Science.gov

Sample records for methanogenic population dynamics

  1. Anaerobic Digestion of Renewable Biomass: Thermophilic Temperature Governs Methanogen Population Dynamics ▿ †

    PubMed Central

    Krakat, Niclas; Westphal, A.; Schmidt, S.; Scherer, P.

    2010-01-01

    Beet silage and beet juice were digested continuously as representative energy crops in a thermophilic biogas fermentor for more than 7 years. Fluorescence microscopy of 15 samples covering a period of 650 days revealed that a decrease in temperature from 60°C to 55°C converted a morphologically uniform archaeal population (rods) into a population of methanogens exhibiting different cellular morphologies (rods and coccoid cells). A subsequent temperature increase back to 60°C reestablished the uniform morphology of methanogens observed in the previous 60°C period. In order to verify these observations, representative samples were investigated by amplified rRNA gene restriction analysis (ARDRA) and fluorescence in situ hybridization (FISH). Both methods confirmed the temperature-dependent population shift observed by fluorescence microscopy. Moreover, all samples investigated demonstrated that hydrogenotrophic Methanobacteriales dominated in the fermentor, as 29 of 34 identified operational taxonomic units (OTUs) were assigned to this order. This apparent discrimination of acetoclastic methanogens contradicts common models for anaerobic digestion processes, such as anaerobic digestion model 1 (ADM1), which describes the acetotrophic Euryarchaeota as predominant organisms. PMID:20097828

  2. Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion.

    PubMed

    Yang, Yu; Guo, Jialiang; Hu, Zhiqiang

    2013-11-01

    Nano zero valent iron (NZVI), although being increasingly used for environmental remediation, has potential negative impact on methanogenesis in anaerobic digestion. In this study, NZVI (average size = 55 ± 11 nm) showed inhibition of methanogenesis due to its disruption of cell integrity. The inhibition was coincident with the fast hydrogen production and accumulation due to NZVI dissolution under anaerobic conditions. At the concentrations of 1 mM and above, NZVI reduced methane production by more than 20%. At the concentration of 30 mM, NZVI led to a significant increase in soluble COD (an indication of cell disruption) and volatile fatty acids in the mixed liquor along with an accumulation of H2, resulting in a reduction of methane production by 69% (±4% [standard deviation]). By adding a specific methanogenesis inhibitor-sodium 2-bromoethanesulfonate (BES) to the anaerobic sludge containing 30 mM NZVI, the amount of H2 produced was only 79% (±1%) of that with heat-killed sludge, indicating the occurrence of bacterially controlled hydrogen utilization processes. Quantitative PCR data was in accordance with the result of methanogenesis inhibition, as the level of methanogenic population (dominated by Methanosaeta) in the presence of 30 mM NZVI decreased significantly compared to that of the control. On the contrary, ZVI powder (average size <212 μm) at the same concentration (30 mM) increased methane production presumably due to hydrogenotrophic methanogenesis of hydrogen gas that was slowly released from the NZVI powder. While it is a known fact that NZVI disrupts cell membranes, which inhibited methanogenesis described herein, the results suggest that the rapid hydrogen production due to NZVI dissolution also contribute to methanogenesis inhibition and lead to bacterially controlled hydrogenotrophic processes.

  3. A comparison of nanosilver and silver ion effects on bioreactor landfill operations and methanogenic population dynamics.

    PubMed

    Yang, Yu; Gajaraj, Shashikanth; Wall, Judy D; Hu, Zhiqiang

    2013-06-15

    Silver nanoparticles (AgNPs, nanosilver) and silver ions released from industry and various consumer products are eventually disposed in sanitary landfills. To compare the effects of these two forms of silver on landfill bioreactor operations with leachate recirculation, municipal solid waste (MSW) in six identical 9-L bioreactors was exposed to AgNPs (stabilized with 0.06% polyvinyl alcohol) or Ag(+) at a silver concentration of 10 mg/kg solids. The landfill anaerobic digestion was operated and monitored for more than 200 days. There was no significant difference in cumulative methane volume or methane production rate between the groups of control and 10 mg/kg Ag(+). However, MSW treated with 10 mg/kg AgNPs resulted in a reduced methane production (by up to 80%) and accumulation of volatile fatty acids in the leachates. This was accompanied by higher leachate Ag concentrations (an average of 3.7 ± 0.3 mg/L) after day 132 as compared to those in the groups of control and 10 mg/kg Ag(+) at 0.7 ± 0.4 and 1.1 ± 0.3 mg/L, respectively. Quantitative PCR targeting 16S rRNA genes of methanogens indicated reduced methanogenic growth in the bioreactors exposed to nanosilver. The peak values of total methanogens in leachates were (1.18 ± 0.09) × 10(10), (4.57 ± 2.67) × 10(10) and (7.72 ± 0.78) × 10(8) (cells/mL) for the groups of control, Ag(+) and AgNPs, respectively. The results suggest that silver ions have minimal impact on landfill methane production at the concentration of 10 mg/kg. However, nanosilver inhibits methanogenesis and is more toxic than its counterpart, likely due to slow and long-term Ag(+) release from nanosilver dissolution yielding more bioavailability in landfill leachates.

  4. Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids

    SciTech Connect

    Griffin, M.E.; McMahon, K.D.; Mackie, R.I.; Raskin, L.

    1998-02-05

    An aggressive start-up strategy was used to initiate codigestion in two anaerobic, continuously mixed bench-top reactors at mesophilic (37 C) and thermophilic (55 C) conditions. The digesters were inoculated with mesophilic anaerobic sewage sludge and cattle manure and were fed a mixture of simulated municipal solid waste and biosolids in proportions that reflect US production rates. The design organic loading rate was 3.1 kg volatile solids/m{sup 3}/day and the retention time was 20 days. Ribosomal RNA-targeted oligonucleotide probes were used to determine the methanogenic community structure in the inocula and the digesters. Chemical analyses were performed to evaluate digester performance. The aggressive start-up strategy was successful for the thermophilic reactor, despite the use of a mesophilic inoculum.

  5. Distinctive non-methanogen archaeal populations in anaerobic digestion.

    PubMed

    Chen, Si; He, Qiang

    2016-01-01

    Methanogens define the archaeal communities involved in anaerobic digestion. Recently, non-methanogen archaeal populations have been unexpectedly identified in anaerobic digestion processes. To gain insight into the ecophysiology of these uncharacterized archaeal populations, for the first time, a phylogenetic analysis was performed on a collection of non-methanogen archaeal 16S rRNA gene sequences from anaerobic digesters of broad geographic distribution, revealing a distinct clade formed by these sequences in subgroup 6 of the Miscellaneous Crenarchaeotal Group in the newly proposed archaeal phylum Bathyarchaeota. This exclusive phylogenetic assemblage enabled the development of a real-time quantitative PCR (qPCR) assay specifically targeting these non-methanogen archaeal populations in anaerobic digestion. Application of the qPCR assay in continuous anaerobic digesters indicated that these archaeal populations were minor constituents of the archaeal communities, and the abundance of these populations remained relatively constant irrespective of process perturbations. Analysis of the archaeal populations in methanogenic communities further revealed the co-occurrence of these non-methanogen archaea with acetoclastic methanogens. Nevertheless, the low abundance of non-methanogen archaea as compared with acetoclastic methanogens suggests that the non-methanogen archaeal populations were not major players in animal waste-fed methanogenic processes investigated in this study and the functions of these archaeal populations remain to be identified.

  6. Populations of Methanogenic Bacteria in a Georgia Salt Marsh

    PubMed Central

    Franklin, Michael J.; Wiebe, William J.; Whitman, William B.

    1988-01-01

    Methanogens represented about 0.5% of the total bacteria in sediments from a Georgia salt marsh in which Spartina alterniflora is the predominant vegetation. The population of methanogens was composed of at least two groups of nearly equal size. One group was represented by cocci which were able to utilize trimethylamine and were unable to use H2 or acetate. The second group was composed of two subgroups which were able to utilize H2 but were unable to use trimethylamine or acetate. The more common subgroup included rod- or plate-shaped methanogens which could utilize isopropanol in addition to H2 and formate. The second subgroup included Methanococcus maripaludis, which utilized only H2 and formate. Other groups of methanogens were also present, including Methanosarcina sp. which utilized acetate, H2, and methylamines. In addition to the overall variability in the types of methanogens, the numbers of methanogens in sediments also exhibited significant spatial variability both within and between tall- and short-Spartina zones. Images PMID:16347628

  7. Low-Temperature (10°C) Anaerobic Digestion of Dilute Dairy Wastewater in an EGSB Bioreactor: Microbial Community Structure, Population Dynamics, and Kinetics of Methanogenic Populations

    PubMed Central

    Cysneiros, Denise; O'Flaherty, Vincent

    2013-01-01

    The feasibility of anaerobic digestion of dairy wastewater at 10°C was investigated in a high height : diameter ratio EGSB reactor. Stable performance was observed at an applied organic loading rate (OLR) of 0.5–2 kg COD m−3 d−1 with chemical oxygen demand (COD) removal efficiencies above 85%. When applied OLR increased to values above 2 kg COD m−3 d−1, biotreatment efficiency deteriorated, with methanogenesis being the rate-limiting step. The bioreactor recovered quickly (3 days) after reduction of the OLR. qPCR results showed a reduction in the abundance of hydrogenotrophic methanogenic Methanomicrobiales and Methanobacteriales throughout the steady state period followed by a sharp increase in their numbers (111-fold) after the load shock. Specific methanogenic activity and maximum substrate utilising rate (Amax) of the biomass at the end of trial indicated increased activity and preference towards hydrogenotrophic methanogenesis, which correlated well with the increased abundance of hydrogenotrophic methanogens. Acetoclastic Methanosaeta spp. remained at stable levels throughout the trial. However, increased apparent half-saturation constant (Km) at the end of the trial indicated a decrease in the specific substrate affinity for acetate of the sludge, suggesting that Methanosaeta spp., which have high substrate affinity, started to be outcompeted in the reactor. PMID:24089597

  8. Dynamics of the Methanogenic Archaea in Tropical Estuarine Sediments

    PubMed Central

    Torres-Alvarado, María del Rocío; Fernández, Francisco José; Ramírez Vives, Florina; Varona-Cordero, Francisco

    2013-01-01

    Methanogenesis may represent a key process in the terminal phases of anaerobic organic matter mineralization in sediments of coastal lagoons. The aim of the present work was to study the temporal and spatial dynamics of methanogenic archaea in sediments of tropical coastal lagoons and their relationship with environmental changes in order to determine how these influence methanogenic community. Sediment samples were collected during the dry (February, May, and early June) and rainy seasons (July, October, and November). Microbiological analysis included the quantification of viable methanogenic archaea (MA) with three substrates and the evaluation of kinetic activity from acetate in the presence and absence of sulfate. The environmental variables assessed were temperature, pH, Eh, salinity, sulfate, solids content, organic carbon, and carbohydrates. MA abundance was significantly higher in the rainy season (106–107 cells/g) compared with the dry season (104–106 cells/g), with methanol as an important substrate. At spatial level, MA were detected in the two layers analyzed, and no important variations were observed either in MA abundance or activity. Salinity, sulfate, solids, organic carbon, and Eh were the environmental variables related to methanogenic community. A conceptual model is proposed to explain the dynamics of the MA. PMID:23401664

  9. Dynamics of the methanogenic archaea in tropical estuarine sediments.

    PubMed

    Torres-Alvarado, María del Rocío; Fernández, Francisco José; Ramírez Vives, Florina; Varona-Cordero, Francisco

    2013-01-01

    Methanogenesis may represent a key process in the terminal phases of anaerobic organic matter mineralization in sediments of coastal lagoons. The aim of the present work was to study the temporal and spatial dynamics of methanogenic archaea in sediments of tropical coastal lagoons and their relationship with environmental changes in order to determine how these influence methanogenic community. Sediment samples were collected during the dry (February, May, and early June) and rainy seasons (July, October, and November). Microbiological analysis included the quantification of viable methanogenic archaea (MA) with three substrates and the evaluation of kinetic activity from acetate in the presence and absence of sulfate. The environmental variables assessed were temperature, pH, Eh, salinity, sulfate, solids content, organic carbon, and carbohydrates. MA abundance was significantly higher in the rainy season (10(6)-10(7) cells/g) compared with the dry season (10(4)-10(6) cells/g), with methanol as an important substrate. At spatial level, MA were detected in the two layers analyzed, and no important variations were observed either in MA abundance or activity. Salinity, sulfate, solids, organic carbon, and Eh were the environmental variables related to methanogenic community. A conceptual model is proposed to explain the dynamics of the MA.

  10. A vaccine against rumen methanogens can alter the composition of archaeal populations.

    PubMed

    Williams, Yvette J; Popovski, Sam; Rea, Suzanne M; Skillman, Lucy C; Toovey, Andrew F; Northwood, Korinne S; Wright, André-Denis G

    2009-04-01

    The objectives of this study were to formulate a vaccine based upon the different species/strains of methanogens present in sheep intended to be immunized and to determine if a targeted vaccine could be used to decrease the methane output of the sheep. Two 16S rRNA gene libraries were used to survey the methanogenic archaea in sheep prior to vaccination, and methanogens representing five phylotypes were found to account for >52% of the different species/strains of methanogens detected. A vaccine based on a mixture of these five methanogens was then formulated, and 32 sheep were vaccinated on days 0, 28, and 103 with either a control or the anti-methanogen vaccine. Enzyme-linked immunosorbent assay analysis revealed that each vaccination with the anti-methanogen formulation resulted in higher specific immunoglobulin G titers in plasma, saliva, and rumen fluid. Methane output levels corrected for dry-matter intake for the control and treatment groups were not significantly different, and real-time PCR data also indicated that methanogen numbers were not significantly different for the two groups after the second vaccination. However, clone library data indicated that methanogen diversity was significantly greater in sheep receiving the anti-methanogen vaccine and that the vaccine may have altered the composition of the methanogen population. A correlation between 16S rRNA gene sequence relatedness and cross-reactivity for the methanogens (R(2) = 0.90) also exists, which suggests that a highly specific vaccine can be made to target specific strains of methanogens and that a more broad-spectrum approach is needed for success in the rumen. Our data also suggest that methanogens take longer than 4 weeks to adapt to dietary changes and call into question the validity of experimental results based upon a 2- to 4-week acclimatization period normally observed for bacteria.

  11. Effects of Amendment with Ferrihydrite and Gypsum on the Structure and Activity of Methanogenic Populations in Rice Field Soil

    PubMed Central

    Lueders, Tillmann; Friedrich, Michael W.

    2002-01-01

    Methane emission from paddy fields may be reduced by the addition of electron acceptors to stimulate microbial populations competitive to methanogens. We have studied the effects of ferrihydrite and gypsum (CaSO4 · 2H2O) amendment on methanogenesis and population dynamics of methanogens after flooding of Italian rice field soil slurries. Changes in methanogen community structure were followed by archaeal small subunit (SSU) ribosomal DNA (rDNA)- and rRNA-based terminal restriction fragment length polymorphism analysis and by quantitative SSU rRNA hybridization probing. Under ferrihydrite amendment, acetate was consumed efficiently (<60 μM) and a rapid but incomplete inhibition of methanogenesis occurred after 3 days. In contrast to unamended controls, the dynamics of Methanosarcina populations were largely suppressed as indicated by rDNA and rRNA analysis. However, the low acetate availability was still sufficient for activation of Methanosaeta spp., as indicated by a strong increase of SSU rRNA but not of relative rDNA frequencies. Unexpectedly, rRNA amounts of the novel rice cluster I (RC-I) methanogens increased significantly, while methanogenesis was low, which may be indicative of transient energy conservation coupled to Fe(III) reduction by these methanogens. Under gypsum addition, hydrogen was rapidly consumed to low levels (∼0.4 Pa), indicating the presence of a competitive population of hydrogenotrophic sulfate-reducing bacteria (SRB). This was paralleled by a suppressed activity of the hydrogenotrophic RC-I methanogens as indicated by the lowest SSU rRNA quantities detected in all experiments. Full inhibition of methanogenesis only became apparent when acetate was depleted to nonpermissive thresholds (<5 μM) after 10 days. Apparently, a competitive, acetotrophic population of SRB was not present initially, and hence, acetotrophic methanosarcinal populations were less suppressed than under ferrihydrite amendment. In conclusion, although methane

  12. Novel Syntrophic Populations Dominate an Ammonia-Tolerant Methanogenic Microbiome

    PubMed Central

    Frank, J. A.; Arntzen, M. Ø.; Sun, L.; Hagen, L. H.; McHardy, A. C.; Horn, S. J.; Eijsink, V. G. H.; Schnürer, A.

    2016-01-01

    ABSTRACT Biogas reactors operating with protein-rich substrates have high methane potential and industrial value; however, they are highly susceptible to process failure because of the accumulation of ammonia. High ammonia levels cause a decline in acetate-utilizing methanogens and instead promote the conversion of acetate via a two-step mechanism involving syntrophic acetate oxidation (SAO) to H2 and CO2, followed by hydrogenotrophic methanogenesis. Despite the key role of syntrophic acetate-oxidizing bacteria (SAOB), only a few culturable representatives have been characterized. Here we show that the microbiome of a commercial, ammonia-tolerant biogas reactor harbors a deeply branched, uncultured phylotype (unFirm_1) accounting for approximately 5% of the 16S rRNA gene inventory and sharing 88% 16S rRNA gene identity with its closest characterized relative. Reconstructed genome and quantitative metaproteomic analyses imply unFirm_1’s metabolic dominance and SAO capabilities, whereby the key enzymes required for acetate oxidation are among the most highly detected in the reactor microbiome. While culturable SAOB were identified in genomic analyses of the reactor, their limited proteomic representation suggests that unFirm_1 plays an important role in channeling acetate toward methane. Notably, unFirm_1-like populations were found in other high-ammonia biogas installations, conjecturing a broader importance for this novel clade of SAOB in anaerobic fermentations. IMPORTANCE The microbial production of methane or “biogas” is an attractive renewable energy technology that can recycle organic waste into biofuel. Biogas reactors operating with protein-rich substrates such as household municipal or agricultural wastes have significant industrial and societal value; however, they are highly unstable and frequently collapse due to the accumulation of ammonia. We report the discovery of a novel uncultured phylotype (unFirm_1) that is highly detectable in

  13. Pulp mill wastewater sediment reveals novel methanogenic and cellulolytic populations.

    PubMed

    Yang, Chunyu; Wang, Wei; Du, Miaofen; Li, Chunfang; Ma, Cuiqing; Xu, Ping

    2013-02-01

    Pulp mill wastewater generated from wheat straw is characterized as high alkalinity and very high COD pollution load. A naturally developed microbial community in a pulp mill wastewater storage pool that had been disused were investigated in this study. Owing to natural evaporation and a huge amount of lignocellulose's deposition, the wastewater sediment contains high concentrations of organic matters and sodium ions, but low concentrations of chloride and carbonate. The microbiota inhabiting especially anaerobic community, including methanogenic arhcaea and cellulolytic species, was studied. All archaeal sequences fall into 2 clusters of family Halobacteriaceae and methanogenic archaeon in the phylum Euryarchaeota. In the methanogenic community, phylogenetic analysis of methyl coenzyme M reductase A (mcrA) genes targeted to novel species in genus Methanoculleus or novel genus of order Methanomicrobiales. The predominance of Methanomicrobiales suggests that methanogenesis in this system might be driven by the hydrogenotrophic pathway. As the important primary fermenter for methane production, the cellulolytic community of enzyme GHF48 was found to be dominated by narrower breadth of novel clostridial cellulase genes. Novel anoxic functional members in such extreme sediment provide the possibility of enhancing the efficiency of anoxic treatment of saline and alkaline wastewaters, as well as benefiting to the biomass transformation and biofuel production processes.

  14. Spatial structure and persistence of methanogen populations in humic bog lakes.

    PubMed

    Milferstedt, Kim; Youngblut, Nicholas D; Whitaker, Rachel J

    2010-06-01

    Patterns of diversity within methanogenic archaea in humic bog lakes are quantified over time and space to determine the roles that spatial isolation and seasonal mixing play in structuring microbial populations. The protein encoding gene mcrA is used as a molecular marker for the detection of fine-scale differences between methanogens in four dimictic bog lakes in which the water column is mixed twice a year and one meromictic lake that is permanently stratified. Although similar sequences are observed in each bog lake, each lake has its own characteristic set of persisting sequence types, indicating that methanogen populations are delimited either by low migration between the anaerobic hypolimnia or by lake-specific selection. The meromictic lake is differentiated from all other lakes and contains sequences with a higher degree of microdiversity than the dimictic lakes. By relating the structure of diversity to the depth of each bog lake, we propose the hypothesis that the deeper parts of the water column favor microdiversification of methanogens, whereas the periodically disturbed water column of shallower dimictic lakes promote genetically more diverse methanogen communities.

  15. Quantitative analysis of ruminal methanogenic microbial populations in beef cattle divergent in phenotypic residual feed intake (RFI) offered contrasting diets

    PubMed Central

    2014-01-01

    Background Methane (CH4) emissions in cattle are an undesirable end product of rumen methanogenic fermentative activity as they are associated not only with negative environmental impacts but also with reduced host feed efficiency. The aim of this study was to quantify total and specific rumen microbial methanogenic populations in beef cattle divergently selected for residual feed intake (RFI) while offered (i) a low energy high forage (HF) diet followed by (ii) a high energy low forage (LF) diet. Ruminal fluid was collected from 14 high (H) and 14 low (L) RFI animals across both dietary periods. Quantitative real time PCR (qRT-PCR) analysis was conducted to quantify the abundance of total and specific rumen methanogenic microbes. Spearman correlation analysis was used to investigate the association between the relative abundance of methanogens and animal performance, rumen fermentation variables and diet digestibility. Results Abundance of methanogens, did not differ between RFI phenotypes. However, relative abundance of total and specific methanogen species was affected (P < 0.05) by diet type, with greater abundance observed while animals were offered the LF compared to the HF diet. Conclusions These findings suggest that differences in abundance of specific rumen methanogen species may not contribute to variation in CH4 emissions between efficient and inefficient animals, however dietary manipulation can influence the abundance of total and specific methanogen species. PMID:25276350

  16. Differences in the Rumen Methanogen Populations of Lactating Jersey and Holstein Dairy Cows under the Same Diet Regimen▿†

    PubMed Central

    King, Erin E.; Smith, Rachel P.; St-Pierre, Benoit; Wright, André-Denis G.

    2011-01-01

    In the dairy cattle industry, Holstein and Jersey are the breeds most commonly used for production. They differ in performance by various traits, such as body size, milk production, and milk composition. With increased concerns about the impact of agriculture on climate change, potential differences in other traits, such as methane emission, also need to be characterized further. Since methane is produced in the rumen by methanogenic archaea, we investigated whether the population structure of methanogen communities would differ between Holsteins and Jerseys. Breed-specific rumen methanogen 16S rRNA gene clone libraries were constructed from pooled PCR products obtained from lactating Holstein and Jersey cows, generating 180 and 185 clones, respectively. The combined 365 sequences were assigned to 55 species-level operational taxonomic units (OTUs). Twenty OTUs, representing 85% of the combined library sequences, were common to both breeds, while 23 OTUs (36 sequences) were found only in the Holstein library and 12 OTUs (18 sequences) were found only in the Jersey library, highlighting increased diversity in the Holstein library. Other differences included the observation that sequences with species-like sequence identity to Methanobrevibacter millerae were represented more highly in the Jersey breed, while Methanosphaera-related sequences and novel uncultured methanogen clones were more frequent in the Holstein library. In contrast, OTU sequences with species-level sequence identity to Methanobrevibacter ruminantium were represented similarly in both libraries. Since the sampled animals were from a single herd consisting of two breeds which were fed the same diet and maintained under the same environmental conditions, the differences we observed may be due to differences in host breed genetics. PMID:21705541

  17. Osmoregulation in methanogens

    SciTech Connect

    Roberts, M.F.

    1993-01-01

    Our major goal of our work has been to develop and use NMR techniques to study how methanogenic archaebacteria deal with osmotic stress with the hope of providing insights into increasing the salt tolerance of other cells. The project has three main sections: (i) in vivo studies of methanogens; (ii) use of [sup l3]C- and [sup l5]N- labeled potential precursors and in vitro analyses of specific label uptake for elucidation of osmolyte dynamics and biosynthetic pathways of osmolytes in these organisms, and isolation of key biosynthetic enzymes; and (iii) collaborative studies on identification of organic solutes in other methanogens.

  18. Combined molecular ecological and confocal laser scanning microscopic analysis of peat bog methanogen populations.

    PubMed

    Upton, M; Hill, B; Edwards, C; Saunders, J R; Ritchie, D A; Lloyd, D

    2000-12-15

    Confocal laser scanning microscopy, using fluorescently labelled oligonucleotide probes targeting the 16S rRNA of different physiological groups of methanogens, was used to identify which methanogenic genera were present and to describe their in situ spatial locations in samples taken at different depths from blanket peat bog cores. Total bacterial DNA was also extracted and purified from the samples and used as template for amplification of 16S rRNA and regions of methyl CoM reductase-encoding genes using the polymerase chain reaction, as well as for oligonucleotide hybridisation experiments. These techniques, used in concert, demonstrated that methanogens of several physiological groups were present in highest numbers in the mid regions of 25 cm deep peat cores. Some discrepancies were apparent in the findings of the microscopic and molecular methods, though these may be partially accounted for by the different sensitivities of the techniques employed. The combined approaches used in this study gave an insight into the diversity and distribution of methanogens in peat environments not possible using molecular ecological methods alone.

  19. Methanogenic and sulphate reducing bacterial population levels in a full-scale anaerobic reactor treating pulp and paper industry wastewater using fluorescence in situ hybridisation.

    PubMed

    Ince, O; Kolukirik, M; Cetecioglu, Z; Eyice, O; Tamerler, C; Kasapgil Ince, B

    2007-01-01

    In this study, specific methanogenic activity (SMA) test and fluorescence in situ hybridisation (FISH) were respectively used to determine acetoclastic methanogenic capacity, and composition and number of methanogenic and sulphate reducing bacterial (SRB) populations within a full scale anaerobic contact reactor treating a pulp and paper industry effluent. The sludge samples were collected from three different heights along the anaerobic reactor having a difficulty of completely stirring. Performance of the anaerobic reactor in terms of COD removal efficiency varied between 47 and 55% at organic loading rates in a range of 1.6-1.8 kg COD m(-3) d(-1) and methane yield varied between 0.18 and 0.20 m3CH4kg CODrem(-1). The anaerobic reactor was not operated for 2 weeks during the monitoring period. According to SMA test results, potential methane production rate was 276 mLCH4 gVSS(-1) d(-1) before the off period of the reactor, however it decreased to 159 mL CH4 gVSS(-1) d(-1) after this period. SMA test and FISH results along the reactor height showed that the acetoclastic methanogenic activity of the sludge samples, the relative abundance of acetoclastic methanogens, hydrogenotrophic methanogens and acetate oxidising SRB decreased as the reactor height increased, however the relative abundance of non-acetate oxidising SRB increased.

  20. Methane dynamics in an alpine fen: a field-based study on methanogenic and methanotrophic microbial communities.

    PubMed

    Franchini, Alessandro G; Henneberger, Ruth; Aeppli, Meret; Zeyer, Josef

    2015-03-01

    Wetlands are important sources of the greenhouse gas methane (CH4). We provide an in situ study of CH4 dynamics in the permanently submerged soil of a Swiss alpine fen. Physico-chemical pore water analyses were combined with structural and microbiological analyses of soil cores at high vertical resolution down to 50 cm depth. Methanotrophs and methanogens were active throughout the depth profile, and highest abundance of active methanotrophs and methanogens [6.1 × 10(5) and 1.1 × 10(7) pmoA and mcrA transcripts (g soil)(-1), respectively] was detected in the uppermost 2 cm of the soil. Active methanotrophic communities in the near-surface zone, dominated by viable mosses, varied from the communities in the deeper zones, but further changes with depth were not pronounced. Apart from a distinct active methanogenic community in the uppermost sample, a decrease of acetoclastic Methanosaetaceae with depth was observed in concomitance with decreasing root surface area. Overall, root surface area correlated with mcrA transcript abundance and CH4 pore water concentrations, which peaked (137.1 μM) at 10 to 15 cm depth. Our results suggest that stimulation of methanogenesis by root exudates of vascular plants had a stronger influence on CH4 dynamics than stimulation of CH4 oxidation by O2 input.

  1. Differences in the methanogen population exist in sika deer (Cervus nippon) fed different diets in China.

    PubMed

    Li, Zhi Peng; Liu, Han Lu; Jin, Chun Ai; Cui, Xue Zhe; Jing, Yi; Yang, Fu He; Li, Guang Yu; Wright, André-Denis G

    2013-11-01

    Understanding the methanogen structure from sika deer (Cervus nippon) in China may be beneficial to methane mitigation. In the present preliminary study, we investigated the methanogen community in the rumen of domesticated sika deer fed either tannin-rich plants (oak leaf, OL group) or corn stalk (CS group) using 16S rRNA gene clone libraries. Overall, we obtained 197 clone sequences, revealing 146 unique phylotypes, which were assigned to 36 operational taxonomic units at the species level (98 % identity). Methanogens related to the genus Methanobrevibacter were the predominant phylotypes representing 83.9 % (OL library) and 85.9 % (CS library) of the clones. Methanobrevibacter millerae was the most abundant species in both libraries, but the proportion of M. millerae-related clones in the CS library was higher than in the OL library (69.5 and 51.4 %, respectively). Moreover, Methanobrevibacter wolinii-related clones (32.5 %) were predominant in the OL library. Methanobrevibacter smithii-related clones and Methanobrevibacter ruminantium-related clones accounted for 6.5 and 6.6 % in the CS library, respectively. However, these clones were absent from the OL library. The concentrations of butyrate and total short-chain fatty acids (SCFAs) were significantly higher in the OL group, but the concentrations of acetate, propionate, and valerate and the acetate to propionate ratio in the OL group were not significantly different between the two groups. Tannin-rich plants may have affected the distribution of genus Methanobrevibacter phylotypes at the species level and the concentration and composition of SCFAs.

  2. Reducing methane emissions and the methanogen population in the rumen of Tibetan sheep by dietary supplementation with coconut oil.

    PubMed

    Ding, Xuezhi; Long, Ruijun; Zhang, Qian; Huang, Xiaodan; Guo, Xusheng; Mi, Jiandui

    2012-10-01

    The objective was to evaluate the effect of dietary coconut oil on methane (CH(4)) emissions and the microbial community in Tibetan sheep. Twelve animals were assigned to receive either a control diet (oaten hay) or a mixture diet containing concentrate (maize meal), in which coconut oil was supplemented at 12 g/day or not for a period of 4 weeks. CH(4) emissions were measured by using the 'tunnel' technique, and microbial communities were examined using quantitative real-time PCR. Daily CH(4) production for the control and forage-to-concentrate ratio of 6:4 was 17.8 and 15.3 g, respectively. Coconut oil was particularly effective at reducing CH(4) emissions from Tibetan sheep. The inclusion of coconut oil for the control decreased CH(4) production (in grams per day) by 61.2%. In addition, there was a positive correlation between the number of methanogens and the daily CH(4) production (R = 0.95, P < 0.001). Oaten hay diet containing maize meal (6:4) plus coconut oil supplemented at 12 g/day decreases the number of methanogens by 77% and a decreases in the ruminal fungal population (85-95%) and Fibrobacter succinogenes (50-98%) but an increase in Ruminococcus flavefaciens (25-70%). The results from our experiment suggest that adding coconut oil to the diet can reduce CH(4) emissions in Tibetan sheep and that these reductions persist for at least the 4-week feeding period.

  3. Gastrointestinal Bacterial and Methanogenic Archaea Diversity Dynamics Associated with Condensed Tannin-Containing Pine Bark Diet in Goats Using 16S rDNA Amplicon Pyrosequencing.

    PubMed

    Min, Byeng R; Solaiman, Sandra; Shange, Raymon; Eun, Jong-Su

    2014-01-01

    Eighteen Kiko-cross meat goats (n = 6) were used to collect gastrointestinal (GI) bacteria and methanogenic archaea for diversity measures when fed condensed tannin-containing pine bark (PB). Three dietary treatments were tested: control diet (0% PB and 30% wheat straw (WS); 0.17% condensed tannins (CT) dry matter (DM)); 15% PB and 15% WS (1.6% CT DM), and 30% PB and 0% WS (3.2% CT DM). A 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing technique was used to characterize and elucidate changes in GI bacteria and methanogenic archaea diversity among the diets. Proteobacteria was the most dominant phylum in goats with mean relative abundance values ranging from 39.7 (30% PB) to 46.5% (control) and 47.1% (15% PB). Other phyla individually accounted for fewer than 25% of the relative abundance observed. Predominant methanogens were Methanobrevibacter (75, 72, and 49%), Methanosphaera (3.3, 2.3, and 3.4%), and Methanobacteriaceae (1.2, 0.6, and 0.7%) population in control, 15, and 30% PB, respectively. Among methanogens, Methanobrevibacter was linearly decreased (P = 0.05) with increasing PB supplementation. These results indicate that feeding PB selectively altered bacteria and methanogenic archaeal populations in the GI tract of goats.

  4. Gastrointestinal Bacterial and Methanogenic Archaea Diversity Dynamics Associated with Condensed Tannin-Containing Pine Bark Diet in Goats Using 16S rDNA Amplicon Pyrosequencing

    PubMed Central

    Min, Byeng R.; Solaiman, Sandra; Shange, Raymon

    2014-01-01

    Eighteen Kiko-cross meat goats (n = 6) were used to collect gastrointestinal (GI) bacteria and methanogenic archaea for diversity measures when fed condensed tannin-containing pine bark (PB). Three dietary treatments were tested: control diet (0% PB and 30% wheat straw (WS); 0.17% condensed tannins (CT) dry matter (DM)); 15% PB and 15% WS (1.6% CT DM), and 30% PB and 0% WS (3.2% CT DM). A 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing technique was used to characterize and elucidate changes in GI bacteria and methanogenic archaea diversity among the diets. Proteobacteria was the most dominant phylum in goats with mean relative abundance values ranging from 39.7 (30% PB) to 46.5% (control) and 47.1% (15% PB). Other phyla individually accounted for fewer than 25% of the relative abundance observed. Predominant methanogens were Methanobrevibacter (75, 72, and 49%), Methanosphaera (3.3, 2.3, and 3.4%), and Methanobacteriaceae (1.2, 0.6, and 0.7%) population in control, 15, and 30% PB, respectively. Among methanogens, Methanobrevibacter was linearly decreased (P = 0.05) with increasing PB supplementation. These results indicate that feeding PB selectively altered bacteria and methanogenic archaeal populations in the GI tract of goats. PMID:24669219

  5. Response of the rumen archaeal and bacterial populations to anti-methanogenic organosulphur compounds in continuous-culture fermenters.

    PubMed

    Martínez-Fernández, Gonzalo; Abecia, Leticia; Martín-García, A Ignacio; Ramos-Morales, Eva; Denman, Stuart E; Newbold, Charles J; Molina-Alcaide, Eduarda; Yáñez-Ruiz, David R

    2015-08-01

    Study of the efficacy of methanogenesis inhibitors in the rumen has given inconsistent results, mainly due to poorly understood effects on the key microbial groups involved in pathways for methane (CH4) synthesis. The experiment described in this report was designed to assess the effect of propyl propane thiosulfinate (PTS), diallyl disulfide (DDS) and bromochloromethane (BCM) on rumen fermentation, methane production and microbial populations in continuous culture fermenters. No effects on total volatile fatty acids (VFA) were observed with PTS or DDS, but VFA were decreased with BCM. Amylase activity increased with BCM as compared with the other treatments. A decrease in methane production was observed with PTS (48%) and BCM (94%) as compared with control values. The concentration of methanogenic archaea decreased with BCM from day 4 onward and with PTS on days 4 and 8. Pyrosequencing analysis revealed that PTS and BCM decreased the relative abundance of Methanomicrobiales and increased that of Methanobrevibacter and Methanosphaera. The total concentration of bacteria was not modified by any treatment, although treatment with BCM increased the relative abundance of Prevotella and decreased that of Ruminococcus. These results suggest that the inhibition of methane production in the rumen by PTS and BCM is associated with a shift in archaeal biodiversity and changes in the bacterial community with BCM.

  6. Micro-scale H2–CO2 Dynamics in a Hydrogenotrophic Methanogenic Membrane Reactor

    PubMed Central

    Garcia-Robledo, Emilio; Ottosen, Lars D. M.; Voigt, Niels V.; Kofoed, M. W.; Revsbech, Niels P.

    2016-01-01

    Biogas production is a key factor in a sustainable energy supply. It is possible to get biogas with very high methane content if the biogas reactors are supplied with exogenous hydrogen, and one of the technologies for supplying hydrogen is through gas permeable membranes. In this study the activity and stratification of hydrogen consumption above such a membrane was investigated by use of microsensors for hydrogen and pH. A hydrogenotrophic methanogenic community that was able to consume the hydrogen flux within 0.5 mm of the membrane with specific rates of up to 30 m3 H2 m-3 day-1 developed within 3 days in fresh manure and was already established at time zero when analyzing slurry from a biogas plant. The hydrogen consumption was dependent on a simultaneous carbon dioxide supply and was inhibited when carbon dioxide depletion elevated the pH to 9.2. The activity was only partially restored when the carbon dioxide supply was resumed. Bioreactors supplied with hydrogen gas should thus be carefully monitored and either have the hydrogen supply disrupted or be supplemented with carbon dioxide when the pH rises to values about 9. PMID:27582736

  7. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    USGS Publications Warehouse

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J.P.; Ritter, Daniel J.; McIntosh, Jennifer C.; Clark, Arthur C.; Ruppert, Leslie F.; Cunningham, Alfred B.; Vinson, David S.; Orem, William H.; Fields, Matthew W.

    2016-01-01

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulic conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112 to 120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ13C values (−67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO3−, or SO42−. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situbacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  8. Seasonal dynamics of bacterial and archaeal methanogenic communities in flooded rice fields and effect of drainage

    PubMed Central

    Breidenbach, Björn; Conrad, Ralf

    2015-01-01

    We studied the resident (16S rDNA) and the active (16S rRNA) members of soil archaeal and bacterial communities during rice plant development by sampling three growth stages (vegetative, reproductive and maturity) under field conditions. Additionally, the microbial community was investigated in two non-flooded fields (unplanted, cultivated with upland maize) in order to monitor the reaction of the microbial communities to non-flooded, dry conditions. The abundance of Bacteria and Archaea was monitored by quantitative PCR showing an increase in 16S rDNA during reproductive stage and stable 16S rRNA copies throughout the growth season. Community profiling by T-RFLP indicated a relatively stable composition during rice plant growth whereas pyrosequencing revealed minor changes in relative abundance of a few bacterial groups. Comparison of the two non-flooded fields with flooded rice fields showed that the community composition of the Bacteria was slightly different, while that of the Archaea was almost the same. Only the relative abundance of Methanosarcinaceae and Soil Crenarchaeotic Group increased in non-flooded vs. flooded soil. The abundance of bacterial and archaeal 16S rDNA copies was highest in flooded rice fields, followed by non-flooded maize and unplanted fields. However, the abundance of ribosomal RNA (active microbes) was similar indicating maintenance of a high level of ribosomal RNA under the non-flooded conditions, which were unfavorable for anaerobic bacteria and methanogenic archaea. This maintenance possibly serves as preparedness for activity when conditions improve. In summary, the analyses showed that the bacterial and archaeal communities inhabiting Philippine rice field soil were relatively stable over the season but reacted upon change in field management. PMID:25620960

  9. Evolutionary dynamics of diploid populations

    NASA Astrophysics Data System (ADS)

    Desimone, Ralph; Newman, Timothy

    2003-10-01

    There has been much recent interest in constructing computer models of evolutionary dynamics. Typically these models focus on asexual population dynamics, which are appropriate for haploid organsims such as bacteria. Using a recently developed ``genome template'' model, we extend the algorithm to a sexual population of diploid organisms. We will present some early results showing the temporal evolution of mean fitness and genetic variation, and compare this to typical results from haploid populations.

  10. Natural selection and population dynamics.

    PubMed

    Saccheri, Ilik; Hanski, Ilkka

    2006-06-01

    To what extent, and under which circumstances, are population dynamics influenced by concurrent natural selection? Density dependence and environmental stochasticity are generally expected to subsume any selective modulation of population growth rate, but theoretical considerations point to conditions under which selection can have an appreciable impact on population dynamics. By contrast, empirical research has barely scratched the surface of this fundamental question in population biology. Here, we present a diverse body of mostly empirical evidence that demonstrates how selection can influence population dynamics, including studies of small populations, metapopulations, cyclical populations and host-pathogen interactions. We also discuss the utility, in this context, of inferences from molecular genetic data, placing them within the broader framework of quantitative genetics and life-history evolution.

  11. Bioreactor performance and quantitative analysis of methanogenic and bacterial community dynamics in microbial electrolysis cells during large temperature fluctuations.

    PubMed

    Lu, Lu; Xing, Defeng; Ren, Nanqi

    2012-06-19

    The use of microbial electrolysis cells (MECs) for H(2) production generally finds H(2) sink by undesirable methanogenesis at mesophilic temperatures. Previously reported approaches failed to effectively inhibit methanogenesis without the addition of nongreen chemical inhibitors. Here, we demonstrated that the CH(4) production and the number of methanogens in single-chamber MECs could be restricted steadily to a negligible level by continuously operating reactors at the relatively low temperature of 15 °C. This resulted in a H(2) yield and production rate comparable to those obtained at 30 °C with less CH(4) production (CH(4)% < 1%). However, this operation at 15 °C should be taken from the initial stage of anodic biofilm formation, when the methanogenic community has not yet been established sufficiently. Maintaining MECs operating at 20 °C was not effective for controlling methanogenesis. The varying degrees of methanogenesis observed in MECs at 30 °C could be completely inhibited at 4 and 9 °C, and the total number of methanogens (mainly hydrogenotrophic methanogens) could be reduced by 68-91% during 32-55 days of operation at the low temperatures. However, methanogens cannot be eliminated completely at these temperatures. After the temperature is returned to 30 °C, the CH(4) production and the number of total methanogens can rapidly rise to the prior levels. Analysis of bacterial communities using 454 pyrosequencing showed that changes in temperature had no a substantial impact on composition of dominant electricity-producing bacteria ( Geobacter ). The results of our study provide more information toward understanding the temperature-dependent control of methanogenesis in MECs.

  12. AMPHIBIAN POPULATION DYNAMICS

    EPA Science Inventory

    Agriculture has contributed to loss of vertebrate biodiversity in many regions, including the U.S. Corn Belt. Amphibian populations, in particular, have experienced widespread and often inexplicable declines, range reductions, and extinctions. However, few attempts have been made...

  13. Discreteness effects in population dynamics

    NASA Astrophysics Data System (ADS)

    Guevara Hidalgo, Esteban; Lecomte, Vivien

    2016-05-01

    We analyse numerically the effects of small population size in the initial transient regime of a simple example population dynamics. These effects play an important role for the numerical determination of large deviation functions of additive observables for stochastic processes. A method commonly used in order to determine such functions is the so-called cloning algorithm which in its non-constant population version essentially reduces to the determination of the growth rate of a population, averaged over many realizations of the dynamics. However, the averaging of populations is highly dependent not only on the number of realizations of the population dynamics, and on the initial population size but also on the cut-off time (or population) considered to stop their numerical evolution. This may result in an over-influence of discreteness effects at initial times, caused by small population size. We overcome these effects by introducing a (realization-dependent) time delay in the evolution of populations, additional to the discarding of the initial transient regime of the population growth where these discreteness effects are strong. We show that the improvement in the estimation of the large deviation function comes precisely from these two main contributions.

  14. Changes in methanogenic substrate utilization and communities with depth in a salt-marsh, creek sediment in southern England

    NASA Astrophysics Data System (ADS)

    John Parkes, R.; Brock, Fiona; Banning, Natasha; Hornibrook, Edward R. C.; Roussel, Erwan G.; Weightman, Andrew J.; Fry, John C.

    2012-01-01

    A combined biogeochemical and molecular genetic study of creek sediments (down to 65 cm depth) from Arne Peninsula salt-marsh (Dorset, UK) determined the substrates used for methanogenesis and the distribution of the common methanogens, Methanosarcinales and Methanomicrobiales capable of metabolising these substrates. Methane concentrations increased by 11 cm, despite pore water sulphate not being removed until 45 cm. Neither upward methane diffusion or anaerobic oxidation of methane seemed to be important in this zone. In the near-surface sulphate-reduction zone (5-25 cm) turnover time to methane for the non-competitive methanogenic substrate trimethylamine was most rapid (80 days), and were much longer for acetate (7900 days), methanol (40,500 days) and bicarbonate (361,600 days). Methylamine-utilizing Methanosarcinales were the dominant (60-95%) methanogens in this zone. In deeper sediments rates of methanogenesis from competitive substrates increased substantially, with acetate methanogenic rates becoming ˜100 times greater than H 2/CO 2 methanogenesis below 50 cm. In addition, there was a dramatic change in methanogen diversity with obligate acetate-utilizing, Methanosaeta related sequences being dominant. At a similar depth methanol turnover to methane increased to its most rapid (1700 days). This activity pattern is consistent with deeper methanogen populations (55 cm) being dominated by acetate-utilizing Methanosaeta with H 2/CO 2 and alcohol-utilizing Methanomicrobiales also present. Hence, there is close relationship between the depth distribution of methanogenic substrate utilization and specific methanogens that can utilize these compounds. It is unusual for acetate to be the dominant methanogenic substrate in coastal sediments and δ13C-CH 4 values (-74 to -71‰) were atypical for acetate methanogenesis, suggesting that common stable isotope proxy models may not apply well in this type of dynamic anoxic sediment, with multiple methanogenic substrates.

  15. Use of a Hierarchical Oligonucleotide Primer Extension Approach for Multiplexed Relative Abundance Analysis of Methanogens in Anaerobic Digestion Systems

    PubMed Central

    Chuang, Hui-Ping; Hsu, Mao-Hsuan; Chen, Wei-Yu

    2013-01-01

    In this study, we established a rapid multiplex method to detect the relative abundances of amplified 16S rRNA genes from known cultivatable methanogens at hierarchical specificities in anaerobic digestion systems treating industrial wastewater and sewage sludge. The method was based on the hierarchical oligonucleotide primer extension (HOPE) technique and combined with a set of 27 primers designed to target the total archaeal populations and methanogens from 22 genera within 4 taxonomic orders. After optimization for their specificities and detection sensitivity under the conditions of multiple single-nucleotide primer extension reactions, the HOPE approach was applied to analyze the methanogens in 19 consortium samples from 7 anaerobic treatment systems (i.e., 513 reactions). Among the samples, the methanogen populations detected with order-level primers accounted for >77.2% of the PCR-amplified 16S rRNA genes detected using an Archaea-specific primer. The archaeal communities typically consisted of 2 to 7 known methanogen genera within the Methanobacteriales, Methanomicrobiales, and Methanosarcinales and displayed population dynamic and spatial distributions in anaerobic reactor operations. Principal component analysis of the HOPE data further showed that the methanogen communities could be clustered into 3 distinctive groups, in accordance with the distribution of the Methanosaeta, Methanolinea, and Methanomethylovorans, respectively. This finding suggested that in addition to acetotrophic and hydrogenotrophic methanogens, the methylotrophic methanogens might play a key role in the anaerobic treatment of industrial wastewater. Overall, the results demonstrated that the HOPE approach is a specific, rapid, and multiplexing platform to determine the relative abundances of targeted methanogens in PCR-amplified 16S rRNA gene products. PMID:24077716

  16. Evolutionary dynamics in finite populations

    NASA Astrophysics Data System (ADS)

    Hauert, Christoph

    2013-03-01

    Traditionally, evolutionary dynamics has been studied based on infinite populations and deterministic frameworks such as the replicator equation. Only more recently the focus has shifted to the stochastic dynamics arising in finite populations. Over the past years new concepts have been developed to describe such dynamics and has lead to interesting results that arise from the stochastic, microscopic updates, which drive the evolutionary process. Here we discuss a transparent link between the dynamics in finite and infinite populations. The focus on microscopic processes reveals interesting insights into (sometimes implicit) assumptions in terms of biological interactions that provide the basis for deterministic frameworks and the replicator equation in particular. More specifically, we demonstrate that stochastic differential equations can provide an efficient approach to model evolutionary dynamics in finite populations and we use the rock-scissors-paper game with mutations as an example. For sufficiently large populations the agreement with individual based simulations is excellent, with the interesting caveat that mutation events may not be too rare. In the absence of mutations, the excellent agreement extends to small population sizes.

  17. Dose-structured population dynamics.

    PubMed

    Ginn, Timothy R; Loge, Frank J

    2007-07-01

    Applied population dynamics modeling is relied upon with increasing frequency to quantify how human activities affect human and non-human populations. Current techniques include variously the population's spatial transport, age, size, and physiology, but typically not the life-histories of exposure to other important things occurring in the ambient environment, such as chemicals, heat, or radiation. Consequently, the effects of such 'abiotic' aspects of an ecosystem on populations are only currently addressed through individual-based modeling approaches that despite broad utility are limited in their applicability to realistic ecosystems [V. Grimm, Ten years of individual-based modeling in ecology: what have we learned and what could we learn in the future? Ecol. Model. 115 (1999) 129-148][1]. We describe a new category of population dynamics modeling, wherein population dynamical states of the biotic phases are structured on dose, and apply this framework to demonstrate how chemical species or other ambient aspects can be included in population dynamics in three separate examples involving growth suppression in fish, inactivation of microorganisms with ultraviolet irradiation, and metabolic lag in population growth. Dose-structuring is based on a kinematic approach that is a simple generalization of age-structuring, views the ecosystem as a multi-component mixture with reacting biotic/abiotic components. The resulting model framework accommodates (a) different memories of exposure as in recovery from toxic ambient conditions, (b) differentiation between exogenous and endogenous sources of variation in population response, and (c) quantification of acute or sub-acute effects on populations arising from life-history exposures to abiotic species. Classical models do not easily address the very important fact that organisms differ and have different experiences over their life cycle. The dose structuring is one approach to incorporate some of these elements into the

  18. Modeling sandhill crane population dynamics

    USGS Publications Warehouse

    Johnson, D.H.

    1979-01-01

    The impact of sport hunting on the Central Flyway population of sandhill cranes (Grus canadensis) has been a subject of controversy for several years. A recent study (Buller 1979) presented new and important information on sandhill crane population dynamics. The present report is intended to incorporate that and other information into a mathematical model for the purpose of assessing the long-range impact of hunting on the population of sandhill cranes.The model is a simple deterministic system that embodies density-dependent rates of survival and recruitment. The model employs four kinds of data: (1) spring population size of sandhill cranes, estimated from aerial surveys to be between 250,000 and 400,000 birds; (2) age composition in fall, estimated for 1974-76 to be 11.3% young; (3) annual harvest of cranes, estimated from a variety of sources to be about 5 to 7% of the spring population; and (4) age composition of harvested cranes, which was difficult to estimate but suggests that immatures were 2 to 4 times as vulnerable to hunting as adults.Because the true nature of sandhill crane population dynamics remains so poorly understood, it was necessary to try numerous (768 in all) combinations of survival and recruitment functions, and focus on the relatively few (37) that yielded population sizes and age structures comparable to those extant in the real population. Hunting was then applied to those simulated populations. In all combinations, hunting resulted in a lower asymptotic crane population, the decline ranging from 5 to 54%. The median decline was 22%, which suggests that a hunted sandhill crane population might be about three-fourths as large as it would be if left unhunted. Results apply to the aggregate of the three subspecies in the Central Flyway; individual subspecies or populations could be affected to a greater or lesser degree.

  19. Concurrent microscopic observations and activity measurements of cellulose hydrolyzing and methanogenic populations during the batch anaerobic digestion of crystalline cellulose.

    PubMed

    Song, Hyohak; Clarke, William P; Blackall, Linda L

    2005-08-05

    This study compares process data with microscopic observations from an anaerobic digestion of organic particles. As the first part of the study, this article presents detailed observations of microbial biofilm architecture and structure in a 1.25-L batch digester where all particles are of an equal age. Microcrystalline cellulose was used as the sole carbon and energy source. The digestions were inoculated with either leachate from a 220-L anaerobic municipal solid waste digester or strained rumen contents from a fistulated cow. The hydrolysis rate, when normalized by the amount of cellulose remaining in the reactor, was found to reach a constant value 1 day after inoculation with rumen fluid, and 3 days after inoculating with digester leachate. A constant value of a mass specific hydrolysis rate is argued to represent full colonization of the cellulose surface and first-order kinetics only apply after this point. Additionally, the first-order hydrolysis rate constant, once surfaces were saturated with biofilm, was found to be two times higher with a rumen inoculum, compared to a digester leachate inoculum. Images generated by fluorescence in situ hybridization (FISH) probing and confocal laser scanning microscopy show that the microbial communities involved in the anaerobic biodegradation process exist entirely within the biofilm. For the reactor conditions used in these experiments, the predominant methanogens exist in ball-shaped colonies within the biofilm.

  20. Improved Monitoring of Semi-Continuous Anaerobic Digestion of Sugarcane Waste: Effects of Increasing Organic Loading Rate on Methanogenic Community Dynamics

    PubMed Central

    Leite, Athaydes Francisco; Janke, Leandro; Lv, Zuopeng; Harms, Hauke; Richnow, Hans-Hermann; Nikolausz, Marcell

    2015-01-01

    The anaerobic digestion of filter cake and its co-digestion with bagasse, and the effect of gradual increase of the organic loading rate (OLR) from start-up to overload were investigated. Understanding the influence of environmental and technical parameters on the development of particular methanogenic pathway in the biogas process was an important aim for the prediction and prevention of process failure. The rapid accumulation of volatile organic acids at high OLR of 3.0 to 4.0 gvs·L−1·day−1 indicated strong process inhibition. Methanogenic community dynamics of the reactors was monitored by stable isotope composition of biogas and molecular biological analysis. A potential shift toward the aceticlastic methanogenesis was observed along with the OLR increase under stable reactor operating conditions. Reactor overloading and process failure were indicated by the tendency to return to a predominance of hydrogenotrophic methanogenesis with rising abundances of the orders Methanobacteriales and Methanomicrobiales and drop of the genus Methanosarcina abundance. PMID:26404240

  1. Methanogens: Methane Producers of the Rumen and Mitigation Strategies

    PubMed Central

    Hook, Sarah E.; Wright, André-Denis G.; McBride, Brian W.

    2010-01-01

    Methanogens are the only known microorganisms capable of methane production, making them of interest when investigating methane abatement strategies. A number of experiments have been conducted to study the methanogen population in the rumen of cattle and sheep, as well as the relationship that methanogens have with other microorganisms. The rumen methanogen species differ depending on diet and geographical location of the host, as does methanogenesis, which can be reduced by modifying dietary composition, or by supplementation of monensin, lipids, organic acids, or plant compounds within the diet. Other methane abatement strategies that have been investigated are defaunation and vaccines. These mitigation methods target the methanogen population of the rumen directly or indirectly, resulting in varying degrees of efficacy. This paper describes the methanogens identified in the rumens of cattle and sheep, as well as a number of methane mitigation strategies that have been effective in vivo. PMID:21253540

  2. Stochastic Gain in Population Dynamics

    NASA Astrophysics Data System (ADS)

    Traulsen, Arne; Röhl, Torsten; Schuster, Heinz Georg

    2004-07-01

    We introduce an extension of the usual replicator dynamics to adaptive learning rates. We show that a population with a dynamic learning rate can gain an increased average payoff in transient phases and can also exploit external noise, leading the system away from the Nash equilibrium, in a resonancelike fashion. The payoff versus noise curve resembles the signal to noise ratio curve in stochastic resonance. Seen in this broad context, we introduce another mechanism that exploits fluctuations in order to improve properties of the system. Such a mechanism could be of particular interest in economic systems.

  3. 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs.

    PubMed

    Skillman, Lucy C; Evans, Paul N; Naylor, Graham E; Morvan, Brieuc; Jarvis, Graeme N; Joblin, Keith N

    2004-10-01

    The population densities and identities of methanogens colonising new-born lambs in a grazing flock were determined from rumen samples collected at regular intervals after birth. Methanogen colonisation was found at the first sampling (1-3 days after birth) and population densities reached around 10(4) methanogens per gram at 1 week of age. Population densities increased in an exponential manner to a maximum of 10(8)-10(9) per gram at 3 weeks of age. To identify methanogens, PCR primers specific for each of the Archaea; a grouping of the orders Methanomicrobiales, Methanosarcinales and Methanococcales; the order Methanobacteriales; the order Methanococcales; the order Methanosarcinales; the genus Methanobacterium; and the genus Methanobrevibacter were designed. Primer-pair specificities were confirmed in tests with target and non-target micro-organisms. PCR analysis of DNA extracts revealed that all the detectable ruminal methanogens belonged to the order Methanobacteriales, with no methanogens belonging to the Methanomicrobiales, the Methanosarcinales, or the Methanococcales being detected. In 3 lambs, the initial colonising methanogens were Methanobrevibacter spp. and in 2 lambs were a mixture of Methanobrevibacter and Methanobacterium spp. In the latter case, the initial colonising Methanobacterium spp. subsequently disappeared and were not detectable 12-19 days after birth. Seven weeks after birth, lambs contained only Methanobrevibacter spp. This study, the first to provide information on the identities of methanogens colonising pre-ruminants, suggests that the predominant methanogens found in the mature rumen establish very soon after birth and well before a functioning rumen develops.

  4. Population Dynamics of Polychlorinated Biphenyl-Dechlorinating Microorganisms in Contaminated Sediments

    PubMed Central

    Kim, J.; Rhee, G.

    1997-01-01

    The growth dynamics of polychlorinated biphenyl (PCB)-dechlorinating microorganisms were determined for the first time, along with those of sulfate reducers and methanogens, by using the most-probable-number technique. The time course of Aroclor 1248 dechlorination mirrored the growth of dechlorinators; dechlorination ensued when the dechlorinating population increased by 2 orders of magnitude from 2.5 x 10(sup5) to 4.6 x 10(sup7) cells g of sediment(sup-1), at a specific growth rate of 6.7 day(sup-1) between 2 and 6 weeks. During this period, PCB-dechlorinating microorganisms dechlorinated Aroclor 1248 at a rate of 3.9 x 10(sup-8) mol of Cl g of sediment(sup-1) day(sup-1), reducing the average number of Cl molecules per biphenyl from 3.9 to 2.8. The growth yield was 4.2 x 10(sup13) cells mol of Cl dechlorinated(sup-1). Once dechlorination reached a plateau, after 6 weeks, the number of dechlorinators began to decrease. On the other hand, dechlorinators inoculated into PCB-free sediments decreased over time from their initial level, suggesting that PCBs are required for their selective enrichment. The numbers of sulfate reducers and methanogens increased in both PCB-free and contaminated sediments, showing little difference between them. The maximum population size of sulfate reducers was about an order of magnitude higher than that of dechlorinators, whereas that of methanogens was slightly less. Unlike those of dechlorinators, however, numbers of both sulfate reducers and methanogens remained high even when dechlorination ceased. The results of this study imply that PCB concentrations may have to exceed a certain threshold to maintain the growth of PCB dechlorinators. PMID:16535594

  5. Flood trends and population dynamics

    NASA Astrophysics Data System (ADS)

    Di Baldassarre, G.

    2012-04-01

    Since the earliest recorded civilizations, such as those in Mesopotamia and Egypt that developed in the fertile floodplains of the Tigris and Euphrates and Nile rivers, humans tend to settle in flood prone areas as they offer favorable conditions for economic development. However, floodplains are also exposed to flood disasters that might cause severe socio-economic and environmental damages not to mention losses of human lives. A flood event turns to be a disaster when it coincides with a vulnerable environment exceeding society's capacity to manage the adverse consequences. This presentation discusses the link between hydrological risk and population change by referring to the outcomes of scientific works recently carried out in Africa and Europe. More specifically, it is shown that the severity of flood disasters, currently affecting more than 100 million people a year, might be seriously exacerbated because of population change. In fact, flood exposure and/or vulnerability might increase because of rapid population growth (and its spatial and temporal dynamics, e.g. urbanization) in the African continent and because of population ageing in many European countries. Lastly, timely and economically sustainable actions to mitigate this increasing hydrological risk are critically evaluated.

  6. Beyond the Methanogenic Black-Box: Greenhouse Gas Fluxes (CO2, CH4, N2O) as Evidence for Wetlands as Dynamic Redox Systems

    NASA Astrophysics Data System (ADS)

    Mcnicol, G.; Knox, S. H.; Sturtevant, C. S.; Baldocchi, D. D.; Silver, W. L.

    2015-12-01

    Seminal wetland research in the 1990s demonstrated that annual methane (CH4) fluxes scaled positively with ecosystem production across distinctive wetlands globally. This relationship implies a model of flooded wetland ecosystems as 'methanogenic black-boxes'; poised at a low redox state, and tending to release a fixed fraction of incoming annual productivity as CH4. In contrast, recent studies have reported high ratios of carbon dioxide (CO2) to CH4 emissions, and are adding to a body of evidence suggesting wetlands can vary more widely in their redox state. To explore this apparent incongruence we used principles of redox thermodynamics and laboratory experiments to develop predictions of wetland greenhouse gas (GHG) fluxes under different redox regimes. We then used a field study to test the hypothesis that ecosystem seasonality in gross primary productivity (GPP) and temperature would drive changes in GHG emissions, mediated by a dynamic - as opposed to static - redox regime. We estimated wetland GHG emissions from an emergent marsh in the Sacramento Delta, CA from March 2014-2015. We measured CO2, CH4 and N2O emissions via diffusion and ebullition with manual sampling, and whole-ecosystem fluxes of CO2 and CH4 using eddy-covariance. Ebullition and diffusive CH4 fluxes were strongly seasonal, with minimum rates (0.86 and 0.35 mg C-CH­­4 m-2 yr-1, respectively) during winter, and maximum rates (1.3 and 1.8 g C-CH­­4 m-2 yr-1, respectively) during the summer growing season. In contrast, winter diffusive CO2 fluxes (494 g C-CO2 m-2 yr-1) and fall bubble CO2 concentrations (1.49%) were highest, despite being seasons of lower GPP, temperature, and CH4 flux. Further, diffusive and ebullition fluxes of N2O showed zero net flux only during spring and summer months, whereas the wetland was a significant source of N2O during winter (81.2 ± 24.4 mg N-N2O m-2 yr-1). These seasonal flux dynamics contradict a 'methanogenic black box' model of wetland redox, which

  7. Hydrobiogeochemical controls on a low-carbon emitting energy extraction mechanism: exploring methanogenic crude oil biodegradation

    NASA Astrophysics Data System (ADS)

    Shelton, Jenna; McIntosh, Jennifer; Akob, Denise; Spear, John; Warwick, Peter; McCray, John

    2016-04-01

    Exploiting naturally-occurring microbial communities in the deep subsurface could help mitigate the effects of CO2 emissions to the atmosphere. These microbial communities, a combination of methanogens and syntrophic bacteria, can perform methanogenic crude oil biodegradation, namely the conversion of crude oil to natural gas, and have also been detected in biodegraded, methanogenic reservoirs. These microbes could target residual crude oil, a high-carbon, hard-to-obtain fossil fuel source, and convert it to natural gas, effectively "producing" a lower CO2 per BTU fuel source. Yet, little is known about what geochemical parameters are driving microbial population dynamics in biodegraded, methanogenic oil reservoirs, and how the presence of specific microbial communities may impact methanogenic crude oil biodegradation. To investigate methanogenic crude oil biodegradation, 22 wells along a subsurface hydrogeochemical gradient in the southeastern USA were sampled for DNA analysis of the microbial community, and geochemical analysis of produced water and crude oil. A statistical comparison of microbial community structure to formation fluid geochemical parameters, amount of crude oil biodegradation, and relative extent of methanogenesis revealed that relative degree of biodegradation (high, medium, or low), chloride concentration (550 mM to 2100 mM), well depth (393 m to 1588 m), and spatial location within the reservoir (i.e., oil field location) are the major drivers of microbial diversity. There was no statistical evidence for correlation between extent of methanogenesis and the subsurface community composition. Despite the dominance of methanogens in these sampled wells, methanogenic activity was not predicted solely based on the microbial community composition. Crude oil biodegradation, however, correlates with both community composition and produced water geochemistry, suggesting a co-linear system and implying that microbial communities associated with degree

  8. The role of hydrogenotrophic methanogens in an acidogenic reactor.

    PubMed

    Huang, Wenhai; Wang, Zhenyu; Zhou, Yan; Ng, Wun Jern

    2015-12-01

    A laboratory-scale acidogenic anaerobic sequencing batch reactor was set up to test the effect of pH change on microbial community structure of the reactor biomass and process performance. No immediate performance change on acidogenesis was observed after the pH change. However, as the hydrogenotrophic methanogen population decreased, hydrogen content in biogas increased followed by a sharp decrease in volatile fatty acids (VFAs) with acetic acid (HAc) in particular. Recovery of reactor performance following pH correction was only apparent after recovery of hydrogenotrophic methanogen population. These suggested hydrogenotrophic methanogens played a very important role in performance of the acidogenic process.

  9. Population Dynamics of Viral Inactivation

    NASA Astrophysics Data System (ADS)

    Freeman, Krista; Li, Dong; Behrens, Manja; Streletzky, Kiril; Olsson, Ulf; Evilevitch, Alex

    We have investigated the population dynamics of viral inactivation in vitrousing time-resolved cryo electron microscopy combined with light and X-ray scattering techniques. Using bacteriophage λ as a model system for pressurized double-stranded DNA viruses, we found that virions incubated with their cell receptor eject their genome in a stochastic triggering process. The triggering of DNA ejection occurs in a non synchronized manner after the receptor addition, resulting in an exponential decay of the number of genome-filled viruses with time. We have explored the characteristic time constant of this triggering process at different temperatures, salt conditions, and packaged genome lengths. Furthermore, using the temperature dependence we determined an activation energy for DNA ejections. The dependences of the time constant and activation energy on internal DNA pressure, affected by salt conditions and encapsidated genome length, suggest that the triggering process is directly dependent on the conformational state of the encapsidated DNA. The results of this work provide insight into how the in vivo kinetics of the spread of viral infection are influenced by intra- and extra cellular environmental conditions. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1252522.

  10. Nickel isotopes and methanogens

    NASA Astrophysics Data System (ADS)

    Neubeck, A.; Ivarsson, M.

    2013-12-01

    Methanogens require Ni for their growth and as a consequence the microbial fractionation of Ni isotopes can be used as a biomarker for activity of methanogenic communities1. Anaerobic laboratory experiments was performed using methanogens to investigate methanogenic growth in a modified nutrient media2 with olivine Fo91 (5g/l) added as an additional mineral nutrient source and as the only H2 provider. One of the investigated methanogens showed an increased growth in the experiments with added olivine. There were also a close relationship between the mobilized Ni and the growth of the methanogen. Ni is an element that previously has been neglected in the study of fossilized microorganisms and their interaction with mineral substrates and, thus, there are no records or published data of Ni in association with microfossils. However, we have detected enrichments of Ni in fossilized microorganisms and ichno-fossils, respectively, from three separate locations. Ni is not present in the host rock in any of the samples. Thus, Ni is present in association with fossilized microorganisms from environments and more extensive analysis is required to understand the magnitude, uptake, preservation and fractionation of Ni in microfossils. In order to analyze Ni isotope fractionation from microbe-mineral interaction, we plan to use a high-resolution Laser-Ablation Time-of-Flight Mass Spectrometer (LMS)3. In situ profile ablation will provide detailed and localized data on fractionation patterns between microfossils and their host rock. Also, this technique will allow us to identify the change in Ni isotopic fractionation in rock samples caused by abiotic and biogenic processes in a faster and easier way and with less risk for contamination compared to the wet chemistry analyses of Ni isotopes. 1. Cameron, V., Vance, D., Archer, C. & House, C. H. A biomarker based on the stable isotopes of nickel. Proceedings of the National Academy of Sciences 106, 10944-10948 (2009). 2. Schn

  11. Different behaviour of methanogenic archaea and Thaumarchaeota in rice field microcosms.

    PubMed

    Ke, Xiubin; Lu, Yahai; Conrad, Ralf

    2014-01-01

    Archaea in rice fields play an important role in carbon and nitrogen cycling. They comprise methane-producing Euryarchaeota as well as ammonia-oxidizing Thaumarchaeota, but their community structures and population dynamics have not yet been studied in the same system. Different soil compartments (surface, bulk, rhizospheric soil) and ages of roots (young and old roots) at two N fertilization levels and at three time points (the panicle initiation, heading and maturity periods) of the season were assayed by determining the abundance (using qPCR) and composition (using T-RFLP and cloning/sequencing) of archaeal genes (mcrA, amoA, 16S rRNA gene). The community of total Archaea in soil and root samples mainly consisted of the methanogens and the Thaumarchaeota and their abundance increased over the season. Methanogens proliferated everywhere, but Thaumarchaeota proliferated only on the roots and in response to nitrogen fertilization. The community structures of Archaea, methanogens and Thaumarchaeota were different in soil and root samples indicating niche differentiation. While Methanobacteriales were generally present, Methanosarcinaceae and Methanocellales were the dominant methanogens in soil and root samples, respectively. The results emphasize the specific colonization of roots by two ecophysiologically different groups of archaea which may belong to the core root biome.

  12. Encroaching forests decouple alpine butterfly population dynamics.

    PubMed

    Roland, Jens; Matter, Stephen F

    2007-08-21

    Over the past 50 years, the rising tree line along Jumpingpound Ridge in the Rocky Mountains of Alberta, Canada, has reduced the area of alpine meadows and isolated populations that reside within them. By analyzing an 11-year data set of butterfly population sizes for 17 subpopulations along the ridge, we show that forest habitat separating alpine meadows decouples the dynamics of populations of the alpine butterfly Parnassius smintheus. Although the distance between populations is often negatively correlated with synchrony of dynamics, here we show that distance through forest, not Euclidean distance, determines the degree of synchrony. This effect is consistent with previous results demonstrating that encroaching forest reduces dispersal among populations and reduces gene flow. Decoupling dynamics produces more smaller independent populations, each with greater risk of local extinction, but decoupling may produce a lower risk of regional extinction in this capricious environment.

  13. Ruminal Methanogen Community in Dairy Cows Fed Agricultural Residues of Corn Stover, Rapeseed, and Cottonseed Meals.

    PubMed

    Wang, Pengpeng; Zhao, Shengguo; Wang, Xingwen; Zhang, Yangdong; Zheng, Nan; Wang, Jiaqi

    2016-07-13

    The purpose was to reveal changes in the methanogen community in the rumen of dairy cows fed agricultural residues of corn stover, rapeseed, and cottonseed meals, compared with alfalfa hay or soybean meal. Analysis was based on cloning and sequencing the methyl coenzyme M reductase α-subunit gene of ruminal methanogens. Results revealed that predicted methane production was increased while population of ruminal methanogens was not significantly affected when cows were fed diets containing various amounts of agricultural residues. Richness and diversity of methanogen community were markedly increased by addition of agricultural residues. The dominant ruminal methanogens shared by all experimental groups belonged to rumen cluster C, accounting for 71% of total, followed by the order Methanobacteriales (29%). Alterations of ruminal methanogen community and prevalence of particular species occurred in response to fed agricultural residue rations, suggesting the possibility of regulating target methanogens to control methane production by dairy cows fed agricultural residues.

  14. Comparing models of Red Knot population dynamics

    USGS Publications Warehouse

    McGowan, Conor

    2015-01-01

    Predictive population modeling contributes to our basic scientific understanding of population dynamics, but can also inform management decisions by evaluating alternative actions in virtual environments. Quantitative models mathematically reflect scientific hypotheses about how a system functions. In Delaware Bay, mid-Atlantic Coast, USA, to more effectively manage horseshoe crab (Limulus polyphemus) harvests and protect Red Knot (Calidris canutus rufa) populations, models are used to compare harvest actions and predict the impacts on crab and knot populations. Management has been chiefly driven by the core hypothesis that horseshoe crab egg abundance governs the survival and reproduction of migrating Red Knots that stopover in the Bay during spring migration. However, recently, hypotheses proposing that knot dynamics are governed by cyclical lemming dynamics garnered some support in data analyses. In this paper, I present alternative models of Red Knot population dynamics to reflect alternative hypotheses. Using 2 models with different lemming population cycle lengths and 2 models with different horseshoe crab effects, I project the knot population into the future under environmental stochasticity and parametric uncertainty with each model. I then compare each model's predictions to 10 yr of population monitoring from Delaware Bay. Using Bayes' theorem and model weight updating, models can accrue weight or support for one or another hypothesis of population dynamics. With 4 models of Red Knot population dynamics and only 10 yr of data, no hypothesis clearly predicted population count data better than another. The collapsed lemming cycle model performed best, accruing ~35% of the model weight, followed closely by the horseshoe crab egg abundance model, which accrued ~30% of the weight. The models that predicted no decline or stable populations (i.e. the 4-yr lemming cycle model and the weak horseshoe crab effect model) were the most weakly supported.

  15. A comment on methanogenic bacteria and the primitive ecology

    NASA Technical Reports Server (NTRS)

    Woese, C. R.

    1977-01-01

    As the phenotype of methanogenic bacteria is suggested to have been one of the major factors creating a dynamic balance between CO2 and CH4 in the primitive atmosphere, these organisms are thought to be very ancient. Their antiquity may be further postulated by comparative characterization of their ribosomal RNA. Accepting this antiquity, it is concluded that a carbon-dioxide-methane cycle, driven by photosynthesis, was the major carbon cycle in primitive ecology, and that photosynthesis and methanogens were thus contemporaneous.

  16. Population dynamics and rural poverty.

    PubMed

    Fong, M S

    1985-01-01

    An overview of the relationship between demographic factors and rural poverty in developing countries is presented. The author examines both the micro- and macro-level perspectives of this relationship and the determinants and consequences of population growth. The author notes the prospects for a rapid increase in the rural labor force and considers its implications for the agricultural production structure and the need for institutional change. Consideration is also given to the continuing demand for high fertility at the family level and the role of infant and child mortality in the poverty cycle. "The paper concludes by drawing attention to the need for developing the mechanism for reconciliation of social and individual optima with respect to family size and population growth." The need for rural development projects that take demographic factors into account is stressed as is the need for effective population programs. (summary in FRE, ITA)

  17. Population dynamics with and without selection

    NASA Astrophysics Data System (ADS)

    Pȩkalski, Andrzej; Sznajd-Weron, Katarzyna

    2001-03-01

    A model describing population dynamics is presented. We study the effect of selection pressure and inbreeding on the time evolution of the population and the chances of survival. We find that the selection is in general beneficial, enabling survival of a population whose size is declining. Inbreeding reduces the survival chances since it leads to clustering of individuals. We have also found, in agreement with biological data, that there is a threshold value of the initial size of the population, as well as of the habitat, below which the population will almost certainly become extinct. We present analytical and computer simulation approaches.

  18. Population dynamics on heterogeneous bacterial substrates

    NASA Astrophysics Data System (ADS)

    Mobius, Wolfram; Murray, Andrew W.; Nelson, David R.

    2012-02-01

    How species invade new territories and how these range expansions influence the population's genotypes are important questions in the field of population genetics. The majority of work addressing these questions focuses on homogeneous environments. Much less is known about the population dynamics and population genetics when the environmental conditions are heterogeneous in space. To better understand range expansions in two-dimensional heterogeneous environments, we employ a system of bacteria and bacteriophage, the viruses of bacteria. Thereby, the bacteria constitute the environment in which a population of bacteriophages expands. The spread of phage constitutes itself in lysis of bacteria and thus formation of clear regions on bacterial lawns, called plaques. We study the population dynamics and genetics of the expanding page for various patterns of environments.

  19. Travelling waves in vole population dynamics

    NASA Astrophysics Data System (ADS)

    Ranta, Esa; Kaitala, Veijo

    1997-12-01

    Spatial self-organization patterns in population dynamics have been anticipated, but demonstrating their existence requires sampling over long periods of time at a range of sites. Voles cause severe economic damage and are therefore extensively monitored, providing a source of the required data. Using two long-term data sets we now report the existence of travelling waves in vole population numbers.

  20. Analyses of n-alkanes degrading community dynamics of a high-temperature methanogenic consortium enriched from production water of a petroleum reservoir by a combination of molecular techniques.

    PubMed

    Zhou, Lei; Li, Kai-Ping; Mbadinga, Serge Maurice; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2012-08-01

    Despite the knowledge on anaerobic degradation of hydrocarbons and signature metabolites in the oil reservoirs, little is known about the functioning microbes and the related biochemical pathways involved, especially about the methanogenic communities. In the present study, a methanogenic consortium enriched from high-temperature oil reservoir production water and incubated at 55 °C with a mixture of long chain n-alkanes (C(15)-C(20)) as the sole carbon and energy sources was characterized. Biodegradation of n-alkanes was observed as methane production in the alkanes-amended methanogenic enrichment reached 141.47 μmol above the controls after 749 days of incubation, corresponding to 17 % of the theoretical total. GC-MS analysis confirmed the presence of putative downstream metabolites probably from the anaerobic biodegradation of n-alkanes and indicating an incomplete conversion of the n-alkanes to methane. Enrichment cultures taken at different incubation times were subjected to microbial community analysis. Both 16S rRNA gene clone libraries and DGGE profiles showed that alkanes-degrading community was dynamic during incubation. The dominant bacterial species in the enrichment cultures were affiliated with Firmicutes members clustering with thermophilic syntrophic bacteria of the genera Moorella sp. and Gelria sp. Other represented within the bacterial community were members of the Leptospiraceae, Thermodesulfobiaceae, Thermotogaceae, Chloroflexi, Bacteroidetes and Candidate Division OP1. The archaeal community was predominantly represented by members of the phyla Crenarchaeota and Euryarchaeota. Corresponding sequences within the Euryarchaeota were associated with methanogens clustering with orders Methanomicrobiales, Methanosarcinales and Methanobacteriales. On the other hand, PCR amplification for detection of functional genes encoding the alkylsuccinate synthase α-subunit (assA) was positive in the enrichment cultures. Moreover, the appearance of a new ass

  1. A Vaccine against Rumen Methanogens Can Alter the Composition of Archaeal Populations▿

    PubMed Central

    Williams, Yvette J.; Popovski, Sam; Rea, Suzanne M.; Skillman, Lucy C.; Toovey, Andrew F.; Northwood, Korinne S.; Wright, André-Denis G.

    2009-01-01

    The objectives of this study were to formulate a vaccine based upon the different species/strains of methanogens present in sheep intended to be immunized and to determine if a targeted vaccine could be used to decrease the methane output of the sheep. Two 16S rRNA gene libraries were used to survey the methanogenic archaea in sheep prior to vaccination, and methanogens representing five phylotypes were found to account for >52% of the different species/strains of methanogens detected. A vaccine based on a mixture of these five methanogens was then formulated, and 32 sheep were vaccinated on days 0, 28, and 103 with either a control or the anti-methanogen vaccine. Enzyme-linked immunosorbent assay analysis revealed that each vaccination with the anti-methanogen formulation resulted in higher specific immunoglobulin G titers in plasma, saliva, and rumen fluid. Methane output levels corrected for dry-matter intake for the control and treatment groups were not significantly different, and real-time PCR data also indicated that methanogen numbers were not significantly different for the two groups after the second vaccination. However, clone library data indicated that methanogen diversity was significantly greater in sheep receiving the anti-methanogen vaccine and that the vaccine may have altered the composition of the methanogen population. A correlation between 16S rRNA gene sequence relatedness and cross-reactivity for the methanogens (R2 = 0.90) also exists, which suggests that a highly specific vaccine can be made to target specific strains of methanogens and that a more broad-spectrum approach is needed for success in the rumen. Our data also suggest that methanogens take longer than 4 weeks to adapt to dietary changes and call into question the validity of experimental results based upon a 2- to 4-week acclimatization period normally observed for bacteria. PMID:19201957

  2. How Resource Phenology Affects Consumer Population Dynamics.

    PubMed

    Bewick, Sharon; Cantrell, R Stephen; Cosner, Chris; Fagan, William F

    2016-02-01

    Climate change drives uneven phenology shifts across taxa, and this can result in changes to the phenological match between interacting species. Shifts in the relative phenology of partner species are well documented, but few studies have addressed the effects of such changes on population dynamics. To explore this, we develop a phenologically explicit model describing consumer-resource interactions. Focusing on scenarios for univoltine insects, we show how changes in resource phenology can be reinterpreted as transformations in the year-to-year recursion relationships defining consumer population dynamics. This perspective provides a straightforward path for interpreting the long-term population consequences of phenology change. Specifically, by relating the outcome of phenological shifts to species traits governing recursion relationships (e.g., consumer fecundity or competitive scenario), we demonstrate how changes in relative phenology can force systems into different dynamical regimes, with major implications for resource management, conservation, and other areas of applied dynamics.

  3. Process diagnosis using methanogenic Archaea in maize-fed, trace element depleted fermenters.

    PubMed

    Munk, Bernhard; Lebuhn, Michael

    2014-10-01

    A mesophilic maize-fed pilot-scale fermenter was severely acidified due to trace element (TE) deficiency. Mainly cobalt (0.07 mg * kg(-1) fresh mass (FM)), selenium (0.007 mg * kg(-1) FM) and sodium (13 mg * kg(-1) FM) were depleted. From this inoculum, three lab-scale flow-through fermenters were operated to analyse micronutrient deficiencies and population dynamics in more detail. One fermenter was supplemented with selenium, one with cobalt, and one served as control. After starvation and recovery of the fermenters, the organic loading rate (OLR) was increased. In parallel, the concentration (Real-Time PCR) of methanogens and their population composition (amplicon sequencing) was determined at the DNA and mRNA level. The parameters Metabolic Quotient (MQ) and cDNA/DNA were calculated to assess the activity of the methanogens. The control without TE supplementation acidified first at an OLR of 4.0 kg volatile solids (VS) * m(-3) * d(-1) while the singular addition of selenium and of cobalt positively influenced the fermenter stability up to an OLR of 4.5 or 5.0 kg VS * m(-3) * d(-1), respectively. In the stable process, the methanogenic populations were dominated by probably residual hydrogenotrophic Methanoculleus sp. (DNA-level), but representatives of versatile Methanosarcina sp. were most active (cDNA-level). When the TE supplemented fermenters began to acidify, Methanosarcina spp. were dominant in the whole (DNA-level) and the active (cDNA-level) community. The acidified control fermenter was dominated by Methanobacteriaceae genus IV. Until acidification, the concentration of methanogens increased with higher OLRs. The MQ indicated stress metabolism approximately one month before the TVA/TIC ratio reached a critical level of 0.7, demonstrating its suitability as early warning parameter of process acidification. The development of the cDNA/DNA ratio also reflected the increasing methanogenic activity with higher OLRs. Highest cDNA/DNA values (ca. 2) were

  4. Establishment and Development of Ruminal Hydrogenotrophs in Methanogen-Free Lambs▿

    PubMed Central

    Fonty, Gérard; Joblin, Keith; Chavarot, Michel; Roux, Remy; Naylor, Graham; Michallon, Fabien

    2007-01-01

    The aim of this work was to determine whether reductive acetogenesis can provide an alternative to methanogenesis in the rumen. Gnotobiotic lambs were inoculated with a functional rumen microbiota lacking methanogens and reared to maturity on a fibrous diet. Lambs with a methanogen-free rumen grew well, and the feed intake and ruminal volatile fatty acid concentrations for lambs lacking ruminal methanogens were lower but not markedly dissimilar from those for conventional lambs reared on the same diet. A high population density (107 to 108 cells g−1) of ruminal acetogens slowly developed in methanogen-free lambs. Sulfate- and fumarate-reducing bacteria were present, but their population densities were highly variable. In methanogen-free lambs, the hydrogen capture from fermentation was low (28 to 46%) in comparison with that in lambs containing ruminal methanogens (>90%). Reductive acetogenesis was not a significant part of ruminal fermentation in conventional lambs but contributed 21 to 25% to the fermentation in methanogen-free meroxenic animals. Ruminal H2 utilization was lower in lambs lacking ruminal methanogens, but when a methanogen-free lamb was inoculated with a methanogen, the ruminal H2 utilization was similar to that in conventional lambs. H2 utilization in lambs containing a normal ruminal microflora was age dependent and increased with the animal age. The animal age effect was less marked in lambs lacking ruminal methanogens. Addition of fumarate to rumen contents from methanogen-free lambs increased H2 utilization. These findings provide the first evidence from animal studies that reductive acetogens can sustain a functional rumen and replace methanogens as a sink for H2 in the rumen. PMID:17675444

  5. Two complementary paradigms for analysing population dynamics.

    PubMed Central

    Krebs, Charles J

    2002-01-01

    To understand why population growth rate is sometimes positive and sometimes negative, ecologists have adopted two main approaches. The most common approach is through the density paradigm by plotting population growth rate against population density. The second approach is through the mechanistic paradigm by plotting population growth rate against the relevant ecological processes affecting the population. The density paradigm is applied a posteriori, works sometimes but not always and is remarkably useless in solving management problems or in providing an understanding of why populations change in size. The mechanistic paradigm investigates the factors that supposedly drive density changes and is identical to Caughley's declining population paradigm of conservation biology. The assumption that we can uncover invariant relationships between population growth rate and some other variables is an article of faith. Numerous commercial fishery applications have failed to find the invariant relationships between stock and recruitment that are predicted by the density paradigm. Environmental variation is the rule, and non-equilibrial dynamics should force us to look for the mechanisms of population change. If multiple factors determine changes in population density, there can be no predictability in either of these paradigms and we will become environmental historians rather than scientists with useful generalizations for the population problems of this century. Defining our questions clearly and adopting an experimental approach with crisp alternative hypotheses and adequate controls will be essential to building useful generalizations for solving the practical problems of population management in fisheries, wildlife and conservation. PMID:12396513

  6. Detection, Diversity, and Population Dynamics of Waterborne Phytophthora ramorum Populations.

    PubMed

    Eyre, C A; Garbelotto, M

    2015-01-01

    Sudden oak death, the tree disease caused by Phytophthora ramorum, has significant environmental and economic impacts on natural forests on the U.S. west coast, plantations in the United Kingdom, and in the worldwide nursery trade. Stream baiting is vital for monitoring and early detection of the pathogen in high-risk areas and is performed routinely; however, little is known about the nature of water-borne P. ramorum populations. Two drainages in an infested California forest were monitored intensively using stream-baiting for 2 years between 2009 and 2011. Pathogen presence was determined both by isolation and polymerase chain reaction (PCR) from symptomatic bait leaves. Isolates were analyzed using simple sequence repeats to study population dynamics and genetic structure through time. Isolation was successful primarily only during spring conditions, while PCR extended the period of pathogen detection to most of the year. Water populations were extremely diverse, and changed between seasons and years. A few abundant genotypes dominated the water during conditions considered optimal for aerial populations, and matched those dominant in aerial populations. Temporal patterns of genotypic diversification and evenness were identical among aerial, soil, and water populations, indicating that all three substrates are part of the same epidemiological cycle, strongly influenced by rainfall and sporulation on leaves. However, there was structuring between substrates, likely arising due to reduced selection pressure in the water. Additionally, water populations showed wholesale mixing of genotypes without the evident spatial autocorrelation present in leaf and soil populations.

  7. Harvest and dynamics of duck populations

    USGS Publications Warehouse

    Sedinger, James S.; Herzog, Mark P.

    2012-01-01

    The role of harvest in the dynamics of waterfowl populations continues to be debated among scientists and managers. Our perception is that interested members of the public and some managers believe that harvest influences North American duck populations based on calls for more conservative harvest regulations. A recent review of harvest and population dynamics of North American mallard (Anas platyrhynchos) populations (Pöysä et al. 2004) reached similar conclusions. Because of the importance of this issue, we reviewed the evidence for an impact of harvest on duck populations. Our understanding of the effects of harvest is limited because harvest effects are typically confounded with those of population density; regulations are typically most liberal when populations are greatest. This problem also exists in the current Adaptive Harvest Management Program (Conn and Kendall 2004). Consequently, even where harvest appears additive to other mortality, this may be an artifact of ignoring effects of population density. Overall, we found no compelling evidence for strong additive effects of harvest on survival in duck populations that could not be explained by other factors.

  8. Population dynamics in an intermittent refuge

    NASA Astrophysics Data System (ADS)

    Colombo, E. H.; Anteneodo, C.

    2016-10-01

    Population dynamics is constrained by the environment, which needs to obey certain conditions to support population growth. We consider a standard model for the evolution of a single species population density, which includes reproduction, competition for resources, and spatial spreading, while subject to an external harmful effect. The habitat is spatially heterogeneous, there existing a refuge where the population can be protected. Temporal variability is introduced by the intermittent character of the refuge. This scenario can apply to a wide range of situations, from a laboratory setting where bacteria can be protected by a blinking mask from ultraviolet radiation, to large-scale ecosystems, like a marine reserve where there can be seasonal fishing prohibitions. Using analytical and numerical tools, we investigate the asymptotic behavior of the total population as a function of the size and characteristic time scales of the refuge. We obtain expressions for the minimal size required for population survival, in the slow and fast time scale limits.

  9. Monitoring coyote population dynamics by genotyping faeces.

    PubMed

    Prugh, L R; Ritland, C E; Arthur, S M; Krebs, C J

    2005-04-01

    Reliable population estimates are necessary for effective conservation and management, and faecal genotyping has been used successfully to estimate the population size of several elusive mammalian species. Information such as changes in population size over time and survival rates, however, are often more useful for conservation biology than single population estimates. We evaluated the use of faecal genotyping as a tool for monitoring long-term population dynamics, using coyotes (Canis latrans) in the Alaska Range as a case study. We obtained 544 genotypes from 56 coyotes over 3 years (2000-2002). Tissue samples from all 15 radio-collared coyotes in our study area had > or = 1 matching faecal genotypes. We used flexible maximum-likelihood models to study coyote population dynamics, and we tested model performance against radio telemetry data. The staple prey of coyotes, snowshoe hares (Lepus americanus), dramatically declined during this study, and the coyote population declined nearly two-fold with a 1(1/2)-year time lag. Survival rates declined the year after hares crashed but recovered the following year. We conclude that long-term monitoring of elusive species using faecal genotyping is feasible and can provide data that are useful for wildlife conservation and management. We highlight some drawbacks of standard open-population models, such as low precision and the requirement of discrete sampling intervals, and we suggest that the development of open models designed for continuously collected data would enhance the utility of faecal genotyping as a monitoring tool.

  10. Animal population dynamics: Identification of critical components

    USGS Publications Warehouse

    Emlen, J.M.; Pikitch, E.K.

    1989-01-01

    There is a growing interest in the use of population dynamics models in environmental risk assessment and the promulgation of environmental regulatory policies. Unfortunately, because of species and areal differences in the physical and biotic influences on population dynamics, such models must almost inevitably be both complex and species- or site-specific. Given the emormous variety of species and sites of potential concern, this fact presents a problem; it simply is not possible to construct models for all species and circumstances. Therefore, it is useful, before building predictive population models, to discover what input parameters are of critical importance to the desired output. This information should enable the construction of simpler and more generalizable models. As a first step, it is useful to consider population models as composed to two, partly separable classes, one comprising the purely mechanical descriptors of dynamics from given demographic parameter values, and the other describing the modulation of the demographic parameters by environmental factors (changes in physical environment, species interactions, pathogens, xenobiotic chemicals). This division permits sensitivity analyses to be run on the first of these classes, providing guidance for subsequent model simplification. We here apply such a sensitivity analysis to network models of mammalian and avian population dynamics.

  11. Irruptive population dynamics in Yellowstone pronghorn.

    PubMed

    White, P J; Bruggeman, Jason E; Garrott, Robert A

    2007-09-01

    Irruptive population dynamics appear to be widespread in large herbivore populations, but there are few empirical examples from long time series with small measurement error and minimal harvests. We analyzed an 89-year time series of counts and known removals for pronghorn (Antilocapra americana) in Yellowstone National Park of the western United States during 1918-2006 using a suite of density-dependent, density-independent, and irruptive models to determine if the population exhibited irruptive dynamics. Information-theoretic model comparison techniques strongly supported irruptive population dynamics (Leopold model) and density dependence during 1918-1946, with the growth rate slowing after counts exceeded 600 animals. Concerns about sagebrush (Artemisia spp.) degradation led to removals of >1100 pronghorn during 1947-1966, and counts decreased from approximately 700 to 150. The best models for this period (Gompertz, Ricker) suggested that culls replaced intrinsic density-dependent mechanisms. Contrary to expectations, the population did not exhibit enhanced demographic vigor soon after the termination of the harvest program, with counts remaining between 100 and 190 animals during 1967 1981. However, the population irrupted (Caughley model with a one-year lag) to a peak abundance of approximately 600 pronghorn during 1982-1991, with a slowing in growth rate as counts exceeded 500. Numbers crashed to 235 pronghorn during 1992-1995, perhaps because important food resources (e.g., sagebrush) on the winter range were severely diminished by high densities of browsing elk, mule deer, and pronghorn. Pronghorn numbers remained relatively constant during 1996-2006, at a level (196-235) lower than peak abundance, but higher than numbers following the release from culling. The dynamics of this population supported the paradigm that irruption is a fundamental pattern of growth in many populations of large herbivores with high fecundity and delayed density-dependent effects

  12. Transcriptional activities of methanogens and methanotrophs vary with methane emission flux in rice soils under chronic nutrient constraints of phosphorus and potassium

    NASA Astrophysics Data System (ADS)

    Sheng, Rong; Chen, Anlei; Zhang, Miaomiao; Whiteley, Andrew S.; Kumaresan, Deepak; Wei, Wenxue

    2016-12-01

    Nutrient status in soil is crucial for the growth and development of plants which indirectly or directly affect the ecophysiological functions of resident soil microorganisms. Soil methanogens and methanotrophs can be affected by soil nutrient availabilities and plant growth, which in turn modulate methane (CH4) emissions. Here, we assessed whether deficits in soil-available phosphorus (P) and potassium (K) modulated the activities of methanogens and methanotrophs in a long-term (20 year) experimental system involving limitation in either one or both nutrients. Results showed that a large amount of CH4 was emitted from paddy soil at rice tillering stage (flooding) while CH4 flux was minimum at ripening stage (drying). Compared to soils amended with NPK fertiliser treatment, the soils without P input significantly reduced methane flux rates, whereas those without K input did not. Under P limitation, methanotroph transcript copy number significantly increased in tandem with a decrease in methanogen transcript abundance, suggesting that P-deficiency-induced changes in soil physio-chemical properties, in tandem with rice plant growth, might constrain the activity of methanogens, whereas the methanotrophs might be adaptive to this soil environment. In contrast, lower transcript abundance of both methanogen and methanotrophs were observed in K-deficient soils. Assessments of community structures based upon transcripts indicated that soils deficient in P induced greater shifts in the active methanotrophic community than K-deficient soils, while similar community structures of active methanogens were observed in both treatments. These results suggested that the population dynamics of methanogens and methanotrophs could vary along with the changes in plant growth states and soil properties induced by nutrient deficiency.

  13. Sustainability of culture-driven population dynamics.

    PubMed

    Ghirlanda, Stefano; Enquist, Magnus; Perc, Matjaz

    2010-05-01

    We consider models of the interactions between human population dynamics and cultural evolution, asking whether they predict sustainable or unsustainable patterns of growth. Phenomenological models predict either unsustainable population growth or stabilization in the near future. The latter prediction, however, is based on extrapolation of current demographic trends and does not take into account causal processes of demographic and cultural dynamics. Most existing causal models assume (or derive from simplified models of the economy) a positive feedback between cultural evolution and demographic growth, and predict unlimited growth in both culture and population. We augment these models taking into account that: (1) cultural transmission is not perfect, i.e., culture can be lost; (2) culture does not always promote population growth. We show that taking these factors into account can cause radically different model behavior, such as population extinction rather than stability, and extinction rather than growth. We conclude that all models agree that a population capable of maintaining a large amount of culture, including a powerful technology, runs a high risk of being unsustainable. We suggest that future work must address more explicitly both the dynamics of resource consumption and the cultural evolution of beliefs implicated in reproductive behavior (e.g., ideas about the preferred family size) and in resource use (e.g., environmentalist stances).

  14. Towards a Population Dynamics Theory for Evolutionary Computing: Learning from Biological Population Dynamics in Nature

    NASA Astrophysics Data System (ADS)

    Ma, Zhanshan (Sam)

    In evolutionary computing (EC), population size is one of the critical parameters that a researcher has to deal with. Hence, it was no surprise that the pioneers of EC, such as De Jong (1975) and Holland (1975), had already studied the population sizing from the very beginning of EC. What is perhaps surprising is that more than three decades later, we still largely depend on the experience or ad-hoc trial-and-error approach to set the population size. For example, in a recent monograph, Eiben and Smith (2003) indicated: "In almost all EC applications, the population size is constant and does not change during the evolutionary search." Despite enormous research on this issue in recent years, we still lack a well accepted theory for population sizing. In this paper, I propose to develop a population dynamics theory forEC with the inspiration from the population dynamics theory of biological populations in nature. Essentially, the EC population is considered as a dynamic system over time (generations) and space (search space or fitness landscape), similar to the spatial and temporal dynamics of biological populations in nature. With this conceptual mapping, I propose to 'transplant' the biological population dynamics theory to EC via three steps: (i) experimentally test the feasibility—whether or not emulating natural population dynamics improves the EC performance; (ii) comparatively study the underlying mechanisms—why there are improvements, primarily via statistical modeling analysis; (iii) conduct theoretical analysis with theoretical models such as percolation theory and extended evolutionary game theory that are generally applicable to both EC and natural populations. This article is a summary of a series of studies we have performed to achieve the general goal [27][30]-[32]. In the following, I start with an extremely brief introduction on the theory and models of natural population dynamics (Sections 1 & 2). In Sections 4 to 6, I briefly discuss three

  15. Dispersive models describing mosquitoes’ population dynamics

    NASA Astrophysics Data System (ADS)

    Yamashita, W. M. S.; Takahashi, L. T.; Chapiro, G.

    2016-08-01

    The global incidences of dengue and, more recently, zica virus have increased the interest in studying and understanding the mosquito population dynamics. Understanding this dynamics is important for public health in countries where climatic and environmental conditions are favorable for the propagation of these diseases. This work is based on the study of nonlinear mathematical models dealing with the life cycle of the dengue mosquito using partial differential equations. We investigate the existence of traveling wave solutions using semi-analytical method combining dynamical systems techniques and numerical integration. Obtained solutions are validated through numerical simulations using finite difference schemes.

  16. Connecting micro dynamics and population distributions in system dynamics models.

    PubMed

    Fallah-Fini, Saeideh; Rahmandad, Hazhir; Chen, Hsin-Jen; Xue, Hong; Wang, Youfa

    2013-01-01

    Researchers use system dynamics models to capture the mean behavior of groups of indistinguishable population elements (e.g., people) aggregated in stock variables. Yet, many modeling problems require capturing the heterogeneity across elements with respect to some attribute(s) (e.g., body weight). This paper presents a new method to connect the micro-level dynamics associated with elements in a population with the macro-level population distribution along an attribute of interest without the need to explicitly model every element. We apply the proposed method to model the distribution of Body Mass Index and its changes over time in a sample population of American women obtained from the U.S. National Health and Nutrition Examination Survey. Comparing the results with those obtained from an individual-based model that captures the same phenomena shows that our proposed method delivers accurate results with less computation than the individual-based model.

  17. Connecting micro dynamics and population distributions in system dynamics models

    PubMed Central

    Rahmandad, Hazhir; Chen, Hsin-Jen; Xue, Hong; Wang, Youfa

    2014-01-01

    Researchers use system dynamics models to capture the mean behavior of groups of indistinguishable population elements (e.g., people) aggregated in stock variables. Yet, many modeling problems require capturing the heterogeneity across elements with respect to some attribute(s) (e.g., body weight). This paper presents a new method to connect the micro-level dynamics associated with elements in a population with the macro-level population distribution along an attribute of interest without the need to explicitly model every element. We apply the proposed method to model the distribution of Body Mass Index and its changes over time in a sample population of American women obtained from the U.S. National Health and Nutrition Examination Survey. Comparing the results with those obtained from an individual-based model that captures the same phenomena shows that our proposed method delivers accurate results with less computation than the individual-based model. PMID:25620842

  18. Dynamic control and quantification of bacterial population dynamics in droplets.

    PubMed

    Huang, Shuqiang; Srimani, Jaydeep K; Lee, Anna J; Zhang, Ying; Lopatkin, Allison J; Leong, Kam W; You, Lingchong

    2015-08-01

    Culturing and measuring bacterial population dynamics are critical to develop insights into gene regulation or bacterial physiology. Traditional methods, based on bulk culture to obtain such quantification, have the limitations of higher cost/volume of reagents, non-amendable to small size of population and more laborious manipulation. To this end, droplet-based microfluidics represents a promising alternative that is cost-effective and high-throughput. However, difficulties in manipulating the droplet environment and monitoring encapsulated bacterial population for long-term experiments limit its utilization. To overcome these limitations, we used an electrode-free injection technology to modulate the chemical environment in droplets. This ability is critical for precise control of bacterial dynamics in droplets. Moreover, we developed a trapping device for long-term monitoring of population dynamics in individual droplets for at least 240 h. We demonstrated the utility of this new microfluidic system by quantifying population dynamics of natural and engineered bacteria. Our approach can further improve the analysis for systems and synthetic biology in terms of manipulability and high temporal resolution.

  19. Dynamic control and quantification of bacterial population dynamics in droplets

    PubMed Central

    Huang, Shuqiang; Srimani, Jaydeep K.; Lee, Anna J.; Zhang, Ying; Lopatkin, Allison J.; Leong, Kam W.; You, Lingchong

    2015-01-01

    Culturing and measuring bacterial population dynamics are critical to develop insights into gene regulation or bacterial physiology. Traditional methods, based on bulk culture to obtain such quantification, have the limitations of higher cost/volume of reagents, non-amendable to small size of population and more laborious manipulation. To this end, droplet-based microfluidics represents a promising alternative that is cost-effective and high-throughput. However, difficulties in manipulating the droplet environment and monitoring encapsulated bacterial population for long-term experiments limit its utilization. To overcome these limitations, we used an electrode-free injection technology to modulate the chemical environment in droplets. This ability is critical for precise control of bacterial dynamics in droplets. Moreover, we developed a trapping device for long-term monitoring of population dynamics in individual droplets for at least 240 h. We demonstrated the utility of this new microfluidic system by quantifying population dynamics of natural and engineered bacteria. Our approach can further improve the analysis for systems and synthetic biology in terms of manipulability and high temporal resolution. PMID:26005763

  20. Light sensitivity of methanogenic archaebacteria

    SciTech Connect

    Olson, K.D.; McMahon, C.W.; Wolfe, R.S. )

    1991-09-01

    Representatives of four families of methanogenic archaebacteria (archaea), Methanobacterium thermoautotrophicum {Delta}H, Methanobacterium thermoautotrophicum Marburg, Methanosarcina acetivorans, Methanococcus voltae, and Methanomicrobium mobile, were found to be light sensitive. The facultative anaerobic eubacteria Escherichia coli and Salmonella typhimurium, however, were tolerant of light when grown anaerobically under identical light conditions. Interference filters were used to show that the growth of the methanogens is inhibited by light in the blue end of the visible spectrum (370 to 430 nm).

  1. Dynamics of North American breeding bird populations

    NASA Astrophysics Data System (ADS)

    Keitt, Timothy H.; Stanley, H. Eugene

    1998-05-01

    Population biologists have long been interested in the variability of natural populations. One approach to dealing with ecological complexity is to reduce the system to one or a few species, for which meaningful equations can be solved. Here we explore an alternative approach, by studying the statistical properties of a data set containing over 600 species, namely the North American breeding bird survey. The survey has recorded annual species abundances over a 31-year period along more than 3,000 observation routes. We now analyse the dynamics of population variability using this data set, and find scaling features in common with inanimate systems composed of strongly interacting subunits. Specifically, we find that the distribution of changes in population abundance over a one-year interval is remarkably symmetrical, with long tails extending over six orders of magnitude. The variance of the population over a time series increases as a power-law with increasing time lag, indicating long-range correlation in population size fluctuations. We also find that the distribution of species lifetimes (the time between colonization and local extinction) within local patches is a power-law with an exponential cutoff imposed by the finite length of the time series. Our results provide a quantitative basis for modelling the dynamics of large species assemblages.

  2. Dynamics of newly established elk populations

    USGS Publications Warehouse

    Sargeant, G.A.; Oehler, M.W.

    2007-01-01

    The dynamics of newly established elk (Cervus elaphus) populations can provide insights about maximum sustainable rates of reproduction, survival, and increase. However, data used to estimate rates of increase typically have been limited to counts and rarely have included complementary estimates of vital rates. Complexities of population dynamics cannot be understood without considering population processes as well as population states. We estimated pregnancy rates, survival rates, age ratios, and sex ratios for reintroduced elk at Theodore Roosevelt National Park, North Dakota, USA; combined vital rates in a population projection model; and compared model projections with observed elk numbers and population ratios. Pregnancy rates in January (early in the second trimester of pregnancy) averaged 54.1% (SE = 5.4%) for subadults and 91.0% (SE = 1.7%) for adults, and 91.6% of pregnancies resulted in recruitment at 8 months. Annual survival rates of adult females averaged 0.96 (95% CI = 0.94-0.98) with hunting included and 0.99 (95% CI = 0.97-0.99) with hunting excluded from calculations. Our fitted model explained 99.8% of past variation in population estimates and represents a useful new tool for short-term management planning. Although we found no evidence of temporal variation in vital rates, variation in population composition caused substantial variation in projected rates of increase (??=1.20-1.36). Restoring documented hunter harvests and removals of elk by the National Park Service led to a potential rate of ?? = 1.26. Greater rates of increase substantiated elsewhere were within the expected range of chance variation, given our model and estimates of vital rates. Rates of increase realized by small elk populations are too variable to support inferences about habitat quality or density dependence.

  3. Population dynamics in non-homogeneous environments

    NASA Astrophysics Data System (ADS)

    Alards, Kim M. J.; Tesser, Francesca; Toschi, Federico

    2014-11-01

    For organisms living in aquatic ecosystems the presence of fluid transport can have a strong influence on the dynamics of populations and on evolution of species. In particular, displacements due to self-propulsion, summed up with turbulent dispersion at larger scales, strongly influence the local densities and thus population and genetic dynamics. Real marine environments are furthermore characterized by a high degree of non-homogeneities. In the case of population fronts propagating in ``fast'' turbulence, with respect to the population duplication time, the flow effect can be studied by replacing the microscopic diffusivity with an effective turbulent diffusivity. In the opposite case of ``slow'' turbulence the advection by the flow has to be considered locally. Here we employ numerical simulations to study the influence of non-homogeneities in the diffusion coefficient of reacting individuals of different species expanding in a 2 dimensional space. Moreover, to explore the influence of advection, we consider a population expanding in the presence of simple velocity fields like cellular flows. The output is analyzed in terms of front roughness, front shape, propagation speed and, concerning the genetics, by means of heterozygosity and local and global extinction probabilities.

  4. Shifts in methanogenic community composition and methane fluxes along the degradation of discontinuous permafrost

    PubMed Central

    Liebner, Susanne; Ganzert, Lars; Kiss, Andrea; Yang, Sizhong; Wagner, Dirk; Svenning, Mette M.

    2015-01-01

    The response of methanogens to thawing permafrost is an important factor for the global greenhouse gas budget. We tracked methanogenic community structure, activity, and abundance along the degradation of sub-Arctic palsa peatland permafrost. We observed the development of pronounced methane production, release, and abundance of functional (mcrA) methanogenic gene numbers following the transitions from permafrost (palsa) to thaw pond structures. This was associated with the establishment of a methanogenic community consisting both of hydrogenotrophic (Methanobacterium, Methanocellales), and potential acetoclastic (Methanosarcina) members and their activity. While peat bog development was not reflected in significant changes of mcrA copy numbers, potential methane production, and rates of methane release decreased. This was primarily linked to a decline of potential acetoclastic in favor of hydrogenotrophic methanogens. Although palsa peatland succession offers similarities with typical transitions from fen to bog ecosystems, the observed dynamics in methane fluxes and methanogenic communities are primarily attributed to changes within the dominant Bryophyta and Cyperaceae taxa rather than to changes in peat moss and sedge coverage, pH and nutrient regime. Overall, the palsa peatland methanogenic community was characterized by a few dominant operational taxonomic units (OTUs). These OTUs seem to be indicative for methanogenic species that thrive in terrestrial organic rich environments. In summary, our study shows that after an initial stage of high methane emissions following permafrost thaw, methane fluxes, and methanogenic communities establish that are typical for northern peat bogs. PMID:26029170

  5. Shifts in methanogenic community composition and methane fluxes along the degradation of discontinuous permafrost.

    PubMed

    Liebner, Susanne; Ganzert, Lars; Kiss, Andrea; Yang, Sizhong; Wagner, Dirk; Svenning, Mette M

    2015-01-01

    The response of methanogens to thawing permafrost is an important factor for the global greenhouse gas budget. We tracked methanogenic community structure, activity, and abundance along the degradation of sub-Arctic palsa peatland permafrost. We observed the development of pronounced methane production, release, and abundance of functional (mcrA) methanogenic gene numbers following the transitions from permafrost (palsa) to thaw pond structures. This was associated with the establishment of a methanogenic community consisting both of hydrogenotrophic (Methanobacterium, Methanocellales), and potential acetoclastic (Methanosarcina) members and their activity. While peat bog development was not reflected in significant changes of mcrA copy numbers, potential methane production, and rates of methane release decreased. This was primarily linked to a decline of potential acetoclastic in favor of hydrogenotrophic methanogens. Although palsa peatland succession offers similarities with typical transitions from fen to bog ecosystems, the observed dynamics in methane fluxes and methanogenic communities are primarily attributed to changes within the dominant Bryophyta and Cyperaceae taxa rather than to changes in peat moss and sedge coverage, pH and nutrient regime. Overall, the palsa peatland methanogenic community was characterized by a few dominant operational taxonomic units (OTUs). These OTUs seem to be indicative for methanogenic species that thrive in terrestrial organic rich environments. In summary, our study shows that after an initial stage of high methane emissions following permafrost thaw, methane fluxes, and methanogenic communities establish that are typical for northern peat bogs.

  6. Population mixture model for nonlinear telomere dynamics

    NASA Astrophysics Data System (ADS)

    Itzkovitz, Shalev; Shlush, Liran I.; Gluck, Dan; Skorecki, Karl

    2008-12-01

    Telomeres are DNA repeats protecting chromosomal ends which shorten with each cell division, eventually leading to cessation of cell growth. We present a population mixture model that predicts an exponential decrease in telomere length with time. We analytically solve the dynamics of the telomere length distribution. The model provides an excellent fit to available telomere data and accounts for the previously unexplained observation of telomere elongation following stress and bone marrow transplantation, thereby providing insight into the nature of the telomere clock.

  7. Evolutionary Dynamics and Diversity in Microbial Populations

    NASA Astrophysics Data System (ADS)

    Thompson, Joel; Fisher, Daniel

    2013-03-01

    Diseases such as flu and cancer adapt at an astonishing rate. In large part, viruses and cancers are so difficult to prevent because they are continually evolving. Controlling such ``evolutionary diseases'' requires a better understanding of the underlying evolutionary dynamics. It is conventionally assumed that adaptive mutations are rare and therefore will occur and sweep through the population in succession. Recent experiments using modern sequencing technologies have illuminated the many ways in which real population sequence data does not conform to the predictions of conventional theory. We consider a very simple model of asexual evolution and perform simulations in a range of parameters thought to be relevant for microbes and cancer. Simulation results reveal complex evolutionary dynamics typified by competition between lineages with different sets of adaptive mutations. This dynamical process leads to a distribution of mutant gene frequencies different than expected under the conventional assumption that adaptive mutations are rare. Simulated gene frequencies share several conspicuous features with data collected from laboratory-evolved yeast and the worldwide population of influenza.

  8. Galactic civilizations - Population dynamics and interstellar diffusion

    NASA Technical Reports Server (NTRS)

    Newman, W. I.; Sagan, C.

    1981-01-01

    A model is developed of the interstellar diffusion of galactic civilizations which takes into account the population dynamics of such civilizations. The problem is formulated in terms of potential theory, with a family of nonlinear partial differential and difference equations specifying population growth and diffusion for an organism with advantageous genes that undergoes random dispersal while increasing in population locally, and a population at zero population growth. In the case of nonlinear diffusion with growth and saturation, it is found that the colonization wavefront from the nearest independently arisen galactic civilization can have reached the earth only if its lifetime exceeds 2.6 million years, or 20 million years if discretization can be neglected. For zero population growth, the corresponding lifetime is 13 billion years. It is concluded that the earth is uncolonized not because interstellar spacefaring civilizations are rare, but because there are too many worlds to be colonized in the plausible colonization lifetime of nearby civilizations, and that there exist no very old galactic civilizations with a consistent policy of the conquest of inhabited worlds.

  9. Relating individual behaviour to population dynamics.

    PubMed

    Sumpter, D J; Broomhead, D S

    2001-05-07

    How do the behavioural interactions between individuals in an ecological system produce the global population dynamics of that system? We present a stochastic individual-based model of the reproductive cycle of the mite Varroa jacobsoni, a parasite of honeybees. The model has the interesting property in that its population level behaviour is approximated extremely accurately by the exponential logistic equation or Ricker map. We demonstrated how this approximation is obtained mathematically and how the parameters of the exponential logistic equation can be written in terms of the parameters of the individual-based model. Our procedure demonstrates, in at least one case, how study of animal ecology at an individual level can be used to derive global models which predict population change over time.

  10. The Geobiochemistry of Methanogen Proteins

    NASA Astrophysics Data System (ADS)

    Prasad, A.; Shock, E.

    2013-12-01

    A principle of geobiochemistry is that adaptation over evolutionary time includes a thermodynamic drive to minimize costs of making biomolecules like proteins and lipids. If so, then biomolecule abundances will reflect, at least in part, their relative stabilities at the conditions imposed by external environments. We tested this hypothesis by comparing relative stabilities of 138 orthologous proteins between a representative lake-sediment methanogen (Methanoculleus marisnigri) and a representative rumen methanogen (Methanospirillum hungatei) at the compositional constraints of their respective environments. Chemical affinities of the proteins were calculated based on pH, temperature, and concentrations of dissolved hydrogen, bicarbonate, ammonia, and hydrogen sulfide, together with standard Gibbs energies of formation of proteins from the elements predicted with a group additivity algorithm for unfolded proteins [1]. Methanogens were chosen as they are chemoautotrophs and their metabolism proceeds at relatively small affinities. Also, they are found in a variety of compositionally varying habitats like rumen, sediments, hydrothermal systems and sewage. The methanogens selected belong to the same order of taxonomy and are closely related. Preliminary results show that a majority of the proteins belonging to the rumen methanogen (66%) are more stable in the rumen environment, while a majority of the proteins belonging to the lake-sediment methanogen (58%) are more stable at sediment conditions. In a separate observation, it was noted that while the complete protein ';proteasome subunit alpha' of another rumen methanogen (Methanobrevibacter smithii) was less stable in its more reducing habitat as compared to a sewage methanogen (Methanothermobacter thermoautotophicus), its first 26 amino acid residues (N terminal) were in fact more stable in its own environment. These 26 residues are reported to be unique as compared to other proteasome proteins and are suggested to

  11. Computer Assisted Instruction of Population Dynamics: A New Approach to Population Education. Report No. T-19.

    ERIC Educational Resources Information Center

    Klaff, Vivian; Handler, Paul

    Available on the University of Illinois PLATO IV Computer system, the Population Dynamic Group computer-aided instruction program for teaching population dynamics is described and explained. The computer-generated visual graphics enable fast and intuitive understanding of the dynamics of population and of the concepts and data of population. The…

  12. Hidden hysteresis – population dynamics can obscure gene network dynamics

    PubMed Central

    2013-01-01

    Background Positive feedback is a common motif in gene regulatory networks. It can be used in synthetic networks as an amplifier to increase the level of gene expression, as well as a nonlinear module to create bistable gene networks that display hysteresis in response to a given stimulus. Using a synthetic positive feedback-based tetracycline sensor in E. coli, we show that the population dynamics of a cell culture has a profound effect on the observed hysteretic response of a population of cells with this synthetic gene circuit. Results The amount of observable hysteresis in a cell culture harboring the gene circuit depended on the initial concentration of cells within the culture. The magnitude of the hysteresis observed was inversely related to the dilution procedure used to inoculate the subcultures; the higher the dilution of the cell culture, lower was the observed hysteresis of that culture at steady state. Although the behavior of the gene circuit in individual cells did not change significantly in the different subcultures, the proportion of cells exhibiting high levels of steady-state gene expression did change. Although the interrelated kinetics of gene expression and cell growth are unpredictable at first sight, we were able to resolve the surprising dilution-dependent hysteresis as a result of two interrelated phenomena - the stochastic switching between the ON and OFF phenotypes that led to the cumulative failure of the gene circuit over time, and the nonlinear, logistic growth of the cell in the batch culture. Conclusions These findings reinforce the fact that population dynamics cannot be ignored in analyzing the dynamics of gene networks. Indeed population dynamics may play a significant role in the manifestation of bistability and hysteresis, and is an important consideration when designing synthetic gene circuits intended for long-term application. PMID:23800122

  13. Population Code Dynamics in Categorical Perception

    PubMed Central

    Tajima, Chihiro I.; Tajima, Satohiro; Koida, Kowa; Komatsu, Hidehiko; Aihara, Kazuyuki; Suzuki, Hideyuki

    2016-01-01

    Categorical perception is a ubiquitous function in sensory information processing, and is reported to have important influences on the recognition of presented and/or memorized stimuli. However, such complex interactions among categorical perception and other aspects of sensory processing have not been explained well in a unified manner. Here, we propose a recurrent neural network model to process categorical information of stimuli, which approximately realizes a hierarchical Bayesian estimation on stimuli. The model accounts for a wide variety of neurophysiological and cognitive phenomena in a consistent framework. In particular, the reported complexity of categorical effects, including (i) task-dependent modulation of neural response, (ii) clustering of neural population representation, (iii) temporal evolution of perceptual color memory, and (iv) a non-uniform discrimination threshold, are explained as different aspects of a single model. Moreover, we directly examine key model behaviors in the monkey visual cortex by analyzing neural population dynamics during categorization and discrimination of color stimuli. We find that the categorical task causes temporally-evolving biases in the neuronal population representations toward the focal colors, which supports the proposed model. These results suggest that categorical perception can be achieved by recurrent neural dynamics that approximates optimal probabilistic inference in the changing environment. PMID:26935275

  14. Role for acetotrophic methanogens in methanogenic biodegradation of vinyl chloride

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    1999-01-01

    Under methanogenic conditions, stream-bed sediment microorganisms rapidly degraded [1,2-14C]vinyl chloride to 14CH4 and 14CO2. Amendment with 2-bromoethanesulfonic acid eliminated 14CH4 production and decreased 14CO2 recovery by an equal molar amount. Results obtained with [14C]ethene, [14C]acetate, or 14CO2 as substrates indicated that acetotrophic methanogens were responsible for the production of 14CH4 during biodegradation of [1,2-14C]VC.Under methanogenic conditions, stream-bed sediment microorganisms rapidly degraded [1,2-14C]vinyl chloride to 14CH4 and 14CO2. Amendment with 2-bromoethanesulfonic acid eliminated 14CH4 production and decreased 14CO2 recovery by an equal molar amount. Results obtained with [14C]-ethene, [14C]acetate, or 14CO2 as substrates indicated that acetotrophic methanogens were responsible for the production of 14CH4, during biodegradation of [1,2-14C]VC.

  15. Mosquito populations dynamics associated with climate variations.

    PubMed

    Wilke, André Barretto Bruno; Medeiros-Sousa, Antônio Ralph; Ceretti-Junior, Walter; Marrelli, Mauro Toledo

    2017-02-01

    Mosquitoes are responsible for the transmission of numerous serious pathogens. Members of the Aedes and Culex genera, which include many important vectors of mosquito-borne diseases, are highly invasive and adapted to man-made environments. They are spread around the world involuntarily by humans and are highly adapted to urbanized environments, where they are exposed to climate-related abundance drivers. We investigated Culicidae fauna in two urban parks in the city of São Paulo to analyze the correlations between climatic variables and the population dynamics of mosquitoes in these urban areas. Mosquitoes were collected monthly over one year, and sampling sufficiency was evaluated after morphological identification of the specimens. The average monthly temperature and accumulated rainfall for the collection month and previous month were used to explain climate-related abundance drivers for the six most abundant species (Aedes aegypti, Aedes albopictus, Aedes fluviatilis, Aedes scapularis, Culex nigripalpus and Culex quinquefasciatus) and then analyzed using generalized linear statistical models and the Akaike Information Criteria corrected for small samples (AICc). The strength of evidence in favor of each model was evaluated using Akaike weights, and the explanatory model power was measured by McFadden's Pseudo-R(2). Associations between climate and mosquito abundance were found in both parks, indicating that predictive models based on climate variables can provide important information on mosquito population dynamics. We also found that this association is species-dependent. Urbanization processes increase the abundance of a few mosquito species that are well adapted to man-made environments and some of which are important vectors of pathogens. Predictive models for abundance based on climate variables may help elucidate the population dynamics of urban mosquitoes and their impact on the risk of disease transmission, allowing better predictive scenarios to be

  16. Dynamically hot galaxies. II - Global stellar populations

    NASA Technical Reports Server (NTRS)

    Bender, Ralf; Burstein, David; Faber, S. M.

    1993-01-01

    The global relationship between the stellar populations and the structural properties of dynamically hot galaxies (DHGs) is investigated using the same sample as was analyzed by Bender et al. (1992), which includes giant ellipticals, low-luminosity ellipticals, compact ellipticals, diffuse dwarf ellipticals, dwarf spheroidals, and bulges. It was found that all DHGs follow a single relationship between global stellar population (represented by Mg2 index or B-V color) and central velocity dispersion sigma(0), and that the Mg2-sigma(0) relation is significantly tighter than the relation between the Mg2 index and absolute luminosity. The relation between central Mg2 index and bulk B-V color was also found to be tight.

  17. Assessing the dynamics of wild populations

    SciTech Connect

    Eberhardt, L.L.

    1985-01-01

    Lotka's equations summarizing population dynamics can be approximated by functional models of the survivorship and reproductive curves, incorporating three stages of survival and reproduction, respectively. An abbreviated form uses a single reproductive parameter and two survival values. Survivorship and reproductive curves were fitted to data on northern fur seals (Callorhinus ursinus), domestic and feral sheep, white-tailed deer (Odocoileus virginianus), grizzly bears (Ursus arctos), African buffalo (Syncerus caffer), free-ranging horses, and fin whales (Balaenoptera physalus). Data for 10 species suggest a useful relationship between senescence parameters. A bias due to senescence may lead to serious underestimation of survival rates. Observed annual rates of increase of 18-20% for feral horses, 16% for southern fur seals (Arctocephalus gazella), and 60% for white-tailed deer are compatible with observed population parameters. 43 references, 11 figures, 3 tables.

  18. Oligonucleotide primers, probes and molecular methods for the environmental monitoring of methanogenic archaea

    PubMed Central

    Narihiro, Takashi; Sekiguchi, Yuji

    2011-01-01

    Summary For the identification and quantification of methanogenic archaea (methanogens) in environmental samples, various oligonucleotide probes/primers targeting phylogenetic markers of methanogens, such as 16S rRNA, 16S rRNA gene and the gene for the α‐subunit of methyl coenzyme M reductase (mcrA), have been extensively developed and characterized experimentally. These oligonucleotides were designed to resolve different groups of methanogens at different taxonomic levels, and have been widely used as hybridization probes or polymerase chain reaction primers for membrane hybridization, fluorescence in situ hybridization, rRNA cleavage method, gene cloning, DNA microarray and quantitative polymerase chain reaction for studies in environmental and determinative microbiology. In this review, we present a comprehensive list of such oligonucleotide probes/primers, which enable us to determine methanogen populations in an environment quantitatively and hierarchically, with examples of the practical applications of the probes and primers. PMID:21375721

  19. Analysis of methanogenic activity in a thermophilic-dry anaerobic reactor: use of fluorescent in situ hybridization.

    PubMed

    Montero, B; García-Morales, J L; Sales, D; Solera, R

    2009-03-01

    Methanogenic activity in a thermophilic-dry anaerobic reactor was determined by comparing the amount of methane generated for each of the organic loading rates with the size of the total and specific methanogenic population, as determined by fluorescent in situ hybridization. A high correlation was evident between the total methanogenic activity and retention time [-0.6988Ln(x)+2.667] (R(2) 0.8866). The total methanogenic activity increased from 0.04x10(-8) mLCH(4) cell(-1)day(-1) to 0.38x10(-8) mLCH(4) cell(-1)day(-1) while the retention time decreased, augmenting the organic loading rates. The specific methanogenic activities of H(2)-utilizing methanogens and acetate-utilizing methanogens increased until they stabilised at 0.64x10(-8) mLCH(4) cell(-1)day(-1) and 0.33x10(-8) mLCH(4) cell(-1)day(-1), respectively. The methanogenic activity of H(2)-utilizing methanogens was higher than acetate-utilizing methanogens, indicating that maintaining a low partial pressure of hydrogen does not inhibit the acetoclastic methanogenesis or the anaerobic process.

  20. Long-term dynamics of Typha populations

    USGS Publications Warehouse

    Grace, J.B.; Wetzel, R.G.

    1998-01-01

    The zonation of Typha populations in an experimental pond in Michigan was re-examined 15 years after the original sampling to gain insight into the long-term dynamics. Current distributions of Typha populations were also examined in additional experimental ponds at the site that have been maintained for 23 years. The zonation between T. latifolia and T. angustifolia in the previously studied pond 15 years after the initial sampling revealed that the density and distribution of shoots had not changed significantly. Thus, it appears that previously reported results (based on 7- year old populations) have remained consistent over time. Additional insight into the interaction between these two taxa was sought by comparing mixed and monoculture stands in five experimental ponds that have remained undisturbed for their 23-year history. The maximum depth of T. latifolia, the shallow- water species, was not significantly reduced when growing in the presence of the more flood tolerant T. angustifolia. In contrast, the minimum depth of T. angustifolia was reduced from 0 to 37 cm when in the presence of T. latifolia. When total populations were compared between monoculture and mixed stands, the average density of T. angustifolia shoots was 59.4 percent lower in mixed stands while the density of T. latifolia was 32 percent lower, with T. angustifolia most affected at shallow depths (reduced by 92 percent) and T. latifolia most affected at the deepest depths (reduced by 60 percent). These long-term observations indicate that competitive displacement between Typha taxa has remained stable over time.

  1. The population dynamics of antimicrobial chemotherapy.

    PubMed Central

    Lipsitch, M; Levin, B R

    1997-01-01

    We present and analyze a series of mathematical models for the emergence of resistance during antibiotic treatment of an infected host. The models consider the population dynamics of antibiotic-sensitive and -resistant bacteria during the course of treatment and addresses the following problems: (i) the probability of obtaining a resistant mutant during the course of treatment as a function of antibiotic exposure; (ii) the conditions under which high, infrequent doses of an antibiotic are predicted to succeed in preventing the emergence of resistance; (iii) the conditions for the success of multiple drug treatment in suppressing the emergence of resistance and the relationship between antibiotic synergism and suppression of resistance; and (iv) the conditions under which nonadherence to the prescribed treatment regimen is predicted to result in treatment failure due to resistance. We analyze the predictions of the model for interpreting and extrapolating existing experimental studies of treatment efficacy and for optimizing treatment protocols to prevent the emergence of resistance. PMID:9021193

  2. Effect of sludge age on methanogenic and glycogen accumulating organisms in an aerobic granular sludge process fed with methanol and acetate

    PubMed Central

    Pronk, M; Abbas, B; Kleerebezem, R; van Loosdrecht, M C M

    2015-01-01

    The influence of sludge age on granular sludge formation and microbial population dynamics in a methanol- and acetate-fed aerobic granular sludge system operated at 35°C was investigated. During anaerobic feeding of the reactor, methanol was initially converted to methane by methylotrophic methanogens. These methanogens were able to withstand the relatively long aeration periods. Lowering the anaerobic solid retention time (SRT) from 17 to 8 days enabled selective removal of the methanogens and prevented unwanted methane formation. In absence of methanogens, methanol was converted aerobically, while granule formation remained stable. At high SRT values (51 days), γ-Proteobacteria were responsible for acetate removal through anaerobic uptake and subsequent aerobic growth on storage polymers formed [so called metabolism of glycogen-accumulating organisms (GAO)]. When lowering the SRT (24 days), Defluviicoccus-related organisms (cluster II) belonging to the α-Proteobacteria outcompeted acetate consuming γ-Proteobacteria at 35°C. DNA from the Defluviicoccus-related organisms in cluster II was not extracted by the standard DNA extraction method but with liquid nitrogen, which showed to be more effective. Remarkably, the two GAO types of organisms grew separately in two clearly different types of granules. This work further highlights the potential of aerobic granular sludge systems to effectively influence the microbial communities through sludge age control in order to optimize the wastewater treatment processes. PMID:26059251

  3. Biotic Population Dynamics: Creative Biotic Patterns

    NASA Astrophysics Data System (ADS)

    Sabelli, Hector; Kovacevic, Lazar

    We present empirical studies and computer models of population dynamics that demonstrate creative features and we speculate that these creative processes may underline evolution. Changes in population size of lynx, muskrat, beaver, salmon, and fox display diversification, episodic changes in pattern, novelty, and evidence for nonrandom causation. These features of creativity characterize bios, and rule out random, periodic, chaotic, and random walk patterns. Biotic patterns are also demonstrated in time series generated with multi-agent predator-prey simulations. These results indicate that evolutionary processes are continually operating. In contrast to standard evolutionary theory (random variation, competition for scarce resources, selection by survival of the fittest, and directionless, meaningless evolution), we propose that biological evolution is a creative development from simple to complex in which (1) causal actions generate biological variation; (2) bipolar feedback (synergy and antagonism, abundance and scarcity) generates information (diversification, novelty and complexity); (3) connections (of molecules, genes, species) construct systems in which simple processes have priority for survival but complex processes acquire supremacy.

  4. Effects of Methanogenic Inhibitors on Methane Production and Abundances of Methanogens and Cellulolytic Bacteria in In Vitro Ruminal Cultures ▿

    PubMed Central

    Zhou, Zhenming; Meng, Qingxiang; Yu, Zhongtang

    2011-01-01

    The objective of this study was to systematically evaluate and compare the effects of select antimethanogen compounds on methane production, feed digestion and fermentation, and populations of ruminal bacteria and methanogens using in vitro cultures. Seven compounds, including 2-bromoethanesulphonate (BES), propynoic acid (PA), nitroethane (NE), ethyl trans-2-butenoate (ETB), 2-nitroethanol (2NEOH), sodium nitrate (SN), and ethyl-2-butynote (EB), were tested at a final concentration of 12 mM. Ground alfalfa hay was included as the only substrate to simulate daily forage intake. Compared to no-inhibitor controls, PA, 2NEOH, and SN greatly reduced the production of methane (70 to 99%), volatile fatty acids (VFAs; 46 to 66%), acetate (30 to 60%), and propionate (79 to 82%), with 2NEOH reducing the most. EB reduced methane production by 23% without a significant effect on total VFAs, acetate, or propionate. BES significantly reduced the propionate concentration but not the production of methane, total VFAs, or acetate. ETB or NE had no significant effect on any of the above-mentioned measurements. Specific quantitative-PCR (qPCR) assays showed that none of the inhibitors significantly affected total bacterial populations but that they did reduce the Fibrobacter succinogenes population. SN reduced the Ruminococcus albus population, while PA and 2NEOH increased the populations of both R. albus and Ruminococcus flavefaciens. Archaeon-specific PCR-denaturing gradient gel electrophoresis (DGGE) showed that all the inhibitors affected the methanogen population structure, while archaeon-specific qPCR revealed a significant decrease in methanogen population in all treatments. These results showed that EB, ETB, NE, and BES can effectively reduce the total population of methanogens but that they reduce methane production to a lesser extent. The results may guide future in vivo studies to develop effective mitigation of methane emission from ruminants. PMID:21357427

  5. Methanogens in the Solar System

    NASA Astrophysics Data System (ADS)

    Taubner, Ruth-Sophie; Schleper, Christa; Firneis, Maria G.; Rittmann, Simon

    2015-04-01

    The last decade of space science revealed that potential habitats in the Solar System may not be limited to the classical habitable zone supporting life as we know it. These microorganisms were shown to thrive under extremophilic growth conditions. Here, we outline the main eco-physiological characteristics of methanogens like their response on temperature, pressure, or pH changes or their resistance against radiation or desiccation. They can withstand extreme environmental conditions which makes them intriguing organisms for astrobiological studies. On Earth, they are found for example in wetlands, in arctic and antarctic subglacial environments, in ruminants, and even in the environment surrounding the Mars Desert Research Station in Utah. These obligate anaerobic chemolithoautotrophs or chemolithoheterotrophs are able to use e.g. hydrogen and C1 compounds like CO2, formate, or methanol as energy source and carbon source, respectively. We point out their capability to be able to habitat potential extraterrestrial biospheres all over the planetary system. We will give an overview about these possible environments on Mars, icy moons like Europa or Enceladus, and minor planets. We present an overview about studies of methanogens with an astrobiological relevance and we show our conclusions about the role of methanogens for the search for extraterrestrial life in the Solar System. We will present first results of our study about the possibility to cultivate methanogens under Enceladus-like conditions. For that, based on the observations obtained by the Cassini spacecraft concerning the plume compounds, we produce a medium with a composition similar to the ocean composition of this icy moon which is far more Enceladus-like than in any (published) experiment before. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies with these microbes. We point out the importance of future in-situ or even sample and return missions to

  6. Osmoregulation in methanogens. Progress report, May 15, 1991--January 15, 1993

    SciTech Connect

    Roberts, M.F.

    1993-01-01

    Our major goal of our work has been to develop and use NMR techniques to study how methanogenic archaebacteria deal with osmotic stress with the hope of providing insights into increasing the salt tolerance of other cells. The project has three main sections: (i) in vivo studies of methanogens; (ii) use of {sup l3}C- and {sup l5}N- labeled potential precursors and in vitro analyses of specific label uptake for elucidation of osmolyte dynamics and biosynthetic pathways of osmolytes in these organisms, and isolation of key biosynthetic enzymes; and (iii) collaborative studies on identification of organic solutes in other methanogens.

  7. Multiple Syntrophic Interactions in a Terephthalate-Degrading Methanogenic Consortium

    SciTech Connect

    Lykidis, Athanasios; Chen, Chia-Lung; Tringe, Susannah G.; McHardy, Alice C.; Copeland, Alex 5; Kyrpides, Nikos C.; Hugenholtz, Philip; Liu, Wen-Tso

    2010-08-05

    Terephthalate (TA) is one of the top 50 chemicals produced worldwide. Its production results in a TA-containing wastewater that is treated by anaerobic processes through a poorly understood methanogenic syntrophy. Using metagenomics, we characterized the methanogenic consortium tinside a hyper-mesophilic (i.e., between mesophilic and thermophilic), TA-degrading bioreactor. We identified genes belonging to dominant Pelotomaculum species presumably involved in TA degradation through decarboxylation, dearomatization, and modified ?-oxidation to H{sub 2}/CO{sub 2} and acetate. These intermediates are converted to CH{sub 4}/CO{sub 2} by three novel hyper-mesophilic methanogens. Additional secondary syntrophic interactions were predicted in Thermotogae, Syntrophus and candidate phyla OP5 and WWE1 populations. The OP5 encodes genes capable of anaerobic autotrophic butyrate production and Thermotogae, Syntrophus and WWE1 have the genetic potential to oxidize butyrate to COsub 2}/H{sub 2} and acetate. These observations suggest that the TA-degrading consortium consists of additional syntrophic interactions beyond the standard H{sub 2}-producing syntroph ? methanogen partnership that may serve to improve community stability.

  8. Dynamics of genome rearrangement in bacterial populations.

    PubMed

    Darling, Aaron E; Miklós, István; Ragan, Mark A

    2008-07-18

    characterization of genome arrangement evolution in a bacterial population evolving outside laboratory conditions. Insight into the process of genomic rearrangement may further the understanding of pathogen population dynamics and selection on the architecture of circular bacterial chromosomes.

  9. Pathways for methanogenesis and diversity of methanogenic archaea in three boreal peatland ecosystems.

    PubMed

    Galand, P E; Fritze, H; Conrad, R; Yrjälä, K

    2005-04-01

    The main objectives of this study were to uncover the pathways used for methanogenesis in three different boreal peatland ecosystems and to describe the methanogenic populations involved. The mesotrophic fen had the lowest proportion of CH4 produced from H2-CO2. The oligotrophic fen was the most hydrogenotrophic, followed by the ombrotrophic bog. Each site was characterized by a specific group of methanogenic sequences belonging to Methanosaeta spp. (mesotrophic fen), rice cluster-I (oligotrophic fen), and fen cluster (ombrotrophic bog).

  10. Consequences of parental care on population dynamics

    NASA Astrophysics Data System (ADS)

    de Oliveira, S. Moss

    1999-12-01

    We review the results obtained using the Penna model for biological ageing (T.J.P. Penna, J. Stat. Phys. 78 (1995) 1629) when different strategies of parental care are introduced into evolving populations. These results concern to: longevity of semelparous populations; self-organization of female menopause; the spatial distribution of the populations and finally, sexual fidelity.

  11. Distribution of Sulfate-Reducing and Methanogenic Bacteria in Anaerobic Aggregates Determined by Microsensor and Molecular Analyses

    PubMed Central

    Santegoeds, Cecilia M.; Damgaard, Lars Riis; Hesselink, Gijs; Zopfi, Jakob; Lens, Piet; Muyzer, Gerard; de Beer, Dirk

    1999-01-01

    Using molecular techniques and microsensors for H2S and CH4, we studied the population structure of and the activity distribution in anaerobic aggregates. The aggregates originated from three different types of reactors: a methanogenic reactor, a methanogenic-sulfidogenic reactor, and a sulfidogenic reactor. Microsensor measurements in methanogenic-sulfidogenic aggregates revealed that the activity of sulfate-reducing bacteria (2 to 3 mmol of S2− m−3 s−1 or 2 × 10−9 mmol s−1 per aggregate) was located in a surface layer of 50 to 100 μm thick. The sulfidogenic aggregates contained a wider sulfate-reducing zone (the first 200 to 300 μm from the aggregate surface) with a higher activity (1 to 6 mmol of S2− m−3 s−1 or 7 × 10−9 mol s−1 per aggregate). The methanogenic aggregates did not show significant sulfate-reducing activity. Methanogenic activity in the methanogenic-sulfidogenic aggregates (1 to 2 mmol of CH4 m−3 s−1 or 10−9 mmol s−1 per aggregate) and the methanogenic aggregates (2 to 4 mmol of CH4 m−3 s−1 or 5 × 10−9 mmol s−1 per aggregate) was located more inward, starting at ca. 100 μm from the aggregate surface. The methanogenic activity was not affected by 10 mM sulfate during a 1-day incubation. The sulfidogenic and methanogenic activities were independent of the type of electron donor (acetate, propionate, ethanol, or H2), but the substrates were metabolized in different zones. The localization of the populations corresponded to the microsensor data. A distinct layered structure was found in the methanogenic-sulfidogenic aggregates, with sulfate-reducing bacteria in the outer 50 to 100 μm, methanogens in the inner part, and Eubacteria spp. (partly syntrophic bacteria) filling the gap between sulfate-reducing and methanogenic bacteria. In methanogenic aggregates, few sulfate-reducing bacteria were detected, while methanogens were found in the core. In the sulfidogenic aggregates, sulfate-reducing bacteria were

  12. Population dynamics of Yellowstone grizzly bears

    SciTech Connect

    Knight, R.R.; Eberhardt, L.L.

    1985-04-01

    Data on the population of grizzly bears in the environs of Yellowstone National Park suggest that the population has not recovered from the reductions following closure of garbage dumps in 1970 and 1971, and may continue to decline. A computer simulation model indicates that the risk of extirpation over the next 30 yr is small, if the present population parameters continue to prevail. A review an further analysis of the available data brings out the importance of enhancing adult female survival if the population is to recover, and assesses various research needs. In particular, a reliable index of population trend is needed to augment available data on the population. 12 references, 9 figures, 6 tables.

  13. Assessment of active methanogenic archaea in a methanol-fed upflow anaerobic sludge blanket reactor.

    PubMed

    Cerrillo, Míriam; Morey, Lluís; Viñas, Marc; Bonmatí, August

    2016-12-01

    Methanogenic archaea enrichment of a granular sludge was undertaken in an upflow anaerobic sludge blanket (UASB) reactor fed with methanol in order to enrich methylotrophic and hydrogenotrophic methanogenic populations. A microbial community assessment, in terms of microbial composition and activity-throughout the different stages of the feeding process with methanol and acetate-was performed using specific methanogenic activity (SMA) assays, quantitative real-time polymerase chain reaction (qPCR), and high-throughput sequencing of 16S ribosomal RNA (rRNA) genes from DNA and complementary DNA (cDNA). Distinct methanogenic enrichment was revealed by qPCR of mcrA gene in the methanol-fed community, being two orders of magnitude higher with respect to the initial inoculum, achieving a final mcrA/16S rRNA ratio of 0.25. High-throughput sequencing analysis revealed that the resulting methanogenic population was mainly composed by methylotrophic archaea (Methanomethylovorans and Methanolobus genus), being also highly active according to the RNA-based assessment. SMA confirmed that the methylotrophic pathway, with a direct conversion of methanol to CH4, was the main step of methanol degradation in the UASB. The biomass from the UASB, enriched in methanogenic archaea, may bear great potential as additional inoculum for bioreactors to carry out biogas production and other related processes.

  14. Role of finite populations in determining evolutionary dynamics

    NASA Astrophysics Data System (ADS)

    Ray, Tane S.; Payne, Karl A.; Moseley, L. Leo

    2008-02-01

    The connection between the finite size of an evolving population and its dynamical behavior is examined through analytical and computational studies of a simple model of evolution. The infinite population limit of the model is shown to be governed by a special case of the quasispecies equations. A flat fitness landscape yields identical results for the dynamics of infinite and finite populations. On the other hand, a monotonically increasing fitness landscape shows “epochs” in the dynamics of finite populations that become more pronounced as the rate of mutation decreases. The details of the dynamics are profoundly different for any two simulation runs in that events arising from the stochastic noise in the pseudorandom number sequence are amplified. As the population size is increased or, equivalently, the mutation rate is increased, these epochs become smaller but do not entirely disappear.

  15. Delay driven spatiotemporal chaos in single species population dynamics models.

    PubMed

    Jankovic, Masha; Petrovskii, Sergei; Banerjee, Malay

    2016-08-01

    Questions surrounding the prevalence of complex population dynamics form one of the central themes in ecology. Limit cycles and spatiotemporal chaos are examples that have been widely recognised theoretically, although their importance and applicability to natural populations remains debatable. The ecological processes underlying such dynamics are thought to be numerous, though there seems to be consent as to delayed density dependence being one of the main driving forces. Indeed, time delay is a common feature of many ecological systems and can significantly influence population dynamics. In general, time delays may arise from inter- and intra-specific trophic interactions or population structure, however in the context of single species populations they are linked to more intrinsic biological phenomena such as gestation or resource regeneration. In this paper, we consider theoretically the spatiotemporal dynamics of a single species population using two different mathematical formulations. Firstly, we revisit the diffusive logistic equation in which the per capita growth is a function of some specified delayed argument. We then modify the model by incorporating a spatial convolution which results in a biologically more viable integro-differential model. Using the combination of analytical and numerical techniques, we investigate the effect of time delay on pattern formation. In particular, we show that for sufficiently large values of time delay the system's dynamics are indicative to spatiotemporal chaos. The chaotic dynamics arising in the wake of a travelling population front can be preceded by either a plateau corresponding to dynamical stabilisation of the unstable equilibrium or by periodic oscillations.

  16. Dynamic population mapping using mobile phone data.

    PubMed

    Deville, Pierre; Linard, Catherine; Martin, Samuel; Gilbert, Marius; Stevens, Forrest R; Gaughan, Andrea E; Blondel, Vincent D; Tatem, Andrew J

    2014-11-11

    During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography.

  17. Stochastic population dynamics under resource constraints

    NASA Astrophysics Data System (ADS)

    Gavane, Ajinkya S.; Nigam, Rahul

    2016-06-01

    This paper investigates the population growth of a certain species in which every generation reproduces thrice over a period of predefined time, under certain constraints of resources needed for survival of population. We study the survival period of a species by randomizing the reproduction probabilities within a window at same predefined ages and the resources are being produced by the working force of the population at a variable rate. This randomness in the reproduction rate makes the population growth stochastic in nature and one cannot predict the exact form of evolution. Hence we study the growth by running simulations for such a population and taking an ensemble averaged over 500 to 5000 such simulations as per the need. While the population reproduces in a stochastic manner, we have implemented a constraint on the amount of resources available for the population. This is important to make the simulations more realistic. The rate of resource production then is tuned to find the rate which suits the survival of the species. We also compute the mean life time of the species corresponding to different resource production rate. Study for these outcomes in the parameter space defined by the reproduction probabilities and rate of resource production is carried out.

  18. Evolution of specialization under non-equilibrium population dynamics.

    PubMed

    Nurmi, Tuomas; Parvinen, Kalle

    2013-03-21

    We analyze the evolution of specialization in resource utilization in a mechanistically underpinned discrete-time model using the adaptive dynamics approach. We assume two nutritionally equivalent resources that in the absence of consumers grow sigmoidally towards a resource-specific carrying capacity. The consumers use resources according to the law of mass-action with rates involving trade-off. The resulting discrete-time model for the consumer population has over-compensatory dynamics. We illuminate the way non-equilibrium population dynamics affect the evolutionary dynamics of the resource consumption rates, and show that evolution to the trimorphic coexistence of a generalist and two specialists is possible due to asynchronous non-equilibrium population dynamics of the specialists. In addition, various forms of cyclic evolutionary dynamics are possible. Furthermore, evolutionary suicide may occur even without Allee effects and demographic stochasticity.

  19. Effects of intermittent and continuous aeration on accelerative stabilization and microbial population dynamics in landfill bioreactors.

    PubMed

    Sang, Nguyen Nhu; Soda, Satoshi; Inoue, Daisuke; Sei, Kazunari; Ike, Michihiko

    2009-10-01

    Performance and microbial population dynamics in landfill bioreactors were investigated in laboratory experiments. Three reactors were operated without aeration (control reactor, CR), with cyclic 6-h aeration and 6-h non-aeration (intermittently aerated reactor, IAR), and with continuous aeration (continuously aerated reactor, CAR). Each reactor was loaded with high-organic solid waste. The performance of IAR was highest among the reactors up to day 90. The respective solid weight, organic matter content, and waste volume on day 90 in the CR, IAR, and CAR were 50.9, 39.1, and 47.5%; 46.5, 29.3 and 35.0%; and 69, 38, and 53% of the initial values. Organic carbon and nitrogen compounds in leachate in the IAR and the CAR showed significant decreases in comparison to those in the CR. The most probable number (MPN) values of fungal 18S rDNA in the CAR and the IAR were higher than those in the CR. Terminal restriction fragment length polymorphism analysis showed that unique and diverse eubacterial and archaeal communities were formed in the IAR. The intermittent aeration strategy was favorable for initiation of solubilization of organic matter by the aerobic fungal populations and the reduction of the acid formation phase. Then the anaerobic H(2)-producing bacteria Clostridium became dominant in the IAR. Sulfate-reducing bacteria, which cannot use acetate/sulfate but which instead use various organics/sulfate as the electron donor/acceptor were also dominant in the IAR. Consequently, Methanosarcinales, which are acetate-utilizing methanogens, became the dominant archaea in the IAR, where high methane production was observed.

  20. Galactic civilizations: Population dynamics and interstellar diffusion

    NASA Technical Reports Server (NTRS)

    Newman, W. I.; Sagan, C.

    1978-01-01

    The interstellar diffusion of galactic civilizations is reexamined by potential theory; both numerical and analytical solutions are derived for the nonlinear partial differential equations which specify a range of relevant models, drawn from blast wave physics, soil science, and, especially, population biology. An essential feature of these models is that, for all civilizations, population growth must be limited by the carrying capacity of the environment. Dispersal is fundamentally a diffusion process; a density-dependent diffusivity describes interstellar emigration. Two models are considered: the first describing zero population growth (ZPG), and the second which also includes local growth and saturation of a planetary population, and for which an asymptotic traveling wave solution is found.

  1. Stochastic dynamics and logistic population growth

    NASA Astrophysics Data System (ADS)

    Méndez, Vicenç; Assaf, Michael; Campos, Daniel; Horsthemke, Werner

    2015-06-01

    The Verhulst model is probably the best known macroscopic rate equation in population ecology. It depends on two parameters, the intrinsic growth rate and the carrying capacity. These parameters can be estimated for different populations and are related to the reproductive fitness and the competition for limited resources, respectively. We investigate analytically and numerically the simplest possible microscopic scenarios that give rise to the logistic equation in the deterministic mean-field limit. We provide a definition of the two parameters of the Verhulst equation in terms of microscopic parameters. In addition, we derive the conditions for extinction or persistence of the population by employing either the momentum-space spectral theory or the real-space Wentzel-Kramers-Brillouin approximation to determine the probability distribution function and the mean time to extinction of the population. Our analytical results agree well with numerical simulations.

  2. Stochastic dynamics and logistic population growth.

    PubMed

    Méndez, Vicenç; Assaf, Michael; Campos, Daniel; Horsthemke, Werner

    2015-06-01

    The Verhulst model is probably the best known macroscopic rate equation in population ecology. It depends on two parameters, the intrinsic growth rate and the carrying capacity. These parameters can be estimated for different populations and are related to the reproductive fitness and the competition for limited resources, respectively. We investigate analytically and numerically the simplest possible microscopic scenarios that give rise to the logistic equation in the deterministic mean-field limit. We provide a definition of the two parameters of the Verhulst equation in terms of microscopic parameters. In addition, we derive the conditions for extinction or persistence of the population by employing either the momentum-space spectral theory or the real-space Wentzel-Kramers-Brillouin approximation to determine the probability distribution function and the mean time to extinction of the population. Our analytical results agree well with numerical simulations.

  3. Dynamic population mapping using mobile phone data

    PubMed Central

    Deville, Pierre; Martin, Samuel; Gilbert, Marius; Stevens, Forrest R.; Gaughan, Andrea E.; Blondel, Vincent D.; Tatem, Andrew J.

    2014-01-01

    During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography. PMID:25349388

  4. Modeling seasonal interactions in the population dynamics of migratory birds

    USGS Publications Warehouse

    Runge, M.C.; Marra, P.P.; Greenberg, Russell; Marra, Peter P.

    2005-01-01

    Understanding the population dynamics of migratory birds requires understanding the relevant biological events that occur during breeding, migratory, and overwintering periods. The few available population models for passerine birds focus on breeding-season events, disregard or oversimplify events during nonbreeding periods, and ignore interactions that occur between periods of the annual cycle. Identifying and explicitly incorporating seasonal interactions into population models for migratory birds could provide important insights about when population limitation actually occurs in the annual cycle. We present a population model for the annual cycle of a migratory bird, based on the American Redstart (Setophaga ruticilla) but more generally applicable, that examines the importance of seasonal interactions by incorporating: (1) density dependence during the breeding and winter seasons, (2) a carry-over effect of winter habitat on breeding-season productivity, and (3) the effects of behavioral dominance on seasonal and habitat specific demographic rates. First, we show that habitat availability on both the wintering and breeding grounds can strongly affect equilibrium population size and sex ratio. Second, sex ratio dynamics, as mediated by behavioral dominance, can affect all other aspects of population dynamics. Third, carry-over effects can be strong, especially when winter events are limiting. These results suggest that understanding the population dynamics of migratory birds may require more consideration of the seasonal interactions induced by carry-over effects and density dependence in multiple seasons. This model provides a framework in which to explore more fully these seasonal dynamics and a context for estimation of life history parameters.

  5. Complex population dynamics and the coalescent under neutrality.

    PubMed

    Volz, Erik M

    2012-01-01

    Estimates of the coalescent effective population size N(e) can be poorly correlated with the true population size. The relationship between N(e) and the population size is sensitive to the way in which birth and death rates vary over time. The problem of inference is exacerbated when the mechanisms underlying population dynamics are complex and depend on many parameters. In instances where nonparametric estimators of N(e) such as the skyline struggle to reproduce the correct demographic history, model-based estimators that can draw on prior information about population size and growth rates may be more efficient. A coalescent model is developed for a large class of populations such that the demographic history is described by a deterministic nonlinear dynamical system of arbitrary dimension. This class of demographic model differs from those typically used in population genetics. Birth and death rates are not fixed, and no assumptions are made regarding the fraction of the population sampled. Furthermore, the population may be structured in such a way that gene copies reproduce both within and across demes. For this large class of models, it is shown how to derive the rate of coalescence, as well as the likelihood of a gene genealogy with heterochronous sampling and labeled taxa, and how to simulate a coalescent tree conditional on a complex demographic history. This theoretical framework encapsulates many of the models used by ecologists and epidemiologists and should facilitate the integration of population genetics with the study of mathematical population dynamics.

  6. Africa's population and family planning dynamics.

    PubMed

    Segal, A

    1993-01-01

    The historical and current demography of Africa in this discussion focuses on the context of population policy, contraceptive use, reproductive behavior, polygamy, and economic impacts. Sub-Saharan Africa countries have the highest rate of population growth in the world. 50% are aged under 20 years, and 20% are aged under five years. Urban areas are growing at the fastest rates in the world (5-6% annually). Population density remains low, except for areas where there is high soil fertility. Many African countries recognize the need for population policies. The most important donor to Africa, the World Bank, has pressured African governments to adopt family planning (FP) programs. A major World Bank study has shown that more FP services are desired by African women. Family expenditures for the 1980s for FP were estimated at $100 million annually, of which $53 million was provided by donors. Further expansion in the program is needed. The World Bank targeted contraceptive use at 25% of African married couples. Except for Egypt and North African countries, contraceptive use is around 3-4%. Another perspective on population reduction is to expand programs for child spacing and postnatal nutrition of mothers and infants. There has been a failure to turn health systems around to low-cost preventive health, particularly in rural areas. Infant mortality must be reduced before fertility will decline. Population growth can be slowed by changing the status of African women (high social status and recognition are associated with high fertility), age of marriage, child spacing, agricultural productivity, and nutrition. Demographic data on Africa have only become available during the past 25 years. African demographers are in short supply and require training abroad. Demographic data gaps and reliability problems are offset by the recent availability and quantity of survey data. Historical demography has produced conflicting results. Although some investigators, such as Ester

  7. Synchronization and stability in noisy population dynamics.

    PubMed

    Araujo, Sabrina B L; de Aguiar, M A M

    2008-02-01

    We study the stability and synchronization of predator-prey populations subjected to noise. The system is described by patches of local populations coupled by migration and predation over a neighborhood. When a single patch is considered, random perturbations tend to destabilize the populations, leading to extinction. If the number of patches is small, stabilization in the presence of noise is maintained at the expense of synchronization. As the number of patches increases, both the stability and the synchrony among patches increase. However, a residual asynchrony, large compared with the noise amplitude, seems to persist even in the limit of an infinite number of patches. Therefore, the mechanism of stabilization by asynchrony recently proposed by Abta [Phys. Rev. Lett. 98, 098104 (2007)], combining noise, diffusion, and nonlinearities, seems to be more general than first proposed.

  8. Effects of Culling on Mesopredator Population Dynamics

    PubMed Central

    Beasley, James C.; Olson, Zachary H.; Beatty, William S.; Dharmarajan, Guha; Rhodes, Olin E.

    2013-01-01

    Anthropogenic changes in land use and the extirpation of apex predators have facilitated explosive growth of mesopredator populations. Consequently, many species have been subjected to extensive control throughout portions of their range due to their integral role as generalist predators and reservoirs of zoonotic disease. Yet, few studies have monitored the effects of landscape composition or configuration on the demographic or behavioral response of mesopredators to population manipulation. During 2007 we removed 382 raccoons (Procyon lotor) from 30 forest patches throughout a fragmented agricultural ecosystem to test hypotheses regarding the effects of habitat isolation on population recovery and role of range expansion and dispersal in patch colonization of mesopredators in heterogeneous landscapes. Patches were allowed to recolonize naturally and demographic restructuring of patches was monitored from 2008–2010 using mark-recapture. An additional 25 control patches were monitored as a baseline measure of demography. After 3 years only 40% of experimental patches had returned to pre-removal densities. This stagnant recovery was driven by low colonization rates of females, resulting in little to no within-patch recruitment. Colonizing raccoons were predominantly young males, suggesting that dispersal, rather than range expansion, was the primary mechanism driving population recovery. Contrary to our prediction, neither landscape connectivity nor measured local habitat attributes influenced colonization rates, likely due to the high dispersal capability of raccoons and limited role of range expansion in patch colonization. Although culling is commonly used to control local populations of many mesopredators, we demonstrate that such practices create severe disruptions in population demography that may be counterproductive to disease management in fragmented landscapes due to an influx of dispersing males into depopulated areas. However, given the slow

  9. Characterization of methanogenic Archaea in the leachate of a closed municipal solid waste landfill.

    PubMed

    Huang, Li-Nan; Chen, Yue-Qin; Zhou, Hui; Luo, Shuo; Lan, Chong-Yu; Qu, Liang-Hu

    2003-11-01

    Cultivation-independent molecular approaches were used to investigate the phylogenetic composition of Archaea and the relative abundance of phylogenetically defined groups of methanogens in the leachate of a closed municipal solid waste landfill. Cloning and phylogenetic analysis of archaeal 16S rRNA gene sequences (16S rDNA) revealed that the landfill leachate harbored a diverse Archaea community, with sequence types distributed within the two archaeal kingdoms of the Euryarchaeota and the Crenarchaeota. Of the 80 clones examined, 51 were phylogenetically associated with well-defined methanogen lineages covering two major methanogenic phenotypes; 20 were related to Thermoplasma and were grouped with some novel archaeal rRNA gene sequences recently recovered from various anaerobic habitats; finally, five belonged to Crenarchaeota and were not closely related to any hitherto cultivated species. Most of the methanogen-like clones were affiliated with the hydrogenotrophic Methanomicrobiales and the methylotrophic and acetoclastic Methanosarcinales. Quantitative oligonucleotide hybridization experiments showed that methanogens in the leachate accounted for only a very small fraction of the total community (approximately 2%) and that Methanomicrobiales and Methanosarcinales constituted the majority of the total methanogenic population.

  10. Workshop on Populations & Crowds: Dynamics, Disruptions and their Computational Models

    DTIC Science & Technology

    2015-01-01

    Aug-2012 9-Aug-2013 Approved for Public Release; Distribution Unlimited Final Report: Workshop on Populations & Crowds: Dynamics, Disruptions and... Disruptions , Social networks REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING...Number of Papers published in non peer-reviewed journals: Final Report: Workshop on Populations & Crowds: Dynamics, Disruptions and their Computational

  11. Noise-induced stabilization in population dynamics.

    PubMed

    Parker, Matthew; Kamenev, Alex; Meerson, Baruch

    2011-10-28

    We investigate a model in which strong noise in a subpopulation creates a metastable state in an otherwise unstable two-population system. The induced metastable state is vortexlike, and its persistence time grows exponentially with the noise strength. A variety of distinct scaling relations are observed depending on the relative strength of the subpopulation noises.

  12. Vaccination of Sheep with a Methanogen Protein Provides Insight into Levels of Antibody in Saliva Needed to Target Ruminal Methanogens

    PubMed Central

    Subharat, Supatsak; Shu, Dairu; Zheng, Tao; Buddle, Bryce M.; Kaneko, Kan; Hook, Sarah; Janssen, Peter H.; Wedlock, D. Neil

    2016-01-01

    Methane is produced in the rumen of ruminant livestock by methanogens and is a major contributor to agricultural greenhouse gases. Vaccination against ruminal methanogens could reduce methane emissions by inducing antibodies in saliva which enter the rumen and impair ability of methanogens to produce methane. Presently, it is not known if vaccination can induce sufficient amounts of antibody in the saliva to target methanogen populations in the rumen and little is known about how long antibody in the rumen remains active. In the current study, sheep were vaccinated twice at a 3-week interval with a model methanogen antigen, recombinant glycosyl transferase protein (rGT2) formulated with one of four adjuvants: saponin, Montanide ISA61, a chitosan thermogel, or a lipid nanoparticle/cationic liposome adjuvant (n = 6/formulation). A control group of sheep (n = 6) was not vaccinated. The highest antigen-specific IgA and IgG responses in both saliva and serum were observed with Montanide ISA61, which promoted levels of salivary antibodies that were five-fold higher than the second most potent adjuvant, saponin. A rGT2-specific IgG standard was used to determine the level of rGT2-specific IgG in serum and saliva. Vaccination with GT2/Montanide ISA61 produced a peak antibody concentration of 7 × 1016 molecules of antigen-specific IgG per litre of saliva, and it was estimated that in the rumen there would be more than 104 molecules of antigen-specific IgG for each methanogen cell. Both IgG and IgA in saliva were shown to be relatively stable in the rumen. Salivary antibody exposed for 1–2 hours to an in vitro simulated rumen environment retained approximately 50% of antigen-binding activity. Collectively, the results from measuring antibody levels and stablility suggest a vaccination-based mitigation strategy for livestock generated methane is in theory feasible. PMID:27472482

  13. Human population dynamics in Europe over the Last Glacial Maximum

    PubMed Central

    Tallavaara, Miikka; Luoto, Miska; Korhonen, Natalia; Järvinen, Heikki; Seppä, Heikki

    2015-01-01

    The severe cooling and the expansion of the ice sheets during the Last Glacial Maximum (LGM), 27,000–19,000 y ago (27–19 ky ago) had a major impact on plant and animal populations, including humans. Changes in human population size and range have affected our genetic evolution, and recent modeling efforts have reaffirmed the importance of population dynamics in cultural and linguistic evolution, as well. However, in the absence of historical records, estimating past population levels has remained difficult. Here we show that it is possible to model spatially explicit human population dynamics from the pre-LGM at 30 ky ago through the LGM to the Late Glacial in Europe by using climate envelope modeling tools and modern ethnographic datasets to construct a population calibration model. The simulated range and size of the human population correspond significantly with spatiotemporal patterns in the archaeological data, suggesting that climate was a major driver of population dynamics 30–13 ky ago. The simulated population size declined from about 330,000 people at 30 ky ago to a minimum of 130,000 people at 23 ky ago. The Late Glacial population growth was fastest during Greenland interstadial 1, and by 13 ky ago, there were almost 410,000 people in Europe. Even during the coldest part of the LGM, the climatically suitable area for human habitation remained unfragmented and covered 36% of Europe. PMID:26100880

  14. Human population dynamics in Europe over the Last Glacial Maximum.

    PubMed

    Tallavaara, Miikka; Luoto, Miska; Korhonen, Natalia; Järvinen, Heikki; Seppä, Heikki

    2015-07-07

    The severe cooling and the expansion of the ice sheets during the Last Glacial Maximum (LGM), 27,000-19,000 y ago (27-19 ky ago) had a major impact on plant and animal populations, including humans. Changes in human population size and range have affected our genetic evolution, and recent modeling efforts have reaffirmed the importance of population dynamics in cultural and linguistic evolution, as well. However, in the absence of historical records, estimating past population levels has remained difficult. Here we show that it is possible to model spatially explicit human population dynamics from the pre-LGM at 30 ky ago through the LGM to the Late Glacial in Europe by using climate envelope modeling tools and modern ethnographic datasets to construct a population calibration model. The simulated range and size of the human population correspond significantly with spatiotemporal patterns in the archaeological data, suggesting that climate was a major driver of population dynamics 30-13 ky ago. The simulated population size declined from about 330,000 people at 30 ky ago to a minimum of 130,000 people at 23 ky ago. The Late Glacial population growth was fastest during Greenland interstadial 1, and by 13 ky ago, there were almost 410,000 people in Europe. Even during the coldest part of the LGM, the climatically suitable area for human habitation remained unfragmented and covered 36% of Europe.

  15. Methanogenic Hydrocarbon Degradation: Evidence from Field and Laboratory Studies.

    PubMed

    Jiménez, Núria; Richnow, Hans H; Vogt, Carsten; Treude, Tina; Krüger, Martin

    2016-01-01

    Microbial transformation of hydrocarbons to methane is an environmentally relevant process taking place in a wide variety of electron acceptor-depleted habitats, from oil reservoirs and coal deposits to contaminated groundwater and deep sediments. Methanogenic hydrocarbon degradation is considered to be a major process in reservoir degradation and one of the main processes responsible for the formation of heavy oil deposits and oil sands. In the absence of external electron acceptors such as oxygen, nitrate, sulfate or Fe(III), fermentation and methanogenesis become the dominant microbial metabolisms. The major end product under these conditions is methane, and the only electron acceptor necessary to sustain the intermediate steps in this process is CO2, which is itself a net product of the overall reaction. We are summarizing the state of the art and recent advances in methanogenic hydrocarbon degradation research. Both the key microbial groups involved as well as metabolic pathways are described, and we discuss the novel insights into methanogenic hydrocarbon-degrading populations studied in laboratory as well as environmental systems enabled by novel cultivation-based and molecular approaches. Their possible implications on energy resources, bioremediation of contaminated sites, deep-biosphere research, and consequences for atmospheric composition and ultimately climate change are also addressed.

  16. Explaining "Noise" as Environmental Variations in Population Dynamics

    SciTech Connect

    Ginn, Timothy R.; Loge, Frank J.; Scheibe, Timothy D.

    2007-03-01

    The impacts of human activities on our own and other populations on the plant are making news at an alarming pace. Global warming, ocean and freshwater contamination and acidification, deforestation, habitat destruction and incursion, and in general a burgeoning human population are associated with a complete spectrum of changes to the dynamics of populations. Effects on songbirds, insects, coral reefs, ocean mammals, anadromous fishes, just to name a few, and humans, have been linked to human industry and population growth. The linkage, however, remains often ghostly and often tenuous at best, because of the difficulty in quantitatively combining ecological processes with environmental fate and transport processes. Establishing quantitative tools, that is, models, for the combined dynamics of populations and environmental chemical/thermal things is needed. This truly interdisciplinary challenge is briefly reviewed, and two approaches to integrating chemical and biological intermingling are addressed in the context of salmon populations in the Pacific Northwest.

  17. Stage-Structured Population Dynamics of AEDES AEGYPTI

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

    Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

  18. AN INDIVIDUAL-BASED MODEL OF COTTUS POPULATION DYNAMICS

    EPA Science Inventory

    We explored population dynamics of a southern Appalachian population of Cottus bairdi using a spatially-explicit, individual-based model. The model follows daily growth, mortality, and spawning of individuals as a function of flow and temperature. We modeled movement of juveniles...

  19. Optimal birth control of population dynamics.

    PubMed

    Chan, W L; Guo, B Z

    1989-11-01

    The authors studied optimal birth control policies for an age-structured population of McKendrick type which is a distributed parameter system involving 1st order partial differential equations with nonlocal bilinear boundary control. The functional analytic approach of Dubovitskii and Milyutin is adopted in the investigation. Maximum principles for problems with a free end condition and fixed final horizon are developed, and the time optimal control problems, the problem with target sets, and infinite planning horizon case are investigated.

  20. Reconstruction of cell population dynamics using CFSE

    PubMed Central

    Yates, Andrew; Chan, Cliburn; Strid, Jessica; Moon, Simon; Callard, Robin; George, Andrew JT; Stark, Jaroslav

    2007-01-01

    Background Quantifying cell division and death is central to many studies in the biological sciences. The fluorescent dye CFSE allows the tracking of cell division in vitro and in vivo and provides a rich source of information with which to test models of cell kinetics. Cell division and death have a stochastic component at the single-cell level, and the probabilities of these occurring in any given time interval may also undergo systematic variation at a population level. This gives rise to heterogeneity in proliferating cell populations. Branching processes provide a natural means of describing this behaviour. Results We present a likelihood-based method for estimating the parameters of branching process models of cell kinetics using CFSE-labeling experiments, and demonstrate its validity using synthetic and experimental datasets. Performing inference and model comparison with real CFSE data presents some statistical problems and we suggest methods of dealing with them. Conclusion The approach we describe here can be used to recover the (potentially variable) division and death rates of any cell population for which division tracking information is available. PMID:17565685

  1. Multi-population model of a microbial electrolysis cell.

    PubMed

    Pinto, R P; Srinivasan, B; Escapa, A; Tartakovsky, B

    2011-06-01

    This work presents a multi-population dynamic model of a microbial electrolysis cell (MEC). The model describes the growth and metabolic activity of fermentative, electricigenic, methanogenic acetoclastic, and methanogenic hydrogenophilic microorganisms and is capable of simulating hydrogen production in a MEC fed with complex organic matter, such as wastewater. The model parameters were estimated with the experimental results obtained in continuous flow MECs fed with acetate or synthetic wastewater. Following successful model validation with an independent data set, the model was used to analyze and discuss the influence of applied voltage and organic load on hydrogen production and COD removal.

  2. Feedback between Population and Evolutionary Dynamics Determines the Fate of Social Microbial Populations

    PubMed Central

    Sanchez, Alvaro; Gore, Jeff

    2013-01-01

    The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50–100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators “spiral” to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the demographic fate

  3. Population dynamics and regulation in the cave salamander Speleomantes strinatii

    NASA Astrophysics Data System (ADS)

    Salvidio, Sebastiano

    2007-05-01

    Time series analysis has been used to evaluate the mechanisms regulating population dynamics of mammals and insects, but has been rarely applied to amphibian populations. In this study, the influence of endogenous (density-dependent) and exogenous (density-independent) factors regulating population dynamics of the terrestrial plethodontid salamander Speleomantes strinatii was analysed by means of time series and multiple regression analyses. During the period 1993 2005, S. strinatii population abundance, estimated by a standardised temporary removal method, displayed relatively low fluctuations, and the autocorrelation function (ACF) analysis showed that the time series had a noncyclic structure. The partial rate correlation function (PRCF) indicated that a strong first-order negative feedback dominated the endogenous dynamics. Stepwise multiple regression analysis showed that the only climatic factor influencing population growth rate was the minimum winter temperature. Thus, at least during the study period, endogenous, density-dependent negative feedback was the main factor affecting the growth rate of the salamander population, whereas stochastic environmental variables, such as temperature and rainfall, seemed to play a minor role in regulation. These results stress the importance of considering both exogenous and endogenous factors when analysing amphibian long-term population dynamics.

  4. Methanogenic Archaea and human periodontal disease

    PubMed Central

    Lepp, Paul W.; Brinig, Mary M.; Ouverney, Cleber C.; Palm, Katherine; Armitage, Gary C.; Relman, David A.

    2004-01-01

    Archaea have been isolated from the human colon, vagina, and oral cavity, but have not been established as causes of human disease. In this study, we reveal a relationship between the severity of periodontal disease and the relative abundance of archaeal small subunit ribosomal RNA genes (SSU rDNA) in the subgingival crevice by using quantitative PCR. Furthermore, the relative abundance of archaeal small subunit rDNA decreased at treated sites in association with clinical improvement. Archaea were harbored by 36% of periodontitis patients and were restricted to subgingival sites with periodontal disease. The presence of archaeal cells at these sites was confirmed by fluorescent in situ hybridization. The archaeal community at diseased sites was dominated by a Methanobrevibacter oralis-like phylotype and a distinct Methanobrevibacter subpopulation related to archaea that inhabit the gut of numerous animals. We hypothesize that methanogens participate in syntrophic relationships in the subgingival crevice that promote colonization by secondary fermenters during periodontitis. Because they are potential alternative syntrophic partners, our finding of larger Treponema populations sites without archaea provides further support for this hypothesis. PMID:15067114

  5. Transient population dynamics: Relations to life history and initial population state

    USGS Publications Warehouse

    Koons, D.N.; Grand, J.B.; Zinner, B.; Rockwell, R.F.

    2005-01-01

    Most environments are variable and disturbances (e.g., hurricanes, fires) can lead to substantial changes in a population's state (i.e., age, stage, or size distribution). In these situations, the long-term (i.e., asymptotic) measure of population growth rate (??1) may inaccurately represent population growth in the short-term. Thus, we calculated the short-term (i.e., transient) population growth rate and its sensitivity to changes in the life-cycle parameters for three bird and three mammal species with widely varying life histories. Further, we performed these calculations for initial population states that spanned the entire range of possibilities. Variation in a population's initial net reproductive value largely explained the variation in transient growth rates and their sensitivities to changes in life-cycle parameters (all AICc ??? 6.67 units better than the null model, all R2 ??? 0.55). Additionally, the transient fertility and adult survival sensitivities tended to increase with the initial net reproductive value of the population, whereas the sub-adult survival sensitivity decreased. Transient population dynamics of long-lived, slow reproducing species were more variable and more different than asymptotic dynamics than they were for short-lived, fast reproducing species. Because ??1 can be a biased estimate of the actual growth rate in the short-term (e.g., 19% difference), conservation and wildlife biologists should consider transient dynamics when developing management plans that could affect a population's state, or whenever population state could be unstable.

  6. A quantitative model of honey bee colony population dynamics.

    PubMed

    Khoury, David S; Myerscough, Mary R; Barron, Andrew B

    2011-04-18

    Since 2006 the rate of honey bee colony failure has increased significantly. As an aid to testing hypotheses for the causes of colony failure we have developed a compartment model of honey bee colony population dynamics to explore the impact of different death rates of forager bees on colony growth and development. The model predicts a critical threshold forager death rate beneath which colonies regulate a stable population size. If death rates are sustained higher than this threshold rapid population decline is predicted and colony failure is inevitable. The model also predicts that high forager death rates draw hive bees into the foraging population at much younger ages than normal, which acts to accelerate colony failure. The model suggests that colony failure can be understood in terms of observed principles of honey bee population dynamics, and provides a theoretical framework for experimental investigation of the problem.

  7. Uncovering the transmission dynamics of Plasmodium vivax using population genetics

    PubMed Central

    Barry, Alyssa E.; Waltmann, Andreea; Koepfli, Cristian; Barnadas, Celine; Mueller, Ivo

    2015-01-01

    Population genetic analysis of malaria parasites has the power to reveal key insights into malaria epidemiology and transmission dynamics with the potential to deliver tools to support control and elimination efforts. Analyses of parasite genetic diversity have suggested that Plasmodium vivax populations are more genetically diverse and less structured than those of Plasmodium falciparum indicating that P. vivax may be a more ancient parasite of humans and/or less susceptible to population bottlenecks, as well as more efficient at disseminating its genes. These population genetic insights into P. vivax transmission dynamics provide an explanation for its relative resilience to control efforts. Here, we describe current knowledge on P. vivax population genetic structure, its relevance to understanding transmission patterns and relapse and how this information can inform malaria control and elimination programmes. PMID:25891915

  8. Population dynamics and the ecological stability of obligate pollination mutualisms

    USGS Publications Warehouse

    Holland, J. Nathaniel; DeAngelis, Donald L.

    2001-01-01

    Mutualistic interactions almost always produce both costs and benefits for each of the interacting species. It is the difference between gross benefits and costs that determines the net benefit and the per-capita effect on each of the interacting populations. For example, the net benefit of obligate pollinators, such as yucca and senita moths, to plants is determined by the difference between the number of ovules fertilized from moth pollination and the number of ovules eaten by the pollinator's larvae. It is clear that if pollinator populations are large, then, because many eggs are laid, costs to plants are large, whereas, if pollinator populations are small, gross benefits are low due to lack of pollination. Even though the size and dynamics of the pollinator population are likely to be crucial, their importance has been neglected in the investigation of mechanisms, such as selective fruit abortion, that can limit costs and increase net benefits. Here, we suggest that both the population size and dynamics of pollinators are important in determining the net benefits to plants, and that fruit abortion can significantly affect these. We develop a model of mutualism between populations of plants and their pollinating seed-predators to explore the ecological consequences of fruit abortion on pollinator population dynamics and the net effect on plants. We demonstrate that the benefit to a plant population is unimodal as a function of pollinator abundance, relative to the abundance of flowers. Both selective abortion of fruit with eggs and random abortion of fruit, without reference to whether they have eggs or not, can limit pollinator population size. This can increase the net benefits to the plant population by limiting the number of eggs laid, if the pollination rate remains high. However, fruit abortion can possibly destabilize the pollinator population, with negative consequences for the plant population.

  9. Population dynamics: Social security, markets, and families

    PubMed Central

    Lee, Ronald D.; Lee, Sang-Hyop

    2015-01-01

    Upward intergenerational flows – from the working ages to old age – are increasing substantially in the advanced industrialized countries and are much larger than in developing countries. Population aging is the most important factor leading to this change. Thus, in the absence of a major demographic shift, e.g., a return to high fertility, an increase in upward flows is inevitable. Even so, three other important factors will influence the magnitudes of upward flows. First, labor income varies at older ages due to differences in average age at retirement, productivity, unemployment, and hours worked. Second, the age patterns of consumption at older ages vary primarily due to differences in spending on health. Third, spending on human capital, i.e., spending child health and education, varies. Human capital spending competes with spending on the elderly, but it also increases the productivity of subsequent generations of workers and the resources available to support consumption in old age. All contemporary societies rely on a variety of institutions and economic mechanisms to shift economic resources from the working ages to the dependent ages – the young and the old. Three institutions dominate intergenerational flows: governments which implement social security, education, and other public transfer programs; markets which are key to the accumulation of assets, e.g., funded pensions and housing; and families which provide economic support to children in all societies and to the elderly in many. The objectives of this paper are, first, to describe how population aging and other changes influence the direction and magnitude of intergenerational flows; and, second, to contrast the institutional approaches to intergenerational flows as they are practiced around the world. The paper relies extensively on National Transfer Accounts, a system for measuring economic flows across age in a manner consistent with the UN System of National Accounts. These accounts are

  10. Stress response of methanogenic archaea from Siberian permafrost compared with methanogens from nonpermafrost habitats.

    PubMed

    Morozova, Daria; Wagner, Dirk

    2007-07-01

    We examined the survival potential of methanogenic archaea exposed to different environmental stress conditions such as low temperature (down to -78.5 degrees C), high salinity (up to 6 M NaCl), starvation (up to 3 months), long-term freezing (up to 2 years), desiccation (up to 25 days) and oxygen exposure (up to 72 h). The experiments were conducted with methanogenic archaea from Siberian permafrost and were complemented by experiments on well-studied methanogens from nonpermafrost habitats. Our results indicate a high survival potential of a methanogenic archaeon from Siberian permafrost when exposed to the extreme conditions tested. In contrast, these stress conditions were lethal for methanogenic archaea isolated from nonpermafrost habitats. A better adaptation to stress was observed at a low temperature (4 degrees C) compared with a higher one (28 degrees C). Given the unique metabolism of methanogenic archaea in general and the long-term survival and high tolerance to extreme conditions of the methanogens investigated in this study, methanogenic archaea from permafrost should be considered as primary candidates for possible subsurface Martian life.

  11. Unstable dynamics and population limitation in mountain hares.

    PubMed

    Newey, Scott; Dahl, Fredrik; Willebrand, Tomas; Thirgood, Simon

    2007-11-01

    The regular large-scale population fluctuations that characterize many species of northern vertebrates have fascinated ecologists since the time of Charles Elton. There is still, however, no clear consensus on what drives these fluctuations. Throughout their circumpolar distribution, mountain hares Lepus timidus show regular and at times dramatic changes in density. There are distinct differences in the nature, amplitude and periodicity of these fluctuations between regions and the reasons for these population fluctuations and the geographic differences remain largely unknown. In this review we synthesize knowledge on the factors that limit or regulate mountain hare populations across their range in an attempt to identify the drivers of unstable dynamics. Current knowledge of mountain hare population dynamics indicates that trophic interactions--either predator-prey or host-parasite--appear to be the major factor limiting populations and these interactions may contribute to the observed unstable dynamics. There is correlative and experimental evidence that some mountain hare populations in Fennoscandia are limited by predation and that predation may link hare and grouse cycles to microtine cycles. Predation is unlikely to be important in mountain hare populations in Scotland as most hares occur on sporting estates where predators are controlled, but this hypothesis remains to be experimentally tested. There is, however, emerging experimental evidence that some Scottish mountain hare populations are limited by parasites and that host-parasite interactions contribute to unstable dynamics. By contrast, there is little evidence from Fennoscandia that parasitism is of any importance to mountain hare population dynamics, although disease may cause periodic declines. Although severe weather and food limitation may interact to cause periodic high winter mortality there is little evidence that food availability limits mountain hare populations. There is a paucity of

  12. Estimating Traveler Populations at Airport and Cruise Terminals for Population Distribution and Dynamics

    SciTech Connect

    Jochem, Warren C; Sims, Kelly M; Bright, Eddie A; Urban, Marie L; Rose, Amy N; Coleman, Phil R; Bhaduri, Budhendra L

    2013-01-01

    In recent years, uses of high-resolution population distribution databases are increasing steadily for environmental, socioeconomic, public health, and disaster-related research and operations. With the development of daytime population distribution, temporal resolution of such databases has been improved. However, the lack of incorporation of transitional population, namely business and leisure travelers, leaves a significant population unaccounted for within the critical infrastructure networks, such as at transportation hubs. This paper presents two general methodologies for estimating passenger populations in airport and cruise port terminals at a high temporal resolution which can be incorporated into existing population distribution models. The methodologies are geographically scalable and are based on, and demonstrate how, two different transportation hubs with disparate temporal population dynamics can be modeled utilizing publicly available databases including novel data sources of flight activity from the Internet which are updated in near-real time. The airport population estimation model shows great potential for rapid implementation for a large collection of airports on a national scale, and the results suggest reasonable accuracy in the estimated passenger traffic. By incorporating population dynamics at high temporal resolutions into population distribution models, we hope to improve the estimates of populations exposed to or at risk to disasters, thereby improving emergency planning and response, and leading to more informed policy decisions.

  13. Rumen microbial diversity in Svalbard reindeer, with particular emphasis on methanogenic archaea.

    PubMed

    Sundset, Monica A; Edwards, Joan E; Cheng, Yan Fen; Senosiain, Roberto S; Fraile, Maria N; Northwood, Korinne S; Praesteng, Kirsti E; Glad, Trine; Mathiesen, Svein D; Wright, André-Denis G

    2009-12-01

    Ruminal methanogens, bacteria and ciliate protozoa of Svalbard reindeer grazing natural pastures in October (late fall) and April (late winter) were investigated using molecular-based approaches. The appetite of the Svalbard reindeer peaks in August (summer) and is at its lowest in March (winter). Microbial numbers, quantified by real-time PCR, did not change significantly between October and April, when food intakes are at similar levels, although the numbers of methanogens tended to be higher in October (P=0.074), and ciliate numbers tended to be higher in April (P=0.055). Similarly, no change was detected in the bacterial and protozoal population composition by rRNA gene-based denaturing gradient gel electrophoresis analysis. Dominant methanogens were identified using a 16S rRNA gene library (97 clones) prepared from pooled PCR products from reindeer on October pasture (n=5). Eleven of the 22 distinct operational taxonomic units (OTUs) generated exhibited a high degree of sequence similarity to methanogens affiliated with Methanobacteriales (eight OTUs), Methanomicrobiales (one OTU) and Methanosarcinales (two OTUs). The remaining 11 OTUs (53% of the clones) were associated with a cluster of uncultivated ruminal archaea. This study has provided important insights into the rumen microbiome of a high-arctic herbivorous animal living under harsh nutritional conditions, and evidence suggesting that host type affects the population size of ruminal methanogens.

  14. Population dynamics of white-winged scoters

    USGS Publications Warehouse

    Krementz, D.G.; Brown, P.W.; Kehoe, F.P.; Houston, C.S.

    1997-01-01

    A significant (P < 0.01) decline between 1961 and 1993 in ratio of harvested young per adult in the Atlantic Flyway (age ration) of white-winged scoters (Melanitta fusca) led us to examine annual survival rates and harvest of this species. Compared to waterfowl with similar life histories, black scoters (M. nigra) and surf scoters (M. perspicillata), the decline in age ratios of white-winged scoter age ratios was not significantly different (P = 0.11). Adult females banded at Redberry Lake, Saskatchewan that winter along both coasts, had high annual survival rates (0.773 plus or minus 0.0176 [SE]). High harvest in the Atlantic Flyway was not followed by an increase in production (age ratios) the following year or 2, i.e., there was no short-term rebound in recruitment by the population. Harvest of white-winged scoters in the Atlantic Flyway was explained by the age ratio in the fall flight and by hunter effort.

  15. Environmental Drivers of Differences in Microbial Community Structure in Crude Oil Reservoirs across a Methanogenic Gradient

    PubMed Central

    Shelton, Jenna L.; Akob, Denise M.; McIntosh, Jennifer C.; Fierer, Noah; Spear, John R.; Warwick, Peter D.; McCray, John E.

    2016-01-01

    Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, and formation water chemistry. Twenty-two oil production wells from north central Louisiana, USA, were sampled for analysis of microbial community structure and fluid geochemistry. Archaea were the dominant microbial community in the majority of the wells sampled. Methanogens, including hydrogenotrophic and methylotrophic organisms, were numerically dominant in every well, accounting for, on average, over 98% of the total Archaea present. The dominant Bacteria groups were Pseudomonas, Acinetobacter, Enterobacteriaceae, and Clostridiales, which have also been identified in other microbially-altered oil reservoirs. Comparing microbial community structure to fluid (gas, water, and oil) geochemistry revealed that the relative extent of biodegradation, salinity, and spatial location were the major drivers of microbial diversity. Archaeal relative abundance was independent of the extent of methanogenesis, but closely correlated to the extent of crude oil biodegradation; therefore, microbial community structure is likely not a good sole predictor of methanogenic activity, but may predict the extent of crude oil biodegradation. However, when the shallow, highly biodegraded, low salinity wells were excluded from the statistical analysis, no environmental parameters could explain the differences in microbial community structure. This suggests that the microbial community structure of the 5 shallow, up-dip wells was different than the 17 deeper, down-dip wells. Also, the 17 down-dip wells

  16. Environmental drivers of differences in microbial community structure in crude oil reservoirs across a methanogenic gradient

    USGS Publications Warehouse

    Shelton, Jenna L.; Akob, Denise M.; McIntosh, Jennifer C.; Fierer, Noah; Spear, John R.; Warwick, Peter D.; McCray, John E.

    2016-01-01

    Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, and formation water chemistry. Twenty-two oil production wells from north central Louisiana, USA, were sampled for analysis of microbial community structure and fluid geochemistry. Archaea were the dominant microbial community in the majority of the wells sampled. Methanogens, including hydrogenotrophic and methylotrophic organisms, were numerically dominant in every well, accounting for, on average, over 98% of the total Archaea present. The dominant Bacteria groups were Pseudomonas, Acinetobacter, Enterobacteriaceae, and Clostridiales, which have also been identified in other microbially-altered oil reservoirs. Comparing microbial community structure to fluid (gas, water, and oil) geochemistry revealed that the relative extent of biodegradation, salinity, and spatial location were the major drivers of microbial diversity. Archaeal relative abundance was independent of the extent of methanogenesis, but closely correlated to the extent of crude oil biodegradation; therefore, microbial community structure is likely not a good sole predictor of methanogenic activity, but may predict the extent of crude oil biodegradation. However, when the shallow, highly biodegraded, low salinity wells were excluded from the statistical analysis, no environmental parameters could explain the differences in microbial community structure. This suggests that the microbial community structure of the 5 shallow, up-dip wells was different than the 17 deeper, down-dip wells. Also, the 17 down-dip wells

  17. Environmental Drivers of Differences in Microbial Community Structure in Crude Oil Reservoirs across a Methanogenic Gradient.

    PubMed

    Shelton, Jenna L; Akob, Denise M; McIntosh, Jennifer C; Fierer, Noah; Spear, John R; Warwick, Peter D; McCray, John E

    2016-01-01

    Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, and formation water chemistry. Twenty-two oil production wells from north central Louisiana, USA, were sampled for analysis of microbial community structure and fluid geochemistry. Archaea were the dominant microbial community in the majority of the wells sampled. Methanogens, including hydrogenotrophic and methylotrophic organisms, were numerically dominant in every well, accounting for, on average, over 98% of the total Archaea present. The dominant Bacteria groups were Pseudomonas, Acinetobacter, Enterobacteriaceae, and Clostridiales, which have also been identified in other microbially-altered oil reservoirs. Comparing microbial community structure to fluid (gas, water, and oil) geochemistry revealed that the relative extent of biodegradation, salinity, and spatial location were the major drivers of microbial diversity. Archaeal relative abundance was independent of the extent of methanogenesis, but closely correlated to the extent of crude oil biodegradation; therefore, microbial community structure is likely not a good sole predictor of methanogenic activity, but may predict the extent of crude oil biodegradation. However, when the shallow, highly biodegraded, low salinity wells were excluded from the statistical analysis, no environmental parameters could explain the differences in microbial community structure. This suggests that the microbial community structure of the 5 shallow, up-dip wells was different than the 17 deeper, down-dip wells. Also, the 17 down-dip wells

  18. A general method for modeling population dynamics and its applications.

    PubMed

    Shestopaloff, Yuri K

    2013-12-01

    Studying populations, be it a microbe colony or mankind, is important for understanding how complex systems evolve and exist. Such knowledge also often provides insights into evolution, history and different aspects of human life. By and large, populations' prosperity and decline is about transformation of certain resources into quantity and other characteristics of populations through growth, replication, expansion and acquisition of resources. We introduce a general model of population change, applicable to different types of populations, which interconnects numerous factors influencing population dynamics, such as nutrient influx and nutrient consumption, reproduction period, reproduction rate, etc. It is also possible to take into account specific growth features of individual organisms. We considered two recently discovered distinct growth scenarios: first, when organisms do not change their grown mass regardless of nutrients availability, and the second when organisms can reduce their grown mass by several times in a nutritionally poor environment. We found that nutrient supply and reproduction period are two major factors influencing the shape of population growth curves. There is also a difference in population dynamics between these two groups. Organisms belonging to the second group are significantly more adaptive to reduction of nutrients and far more resistant to extinction. Also, such organisms have substantially more frequent and lesser in amplitude fluctuations of population quantity for the same periodic nutrient supply (compared to the first group). Proposed model allows adequately describing virtually any possible growth scenario, including complex ones with periodic and irregular nutrient supply and other changing parameters, which present approaches cannot do.

  19. Evolutionary dynamics of general group interactions in structured populations

    NASA Astrophysics Data System (ADS)

    Li, Aming; Broom, Mark; Du, Jinming; Wang, Long

    2016-02-01

    The evolution of populations is influenced by many factors, and the simple classical models have been developed in a number of important ways. Both population structure and multiplayer interactions have been shown to significantly affect the evolution of important properties, such as the level of cooperation or of aggressive behavior. Here we combine these two key factors and develop the evolutionary dynamics of general group interactions in structured populations represented by regular graphs. The traditional linear and threshold public goods games are adopted as models to address the dynamics. We show that for linear group interactions, population structure can favor the evolution of cooperation compared to the well-mixed case, and we see that the more neighbors there are, the harder it is for cooperators to persist in structured populations. We further show that threshold group interactions could lead to the emergence of cooperation even in well-mixed populations. Here population structure sometimes inhibits cooperation for the threshold public goods game, where depending on the benefit to cost ratio, the outcomes are bistability or a monomorphic population of defectors or cooperators. Our results suggest, counterintuitively, that structured populations are not always beneficial for the evolution of cooperation for nonlinear group interactions.

  20. Inferences about ungulate population dynamics derived from age ratios

    USGS Publications Warehouse

    Harris, N.C.; Kauffman, M.J.; Mills, L.S.

    2008-01-01

    Age ratios (e.g., calf:cow for elk and fawn:doe for deer) are used regularly to monitor ungulate populations. However, it remains unclear what inferences are appropriate from this index because multiple vital rate changes can influence the observed ratio. We used modeling based on elk (Cervus elaphus) life-history to evaluate both how age ratios are influenced by stage-specific fecundity and survival and how well age ratios track population dynamics. Although all vital rates have the potential to influence calf:adult female ratios (i.e., calf:xow ratios), calf survival explained the vast majority of variation in calf:adult female ratios due to its temporal variation compared to other vital rates. Calf:adult female ratios were positively correlated with population growth rate (??) and often successfully indicated population trajectories. However, calf:adult female ratios performed poorly at detecting imposed declines in calf survival, suggesting that only the most severe declines would be rapidly detected. Our analyses clarify that managers can use accurate, unbiased age ratios to monitor arguably the most important components contributing to sustainable ungulate populations, survival rate of young and ??. However, age ratios are not useful for detecting gradual declines in survival of young or making inferences about fecundity or adult survival in ungulate populations. Therefore, age ratios coupled with independent estimates of population growth or population size are necessary to monitor ungulate population demography and dynamics closely through time.

  1. Predicting when climate-driven phenotypic change affects population dynamics.

    PubMed

    McLean, Nina; Lawson, Callum R; Leech, Dave I; van de Pol, Martijn

    2016-06-01

    Species' responses to climate change are variable and diverse, yet our understanding of how different responses (e.g. physiological, behavioural, demographic) relate and how they affect the parameters most relevant for conservation (e.g. population persistence) is lacking. Despite this, studies that observe changes in one type of response typically assume that effects on population dynamics will occur, perhaps fallaciously. We use a hierarchical framework to explain and test when impacts of climate on traits (e.g. phenology) affect demographic rates (e.g. reproduction) and in turn population dynamics. Using this conceptual framework, we distinguish four mechanisms that can prevent lower-level responses from impacting population dynamics. Testable hypotheses were identified from the literature that suggest life-history and ecological characteristics which could predict when these mechanisms are likely to be important. A quantitative example on birds illustrates how, even with limited data and without fully-parameterized population models, new insights can be gained; differences among species in the impacts of climate-driven phenological changes on population growth were not explained by the number of broods or density dependence. Our approach helps to predict the types of species in which climate sensitivities of phenotypic traits have strong demographic and population consequences, which is crucial for conservation prioritization of data-deficient species.

  2. Molecular analysis of methanogens involved in methanogenic degradation of tetramethylammonium hydroxide in full-scale bioreactors.

    PubMed

    Whang, Liang-Ming; Hu, Tai-Ho; Liu, Pao-Wen Grace; Hung, Yu-Ching; Fukushima, Toshikazu; Wu, Yi-Ju; Chang, Shao-Hsiung

    2015-02-01

    This study investigated methanogenic communities involved in degradation of tetramethylammonium hydroxide (TMAH) in three full-scale bioreactors treating TMAH-containing wastewater. Based on the results of terminal-restriction fragment-length polymorphism (T-RFLP) and quantitative PCR analyses targeting the methyl-coenzyme M reductase alpha subunit (mcrA) genes retrieved from three bioreactors, Methanomethylovorans and Methanosarcina were the dominant methanogens involved in the methanogenic degradation of TMAH in the bioreactors. Furthermore, batch experiments were conducted to evaluate mcrA messenger RNA (mRNA) expression during methanogenic TMAH degradation, and the results indicated that a higher level of TMAH favored mcrA mRNA expression by Methansarcina, while Methanomethylovorans could only express considerable amount of mcrA mRNA at a lower level of TMAH. These results suggest that Methansarcina is responsible for methanogenic TMAH degradation at higher TMAH concentrations, while Methanomethylovorans may be important at a lower TMAH condition.

  3. Gardnerella vaginalis population dynamics in bacterial vaginosis.

    PubMed

    Hilbert, D W; Schuyler, J A; Adelson, M E; Mordechai, E; Sobel, J D; Gygax, S E

    2017-02-14

    Bacterial vaginosis (BV) is the leading cause of vaginal discharge and is associated with the facultative Gram-variable bacterium Gardnerella vaginalis, whose population structure consists of four clades. Our goal was to determine if these clades differ with regard to abundance during BV. We performed a short-term longitudinal study of BV. Patients were evaluated according to the Amsel criteria and Nugent scoring at initial diagnosis, immediately after treatment and at a 40- to 45-day follow-up visit. G. vaginalis clade abundance was determined by quantitative real-time polymerase chain reactions (qPCRs). Among all specimens, the abundance of clades 1 and 4 were higher than that of clades 2 and 3 (P < 0.001). In general, the abundance of each clade increased with the degree of vaginal dysbiosis, as determined by the Nugent score and was greater in women with Amsel 4 compared with those with Amsel 0. Only clade 1 abundance was greater when Amsel 0 or 1 specimens were compared with Amsel 2 or 3 specimens (P < 0.01). Following antimicrobial treatment, abundance of clades 1 (P < 0.001) and 4 (P < 0.05) decreased regardless of the clinical and microbiological outcome, whereas clade 2 only decreased in women who had a sustained treatment response for 40-45 days (P < 0.01). Recurrent BV was characterized by post-treatment increases of clade 1 and 2 (P < 0.01). Clades 1 and 4 predominate in vaginal specimens. Clade abundance differs with regard to the Nugent score, the Amsel criteria, and response to therapy and BV recurrence.

  4. Modularized Evolution in Archaeal Methanogens Phylogenetic Forest

    PubMed Central

    Li, Jun; Wong, Chi-Fat; Wong, Mabel Ting; Huang, He; Leung, Frederick C.

    2014-01-01

    Methanogens are methane-producing archaea that plays a key role in the global carbon cycle. To date, the evolutionary history of methanogens and closely related nonmethanogen species remains unresolved among studies conducted upon different genetic markers, attributing to horizontal gene transfers (HGTs). With an effort to decipher both congruent and conflicting evolutionary events, reconstruction of coevolved gene clusters and hierarchical structure in the archaeal methanogen phylogenetic forest, comprehensive evolution, and network analyses were performed upon 3,694 gene families from 41 methanogens and 33 closely related archaea. Our results show that 1) greater than 50% of genes are in topological dissonance with others; 2) the prevalent interorder HGTs, even for core genes, in methanogen genomes led to their scrambled phylogenetic relationships; 3) most methanogenesis-related genes have experienced at least one HGT; 4) greater than 20% of the genes in methanogen genomes were transferred horizontally from other archaea, with genes involved in cell-wall synthesis and defense system having been transferred most frequently; 5) the coevolution network contains seven statistically robust modules, wherein the central module has the highest average node strength and comprises a majority of the core genes; 6) different coevolutionary module genes boomed in different time and evolutionary lineage, constructing diversified pan-genome structures; 7) the modularized evolution is also closely related to the vertical evolution signals and the HGT rate of the genes. Overall, this study presented a modularized phylogenetic forest that describes a combination of complicated vertical and nonvertical evolutionary processes for methanogenic archaeal species. PMID:25502908

  5. Real-Time Bioluminescent Tracking of Cellular Population Dynamics

    SciTech Connect

    Close, Dan; Sayler, Gary Steven; Xu, Tingting; Ripp, Steven Anthony

    2014-01-01

    Cellular population dynamics are routinely monitored across many diverse fields for a variety of purposes. In general, these dynamics are assayed either through the direct counting of cellular aliquots followed by extrapolation to the total population size, or through the monitoring of signal intensity from any number of externally stimulated reporter proteins. While both viable methods, here we describe a novel technique that allows for the automated, non-destructive tracking of cellular population dynamics in real-time. This method, which relies on the detection of a continuous bioluminescent signal produced through expression of the bacterial luciferase gene cassette, provides a low cost, low time-intensive means for generating additional data compared to alternative methods.

  6. Real-Time Bioluminescent Tracking of Cellular Population Dynamics

    PubMed Central

    Close, Dan; Xu, Tingling; Ripp, Steven; Sayler, Gary

    2015-01-01

    Cellular population dynamics are routinely monitored across many diverse fields for a variety of purposes. In general, these dynamics are assayed either through the direct counting of cellular aliquots followed by extrapolation to the total population size, or through the monitoring of signal intensity from any number of externally stimulated reporter proteins. While both viable methods, here we describe a novel technique that allows for the automated, non-destructive tracking of cellular population dynamics in real-time. This method, which relies on the detection of a continuous bioluminescent signal produced through expression of the bacterial luciferase gene cassette, provides a low cost, low time-intensive means for generating additional data compared to alternative methods. PMID:24166372

  7. Spatially structured population dynamics in feral oilseed rape.

    PubMed Central

    Crawley, Michael J.; Brown, Susan L.

    2004-01-01

    We studied the population dynamics of feral oilseed rape (Brassica napus) for 10 years (1993-2002) in 3658 adjacent permanent 100 m quadrats in the verges of the M25 motorway around London, UK. The aim was to determine the relative importance of different factors affecting the observed temporal patterns of population dynamics and their spatial correlations. A wide range of population dynamics was observed (downward or upward trends, cycles, local extinctions and recolonizations), but overall the populations were not self-replacing (lambda < 1). Many quadrats remained unoccupied throughout the study period, but a few were occupied at high densities for all 10 years. Most quadrats showed transient oilseed rape populations, lasting 1-4 years. There were strong spatial patterns in mean population density, associated with soil conditions and the successional age of the plant community dominating the verge, and these large-scale spatial patterns were highly consistent from year to year. The importance of seed spilled from trucks in transit to the processing plant at Erith in Kent was confirmed: rape populations were significantly higher on the 'to Erith' verge than the 'from Erith' verge (overall mean 2.83-fold greater stem density). Quadrats in which lambda > 1 were much more frequent in the 'to Erith' verge, indicating that seed immigration can give the spurious impression of self-replacing population dynamics in time-series analysis. There was little evidence of a pervasive Moran effect, and climatic forcing did not produce widespread large-scale synchrony in population dynamics for the motorway as a whole; just 23% of quadrats had significant rank correlations with the mean time-series. There was, however, significant local spatial synchrony of population dynamics, apparently associated with soil disturbance and seed input. This study draws attention to the possibility that different processes may impose population synchrony at different scales. We hypothesize that

  8. Dynamics of Sequence -Discrete Bacterial Populations Inferred Using Metagenomes

    SciTech Connect

    Stevens, Sarah; Bendall, Matthew; Kang, Dongwan; Froula, Jeff; Egan, Rob; Chan, Leong-Keat; Tringe, Susannah; McMahon, Katherine; Malmstrom, Rex

    2014-03-14

    From a multi-year metagenomic time series of two dissimilar Wisconsin lakes we have assembled dozens of genomes using a novel approach that bins contigs into distinct genome based on sequence composition, e.g. kmer frequencies, and contig coverage patterns at various times points. Next, we investigated how these genomes, which represent sequence-discrete bacterial populations, evolved over time and used the time series to discover the population dynamics. For example, we explored changes in single nucleotide polymorphism (SNP) frequencies as well as patterns of gene gain and loss in multiple populations. Interestingly, SNP diversity was purged at nearly every genome position in some populations during the course of this study, suggesting these populations may have experienced genome-wide selective sweeps. This represents the first direct, time-resolved observations of periodic selection in natural populations, a key process predicted by the ecotype model of bacterial diversification.

  9. A mathematical model of population dynamics for Batesian mimicry system.

    PubMed

    Seno, Hiromi; Kohno, Takahiro

    2012-01-01

    We analyse a mathematical model of the population dynamics among a mimic, a corresponding model, and their common predator populations. Predator changes its search-and-attack probability by forming and losing its search image. It cannot distinguish the mimic from the model. Once a predator eats a model individual, it comes to omit both the model and the mimic species from its diet menu. If a predator eats a mimic individual, it comes to increase the search-and-attack probability for both model and mimic. The predator may lose the repulsive/attractive search image with a probability per day. By analysing our model, we can derive the mathematical condition for the persistence of model and mimic populations, and then get the result that the condition for the persistence of model population does not depend on the mimic population size, while the condition for the persistence of mimic population does depend the predator's memory of search image.

  10. Stochastic Population Dynamics of a Montane Ground-Dwelling Squirrel

    PubMed Central

    Hostetler, Jeffrey A.; Kneip, Eva; Van Vuren, Dirk H.; Oli, Madan K.

    2012-01-01

    Understanding the causes and consequences of population fluctuations is a central goal of ecology. We used demographic data from a long-term (1990–2008) study and matrix population models to investigate factors and processes influencing the dynamics and persistence of a golden-mantled ground squirrel (Callospermophilus lateralis) population, inhabiting a dynamic subalpine habitat in Colorado, USA. The overall deterministic population growth rate λ was 0.94±SE 0.05 but it varied widely over time, ranging from 0.45±0.09 in 2006 to 1.50±0.12 in 2003, and was below replacement (λ<1) for 9 out of 18 years. The stochastic population growth rate λs was 0.92, suggesting a declining population; however, the 95% CI on λs included 1.0 (0.52–1.60). Stochastic elasticity analysis showed that survival of adult females, followed by survival of juvenile females and litter size, were potentially the most influential vital rates; analysis of life table response experiments revealed that the same three life history variables made the largest contributions to year-to year changes in λ. Population viability analysis revealed that, when the influences of density dependence and immigration were not considered, the population had a high (close to 1.0 in 50 years) probability of extinction. However, probability of extinction declined to as low as zero when density dependence and immigration were considered. Destabilizing effects of stochastic forces were counteracted by regulating effects of density dependence and rescue effects of immigration, which allowed our study population to bounce back from low densities and prevented extinction. These results suggest that dynamics and persistence of our study population are determined synergistically by density-dependence, stochastic forces, and immigration. PMID:22479616

  11. Asynchronous population dynamics of Siberian lemmings across the Palaearctic tundra.

    PubMed

    Erlinge, Sam; Danell, Kjell; Frodin, Peter; Hasselquist, Dennis; Nilsson, Patric; Olofsson, Eva-Britt; Svensson, Mikael

    1999-06-01

    The synchrony of Siberian lemming (Lemmus sibiricus L.) population dynamics was investigated during a ship-borne expedition along the Palaearctic tundra coast in the summer of 1994. On 12 sites along the coast from the Kola Peninsula to Wrangel Island, relative densities of lemmings were recorded using a standardised snap-trapping programme. The phase position of the lemming cycle in each of the studied populations was determined based on current density estimates, signs of previous density and the age profile of each population (ageing based on eye lens mass). In addition, dendrochronological methods were used to determine when the last peak in the density of microtine populations occurred at each site. The examined lemming populations were in different phases of the lemming cycle. Some populations were in the peak phase, as indicated by high current densities, an age profile in which older individuals were well represented, and signs of high previous density (abundant old lemming faeces). Other populations were in the decline phase, as reflected in a moderate current density, a predominance of older individuals and signs of high previous density. Populations in the low phase had an extremely low current density and showed signs of high previous density, while populations in the increase phase had a moderate current density, a predominance of younger individuals and showed signs of low previous density. The results of phase determinations based on dendrochronological methods support the findings based on lemming demography. Recent Russian studies carried out on some of the sites also agreed with our phase determination results. Thus, on a regional scale (across the whole Palaearctic tundra), the population dynamics of Siberian lemmings can be considered asynchronous. However, sites situated adjacent to each other were often phase synchronous, suggesting a more fine-grained pattern of dynamics with synchrony over distances as long as 1000 km or so, e.g. the Yamal

  12. Stochastic population dynamics of a montane ground-dwelling squirrel.

    PubMed

    Hostetler, Jeffrey A; Kneip, Eva; Van Vuren, Dirk H; Oli, Madan K

    2012-01-01

    Understanding the causes and consequences of population fluctuations is a central goal of ecology. We used demographic data from a long-term (1990-2008) study and matrix population models to investigate factors and processes influencing the dynamics and persistence of a golden-mantled ground squirrel (Callospermophilus lateralis) population, inhabiting a dynamic subalpine habitat in Colorado, USA. The overall deterministic population growth rate λ was 0.94±SE 0.05 but it varied widely over time, ranging from 0.45±0.09 in 2006 to 1.50±0.12 in 2003, and was below replacement (λ<1) for 9 out of 18 years. The stochastic population growth rate λ(s) was 0.92, suggesting a declining population; however, the 95% CI on λ(s) included 1.0 (0.52-1.60). Stochastic elasticity analysis showed that survival of adult females, followed by survival of juvenile females and litter size, were potentially the most influential vital rates; analysis of life table response experiments revealed that the same three life history variables made the largest contributions to year-to year changes in λ. Population viability analysis revealed that, when the influences of density dependence and immigration were not considered, the population had a high (close to 1.0 in 50 years) probability of extinction. However, probability of extinction declined to as low as zero when density dependence and immigration were considered. Destabilizing effects of stochastic forces were counteracted by regulating effects of density dependence and rescue effects of immigration, which allowed our study population to bounce back from low densities and prevented extinction. These results suggest that dynamics and persistence of our study population are determined synergistically by density-dependence, stochastic forces, and immigration.

  13. An Individual-Based Model of Zebrafish Population Dynamics Accounting for Energy Dynamics

    PubMed Central

    Beaudouin, Rémy; Goussen, Benoit; Piccini, Benjamin; Augustine, Starrlight; Devillers, James; Brion, François; Péry, Alexandre R. R.

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level. PMID:25938409

  14. Network evolution induced by the dynamical rules of two populations

    NASA Astrophysics Data System (ADS)

    Platini, Thierry; Zia, R. K. P.

    2010-10-01

    We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely extrovert (a) and introvert (b). In our model, each group is characterized by its size (Na and Nb) and preferred degree (κa and \\kappa_b\\ll \\kappa_a ). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees langkbbrang and langkabrang presents three time regimes and a non-monotonic behavior well captured by our theory. Surprisingly, when the population sizes are equal Na = Nb, the ratio of the restricted degree θ0 = langkabrang/langkbbrang appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by t < t1 = κb) the total number of links presents a linear evolution, where the two populations are indistinguishable and where θ0 = 1. Interestingly, in the intermediate time regime (defined for t_1\\lt t\\lt t_2\\propto \\kappa_a and for which θ0 = 5), the system reaches a transient stationary state, where the number of contacts among introverts remains constant while the number of connections increases linearly in the extrovert population. Finally, due to the competing dynamics, the network presents a frustrated stationary state characterized by a ratio θ0 = 3.

  15. Stochastic population dynamics in populations of western terrestrial garter snakes with divergent life histories

    USGS Publications Warehouse

    Miller, David A.; Clark, W.R.; Arnold, S.J.; Bronikowski, A.M.

    2011-01-01

    Comparative evaluations of population dynamics in species with temporal and spatial variation in life-history traits are rare because they require long-term demographic time series from multiple populations. We present such an analysis using demographic data collected during the interval 1978-1996 for six populations of western terrestrial garter snakes (Thamnophis elegans) from two evolutionarily divergent ecotypes. Three replicate populations from a slow-living ecotype, found in mountain meadows of northeastern California, were characterized by individuals that develop slowly, mature late, reproduce infrequently with small reproductive effort, and live longer than individuals of three populations of a fast-living ecotype found at lakeshore locales. We constructed matrix population models for each of the populations based on 8-13 years of data per population and analyzed both deterministic dynamics based on mean annual vital rates and stochastic dynamics incorporating annual variation in vital rates. (1) Contributions of highly variable vital rates to fitness (??s) were buffered against the negative effects of stochastic variation, and this relationship was consistent with differences between the meadow (M-slow) and lakeshore (L-fast) ecotypes. (2) Annual variation in the proportion of gravid females had the greatest negative effect among all vital rates on ?? s. The magnitude of variation in the proportion of gravid females and its effect on ??s was greater in M-slow than L-fast populations. (3) Variation in the proportion of gravid females, in turn, depended on annual variation in prey availability, and its effect on ??s was 4- 23 times greater in M-slow than L-fast populations. In addition to differences in stochastic dynamics between ecotypes, we also found higher mean mortality rates across all age classes in the L-fast populations. Our results suggest that both deterministic and stochastic selective forces have affected the evolution of divergent life

  16. Dynamical quorum sensing and clustering dynamics in a population of spatially distributed active rotators

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Maeyama, Satomi

    2013-02-01

    A model of clustering dynamics is proposed for a population of spatially distributed active rotators. A transition from excitable to oscillatory dynamics is induced by the increase of the local density of active rotators. It is interpreted as dynamical quorum sensing. In the oscillation regime, phase waves propagate without decay, which generates an effectively long-range interaction in the clustering dynamics. The clustering process becomes facilitated and only one dominant cluster appears rapidly as a result of the dynamical quorum sensing. An exact localized solution is found to a simplified model equation, and the competitive dynamics between two localized states is studied numerically.

  17. Restricted diversity of dental calculus methanogens over five centuries, France

    PubMed Central

    Huynh, Hong T. T.; Nkamga, Vanessa D.; Signoli, Michel; Tzortzis, Stéfan; Pinguet, Romuald; Audoly, Gilles; Aboudharam, Gérard; Drancourt, Michel

    2016-01-01

    Methanogens are acknowledged archaeal members of modern dental calculus microbiota and dental pathogen complexes. Their repertoire in ancient dental calculus is poorly known. We therefore investigated archaea in one hundred dental calculus specimens collected from individuals recovered from six archaeological sites in France dated from the 14th to 19th centuries AD. Dental calculus was demonstrated by macroscopic and cone-beam observations. In 56 calculus specimens free of PCR inhibition, PCR sequencing identified Candidatus Methanobrevibacter sp. N13 in 44.6%, Methanobrevibacter oralis in 19.6%, a new Methanomassiliicoccus luminyensis-like methanogen in 12.5%, a Candidatus Nitrososphaera evergladensis-like in one and Methanoculleus bourgensis in one specimen, respectively. One Candidatus Methanobrevibacter sp. N13 dental calculus was further documented by fluorescent in situ hybridization. The prevalence of dental calculus M. oralis was significantly lower in past populations than in modern populations (P = 0.03, Chi-square test). This investigation revealed a previously unknown repertoire of archaea found in the oral cavity of past French populations as reflected in preserved dental calculus. PMID:27166431

  18. Radial propagation in population dynamics with density-dependent diffusion

    NASA Astrophysics Data System (ADS)

    Ngamsaad, Waipot

    2014-01-01

    Population dynamics that evolve in a radial symmetric geometry are investigated. The nonlinear reaction-diffusion model, which depends on population density, is employed as the governing equation for this system. The approximate analytical solution to this equation is found. It shows that the population density evolves from the initial state and propagates in a traveling-wave-like manner for a long-time scale. If the distance is insufficiently long, the curvature has an ineluctable influence on the density profile and front speed. In comparison, the analytical solution is in agreement with the numerical solution.

  19. Within- and among-population variation in vital rates and population dynamics in a variable environment.

    PubMed

    Vincenzi, Simone; Mangel, Marc; Jesensˇek, Dusˇan; Garza, John C; Crivelli, Alain J

    2016-10-01

    Understanding the causes of within- and among-population differences in vital rates, life histories, and population dynamics is a central topic in ecology. To understand how within- and among-population variation emerges, we need long-term studies that include episodic events and contrasting environmental conditions, data to characterize individual and shared variation, and statistical models that can tease apart shared and individual contribution to the observed variation. We used long-term tag-recapture data to investigate and estimate within- and among-population differences in vital rates, life histories, and population dynamics of marble trout Salmo marmoratus, an endemic freshwater salmonid with a narrow range. Only ten populations of pure marble trout persist in headwaters of Alpine rivers in western Slovenia. Marble trout populations are also threatened by floods and landslides, which have already caused the extinction of two populations in recent years. We estimated and determined causes of variation in growth, survival, and recruitment both within and among populations, and evaluated trade-offs between them. Specifically, we estimated the responses of these traits to variation in water temperature, density, sex, early life conditions, and extreme events. We found that the effects of population density on traits were mostly limited to the early stages of life and that growth trajectories were established early in life. We found no clear effects of water temperature on vital rates. Population density varied over time, with flash floods and debris flows causing massive mortalities (>55% decrease in survival with respect to years with no floods) and threatening population persistence. Apart from flood events, variation in population density within streams was largely determined by variation in recruitment, with survival of older fish being relatively constant over time within populations, but substantially different among populations. Marble trout show a fast

  20. Population dynamics of king eiders breeding in northern Alaska

    USGS Publications Warehouse

    Bentzen, Rebecca L.; Powell, Abby N.

    2012-01-01

    The North American population of king eiders (Somateria spectabilis) has declined by more than 50% since the late 1970s for unknown reasons. King eiders spend most of their lives in remote areas, forcing managers to make regulatory and conservation decisions based on very little information. We incorporated available published estimates of vital rates with new estimates to build a female, stage-based matrix population model for king eiders and examine the processes underlying population dynamics of king eiders breeding at 2 sites, Teshekpuk and Kuparuk, on the coastal plain of northern Alaska and wintering around the Bering Sea (2001–2010). We predicted a decreasing population (λ = 0.981, 95% CI: 0.978–0.985), and that population growth was most sensitive to changes in adult female survival (sensitivity = 0.92). Low duckling survival may be a bottleneck to productivity (variation in ducking survival accounted for 66% of retrospective variation in λ). Adult survival was high (0.94) and invariant (σ = 0.0002, 95% CI: 0.0000–0.0007); however, catastrophic events could have a major impact and we need to consider how to mitigate and manage threats to adult survival. A hypothetical oil spill affecting breeding females in a primary spring staging area resulted in a severe population decline; although, transient population dynamics were relatively stable. However, if no catastrophic events occur, the more variable reproductive parameters (duckling and nest survival) may be more responsive to management actions.

  1. Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling.

    PubMed

    Lindh, Markus V; Sjöstedt, Johanna; Andersson, Anders F; Baltar, Federico; Hugerth, Luisa W; Lundin, Daniel; Muthusamy, Saraladevi; Legrand, Catherine; Pinhassi, Jarone

    2015-07-01

    Multiyear comparisons of bacterioplankton succession reveal that environmental conditions drive community shifts with repeatable patterns between years. However, corresponding insight into bacterioplankton dynamics at a temporal resolution relevant for detailed examination of variation and characteristics of specific populations within years is essentially lacking. During 1 year, we collected 46 samples in the Baltic Sea for assessing bacterial community composition by 16S rRNA gene pyrosequencing (nearly twice weekly during productive season). Beta-diversity analysis showed distinct clustering of samples, attributable to seemingly synchronous temporal transitions among populations (populations defined by 97% 16S rRNA gene sequence identity). A wide spectrum of bacterioplankton dynamics was evident, where divergent temporal patterns resulted both from pronounced differences in relative abundance and presence/absence of populations. Rates of change in relative abundance calculated for individual populations ranged from 0.23 to 1.79 day(-1) . Populations that were persistently dominant, transiently abundant or generally rare were found in several major bacterial groups, implying evolution has favoured a similar variety of life strategies within these groups. These findings suggest that high temporal resolution sampling allows constraining the timescales and frequencies at which distinct populations transition between being abundant or rare, thus potentially providing clues about physical, chemical or biological forcing on bacterioplankton community structure.

  2. Bacterial associations reveal spatial population dynamics in Anopheles gambiae mosquitoes

    PubMed Central

    Buck, Moritz; Nilsson, Louise K. J.; Brunius, Carl; Dabiré, Roch K.; Hopkins, Richard; Terenius, Olle

    2016-01-01

    The intolerable burden of malaria has for too long plagued humanity and the prospect of eradicating malaria is an optimistic, but reachable, target in the 21st century. However, extensive knowledge is needed about the spatial structure of mosquito populations in order to develop effective interventions against malaria transmission. We hypothesized that the microbiota associated with a mosquito reflects acquisition of bacteria in different environments. By analyzing the whole-body bacterial flora of An. gambiae mosquitoes from Burkina Faso by 16 S amplicon sequencing, we found that the different environments gave each mosquito a specific bacterial profile. In addition, the bacterial profiles provided precise and predicting information on the spatial dynamics of the mosquito population as a whole and showed that the mosquitoes formed clear local populations within a meta-population network. We believe that using microbiotas as proxies for population structures will greatly aid improving the performance of vector interventions around the world. PMID:26960555

  3. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences

    PubMed Central

    Yadav, Shailendra; Kundu, Sharbadeb; Ghosh, Sankar K.; Maitra, S. S.

    2015-01-01

    Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic) and Thaumarchaeota (mesophilic), were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about “methanogenic archaea composition” and “abundance” in the contrasting ecosystems like “landfill” and “marshland” may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process. PMID:26568700

  4. Binary Populations and Stellar Dynamics in Young Clusters

    NASA Astrophysics Data System (ADS)

    Vanbeveren, D.; Belkus, H.; Van Bever, J.; Mennekens, N.

    2008-06-01

    We first summarize work that has been done on the effects of binaries on theoretical population synthesis of stars and stellar phenomena. Next, we highlight the influence of stellar dynamics in young clusters by discussing a few candidate UFOs (unconventionally formed objects) like intermediate mass black holes, η Car, ζ Pup, γ2 Velorum and WR 140.

  5. Noise can prevent onset of chaos in spatiotemporal population dynamics

    NASA Astrophysics Data System (ADS)

    Petrovskii, S.; Morozov, A.; Malchow, H.; Sieber, M.

    2010-11-01

    Many theoretical approaches predict the dynamics of interacting populations to be chaotic but that has very rarely been observed in ecological data. It has therefore risen a question about factors that can prevent the onset of chaos by, for instance, making the population fluctuations synchronized over the whole habitat. One such factor is stochasticity. The so-called Moran effect predicts that a spatially correlated noise can synchronize the local population dynamics in a spatially discrete system, thus preventing the onset of spatiotemporal chaos. On the whole, however, the issue of noise has remained controversial and insufficiently understood. In particular, a well-built nonspatial theory infers that noise enhances chaos by making the system more sensitive to the initial conditions. In this paper, we address the problem of the interplay between deterministic dynamics and noise by considering a spatially explicit predator-prey system where some parameters are affected by noise. Our findings are rather counter-intuitive. We show that a small noise (i.e. preserving the deterministic skeleton) can indeed synchronize the population oscillations throughout space and hence keep the dynamics regular, but the dependence of the chaos prevention probability on the noise intensity is of resonance type. Once chaos has developed, it appears to be stable with respect to a small noise but it can be suppressed by a large noise. Finally, we show that our results are in a good qualitative agreement with some available field data.

  6. COMPARISON OF SAMPLING TECHNIQUES USED IN STUDYING LEPIDOPTERA POPULATION DYNAMICS

    EPA Science Inventory

    Four methods (light traps, foliage samples, canvas bands, and gypsy moth egg mass surveys) that are used to study the population dynamics of foliage-feeding Lepidoptera were compared for 10 species, including gypsy moth, Lymantria dispar L. Samples were collected weekly at 12 sit...

  7. Population Dynamics: A Curriculum Guide for Elementary and Secondary Teachers.

    ERIC Educational Resources Information Center

    Byrne, Robert; And Others

    Presented is one of five Wildlife and Environmental Education Teaching units that deal with resource management in a way that includes man as user and manager of natural resources. Included are activities (with their suggested grade levels) that deal with population dynamics. Fifteen supportive activities are described. A list of recommended films…

  8. Equilibrium solutions for microscopic stochastic systems in population dynamics.

    PubMed

    Lachowicz, Mirosław; Ryabukha, Tatiana

    2013-06-01

    The present paper deals with the problem of existence of equilibrium solutions of equations describing the general population dynamics at the microscopic level of modified Liouville equation (individually--based model) corresponding to a Markov jump process. We show the existence of factorized equilibrium solutions and discuss uniqueness. The conditions guaranteeing uniqueness or non-uniqueness are proposed under the assumption of periodic structures.

  9. Methane Production by Methanogens in Perchlorate-supplemented Media

    NASA Astrophysics Data System (ADS)

    Howe, K. L.; Gavin, P.; Goodhart, T.; Kral, T. A.

    2009-03-01

    Perchlorates, found on the martian surface, create a harsh environment. Methanogens are familiar with harsh environments and their growth was tested in perchlorate salt media. All four species of methanogens produced methane at all concentrations of each salt tested.

  10. Population dynamics and mutualism: Functional responses of benefits and costs

    USGS Publications Warehouse

    Holland, J. Nathaniel; DeAngelis, Donald L.; Bronstein, Judith L.

    2002-01-01

    We develop an approach for studying population dynamics resulting from mutualism by employing functional responses based on density‐dependent benefits and costs. These functional responses express how the population growth rate of a mutualist is modified by the density of its partner. We present several possible dependencies of gross benefits and costs, and hence net effects, to a mutualist as functions of the density of its partner. Net effects to mutualists are likely a monotonically saturating or unimodal function of the density of their partner. We show that fundamental differences in the growth, limitation, and dynamics of a population can occur when net effects to that population change linearly, unimodally, or in a saturating fashion. We use the mutualism between senita cactus and its pollinating seed‐eating moth as an example to show the influence of different benefit and cost functional responses on population dynamics and stability of mutualisms. We investigated two mechanisms that may alter this mutualism's functional responses: distribution of eggs among flowers and fruit abortion. Differences in how benefits and costs vary with density can alter the stability of this mutualism. In particular, fruit abortion may allow for a stable equilibrium where none could otherwise exist.

  11. Draft Genome Sequence of Antarctic Methanogen Enriched from Dry Valley Permafrost

    PubMed Central

    Buongiorno, Joy; Bird, Jordan T.; Krivushin, Kirill; Oshurkova, Victoria; Shcherbakova, Victoria; Rivkina, Elizaveta M.

    2016-01-01

    A genomic reconstruction belonging to the genus Methanosarcina was assembled from metagenomic data from a methane-producing enrichment of Antarctic permafrost. This is the first methanogen genome reported from permafrost of the Dry Valleys and can help shed light on future climate-affected methane dynamics. PMID:27932654

  12. Evolutionary dynamics of group interactions on structured populations: a review

    PubMed Central

    Perc, Matjaž; Gómez-Gardeñes, Jesús; Szolnoki, Attila; Floría, Luis M.; Moreno, Yamir

    2013-01-01

    Interactions among living organisms, from bacteria colonies to human societies, are inherently more complex than interactions among particles and non-living matter. Group interactions are a particularly important and widespread class, representative of which is the public goods game. In addition, methods of statistical physics have proved valuable for studying pattern formation, equilibrium selection and self-organization in evolutionary games. Here, we review recent advances in the study of evolutionary dynamics of group interactions on top of structured populations, including lattices, complex networks and coevolutionary models. We also compare these results with those obtained on well-mixed populations. The review particularly highlights that the study of the dynamics of group interactions, like several other important equilibrium and non-equilibrium dynamical processes in biological, economical and social sciences, benefits from the synergy between statistical physics, network science and evolutionary game theory. PMID:23303223

  13. Metamodels for transdisciplinary analysis of wildlife population dynamics.

    PubMed

    Lacy, Robert C; Miller, Philip S; Nyhus, Philip J; Pollak, J P; Raboy, Becky E; Zeigler, Sara L

    2013-01-01

    Wildlife population models have been criticized for their narrow disciplinary perspective when analyzing complexity in coupled biological - physical - human systems. We describe a "metamodel" approach to species risk assessment when diverse threats act at different spatiotemporal scales, interact in non-linear ways, and are addressed by distinct disciplines. A metamodel links discrete, individual models that depict components of a complex system, governing the flow of information among models and the sequence of simulated events. Each model simulates processes specific to its disciplinary realm while being informed of changes in other metamodel components by accessing common descriptors of the system, populations, and individuals. Interactions among models are revealed as emergent properties of the system. We introduce a new metamodel platform, both to further explain key elements of the metamodel approach and as an example that we hope will facilitate the development of other platforms for implementing metamodels in population biology, species risk assessments, and conservation planning. We present two examples - one exploring the interactions of dispersal in metapopulations and the spread of infectious disease, the other examining predator-prey dynamics - to illustrate how metamodels can reveal complex processes and unexpected patterns when population dynamics are linked to additional extrinsic factors. Metamodels provide a flexible, extensible method for expanding population viability analyses beyond models of isolated population demographics into more complete representations of the external and intrinsic threats that must be understood and managed for species conservation.

  14. Modeling structured population dynamics using data from unmarked individuals

    USGS Publications Warehouse

    Grant, Evan H. Campbell; Zipkin, Elise; Thorson, James T.; See, Kevin; Lynch, Heather J.; Kanno, Yoichiro; Chandler, Richard; Letcher, Benjamin H.; Royle, J. Andrew

    2014-01-01

    The study of population dynamics requires unbiased, precise estimates of abundance and vital rates that account for the demographic structure inherent in all wildlife and plant populations. Traditionally, these estimates have only been available through approaches that rely on intensive mark–recapture data. We extended recently developed N-mixture models to demonstrate how demographic parameters and abundance can be estimated for structured populations using only stage-structured count data. Our modeling framework can be used to make reliable inferences on abundance as well as recruitment, immigration, stage-specific survival, and detection rates during sampling. We present a range of simulations to illustrate the data requirements, including the number of years and locations necessary for accurate and precise parameter estimates. We apply our modeling framework to a population of northern dusky salamanders (Desmognathus fuscus) in the mid-Atlantic region (USA) and find that the population is unexpectedly declining. Our approach represents a valuable advance in the estimation of population dynamics using multistate data from unmarked individuals and should additionally be useful in the development of integrated models that combine data from intensive (e.g., mark–recapture) and extensive (e.g., counts) data sources.

  15. Metamodels for Transdisciplinary Analysis of Wildlife Population Dynamics

    PubMed Central

    Lacy, Robert C.; Miller, Philip S.; Nyhus, Philip J.; Pollak, J. P.; Raboy, Becky E.; Zeigler, Sara L.

    2013-01-01

    Wildlife population models have been criticized for their narrow disciplinary perspective when analyzing complexity in coupled biological – physical – human systems. We describe a “metamodel” approach to species risk assessment when diverse threats act at different spatiotemporal scales, interact in non-linear ways, and are addressed by distinct disciplines. A metamodel links discrete, individual models that depict components of a complex system, governing the flow of information among models and the sequence of simulated events. Each model simulates processes specific to its disciplinary realm while being informed of changes in other metamodel components by accessing common descriptors of the system, populations, and individuals. Interactions among models are revealed as emergent properties of the system. We introduce a new metamodel platform, both to further explain key elements of the metamodel approach and as an example that we hope will facilitate the development of other platforms for implementing metamodels in population biology, species risk assessments, and conservation planning. We present two examples – one exploring the interactions of dispersal in metapopulations and the spread of infectious disease, the other examining predator-prey dynamics – to illustrate how metamodels can reveal complex processes and unexpected patterns when population dynamics are linked to additional extrinsic factors. Metamodels provide a flexible, extensible method for expanding population viability analyses beyond models of isolated population demographics into more complete representations of the external and intrinsic threats that must be understood and managed for species conservation. PMID:24349567

  16. Population dynamics and climate change: what are the links?

    PubMed

    Stephenson, Judith; Newman, Karen; Mayhew, Susannah

    2010-06-01

    Climate change has been described as the biggest global health threat of the 21(st) century. World population is projected to reach 9.1 billion by 2050, with most of this growth in developing countries. While the principal cause of climate change is high consumption in the developed countries, its impact will be greatest on people in the developing world. Climate change and population can be linked through adaptation (reducing vulnerability to the adverse effects of climate change) and, more controversially, through mitigation (reducing the greenhouse gases that cause climate change). The contribution of low-income, high-fertility countries to global carbon emissions has been negligible to date, but is increasing with the economic development that they need to reduce poverty. Rapid population growth endangers human development, provision of basic services and poverty eradication and weakens the capacity of poor communities to adapt to climate change. Significant mass migration is likely to occur in response to climate change and should be regarded as a legitimate response to the effects of climate change. Linking population dynamics with climate change is a sensitive issue, but family planning programmes that respect and protect human rights can bring a remarkable range of benefits. Population dynamics have not been integrated systematically into climate change science. The contribution of population growth, migration, urbanization, ageing and household composition to mitigation and adaptation programmes needs urgent investigation.

  17. Identifying interactions among salmon populations from observed dynamics.

    PubMed

    Fujiwara, Masami

    2008-01-01

    A simple direct correlation analysis of individual counts between different populations often fails to characterize the true nature of population interactions; however, the most common data type available for population studies is count data, and one of the most important objectives in population and community ecology is to identify interactions among populations. Here, I examine the dynamics of the spawning abundance of fall-run chinook salmon spawning within the California Central Valley and the Klamath Basin, California, and the Columbia River Basin, Oregon. I analyzed multiple time series from each watershed using a multivariate time-series technique called maximum autocorrelation factor analysis. This technique was used for finding common underlying trends in escapement abundance within each watershed. These trends were further investigated to identify potential resource-mediated interactions among the three groups of salmon. Each group is affected by multiple trends that are likely to be affected by environmental factors. In addition, some of the trends are coherent with each other, and the differences in population dynamics originate from variations in the relative importance of these trends among the three watershed groups.

  18. Rethinking the logistic approach for population dynamics of mutualistic interactions.

    PubMed

    García-Algarra, Javier; Galeano, Javier; Pastor, Juan Manuel; Iriondo, José María; Ramasco, José J

    2014-12-21

    Mutualistic communities have an internal structure that makes them resilient to external perturbations. Late research has focused on their stability and the topology of the relations between the different organisms to explain the reasons of the system robustness. Much less attention has been invested in analyzing the systems dynamics. The main population models in use are modifications of the r-K formulation of logistic equation with additional terms to account for the benefits produced by the interspecific interactions. These models have shortcomings as the so-called r-K formulation diverges under some conditions. In this work, we introduce a model for population dynamics under mutualism that preserves the original logistic formulation. It is mathematically simpler than the widely used type II models, although it shows similar complexity in terms of fixed points and stability of the dynamics. We perform an analytical stability analysis and numerical simulations to study the model behavior in general interaction scenarios including tests of the resilience of its dynamics under external perturbations. Despite its simplicity, our results indicate that the model dynamics shows an important richness that can be used to gain further insights in the dynamics of mutualistic communities.

  19. Diversity waves in collapse-driven population dynamics

    DOE PAGES

    Maslov, Sergei; Sneppen, Kim

    2015-09-14

    Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe collapses of the entire population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g.more » by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is cyclic ‘‘diversity waves’’ triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances are characterized by a bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak - species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies.« less

  20. Diversity waves in collapse-driven population dynamics

    SciTech Connect

    Maslov, Sergei; Sneppen, Kim

    2015-09-14

    Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe collapses of the entire population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g. by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is cyclic ‘‘diversity waves’’ triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances are characterized by a bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak - species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies.

  1. Population dynamics of epiphytic orchids in a metapopulation context

    PubMed Central

    Winkler, Manuela; Hülber, Karl; Hietz, Peter

    2009-01-01

    Background and Aims Populations of many epiphytes show a patchy distribution where clusters of plants growing on individual trees are spatially separated and may thus function as metapopulations. Seed dispersal is necessary to (re)colonize unoccupied habitats, and to transfer seeds from high- to low-competition patches. Increasing dispersal distances, however, reduces local fecundity and the probability that seeds will find a safe site outside the original patch. Thus, there is a conflict between seed survival and colonization. Methods Populations of three epiphytic orchids were monitored over three years in a Mexican humid montane forest and analysed with spatially averaged and with spatially explicit matrix metapopulation models. In the latter, population dynamics at the scale of the subpopulations (epiphytes on individual host trees) are based on detailed stage-structured observations of transition probabilities and trees are connected by a dispersal function. Key Results Population growth rates differed among trees and years. While ignoring these differences, and averaging the population matrices over trees, yields negative population growth, metapopulation models predict stable or growing populations because the trees that support growing subpopulations determine the growth of the metapopulation. Stochastic models which account for the differences among years differed only marginally from deterministic models. Population growth rates were significantly lower, and extinctions of local patches more frequent in models where higher dispersal results in reduced local fecundity compared with hypothetical models where this is not the case. The difference between the two models increased with increasing mean dispersal distance. Though recolonization events increased with dispersal distance, this could not compensate the losses due to reduced local fecundity. Conclusions For epiphytes, metapopulation models are useful to capture processes beyond the level of the single

  2. Diversity Waves in Collapse-Driven Population Dynamics.

    PubMed

    Maslov, Sergei; Sneppen, Kim

    2015-09-01

    Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe reduction in size of the population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g. by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is characterized by cyclic ''diversity waves'' triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances have bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak--species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies.

  3. Diversity Waves in Collapse-Driven Population Dynamics

    PubMed Central

    Maslov, Sergei; Sneppen, Kim

    2015-01-01

    Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe reduction in size of the population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g. by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is characterized by cyclic ‘‘diversity waves’’ triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances have bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak - species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies. PMID:26367172

  4. Aspiration dynamics of multi-player games in finite populations

    PubMed Central

    Du, Jinming; Wu, Bin; Altrock, Philipp M.; Wang, Long

    2014-01-01

    On studying strategy update rules in the framework of evolutionary game theory, one can differentiate between imitation processes and aspiration-driven dynamics. In the former case, individuals imitate the strategy of a more successful peer. In the latter case, individuals adjust their strategies based on a comparison of their pay-offs from the evolutionary game to a value they aspire, called the level of aspiration. Unlike imitation processes of pairwise comparison, aspiration-driven updates do not require additional information about the strategic environment and can thus be interpreted as being more spontaneous. Recent work has mainly focused on understanding how aspiration dynamics alter the evolutionary outcome in structured populations. However, the baseline case for understanding strategy selection is the well-mixed population case, which is still lacking sufficient understanding. We explore how aspiration-driven strategy-update dynamics under imperfect rationality influence the average abundance of a strategy in multi-player evolutionary games with two strategies. We analytically derive a condition under which a strategy is more abundant than the other in the weak selection limiting case. This approach has a long-standing history in evolutionary games and is mostly applied for its mathematical approachability. Hence, we also explore strong selection numerically, which shows that our weak selection condition is a robust predictor of the average abundance of a strategy. The condition turns out to differ from that of a wide class of imitation dynamics, as long as the game is not dyadic. Therefore, a strategy favoured under imitation dynamics can be disfavoured under aspiration dynamics. This does not require any population structure, and thus highlights the intrinsic difference between imitation and aspiration dynamics. PMID:24598208

  5. Population Dynamics of a Commercial Sponge in Biscayne Bay, Florida

    NASA Astrophysics Data System (ADS)

    Cropper, W. P.; Lirman, D.; Tosini, S. C.; DiResta, D.; Luo, J.; Wang, J.

    2001-07-01

    The dynamics of glove sponge ( Spongia graminea) population in Biscayne Bay, Florida were investigated using a series of matrix population models, a hydrodynamic model, and a GIS data base. Sponges at Billy's Point, on the eastern margin of Biscayne Bay, were sampled between 1993 and 1995 and resampled in 2000 for model calibration and testing. An iterative procedure was used to fit unmeasured fecundity and a growth parameter by minimizing the 1993 to 2000 simulated differences from the observed year 2000 size class distribution. A density dependent model was found to fit the total population size in 2000 better than the density independent matrix model. Systematic sampling of the bay was used to identify four local populations with sponge densities above 50 ha -1. The three western populations experienced salinity below 25, based on hydrodynamic model outputs for 1995, whereas the eastern Billy's Point population had a stable ocean salinity environment. The hydrodynamic model was used to simulate larval transport between local populations as lagrangian drifting particles. These simulations indicated that the Billy's Point population was likely to be demographically closed.

  6. The population dynamics of an endemic collectible cactus

    NASA Astrophysics Data System (ADS)

    Mandujano, María C.; Bravo, Yolotzin; Verhulst, Johannes; Carrillo-Angeles, Israel; Golubov, Jordan

    2015-02-01

    Astrophytum is one of most collected genera in the cactus family. Around the world several species are maintained in collections and yearly, several plants are taken from their natural habitats. Populations of Astorphytum capricorne are found in the northern Chihuahuan desert, Mexico, and as many endemic cactus species, it has a highly restricted habitat. We conducted a demographic study from 2008 to 2010 of the northern populations found at Cuatro Ciénegas, Mexico. We applied matrix population models, included simulations, life table response experiments and descriptions of the population dynamics to evaluate the current status of the species, and detect key life table stages and demographic processes. Population growth rate decreased in both years and only 4% individual mortality can be attributed to looting, and a massive effort is needed to increase seedling recruitment and reduce adult mortality. The fate of individuals differed between years even having the same annual rainfall mainly in accentuated stasis, retrogression and high mortality in all size classes, which coupled with low seed production, no recruitment and collection of plants are the causes contributing to population decline, and hence, increase the risk in which A. capricorne populations are found. Reintroduction of seedlings and lowering adult mortality are urgently needed to revert the alarming demographic condition of A. capricorne populations.

  7. Modeling steady-state methanogenic degradation of phenols in groundwater

    USGS Publications Warehouse

    Bekins, Barbara A.; Godsy, E. Michael; Goerlitz, Donald F.

    1993-01-01

    Field and microcosm observations of methanogenic phenolic compound degradation indicate that Monod kinetics governs the substrate disappearance but overestimates the observed biomass. In this paper we present modeling results from an ongoing multidisciplinary study of methanogenic biodegradation of phenolic compounds in a sand and gravel aquifer contaminated by chemicals and wastes used in wood treatment. Field disappearance rates of four phenols match those determined in batch microcosm studies previously performed by E.M. Godsy and coworkers. The degradation process appears to be at steady-state because even after a sustained influx over several decades, the contaminants still are disappearing in transport downgradient. The existence of a steady-state degradation profile of each substrate together with a low biomass density in the aquifer indicate that the bacteria population is exhibiting no net growth. This may be due to the oligotrophic nature of the biomass population in which utilization and growth are approximately independent of concentration for most of the concentration range. Thus a constant growth rate should exist over much of the contaminated area which may in turn be balanced by an unusually high decay or maintenance rate due to hostile conditions or predation.

  8. Dynamic analysis of grinding using the population balance model

    SciTech Connect

    Williams, M.C. |

    1995-12-31

    The dynamic behavior of batch mill, CSTR mill, and a closed grinding network consisting of a mill, sump, and cyclone was analyzed using the dynamic population balance model (PBM). The dynamic solution of the PBM of a batch, CSTR and a closed grinding network consisting of a mill, sump, and cyclone forms the basis of the dynamic analysis presented here. Two numerical dynamic solution approaches were used. These are: (1) providing additional constraints on breakage selection functions or (2) performing the Arbiter-Bhrany (or other) normalization of the selection functions. Actual experimental anthracite batch grinding data was used to obtain the functionality of the batch dynamic mill selection and breakage functions for a real physical system. The Levenberg-Marquardt algorithm for systems of constrained non-linear equations is used to solve the batch dynamic PBM grinding equations to obtain the grinding selection and breakage rate functions. The mill, sump and hydrocyclone were modeled as a CSTR operating at various retention times. Batch dynamic PBM data was used to provide the mill kinetic and breakage selection function data. Different dynamic solutions were obtained depending on the numerical approach used. Each solution approach to a dynamic PBM with transport, while giving the same prediction for a single batch grinding time, gives different solutions or predictions for mill composition for other grinding times. This fact makes dynamic nodal analysis and control problematic. The fact that the constraint solution approach gives a solution may suggest that normalization for closed networks is not necessary. Differences in solutions to the PBM cannot be excused away by inaccuracies in the data used to model the grinding phenomenon.

  9. Population Dynamics of the Stationary Phase Utilizing the ARGOS Method

    NASA Astrophysics Data System (ADS)

    Algarni, S.; Charest, A. J.; Iannacchione, G. S.

    2015-03-01

    The Area Recorded Generalized Optical Scattering (ARGOS) approach to light scattering employs large image capture array allowing for a well-defined geometry in which images may be manipulated to extract structure with intensity at a specific scattering wave vector (I(q)) and dynamics with intensity at a specific scattering wave vector over time (I (q,t)). The ARGOS method provides morphological dynamics noninvasively over a long time period and allows for a variety of aqueous conditions. This is important because traditional growth models do not provide for conditions similar to the natural environment. The present study found that the population dynamics of bacteria do not follow a traditional growth model and that the ARGOS method allowed for the observation of bacterial changes in terms of individual particles and population dynamics in real time. The observations of relative total intensity suggest that there is no stationary phase and that the bacterial population demonstrates sinusoidal type patterns consistently subsequent to the log phase growth. These observation were compared to shape changes by modeling fractal dimension and size changes by modeling effective radius.

  10. Coupling in goshawk and grouse population dynamics in Finland.

    PubMed

    Tornberg, Risto; Lindén, Andreas; Byholm, Patrik; Ranta, Esa; Valkama, Jari; Helle, Pekka; Lindén, Harto

    2013-04-01

    Different prey species can vary in their significance to a particular predator. In the simplest case, the total available density or biomass of a guild of several prey species might be most relevant to the predator, but behavioural and ecological traits of different prey species can alter the picture. We studied the population dynamics of a predator-prey setting in Finland by fitting first-order log-linear vector autoregressive models to long-term count data from active breeding sites of the northern goshawk (Accipiter gentilis; 1986-2009), and to three of its main prey species (1983-2010): hazel grouse (Bonasa bonasia), black grouse (Tetrao tetrix) and capercaillie (T. urogallus), which belong to the same forest grouse guild and show synchronous fluctuations. Our focus was on modelling the relative significance of prey species and estimating the tightness of predator-prey coupling in order to explain the observed population dynamics, simultaneously accounting for effects of density dependence, winter severity and spatial correlation. We established nine competing candidate models, where different combinations of grouse species affect goshawk dynamics with lags of 1-3 years. Effects of goshawk on grouse were investigated using one model for each grouse species. The most parsimonious model for goshawk indicated separate density effects of hazel grouse and black grouse, and different effects with lags of 1 and 3 years. Capercaillie showed no effects on goshawk populations, while the effect of goshawk on grouse was clearly negative only in capercaillie. Winter severity had significant adverse effects on goshawk and hazel grouse populations. In combination, large-scale goshawk-grouse population dynamics are coupled, but there are no clear mutual effects for any of the individual guild members. In a broader context, our study suggests that pooling data on closely related, synchronously fluctuating prey species can result in the loss of relevant information, rather than

  11. Assessing tiger population dynamics using photographic capture-recapture sampling.

    PubMed

    Karanth, K Ullas; Nichols, James D; Kumar, N Samba; Hines, James E

    2006-11-01

    Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, "robust design" capture-recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of gamma" = gamma' = 0.10 +/- 0.069 (values are estimated mean +/- SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 +/- 0.051, and the estimated probability that a newly caught animal was a transient was tau = 0.18 +/- 0.11. During the period when the sampled area was of constant size, the estimated population size N(t) varied from 17 +/- 1.7 to 31 +/- 2.1 tigers, with a geometric mean rate of annual population change estimated as lambda = 1.03 +/- 0.020, representing a 3% annual increase. The estimated recruitment of new animals, B(t), varied from 0 +/- 3.0 to 14 +/- 2.9 tigers. Population density estimates, D, ranged from 7.33 +/- 0.8 tigers/100 km2 to 21.73 +/- 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis

  12. Assessing tiger population dynamics using photographic capture-recapture sampling

    USGS Publications Warehouse

    Karanth, K.U.; Nichols, J.D.; Kumar, N.S.; Hines, J.E.

    2006-01-01

    Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, ?robust design? capture?recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of =K' =Y' 0.10 ? 0.069 (values are estimated mean ? SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 ? 0.051, and the estimated probability that a newly caught animal was a transient was = 0.18 ? 0.11. During the period when the sampled area was of constant size, the estimated population size Nt varied from 17 ? 1.7 to 31 ? 2.1 tigers, with a geometric mean rate of annual population change estimated as = 1.03 ? 0.020, representing a 3% annual increase. The estimated recruitment of new animals, Bt, varied from 0 ? 3.0 to 14 ? 2.9 tigers. Population density estimates, D, ranged from 7.33 ? 0.8 tigers/100 km2 to 21.73 ? 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis that protected wild tiger populations can remain

  13. [Analysis on age structure and dynamics of Kindonia uniflora populations].

    PubMed

    Zhang, Wenhui; Li, Jingxia; Li, Hong; Liu, Xiangjun

    2004-04-01

    Kindonia uniflora is a perennial clone herbaceous plant, and also, a native endangered plant in China. This paper studied its age structure, life table and survivorship curve in different habitats in Taibai mountain area. The results indicated that the age structure and dynamics of K. uniflora populations in the Betula utilis forest at altitude 2500-2700 m, in the Abies fargesii forest at altitude 2700-2900 m, and in the Larix chinensis forest at altitude 2900-3100 m had the similar pattern and developing tendency. The number of younger ramets at 1-2 years old or older than 5 years was less, and the number of ramets at 3-5 years old was the highest in the age structures. The negative values of dx (dead number), qx (mortality rate) and Kx (Killing rate) in the life table showed the increasing rate of the population sizes during the age stage. The survivorship curve of K. uniflora populations in different habitats belonged to Deevey C after 3-5 years old. The mortality rate of populations during 5-10 years stage was higher, and was stable after 10 years old. As for the characters of asexual propagation and clone growth, the rhizomes of the populations were in humus of soil, and developed and expanded as guerilla line style. During growth season, only one leaf grew above ground at every inter-node, and the population growth and development were rarely influenced by external factors. The forest communities, such as Betula utilis, Abies fargesii and Larix chinensis forest, in which K. uniflora populations lived, were at middle or higher mountain, where there were rarely disturbance from human being. Therefore, the habitats for K. uniflora populations to live were relatively stable. As the altitude increased, the disturbances from human being became less, the density of K. uniflora populations increased, the life cycle expanded, the peak of population death delayed, and the population living strategy changed to adapt to the habitats. K. uniflora populations preferred to

  14. Ecological change, range fluctuations and population dynamics during the Pleistocene.

    PubMed

    Hofreiter, Michael; Stewart, John

    2009-07-28

    Apart from the current human-induced climate change, the Holocene is notable for its stable climate. In contrast, the preceding age, the Pleistocene, was a time of intensive climatic fluctuations, with temperature changes of up to 15 degrees C occurring within a few decades. These climatic changes have substantially influenced both animal and plant populations. Until recently, the prevailing opinion about the effect of these climatic fluctuations on species in Europe was that populations survived glacial maxima in southern refugia and that populations died out outside these refugia. However, some of the latest studies of modern population genetics, the fossil record and especially ancient DNA reveal a more complex picture. There is now strong evidence for additional local northern refugia for a large number of species, including both plants and animals. Furthermore, population genetic analyses using ancient DNA have shown that genetic diversity and its geographical structure changed more often and in more unpredictable ways during the Pleistocene than had been inferred. Taken together, the Pleistocene is now seen as an extremely dynamic era, with rapid and large climatic fluctuations and correspondingly variable ecology. These changes were accompanied by similarly fast and sometimes dramatic changes in population size and extensive gene flow mediated by population movements. Thus, the Pleistocene is an excellent model case for the effects of rapid climate change, as we experience at the moment, on the ecology of plants and animals.

  15. Methanogenic archaea in subgingival sites: a review.

    PubMed

    Nguyen-Hieu, Tung; Khelaifia, Saber; Aboudharam, Gerard; Drancourt, Michel

    2013-06-01

    Archaea are non-bacterial prokaryotes associated with oral microbiota in humans, but their roles in oral pathologies remain controversial. Several studies reported the molecular detection of methanogenic archaea from periodontitis, but the significance of this association has not been confirmed yet. An electronic search was therefore conducted in MEDLINE-Pubmed to identify all papers published in English connecting archaea and periodontal infections. Data analysis of the selected studies showed that five genera of methanogenic archaea have been detected in the subgingival microbiota, Methanobrevibacter oralis being the most frequently detected species in 41% of periodontitis patients and 55% of periodontal pockets compared to 6% of healthy subjects and 5% of periodontally-healthy sites (p < 10(-5) , Chi-squared test). Based on the five determination-criteria proposed by Socransky (association with disease, elimination of the organism, host response, animal pathogenicity and mechanisms of pathogenicity), M. oralis is a periodontal pathogen. The methanogenic archaea load correlating with periodontitis severity further supports the pathogenic role of methanogenic archaea in periodontitis. Therefore, detection and quantification of M. oralis in periodontal pockets could help the laboratory diagnosis and follow-up of periodontitis. Determining the origin, diversity and pathogenesis of archaea in periodontal infections warrants further investigations.

  16. Methanogens: A Model for Life on Mars

    NASA Astrophysics Data System (ADS)

    Kral, T. A.; Altheide, T. S.; Lueders, A. E.; Goodhart, T. H.; Virden, B. T.; Birch, W.; Howe, K. L.; Gavin, P.

    2010-04-01

    Methanogens have been shown to produce methane at reduced pressures (400 and 50 mbar), in the presence of perchlorate salts, using carbonate as a sole carbon source, and to survive desiccation at both 1 bar and 6 mbar for extended periods of time.

  17. Optimal control methods for controlling bacterial populations with persister dynamics

    NASA Astrophysics Data System (ADS)

    Cogan, N. G.

    2016-06-01

    Bacterial tolerance to antibiotics is a well-known phenomena; however, only recent studies of bacterial biofilms have shown how multifaceted tolerance really is. By joining into a structured community and offering shared protection and gene transfer, bacterial populations can protect themselves genotypically, phenotypically and physically. In this study, we collect a line of research that focuses on phenotypic (or plastic) tolerance. The dynamics of persister formation are becoming better understood, even though there are major questions that remain. The thrust of our results indicate that even without detailed description of the biological mechanisms, theoretical studies can offer strategies that can eradicate bacterial populations with existing drugs.

  18. Effects of extreme environmental changes on population dynamics

    NASA Astrophysics Data System (ADS)

    De Falco, I.; Della Cioppa, A.; Tarantino, E.

    2006-09-01

    The effects of periodic environmental fluctuations on the adaptive behavior and on the survival chance of a population of individuals are investigated as a function of both the genotypes carried, i.e., haploid or diploid. Only extreme and exogenous changes have been taken into account in order not to complicate the model under investigation. Moreover, different rates of both environmental changes and mutation have been considered. The analysis has been performed by discussing the evolutionary dynamics exhibited by the population in terms of adaptation, density and, finally, survival probability.

  19. Changes in population dynamics in mutualistic versus pathogenic viruses.

    PubMed

    Roossinck, Marilyn J

    2011-01-01

    Although generally regarded as pathogens, viruses can also be mutualists. A number of examples of extreme mutualism (i.e., symbiogenesis) have been well studied. Other examples of mutualism are less common, but this is likely because viruses have rarely been thought of as having any beneficial effects on their hosts. The effect of mutualism on the population dynamics of viruses is a topic that has not been addressed experimentally. However, the potential for understanding mutualism and how a virus might become a mutualist may be elucidated by understanding these dynamics.

  20. Effect of temperature on the population dynamics of Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Tokachil, Mohd Najir

    2015-10-01

    Aedes aegypti is one of the main vectors in the transmission of dengue fever. Its abundance may cause the spread of the disease to be more intense. In the study of its biological life cycle, temperature was found to increase the development rate of each stage of this species and thus, accelerate the process of the development from egg to adult. In this paper, a Lefkovitch matrix model will be used to study the stage-structured population dynamics of Aedes aegypti. In constructing the transition matrix, temperature will be taken into account. As a case study, temperature recorded at the Subang Meteorological Station for year 2006 until 2010 will be used. Population dynamics of Aedes aegypti at maximum, average and minimum temperature for each year will be simulated and compared. It is expected that the higher the temperature, the faster the mosquito will breed. The result will be compared to the number of dengue fever incidences to see their relationship.

  1. Trace Elements Induce Predominance among Methanogenic Activity in Anaerobic Digestion.

    PubMed

    Wintsche, Babett; Glaser, Karin; Sträuber, Heike; Centler, Florian; Liebetrau, Jan; Harms, Hauke; Kleinsteuber, Sabine

    2016-01-01

    Trace elements (TE) play an essential role in all organisms due to their functions in enzyme complexes. In anaerobic digesters, control, and supplementation of TEs lead to stable and more efficient methane production processes while TE deficits cause process imbalances. However, the underlying metabolic mechanisms and the adaptation of the affected microbial communities to such deficits are not yet fully understood. Here, we investigated the microbial community dynamics and resulting process changes induced by TE deprivation. Two identical lab-scale continuous stirred tank reactors fed with distiller's grains and supplemented with TEs (cobalt, molybdenum, nickel, tungsten) and a commercial iron additive were operated in parallel. After 72 weeks of identical operation, the feeding regime of one reactor was changed by omitting TE supplements and reducing the amount of iron additive. Both reactors were operated for further 21 weeks. Various process parameters (biogas production and composition, total solids and volatile solids, TE concentration, volatile fatty acids, total ammonium nitrogen, total organic acids/alkalinity ratio, and pH) and the composition and activity of the microbial communities were monitored over the total experimental time. While the methane yield remained stable, the concentrations of hydrogen sulfide, total ammonia nitrogen, and acetate increased in the TE-depleted reactor compared to the well-supplied control reactor. Methanosarcina and Methanoculleus dominated the methanogenic communities in both reactors. However, the activity ratio of these two genera was shown to depend on TE supplementation explainable by different TE requirements of their energy conservation systems. Methanosarcina dominated the well-supplied anaerobic digester, pointing to acetoclastic methanogenesis as the dominant methanogenic pathway. Under TE deprivation, Methanoculleus and thus hydrogenotrophic methanogenesis was favored although Methanosarcina was not overgrown by

  2. Trace Elements Induce Predominance among Methanogenic Activity in Anaerobic Digestion

    PubMed Central

    Wintsche, Babett; Glaser, Karin; Sträuber, Heike; Centler, Florian; Liebetrau, Jan; Harms, Hauke; Kleinsteuber, Sabine

    2016-01-01

    Trace elements (TE) play an essential role in all organisms due to their functions in enzyme complexes. In anaerobic digesters, control, and supplementation of TEs lead to stable and more efficient methane production processes while TE deficits cause process imbalances. However, the underlying metabolic mechanisms and the adaptation of the affected microbial communities to such deficits are not yet fully understood. Here, we investigated the microbial community dynamics and resulting process changes induced by TE deprivation. Two identical lab-scale continuous stirred tank reactors fed with distiller’s grains and supplemented with TEs (cobalt, molybdenum, nickel, tungsten) and a commercial iron additive were operated in parallel. After 72 weeks of identical operation, the feeding regime of one reactor was changed by omitting TE supplements and reducing the amount of iron additive. Both reactors were operated for further 21 weeks. Various process parameters (biogas production and composition, total solids and volatile solids, TE concentration, volatile fatty acids, total ammonium nitrogen, total organic acids/alkalinity ratio, and pH) and the composition and activity of the microbial communities were monitored over the total experimental time. While the methane yield remained stable, the concentrations of hydrogen sulfide, total ammonia nitrogen, and acetate increased in the TE-depleted reactor compared to the well-supplied control reactor. Methanosarcina and Methanoculleus dominated the methanogenic communities in both reactors. However, the activity ratio of these two genera was shown to depend on TE supplementation explainable by different TE requirements of their energy conservation systems. Methanosarcina dominated the well-supplied anaerobic digester, pointing to acetoclastic methanogenesis as the dominant methanogenic pathway. Under TE deprivation, Methanoculleus and thus hydrogenotrophic methanogenesis was favored although Methanosarcina was not overgrown

  3. Development of paradigms for the dynamics of structured populations

    SciTech Connect

    Not Available

    1994-10-01

    This is a technical progress report on the dynamics of predator-prey systems in a patchy environment. A new phenomenon that might contribute to outbreaks in systems of discrete patches has been determined using a discrete time model with both spatial and age structure. A model for a single species in a patchy environment with migration, local population growth and disasters with in patches has been formulated and a brief description is included.

  4. Learning to Estimate Dynamical State with Probabilistic Population Codes

    PubMed Central

    Sabes, Philip N.

    2015-01-01

    Tracking moving objects, including one’s own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, “probabilistic population codes.” We show that a recurrent neural network—a modified form of an exponential family harmonium (EFH)—that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states. PMID:26540152

  5. Gene order phylogeny and the evolution of methanogens.

    PubMed

    Luo, Haiwei; Sun, Zhiyi; Arndt, William; Shi, Jian; Friedman, Robert; Tang, Jijun

    2009-06-29

    Methanogens are a phylogenetically diverse group belonging to Euryarchaeota. Previously, phylogenetic approaches using large datasets revealed that methanogens can be grouped into two classes, "Class I" and "Class II". However, some deep relationships were not resolved. For instance, the monophyly of "Class I" methanogens, which consist of Methanopyrales, Methanobacteriales and Methanococcales, is disputable due to weak statistical support. In this study, we use MSOAR to identify common orthologous genes from eight methanogen species and a Thermococcale species (outgroup), and apply GRAPPA and FastME to compute distance-based gene order phylogeny. The gene order phylogeny supports two classes of methanogens, but it differs from the original classification of methanogens by placing Methanopyrales and Methanobacteriales together with Methanosarcinales in Class II rather than with Methanococcales. This study suggests a new classification scheme for methanogens. In addition, it indicates that gene order phylogeny can complement traditional sequence-based methods in addressing taxonomic questions for deep relationships.

  6. Building the bridge between animal movement and population dynamics

    PubMed Central

    Morales, Juan M.; Moorcroft, Paul R.; Matthiopoulos, Jason; Frair, Jacqueline L.; Kie, John G.; Powell, Roger A.; Merrill, Evelyn H.; Haydon, Daniel T.

    2010-01-01

    While the mechanistic links between animal movement and population dynamics are ecologically obvious, it is much less clear when knowledge of animal movement is a prerequisite for understanding and predicting population dynamics. GPS and other technologies enable detailed tracking of animal location concurrently with acquisition of landscape data and information on individual physiology. These tools can be used to refine our understanding of the mechanistic links between behaviour and individual condition through ‘spatially informed’ movement models where time allocation to different behaviours affects individual survival and reproduction. For some species, socially informed models that address the movements and average fitness of differently sized groups and how they are affected by fission–fusion processes at relevant temporal scales are required. Furthermore, as most animals revisit some places and avoid others based on their previous experiences, we foresee the incorporation of long-term memory and intention in movement models. The way animals move has important consequences for the degree of mixing that we expect to find both within a population and between individuals of different species. The mixing rate dictates the level of detail required by models to capture the influence of heterogeneity and the dynamics of intra- and interspecific interaction. PMID:20566505

  7. Lagged effects of ocean climate change on fulmar population dynamics.

    PubMed

    Thompson, P M; Ollason, J C

    2001-09-27

    Environmental variation reflected by the North Atlantic Oscillation affects breeding and survival in terrestrial vertebrates, and climate change is predicted to have an impact on population dynamics by influencing food quality or availability. The North Atlantic Oscillation also affects the abundance of marine fish and zooplankton, but it is unclear whether this filters up trophic levels to long-lived marine top predators. Here we show by analysis of data from a 50-year study of the fulmar that two different indices of ocean climate variation may have lagged effects on population dynamics in this procellariiform seabird. Annual variability in breeding performance is influenced by the North Atlantic Oscillation, whereas cohort differences in recruitment are related to temperature changes in the summer growing season in the year of birth. Because fulmars exhibit delayed reproduction, there is a 5-year lag in the population's response to these effects of environmental change. These data show how interactions between different climatic factors result in complex dynamics, and that the effects of climate change may take many years to become apparent in long-lived marine top predators.

  8. Spatio-temporal transitions in the dynamics of bacterial populations

    NASA Astrophysics Data System (ADS)

    Lin, Anna; Lincoln, Bryan; Mann, Bernward; Torres, Gelsy; Kas, Josef; Swinney, Harry

    2001-03-01

    We experimentally investigate the population dynamics of a strain of E. coli bacteria living under spatially inhomogeneous growth conditions. A localized perturbation that moves with a well-defined drift velocity is imposed on the system. A reaction-diffusion model of this situation^1 predicts that an abrupt transition between spatial localization and extinction of the colony occurs for a fixed average growth rate when the drift velocity exceeds a critical value. Also, a transition between localized and delocalized populations is predicted to occur at a fixed drift velocity when the spatially averaged growth rate is varied. We create a spatially localized perturbation with UV light and vary the strength and drift velocity of the perturbation to investigate the existence of the different bacterial population distributions and the transitions between them. Numerical simulations of a 250 mm by 20 mm system guide our experiments. ^1K. A. Dahmen, D. R. Nelson, N. M. Shnerb, Jour. Math. Bio., 41 1 (2000).

  9. Populations dynamics of Australorbis glabratus in Puerto Rico

    PubMed Central

    Ritchie, Lawrence S.; Radke, Myron G.; Ferguson, Frederick F.

    1962-01-01

    This report on the population dynamics of Australorbis glabratus in Puerto Rico is based on observations made over about two years at 50 collecting-sites in a representative range of snail habitats. In some places a marked predominance of Tropicorbis was noted. No continuous or seasonal propagation of Australorbis was apparent. Dense populations seldom prevailed for more than a few months, and in most places very low population levels occurred at irregular intervals, and colony decimations were fairly common. A variety of pressures is exerted on Australorbis in Puerto Rico by a multiplicity of natural factors; detailed knowledge of this snail's natural history in the field is necessary for effective bilharziasis control and for a full understanding of the regional epidemiology of this disease. PMID:14492504

  10. Evolutionary dynamics of social dilemmas in structured heterogeneous populations

    PubMed Central

    Santos, F. C.; Pacheco, J. M.; Lenaerts, Tom

    2006-01-01

    Real populations have been shown to be heterogeneous, in which some individuals have many more contacts than others. This fact contrasts with the traditional homogeneous setting used in studies of evolutionary game dynamics. We incorporate heterogeneity in the population by studying games on graphs, in which the variability in connectivity ranges from single-scale graphs, for which heterogeneity is small and associated degree distributions exhibit a Gaussian tale, to scale-free graphs, for which heterogeneity is large with degree distributions exhibiting a power-law behavior. We study the evolution of cooperation, modeled in terms of the most popular dilemmas of cooperation. We show that, for all dilemmas, increasing heterogeneity favors the emergence of cooperation, such that long-term cooperative behavior easily resists short-term noncooperative behavior. Moreover, we show how cooperation depends on the intricate ties between individuals in scale-free populations. PMID:16484371

  11. Evolutionary dynamics of social dilemmas in structured heterogeneous populations.

    PubMed

    Santos, F C; Pacheco, J M; Lenaerts, Tom

    2006-02-28

    Real populations have been shown to be heterogeneous, in which some individuals have many more contacts than others. This fact contrasts with the traditional homogeneous setting used in studies of evolutionary game dynamics. We incorporate heterogeneity in the population by studying games on graphs, in which the variability in connectivity ranges from single-scale graphs, for which heterogeneity is small and associated degree distributions exhibit a Gaussian tale, to scale-free graphs, for which heterogeneity is large with degree distributions exhibiting a power-law behavior. We study the evolution of cooperation, modeled in terms of the most popular dilemmas of cooperation. We show that, for all dilemmas, increasing heterogeneity favors the emergence of cooperation, such that long-term cooperative behavior easily resists short-term noncooperative behavior. Moreover, we show how cooperation depends on the intricate ties between individuals in scale-free populations.

  12. IMF shape constraints from stellar populations and dynamics from CALIFA

    NASA Astrophysics Data System (ADS)

    Lyubenova, M.; Martín-Navarro, I.; van de Ven, G.; Falcón-Barroso, J.; Galbany, L.; Gallazzi, A.; García-Benito, R.; González Delgado, R.; Husemann, B.; La Barbera, F.; Marino, R. A.; Mast, D.; Mendez-Abreu, J.; Peletier, R. F. P.; Sánchez-Blázquez, P.; Sánchez, S. F.; Trager, S. C.; van den Bosch, R. C. E.; Vazdekis, A.; Walcher, C. J.; Zhu, L.; Zibetti, S.; Ziegler, B.; Bland-Hawthorn, J.; CALIFA Collaboration

    2016-12-01

    In this Paper, we describe how we use stellar dynamics information to constrain the shape of the stellar initial mass function (IMF) in a sample of 27 early-type galaxies from the CALIFA survey. We obtain dynamical and stellar mass-to-light ratios, Υdyn and Υ*, over a homogenous aperture of 0.5 Re. We use the constraint Υdyn≥Υ* to test two IMF shapes within the framework of the extended MILES stellar population models. We rule out a single power-law IMF shape for 75 per cent of the galaxies in our sample. Conversely, we find that a double power-law IMF shape with a varying high-mass end slope is compatible (within 1σ) with 95 per cent of the galaxies. We also show that dynamical and stellar IMF mismatch factors give consistent results for the systematic variation of the IMF in these galaxies.

  13. Stochasticity and universal dynamics in communicating cellular populations

    NASA Astrophysics Data System (ADS)

    Noorbakhsh, Javad; Mehta, Pankaj; Allyson Sgro Collaboration; David Schwab Collaboration; Troy Mestler Collaboration; Thomas Gregor Collaboration

    2014-03-01

    A fundamental problem in biology is to understand how biochemical networks within individual cells coordinate and control population-level behaviors. Our knowledge of these biochemical networks is often incomplete, with little known about the underlying kinetic parameters. Here, we present a general modeling approach for overcoming these challenges based on universality. We apply our approach to study the emergence of collective oscillations of the signaling molecule cAMP in populations of the social amoebae Dictyostelium discoideum and show that a simple two-dimensional dynamical system can reproduce signaling dynamics of single cells and successfully predict novel population-level behaviors. We reduce all the important parameters of our model to only two and will study its behavior through a phase diagram. This phase diagram determines conditions under which cells are quiet or oscillating either coherently or incoherently. Furthermore it allows us to study the effect of different model components such as stochasticity, multicellularity and signal preprocessing. A central finding of our model is that Dictyostelium exploit stochasticity within biochemical networks to control population level behaviors.

  14. Drivers of waterfowl population dynamics: from teal to swans

    USGS Publications Warehouse

    Koons, David N.; Gunnarsson, Gunnar; Schmutz, Joel A.; Rotella, Jay J.

    2014-01-01

    Waterfowl are among the best studied and most extensively monitored species in the world. Given their global importance for sport and subsistence hunting, viewing and ecosystem functioning, great effort has been devoted since the middle part of the 20th century to understanding both the environmental and demographic mechanisms that influence waterfowl population and community dynamics. Here we use comparative approaches to summarise and contrast our understanding ofwaterfowl population dynamics across species as short-lived as the teal Anas discors and A.crecca to those such as the swans Cygnus sp. which have long life-spans. Specifically, we focus on population responses to vital rate perturbations across life history strategies, discuss bottom-up and top-down responses of waterfowlpopulations to global change, and summarise our current understanding of density dependence across waterfowl species. We close by identifying research needs and highlight ways to overcome the challenges of sustainably managing waterfowl populations in the 21st century.

  15. Population dynamics of Microtus pennsylvanicus in corridor-linked patches

    USGS Publications Warehouse

    Coffman, C.J.; Nichols, J.D.; Pollock, K.H.

    2001-01-01

    Corridors have become a key issue in the discussion of conservation planning: however, few empirical data exist on the use of corridors and their effects on population dynamics. The objective of this replicated, population level, capture-re-capture experiment on meadow voles was to estimate and compare population characteristics of voles between (1) corridor-linked fragments, (2) isolated or non-linked fragments, and (3) unfragmented areas. We conducted two field experiments involving 22600 captures of 5700 individuals. In the first, the maintained corridor study, corridors were maintained at the time of fragmentation, and in the second, the constructed corridor study, we constructed corridors between patches that had been fragmented for some period of time. We applied multistate capture-recapture models with the robust design to estimate adult movement and survival rates, population size, temporal variation in population size, recruitment, and juvenile survival rates. Movement rates increased to a greater extent on constructed corridor-linked grids than on the unfragmented or non-linked fragmented grids between the pre- and post-treatment periods. We found significant differences in local survival on the treated (corridor-linked) grids compared to survival on the fragmented and unfragmented grids between the pre- and post-treatment periods. We found no clear pattern of treatment effects on population size or recruitment in either study. However, in both studies, we found that unfragmented grids were more stable than the fragmented grids based on lower temporal variability in population size. To our knowledge, this is the first experimental study demonstrating that corridors constructed between existing fragmented populations can indeed cause increases in movement and associated changes in demography, supporting the use of constructed corridors for this purpose in conservation biology.

  16. Environmental influence on population dynamics of the bivalve Anomalocardia brasiliana

    NASA Astrophysics Data System (ADS)

    Corte, Guilherme Nascimento; Coleman, Ross A.; Amaral, A. Cecília Z.

    2017-03-01

    Understanding how species respond to the environment in terms of population attributes (e.g. abundance, growth, mortality, fecundity, and productivity) is essential to protect ecologically and economically important species. Nevertheless, responses of macrobenthic populations to environmental features are overlooked due to the need of consecutive samplings and time-consuming measurements. We examined the population dynamics of the filter-feeding bivalve Anomalocardia brasiliana on a tidal flat over the course of one year to investigate the hypothesis that, as accepted for macrobenthic communities, populations inhabiting environments with low hydrodynamic conditions such as tidal flat should have higher attributes than populations inhabiting more energetic habitats (i.e. areas more influenced by wave energy such as reflective and intermediate beaches). This would be expected because the harsh conditions of more energetic habitats force organisms to divert more energy towards maintenance, resulting in lower population attributes. We found that A. brasiliana showed moderate growth and secondary production at the study area. Moreover the recruitment period was restricted to a few months. A comparison with previous studies showed that, contrary to expected, A. brasiliana populations from areas with low hydrodynamic conditions have lower abundance, growth, recruitment and turnover rate. It is likely that morphodynamic characteristics recorded in these environments, such as larger periods of air exposure and lower water circulation, may affect food conditions for filter-feeding species and increase competition. In addition, these characteristics may negatively affect macrobenthic species by enhancing eutrophication processes and anoxia. Overall, our results suggest that models accepted and applied at the macrobenthic community level might not be directly extended to A. brasiliana populations.

  17. Spatial scaling of avian population dynamics: population abundance, growth rate, and variability.

    PubMed

    Jones, Jason; Doran, Patrick J; Holmes, Richard T

    2007-10-01

    Synchrony in population fluctuations has been identified as an important component of population dynamics. In a previous study, we determined that local-scale (<15-km) spatial synchrony of bird populations in New England was correlated with synchronous fluctuations in lepidopteran larvae abundance and with the North Atlantic Oscillation. Here we address five questions that extend the scope of our earlier study using North American Breeding Bird Survey data. First, do bird populations in eastern North America exhibit spatial synchrony in abundances at scales beyond those we have documented previously? Second, does spatial synchrony depend on what population metric is analyzed (e.g., abundance, growth rate, or variability)? Third, is there geographic concordance in where species exhibit synchrony? Fourth, for those species that exhibit significant geographic concordance, are there landscape and habitat variables that contribute to the observed patterns? Fifth, is spatial synchrony affected by a species' life history traits? Significant spatial synchrony was common and its magnitude was dependent on the population metric analyzed. Twenty-four of 29 species examined exhibited significant synchrony in population abundance: mean local autocorrelation (rho)= 0.15; mean spatial extent (mean distance where rho=0) = 420.7 km. Five of the 29 species exhibited significant synchrony in annual population growth rate (mean local autocorrelation = 0.06, mean distance = 457.8 km). Ten of the 29 species exhibited significant synchrony in population abundance variability (mean local autocorrelation = 0.49, mean distance = 413.8 km). Analyses of landscape structure indicated that habitat variables were infrequent contributors to spatial synchrony. Likewise, we detected no effects of life history traits on synchrony in population abundance or growth rate. However, short-distance migrants exhibited more spatially extensive synchrony in population variability than either year

  18. [On the relation between encounter rate and population density: Are classical models of population dynamics justified?].

    PubMed

    Nedorezov, L V

    2015-01-01

    A stochastic model of migrations on a lattice and with discrete time is considered. It is assumed that space is homogenous with respect to its properties and during one time step every individual (independently of local population numbers) can migrate to nearest nodes of lattice with equal probabilities. It is also assumed that population size remains constant during certain time interval of computer experiments. The following variants of estimation of encounter rate between individuals are considered: when for the fixed time moments every individual in every node of lattice interacts with all other individuals in the node; when individuals can stay in nodes independently, or can be involved in groups in two, three or four individuals. For each variant of interactions between individuals, average value (with respect to space and time) is computed for various values of population size. The samples obtained were compared with respective functions of classic models of isolated population dynamics: Verhulst model, Gompertz model, Svirezhev model, and theta-logistic model. Parameters of functions were calculated with least square method. Analyses of deviations were performed using Kolmogorov-Smirnov test, Lilliefors test, Shapiro-Wilk test, and other statistical tests. It is shown that from traditional point of view there are no correspondence between the encounter rate and functions describing effects of self-regulatory mechanisms on population dynamics. Best fitting of samples was obtained with Verhulst and theta-logistic models when using the dataset resulted from the situation when every individual in the node interacts with all other individuals.

  19. Population Dynamics of Early Human Migration in Britain

    PubMed Central

    Vahia, Mayank N.; Ladiwala, Uma; Mahathe, Pavan; Mathur, Deepak

    2016-01-01

    Background Early human migration is largely determined by geography and human needs. These are both deterministic parameters when small populations move into unoccupied areas where conflicts and large group dynamics are not important. The early period of human migration into the British Isles provides such a laboratory which, because of its relative geographical isolation, may allow some insights into the complex dynamics of early human migration and interaction. Method and Results We developed a simulation code based on human affinity to habitable land, as defined by availability of water sources, altitude, and flatness of land, in choosing the path of migration. Movement of people on the British island over the prehistoric period from their initial entry points was simulated on the basis of data from the megalithic period. Topographical and hydro-shed data from satellite databases was used to define habitability, based on distance from water bodies, flatness of the terrain, and altitude above sea level. We simulated population movement based on assumptions of affinity for more habitable places, with the rate of movement tempered by existing populations. We compared results of our computer simulations with genetic data and show that our simulation can predict fairly accurately the points of contacts between different migratory paths. Such comparison also provides more detailed information about the path of peoples’ movement over ~2000 years before the present era. Conclusions We demonstrate an accurate method to simulate prehistoric movements of people based upon current topographical satellite data. Our findings are validated by recently-available genetic data. Our method may prove useful in determining early human population dynamics even when no genetic information is available. PMID:27148959

  20. Dynamics of adaptive immunity against phage in bacterial populations

    NASA Astrophysics Data System (ADS)

    Bradde, Serena; Vucelja, Marija; Tesileanu, Tiberiu; Balasubramanian, Vijay

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a ``winner-take-all'' scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition rate.

  1. Dynamic distributions and population declines of Golden-winged Warblers

    USGS Publications Warehouse

    Rosenberg, Kenneth V.; Will, Tom; Buehler, David A.; Barker Swarthout, Sara; Thogmartin, Wayne E.; Chandler, Richard

    2016-01-01

    With an estimated breeding population in 2010 of 383,000 pairs, the Golden-winged Warbler (Vermivora chrysoptera) is among the most vulnerable and steeply declining of North American passerines. This species also has exhibited among the most dynamic breeding distributions, with populations expanding and then contracting over the past 150 years in response to regional habitat changes, interactions with closely related Blue-winged Warblers (V. cyanoptera), and possibly climate change. Since 1966, the rangewide population has declined by >70% (-2.3% per year; latest North American Breeding Bird Survey data), with much steeper declines in the Appalachian Mountains bird conservation region (-8.3% per year, 98% overall decline). Despite apparently stable or increasing populations in the northwestern part of the range (Minnesota, Manitoba), population estimates for Golden-winged Warbler have continued to decline by 18% from the decade of the 1990s to the 2000s. Population modeling predicts a further decline to roughly 37,000 individuals by 2100, with the species likely to persist only in Manitoba, Minnesota, and possibly Ontario. To delineate the present-day distribution and to identify population concentrations that could serve as conservation focus areas, we compiled rangewide survey data collected in 2000-2006 in 21 states and 3 Canadian provinces, as part of the Golden-winged Warbler Atlas Project (GOWAP), supplemented by state and provincial Breeding Bird Atlas data and more recent observations in eBird. Based on >8,000 GOWAP surveys for Golden-winged and Blue-winged warblers and their hybrids, we mapped occurrence of phenotypically pure and mixed populations in a roughly 0.5-degree grid across the species’ ranges. Hybrids and mixed Golden-winged-Blue-winged populations occurred in a relatively narrow zone across Minnesota, Wisconsin, Michigan, southern Ontario, and northern New York. Phenotypically pure Golden-winged Warbler populations occurred north of this

  2. Identifying consumer-resource population dynamics using paleoecological data.

    PubMed

    Einarsson, Árni; Hauptfleisch, Ulf; Leavitt, Peter R; Ives, Anthony R

    2016-02-01

    Ecologists have long been fascinated by cyclic population fluctuations, because they suggest strong interactions between exploiter and victim species. Nonetheless, even for populations showing high-amplitude fluctuations, it is often hard to identify which species are the key drivers of the dynamics, because data are generally only available for a single species. Here, we use a paleoecological approach to investigate fluctuations in the midge population in Lake Mývatn, Iceland, which ranges over several orders of magnitude in irregular, multigeneration cycles. Previous circumstantial evidence points to consumer-resource interactions between midges and their primary food, diatoms, as the cause of these high-amplitude fluctuations. Using a pair of sediment cores from the lake, we reconstructed 26 years of dynamics of midges using egg remains and of algal groups using diagnostic pigments. We analyzed these data using statistical methods that account for both the autocorrelated nature of paleoecological data and measurement error caused by the mixing of sediment layers. The analyses revealed a signature of consumer-resource interactions in the fluctuations of midges and diatoms: diatom abundance (as inferred from biomarker pigment diatoxanthin) increased when midge abundance was low, and midge abundance (inferred from egg capsules) decreased when diatom abundance was low. Similar patterns were not found for pigments characterizing the other dominant primary producer group in the lake (cyanobacteria), subdominant algae (cryptophytes), or ubiquitous but chemically unstable biomarkers of total algal abundance (chlorophyll a); however, a significant but weaker pattern was found for the chemically stable indicator of total algal populations (β-carotene) to which diatoms are the dominant contributor. These analyses provide the first paleoecological evaluation of specific trophic interactions underlying high amplitude population fluctuations in lakes.

  3. Modeling Bacterial Population Growth from Stochastic Single-Cell Dynamics

    PubMed Central

    Molina, Ignacio; Theodoropoulos, Constantinos

    2014-01-01

    A few bacterial cells may be sufficient to produce a food-borne illness outbreak, provided that they are capable of adapting and proliferating on a food matrix. This is why any quantitative health risk assessment policy must incorporate methods to accurately predict the growth of bacterial populations from a small number of pathogens. In this aim, mathematical models have become a powerful tool. Unfortunately, at low cell concentrations, standard deterministic models fail to predict the fate of the population, essentially because the heterogeneity between individuals becomes relevant. In this work, a stochastic differential equation (SDE) model is proposed to describe variability within single-cell growth and division and to simulate population growth from a given initial number of individuals. We provide evidence of the model ability to explain the observed distributions of times to division, including the lag time produced by the adaptation to the environment, by comparing model predictions with experiments from the literature for Escherichia coli, Listeria innocua, and Salmonella enterica. The model is shown to accurately predict experimental growth population dynamics for both small and large microbial populations. The use of stochastic models for the estimation of parameters to successfully fit experimental data is a particularly challenging problem. For instance, if Monte Carlo methods are employed to model the required distributions of times to division, the parameter estimation problem can become numerically intractable. We overcame this limitation by converting the stochastic description to a partial differential equation (backward Kolmogorov) instead, which relates to the distribution of division times. Contrary to previous stochastic formulations based on random parameters, the present model is capable of explaining the variability observed in populations that result from the growth of a small number of initial cells as well as the lack of it compared to

  4. Modeling bacterial population growth from stochastic single-cell dynamics.

    PubMed

    Alonso, Antonio A; Molina, Ignacio; Theodoropoulos, Constantinos

    2014-09-01

    A few bacterial cells may be sufficient to produce a food-borne illness outbreak, provided that they are capable of adapting and proliferating on a food matrix. This is why any quantitative health risk assessment policy must incorporate methods to accurately predict the growth of bacterial populations from a small number of pathogens. In this aim, mathematical models have become a powerful tool. Unfortunately, at low cell concentrations, standard deterministic models fail to predict the fate of the population, essentially because the heterogeneity between individuals becomes relevant. In this work, a stochastic differential equation (SDE) model is proposed to describe variability within single-cell growth and division and to simulate population growth from a given initial number of individuals. We provide evidence of the model ability to explain the observed distributions of times to division, including the lag time produced by the adaptation to the environment, by comparing model predictions with experiments from the literature for Escherichia coli, Listeria innocua, and Salmonella enterica. The model is shown to accurately predict experimental growth population dynamics for both small and large microbial populations. The use of stochastic models for the estimation of parameters to successfully fit experimental data is a particularly challenging problem. For instance, if Monte Carlo methods are employed to model the required distributions of times to division, the parameter estimation problem can become numerically intractable. We overcame this limitation by converting the stochastic description to a partial differential equation (backward Kolmogorov) instead, which relates to the distribution of division times. Contrary to previous stochastic formulations based on random parameters, the present model is capable of explaining the variability observed in populations that result from the growth of a small number of initial cells as well as the lack of it compared to

  5. Scale-invariant model of marine population dynamics.

    PubMed

    Capitán, José A; Delius, Gustav W

    2010-06-01

    A striking feature of the marine ecosystem is the regularity in its size spectrum: the abundance of organisms as a function of their weight approximately follows a power law over almost ten orders of magnitude. We interpret this as evidence that the population dynamics in the ocean is approximately scale-invariant. We use this invariance in the construction and solution of a size-structured dynamical population model. Starting from a Markov model encoding the basic processes of predation, reproduction, maintenance respiration, and intrinsic mortality, we derive a partial integro-differential equation describing the dependence of abundance on weight and time. Our model represents an extension of the jump-growth model and hence also of earlier models based on the McKendrick-von Foerster equation. The model is scale-invariant provided the rate functions of the stochastic processes have certain scaling properties. We determine the steady-state power-law solution, whose exponent is determined by the relative scaling between the rates of the density-dependent processes (predation) and the rates of the density-independent processes (reproduction, maintenance, and mortality). We study the stability of the steady-state against small perturbations and find that inclusion of maintenance respiration and reproduction in the model has a strong stabilizing effect. Furthermore, the steady state is unstable against a change in the overall population density unless the reproduction rate exceeds a certain threshold.

  6. Mammal population regulation, keystone processes and ecosystem dynamics.

    PubMed Central

    Sinclair, A R E

    2003-01-01

    The theory of regulation in animal populations is fundamental to understanding the dynamics of populations, the causes of mortality and how natural selection shapes the life history of species. In mammals, the great range in body size allows us to see how allometric relationships affect the mode of regulation. Resource limitation is the fundamental cause of regulation. Top-down limitation through predators is determined by four factors: (i). body size; (ii). the diversity of predators and prey in the system; (iii). whether prey are resident or migratory; and (iv). the presence of alternative prey for predators. Body size in mammals has two important consequences. First, mammals, particularly large species, can act as keystones that determine the diversity of an ecosystem. I show how keystone processes can, in principle, be measured using the example of the wildebeest in the Serengeti ecosystem. Second, mammals act as ecological landscapers by altering vegetation succession. Mammals alter physical structure, ecological function and species diversity in most terrestrial biomes. In general, there is a close interaction between allometry, population regulation, life history and ecosystem dynamics. These relationships are relevant to applied aspects of conservation and pest management. PMID:14561329

  7. Effects of rainfall on Culex mosquito population dynamics.

    PubMed

    Valdez, L D; Sibona, G J; Diaz, L A; Contigiani, M S; Condat, C A

    2017-03-27

    The dynamics of a mosquito population depends heavily on climatic variables such as temperature and precipitation. Since climate change models predict that global warming will impact on the frequency and intensity of rainfall, it is important to understand how these variables affect the mosquito populations. We present a model of the dynamics of a Culex quinquefasciatus mosquito population that incorporates the effect of rainfall and use it to study the influence of the number of rainy days and the mean monthly precipitation on the maximum yearly abundance of mosquitoes Mmax. Additionally, using a fracturing process, we investigate the influence of the variability in daily rainfall on Mmax. We find that, given a constant value of monthly precipitation, there is an optimum number of rainy days for which Mmax is a maximum. On the other hand, we show that increasing daily rainfall variability reduces the dependence of Mmax on the number of rainy days, leading also to a higher abundance of mosquitoes for the case of low mean monthly precipitation. Finally, we explore the effect of the rainfall in the months preceding the wettest season, and we obtain that a regimen with high precipitations throughout the year and a higher variability tends to advance slightly the time at which the peak mosquito abundance occurs, but could significantly change the total mosquito abundance in a year.

  8. Response of Methanogens in Arctic Sediments to Temperature and Methanogenic Substrate Availability

    PubMed Central

    Blake, Lynsay I.; Tveit, Alexander; Øvreås, Lise; Head, Ian M.; Gray, Neil D.

    2015-01-01

    Although cold environments are major contributors to global biogeochemical cycles, comparatively little is known about their microbial community function, structure, and limits of activity. In this study a microcosm based approach was used to investigate the effects of temperature, and methanogenic substrate amendment, (acetate, methanol and H2/CO2) on methanogen activity and methanogen community structure in high Arctic wetlands (Solvatnet and Stuphallet, Svalbard). Methane production was not detected in Stuphallet sediment microcosms (over a 150 day period) and occurred within Solvatnet sediments microcosms (within 24 hours) at temperatures from 5 to 40°C, the maximum temperature being at far higher than in situ maximum temperatures (which range from air temperatures of -1.4 to 14.1°C during summer months). Distinct responses were observed in the Solvatnet methanogen community under different short term incubation conditions. Specifically, different communities were selected at higher and lower temperatures. At lower temperatures (5°C) addition of exogenous substrates (acetate, methanol or H2/CO2) had no stimulatory effect on the rate of methanogenesis or on methanogen community structure. The community in these incubations was dominated by members of the Methanoregulaceae/WCHA2-08 family-level group, which were most similar to the psychrotolerant hydrogenotrophic methanogen Methanosphaerula palustris strain E1-9c. In contrast, at higher temperatures, substrate amendment enhanced methane production in H2/CO2 amended microcosms, and played a clear role in structuring methanogen communities. Specifically, at 30°C members of the Methanoregulaceae/WCHA2-08 predominated following incubation with H2/CO2, and Methanosarcinaceaeand Methanosaetaceae were enriched in response to acetate addition. These results may indicate that in transiently cold environments, methanogen communities can rapidly respond to moderate short term increases in temperature, but not

  9. Response of Methanogens in Arctic Sediments to Temperature and Methanogenic Substrate Availability.

    PubMed

    Blake, Lynsay I; Tveit, Alexander; Øvreås, Lise; Head, Ian M; Gray, Neil D

    2015-01-01

    Although cold environments are major contributors to global biogeochemical cycles, comparatively little is known about their microbial community function, structure, and limits of activity. In this study a microcosm based approach was used to investigate the effects of temperature, and methanogenic substrate amendment, (acetate, methanol and H2/CO2) on methanogen activity and methanogen community structure in high Arctic wetlands (Solvatnet and Stuphallet, Svalbard). Methane production was not detected in Stuphallet sediment microcosms (over a 150 day period) and occurred within Solvatnet sediments microcosms (within 24 hours) at temperatures from 5 to 40°C, the maximum temperature being at far higher than in situ maximum temperatures (which range from air temperatures of -1.4 to 14.1°C during summer months). Distinct responses were observed in the Solvatnet methanogen community under different short term incubation conditions. Specifically, different communities were selected at higher and lower temperatures. At lower temperatures (5°C) addition of exogenous substrates (acetate, methanol or H2/CO2) had no stimulatory effect on the rate of methanogenesis or on methanogen community structure. The community in these incubations was dominated by members of the Methanoregulaceae/WCHA2-08 family-level group, which were most similar to the psychrotolerant hydrogenotrophic methanogen Methanosphaerula palustris strain E1-9c. In contrast, at higher temperatures, substrate amendment enhanced methane production in H2/CO2 amended microcosms, and played a clear role in structuring methanogen communities. Specifically, at 30°C members of the Methanoregulaceae/WCHA2-08 predominated following incubation with H2/CO2, and Methanosarcinaceaeand Methanosaetaceae were enriched in response to acetate addition. These results may indicate that in transiently cold environments, methanogen communities can rapidly respond to moderate short term increases in temperature, but not

  10. Volatile hydrocarbons inhibit methanogenic crude oil degradation

    PubMed Central

    Sherry, Angela; Grant, Russell J.; Aitken, Carolyn M.; Jones, D. Martin; Head, Ian M.; Gray, Neil D.

    2014-01-01

    Methanogenic degradation of crude oil in subsurface sediments occurs slowly, but without the need for exogenous electron acceptors, is sustained for long periods and has enormous economic and environmental consequences. Here we show that volatile hydrocarbons are inhibitory to methanogenic oil biodegradation by comparing degradation of an artificially weathered crude oil with volatile hydrocarbons removed, with the same oil that was not weathered. Volatile hydrocarbons (nC5–nC10, methylcyclohexane, benzene, toluene, and xylenes) were quantified in the headspace of microcosms. Aliphatic (n-alkanes nC12–nC34) and aromatic hydrocarbons (4-methylbiphenyl, 3-methylbiphenyl, 2-methylnaphthalene, 1-methylnaphthalene) were quantified in the total hydrocarbon fraction extracted from the microcosms. 16S rRNA genes from key microorganisms known to play an important role in methanogenic alkane degradation (Smithella and Methanomicrobiales) were quantified by quantitative PCR. Methane production from degradation of weathered oil in microcosms was rapid (1.1 ± 0.1 μmol CH4/g sediment/day) with stoichiometric yields consistent with degradation of heavier n-alkanes (nC12–nC34). For non-weathered oil, degradation rates in microcosms were significantly lower (0.4 ± 0.3 μmol CH4/g sediment/day). This indicated that volatile hydrocarbons present in the non-weathered oil inhibit, but do not completely halt, methanogenic alkane biodegradation. These findings are significant with respect to rates of biodegradation of crude oils with abundant volatile hydrocarbons in anoxic, sulphate-depleted subsurface environments, such as contaminated marine sediments which have been entrained below the sulfate-reduction zone, as well as crude oil biodegradation in petroleum reservoirs and contaminated aquifers. PMID:24765087

  11. Microbiology and biochemistry of the methanogenic archaeobacteria

    NASA Astrophysics Data System (ADS)

    Abbanat, Darren R.; Aceti, David J.; Baron, Stephen F.; Terlesky, Katherine C.; Ferry, James C.

    The methane producing bacteria area diverse group of organisms that function in nature with other groups of strictly anaerobic bacteria to convert complex organic matter to methane and carbon dioxide. The methanogens belong to the archaeobacteria, a third primary kingdom distinct from all other procaryotes (eubacteria) and eucaryotes. The distinction is based on the unique structures of cell wall and membrane components present in archaeobacteria, as well as differences in the highly conserved 16s rRNA sequences among the three kingdoms. In addition, the methanogens contain several novel cofactors that function as one-carbon carriers during the reduction of carbon dioxide to methane with electrons derived from the oxidation of H2 or formate. Methanogens also convert acetate to methane by a pathway distinct from that for carbon dioxide reduction. The pathway involves activation of acetate to acetyl-SCoA followed by decarbonylation and reduction of the methyl group to methane coupled to the oxidation of the carbonyl group to carbon dioxide.

  12. Host-Parasite Interactions and Population Dynamics of Rock Ptarmigan.

    PubMed

    Stenkewitz, Ute; Nielsen, Ólafur K; Skírnisson, Karl; Stefánsson, Gunnar

    2016-01-01

    evidence that E. muta through time-lag in prevalence with respect to host population size and by showing significant relations with host body condition, mortality, and fecundity could destabilize ptarmigan population dynamics in Iceland.

  13. Evolutionary dynamics for persistent cooperation in structured populations

    NASA Astrophysics Data System (ADS)

    Li, Yan; Liu, Xinsheng; Claussen, Jens Christian; Guo, Wanlin

    2015-06-01

    The emergence and maintenance of cooperative behavior is a fascinating topic in evolutionary biology and social science. The public goods game (PGG) is a paradigm for exploring cooperative behavior. In PGG, the total resulting payoff is divided equally among all participants. This feature still leads to the dominance of defection without substantially magnifying the public good by a multiplying factor. Much effort has been made to explain the evolution of cooperative strategies, including a recent model in which only a portion of the total benefit is shared by all the players through introducing a new strategy named persistent cooperation. A persistent cooperator is a contributor who is willing to pay a second cost to retrieve the remaining portion of the payoff contributed by themselves. In a previous study, this model was analyzed in the framework of well-mixed populations. This paper focuses on discussing the persistent cooperation in lattice-structured populations. The evolutionary dynamics of the structured populations consisting of three types of competing players (pure cooperators, defectors, and persistent cooperators) are revealed by theoretical analysis and numerical simulations. In particular, the approximate expressions of fixation probabilities for strategies are derived on one-dimensional lattices. The phase diagrams of stationary states, and the evolution of frequencies and spatial patterns for strategies are illustrated on both one-dimensional and square lattices by simulations. Our results are consistent with the general observation that, at least in most situations, a structured population facilitates the evolution of cooperation. Specifically, here we find that the existence of persistent cooperators greatly suppresses the spreading of defectors under more relaxed conditions in structured populations compared to that obtained in well-mixed populations.

  14. Host-Parasite Interactions and Population Dynamics of Rock Ptarmigan

    PubMed Central

    Stenkewitz, Ute; Nielsen, Ólafur K.; Skírnisson, Karl; Stefánsson, Gunnar

    2016-01-01

    evidence that E. muta through time-lag in prevalence with respect to host population size and by showing significant relations with host body condition, mortality, and fecundity could destabilize ptarmigan population dynamics in Iceland. PMID:27870855

  15. Programming microbial population dynamics by engineered cell-cell communication.

    PubMed

    Song, Hao; Payne, Stephen; Tan, Cheemeng; You, Lingchong

    2011-07-01

    A major aim of synthetic biology is to program novel cellular behavior using engineered gene circuits. Early endeavors focused on building simple circuits that fulfill simple functions, such as logic gates, bistable toggle switches, and oscillators. These gene circuits have primarily focused on single-cell behaviors since they operate intracellularly. Thus, they are often susceptible to cell-cell variations due to stochastic gene expression. Cell-cell communication offers an efficient strategy to coordinate cellular behavior at the population level. To this end, we review recent advances in engineering cell-cell communication to achieve reliable population dynamics, spanning from communication within single species to multispecies, from one-way sender-receiver communication to two-way communication in synthetic microbial ecosystems. These engineered systems serve as well-defined model systems to better understand design principles of their naturally occurring counterparts and to facilitate novel biotechnology applications.

  16. Coinfection Dynamics of Two Diseases in a Single Host Population.

    PubMed

    Gao, Daozhou; Porco, Travis C; Ruan, Shigui

    2016-10-01

    A susceptible-infectious-susceptible (SIS) epidemic model that describes the coinfection and cotransmission of two infectious diseases spreading through a single population is studied. The host population consists of two subclasses: susceptible and infectious, and the infectious individuals are further divided into three subgroups: those infected by the first agent/pathogen, the second agent/pathogen, and both. The basic reproduction numbers for all cases are derived which completely determine the global stability of the system if the presence of one agent/pathogen does not affect the transmission of the other. When the constraint on the transmissibility of the dually infected hosts is removed, we introduce the invasion reproduction number, compare it with two other types of reproduction number and show the uniform persistence of both diseases under certain conditions. Numerical simulations suggest that the system can display much richer dynamics such as backward bifurcation, bistability and Hopf bifurcation.

  17. State-dependent neutral delay equations from population dynamics.

    PubMed

    Barbarossa, M V; Hadeler, K P; Kuttler, C

    2014-10-01

    A novel class of state-dependent delay equations is derived from the balance laws of age-structured population dynamics, assuming that birth rates and death rates, as functions of age, are piece-wise constant and that the length of the juvenile phase depends on the total adult population size. The resulting class of equations includes also neutral delay equations. All these equations are very different from the standard delay equations with state-dependent delay since the balance laws require non-linear correction factors. These equations can be written as systems for two variables consisting of an ordinary differential equation (ODE) and a generalized shift, a form suitable for numerical calculations. It is shown that the neutral equation (and the corresponding ODE--shift system) is a limiting case of a system of two standard delay equations.

  18. Fast stochastic algorithm for simulating evolutionary population dynamics

    NASA Astrophysics Data System (ADS)

    Tsimring, Lev; Hasty, Jeff; Mather, William

    2012-02-01

    Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.

  19. Mosquito population dynamics from cellular automata-based simulation

    NASA Astrophysics Data System (ADS)

    Syafarina, Inna; Sadikin, Rifki; Nuraini, Nuning

    2016-02-01

    In this paper we present an innovative model for simulating mosquito-vector population dynamics. The simulation consist of two stages: demography and dispersal dynamics. For demography simulation, we follow the existing model for modeling a mosquito life cycles. Moreover, we use cellular automata-based model for simulating dispersal of the vector. In simulation, each individual vector is able to move to other grid based on a random walk. Our model is also capable to represent immunity factor for each grid. We simulate the model to evaluate its correctness. Based on the simulations, we can conclude that our model is correct. However, our model need to be improved to find a realistic parameters to match real data.

  20. Auctions with Dynamic Populations: Efficiency and Revenue Maximization

    NASA Astrophysics Data System (ADS)

    Said, Maher

    We study a stochastic sequential allocation problem with a dynamic population of privately-informed buyers. We characterize the set of efficient allocation rules and show that a dynamic VCG mechanism is both efficient and periodic ex post incentive compatible; we also show that the revenue-maximizing direct mechanism is a pivot mechanism with a reserve price. We then consider sequential ascending auctions in this setting, both with and without a reserve price. We construct equilibrium bidding strategies in this indirect mechanism where bidders reveal their private information in every period, yielding the same outcomes as the direct mechanisms. Thus, the sequential ascending auction is a natural institution for achieving either efficient or optimal outcomes.

  1. Population Dynamics of Patients with Bacterial Resistance in Hospital Environment

    PubMed Central

    Qu, Leilei; Pan, Qiuhui; Gao, Xubin; He, Mingfeng

    2016-01-01

    During the past decades, the increase of antibiotic resistance has become a major concern worldwide. The researchers found that superbugs with new type of resistance genes (NDM-1) have two aspects of transmission characteristics; the first is that the antibiotic resistance genes can horizontally transfer among bacteria, and the other is that the superbugs can spread between humans through direct contact. Based on these two transmission mechanisms, we study the dynamics of population in hospital environment where superbugs exist. In this paper, we build three mathematic models to illustrate the dynamics of patients with bacterial resistance in hospital environment. The models are analyzed using stability theory of differential equations. Positive equilibrium points of the system are investigated and their stability analysis is carried out. Moreover, the numerical simulation of the proposed model is also performed which supports the theoretical findings. PMID:26904150

  2. Population Dynamics of Patients with Bacterial Resistance in Hospital Environment.

    PubMed

    Qu, Leilei; Pan, Qiuhui; Gao, Xubin; He, Mingfeng

    2016-01-01

    During the past decades, the increase of antibiotic resistance has become a major concern worldwide. The researchers found that superbugs with new type of resistance genes (NDM-1) have two aspects of transmission characteristics; the first is that the antibiotic resistance genes can horizontally transfer among bacteria, and the other is that the superbugs can spread between humans through direct contact. Based on these two transmission mechanisms, we study the dynamics of population in hospital environment where superbugs exist. In this paper, we build three mathematic models to illustrate the dynamics of patients with bacterial resistance in hospital environment. The models are analyzed using stability theory of differential equations. Positive equilibrium points of the system are investigated and their stability analysis is carried out. Moreover, the numerical simulation of the proposed model is also performed which supports the theoretical findings.

  3. Spatial dynamics of a population with stage-dependent diffusion

    NASA Astrophysics Data System (ADS)

    Azevedo, F.; Coutinho, R. M.; Kraenkel, R. A.

    2015-05-01

    We explore the spatial dynamics of a population whose individuals go through life stages with very different dispersal capacities. We model it through a system of partial differential equations of the reaction-diffusion kind, with nonlinear diffusion terms that may depend on population density and on the stage. This model includes a few key biological ingredients: growth and saturation, life stage structure, small population effects, and diffusion dependent on the stage. In particular, we consider that adults exhibit two distinct classes: one highly mobile and the other less mobile but with higher fecundity rate, and the development of juveniles into one or the other depends on population density. We parametrize the model with estimated parameters of an insect species, the brown planthopper. We focus on a situation akin to an invasion of the species in a new habitat and find that the front of invasion is led by the most mobile adult class. We also show that the trade-off between dispersal and fecundity leads to invasion speed attaining its maximum at an intermediate value of the diffusion coefficient of the most mobile class.

  4. The population dynamics of black-white-mulatto racial systems.

    PubMed

    Montgomery, James D

    2011-07-01

    Building on Preston and Campbell's two-sex model of intergenerational transmission, this article provides a theoretical analysis of the dynamics of the racial distribution in black-white-mulatto systems. The author shows that "bounded" patterns of racial classification and switching imply long-run racial homogeneity in the absence of differential reproduction. Beyond the theoretical analysis, the author attempts to account for the dramatic growth of the white population share in Puerto Rico in the early 20th century. Because the effects of racial classification and differential reproduction were roughly offsetting, the observed growth of the white share can be attributed almost entirely to racial switching.

  5. Global climate drives southern right whale (Eubalaena australis) population dynamics.

    PubMed

    Leaper, Russell; Cooke, Justin; Trathan, Phil; Reid, Keith; Rowntree, Victoria; Payne, Roger

    2006-06-22

    Sea surface temperature (SST) time-series from the southwest Atlantic and the El Niño 4 region in the western Pacific were compared to an index of annual calving success of the southern right whale (Eubalaena australis) breeding in Argentina. There was a strong relationship between right whale calving output and SST anomalies at South Georgia in the autumn of the previous year and also with mean El Niño 4 SST anomalies delayed by 6 years. These results extend similar observations from other krill predators and show clear linkages between global climate signals and the biological processes affecting whale population dynamics.

  6. Front acceleration by dynamic selection in Fisher population waves

    NASA Astrophysics Data System (ADS)

    Bénichou, O.; Calvez, V.; Meunier, N.; Voituriez, R.

    2012-10-01

    We introduce a minimal model of population range expansion in which the phenotypes of individuals present no selective advantage and differ only in their diffusion rate. We show that such neutral phenotypic variability (i.e., that does not modify the growth rate) alone can yield phenotype segregation at the front edge, even in absence of genetic noise, and significantly impact the dynamical properties of the expansion wave. We present an exact asymptotic traveling wave solution and show analytically that phenotype segregation accelerates the front propagation. The results are compatible with field observations such as invasions of cane toads in Australia or bush crickets in Britain.

  7. The role of methanogens in acetic acid production under different salinity conditions.

    PubMed

    Xiao, Keke; Guo, Chenghong; Maspolim, Yogananda; Zhou, Yan; Ng, Wun Jern

    2016-10-01

    In this study, a fed-batch acidogenic reactor was operated at a 3 d hydraulic retention time (HRT) and fed with alkaline pre-treated sludge to investigate salinity effects on methanogens' abundance, activities and their consumption of produced acetic acid (HAc) and total volatile fatty acids (VFAs). The salinity concentration was increased step-wise by adding sodium chloride. At 3‰ (parts per thousand) salinity, the average produced volatile fatty acids (VFAs) concentration was 2410.16 ± 637.62 mg COD L(-1) and 2.70 ± 0.36 L methane was produced daily in the acidogenic reactor. Further batch tests indicated methanogens showed a HAc degradation rate of 3.81 mg COD g(-1) VSS h(-1) at initial HAc concentration of 1150 mg COD L(-1), and showed tolerance up to 16‰ salinity (3.76 g Na(+) L(-1)) as indicated by a constant HAc degradation rate. The microbiological study indicated this can be related to the predominance of acetate-utilizing Methanosarcinaceae and Methanomicrobiales in the reactor. However, with salinity increased to 20‰ and 40‰, increases in VFAs and HAc production and decreases in methane production, methanogens population, acidogenic bacteria population and acidification extent were observed. This study demonstrated presence of acetate-utilizing methanogens in an acidogenic reactor and their high tolerance to salinity, as well as their negative impacts on net VFAs production. The results would suggest the presence of methanogens in the acidogenic reactor should not be ignored and the recovery of methane from the acidogenic reactor needs to be considered to avoid carbon loss.

  8. Population dynamics of minimally cognitive individuals. Part I: Introducing knowledge into the dynamics

    SciTech Connect

    Schmieder, R.W.

    1995-07-01

    The author presents a new approach for modeling the dynamics of collections of objects with internal structure. Based on the fact that the behavior of an individual in a population is modified by its knowledge of other individuals, a procedure for accounting for knowledge in a population of interacting objects is presented. It is assumed that each object has partial (or complete) knowledge of some (or all) other objects in the population. The dynamical equations for the objects are then modified to include the effects of this pairwise knowledge. This procedure has the effect of projecting out what the population will do from the much larger space of what it could do, i.e., filtering or smoothing the dynamics by replacing the complex detailed physical model with an effective model that produces the behavior of interest. The procedure therefore provides a minimalist approach for obtaining emergent collective behavior. The use of knowledge as a dynamical quantity, and its relationship to statistical mechanics, thermodynamics, information theory, and cognition microstructure are discussed.

  9. Methanopyrus kandleri: an archaeal methanogen unrelated to all other known methanogens

    NASA Technical Reports Server (NTRS)

    Burggraf, S.; Stetter, K. O.; Rouviere, P.; Woese, C. R.

    1991-01-01

    Analysis of its 16S rRNA sequence shows that the newly discovered hyperthermophilic methanogen, Methanopryus kandleri, is phylogenetically unrelated to any other known methanogen. The organism represents a separate lineage originating near the root of the archaeal tree. Although the 16S rRNA sequence of Mp. kandleri resembles euryarchaeal 16S rRNAs more than it does crenarchaeal, it shows more crenarchaeal signature features than any known euryarchaeal rRNA. Attempts to place it in relation to the root of the archaeal tree show that the Mp. kandleri lineage likely arises from the euryarchaeal branch of the tree. While the existence of so deeply branching a methanogenic lineage brings into question the thesis that methanogenesis evolved from an earlier metabolism similar to that seen in Thermococcus, it at the same time reinforces the notion that the aboriginal [correction of aborginal] archaeon was a thermophile.

  10. Levels of water-soluble vitamins in methanogenic and non-methanogenic bacteria

    SciTech Connect

    Leigh, J.A.

    1983-03-01

    The levels of seven water-soluble vitamins in Methanobacterium thermoautotropicum, Methanococcus voltae, Escherichia coli, Bacillus subtillis, Pseudomonas fluorescens, and Bacteroides thetaiotaomicron were compared by using a vitamin-requiring Leuconostoc strain. Both methanogens contained levels of folic acid and pantothenic acid which were approximately two orders of magnitude lower than levels in the nonmethanogens. Methanobacterium thermoautotrophicum contained levels of thiamine, biotin, nicotinic acid, and pyridoxine which were approximately one order of magnitude lower than levels in the nonmethanogens. The thiamine level in Methanococcus voltae was approximately one order of magnitude lower than levels in the nonmethanogens. Only the levels of riboflavin (and nicotinic acid and pyridoxine in Methanococcus voltae) were approximately equal in the methanogens and nonmethanogens. Folic acid may have been present in extracts of methanogens merely as a precursor, by-product, or hydrolysis product of methanopterin.

  11. Analysis of rumen methanogen diversity in water buffaloes (Bubalus bubalis) under three different diets.

    PubMed

    Franzolin, Raul; St-Pierre, Benoit; Northwood, Korinne; Wright, André-Denis G

    2012-07-01

    The water buffalo (Bubalus bubalis) is a prominent livestock species for the production of milk and meat in many countries. We investigated the diversity of rumen methanogens in Mediterranean water buffaloes maintained in Brazil under different diets: corn silage, grazing pasture, or sugar cane. A total of 467 clones were isolated from three methanogen 16S rRNA gene clone libraries that each represented a distinct feed type. The 467 clones were assigned to 19 species-level operational taxonomic units (OTUs). Four OTUs were represented in all three libraries, eight OTUs were library-specific, six OTUs were found in only the corn silage and pasture grazing libraries, and one OTU was shared only between pasture grazing and sugar cane libraries. We found that Methanobrevibacter-related sequences were the most abundant in the water buffaloes sampled for our analysis, in contrast to previously reported studies showing that Methanomicrobium mobile-like methanogens were the most abundant methanogens in water buffaloes of Murrah and Surti breeds sampled in India. Considering the worldwide distribution of water buffaloes and the likely wide variety of diets provided, our results combined with studies from other groups support that larger scope analyses of microbiomes for this livestock species would provide great insight into the contribution of geographical location, breed, and diet in determining the population structure of rumen microorganisms.

  12. Can abundance of methanogen be a good indicator for CH4 flux in soil ecosystems?

    PubMed

    Kim, Jinhyun; Lee, Seung-Hoon; Jang, Inyoung; Jeong, Sangseom; Kang, Hojeong

    2015-12-01

    Methane, which is produced by methanogenic archaea, is the second most abundant carbon compound in the atmosphere. Due to its strong radiative forcing, many studies have been conducted to determine its sources, budget, and dynamics. However, a mechanistic model of methane flux has not been developed thus far. In this study, we attempt to examine the relevance of the abundance of methanogen as a biological indicator of methane flux in three different types of soil ecosystems: permafrost, rice paddy, and mountainous wetland. We measured the annual average methane flux and abundance of methanogen in the soil ecosystems in situ. The correlation between methane flux and the abundance of methanogen exists only under a specific biogeochemical conditions such as SOM of higher than 60%, pH of 5.6-6.4, and water-saturated. Except for these conditions, significant correlations were absent. Therefore, microbial abundance information can be applied to a methane flux model selectively depending on the biogeochemical properties of the soil ecosystem.

  13. Population dynamics of minimally cognitive individuals. Part 2: Dynamics of time-dependent knowledge

    SciTech Connect

    Schmieder, R.W.

    1995-07-01

    The dynamical principle for a population of interacting individuals with mutual pairwise knowledge, presented by the author in a previous paper for the case of constant knowledge, is extended to include the possibility that the knowledge is time-dependent. Several mechanisms are presented by which the mutual knowledge, represented by a matrix K, can be altered, leading to dynamical equations for K(t). The author presents various examples of the transient and long time asymptotic behavior of K(t) for populations of relatively isolated individuals interacting infrequently in local binary collisions. Among the effects observed in the numerical experiments are knowledge diffusion, learning transients, and fluctuating equilibria. This approach will be most appropriate to small populations of complex individuals such as simple animals, robots, computer networks, agent-mediated traffic, simple ecosystems, and games. Evidence of metastable states and intermittent switching leads them to envision a spectroscopy associated with such transitions that is independent of the specific physical individuals and the population. Such spectra may serve as good lumped descriptors of the collective emergent behavior of large classes of populations in which mutual knowledge is an important part of the dynamics.

  14. Allele dynamics plots for the study of evolutionary dynamics in viral populations.

    PubMed

    Steinbrück, Lars; McHardy, Alice Carolyn

    2011-01-01

    Phylodynamic techniques combine epidemiological and genetic information to analyze the evolutionary and spatiotemporal dynamics of rapidly evolving pathogens, such as influenza A or human immunodeficiency viruses. We introduce 'allele dynamics plots' (AD plots) as a method for visualizing the evolutionary dynamics of a gene in a population. Using AD plots, we propose how to identify the alleles that are likely to be subject to directional selection. We analyze the method's merits with a detailed study of the evolutionary dynamics of seasonal influenza A viruses. AD plots for the major surface protein of seasonal influenza A (H3N2) and the 2009 swine-origin influenza A (H1N1) viruses show the succession of substitutions that became fixed in the evolution of the two viral populations. They also allow the early identification of those viral strains that later rise to predominance, which is important for the problem of vaccine strain selection. In summary, we describe a technique that reveals the evolutionary dynamics of a rapidly evolving population and allows us to identify alleles and associated genetic changes that might be under directional selection. The method can be applied for the study of influenza A viruses and other rapidly evolving species or viruses.

  15. Novel molecular markers for the detection of methanogens and phylogenetic analyses of methanogenic communities

    PubMed Central

    Dziewit, Lukasz; Pyzik, Adam; Romaniuk, Krzysztof; Sobczak, Adam; Szczesny, Pawel; Lipinski, Leszek; Bartosik, Dariusz; Drewniak, Lukasz

    2015-01-01

    Methanogenic Archaea produce approximately one billion tons of methane annually, but their biology remains largely unknown. This is partially due to the large phylogenetic and phenotypic diversity of this group of organisms, which inhabit various anoxic environments including peatlands, freshwater sediments, landfills, anaerobic digesters and the intestinal tracts of ruminants. Research is also hampered by the inability to cultivate methanogenic Archaea. Therefore, biodiversity studies have relied on the use of 16S rRNA and mcrA [encoding the α subunit of the methyl coenzyme M (methyl-CoM) reductase] genes as molecular markers for the detection and phylogenetic analysis of methanogens. Here, we describe four novel molecular markers that should prove useful in the detailed analysis of methanogenic consortia, with a special focus on methylotrophic methanogens. We have developed and validated sets of degenerate PCR primers for the amplification of genes encoding key enzymes involved in methanogenesis: mcrB and mcrG (encoding β and γ subunits of the methyl-CoM reductase, involved in the conversion of methyl-CoM to methane), mtaB (encoding methanol-5-hydroxybenzimidazolylcobamide Co-methyltransferase, catalyzing the conversion of methanol to methyl-CoM) and mtbA (encoding methylated [methylamine-specific corrinoid protein]:coenzyme M methyltransferase, involved in the conversion of mono-, di- and trimethylamine into methyl-CoM). The sensitivity of these primers was verified by high-throughput sequencing of PCR products amplified from DNA isolated from microorganisms present in anaerobic digesters. The selectivity of the markers was analyzed using phylogenetic methods. Our results indicate that the selected markers and the PCR primer sets can be used as specific tools for in-depth diversity analyses of methanogenic consortia. PMID:26217325

  16. [Population dynamics of thrushes and seasonal resource partition].

    PubMed

    Burskiĭ, O V; Demidova, E Iu; Morkovin, A A

    2014-01-01

    We studied seasonal population dynamics in birds using four thrush species from the Yenisei middle taiga region as an example. Long-term data on bird route censuses, capture-mark-recapture, and nest observa- tions were incorporated in the analysis. Particularly, methodological problems that complicate a direct comparison between assessed numbers at different phases of the annual cycle are considered. The integrated analysis of the results allowed comparing changes in numbers, energy expenditure, age structure, migrating status, and density distribution of selected populations during the snowless period and relating them to seasonal changes in food resource abundance. Thrush population numbers within the breeding range, and their energy consumption in the Yenisei middle taiga proportionately reflect the seasonal change in abundance of food resources. The compliance between resource intake and carrying capacity of the environment is attained by: timing of arrival and departure regarding to the species' range of tolerance; change in numbers as a result of reproduction and mortality; change in numbers due to habitat changes and long-distance movements; increasing energetic expenditures during reproduction and molt; timing, intensity and replication of nesting attempts; timing of molt and proportion of molting individuals in a population; individual variations of the annual cycle. Reproductive growth of local bird populations is not fast enough to catch up with seasonal growth of ecosystems productivity. Superabundance of invertebrates at the peak of the season offers a temporal niche which, on the one hand, is suitable for species capable of diet switching, while, on the other hand, may be used by specialized consumers, namely tropical migrants for whom, at high resource level, a shortened breeding period suffices.

  17. Methanogenic diversity and activity in municipal solid waste landfill leachates.

    PubMed

    Laloui-Carpentier, Wassila; Li, Tianlun; Vigneron, Vassilia; Mazéas, Laurent; Bouchez, Théodore

    2006-01-01

    Archaeal microbial communities present in municipal solid waste landfill leachates were characterized using a 16S rDNA approach. Phylogenetic affiliations of 239 partial length 16S rDNA sequences were determined. Sequences belonging to the order Methanosarcinales were dominant in the clone library and 65% of the clones belonged to the strictly acetoclastic methanogenic family Methanosaetaceae. Sequences affiliated to the metabolically versatile family Methanosarcinaceae represented 18% of the retrieved sequences. Members of the hydrogenotrophic order Methanomicrobiales were also recovered in limited numbers, especially sequences affiliated to the genera Methanoculleus and Methanofollis. Eleven euryarchaeal and thirteen crenarchaeal sequences (i.e. 10%) were distantly related to any hitherto cultivated microorganisms, showing that archaeal diversity within the investigated samples was limited. Lab-scale incubations were performed with leachates mixed with several methanogenic precursors (acetate, hydrogen, formate, methanol, methylamine). Microbial populations were followed using group specific 16S rRNA targeted fluorescent oligonucleotidic probes. During the incubations with acetate, acetoclastic methanogenesis was rapidly induced and led to the dominance of archaea hybridizing with probe MS1414 which indicates their affiliation to the family Methanosarcinaceae. Hydrogen and formate addition induced an important acetate synthesis resulting from the onset of homoacetogenic metabolism. In these incubations, species belonging to the family Methanosarcinaceae (hybridizing with probe MS1414) and the order Methanomicrobiales (hybridizing with probe EURY496) were dominant. Homoacetogenesis was also recorded for incubations with methanol and methylamines. In the methanol experiment, acetoclastic methanogenesis took place and archaea hybridizing with probe MS821 (specific for Methanosarcina spp.) were observed to be the dominant population. These results confirm that

  18. Population dynamics of microbial communities in the zebrafish gut

    NASA Astrophysics Data System (ADS)

    Jemielita, Matthew; Taormina, Michael; Burns, Adam; Hampton, Jennifer; Rolig, Annah; Wiles, Travis; Guillemin, Karen; Parthasarathy, Raghuveer

    2015-03-01

    The vertebrate intestine is home to a diverse microbial community, which plays a crucial role in the development and health of its host. Little is known about the population dynamics and spatial structure of this ecosystem, including mechanisms of growth and interactions between species. We have constructed an experimental model system with which to explore these issues, using initially germ-free larval zebrafish inoculated with defined communities of fluorescently tagged bacteria. Using light sheet fluorescence microscopy combined with computational image analysis we observe and quantify the entire bacterial community of the intestine during the first 24 hours of colonization, during which time the bacterial population grows from tens to tens of thousands of bacteria. We identify both individual bacteria and clusters of bacteria, and quantify the growth rate and spatial distribution of these distinct subpopulations. We find that clusters of bacteria grow considerably faster than individuals and are located in specific regions of the intestine. Imaging colonization by two species reveals spatial segregation and competition. These data and their analysis highlight the importance of spatial organization in the establishment of gut microbial communities, and can provide inputs to physical models of real-world ecological dynamics.

  19. The model of fungal population dynamics affected by nystatin

    NASA Astrophysics Data System (ADS)

    Voychuk, Sergei I.; Gromozova, Elena N.; Sadovskiy, Mikhail G.

    Fungal diseases are acute problems of the up-to-day medicine. Significant increase of resistance of microorganisms to the medically used antibiotics and a lack of new effective drugs follows in a growth of dosage of existing chemicals to solve the problem. Quite often such approach results in side effects on humans. Detailed study of fungi-antibiotic dynamics can identify new mechanisms and bring new ideas to overcome the microbial resistance with a lower dosage of antibiotics. In this study, the dynamics of the microbial population under antibiotic treatment was investigated. The effects of nystatin on the population of Saccharomyces cerevisiae yeasts were used as a model system. Nystatin effects were investigated both in liquid and solid media by viability tests. Dependence of nystatin action on osmotic gradient was evaluated in NaCl solutions. Influences of glucose and yeast extract were additionally analyzed. A "stepwise" pattern of the cell death caused by nystatin was the most intriguing. This pattern manifested in periodical changes of the stages of cell death against stages of resistance to the antibiotic. The mathematical model was proposed to describe cell-antibiotic interactions and nystatin viability effects in the liquid medium. The model implies that antibiotic ability to cause a cells death is significantly affected by the intracellular compounds, which came out of cells after their osmotic barriers were damaged

  20. An Adaptive Multipopulation Differential Evolution With Dynamic Population Reduction.

    PubMed

    Ali, Mostafa Z; Awad, Noor H; Suganthan, Ponnuthurai Nagaratnam; Reynolds, Robert G

    2016-10-25

    Developing efficient evolutionary algorithms attracts many researchers due to the existence of optimization problems in numerous real-world applications. A new differential evolution algorithm, sTDE-dR, is proposed to improve the search quality, avoid premature convergence, and stagnation. The population is clustered in multiple tribes and utilizes an ensemble of different mutation and crossover strategies. In this algorithm, a competitive success-based scheme is introduced to determine the life cycle of each tribe and its participation ratio for the next generation. In each tribe, a different adaptive scheme is used to control the scaling factor and crossover rate. The mean success of each subgroup is used to calculate the ratio of its participation for the next generation. This guarantees that successful tribes with the best adaptive schemes are only the ones that guide the search toward the optimal solution. The population size is dynamically reduced using a dynamic reduction method. Comprehensive comparison of the proposed heuristic over a challenging set of benchmarks from the CEC2014 real parameter single objective competition against several state-of-the-art algorithms is performed. The results affirm robustness of the proposed approach compared to other state-of-the-art algorithms.

  1. Cycles, stochasticity and density dependence in pink salmon population dynamics

    PubMed Central

    Krkošek, Martin; Hilborn, Ray; Peterman, Randall M.; Quinn, Thomas P.

    2011-01-01

    Complex dynamics of animal populations often involve deterministic and stochastic components. A fascinating example is the variation in magnitude of 2-year cycles in abundances of pink salmon (Oncorhynchus gorbuscha) stocks along the North Pacific rim. Pink salmon have a 2-year anadromous and semelparous life cycle, resulting in odd- and even-year lineages that occupy the same habitats but are reproductively isolated in time. One lineage is often much more abundant than the other in a given river, and there are phase switches in dominance between odd- and even-year lines. In some regions, the weak line is absent and in others both lines are abundant. Our analysis of 33 stocks indicates that these patterns probably result from stochastic perturbations of damped oscillations owing to density-dependent mortality caused by interactions between lineages. Possible mechanisms are cannibalism, disease transmission, food depletion and habitat degradation by which one lineage affects the other, although no mechanism has been well-studied. Our results provide comprehensive empirical estimates of lagged density-dependent mortality in salmon populations and suggest that a combination of stochasticity and density dependence drives cyclical dynamics of pink salmon stocks. PMID:21147806

  2. Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning

    PubMed Central

    Dann, Benjamin

    2016-01-01

    Recent models of movement generation in motor cortex have sought to explain neural activity not as a function of movement parameters, known as representational models, but as a dynamical system acting at the level of the population. Despite evidence supporting this framework, the evaluation of representational models and their integration with dynamical systems is incomplete in the literature. Using a representational velocity-tuning based simulation of center-out reaching, we show that incorporating variable latency offsets between neural activity and kinematics is sufficient to generate rotational dynamics at the level of neural populations, a phenomenon observed in motor cortex. However, we developed a covariance-matched permutation test (CMPT) that reassigns neural data between task conditions independently for each neuron while maintaining overall neuron-to-neuron relationships, revealing that rotations based on the representational model did not uniquely depend on the underlying condition structure. In contrast, rotations based on either a dynamical model or motor cortex data depend on this relationship, providing evidence that the dynamical model more readily explains motor cortex activity. Importantly, implementing a recurrent neural network we demonstrate that both representational tuning properties and rotational dynamics emerge, providing evidence that a dynamical system can reproduce previous findings of representational tuning. Finally, using motor cortex data in combination with the CMPT, we show that results based on small numbers of neurons or conditions should be interpreted cautiously, potentially informing future experimental design. Together, our findings reinforce the view that representational models lack the explanatory power to describe complex aspects of single neuron and population level activity. PMID:27814352

  3. Effects of spatial structure of population size on the population dynamics of barnacles across their elevational range.

    PubMed

    Fukaya, Keiichi; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi

    2014-11-01

    Explanations for why population dynamics vary across the range of a species reflect two contrasting hypotheses: (i) temporal variability of populations is larger in the centre of the range compared to the margins because overcompensatory density dependence destabilizes population dynamics and (ii) population variability is larger near the margins, where populations are more susceptible to environmental fluctuations. In both of these hypotheses, positions within the range are assumed to affect population variability. In contrast, the fact that population variability is often related to mean population size implies that the spatial structure of the population size within the range of a species may also be a useful predictor of the spatial variation in temporal variability of population size over the range of the species. To explore how population temporal variability varies spatially and the underlying processes responsible for the spatial variation, we focused on the intertidal barnacle Chthamalus dalli and examined differences in its population dynamics along the tidal levels it inhabits. Changes in coverage of barnacle populations were monitored for 10.5 years at 25 plots spanning the elevational range of this species. Data were analysed by fitting a population dynamics model to estimate the effects of density-dependent and density-independent processes on population growth. We also examined the temporal mean-variance relationship of population size with parameters estimated from the population dynamics model. We found that the relative variability of populations tended to increase from the centre of the elevational range towards the margins because of an increase in the magnitude of stochastic fluctuations of growth rates. Thus, our results supported hypothesis (2). We also found that spatial variations in temporal population variability were well characterized by Taylor's power law, the relative population variability being inversely related to the mean

  4. Coral population dynamics across consecutive mass mortality events.

    PubMed

    Riegl, Bernhard; Purkis, Sam

    2015-11-01

    Annual coral mortality events due to increased atmospheric heat may occur regularly from the middle of the century and are considered apocalyptic for coral reefs. In the Arabian/Persian Gulf, this situation has already occurred and population dynamics of four widespread corals (Acropora downingi, Porites harrisoni, Dipsastrea pallida, Cyphastrea micropthalma) were examined across the first-ever occurrence of four back-to-back mass mortality events (2009-2012). Mortality was driven by diseases in 2009, bleaching and subsequent diseases in 2010/2011/2012. 2009 reduced P. harrisoni cover and size, the other events increasingly reduced overall cover (2009: -10%; 2010: -20%; 2011: -20%; 2012: -15%) and affected all examined species. Regeneration was only observed after the first disturbance. P. harrisoni and A. downingi severely declined from 2010 due to bleaching and subsequent white syndromes, while D. pallida and P. daedalea declined from 2011 due to bleaching and black-band disease. C. microphthalma cover was not affected. In all species, most large corals were lost while fission due to partial tissue mortality bolstered small size classes. This general shrinkage led to a decrease of coral cover and a dramatic reduction of fecundity. Transition matrices for disturbed and undisturbed conditions were evaluated as Life Table Response Experiment and showed that C. microphthalma changed the least in size-class dynamics and fecundity, suggesting they were 'winners'. In an ordered 'degradation cascade', impacts decreased from the most common to the least common species, leading to step-wise removal of previously dominant species. A potentially permanent shift from high- to low-coral cover with different coral community and size structure can be expected due to the demographic dynamics resultant from the disturbances. Similarities to degradation of other Caribbean and Pacific reefs are discussed. As comparable environmental conditions and mortality patterns must be

  5. World Trade, disease and Florida's animal populations. The changing dynamics.

    PubMed

    Coffman, L M

    2000-01-01

    One of Florida's three leading economic industries is agriculture. Agriculture feeds and enhances the lives of millions of people in Florida, the United States, and the entire world. Agriculture in Florida results in more than $6 billion in farm cash receipts, employment for more than 60,000 people a month, more than $18 billion in farm-related economic activity and stretches from the farm gate to the state's supermarkets with an impact of nearly $45 billion. The domestic and wild animal populations of Florida, our unique relationship to the Caribbean, Atlantic Ocean, Gulf of Mexico, Central and South America, as well as tourism, diverse human population growth and immigration, all add to the complexity of an environment capable of establishing many animals, animal pests and diseases not native to the United States. Never before have the dynamics of disease control involved as much challenge and diversity. Is the balance at risk, or is the risk over-balanced? Can science, economics and politics blend to maintain this balance? How will the balance affect world trade, disease control and the animal populations of Florida?

  6. Microbial population dynamics in an anaerobic CSTR treating a chemical synthesis-based pharmaceutical wastewater.

    PubMed

    Oz, Nilgun Ayman; Ince, Orhan; Ince, Bahar Kasapgil; Akarsubasi, Alper Tunga; Eyice, Ozge

    2003-01-01

    Effects of a chemical synthesis based pharmaceutical wastewater on performance of an anaerobic completely stirred tank reactor (CSTR), activity of acetoclastic methanogens and microbial composition were evaluated under various influent compositions. Initially, the CSTR was fed with glucose up to an organic loading rate (OLR) of 6 kg COD/m3 x d corresponding to an F/M ratio of 0.43 with a hydraulic retention time (HRT) of 2.5 days. A COD removal efficiency of 92% and a methane yield of 0.32 m3 CH4/kg COD(removed) were achieved whilst specific methanogenic activity (SMA) was found to be 336mL CH4/gTVS x d. After the CSTR was fed with pre-aerated wastewater diluted by glucose in different dilution ratios of 10% (w/v), 30% (w/v), 70% (w/v), and 100% (w/v) pre-aerated wastewater, gradual decreases in COD removal efficiency to 71%, methane yield to 0.28 m3CH4/kg COD(removed) and SMA to 166 mL CH4/gTVS d occurred whilst volatile fatty acid concentration reached to 1474 mg/L. After the raw wastewater diluted with the pre-aerated wastewater was fed into the CSTR in increasing ratios of 10% (w/v), 30% (w/v), and 60% (w/v), there was a proportional deterioration in performance in terms of COD removal efficiency, methane yield and acetoclastic methanogenic activity. Epifluorescence microscopy of the seed sludge revealed that Methanococcus-like species, short, and medium rods were found to be equally dominant. The short and medium rod species remained equally dominant groups in the CSTR throughout the feeding regime whilst Methanococcus-like species and long rods were found to be in insignificant numbers at the end of the study. Changes in archael diversity were determined using molecular analyses such as polymerase chain reaction (PCR), and denaturent gradient gel electrophoresis (DGGE). Results showed that overall archeal diversity did not change much whereas changes in composition of eubacterial population occurred.

  7. The impact of dissolved organic carbon on the spatial variability of methanogenic archaea communities in natural wetland ecosystems across China.

    PubMed

    Liu, Deyan; Ding, Weixin; Jia, Zhongjun; Cai, Zucong

    2012-10-01

    Significant spatial variation in CH(4) emissions is a well-established feature of natural wetland ecosystems. To understand the key factors affecting CH(4) production, the variation in community structure of methanogenic archaea, in relation to substrate and external environmental influences, was investigated in selected wetlands across China, using denaturing gradient gel electrophoresis. Case study areas were the subtropical Poyang wetland, the warm-temperate Hongze wetland, the cold-temperate Sanjiang marshes, and the alpine Ruoergai peatland on the Qinghai-Tibetan Plateau. The topsoil layer in the Hongze wetland exhibited the highest population of methanogens; the lowest was found in the Poyang wetland. Maximum CH(4) production occurred in the topsoil layer of the Sanjiang Carex lasiocarpa marsh, the minimum was observed in the Ruoergai peatland. CH(4) production potential was significantly correlated with the dissolved organic carbon (DOC) concentration but not with the abundance or diversity indices of methanogenic archaea. Phylogenetic analysis and DOC concentration indicated a shift in the dominant methanogen from the hydrogenotrophic Methanobacteriales in DOC-rich wetlands to Methanosarcinaceae with a low affinity in wetlands with relatively high DOC and then to the acetotrophic methanogen Methanosaetaceae with a high affinity in wetlands with low DOC, or with high DOC but rich sulfate-reducing bacteria. Therefore, it is proposed that the dominant methanogen type in wetlands is primarily influenced by available DOC concentration. In turn, the variation in CH(4) production potential in the wetlands of eastern China is attributable to differences in the DOC content and the dominant type of methanogen present.

  8. Analysis of dsDNA and RNA viromes in methanogenic digesters reveals novel viral genetic diversity.

    PubMed

    Calusinska, Magdalena; Marynowska, Martyna; Goux, Xavier; Lentzen, Esther; Delfosse, Philippe

    2016-04-01

    Although viruses are not the key players of the anaerobic digestion process, they may affect the dynamics of bacterial and archaeal populations involved in biogas production. Until now viruses have received very little attention in this specific habitat; therefore, as a first step towards their characterization, we optimized a virus filtration protocol from anaerobic sludge. Afterwards, to assess dsDNA and RNA viral diversity in sludge samples from nine different reactors fed either with waste water, agricultural residues or solid municipal waste plus agro-food residues, we performed metagenomic analyses. As a result we showed that, while the dsDNA viromes (21 assigned families in total) were dominated by dsDNA phages of the order Caudovirales, RNA viruses (14 assigned families in total) were less diverse and were for the main part plant-infecting viruses. Interestingly, less than 2% of annotated contigs were assigned as putative human and animal pathogens. Our study greatly extends the existing view of viral genetic diversity in methanogenic reactors and shows that these viral assemblages are distinct not only among the reactor types but also from nearly 30 other environments already studied, including the human gut, fermented food, deep sea sediments and other aquatic habitats.

  9. Modelling food and population dynamics in honey bee colonies.

    PubMed

    Khoury, David S; Barron, Andrew B; Myerscough, Mary R

    2013-01-01

    Honey bees (Apis mellifera) are increasingly in demand as pollinators for various key agricultural food crops, but globally honey bee populations are in decline, and honey bee colony failure rates have increased. This scenario highlights a need to understand the conditions in which colonies flourish and in which colonies fail. To aid this investigation we present a compartment model of bee population dynamics to explore how food availability and bee death rates interact to determine colony growth and development. Our model uses simple differential equations to represent the transitions of eggs laid by the queen to brood, then hive bees and finally forager bees, and the process of social inhibition that regulates the rate at which hive bees begin to forage. We assume that food availability can influence both the number of brood successfully reared to adulthood and the rate at which bees transition from hive duties to foraging. The model predicts complex interactions between food availability and forager death rates in shaping colony fate. Low death rates and high food availability results in stable bee populations at equilibrium (with population size strongly determined by forager death rate) but consistently increasing food reserves. At higher death rates food stores in a colony settle at a finite equilibrium reflecting the balance of food collection and food use. When forager death rates exceed a critical threshold the colony fails but residual food remains. Our model presents a simple mathematical framework for exploring the interactions of food and forager mortality on colony fate, and provides the mathematical basis for more involved simulation models of hive performance.

  10. Molecular identification of methanogenic archaea from surti buffaloes (bubalus bubalis), reveals more hydrogenotrophic methanogens phylotypes.

    PubMed

    Singh, K M; Pandya, P R; Parnerkar, S; Tripathi, A K; Rank, D N; Kothari, R K; Joshi, C G

    2011-01-01

    Methane emissions from ruminant livestock are considered to be one of the more potent forms of greenhouses gases contributing to global warming. Many strategies to reduce emissions are targeting the methanogens that inhabit the rumen, but such an approach can only be successful if it targets all the major groups of ruminant methanogens. Therefore, a thorough knowledge of the diversity of these microbes in breeds of buffaloes, as well as in response to geographical location and different diets, is required. Therefore, molecular diversity of rumen methanogens in Surti buffaloes was investigated using 16S rRNA gene libraries prepared from pooled rumen contents from three Surti buffaloes. A total of 171 clones were identified revealing 23 different sequences (phylotypes). Of these 23 sequences, twelve sequences (12 OTUs, 83 clones) and 10 sequences (10 OTUs, 83 clones) were similar to methanogens belonging to the orders Methanomicrobiales and Methanobacteriales, and the remaining 1 phylotype (5 clones) were similar to Methanosarcina barkeri. These unique sequences clustered within a distinct and strongly supported phylogenetic group. Further studies and effective strategies can be made to inhibit the growth of Methanomicrobiales and Methanobacteriales phylotypes to reduce the methane emission from rumen and thus help in preventing global warming.

  11. Neural Population Dynamics Modeled by Mean-Field Graphs

    NASA Astrophysics Data System (ADS)

    Kozma, Robert; Puljic, Marko

    2011-09-01

    In this work we apply random graph theory approach to describe neural population dynamics. There are important advantages of using random graph theory approach in addition to ordinary and partial differential equations. The mathematical theory of large-scale random graphs provides an efficient tool to describe transitions between high- and low-dimensional spaces. Recent advances in studying neural correlates of higher cognition indicate the significance of sudden changes in space-time neurodynamics, which can be efficiently described as phase transitions in the neuropil medium. Phase transitions are rigorously defined mathematically on random graph sequences and they can be naturally generalized to a class of percolation processes called neuropercolation. In this work we employ mean-field graphs with given vertex degree distribution and edge strength distribution. We demonstrate the emergence of collective oscillations in the style of brains.

  12. Dynamic modeling of cellular populations within iBioSim.

    PubMed

    Stevens, Jason T; Myers, Chris J

    2013-05-17

    As the complexity of synthetic genetic circuits increases, modeling is becoming a necessary first step to inform subsequent experimental efforts. In recent years, the design automation community has developed a wealth of computational tools for assisting experimentalists in designing and analyzing new genetic circuits at several scales. However, existing software primarily caters to either the DNA- or single-cell level, with little support for the multicellular level. To address this need, the iBioSim software package has been enhanced to provide support for modeling, simulating, and visualizing dynamic cellular populations in a two-dimensional space. This capacity is fully integrated into the software, capitalizing on iBioSim's strengths in modeling, simulating, and analyzing single-celled systems.

  13. Wave trains in a model of gypsy moth population dynamics

    NASA Astrophysics Data System (ADS)

    Wilder, J. W.; Vasquez, D. A.; Christie, I.; Colbert, J. J.

    1995-12-01

    A recent model of gypsy moth [Lymantria dispar (Lepidoptera: Lymantriidae)] populations led to the observation of traveling waves in a one-dimensional spatial model. In this work, these waves are studied in more detail and their nature investigated. It was observed that when there are no spatial effects the model behaves chaotically under certain conditions. Under the same conditions, when diffusion is allowed, traveling waves develop. The biomass densities involved in the model, when examined at one point in the spatial domain, are found to correspond to a limit cycle lying on the surface of the chaotic attractor of the spatially homogeneous model. Also observed are wave trains that have modulating maxima, and which when examined at one point in the spatial domain show a quasiperiodic temporal behavior. This complex behavior is determined to be due to the interaction of the traveling wave and the chaotic background dynamics.

  14. "Population dynamics of crustaceans": introduction to the symposium.

    PubMed

    Buhay, Jennifer E

    2011-10-01

    Crustaceans are a globally-distributed faunal group, found across all habitats from the equator to the poles. They are an ideal focal assemblage for assessment of the impacts of climatic change and anthropogenic disturbance on nonmodel systems, such as how sea currents influence the movements of zooplankton communities in the open ocean, or how ecosystem processes affect phytoplanktonic species with restricted geographic distributions across a cluster of island lakes that could be a new model system for studies of speciation. This symposium introduced early-career researchers working in the fields of phylogeography, ecogenomics, fisheries management, and ecosystem processes with the aim of highlighting the different genetic and ecological approaches to the study of population dynamics of freshwater, estuarine, and marine crustacean species.

  15. Dynamical criticality in the collective activity of a neural population

    NASA Astrophysics Data System (ADS)

    Mora, Thierry

    The past decade has seen a wealth of physiological data suggesting that neural networks may behave like critical branching processes. Concurrently, the collective activity of neurons has been studied using explicit mappings to classic statistical mechanics models such as disordered Ising models, allowing for the study of their thermodynamics, but these efforts have ignored the dynamical nature of neural activity. I will show how to reconcile these two approaches by learning effective statistical mechanics models of the full history of the collective activity of a neuron population directly from physiological data, treating time as an additional dimension. Applying this technique to multi-electrode recordings from retinal ganglion cells, and studying the thermodynamics of the inferred model, reveals a peak in specific heat reminiscent of a second-order phase transition.

  16. Study of a mixed dispersal population dynamics model

    DOE PAGES

    Chugunova, Marina; Jadamba, Baasansuren; Kao, Chiu -Yen; ...

    2016-08-27

    In this study, we consider a mixed dispersal model with periodic and Dirichlet boundary conditions and its corresponding linear eigenvalue problem. This model describes the time evolution of a population which disperses both locally and non-locally. We investigate how long time dynamics depend on the parameter values. Furthermore, we study the minimization of the principal eigenvalue under the constraints that the resource function is bounded from above and below, and with a fixed total integral. Biologically, this minimization problem is motivated by the question of determining the optimal spatial arrangement of favorable and unfavorable regions for the species to diemore » out more slowly or survive more easily. Our numerical simulations indicate that the optimal favorable region tends to be a simply-connected domain. Numerous results are shown to demonstrate various scenarios of optimal favorable regions for periodic and Dirichlet boundary conditions.« less

  17. Study of a mixed dispersal population dynamics model

    SciTech Connect

    Chugunova, Marina; Jadamba, Baasansuren; Kao, Chiu -Yen; Klymko, Christine F.; Thomas, Evelyn; Zhao, Bingyu

    2016-08-27

    In this study, we consider a mixed dispersal model with periodic and Dirichlet boundary conditions and its corresponding linear eigenvalue problem. This model describes the time evolution of a population which disperses both locally and non-locally. We investigate how long time dynamics depend on the parameter values. Furthermore, we study the minimization of the principal eigenvalue under the constraints that the resource function is bounded from above and below, and with a fixed total integral. Biologically, this minimization problem is motivated by the question of determining the optimal spatial arrangement of favorable and unfavorable regions for the species to die out more slowly or survive more easily. Our numerical simulations indicate that the optimal favorable region tends to be a simply-connected domain. Numerous results are shown to demonstrate various scenarios of optimal favorable regions for periodic and Dirichlet boundary conditions.

  18. Homeochaos: dynamics stability of a symbiotic network with population dynamics and evolving mutation rates

    NASA Astrophysics Data System (ADS)

    Kaneko, Kunihiko; Ikegami, Takashi

    1992-06-01

    Evolution of mutation rates is studied, in a population model with mutation of species coded by bit sequences and mutation rates. Even without interaction among species, the mutation rate is initially enhanced to search for fitted species and then is lowered towards zero. This enhancement opens a possibility of automatic simulated annealing. With the interaction among species (hosts versus parasites), high mutation rates are sustained. The rates go up with the interaction strength abruptly if the fitness landscape is rugged. A large cluster of species, connected by mutation, is formed by a sustained high mutation rate. With the formation of this symbiotic network resolved is the paradox of mutation rates; paradox on the stability of a rule to change itself. Population dynamics of each species shows high-dimensional chaos with small positive Lyapunov exponents. Stability of our symbiotic network is dynamically sustained through this weak high-dimensional chaos, termed “homeochaos”.

  19. Substrate and/or substrate-driven changes in the abundance of methanogenic archaea cause seasonal variation of methane production potential in species-specific freshwater wetlands.

    PubMed

    Liu, Deyan; Ding, Weixin; Yuan, Junji; Xiang, Jian; Lin, Yongxin

    2014-05-01

    There are large temporal and spatial variations of methane (CH4) emissions from natural wetlands. To understand temporal changes of CH4 production potential (MPP), soil samples were collected from a permanently inundated Carex lasiocarpa marsh and a summer inundated Calamagrostis angustifolia marsh over the period from June to October of 2011. MPP, dissolved organic carbon (DOC) concentration, abundance and community structure of methanogenic archaea were assessed. In the C. lasiocarpa marsh, DOC concentration, MPP and the methanogen population showed similar seasonal variations and maximal values in September. MPP and DOC in the C. angustifolia marsh exhibited seasonal variations and values peaked during August, while the methanogen population decreased with plant growth. Methanogen abundance correlated significantly (P = 0.02) with DOC only for the C. lasiocarpa marsh. During the sampling period, the dominant methanogens were the Methanosaetaceae and Zoige cluster I (ZC-Ι) in the C. angustifolia marsh, and Methanomicrobiales and ZC-Ι in the C. lasiocarpa marsh. MPP correlated significantly (P = 0.04) with DOC and methanogen population in the C. lasiocarpa marsh but only with DOC in the C. angustifolia marsh. Addition of C. lasiocarpa litter enhanced MPP more effectively than addition of C. angustifolia litter, indicating that temporal variation of substrates is controlled by litter deposition in the C. lasiocarpa marsh while living plant matter is more important in the C. angustifolia marsh. This study indicated that there was no apparent shift in the dominant types of methanogen during the growth season in the species-specific freshwater wetlands. Temporal variation of MPP is controlled by substrates and substrate-driven changes in the abundance of methanogenic archaea in the C. lasiocarpa marsh, while MPP depends only on substrate availability derived from root exudates or soil organic matter in the C. angustifolia marsh.

  20. Building dynamic population graph for accurate correspondence detection.

    PubMed

    Du, Shaoyi; Guo, Yanrong; Sanroma, Gerard; Ni, Dong; Wu, Guorong; Shen, Dinggang

    2015-12-01

    In medical imaging studies, there is an increasing trend for discovering the intrinsic anatomical difference across individual subjects in a dataset, such as hand images for skeletal bone age estimation. Pair-wise matching is often used to detect correspondences between each individual subject and a pre-selected model image with manually-placed landmarks. However, the large anatomical variability across individual subjects can easily compromise such pair-wise matching step. In this paper, we present a new framework to simultaneously detect correspondences among a population of individual subjects, by propagating all manually-placed landmarks from a small set of model images through a dynamically constructed image graph. Specifically, we first establish graph links between models and individual subjects according to pair-wise shape similarity (called as forward step). Next, we detect correspondences for the individual subjects with direct links to any of model images, which is achieved by a new multi-model correspondence detection approach based on our recently-published sparse point matching method. To correct those inaccurate correspondences, we further apply an error detection mechanism to automatically detect wrong correspondences and then update the image graph accordingly (called as backward step). After that, all subject images with detected correspondences are included into the set of model images, and the above two steps of graph expansion and error correction are repeated until accurate correspondences for all subject images are established. Evaluations on real hand X-ray images demonstrate that our proposed method using a dynamic graph construction approach can achieve much higher accuracy and robustness, when compared with the state-of-the-art pair-wise correspondence detection methods as well as a similar method but using static population graph.

  1. Influence of Environmental Conditions on Methanogenic Compositions in Anaerobic Biogas Reactors

    PubMed Central

    Karakashev, Dimitar; Batstone, Damien J.; Angelidaki, Irini

    2005-01-01

    The influence of environmental parameters on the diversity of methanogenic communities in 15 full-scale biogas plants operating under different conditions with either manure or sludge as feedstock was studied. Fluorescence in situ hybridization was used to identify dominant methanogenic members of the Archaea in the reactor samples; enriched and pure cultures were used to support the in situ identification. Dominance could be identified by a positive response by more than 90% of the total members of the Archaea to a specific group- or order-level probe. There was a clear dichotomy between the manure digesters and the sludge digesters. The manure digesters contained high levels of ammonia and of volatile fatty acids (VFA) and were dominated by members of the Methanosarcinaceae, while the sludge digesters contained low levels of ammonia and of VFA and were dominated by members of the Methanosaetaceae. The methanogenic diversity was greater in reactors operating under mesophilic temperatures. The impact of the original inoculum used for the reactor start-up was also investigated by assessment of the present population in the reactor. The inoculum population appeared to have no influence on the eventual population. PMID:15640206

  2. Dynamic equilibrium of reconstituting hematopoietic stem cell populations.

    PubMed

    O'Quigley, John

    2010-12-01

    Clonal dominance in hematopoietic stem cell populations is an important question of interest but not one we can directly answer. Any estimates are based on indirect measurement. For marked populations, we can equate empirical and theoretical moments for binomial sampling, in particular we can use the well-known formula for the sampling variation of a binomial proportion. The empirical variance itself cannot always be reliably estimated and some caution is needed. We describe the difficulties here and identify ready solutions which only require appropriate use of variance-stabilizing transformations. From these we obtain estimators for the steady state, or dynamic equilibrium, of the number of hematopoietic stem cells involved in repopulating the marrow. The calculations themselves are not too involved. We give the distribution theory for the estimator as well as simple approximations for practical application. As an illustration, we rework on data recently gathered to address the question as to whether or not reconstitution of marrow grafts in the clinical setting might be considered to be oligoclonal.

  3. Far from random: dynamical groupings among the NEO population

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2016-03-01

    Among the near-Earth object (NEO) population, there are comets and active asteroids which are sources of fragments that initially move together; in addition, some NEOs follow orbits temporarily trapped in a web of secular resonances. These facts contribute to increasing the risk of meteoroid strikes on Earth, making its proper quantification difficult. The identification and subsequent study of groups of small NEOs that appear to move in similar trajectories are necessary steps in improving our understanding of the impact risk associated with meteoroids. Here, we present results of a search for statistically significant dynamical groupings among the NEO population. Our Monte Carlo-based methodology recovers well-documented groupings like the Taurid Complex or the one resulting from the split comet 73P/Schwassmann-Wachmann 3, and new ones that may have been the source of past impacts. Among the most conspicuous are the Mjolnir and Ptah groups, perhaps the source of recent impact events like Almahata Sitta and Chelyabinsk, respectively. Meteoroid 2014 AA, that hit the Earth on 2014 January 2, could have its origin in a marginally significant grouping associated with Bennu. We find that most of the substructure present within the orbital domain of the NEOs is of resonant nature, probably induced by secular resonances and the Kozai mechanism that confine these objects into specific paths with well-defined perihelia.

  4. Sensory dynamics of visual hallucinations in the normal population

    PubMed Central

    Pearson, Joel; Chiou, Rocco; Rogers, Sebastian; Wicken, Marcus; Heitmann, Stewart; Ermentrout, Bard

    2016-01-01

    Hallucinations occur in both normal and clinical populations. Due to their unpredictability and complexity, the mechanisms underlying hallucinations remain largely untested. Here we show that visual hallucinations can be induced in the normal population by visual flicker, limited to an annulus that constricts content complexity to simple moving grey blobs, allowing objective mechanistic investigation. Hallucination strength peaked at ~11 Hz flicker and was dependent on cortical processing. Hallucinated motion speed increased with flicker rate, when mapped onto visual cortex it was independent of eccentricity, underwent local sensory adaptation and showed the same bistable and mnemonic dynamics as sensory perception. A neural field model with motion selectivity provides a mechanism for both hallucinations and perception. Our results demonstrate that hallucinations can be studied objectively, and they share multiple mechanisms with sensory perception. We anticipate that this assay will be critical to test theories of human consciousness and clinical models of hallucination. DOI: http://dx.doi.org/10.7554/eLife.17072.001 PMID:27726845

  5. Replication, Communication, and the Population Dynamics of Scientific Discovery

    PubMed Central

    McElreath, Richard; Smaldino, Paul E.

    2015-01-01

    Many published research results are false (Ioannidis, 2005), and controversy continues over the roles of replication and publication policy in improving the reliability of research. Addressing these problems is frustrated by the lack of a formal framework that jointly represents hypothesis formation, replication, publication bias, and variation in research quality. We develop a mathematical model of scientific discovery that combines all of these elements. This model provides both a dynamic model of research as well as a formal framework for reasoning about the normative structure of science. We show that replication may serve as a ratchet that gradually separates true hypotheses from false, but the same factors that make initial findings unreliable also make replications unreliable. The most important factors in improving the reliability of research are the rate of false positives and the base rate of true hypotheses, and we offer suggestions for addressing each. Our results also bring clarity to verbal debates about the communication of research. Surprisingly, publication bias is not always an obstacle, but instead may have positive impacts—suppression of negative novel findings is often beneficial. We also find that communication of negative replications may aid true discovery even when attempts to replicate have diminished power. The model speaks constructively to ongoing debates about the design and conduct of science, focusing analysis and discussion on precise, internally consistent models, as well as highlighting the importance of population dynamics. PMID:26308448

  6. Replication, Communication, and the Population Dynamics of Scientific Discovery.

    PubMed

    McElreath, Richard; Smaldino, Paul E

    2015-01-01

    Many published research results are false (Ioannidis, 2005), and controversy continues over the roles of replication and publication policy in improving the reliability of research. Addressing these problems is frustrated by the lack of a formal framework that jointly represents hypothesis formation, replication, publication bias, and variation in research quality. We develop a mathematical model of scientific discovery that combines all of these elements. This model provides both a dynamic model of research as well as a formal framework for reasoning about the normative structure of science. We show that replication may serve as a ratchet that gradually separates true hypotheses from false, but the same factors that make initial findings unreliable also make replications unreliable. The most important factors in improving the reliability of research are the rate of false positives and the base rate of true hypotheses, and we offer suggestions for addressing each. Our results also bring clarity to verbal debates about the communication of research. Surprisingly, publication bias is not always an obstacle, but instead may have positive impacts-suppression of negative novel findings is often beneficial. We also find that communication of negative replications may aid true discovery even when attempts to replicate have diminished power. The model speaks constructively to ongoing debates about the design and conduct of science, focusing analysis and discussion on precise, internally consistent models, as well as highlighting the importance of population dynamics.

  7. Population dynamics of cancer cells with cell state conversions

    PubMed Central

    Zhou, Da; Wu, Dingming; Li, Zhe; Qian, Minping; Zhang, Michael Q.

    2015-01-01

    Cancer stem cell (CSC) theory suggests a cell-lineage structure in tumor cells in which CSCs are capable of giving rise to the other non-stem cancer cells (NSCCs) but not vice versa. However, an alternative scenario of bidirectional interconversions between CSCs and NSCCs was proposed very recently. Here we present a general population model of cancer cells by integrating conventional cell divisions with direct conversions between different cell states, namely, not only can CSCs differentiate into NSCCs by asymmetric cell division, NSCCs can also dedifferentiate into CSCs by cell state conversion. Our theoretical model is validated when applying the model to recent experimental data. It is also found that the transient increase in CSCs proportion initiated from the purified NSCCs subpopulation cannot be well predicted by the conventional CSC model where the conversion from NSCCs to CSCs is forbidden, implying that the cell state conversion is required especially for the transient dynamics. The theoretical analysis also gives the condition such that our general model can be equivalently reduced into a simple Markov chain with only cell state transitions keeping the same cell proportion dynamics. PMID:26085954

  8. Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens

    SciTech Connect

    Anderson, Iain; Ulrich, Luke; Lupa, Boguslaw; Susanti, Dwi; Porat, I.; Hooper, Sean; Lykidis, A; Sieprawska-Lupa, Magdalena; Dharmarajan, Lakshmi; Goltsman, Eugene; Lapidus, Alla L.; Saunders, Elizabeth H; Han, Cliff; Land, Miriam L; Lucas, Susan; Mukhopadhyay, Biswarup; Whitman, William; Woese, Carl; Bristow, James; Kyrpides, Nikos C

    2009-01-01

    Background Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. Methodology/Principal Findings In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. Conclusions/Significance Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III).

  9. Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens

    SciTech Connect

    Anderson, Iain; Ulrich, Luke E.; Lupa, Boguslaw; Susanti, Dwi; Porat, Iris; Hooper, Sean D.; Lykidis, Athanasios; Sieprawska-Lupa, Magdalena; Dharmarajan, Lakshmi; Goltsman, Eugene; Lapidus, Alla; Saunders, Elizabeth; Han, Cliff; Land, Miriam; Lucas, Susan; Mukhopadhyay, Biswarup; Whitman, William B.; Woese, Carl; Bristow, James; Kyrpides, Nikos

    2009-05-01

    Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III).

  10. The role of resting cysts in Alexandrium minutum population dynamics

    NASA Astrophysics Data System (ADS)

    Estrada, Marta; Solé, Jordi; Anglès, Sílvia; Garcés, Esther

    2010-02-01

    The role of resting cysts on the development of Alexandrium minutum blooms in a typical Mediterranean semi-enclosed water body (Arenys de Mar Harbor, NW Mediterranean) was studied by means of matrix and dynamic population models. We used a series of scenarios, constrained when possible by experimentally measured parameters to test whether excystment and encystment fluxes and changes in the dormancy period had a major effect on bloom intensity and duration. The results of the simulations highlighted the importance of knowing not only the magnitude and variability of growth and life-cycle transition rates, but also those of loss rates (both in the water column and in the sediment) due to physical or biological factors. Given the maximum encystment rates determined for A. minutum in the study area (0.01 d -1), this process contributed to reduce the peak concentrations of vegetative cells but did not have a dominant effect on bloom termination. Excystment fluxes could contribute to enhance population densities of vegetative cells during times or low or negative net growth rate and during the initial phases of a bloom, but once exponential growth had started, additional excystment had negligible effect on bloom magnitude. However, even if cysts did not contribute to larger blooms, they could represent a safety mechanism for reintroduction of the species when the vegetative cell population went extinct due to unfavorable environmental conditions. Increasing the dormancy time exposed newly formed cysts to a longer period of losses in the sediment that reduced the concentration of excystment-ready sediment cysts and decreased excystment fluxes. More complex models will be needed to explore the implications of different life-cycle strategies in a wider natural ecological context.

  11. Modelling Multi-Pulse Population Dynamics from Ultrafast Spectroscopy

    PubMed Central

    van Wilderen, Luuk J. G. W.; Lincoln, Craig N.; van Thor, Jasper J.

    2011-01-01

    Current advanced laser, optics and electronics technology allows sensitive recording of molecular dynamics, from single resonance to multi-colour and multi-pulse experiments. Extracting the occurring (bio-) physical relevant pathways via global analysis of experimental data requires a systematic investigation of connectivity schemes. Here we present a Matlab-based toolbox for this purpose. The toolbox has a graphical user interface which facilitates the application of different reaction models to the data to generate the coupled differential equations. Any time-dependent dataset can be analysed to extract time-independent correlations of the observables by using gradient or direct search methods. Specific capabilities (i.e. chirp and instrument response function) for the analysis of ultrafast pump-probe spectroscopic data are included. The inclusion of an extra pulse that interacts with a transient phase can help to disentangle complex interdependent pathways. The modelling of pathways is therefore extended by new theory (which is included in the toolbox) that describes the finite bleach (orientation) effect of single and multiple intense polarised femtosecond pulses on an ensemble of randomly oriented particles in the presence of population decay. For instance, the generally assumed flat-top multimode beam profile is adapted to a more realistic Gaussian shape, exposing the need for several corrections for accurate anisotropy measurements. In addition, the (selective) excitation (photoselection) and anisotropy of populations that interact with single or multiple intense polarised laser pulses is demonstrated as function of power density and beam profile. Using example values of real world experiments it is calculated to what extent this effectively orients the ensemble of particles. Finally, the implementation includes the interaction with multiple pulses in addition to depth averaging in optically dense samples. In summary, we show that mathematical modelling is

  12. Impact of climate change on fish population dynamics in the Baltic sea: a dynamical downscaling investigation.

    PubMed

    Mackenzie, Brian R; Meier, H E Markus; Lindegren, Martin; Neuenfeldt, Stefan; Eero, Margit; Blenckner, Thorsten; Tomczak, Maciej T; Niiranen, Susa

    2012-09-01

    Understanding how climate change, exploitation and eutrophication will affect populations and ecosystems of the Baltic Sea can be facilitated with models which realistically combine these forcings into common frameworks. Here, we evaluate sensitivity of fish recruitment and population dynamics to past and future environmental forcings provided by three ocean-biogeochemical models of the Baltic Sea. Modeled temperature explained nearly as much variability in reproductive success of sprat (Sprattus sprattus; Clupeidae) as measured temperatures during 1973-2005, and both the spawner biomass and the temperature have influenced recruitment for at least 50 years. The three Baltic Sea models estimate relatively similar developments (increases) in biomass and fishery yield during twenty-first century climate change (ca. 28 % range among models). However, this uncertainty is exceeded by the one associated with the fish population model, and by the source of global climate data used by regional models. Knowledge of processes and biases could reduce these uncertainties.

  13. Statistical mechanics of epidemics and population dynamics on networks

    NASA Astrophysics Data System (ADS)

    Joo, Jaewook

    After a short introduction to the modeling of epidemics and population dynamics, we investigate in chapter 2, the time-evolution and steady states of an epidemic model (susceptible-infected-recovered-susceptible) on a network having the topology of the hypercubic lattice. We compare the behavior of this system, obtained from computer simulations, with those obtained from the mean-field approximation and pair-approximation. We find that the latter is significantly better than the former. In chapter 3, we study the behavior of a simple epidemic process (susceptible-infected-susceptible) on realistic networks in which vertices represent individuals and edges the interactions between them. Of particular interest are scale free networks with power-law distribution of degree, the number of edges emanating from a vertex. Considering cases where the transmission of infection between vertices depends on their degree, we introduce a saturation function which reduces the infection transmission rate across an edge leading to a node with high connectivity. This leads to a finite epidemic threshold on scale free networks with infinite second moment degree distribution above which the endemic infected state will be sustained and below which the disease dies out. In chapter 4, we study the time evolution and stationary states of a stochastic population model (contact process) with spatial heterogeneity and imposed drift (wind) on one- and two-dimensional lattices. We consider in particular a situation in which space is divided into two regions: an oasis and a desert (low and high death rates). Depending on the values of the drift and other parameters the population in the stationary state will be zero, localized, or delocalized. Finally, in appendix A we discuss a very different delocalized to localized type phase transition: the Mott metal insulator transition occurring in a half-filled single-band Hubbard model on a Bethe lattice. In the limit of infinite lattice coordination

  14. Dynamical evolution and spatial mixing of multiple population globular clusters

    NASA Astrophysics Data System (ADS)

    Vesperini, Enrico; McMillan, Stephen L. W.; D'Antona, Francesca; D'Ercole, Annibale

    2013-03-01

    Numerous spectroscopic and photometric observational studies have provided strong evidence for the widespread presence of multiple stellar populations in globular clusters. In this paper, we study the long-term dynamical evolution of multiple population clusters, focusing on the evolution of the spatial distributions of the first- (FG) and second-generation (SG) stars. In previous studies, we have suggested that SG stars formed from the ejecta of FG AGB stars are expected initially to be concentrated in the cluster inner regions. Here, by means of N-body simulations, we explore the time-scales and the dynamics of the spatial mixing of the FG and the SG populations and their dependence on the SG initial concentration. Our simulations show that, as the evolution proceeds, the radial profile of the SG/FG number ratio, NSG/NFG, is characterized by three regions: (1) a flat inner part; (2) a declining part in which FG stars are increasingly dominant and (3) an outer region where the NSG/NFG profile flattens again (the NSG/NFG profile may rise slightly again in the outermost cluster regions). Until mixing is complete and the NSG/NFG profile is flat over the entire cluster, the radial variation of NSG/NFG implies that the fraction of SG stars determined by observations covering a limited range of radial distances is not, in general, equal to the SG global fraction, (NSG/NFG)glob. The distance at which NSG/NFG equals (NSG/NFG)glob is approximately between 1 and 2 cluster half-mass radii. The time-scale for complete mixing depends on the SG initial concentration, but in all cases complete mixing is expected only for clusters in advanced evolutionary phases, having lost at least 60-70 per cent of their mass due to two-body relaxation (in addition to the early FG loss due to the cluster expansion triggered by SNII ejecta and gas expulsion).The results of our simulations suggest that in many Galactic globular clusters the SG should still be more spatially concentrated than the

  15. Energetics of syntrophic cooperation in methanogenic degradation.

    PubMed Central

    Schink, B

    1997-01-01

    Fatty acids and alcohols are key intermediates in the methanogenic degradation of organic matter, e.g., in anaerobic sewage sludge digestors or freshwater lake sediments. They are produced by classical fermenting bacteria for disposal of electrons derived in simultaneous substrate oxidations. Methanogenic bacteria can degrade primarily only one-carbon compounds. Therefore, acetate, propionate, ethanol, and their higher homologs have to be fermented further to one-carbon compounds. These fermentations are called secondary or syntrophic fermentations. They are endergonic processes under standard conditions and depend on intimate coupling with methanogenesis. The energetic situation of the prokaryotes cooperating in these processes is problematic: the free energy available in the reactions for total conversion of substrate to methane attributes to each partner amounts of energy in the range of the minimum biochemically convertible energy, i.e., 20 to 25 kJ per mol per reaction. This amount corresponds to one-third of an ATP unit and is equivalent to the energy required for a monovalent ion to cross the charged cytoplasmic membrane. Recent studies have revealed that syntrophically fermenting bacteria synthesize ATP by substrate-level phosphorylation and reinvest part of the ATP-bound energy into reversed electron transport processes, to release the electrons at a redox level accessible by the partner bacteria and to balance their energy budget. These findings allow us to understand the energy economy of these bacteria on the basis of concepts derived from the bioenergetics of other microorganisms. PMID:9184013

  16. Phage diversity in a methanogenic digester.

    PubMed

    Park, M-O; Ikenaga, H; Watanabe, K

    2007-01-01

    It has been shown that phages are present in natural and engineered ecosystems and influence the structure and performance of prokaryotic communities. However, little has been known about phages occurring in anaerobic ecosystems, including those in methanogenic digesters for waste treatment. This study investigated phages produced in an upflow anaerobic sludge blanket methanogenic digester treating brewery wastes. Phage-like particles (PLPs) in the influent and effluent of the digester were concentrated and purified by sequential filtration and quantified and characterized by transmission electron microscopy (TEM), fluorescence assay, and field inversion gel electrophoresis (FIGE). Results indicate that numbers of PLPs in the effluent of the digester exceeded 1 x 10(9) L-1 and at least 10 times greater than those in the influent, suggesting that substantial amounts of PLPs were produced in the digester. A production rate of the PLPs was estimated at least 5.2 x 10(7) PLPs day-1 L-1. TEM and FIGE showed that a variety of phages were produced in the digester, including those affiliated with Siphoviridae, Myoviridae, and Cystoviridae.

  17. Dynamics of Populations of Planetary Systems (IAU C197)

    NASA Astrophysics Data System (ADS)

    Knezevic, Zoran; Milani, Andrea

    2005-05-01

    population of asteroids in the 2:1 mean motion resonance with Jupiter revised Miroslav Broz, D. Vokrouhlicky, F. Roig, D. Nesvorny, W. F. Bottke and A. Morbidelli; 22. On the reliability of computation of maximum Lyapunov Characteristic Exponents for asteroids Zoran Knezevic and Slobodan Ninkovic; 23. Nekhoroshev stability estimates for different models of the Trojan asteroids Christos Efthymiopoulos; 24. The role of the resonant 'stickiness' in the dynamical evolution of Jupiter family comets A. Alvarez-Canda and F. Roig; 25. Regimes of stability and scaling relations for the removal time in the asteroid belt: a simple kinetic model and numerical tests Mihailo Cubrovic; 26. Virtual asteroids and virtual impactors Andrea Milani; 27. Asteroid population models Alessandro Morbidelli; 28. Linking Very Large Telescope asteroid observations M. Granvik, K. Muinonen, J. Virtanen, M. Delbó, L. Saba, G. De Sanctis, R. Morbidelli, A. Cellino and E. Tedesco; 29. Collision orbits and phase transition for 2004 AS1 at discovery Jenni Virtanen, K. Muinonen, M. Granvik and T. Laakso; 30. The size of collision solutions in orbital elements space G. B. Valsecchi, A. Rossi, A. Milani and S. R. Chesley; 31. Very short arc orbit determination: the case of asteroid 2004 FU162 Steven R. Chesley; 32. Nonlinear impact monitoring: 2-dimensional sampling Giacomo Tommei; 33. Searching for gravity assisted trajectories to accessible near-Earth asteroids Stefan Berinde; 34. KLENOT - Near Earth and other unusual objects observations Michal Kocer, Jana Tichá and M. Tichy; 35. Transport of comets to the Inner Solar System Hans Rickman; 36. Nongravitational Accelerations on Comets Steven R. Chesley and Donald K. Yeomans; 37. Interaction of planetesimals with the giant planets and the shaping of the trans-Neptunian belt Harold F. Levison and Alessandro Morbidelli; 38. Transport of comets to the outer p

  18. Complete Genome Sequence of Methanoregula formicica SMSPT, a Mesophilic Hydrogenotrophic Methanogen Isolated from a Methanogenic Upflow Anaerobic Sludge Blanket Reactor.

    PubMed

    Yamamoto, Kyosuke; Tamaki, Hideyuki; Cadillo-Quiroz, Hinsby; Imachi, Hiroyuki; Kyrpides, Nikos; Woyke, Tanja; Goodwin, Lynne; Zinder, Stephen H; Kamagata, Yoichi; Liu, Wen-Tso

    2014-09-04

    Methanoregula formicica SMSP(T) is a mesophilic H2/formate-utilizing methanogenic archaeon and a representative of the family Methanoregulaceae, a recently proposed novel family within the order Methanomicrobiales. Here, we report a 2.8-Mb complete genome sequence of this methanogenic archaeon.

  19. Mean occupancy time: linking mechanistic movement models, population dynamics and landscape ecology to population persistence.

    PubMed

    Cobbold, Christina A; Lutscher, Frithjof

    2014-02-01

    Reaction-diffusion models for the dynamics of a biological population in a fragmented landscape can incorporate detailed descriptions of movement and behavior, but are difficult to analyze and hard to parameterize. Patch models, on the other hand, are fairly easy to analyze and can be parameterized reasonably well, but miss many details of the movement process within and between patches. We develop a framework to scale up from a reaction-diffusion process to a patch model and, in particular, to determine movement rates between patches based on behavioral rules for individuals. Our approach is based on the mean occupancy time, the mean time that an individuals spends in a certain area of the landscape before it exits that area or dies. We illustrate our approach using several different landscape configurations. We demonstrate that the resulting patch model most closely captures persistence conditions and steady state densities as compared with the reaction-diffusion model.

  20. Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps

    PubMed Central

    L'Haridon, Stéphane; Godfroy, Anne; Roussel, Erwan G.; Cragg, Barry A.; Parkes, R. John; Toffin, Laurent

    2015-01-01

    In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic Archaea were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic Methanococcoides burtonii relatives and several new autotrophic Methanogenium lineages, confirming the cooccurrence of Methanosarcinales and Methanomicrobiales methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps. PMID:25769831

  1. Evidence of active methanogen communities in shallow sediments of the sonora margin cold seeps.

    PubMed

    Vigneron, Adrien; L'Haridon, Stéphane; Godfroy, Anne; Roussel, Erwan G; Cragg, Barry A; Parkes, R John; Toffin, Laurent

    2015-05-15

    In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic Archaea were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic Methanococcoides burtonii relatives and several new autotrophic Methanogenium lineages, confirming the cooccurrence of Methanosarcinales and Methanomicrobiales methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.

  2. POPULATION DYNAMICS OF AMBIENT AND ALTERED EARTHWORM COMMUNITIES IN ROW-CROP AGROECOSYSTEMS IN OHIO, USA

    EPA Science Inventory

    Although earthworms are known to influence agroecosystem processes, there are relatively few long-term studies addressing population dynamics under cropping systems in which earthworm populations were intentionally altered. We assessed earthworm communities from fall 1994 to spr...

  3. Comparative Population Dynamics of Two Closely Related Species Differing in Ploidy Level

    PubMed Central

    Černá, Lucie; Münzbergová, Zuzana

    2013-01-01

    Background Many studies compare the population dynamics of single species within multiple habitat types, while much less is known about the differences in population dynamics in closely related species in the same habitat. Additionally, comparisons of the effect of habitat types and species are largely missing. Methodology and Principal Findings We estimated the importance of the habitat type and species for population dynamics of plants. Specifically, we compared the dynamics of two closely related species, the allotetraploid species Anthericum liliago and the diploid species Anthericum ramosum, occurring in the same habitat type. We also compared the dynamics of A. ramosum in two contrasting habitats. We examined three populations per species and habitat type. The results showed that single life history traits as well as the mean population dynamics of A. liliago and A. ramosum from the same habitat type were more similar than the population dynamics of A. ramosum from the two contrasting habitats. Conclusions Our findings suggest that when transferring knowledge regarding population dynamics between populations, we need to take habitat conditions into account, as these conditions appear to be more important than the species involved (ploidy level). However, the two species differ significantly in their overall population growth rates, indicating that the ploidy level has an effect on species performance. In contrast to what has been suggested by previous studies, we observed a higher population growth rate in the diploid species. This is in agreement with the wider range of habitats occupied by the diploid species. PMID:24116057

  4. A spatial ecosystem and populations dynamics model (SEAPODYM) Modeling of tuna and tuna-like populations

    NASA Astrophysics Data System (ADS)

    Lehodey, Patrick; Senina, Inna; Murtugudde, Raghu

    2008-09-01

    An enhanced version of the spatial ecosystem and population dynamics model SEAPODYM is presented to describe spatial dynamics of tuna and tuna-like species in the Pacific Ocean at monthly resolution over 1° grid-boxes. The simulations are driven by a bio-physical environment predicted from a coupled ocean physical-biogeochemical model. This new version of SEAPODYM includes expanded definitions of habitat indices, movements, and natural mortality based on empirical evidences. A thermal habitat of tuna species is derived from an individual heat budget model. The feeding habitat is computed according to the accessibility of tuna predator cohorts to different vertically migrating and non-migrating micronekton (mid-trophic) functional groups. The spawning habitat is based on temperature and the coincidence of spawning fish with presence or absence of predators and food for larvae. The successful larval recruitment is linked to spawning stock biomass. Larvae drift with currents, while immature and adult tuna can move of their own volition, in addition to being advected by currents. A food requirement index is computed to adjust locally the natural mortality of cohorts based on food demand and accessibility to available forage components. Together these mechanisms induce bottom-up and top-down effects, and intra- (i.e. between cohorts) and inter-species interactions. The model is now fully operational for running multi-species, multi-fisheries simulations, and the structure of the model allows a validation from multiple data sources. An application with two tuna species showing different biological characteristics, skipjack ( Katsuwonus pelamis) and bigeye ( Thunnus obesus), is presented to illustrate the capacity of the model to capture many important features of spatial dynamics of these two different tuna species in the Pacific Ocean. The actual validation is presented in a companion paper describing the approach to have a rigorous mathematical parameter optimization

  5. Intertidal population genetic dynamics at a microgeographic seascape scale.

    PubMed

    Hu, Zi-Min

    2013-06-01

    The intertidal community is among the most physically harsh niches on earth, with highly heterogeneous environmental and biological factors that impose strong habitat selection on population abundance, genetic connectivity and ecological adaptation of organisms in nature. However, most genetic studies to date have concentrated on the influence of basin-wide or regional marine environments (e.g. habitat discontinuities, oceanic currents and fronts, and geographic barriers) on spatiotemporal distribution and composition of intertidal invertebrates having planktonic stages or long-distance dispersal capability. Little is known about sessile marine organisms (e.g. seaweeds) in the context of topographic tidal gradients and reproductive traits at the microgeographic scale. In this issue of Molecular Ecology, Krueger-Hadfield et al. () implemented an elaborate sampling strategy with red seaweed (Chondrus crispus) from a 90-m transect stand near Roscoff and comprehensively detected genome-scale genetic differentiation and biases in ploidy level. This study not only revealed that tidal height resulted in genetic differentiation between high- and low-shore stands and restricted the genetic exchange within the high-shore habitat, but also demonstrated that intergametophytic nonrandom fertilization in C. crispus can cause significant deviation from Hardy-Weinberg equilibrium. Such new genetic insights highlight the importance of microgeographic genetic dynamics and life history characteristics for better understanding the evolutionary processes of speciation and diversification of intertidal marine organisms.

  6. Different cultivation methods to acclimatise ammonia-tolerant methanogenic consortia.

    PubMed

    Tian, Hailin; Fotidis, Ioannis A; Mancini, Enrico; Angelidaki, Irini

    2017-02-11

    Bioaugmentation with ammonia tolerant-methanogenic consortia was proposed as a solution to overcome ammonia inhibition during anaerobic digestion process recently. However, appropriate technology to generate ammonia tolerant methanogenic consortia is still lacking. In this study, three basic reactors (i.e. batch, fed-batch and continuous stirred-tank reactors (CSTR)) operated at mesophilic (37°C) and thermophilic (55°C) conditions were assessed, based on methane production efficiency, incubation time, TAN/FAN (total ammonium nitrogen/free ammonia nitrogen) levels and maximum methanogenic activity. Overall, fed-batch cultivation was clearly the most efficient method compared to batch and CSTR. Specifically, by saving incubation time up to 150%, fed-batch reactors were acclimatised to nearly 2-fold higher FAN levels with a 37%-153% methanogenic activity improvement, compared to batch method. Meanwhile, CSTR reactors were inhibited at lower ammonia levels. Finally, specific methanogenic activity test showed that hydrogenotrophic methanogens were more active than aceticlastic methanogens in all FAN levels above 540mgNH3-NL(-1).

  7. Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment

    SciTech Connect

    Sandoval Lozano, Claudia Johanna Vergara Mendoza, Marisol; Carreno de Arango, Mariela; Castillo Monroy, Edgar Fernando

    2009-02-15

    This study presents the microbiological characterization of the anaerobic sludge used in a two-stage anaerobic reactor for the treatment of organic fraction of urban solid waste (OFUSW). This treatment is one alternative for reducing solid waste in landfills at the same time producing a biogas (CH{sub 4} and CO{sub 2}) and an effluent that can be used as biofertilizer. The system was inoculated with sludge from a wastewater treatment plant (WWTP) (Rio Frio Plant in Bucaramanga-Colombia) and a methanogenic anaerobic digester for the treatment of pig manure (Mesa de los Santos in Santander). Bacterial populations were evaluated by counting groups related to oxygen sensitivity, while metabolic groups were determined by most probable number (MPN) technique. Specific methanogenic activity (SMA) for acetate, formate, methanol and ethanol substrates was also determined. In the acidogenic reactor (R1), volatile fatty acids (VFA) reached values of 25,000 mg L{sup -1} and a concentration of CO{sub 2} of 90%. In this reactor, the fermentative population was predominant (10{sup 5}-10{sup 6} MPN mL{sup -1}). The acetogenic population was (10{sup 5} MPN mL{sup -1}) and the sulphate-reducing population was (10{sup 4}-10{sup 5} MPN mL{sup -1}). In the methanogenic reactor (R2), levels of CH{sub 4} (70%) were higher than CO{sub 2} (25%), whereas the VFA values were lower than 4000 mg L{sup -1}. Substrate competition between sulphate-reducing (10{sup 4}-10{sup 5} MPN mL{sup -1}) and methanogenic bacteria (10{sup 5} MPN mL{sup -1}) was not detected. From the SMA results obtained, acetoclastic (2.39 g COD-CH{sub 4} g{sup -1} VSS{sup -1} day{sup -1}) and hydrogenophilic (0.94 g COD-CH{sub 4} g{sup -1} VSS{sup -1} day{sup -1}) transformations as possible metabolic pathways used by methanogenic bacteria is suggested from the SMA results obtained. Methanotrix sp., Methanosarcina sp., Methanoccocus sp. and Methanobacterium sp. were identified.

  8. Dynamical population synthesis: constructing the stellar single and binary contents of galactic field populations

    NASA Astrophysics Data System (ADS)

    Marks, Michael; Kroupa, Pavel

    2011-11-01

    The galactic field's late-type stellar single and binary populations are calculated on the observationally well-constrained supposition that all stars form as binaries with invariant properties in discrete star formation events. A recently developed tool (Marks, Kroupa & Oh) is used to evolve the binary star distributions in star clusters for a few million years until an equilibrium situation is achieved which has a particular mixture of single and binary stars. On cluster dissolution the population enters the galactic field with these characteristics. The different contributions of single stars and binaries from individual star clusters, which are selected from a power-law-embedded star cluster mass function, are then added up. This gives rise to integrated galactic field binary distribution functions (IGBDFs), resembling a galactic field's stellar content (dynamical population synthesis). It is found that the binary proportion in the galactic field of a galaxy is larger the lower the minimum cluster mass, Mecl, min, the lower the star formation rate, SFR, the steeper the embedded star cluster mass function (described by index β) and the larger the typical size of forming star clusters in the considered galaxy. In particular, period, mass ratio and eccentricity IGBDFs for the Milky Way (MW) are modelled using Mecl, min= 5 M⊙, SFR = 3 M⊙ yr-1 and β= 2 which are justified by observations. For rh≈ 0.1-0.3 pc, the half-mass radius of an embedded cluster, the aforementioned theoretical IGBDFs agree with independently observed distributions, suggesting that the individual discrete star formation events in the MW generally formed compact star clusters. Of all late-type binaries, 50 per cent stem from Mecl≲ 300 M⊙ clusters, while 50 per cent of all single stars were born in Mecl≳ 104 M⊙ clusters. Comparison of the G-dwarf and M-dwarf binary populations indicates that the stars are formed in mass-segregated clusters. In particular, it is pointed out that

  9. Microbial precipitation of dolomite in methanogenic groundwater

    USGS Publications Warehouse

    Roberts, Jennifer A.; Bennett, Philip C.; Gonzalez, Luis A.; Macpherson, G.L.; Milliken, Kitty L.

    2004-01-01

    We report low-temperature microbial precipitation of dolomite in dilute natural waters from both field and laboratory experiments. In a freshwater aquifer, microorganisms colonize basalt and nucleate nonstoichiometric dolomite on cell walls. In the laboratory, ordered dolomite formed at near-equilibrium conditions from groundwater with molar Mg:Ca ratios of <1; dolomite was absent in sterile experiments. Geochemical and microbiological data suggest that methanogens are the dominant metabolic guild in this system and are integral to dolomite precipitation. We hypothesize that the attached microbial consortium reacts with the basalt surface, releasing Mg and Ca into solution, which drives dolomite precipitation via nucleation on the cell wall. These findings provide insight into the long-standing dolomite problem and suggest a fundamental role for microbial processes in the formation of dolomite across a wide range of environmental conditions.

  10. Responses of Methanogenic and Methanotrophic Communities to Elevated Atmospheric CO2 and Temperature in a Paddy Field.

    PubMed

    Liu, Yuan; Liu, Xiaoyu; Cheng, Kun; Li, Lianqing; Zhang, Xuhui; Zheng, Jufeng; Zheng, Jinwei; Pan, Genxing

    2016-01-01

    Although climate change is predicted to affect methane (CH4) emissions in paddy soil, the dynamics of methanogens and methanotrophs in paddy fields under climate change have not yet been fully investigated. To address this issue, a multifactor climate change experiment was conducted in a Chinese paddy field using the following experimental treatments: (1) enrichment of atmospheric CO2 concentrations (500 ppm, CE), (2) canopy air warming (2°C above the ambient, WA), (3) combined CO2 enrichment and warming (CW), and (4) ambient conditions (CK). We analyzed the abundance of methanogens and methanotrophs, community structures, CH4 production and oxidation potentials, in situ CH4 emissions using real-time PCR, T-RFLP, and clone library techniques, as well as biochemical assays. Compared to the control under CE and CW treatments, CH4 production potential, methanogenic gene abundance and soil microbial biomass carbon significantly increased; the methanogenic community, however, remained stable. The canopy air warming treatment only had an effect on CH4 oxidation potential at the ripening stage. Phylogenic analysis indicated that methanogens in the rhizosphere were dominated by Methanosarcina, Methanocellales, Methanobacteriales, and Methanomicrobiales, while methanotrophic sequences were classified as Methylococcus, Methylocaldum, Methylomonas, Methylosarcina (Type I) and Methylocystis (Type II). However, the relative abundance of Methylococcus (Type I) decreased under CE and CW treatments and the relative abundance of Methylocystis (Type II) increased. The in situ CH4 fluxes indicated similar seasonal patterns between treatments; both CE and CW increased CH4 emissions. In conclusion results suggest that methanogens and methanotrophs respond differently to elevated atmospheric CO2 concentrations and warming, thus adding insights into the effects of simulated global climate change on CH4 emissions in paddy fields.

  11. Responses of Methanogenic and Methanotrophic Communities to Elevated Atmospheric CO2 and Temperature in a Paddy Field

    PubMed Central

    Liu, Yuan; Liu, Xiaoyu; Cheng, Kun; Li, Lianqing; Zhang, Xuhui; Zheng, Jufeng; Zheng, Jinwei; Pan, Genxing

    2016-01-01

    Although climate change is predicted to affect methane (CH4) emissions in paddy soil, the dynamics of methanogens and methanotrophs in paddy fields under climate change have not yet been fully investigated. To address this issue, a multifactor climate change experiment was conducted in a Chinese paddy field using the following experimental treatments: (1) enrichment of atmospheric CO2 concentrations (500 ppm, CE), (2) canopy air warming (2°C above the ambient, WA), (3) combined CO2 enrichment and warming (CW), and (4) ambient conditions (CK). We analyzed the abundance of methanogens and methanotrophs, community structures, CH4 production and oxidation potentials, in situ CH4 emissions using real-time PCR, T-RFLP, and clone library techniques, as well as biochemical assays. Compared to the control under CE and CW treatments, CH4 production potential, methanogenic gene abundance and soil microbial biomass carbon significantly increased; the methanogenic community, however, remained stable. The canopy air warming treatment only had an effect on CH4 oxidation potential at the ripening stage. Phylogenic analysis indicated that methanogens in the rhizosphere were dominated by Methanosarcina, Methanocellales, Methanobacteriales, and Methanomicrobiales, while methanotrophic sequences were classified as Methylococcus, Methylocaldum, Methylomonas, Methylosarcina (Type I) and Methylocystis (Type II). However, the relative abundance of Methylococcus (Type I) decreased under CE and CW treatments and the relative abundance of Methylocystis (Type II) increased. The in situ CH4 fluxes indicated similar seasonal patterns between treatments; both CE and CW increased CH4 emissions. In conclusion results suggest that methanogens and methanotrophs respond differently to elevated atmospheric CO2 concentrations and warming, thus adding insights into the effects of simulated global climate change on CH4 emissions in paddy fields. PMID:27933055

  12. From home range dynamics to population cycles: validation and realism of a common vole population model for pesticide risk assessment.

    PubMed

    Wang, Magnus

    2013-04-01

    Despite various attempts to establish population models as standard tools in pesticide risk assessment, population models still receive limited acceptance by risk assessors and authorities in Europe. A main criticism of risk assessors is that population models are often not, or not sufficiently, validated. Hence the realism of population-level risk assessments conducted with such models remains uncertain. We therefore developed an individual-based population model for the common vole, Microtus arvalis, and demonstrate how population models can be validated in great detail based on published data. The model is developed for application in pesticide risk assessment, therefore, the validation covers all areas of the biology of the common vole that are relevant for the analysis of potential effects and recovery after application of pesticides. Our results indicate that reproduction, survival, age structure, spatial behavior, and population dynamics reproduced from the model are comparable to field observations. Also interannual population cycles, which are frequently observed in field studies of small mammals, emerge from the population model. These cycles were shown to be caused by the home range behavior and dispersal. As observed previously in the field, population cycles in the model were also stronger for longer breeding season length. Our results show how validation can help to evaluate the realism of population models, and we discuss the importance of taking field methodology and resulting bias into account. Our results also demonstrate how population models can help to test or understand biological mechanisms in population ecology.

  13. Methanogenic Conversion of CO2 Into CH4

    SciTech Connect

    Stevens, S.H., Ferry, J.G., Schoell, M.

    2012-05-06

    This SBIR project evaluated the potential to remediate geologic CO2 sequestration sites into useful methane gas fields by application of methanogenic bacteria. Such methanogens are present in a wide variety of natural environments, converting CO2 into CH4 under natural conditions. We conclude that the process is generally feasible to apply within many of the proposed CO2 storage reservoir settings. However, extensive further basic R&D still is needed to define the precise species, environments, nutrient growth accelerants, and economics of the methanogenic process. Consequently, the study team does not recommend Phase III commercial application of the technology at this early phase.

  14. Mosquito population dynamic (Diptera: Culicidae) in a eutrophised dam.

    PubMed

    Wermelinger, E D; Benigno, C V; Machado, R N M; Cabello, P H; Meira, A M; Ferreira, A P; Zanuncio, J C

    2012-11-01

    This study observed the mosquito population in a rural eutrophised dam. Larvae of L3 and L4 stages and pupae were dipped out during twelve month collections and the reared to the adult stage for identification. The collections were done along nine metres from the edge of the dam divided in three parts (P1, P2 and P3), each part being 3 m long. P1 did not have vegetation (grass) along its edge,which would reach or sink into the water to promote some shade on the marginal water. A total of 217 adults of four species was identified with the following constancies and frequencies: Culex quinquefasciatus (Say, 1823) (83% and 40.6%), Anopheles (Nyssorhynchus) evansae (Brèthes, 1926) (92% and 26.7%), Anopheles (Nyssorhynchus) rangeli (Gabaldon, Cova Garcia and Lopez, 1940) (83% and 14.3%) and Culex nigripalpus (Theobald, 1901) (33% and 18.4%). C. quinquefasciatus, A. evansae, A. rangeli and C. nigripalpus were more frequent in the quarters Nov./Dec./Jan. (85.7%), May/June/July (75%), Aug./Sept./Oct. (29.4%) and Aug./Sept./Oct. (23.5%) particularly in the months of December (88.4%) Sept.tember (48.94), (38.3) and August (47.62) respectively. The presence of C. quinquefasciatus and the high incidence of Daphinia sp. and also the levels of Organic Nitrogen (0.28 mg/L) and of total Phosphorus (0.02 mg/L) are indications of the eutrophication of the dam. There was a difference regarding the total of Anopheles (A. avansae + A. rangeli) and Culex species (C. quinquefasciatus + C. nigripalpis) between P1 and P2 (χ(2) = 0.0097), P1 and P3 (χ(2) = 0.0005), but not between P2 and P3 (χ(2) = 0.2045).The high C. quinquefasciatus constancy and frequency were confirmed to be a good biological indicator for a eutrophised environment and A. evansae showed a good potential for this environment. Vegetation can be an important factor for anopheline population dynamic also in eutrophic breeding sites.

  15. [Population dynamics and control techniques of aphids on honeysuckle].

    PubMed

    Sun, Ying; Xue, Ming; Zhang, Xiao; Zhao, Hai-Peng; Li, Zhao-Xia

    2013-11-01

    The objective of this study is to define the population dynamics of Semiaphis heraclei in the main-producing district of Lonicera japonica in Shandong, and screen for highly efficient, safety control technique. Through fixed field investigation, we tested the toxicity of eight kinds of insecticides by using dipping methods, and carried out the field experiment. The results showed that the aphids' emergence peak appeared in May. The aphids on the Sijihua variety of L. japonica was more susceptible and the peak was also seven days earlier than Damao variety of L. japonica. The aphid populations on Sijihua were 1 fold than those on the Daomao in happened peak. Comparing the eight kinds of insecticides, the LC50 of lambda-cyhaothrin, abamectin, imidacloprid and pyrethrin to wingless aphids were 1.494, 1.690, 2.840, 2.861 mg x L(-1), respectively, whose toxicity were higher, the toxicity of matrine, pymetrozine and azadirachtin were also high. The field efficacy trials indicated that during the period of aphids occurred, 25% imidacloprid wettable powder, 1.8% abamectin missible oil, 2.5% lambda-cyhaothrin missible oil, 25% pymetrozine wettable powder, 5% pyrethrin missible oil, 1% matrine water aqua were sprayed at concentrations of 20,000, 2,000, 2,500, 5,000, 500 and 50 times, respectively,the control effect achieved 91.69%, 98.90%, 96.18%, 95.06%, 99.24%, 90.10%, respectively, after 5 days. During the growing period of L. japonica in spring, application of thiamethoxam, thiacloprid, pymetrozine and imidacloprid, all of the control effect against aphids achieved above 98.88% after 50 days. The result indicated that May was the S. heraclei Takahashi's emergence peak in Pingyi, Shandong. The efficient safety and environmentally friendly insecticides by spraying and systemic insecticide of pymetrozine and imidacloprid by root application were all efficient controlled aphids. These insecticides were long for controlling S. heraclei Takahashi and worthy of being widely

  16. Second Cancers After Fractionated Radiotherapy: Stochastic Population Dynamics Effects

    NASA Technical Reports Server (NTRS)

    Sachs, Rainer K.; Shuryak, Igor; Brenner, David; Fakir, Hatim; Hahnfeldt, Philip

    2007-01-01

    When ionizing radiation is used in cancer therapy it can induce second cancers in nearby organs. Mainly due to longer patient survival times, these second cancers have become of increasing concern. Estimating the risk of solid second cancers involves modeling: because of long latency times, available data is usually for older, obsolescent treatment regimens. Moreover, modeling second cancers gives unique insights into human carcinogenesis, since the therapy involves administering well characterized doses of a well studied carcinogen, followed by long-term monitoring. In addition to putative radiation initiation that produces pre-malignant cells, inactivation (i.e. cell killing), and subsequent cell repopulation by proliferation can be important at the doses relevant to second cancer situations. A recent initiation/inactivation/proliferation (IIP) model characterized quantitatively the observed occurrence of second breast and lung cancers, using a deterministic cell population dynamics approach. To analyze ifradiation-initiated pre-malignant clones become extinct before full repopulation can occur, we here give a stochastic version of this I I model. Combining Monte Carlo simulations with standard solutions for time-inhomogeneous birth-death equations, we show that repeated cycles of inactivation and repopulation, as occur during fractionated radiation therapy, can lead to distributions of pre-malignant cells per patient with variance >> mean, even when pre-malignant clones are Poisson-distributed. Thus fewer patients would be affected, but with a higher probability, than a deterministic model, tracking average pre-malignant cell numbers, would predict. Our results are applied to data on breast cancers after radiotherapy for Hodgkin disease. The stochastic IIP analysis, unlike the deterministic one, indicates: a) initiated, pre-malignant cells can have a growth advantage during repopulation, not just during the longer tumor latency period that follows; b) weekend

  17. Quantifying Salmonella population dynamics in water and biofilms.

    PubMed

    Sha, Qiong; Vattem, Dhiraj A; Forstner, Michael R J; Hahn, Dittmar

    2013-01-01

    Members of the bacterial genus Salmonella are recognized worldwide as major zoonotic pathogens often found to persist in non-enteric environments including heterogeneous aquatic biofilms. In this study, Salmonella isolates that had been detected repeatedly over time in aquatic biofilms at different sites in Spring Lake, San Marcos, Texas, were identified as serovars Give, Thompson, Newport and -:z10:z39. Pathogenicity results from feeding studies with the nematode Caenorhabditis elegans as host confirmed that these strains were pathogenic, with Salmonella-fed C. elegans dying faster (mean survival time between 3 and 4 days) than controls, i.e., Escherichia coli-fed C. elegans (mean survival time of 9.5 days). Cells of these isolates inoculated into water at a density of up to 10(6) ml(-1) water declined numerically by 3 orders of magnitude within 2 days, reaching the detection limit of our quantitative polymerase chain reaction (qPCR)-based quantification technique (i.e., 10(3) cells ml(-1)). Similar patterns were obtained for cells in heterogeneous aquatic biofilms developed on tiles and originally free of Salmonella that were kept in the inoculated water. Cell numbers increased during the first days to more than 10(7) cells cm(-2), and then declined over time. Ten-fold higher cell numbers of Salmonella inoculated into water or into biofilm resulted in similar patterns of population dynamics, though cells in biofilms remained detectable with numbers around 10(4) cells cm(-2) after 4 weeks. Independent of detectability by qPCR, samples of all treatments harbored viable salmonellae that resembled the inoculated isolates after 4 weeks of incubation. These results demonstrate that pathogenic salmonellae were isolated from heterogeneous aquatic biofilms and that they could persist and stay viable in such biofilms in high numbers for some time.

  18. DYNAMICS OF NEMATODE POPULATIONS IN CACAO GROWN UNDER TRADIONALLY SYSTEM OF MANAGEMENT IN PERUVIAN AMAZON

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nature of crops and management systems greatly influences population dynamics of parasitic and nonparasitic nematodes in soil. An experiment was undertaken at Tropical Crop Research institute (ICT), Tarapoto, Peru to assess the population dynamics of nematodes in a Cocoa (Theobroma cacao L.)-Banana ...

  19. Methyl fluoride affects methanogenesis rather than community composition of methanogenic archaea in a rice field soil.

    PubMed

    Daebeler, Anne; Gansen, Martina; Frenzel, Peter

    2013-01-01

    The metabolic pathways of methane formation vary with environmental conditions, but whether this can also be linked to changes in the active archaeal community structure remains uncertain. Here, we show that the suppression of aceticlastic methanogenesis by methyl fluoride (CH(3)F) caused surprisingly little differences in community composition of active methanogenic archaea from a rice field soil. By measuring the natural abundances of carbon isotopes we found that the effective dose for a 90% inhibition of aceticlastic methanogenesis in anoxic paddy soil incubations was <0.75% CH(3)F (v/v). The construction of clone libraries as well as t-RFLP analysis revealed that the active community, as indicated by mcrA transcripts (encoding the α subunit of methyl-coenzyme M reductase, a key enzyme for methanogenesis), remained stable over a wide range of CH(3)F concentrations and represented only a subset of the methanogenic community. More precisely, Methanocellaceae were of minor importance, but Methanosarcinaceae dominated the active population, even when CH(3)F inhibition only allowed for aceticlastic methanogenesis. In addition, we detected mcrA gene fragments of a so far unrecognised phylogenetic cluster. Transcription of this phylotype at methyl fluoride concentrations suppressing aceticlastic methanogenesis suggests that the respective organisms perform hydrogenotrophic methanogenesis. Hence, the application of CH(3)F combined with transcript analysis is not only a useful tool to measure and assign in situ acetate usage, but also to explore substrate usage by as yet uncultivated methanogens.

  20. Contribution of Transcriptomics to Systems-Level Understanding of Methanogenic Archaea

    PubMed Central

    Browne, Patrick D.; Cadillo-Quiroz, Hinsby

    2013-01-01

    Methane-producing Archaea are of interest due to their contribution to atmospheric change and for their roles in technological applications including waste treatment and biofuel production. Although restricted to anaerobic environments, methanogens are found in a wide variety of habitats, where they commonly live in syntrophic relationships with bacterial partners. Owing to tight thermodynamic constraints of methanogenesis alone or in syntrophic metabolism, methanogens must carefully regulate their catabolic pathways including the regulation of RNA transcripts. The transcriptome is a dynamic and important control point in microbial systems. This paper assesses the impact of mRNA (transcriptome) studies on the understanding of methanogenesis with special consideration given to how methanogenesis is regulated to cope with nutrient limitation, environmental variability, and interactions with syntrophic partners. In comparison with traditional microarray-based transcriptome analyses, next-generation high-throughput RNA sequencing is greatly advantageous in assessing transcription start sites, the extent of 5′ untranslated regions, operonic structure, and the presence of small RNAs. We are still in the early stages of understanding RNA regulation but it is already clear that determinants beyond transcript abundance are highly relevant to the lifestyles of methanogens, requiring further study. PMID:23533330

  1. Contribution of transcriptomics to systems-level understanding of methanogenic Archaea.

    PubMed

    Browne, Patrick D; Cadillo-Quiroz, Hinsby

    2013-01-01

    Methane-producing Archaea are of interest due to their contribution to atmospheric change and for their roles in technological applications including waste treatment and biofuel production. Although restricted to anaerobic environments, methanogens are found in a wide variety of habitats, where they commonly live in syntrophic relationships with bacterial partners. Owing to tight thermodynamic constraints of methanogenesis alone or in syntrophic metabolism, methanogens must carefully regulate their catabolic pathways including the regulation of RNA transcripts. The transcriptome is a dynamic and important control point in microbial systems. This paper assesses the impact of mRNA (transcriptome) studies on the understanding of methanogenesis with special consideration given to how methanogenesis is regulated to cope with nutrient limitation, environmental variability, and interactions with syntrophic partners. In comparison with traditional microarray-based transcriptome analyses, next-generation high-throughput RNA sequencing is greatly advantageous in assessing transcription start sites, the extent of 5' untranslated regions, operonic structure, and the presence of small RNAs. We are still in the early stages of understanding RNA regulation but it is already clear that determinants beyond transcript abundance are highly relevant to the lifestyles of methanogens, requiring further study.

  2. Comparative Analysis of Methanogenic Communities in Different Laboratory-Scale Anaerobic Digesters

    PubMed Central

    Ziganshin, Ayrat M.; Ziganshina, Elvira E.

    2016-01-01

    Comparative analysis of methanogenic archaea compositions and dynamics in 11 laboratory-scale continuous stirred tank reactors fed with different agricultural materials (chicken manure, cattle manure, maize straw, maize silage, distillers grains, and Jatropha press cake) was carried out by analysis of the methyl coenzyme-M reductase α-subunit (mcrA) gene. Various taxa within Methanomicrobiales, Methanobacteriaceae, Methanosarcinaceae, Methanosaetaceae, and Methanomassiliicoccales were detected in the biogas reactors but in different proportions depending on the substrate type utilized as well as various process parameters. Improved coverage and higher taxonomic resolution of methanogens were obtained compared to a previous 16S rRNA gene based study of the same reactors. Some members of the genus Methanoculleus positively correlated with the relative methane content, whereas opposite correlations were found for Methanobacterium. Specific biogas production was found to be significantly correlating with Methanosarcinaceae. Statistical analysis also disclosed that some members of the genus Methanoculleus positively correlated with the ammonia level, whereas the prevalence of Methanocorpusculum, Methanobacterium, and Methanosaeta was negatively correlated with this parameter. These results suggest that the application of methanogenic archaea adapted to specific feedstock might enhance the anaerobic digestion of such waste materials in full-scale biogas reactors. PMID:28074084

  3. Land-atmosphere exchange of CH4 in Barrow, Alaska: Contributions of Methanogens and Methanotrophy

    NASA Astrophysics Data System (ADS)

    Xu, X.; Thornton, P. E.; Graham, D. E.; Elias, D. A.; Phelps, T. J.; Wullschleger, S. D.

    2013-12-01

    Accurate prediction of climate-biogeochemistry requires a good understanding and explicit microbial mechanisms being incorporated. A microbial functional group-based module has been developed to simulate the production and consumption of the methane (CH4), a potent greenhouse gas along soil profile. The developed module in stand-along version has been tested and validated against our previous incubation results. The module was then incorporated into the Community Land Model 4.5 (CLM4.5), the land component of the Community Earth system model. After parameterization with literature-derived data, we use the CLM4.5 model with multiple soil layers version to simulate CH4 processes at Barrow, Alaska and compare with the field observational data from the Next-Generation Ecosystem Experiment (NGEE Arctic). The relative contributions of four microbial functional groups, acetotrophic methanogens, hydrogenotrophic methanogens, aerobic methanotrophs, and anaerobic methanotrophs, to the CH4 flux were quantified and evaluated. The tested model was used for regional estimation of CH4 fluxes. The sensitivity analysis identifies that acetate acid production has a substantial effect on CH4 production. The simulation results confirmed that microbial mechanisms are critically important for simulating CH4 fluxes. The acetotrophic methanogens play a dominant contribution while hydrogenotrophic methanogens have minor contribution to CH4 production; aerobic methanotrophs have predominated contribution to methane consumption. The anaerobic methanotrophs are important for CH4 consumption in the northern permafrost region due to long-term anaerobic condition in the Arctic region that normally induces large population of anaerobic methanotrophs. The vertical distribution of microbial contribution to the CH4 process is largely different across microbial functional groups and environmental condition. This microbial functional group-based biogeochemistry module is among the first attempts to

  4. A hydrogen-based subsurface microbial community dominated by methanogens

    NASA Astrophysics Data System (ADS)

    Chapelle, Francis H.; O'Neill, Kathleen; Bradley, Paul M.; Methé, Barbara A.; Ciufo, Stacy A.; Knobel, LeRoy L.; Lovley, Derek R.

    2002-01-01

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16S ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  5. A hydrogen-based subsurface microbial community dominated by methanogens.

    PubMed

    Chapelle, Francis H; O'Neill, Kathleen; Bradley, Paul M; Methé, Barbara A; Ciufo, Stacy A; Knobel, LeRoy L; Lovley, Derek R

    2002-01-17

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16S ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  6. A hydrogen-based subsurface microbial community dominated by methanogens

    USGS Publications Warehouse

    Chapelle, F.H.; O'Neil, Kyle; Bradley, P.M.; Methe, B.A.; Ciufo, S.A.; Knobel, L.L.; Lovley, D.R.

    2002-01-01

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem1-5. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16s ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  7. The Effects of Perchlorate on Methane Production of Methanogens

    NASA Astrophysics Data System (ADS)

    Goodhart, T.; Kral, T. A.

    2010-04-01

    In May 2008, the Phoenix space craft analyzed the martian soil, detecting perchlorate, which is a highly oxidizing compound and potentially harmful to organic matter. This presentation discusses the effects that perchlorate has on methanogen growth.

  8. HIV AND POPULATION DYNAMICS: A GENERAL MODEL AND MAXIMUM-LIKELIHOOD STANDARDS FOR EAST AFRICA*

    PubMed Central

    HEUVELINE, PATRICK

    2014-01-01

    In high-prevalence populations, the HIV epidemic undermines the validity of past empirical models and related demographic techniques. A parsimonious model of HIV and population dynamics is presented here and fit to 46,000 observations, gathered from 11 East African populations. The fitted model simulates HIV and population dynamics with standard demographic inputs and only two additional parameters for the onset and scale of the epidemic. The underestimation of the general prevalence of HIV in samples of pregnant women and the fertility impact of HIV are examples of the dynamic interactions that demographic models must reproduce and are shown here to increase over time even with constant prevalence levels. As a result, the impact of HIV on population growth appears to have been underestimated by current population projections that ignore this dynamic. PMID:12846130

  9. Model complexity affects transient population dynamics following a dispersal event: a case study with pea aphids.

    PubMed

    Tenhumberg, Brigitte; Tyre, Andrew J; Rebarber, Richard

    2009-07-01

    Stage-structured population models predict transient population dynamics if the population deviates from the stable stage distribution. Ecologists' interest in transient dynamics is growing because populations regularly deviate from the stable stage distribution, which can lead to transient dynamics that differ significantly from the stable stage dynamics. Because the structure of a population matrix (i.e., the number of life-history stages) can influence the predicted scale of the deviation, we explored the effect of matrix size on predicted transient dynamics and the resulting amplification of population size. First, we experimentally measured the transition rates between the different life-history stages and the adult fecundity and survival of the aphid, Acythosiphon pisum. Second, we used these data to parameterize models with different numbers of stages. Third, we compared model predictions with empirically measured transient population growth following the introduction of a single adult aphid. We find that the models with the largest number of life-history stages predicted the largest transient population growth rates, but in all models there was a considerable discrepancy between predicted and empirically measured transient peaks and a dramatic underestimation of final population sizes. For instance, the mean population size after 20 days was 2394 aphids compared to the highest predicted population size of 531 aphids; the predicted asymptotic growth rate (lamdamax) was consistent with the experiments. Possible explanations for this discrepancy are discussed.

  10. A new ODE tumor growth modeling based on tumor population dynamics

    SciTech Connect

    Oroji, Amin; Omar, Mohd bin; Yarahmadian, Shantia

    2015-10-22

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.

  11. A new ODE tumor growth modeling based on tumor population dynamics

    NASA Astrophysics Data System (ADS)

    Oroji, Amin; Omar, Mohd bin; Yarahmadian, Shantia

    2015-10-01

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.

  12. Data Driven Approach for High Resolution Population Distribution and Dynamics Models

    SciTech Connect

    Bhaduri, Budhendra L; Bright, Eddie A; Rose, Amy N; Liu, Cheng; Urban, Marie L; Stewart, Robert N

    2014-01-01

    High resolution population distribution data are vital for successfully addressing critical issues ranging from energy and socio-environmental research to public health to human security. Commonly available population data from Census is constrained both in space and time and does not capture population dynamics as functions of space and time. This imposes a significant limitation on the fidelity of event-based simulation models with sensitive space-time resolution. This paper describes ongoing development of high-resolution population distribution and dynamics models, at Oak Ridge National Laboratory, through spatial data integration and modeling with behavioral or activity-based mobility datasets for representing temporal dynamics of population. The model is resolved at 1 km resolution globally and describes the U.S. population for nighttime and daytime at 90m. Integration of such population data provides the opportunity to develop simulations and applications in critical infrastructure management from local to global scales.

  13. High population variability and source-sink dynamics in a solitary bee species.

    PubMed

    Franzén, Markus; Nilsson, Sven G

    2013-06-01

    Although solitary bees are considered to play key roles in ecosystem functions, surprisingly few studies have explored their population dynamics. We investigated the population dynamics of a rare, declining, solitary bee (Andrena humilis) in a landscape of 80 km2 in southern Sweden from 2003 to 2011. Only one population was persistent throughout all years studied; most likely this population supplied the surrounding landscape with 11 smaller, temporary local populations. Despite stable pollen availability, the size of the persistent population fluctuated dramatically in a two-year cycle over the nine years, with 490-1230 nests in odd-numbered years and 21-48 nests in even-numbered years. These fluctuations were not significantly related to climatic variables or pollen availability. Nineteen colonization and 14 extinction events were recorded. Occupancy decreased with distance from the persistent population and increased with increasing resource (pollen) availability. There were significant positive correlations between the size of the persistent population and patch occupancy and colonization. Colonizations were generally more common in patches closer to the persistent population, whereas extinctions were independent of distance from the persistent population. Our results highlight the complex population dynamics that exist for this solitary bee species, which could be due to source-sink dynamics, a prolonged diapause, or can represent a bet-hedging strategy to avoid natural enemies and survive in small habitat patches. If large fluctuations in solitary bee populations prove to be widespread, it will have important implications for interpreting ecological relationships, bee conservation, and pollination.

  14. Hydrogenotrophic methanogens dominate in biogas reactors fed with defined substrates.

    PubMed

    Kampmann, K; Ratering, S; Baumann, R; Schmidt, M; Zerr, W; Schnell, S

    2012-09-01

    Methanogenic communities in 200L biogas reactors containing liquid manure were investigated for 33 d. The reactors were consecutively fed with casein, starch and cream. Real-time PCR with primers targeting the gene for methyl coenzyme-M reductase (mcrA) resulted in copy numbers of up to 2.1×10(9) g dry mass(-1). Single strand conformation polymorphism (SSCP) analysis revealed a stable community consisting of few hydrogenotrophic methanogens. One of the two most abundant species was closely related to Methanospirillum hungatei, whereas the other one was only distantly related to other methanogens, with Methanopyrus kandleri being the closest cultivated relative. Most probable number (MPN) cultivations were accomplished with a sample from a 600 m(3) reactor from which all manures used in the experiments originated, and equal cell counts of ca. 10(9) g dry mass(-1) were found for cultivations with acetate, H(2) and methanol. SSCP analysis of these samples and sequencing of the DNA bands identified different hydrogenotrophic methanogens in all samples, and acetoclastic methanogens closely related to Methanosarcina mazei in the samples cultivated with acetate and methanol. As the acetoclastic species were not found in any other SSCP sample, it was supposed that the ammonia values in the manure of the laboratory biogas reactor, which ranged from 2.48 to 3.61 g NH(4)-NL(-1), inhibited the growth of the acetoclastic methanogens.

  15. Evidence for para dechlorination of polychlorobiphenyls by methanogenic bacteria

    SciTech Connect

    Ye, D.; Quensen, J.F.; Tiedje, J.M.

    1995-06-01

    When microorganisms eluted from upper Hudson River sediment were cultured without any substrate except polychlorobiphenyl (PCB)-free Hudson River sediment, methane formation was the terminal step of the anaerobic food chain. In sediments containing Aroclor 1242, addition of eubacterium-inhibiting antibiotics, which should have directly inhibited fermentative bacteria and thereby should have indirectly inhibited methanogens, resulted in no dechlorination activity or methane production. However, when substrates for methanogenic bacteria were provided along with the antibiotics (to free the methanogens from dependence on eubacteria), concomitant methane production and dechlorination of PCBs were observed. The dechlorination of Aroclor 1242 was from the para positions, a pattern distinctly different from, and more limited than, the pattern observed with untreated or pasteurized inocula. Both methane production and dechlorination in cultures amended with antibiotics plus methanogenic substrates were inhibited by 2-bromoethanesulfonic acid. These results suggest that the methanogenic bacteria are among the physiological groups capable of anaerobic dechlorination of PCBs, but that the dechlorination observed with methanogenic bacteria is less extensive than the dechlorination observed with more complex anaerobic consortia. 27 refs., 5 figs., 1 tab.

  16. Effects of dietary supplementation of active dried yeast on fecal methanogenic archaea diversity in dairy cows.

    PubMed

    Jin, Dingxing; Kang, Kun; Wang, Hongze; Wang, Zhisheng; Xue, Bai; Wang, Lizhi; Xu, Feng; Peng, Quanhui

    2017-02-07

    This study aimed to investigate the effects of dietary supplementation of different dosages of active dried yeast (ADY) on the fecal methanogenic archaea community of dairy cattle. Twelve multiparous, healthy, mid-lactating Holstein dairy cows (body weight: 584 ± 23.2 kg, milk produced: 26.3 ± 1.22 kg/d) were randomly assigned to one of three treatments (control, ADY2, and ADY4) according to body weight with four replicates per treatment. Cows in the control group were fed conventional rations without ADY supplementation, while cows in the ADY2 and ADY4 group were fed rations supplemented with ADY at 2 or 4 g/d/head. Real-time PCR analysis showed the populations of total methanogens in the feces were significantly decreased (P < 0.05) in the ADY4 group compared with control. High-throughput sequencing technology was applied to examine the differences in methanogenic archaea diversity in the feces of the three treatment groups. A total of 155,609 sequences were recovered (a mean of 12,967 sequences per sample) from the twelve fecal samples, which consisted of a number of operational taxonomic units (OTUs) ranging from 1451 to 1,733, were assigned to two phyla, four classes, five orders, five families and six genera. Bioinformatic analyses illustrated that the natural fecal archaeal community of the control group was predominated by Methanobrevibacter (86.9% of the total sequence reads) and Methanocorpusculum (10.4%), while the relative abundance of the remaining four genera were below 1% with Methanosphaera comprising 0.8%, Thermoplasma composing 0.4%, and the relative abundance of Candidatus Nitrososphaera and Halalkalicoccus being close to zero. At the genus level, the relative abundances of Methanocorpusculum and Thermoplasma were increased (P < 0.05) with increasing dosage of ADY. Conversely, the predominant methanogen genus Methanobrevibacter was decreased with ADY dosage (P < 0.05). Dietary supplementation of ADY had no significant effect (P

  17. Population dynamics of the estuarine isopod Sphaeroma rugicauda

    NASA Astrophysics Data System (ADS)

    Heath, David J.; Khazaeli, Aziz A.

    1985-01-01

    Population density, spatial distribution, size distribution, sex ratio and fecundity were studied in a population over a three-year period. Young are produced in the summer, overwinter, reproduce and then die. Population densities decrease due to mortality from March to June and increase due to natality from July to September. Climate has a significant effect on population density. An abnormally warm summer (1976) led to earlier breeding, reduced fecundity, faster growth and higher mortality of juveniles. This led to fewer, larger, breeding adults in 1977. Two years which were climatically similar showed similar population trends. Egg and offspring number were positively correlated with female size but differed between years. Brood pouch mortality was estimated at 17%. Marked changes in population sex ratio were shown to be artefacts due to differences in swimming activity of the sexes.

  18. Intraspecific Competition and Population Dynamics of Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Paixão, C. A.; Charret, I. C.; Lima, R. R.

    2012-04-01

    We report computational simulations for the evolution of the population of the dengue vector, Aedes aegypti mosquitoes. The results suggest that controlling the mosquito population, on the basis of intraspecific competition at the larval stage, can be an efficient mechanism for controlling the spread of the epidemic. The results also show the presence of a kind of genetic evolution in vector population, which results mainly in increasing the average lifespan of individuals in adulthood.

  19. Population dynamics of pond zooplankton, I. Diaptomus pallidus Herrick

    USGS Publications Warehouse

    Armitage, K.B.; Saxena, B.; Angino, E.E.

    1973-01-01

    The simultaneous and lag relationships between 27 environmental variables and seven population components of a perennial calanoid copepod were examined by simple and partial correlations and stepwise regression. The analyses consistently explained more than 70% of the variation of a population component. The multiple correlation coefficient (R) usually was highest in no lag or in 3-week or 4-week lag except for clutch size in which R was highest in 1-week lag. Population control, egg-bearing, and clutch size were affected primarily by environmental components categorized as weather; food apparently was relatively minor in affecting population control or reproduction. ?? 1973 Dr. W. Junk B.V. Publishers.

  20. Environmental variability and population dynamics: Do European and North American ducks play by the same rules?

    USGS Publications Warehouse

    Pöysä, Hannu; Rintala, Jukka; Johnson, Douglas H.; Kauppinen, Jukka; Lammi, Esa; Nudds, Thomas D.; Väänänen, Veli-Matti

    2016-01-01

    Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively “fast species” and governed by environmental variability) and diving (relatively “slow species” and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history

  1. Interactions between demography and environmental effects are important determinants of population dynamics

    PubMed Central

    Gamelon, Marlène; Grøtan, Vidar; Nilsson, Anna L. K.; Engen, Steinar; Hurrell, James W.; Jerstad, Kurt; Phillips, Adam S.; Røstad, Ole W.; Slagsvold, Tore; Walseng, Bjørn; Stenseth, Nils C.; Sæther, Bernt-Erik

    2017-01-01

    Climate change will affect the population dynamics of many species, yet the consequences for the long-term persistence of populations are poorly understood. A major reason for this is that density-dependent feedback effects caused by fluctuations in population size are considered independent of stochastic variation in the environment. We show that an interplay between winter temperature and population density can influence the persistence of a small passerine population under global warming. Although warmer winters favor an increased mean population size, density-dependent feedback can cause the local population to be less buffered against occasional poor environmental conditions (cold winters). This shows that it is essential to go beyond the population size and explore climate effects on the full dynamics to elaborate targeted management actions. PMID:28164157

  2. q-deformations and the dynamics of the larch bud-moth population cycles

    NASA Astrophysics Data System (ADS)

    Iyengar, Sudharsana V.; Balakrishnan, J.

    2014-07-01

    The concept of q-deformation of numbers is applied here to improve and modify a tritrophic population dynamics model to understand defoliation of the coniferous larch trees due to outbreaks of the larch bud-moth insect population. The results are in qualitative agreement with observed behavior, with the larch needle lengths, bud-moth population and parasitoid populations all showing 9-period cycles which are mutually synchronized.

  3. Spatial and temporal dynamics of fucoid populations (Ascophyllum nodosum and Fucus serratus): a comparison between central and range edge populations.

    PubMed

    Araújo, Rita M; Serrão, Ester A; Sousa-Pinto, Isabel; Åberg, Per

    2014-01-01

    Persistence of populations at range edges relies on local population dynamics and fitness, in the case of geographically isolated populations of species with low dispersal potential. Focusing on spatial variations in demography helps to predict the long-term capability for persistence of populations across the geographical range of species' distribution. The demography of two ecological and phylogenetically close macroalgal species with different life history characteristics was investigated by using stochastic, stage-based matrix models. Populations of Ascophyllum nodosum and Fucus serratus were sampled for up to 4 years at central locations in France and at their southern range limits in Portugal. The stochastic population growth rate (λ(s)) of A. nodosum was lower and more variable in central than in southern sites whilst for F. serratus this trend was reversed with λ(s) much lower and more variable in southern than in central populations. Individuals were larger in central than in southern populations for both species, which was reflected in the lower transition probabilities of individuals to larger size classes and higher probability of shrinkage in the southern populations. In both central and southern populations elasticity analysis (proportional sensitivity) of population growth rate showed that fertility elements had a small contribution to λ(s) that was more sensitive to changes in matrix transitions corresponding to survival. The highest elasticities were found for loop transitions in A. nodosum and for growth to larger size classes in F. serratus. Sensitivity analysis showed high selective pressure on individual growth for both species at both locations. The results of this study highlight the deterministic role of species-specific life-history traits in population demography across the geographical range of species. Additionally, this study demonstrates that individuals' life-transitions differ in vulnerability to environmental variability and

  4. Suppression of Beneficial Mutations in Dynamic Microbial Populations

    NASA Astrophysics Data System (ADS)

    Bittihn, Philip; Hasty, Jeff; Tsimring, Lev S.

    2017-01-01

    Quantitative predictions for the spread of mutations in bacterial populations are essential to interpret evolution experiments and to improve the stability of synthetic gene circuits. We derive analytical expressions for the suppression factor for beneficial mutations in populations that undergo periodic dilutions, covering arbitrary population sizes, dilution factors, and growth advantages in a single stochastic model. We find that the suppression factor grows with the dilution factor and depends nontrivially on the growth advantage, resulting in the preferential elimination of mutations with certain growth advantages. We confirm our results by extensive numerical simulations.

  5. Population dynamics and angler exploitation of the unique muskellunge population in Shoepack Lake, Voyageurs National Park, Minnesota

    USGS Publications Warehouse

    Frohnauer, N.K.; Pierce, C.L.; Kallemeyn, L.W.

    2007-01-01

    A unique population of muskellunge Esox masquinongy inhabits Shoepack Lake in Voyageurs National Park, Minnesota. Little is known about its status, dynamics, and angler exploitation, and there is concern for the long-term viability of this population. We used intensive sampling and mark-recapture methods to quantify abundance, survival, growth, condition, age at maturity and fecundity and angler surveys to quantify angler pressure, catch rates, and exploitation. During our study, heavy rain washed out a dam constructed by beavers Castor canadensis which regulates the water level at the lake outlet, resulting in a nearly 50% reduction in surface area. We estimated a population size of 1,120 adult fish at the beginning of the study. No immediate reduction in population size was detected in response to the loss of lake area, although there was a gradual, but significant, decline in population size over the 2-year study. Adults grew less than 50 mm per year, and relative weight (W r) averaged roughly 80. Anglers were successful in catching, on average, two fish during a full day of angling, but harvest was negligible. Shoepack Lake muskellunge exhibit much slower growth rates and lower condition, but much higher densities and angler catch per unit effort (CPUE), than other muskellunge populations. The unique nature, limited distribution, and location of this population in a national park require special consideration for management. The results of this study provide the basis for assessing the long-term viability of the Shoepack Lake muskellunge population through simulations of long-term population dynamics and genetically effective population size. ?? Copyright by the American Fisheries Society 2007.

  6. POPULATION DYNAMICS OF FUNGA, NEMATODE, BACTERIA AND ALGAL POPULATION IN A SOIL OF MAZON REGION OF PERU

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil microbes are mainly responsible for litter decomposition and nutrient cycling in the forest ecosystems. Population dynamics of soil microbes (fungus, bacteria, nematodes, algae) under secondary forest in tropical region is not well understood. An experiment was implemented at Tropical Crop Rese...

  7. The demographic drivers of local population dynamics in two rare migratory birds.

    PubMed

    Schaub, Michael; Reichlin, Thomas S; Abadi, Fitsum; Kéry, Marc; Jenni, Lukas; Arlettaz, Raphaël

    2012-01-01

    The exchange of individuals among populations can have strong effects on the dynamics and persistence of a given population. Yet, estimation of immigration rates remains one of the greatest challenges for animal demographers. Little empirical knowledge exists about the effects of immigration on population dynamics. New integrated population models fitted using Bayesian methods enable simultaneous estimation of fecundity, survival and immigration, as well as the growth rate of a population of interest. We applied this novel analytical framework to the demography of two populations of long-distance migratory birds, hoopoe Upupa epops and wryneck Jynx torquilla, in a study area in south-western Switzerland. During 2002-2010, the hoopoe population increased annually by 11%, while the wryneck population remained fairly stable. Apparent juvenile and adult survival probability was nearly identical in both species, but fecundity and immigration were slightly higher in the hoopoe. Hoopoe population growth rate was strongly correlated with juvenile survival, fecundity and immigration, while that of wrynecks strongly correlated only with immigration. This indicates that demographic components impacting the arrival of new individuals into the populations were more important for their dynamics than demographic components affecting the loss of individuals. The finding that immigration plays a crucial role in the population growth rates of these two rare species emphasizes the need for a broad rather than local perspective for population studies, and the development of wide-scale conservation actions.

  8. POPULATION DYNAMICS OF SMALL MAMMALS ACROSS A NITROGEN AMENDED LANDSCAPE

    EPA Science Inventory

    Biogeochemical alterations of the nitrogen cycle from anthropogenic activities could have significant effects on ecological processes at the population, community and ecosystem levels. Nitrogen additions in grasslands have produced qualitative and quantitative changes in vegetat...

  9. Causes and consequences of complex population dynamics in an annual plant, Cardamine pensylvanica

    SciTech Connect

    Crone, E.E.

    1995-11-08

    The relative importance of density-dependent and density-independent factors in determining the population dynamics of plants has been widely debated with little resolution. In this thesis, the author explores the effects of density-dependent population regulation on population dynamics in Cardamine pensylvanica, an annual plant. In the first chapter, she shows that experimental populations of C. pensylvanica cycled from high to low density in controlled constant-environment conditions. These cycles could not be explained by external environmental changes or simple models of direct density dependence (N{sub t+1} = f[N{sub t}]), but they could be explained by delayed density dependence (N{sub t+1} = f[N{sub t}, N{sub t+1}]). In the second chapter, she shows that the difference in the stability properties of population growth models with and without delayed density dependence is due to the presence of Hopf as well as slip bifurcations from stable to chaotic population dynamics. She also measures delayed density dependence due to effects of parental density on offspring quality in C. pensylvanica and shows that this is large enough to be the cause of the population dynamics observed in C. pensylvanica. In the third chapter, the author extends her analyses of density-dependent population growth models to include interactions between competing species. In the final chapter, she compares the effects of fixed spatial environmental variation and variation in population size on the evolutionary response of C. pensylvanica populations.

  10. Mapping Populations: An Objective Measurement of Revolutionary Dynamics

    DTIC Science & Technology

    2013-06-01

    the first gust of wind swept across a Europe grown nervous. The time which now followed lay on the chests of men like a heavy nightmare, sultry as...easier to affect, because it evokes an emotional response from the population in a two dimensional manner. Positive fervor and negative fervor are...the two aspects population mapping uses to depict a society’s emotional response to issues. The two aspects seek the same result, but utilize

  11. Field Evidence for Magnetite Formation by a Methanogenic Microbial Community

    NASA Astrophysics Data System (ADS)

    Rossbach, S.; Beaver, C. L.; Williams, A.; Atekwana, E. A.; Slater, L. D.; Ntarlagiannis, D.; Lund, A.

    2015-12-01

    The aged, subsurface petroleum spill in Bemidji, Minnesota, has been surveyed with magnetic susceptibility (MS) measurements. High MS values were found in the free-product phase around the fluctuating water table. Although we had hypothesized that high MS values are related to the occurrence of the mineral magnetite resulting from the activity of iron-reducing bacteria, our microbial analysis pointed to the presence of a methanogenic microbial community at the locations and depths of the highest MS values. Here, we report on a more detailed microbial analysis based on high-throughput sequencing of the 16S rRNA gene of sediment samples from four consecutive years. In addition, we provide geochemical data (FeII/FeIII concentrations) to refine our conceptual model of methanogenic hydrocarbon degradation at aged petroleum spills and demonstrate that the microbial induced changes of sediment properties can be monitored with MS. The methanogenic microbial community at the Bemidji site consisted mainly of the syntrophic, hydrocarbon-degrading Smithella and the hydrogenotrophic, methane-generating Methanoregula. There is growing evidence in the literature that not only Bacteria, but also some methanogenic Archaea are able to reduce iron. In fact, a recent study reported that the methanogen Methanosarcina thermophila produced magnetite during the reduction of ferrihydrite in a laboratory experiment when hydrogen was present. Therefore, our finding of high MS values and the presence of magnetite in the methanogenic zone of an aged, subsurface petroleum spill could very well be the first field evidence for magnetite formation during methanogenic hydrocarbon degradation.

  12. Population dynamics of the endangered Cape Sable seaside-sparrow

    USGS Publications Warehouse

    Curnutt, J.L.; Mayer, A.L.; Brooks, T.M.; Manne, L.; Bass, O.L.; Fleming, D.M.; Philip, Nott M.; Pimm, S.L.

    1998-01-01

    The Cape Sable seaside-sparrow (Ammodramus maritimus mirabilis) has disappeared from its only known breeding areas episodically since its discovery early this century. Systematic surveys across its range in the southern Everglades find the sparrow's range to be fragmented into six subpopulations. The sparrow population decreased by 58% between 1992 and 1995, with the near extinction of the western half of the population and the temporary local extinction of some eastern populations. Other similar grassland sparrows have populations that vary considerably from year to year. Yet the decline in the western subpopulation and the local extinction of some of the peripheral populations cannot be explained by natural variability alone. Hurricane Andrew passed over several subpopulations prior to the particularly poor year of 1993. However, the geographical and temporal patterns of subpopulation decline are not consistent with what would be expected following a hurricane. Frequent fires prevent successful breeding as does flooding during the breeding season. Better management can prevent frequent fires and episodic flooding. However, the long-term survival of the sparrow depends on managing the unanticipated risks that attend its small, fragmented population.

  13. Dynamical Mueller's Ratchet: Population Size Dependence of Evolutionary Paths in Bacteria

    NASA Astrophysics Data System (ADS)

    Lorenz, Dirk; Park, Jeong-Man; Deem, Michael; Michael Deem Team

    2011-03-01

    Experimental evolution has recently enabled the complete quantitative description of small-dimensional fitness landscapes. Quasispecies theory allows the mathematical modeling of evolution on such a landscape. Typically, analytic solutions for these models are only exactly solvable for the case of an infinite population. Here we use a functional integral representation of population dynamics and solve it using the Schwinger Boson method. This allows us to compute the first-order correction to the average fitness for finite populations. We will use these results to explain the experimental observations of dynamics of evolution in finite populations.

  14. Population dynamics of anaerobic microbial consortia in thermophilic granular sludge in response to feed composition change.

    PubMed

    Syutsubo, K; Sinthurat, N; Ohashi, A; Harada, H

    2001-01-01

    A thermophilic UASB reactor was operated at 55 degrees C for greater than 470 days in order to investigate the effects of feed composition on the changes in microbial community structure where thermophilic granular sludge was used as the inoculum source. The feed compositions were changed with cultivation days; phase 1 (1-70 days), alcohol distillery wastewater; phase 2 (71-281 days), artificial acetate wastewater; phase 3 (282-474 days), artificial sucrose wastewater. During the first one month of each phase, the methanogenic activity and cell density of methanogens quantified by fluorescence in situ hybridization (FISH) drastically changed as a result of shift in feed composition. When artificial acetate wastewater was used as feed, retained granular sludge was partially disintegrated due to a decrease in the number of symbiotic bacterial community members: acetogens (acidogens) and hydrogenotrophic methanogens. In contrast, when the feed was shifted to sucrose (phase 3), granulation of biomass was promoted by a remarkable proliferation of the symbiotic community. The presence of hydrogen-utilizing methanogens and acetogens (acidogens) are shown to be effective for the enhancement of thermophilic granulation. The cell density of methanogens determined by FISH was strongly correlated with the methane-producing potential of the retained thermophilic granular sludge.

  15. Methane production correlates positively with methanogens, sulfate-reducing bacteria and pore water acetate at an estuarine brackish-marsh landscape scale

    NASA Astrophysics Data System (ADS)

    Tong, C.; She, C. X.; Jin, Y. F.; Yang, P.; Huang, J. F.

    2013-11-01

    Methane production is influenced by the abundance of methanogens and the availability of terminal substrates. Sulfate-reducing bacteria (SRB) also play an important role in the anaerobic decomposition of organic matter. However, the relationships between methane production and methanogen populations, pore water terminal substrates in estuarine brackish marshes are poorly characterized, and even to our knowledge, no published research has explored the relationship between methane production rate and abundance of SRB and pore water dimethyl sulfide (DMS) concentration. We investigated methane production rate, abundances of methanogens and SRB, concentrations of pore water terminal substrates and electron acceptors at a brackish marsh landscape dominated by Phragmites australis, Cyperus malaccensis and Spatina alterniflora marshes zones in the Min River estuary. The average rates of methane production at a soil depth of 30 cm in the three marsh zones were 0.142, 0.058 and 0.067 μg g-1 d-1, respectively. The abundance of both methanogens and SRB in the soil of the P. australis marsh with highest soil organic carbon content was higher than in the C. malaccensis and S. alterniflora marshes. The abundance of methanogens and SRB in the three soil layers was statistically indistinguishable. Mean pore water DMS concentrations at a soil depth of 30 cm under the S. alterniflora marsh were higher than those in the C. malaccensis and P. australis marshes. Methane production rate increased with the abundance of both methanogens and SRB across three marsh zones together at the landscape scale, and also increased with the concentration of pore water acetate, but did not correlate with concentrations of pore water DMS and dissolved CO2. Our results suggest that, provided that substrates are available in ample supply, methanogens can continue to produce methane regardless of whether SRB are prevalent in estuarine brackish marshes.

  16. Midcontinental Native American population dynamics and late Holocene hydroclimate extremes.

    PubMed

    Bird, Broxton W; Wilson, Jeremy J; Gilhooly Iii, William P; Steinman, Byron A; Stamps, Lucas

    2017-01-31

    Climate's influence on late Pre-Columbian (pre-1492 CE), maize-dependent Native American populations in the midcontinental United States (US) is poorly understood as regional paleoclimate records are sparse and/or provide conflicting perspectives. Here, we reconstruct regional changes in precipitation source and seasonality and local changes in warm-season duration and rainstorm events related to the Pacific North American pattern (PNA) using a 2100-year-long multi-proxy lake-sediment record from the midcontinental US. Wet midcontinental climate reflecting negative PNA-like conditions occurred during the Medieval Climate Anomaly (950-1250 CE) as Native American populations adopted intensive maize agriculture, facilitating population aggregation and the development of urban centers between 1000-1200 CE. Intensifying midcontinental socio-political instability and warfare between 1250-1350 CE corresponded with drier positive PNA-like conditions, culminating in the staggered abandonment of many major Native American river valley settlements and large urban centers between 1350-1450 CE during an especially severe warm-season drought. We hypothesize that this sustained drought interval rendered it difficult to support dense populations and large urban centers in the midcontinental US by destabilizing regional agricultural systems, thereby contributing to the host of socio-political factors that led to population reorganization and migration in the midcontinent and neighboring regions shortly before European contact.

  17. Midcontinental Native American population dynamics and late Holocene hydroclimate extremes

    NASA Astrophysics Data System (ADS)

    Bird, Broxton W.; Wilson, Jeremy J.; Gilhooly, William P., III; Steinman, Byron A.; Stamps, Lucas

    2017-01-01

    Climate’s influence on late Pre-Columbian (pre-1492 CE), maize-dependent Native American populations in the midcontinental United States (US) is poorly understood as regional paleoclimate records are sparse and/or provide conflicting perspectives. Here, we reconstruct regional changes in precipitation source and seasonality and local changes in warm-season duration and rainstorm events related to the Pacific North American pattern (PNA) using a 2100-year-long multi-proxy lake-sediment record from the midcontinental US. Wet midcontinental climate reflecting negative PNA-like conditions occurred during the Medieval Climate Anomaly (950–1250 CE) as Native American populations adopted intensive maize agriculture, facilitating population aggregation and the development of urban centers between 1000–1200 CE. Intensifying midcontinental socio-political instability and warfare between 1250–1350 CE corresponded with drier positive PNA-like conditions, culminating in the staggered abandonment of many major Native American river valley settlements and large urban centers between 1350–1450 CE during an especially severe warm-season drought. We hypothesize that this sustained drought interval rendered it difficult to support dense populations and large urban centers in the midcontinental US by destabilizing regional agricultural systems, thereby contributing to the host of socio-political factors that led to population reorganization and migration in the midcontinent and neighboring regions shortly before European contact.

  18. Midcontinental Native American population dynamics and late Holocene hydroclimate extremes

    PubMed Central

    Bird, Broxton W.; Wilson, Jeremy J.; Gilhooly III, William P.; Steinman, Byron A.; Stamps, Lucas

    2017-01-01

    Climate’s influence on late Pre-Columbian (pre-1492 CE), maize-dependent Native American populations in the midcontinental United States (US) is poorly understood as regional paleoclimate records are sparse and/or provide conflicting perspectives. Here, we reconstruct regional changes in precipitation source and seasonality and local changes in warm-season duration and rainstorm events related to the Pacific North American pattern (PNA) using a 2100-year-long multi-proxy lake-sediment record from the midcontinental US. Wet midcontinental climate reflecting negative PNA-like conditions occurred during the Medieval Climate Anomaly (950–1250 CE) as Native American populations adopted intensive maize agriculture, facilitating population aggregation and the development of urban centers between 1000–1200 CE. Intensifying midcontinental socio-political instability and warfare between 1250–1350 CE corresponded with drier positive PNA-like conditions, culminating in the staggered abandonment of many major Native American river valley settlements and large urban centers between 1350–1450 CE during an especially severe warm-season drought. We hypothesize that this sustained drought interval rendered it difficult to support dense populations and large urban centers in the midcontinental US by destabilizing regional agricultural systems, thereby contributing to the host of socio-political factors that led to population reorganization and migration in the midcontinent and neighboring regions shortly before European contact. PMID:28139698

  19. The role of spatial dynamics in the stability, resilience, and productivity of an estuarine fish population.

    PubMed

    Kerr, L A; Cadrin, S X; Secor, D H

    2010-03-01

    Understanding mechanisms that support long-term persistence of populations and sustainability of productive fisheries is a priority in fisheries management. Complex spatial structure within populations is increasingly viewed as a result of a plastic behavioral response that can have consequences for the dynamics of a population. We incorporated spatial structure and environmental forcing into a population model to examine the consequences for population stability (coefficient of variation of spawning-stock biomass), resilience (time to recover from disturbance), and productivity (spawning-stock biomass). White perch (Morone americana) served as a model species that exhibits simultaneous occurrence of migratory and resident groups within a population. We evaluated the role that contingents (behavioral groups within populations that exhibit divergent life histories) play in mitigating population responses to unfavorable environmental conditions. We used age-structured models that incorporated contingent-specific vital rates to simulate population dynamics of white perch in a sub-estuary of Chesapeake Bay, USA. The dynamics of the population were most sensitive to the proportion of individuals within each contingent and to a lesser degree to the level of correlation in recruitment between contingents in their responses to the environment. Increased representation of the dispersive contingent within populations resulted in increased productivity and resilience, but decreased stability. Empirical evidence from the Patuxent River white perch population was consistent with these findings. A high negative correlation in resident and dispersive contingent recruitment dynamics resulted in increased productivity and stability, with little effect on resilience. With high positive correlation between contingent recruitments, the model showed similar responses in population productivity and resilience, but decreased stability. Because contingent structure involves differing

  20. The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics.

    PubMed

    Turcotte, Martin M; Reznick, David N; Hare, J Daniel

    2011-11-01

    Rapid evolution challenges the assumption that evolution is too slow to impact short-term ecological dynamics. This insight motivates the study of 'Eco-Evolutionary Dynamics' or how evolution and ecological processes reciprocally interact on short time scales. We tested how rapid evolution impacts concurrent population dynamics using an aphid (Myzus persicae) and an undomesticated host (Hirschfeldia incana) in replicated wild populations. We manipulated evolvability by creating non-evolving (single clone) and potentially evolving (two-clone) aphid populations that contained genetic variation in intrinsic growth rate. We observed significant evolution in two-clone populations whether or not they were exposed to predators and competitors. Evolving populations grew up to 42% faster and attained up to 67% higher density, compared with non-evolving control populations but only in treatments exposed to competitors and predators. Increased density also correlates with relative fitness of competing clones suggesting a full eco-evolutionary dynamic cycle defined as reciprocal interactions between evolution and density.

  1. An overview of the population dynamics in Malaysia.

    PubMed

    Arshat, H; Tey Nai Peng

    1988-06-01

    Between 1900 and 1985 the population of Malaysia has increased from 2 million to 16 million. Before World War II most of the growth was due to immigration from China and India; after World War II it was due to natural increase. The crude birth rate appears to be leveling off at about 31.3 and the crude death rate at 5.3. At the current rate of growth the total population will be about 32 million by 2015. The proportion of urban population increased from 27% in 1979 to 34% in 1980. In 1980 83% of the population lived in Peninsular Malaysia (39% of the land area), and 17% lived in Sabah and Sarawak (61% of the land area). Population density ranges from 12 persons per square kilometer in Sarawak to 4521 in the Federal Republic of Kuala Lumpur. The median age of the population is 17.4 years; 40% are under 14, and 3.6% are over 65. In most age groups there are more women than men. The annual growth rate for Malays is higher than for Chinese and Indians, and Malays constituted 55% of the population in 1980. 34% are Chinese and 10% are Indian. Total fertility rate declined from 68/1000 in 1957 to 39/1000 in 1985. Malay fertility (4.8 children) is higher than either Indian (2.9) or Chinese (2.7) Malay fertility has been increasing while that of Indians and Chinese is decreasing due to contraception. Also, among all 3 groups age at marriage has increased. Data from the 1984/85 Malaysian Population and Family Survey show that the differential fertility of the 3 groups is due largely to rural/urban distribution, education, and work patterns. Ideal family size, according to the survey, is 4.8. The National Population and Family Development Program would like to achieve a growth rate of 2%/year, and family planning knowledge has become virtually universal. KAP surveys show that by 1984 contraceptive prevalence was 51%; however 42% of all eligible women were using unreliable methods. In terms of efficient methods, contraceptive prevalence rate was 16% for Malays, 47% for Chinese

  2. Ecological change, group territoriality, and population dynamics in Serengeti lions.

    PubMed

    Packer, Craig; Hilborn, Ray; Mosser, Anna; Kissui, Bernard; Borner, Markus; Hopcraft, Grant; Wilmshurst, John; Mduma, Simon; Sinclair, Anthony R E

    2005-01-21

    Territorial behavior is expected to buffer populations against short-term environmental perturbations, but we have found that group living in African lions causes a complex response to long-term ecological change. Despite numerous gradual changes in prey availability and vegetative cover, regional populations of Serengeti lions remained stable for 10- to 20-year periods and only shifted to new equilibria in sudden leaps. Although gradually improving environmental conditions provided sufficient resources to permit the subdivision of preexisting territories, regional lion populations did not expand until short-term conditions supplied enough prey to generate large cohorts of surviving young. The results of a simulation model show that the observed pattern of "saltatory equilibria" results from the lions' grouping behavior.

  3. Universality in exact quantum state population dynamics and control

    SciTech Connect

    Wu, Lian-Ao; Segal, Dvira; Brumer, Paul; Egusquiza, Inigo L.

    2010-09-15

    We consider an exact population transition, defined as the probability of finding a state at a final time that is exactly equal to the probability of another state at the initial time. We prove that, given a Hamiltonian, there always exists a complete set of orthogonal states that can be employed as time-zero states for which this exact population transition occurs. The result is general: It holds for arbitrary systems, arbitrary pairs of initial and final states, and for any time interval. The proposition is illustrated with several analytic models. In particular, we demonstrate that in some cases, by tuning the control parameters, a complete transition might occur, where a target state, vacant at t=0, is fully populated at time {tau}.

  4. Methanogenic archaea isolated from Taiwan's Chelungpu fault.

    PubMed

    Wu, Sue-Yao; Lai, Mei-Chin

    2011-02-01

    Terrestrial rocks, petroleum reservoirs, faults, coal seams, and subseafloor gas hydrates contain an abundance of diverse methanoarchaea. However, reports on the isolation, purification, and characterization of methanoarchaea in the subsurface environment are rare. Currently, no studies investigating methanoarchaea within fault environments exist. In this report, we succeeded in obtaining two new methanogen isolates, St545Mb(T) of newly proposed species Methanolobus chelungpuianus and Methanobacterium palustre FG694aF, from the Chelungpu fault, which is the fault that caused a devastating earthquake in central Taiwan in 1999. Strain FG694aF was isolated from a fault gouge sample obtained at 694 m below land surface (mbls) and is an autotrophic, mesophilic, nonmotile, thin, filamentous-rod-shaped organism capable of using H(2)-CO(2) and formate as substrates for methanogenesis. The morphological, biochemical, and physiological characteristics and 16S rRNA gene sequence analysis revealed that this isolate belongs to Methanobacterium palustre. The mesophilic strain St545Mb(T), isolated from a sandstone sample at 545 mbls, is a nonmotile, irregular, coccoid organism that uses methanol and trimethylamine as substrates for methanogenesis. The 16S rRNA gene sequence of strain St545Mb(T) was 99.0% similar to that of Methanolobus psychrophilus strain R15 and was 96 to 97.5% similar to the those of other Methanolobus species. However, the optimal growth temperature and total cell protein profile of strain St545Mb(T) were different from those of M. psychrophilus strain R15, and whole-genome DNA-DNA hybridization revealed less than 20% relatedness between these two strains. On the basis of these observations, we propose that strain St545Mb(T) (DSM 19953(T); BCRC AR10030; JCM 15159) be named Methanolobus chelungpuianus sp. nov. Moreover, the environmental DNA database survey indicates that both Methanolobus chelungpuianus and Methanobacterium palustre are widespread in the

  5. A Quantative Adverse Outcome Pathway Linking Aromatase Inhibition in Fathead Minnows with Population Dynamics

    EPA Science Inventory

    A Quantitative Adverse Outcome Pathway Linking Aromatase Inhibition in Fathead Minnows with Population DynamicsAn adverse outcome pathway (AOP) is a qualitative description linking a molecular initiating event (MIE) with measureable key events leading to an adverse outcome (AO). ...

  6. Population, environment dynamics, poverty and quality of life in China.

    PubMed

    Gu, B

    1996-12-01

    This article focuses on the growth in poverty, environmental concerns, and Chinese government efforts to eliminate poverty with integrated programs. China had 1.2 billion people in February 1995, or 20% of total world population on 7% of the world's arable land. The rate of natural increase was 1.1% in 1996. China's population could double to 2.4 billion by 2060. About 14 million people are added every year. China has about 300 million women of childbearing age. Even with 1 child per woman, population would grow by 300 million. 18 provinces have population growth over the national average of 1.49%. Many of these provinces are also provinces with high population density, high poverty ratios, and higher than 2 birth orders. The highest growth is in western China. Poor households have a lower quality of life, more disabled members, high rates of endemic disease, and illiteracy. Among the very poor without adequate food or clothing, environmental protection is a meaningless concept. Poverty alleviation strategies have shifted from relief to economic development. State support combined with local resources in a pooling approach pays for poverty alleviation programs. The central government's share will increase until the year 2000. The number of poor was 80 million in 1994 (9% of total population) living in 592 poor counties in remote and mountainous areas. The number of poor was reduced to 65 million in 1996. An integrated approach of family planning and poverty alleviation operates in Jinzhai County of Anhui province. China is determined to reorient to a "service-oriented, client- centered, woman-sensitive, and rural-emphasized approach."

  7. A dynamic urban air pollution population exposure assessment study using model and population density data derived by mobile phone traffic

    NASA Astrophysics Data System (ADS)

    Gariazzo, Claudio; Pelliccioni, Armando; Bolignano, Andrea

    2016-04-01

    A dynamic city-wide air pollution exposure assessment study has been carried out for the urban population of Rome, Italy, by using time resolved population distribution maps, derived by mobile phone traffic data, and modelled air pollutants (NO2, O3 and PM2.5) concentrations obtained by an integrated air dispersion modelling system. More than a million of persons were tracked during two months (March and April 2015) for their position within the city and its surroundings areas, with a time resolution of 15 min and mapped over an irregular grid system with a minimum resolution of 0.26 × 0.34 Km2. In addition, demographics information (as gender and age ranges) were available in a separated dataset not connected with the total population one. Such BigData were matched in time and space with air pollution model results and then used to produce hourly and daily resolved cumulative population exposures during the studied period. A significant mobility of population was identified with higher population densities in downtown areas during daytime increasing of up to 1000 people/Km2 with respect to nigh-time one, likely produced by commuters, tourists and working age population. Strong variability (up to ±50% for NO2) of population exposures were detected as an effect of both mobility and time/spatial changing in pollutants concentrations. A comparison with the correspondent stationary approach based on National Census data, allows detecting the inability of latter in estimating the actual variability of population exposure. Significant underestimations of the amount of population exposed to daily PM2.5 WHO guideline was identified for the Census approach. Very small differences (up to a few μg/m3) on exposure were detected for gender and age ranges population classes.

  8. Hydrogen transfer between methanogens and fermentative heterotrophs in hyperthermophilic cocultures

    SciTech Connect

    Muralidharan, V.; Hirsh, I.S.; Bouwer, E.J.; Rinker, K.D.; Kelly, R.M.

    1997-11-05

    Interactions involving hydrogen transfer were studied in a coculture of two hyperthermophilic microorganisms: Thermotoga maritima, an anaerobic heterotroph, and Methanococcus jannaschii, a hydrogenotrophic methanogen. Cell densities of T. maritima increased 10-fold when cocultured with M. jannaschii at 85 C, and the methanogen was able to grow in the absence of externally supplied H{sub 2} and CO{sub 2}. The coculture could not be established if the two organisms were physically separated by a dialysis membrane, suggesting the importance of spatial proximity. The significance of spatial proximity was also supported by cell cytometry, where the methanogen was only found in cell sorts at or above 4.5 {micro}m in samples of the coculture in exponential phase. An unstructured mathematical model was used to compare the influence of hydrogen transport and metabolic properties on mesophilic and hyperthermophilic cocultures. Calculations suggest the increases in methanogenesis rates with temperature result from greater interactions between the methanogenic and fermentative organisms, as evidenced by the sharp decline in H{sub 2} concentration in the proximity of a hyperthermophilic methanogen. The experimental and modeling results presented here illustrate the need to consider the interactions within hyperthermophilic consortia when choosing isolation strategies and evaluating biotransformations at elevated temperatures.

  9. Methanogenic Diversity in Marine Sediments at Hydrate Ridge, Oregon

    NASA Astrophysics Data System (ADS)

    Kendall, M. M.; Boone, D. R.

    2004-12-01

    Little is known about the mechanism of methanogenic degradation of acetate or the fate of hydrogen and formate in cold marine sediments, or the ability of methanogens to grow and produce methane there. We used cultivation and molecular techniques to examine the microbes that produce methane from these substrates in permanently cold, anoxic marine sediments at Hydrate Ridge, Oregon (44° 35'N, 125° 10'W, depth 800 m). Sediment samples (15 to 35 cm deep) were collected from areas of active methane ebullition or areas where methane hydrates occurred. The samples were anoxically diluted and inoculated into enrichment media with formate, acetate, or trimethylamine as catabolic substrate. After 2 years incubation at 4° C to 15° C, enrichment cultures grew and produced methane. DNA was extracted from the highest dilutions that grew. The sequence data suggested that each enrichment culture contained a single strain of methanogen, and many of these sequences were dissimilar to known sequences of methanogens. This level of similarity (89 to 91% similar) suggests that these methanogens belong to novel genera. A clone library of 16S rRNA genes was also created from DNA extracted from the sediment samples. Analysis of the 16S rRNA gene libraries also revealed phylotypes that were only distantly related to cultivated organisms. The sequences of the clone library and of the enrichment cultures indicate a high degree of phylogenetic diversity among the Hydrate Ridge Archaea.

  10. Anaerobic Degradation of Phthalate Isomers by Methanogenic Consortia

    PubMed Central

    Kleerebezem, Robbert; Pol, Look W. Hulshoff; Lettinga, Gatze

    1999-01-01

    Three methanogenic enrichment cultures, grown on ortho-phthalate, iso-phthalate, or terephthalate were obtained from digested sewage sludge or methanogenic granular sludge. Cultures grown on one of the phthalate isomers were not capable of degrading the other phthalate isomers. All three cultures had the ability to degrade benzoate. Maximum specific growth rates (μSmax) and biomass yields (YXtotS) of the mixed cultures were determined by using both the phthalate isomers and benzoate as substrates. Comparable values for these parameters were found for all three cultures. Values for μSmax and YXtotS were higher for growth on benzoate compared to the phthalate isomers. Based on measured and estimated values for the microbial yield of the methanogens in the mixed culture, specific yields for the phthalate and benzoate fermenting organisms were calculated. A kinetic model, involving three microbial species, was developed to predict intermediate acetate and hydrogen accumulation and the final production of methane. Values for the ratio of the concentrations of methanogenic organisms, versus the phthalate isomer and benzoate fermenting organisms, and apparent half-saturation constants (KS) for the methanogens were calculated. By using this combination of measured and estimated parameter values, a reasonable description of intermediate accumulation and methane formation was obtained, with the initial concentration of phthalate fermenting organisms being the only variable. The energetic efficiency for growth of the fermenting organisms on the phthalate isomers was calculated to be significantly smaller than for growth on benzoate. PMID:10049876

  11. Distribution of compatible solutes in the halophilic methanogenic archaebacteria

    SciTech Connect

    Meichin Lai; Sowers, K.R.; Gunsalus, R.P. ); Robertson, D.E.; Roberts, M.F. )

    1991-09-01

    Accumulation of compatible solutes, by uptake or de novo synthesis, enables bacteria to reduce the difference between osmotic potentials of the cell cytoplasm and the extracellular environment. To examine this process in the halophilic and halotolerant methanogenic archaebacteria, 14 strains were tested for the accumulation of compatible solutes in response to growth in various extracellular concentrations of NaCl. In external NaCl concentrations of 0.7 to 3.4 M, the halophilic methanogens accumulated K{sup +} ion and low-molecular-weight organic compounds. {beta}-Glutamate was detected in two halotolerant strains that grew below 1.5 M NaCl. Two unusual {beta}-amino acids, N{sub {var epsilon}}-acetyl-{beta}-lysine and {beta}-glutamine (3-aminoglutaramic acid), as well as L-{alpha}-glutamate were compatible solutes among all of these strains. De novo synthesis of glycine betaine was also detected in several strains of moderately and extremely halophilic methanogens. The zwitterionic compounds ({beta}-glutamine, N{sub {var epsilon}}-acetyl-{beta}-lysine,a nd glycine betaine) and potassium were the predominant compatible solutes among the moderately and extremely halophilic methanogens. This is the first report of {beta}-glutamine as a compatible solute and de novo biosynthesis of glycine betaine in the methanogenic archaebacteria.

  12. A stage-based model of manatee population dynamics

    USGS Publications Warehouse

    Runge, M.C.; Langtimm, C.A.; Kendall, W.L.

    2004-01-01

    A stage-structured population model for the Florida manatee (Trichechus manatus latirostris) was developed that explicitly incorporates uncertainty in parameter estimates. The growth rates calculated with this model reflect the status of the regional populations over the most recent 10-yr period. The Northwest and Upper St. Johns River regions have growth rates (8) of 1.037 (95% interval, 1.016?1.056) and 1.062 (1.037?1.081), respectively. The Southwest region has a growth rate of 0.989 (0.946?1.024), suggesting this population has been declining at about 1.1% per year. The estimated growth rate in the Atlantic region is 1.010 (0.988?1.029), but there is some uncertainty about whether adult survival rates have been constant over the last 10 yr; using the mean survival rates from the most recent 5-yr period, the estimated growth rate in this region is 0.970 (0.938?0.998). Elasticity analysis indicates that the most effective management actions should seek to increase adult survival rates. Decomposition of the uncertainty in the growth rates indicates that uncertainty about population status can best be reduced through increased monitoring of adult survival rate.

  13. Assessing the importance of demographic parameters for population dynamics using Bayesian integrated population modeling.

    PubMed

    Eacker, Daniel R; Lukacs, Paul M; Proffitt, Kelly M; Hebblewhite, Mark

    2017-02-11

    To successfully respond to changing habitat, climate or harvest, managers need to identify the most effective strategies to reverse population trends of declining species and/or manage harvest of game species. A classic approach in conservation biology for the last two decades has been the use of matrix population models to determine the most important vital rates affecting population growth rate (λ), that is, sensitivity. Ecologists quickly realized the critical role of environmental variability in vital rates affecting population growth rate by developing approaches such as life-stage simulation analysis (LSA) that account for both sensitivity and variability of a vital rate. These LSA methods used matrix-population modeling and Monte Carlo simulation methods, but faced challenges in integrating data from different sources, disentangling process and sampling variation, and in their flexibility. Here, we developed a Bayesian integrated population model (IPM) for two populations of a large herbivore, elk (Cervus canadensis) in Montana, USA. We then extended the IPM to evaluate sensitivity in a Bayesian framework. We integrated known-fate survival data from radio-marked adults and juveniles, fecundity data, and population counts in a hierarchical population model that explicitly accounted for process and sampling variance. Next, we tested the prevailing paradigm in large herbivore population ecology that juvenile survival of neonates <90 days old drives λ using our Bayesian LSA approach. In contrast to the prevailing paradigm in large herbivore ecology, we found that adult female survival explained more of the variation in λ than elk calf survival, and that summer and winter elk calf survival periods were nearly equivalent in importance for λ. Our Bayesian IPM improved precision of our vital rate estimates and highlighted discrepancies between count and vital rate data that could refine population monitoring, demonstrating that combining sensitivity analysis

  14. Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces.

    PubMed

    Woody, Scott T; Ives, Anthony R; Nordheim, Erik V; Andrews, John H

    2007-06-01

    Despite the ubiquity and importance of microbes in nature, little is known about their natural population dynamics, especially for those that occupy terrestrial habitats. Here we investigate the dynamics of the yeast-like fungus Aureobasidium pullulans (Ap) on apple leaves in an orchard. We asked three questions. (1) Is variation in fungal population density among leaves caused by variation in leaf carrying capacities and strong density-dependent population growth that maintains densities near carrying capacity? (2) Do resident populations have competitive advantages over immigrant cells? (3) Do Ap dynamics differ at different times during the growing season? To address these questions, we performed two experiments at different times in the growing season. Both experiments used a 2 x 2 factorial design: treatment 1 removed fungal cells from leaves to reveal density-dependent population growth, and treatment 2 inoculated leaves with an Ap strain engineered to express green fluorescent protein (GFP), which made it possible to track the fate of immigrant cells. The experiments showed that natural populations of Ap vary greatly in density due to sustained differences in carrying capacities among leaves. The maintenance of populations close to carrying capacities indicates strong density-dependent processes. Furthermore, resident populations are strongly competitive against immigrants, while immigrants have little impact on residents. Finally, statistical models showed high population growth rates of resident cells in one experiment but not in the other, suggesting that Ap experiences relatively "good" and "bad" periods for population growth. This picture of Ap dynamics conforms to commonly held, but rarely demonstrated, expectations of microbe dynamics in nature. It also highlights the importance of local processes, as opposed to immigration, in determining the abundance and dynamics of microbes on surfaces in terrestrial systems.

  15. Long-Term Trends and Role of Climate in the Population Dynamics of Eurasian Reindeer

    PubMed Central

    Horstkotte, Tim; Kaarlejärvi, Elina; Sévêque, Anthony; Stammler, Florian; Olofsson, Johan; Forbes, Bruce C.; Moen, Jon

    2016-01-01

    Temperature is increasing in Arctic and sub-Arctic regions at a higher rate than anywhere else in the world. The frequency and nature of precipitation events are also predicted to change in the future. These changes in climate are expected, together with increasing human pressures, to have significant impacts on Arctic and sub-Arctic species and ecosystems. Due to the key role that reindeer play in those ecosystems, it is essential to understand how climate will affect the region’s most important species. Our study assesses the role of climate on the dynamics of fourteen Eurasian reindeer (Rangifer tarandus) populations, using for the first time data on reindeer abundance collected over a 70-year period, including both wild and semi-domesticated reindeer, and covering more than half of the species’ total range. We analyzed trends in population dynamics, investigated synchrony among population growth rates, and assessed the effects of climate on population growth rates. Trends in the population dynamics were remarkably heterogeneous. Synchrony was apparent only among some populations and was not correlated with distance among population ranges. Proxies of climate variability mostly failed to explain population growth rates and synchrony. For both wild and semi-domesticated populations, local weather, biotic pressures, loss of habitat and human disturbances appear to have been more important drivers of reindeer population dynamics than climate. In semi-domesticated populations, management strategies may have masked the effects of climate. Conservation efforts should aim to mitigate human disturbances, which could exacerbate the potentially negative effects of climate change on reindeer populations in the future. Special protection and support should be granted to those semi-domesticated populations that suffered the most because of the collapse of the Soviet Union, in order to protect the livelihood of indigenous peoples that depend on the species, and the multi

  16. Long-Term Trends and Role of Climate in the Population Dynamics of Eurasian Reindeer.

    PubMed

    Uboni, Alessia; Horstkotte, Tim; Kaarlejärvi, Elina; Sévêque, Anthony; Stammler, Florian; Olofsson, Johan; Forbes, Bruce C; Moen, Jon

    2016-01-01

    Temperature is increasing in Arctic and sub-Arctic regions at a higher rate than anywhere else in the world. The frequency and nature of precipitation events are also predicted to change in the future. These changes in climate are expected, together with increasing human pressures, to have significant impacts on Arctic and sub-Arctic species and ecosystems. Due to the key role that reindeer play in those ecosystems, it is essential to understand how climate will affect the region's most important species. Our study assesses the role of climate on the dynamics of fourteen Eurasian reindeer (Rangifer tarandus) populations, using for the first time data on reindeer abundance collected over a 70-year period, including both wild and semi-domesticated reindeer, and covering more than half of the species' total range. We analyzed trends in population dynamics, investigated synchrony among population growth rates, and assessed the effects of climate on population growth rates. Trends in the population dynamics were remarkably heterogeneous. Synchrony was apparent only among some populations and was not correlated with distance among population ranges. Proxies of climate variability mostly failed to explain population growth rates and synchrony. For both wild and semi-domesticated populations, local weather, biotic pressures, loss of habitat and human disturbances appear to have been more important drivers of reindeer population dynamics than climate. In semi-domesticated populations, management strategies may have masked the effects of climate. Conservation efforts should aim to mitigate human disturbances, which could exacerbate the potentially negative effects of climate change on reindeer populations in the future. Special protection and support should be granted to those semi-domesticated populations that suffered the most because of the collapse of the Soviet Union, in order to protect the livelihood of indigenous peoples that depend on the species, and the multi

  17. A new method for identifying rapid decline dynamics in wild vertebrate populations

    PubMed Central

    Fonzo, Martina Di; Collen, Ben; Mace, Georgina M

    2013-01-01

    Tracking trends in the abundance of wildlife populations is a sensitive method for assessing biodiversity change due to the short time-lag between human pressures and corresponding shifts in population trends. This study tests for proposed associations between different types of human pressures and wildlife population abundance decline-curves and introduces a method to distinguish decline trajectories from natural fluctuations in population time-series. First, we simulated typical mammalian population time-series under different human pressure types and intensities and identified significant distinctions in population dynamics. Based on the concavity of the smoothed population trend and the algebraic function which was the closest fit to the data, we determined those differences in decline dynamics that were consistently attributable to each pressure type. We examined the robustness of the attribution of pressure type to population decline dynamics under more realistic conditions by simulating populations under different levels of environmental stochasticity and time-series data quality. Finally, we applied our newly developed method to 124 wildlife population time-series and investigated how those threat types diagnosed by our method compare to the specific threatening processes reported for those populations. We show how wildlife population decline curves can be used to discern between broad categories of pressure or threat types, but do not work for detailed threat attributions. More usefully, we find that differences in population decline curves can reliably identify populations where pressure is increasing over time, even when data quality is poor, and propose this method as a cost-effective technique for prioritizing conservation actions between populations. PMID:23919177

  18. A framework for studying transient dynamics of population projection matrix models.

    PubMed

    Stott, Iain; Townley, Stuart; Hodgson, David James

    2011-09-01

    Empirical models are central to effective conservation and population management, and should be predictive of real-world dynamics. Available modelling methods are diverse, but analysis usually focuses on long-term dynamics that are unable to describe the complicated short-term time series that can arise even from simple models following ecological disturbances or perturbations. Recent interest in such transient dynamics has led to diverse methodologies for their quantification in density-independent, time-invariant population projection matrix (PPM) models, but the fragmented nature of this literature has stifled the widespread analysis of transients. We review the literature on transient analyses of linear PPM models and synthesise a coherent framework. We promote the use of standardised indices, and categorise indices according to their focus on either convergence times or transient population density, and on either transient bounds or case-specific transient dynamics. We use a large database of empirical PPM models to explore relationships between indices of transient dynamics. This analysis promotes the use of population inertia as a simple, versatile and informative predictor of transient population density, but criticises the utility of established indices of convergence times. Our findings should guide further development of analyses of transient population dynamics using PPMs or other empirical modelling techniques.

  19. Breeding site heterogeneity reduces variability in frog recruitment and population dynamics

    USGS Publications Warehouse

    McCaffery, Rebecca M.; Eby, Lisa A.; Maxell, Bryce A.; Corn, Paul Stephen

    2013-01-01

    Environmental stochasticity can have profound effects on the dynamics and viability of wild populations, and habitat heterogeneity provides one mechanism by which populations may be buffered against the negative effects of environmental fluctuations. Heterogeneity in breeding pond hydroperiod across the landscape may allow amphibian populations to persist despite variable interannual precipitation. We examined recruitment dynamics over 10 yr in a high-elevation Columbia spotted frog (Rana luteiventris) population that breeds in ponds with a variety of hydroperiods. We combined these data with matrix population models to quantify the consequences of heterogeneity in pond hydroperiod on net recruitment (i.e. number of metamorphs produced) and population growth rates. We compared our heterogeneous system to hypothetical homogeneous environments with only ephemeral ponds, only semi-permanent ponds, and only permanent ponds. We also examined the effects of breeding pond habitat loss on population growth rates. Most eggs were laid in permanent ponds each year, but survival to metamorphosis was highest in the semi-permanent ponds. Recruitment success varied by both year and pond type. Net recruitment and stochastic population growth rate were highest under a scenario with homogeneous semi-permanent ponds, but variability in recruitment was lowest in the scenario with the observed heterogeneity in hydroperiods. Loss of pond habitat decreased population growth rate, with greater decreases associated with loss of permanent and semi-permanent habitat. The presence of a diversity of pond hydroperiods on the landscape will influence population dynamics, including reducing variability in recruitment in an uncertain climatic future.

  20. Structural Perturbations to Population Skeletons: Transient Dynamics, Coexistence of Attractors and the Rarity of Chaos

    PubMed Central

    Singh, Brajendra K.; Parham, Paul E.; Hu, Chin-Kun

    2011-01-01

    Background Simple models of insect populations with non-overlapping generations have been instrumental in understanding the mechanisms behind population cycles, including wild (chaotic) fluctuations. The presence of deterministic chaos in natural populations, however, has never been unequivocally accepted. Recently, it has been proposed that the application of chaos control theory can be useful in unravelling the complexity observed in real population data. This approach is based on structural perturbations to simple population models (population skeletons). The mechanism behind such perturbations to control chaotic dynamics thus far is model dependent and constant (in size and direction) through time. In addition, the outcome of such structurally perturbed models is [almost] always equilibrium type, which fails to commensurate with the patterns observed in population data. Methodology/Principal Findings We present a proportional feedback mechanism that is independent of model formulation and capable of perturbing population skeletons in an evolutionary way, as opposed to requiring constant feedbacks. We observe the same repertoire of patterns, from equilibrium states to non-chaotic aperiodic oscillations to chaotic behaviour, across different population models, in agreement with observations in real population data. Model outputs also indicate the existence of multiple attractors in some parameter regimes and this coexistence is found to depend on initial population densities or the duration of transient dynamics. Our results suggest that such a feedback mechanism may enable a better understanding of the regulatory processes in natural populations. PMID:21980342

  1. Population dynamics of bowfin in a south Georgia reservoir: latitudinal comparisons of population structure, growth, and mortality

    USGS Publications Warehouse

    Porter, Nicholas J.; Bonvechio, Timothy F.; McCormick, Joshua L.; Quist, Michael

    2014-01-01

    The objectives of this study were to evaluate the population dynamics of bowfin (Amia calva) in Lake Lindsay Grace, Georgia, and to compare those dynamics to other bowfin populations. Relative abundance of bowfin sampled in 2010 in Lake Lindsay Grace was low and variable (mean±SD; 2.7±4.7 fish per hour of electrofishing). Total length (TL) of bowfin collected in Lake Lindsay Grace varied from 233–683 mm. Age of bowfin in Lake Lindsay Grace varied from 0–5 yr. Total annual mortality (A) was estimated at 68%. Both sexes appeared to be fully mature by age 2 with gonadosomatic index values above 8 for females and close to 1 for males. The majority of females were older, longer, and heavier than males. Bowfin in Lake Lindsay Grace had fast growth up to age 4 and higher total annual mortality than the other populations examined in this study. A chi-square test indicated that size structure of bowfin from Lake Lindsay Grace was different than those of a Louisiana population and two bowfin populations from the upper Mississippi River. To further assess bowfin size structure, we proposed standard length (i.e., TL) categories: stock (200 mm, 8 inches), quality (350 mm, 14 inches), preferred (460 mm, 18 inches), memorable (560 mm, 22, inches), and trophy (710 mm, 28 inches). Because our knowledge of bowfin ecology is limited, additional understanding of bowfin population dynamics provides important insight that can be used in management of bowfin across their distribution.

  2. When stable-stage equilibrium is unlikely: integrating transient population dynamics improves asymptotic methods

    PubMed Central

    Tremblay, Raymond L.; Raventos, Josep; Ackerman, James D.

    2015-01-01

    Background and Aims Evaluation of population projection matrices (PPMs) that are focused on asymptotically based properties of populations is a commonly used approach to evaluate projected dynamics of managed populations. Recently, a set of tools for evaluating the properties of transient dynamics has been expanded to evaluate PPMs and to consider the dynamics of populations prior to attaining the stable-stage distribution, a state that may never be achieved in disturbed or otherwise ephemeral habitats or persistently small populations. This study re-evaluates data for a tropical orchid and examines the value of including such analyses in an integrative approach. Methods Six small populations of Lepanthes rubripetala were used as a model system and the R software package popdemo was used to produce estimates of the indices for the asymptotic growth rate (lambda), sensitivities, reactivity, first-time step attenuation, maximum amplification, maximum attenuation, maximal inertia and maximal attenuation. The response in lambda to perturbations of demographic parameters using transfer functions and multiple perturbations on growth, stasis and fecundity were also determined. The results were compared with previously published asymptotic indices. Key Results It was found that combining asymptotic and transient dynamics expands the understanding of possible population changes. Comparison of the predicted density from reactivity and first-time step attenuation with the observed change in population size in two orchid populations showed that the observed density was within the predicted range. However, transfer function analysis suggests that the traditional approach of measuring perturbation of growth rates and persistence (inertia) may be misleading and is likely to result in erroneous management decisions. Conclusions Based on the results, an integrative approach is recommended using traditional PPMs (asymptotic processes) with an evaluation of the diversity of dynamics

  3. Demography of the Early Neolithic Population in Central Balkans: Population Dynamics Reconstruction Using Summed Radiocarbon Probability Distributions

    PubMed Central

    2016-01-01

    The Central Balkans region is of great importance for understanding the spread of the Neolithic in Europe but the Early Neolithic population dynamics of the region is unknown. In this study we apply the method of summed calibrated probability distributions to a set of published radiocarbon dates from the Republic of Serbia in order to reconstruct population dynamics in the Early Neolithic in this part of the Central Balkans. The results indicate that there was a significant population growth after ~6200 calBC, when the Neolithic was introduced into the region, followed by a bust at the end of the Early Neolithic phase (~5400 calBC). These results are broadly consistent with the predictions of the Neolithic Demographic Transition theory and the patterns of population booms and busts detected in other regions of Europe. These results suggest that the cultural process that underlies the patterns observed in Central and Western Europe was also in operation in the Central Balkan Neolithic and that the population increase component of this process can be considered as an important factor for the spread of the Neolithic as envisioned in the demic diffusion hypothesis. PMID:27508413

  4. Modeling the population dynamics of pacific yew. Forest Service research note

    SciTech Connect

    Busing, R.T.; Spies, T.A.

    1995-05-01

    A study of Pacific yew (Taxus brevifolia Nutt.) population dynamics in the mountains of western Oregon and Washington was based on a combination of long-term population data and computer modeling. Rates of growth and mortality were low in mature and old-growth forest stands. Diameter growth at breast height ranged from 0 to 3 centimeters per decade. The annual mortality rate for individuals greater than 5 centimeters in diameter at breast height was about 1 percent of the population. A matrix population model was constructed by using these and other fundamental data on yew population dynamics. The model was designed to perform population viability analyses of yew under various harvest regimes. Model projections suggested a slow rate of recovery from major disturbance.

  5. Mortality and Population Dynamics of Bemisia tabaci within a Multi-Crop System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The population dynamics of mobile polyphagous pests is governed by a complex set of interacting factors that involve multiple host-plants, seasonality, movement and demography. Bemisia tabaci is a multivoltine insect with no diapause that maintains population continuity by moving from one host to a...

  6. Bacterial population structure and dynamics during the development of almond drupes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To describe the bacterial populations and their dynamics during the development of almond drupes. Methods and Results: We examined 16S rRNA gene libraries derived from the bacterial populations on almond drupes at three stages of development: 1) when the drupes were full sized, but before embr...

  7. The influence of historical climate on the population dynamics of three dominant sagebrush steppe plants.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change could alter the population growth of dominant species, leading to profound effects on community structure and ecosystem dynamics. Understanding the links between historical variation in climate and population vital rates (survival, growth, recruitment) is one way to predict the impact...

  8. Temperature-driven regime shifts in the dynamics of size-structured populations.

    PubMed

    Ohlberger, Jan; Edeline, Eric; Vøllestad, Leif Asbjørn; Stenseth, Nils C; Claessen, David

    2011-02-01

    Global warming impacts virtually all biota and ecosystems. Many of these impacts are mediated through direct effects of temperature on individual vital rates. Yet how this translates from the individual to the population level is still poorly understood, hampering the assessment of global warming impacts on population structure and dynamics. Here, we study the effects of temperature on intraspecific competition and cannibalism and the population dynamical consequences in a size-structured fish population. We use a physiologically structured consumer-resource model in which we explicitly model the temperature dependencies of the consumer vital rates and the resource population growth rate. Our model predicts that increased temperature decreases resource density despite higher resource growth rates, reflecting stronger intraspecific competition among consumers. At a critical temperature, the consumer population dynamics destabilize and shift from a stable equilibrium to competition-driven generation cycles that are dominated by recruits. As a consequence, maximum age decreases and the proportion of younger and smaller-sized fish increases. These model predictions support the hypothesis of decreasing mean body sizes due to increased temperatures. We conclude that in size-structured fish populations, global warming may increase competition, favor smaller size classes, and induce regime shifts that destabilize population and community dynamics.

  9. Effects of temporal variation in temperature and density dependence on insect population dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding effects of environmental variation on insect populations is important in light of predictions about increasing future climatic variability. In order to understand the effects of changing environmental variation on population dynamics and life history evolution in insects one would need...

  10. [Temporal dynamics of allelic diversity in isolated population of pedunculate oak Quercus robur L. (Fagaceae)].

    PubMed

    Buschbom, J; Ianbaev, Iu A; Degen, B; Gabitova, A A

    2012-01-01

    Using nine microsatellite loci, genetic diversity of small geographically isolated population of pedunculate oak Quercus robur L. (Fragaceae) was examined. The population was located outside of the species range in Bashkir Transuralia. Considerable temporal dynamics of allelic diversity, explained in terms of different effectiveness of gene flow in different years, was demonstrated.

  11. Quantitative high-throughput population dynamics in continuous-culture by automated microscopy

    PubMed Central

    Merritt, Jason; Kuehn, Seppe

    2016-01-01

    We present a high-throughput method to measure abundance dynamics in microbial communities sustained in continuous-culture. Our method uses custom epi-fluorescence microscopes to automatically image single cells drawn from a continuously-cultured population while precisely controlling culture conditions. For clonal populations of Escherichia coli our instrument reveals history-dependent resilience and growth rate dependent aggregation. PMID:27616752

  12. POPULATION DYNAMICS OF HISPID COTTON RATS (SIGMODON HISPIDUS) ACROSS A NITROGEN AMENDED LANDSCAPE

    EPA Science Inventory

    Population dynamics of some small-mammal species appear to be regulated by plant-community structure, vegetative cover, plant diversity, and food quality. Thus, plant community changes associated with nitrogen additions would likely impact dynamics and structure of small-mammal ...

  13. Growth of Methanogens on a Mars Soil Simulant

    NASA Astrophysics Data System (ADS)

    Kral, Timothy A.; Bekkum, Curtis R.; McKay, Christopher P.

    2004-12-01

    Currently, the surface of Mars is probably too cold, too dry, and too oxidizing for life, as we know it, to exist. But the subsurface is another matter. Life forms that might exist below the surface could not obtain their energy from photosynthesis, but rather they would have to utilize chemical energy. Methanogens are one type of microorganism that might be able to survive below the surface of Mars. A potential habitat for existence of methanogens on Mars might be a geothermal source of hydrogen, possibly due to volcanic or hydrothermal activity, or the reaction of basalt and anaerobic water, carbon dioxide, which is abundant in the martian atmosphere, and of course, subsurface liquid water. We report here that certain methanogens can grow on a Mars soil simulant when supplied with carbon dioxide, molecular hydrogen, and varying amounts of water.

  14. Growth of methanogens on a Mars soil simulant.

    PubMed

    Kral, Timothy A; Bekkum, Curtis R; McKay, Christopher P

    2004-12-01

    Currently, the surface of Mars is probably too cold, too dry, and too oxidizing for life, as we know it, to exist. But the subsurface is another matter. Life forms that might exist below the surface could not obtain their energy from photosynthesis, but rather they would have to utilize chemical energy. Methanogens are one type of microorganism that might be able to survive below the surface of Mars. A potential habitat for existence of methanogens on Mars might be a geothermal source of hydrogen, possibly due to volcanic or hydrothermal activity, or the reaction of basalt and anaerobic water, carbon dioxide, which is abundant in the martian atmosphere, and of course, subsurface liquid water. We report here that certain methanogens can grow on a Mars soil simulant when supplied with carbon dioxide, molecular hydrogen, and varying amounts of water.

  15. Two-population dynamics in a growing network model

    NASA Astrophysics Data System (ADS)

    Ivanova, Kristinka; Iordanov, Ivan

    2012-02-01

    We introduce a growing network evolution model with nodal attributes. The model describes the interactions between potentially violent V and non-violent N agents who have different affinities in establishing connections within their own population versus between the populations. The model is able to generate all stable triads observed in real social systems. In the framework of rate equations theory, we employ the mean-field approximation to derive analytical expressions of the degree distribution and the local clustering coefficient for each type of nodes. Analytical derivations agree well with numerical simulation results. The assortativity of the potentially violent network qualitatively resembles the connectivity pattern in terrorist networks that was recently reported. The assortativity of the network driven by aggression shows clearly different behavior than the assortativity of the networks with connections of non-aggressive nature in agreement with recent empirical results of an online social system.

  16. A DYNAMICAL SIGNATURE OF MULTIPLE STELLAR POPULATIONS IN 47 TUCANAE

    SciTech Connect

    Richer, Harvey B.; Heyl, Jeremy; Anderson, Jay; Kalirai, Jason S.; Shara, Michael M.; Dotter, Aaron; Fahlman, Gregory G.; Rich, R. Michael E-mail: heyl@phas.ubc.ca E-mail: jkalarai@stsci.edu E-mail: aaron.dotter@gmail.com E-mail: rmr@astro.ucla.edu

    2013-07-01

    Based on the width of its main sequence, and an actual observed split when viewed through particular filters, it is widely accepted that 47 Tucanae contains multiple stellar populations. In this contribution, we divide the main sequence of 47 Tuc into four color groups, which presumably represent stars of various chemical compositions. The kinematic properties of each of these groups are explored via proper motions, and a strong signal emerges of differing proper-motion anisotropies with differing main-sequence color; the bluest main-sequence stars exhibit the largest proper-motion anisotropy which becomes undetectable for the reddest stars. In addition, the bluest stars are also the most centrally concentrated. A similar analysis for Small Magellanic Cloud stars, which are located in the background of 47 Tuc on our frames, yields none of the anisotropy exhibited by the 47 Tuc stars. We discuss implications of these results for possible formation scenarios of the various populations.

  17. Worldwide Phylogenetic Distributions and Population Dynamics of the Genus Histoplasma

    PubMed Central

    Taylor, Maria L.; Gómez, Beatriz L.; Theodoro, Raquel C.; de Hoog, Sybren; Engelthaler, David M.; Zancopé-Oliveira, Rosely M.; Felipe, Maria S. S.

    2016-01-01

    Background Histoplasma capsulatum comprises a worldwide complex of saprobiotic fungi mainly found in nitrogen/phosphate (often bird guano) enriched soils. The microconidia of Histoplasma species may be inhaled by mammalian hosts, and is followed by a rapid conversion to yeast that can persist in host tissues causing histoplasmosis, a deep pulmonary/systemic mycosis. Histoplasma capsulatum sensu lato is a complex of at least eight clades geographically distributed as follows: Australia, Netherlands, Eurasia, North American classes 1 and 2 (NAm 1 and NAm 2), Latin American groups A and B (LAm A and LAm B) and Africa. With the exception of the Eurasian cluster, those clades are considered phylogenetic species. Methodology/Principal Findings Increased Histoplasma sampling (n = 234) resulted in the revision of the phylogenetic distribution and population structure using 1,563 aligned nucleotides from four protein-coding regions. The LAm B clade appears to be divided into at least two highly supported clades, which are geographically restricted to either Colombia/Argentina or Brazil respectively. Moreover, a complex population genetic structure was identified within LAm A clade supporting multiple monophylogenetic species, which could be driven by rapid host or environmental adaptation (~0.5 MYA). We found two divergent clades, which include Latin American isolates (newly named as LAm A1 and LAm A2), harboring a cryptic cluster in association with bats. Conclusions/Significance At least six new phylogenetic species are proposed in the Histoplasma species complex supported by different phylogenetic and population genetics methods, comprising LAm A1, LAm A2, LAm B1, LAm B2, RJ and BAC-1 phylogenetic species. The genetic isolation of Histoplasma could be a result of differential dispersion potential of naturally infected bats and other mammals. In addition, the present study guides isolate selection for future population genomics and genome wide association studies in this

  18. Does probability of occurrence relate to population dynamics?

    PubMed Central

    Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Georges, Damien; Dullinger, Stefan; Eckhart, Vincent M.; Edwards, Thomas C.; Gravel, Dominique; Kunstler, Georges; Merow, Cory; Moore, Kara; Piedallu, Christian; Vissault, Steve; Zimmermann, Niklaus E.; Zurell, Damaris; Schurr, Frank M.

    2014-01-01

    Hutchinson defined species’ realized niche as the set of environmental conditions in which populations can persist in the presence of competitors. In terms of demography, the realized niche corresponds to the environments where the intrinsic growth rate (r) of populations is positive. Observed species occurrences should reflect the realized niche when additional processes like dispersal and local extinction lags do not have overwhelming effects. Despite the foundational nature of these ideas, quantitative assessments of the relationship between range-wide demographic performance and occurrence probability have not been made. This assessment is needed both to improve our conceptual understanding of species’ niches and ranges and to develop reliable mechanistic models of species geographic distributions that incorporate demography and species interactions. The objective of this study is to analyse how demographic parameters (intrinsic growth rate r and carrying capacity K) and population density (N) relate to occurrence probability (Pocc). We hypothesized that these relationships vary with species’ competitive ability. Demographic parameters, density, and occurrence probability were estimated for 108 tree species from four temperate forest inventory surveys (Québec, Western US, France and Switzerland). We used published information of shade tolerance as indicators of light competition strategy, assuming that high tolerance denotes high competitive capacity in stable forest environments. Interestingly, relationships between demographic parameters and occurrence probability did not vary substantially across degrees of shade tolerance and regions. Although they were influenced by the uncertainty in the estimation of the demographic parameters, we found that r was generally negatively correlated with Pocc, while N, and for most regions K, was generally positively correlated with Pocc. Thus, in temperate forest trees the regions of highest occurrence probability

  19. Population dynamics of natural antibodies in normal and autoimmune individuals.

    PubMed Central

    Varela, F; Andersson, A; Dietrich, G; Sundblad, A; Holmberg, D; Kazatchkine, M; Coutinho, A

    1991-01-01

    We have measured the quantities of naturally occurring autoantibodies in the serum of normal, unmanipulated individuals. These changes over time following broad-band complex dynamical patterns that are similar in mouse and man. The patterns more likely reflect the network architecture of the natural antibody repertoire, regulating the activation and decay of individual clones. The temporal changes of both disease-specific and nonspecific autoantibodies are consistently modified in autoimmune individuals. PMID:2062870

  20. Recovery of methanotrophs from disturbance: population dynamics, evenness and functioning.

    PubMed

    Ho, Adrian; Lüke, Claudia; Frenzel, Peter

    2011-04-01

    Biodiversity is claimed to be essential for ecosystem functioning, but is threatened by anthropogenic disturbances. Prokaryotes have been assumed to be functionally redundant and virtually inextinguishable. However, recent work indicates that microbes may well be sensitive to environmental disturbance. Focusing on methane-oxidizing bacteria as model organisms, we simulated disturbance-induced mortality by mixing native with sterilized paddy soil in two ratios, 1:4 and 1:40, representing moderate and severe die-offs. Disturbed microcosms were compared with an untreated control. Recovery of activity and populations was followed over 4 months by methane uptake measurements, pmoA-qPCR, pmoA-based terminal restriction fragment length polymorphism and a pmoA-based diagnostic microarray. Diversity and evenness of methanotrophs decreased in disturbed microcosms, but functioning was not compromised. We consistently observed distinctive temporal shifts between type I and type II methanotrophs, and a rapid population growth leading to even higher cell numbers comparing disturbed microcosms with the control. Overcompensating mortality suggested that population size in the control was limited by competition with other bacteria. Overall, methanotrophs showed a remarkable ability to compensate for die-offs.

  1. The Epidemiologic Transition: Changing Patterns of Mortality and Population Dynamics

    PubMed Central

    McKeown, Robert E.

    2009-01-01

    The epidemiologic transition describes changing patterns of population age distributions, mortality, fertility, life expectancy, and causes of death. A number of critiques of the theory have revealed limitations, including an insufficient account of the role of poverty in determining disease risk and mortality, a failure to distinguish adequately the risk of dying from a given cause or set of causes from the relative contributions of various causes of death to overall mortality, and oversimplification of the transition patterns, which do not fit neatly into either historical periods or geographic locations. Recent developments in epidemiologic methods reveal other limitations. A life course perspective prompts examination of changes in causal pathways across the life span when considering shifts in the age distribution of a population as described by the epidemiologic transition theory. The ecological model assumes multiple levels of determinants acting in complex and interrelated ways, with higher level determinants exhibiting emergent properties. Development, testing, and implementation of innovative approaches to reduce the risks associated with the sedentary lifestyle and hyper nutrition in developed countries should not overshadow the continuing threat from infectious diseases, especially resistant strains or newly encountered agents. Interventions must fit populations and the threats to health they experience, while anticipating changes that will emerge with success in some areas. This will require new ways of thinking that go beyond the epidemiologic transition theory. PMID:20161566

  2. Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae

    PubMed Central

    2012-01-01

    Background The nematode Caenorhabditis elegans is a major model organism in laboratory biology. Very little is known, however, about its ecology, including where it proliferates. In the past, C. elegans was mainly isolated from human-made compost heaps, where it was overwhelmingly found in the non-feeding dauer diapause stage. Results C. elegans and C. briggsae were found in large, proliferating populations in rotting plant material (fruits and stems) in several locations in mainland France. Both species were found to co-occur in samples isolated from a given plant species. Population counts spanned a range from one to more than 10,000 Caenorhabditis individuals on a single fruit or stem. Some populations with an intermediate census size (10 to 1,000) contained no dauer larvae at all, whereas larger populations always included some larvae in the pre-dauer or dauer stages. We report on associated micro-organisms, including pathogens. We systematically sampled a spatio-temporally structured set of rotting apples in an apple orchard in Orsay over four years. C. elegans and C. briggsae were abundantly found every year, but their temporal distributions did not coincide. C. briggsae was found alone in summer, whereas both species co-occurred in early fall and C. elegans was found alone in late fall. Competition experiments in the laboratory at different temperatures show that C. briggsae out-competes C. elegans at high temperatures, whereas C. elegans out-competes C. briggsae at lower temperatures. Conclusions C. elegans and C. briggsae proliferate in the same rotting vegetal substrates. In contrast to previous surveys of populations in compost heaps, we found fully proliferating populations with no dauer larvae. The temporal sharing of the habitat by the two species coincides with their temperature preference in the laboratory, with C. briggsae populations growing faster than C. elegans at higher temperatures, and vice at lower temperatures. PMID:22731941

  3. Population dynamics of mallards breeding in eastern Washington

    USGS Publications Warehouse

    Dugger, Bruce D.; Coluccy, John M.; Dugger, Katie M.; Fox, Trevor T.; Kraege, Donald K.; Petrie, Mark J.

    2016-01-01

    Variation in regional population trends for mallards breeding in the western United States indicates that additional research into factors that influence demographics could contribute to management and understanding the population demographics of mallards across North America. We estimated breeding incidence and adult female, nest, and brood survival in eastern Washington in 2006 and 2007 by monitoring female mallards with radio telemetry and tested how those parameters were influenced by study year (2006 vs. 2007), landscape type (agricultural vs. natural), and age (second year [SY] vs. after second year [ASY]). We also investigated the effects of female body condition and capture date on breeding incidence, and nest initiation date and hatch date on nest and brood survival, respectively. We included population parameters in a stage-based demographic model and conducted a perturbation analysis to identify which vital rates were most influential on population growth rate (λ). Adult female survival was best modeled with a constant weekly survival rate (0.994, SE = 0.003). Breeding incidence differed between years and was higher for birds in better body condition. Nest survival was higher for ASY females (0.276, SE = 0.118) than SY females (0.066, SE = 0.052), and higher on publicly managed lands (0.383, SE = 0.212) than agricultural (0.114, SE = 0.058) landscapes. Brood survival was best modeled with a constant rate for the 7-week monitoring period (0.50, SE = 0.155). The single variable having the greatest influence on λ was non-breeding season survival, but the combination of parameters from the breeding grounds explained a greater percent of the variance in λ. Mallard population growth rate was most sensitive to changes in non-breeding survival, nest success, brood survival, and breeding incidence. Future management decisions should focus on activities that improve these vital rates if managers want to increase the production of

  4. Naphthenic acids and surrogate naphthenic acids in methanogenic microcosms.

    PubMed

    Holowenko, F M; Mackinnon, M D; Fedorak, P M

    2001-08-01

    Naphthenic acids (NAs) are a complex mixture of naturally occurring acyclic and cyclic aliphatic carboxylic acids in petroleum. In the Athabasca oil sands. NAs have been identified as the largest component of dissolved organic matter in the tailings waters from oils sands extraction processes. They are the major contributor to the acute toxicity of the fine tailings wastewaters at the oil sands extraction plants in northeastern Alberta, Canada. In this study, three sources of NAs were studied, including commercially available NAs, those extracted from oil sands process-affected waters, and individual naphthenic-like surrogate compounds. Analysis by gas chromatography-mass spectrometry demonstrated differences between the commercial and extracted NAs. The NAs derived from the process-affected waters showed a short-term inhibition of methanogenesis from H2 or acetate, but with time the populations resumed methane production. It has been postulated that microbial metabolism of the carboxylated side chains of NAs would lead to methane production. The two NA mixtures failed to stimulate methanogenesis in microcosms that contained either oil sands fine tailings or domestic sewage sludge. However, in microcosms with sewage sludge, methanogenesis was stimulated by some surrogate NAs including 3-cyclohexylpropanoic acid at 400-800 mg/L, 5-cyclohexylpentanoic acid at 200 mg/L or 6-phenylhexanoic acid at 200 and 400 mg/L. When added at 200 mg/L to methanogenic microcosms containing fine tailings, 3-cyclohexylpropanoic and 4-cyclohexylbutanoic acids produced methane yields that suggested mineralization of the side chain and the ring.

  5. Potential impact of harvesting on the population dynamics of two epiphytic bromeliads

    NASA Astrophysics Data System (ADS)

    Toledo-Aceves, Tarin; Hernández-Apolinar, Mariana; Valverde, Teresa

    2014-08-01

    Large numbers of epiphytes are extracted from cloud forests for ornamental use and illegal trade in Latin America. We examined the potential effects of different harvesting regimes on the population dynamics of the epiphytic bromeliads Tillandsia multicaulis and Tillandsia punctulata. The population dynamics of these species were studied over a 2-year period in a tropical montane cloud forest in Veracruz, Mexico. Prospective and retrospective analyses were used to identify which demographic processes and life-cycle stages make the largest relative contribution to variation in population growth rate (λ). The effect of simulated harvesting levels on population growth rates was analysed for both species. λ of both populations was highly influenced by survival (stasis), to a lesser extent by growth, and only slightly by fecundity. Vegetative growth played a central role in the population dynamics of these organisms. The λ value of the studied populations did not differ significantly from unity: T. multicaulis λ (95% confidence interval) = 0.982 (0.897-1.060) and T. punctulata λ = 0.967 (0.815-1.051), suggesting population stability. However, numerical simulation of different levels of extraction showed that λ would drop substantially even under very low (2%) harvesting levels. Matrix analysis revealed that T. multicaulis and T. punctulata populations are likely to decline and therefore commercial harvesting would be unsustainable. Based on these findings, management recommendations are outlined.

  6. Do resources or natural enemies drive bee population dynamics in fragmented habitats?

    PubMed

    Steffan-Dewenter, Ingolf; Schiele, Susanne

    2008-05-01

    The relative importance of bottom-up or top-down forces has been mainly studied for herbivores but rarely for pollinators. Habitat fragmentation might change driving forces of population dynamics by reducing the area of resource-providing habitats, disrupting habitat connectivity, and affecting natural enemies more than their host species. We studied spatial and temporal population dynamics of the solitary bee Osmia rufa (Hymenoptera: Megachilidae) in 30 fragmented orchard meadows ranging in size from 0.08 to 5.8 ha in an agricultural landscape in central Germany. From 1998 to 2003, we monitored local bee population size, rate of parasitism, and rate of larval and pupal mortality in reed trap nests as an accessible and standardized nesting resource. Experimentally enhanced nest site availability resulted in a steady increase of mean local population size from 80 to 2740 brood cells between 1998 and 2002. Population size and species richness of natural enemies increased with habitat area, whereas rate of parasitism and mortality only varied among years. Inverse density-dependent parasitism in three study years with highest population size suggests rather destabilizing instead of regulating effects of top-down forces. Accordingly, an analysis of independent time series showed on average a negative impact of population size on population growth rates but provides no support for top-down regulation by natural enemies. We conclude that population dynamics of O. rufa are mainly driven by bottom-up forces, primarily nest site availability.

  7. Climate variation and regional gradients in population dynamics of two hole-nesting passerines.

    PubMed Central

    Saether, Bernt-Erik; Engen, Steinar; Møller, Anders Pape; Matthysen, Erik; Adriaensen, Frank; Fiedler, Wolfgang; Leivits, Agu; Lambrechts, Marcel M; Visser, Marcel E; Anker-Nilssen, Tycho; Both, Christiaan; Dhondt, André A; McCleery, Robin H; McMeeking, John; Potti, Jamie; Røstad, Ole Wiggo; Thomson, David

    2003-01-01

    Latitudinal gradients in population dynamics can arise through regional variation in the deterministic components of the population dynamics and the stochastic factors. Here, we demonstrate an increase with latitude in the contribution of a large-scale climate pattern, the North Atlantic Oscillation (NAO), to the fluctuations in size of populations of two European hole-nesting passerine species. However, this influence of climate induced different latitudinal gradients in the population dynamics of the two species. In the great tit the proportion of the variability in the population fluctuations explained by the NAO increased with latitude, showing a larger impact of climate on the population fluctuations of this species at higher latitudes. In contrast, no latitudinal gradient was found in the relative contribution of climate to the variability of the pied flycatcher populations because the total environmental stochasticity increased with latitude. This shows that the population ecological consequences of an expected climate change will depend on how climate affects the environmental stochasticity in the population process. In both species, the effects will be larger in those parts of Europe where large changes in climate are expected. PMID:14667357

  8. Evolutionary dynamics of the most populated genotype on rugged fitness landscapes

    NASA Astrophysics Data System (ADS)

    Jain, Kavita

    2007-09-01

    We consider an asexual population evolving on rugged fitness landscapes which are defined on the multidimensional genotypic space and have many local optima. We track the most populated genotype as it changes when the population jumps from a fitness peak to a better one during the process of adaptation. This is done using the dynamics of the shell model which is a simplified version of the quasispecies model for infinite populations and standard Wright-Fisher dynamics for large finite populations. We show that the population fraction of a genotype obtained within the quasispecies model and the shell model match for fit genotypes and at short times, but the dynamics of the two models are identical for questions related to the most populated genotype. We calculate exactly several properties of the jumps in infinite populations, some of which were obtained numerically in previous works. We also present our preliminary simulation results for finite populations. In particular, we measure the jump distribution in time and find that it decays as t-2 as in the quasispecies problem.

  9. Dynamics of climate-based malaria transmission model with age-structured human population

    NASA Astrophysics Data System (ADS)

    Addawe, Joel; Pajimola, Aprimelle Kris

    2016-10-01

    In this paper, we proposed to study the dynamics of malaria transmission with periodic birth rate of the vector and an age-structure for the human population. The human population is divided into two compartments: pre-school (0-5 years) and the rest of the human population. We showed the existence of a disease-free equilibrium point. Using published epidemiological parameters, we use numerical simulations to show potential effect of climate change in the dynamics of age-structured malaria transmission. Numerical simulations suggest that there exists an asymptotically attractive solution that is positive and periodic.

  10. METHANOGENS WITH PSEUDOMUREIN USE DIAMINOPIMELATE AMINOTRANSFERASE IN LYSINE BIOSYNTHESIS

    PubMed Central

    Graham, David E.; Huse, Holly K.

    2008-01-01

    Methanothermobacter thermautotrophicus uses lysine for both protein synthesis and cross-linking pseudomurein in its cell wall. A diaminopimelate aminotransferase enzyme from this methanogen (MTH0052) converts tetrahydrodipicolinate to L,L-diaminopimelate, a lysine precursor. This gene complemented an Escherichia coli diaminopimelate auxotrophy, and the purified protein catalyzed the transamination of diaminopimelate to tetrahydrodipicolinate. Phylogenetic analysis indicated this gene was recruited from anaerobic Gram-positive bacteria. These results expand the family of diaminopimelate aminotransferases to a diverse set of plant, bacterial and archaeal homologs. In contrast marine methanogens from the Methanococcales, which lack pseudomurein, appear to use a different diaminopimelate pathway for lysine biosynthesis. PMID:18371309

  11. Molecular Signatures of Methanogens in Cultures and Environmental Samples

    NASA Astrophysics Data System (ADS)

    Summons, R. E.; Embaye, T.; Jahnke, L. L.; Baumgartner, M.

    2002-12-01

    The core lipids of methanogens comprise C20 and C40 isoprenoid chains, linked through ether bonds to glycerol. Additional structural diversity is encoded into the polar head groups that are attached to the glycerol ether cores. These compounds are potentially very useful as taxonomic markers in microbial mats and other environmental samples while the nature of the hydrocarbon chains provide a means to identify methanogenic inputs to ancient sediments. The structural diversity of methanogen polar lipids is most valuable when it can be directly correlated to 16S rRNA phylogeny. On the other hand, this diversity can also leads to analytical challenges because there is no single approach that works for all structural types. While some intact methanogen lipids have been identified using mass spectrometry and NMR spectroscopy, the most common means of analysing the lipid cores involves cleavage of the ether bonds using HI and subsequent reduction of the alkyl iodides to hydrocarbons with LiAlH4. One class of methanogenic lipids, the 3?-hydroxyarchaeols, escaped detection for some years because strong acid treatments in the analysis protocols destroyed hydroxyl-containing isoprenoid chains. We have been systematically re-examining the lipids of methanogens, using milder procedures involving weak acid hydrolysis of polar head groups, derivatisation to form trimethylsilyl ethers and analysis by GC-MS. As well as archaeol, sn-2- and sn-3-hydroxyarchaeol, we have tentatively identified a dihydroxyarchaeol in several Methanococcus sp. For Methanococcus thermolithotrophicus an analysis of the total lipid extracts using BBr3 as an ether cleavage reagent followed by LiBEt3H, reduction revealed a very complex mixture consisting of phytane, phytenes, biphytane, biphytenes and a suite of related alcohols. The latter compounds were analysed by GC-MS as their trimethylsilyl ethers and found to comprise a mixture tentatively identified as phytan-N-ol and biphytan-N-ol where N= 3 or 7

  12. An ancient divergence among the bacteria. [methanogenic phylogeny

    NASA Technical Reports Server (NTRS)

    Balch, W. E.; Magrum, L. J.; Fox, G. E.; Wolfe, R. S.; Woese, C. R.

    1977-01-01

    The 16S ribosomal RNZs from two species of met methanogenic bacteria, the mesophile Methanobacterium ruminantium and the thermophile Methanobacterium thermoautotrophicum, have been characterized in terms of the oligonucleotides produced by digestion with T1 ribonuclease. These two organisms are found to be sufficiently related that they can be considered members of the same genus or family. However, they bear only slight resemblance to 'typical' Procaryotic genera; such as Escherichia, Bacillus and Anacystis. The divergence of the methanogenic bacteria from other bacteria may be the most ancient phylogenetic event yet detected - antedating considerably the divergence of the blue green algal line for example, from the main bacterial line.

  13. Syntrophic Degradation of Lactate in Methanogenic Co-cultures

    SciTech Connect

    Meyer, Birte; Stahl, David

    2010-05-17

    In environments where the amount of the inorganic electron acceptors (oxygen, nitrate, sulfate, sulfur oroxidized metal ions (Fe3+;Mn4+) is insufficient for complete breakdown of organic matter, methane is formed as the major reduced end product. In such methanogenic environments organic acids are degraded by syntrophic associations of fermenting, acetogenic bacteria (e.g., sulfate-reducing bacteria (SRB) as"secondary fermenters") and methanogenic archaea. In these consortia, the conversion of lactate to acetate, CO2 and methane depends on the cooperating activities of both metabolically distinct microbial groups that are tightly linked by the need to maintain the exchanged metabolites (hydrogenandformate) at very low concentrations.

  14. Species with more volatile population dynamics are differentially impacted by weather.

    PubMed

    Harrison, Joshua G; Shapiro, Arthur M; Espeset, Anne E; Nice, Christopher C; Jahner, Joshua P; Forister, Matthew L

    2015-02-01

    Climatic variation has been invoked as an explanation of population dynamics for a variety of taxa. Much work investigating the link between climatic forcings and population fluctuation uses single-taxon case studies. Here, we conduct comparative analyses of a multi-decadal dataset describing population dynamics of 50 co-occurring butterfly species at 10 sites in Northern California. Specifically, we explore the potential commonality of response to weather among species that encompass a gradient of population dynamics via a hierarchical Bayesian modelling framework. Results of this analysis demonstrate that certain weather conditions impact volatile, or irruptive, species differently as compared with relatively stable species. Notably, precipitation-related variables, including indices of the El Niño Southern Oscillation, have a more pronounced impact on the most volatile species. We hypothesize that these variables influence vegetation resource availability, and thus indirectly influence population dynamics of volatile taxa. As one of the first studies to show a common influence of weather among taxa with similar population dynamics, the results presented here suggest new lines of research in the field of biotic-abiotic interactions.

  15. Individual movement behavior, matrix heterogeneity, and the dynamics of spatially structured populations.

    PubMed

    Revilla, Eloy; Wiegand, Thorsten

    2008-12-09

    The dynamics of spatially structured populations is characterized by within- and between-patch processes. The available theory describes the latter with simple distance-dependent functions that depend on landscape properties such as interpatch distance or patch size. Despite its potential role, we lack a good mechanistic understanding of how the movement of individuals between patches affects the dynamics of these populations. We used the theoretical framework provided by movement ecology to make a direct representation of the processes determining how individuals connect local populations in a spatially structured population of Iberian lynx. Interpatch processes depended on the heterogeneity of the matrix where patches are embedded and the parameters defining individual movement behavior. They were also very sensitive to the dynamic demographic variables limiting the time moving, the within-patch dynamics of available settlement sites (both spatiotemporally heterogeneous) and the response of individuals to the perceived risk while moving. These context-dependent dynamic factors are an inherent part of the movement process, producing connectivities and dispersal kernels whose variability is affected by other demographic processes. Mechanistic representations of interpatch movements, such as the one provided by the movement-ecology framework, permit the dynamic interaction of birth-death processes and individual movement behavior, thus improving our understanding of stochastic spatially structured populations.

  16. Individual movement behavior, matrix heterogeneity, and the dynamics of spatially structured populations

    PubMed Central

    Revilla, Eloy; Wiegand, Thorsten

    2008-01-01

    The dynamics of spatially structured populations is characterized by within- and between-patch processes. The available theory describes the latter with simple distance-dependent functions that depend on landscape properties such as interpatch distance or patch size. Despite its potential role, we lack a good mechanistic understanding of how the movement of individuals between patches affects the dynamics of these populations. We used the theoretical framework provided by movement ecology to make a direct representation of the processes determining how individuals connect local populations in a spatially structured population of Iberian lynx. Interpatch processes depended on the heterogeneity of the matrix where patches are embedded and the parameters defining individual movement behavior. They were also very sensitive to the dynamic demographic variables limiting the time moving, the within-patch dynamics of available settlement sites (both spatiotemporally heterogeneous) and the response of individuals to the perceived risk while moving. These context-dependent dynamic factors are an inherent part of the movement process, producing connectivities and dispersal kernels whose variability is affected by other demographic processes. Mechanistic representations of interpatch movements, such as the one provided by the movement-ecology framework, permit the dynamic interaction of birth–death processes and individual movement behavior, thus improving our understanding of stochastic spatially structured populations. PMID:19060193

  17. Postfire seedling dynamics and performance in Pinus halepensis Mill. populations

    NASA Astrophysics Data System (ADS)

    Daskalakou, Evangelia N.; Thanos, Costas A.

    2010-09-01

    Postfire dynamics of Aleppo pine seedling density, survival and growth were assessed in five burned forests of Attica, Greece (Stamata, Villia, Avlona, Kapandriti and Agios Stefanos) through the establishment of permanent experimental plots. All emerging seedlings were tagged and their survival and growth monitored at regular intervals. Seedling density dynamics show an initial, steep increase (to maximum values 2.9-4.6 seedlings m -2) followed by a gradual decrease that levels off at the second and third postfire year (1.3-3.0 seedlings m -2); similarly, postfire seedling survival more or less stabilised at 30-50%, 2-3 years after fire. On the basis of density and mortality trends as well as relevant bibliographic data, it is predicted that very dense, mature forests (10.000 trees ha -1 or more) will be reinstated within 15-20 years. During the first 5-7 postfire years, seedling/sapling annual height followed linear trends with various yearly rates, ranging mostly between 8 and 15 cm (and 27-30 cm in two exceptional, fast growing cases). Within an individual growth season, seedling height dynamics were found to follow sigmoid curves with growth increment peaks in mid-spring. The time (on a monthly basis) of seedling emergence did not affect seedling growth or survival. On the other hand, for the first time under natural conditions, it has been shown that cotyledon number per seedling, an indirect measure of both seed size and initial photosynthetic capacity, significantly affected seedling survival but not growth. Seedlings bearing a higher number of cotyledons, presumably derived from larger seeds, showed greater survival at the end of the first postfire year than seedlings with fewer cotyledons. A postfire selective pressure, favouring large seed size, is postulated to counteract with a contrasting one, which favours small seed size, expressed during fire-free conditions.

  18. [On the competition among discrete-structured populations: a matrix model for population dynamics of woodreed and birch growing together].

    PubMed

    Ulanova, N G; Belova, I N; Logofet, D O

    2008-01-01

    Presented is a synthesis of field, theoretical and modelling studies on joint dynamics of two species--common birch (Betula pendula Roth) and wood small reed (Calamagrostis epigeios (L.) Roth)--overgrowing a spruce forest clear-cut. A nonlinear matrix model for population dynamics of two species, which both possess non-trivial population structures and compete for a resource in common was developed as an expansion of the linear models for single-species, age-stage-structured population dynamics. Constant values of the age-stage-specific survival and reproduction rates have been modified with some decreasing functions of the (competitive group) abundances in the competitor species or/and the species itself. Special aggregation of the age-stage structure for each of the competitor species has reduced the dimension of the nonlinear matrix operator down to the level that admits accurate calibration of the model parameters on the observation data, as well as the search for an equilibrium and its stability analysis. When calibrated, the nonlinear model exhibits convergence to the steady equilibrium--a state of the phytocoenosis that is interpreted as young, closed-canopy, birch forest with suppressed woodreed population. The model illustrates the observed course of forest renewal: the appearance of birch germs and the growth of birch population overpass the woodreed competitive resistance and result in formation of young birch forest, where the birch exerts a strong suppressive impact on both the woodreed growth and the own young growth. Remarked is a potential of the model as an object of more general mathematical study and a tool to predict the course of forest renewal.

  19. Reinforcement learning in complementarity game and population dynamics.

    PubMed

    Jost, Jürgen; Li, Wei

    2014-02-01

    We systematically test and compare different reinforcement learning schemes in a complementarity game [J. Jost and W. Li, Physica A 345, 245 (2005)] played between members of two populations. More precisely, we study the Roth-Erev, Bush-Mosteller, and SoftMax reinforcement learning schemes. A modified version of Roth-Erev with a power exponent of 1.5, as opposed to 1 in the standard version, performs best. We also compare these reinforcement learning strategies with evolutionary schemes. This gives insight into aspects like the issue of quick adaptation as opposed to systematic exploration or the role of learning rates.

  20. Population dynamics of spotted owls in the Sierra Nevada, California

    USGS Publications Warehouse

    Blakesley, J.A.; Seamans, M.E.; Conner, M.M.; Franklin, A.B.; White, Gary C.; Gutierrez, R.J.; Hines, J.E.; Nichols, J.D.; Munton, T.E.; Shaw, D.W.H.; Keane, J.J.; Steger, G.N.; McDonald, T.L.

    2010-01-01

    The California spotted owl (Strix occidentalis occidentalis) is the only spotted owl subspecies not listed as threatened or endangered under the United States Endangered Species Act despite petitions to list it as threatened. We conducted a meta-analysis of population data for 4 populations in the southern Cascades and Sierra Nevada, California, USA, from 1990 to 2005 to assist a listing evaluation by the United States Fish and Wildlife Service. Our study areas (from N to S) were on the Lassen National Forest (LAS), Eldorado National Forest (ELD), Sierra National Forest (SIE), and Sequoia and Kings Canyon National Parks (SKC). These study areas represented a broad spectrum of habitat and management conditions in these mountain ranges. We estimated apparent survival probability, reproductive output, and rate of population change for spotted owls on individual study areas and for all study areas combined (meta-analysis) using model selection or model-averaging based on maximum-likelihood estimation. We followed a formal protocol to conduct this analysis that was similar to other spotted owl meta-analyses. Consistency of field and analytical methods among our studies reduced confounding methodological effects when evaluating results. We used 991 marked spotted owls in the analysis of apparent survival. Apparent survival probability was higher for adult than for subadult owls. There was little difference in apparent survival between male and female owls. Model-averaged mean estimates of apparent survival probability of adult owls varied from 0.811 ?? 0.021 for females at LAS to 0.890 ?? 0.016 for males at SKC. Apparent survival increased over time for owls of all age classes at LAS and SIE, for adults at ELD, and for second-year subadults and adults at SKC. The meta-analysis of apparent survival, which included only adult owls, confirmed an increasing trend in survival over time. Survival rates were higher for owls on SKC than on the other study areas. We analyzed data

  1. Reproductive success is predicted by social dynamics and kinship in managed animal populations

    PubMed Central

    Newman, Saul J.; Eyre, Simon; Kimble, Catherine H.; Arcos-Burgos, Mauricio; Hogg, Carolyn; Easteal, Simon

    2016-01-01

    Kin and group interactions are important determinants of reproductive success in many species. Their optimization could, therefore, potentially improve the productivity and breeding success of managed populations used for agricultural and conservation purposes. Here we demonstrate this potential using a novel approach to measure and predict the effect of kin and group dynamics on reproductive output in a well-known species, the meerkat Suricata suricatta. Variation in social dynamics predicts 30% of the individual variation in reproductive success of this species in managed populations, and accurately forecasts reproductive output at least two years into the future. Optimization of social dynamics in captive meerkat populations doubles their projected reproductive output. These results demonstrate the utility of a quantitative approach to breeding programs informed by social and kinship dynamics. They suggest that this approach has great potential for improvements in the management of social endangered and agricultural species. PMID:27990255

  2. Reproductive success is predicted by social dynamics and kinship in managed animal populations.

    PubMed

    Newman, Saul J; Eyre, Simon; Kimble, Catherine H; Arcos-Burgos, Mauricio; Hogg, Carolyn; Easteal, Simon

    2016-01-01

    Kin and group interactions are important determinants of reproductive success in many species. Their optimization could, therefore, potentially improve the productivity and breeding success of managed populations used for agricultural and conservation purposes. Here we demonstrate this potential using a novel approach to measure and predict the effect of kin and group dynamics on reproductive output in a well-known species, the meerkat Suricata suricatta. Variation in social dynamics predicts 30% of the individual variation in reproductive success of this species in managed populations, and accurately forecasts reproductive output at least two years into the future. Optimization of social dynamics in captive meerkat populations doubles their projected reproductive output. These results demonstrate the utility of a quantitative approach to breeding programs informed by social and kinship dynamics. They suggest that this approach has great potential for improvements in the management of social endangered and agricultural species.

  3. Reconstructing the dynamics of ancient human populations from radiocarbon dates: 10 000 years of population growth in Australia.

    PubMed

    Johnson, Christopher N; Brook, Barry W

    2011-12-22

    Measuring trends in the size of prehistoric populations is fundamental to our understanding of the demography of ancient people and their responses to environmental change. Archaeologists commonly use the temporal distribution of radiocarbon dates to reconstruct population trends, but this can give a false picture of population growth because of the loss of evidence from older sites. We demonstrate a method for quantifying this bias, and we use it to test for population growth through the Holocene of Australia. We used model simulations to show how turnover of site occupation across an archaeological landscape, interacting with erasure of evidence at abandoned sites, can create an increase in apparent site occupation towards the present when occupation density is actually constant. By estimating the probabilities of abandonment and erasure from archaeological data, we then used the model to show that this effect does not account for the observed increase in occupation through the Holocene in Australia. This is best explained by population growth, which was low for the first part of the Holocene but accelerated about 5000 years ago. Our results provide new evidence for the dynamism of non-agricultural populations through the Holocene.

  4. Climate effects and feedback structure determining weed population dynamics in a long-term experiment.

    PubMed

    Lima, Mauricio; Navarrete, Luis; González-Andujar, José Luis

    2012-01-01

    Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years) on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors). Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements.

  5. Population-reaction model and microbial experimental ecosystems for understanding hierarchical dynamics of ecosystems.

    PubMed

    Hosoda, Kazufumi; Tsuda, Soichiro; Kadowaki, Kohmei; Nakamura, Yutaka; Nakano, Tadashi; Ishii, Kojiro

    2016-02-01

    Understanding ecosystem dynamics is crucial as contemporary human societies face ecosystem degradation. One of the challenges that needs to be recognized is the complex hierarchical dynamics. Conventional dynamic models in ecology often represent only the population level and have yet to include the dynamics of the sub-organism level, which makes an ecosystem a complex adaptive system that shows characteristic behaviors such as resilience and regime shifts. The neglect of the sub-organism level in the conventional dynamic models would be because integrating multiple hierarchical levels makes the models unnecessarily complex unless supporting experimental data are present. Now that large amounts of molecular and ecological data are increasingly accessible in microbial experimental ecosystems, it is worthwhile to tackle the questions of their complex hierarchical dynamics. Here, we propose an approach that combines microbial experimental ecosystems and a hierarchical dynamic model named population-reaction model. We present a simple microbial experimental ecosystem as an example and show how the system can be analyzed by a population-reaction model. We also show that population-reaction models can be applied to various ecological concepts, such as predator-prey interactions, climate change, evolution, and stability of diversity. Our approach will reveal a path to the general understanding of various ecosystems and organisms.

  6. Evolutionary dynamics of collective action in spatially structured populations.

    PubMed

    Peña, Jorge; Nöldeke, Georg; Lehmann, Laurent

    2015-10-07

    Many models proposed to study the evolution of collective action rely on a formalism that represents social interactions as n-player games between individuals adopting discrete actions such as cooperate and defect. Despite the importance of spatial structure in biological collective action, the analysis of n-player games games in spatially structured populations has so far proved elusive. We address this problem by considering mixed strategies and by integrating discrete-action n-player games into the direct fitness approach of social evolution theory. This allows to conveniently identify convergence stable strategies and to capture the effect of population structure by a single structure coefficient, namely, the pairwise (scaled) relatedness among interacting individuals. As an application, we use our mathematical framework to investigate collective action problems associated with the provision of three different kinds of collective goods, paradigmatic of a vast array of helping traits in nature: "public goods" (both providers and shirkers can use the good, e.g., alarm calls), "club goods" (only providers can use the good, e.g., participation in collective hunting), and "charity goods" (only shirkers can use the good, e.g., altruistic sacrifice). We show that relatedness promotes the evolution of collective action in different ways depending on the kind of collective good and its economies of scale. Our findings highlight the importance of explicitly accounting for relatedness, the kind of collective good, and the economies of scale in theoretical and empirical studies of the evolution of collective action.

  7. Role of seasonality on predator-prey-subsidy population dynamics.

    PubMed

    Levy, Dorian; Harrington, Heather A; Van Gorder, Robert A

    2016-05-07

    The role of seasonality on predator-prey interactions in the presence of a resource subsidy is examined using a system of non-autonomous ordinary differential equations (ODEs). The problem is motivated by the Arctic, inhabited by the ecological system of arctic foxes (predator), lemmings (prey), and seal carrion (subsidy). We construct two nonlinear, nonautonomous systems of ODEs named the Primary Model, and the n-Patch Model. The Primary Model considers spatial factors implicitly, and the n-Patch Model considers space explicitly as a "Stepping Stone" system. We establish the boundedness of the dynamics, as well as the necessity of sufficiently nutritional food for the survival of the predator. We investigate the importance of including the resource subsidy explicitly in the model, and the importance of accounting for predator mortality during migration. We find a variety of non-equilibrium dynamics for both systems, obtaining both limit cycles and chaotic oscillations. We were then able to discuss relevant implications for biologically interesting predator-prey systems including subsidy under seasonal effects. Notably, we can observe the extinction or persistence of a species when the corresponding autonomous system might predict the opposite.

  8. Understanding long-term fruit fly (Diptera: Tephritidae) population dynamics: implications for areawide management.

    PubMed

    Aluja, Martín; Ordano, Mariano; Guillén, Larissa; Rull, Juan

    2012-06-01

    Fruit flies (Diptera: Tephritidae) are devastating agricultural pests worldwide but studies on their long-term population dynamics are sparse. Our aim was to determine the mechanisms driving long-term population dynamics as a prerequisite for ecologically based areawide pest management. The population density of three pestiferous Anastrepha species [Anastrepha ludens (Loew), Anastrepha obliqua (Macquart), and Anastrepha serpentina (Wiedemann)] was determined in grapefruit (Citrus x paradisi Macfad.), mango (Mangifera indica L.), and sapodilla [Manilkara zapota (L.) P. Royen] orchards in central Veracruz, México, on a weekly basis over an 11-yr period. Fly populations exhibited relatively stable dynamics over time. Population dynamics were mainly driven by a direct density-dependent effect and a seasonal feedback process. We discovered direct and delayed influences that were correlated with both local (rainfall and air temperature) and global climatic variation (El Niño Southern Oscillation [ENSO] and North Atlantic Oscillation [NAO]), and detected differences among species and location of orchards with respect to the magnitude and nature (linear or nonlinear) of the observed effects, suggesting that highly mobile pest outbreaks become uncertain in response to significant climatic events at both global and local levels. That both NAO and ENSO affected Anastrepha population dynamics, coupled with the high mobility of Anastrepha adults and the discovery that when measured as rate of population change, local population fluctuations exhibited stable dynamics over time, suggests potential management scenarios for the species studied lie beyond the local scale and should be approached from an areawide perspective. Localized efforts, from individual growers will probably prove ineffective, and nonsustainable.

  9. Dynamical Interactions Between Human Populations and Landscapes in Barrier Island Environments

    NASA Astrophysics Data System (ADS)

    McNamara, D. E.; Werner, B. T.

    2003-12-01

    Although much research has focused on how humans affect landscapes or how landform processes affect humans, little attention has been paid to dynamical interactions between the two. Based on the hypothesis that landscape and human dynamics both self-organize into a temporal hierarchy of scale-separated behaviors, we model the evolution of a coupled human population and barrier island system. Barrier islands are represented as a series of alongshore nodes, with each node specifying the width, height, cross-shore position, and profile of the island and the beach width, dune position and dune height. These characteristics evolve according to rules governing sediment transport during acretionary phases, erosion from storms, dune growth and migration, tidal delta formation, overwash, inlet formation, alongshore sediment transport, and dune and backbarrier vegetation growth. At each of these nodes, human populations and their cultural accoutrements are represented by mean property value, fraction of land used for tourist accommodations and tourist population. The dynamics of these variables is determined by simulating the competition for economic resources amongst the local population and the desire of the tourist population for adequate recreational beaches. The human and barrier subsystems are coupled through beach replenishment and a dependence of tourist population on beach width. Model results fall into three general categories of dynamical behavior, as classified by the (linearized) time scale of recovery from perturbations for the uncoupled systems. When the time scale for barrier islands is much less than that of the human population, the long-time-scale evolution of the barrier island follows human dynamics. In the reverse case, the long-time-scale evolution of the human population follows barrier dynamics. When the time scales are similar, new long-time-scale, spatially varying behavior of the coupled system emerges. Implications for prediction and optimization

  10. Using Dynamic Stochastic Modelling to Estimate Population Risk Factors in Infectious Disease: The Example of FIV in 15 Cat Populations

    PubMed Central

    Fouchet, David; Leblanc, Guillaume; Sauvage, Frank; Guiserix, Micheline; Poulet, Hervé; Pontier, Dominique

    2009-01-01

    Background In natural cat populations, Feline Immunodeficiency Virus (FIV) is transmitted through bites between individuals. Factors such as the density of cats within the population or the sex-ratio can have potentially strong effects on the frequency of fight between individuals and hence appear as important population risk factors for FIV. Methodology/Principal Findings To study such population risk factors, we present data on FIV prevalence in 15 cat populations in northeastern France. We investigate five key social factors of cat populations; the density of cats, the sex-ratio, the number of males and the mean age of males and females within the population. We overcome the problem of dependence in the infective status data using sexually-structured dynamic stochastic models. Only the age of males and females had an effect (p = 0.043 and p = 0.02, respectively) on the male-to-female transmission rate. Due to multiple tests, it is even likely that these effects are, in reality, not significant. Finally we show that, in our study area, the data can be explained by a very simple model that does not invoke any risk factor. Conclusion Our conclusion is that, in host-parasite systems in general, fluctuations due to stochasticity in the transmission process are naturally very large and may alone explain a larger part of the variability in observed disease prevalence between populations than previously expected. Finally, we determined confidence intervals for the simple model parameters that can be used to further aid in management of the disease. PMID:19888418

  11. Reinforcement learning in complementarity game and population dynamics

    NASA Astrophysics Data System (ADS)

    Jost, Jürgen; Li, Wei

    2014-02-01

    We systematically test and compare different reinforcement learning schemes in a complementarity game [J. Jost and W. Li, Physica A 345, 245 (2005), 10.1016/j.physa.2004.07.005] played between members of two populations. More precisely, we study the Roth-Erev, Bush-Mosteller, and SoftMax reinforcement learning schemes. A modified version of Roth-Erev with a power exponent of 1.5, as opposed to 1 in the standard version, performs best. We also compare these reinforcement learning strategies with evolutionary schemes. This gives insight into aspects like the issue of quick adaptation as opposed to systematic exploration or the role of learning rates.

  12. Dynamics of stochastic SEIS epidemic model with varying population size

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Wei, Fengying

    2016-12-01

    We introduce the stochasticity into a deterministic model which has state variables susceptible-exposed-infected with varying population size in this paper. The infected individuals could return into susceptible compartment after recovering. We show that the stochastic model possesses a unique global solution under building up a suitable Lyapunov function and using generalized Itô's formula. The densities of the exposed and infected tend to extinction when some conditions are being valid. Moreover, the conditions of persistence to a global solution are derived when the parameters are subject to some simple criteria. The stochastic model admits a stationary distribution around the endemic equilibrium, which means that the disease will prevail. To check the validity of the main results, numerical simulations are demonstrated as end of this contribution.

  13. Effects of egg oiling on larid productivity and population dynamics

    USGS Publications Warehouse

    Lewis, S.J.; Malecki, R.A.

    1984-01-01

    In this study, oil was applied to naturally incubated great black-backed gull (Larus marinus) and herring gull (L. argentatus) eggs, and its effects on reproductive success were assessed. Embryo survival was inversely proportional to the quantity of petroleum applied to eggshell surfaces. Dose responses, however, were dependent on embryonic age at the time of treatment. Eggs of either species, treated with 10-20 mu l of No. 2 fuel oil 4-8 days after laying, experienced significant reductions in hatching success. Embryos oiled past the midpoint of the 28-day incubation period were insensitive to as much as 100 mu l of petroleum