 0.05 × 0.05 degree resolution. Our revised bottom-up estimates of global livestock methane emissions are comparable to recently reported top-down global estimates for recent years, and account for a significant part of the increase in annual methane emissions since 2007. Our results suggest that livestock methane emissions, while not the dominant overall source of global methane emissions, may be a major contributor to the observed annual emissions increases over the 2000s to 2010s. Differences at regional and local scales may help distinguish livestock methane emissions from those of other sectors in future top-down studies. The revised estimates allow improved reconciliation of top-down and bottom-up estimates of methane emissions, will facilitate the development and evaluation of Earth system models, and provide consistent regional and global Tier 1 estimates for environmental assessments.

  4. Mathematical modeling of the gas extraction from the gas hydrate deposit taking into account the replacement technology

    NASA Astrophysics Data System (ADS)

    Musakaev, N. G.; Khasanov, M. K.; Borodin, S. L.

    2018-03-01

    In the work on the basis of methods and equations of mechanics of multiphase systems the mathematical model of the process of carbon dioxide burial in the reservoir saturated with methane hydrate is proposed. Estimates are obtained that allow for this problem to neglect diffusion mixing of carbon dioxide and methane. The features of the process of methane displacement from CH4 hydrate by filling them with carbon dioxide are studied.

  5. State-of-the-art in coalbed methane drilling fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

    2008-09-15

    The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impactmore » on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.« less

  6. Comparison of various microbial inocula for the efficient anaerobic digestion of Laminaria hyperborea.

    PubMed

    Sutherland, Alastair D; Varela, Joao C

    2014-01-23

    The hydrolysis of seaweed polysaccharides is the rate limiting step in anaerobic digestion (AD) of seaweeds. Seven different microbial inocula and a mixture of these (inoculum 8) were therefore compared in triplicate, each grown over four weeks in static culture for the ability to degrade Laminaria hyperborea seaweed and produce methane through AD. All the inocula could degrade L. hyperborea and produce methane to some extent. However, an inoculum of slurry from a human sewage anaerobic digester, one of rumen contents from seaweed-eating North Ronaldsay sheep and inoculum 8 used most seaweed volatile solids (VS) (means ranged between 59 and 68% used), suggesting that these each had efficient seaweed polysaccharide digesting bacteria. The human sewage inoculum, an inoculum of anaerobic marine mud mixed with rotting seaweed and inoculum 8 all developed to give higher volumes of methane (means between 41 and 62.5 ml g-1 of seaweed VS by week four) ,compared to other inocula (means between 3.5 and 27.5 ml g-1 VS). Inoculum 8 also gave the highest acetate production (6.5 mmol g-1 VS) in a single-stage fermenter AD system and produced most methane (8.4 mL mmol acetate-1) in phase II of a two-stage AD system. Overall inoculum 8 was found to be the most efficient inoculum for AD of seaweed. The study therefore showed that selection and inclusion of efficient polysaccharide hydrolysing bacteria and methanogenic archaea in an inoculum offer increased methane productivity in AD of L. hyperborea. This inoculum will now being tested in larger scale (10L) continuously stirred reactors optimised for feed rate and retention time to determine maximum methane production under single-stage and two-stage AD systems.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrer, C.W.; Layne, A.W.; Guthrie, H.D.

    The U.S. Department of Energy (DOE), at its Morgantown Energy Technology Center, has been involved in natural gas research since the 1970`s. DOE has assessed the potential of gas in coals throughout the U.S. and promoted research and development for recovery and use of methane found in minable and unminable coalbeds. DOE efforts have focused on the use of coal mine methane for regional economic gas self-sufficiency, energy parks, self-help initiatives, and small-power generation. This paper focuses on DOE`s past and present efforts to more effectively and efficiently recover and use this valuable domestic energy source. The Climate Change Actionmore » Plan (CCAP) (1) lists a series of 50 voluntary initiatives designed to reduce greenhouse gas emissions, such as methane from mining operations, to their 1990 levels. Action No. 36 of the CCAP expands the DOE research, development, and demonstration (RD&D) efforts to broaden the range of cost-effective technologies and practices for recovering methane associated with coal mining operations. The major thrust of Action No. 36 is to reduce methane emissions associated with coal mining operations from target year 2000 levels by 1.5 MMT of carbon equivalent. Crosscutting activities in the DOE Natural Gas Program supply the utilization sectors will address RD&D to reduce methane emissions released from various mining operations, focusing on recovery and end use technology systems to effectively drain, capture, and utilize the emitted gas. Pilot projects with industry partners will develop and test the most effective methods and technology systems for economic recovery and utilization of coal mine gas emissions in regions where industry considers efforts to be presently non-economic. These existing RD&D programs focus on near-term gas recovery and gathering systems, gas upgrading, and power generation.« less

  8. Comparison of various microbial inocula for the efficient anaerobic digestion of Laminaria hyperborea

    PubMed Central

    2014-01-01

    Background The hydrolysis of seaweed polysaccharides is the rate limiting step in anaerobic digestion (AD) of seaweeds. Seven different microbial inocula and a mixture of these (inoculum 8) were therefore compared in triplicate, each grown over four weeks in static culture for the ability to degrade Laminaria hyperborea seaweed and produce methane through AD. Results All the inocula could degrade L. hyperborea and produce methane to some extent. However, an inoculum of slurry from a human sewage anaerobic digester, one of rumen contents from seaweed-eating North Ronaldsay sheep and inoculum 8 used most seaweed volatile solids (VS) (means ranged between 59 and 68% used), suggesting that these each had efficient seaweed polysaccharide digesting bacteria. The human sewage inoculum, an inoculum of anaerobic marine mud mixed with rotting seaweed and inoculum 8 all developed to give higher volumes of methane (means between 41 and 62.5 ml g-1 of seaweed VS by week four) ,compared to other inocula (means between 3.5 and 27.5 ml g-1 VS). Inoculum 8 also gave the highest acetate production (6.5 mmol g-1 VS) in a single-stage fermenter AD system and produced most methane (8.4 mL mmol acetate-1) in phase II of a two-stage AD system. Conclusions Overall inoculum 8 was found to be the most efficient inoculum for AD of seaweed. The study therefore showed that selection and inclusion of efficient polysaccharide hydrolysing bacteria and methanogenic archaea in an inoculum offer increased methane productivity in AD of L. hyperborea. This inoculum will now being tested in larger scale (10L) continuously stirred reactors optimised for feed rate and retention time to determine maximum methane production under single-stage and two-stage AD systems. PMID:24456825

  9. An ISRU Propellant Production System to Fully Fuel a Mars Ascent Vehicle

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Paz, Aaron

    2017-01-01

    ISRU of Mars resources was base lined in 2009 Design Reference Architecture (DRA) 5.0, but only for Oxygen production using atmospheric CO2The Methane (LCH4) needed for ascent propulsion of the Mars Ascent Vehicle (MAV) would need to be brought from Earth. HOWEVER: Extracting water from the Martian Regolith enables the production of both Oxygen and Methane from Mars resources Water resources could also be used for other applications including: Life support, radiation shielding, plant growth, etc. Water extraction was not base lined in DRA5.0 due to perceived difficulties and complexity in processing regolith. The NASA Evolvable Mars Campaign (EMC) requested studies to look at the quantitative benefits and trades of using Mars water ISRU Phase 1: Examined architecture scenarios for regolith water retrieval. Completed October 2015Phase 2: Deep dive of one architecture concept to look at end-to-end system size, mass, power of a LCH4LO2 ISRU production system.Evolvable Mars CampaignPre-deployed Mars ascent vehicle (MAV)4 crew membersPropellants: Oxygen MethaneGenerate a system model to roll up mass power of a full ISRU system and enable parametric trade studies. Leverage models from previous studies and technology development programs Anchor with mass power performance from existing hardware. Whenever possible used reference-able (published) numbers for traceability.Modular approach to allow subsystem trades and parametric studies. Propellant mass needs taken from most recently published MAV study:Polsgrove, T. et al. (2015), AIAA2015-4416MAV engines operate at mixture ratios (oxygen: methane) between 3:1 and 3.5:1, whereas the Sabatier reactor produces at a 4:1 ratio. Therefore:Methane production is the driving requirement-Excess Oxygen will be produced.

  10. Development of Augmented Spark Impinging Igniter System for Methane Engines

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Osborne, Robin J.; Greene, Sandra E.

    2017-01-01

    The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. As part of the efforts in Lander Technologies, NASA Marshall Space Flight Center (MSFC) is developing liquid oxygen (LOX) and liquid methane (LCH4) engine technology to share with the Lunar CATALYST partners. Liquid oxygen and liquid methane propellants are attractive owing to their relatively high specific impulse for chemical propulsion systems, modest storage requirements, and adaptability to NASA's Journey to Mars plans. Methane has also been viewed as a possible propellant choice for lunar missions, owing to the performance benefits and as a technology development stepping stone to Martian missions. However, in the development of methane propulsion, methane ignition has historically been viewed as a high risk area in the development of such an engine. A great deal of work has been conducted in the past decade devoted to risk reduction in LOX/CH4 ignition. This paper will review and summarize the history and results of LOX/CH4 ignition programs conducted at NASA. More recently, a NASA-developed Augmented Spark Impinging (ASI) igniter body, which utilizes a conventional spark exciter system, is being tested with LOX/CH4 to help support internal and commercial engine development programs, such as those in Lunar CATALYST. One challenge with spark exciter systems, especially at altitude conditions, is the ignition lead that transmits the high voltage pulse from the exciter to the spark igniter (spark plug). The ignition lead can be prone to corona discharge, reducing the energy delivered by the spark and potentially causing non-ignition events. For the current work, a commercial compact exciter system, which eliminates this high voltage cabling, was tested at altitude conditions. A modified, conventional exciter system with an improved ignition lead was also recently tested at altitude conditions. This test program demonstrated the capability of these exciter systems to operate at altitude. While more extensive testing may be required, these systems or similar ones may be used for future NASA and commercial engine programs.

  11. Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thonat, Thibaud; Saunois, Marielle; Bousquet, Philippe

    Understanding the recent evolution of methane emissions in the Arctic is necessary to interpret the global methane cycle. Emissions are affected by significant uncertainties and are sensitive to climate change, leading to potential feedbacks. A polar version of the CHIMERE chemistry-transport model is used to simulate the evolution of tropospheric methane in the Arctic during 2012, including all known regional anthropogenic and natural sources, in particular freshwater emissions which are often overlooked in methane modelling. CHIMERE simulations are compared to atmospheric continuous observations at six measurement sites in the Arctic region. In winter, the Arctic is dominated by anthropogenic emissions;more » emissions from continental seepages and oceans, including from the East Siberian Arctic Shelf, can contribute significantly in more limited areas. In summer, emissions from wetland and freshwater sources dominate across the whole region. The model is able to reproduce the seasonality and synoptic variations of methane measured at the different sites. We find that all methane sources significantly affect the measurements at all stations at least at the synoptic scale, except for biomass burning. In particular, freshwater systems play a decisive part in summer, representing on average between 11 and 26 % of the simulated Arctic methane signal at the sites. This indicates the relevance of continuous observations to gain a mechanistic understanding of Arctic methane sources. Sensitivity tests reveal that the choice of the land-surface model used to prescribe wetland emissions can be critical in correctly representing methane mixing ratios. The closest agreement with the observations is reached when using the two wetland models which have emissions peaking in August–September, while all others reach their maximum in June–July. Such phasing provides an interesting constraint on wetland models which still have large uncertainties at present. Also testing different freshwater emission inventories leads to large differences in modelled methane. Attempts to include methane sinks (OH oxidation and soil uptake) reduced the model bias relative to observed atmospheric methane. Here, the study illustrates how multiple sources, having different spatiotemporal dynamics and magnitudes, jointly influence the overall Arctic methane budget, and highlights ways towards further improved assessments.« less

  12. Methane distributions and transports in the nocturnal boundary layer at a rural station

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Zeeman, Matthias; Brosy, Caroline; Münkel, Christoph; Fersch, Benjamin; Mauder, Matthias; Emeis, Stefan

    2016-10-01

    To investigate the methane distributions and transports, the role of related atmospheric processes by determination of vertical profiles of wind, turbulence, temperature and humidity as well as nocturnal boundary layer (NBL) height and the quantification of methane emissions at local and plot scale the so-called ScaleX-campaign was performed in a pre-alpine observatory in Southern Germany from 01 June until 31 July 2015. The following measurements from the ground up to the free troposphere were performed: layering of the atmosphere by a ceilometer (Vaisala CL51); temperature, wind, turbulence profiles from 50 m up to 500 m by a Radio-Acoustic Sounding System (RASS, Metek GmbH); temperature, humidity profiles in situ by a hexacopter; methane farm emissions by two open-path laser spectrometers (Boreal GasFinder2); methane concentrations in situ (Los Gatos DLT-100) with tubes in 0.3 m agl and 5 sampling heads; and methane soil emissions by a big chamber (10 m length, 2.60 m width, up to 0.61 m height) with a plastic cover. The methane concentrations near the surface show a daily variation with a maximum and a frequent double-peak structure during night-time. Analysis of the variation of the nocturnal methane concentration together with the hexacopter and RASS data indicates that the first peak in the nocturnal methane concentration is probably due to local cooling and stabilization which keeps the methane emissions from the soil near the ground. The second peak seems to be due to advection of methane-enriched air which had formed in the environment of the nearby farm yards. These dairy farm emissions were determined by up-wind and down-wind open-path concentration measurements, turbulence data from an EC station nearby and Backward Lagrangian Simulation (WindTrax software). The methane fluxes at plot scale (big chamber) are characterized by emissions at water saturated grassland patches, by an exponential decrease of these emissions during grassland drying, and by an uptake of methane at dry grassland. Highest methane concentrations are found with lowest NBL heights which were determined from the ceilometer monitoring (correlation coefficient 0.56).

  13. Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements

    DOE PAGES

    Thonat, Thibaud; Saunois, Marielle; Bousquet, Philippe; ...

    2017-07-11

    Understanding the recent evolution of methane emissions in the Arctic is necessary to interpret the global methane cycle. Emissions are affected by significant uncertainties and are sensitive to climate change, leading to potential feedbacks. A polar version of the CHIMERE chemistry-transport model is used to simulate the evolution of tropospheric methane in the Arctic during 2012, including all known regional anthropogenic and natural sources, in particular freshwater emissions which are often overlooked in methane modelling. CHIMERE simulations are compared to atmospheric continuous observations at six measurement sites in the Arctic region. In winter, the Arctic is dominated by anthropogenic emissions;more » emissions from continental seepages and oceans, including from the East Siberian Arctic Shelf, can contribute significantly in more limited areas. In summer, emissions from wetland and freshwater sources dominate across the whole region. The model is able to reproduce the seasonality and synoptic variations of methane measured at the different sites. We find that all methane sources significantly affect the measurements at all stations at least at the synoptic scale, except for biomass burning. In particular, freshwater systems play a decisive part in summer, representing on average between 11 and 26 % of the simulated Arctic methane signal at the sites. This indicates the relevance of continuous observations to gain a mechanistic understanding of Arctic methane sources. Sensitivity tests reveal that the choice of the land-surface model used to prescribe wetland emissions can be critical in correctly representing methane mixing ratios. The closest agreement with the observations is reached when using the two wetland models which have emissions peaking in August–September, while all others reach their maximum in June–July. Such phasing provides an interesting constraint on wetland models which still have large uncertainties at present. Also testing different freshwater emission inventories leads to large differences in modelled methane. Attempts to include methane sinks (OH oxidation and soil uptake) reduced the model bias relative to observed atmospheric methane. Here, the study illustrates how multiple sources, having different spatiotemporal dynamics and magnitudes, jointly influence the overall Arctic methane budget, and highlights ways towards further improved assessments.« less

  14. Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Thonat, Thibaud; Saunois, Marielle; Bousquet, Philippe; Pison, Isabelle; Tan, Zeli; Zhuang, Qianlai; Crill, Patrick M.; Thornton, Brett F.; Bastviken, David; Dlugokencky, Ed J.; Zimov, Nikita; Laurila, Tuomas; Hatakka, Juha; Hermansen, Ove; Worthy, Doug E. J.

    2017-07-01

    Understanding the recent evolution of methane emissions in the Arctic is necessary to interpret the global methane cycle. Emissions are affected by significant uncertainties and are sensitive to climate change, leading to potential feedbacks. A polar version of the CHIMERE chemistry-transport model is used to simulate the evolution of tropospheric methane in the Arctic during 2012, including all known regional anthropogenic and natural sources, in particular freshwater emissions which are often overlooked in methane modelling. CHIMERE simulations are compared to atmospheric continuous observations at six measurement sites in the Arctic region. In winter, the Arctic is dominated by anthropogenic emissions; emissions from continental seepages and oceans, including from the East Siberian Arctic Shelf, can contribute significantly in more limited areas. In summer, emissions from wetland and freshwater sources dominate across the whole region. The model is able to reproduce the seasonality and synoptic variations of methane measured at the different sites. We find that all methane sources significantly affect the measurements at all stations at least at the synoptic scale, except for biomass burning. In particular, freshwater systems play a decisive part in summer, representing on average between 11 and 26 % of the simulated Arctic methane signal at the sites. This indicates the relevance of continuous observations to gain a mechanistic understanding of Arctic methane sources. Sensitivity tests reveal that the choice of the land-surface model used to prescribe wetland emissions can be critical in correctly representing methane mixing ratios. The closest agreement with the observations is reached when using the two wetland models which have emissions peaking in August-September, while all others reach their maximum in June-July. Such phasing provides an interesting constraint on wetland models which still have large uncertainties at present. Also testing different freshwater emission inventories leads to large differences in modelled methane. Attempts to include methane sinks (OH oxidation and soil uptake) reduced the model bias relative to observed atmospheric methane. The study illustrates how multiple sources, having different spatiotemporal dynamics and magnitudes, jointly influence the overall Arctic methane budget, and highlights ways towards further improved assessments.

  15. Methane Recycling During Burial of Methane Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    You, K.; Flemings, P. B.

    2017-12-01

    We quantitatively investigate the integral processes of methane hydrate formation from local microbial methane generation, burial of methane hydrate with sedimentation, and methane recycling at the base of the hydrate stability zone (BHSZ) with a multiphase multicomponent numerical model. Methane recycling happens in cycles, and there is not a steady state. Each cycle starts with free gas accumulation from hydrate dissociation below the BHSZ. This free gas flows upward under buoyancy, elevates the hydrate saturation and capillary entry pressure at the BHSZ, and this prevents more free gas flowing in. Later as this layer with elevated hydrate saturation is buried and dissociated, the large amount of free gas newly released and accumulated below rapidly intrudes into the hydrate stability zone, drives rapid hydrate formation and creates three-phase (gas, liquid and hydrate) equilibrium above the BHSZ. The gas front retreats to below the BHSZ until all the free gas is depleted. The shallowest depth that the free gas reaches in one cycle moves toward seafloor as more and more methane is accumulated to the BHSZ with time. More methane is stored above the BHSZ in the form of concentrated hydrate in sediments with relatively uniform pore throat, and/or with greater compressibility. It is more difficult to initiate methane recycling in passive continental margins where the sedimentation rate is low, and in sediments with low organic matter content and/or methanogenesis reaction rate. The presence of a permeable layer can store methane for significant periods of time without recycling. In a 2D system where the seafloor dips rapidly, the updip gas flow along the BHSZ transports more methane toward topographic highs where methane gas and elevated hydrate saturation intrude deeper into the hydrate stability zone within one cycle. This could lead to intermittent gas venting at seafloor at the topographic highs. This study provides insights on many phenomenon associated with methane recycling, such as the formation of free gas zone, concentrated hydrate zone, bottom simulating reflector, and overpressured zone around the BHSZ, and gas venting at seafloor.

  16. Diurnal patterns of methane flux from a seasonal wetland: mechanisms and methodology

    USGS Publications Warehouse

    Bansal, Sheel; Tangen, Brian; Finocchiaro, Raymond

    2018-01-01

    Methane emissions from wetlands are temporally dynamic. Few chamber-based studies have explored diurnal variation in methane flux with high temporal replication. Using an automated sampling system, we measured methane flux every 2.5 to 4 h for 205 diel cycles during three growing seasons (2013–2015) from a seasonal wetland in the Prairie Pothole Region of North America. During ponded conditions, fluxes were generally positive (i.e., methanogenesis dominant, 10.1 ± 0.8 mg m−2 h−1), had extreme range of variation (from −1 to 70 mg m−2 h−1), and were highest during late day. In contrast, during dry conditions fluxes were very low and primarily negative (i.e., oxidation dominant, −0.05 ± 0.002 mg m−2 h−1), with the highest (least negative) fluxes occurring at pre-dawn. During semi-saturated conditions, methane fluxes also were very low, oscillated between positive and negative values (i.e., balanced between methanogenesis and methane oxidation), and exhibited no diel pattern. Methane flux was positively correlated with air temperature during ponded conditions (r = 0.57) and negatively during dry conditions (r = −0.42). Multiple regression analyses showed that temperature, light and water-filled pore space explained 72% of variation in methane flux. Methane fluxes are highly temporally dynamic and follow contrasting diel patterns that are dependent on dominant microbial processes influenced by saturation state.

  17. Jupiter's Northern Hemisphere in a Methane Band (Time Set 3)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers. Light at 727 nanometers is moderately absorbed by atmospheric methane. This mosaic shows the features of Jupiter's main visible cloud deck and upper-tropospheric haze, with higher features enhanced in brightness over lower features.

    North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The planetary limb runs along the right edge of the mosaic. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system (CCD) on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  18. 30 CFR 27.31 - Testing methods.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Testing methods. 27.31 Section 27.31 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.31 Testing methods. A methane...

  19. 30 CFR 27.31 - Testing methods.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Testing methods. 27.31 Section 27.31 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.31 Testing methods. A methane...

  20. 30 CFR 27.31 - Testing methods.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Testing methods. 27.31 Section 27.31 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.31 Testing methods. A methane...

  1. 30 CFR 27.31 - Testing methods.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Testing methods. 27.31 Section 27.31 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.31 Testing methods. A methane...

  2. 30 CFR 27.31 - Testing methods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Testing methods. 27.31 Section 27.31 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.31 Testing methods. A methane...

  3. WATER LEVEL DRAWDOWN TRIGGERS SYSTEM-WIDE BUBBLE RELEASE FROM RESERVOIR SEDIMENTS

    EPA Science Inventory

    Reservoirs are an important anthropogenic source of methane and ebullition is a key pathway by which methane stored in reservoir sediments can be released to the atmosphere. Changes in hydrostatic pressure during periods of falling water levels can trigger bubbling events, sugge...

  4. Functionalized multi-walled carbon nanotube based sensors for distributed methane leak detection

    EPA Science Inventory

    This paper presents a highly sensitive, energy efficient and low-cost distributed methane (CH4) sensor system (DMSS) for continuous monitoring, detection and localization of CH4 leaks in natural gas infrastructure such as transmission and distribution pipelines, wells, and produc...

  5. Sediment characteristics and microbial communities associated with methane production in a eutrophic reservoir

    EPA Science Inventory

    Methane (CH4), a potent greenhouse gas, is known to be produced and emitted from freshwater systems. Recently, extensive efforts have been directed toward quantifyingmethane emissions fromthese ecosystems, while additional research has focused on factors that may influence emissi...

  6. Increased Oxygen Recovery from Sabatier Systems Using Plasma Pyrolysis Technology and Metal Hydride Separation

    NASA Technical Reports Server (NTRS)

    Greenwood, Zachary W.; Abney, Morgan B.; Perry, Jay L.; Miller, Lee A.; Dahl, Roger W.; Hadley, Neal M.; Wambolt, Spencer R.; Wheeler, Richard R.

    2015-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology is based on the Sabatier reaction where less than 50% of the oxygen required for the crew is recovered from metabolic CO2. The reaction produces water as the primary product and methane as a byproduct. Oxygen recovery is constrained by the limited availability of reactant hydrogen. This is further exacerbated when Sabatier methane (CH4) is vented as a waste product resulting in a continuous loss of reactant hydrogen. Post-processing methane with the Plasma Pyrolysis Assembly (PPA) to recover hydrogen has the potential to dramatically increase oxygen recovery and thus drastically reduce the logistical challenges associated with oxygen resupply. The PPA decomposes methane into predominantly hydrogen and acetylene. Due to the highly unstable nature of acetylene, a separation system is necessary to purify hydrogen before it is recycled back to the Sabatier reactor. Testing and evaluation of a full-scale Third Generation PPA is reported and investigations into metal hydride hydrogen separation technology is discussed.

  7. Addressing case specific biogas plant tasks: industry oriented methane yields derived from 5L Automatic Methane Potential Test Systems in batch or semi-continuous tests using realistic inocula, substrate particle sizes and organic loading.

    PubMed

    Kolbl, Sabina; Paloczi, Attila; Panjan, Jože; Stres, Blaž

    2014-02-01

    The primary aim of the study was to develop and validate an in-house upscale of Automatic Methane Potential Test System II for studying real-time inocula and real-scale substrates in batch, codigestion and enzyme enhanced hydrolysis experiments, in addition to semi-continuous operation of the developed equipment and experiments testing inoculum functional quality. The successful upscale to 5L enabled comparison of different process configurations in shorter preparation times with acceptable accuracy and high-through put intended for industrial decision making. The adoption of the same scales, equipment and methodologies in batch and semi-continuous tests mirroring those at full scale biogas plants resulted in matching methane yields between the two laboratory tests and full-scale, confirming thus the increased decision making value of the approach for industrial operations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    NASA Astrophysics Data System (ADS)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  9. Automatic Carbon Dioxide-Methane Gas Sensor Based on the Solubility of Gases in Water

    PubMed Central

    Cadena-Pereda, Raúl O.; Rivera-Muñoz, Eric M.; Herrera-Ruiz, Gilberto; Gomez-Melendez, Domingo J.; Anaya-Rivera, Ely K.

    2012-01-01

    Biogas methane content is a relevant variable in anaerobic digestion processing where knowledge of process kinetics or an early indicator of digester failure is needed. The contribution of this work is the development of a novel, simple and low cost automatic carbon dioxide-methane gas sensor based on the solubility of gases in water as the precursor of a sensor for biogas quality monitoring. The device described in this work was used for determining the composition of binary mixtures, such as carbon dioxide-methane, in the range of 0–100%. The design and implementation of a digital signal processor and control system into a low-cost Field Programmable Gate Array (FPGA) platform has permitted the successful application of data acquisition, data distribution and digital data processing, making the construction of a standalone carbon dioxide-methane gas sensor possible. PMID:23112626

  10. Automatic carbon dioxide-methane gas sensor based on the solubility of gases in water.

    PubMed

    Cadena-Pereda, Raúl O; Rivera-Muñoz, Eric M; Herrera-Ruiz, Gilberto; Gomez-Melendez, Domingo J; Anaya-Rivera, Ely K

    2012-01-01

    Biogas methane content is a relevant variable in anaerobic digestion processing where knowledge of process kinetics or an early indicator of digester failure is needed. The contribution of this work is the development of a novel, simple and low cost automatic carbon dioxide-methane gas sensor based on the solubility of gases in water as the precursor of a sensor for biogas quality monitoring. The device described in this work was used for determining the composition of binary mixtures, such as carbon dioxide-methane, in the range of 0-100%. The design and implementation of a digital signal processor and control system into a low-cost Field Programmable Gate Array (FPGA) platform has permitted the successful application of data acquisition, data distribution and digital data processing, making the construction of a standalone carbon dioxide-methane gas sensor possible.

  11. LOX/Methane Main Engine Igniter Tests and Modeling

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin J.; Ajmani, Kumund

    2008-01-01

    The LOX/methane propellant combination is being considered for the Lunar Surface Access Module ascent main engine propulsion system. The proposed switch from the hypergolic propellants used in the Apollo lunar ascent engine to LOX/methane propellants requires the development of igniters capable of highly reliable performance in a lunar surface environment. An ignition test program was conducted that used an in-house designed LOX/methane spark torch igniter. The testing occurred in Cell 21 of the Research Combustion Laboratory to utilize its altitude capability to simulate a space vacuum environment. Approximately 750 ignition test were performed to evaluate the effects of methane purity, igniter body temperature, spark energy level and frequency, mixture ratio, flowrate, and igniter geometry on the ability to obtain successful ignitions. Ignitions were obtained down to an igniter body temperature of approximately 260 R with a 10 torr back-pressure. The data obtained is also being used to anchor a CFD based igniter model.

  12. Producing Hydrogen by Plasma Pyrolysis of Methane

    NASA Technical Reports Server (NTRS)

    Atwater, James; Akse, James; Wheeler, Richard

    2010-01-01

    Plasma pyrolysis of methane has been investigated for utility as a process for producing hydrogen. This process was conceived as a means of recovering hydrogen from methane produced as a byproduct of operation of a life-support system aboard a spacecraft. On Earth, this process, when fully developed, could be a means of producing hydrogen (for use as a fuel) from methane in natural gas. The most closely related prior competing process - catalytic pyrolysis of methane - has several disadvantages: a) The reactor used in the process is highly susceptible to fouling and deactivation of the catalyst by carbon deposits, necessitating frequent regeneration or replacement of the catalyst. b) The reactor is highly susceptible to plugging by deposition of carbon within fixed beds, with consequent channeling of flow, high pressure drops, and severe limitations on mass transfer, all contributing to reductions in reactor efficiency. c) Reaction rates are intrinsically low. d) The energy demand of the process is high.

  13. First Global Estimates of Anthropogenic Shortwave Forcing by Methane

    NASA Astrophysics Data System (ADS)

    Collins, William; Feldman, Daniel; Kuo, Chaincy

    2017-04-01

    Although the primary well-mixed greenhouse gases (WMGHGs) absorb both shortwave and longwave radiation, to date assessments of the effects from human-induced increases in atmospheric concentrations of WMGHGs have focused almost exclusively on quantifying the longwave radiative forcing of these gases. However, earlier studies have shown that the shortwave effects of WMGHGs are comparable to many less important longwave forcing agents routinely in these assessments, for example the effects of aircraft contrails, stratospheric anthropogenic methane, and stratospheric water vapor from the oxidation of this methane. These earlier studies include the Radiative Transfer Model Intercomparison Project (RTMIP; Collins et al. 2006) conducted using line-by-line radiative transfer codes as well as the radiative parameterizations from most of the global climate models (GCMs) assembled for the Coupled Model Intercomparison Project (CMIP-3). In this talk, we discuss the first global estimates of the shortwave radiative forcing by methane due to the anthropogenic increase in CH4 between pre-industrial and present-day conditions. This forcing is a balance between reduced heating due to absorption of downwelling sunlight in the stratosphere and increased heating due to absorption of upwelling sunlight reflected from the surface as well clouds and aerosols in the troposphere. These estimates are produced using the Observing System Simulation Experiment (OSSE) framework we have developed for NASA's upcoming Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. The OSSE is designed to compute the monthly mean shortwave radiative forcing based upon global gridded atmospheric and surface conditions extracted from either the meteorological reanalyses collected for the Analysis for MIPs (Ana4MIPs) or the CMIP-5 multi-GCM archive analyzed in the Fifth Assessment Report (AR-5) of the Intergovernmental Panel on Climate Change (IPCC). The OSSE combines these atmospheric conditions with an observationally derived prescription for the Earth's spectral surface albedo as inputs to the MODerate resolution atmospheric TRANsmission (MODTRAN) code. MODTRAN is designed to model atmospheric propagation of electromagnetic radiation for the 100-50,000 1/cm (0.2 to 100 micrometers) spectral range. This covers the spectrum from middle ultraviolet to visible light to far infrared. The most recently released version of the code, MODTRAN6, provides a spectral resolution of 0.2 1/cm using its 0.1 1/cm band model algorithm.

  14. Testing short-range migration of microbial methane as a hydrate formation mechanism: Results from Andaman Sea and Kumano Basin drill sites and global implications

    NASA Astrophysics Data System (ADS)

    Malinverno, Alberto; Goldberg, David S.

    2015-07-01

    Methane gas hydrates in marine sediments often concentrate in coarse-grained layers surrounded by fine-grained marine muds that are hydrate-free. Methane in these hydrate deposits is typically microbial, and must have migrated from its source as the coarse-grained sediments contain little or no organic matter. In "long-range" migration, fluid flow through permeable layers transports methane from deeper sources into the gas hydrate stability zone (GHSZ). In "short-range" migration, microbial methane is generated within the GHSZ in fine-grained sediments, where small pore sizes inhibit hydrate formation. Dissolved methane can then diffuse into adjacent sand layers, where pore size does not restrict hydrate formation and hydrates can accumulate. Short-range migration has been used to explain hydrate accumulations in sand layers observed in drill sites on the northern Cascadia margin and in the Gulf of Mexico. Here we test the feasibility of short-range migration in two additional locations, where gas hydrates have been found in coarse-grained volcanic ash layers (Site NGHP-01-17, Andaman Sea, Indian Ocean) and turbidite sand beds (Site IODP-C0002, Kumano forearc basin, Nankai Trough, western Pacific). We apply reaction-transport modeling to calculate dissolved methane concentration and gas hydrate amounts resulting from microbial methane generated within the GHSZ. Model results show that short-range migration of microbial methane can explain the overall amounts of methane hydrate observed at the two sites. Short-range migration has been shown to be feasible in diverse margin environments and is likely to be a widespread methane transport mechanism in gas hydrate systems. It only requires a small amount of organic carbon and sediment sequences consisting of thin coarse-grained layers that can concentrate microbial methane generated within thick fine-grained sediment beds; these conditions are common along continental margins around the globe.

  15. Quantifying Fugitive Methane Emissions at an Underground Coal Fire Using Cavity Ring-Down Spectroscopy Technology

    NASA Astrophysics Data System (ADS)

    Fleck, D.; Gannon, L.; Kim-Hak, D.; Ide, T.

    2016-12-01

    Understanding methane emissions is of utmost importance due to its greenhouse warming potential. Methane emissions can occur from a variety of natural and anthropogenic sources which include wetlands, landfills, oil/gas/coal extraction activities, underground coal fires, and natural gas distribution systems. Locating and containing these emissions are critical to minimizing their environmental impacts and economically beneficial when retrieving large fugitive amounts. In order to design a way to mitigate these methane emissions, they must first be accurately quantified. One such quantification method is to measure methane fluxes, which is a measurement technique that is calculated based on rate of gas accumulation in a known chamber volume over methane seepages. This allows for quantification of greenhouse gas emissions at a localized level (sub one meter) that can complement remote sensing and other largescale modeling techniques to further paint the picture of emission points. High performance analyzers are required to provide both sufficient temporal resolution and precise concentration measurements in order to make these measurements over only minutes. A method of measuring methane fluxes was developed using the latest portable, battery-powered Cavity Ring-Down Spectroscopy analyzer from Picarro (G4301). In combination with a mobile accumulation chamber, the instrument allows for rapid measurement of methane and carbon dioxide fluxes over wide areas. For this study, methane fluxes that were measured at an underground coal fire near the Four Corners region using the Picarro analyzer are presented. The flux rates collected demonstrate the ability for the analyzer to detect methane fluxes across many orders of magnitude. Measurements were accompanied by simultaneously geotagging the measurements with GPS to georeferenced the data. Methane flux data were instrumental in our ability to characterize the extent and the migration of the underground fire. In the future, examining the tradeoffs and dynamics between methane and carbon dioxide emissions will allow us to further understand the propagation and evolution of these large greenhouse gas emitters.

  16. Vista-LA: Mapping methane-emitting infrastructure in the Los Angeles megacity

    NASA Astrophysics Data System (ADS)

    Carranza, Valerie; Rafiq, Talha; Frausto-Vicencio, Isis; Hopkins, Francesca M.; Verhulst, Kristal R.; Rao, Preeti; Duren, Riley M.; Miller, Charles E.

    2018-03-01

    Methane (CH4) is a potent greenhouse gas (GHG) and a critical target of climate mitigation efforts. However, actionable emission reduction efforts are complicated by large uncertainties in the methane budget on relevant scales. Here, we present Vista, a Geographic Information System (GIS)-based approach to map potential methane emissions sources in the South Coast Air Basin (SoCAB) that encompasses Los Angeles, an area with a dense, complex mixture of methane sources. The goal of this work is to provide a database that, together with atmospheric observations, improves methane emissions estimates in urban areas with complex infrastructure. We aggregated methane source location information into three sectors (energy, agriculture, and waste) following the frameworks used by the State of California GHG Inventory and the Intergovernmental Panel on Climate Change (IPCC) Guidelines for GHG Reporting. Geospatial modeling was applied to publicly available datasets to precisely geolocate facilities and infrastructure comprising major anthropogenic methane source sectors. The final database, Vista-Los Angeles (Vista-LA), is presented as maps of infrastructure known or expected to emit CH4. Vista-LA contains over 33 000 features concentrated on < 1 % of land area in the region. Currently, Vista-LA is used as a planning and analysis tool for atmospheric measurement surveys of methane sources, particularly for airborne remote sensing, and methane hotspot detection using regional observations. This study represents a first step towards developing an accurate, spatially resolved methane flux estimate for point sources in SoCAB, with the potential to address discrepancies between bottom-up and top-down methane emissions accounting in this region. The Vista-LA datasets and associated metadata are available from the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics (ORNL DAAC; https://doi.org/10.3334/ORNLDAAC/1525).

  17. Biogenic methane leakage on the Aquitaine Shelf: fluid system characterization from source to emission

    NASA Astrophysics Data System (ADS)

    Michel, Guillaume; Dupré, Stéphanie; Baltzer, Agnès; Imbert, Patrice; Ehrhold, Axel; Battani, Anne; Deville, Eric

    2017-04-01

    The recent discovery of biogenic methane emissions associated with methane-derived authigenic carbonate mounds along the Aquitaine Shelf edge offshore SW France (140 to 220 m water depth) questions about the initiation and temporal evolution of this fluid system (80 km N-S and 8 km E-W). Based on a multi-data study (including multibeam echosounder, subbottom profiler, single channel sparker seismic, 80 traces air gun seismic data and well cuttings and logs), different scenarii are proposed for the organic matter source levels and migration pathways of the methane. Several evidence of the presence of gas are observed on seismic data and interpreted to be linked to the biogenic system. Single channel sparker seismic lines exhibit an acoustic blanking (between 75-100 ms TWT below seafloor and the first multiple) below the present-day seepage area and westwards up to 8 km beyond the shelf-break. An air gun seismic line exhibits chaotic reflections along 8 km below the seepage area from the seabed down to 700 ms TWT below seafloor. Based on 1) the local geothermal gradient about 26 °C/km and 2) the window for microbial methanogenesis ranging from 4 to 56 °C, the estimation of the bottom limit for biogenic generation window is about 1.5 km below seafloor. Cuttings from 3 wells of the area within the methanogenesis window show average TOC (Total Organic Carbon) of 0.5 %; however, one well shows some coal levels with 30-35 % TOC in the Oligocene between 1490 and 1540 m below seafloor. Geochemical analysis on crushed cuttings evidenced heavy hydrocarbons up to mid-Paleogene, while shallower series did not evidence any. In the first scenario, we propose that methane is sourced from the Neogene prograding system. The 0.5% average TOC is sufficient to generate a large volume of methane over the thickness of this interval (up to 1 km at the shelf break area). In the second scenario, methane would be sourced from the Oligocene coals; however their spatial extension with regard to available data is too limited to supply the gas system along 80 km from north to south. The third scenario corresponds to methane production in the early Paleogene and Cretaceous source levels; but evidence for heavy hydrocarbons is not consistent with the isotopic signatures of the gases seeping at the seabed. The first scenario is therefore the most coherent one even if the TOC is relatively low in the Neogene formations. Regarding the fluid system geometry and the associated source level position, migration pathways may involve 1) upslope migration from the base of the Neogene clinoforms, 2) sub-vertical migration through faults and fractures at the shelf edge, and 3) groundwater circulation from onshore forcing methane migration westward through hydrodynamism. The PhD thesis of Guillaume Michel as well as the oceanographic expeditions Gazcogne1 (http://dx.doi.org/10.17600/13020070) and Gazcogne2 (http://dx.doi.org/10.17600/13030090) are co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project.

  18. Assimilation of atmospheric methane products into the MACC-II system: from SCIAMACHY to TANSO and IASI

    NASA Astrophysics Data System (ADS)

    Massart, S.; Agusti-Panareda, A.; Aben, I.; Butz, A.; Chevallier, F.; Crevosier, C.; Engelen, R.; Frankenberg, C.; Hasekamp, O.

    2014-06-01

    The Monitoring Atmospheric Composition and Climate Interim Implementation (MACC-II) delayed-mode (DM) system has been producing an atmospheric methane (CH4) analysis 6 months behind real time since June 2009. This analysis used to rely on the assimilation of the CH4 product from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument onboard Envisat. Recently the Laboratoire de Météorologie Dynamique (LMD) CH4 products from the Infrared Atmospheric Sounding Interferometer (IASI) and the SRON Netherlands Institute for Space Research CH4 products from the Thermal And Near-infrared Sensor for carbon Observation (TANSO) were added to the DM system. With the loss of Envisat in April 2012, the DM system now has to rely on the assimilation of methane data from TANSO and IASI. This paper documents the impact of this change in the observing system on the methane tropospheric analysis. It is based on four experiments: one free run and three analyses from respectively the assimilation of SCIAMACHY, TANSO and a combination of TANSO and IASI CH4 products in the MACC-II system. The period between December 2010 and April 2012 is studied. The SCIAMACHY experiment globally underestimates the tropospheric methane by 35 part per billion (ppb) compared to the HIAPER Pole-to-Pole Observations (HIPPO) data and by 28 ppb compared the Total Carbon Column Observing Network (TCCON) data, while the free run presents an underestimation of 5 ppb and 1 ppb against the same HIPPO and TCCON data, respectively. The assimilated TANSO product changed in October 2011 from version v.1 to version v.2.0. The analysis of version v.1 globally underestimates the tropospheric methane by 18 ppb compared to the HIPPO data and by 15 ppb compared to the TCCON data. In contrast, the analysis of version v.2.0 globally overestimates the column by 3 ppb. When the high density IASI data are added in the tropical region between 30° N and 30° S, their impact is mainly positive but more pronounced and effective when combined with version v.2.0 of the TANSO products. The resulting analysis globally underestimates the column-averaged dry-air mole fractions of methane (xCH4) just under 1 ppb on average compared to the TCCON data, whereas in the tropics it overestimates xCH4 by about 3 ppb. The random error is estimated to be less than 7 ppb when compared to TCCON data.

  19. Coupling a Neural Network with Atmospheric Flow Simulations to Locate and Quantify CH4 Emissions at Well Pads

    NASA Astrophysics Data System (ADS)

    Travis, B. J.; Sauer, J.; Dubey, M. K.

    2017-12-01

    Methane (CH4) leaks from oil and gas production fields are a potentially significant source of atmospheric methane. US DOE's ARPA-E office is supporting research to locate methane emissions at 10 m size well pads to within 1 m. A team led by Aeris Technologies, and that includes LANL, Planetary Science Institute and Rice University has developed an autonomous leak detection system (LDS) employing a compact laser absorption methane sensor, a sonic anemometer and multiport sampling. The LDS system analyzes monitoring data using a convolutional neural network (cNN) to locate and quantify CH4 emissions. The cNN was trained using three sources: (1) ultra-high-resolution simulations of methane transport provided by LANL's coupled atmospheric transport model HIGRAD, for numerous controlled methane release scenarios and methane sampling configurations under variable atmospheric conditions, (2) Field tests at the METEC site in Ft. Collins, CO., and (3) Field data from other sites where point-source surface methane releases were monitored downwind. A cNN learning algorithm is well suited to problems in which the training and observed data are noisy, or correspond to complex sensor data as is typical of meteorological and sensor data over a well pad. Recent studies with our cNN emphasize the importance of tracking wind speeds and directions at fine resolution ( 1 second), and accounting for variations in background CH4 levels. A few cases illustrate the importance of sufficiently long monitoring; short monitoring may not provide enough information to determine accurately a leak location or strength, mainly because of short-term unfavorable wind directions and choice of sampling configuration. Length of multiport duty cycle sampling and sample line flush time as well as number and placement of monitoring sensors can significantly impact ability to locate and quantify leaks. Source location error at less than 10% requires about 30 or more training cases.

  20. 2004 Methane and Nitrous Oxide Emissions from Manure Management in South Africa

    PubMed Central

    Moeletsi, Mokhele Edmond; Tongwane, Mphethe Isaac

    2015-01-01

    Simple Summary Livestock manure management is one of the main sources of greenhouse gas (GHG) emissions in South Africa producing mainly methane and nitrous oxide. The emissions from this sub-category are dependent on how manure is stored. Liquid-stored manure predominantly produces methane while dry-based manure enhances mainly production of nitrous oxide. Intergovernmental Panel on Climate Change (IPCC) guidelines were utilized at different tier levels in estimating GHG emissions from manure management. The results show that methane emissions are relatively higher than nitrous oxide emissions with 3104 Gg and 2272 Gg respectively in carbon dioxide global warming equivalent. Abstract Manure management in livestock makes a significant contribution towards greenhouse gas emissions in the Agriculture; Forestry and Other Land Use category in South Africa. Methane and nitrous oxide emissions are prevalent in contrasting manure management systems; promoting anaerobic and aerobic conditions respectively. In this paper; both Tier 1 and modified Tier 2 approaches of the IPCC guidelines are utilized to estimate the emissions from South African livestock manure management. Activity data (animal population, animal weights, manure management systems, etc.) were sourced from various resources for estimation of both emissions factors and emissions of methane and nitrous oxide. The results show relatively high methane emissions factors from manure management for mature female dairy cattle (40.98 kg/year/animal), sows (25.23 kg/year/animal) and boars (25.23 kg/year/animal). Hence, contributions for pig farming and dairy cattle are the highest at 54.50 Gg and 32.01 Gg respectively, with total emissions of 134.97 Gg (3104 Gg CO2 Equivalent). Total nitrous oxide emissions are estimated at 7.10 Gg (2272 Gg CO2 Equivalent) and the three main contributors are commercial beef cattle; poultry and small-scale beef farming at 1.80 Gg; 1.72 Gg and 1.69 Gg respectively. Mitigation options from manure management must be taken with care due to divergent conducive requirements of methane and nitrous oxide emissions requirements. PMID:26479229

  1. Portable Dual-comb Spectrometer for Stable Detection of Methane Leaks over Kilometer Scale Paths at Oil and Natural Gas Production Site

    NASA Astrophysics Data System (ADS)

    Coburn, S.; Wright, R.; Cossel, K.; Truong, G. W.; Baumann, E.; Coddington, I.; Newbury, N.; Alden, C. B.; Ghosh, S.; Prasad, K.; Rieker, G. B.

    2016-12-01

    Newly proposed EPA regulations on volatile organic compound (VOC) emissions from oil and gas production facilities have been expanded to include methane, making the detection of this important trace gas a topic of growing interest to the oil and gas industry, regulators, and the scientific community in general. Reliable techniques that enable long-term monitoring of entire production facilities are needed in order to fully characterize the temporal and spatial trends of emissions from these sites. Recent advances in the development of compact and robust fiber frequency combs are enabling the use of this powerful spectroscopic tool outside of the laboratory, presenting opportunities for kilometer-scale open-path sensing of emissions at remote locations. Here we present the characterization and field deployment of a dual comb spectrometer (DCS) system with the potential to locate and size methane leaks from oil and gas production sites from long range. The DCS is a laser-based system that enables broad spectral absorption measurements (>50 nm) with high spectral resolution (<0.002 nm). Together these properties enable measurement of methane and other trace gas concentrations (e.g., H2O for deriving dry mole fractions) with high sensitivity and long-term stability from distances of 1 km or more. Field testing of this instrument has taken place at locations near Boulder, CO, demonstrating sensitivities of better than 2 ppb-km for methane. In addition, path integrated methane measurements from the DCS are coupled with an atmospheric inversion utilizing local meteorology and a high resolution fluid dynamics simulation to determine leak location and also derive a leak rate from simulated methane leaks

  2. Implementation of an acoustic-based methane flux estimation methodology in the Eastern Siberian Arctic Sea

    NASA Astrophysics Data System (ADS)

    Weidner, E. F.; Weber, T. C.; Mayer, L. A.

    2017-12-01

    Quantifying methane flux originating from marine seep systems in climatically sensitive regions is of critically importance for current and future climate studies. Yet, the methane contribution from these systems has been difficult to estimate given the broad spatial scale of the ocean and the heterogeneity of seep activity. One such region is the Eastern Siberian Arctic Sea (ESAS), where bubble release into the shallow water column (<40 meters average depth) facilitates transport of methane to the atmosphere without oxidation. Quantifying the current seep methane flux from the ESAS is necessary to understand not only the total ocean methane budget, but also to provide baseline estimates against which future climate-induced changes can be measured. At the 2016 AGU fall meeting, we presented a new acoustic-based flux methodology using a calibrated broadband split-beam echosounder. The broad (14-24 kHz) bandwidth provides a vertical resolution of 10 cm, making possible the identification of single bubbles. After calibration using 64 mm copper sphere of known backscatter, the acoustic backscatter of individual bubbles is measured and compared to analytical models to estimate bubble radius. Additionally, bubbles are precisely located and traced upwards through the water column to estimate rise velocity. The combination of radius and rise velocity allows for gas flux estimation. Here, we follow up with the completed implementation of this methodology applied to the Herald Canyon region of the western ESAS. From the 68 recognized seeps, bubble radii and rise velocity were computed for more than 550 individual bubbles. The range of bubble radii, 1-6 mm, is comparable to those published by other investigators, while the radius dependent rise velocities are consistent with published models. Methane flux for the Herald Canyon region was estimated by extrapolation from individual seep flux values.

  3. MERLIN: a Franco-German LIDAR space mission for atmospheric methane

    NASA Astrophysics Data System (ADS)

    Bousquet, P.; Ehret, G.; Pierangelo, C.; Marshall, J.; Bacour, C.; Chevallier, F.; Gibert, F.; Armante, R.; Crevoisier, C. D.; Edouart, D.; Esteve, F.; Julien, E.; Kiemle, C.; Alpers, M.; Millet, B.

    2017-12-01

    The Methane Remote Sensing Lidar Mission (MERLIN), currently in phase C, is a joint cooperation between France and Germany on the development, launch and operation of a space LIDAR dedicated to the retrieval of total weighted methane (CH4) atmospheric columns. Atmospheric methane is the second most potent anthropogenic greenhouse gas, contributing 20% to climate radiative forcing but also plying an important role in atmospheric chemistry as a precursor of tropospheric ozone and low-stratosphere water vapour. Its short lifetime ( 9 years) and the nature and variety of its anthropogenic sources also offer interesting mitigation options in regards to the 2° objective of the Paris agreement. For the first time, measurements of atmospheric composition will be performed from space thanks to an IPDA (Integrated Path Differential Absorption) LIDAR (Light Detecting And Ranging), with a precision (target ±27 ppb for a 50km aggregation along the trace) and accuracy (target <3.7 ppb at 68%) sufficient to significantly reduce the uncertainties on methane emissions. The very low targeted systematic error target is particularly ambitious compared to current passive methane space mission. It is achievable because of the differential active measurements of MERLIN, which guarantees almost no contamination by aerosols or water vapour cross-sensitivity. As an active mission, MERLIN will deliver global methane weighted columns (XCH4) for all seasons and all latitudes, day and night Here, we recall the MERLIN objectives and mission characteristics. We also propose an end-to-end error analysis, from the causes of random and systematic errors of the instrument, of the platform and of the data treatment, to the error on methane emissions. To do so, we propose an OSSE analysis (observing system simulation experiment) to estimate the uncertainty reduction on methane emissions brought by MERLIN XCH4. The originality of our inversion system is to transfer both random and systematic errors from the observation space to the flux space, thus providing more realistic error reductions than usually provided in OSSE only using the random part of errors. Uncertainty reductions are presented using two different atmospheric transport models, TM3 and LMDZ, and compared with error reduction achieved with the GOSAT passive mission.

  4. Sources and sinks of methane beneath polar ice

    NASA Astrophysics Data System (ADS)

    Priscu, J. C.; Adams, H. E.; Hand, K. P.; Dore, J. E.; Matheus-Carnevali, P.; Michaud, A. B.; Murray, A. E.; Skidmore, M. L.; Vick-Majors, T.

    2014-12-01

    Several icy moons of the outer solar system carry subsurface oceans containing many times the volume of liquid water on Earth and may provide the greatest volume of habitable space in our solar system. Functional sub-ice polar ecosystems on Earth provide compelling models for the habitability of extraterrestrial sub-ice oceans. A key feature of sub-ice environments is that most of them receive little to no solar energy. Consequently, organisms inhabiting these environments must rely on chemical energy to assimilate either carbon dioxide or organic molecules to support their metabolism. Methane can be utilized by certain bacteria as both a carbon and energy source. Isotopic data show that methane in Earth's polar lakes is derived from both biogenic and thermogenic sources. Thermogenic sources of methane in the thermokarst lakes of the north slope of Alaska yield supersaturated water columns during winter ice cover that support active populations of methanotrophs during the polar night. Methane in the permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica varies widely in concentration and is produced either by contemporary methanogenesis or is a relic from subglacial flow. Rate measurements revealed that microbial methane oxidation occurs beneath the ice in both the arctic and Antarctic lakes. The first samples collected from an Antarctic subglacial environment beneath 800 m of ice (Subglacial Lake Whillans) revealed an active microbial ecosystem that has been isolated from the atmosphere for many thousands of years. The sediments of Lake Whillans contained high levels of methane with an isotopic signature that indicates it was produced via methanogenesis. The source of this methane appears to be from the decomposition of organic carbon deposited when this region of Antarctica was covered by the sea. Collectively, data from these sub-ice environments show that methane transformations play a key role in microbial community metabolism. The discovery of functional microbial ecosystems in Earth's sub-ice aquatic environments together with what we know about the geochemistry of extraterrestrial ice-covered water worlds provide a compelling case that sub-ice oceans, such as those on Europa and Enceladus, may support microbial life.

  5. Methane as a biomarker in the search for extraterrestrial life: Lessons learned from Mars analog hypersaline environments

    NASA Astrophysics Data System (ADS)

    Bebout, B.; Tazaz, A.; Kelley, C. A.; Poole, J. A.; Davila, A.; Chanton, J.

    2010-12-01

    Methane released from discrete regions on Mars, together with previous reports of methane determined with ground-based telescopes, has revived the possibility of past or even extant life near the surface on Mars, since 90% of the methane on Earth has a biological origin. This intriguing possibility is supported by the abundant evidence of large bodies of liquid water, and therefore of conditions conducive to the origin of life, early in the planet's history. The detection and analysis of methane is at the core of NASA’s strategies to search for life in the solar system, and on extrasolar planets. Because methane is also produced abiotically, it is important to generate criteria to unambiguously assess biogenicity. The stable carbon and hydrogen isotopic signature of methane, as well as its ratio to other low molecular weight hydrocarbons (the methane/(ethane + propane) ratio: C1/(C2 + C3)), has been suggested to be diagnostic for biogenic methane. We report measurements of the concentrations and stable isotopic signature of methane from hypersaline environments. We focus on hypersaline environments because spectrometers orbiting Mars have detected widespread chloride bearing deposits resembling salt flats. Other evaporitic minerals, e.g., sulfates, are also abundant in several regions, including those studied by the Mars Exploration Rovers. The presence of evaporitic minerals, together with the known evolution of the Martian climate, from warmer and wetter to cold and hyper-arid, suggest that evaporitic and hypersaline environments were common in the past. Hypersaline environments examined to date include salt ponds located in Baja California, the San Francisco Bay, and the Atacama Desert. Methane was found in gas produced both in the sediments, and in gypsum- and halite-hosted (endolithic) microbial communities. Maximum methane concentrations were as high as 40% by volume. The methane carbon isotopic (δ13C) composition showed a wide range of values, from about -60 ‰ to -30 ‰, while the hydrogen isotopic composition (δ2H) ranged from about -350 to -300‰. These isotopic values are outside the range generally considered to be biogenic, however incubations of the sediments and salt crusts revealed that the methane is indeed produced there. The highest rate of methane production was 20 nmol/g/d, in a gypsum crust with endolithic microbial communities. Currently we are studying the mechanisms that control the isotopic signatures of methane in these environments. These studies are of special relevance given the projected analysis of Mars atmospheric methane by the Mars Science Laboratory in 2012, and by the ExoMars Trace Gas Orbiter in 2017.

  6. Release of Methane from Bering Sea Sediments During the Last Glacial Period

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mea Cook; Lloyd Keigwin

    2007-11-30

    Several lines of evidence suggest that during times of elevated methane flux the sulfate-methane transition zone (SMTZ) was positioned near the sediment-water interface. We studied two cores (from 700 m and 1457 m water depth) from the Umnak Plateau region. Anomalously low d13C and high d18O in benthic and planktonic foraminifera in these cores are the consequence of diagenetic overgrowths of authigenic carbonates. There are multiple layers of authigenic-carbonate-rich sediment in these cores, and the stable isotope compositions of the carbonates are consistent with those formed during anaerobic oxidation of methane (AOM). The carbonate-rich layers are associated with biomarkers producedmore » by methane-oxidizing archaea, archaeol and glyceryl dibiphytanyl glyceryl tetraether (GDGT). The d13C of the archaeol and certain GDGTs are isotopically depleted. These carbonate- and AOM-biomarker-rich layers were emplaced in the SMTZ during episodes when there was a high flux of methane or methane-rich fluids upward in the sediment column. The sediment methane in the Umnak Plateau region appears to have been very dynamic during the glacial period, and interacted with the ocean-atmosphere system at millennial time scales. The upper-most carbonate-rich layers are in radiocarbon-dated sediment deposited during interstitials 2 and 3, 28-20 ka, and may be associated with the climate warming during this time.« less

  7. Freshwater wetland sediments support substantial rates of anaerobic oxidation of methane (AOM)

    NASA Astrophysics Data System (ADS)

    Segarra, K. E.; Samarkin, V.; Schubotz, F.; Yoshinaga, M. Y.; Hinrichs, K.; Joye, S. B.

    2012-12-01

    Freshwater wetlands are characterized by high rates of methanogenesis and are the single largest source of atmospheric methane. Anaerobic oxidation of methane (AOM), a previously underappreciated process in these systems, may be an important component in freshwater methane budgets. Here we report some of the first direct measurements of AOM in wetland sediments. We examined seasonal methane cycling within three freshwater wetlands (two peat wetlands and one tidal, freshwater creekbank) along the eastern coast of the US. Rates of AOM were high (up to 286 nmol per cubic cm per day) and varied on a seasonal basis. Despite low sulfate concentrations, rates of sulfate reduction were sufficient to support all the observed AOM activity, though rates of these two processes were not correlated. This study highlights the importance of AOM in freshwater sediments, where this process, in conjunction with sulfate reduction, may control emissions of methane to the atmosphere through competitive interactions with methanogens and the consumption of large fractions of the methane produced from acetate and hydrogen. The zone of maximum AOM activity was marked by enriched stable carbon isotopic signatures (δ13C) of methane and depleted signatures of DIC. However, the δ13C of archaeal and bacterial lipids were not indicative of methanotrophy. Studies that evaluate the role of AOM in wetlands using lipid and isotope-based approaches may therefore underestimate its importance.

  8. Iron-Coupled Anaerobic Oxidation of Methane Performed by a Mixed Bacterial-Archaeal Community Based on Poorly Reactive Minerals.

    PubMed

    Bar-Or, Itay; Elvert, Marcus; Eckert, Werner; Kushmaro, Ariel; Vigderovich, Hanni; Zhu, Qingzeng; Ben-Dov, Eitan; Sivan, Orit

    2017-11-07

    Anaerobic oxidation of methane (AOM) was shown to reduce methane emissions by over 50% in freshwater systems, its main natural contributor to the atmosphere. In these environments iron oxides can become main agents for AOM, but the underlying mechanism for this process has remained enigmatic. By conducting anoxic slurry incubations with lake sediments amended with 13 C-labeled methane and naturally abundant iron oxides the process was evidenced by significant 13 C-enrichment of the dissolved inorganic carbon pool and most pronounced when poorly reactive iron minerals such as magnetite and hematite were applied. Methane incorporation into biomass was apparent by strong uptake of 13 C into fatty acids indicative of methanotrophic bacteria, associated with increasing copy numbers of the functional methane monooxygenase pmoA gene. Archaea were not directly involved in full methane oxidation, but their crucial participation, likely being mediators in electron transfer, was indicated by specific inhibition of their activity that fully stopped iron-coupled AOM. By contrast, inhibition of sulfur cycling increased 13 C-methane turnover, pointing to sulfur species involvement in a competing process. Our findings suggest that the mechanism of iron-coupled AOM is accomplished by a complex microbe-mineral reaction network, being likely representative of many similar but hidden interactions sustaining life under highly reducing low energy conditions.

  9. Sealing rice field boundaries in Bangladesh: a pilot study demonstrating reductions in water use, arsenic loading to field soils, and methane emissions from irrigation water.

    PubMed

    Neumann, Rebecca B; Pracht, Lara E; Polizzotto, Matthew L; Badruzzaman, A Borhan M; Ali, M Ashraf

    2014-08-19

    Irrigation of rice fields in Bangladesh with arsenic-contaminated and methane-rich groundwater loads arsenic into field soils and releases methane into the atmosphere. We tested the water-savings potential of sealing field bunds (raised boundaries around field edges) as a way to mitigate these negative outcomes. We found that, on average, bund sealing reduced seasonal water use by 52 ± 17% and decreased arsenic loading to field soils by 15 ± 4%; greater savings in both water use and arsenic loading were achieved in fields with larger perimeter-to-area ratios (i.e., smaller fields). Our study is the first to quantify emission of methane from irrigation water in Bangladesh, a currently unaccounted-for methane source. Irrigation water applied to unsealed fields at our site emits 18 to 31 g of methane per square-meter of field area per season, potentially doubling the atmospheric input of methane from rice cultivation. Bund sealing reduced the emission of methane from irrigation water by 4 to 19 g/m(2). While the studied outcomes of bund sealing are positive and compelling, widespread implementation of the technique should consider other factors, such as effect on yields, financial costs, and impact on the hydrologic system. We provide an initial and preliminary assessment of these implementation factors.

  10. Mass fractionation of noble gases in synthetic methane hydrate: Implications for naturally occurring gas hydrate dissociation

    USGS Publications Warehouse

    Hunt, Andrew G.; Stern, Laura; Pohlman, John W.; Ruppel, Carolyn; Moscati, Richard J.; Landis, Gary P.

    2013-01-01

    As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings may presently be dissociating and releasing methane and other gases to the ocean-atmosphere system. A key challenge in assessing the impact of dissociating gas hydrates on global atmospheric methane is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sediments (some newly thawed), coal beds, and other sources. Carbon and deuterium stable isotopic fractionation during methane formation provides a first-order constraint on the processes (microbial or thermogenic) of methane generation. However, because gas hydrate formation and dissociation do not cause significant isotopic fractionation, a stable isotope-based hydrate-source determination is not possible. Here, we investigate patterns of mass-dependent noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.

  11. The construction and operation of a low-cost poultry waste digester.

    PubMed

    Steinsberger, S C; Shih, J C

    1984-05-01

    A simple and low-cost poultry waste digester (PWD) was constructed to treat the waste from 4000 caged laying hens on University Research Unit No. 2 at North Carolina State University. The system was built basically of a plastic lining with insulation, a heating system, a hot-water tank, and other metering equipment. It was operated at 50 degrees C and pH 7.5-8.0. The initiation of methane production was achieved using the indigenous microflora in the poultry waste. At an optimal loading rate (7.5 kg volatile solids/m(3) day), the PWD produced biogas (55% methane) at a rate of 4.0 m(3)/m(3) day. The PWD was biologically stable and able to tolerate temporary overloads and shutdowns. A higher loading rate failed to maintain a high gas production rate and caused drops in methane content and pH value. Under optimal conditions, a positive energy balance was demonstrated with a net surplus of 50.6% of the gross energy. For methane production, the PWD system was proved to be technically feasible. The simple design and inexpensive materials used for this model could significantly reduce the cost of digestion compared to more conventional systems. More studies are needed to determine the durability, the required maintenance of the system, and the most economical method of biogas and solid residue utilization.

  12. Chemical Processing in High-Pressure Aqueous Environments. 9. Process Development for Catalytic Gasification of Algae Feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.

    Through the use of a metal catalyst, gasification of wet algae slurries can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In a pressurized-water environment (20 MPa), near-total conversion of the organic structure of the algae to gases has been achieved in the presence of a supported ruthenium metal catalyst. The process is essentially steam reforming, as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high levels of methane, as dictated by thermodynamic equilibrium. Asmore » opposed to earlier work, biomass trace components were removed by processing steps so that they did not cause processing difficulties in the fixed catalyst bed tubular reactor system. As a result, the algae feedstocks, even those with high ash contents, were much more reliably processed. High conversions were obtained even with high slurry concentrations. Consistent catalyst operation in these short-term tests suggested good stability and minimal poisoning effects. High methane content in the product gas was noted with significant carbon dioxide captured in the aqueous byproduct in combination with alkali constituents and the ammonia byproduct derived from proteins in the algae. High conversion of algae to gas products was found with low levels of byproduct water contamination and low to moderate loss of carbon in the mineral separation step.« less

  13. 30 CFR 57.22301 - Atmospheric monitoring systems (I-A, II-A, and V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... when methane at any sensor reaches 0.5 percent or more, and when power to a sensor is interrupted... determined by MSHA to be intrinsically safe under 30 CFR part 18, when methane at any sensor reaches— (i) 1.0...

  14. 30 CFR 57.22301 - Atmospheric monitoring systems (I-A, II-A, and V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... when methane at any sensor reaches 0.5 percent or more, and when power to a sensor is interrupted... determined by MSHA to be intrinsically safe under 30 CFR part 18, when methane at any sensor reaches— (i) 1.0...

  15. 30 CFR 57.22301 - Atmospheric monitoring systems (I-A, II-A, and V-A mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... when methane at any sensor reaches 0.5 percent or more, and when power to a sensor is interrupted... determined by MSHA to be intrinsically safe under 30 CFR part 18, when methane at any sensor reaches— (i) 1.0...

  16. 30 CFR 57.22301 - Atmospheric monitoring systems (I-A, II-A, and V-A mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... when methane at any sensor reaches 0.5 percent or more, and when power to a sensor is interrupted... determined by MSHA to be intrinsically safe under 30 CFR part 18, when methane at any sensor reaches— (i) 1.0...

  17. 30 CFR 57.22301 - Atmospheric monitoring systems (I-A, II-A, and V-A mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... when methane at any sensor reaches 0.5 percent or more, and when power to a sensor is interrupted... determined by MSHA to be intrinsically safe under 30 CFR part 18, when methane at any sensor reaches— (i) 1.0...

  18. Methane to Biomass – or Moo to Goo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Hans

    2017-04-11

    Scientists at Pacific Northwest National Laboratory have developed a new system to convert methane into a deep green, energy-rich, gelatin-like substance that can be used as the basis for biofuels and other products, including feed for cows that create the gas in the first place.

  19. Microbial methane from in situ biodegradation of coal and shale: A review and reevaluation of hydrogen and carbon isotope signatures

    USGS Publications Warehouse

    Vinson, David S.; Blair, Neal E.; Martini, Anna M.; Larter, Steve; Orem, William H.; McIntosh, Jennifer C.

    2017-01-01

    Stable carbon and hydrogen isotope signatures of methane, water, and inorganic carbon are widely utilized in natural gas systems for distinguishing microbial and thermogenic methane and for delineating methanogenic pathways (acetoclastic, hydrogenotrophic, and/or methylotrophic methanogenesis). Recent studies of coal and shale gas systems have characterized in situ microbial communities and provided stable isotope data (δD-CH4, δD-H2O, δ13C-CH4, and δ13C-CO2) from a wider range of environments than available previously. Here we review the principal biogenic methane-yielding pathways in coal beds and shales and the isotope effects imparted on methane, document the uncertainties and inconsistencies in established isotopic fingerprinting techniques, and identify the knowledge gaps in understanding the subsurface processes that govern H and C isotope signatures of biogenic methane. We also compare established isotopic interpretations with recent microbial community characterization techniques, which reveal additional inconsistencies in the interpretation of microbial metabolic pathways in coal beds and shales. Collectively, the re-assessed data show that widely-utilized isotopic fingerprinting techniques neglect important complications in coal beds and shales.Isotopic fingerprinting techniques that combine δ13C-CH4 with δD-CH4 and/or δ13C-CO2have significant limitations: (1) The consistent ~ 160‰ offset between δD-H2O and δD-CH4 could imply that hydrogenotrophic methanogenesis is the dominant metabolic pathway in microbial gas systems. However, hydrogen isotopes can equilibrate between methane precursors and coexisting water, yielding a similar apparent H isotope signal as hydrogenotrophic methanogenesis, regardless of the actual methane formation pathway. (2) Non-methanogenic processes such as sulfate reduction, Fe oxide reduction, inputs of thermogenic methane, anaerobic methane oxidation, and/or formation water interaction can cause the apparent carbon isotope fractionation between δ13C-CH4 and δ13C-CO2(α13CCO2-CH4) to differ from the true methanogenic fractionation, complicating interpretation of methanogenic pathways. (3) Where little-fractionating non-methanogenic bacterial processes compete with highly-fractionating methanogenesis, the mass balance between CH4 and CO2 is affected. This has implications for δ13C values and provides an alternative interpretation for net C isotope signatures than solely the pathways used by active methanogens. (4) While most of the reviewed values of δD-H2O - δD-CH4 and α13CCO2-CH4 are apparently consistent with hydrogenotrophic methanogenesis as the dominant pathway in coal beds and shales, recent microbial community characterization techniques suggest a possible role for acetoclastic or methylotrophic methanogenesis in some basins.

  20. Opposed Jet Burner Extinction Limits: Simple Mixed Hydrocarbon Scramjet Fuels vs Air

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Vaden, Sarah N.; Wilson, Lloyd G.

    2007-01-01

    Opposed Jet Burner tools have been used extensively by the authors to measure Flame Strength (FS) of laminar non-premixed H2 air and simple hydrocarbon (HC) air counterflow diffusion flames at 1-atm. FS represents a strain-induced extinction limit based on air jet velocity. This paper follows AIAA-2006-5223, and provides new HC air FSs for global testing of chemical kinetics, and for characterizing idealized flameholding potentials during early scramjet-like combustion. Previous FS data included six HCs, pure and N2-diluted; and three HC-diluted H2 fuels, where FS decayed very nonlinearly as HC was added to H2, due to H-atom scavenging. This study presents FSs on mixtures of (candidate surrogate) HCs, some with very high FS ethylene. Included are four binary gaseous systems at 300 K, and a hot ternary system at approx. 600 K. The binaries are methane + ethylene, ethane + ethylene, methane + ethane, and methane + propylene. The first three also form two ternary systems. The hot ternary includes both 10.8 and 21.3 mole % vaporized n-heptane and full ranges of methane + ethylene. Normalized FS data provide accurate means of (1) validating, globally, chemical kinetics for extinction of non-premixed flames, and (2) estimating (scaling by HC) the loss of incipient flameholding in scramjet combustors. The n-heptane is part of a proposed baseline simulant (10 mole % with 30% methane + 60% ethylene) that mimics the ignition of endothermically cracked JP-7 like kerosene fuel, as suggested by Colket and Spadaccini in 2001 in their shock tube Scramjet Fuels Autoignition Study. Presently, we use FS to gauge idealized flameholding, and define HC surrogates. First, FS was characterized for hot nheptane + methane + ethylene; then a hot 36 mole % methane + 64% ethylene surrogate was defined that mimics FS of the baseline simulant system. A similar hot ethane + ethylene surrogate can also be defined, but it has lower vapor pressure at 300 K, and thus exhibits reduced gaseous capacity. The new FS results refine our earlier idealized reactivity scale that shows wide ranging (50 x) diameter-normalized FSs for various HCs. These range from JP-10 and methane to H2 air, which produces an exceptionally strong flame that agrees within approx. 1% of recent 2-D numerically simulations. Finally, we continue advocating the FS approach as more direct and fundamental, for assessing idealized scramjet flameholding potentials, than measurements of unstrained laminar burning velocity or blowout in a Perfectly Stirred Reactor.

Top