Science.gov

Sample records for methanol reformate gas

  1. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  2. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  3. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  4. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    2001-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  5. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  6. Development of a selective oxidation CO removal reactor for methanol reformate gas

    SciTech Connect

    Okada, Shunji; Takatani, Yoshiaki; Terada, Seijo; Ohtani, Shinichi

    1996-12-31

    This report forms part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quotes}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The aspect treated here concerns laboratory-scale tests aimed at reducing by selective oxidation to a level below 10 ppm the carbon monoxide (CO) contained to a concentration of around 1% in reformate gas.

  7. Method of steam reforming methanol to hydrogen

    DOEpatents

    Beshty, Bahjat S.

    1990-01-01

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  8. Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H2) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen.

    PubMed

    Olah, George A; Goeppert, Alain; Czaun, Miklos; Mathew, Thomas; May, Robert B; Prakash, G K Surya

    2015-07-15

    Catalysts based on suitable metal oxide supports, such as NiO/MgO and CoO/MgO, were shown to be active for single step bi-reforming, the combined steam and dry reforming of methane or natural gas with H2O and CO2 exclusively to metgas (CO-2H2) for efficient methanol synthesis. Reactions were carried out in a tubular flow reactor under pressures up to 42 bar at 830-910 °C. Using a CH4 to steam to CO2 ratio of ∼3:2:1 in the gas feed, the H2/CO ratio of 2:1 was achieved, which is desired for subsequent methanol synthesis. The needed 2/1 steam/CO2 feed ratio together with the reaction heat for the endothermic bi-reforming can be conveniently obtained by the complete combustion of a quarter part of the overall used methane (natural gas) with oxygen of the air (oxidative bi-reforming). Complete combustion of a part of methane followed by bi-reforming leads to the production of metgas (H2/CO in 2:1 mol ratio) for self-sufficient exclusive methanol synthesis. The long sought after but elusive efficient and selective oxygenation of methane to methanol is thus achieved in an effective and economic way without any oxidation byproduct formation according to CH4 + 1/2O2 → CH3OH.

  9. Methanol Steam Reforming for Hydrogen Production

    SciTech Connect

    Palo, Daniel R.; Dagle, Robert A.; Holladay, Jamie D.

    2007-09-11

    Review article covering developments in methanol steam reforming in the context of PEM fuel cell power systems. Subjects covered include methanol background, use, and production, comparison to other fuels, power system considerations, militrary requirements, competing technologies, catalyst development, and reactor and system development and demonstration.

  10. Methanol Steam Reformer on a Silicon Wafer

    SciTech Connect

    Park, H; Malen, J; Piggott, T; Morse, J; Sopchak, D; Greif, R; Grigoropoulos, C; Havstad, M; Upadhye, R

    2004-04-15

    A study of the reforming rates, heat transfer and flow through a methanol reforming catalytic microreactor fabricated on a silicon wafer are presented. Comparison of computed and measured conversion efficiencies are shown to be favorable. Concepts for insulating the reactor while maintaining small overall size and starting operation from ambient temperature are analyzed.

  11. A MEMS methanol reformer heated by decomposition of hydrogen peroxide.

    PubMed

    Kim, Taegyu; Hwang, Jin Soo; Kwon, Sejin

    2007-07-01

    This paper presents the design, fabrication and evaluation of a micro methanol reformer complete with a heat source. The micro system consists of the steam reforming reactor of methanol, the catalytic decomposition reactor of hydrogen peroxide, and a heat exchanger between the two reactors. In the present study, catalytic decomposition of hydrogen peroxide is used as a process to supply heat to the reforming reactor. The decomposition process of hydrogen peroxide produces water vapor and oxygen as a product that can be used efficiently to operate the reformer/PEMFC system. Cu/ZnO was selected as a catalyst for methanol steam reforming and Pt for the decomposition of hydrogen peroxide. Incipient wetness method was used to load catalysts on a porous support. Catalyst loaded supports were inserted in the cavity made on the glass wafer. The performance of the methanol steam reforming system was measured at various test conditions and the optimum operation condition was sought. At the optimum condition, the hydrogen selectivity was 86.4% and the thermal efficiency was 44.8%. The product gas included 74.1% H(2), 24.5% CO(2) and 1.4% CO and the total volume production rate was 23.5 ml min(-1). This amount of hydrogen can produce 1.5 W of power on a typical PEMFC.

  12. Thermally integrated staged methanol reformer and method

    DOEpatents

    Skala, Glenn William; Hart-Predmore, David James; Pettit, William Henry; Borup, Rodney Lynn

    2001-01-01

    A thermally integrated two-stage methanol reformer including a heat exchanger and first and second reactors colocated in a common housing in which a gaseous heat transfer medium circulates to carry heat from the heat exchanger into the reactors. The heat transfer medium comprises principally hydrogen, carbon dioxide, methanol vapor and water vapor formed in a first stage reforming reaction. A small portion of the circulating heat transfer medium is drawn off and reacted in a second stage reforming reaction which substantially completes the reaction of the methanol and water remaining in the drawn-off portion. Preferably, a PrOx reactor will be included in the housing upstream of the heat exchanger to supplement the heat provided by the heat exchanger.

  13. Methanol reformers for fuel cell powered vehicles: Some design considerations

    SciTech Connect

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1990-01-01

    Fuel cells are being developed for use in automotive propulsion systems as alternatives for the internal combustion engine in buses, vans, passenger cars. The two most important operational requirements for a stand-alone fuel cell power system for a vehicle are the ability to start up quickly and the ability to supply the necessary power on demand for the dynamically fluctuating load. Methanol is a likely fuel for use in fuel cells for transportation applications. It is a commodity chemical that is manufactured from coal, natural gas, and other feedstocks. For use in a fuel cell, however, the methanol must first be converted (reformed) to a hydrogen-rich gas mixture. The desired features for a methanol reformer include rapid start-up, good dynamic response, high fuel conversion, small size and weight, simple construction and operation, and low cost. In this paper the present the design considerations that are important for developing such a reformer, namely: (1) a small catalyst bed for quick starting, small size, and low weight; (2) multiple catalysts for optimum operation of the dissociation and reforming reactions; (3) reforming by direct heat transfer partial oxidation for rapid response to fluctuating loads; and (4) thermal independence from the rest of the fuel cell system. 10 refs., 1 fig.

  14. Methanol steam reforming in a fuel cell drive system

    NASA Astrophysics Data System (ADS)

    Wiese, W.; Emonts, B.; Peters, R.

    Within the framework of the Joule III project a compact methanol reformer (CMR) with a specific weight of 2 kg/kW (lower heating value of H 2) was developed. This CMR contains a methanol and water vaporizer, a steam reformer, a heat carrier circuit and a catalytic burner unit. A laboratory fixed-bed reactor consisting of four tubes which could be filled with different amounts of catalyst was used to investigate the catalyst performance and the ageing behaviour. A hydrogen yield of 10 m N3/(h l Cat) can be achieved at 280°C. In this case, the methanol conversion rate is 95% and the dry product gas contains 0.9% CO. A linear decrease of the catalyst activity was observed which can be described by a loss of active catalyst mass of 5.5 mg/h. The catalyst was operated for more than 1000 h without having exhibited activity losses that made a catalyst change necessary. Besides, the stationary behaviour of the reforming reactor, the dynamic behaviour was studied. The time needed for start-up procedures has to be improved for reformers of a next generation. Moreover, the hydrogen production during reformer load changes will be discussed. Simulations of the power train in driving cycles show the different states of a reformer during dynamic operation.

  15. Synthetic gas production for methanol--current and future trends

    SciTech Connect

    Camps, J.A.; Turnbull, D.McG.

    1980-01-01

    Methanol is one of the most easily made organic compounds and is synthesized from a gaseous mixture of carbon monoxide and hydrogen, called ''synthesis gas''. Thus the first step in the manufacture of methanol constitutes the production of synthesis gas. This paper describes various methods of producing this gas from natural gas and naphtha through reforming, coal gasification and wood gasification. Chemical plants for synthesis of methanol on industrial scales are described. Markets for methanol are reviewed, with particular attention to its use as an additive to gasoline. (Refs. 4).

  16. Application of Flexible Micro Temperature Sensor in Oxidative Steam Reforming by a Methanol Micro Reformer

    PubMed Central

    Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man

    2011-01-01

    Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well. PMID:22319407

  17. An Experimental Study of Methanol Reformation.

    DTIC Science & Technology

    1979-12-01

    1973, p. 1300) show how methanol compares to other alterna- tives. In addition, the production of methanol from syngas is a proven commercial...technology, and the syngas can be coal-derived (Wilk 1978, p. 56). The disadvantages of methanol concern the fact that more will have to be carried than...the chief engineer’s job to continue research and upgrading into 1980. 2.2 Design Parameters The following limitations were placed on the new system

  18. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    SciTech Connect

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  19. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    SciTech Connect

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R&D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  20. Kinetics, simulation and optimization of methanol steam reformer for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Choi, Yongtaek; Stenger, Harvey G.

    To evaluate reaction rates for making hydrogen from methanol, kinetic studies of methanol decomposition, methanol steam reforming, the water gas shift reaction, and CO selective oxidation have been performed. These reactions were studied in a microreactor testing unit using a commercial Cu-ZnO/Al 2O 3 catalyst for the first three reactions and Pt-Fe/γ-alumina catalyst for the last reaction. The activity tests were performed between 120 and 325 °C at atmospheric pressure with a range of feed rates and compositions. For methanol decomposition, a simplified reaction network of five elementary reactions was proposed and parameters for all five rate expressions were obtained using non-linear least squares optimization, numerical integration of a one-dimensional PFR model, and extensive experimental data. Similar numerical analysis was carried out to obtain the rate expressions for methanol steam reaction, the water gas shift reaction, and CO selective oxidation. Combining the three reactors with several heat exchange options, an integrated methanol reformer system was designed and simulated using MATLAB. Using this simulation, the product distribution, the effects of reactor volume and temperature, and the options of water and air injection rates were studied. Also, a series of optimization tests were conducted to give maximum hydrogen yield and/or maximum economic profit.

  1. Evaluation of dissociated and steam-reformed methanol as automotive engine fuels

    NASA Technical Reports Server (NTRS)

    Lalk, T. R.; Mccall, D. M.; Mccanlies, J. M.

    1984-01-01

    Dissociated and steam reformed methanol were evaluated as automotive engine fuels. Advantages and disadvantages in using methanol in the reformed rather than liquid state were discussed. Engine dynamometer tests were conducted with a four cylinder, 2.3 liter, spark ignition automotive engine to determine performance and emission characteristics operating on simulated dissociated and steam reformed methanol (2H2 + CO and 3H2 + CO2 respectively), and liquid methanol. Results are presented for engine performance and emissions as functions of equivalence ratio, at various throttle settings and engine speeds. Operation on dissociated and steam reformed methanol was characterized by flashback (violent propagation of a flame into the intake manifold) which limited operation to lower power output than was obtainable using liquid methanol. It was concluded that: an automobile could not be operated solely on dissociated or steam reformed methanol over the entire required power range - a supplementary fuel system or power source would be necessary to attain higher powers; the use of reformed mechanol, compared to liquid methanol, may result in a small improvement in thermal efficiency in the low power range; dissociated methanol is a better fuel than steam reformed methanol for use in a spark ignition engine; and use of dissociated or steam reformed methanol may result in lower exhaust emissions compared to liquid methanol.

  2. Hydrogen production from the steam reforming of Dinethyl Ether and Methanol

    SciTech Connect

    Semelsberger, T. A.; Borup, R. L.

    2004-01-01

    This study investigates dimethyl ether (DME) steam reforming for the generation of hydrogen rich fuel cell feeds for fuel cell applications. Methanol has long been considered as a fuel for the generation of hydrogen rich fuel cell feeds due to its high energy density, low reforming temperature, and zero impurity content. However, it has not been accepted as the fuel of choice due its current limited availability, toxicity and corrosiveness. While methanol steam reforming for the generation of hydrogen rich fuel cell feeds has been extensively studied, the steam reforming of DME, CH{sub 3}OCH{sub 3} + 3H{sub 2}O = 2CO{sub 2} + 6H{sub 2}, has had limited research effort. DME is the simplest ether (CH{sub 3}OCH{sub 3}) and is a gas at ambient conditions. DME has physical properties similar to those of LPG fuels (i.e. propane and butane), resulting in similar storage and handling considerations. DME is currently used as an aerosol propellant and has been considercd as a diesel substitute due to the reduced NOx, SOx and particulate emissions. DME is also being considered as a substitute for LPG fuels, which is used extensively in Asia as a fuel for heating and cooking, and naptha, which is used for power generation. The potential advantages of both methanol and DME include low reforming temperature, decreased fuel proccssor startup energy, environmentally benign, visible flame, high heating value, and ease of storage and transportation. In addition, DME has the added advantages of low toxicity and being non-corrosive. Consequently, DME may be an ideal candidate for the generation of hydrogen rich fuel cell feeds for both automotive and portable power applications. The steam reforming of DME has been demonstrated to occur through a pair of reactions in series, where the first reaction is DME hydration followed by MeOH steam reforming to produce a hydrogen rich stream.

  3. Purifier-integrated methanol reformer for fuel cell vehicles

    NASA Astrophysics Data System (ADS)

    Han, Jaesung; Kim, Il-soo; Choi, Keun-Sup

    We developed a compact, 3-kW, purifier-integrated modular reformer which becomes the building block of full-scale 30-kW or 50-kW methanol fuel processors for fuel cell vehicles. Our proprietary technologies regarding hydrogen purification by composite metal membrane and catalytic combustion by washcoated wire-mesh catalyst were combined with the conventional methanol steam-reforming technology, resulting in higher conversion, excellent quality of product hydrogen, and better thermal efficiency than any other systems using preferential oxidation. In this system, steam reforming, hydrogen purification, and catalytic combustion all take place in a single reactor so that the whole system is compact and easy to operate. Hydrogen from the module is ultrahigh pure (99.9999% or better), hence there is no power degradation of PEMFC stack due to contamination by CO. Also, since only pure hydrogen is supplied to the anode of the PEMFC stack, 100% hydrogen utilization is possible in the stack. The module produces 2.3 Nm 3/h of hydrogen, which is equivalent to 3 kW when PEMFC has 43% efficiency. Thermal efficiency (HHV of product H 2/HHV of MeOH in) of the module is 89% and the power density of the module is 0.77 kW/l. This work was conducted in cooperation with Hyundai Motor Company in the form of a Korean national project. Currently the module is under test with an actual fuel cell stack in order to verify its performance. Sooner or later a full-scale 30-kW system will be constructed by connecting these modules in series and parallel and will serve as the fuel processor for the Korean first fuel cell hybrid vehicle.

  4. Thermodynamic evaluation of methanol steam reforming for hydrogen production

    NASA Astrophysics Data System (ADS)

    Faungnawakij, Kajornsak; Kikuchi, Ryuji; Eguchi, Koichi

    Thermodynamic equilibrium of methanol steam reforming (MeOH SR) was studied by Gibbs free minimization for hydrogen production as a function of steam-to-carbon ratio (S/C = 0-10), reforming temperature (25-1000 °C), pressure (0.5-3 atm), and product species. The chemical species considered were methanol, water, hydrogen, carbon dioxide, carbon monoxide, carbon (graphite), methane, ethane, propane, i-butane, n-butane, ethanol, propanol, i-butanol, n-butanol, and dimethyl ether (DME). Coke-formed and coke-free regions were also determined as a function of S/C ratio. Based upon a compound basis set MeOH, CO 2, CO, H 2 and H 2O, complete conversion of MeOH was attained at S/C = 1 when the temperature was higher than 200 °C at atmospheric pressure. The concentration and yield of hydrogen could be achieved at almost 75% on a dry basis and 100%, respectively. From the reforming efficiency, the operating condition was optimized for the temperature range of 100-225 °C, S/C range of 1.5-3, and pressure at 1 atm. The calculation indicated that the reforming condition required from sufficient CO concentration (<10 ppm) for polymer electrolyte fuel cell application is too severe for the existing catalysts (T r = 50 °C and S/C = 4-5). Only methane and coke thermodynamically coexist with H 2O, H 2, CO, and CO 2, while C 2H 6, C 3H 8, i-C 4H 10, n-C 4H 10, CH 3OH, C 2H 5OH, C 3H 7OH, i-C 4H 9OH, n-C 4H 9OH, and C 2H 6O were suppressed at essentially zero. The temperatures for coke-free region decreased with increase in S/C ratios. The impact of pressure was negligible upon the complete conversion of MeOH.

  5. Pyrotechnically Actuated Gas Generator Utilizing Aqueous Methanol

    NASA Technical Reports Server (NTRS)

    Thompson, Nathaniel B.; Karp, Ashley C.; Gallon, John C.; Tanner, Christopher L.

    2015-01-01

    A gas-generating device was developed to supplement the ram-air inflation of a supersonic ballute. The device is designed to initially pressurize the ballute following deployment, exposing and orienting its ram-air inlets to free-stream air for complete inflation. The supplemental pressurization decreases the total inflation time, and increases the likelihood of a successful inflation. The device contains a reservoir filled with an aqueous mixture of methanol that, when released in to the interior of the ballute, rapidly vaporizes due to the low ambient pressure. Upon activation of the device, a pair of redundant ring mechanisms initiate pyrotechnic charges that pressurize and rupture the reservoir, resulting in ejection of the methanol in to the ballute. In addition to its role in inflation, the device serves as the structural connection to the ballute. Analytical models were developed for the inflation capability of the device, which were verified using vacuum chamber testing of developmental hardware. Static, deployment, and environmental testing demonstrated the functionality of the ring mechanism and reservoir under several temperature and pressure conditions. Finally, the device was successfully operated during the first Supersonic Flight Dynamics Test (SFDT) of NASA's Low Density Supersonic Decelerator (LDSD) project. The design architecture is scalable to accommodate different quantities of gas generation, can be adjusted to operate in a variety of temperature and atmospheric pressure regimes, and provides a robust device that may be installed with minimal risk to personnel or hardware.

  6. Zircon Supported Copper Catalysts for the Steam Reforming of Methanol

    NASA Astrophysics Data System (ADS)

    Widiastri, M.; Fendy, Marsih, I. N.

    2008-03-01

    Steam reforming of methanol (SRM) is known as one of the most favorable catalytic processes for producing hydrogen. Current research on zirconia, ZrO2 supported copper catalyst revealed that CuO/ZrO2 as an active catalyst for the SRM. Zircon, ZrSiO4 is available from the by-product of tin mining. In the work presented here, the catalytic properties of CuO/ZrSiO4 with various copper oxide compositions ranging from 2.70% (catalyst I), 4.12% (catalyst II), and 7.12%-mass (catalyst III), synthesized by an incipient wetness impregnation technique, were investigated to methanol conversion, selectivity towards CO formation, and effect of ZnO addition (7.83%CuO/8.01%ZnO/ZrSiO4 = catalyst V). The catalytic activity was obtained using a fixed bed reactor and the zircon supported catalyst activity was compared to those of CuO/ZnO/Al2O3 catalyst (catalyst IV) and commercial Kujang LTSC catalyst. An X-ray powder diffraction (XRD) analysis was done to identify the abundant phases of the catalysts. The catalysts topography and particle diameter were measured with scanning electron microscopy (SEM) and composition of the catalysts was measured by SEM-EDX, scanning electron microscope-energy dispersive using X-ray analysis. The results of this research provide information on the possibility of using zircon (ZrSiO4) as solid support for SRM catalysts.

  7. Influence of geometry on pressure and velocity distribution in packed-bed methanol steam reforming reactor

    NASA Astrophysics Data System (ADS)

    Ivanović, Ivana; Sedmak, Aleksandar; Milošević, Miloš; Cvetković, Ivana; Pohar, Andrej; Likozar, Blaž

    2017-07-01

    The main tasks of this research is to propose several changes in the packed bed micro methanol steam reformer geometry in order to ensure its performance. The reformer is an integral part of the existing indirect internal reforming high temperature PEMFC and most of its geometry is already defined. The space for remodeling is very limited.

  8. Activation of catalysts for synthesizing methanol from synthesis gas

    DOEpatents

    Blum, David B.; Gelbein, Abraham P.

    1985-01-01

    A method for activating a methanol synthesis catalyst is disclosed. In this method, the catalyst is slurried in an inert liquid and is activated by a reducing gas stream. The activation step occurs in-situ. That is, it is conducted in the same reactor as is the subsequent step of synthesizing methanol from a methanol gas stream catalyzed by the activated catalyst still dispersed in a slurry.

  9. A passively-fed methanol steam reformer heated with two-stage bi-fueled catalytic combustor

    NASA Astrophysics Data System (ADS)

    Lo, Kai-Fan; Wong, Shwin-Chung

    2012-09-01

    This paper presents further progress on our simple novel passively-fed methanol steam reformer. The present study focuses on the development of a catalytic combustor workable with both hydrogen and methanol fuels. The aim is to reutilize the exhaust hydrogen from a fuel cell under stable operation but burn methanol during the start-up. On a copper plate, the catalytic combustor in a u-turn channel is integrally machined under a two-turn serpentine-channel reformer. To resolve the highly different fuel reactivities, a suitably diluted catalyst formula demonstrates uniform temperature distributions burning with either liquid methanol or an H2/CO2 mixture simulating the exhaust gas from a fuel cell. In a two-stage process, it first takes 25 min to reach 270 °C by burning methanol. After the fuel is switched to the H2/CO2 mixture, another 20 min is needed to attain an optimal steady state which yields a high methanol conversion of 95% and acceptably low CO fraction of 1.04% at a reaction temperature of 278 °C. The H2 and CO2 concentrations are 75.1% and 23.6%.

  10. Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ: The possible use of these fuels in internal reforming SOFC

    NASA Astrophysics Data System (ADS)

    Laosiripojana, N.; Assabumrungrat, S.

    This study investigated the possible use of methane, methanol, and ethanol with steam as a direct feed to Ni/YSZ anode of a direct internal reforming Solid Oxide Fuel Cell (DIR-SOFC). It was found that methane with appropriate steam content can be directly fed to Ni/YSZ anode without the problem of carbon formation, while methanol can also be introduced at a temperature as high as 1000 °C. In contrast, ethanol cannot be used as the direct fuel for DIR-SOFC operation even at high steam content and high operating temperature due to the easy degradation of Ni/YSZ by carbon deposition. From the steam reforming of ethanol over Ni/YSZ, significant amounts of ethane and ethylene were present in the product gas due to the incomplete reforming of ethanol. These formations are the major reason for the high rate of carbon formation as these components act as very strong promoters for carbon formation. It was further observed that ethanol with steam can be used for an indirect internal reforming operation (IIR-SOFC) instead. When ethanol was first reformed by Ni/Ce-ZrO 2 at the temperature above 850 °C, the product gas can be fed to Ni/YSZ without the problem of carbon formation. Finally, it was also proposed from the present work that methanol with steam can be efficiently fed to Ni/YSZ anode (as DIR operation) at the temperature between 900 and 975 °C without the problem of carbon formation when SOFC system has sufficient space volume at the entrance of the anode chamber, where methanol can homogeneously convert to CH 4, CO, CO 2, and H 2 before reaching SOFC anode.

  11. Investigation of a methanol reformer concept considering the particular impact of dynamics and long-term stability for use in a fuel-cell-powered passenger car

    NASA Astrophysics Data System (ADS)

    Peters, R.; Düsterwald, H. G.; Höhlein, B.

    A methanol reformer concept including a reformer, a catalytic burner, a gas cleaning unit, a PEMFC and an electric motor for use in fuel-cell-powered passenger cars was investigated. Special emphasis was placed on the dynamics and the long-term stability of the reformer. Experiments on a laboratory scale were performed in a methanol steam reformer consisting of four different reactor tubes, which were separately balanced. Due to the endothermy of the steam reforming reaction of methanol, a sharp drop in the reaction temperature of about 50 K occurs at the beginning of the catalyst bed. This agrees well with the high catalytic activity at the entrance of the catalyst bed. Forty-five percent of the methanol was converted within the first 10 cm of the catalyst bed where 12.6 g of the CuO/ZnO catalyst was located. Furthermore, CO formation during methanol steam reforming strongly depends on methanol conversion. Long-term measurements for more than 700 h show that the active reaction zone moved through the catalyst bed. Calculations, on the basis of these experiments, revealed that 63 g of reforming catalyst was necessary for mobile PEMFC applications, in this case for 400 W el at a system efficiency of 42% and a theoretical specific hydrogen production of 5.2 m 3n/(h kg Cat). This amount of catalyst was assumed to maintain a hydrogen production of at least 80% of the original amount over an operating range of 3864 h. Cycled start-up and shut-down processes of the methanol steam reformer under nitrogen and hydrogen atmospheres did not harm the catalytic activity. The simulation of the breakdown of the heating system, in which a liquid water/methanol mixture was in close contact with the catalyst, did not reveal any deactivation of the catalytic activity.

  12. Modeling and 3D-simulation of hydrogen production via methanol steam reforming in copper-coated channels of a mini reformer

    NASA Astrophysics Data System (ADS)

    Sari, Ataallah; Sabziani, Javad

    2017-06-01

    Modeling and CFD simulation of a three-dimensional microreactor includes thirteen structured parallel channels is performed to study the hydrogen production via methanol steam reforming reaction over a Cu/ZnO/Al2O3 catalyst. The well-known Langmuir-Hinshelwood macro kinetic rate expressions reported by Peppley and coworkers [49] are considered to model the methanol steam reforming reactions. The effects of inlet steam to methanol ratio, pre-heat temperature, channels geometry and size, and the level of external heat flux on the hydrogen quality and quantity (i.e., hydrogen flow rate and CO concentration) are investigated. Moreover, the possibility of reducing the CO concentration by passing the reactor effluent through a water gas shift channel placed in series with the methanol reformer is studied. Afterwards, the simulation results are compared with the experimental data reported in the literature considering two different approaches of mixture-averaged and Maxwell-Stefan formulations to evaluate the diffusive flux of mass. The results indicate that the predictions of the Maxwell-Stefan model is in better agreement with experimental data than mixture-averaged one, especially at the lower feed flow rates.

  13. Autothermal Reforming of Natural Gas to Synthesis Gas

    SciTech Connect

    Steven F. Rice; David P. Mann

    2007-04-13

    This Project Final Report serves to document the project structure and technical results achieved during the 3-year project titled Advanced Autothermal Reformer for US Dept of Energy Office of Industrial Technology. The project was initiated in December 2001 and was completed March 2005. It was a joint effort between Sandia National Laboratories (Livermore, CA), Kellogg Brown & Root LLC (KBR) (Houston, TX) and Süd-Chemie (Louisville, KY). The purpose of the project was to develop an experimental capability that could be used to examine the propensity for soot production in an Autothermal Reformer (ATR) during the production of hydrogen-carbon monoxide synthesis gas intended for Gas-to-Liquids (GTL) applications including ammonia, methanol, and higher hydrocarbons. The project consisted of an initial phase that was focused on developing a laboratory-scale ATR capable of reproducing conditions very similar to a plant scale unit. Due to budget constraints this effort was stopped at the advanced design stages, yielding a careful and detailed design for such a system including ATR vessel design, design of ancillary feed and let down units as well as a PI&D for laboratory installation. The experimental effort was then focused on a series of measurements to evaluate rich, high-pressure burner behavior at pressures as high as 500 psi. The soot formation measurements were based on laser attenuation at a view port downstream of the burner. The results of these experiments and accompanying calculations show that soot formation is primarily dependent on oxidation stoichiometry. However, steam to carbon ratio was found to impact soot production as well as burner stability. The data also showed that raising the operating pressure while holding mass flow rates constant results in considerable soot formation at desirable feed ratios. Elementary reaction modeling designed to illuminate the role of CO2 in the burner feed showed that the conditions in the burner allow for the direct

  14. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect

    Paul A. Erickson

    2006-04-01

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the tenth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2006. This quarter saw progress in six areas. These areas are: (1) The effect of catalyst dimension on steam reforming, (2) Transient characteristics of autothermal reforming, (3) Rich and lean autothermal reformation startup, (4) Autothermal reformation degradation with coal derived methanol, (5) Reformate purification system, and (6) Fuel cell system integration. All of the projects are proceeding on or slightly ahead of schedule.

  15. In situ XPS study of methanol reforming on PdGa near-surface intermetallic phases

    PubMed Central

    Rameshan, Christoph; Stadlmayr, Werner; Penner, Simon; Lorenz, Harald; Mayr, Lukas; Hävecker, Michael; Blume, Raoul; Rocha, Tulio; Teschner, Detre; Knop-Gericke, Axel; Schlögl, Robert; Zemlyanov, Dmitry; Memmel, Norbert; Klötzer, Bernhard

    2012-01-01

    In situ X-ray photoelectron spectroscopy and low-energy ion scattering were used to study the preparation, (thermo)chemical and catalytic properties of 1:1 PdGa intermetallic near-surface phases. Deposition of several multilayers of Ga metal and subsequent annealing to 503–523 K led to the formation of a multi-layered 1:1 PdGa near-surface state without desorption of excess Ga to the gas phase. In general, the composition of the PdGa model system is much more variable than that of its PdZn counterpart, which results in gradual changes of the near-surface composition with increasing annealing or reaction temperature. In contrast to near-surface PdZn, in methanol steam reforming, no temperature region with pronounced CO2 selectivity was observed, which is due to the inability of purely intermetallic PdGa to efficiently activate water. This allows to pinpoint the water-activating role of the intermetallic/support interface and/or of the oxide support in the related supported PdxGa/Ga2O3 systems, which exhibit high CO2 selectivity in a broad temperature range. In contrast, corresponding experiments starting on the purely bimetallic model surface in oxidative methanol reforming yielded high CO2 selectivity already at low temperatures (∼460 K), which is due to efficient O2 activation on PdGa. In situ detected partial and reversible oxidative Ga segregation on intermetallic PdGa is associated with total oxidation of intermediate C1 oxygenates to CO2. PMID:22875996

  16. Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature.

    PubMed

    Yu, Kai Man Kerry; Tong, Weiyi; West, Adam; Cheung, Kevin; Li, Tong; Smith, George; Guo, Yanglong; Tsang, Shik Chi Edman

    2012-01-01

    A non-syngas direct steam reforming route is investigated for the conversion of methanol to hydrogen and carbon dioxide over a CuZnGaO(x) catalyst at 150-200 °C. This route is in marked contrast with the conventional complex route involving steam reformation to syngas (CO/H2) at high temperature, followed by water gas shift and CO cleanup stages for hydrogen production. Here we report that high quality hydrogen and carbon dioxide can be produced in a single-step reaction over the catalyst, with no detectable CO (below detection limit of 1 ppm). This can be used to supply proton exchange membrane fuel cells for mobile applications without invoking any CO shift and cleanup stages. The working catalyst contains, on average, 3-4 nm copper particles, alongside extremely small size of copper clusters stabilized on a defective ZnGa2O4 spinel oxide surface, providing hydrogen productivity of 393.6 ml g(-1)-cat h(-1) at 150 °C.

  17. Process for producing methanol from a feed gas

    SciTech Connect

    Keller, A.P.

    1987-03-17

    A process is described for producing methanol from a feed gas comprising: passing at least a portion of the feed gas stream comprising hydrogen plus carbon monoxide and carbon dioxide to a first separation zone, the ratio of hydrogen to carbon monoxide and carbon dioxide in the feed gas stream being insufficient for effective methanol production; physically separating the feed gas stream in the first separation zone into a first hydrogen stream wherein the ratio of hydrogen to carbon monoxide and carbon dioxide is greater than in the feed gas stream and a first product stream comprising a hydrogen lean stream rich in carbon monoxide wherein the ratio of hydrogen to carbon monoxide and carbon dioxide is less than in the feed gas stream; passing the first hydrogen stream to a product reaction zone to form a mixed product comprising methanol formed by the reaction of the reactants comprisng hydrogen plus carbon monoxide and carbon dioxide and also residual components comprising residual hydrogen and carbon monoxide and carbon dioxide. The ratio of hydrogen to other reactants in the product reaction zone is such as to facilitate the formation of methanol; and removing the methanol and residual components as a mixed product stream from the product reaction zone.

  18. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect

    Paul A. Erickson

    2005-04-01

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the sixth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2005. This quarter saw progress in four areas. These areas are: (1) Autothermal reforming of coal derived methanol, (2) Catalyst deactivation, (3) Steam reformer transient response, and (4) Catalyst degradation with bluff bodies. All of the projects are proceeding on or slightly ahead of schedule.

  19. Performance evaluation of a proof-of-concept 70 W internal reforming methanol fuel cell system

    NASA Astrophysics Data System (ADS)

    Avgouropoulos, G.; Schlicker, S.; Schelhaas, K.-P.; Papavasiliou, J.; Papadimitriou, K. D.; Theodorakopoulou, E.; Gourdoupi, N.; Machocki, A.; Ioannides, T.; Kallitsis, J. K.; Kolb, G.; Neophytides, S.

    2016-03-01

    A proof-of-concept 70 W Internal Reforming Methanol Fuel Cell (IRMFC) stack including Balance-of-Plant (BoP) was designed, assembled and tested. Advent TPS® high-temperature, polymer electrolyte membrane electrode assemblies were employed for fuel cell operation at 200 °C. In order to avoid phosphoric acid poisoning of the reformer, the anode electrocatalyst of each cell was indirectly adjoined, via a separation plate, to a highly active CuMnAlOx catalyst coated onto copper foam, which served as methanol reforming layer. The reformer was in-situ converting the methanol/steam feed to the required hydrogen (internal reforming concept) at 200 °C, which was readily oxidized at the anode electrodes. The operation of the IRMFC was supported through a number of BoP components consisting of a start-up subsystem (air blower, evaporator and monolithic burner), a combined afterburner/evaporator device, methanol/water supply and data acquisition units (reactants/products analysis, temperature control, flow control, system load/output control). Depending on the composition of the liquid MeOH/H2O feed streams, current densities up to 0.18 A cm-2 and power output up to 70 W could be obtained with remarkable repeatability. Specific targets for improvement of the efficiency were identified.

  20. A Methanol Steam Reforming Micro Reactor for Proton Exchange Membrane Micro Fuel Cell System

    SciTech Connect

    Park, H G; Piggott, W T; Chung, J; Morse, J D; Havstad, M; Grigoropoulos, C P; Greif, R; Benett, W; Sopchak, D; Upadhye, R

    2003-07-28

    The heat, mass and momentum transfer from a fuel reforming packed bed to a surrounding silicon wafer has been simulated. Modeling showed quantitatively reasonable agreement with experimental data for fuel conversion efficiency, hydrogen production rate, outlet methanol mole fraction and outlet steam mole fraction. The variation in fuel conversion efficiency with the micro reformer thermal isolation can be used to optimize fuel-processing conditions for micro PEM fuel cells.

  1. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect

    Paul A. Erickson

    2004-09-30

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the fourth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of July 1-Sept 30, 2004 along with a recap of progress from the start of the project on Oct 1, 2003 to Sept 30, 2004. All of the projects are proceeding on or slightly ahead of schedule. This year saw progress in several areas. These areas are: (1) External and internal evaluation of coal based methanol and a fuel cell grade baseline fuel, (2) Design set up and initial testing of three laboratory scale steam reformers, (3) Design, set up and initial testing of a laboratory scale autothermal reactor, (4) Hydrogen generation from coal-derived methanol using steam reformation, (5) Experiments to determine the axial and radial thermal profiles of the steam reformers, (6) Initial catalyst degradation studies with steam reformation and coal based methanol, and (7) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

  2. Efficient Reversible Hydrogen Carrier System Based on Amine Reforming of Methanol.

    PubMed

    Kothandaraman, Jotheeswari; Kar, Sayan; Sen, Raktim; Goeppert, Alain; Olah, George A; Prakash, G K Surya

    2017-02-22

    A novel hydrogen storage system based on the hydrogen release from catalytic dehydrogenative coupling of methanol and 1,2-diamine is demonstrated. The products of this reaction, N-formamide and N,N'-diformamide, are hydrogenated back to the free amine and methanol by a simple hydrogen pressure swing. Thus, an efficient one-pot hydrogen carrier system has been developed. The H2 generating step can be termed as "amine reforming of methanol" in analogy to the traditional steam reforming. It acts as a clean source of hydrogen without concurrent production of CO2 (unlike steam reforming) or CO (by complete methanol dehydrogenation). Therefore, a carbon neutral cycle is essentially achieved where no carbon capture is necessary as the carbon is trapped in the form of formamide (or urea in the case of primary amine). In theory, a hydrogen storage capacity as high as 6.6 wt % is achievable. Dehydrogenative coupling and the subsequent amide hydrogenation proceed with good yields (90% and >95% respectively, with methanol and N,N'-dimethylethylenediamine as dehydrogenative coupling partners).

  3. Process conditions for preparing methanol from cornstalk gas.

    PubMed

    Zhu, Ling-Feng; Du, Lei; Li, Xin-Bao; Li, Guo-Ting; Zhang, Jie

    2007-01-01

    The low-heat-value cornstalk gas produced in the down-flow fixed bed gasifier was tentatively used for methanol synthesis. The cornstalk gas was purified and the technical procedures such as deoxygenation, desulfurization, catalytic cracking of tar, purification and hydrogenation were studied. The catalytic experiments of methanol synthesis with cornstalk syngas were carried out in a tubular-flow integral and isothermal reactor. The effect of reaction temperature, pressure, catalyst types, catalyst particle size, syngas flow at entering end and composition of syngas was investigated. The optimum process conditions and yield of methanol from cornstalk syngas were obtained. The experimental results indicated that the proper catalyst for the synthetic reaction was C301 and the optimum catalyst size was 0.833 mm x 0.351 mm. The optimum operating temperature and pressure were found to be 235 degrees C and 5 MPa, respectively. The suitable syngas flow 0.9-1.10 mol/h at entering end was selected and the best composition of syngas were CO 10.49%, CO2 8.8%, N2 37.32%, C(n)H(m) 0.95% and H2 40.49%. The best methanol yield was 0.418 g/g cornstalk. This study provided the technical support for the industrial test of methanol production from biomass (cornstalk) gas.

  4. A non-syn-gas catalytic route to methanol production.

    PubMed

    Wu, Cheng-Tar; Yu, Kai Man Kerry; Liao, Fenglin; Young, Neil; Nellist, Peter; Dent, Andrew; Kroner, Anna; Tsang, Shik Chi Edman

    2012-01-01

    Methanol is an important platform molecule for chemical synthesis and its high energy density also renders it a good candidate as a cleaner transportation fuel. At present, methanol is manufactured from natural gas via the indirect syn-gas route. Here we show that ethylene glycol, a versatile chemical derived from biomass or fossil fuels, can be directly converted to methanol in hydrogen with high selectivity over a Pd/Fe(2)O(3) co-precipitated catalyst. This opens up a possibility for diversification in natural resources for energy-starved countries. The working catalyst contains extremely small 'PdFe' clusters and metal adatoms on defective iron oxide to give the required metal-support interaction for the novel synthesis.

  5. Renewable Electricity Generation via Solar-Powered Methanol Reforming: Hybrid Proton Exchange Membrane Fuel Cell Systems Based on Novel Non-Concentrating, Intermediate-Temperature Solar Collectors

    NASA Astrophysics Data System (ADS)

    Real, Daniel J.

    Tremendous research efforts have been conducted studying the capturing and conversion of solar energy. Solar thermal power systems offer a compelling opportunity for renewable energy utilization with high efficiencies and excellent cost-effectiveness. The goal of this work was to design a non-concentrating collector capable of reaching temperatures above 250 °C, use this collector to power methanol steam reforming, and operate a proton exchange membrane (PEM) fuel cell using the generated hydrogen. The study presents the construction and characterization of a non-concentrating, intermediate-temperature, fin-in-tube evacuated solar collector, made of copper and capable of reaching stagnation temperatures of 268.5 °C at 1000 W/m2 irradiance. The collector was used to power methanol steam reforming, including the initial heating and vaporization of liquid reactants and the final heating of the gaseous reactants. A preferential oxidation (PROX) catalyst was used to remove CO from simulated reformate gas, and this product gas was used to operate a PEM fuel cell. The results show 1) that the outlet temperature is not limited by heat transfer from the absorber coating to the heat transfer fluid, but by the amount of solar energy absorbed. This implicates a constant heat flux description of the heat transfer process and allows for the usage of materials with lower thermal conductivity than copper. 2) It is possible to operate a PEM fuel cell from reformate gas if a PROX catalyst is used to remove CO from the gas. 3) The performance of the fuel cell is only slightly decreased (~4%) by CO2 dilution present in the reformate and PROX gas. These results provide a foundation for the first renewable electricity generation via solar-powered methanol reforming through a hybrid PEM fuel cell system based on novel non-concentrating, intermediate-temperature solar collectors.

  6. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect

    Paul A. Erickson

    2005-09-30

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the eighth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2004-September 30, 2005 and includes an entire review of the progress for year 2 of the project. This year saw progress in eight areas. These areas are: (1) steam reformer transient response, (2) steam reformer catalyst degradation, (3) steam reformer degradation tests using bluff bodies, (4) optimization of bluff bodies for steam reformation, (5) heat transfer enhancement, (6) autothermal reforming of coal derived methanol, (7) autothermal catalyst degradation, and (8) autothermal reformation with bluff bodies. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

  7. Hynol -- An economic process for methanol production from biomass and natural gas with reduced CO{sub 2} emission

    SciTech Connect

    Steinberg, M.; Dong, Yuanji

    1993-10-01

    The Hynol process is proposed to meet the demand for an economical process for methanol production with reduced CO{sub 2} emission. This new process consists of three reaction steps: (a) hydrogasification of biomass, (b) steam reforming of the produced gas with additional natural gas feedstock, and (c) methanol synthesis of the hydrogen and carbon monoxide produced during the previous two steps. The H{sub 2}-rich gas remaining after methanol synthesis is recycled to gasify the biomass in an energy neutral reactor so that there is no need for an expensive oxygen plant as required by commercial steam gasifiers. Recycling gas allows the methanol synthesis reactor to perform at a relatively lower pressure than conventional while the plant still maintains high methanol yield. Energy recovery designed into the process minimizes heat loss and increases the process thermal efficiency. If the Hynol methanol is used as an alternative and more efficient automotive fuel, an overall 41% reduction in CO{sub 2} emission can be achieved compared to the use of conventional gasoline fuel. A preliminary economic estimate shows that the total capital investment for a Hynol plant is 40% lower than that for a conventional biomass gasification plant. The methanol production cost is $0.43/gal for a 1085 million gal/yr Hynol plant which is competitive with current U.S. methanol and equivalent gasoline prices. Process flowsheet and simulation data using biomass and natural gas as cofeedstocks are presented. The Hynol process can convert any condensed carbonaceous material, especially municipal solid waste (MSW), to produce methanol.

  8. Hynol: An economic process for methanol production from biomass and natural gas with reduced CO2 emission

    NASA Astrophysics Data System (ADS)

    Steinberg, M.; Dong, Yuanji

    1993-10-01

    The Hynol process is proposed to meet the demand for an economical process for methanol production with reduced CO2 emission. This new process consists of three reaction steps: (1) hydrogasification of biomass, (2) steam reforming of the produced gas with additional natural gas feedstock, and (3) methanol synthesis of the hydrogen and carbon monoxide produced during the previous two steps. The H2-rich gas remaining after methanol synthesis is recycled to gasify the biomass in an energy neutral reactor so that there is no need for an expensive oxygen plant as required by commercial steam gasifiers. Recycling gas allows the methanol synthesis reactor to perform at a relatively lower pressure than conventional while the plant still maintains high methanol yield. Energy recovery designed into the process minimizes heat loss and increases the process thermal efficiency. If the Hynol methanol is used as an alternative and more efficient automotive fuel, an overall 41% reduction in CO2 emission can be achieved compared to the use of conventional gasoline fuel. A preliminary economic estimate shows that the total capital investment for a Hynol plant is 40% lower than that for a conventional biomass gasification plant. The methanol production cost is $0.43/gal for a 1085 million gal/yr Hynol plant which is competitive with current U.S. methanol and equivalent gasoline prices. Process flowsheet and simulation data using biomass and natural gas as cofeedstocks are presented. The Hynol process can convert any condensed carbonaceous material, especially municipal solid waste (MSW), to produce methanol.

  9. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.

    PubMed

    Shi, Lei; Yang, Guohui; Tao, Kai; Yoneyama, Yoshiharu; Tan, Yisheng; Tsubaki, Noritatsu

    2013-08-20

    Carbon dioxide is one of the highest contributors to the greenhouse effect, as well as a cheap and nontoxic building block for single carbon source chemistry. As such, CO₂ conversion is one of most important research areas in energy and environment sciences, as well as in catalysis technology. For chemical conversion of CO₂, natural gas (mainly CH₄) is a promising counterpart molecule to the CO₂-related reaction, due to its high availability and low price. More importantly, being able to convert CH₄ to useful fuels and molecules is advantageous, because it is also a kind of "greenhouse effect" gas, and can be an energy alternative to petroleum oil. In this Account, we discuss our development of efficient catalysts with precisely designed nanostructure for CO₂ reforming of CH₄ to produce syngas (mixture of CO and H₂), which can then be converted to many chemicals and energy products. This new production flow can establish a GTL (gas-to-liquid) industry, being currently pushed by the shale gas revolution. From the viewpoint of GTL industry, developing a catalyst for CO₂ reforming of CH₄ is a challenge, because they need a very high production rate to make the huge GTL methane reformer as small as possible. In addition, since both CO₂ and CH₄ give off carbon deposits that deactivate non-precious metallic catalysts very quickly, the total design of catalyst support and supported metallic nanoparticles is necessary. We present a simple but useful method to prepare bimodal catalyst support, where small pores are formed inside large ones during the self-organization of nanoparticles from solution. Large pores enhance the mass transfer rate, while small pores provide large surface areas to disperse active metallic nanoparticles. More importantly, building materials for small pores can also be used as promoters or cocatalysts to further enhance the total activity and stability. Produced syngas from methane reforming is generally catalytically

  10. New processes target methanol production, off-gas cleaning

    SciTech Connect

    Haggin, J. )

    1994-03-28

    Catalysis plays a key role in two technological developments aimed at addressing environmental-related matters. One, a process that converts carbon dioxide to methanol, is seen as a means of reducing the amount of carbon dioxide dumped into the atmosphere without an economic penalty. The other, unsteady-state operation, is a chemical processing innovation that is finding its way into the cleaning of plant exhaust gases. Particulars on the developments were presented in separate forums at the American Chemical Society's national meeting in San Diego. The methanol process, developed by Lurgi Oel-Gas-Chemie, Frankfurt, was outlined for the Catalysis and Surface Science Secretariat. Lurgi is ready to commercialized a variation of its methanol process, which converts carbon dioxide to ethanol in two stages. Underlying the process is development of a catalyst that is suitable for operation in two temperature regimes. The paper describes the development of the process. A catalytic reverse processing system is being used to decontaminate gas streams containing volatile organic compounds (VOCs). These VOCs may be unacceptable in the environment or undesirable in subsequent processing units. Other applications include nitrogen oxides reduction, ammonia and methanol synthesis, and oxidation of SO[sub 2] to SO[sub 3] in the manufacture of sulfuric acid. Among the materials that have been removed as VOCs are C[sub 4] to C[sub 8] alcohols, phenol, formaldehyde, cyanic acid, and a variety of organic solvents. The advantages over conventional methods are discussed.

  11. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect

    Paul A. Erickson

    2005-06-30

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the seventh report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 31, 2005. This quarter saw progress in these areas. These areas are: (1) Steam reformer transient response, (2) Heat transfer enhancement, (3) Catalyst degradation, (4) Catalyst degradation with bluff bodies, and (5) Autothermal reforming of coal-derived methanol. All of the projects are proceeding on or slightly ahead of schedule.

  12. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect

    Paul A. Erickson

    2006-01-01

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the ninth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2005-December 31, 2005. This quarter saw progress in four areas. These areas are: (1) reformate purification, (2) heat transfer enhancement, (3) autothermal reforming coal-derived methanol degradation test; and (4) model development for fuel cell system integration. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

  13. Methanol Gas-Sensing Properties of SWCNT-MIP Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Zhu, Qin; Zhang, Yumin; Zhu, Zhongqi; Liu, Qingju

    2016-11-01

    The single-walled carbon nanotube (SWCNT)-molecularly imprinted powder (MIP) composites in this paper were prepared by mixing SWCNTs with MIPs. The structure and micrograph of the as-prepared SWCNTs-MIPs samples were characterized by XRD and TEM. The gas-sensing properties were tested through indirect-heating sensors based on SWCNT-MIP composites fabricating on an alumina tube with Au electrodes and Pt wires. The results showed that the structure of SWCNTs-MIPs is of orthogonal perovskite and the average particle size of the SWCNTs-MIPs was in the range of 10-30 nm. SWCNTs-MIPs exhibit good methanol gas-sensitive properties. At 90 °C, the response to 1 ppm methanol is 19.7, and the response to the interferent is lower than 5 to the other interferent gases (ethanol, formaldehyde, toluene, acetone, ammonia, and gasoline). The response time and recovery time are 50 and 58 s, respectively.

  14. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect

    Paul A. Erickson

    2004-04-01

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the second report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1--March 31, 2004. This quarter saw progress in five areas. These areas are: (1) Internal and external evaluations of coal based methanol and the fuel cell grade baseline fuel; (2) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation; (3) Design and set up of the autothermal reactor; (4) Steam reformation of Coal Based Methanol; and (5) Initial catalyst degradation studies. All of the projects are proceeding on or slightly ahead of schedule.

  15. Characteristics of hydrogen produced by partial oxidation and auto-thermal reforming in a small methanol reformer

    NASA Astrophysics Data System (ADS)

    Horng, Rong-Fang; Chou, Huann-Ming; Lee, Chiou-Hwang; Tsai, Hsien-Te

    This paper investigates experimentally, the transient characteristics of a small methanol reformer using partial oxidation (POX) and auto-thermal reforming (ATR) for fuel cell applications. The parameters varied were heating temperature, methanol supply rate, steady mode shifting temperature, O 2/C (O 2/CH 3OH) and S/C (H 2O/CH 3OH) molar ratios with the main aim of promoting a rapid response and a high flow rate of hydrogen. The experiments showed that a high steady mode shifting temperature resulted in a faster temperature rise at the catalyst outlet and vice versa and that a low steady mode shifting temperature resulted in a lower final hydrogen concentration. However, when the mode shifting temperature was too high, the hydrogen production response was not necessarily improved. It was subsequently shown that the optimum steady mode shifting temperature for this experimental set-up was approximately 75 °C. Further, the hydrogen concentration produced by the auto-thermal process was as high as 49.12% and the volume flow rate up to 23.0 L min -1 compared to 40.0% and 20.5 L min -1 produced by partial oxidation.

  16. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect

    Paul A. Erickson

    2004-06-30

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the third report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 30, 2004. This quarter saw progress in five areas. These areas are: (1) External evaluation of coal based methanol and the fuel cell grade baseline fuel, (2) Design, set up and initial testing of the autothermal reactor, (3) Experiments to determine the axial and radial thermal profiles of the steam reformers, (4) Catalyst degradation studies, and (5) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

  17. CO2-selective methanol steam reforming on In-doped Pd studied by in situ X-ray photoelectron spectroscopy

    PubMed Central

    Rameshan, Christoph; Lorenz, Harald; Mayr, Lukas; Penner, Simon; Zemlyanov, Dmitry; Arrigo, Rosa; Haevecker, Michael; Blume, Raoul; Knop-Gericke, Axel; Schlögl, Robert; Klötzer, Bernhard

    2012-01-01

    In situ X-ray photoelectron spectroscopy (in situ XPS) was used to study the structural and catalytic properties of Pd–In near-surface intermetallic phases in correlation with previously studied PdZn and PdGa. Room temperature deposition of ∼4 monolayer equivalents (MLEs) of In metal on Pd foil and subsequent annealing to 453 K in vacuum yields a ∼1:1 Pd/In near-surface multilayer intermetallic phase. This Pd1In1 phase exhibits a similar “Cu-like” electronic structure and indium depth distribution as its methanol steam reforming (MSR)-selective multilayer Pd1Zn1 counterpart. Catalytic characterization of the multilayer Pd1In1 phase in MSR yielded a CO2-selectivity of almost 100% between 493 and 550 K. In contrast to previously studied In2O3-supported PdIn nanoparticles and pure In2O3, intermediate formaldehyde is only partially converted to CO2 using this Pd1In1 phase. Strongly correlated with PdZn, on an In-diluted PdIn intermetallic phase with “Pd-like” electronic structure, prepared by thermal annealing at 623 K, methanol steam reforming is suppressed and enhanced CO formation via full methanol dehydrogenation is observed. To achieve CO2-TOF values on the isolated Pd1In1 intermetallic phase as high as on supported PdIn/In2O3, at least 593 K reaction temperature is required. A bimetal-oxide synergism, with both bimetallic and oxide synergistically contributing to the observed catalytic activity and selectivity, manifests itself by accelerated formaldehyde-to-CO2 conversion at markedly lowered temperatures as compared to separate oxide and bimetal. Combination of suppression of full methanol dehydrogenation to CO on Pd1In1 inhibited inverse water–gas-shift reaction on In2O3 and fast water activation/conversion of formaldehyde is the key to the low-temperature activity and high CO2-selectivity of the supported catalyst. PMID:23226689

  18. Kinetics of hydrogen production of methanol reformation using Cu/ZnO/Al2O3 catalyst.

    PubMed

    Wu, Ho-Shing; Chung, Shun-Chang

    2007-01-01

    The catalytic performance of methanol reformation using Cu/ZnO/Al2O3 was investigated at low temperature. The operation conditions, such as composition of Cu, Zn, and Al, temperature, molar ratio of H2O/CH3OH, weight hourly space velocity, catalyst weight, and kind and flow rate of carrier gas (helium and air), were evaluated to obtain the optimum reaction condition. The catalysts were prepared by oxalic coprecipitation, coprecipitation, and polyol method. The weight composition of Cu, Zn, and Al prepared by oxalic coprecipitation was 15:15:5 by high-throughput screening of combinatorial chemistry method, which was the best Cu/ZnO/Al2O3 catalyst. The prepared catalysts showed high activity and selectivity towards hydrogen formation. The methanol conversion, production rate, and volumetric percentage of hydrogen using this best catalyst were larger than 95%, 0.65 mol/h x g and 59%, respectively, and the CO volumetric percentage was smaller than 0.22% when the reaction temperature was 240 degrees C. The size and dispersity of copper, and the activity and turnover frequency of the catalyst were calculated as well.

  19. Methanol production with elemental phosphorus byproduct gas: technical and economic feasibility

    SciTech Connect

    Lyke, S.E.; Moore, R.H.

    1981-01-01

    The technical and economic feasibility of using a typical, elemental, phosphorus byproduct gas stream in methanol production is assessed. The purpose of the study is to explore the potential of a substitute for natural gas. The first part of the study establishes economic tradeoffs between several alternative methods of supplying the hydrogen which is needed in the methanol synthesis process to react with CO from the off gas. The preferred alternative is the Battelle Process, which uses natural gas in combination with the off gas in an economically sized methanol plant. The second part of the study presents a preliminary basic design of a plant to (1) clean and compress the off gas, (2) return recovered phosphorus to the phosphorus plant, and (3) produce methanol by the Battelle Process. Use of elemental phosphorus byproduct gas in methanol production appears to be technically feasible. The Battelle Process shows a definite but relatively small economic advantage over conventional methanol manufacture based on natural gas alone. The process would be economically feasible only where natural gas supply and methanol market conditions at a phosphorus plant are not significantly less favorable than at competing methanol plants. If off-gas streams from two or more phosphorus plants could be combined, production of methanol using only offgas might also be economically feasible. The North American methanol market, however, does not seem likely to require another new methanol project until after 1990. The off-gas cleanup, compression, and phosphorus-recovery system could be used to produce a CO-rich stream that could be economically attractive for production of several other chemicals besides methanol.

  20. Methanol

    Integrated Risk Information System (IRIS)

    Methanol ; CASRN 67 - 56 - 1 Human health assessment information on a chemical substance is included in IRIS only after a comprehensive review of toxicity data by U.S . EPA health scientists from several program offices , regional offices , and the Office of Research and Development . Sections I ( H

  1. Viewpoint: methanol poisoning outbreak in Libya: a need for policy reforms.

    PubMed

    Taleb, Ziyad Ben; Bahelah, Raed

    2014-11-01

    We address the controversies surrounding a 2013 outbreak of methanol poisoning in Tripoli, Libya. We critically examine and systematically analyze the outbreak to highlight the lessons learned from this disaster and how to act properly to prevent similar outbreaks in future. Many health problems have been directly attributed to drinking alcohol; the type and quality of alcohol determines the detrimental effects. An unregulated and flourishing black market in alcohol is among the factors behind the Libyan tragedy, where approximately 90 deaths and about 1000 hospital admissions were reported. We reviewed gaps in local and regional alcohol policy, and highlighted the issue of illegally produced and home-made alcohol. Collaboration between countries in the region plus critical health and policy reforms in Libya, with emphasis on public health preparedness, can dramatically decrease morbidity and mortality associated with such outbreaks.

  2. Steam reforming of methanol over copper loaded anodized aluminum oxide (AAO) prepared through electrodeposition

    NASA Astrophysics Data System (ADS)

    Linga Reddy, E.; Karuppiah, J.; Lee, Hyun Chan; Kim, Dong Hyun

    2014-12-01

    In order to study the steam reforming of methanol (SRM) to produce hydrogen for fuel cells, porous γ-alumina support is developed on Al substrate using anodic oxidation process and copper catalyst particles are deposited homogeneously over anodic aluminum oxide (AAO) surface by electrodeposition method. We investigated the effect of electrodeposition time and hot water treatment (HWT) on the activity of catalysts for SRM reaction in the temperature range between 160 and 360 °C. The experimental results indicate that the SRM activity, CO2 and dimethyl ether (DME) selectivity's over Cu catalysts increased as the electrodeposition time increased from 30 to 120 s, further increment in deposition time of Cu have no significant effect on it. The rates of SRM conversion are found to be higher for the catalysts made from the supports obtained after HWT, which may be due to the enhancement in the surface area of AAO support. It is found that the SRM activity and CO2 selectivity strongly depended upon the free exposed copper sites available for methanol adsorption and reaction, and DME in products is mainly observed in the reaction temperature range between 300 and 350 °C and it is higher for the catalysts with low Cu content.

  3. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect

    Paul A. Erickson

    2004-04-01

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the first such report that will be submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1--December 31, 2003. This quarter saw progress in three areas. These areas are: (1) Evaluations of coal based methanol and the fuel cell grade baseline fuel, (2) Design and set up of the autothermal reactor, as well as (3) Set up and data collection of baseline performance using the steam reformer. All of the projects are proceeding on schedule. During this quarter one conference paper was written that will be presented at the ASME Power 2004 conference in March 2004, which outlines the research direction and basis for looking at the coal to hydrogen pathway.

  4. Autothermal reforming of natural gas to synthesis gas:reference: KBR paper #2031.

    SciTech Connect

    Mann, David; Rice, Steven, D.

    2007-04-01

    This Project Final Report serves to document the project structure and technical results achieved during the 3-year project titled Advanced Autothermal Reformer for US Dept of Energy Office of Industrial Technology. The project was initiated in December 2001 and was completed March 2005. It was a joint effort between Sandia National Laboratories (Livermore, CA), Kellogg Brown & Root LLC (KBR) (Houston, TX) and Sued-Chemie (Louisville, KY). The purpose of the project was to develop an experimental capability that could be used to examine the propensity for soot production in an Autothermal Reformer (ATR) during the production of hydrogen-carbon monoxide synthesis gas intended for Gas-to-Liquids (GTL) applications including ammonia, methanol, and higher hydrocarbons. The project consisted of an initial phase that was focused on developing a laboratory-scale ATR capable of reproducing conditions very similar to a plant scale unit. Due to budget constraints this effort was stopped at the advanced design stages, yielding a careful and detailed design for such a system including ATR vessel design, design of ancillary feed and let down units as well as a PI&D for laboratory installation. The experimental effort was then focused on a series of measurements to evaluate rich, high-pressure burner behavior at pressures as high as 500 psi. The soot formation measurements were based on laser attenuation at a view port downstream of the burner. The results of these experiments and accompanying calculations show that soot formation is primarily dependent on oxidation stoichiometry. However, steam to carbon ratio was found to impact soot production as well as burner stability. The data also showed that raising the operating pressure while holding mass flow rates constant results in considerable soot formation at desirable feed ratios. Elementary reaction modeling designed to illuminate the role of CO{sub 2} in the burner feed showed that the conditions in the burner allow for the

  5. Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Men, Yong; Wang, Jinguo; He, Rong; Wang, Yuanqiang

    2017-10-01

    Effects of supports over Pt/In2O3/MOx catalysts with extremely low loading of Pt (1 wt%) and In2O3 loadings (3 wt%) are investigated for the hydrogen production of methanol steam reforming (MSR) in the temperature range of 250-400 °C. Under practical conditions without the pre-reduction, the 1Pt/3In2O3/CeO2 catalyst shows the highly efficient catalytic performance, achieving almost complete methanol conversion (98.7%) and very low CO selectivity of 2.6% at 325 °C. The supported Pt/In2O3 catalysts are characterized by means of Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), high-resolution transmission microscopy (HRTEM), temperature programmed reduction with hydrogen (H2-TPR), CO pulse chemisorption, temperature programmed desorption of methanol and water (CH3OH-TPD and H2O-TPD). These demonstrate that the nature of catalyst support of Pt/In2O3/MOx plays crucial roles in the Pt dispersion associated by the strong interaction among Pt, In2O3 and supporting materials and the surface redox properties at low temperature, and thus affects their capability to activate the reactants and determines the catalytic activity of methanol steam reforming. The superior 1Pt/3In2O3/CeO2 catalyst, exhibiting a remarkable reactivity and stability for 32 h on stream, demonstrates its potential for efficient hydrogen production of methanol steam reforming in mobile and de-centralized H2-fueled PEMFC systems.

  6. Methanol Steam Reforming Promoted by Molten Salt-Modified Platinum on Alumina Catalysts

    PubMed Central

    Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter

    2014-01-01

    We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the “solid catalyst with ionic liquid layer” (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass %. PMID:25124120

  7. Methanol steam reforming promoted by molten salt-modified platinum on alumina catalysts.

    PubMed

    Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter

    2014-09-01

    We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the "solid catalyst with ionic liquid layer" (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Polymer electrolyte membrane fuel cell grade hydrogen production by methanol steam reforming: A comparative multiple reactor modeling study

    NASA Astrophysics Data System (ADS)

    Katiyar, Nisha; Kumar, Shashi; Kumar, Surendra

    2013-12-01

    Analysis of a fuel processor based on methanol steam reforming has been carried out to produce fuel cell grade H2. Six reactor configurations namely FBR1 (fixed bed reactor), MR1 (H2 selective membrane reactor with one reaction tube), MR2 (H2 selective membrane reactor with two reaction tubes), FBR2 (FBR1 + preferential CO oxidation (PROX) reactor), MR3 (MR1 + PROX), and MR4 (MR2 + PROX) are evaluated by simulation to identify the suitable processing scheme. The yield of H2 is significantly affected by H2 selective membrane, residence time, temperature, and pressure conditions at complete methanol conversion. The enhancement in residence time in MR2 by using two identical reaction tubes provides H2 yield of 2.96 with 91.25 mol% recovery at steam/methanol ratio of 1.5, pressure of 2 bar and 560 K temperature. The exit retentate gases from MR2 are further treated in PROX reactor of MR4 to reduce CO concentration to 4.1 ppm to ensure the safe discharge to the environment. The risk of carbon deposition on reforming catalyst is highly reduced in MR4, and MR4 reactor configuration generates 7.4 NL min-1 of CO free H2 from 0.12 mol min-1 of methanol which can provide 470 W PEMFC feedstock requirement. Hence, process scheme in MR4 provides a compact and innovative fuel cell grade H2 generating unit.

  9. Heat and fuel coupled operation of a high temperature polymer electrolyte fuel cell with a heat exchanger methanol steam reformer

    NASA Astrophysics Data System (ADS)

    Schuller, G.; Vázquez, F. Vidal; Waiblinger, W.; Auvinen, S.; Ribeirinha, P.

    2017-04-01

    In this work a methanol steam reforming (MSR) reactor has been operated thermally coupled to a high temperature polymer electrolyte fuel cell stack (HT-PEMFC) utilizing its waste heat. The operating temperature of the coupled system was 180 °C which is significantly lower than the conventional operating temperature of the MSR process which is around 250 °C. A newly designed heat exchanger reformer has been developed by VTT (Technical Research Center of Finland LTD) and was equipped with commercially available CuO/ZnO/Al2O3 (BASF RP-60) catalyst. The liquid cooled, 165 cm2, 12-cell stack used for the measurements was supplied by Serenergy A/S. The off-heat from the electrochemical fuel cell reaction was transferred to the reforming reactor using triethylene glycol (TEG) as heat transfer fluid. The system was operated up to 0.4 A cm-2 generating an electrical power output of 427 Wel. A total stack waste heat utilization of 86.4% was achieved. It has been shown that it is possible to transfer sufficient heat from the fuel cell stack to the liquid circuit in order to provide the needed amount for vaporizing and reforming of the methanol-water-mixture. Furthermore a set of recommendations is given for future system design considerations.

  10. Federal Onshore Oil and Gas Leasing Reform Act of 1987

    SciTech Connect

    Not Available

    1988-01-01

    This book was designed for persons who lease federal lands for oil and gas development and who require an understanding of both the current and historic laws relating to leasing. The manual from this workshop is useful as a reference tool for attorneys, landsmen, and others who require information on the original Mineral Leasing Act of 1920 and all subsequent amendments, including the Federal Onshore Oil and Gas Leasing Reform Act of 1987 and selected legislative history. Included in this manual is a lengthy discussion of the Oil and Gas Leasing Reform Act, along with a reference section containing full text of: Mineral Leasing Act of February 25, 1920, with all amendments including the Federal Onshore Oil and Gas Leasing Reform Act of 1987, comprehensively footnoted with subject notations and comments; Senate Report 100-188: Committee Report on Leasing Reform Act; House Report 100-495: Joint Explanatory Statement on Leasing Reform Act; Testimony of the Independent Petroleum Association of Mountain States to House Interior Subcommittee on Mining and Natural Resources.

  11. METHANOL PRODUCTION FROM BIOMASS AND NATURAL GAS AS TRANSPORTATION FUEL

    EPA Science Inventory

    Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (i) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the U.S., (ii) minimizes em...

  12. METHANOL PRODUCTION FROM BIOMASS AND NATURAL GAS AS TRANSPORTATION FUEL

    EPA Science Inventory

    Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (i) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the U.S., (ii) minimizes em...

  13. Mm/submm Study of Gas-Phase Photoproducts from Methanol Interstellar Ice Analogues

    NASA Astrophysics Data System (ADS)

    Mesko, AJ; Smith, Houston Hartwell; Milam, Stefanie N.; Widicus Weaver, Susanna L.

    2016-06-01

    Icy grain reactions have gained quite the popularity in the astrochemistry community to explain the formation of complex organic molecules. Through temperature programmed desorption and photolysis experiments we use rotational spectroscopy to measure the gas-phase products of icy grain reactions. Previous results include testing detection limits of the system by temperature programmed desorption of methanol and water ices, photochemistry of gas-phase methanol, and detection of photodesorbed water from a pure water ice surface. Current work that will be discussed focuses on the detection of gas-phase CO and other photoproducts from an ice surface.

  14. [Gas chromatographic analysis of methyl methacrylate and methanol in its esterification mixture].

    PubMed

    Wu, C; Zeng, C

    1997-09-01

    A fast, simple and accurate gas chromatographic method is established for determining the content of methyl methacrylate (MMA) and methanol in the esterification mixture of methacrylic acid with methanol in the presence of sulfuric acid. In the measurement, polyethylene glycol-20M/sodium hydroxide was adopted as liquid phase, coated on the acid-washed 201 pink support. n-Heptane was used as the internal standard and the correction factors of MMA and methanol obtained were 1.65 and 4.10, respectively. It is significant for this method to be used to control MMA production by acetone cyanohydrin method and to improve the production technology.

  15. Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas.

    PubMed

    Patel, Sanjay K S; Mardina, Primata; Kim, Dongwook; Kim, Sang-Yong; Kalia, Vipin C; Kim, In-Won; Lee, Jung-Kul

    2016-10-01

    Raw biogas can be an alternative feedstock to pure methane (CH4) for methanol production. In this investigation, we evaluated the methanol production potential of Methylosinus sporium from raw biogas originated from an anaerobic digester. Furthermore, the roles of different gases in methanol production were investigated using synthetic gas mixtures of CH4, carbon dioxide (CO2), and hydrogen (H2). Maximum methanol production was 5.13, 4.35, 6.28, 7.16, 0.38, and 0.36mM from raw biogas, CH4:CO2, CH4:H2, CH4:CO2:H2, CO2, and CO2:H2, respectively. Supplementation of H2 into raw biogas increased methanol production up to 3.5-fold. Additionally, covalent immobilization of M. sporium on chitosan resulted in higher methanol production from raw biogas. This study provides a suitable approach to improve methanol production using low cost raw biogas as a feed containing high concentrations of H2S (0.13%). To our knowledge, this is the first report on methanol production from raw biogas, using immobilized cells of methanotrophs.

  16. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Gas meter or flow instrumentation... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas...

  17. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Gas meter or flow instrumentation... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas...

  18. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Gas meter or flow instrumentation... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas...

  19. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Gas meter or flow instrumentation... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas...

  20. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas...

  1. Steam reforming of methanol over oxide decorated nanoporous gold catalysts: a combined in situ FTIR and flow reactor study.

    PubMed

    Shi, J; Mahr, C; Murshed, M M; Gesing, T M; Rosenauer, A; Bäumer, M; Wittstock, A

    2017-03-29

    Methanol as a green and renewable resource can be used to generate hydrogen by reforming, i.e., its catalytic oxidation with water. In combination with a fuel cell this hydrogen can be converted into electrical energy, a favorable concept, in particular for mobile applications. Its realization requires the development of novel types of structured catalysts, applicable in small scale reactor designs. Here, three different types of such catalysts were investigated for the steam reforming of methanol (SRM). Oxides such as TiO2 and CeO2 and mixtures thereof (Ce1Ti2Ox) were deposited inside a bulk nanoporous gold (npAu) material using wet chemical impregnation procedures. Transmission electron and scanning electron microscopy reveal oxide nanoparticles (1-2 nm in size) abundantly covering the strongly curved surface of the nanoporous gold host (ligaments and pores on the order of 40 nm in size). These catalysts were investigated in a laboratory scaled flow reactor. First conversion of methanol was detected at 200 °C. The measured turn over frequency at 300 °C of the CeOx/npAu catalyst was 0.06 s(-1). Parallel investigation by in situ infrared spectroscopy (DRIFTS) reveals that the activation of water and the formation of OHads are the key to the activity/selectivity of the catalysts. While all catalysts generate sufficient OHads to prevent complete dehydrogenation of methanol to CO, only the most active catalysts (e.g., CeOx/npAu) show direct reaction with formic acid and its decomposition to CO2 and H2. The combination of flow reactor studies and in operando DRIFTS, thus, opens the door to further development of this type of catalyst.

  2. Non-Faradaic electrochemical promotion of catalytic methane reforming for methanol production

    DOEpatents

    Fan, Qinbai

    2016-11-22

    A method of converting methane to methanol at low temperatures utilizes a reactor including an anode, a cathode, a membrane separator between the anode and cathode, a metal oxide catalyst at the anode and a hydrogen recovery catalyst at the cathode. The method can convert methane to methanol at as rate exceeding the theoretical Faradaic rate due to the contribution of an electrochemical reaction occurring in tandem with a Faradaic reaction.

  3. COMPARISON OF SOIL VOCS MEASURED BY SOIL GAS, HEATED HEADSPACE, AND METHANOL EXTRACTION TECHNIQUES

    EPA Science Inventory

    Comparsions of soil volatile organic compound (VOC) measurement techniques and soil properties expected to influence these measurements were performed at two dissimilar sites. A total of 41 soil gas, 52 heated headspace, and 51 methanol extraction/purge-and-trap measurements were...

  4. Non-intrusive detection of methanol in gas phase using infrared degenerate four-wave mixing

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Sahlberg, A. L.; Nilsson, H.; Lundgren, E.; Zetterberg, J.

    2015-11-01

    Sensitive and non-intrusive detection of gas-phase methanol with high spatial and temporal resolution has for the first time been reported using mid-infrared degenerate four-wave mixing (IR-DFWM). IR-DFWM spectra of methanol have been successfully recorded in nitrogen-diluted gas flows at room temperature and at 300 °C, by probing ro-vibrational transitions belonging to the fundamental C-H stretching modes, ν 2 and ν 9, and the O-H stretching mode, ν 1. The detection limit of methanol vapor at room temperature and atmospheric pressure is estimated to be 250 ppm with the present setup. Potential interference from CH4 and CO2 is discussed from recorded IR-DFWM spectra of CH4 and CO2, and it was found that detection of methanol free from CH4 and CO2 interference is possible. These results show the potential of the detection of methanol with IR-DFWM for applications in both combustion and catalytic environments, such as CO2 hydrogenation and CH4 oxidation.

  5. Hydrogen enrichment of synthesis gas for once-through methanol production: Final report

    SciTech Connect

    Cavaliere, G.F.; Riley, C.J.

    1987-04-01

    A previous report, EPRI AP-3749, included the economics of producing methanol fuel from coal gasifiers by a once-through methanol synthesis plant configuration, using the unconverted gas as a gas turbine fuel in a combined-cycle power plant. In that study, the CO-rich gas was adjusted by shift conversion to a composition suitable for methanol synthesis. In the present study, the shift conversion method of gas composition adjustment was compared against several CO-rejection methods, with the rejected CO-rich gas used as fuel for production of power. All cases assumed the same gasification plant size. As a result, the CO-rejection methods produced more electric power and less methanol than the base case of shift conversion. Two alternatives, one based on physical adsorption and one on chemical absorption, were quickly eliminated as uncompetitive on cost grounds and unproven commercially on this scale. The remaining alternatives are membrane separation and cryogenic fractionation. Flowsheets and cost estimates were prepared for these cases and for the shift conversion base case. Total required revenues were calculated for all cases. Then, making reasonable assumptions of the range of unit revenue values of produced methanol and power, competitiveness of the alternatives with the base case was estimated. Some unit revenue combinations gave small revenue advantages for the alternatives, while others gave small advantages for the base case. None of the revenue differentials can be regarded as significant when compared with the accuracy levels of the total cost and income figures being compared. Therefore, both the membrane and cryogenic based process routes are judged to be competitive with the shift-based process, but none of the processes is clearly superior to another using current economic criteria. 1 ref., 32 figs., 19 tabs.

  6. Methanol Emission from Leaves (Enzymatic Detection of Gas-Phase Methanol and Relation of Methanol Fluxes to Stomatal Conductance and Leaf Development).

    PubMed Central

    Nemecek-Marshall, M.; MacDonald, R. C.; Franzen, J. J.; Wojciechowski, C. L.; Fall, R.

    1995-01-01

    We recently reported the detection of methanol emissions from leaves (R. MacDonald, R. Fall [1993] Atmos Environ 27A: 1709-1713). This could represent a substantial flux of methanol to the atmosphere. Leaf methanol production and emission have not been investigated in detail, in part because of difficulties in sampling and analyzing methanol. In this study we used an enzymatic method to convert methanol to a fluorescent product and verified that leaves from several species emit methanol. Methanol was emitted almost exclusively from the abaxial surfaces of hypostomatous leaves but from both surfaces of amphistomatous leaves, suggesting that methanol exits leaves via stomates. The role of stomatal conductance was verified in experiments in which stomates were induced to close, resulting in reduced methanol. Free methanol was detected in bean leaf extracts, ranging from 26.8 [mu]g g-1 fresh weight in young leaves to 10.0 [mu]g g-1 fresh weight in older leaves. Methanol emission was related to leaf development, generally declining with increasing leaf age after leaf expansion; this is consistent with volatilization from a cellular pool that declines in older leaves. It is possible that leaf emission could be a major source of methanol found in the atmosphere of forests. PMID:12228547

  7. Liquid phase low temperature method for production of methanol from synthesis gas and catalyst formulations therefor

    DOEpatents

    Mahajan, Devinder

    2005-07-26

    The invention provides a homogenous catalyst for the production of methanol from purified synthesis gas at low temperature and low pressure which includes a transition metal capable of forming transition metal complexes with coordinating ligands and an alkoxide, the catalyst dissolved in a methanol solvent system, provided the transition metal complex is not transition metal carbonyl. The coordinating ligands can be selected from the group consisting of N-donor ligands, P-donor ligands, O-donor ligands, C-donor ligands, halogens and mixtures thereof.

  8. Systematic Search for Chemical Reactions in Gas Phase Contributing to Methanol Formation in Interstellar Space.

    PubMed

    Gamez-Garcia, Victoria G; Galano, Annia

    2017-10-05

    A massive search for chemical routes leading to methanol formation in gas phase has been conducted using computational chemistry, at the CBS-QB3 level of theory. The calculations were performed at five different temperatures (100, 80, 50, 20, and 10 K) and at three pressures (0.1, 0.01, and 0.001 atm) for each temperature. The search was focused on identifying reactions with the necessary features to be viable in the interstellar medium (ISM). A searching strategy was applied to that purpose, which allowed to reduce an initial set of 678 possible reactions to a subset of 11 chemical routes that are recommended, for the first time, as potential candidates for contributing to methanol formation in the gas phase of the ISM. They are all barrier-less, and thus they are expected to take place at collision rates. Hopefully, including these reactions in the currently available models, for the gas-phase methanol formation in the ISM, would help improving the predicted fractional abundance of this molecule in dark clouds. Further investigations, especially those dealing with grain chemistry and electronic excited states, would be crucial to get a complete picture of the methanol formation in the ISM.

  9. Trinidad to build fifth methanol plant

    SciTech Connect

    1997-04-09

    Lurgi confirms it has been awarded a lump sum turnkey contract to build Trinidad`s fifth methanol plant. The facility will be owned by Titan Methanol, whose shareholders are Beacon Group Energy Investment Fund (75%) Amoco Chemical (15%), and Saturn Methanol (10%). The 2,500-m.t./day unit at Point Lisas, which is scheduled to come onstream at the end of 1999, will be Trinidad`s largest methanol unit. Saturn Methanol will be responsible for methanol offtake. Lurgi will use its combined reforming process for the gas section of the unit and its low-pressure methanol synthesis technology. Lurgi has used the same processes in plants in Malaysia and Indonesia.

  10. Preparation of Cu–Fe–Al–O nanosheets and their catalytic application in methanol steam reforming for hydrogen production

    NASA Astrophysics Data System (ADS)

    Wang, Leilei; Zhang, Fan; Miao, Dinghao; Zhang, Lei; Ren, Tiezhen; Hui, Xidong; He, Zhanbing

    2017-03-01

    Candidates of precious metal catalysts, prepared in a facile and environmental way and showing high catalytic performances at low temperatures, are always highly desired by industry. In this work, large-scale Cu–Fe–Al–O nanosheets were synthesized by facile dealloying of Al–Cu–Fe alloys in NaOH solution. The composition, microscopic morphology, and crystal structure were respectively investigated using wavelength-dispersive x-ray spectroscopy with an electron probe microanalyzer, scanning electron microscopy, x-ray diffraction, and transmission electron microscopy. Furthermore, we found that the 2D Cu–Fe–Al–O nanosheets gave excellent catalytic performances in hydrogen production by methanol steam reforming at relatively low temperatures, e.g. 513 K.

  11. Insights on the effective incorporation of a foam-based methanol reformer in a high temperature polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Avgouropoulos, George; Papavasiliou, Joan; Ioannides, Theophilos; Neophytides, Stylianos

    2015-11-01

    Highly active Al-doped CuMnOx catalyst supported on metallic copper foam was prepared via the combustion method and placed adjacent to the anode electrocatalyst of a high temperature PEM fuel cell operating at 200-210 °C. The addition of aluminum oxide in the catalyst composition enhanced the specific surface area (19.1 vs. 8.6 m2 g-1) and the reducibility of the Cu-Mn spinel oxide. Accordingly, the catalytic performance of CuMnOx was also improved. The doped sample is up to 2.5 times more active than the undoped sample at 200 °C, depending on the methanol concentration at the inlet, while CO selectivity is less than 0.8% in all cases. A membrane-electrode assembly comprising the ADVENT cross-linked TPS® high-temperature polymer electrolyte was integrated with the Cu-based methanol reformer in an Internal Reforming Methanol Fuel Cell (IRMFC). In order to avoid extensive poisoning of the reforming catalyst by H3PO4, a thin separation plate was placed between the reforming catalyst and the electrooxidation catalyst. Preliminary results obtained from a single-cell laboratory prototype demonstrated the improved functionality of the unit. Indeed, promising electrochemical performance was obtained during the first 24 h, during which the required H2 for achieving 580 mV at 0.2 A cm-2, was supplied from the reformer.

  12. Electron attachment to oxygen, water, and methanol, in various drift chamber gas mixtures

    NASA Astrophysics Data System (ADS)

    Huk, M.; Igo-Kemenes, P.; Wagner, A.

    1988-04-01

    Attachment of electrons to oxygen, water, and methanol molecules has been studied in various gas mixtures based on argon, methane and isobutane, a class of gases often used to operate large drift chambers. The measurements were performed using a drift chamber in which the conditions prevailing in large experiments could be closely reproduced. Attachment coefficients were extracted as a function of the gas composition and pressure, the drift field, and the concentration of the molecules under investigation. The observed effects are compared to other measurements, and are discussed within the frame of physical models.

  13. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Gas meter or flow instrumentation... Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1320-90 Gas meter or flow..., methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to...

  14. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1320-90 Gas meter or flow..., methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to...

  15. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Gas meter or flow instrumentation... Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1320-90 Gas meter or flow..., methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to...

  16. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Gas meter or flow instrumentation... Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1320-90 Gas meter or flow..., methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to...

  17. Electrospray mass spectrometry of methanol and water solutions suppression of electric discharge with SF6 gas.

    PubMed

    Ikonomou, M G; Blades, A T; Kebarle, P

    1991-12-01

    An equation by D. P. H. Smith predicts the capillary voltage required for the onset of electrospray (ES). For different solvents the voltage increases with the square root of the surface tension. Water requires a potential that is 1.8 times higher than that for methanol. This is verified experimentally. The higher potential required for water leads to ES in the presence of corona electric discharge. For low total ES plus corona currents, the electrosprayed analyte ion intensity is not adversely affected by the presence of discharge. At high total currents, there is a large decrease of analyte sensitivity. The sensitivity decrease is probably due to adverse space charge effect at high currents. The discharge can be suppressed by adding sulfur hexafluoride to the ambient gas. Both sensitivity and signal stability are improved. However, the sensitivity still remains lower by a factor of - 4 relative to that observed with methanol. This is attributed to lower efficiency of gas-phase ion formation from charged water, relative to methanol, droplets.

  18. Stepwise Internal Energy Change of Protonated Methanol Clusters By Using the Inert Gas Tagging.

    PubMed

    Shimamori, Takuto; Kuo, Jer-Lai; Fujii, Asuka

    2016-11-23

    Structural isomer population of a hydrogen-bonded cluster generally depends on temperature. Therefore, determination of an isomer population profile in a wide temperature range is important to understand the nature of hydrogen bond networks of the cluster. To explore an isomer population profile, stepwise changes of internal vibrational energy of a protonated hydrogen-bonded cluster are performed by inert gas tagging. We observe infrared spectra of the protonated methanol pentamer with various tag species. The bare protonated methanol pentamer practically has only two possible isomer types. With the tagging, the relative population of the two isomer types changes according to the binding energy with the tag species. The observed relative population follows its theoretically predicted temperature dependence.

  19. Method for making methanol

    DOEpatents

    Mednick, R. Lawrence; Blum, David B.

    1986-01-01

    Methanol is made in a liquid-phase methanol reactor by entraining a methanol-forming catalyst in an inert liquid and contacting said entrained catalyst with a synthesis gas comprising hydrogen and carbon monoxide.

  20. Method for making methanol

    DOEpatents

    Mednick, R. Lawrence; Blum, David B.

    1987-01-01

    Methanol is made in a liquid-phase methanol reactor by entraining a methanol-forming catalyst in an inert liquid and contacting said entrained catalyst with a synthesis gas comprising hydrogen and carbon monoxide.

  1. Selective oxidation of low-concentration coal mine gas to methanol in oleum over PbSO4 catalyst

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Li, Fan; Zhu, Li-Hua; Wu, Yang

    2017-06-01

    Selective oxidation of low-concentration coal mine gas to methanol was carried out over PbSO4 catalyst in a concentration of 20% oleum. The effects of reaction temperature, reaction pressure, reaction time and catalyst dosage on the conversion of methane in gas as well as the yield of methanol were studied. What is more, the reaction mechanism of selective oxidation of low-concentration coal mine gas was also investigated. The results showed that the optimal reaction conditions are determined under the reaction temperature of 180°, the reaction pressure of 5MPa, the reaction time of 3h, and the PbSO4 dosage of 300μmol for selective oxidation of low-concentration coal mine gas to methanol by PbSO4 catalyst in oleum. Under this technological condition, the conversion ratio of methane in gas is 8.56% while the methanol selectivity is 78.59%. Mechanism research showed that methane in gas is transformed into methyl bisulfate firstly. Besides, the methyl bisulfate is hydrolyzed into methanol. The selective oxidation of low-concentration coal mine gas is following the mechanism of electrophilic substitution.

  2. Methanol incorporation in clathrate hydrates and the implications for oil and gas pipeline flow assurance and icy planetary bodies.

    PubMed

    Shin, Kyuchul; Udachin, Konstantin A; Moudrakovski, Igor L; Leek, Donald M; Alavi, Saman; Ratcliffe, Christopher I; Ripmeester, John A

    2013-05-21

    One of the best-known uses of methanol is as antifreeze. Methanol is used in large quantities in industrial applications to prevent methane clathrate hydrate blockages from forming in oil and gas pipelines. Methanol is also assigned a major role as antifreeze in giving icy planetary bodies (e.g., Titan) a liquid subsurface ocean and/or an atmosphere containing significant quantities of methane. In this work, we reveal a previously unverified role for methanol as a guest in clathrate hydrate cages. X-ray diffraction (XRD) and NMR experiments showed that at temperatures near 273 K, methanol is incorporated in the hydrate lattice along with other guest molecules. The amount of included methanol depends on the preparative method used. For instance, single-crystal XRD shows that at low temperatures, the methanol molecules are hydrogen-bonded in 4.4% of the small cages of tetrahydrofuran cubic structure II hydrate. At higher temperatures, NMR spectroscopy reveals a number of methanol species incorporated in hydrocarbon hydrate lattices. At temperatures characteristic of icy planetary bodies, vapor deposits of methanol, water, and methane or xenon show that the presence of methanol accelerates hydrate formation on annealing and that there is unusually complex phase behavior as revealed by powder XRD and NMR spectroscopy. The presence of cubic structure I hydrate was confirmed and a unique hydrate phase was postulated to account for the data. Molecular dynamics calculations confirmed the possibility of methanol incorporation into the hydrate lattice and show that methanol can favorably replace a number of methane guests.

  3. Methanol incorporation in clathrate hydrates and the implications for oil and gas pipeline flow assurance and icy planetary bodies

    PubMed Central

    Shin, Kyuchul; Udachin, Konstantin A.; Moudrakovski, Igor L.; Leek, Donald M.; Alavi, Saman; Ratcliffe, Christopher I.; Ripmeester, John A.

    2013-01-01

    One of the best-known uses of methanol is as antifreeze. Methanol is used in large quantities in industrial applications to prevent methane clathrate hydrate blockages from forming in oil and gas pipelines. Methanol is also assigned a major role as antifreeze in giving icy planetary bodies (e.g., Titan) a liquid subsurface ocean and/or an atmosphere containing significant quantities of methane. In this work, we reveal a previously unverified role for methanol as a guest in clathrate hydrate cages. X-ray diffraction (XRD) and NMR experiments showed that at temperatures near 273 K, methanol is incorporated in the hydrate lattice along with other guest molecules. The amount of included methanol depends on the preparative method used. For instance, single-crystal XRD shows that at low temperatures, the methanol molecules are hydrogen-bonded in 4.4% of the small cages of tetrahydrofuran cubic structure II hydrate. At higher temperatures, NMR spectroscopy reveals a number of methanol species incorporated in hydrocarbon hydrate lattices. At temperatures characteristic of icy planetary bodies, vapor deposits of methanol, water, and methane or xenon show that the presence of methanol accelerates hydrate formation on annealing and that there is unusually complex phase behavior as revealed by powder XRD and NMR spectroscopy. The presence of cubic structure I hydrate was confirmed and a unique hydrate phase was postulated to account for the data. Molecular dynamics calculations confirmed the possibility of methanol incorporation into the hydrate lattice and show that methanol can favorably replace a number of methane guests. PMID:23661058

  4. Isobutanol-methanol mixtures from synthesis gas. Quarterly technical progress report, 1 January--31 March 1995

    SciTech Connect

    Iglesia, E.

    1995-04-24

    The contract objectives are: to design a catalytic material for the synthesis of isobutanol with a productivity of 200 g isoalcohols/g-cat-h and a molar isobutanol/methanol ratio near unity; and to develop structure-function rules for the design of catalysts for the selective conversion of synthesis gas to isoalcohols. Several catalyst samples have been prepared by controlled co-precipitation from aqueous mixtures of metal nitrates. The composition of these materials is based on reports of best available catalysts for methanol synthesis, for isobutanol synthesis, and for methanol coupling reactions. The mechanical construction and pressure testing of the microreactor system has been completed. The in-situ infrared spectrophotometer equipped with a nitrogen purge is fully operational. The temperature-programmed surface reaction (TPSR) unit has been designed; construction will begin during the third quarter FY`95. Air Products and Chemicals has provided us with a sample of a BASF isobutanol synthesis catalyst and with catalytic data obtained on this catalyst in a LaPorte test run. This catalyst will serve as a benchmark for the certification of our new microreactor system.

  5. Isobutanol-methanol mixtures from synthesis gas. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    Eglesia, E.

    1995-10-24

    Mechanistic and kinetic studies of methanol and ethanol coupling reactions on Cs/Cu/ZnO and Cu/ZnO/MnO catalysts using isotopically-labeled compounds have confirmed that coupling reactions proceed via intermediate dehydrogenation of alcohols to aldehydes. Ethanol coupling reactions are much faster than those of methanol because ethanol forms a more thermodynamically favored intermediate (acetaldehyde), with aldol condensation pathways kinetically available for chain growth. Cs decreases the rate of formation of aldehydes in alcohol dehydrogenation reaction and inhibits the undesired conversion of methanol and ethanol to synthesis gas (CO/H{sub 2}). Construction and start-up of the Catalytic Microreactor Unit (CMRU) for high pressure isobutanol synthesis studies have been completed. Initial certification runs have reproduced catalytic CO conversion rates on a standard APCI material (Cs/Cu/ZnO/Al{sub 2}O{sub 3}). Condensation of higher alcohols in the transfer lines appears to be responsible for the observed low apparent selectivity to higher alcohols. The design and construction of the Temperature-Programmed Surface Reaction (TPSR) Unit for the study of the adsorption and reaction properties of alcohols and other oxygenates on isobutanol, synthesis catalysts and components is complete. The reduction of CuO powder and of a Cs/Cu/ZnO catalyst were used to certify the apparatus before proceeding with alcohol adsorption and reaction studies.

  6. Determination of methanol in pulp washing filtrates by desiccated full evaporation headspace gas chromatography.

    PubMed

    Hu, Hui-Chao; Chai, Xin-Sheng

    2012-01-27

    This paper reports on a desiccated full evaporation headspace gas chromatographic (FE HS-GC) technique for determination of the methanol content in dilute mill effluents. Anhydrous K(2)CO(3) was selected as the preferred salt for eliminating the water in the sample in the headspace sample vial. The results showed that the addition of 12 g K(2)CO(3) made it possible to introduce a larger sample size (up to 1 mL) into the FE HS-GC measurement, thereby increasing the sensitivity of the technique. At the given equilibration temperature (105°C), a near-complete mass transfer of methanol from the liquid phase to vapor phase (headspace) was achieved within 10 min. Replicate samples showed that the relative standard deviation of the method was less than 1.5%. Further, the limit of quantification (LOQ) was 0.12 μg and the recovery ranged from 95 to 104%. The present method greatly improves the methanol detection sensitivity in the FE HS-GC method and has the added advantage of being simple, rapid and accurate.

  7. A High-Sensitivity Gas Sensor Toward Methanol Using ZnO Microrods: Effect of Operating Temperature

    NASA Astrophysics Data System (ADS)

    Sinha, M.; Mahapatra, R.; Mondal, B.; Ghosh, R.

    2017-04-01

    In the present work, zinc oxide (ZnO) microrods with the average diameter of 350 nm have been synthesized on fluorine doped tin oxide (FTO) substrate using a hydrothermal reaction process at a low temperature of 90°C. The methanol gas sensing behaviour of as-synthesized ZnO microrods have been studied at different operating temperatures (100-300°C). The gas sensing results show that the ZnO microrods exhibit excellent sensitivity, selectivity, and stability toward methanol gas at 300°C. The as-grown ZnO microrods sensor also shows the good sensitivity for methanol even at a low operating temperature of 100°C. The ultra-high sensitivity of 4.41 × 104% [gas sensitivity, S g = ( I g - I a)/ I a × 100%] and 5.11 × 102% to 100 ppm methanol gas at a temperature of 300°C and 100°C, respectively, has been observed. A fast response time of 200 ms and 270 ms as well as a recovery time of 120 ms and 1330 ms to methanol gas have also been found at an operating temperature of 300°C and 100°C, respectively. The response and recovery time decreases with increasing operation temperature of the sensor.

  8. Assessment of methanol electro-oxidation for direct methanol-air fuel cells

    SciTech Connect

    Fritts, S.D.; Sen, R.K.

    1988-07-01

    The Office of Energy Storage and Distribution of the US Department of Energy (DOE) supports the development of a methanol-air fuel cell for transportation application. The approach used at Los Alamos National Laboratory converts the methanol fuel to a hydrogen-rich gas in a reformer, then operates the fuel cell on hydrogen and air. The reformer tends to be bulky (raising vehicle packaging problems), has a long startup period, and is not well suited for the transient operation required in a vehicle. Methanol, however, can be oxidized electrochemically in the fuel cell. If this process can be conducted efficiently, a direct methanol-air fuel cell can be used, which does not require a reformer. The objective of this study is to assess the potential of developing a suitable catalyst for the direct electrochemical oxidation of methanol. The primary conclusion of this study is that no acceptable catalysts exist can efficiently oxidize methanol electrochemically and have the desired cost and lifetime for vehicle applications. However, recent progress in understanding the mechanism of methanol oxidation indicates that a predictive base can be developed to search for methanol oxidation catalysts and can be used to methodically develop improved catalysts. Such an approach is strongly recommended. The study also recommends that until further progress in developing high-performance catalysts is achieved, research in cell design and testing is not warranted. 43 refs., 12 figs., 1 tab.

  9. Stepwise Internal Energy Control for Protonated Methanol Clusters by Using the Inert Gas Tagging

    NASA Astrophysics Data System (ADS)

    Shimamori, Takuto; Kuo, Jer-Lai; Fujii, Asuka

    2016-06-01

    Preferred isomer structures of hydrogen-bonded clusters should depend on their temperature because of the entropy term in the free energy. To observe such temperature dependence, we propose a new approach to control the internal energy (vibrational temperature) of protonated clusters in the gas phase. We performed IR spectroscopy of protonated methanol clusters, H+ (CH{_3}OH) {_n}, n= 5 and 7, with the tagging by various inert gas species (Ar, CO{_2}, CO, CS{_2}, C{_2}H{_2}, and C{_6}H{_6}). We found that vibrational temperature of the tagged clusters raises with increase of the interaction energy with the tag species, and the observed cluster structures follow the theoretical prediction of the temperature dependence of the isomer population.

  10. Underground coal gasification (UCG) gas to methanol and MTG-gasoline: an economic and sensitivity study, Task B

    SciTech Connect

    Not Available

    1982-06-01

    This report, identified as Task B, examines the technical and economic aspects of the production of methanol and MTG-Gasoline using gas from an underground coal gasification (UCG) facility. The report is a sequel to a previous study performed in 1981 and identified as Task A. The Task A report, titled Cost Saving Concepts on the Production of Methanol from Underground Gasified Coal, examined the economics of producing fuel grade methanol using UCG gas. In this study we examine the economics of producing MTG-Gasoline as well as a number of other aspects of the economics of upgrading UCG gas. Capital and operating costs for three different capacities of MTG-Gasoline plant are presented. These are 1600 BPD, 4800 BPD, and 9600 BPD. These capacities are equivalent to fuel grade methanol plants having capacities of 4000 BPD, 12,000 BPD, and 24,000 BPD - the methanol capacities considered in the previous studies. The economics of the MTG-Gasoline plant were developed using published information and our best estimate of the processing steps in the MTG-Gasoline process. As part of this study, several sensitivity studies were undertaken to examine the sensitivity of both methanol and MTG-Gasoline product cost to changes in technical and economic parameters. Table 1.1 lists the various sensitivity studies undertaken. All cost figures are in first quarter 1982 dollars.

  11. Efficient utilization of greenhouse gas in a gas-to-liquids process combined with carbon dioxide reforming of methane.

    PubMed

    Ha, Kyoung-Su; Bae, Jong Wook; Woo, Kwang-Jae; Jun, Ki-Won

    2010-02-15

    A process model for a gas-to-liquids (GTL) process mainly producing Fischer-Tropsch (FT) synthetic oils has been developed to assess the effects of reforming methods, recycle ratio of unreacted syngas mixture on the process efficiency and the greenhouse gas (GHG) emission. The reforming unit of our study is composed of both steam reforming of methane (SRM) and carbon dioxide reforming of methane (CDR) to form syngas, which gives composition flexibility, reduction in GHG emission, and higher cost-competitiveness. With recycling, it is found that zero emission of CO(2) from the process can be realized and the required amount of natural gas (NG) can be significantly reduced. This GTL process model has been built by using Aspen Plus software, and it is mainly composed of a feeding unit, a reforming unit, an FT synthesis unit, several separation units and a recycling unit. The composition flexibility of the syngas mixture due to the two different types of reforming reactions raises an issue that in order to attain the optimized feed composition of FT synthesis the amount of flow rate of each component in the fresh feed mixture should be determined considering the effects of the recycle and its split ratio. In the FT synthesis unit, the 15 representative reactions for the chain growth and water gas shift on the cobalt-based catalyst are considered. After FT synthesis, the unreacted syngas mixture is recycled to the reforming unit or the FT synthesis unit or both to enhance process efficiency. The effect of the split ratio, the recycle flow rate to the FT reactor over the recycle flow rate to the reforming unit, on the efficiency of the process was also investigated. This work shows that greater recycle to the reforming unit is less effective than that to the FT synthesis unit from the standpoint of the net heat efficiency of the process, since the reforming reactions are greatly endothermic and greater recycle to the reformer requires more energy.

  12. Catalysts prepared from copper-nickel ferrites for the steam reforming of methanol

    NASA Astrophysics Data System (ADS)

    Huang, Yung-Han; Wang, Sea-Fue; Tsai, An-Pang; Kameoka, Satoshi

    2015-05-01

    In this study, Fe3O4-supported Cu and Ni catalysts are prepared through reduction of Cu-Ni (Ni1-xCuxFe2O4) ferrites. The Cu-Ni ferrites, synthesized using a solid-state reaction method, are reduced at temperatures from 240 °C to 500 °C in a H2 atmosphere. All ferrites are characterized with granular morphology and a smooth particle surface before reduction. For the CuFe2O4, Ni0.5Cu0.5Fe2O4 and NiFe2O4 ferrites reduced at 240, 300, and 400 °C, respectively, nanosized Cu and/or Ni particles (5-32 nm) and mesopores (5-30 nm) are distributed and adhered on the surfaces of Fe3O4 supports. After increasing the reduction temperature of NiFe2O4 ferrite to 500 °C, the Ni particles and mesopores disappear from the Fe3O4 surfaces, which is due to the formation of a Fe-Ni alloy covering on the Fe3O4 surfaces. The CuFe2O4 ferrite after H2 reduction at 240 °C exhibits the highest H2 production rate of 149 ml STP/min g-cat at 360 °C. The existence of Ni content in the Cu-Ni ferrites enhances the reverse water gas shift reaction, and raises the CO selectivity while reducing the CO2 selectivity. Formation of a Fe-Ni alloy exaggerates the trend and poisons the H2 production rate.

  13. Gas chromatographic quantitative analysis of methanol in wine: operative conditions, optimization and calibration model choice.

    PubMed

    Caruso, Rosario; Gambino, Grazia Laura; Scordino, Monica; Sabatino, Leonardo; Traulo, Pasqualino; Gagliano, Giacomo

    2011-12-01

    The influence of the wine distillation process on methanol content has been determined by quantitative analysis using gas chromatographic flame ionization (GC-FID) detection. A comparative study between direct injection of diluted wine and injection of distilled wine was performed. The distillation process does not affect methanol quantification in wines in proportions higher than 10%. While quantification performed on distilled samples gives more reliable results, a screening method for wine injection after a 1:5 water dilution could be employed. The proposed technique was found to be a compromise between the time consuming distillation process and direct wine injection. In the studied calibration range, the stability of the volatile compounds in the reference solution is concentration-dependent. The stability is higher in the less concentrated reference solution. To shorten the operation time, a stronger temperature ramp and carrier flow rate was employed. With these conditions, helium consumption and column thermal stress were increased. However, detection limits, calibration limits, and analytical method performances are not affected substantially by changing from normal to forced GC conditions. Statistical data evaluation were made using both ordinary (OLS) and bivariate least squares (BLS) calibration models. Further confirmation was obtained that limit of detection (LOD) values, calculated according to the 3sigma approach, are lower than the respective Hubaux-Vos (H-V) calculation method. H-V LOD depends upon background noise, calibration parameters and the number of reference standard solutions employed in producing the calibration curve. These remarks are confirmed by both calibration models used.

  14. Gas-phase ions produced by freezing water or methanol for analysis using mass spectrometry.

    PubMed

    Pagnotti, Vincent S; Chakrabarty, Shubhashis; Wang, Beixi; Trimpin, Sarah; McEwen, Charles N

    2014-08-05

    Introducing water or methanol containing a low concentration of volatile or nonvolatile analyte into an inlet tube cooled with dry ice linking atmospheric pressure and the first vacuum stage of a mass spectrometer produces gas-phase ions even of small proteins that can be detected by mass spectrometry. Collision-induced dissociation experiments conducted in the first vacuum region of the mass spectrometer suggest analyte ions being protected by a solvent cage. The charges may be produced by processes similar to those proposed for charge separation under freezing conditions in thunderclouds. By this process, the surface of an ice pellet is charged positive and the interior negative so that removal of surface results in charge separation. A reversal of surface charge is expected for a heated droplet surface, and this is observed by heating rather than cooling the inlet tube. These observations are consistent with charged supercooled droplets or ice particles as intermediates in the production of analyte ions under freezing conditions.

  15. Gas phase reaction of phosphorus trichloride and methanol: Matrix isolation infrared and DFT studies

    NASA Astrophysics Data System (ADS)

    Joshi, Prasad Ramesh; Ramanathan, N.; Sundararajan, K.; Sankaran, K.

    2015-11-01

    Gas phase reaction of phosphorus trichloride (PCl3) and methanol (CH3OH) was carried out with different ratios of PCl3:CH3OH:N2 (1:1:1000, 1:2:1000 and 1:3:1000) and the products were identified using matrix isolation infrared spectroscopy. For the 1:1 and 1:2 ratios of PCl3:CH3OH, dichloro methyl phosphite (DCMP) and methyl chloride (CH3Cl) were the products formed. Interestingly, only methyl chloride (CH3Cl) was observed for the 1:3 ratio of PCl3:CH3OH. DFT computations were carried out at B3LYP/6-311++G(d,p) level of theory to give insights into the formation of the reaction products. Based on the experimental findings and computations a reaction mechanism has been proposed through a nucleophilic substitution reaction to explain the formation of the products.

  16. Molecular simulation of polyphosphazenes as gas separation and direct methanol fuel cell membranes

    NASA Astrophysics Data System (ADS)

    Hu, Naiping

    Molecular simulation studies of two polyphosphazene polymers including poly[bis(2,2,2-trifluoroethoxy)phosphazene] (PTFEP) and poly[bis(3-methylphenoxy)phosphazene] (PBMP) are presented in this dissertation. Self-diffusion and sorption of seven gases (He, H2,O2, N2, CH4, CO2, and Xe) in PTFEP have been investigated by molecular dynamics and Grand Canonical Monte Carlo (GCMC) simulations of two amorphous cells and the alpha-orthorhombic crystalline supercell. In the case of the MD simulation of diffusion coefficients, values obtained for both amorphous and crystalline PTFEP are comparable and agree with experimental values obtained for semicrystalline samples. Diffusion coefficients follow a linear correlation with the square of effective diameter of gas molecules according to the correlation of Teplyakov and Meares. On the other hand, solubility coefficients obtained from GCMC simulation of the amorphous cells are approximately four to five times higher than would be expected on the base of the amorphous content of the experimental semicrystalline samples alone. The results suggest that while the crystalline domains in semicrystalline PTFEP samples do not reduce gas diffusivity they significantly reduce gas solubility. A new gas solubility correlation that includes both the Lennard-Jones potential well depth parameter, epsilon/ k, and the Flory interaction parameter, chi, successfully correlates gas solubility coefficients for all gases including CO2. The elevated CO2 solubility coefficients above the linear correlation of Teplyakov and Meares were attributed to a quadrupole-dipole interaction with the trifluoroethoxy groups of PTFEP by ab initio molecular orbital calculations of CO2 and model compounds (CH4, CH3CH3, CH 3CH2CH3, CF4, CF3CH 3, and CF3CH2CH3). In addition, molecular dynamics simulations of an alpha-supercell indicated that the mesophase transition is associated with a conformational change from the planar cis-trans conformation of the PTFEP backbone

  17. Optimizing the deposition of hydrogen evolution sites on suspended semiconductor particles using on-line photocatalytic reforming of aqueous methanol solutions.

    PubMed

    Busser, G Wilma; Mei, Bastian; Muhler, Martin

    2012-11-01

    The deposition of hydrogen evolution sites on photocatalysts is a crucial step in the multistep process of synthesizing a catalyst that is active for overall photocatalytic water splitting. An alternative approach to conventional photodeposition was developed, applying the photocatalytic reforming of aqueous methanol solutions to deposit metal particles on semiconductor materials such as Ga₂O₃ and (Ga₀.₆ Zn₀.₄)(N₀.₆O₀.₄). The method allows optimizing the loading of the co-catalysts based on the stepwise addition of their precursors and the continuous online monitoring of the evolved hydrogen. Moreover, a synergetic effect between different co-catalysts can be directly established.

  18. Feasibility of flare gas reformation to practical energy in Farashband gas refinery: no gas flaring.

    PubMed

    Rahimpour, Mohammad Reaza; Jokar, Seyyed Mohammad

    2012-03-30

    A suggested method for controlling the level of hazardous materials in the atmosphere is prevention of combustion in flare. In this work, three methods are proposed to recover flare gas instead of conventional gas-burning in flare at the Farashband gas refinery. These methods aim to minimize environmental and economical disadvantages of burning flare gas. The proposed methods are: (1) gas to liquid (GTL) production, (2) electricity generation with a gas turbine and, (3) compression and injection into the refinery pipelines. To find the most suitable method, the refinery units that send gas to the flare as well as the required equipment for the three aforementioned methods are simulated. These simulations determine the amount of flare gas, the number of GTL barrels, the power generated by the gas turbine and the required compression horsepower. The results of simulation show that 563 barrels/day of valuable GTL products is produced by the first method. The second method provides 25 MW electricity and the third method provides a compressed natural gas with 129 bar pressure for injection to the refinery pipelines. In addition, the economics of flare gas recovery methods are studied and compared. The results show that for the 4.176MMSCFD of gas flared from the Farashband gas refinery, the electricity production gives the highest rate of return (ROR), the lowest payback period, the highest annual profit and mild capital investment. Therefore, the electricity production is the superior method economically. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. A study on methanol steam reforming to CO 2 and H 2 over the La 2CuO 4 nanofiber catalyst

    NASA Astrophysics Data System (ADS)

    Gao, Lizhen; Sun, Gebiao; Kawi, Sibudjing

    2008-01-01

    The La 2CuO 4 crystal nanofibers were prepared by using single-walled carbon nanotubes as templates under mild hydrothermal conditions. The steam reforming of methanol (SRM) to CO 2 and H 2 over such nanofiber catalysts was studied. At the low temperature of 150 °C and steam/methanol=1.3, methanol was completely (100%, 13.8 g/h g catalyst) converted to hydrogen and CO 2 without the generation of CO. Within the 60 h catalyst lifespan test, methanol conversion was maintained at 98.6% (13.6 g/h g catalyst) and with 100% CO 2 selectivity. In the meantime, for distinguishing the advantage of nanoscale catalyst, the La 2CuO 4 bulk powder was prepared and tested for the SRM reaction for comparison. Compared with the La 2CuO 4 nanofiber, the bulk powder La 2CuO 4 showed worse catalytic activity for the SRM reaction. The 100% conversion of methanol was achieved at the temperature of 400 °C, with the products being H 2 and CO 2 together with CO. The catalytic activity in terms of methanol conversion dropped to 88.7% (12.2 g/h g catalyst) in 60 h. The reduction temperature for nanofiber La 2CuO 4 was much lower than that for the La 2CuO 4 bulk powder. The nanofibers were of higher specific surface area (105.0 m 2/g), metal copper area and copper dispersion. The in situ FTIR and EPR experiments were employed to study the catalysts and catalytic process. In the nanofiber catalyst, there were oxygen vacancies. H 2-reduction resulted in the generation of trapped electrons [e] on the vacancy sites. Over the nanofiber catalyst, the intermediate H 2CO/HCO was stable and was reformed to CO 2 and H 2 by steam rather than being decomposed directly to CO and H 2. Over the bulk counterpart, apart from the direct decomposition of H 2CO/HCO to CO and H 2, the intermediate H 2COO might go through two decomposition ways: H 2COO=CO+H 2O and H 2COO=CO 2+H 2.

  20. Evaluation of the use of UCG gas to produce 4000 BPD and 12,000 BPD of methanol with conversion to M-gasoline

    SciTech Connect

    Carlisle, Donald

    1981-01-01

    This study involves an examination of the technical and economic feasibility of using raw gas from an underground coal gasification facility as feedstock for methanol synthesis, and producing M-gasoline from the methanol. It differs from previous studies in considering facilities smaller than those previously studied. Addressed also is the economic and technical feasibility of using equipment from existing ammonia plants for the production of methanol. Ammonia and methanol plants are very similar in type of equipment used and plant layout. Consequently, it is possible to convert an existing ammonia plant into a methanol facility. Existing ammonia and methanol plants which contain equipment that might be utilized with UCG all use natural gas for feedstock. The processing steps in these plants can be divided into unit operations which are described. The product price analysis shows that significant economies of scale exist for the larger of the two facility sizes considered in this study. The economies of scale are evident for both the methanol/M-gasoline and methanol-only facilities. Compared to current market prices, the calculated product prices for the 4000 BPD and 12,000 BPD methanol-only facilities are within the range of competitiveness with the prices of conventionally produced methanol. The product prices calculated for the 12,000 BPD methanol/4910 BPD M-gasoline facility are, under the most optimistic assumptions, 50% higher than the current market price for unleaded gasoline.

  1. Methanol steam reforming over Ni-CeO2 model and powder catalysts: Pathways to high stability and selectivity for H2/CO2 production

    DOE PAGES

    Liu, Zongyuan; Yao, Siyu; Johnston-Peck, Aaron; ...

    2017-08-25

    Here, nickel-ceria has been reported as a very good catalysts for the reforming of methane. Here, the methanol steam reforming reaction on both powder (Ni-CeO2) and model (Ni-CeO2-x(111)) catalysts was investigated. The active phase evolution and surface species transformation on powder catalysts were studied via in situ X-ray diffraction (XRD) and diffuse reflectance infrared transform spectroscopy (DRIFTS). Phase transitions of NiO → NiC → Ni and CeO2 → CeO2-x were observed during the reaction. The simultaneous production of H2/CO2 demonstrates that the active phase of the catalysts contains metallic Ni supported over partially reduced ceria. The DRIFTS experiments indicate thatmore » a methoxy to formate transition is associated with the reduction of ceria whereas the formation of carbonate species results from the presence of metallic Ni. A study of the reaction of methanol with Ni-CeO2-x(111) by X-ray photoelectron spectroscopy (XPS) points to the essential role of metal-support interactions in an oxygen transfer from ceria to Ni that contributes to the high selectivity of the catalysts.« less

  2. Design and Operation of the Synthesis Gas Generator System for Reformed Propane and Glycerin Combustion

    NASA Astrophysics Data System (ADS)

    Pickett, Derek Kyle

    Due to an increased interest in sustainable energy, biodiesel has become much more widely used in the last several years. Glycerin, one major waste component in biodiesel production, can be converted into a hydrogen rich synthesis gas to be used in an engine generator to recover energy from the biodiesel production process. This thesis contains information detailing the production, testing, and analysis of a unique synthesis generator rig at the University of Kansas. Chapter 2 gives a complete background of all major components, as well as how they are operated. In addition to component descriptions, methods for operating the system on pure propane, reformed propane, reformed glycerin along with the methodology of data acquisition is described. This chapter will serve as a complete operating manual for future students to continue research on the project. Chapter 3 details the literature review that was completed to better understand fuel reforming of propane and glycerin. This chapter also describes the numerical model produced to estimate the species produced during reformation activities. The model was applied to propane reformation in a proof of concept and calibration test before moving to glycerin reformation and its subsequent combustion. Chapter 4 first describes the efforts to apply the numerical model to glycerin using the calibration tools from propane reformation. It then discusses catalytic material preparation and glycerin reformation tests. Gas chromatography analysis of the reformer effluent was completed to compare to theoretical values from the numerical model. Finally, combustion of reformed glycerin was completed for power generation. Tests were completed to compare emissions from syngas combustion and propane combustion.

  3. Treatment of gas-phase methanol in conventional biofilters packed with lava rock.

    PubMed

    Prado, Oscar J; Veiga, María C; Kennes, Christian

    2005-06-01

    The performance of laboratory scale methanol-degrading biofilters packed with lava rock was checked during almost 1 yr under different conditions. The biomass concentration and biomass adaptation of the inoculum dramatically affected the start-up and the performance of the systems during the first stages of operation. A fast start-up was obtained when using concentrated and adapted inocula, while diluted or non-adapted inocula proved to be much less efficient. The performance of the reactor during long-term operation was significantly affected by the toxic load and moisture content of the gas. Critical loads between 120 and 280 g/m(3)h were reached during different phases of the study. The reactor had a high stability to EBRT changes when working at values between 48.0 and 91.1s, showing little or no negative effect when decreasing the EBRT. Hardly any difference was observed regarding performance when using either a downflow or upflow feed, although slightly better results were obtained when working in a downflow mode.

  4. Efficacy of different methanolic plant extracts on anti-methanogenesis, rumen fermentation and gas production kinetics in vitro

    PubMed Central

    Sirohi, S.K.; Goel, N.; Pandey, P.

    2012-01-01

    The present study was carried out to evaluate the effect of methanolic extracts of three plants, mehandi (Lawsonia inermis), jaiphal (Myristica fragrans) and green chili (Capsicum annuum) on methanogenesis, rumen fermentation and fermentation kinetic parameters by in vitro gas production techniques. Single dose of each plant extract (1 ml / 30 ml buffered rumen fluid) and two sorghum fodder containing diets (high and low fiber diets) were used for evaluating the effect on methanogenesis and rumen fermentation pattern, while sequential incubations (0, 1, 2, 3, 6 9, 12, 24, 36, 48, 60, 72 and 96 h) were carried out for gas production kinetics. Results showed that methane production was reduced, ammonia nitrogen was increased significantly, while no significant effect was found on pH and protozoal population following addition of different plant extracts in both diets except mehandi. Green chili significantly reduced digestibility of dry matter, total fatty acid and acetate concentration at incubation with sorghum based high and low fiber diets. Among all treatments, green chili increased potential gas production, while jaiphal decreased the gas production rate constant significantly. The present results demonstrate that methanolic extracts of different plants are promising rumen modifying agents. They have the potential to modulate the methane production, potential gas production, gas production rate constant, dry matter digestibility and microbial biomass synthesis. PMID:26623296

  5. In situ Gas Conditioning in Fuel Reforming for Hydrogen Generation

    SciTech Connect

    Bandi, A.; Specht, M.; Sichler, P.; Nicoloso, N.

    2002-09-20

    The production of hydrogen for fuel cell applications requires cost and energy efficient technologies. The Absorption Enhanced Reforming (AER), developed at ZSW with industrial partners, is aimed to simplify the process by using a high temperature in situ CO2 absorption. The in situ CO2 removal results in shifting the steam reforming reaction equilibrium towards increased hydrogen concentration (up to 95 vol%). The key part of the process is the high temperature CO2 absorbent. In this contribution results of Thermal Gravimetric Analysis (TGA) investigations on natural minerals, dolomites, silicates and synthetic absorbent materials in regard of their CO2 absorption capacity and absorption/desorption cyclic stability are presented and discussed. It has been found that the inert parts of the absorbent materials have a structure stabilizing effect, leading to an improved cyclic stability of the materials.

  6. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2003-08-19

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  7. Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2004-10-19

    Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  8. Thinking on Sichuan-Chongqing gas pipeline transportation system reform under market-oriented conditions

    NASA Astrophysics Data System (ADS)

    Duan, Yanzhi

    2017-01-01

    The gas pipeline networks in Sichuan and Chongqing (Sichuan-Chongqing) region have formed a fully-fledged gas pipeline transportation system in China, which supports and promotes the rapid development of gas market in Sichuan-Chongqing region. In the circumstances of further developed market-oriented economy, it is necessary to carry out further the pipeline system reform in the areas of investment/financing system, operation system and pricing system to lay a solid foundation for improving future gas production and marketing capability and adapting itself to the national gas system reform, and to achieve the objectives of multiparty participated pipeline construction, improved pipeline transportation efficiency and fair and rational pipeline transportation prices. In this article, main thinking on reform in the three areas and major deployment are addressed, and corresponding measures on developing shared pipeline economy, providing financial support to pipeline construction, setting up independent regulatory agency to enhance the industrial supervision for gas pipeline transportation, and promoting the construction of regional gas trade market are recommended.

  9. Method for forming synthesis gas using a plasma-catalyzed fuel reformer

    DOEpatents

    Hartvigsen, Joseph J; Elangovan, S; Czernichowski, Piotr; Hollist, Michele

    2015-04-28

    A method of forming a synthesis gas utilizing a reformer is disclosed. The method utilizes a reformer that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding apparatus and system are also disclosed herein.

  10. Use of a Vortex-Type Contact Condenser in Absorption of Methanol and Formaldehyde from a Contact Gas

    NASA Astrophysics Data System (ADS)

    Moskalev, L. N.; Ponikarov, S. I.

    2016-09-01

    Consideration has been given to the process of absorption of methanol and formaldehyde from a contact gas in the production of technical formalin. Using computer simulation, the authors set up a model of a standard flow diagram of methanol and formaldehyde absorption of a contact gas. For the process of absorption, use was made of NRTL and Lee-Kesler mathematical models which allow for the heat and mass transfer. Empirical coefficients for these models have been determined. The amount of methanol and formaldehyde has been established in absorption gases utilized by burning with a standard flow diagram and on adding a supplementary stage of condensation. A comparison has been made of experimental and calculated data of the process. A heat- and mass transfer apparatus of the vortex type has been proposed, which will make it possible to remove an environmental burden and to improve energy-resource saving. The conditions of operation of the absorber with an increase of 22% in the output have been considered.

  11. Hydrogen generation using a CuO/ZnO-ZrO₂ nanocatalyst for autothermal reforming of methanol in a microchannel reactor.

    PubMed

    Lin, Kuen-Song; Pan, Cheng-Yu; Chowdhury, Sujan; Tu, Mu-Ting; Hong, Wan-Ting; Yeh, Chuin-Tih

    2011-01-07

    In the present work, a microchannel reactor for autothermal reforming of methanol using a synthesized catalyst porous alumina support-CuO/ZnO mixed with ZrO₂ sol washcoat has been developed and its fine structure and inner surface characterized. Experimentally, CuO/ZnO and alumina support with ZrO₂ sol washcoat catalyst (catalyst slurries) nanoparticles is the catalytically active component of the microreactor. Catalyst slurries have been dried at 298 K for 5 h and then calcined at 623 K for 2 h to increase the surface area and specific pore structures of the washcoat catalyst. The surface area of BET N₂ adsorption isotherms for the as-synthesized catalyst and catalyst/ZrO₂ sol washcoat samples are 62 and 108 ± 2 m²g⁻¹, respectively. The intensities of Cu content from XRD and XPS data indicate that Al₂O₃ with Cu species to form CuAl₂O₄. The EXAFS data reveals that the Cu species in washcoat samples have Cu-O bonding with a bond distance of 1.88 ± 0.02 Å and the coordination number is 3.46 ± 0.05, respectively. Moreover, a hydrogen production rate of 2.16 L h⁻¹ is obtained and the corresponding methanol conversion is 98% at 543 K using the CuO/ZnO with ZrO₂ sol washcoat catalyst.

  12. Two-stage gas-phase bioreactor for the combined removal of hydrogen sulphide, methanol and alpha-pinene.

    PubMed

    Rene, Eldon R; Jin, Yaomin; Veiga, María C; Kennes, Christian

    2009-11-01

    Biological treatment systems have emerged as cost-effective and eco-friendly techniques for treating waste gases from process industries at moderately high gas flow rates and low pollutant concentrations. In this study, we have assessed the performance of a two-stage bioreactor, namely a biotrickling filter packed with pall rings (BTF, 1st stage) and a perlite + pall ring mixed biofilter (BF, 2nd stage) operated in series, for handling a complex mixture of hydrogen sulphide (H2S), methanol (CH3OH) and alpha-pinene (C10H16). It has been reported that the presence of H2S can reduce the biofiltration efficiency of volatile organic compounds (VOCs) when both are present in the gas mixture. Hydrogen sulphide and methanol were removed in the first stage BTF, previously inoculated with H2S-adapted populations and a culture containing Candida boidinii, an acid-tolerant yeast, whereas, in the second stage, alpha-pinene was removed predominantly by the fungus Ophiostoma stenoceras. Experiments were conducted in five different phases, corresponding to inlet loading rates varying between 2.1 and 93.5 g m(-3) h(-1) for H2S, 55.3 and 1260.2 g m(-3) h(-1) for methanol, and 2.8 and 161.1 g m(-3) h(-1) for alpha-pinene. Empty bed residence times were varied between 83.4 and 10 s in the first stage and 146.4 and 17.6 s in the second stage. The BTF, working at a pH as low as 2.7 as a result of H2S degradation, removed most of the H2S and methanol but only very little alpha-pinene. On the other hand, the BF, at a pH around 6.0, removed the rest of the H2S, the non-degraded methanol and most of the alpha-pinene vapours. Attempts were originally made to remove the three pollutants in a single acidophilic bioreactor, but the Ophiostoma strain was hardly active at pH <4. The maximum elimination capacities (ECs) reached by the two-stage bioreactor for individual pollutants were 894.4 g m(-3) h(-1) for methanol, 45.1 g m(-3) h(-1) for H2S and 138.1 g m(-3) h(-1) for alpha-pinene. The

  13. Plasma steam reforming of E85 for hydrogen rich gas production

    NASA Astrophysics Data System (ADS)

    Zhu, Xinli; Hoang, Trung; Lobban, Lance L.; Mallinson, Richard G.

    2011-07-01

    E85 (85 vol% ethanol and 15 vol% gasoline) is a partly renewable fuel that is increasing in supply availability. Hydrogen production from E85 for fuel cell or internal combustion engine applications is a potential method for reducing CO2 emissions. Steam reforming of E85 using a nonthermal plasma (pulse corona discharge) reactor has been exploited at low temperature (200-300 °C) without external heating, diluent gas, oxidant or catalyst in this work. Several operational parameters, including the discharge current, E85 concentration and feed flow rate, have been investigated. The results show that hydrogen rich gases (63-67% H2 and 22-29% CO, with small amounts of CO2, C2 hydrocarbons and CH4) can be produced by this method. A comparison with ethanol reforming and gasoline reforming under identical conditions has also been made and the behaviour of E85 reforming is found to be close to that of ethanol reforming with slightly higher C2 hydrocarbons yields.

  14. Regulatory reform for natural gas pipelines: The effect on pipeline and distribution company share prices

    NASA Astrophysics Data System (ADS)

    Jurman, Elisabeth Antonie

    1997-08-01

    The natural gas shortages in the 1970s focused considerable attention on the federal government's role in altering energy consumption. For the natural gas industry these shortages eventually led to the passage of the Natural Gas Policy Act (NGPA) in 1978 as part of the National Energy Plan. A series of events in the decade of the 1980s has brought about the restructuring of interstate natural gas pipelines which have been transformed by regulators and the courts from monopolies into competitive entities. This transformation also changed their relationship with their downstream customers, the LDCs, who no longer had to deal with pipelines as the only merchants of gas. Regulatory reform made it possible for LDCs to buy directly from producers using the pipelines only for delivery of their purchases. This study tests for the existence of monopoly rents by analyzing the daily returns of natural gas pipeline and utility industry stock price data from 1982 to 1990, a period of regulatory reform for the natural gas industry. The study's main objective is to investigate the degree of empirical support for claims that regulatory reforms increase profits in the affected industry, as the normative theory of regulation expects, or decrease profits, as advocates of the positive theory of regulation believe. I also test Norton's theory of risk which predicts that systematic risk will increase for firms undergoing deregulation. Based on a sample of twelve natural gas pipelines, and 25 utilities an event study concept was employed to measure the impact of regulatory event announcements on daily natural gas pipeline or utility industry stock price data using a market model regression equation. The results of this study provide some evidence that regulatory reforms did not increase the profits of pipeline firms, confirming the expectations of those who claim that excess profits result from regulation and will disappear, once that protection is removed and the firms are operating in

  15. The α-effect in gas-phase SN2 reactions of microsolvated anions: methanol as a solvent.

    PubMed

    Thomsen, Ditte L; Reece, Jennifer N; Nichols, Charles M; Hammerum, Steen; Bierbaum, Veronica M

    2014-09-18

    The α-effect, an enhanced reactivity of nucleophiles with a lone-pair adjacent to the reaction center, has been studied in solution for several decades. The gas-phase α-effect has recently been documented in studies of SN2 reactions as well as in competing reactions for both bare and microhydrated anions. In the present work we extend our studies of the significance of microsolvation on the α-effect, employing methanol as the solvent, in the expectation that the greater stability of the methanol cluster relative to the water cluster will lower the reactivity and thereby allow studies over a wider efficiency range. We compare the gas-phase reactivity of the microsolvated α-nucleophile HOO(-)(CH3OH) to that of microsolvated normal alkoxy nucleophiles, RO(-)(CH3OH) in reactions with CH3Cl and CH3Br. The results reveal enhanced reactivity of HOO(-)(CH3OH) toward both methyl halides relative to the normal nucleophiles, and clearly demonstrate the presence of an α-effect for the microsolvated α-nucleophile. The highly exothermic reactions with methyl bromide result in a smaller Brønsted βnuc value than observed for methyl chloride, and the α-effect in turn influences the reactions with methyl chloride more than with methyl bromide. Computational investigations reveal that reactions with methyl bromide proceed through earlier transition states with less advanced bond formation compared to the related reactions of methyl chloride. In addition, solvent interactions for HOO(-) are quite different from those with the normal nucleophiles at the transition state, indicating that differential solvation may well contribute to the α-effect. The greater thermodynamic and kinetic stability of the anion-methanol clusters relative to the anion-water clusters accounts well for the differences in the influence of solvation with the two protic polar solvents.

  16. High-Temperature Desulfurization of Heavy Fuel-Derived Reformate Gas Streams for SOFC Applications

    NASA Technical Reports Server (NTRS)

    Flytzani-Stephanopoulos, Maria; Surgenor, Angela D.

    2007-01-01

    Desulfurization of the hot reformate gas produced by catalytic partial oxidation or autothermal reforming of heavy fuels, such as JP-8 and jet fuels, is required prior to using the gas in a solid oxide fuel cell (SOFC). Development of suitable sorbent materials involves the identification of sorbents with favorable sulfidation equilibria, good kinetics, and high structural stability and regenerability at the SOFC operating temperatures (650 to 800 C). Over the last two decades, a major barrier to the development of regenerable desulfurization sorbents has been the gradual loss of sorbent performance in cyclic sulfidation and regeneration at such high temperatures. Mixed oxide compositions based on ceria were examined in this work as regenerable sorbents in simulated reformate gas mixtures and temperatures greater than 650 C. Regeneration was carried out with dilute oxygen streams. We have shown that under oxidative regeneration conditions, high regeneration space velocities (greater than 80,000 h(sup -1)) can be used to suppress sulfate formation and shorten the total time required for sorbent regeneration. A major finding of this work is that the surface of ceria and lanthanan sorbents can be sulfided and regenerated completely, independent of the underlying bulk sorbent. This is due to reversible adsorption of H2S on the surface of these sorbents even at temperatures as high as 800 C. La-rich cerium oxide formulations are excellent for application to regenerative H2S removal from reformate gas streams at 650 to 800 C. These results create new opportunities for compact sorber/regenerator reactor designs to meet the requirements of solid oxide fuel cell systems at any scale.

  17. Vapor-liquid activity coefficients for methanol and ethanol from heat of solution data: application to steam-methane reforming.

    PubMed

    Kunz, R G; Baade, W F

    2001-11-16

    This paper presents equations and curves to calculate vapor-liquid phase equilibria for methanol and ethanol in dilute aqueous solution as a function of temperature, using activity coefficients at infinite dilution. These thermodynamic functions were originally derived to assess the distribution of by-product contaminants in the process condensate and the steam-system deaerator of a hydrogen plant [Paper ENV-00-171 presented at the NPRA 2000 Environmental Conference, San Antonio, TX, 10-12 September 2000], but have general applicability to other systems as well. The functions and calculation method described here are a necessary piece of an overall prediction technique to estimate atmospheric emissions from the deaerator-vent when the process condensate is recycled as boiler feed water (BFW) make-up. Having such an estimation technique is of particular significance at this time because deaerator-vent emissions are already coming under regulatory scrutiny in California [Emissions from Hydrogen Plant Process Vents, Adopted 21 January 2000] followed closely elsewhere in the US, and eventually worldwide. The overall technique will enable a permit applicant to estimate environmental emissions to comply with upcoming regulations, and a regulatory agency to evaluate those estimates. It may also be useful to process engineers as a tool to estimate contaminant concentrations and flow rates in internal process streams such as the steam-generating system. Metallurgists and corrosion engineers might be able to use the results for materials selection.

  18. The synthesis of methanol and the reverse water-gas shift reaction over Zn-deposited Cu(100) and Cu(110) surfaces: comparison with Zn/Cu(111)

    NASA Astrophysics Data System (ADS)

    Nakamura, I.; Fujitani, T.; Uchijima, T.; Nakamura, J.

    1998-03-01

    The catalytic activity of Zn vapor-deposited Cu(100) and Cu(110) surfaces for methanol synthesis by the hydrogenation of CO 2 and the reverse water-gas shift reaction were studied using an XPS apparatus combined with a high-pressure flow reactor (18 atm). At a reaction temperature of 523 K, no promotional effect of Zn was observed for the methanol synthesis on both Zn/Cu(100) and Zn/Cu(110). The results were quite different from those for Zn/Cu(111), on which a significant promotion of methanol synthesis activity appeared to be due to the deposition of Zn, indicating that the promotional effect of Zn was sensitive to the surface structure of Cu. However, hysteresis was observed in the catalytic activity for methanol synthesis over the Zn/Cu(110) surface upon heating above 543 K in the reaction mixture. The activity became twice that measured before heating, which was close to the methanol synthesis activity of Zn/Cu(111) at the same Zn coverage. On the other hand, no such hysteresis was observed for the reverse water-gas shift reaction on Zn/Cu(110), indicating that the active site for methanol synthesis was not identical to that for the reverse water-gas shift reaction. In the post-reaction surface analysis, formate species was detected on both Zn/Cu(100) and Zn/Cu(110), whose coverage increased with increasing Zn coverage at 0< ΘZn<0.2. No correlation between the formate coverage and the methanol synthesis activity was obtained, which was in contrast to the results for Zn/Cu(111). Thus, the structure sensitivity observed in the catalytic activity of methanol synthesis over Zn-deposited Cu surfaces is ascribed to the significant difference in the reactivity of the formate intermediate.

  19. A Novel Study of Methane-Rich Gas Reforming to Syngas and Its Kinetics over Semicoke Catalyst

    PubMed Central

    Zhang, Guojie; Su, Aiting; Qu, Jiangwen; Du, Yannian

    2014-01-01

    A small-size gasification unit is improved through process optimization to simulate industrial United Gas Improvement Company gasification. It finds that the reaction temperature has important impacts on semicoke catalyzed methane gas mixture. The addition of water vapor can enhance the catalytic activity of reforming, which is due to the fact that addition of water vapor not only removes carbon deposit produced in the reforming and gasification reaction processes, but also participates in gasification reaction with semicoke to generate some active oxygen-containing functional groups. The active oxygen-containing functional groups provide active sites for carbon dioxide reforming of methane, promoting the reforming reaction. It also finds that the addition of different proportions of methane-rich gas can yield synthesis gas with different H2/CO ratio. The kinetics study shows that the semicoke can reduce the activation energy of the reforming reaction and promote the occurrence of the reforming reaction. The kinetics model of methane reforming under the conditions of steam gasification over semicoke is as follows: k-=5.02×103·pCH40.71·pH20.26·exp(−74200/RT). PMID:24959620

  20. Thermal analysis of cylindrical natural-gas steam reformer for 5 kW PEMFC

    NASA Astrophysics Data System (ADS)

    Jo, Taehyun; Han, Junhee; Koo, Bonchan; Lee, Dohyung

    2016-11-01

    The thermal characteristics of a natural-gas based cylindrical steam reformer coupled with a combustor are investigated for the use with a 5 kW polymer electrolyte membrane fuel cell. A reactor unit equipped with nickel-based catalysts was designed to activate the steam reforming reaction without the inclusion of high-temperature shift and low-temperature shift processes. Reactor temperature distribution and its overall thermal efficiency depend on various inlet conditions such as the equivalence ratio, the steam to carbon ratio (SCR), and the fuel distribution ratio (FDR) into the reactor and the combustor components. These experiments attempted to analyze the reformer's thermal and chemical properties through quantitative evaluation of product composition and heat exchange between the combustor and the reactor. FDR is critical factor in determining the overall performance as unbalanced fuel injection into the reactor and the combustor deteriorates overall thermal efficiency. Local temperature distribution also influences greatly on the fuel conversion rate and thermal efficiency. For the experiments, the operation conditions were set as SCR was in range of 2.5-4.0 and FDR was in 0.4-0.7 along with equivalence ratio of 0.9-1.1; optimum results were observed for FDR of 0.63 and SCR of 3.0 in the cylindrical steam reformer.

  1. Optimized fuel cell grade hydrogen from methanol

    NASA Astrophysics Data System (ADS)

    Choi, Yongtaek

    2003-10-01

    To evaluate reaction rates liar making hydrogen from methanol, kinetic studies of methanol decomposition, methanol steam reforming, water gas shift reaction, and CO selective oxidation have been performed. These reactions were studied in a micro reactor testing unit using a commercial Cu-ZnO/Al2O3 catalyst for the first three reactions and Pt-Fe/gamma-alumina catalyst for the last reaction. The activity tests were performed between 120˜325°C and atmospheric pressure with a range of feed rates and compositions. For methanol decomposition, water addition to the feed increased the yield of hydrogen and reduced the formation of by-products. XPS analysis of used catalyst samples and time on-stream data showed that the Cu2+ oxidation state of copper favors methanol decomposition. A simplified reaction network of 5 elementary reactions was proposed and all five rate expressions were obtained using non-linear least squares optimization, numerical integration of a one-dimensional PFR model, and extensive experimental data. Similar numerical analysis was carried out to obtain the rate expressions for methanol steam reaction, the water gas shift reaction, and CO selective oxidation. For the kinetics of the water gas shift reaction, an empirical rate expression was obtained from the experimental data. Based on a review of published work on the WGS reaction mechanism, our study found that a rate expression derived from a regenerative mechanism and another rate expression derived from adsorptive mechanism fit the experimental data equally well. For the kinetics of CO preferential oxidation, a reaction model in which three reactions (CO oxidation, H2 oxidation and the WGS reaction) occur simultaneously was chosen to predict the reactor performance. In particular the reverse water gas shift reaction had an important role when fitting the experimental data precisely and explained the selectivity decrease at higher reaction temperatures. Combining the three reactors and several

  2. Bridging the Gap: From Model Surfaces to Nanoparticle Analogs for Selective Oxidation and Steam Reforming of Methanol and Selective Hydrogenation Catalysis

    NASA Astrophysics Data System (ADS)

    Boucher, Matthew B.

    Most industrial catalysts are very complex, comprising of non-uniform materials with varying structures, impurities, and interaction between the active metal and supporting substrate. A large portion of the ongoing research in heterogeneous catalysis focuses on understanding structure-function relationships in catalytic materials. In parallel, there is a large area of surface science research focused on studying model catalytic systems for which structural parameters can be tuned and measured with high precision. It is commonly argued, however, that these systems are oversimplified, and that observations made in model systems do not translate to robust catalysts operating in practical environments; this discontinuity is often referred to as a "gap." The focus of this thesis is to explore the mutual benefits of surface science and catalysis, or "bridge the gap," by studying two catalytic systems in both ultra-high vacuum (UHV) and near ambient-environments. The first reaction is the catalytic steam reforming of methanol (SRM) to hydrogen and carbon dioxide. The SRM reaction is a promising route for on-demand hydrogen production. For this catalytic system, the central hypothesis in this thesis is that a balance between redox capability and weak binding of reaction intermediates is necessary for high SRM activity and selectivity to carbon dioxide. As such, a new catalyst for the SRM reaction is developed which incorporates very small amounts of gold (<1 atomic %) supported on zinc oxide nanoparticles with controlled crystal structures. The performance of these catalysts was studied in a fixed-bed micro-reactor system at ambient pressures, and their structure was characterized by high-resolution microscopic and spectroscopic techniques. Pre-existing oxygen defects in zinc oxide {0001} surfaces, and those created by a perturbation of the defect equilibrium by addition of gold, provide an anchoring site for highly dispersed gold species. By utilizing shape control of

  3. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect

    Mark V. Scotto; Mark A. Perna

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  4. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect

    Mark Scotto

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  5. Isobutanol-methanol mixtures from synthesis gas. Quarterly report, July 1 - September 30, 1996

    SciTech Connect

    Iglesia, E.

    1996-12-01

    A series of CuMgCeO{sub x} catalysts have been prepared by coprecipitating the corresponding metal nitrates with a mixed solution of potassium carbonate and potassium hydroxide. The bulk composition of the catalyst has been measured by atomic absorption (AA) analysis and the Cu dispersion has been determined by N{sub 2}O titration at 90 {degrees}C. CeO{sub x} does not contribute to the measured copper dispersion in K-CuO{sub 0.5}Mg{sub 5}CeO{sub x} samples and the high dispersion value indeed reflects the presence of Cu metal small crystallites. Kinetic studies of methanol and propionaldehyde coupling reactions on K-Cu/MgO/CeO{sub 2} and MgO/CeO{sub 2} catalysts indicate that Cu enhances the rates of alcohol dehydrogenation. High-pressure isobutanol synthesis from CO/H{sub 2} has been studied on CuO{sub 0.5}Mg{sub 5}O{sub x} catalysts at 593 K and 4.5 MPa. CuO{sub 0.5}Mg{sub 5}O{sub x} catalysts show high hydrocarbon and low isobutanol selectivities compared to K-CuO{sub 0.5}Mg{sub 5}CeO{sub x}, suggesting the presence of residual acidity in CuO{sub 0.5}Mg{sub 5}O{sub x}.

  6. Isobutanol-methanol mixtures from synthesis gas. Quarterly technical progress report, October 1--December 31, 1995

    SciTech Connect

    Iglesia, E.

    1996-01-10

    A series of Cu{sub 0.5}CeMe(II)O{sub x} catalysts (Me refers to Group II alkali earth elements) have been prepared by coprecipitating the corresponding metal nitrates with potassium carbonate. The bulk composition of the catalyst has been determined by atomic absorption (AA) analysis. High-pressure isobutanol synthesis studies have been carried out over a standard BASF Cs-promoted Cu/ZnO/Al{sub 2}O{sub 3} catalyst. At a CO conversion level of 32%, the isobutanol carbon selectivity is about 5%; whereas that of methanol is 40.2%. A 100% selectivity sum has now been obtained as a result of using response factors measured by the laboratory. The reactions of ethanol and acetic acid over a number of catalysts have been investigated using a temperature programmed surface reaction (TPSR) technique. Ethanol and acetone are the only desorption products observed over Cs-promoted Cu/ZnO/Al{sub 2}O{sub 3} catalysts. Surface acetate ion is believed to be the precursor for acetone formation. Over calcined hydrotalcites, i.e., MgO/Al{sub 2}O{sub 3}, ethylene is formed instead of acetone. The amount of ethylene formed decreases as Mg/Al ratio increases, suggesting a role of aluminum ions in ethanol dehydration reactions.

  7. Isobutanol-methanol mixtures from synthesis gas. Quarterly technical progress report, 1 January--31 March 1996

    SciTech Connect

    1996-04-20

    A series of CuMgCeO{sub x} catalysts have been prepared. Range of Cu dispersion, determined by N{sub 2}O titration, was 19-48% and are among the highest reported in the literature for Cu-based methanol and higher alcohol synthesis catalysts. Kinetics of MeOH and EtOH coupling reactions on Cu/ZnO and K-Cu/MgO/CeO{sub 2} catalysts indicate that Cu promotes alcohol dehydrogenation. Acetaldehyde is a reactive intermediate. High-pressure isobutanol synthesis studies have been carried out on K- and Cs-promoted Cu/MgO/CeO{sub 2} catalysts. The K promoter is more active than Cs for CO conversion, but the Cs promoter activates the C{sub 1} to C{sub 2} step more effectively. Catalysts with high alkali loading resulted in low conversions. Temperature programmed surface reaction studies of MeOH, EtOH, and acetaldehyde on MgO/CeO{sub 2}-based Cu catalysts show evolution of acetone, crotonaldehyde, methyl ethyl ketone, H2, carbon oxides. Neither EtOH nor acetaldehyde produces propionaldehyde or 1- propanol, suggesting that these C{sub 3} species can only form via reactions involving C{sub 1} and C{sub 2} oxygenate species.

  8. The Methanol Economy Project

    SciTech Connect

    Olah, George; Prakash, G. K.

    2014-02-01

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO2 capture using supported amines, co-electrolysis of CO2 and water to formate and syngas, decomposition of formate to CO2 and H2, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields.

  9. On the relative stabilities of the alkali cations 222 cryptates in the gas phase and in water-methanol solution.

    PubMed

    Leite, Elisa S; Santana, Sidney R; Hünenberger, Philippe H; Freitas, Luiz C G; Longo, Ricardo L

    2007-09-01

    The relative stabilities of the alkali [M subset 222]+ cryptates (M = Na, K, Rb and Cs) in the gas phase and in solution (80:20 v/v methanol:water mixture) at 298 K, are computed using a combination of ab initio quantum-chemical calculations (HF/6-31G and MP2/6-31+G*//HF/6-31+G*) and explicit-solvent Monte Carlo free-energy simulations. The results suggest that the relative stabilities of the cryptates in solution are due to a combination of steric effects (compression of large ions within the cryptand cavity), electronic effects (delocalization of the ionic charge onto the cryptand atoms) and solvent effects (dominantly the ionic dessolvation penalty). Thus, the relative stabilities in solution cannot be rationalized solely on the basis of a simple match or mismatch between the ionic radius and the cryptand cavity size as has been suggested previously. For example, although the [K subset 222]+ cryptate is found to be the most stable in solution, in agreement with experimental data, it is the [Na subset 222]+ cryptate that is the most stable in the gas phase. The present results provide further support to the notion that the solvent in which supramolecules are dissolved plays a key role in modulating molecular recognition processes.

  10. Toluene, Methanol and Benzaldehyde Removal from Gas Streams by Adsorption onto Natural Clay and Faujasite-Y type Zeolite.

    PubMed

    Zaitan, Hicham; Mohamed, Elham F; Valdés, Héctor; Nawdali, Mostafa; Rafqah, Salah; Manero, Marie Hélène

    2016-12-01

    A great number of pollution problems come as a result of the emission of Volatile Organic Compounds (VOCs) into the environment and their control becomes a serious challenge for the global chemical industry. Adsorption is a widely used technique for the removal of VOCs due to its high efficiency, low cost, and convenient operation. In this study, the feasibility to use a locally available clay, as adsorbent material to control VOCs emissions is evaluated. Natural clay is characterised by different physical-chemical methods and adsorptive interaction features between VOCs and natural clay are identified. Toluene (T), methanol (M) and benzaldehyde (B) are used here as representatives of three different kinds of VOCs. Adsorption isotherms onto natural clay and faujasite-Y type zeolite (Fau Y) are obtained at room temperature. According to Langmuir model data, maximum adsorption capacities (qm) of Fez natural clay and zeolite toward methanol (M), toluene (T) and benzaldehyde (B) at 300 K are 8, 0.89 and 3.1 mmol g-1, and 15, 1.91 and 13.9 mmol g-1 respectively. In addition, the effect of temperature on the adsorption of toluene onto natural clay is evaluated in the range from 300 to 323K. An increase on temperature reduces the adsorption capacity of natural clay toward toluene, indicating that an exothermic physical adsorption process takes place. The enthalpy of adsorption of toluene onto Fez natural clay was found to be -54 kJ mol-1. A preliminary cost analysis shows that natural clay could be used as an alternative low cost adsorbent in the control of VOCs from contaminated gas streams with a cost of US$ 0.02 kg-1 compared to Fau Y zeolite with US$ 10 kg-1.

  11. A novel multiple headspace extraction gas chromatographic method for measuring the diffusion coefficient of methanol in water and in olive oil.

    PubMed

    Zhang, Chun-Yun; Chai, Xin-Sheng

    2015-03-13

    A novel method for the determination of the diffusion coefficient (D) of methanol in water and olive oil has been developed. Based on multiple headspace extraction gas chromatography (MHE-GC), the methanol released from the liquid sample of interest in a closed sample vial was determined in a stepwise fashion. A theoretical model was derived to establish the relationship between the diffusion coefficient and the GC signals from MHE-GC measurements. The results showed that the present method has an excellent precision (RSD<1%) in the linear fitting procedure and good accuracy for the diffusion coefficients of methanol in both water and olive oil, when compared with data reported in the literature. The present method is simple and practical and can be a valuable tool for the determination of the diffusion coefficient of volatile analyte(s) into food simulants from food and beverage packaging material, both in research studies and in actual applications.

  12. Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation

    NASA Astrophysics Data System (ADS)

    Lavoie, Jean-Michel

    2014-11-01

    With the actual growth of the natural gas industry in the US as well as the potential and availability of this non-renewable carbon source worldwide, reforming of methane gas is getting increasing attention. Methane can be used for the production of heat or electricity, as well, it can be converted to syngas, a building block that could lead to the production of liquid fuels and chemical, a very promising pathway in light of the increasing price of oil. Amongst the different reforming techniques, dry reforming could represent a very interesting approach both to valorize a cheap source or carbon (CO2) as well as to reduce the overall carbon footprint of the increasing worldwide fossil-based methane consumption. In this short review, attention will be given on the thermodynamics of dry reforming followed by an investigation on dry reforming using heterogeneous catalyst by focusing on the mots popular elements used in literature for dry reforming. Attention will as well be given to different other emerging techniques that may allow countering at one point the high thermodynamic penalties that accompanies conversion of methane using carbon dioxide.

  13. Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation.

    PubMed

    Lavoie, Jean-Michel

    2014-01-01

    With the actual growth of the natural gas industry in the US as well as the potential and availability of this non-renewable carbon source worldwide, reforming of methane gas is getting increasing attention. Methane can be used for the production of heat or electricity, as well, it can be converted to syngas, a building block that could lead to the production of liquid fuels and chemicals, a very promising pathway in light of the increasing price of oil. Amongst the different reforming techniques, dry reforming could represent a very interesting approach both to valorize a cheap source or carbon (CO2) as well as to reduce the overall carbon footprint of the increasing worldwide fossil-based methane consumption. In this short review, attention will be given to the thermodynamics of dry reforming followed by an investigation on dry reforming using heterogeneous catalyst by focusing on the most popular elements used in literature for dry reforming. Attention will as well be given to other emerging techniques that may allow countering at one point the high thermodynamic penalties that accompanies conversion of methane using carbon dioxide.

  14. Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation

    PubMed Central

    Lavoie, Jean-Michel

    2014-01-01

    With the actual growth of the natural gas industry in the US as well as the potential and availability of this non-renewable carbon source worldwide, reforming of methane gas is getting increasing attention. Methane can be used for the production of heat or electricity, as well, it can be converted to syngas, a building block that could lead to the production of liquid fuels and chemicals, a very promising pathway in light of the increasing price of oil. Amongst the different reforming techniques, dry reforming could represent a very interesting approach both to valorize a cheap source or carbon (CO2) as well as to reduce the overall carbon footprint of the increasing worldwide fossil-based methane consumption. In this short review, attention will be given to the thermodynamics of dry reforming followed by an investigation on dry reforming using heterogeneous catalyst by focusing on the most popular elements used in literature for dry reforming. Attention will as well be given to other emerging techniques that may allow countering at one point the high thermodynamic penalties that accompanies conversion of methane using carbon dioxide. PMID:25426488

  15. Reduction of carbon dioxide gas formation at the anode of a direct methanol fuel cell using chemically enhanced solubility

    NASA Astrophysics Data System (ADS)

    Lundin, Michael D.; McCready, Mark J.

    The production of CO 2 gas at the DMFC anode leads to dramatic increases in pumping power requirements and reduced power output because of mass transfer limitations as bubble trains form in the channels of larger stacks. Experimental observations taken in a 5 cm 2 DMFC test cell operated at 60 °C, 1 atm, and with a methanol/water fuel flow rates of 5-10 cm 3 min -1 indicate that the rate of bubble formation can be reduced by increasing the fuel flow because more liquid is available for the CO 2 to dissolve in. Further observations indicate that KOH and LiOH added to the fuel eliminates CO 2 gas formation in situ at low concentrations because of the greatly increased solubility that results. A mathematical model for the volumetric rate of CO 2 gas production that includes effects of temperature and solubility is developed and extended to include the effects of hydroxide ions in solution. The model is used to predict the onset location of gas formation in the flow field as well as the void fraction at any point in the flow field. Predictions from the model agree very well with our experiments. Model predictions explain differences in the initial location of bubble formation for fuel solutions pre-saturated with CO 2 as opposed to CO 2-free solutions. Experiments with KOH and LiOH added to fuel solutions confirm the validity of the model extension that includes solubility that is enhanced by chemical reaction. Experiments with LiOH, KOH, and ammonium hydroxide show that the long-term durability of standard Pt-Ru/Nafion ®/Pt membrane electrode assemblies is compromised because of the presence of lithium, potassium, and ammonium cations that interact with the Nafion ® membrane and result in increasing the ohmic limitations of the polymer electrolyte membrane. Experiments with Ca(OH) 2, while reducing gas formation, precipitate the product CaCO 3 out of solution too rapidly for downstream filtering, blocking channels in the flow field.

  16. Effect of cooled EGR on performance and exhaust gas emissions in EFI spark ignition engine fueled by gasoline and wet methanol blends

    NASA Astrophysics Data System (ADS)

    Rohadi, Heru; Syaiful, Bae, Myung-Whan

    2016-06-01

    Fuel needs, especially the transport sector is still dominated by fossil fuels which are non-renewable. However, oil reserves are very limited. Furthermore, the hazardous components produced by internal combustion engine forces many researchers to consider with alternative fuel which is environmental friendly and renewable sources. Therefore, this study intends to investigate the impact of cooled EGR on the performance and exhaust gas emissions in the gasoline engine fueled by gasoline and wet methanol blends. The percentage of wet methanol blended with gasoline is in the range of 5 to 15% in a volume base. The experiment was performed at the variation of engine speeds from 2500 to 4000 rpm with 500 intervals. The re-circulated exhaust gasses into combustion chamber was 5%. The experiment was performed at the constant engine speed. The results show that the use of cooled EGR with wet methanol of 10% increases the brake torque up to 21.3%. The brake thermal efficiency increases approximately 39.6% using cooled EGR in the case of the engine fueled by 15% wet methanol. Brake specific fuel consumption for the engine using EGR fueled by 10% wet methanol decreases up to 23% at the engine speed of 2500 rpm. The reduction of CO, O2 and HC emissions was found, while CO2 increases.

  17. A study on methanol steam reforming to CO{sub 2} and H{sub 2} over the La{sub 2}CuO{sub 4} nanofiber catalyst

    SciTech Connect

    Gao Lizhen Sun Gebiao; Kawi, Sibudjing

    2008-01-15

    The La{sub 2}CuO{sub 4} crystal nanofibers were prepared by using single-walled carbon nanotubes as templates under mild hydrothermal conditions. The steam reforming of methanol (SRM) to CO{sub 2} and H{sub 2} over such nanofiber catalysts was studied. At the low temperature of 150 deg. C and steam/methanol=1.3, methanol was completely (100%, 13.8 g/h g catalyst) converted to hydrogen and CO{sub 2} without the generation of CO. Within the 60 h catalyst lifespan test, methanol conversion was maintained at 98.6% (13.6 g/h g catalyst) and with 100% CO{sub 2} selectivity. In the meantime, for distinguishing the advantage of nanoscale catalyst, the La{sub 2}CuO{sub 4} bulk powder was prepared and tested for the SRM reaction for comparison. Compared with the La{sub 2}CuO{sub 4} nanofiber, the bulk powder La{sub 2}CuO{sub 4} showed worse catalytic activity for the SRM reaction. The 100% conversion of methanol was achieved at the temperature of 400 deg. C, with the products being H{sub 2} and CO{sub 2} together with CO. The catalytic activity in terms of methanol conversion dropped to 88.7% (12.2 g/h g catalyst) in 60 h. The reduction temperature for nanofiber La{sub 2}CuO{sub 4} was much lower than that for the La{sub 2}CuO{sub 4} bulk powder. The nanofibers were of higher specific surface area (105.0 m{sup 2}/g), metal copper area and copper dispersion. The in situ FTIR and EPR experiments were employed to study the catalysts and catalytic process. In the nanofiber catalyst, there were oxygen vacancies. H{sub 2}-reduction resulted in the generation of trapped electrons [e] on the vacancy sites. Over the nanofiber catalyst, the intermediate H{sub 2}CO/HCO was stable and was reformed to CO{sub 2} and H{sub 2} by steam rather than being decomposed directly to CO and H{sub 2}. Over the bulk counterpart, apart from the direct decomposition of H{sub 2}CO/HCO to CO and H{sub 2}, the intermediate H{sub 2}COO might go through two decomposition ways: H{sub 2}COO=CO+H{sub 2}O and H

  18. Towards H2-rich gas production from unmixed steam reforming of methane: Thermodynamic modeling

    NASA Astrophysics Data System (ADS)

    Lima da Silva, Aline; Müller, Iduvirges Lourdes

    2011-10-01

    In this work, the Gibbs energy minimization method is applied to investigate the unmixed steam reforming (USR) of methane to generate hydrogen for fuel cell application. The USR process is an advanced reforming technology that relies on the use of separate air and fuel/steam feeds to create a cyclic process. Under air flow (first half of the cycle), a bed of Ni-based material is oxidized, providing the heat necessary for the steam reforming that occurs subsequently during fuel/steam feed stage (second half of the cycle). In the presence of CaO sorbent, high purity hydrogen can be produced in a single reactor. In the first part of this work, it is demonstrated that thermodynamic predictions are consistent with experimental results from USR isothermal tests under fuel/steam feed. From this, it is also verified that the reacted NiO to CH4 (NiOreacted/CH4) molar ratio is a very important parameter that affects the product gas composition and decreases with time. At the end of fuel/steam flow, the reforming reaction is the most important chemical mechanism, with H2 production reaching ∼75 mol%. On the other hand, at the beginning of fuel/steam feed stage, NiO reduction reactions dominate the equilibrium system, resulting in high CO2 selectivity, negative steam conversion and low concentrations of H2. In the second part of this paper, the effect of NiOreacted/CH4 molar ratio on the product gas composition and enthalpy change during fuel flow is investigated at different temperatures for inlet H2O/CH4 molar ratios in the range of 1.2-4, considering the USR process operated with and without CaO sorbent. During fuel/steam feed stage, the energy demand increases as time passes, because endothermic reforming reaction becomes increasingly important as this stage nears its end. Thus, the duration of the second half of the cycle is limited by the conditions under which auto-thermal operation can be achieved. In absence of CaO, H2 at concentrations of approximately 73 mol% can

  19. A greenhouse gas source of surprising significance: anthropogenic CO2 emissions from use of methanol in sewage treatment.

    PubMed

    Willis, John L; Al-Omari, Ahmed; Bastian, Robert; Brower, Bill; DeBarbadillo, Christine; Murthy, Sudhir; Peot, Christopher; Yuan, Zhiguo

    2017-05-01

    The impact of methanol (CH3OH) as a source of anthropogenic carbon dioxide (CO2) in denitrification at wastewater treatment plants (WWTPs) has never been quantified. CH3OH is the most commonly purchased carbon source for sewage denitrification. Until recently, greenhouse gas (GHG) reporting protocols consistently ignored the liberation of anthropogenic CO2 attributable to CH3OH. This oversight can likely be attributed to a simplifying notion that CO2 produced through activated-sludge-process respiration is biogenic because most raw-sewage carbon is un-sequestered prior to entering a WWTP. Instead, a biogenic categorization cannot apply to fossil-fuel-derived carbon sources like CH3OH. This paper provides a summary of how CH3OH use at DC Water's Blue Plains Advanced Wastewater Treatment Plant (AWTP; Washington, DC, USA) amounts to 60 to 85% of the AWTP's Scope-1 emissions. The United States Environmental Protection Agency and Water Environment Federation databases suggest that CH3OH CO2 likely represents one quarter of all Scope-1 GHG emissions attributable to sewage treatment in the USA. Finally, many alternatives to CH3OH use exist and are discussed.

  20. Reforming of biogas to synthesis gas by a rotating arc plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Chung, Woo-Jae; Park, Hyun-Woo; Liu, Jing-Lin; Park, Dong-Wha

    2015-09-01

    In order to produce synthesis gas, reforming of biogas composed with 60 percent for CH4 and 40 percent for CO2 was performed by a novel rotating arc plasma process. The effect of O2/CH4 ratio on the conversion, syngas composition and energy cost was investigated to evaluate the performance of proposed system compared with conventional gliding arc plasma process. When the O2/CH4 ratio was increased from 0.4 to 0.9, the conversions of CH4 and O2 increased up to 97.5 percent and 98.8 percent, respectively, while CO2 conversion was almost constant to be 38.6 percent. This is due to more enhance the partial oxidation of CH4 to CO and H2 than that of dry reforming by increasing the O2/CH4 ratio. In this work, energy cost of 32 kJ/mol was achieved with high syngas composition of 71 percent using pure O2 as oxidant reactant. These are lower than those of different arc plasma processes (energy cost of 122 - 1870 kJ/mol) such as spark, spark-shade and gliding arc plasma. Because, this rotating arc plasma can remain in a long arc length and a large volume of plasma with constant arc length mode.

  1. Process assessment of small scale low temperature methanol synthesis

    NASA Astrophysics Data System (ADS)

    Hendriyana, Susanto, Herri; Subagjo

    2015-12-01

    Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H2 to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H2 for increasing H2/CO ratio. CO2 removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy balance and economic

  2. Process assessment of small scale low temperature methanol synthesis

    SciTech Connect

    Hendriyana; Susanto, Herri Subagjo

    2015-12-29

    Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H{sub 2} to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H{sub 2} for increasing H{sub 2}/CO ratio. CO{sub 2} removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy

  3. Synthesis gas and olefins from the catalytic autothermal reforming of volatile and non-volatile liquids

    NASA Astrophysics Data System (ADS)

    Dreyer, Bradon Justin

    2007-12-01

    The research presented in this thesis develops an understanding of a clean energy process technology, catalytic partial oxidation (CPO). CPO is a process in which a carbon containing fuel, such as a hydrocarbon, is passed over a noble metal catalyst (e.g. rhodium and platinum) to efficiently generate synthesis gas (H2 and CO) and olefins (e.g. ethylene and propylene) in millisecond contact times. Chapter 1 introduces CPO and compares this technology with conventional methods for synthesis gas and olefin production. CPO has several advantages over the traditional synthesis gas and olefin production methods. One advantage includes autothermal operation, requiring no external heat input from furnaces or heat exchangers. Autothermal operation allows these reactors to be built compactly. The short contact-times associated with CPO further enable for high throughput in relatively small reactor systems, and more compact reactors typically translate to faster response times if transient operation is required. Nobel metal based CPO catalysts are also resistant to deactivation, resulting in less catalyst replacement, regeneration, and maintenance, and an increase in operating efficiency. An overview of the many applications of the chemicals produced from CPO is also presented in Chapter 1. The chemicals produced are crucial in generating valuable chemical intermediates that are eventually incorporated in consumer products, medical devices, building structures, and fertilizers. Additionally, H2 can be used as a source of energy in mobile fuel applications. Fuel cells convert H2 and O2 into electricity and water at higher efficiencies than thermal engine generators. Due to the difficulties in H2 storage, these more efficient energy generators are dependent on hydrogen obtained from synthesis gas production in compact, portable fuel reformers, such as CPO reactors. Furthermore, H2 and CO can be used in reducing environmentally harmful emissions. Particularly, the implementation

  4. The Development of Methanol Industry and Methanol Fuel in China

    SciTech Connect

    Li, W.Y.; Li, Z.; Xie, K.C.

    2009-07-01

    In 2007, China firmly established itself as the driver of the global methanol industry. The country became the world's largest methanol producer and consumer. The development of the methanol industry and methanol fuel in China is reviewed in this article. China is rich in coal but is short on oil and natural gas; unfortunately, transportation development will need more and more oil to provide the fuel. Methanol is becoming a dominant alternative fuel. China is showing the rest of the world how cleaner transportation fuels can be made from coal.

  5. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons.

    PubMed

    Olah, George A; Goeppert, Alain; Prakash, G K Surya

    2009-01-16

    Nature's photosynthesis uses the sun's energy with chlorophyll in plants as a catalyst to recycle carbon dioxide and water into new plant life. Only given sufficient geological time can new fossil fuels be formed naturally. In contrast, chemical recycling of carbon dioxide from natural and industrial sources as well as varied human activities or even from the air itself to methanol or dimethyl ether (DME) and their varied products can be achieved via its capture and subsequent reductive hydrogenative conversion. The present Perspective reviews this new approach and our research in the field over the last 15 years. Carbon recycling represents a significant aspect of our proposed Methanol Economy. Any available energy source (alternative energies such as solar, wind, geothermal, and atomic energy) can be used for the production of needed hydrogen and chemical conversion of CO(2). Improved new methods for the efficient reductive conversion of CO(2) to methanol and/or DME that we have developed include bireforming with methane and ways of catalytic or electrochemical conversions. Liquid methanol is preferable to highly volatile and potentially explosive hydrogen for energy storage and transportation. Together with the derived DME, they are excellent transportation fuels for internal combustion engines (ICE) and fuel cells as well as convenient starting materials for synthetic hydrocarbons and their varied products. Carbon dioxide thus can be chemically transformed from a detrimental greenhouse gas causing global warming into a valuable, renewable and inexhaustible carbon source of the future allowing environmentally neutral use of carbon fuels and derived hydrocarbon products.

  6. A new headspace gas chromatographic method for the determination of methanol content in paper materials used for food and drink packaging.

    PubMed

    Hu, Hui-Chao; Tian, Ying-Xin; Jin, Hui-Jun; Chai, Xin-Sheng; Barnes, Donald G

    2013-10-02

    This study reports on a method for determination of methanol in paper products by headspace gas chromatography (HS-GC). The method is based on the hydrolysis of the pulp or paper matrix, using a phosphoric acid solution (42.5%) as the medium at 120 °C in 5 h (excluding air contact) in order to release matrix-entrapped methanol, which is then determined by HS-GC. Data show that, under the given conditions of hydrolysis, no methanol was formed from the methoxyl groups in the material. Reproducibility tests of the method generated a relative standard deviation of <3.5%, with recovery in the range of 93.4-102%. The present method is reliable, accurate, and suitable for use in batch testing of the methanol content in paper-related materials. The method can play an important role in addressing food safety concerns that may be raised regarding the use of paper materials in food and beverage packaging.

  7. Isobutanol-methanol mixtures from synthesis gas. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Iglesia, E.

    1995-07-24

    Three types of catalytic materials for alcohol coupling and isobutanol synthesis reactions have been prepared and characterized by BET surface area and x-ray diffraction methods. The materials consist of (1) modified low-temperature methanol synthesis catalysts and their constitutive components, (2) high temperature isobutanol synthesis catalysts consisting of Nb-Zn-Zr mixed oxides promoted with Cu, and (3) high surface area basic oxides prepared from hydrotalcite precursors and active in alcohol coupling reactions. Mechanistic and kinetic studies of methanol and ethanol coupling reactions using labeled compounds have shown that the reaction proceeds via an intermediate dehydrogenation reaction that form aldehydic intermediates. Ethanol is much more reactive than methanol because it forms a more thermodynamically stable acetaldehyde intermediate with kinetically available aldol condensation pathways for the formation of higher oxygenates. The presence of Cs in this catalysts decreases dehydrogenation rates but prevents the decomposition of methanol and ethanol to CO and H{sub 2}.

  8. Pulsed laser-induced photocatalytic reduction of greenhouse gas CO2 into methanol: A value-added hydrocarbon product over SiC.

    PubMed

    Gondal, Mohammed A; Ali, Mohammad A; Chang, Xiao F; Shen, Kai; Xu, Qing Y; Yamani, Zain H

    2012-01-01

    CO(2) was converted into value-added hydrocarbons (methanol) by laser-induced photocatalytic reduction of CO(2) over commercially available silicon-carbide (SiC) granules as catalyst. The conversion of CO(2) was carried out in a glass reactor having quartz window and equipped with stirring system and was provided with continuous CO(2) flow at ambient conditions. Laser radiations of 355 nm, which were generated by third harmonics of Nd:YAG laser (1060 nm) were applied as an excitation source. The methanol yield as a function of irradiation time and catalysts dosage were monitored by the gas chromatographic analysis (GD-FID) of water samples collected at prescribed intervals. A specific GC column was used which separated hydrocarbons efficiently without any interference from water present in the sample. The study indicated that the commercially available SiC granular material is an excellent catalyst in laser-induced photocatalytic conversion of CO(2) into high value hydrocarbons.

  9. Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas

    NASA Astrophysics Data System (ADS)

    Boder, M.; Dittmeyer, R.

    When using natural gas as fuel for the solid oxide fuel cell (SOFC), direct internal reforming lowers the requirement for cell cooling and, theoretically, offers advantages with respect to capital cost and efficiency. The high metal content of a nickel/zirconia anode and the high temperature, however, cause the endothermic reforming reaction to take place very fast. The resulting drop of temperature at the inlet produces thermal stresses, which may lower the system efficiency and limit the stack lifetime. To reduce the reforming rate without lowering the electrochemical activity of the cell, a wet impregnation procedure for modifying conventional cermets by coverage with a less active metal was developed. As the coating material copper was chosen. Copper is affordable, catalytically inert for the reforming reaction and exhibits excellent electronic conductivity. The current density-voltage characteristics of the modified units showed that it is possible to maintain a good electrochemical performance of the cells despite the catalytic modification. A copper to nickel ratio of 1:3 resulted in a strong diminution of the catalytic reaction rate. This indicates that the modification could be a promising method to improve the performance of solid oxide fuel cells with direct internal reforming of hydrocarbons.

  10. Kinetics of the gas phase HO2 self-reaction: effects of temperature, pressure, water and methanol vapours.

    PubMed

    Stone, Daniel; Rowley, David M

    2005-05-21

    The kinetics of the gas phase HO2 self-reaction have been studied using flash photolysis of Cl2/CH3OH/O2/N2 mixtures coupled with time-resolved broadband UV absorption spectroscopy. The HO2 self-reaction rate coefficient (HO2 + HO2 --> H2O2 + O2 (R1)) has been determined as a function of temperature (236 < T < 309 K, at 760 Torr) and pressure (100 < p < 760 Torr, at 296 K). In addition, the effects of water vapour ((0-6.0) x 10(17) molecules cm(-3), 254 < T < 309 K at 760 Torr, 400 < p < 760 Torr at 296 K) and methanol vapour ((0.06-4.7) x 10(17) molecules cm(-3), 254 < T < 309 K, at 760 Torr) on the rate coefficient have been characterised. The observed rate coefficient, k1, was found to exhibit a negative temperature dependence with both pressure dependent and pressure independent components, in agreement with previous studies. Furthermore, the rate coefficient k1 was found to be enhanced in the presence of elevated H2O or CH3OH concentrations, as reported previously. This study reports the most extensive characterisation of the rate coefficient k1 as a function of T, p, [H2O] and [CH3OH]. The present results indicate that k1 is higher at low temperatures, and that enhancement of k1 by H2O is greater, than has been reported previously. The pressure dependence of k1 at ambient temperature is in good agreement with previous studies. The rate enhancement by CH3OH reported here is in good agreement with previous studies at ambient temperatures but is smaller at low temperatures than the most recent previous investigation suggests. The rate coefficient k1 is adequately parameterised by: k1(760 Torr) = {(1.8 +/- 0.8) x 10(-14) exp((1500 +/- 120)/T/K)} x {1 + (2.0 +/- 4.9) x 10(-25) [H2O] exp((4670 +/- 690)/T/K)} x (1 + (0.56 +/- 1.00) x 10(-21) [CH3OH] exp((2550 +/- 500)/T/K)} cm(-3) molecule(-1) s(-1), where [H2O] and [CH3OH] are in molecules cm(-3). Errors are 1 sigma, and statistical only. The atmospheric implications of these results are briefly discussed.

  11. Reforming catalysts

    SciTech Connect

    Givens, E.N.; Plank, C.J.; Rosinski, E.J.

    1980-03-04

    Crystalline aluminosilicate zeolites are mixed with conventional reforming catalysts to produce new catalytic compositions with high catalytic activity and selectivity and excellent aging characteristics. These new catalytic compositions may be utilized alone or in conjunction with conventional reforming catalysts. The acidic activity of the total catalyst system is controlled within defined limits. When so controlled the utility of these catalyst systems in reforming hydrocarbon mixtures is to reduce the C1 and C2 concentrations in reformer gas product, while increasing the C3 and C4 concentrations and maintaining high liquid yield at high octane numbers.

  12. Gas-to-liquids synthetic fuels for use in fuel cells : reformability, energy density, and infrastructure compatibility.

    SciTech Connect

    Ahmed, S.; Kopasz, J. P.; Russell, B. J.; Tomlinson, H. L.

    1999-09-08

    The fuel cell has many potential applications, from power sources for electric hybrid vehicles to small power plants for commercial buildings. The choice of fuel will be critical to the pace of its commercialization. This paper reviews the various liquid fuels being considered as an alternative to direct hydrogen gas for the fuel cell application, presents calculations of the hydrogen and carbon dioxide yields from autothermal reforming of candidate liquid fuels, and reports the product gas composition measured from the autothermal reforming of a synthetic fuel in a micro-reactor. The hydrogen yield for a synthetic paraffin fuel produced by a cobalt-based Fischer-Tropsch process was found to be similar to that of retail gasoline. The advantages of the synthetic fuel are that it contains no contaminants that would poison the fuel cell catalyst, is relatively benign to the environment, and could be transported in the existing fuel distribution system.

  13. Production of hydrogen-rich gas from methane by thermal plasma reform.

    PubMed

    Chun, Young N; Kim, Seong C

    2007-12-01

    This study investigated the reforming characteristics and optimum operating condition of the high-temperature plasma torch (so called plasmatron) for hydrogen-rich gas (syngas) production. At the optimum condition, the composition of produced syngas was 45.4% hydrogen (H2), 6.9% carbon monoxide (CO), 1.5% carbon dioxide (CO2), and 1.1% acetylene (C2H2). The H2/CO ratio was 6.6, hydrogen yield was 78.8%, and the energy conversion rate was 63.6%. To obtain the optimum operating condition, parametric studies were carried out examining the effects of O2/CH4 ratio, steam/CH4 ratio, and Ni catalyst addition in reactor. When the steam/CH4 ratio was 1.23, the production of hydrogen was maximized and the methane conversion rate was 99.7%. The syngas composition was determined to be 50.4% H2, 5.7% CO, 13.8% CO2, and 1.1% C2H2. The H2/CO ratio was 9.7, hydrogen yield was 93.7%, and the energy conversion rate was 78.8%. Hydrogen production with catalyst was effective, compared with no catalyst.

  14. The effect of sodium species on methanol synthesis and water-gas shift Cu/ZnO catalysts: utilising high purity zincian georgeite.

    PubMed

    Kondrat, Simon A; Smith, Paul J; Carter, James H; Hayward, James S; Pudge, Geoffrey J; Shaw, Greg; Spencer, Michael S; Bartley, Jonathan K; Taylor, Stuart H; Hutchings, Graham J

    2017-04-28

    The effect of sodium species on the physical and catalytic properties of Cu/ZnO catalysts derived from zincian georgeite has been investigated. Catalysts prepared with <100 ppm to 2.1 wt% Na(+), using a supercritical CO2 antisolvent technique, were characterised and tested for the low temperature water-gas shift reaction and also CO2 hydrogenation to methanol. It was found that zincian georgeite catalyst precursor stability was dependent on the Na(+) concentration, with the 2.1 wt% Na(+)-containing sample uncontrollably ageing to malachite and sodium zinc carbonate. Samples with lower Na(+) contents (<100-2500 ppm) remained as the amorphous zincian georgeite phase, which on calcination and reduction resulted in similar CuO/Cu particle sizes and Cu surface areas. The aged 2.1 wt% Na(+) containing sample, after calcination and reduction, was found to comprise of larger CuO crystallites and a lower Cu surface area. However, calcination of the high Na(+) sample immediately after precipitation (before ageing) resulted in a comparable CuO/Cu particle size to the lower (<100-2500 ppm) Na(+) containing samples, but with a lower Cu surface area, which indicates that Na(+) species block Cu sites. Activity of the catalysts for the water-gas shift reaction and methanol yields in the methanol synthesis reaction correlated with Na(+) content, suggesting that Na(+) directly poisons the catalyst. In situ XRD analysis showed that the ZnO crystallite size and consequently Cu crystallite size increased dramatically in the presence of water in a syn-gas reaction mixture, showing that stabilisation of nanocrystalline ZnO is required. Sodium species have a moderate effect on ZnO and Cu crystallite growth rate, with lower Na(+) content resulting in slightly reduced rates of growth under reaction conditions.

  15. Direct quantitative gas chromatographic separation of C2-C6 fatty acids, methanol, and ethyl alcohol in aqueous microbial fermentation media.

    PubMed

    Rogosa, M; Love, L L

    1968-02-01

    A method is described for the direct quantitative gas chromatographic separation of C(2)-C(6) lower fatty acid homologues, methanol, and ethyl alcohol in aqueous microbial fermentation media. A hydrogen flame detector and a single-phase solid column packing, comprising beads of a polyaromatic resin (polystyrene cross-linked with divinyl benzene), were employed. Direct injections of 1 to 10 muliters of aqueous culture supernatant fluids were made. Quantitative recoveries of C(2)-C(6) acids added to culture supernatant fluids were obtained.

  16. Direct Quantitative Gas Chromatographic Separation of C2-C6 Fatty Acids, Methanol, and Ethyl Alcohol in Aqueous Microbial Fermentation Media

    PubMed Central

    Rogosa, M.; Love, L. L.

    1968-01-01

    A method is described for the direct quantitative gas chromatographic separation of C2-C6 lower fatty acid homologues, methanol, and ethyl alcohol in aqueous microbial fermentation media. A hydrogen flame detector and a single-phase solid column packing, comprising beads of a polyaromatic resin (polystyrene cross-linked with divinyl benzene), were employed. Direct injections of 1 to 10 μliters of aqueous culture supernatant fluids were made. Quantitative recoveries of C2-C6 acids added to culture supernatant fluids were obtained. PMID:5645415

  17. A numerical study on the effect of hydrogen/reformate gas addition on flame temperature and NO formation in strained methane/air diffusion flames

    SciTech Connect

    Guo, Hongsheng; Neill, W. Stuart

    2009-02-15

    This paper investigates the effects of hydrogen/reformate gas addition on flame temperature and NO formation in strained methane/air diffusion flames by numerical simulation. The results reveal that flame temperature changes due to the combined effects of adiabatic temperature, fuel Lewis number and radiation heat loss, when hydrogen/reformate gas is added to the fuel of a methane/air diffusion flame. The effect of Lewis number causes the flame temperature to increase much faster than the corresponding adiabatic equilibrium temperature when hydrogen is added, and results in a qualitatively different variation from the adiabatic equilibrium temperature as reformate gas is added. At some conditions, the addition of hydrogen results in a super-adiabatic flame temperature. The addition of hydrogen/reformate gas causes NO formation to change because of the variations in flame temperature, structure and NO formation mechanism, and the effect becomes more significant with increasing strain rate. The addition of a small amount of hydrogen or reformate gas has little effect on NO formation at low strain rates, and results in an increase in NO formation at moderate or high strain rates. However, the addition of a large amount of hydrogen increases NO formation at all strain rates, except near pure hydrogen condition. Conversely, the addition of a large amount of reformate gas results in a reduction in NO formation. (author)

  18. Experimental investigation of 1 kW solid oxide fuel cell system with a natural gas reformer and an exhaust gas burner

    NASA Astrophysics Data System (ADS)

    Yen, Tzu-Hsiang; Hong, Wen-Tang; Huang, Wei-Ping; Tsai, Yu-Ching; Wang, Hung-Yu; Huang, Cheng-Nan; Lee, Chien-Hsiung

    An experimental investigation is performed to establish the optimal operating conditions of a porous media after-burner integrated with a 1 kW solid oxide fuel cell (SOFC) system fed by a natural gas reformer. The compositions of the anode off-gas and cathode off-gas emitted by the SOFC when operating with fuel utilizations in the range 0-0.6 are predicted using commercial GCTool software. The numerical results are then used to set the compositions of the anode off-gas and cathode off-gas in a series of experiments designed to clarify the effects of the fuel utilization, cathode off-gas temperature and excess air ratio on the temperature distribution within the after-burner. The experimental results show that the optimal after-burner operation is obtained when using an anode off-gas temperature of 650 °C, a cathode off-gas temperature of 390 °C, a flame barrier temperature of 700 °C, an excess air ratio of 2 and a fuel utilization of U f = 0.6. It is shown that under these conditions, the after-burner can operate in a long-term, continuous fashion without the need for either cooling air or any additional fuel other than that provided by the anode off-gas.

  19. Gas chromatography/isotope ratio mass spectrometry: analysis of methanol, ethanol and acetic acid by direct injection of aqueous alcoholic and acetic acid samples.

    PubMed

    Ai, Guomin; Sun, Tong; Dong, Xiuzhu

    2014-08-15

    Methanol, ethanol, and acetic acid are not easily extracted from aqueous samples and are susceptible to isotope fractionation in gas chromatography/isotope ratio mass spectrometry (GC/IRMS) analysis. Developing a direct dilution GC/IRMS method for aqueous samples, by adjusting the sample concentrations in common solvents to be similar to each other and using a fixed GC split ratio, is very convenient and important because any linearity effects caused by amount-dependent isotope fractionation can be avoided. The suitability of acetonitrile and acetone solvents for the GC/IRMS analysis of pure methanol, ethanol and acetic acid, and commercial liquor and vinegar samples was evaluated using n-hexane and water as control solvents. All the solvents including water were separated from the analyte on a HP-INNOWAX column and were diverted away from the combustion interface. The influence of liquor matrix on the ethanol GC/IRMS analyses was evaluated by adding pure ethanol to liquor samples. Acetonitrile and acetone gave similar δ(13) C values for pure ethanol and pure acetic acid to those obtained in water and n-hexane, and also gave similar δ(13) C values of ethanol in liquor and acetic acid in white vinegar to that obtained in water. For methanol analysis, acetonitrile and refined acetone gave similar δ(13) C values to that obtained in water, but n-hexane was not a suitable solvent. In addition, isotopic fractionation caused by solvent and solute interactions was observed. We recommend using acetonitrile for the GC/IRMS analysis of aqueous alcoholic samples, and acetone for the analysis of aqueous acetic acid samples. This direct dilution method can provide high accurate and precise GC/IRMS analysis of the relative changes in δ(13) C values of methanol, ethanol, and acetic acid. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Cooperative Reformable Channel System with Unique Recognition of Small Gas Molecules in a two-dimensional ZIF-membrane

    NASA Astrophysics Data System (ADS)

    Motevalli, Benyamin; Taherifar, Neda; Liu, Zhe

    We report a cooperative reformable channel system in a coordination porous polymer, named as ZIF-L. Three types of local flexible ligands coexist in the crystal structure of this polymer, resulting in ultra-flexibility. The reformable channel is able to regulate permeation of a nonspherical guest molecule, such as N2 or CO2, based on its longer molecular dimension, which is in a striking contrast to conventional molecular sieves that regulate the shorter cross-sectional dimension of the guest molecules. Our density functional theory (DFT) calculations reveal that the guest molecule induces dynamic motion of the flexible ligands, leading to the channel reformation, and then the guest molecule reorientates itself to fit in the reformed channel. Such a unique ``induced fit-in'' mechanism causes the gas molecule to pass through 6 membered-ring windows in the c- crystal direction of ZIF-L with its longer axis parallel to the window plane. Our experimental permeance of N2 through the ZIF-L membranes is about three times greater than that of CO2, supporting the DFT simulation predictions.

  1. Fuel Processing System for a 5kW Methanol Fuel Cell Power Unit.

    DTIC Science & Technology

    1985-11-27

    report documents the development and design of a 5kW neat methanol reformer for phosphoric acid fuel cell power plants . The reformer design was based...VAPORIZATION OF METHANOL ........... 4.3 REFORMING/SHIFT CATALYST BED ......... 2 5.0 COMPONENT TESTING............... 5.1 COMBUSTION TUBE...69 36 Catalyst Bed Temperature Profile Before and After Transient ................. 70 37 Assembly -5kw Neat Methanol Reformer. ......... 72 Page No

  2. Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation

    SciTech Connect

    Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

    2012-05-01

    Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

  3. Gas phase measurements of the stabilization and solvation of metal dications in clusters of ammonia and methanol.

    PubMed

    Chen, Xiaojing; Stace, Anthony J

    2013-06-20

    An experimental study has been undertaken of the ability of small numbers of either ammonia or methanol molecules (XH) to form stable solvated complexes with each of nine metal dications, M(2+). Complexes have been generated using a combination of the pick-up technique and electron impact ionization, and individual ions were monitored for evidence of metastability in the form of Coulomb fission or charge separation: [M(XH)n](2+) → [M(+)X](XH)n-m + H2X(+)(XH)m-2. Values have been assigned to a quantity ns, which is identified as the minimum number of molecules required to suppress the above reaction. These values were found to range from 3 for Sr(2+) complexed with methanol to 19 for Sn(2+) complexed with ammonia. Comparisons are made with results published previously for the same metal dications complexed with water (Chen, X.; Stace, A. J. Chem. Commun.2012, 10292), and for the most part, it is found that ions solvated with either ammonia or methanol are less stable than their water counterparts. To account for differences in stability, several criteria have been examined, and of those, the most satisfactory correlation is between ns and M(2+)-XH bond strength; the stronger the bond, the larger ns has to be in order for a complex to be stable. However, for complexes where ns is large, such as those involving Zn(2+), Cu(2+), and especially Sn(2+) and Pb(2+), it is proposed that the geometry adopted by solvent molecules also has a significant influence on proton transfer. By comparing the ease with which proton transfer occurs for the three protic solvents, water, ammonia, and methanol, it is possible to comment on metal ion acidity in nonaqueous solutions, for which condensed phase data are nonexistent; the results suggest that most of the nine metals would be stronger Lewis acids in ammonia than in water.

  4. Multi-fuel reformers for fuel cells used in transportation. Multi-fuel reformers: Phase 1 -- Final report

    SciTech Connect

    Not Available

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  5. Isobutanol-methanol mixtures from synthesis gas. Quarterly technical progress report, 1 April--30 June 30 1996

    SciTech Connect

    1996-07-25

    A series of CuMgCeO{sub x} catalysts have been prepared by coprecipitating the corresponding metal nitrates with a mixed solution of potassium carbonate and potassium hydroxide. Kinetic studies of methanol and ethanol coupling reactions on K-Cu/MgO/CeO{sub 2} and MgO/CeO{sub 2} catalysts indicate that Cu enhances the rates of alcohol dehydrogenation. The cross-coupling reactions of acetaldehyde and {sup 13}C-labeled methanol produce singly-labeled propionaldehyde, suggesting that it forms by the condensation of acetaldehyde and a reactive intermediate derived from methanol. Isobutyraldehyde, a precursor to isobutanol, forms via the condensation of propionaldehyde and a reactive C{sub 1} intermediate resulting from methanol. CO{sub 2}, one of the reaction products, poisons both basic and metal sites on Ce-containing CuMgO{sub x} catalysts, resulting in decreases in the rates of both alcohol dehydrogenation (Cu sites) and chain-growth condensation reactions (basic sites). CO{sub 2} inhibits ethanol dehydrogenation on both low-Cu and high-Cu CuMgCeO{sub x} catalysts; however, CO{sub 2} has no effect on the activity of low-Cu Ce-free Cu-MgO{sub x} catalysts, suggesting that the Cu on CuMgCeO{sub x} catalysts is more likely to be oxidized by CO{sub 2} to Cu{sup +} species that can be subsequently stabilized by CeO{sub 2}. CO{sub 2} effects on high-pressure isobutanol synthesis from CO/H{sub 2} have been studied on low- and high-Cu CuMgCeO{sub x} catalysts at 320{degrees}C and 4.5 MPa. CO{sub 2} addition and removal on low- and high-Cu catalysts show similar directional effects on CO conversion. CO conversion is lower at all space velocities in the presence of CO{sub 2}, and removal Of CO{sub 2} from the feed partially recovers CO conversion. CO{sub 2} decreases methanol and isobutanol productivities on both catalysts. Addition of 1-propanol to CO/H{sub 2} feed increases isobutanol production, suggesting that 1-propanol is a precursor to isobutanol.

  6. Naphtha reforming

    SciTech Connect

    Marschner, F.; Renner, H.J.

    1982-04-01

    Most synthesis gases - mixtures of CO and H/sub 2/ - are produced from natural gas. However, a considerable percentage is also produced from naphtha. Syngas via naphtha is economical when natural gas is unavailable and when low hydrogen content syngas is needed. The discussion covers the following topics - catalytic steam reforming; naphtha qualities; process description; desulfurization reactors; rich gas reactors; tubular reactors; fire box; burner and firing systems; reformer tubes; inlet header and outlet manifold systems; waste heat systems, heat exchangers, piping. 10 refs.

  7. Water co-catalyzed selective dehydrogenation of methanol to formaldehyde and hydrogen

    NASA Astrophysics Data System (ADS)

    Shan, Junjun; Lucci, Felicia R.; Liu, Jilei; El-Soda, Mostafa; Marcinkowski, Matthew D.; Allard, Lawrence F.; Sykes, E. Charles H.; Flytzani-Stephanopoulos, Maria

    2016-08-01

    The non-oxidative dehydrogenation of methanol to formaldehyde is considered a promising method to produce formaldehyde and clean hydrogen gas. Although Cu-based catalysts have an excellent catalytic activity in the oxidative dehydrogenation of methanol, metallic Cu is commonly believed to be unreactive for the dehydrogenation of methanol in the absence of oxygen adatoms or oxidized copper. Herein we show that metallic Cu can catalyze the dehydrogenation of methanol in the absence of oxygen adatoms by using water as a co-catalyst both under realistic reaction conditions using silica-supported PtCu nanoparticles in a flow reactor system at temperatures below 250 °C, and in ultra-high vacuum using model PtCu(111) catalysts. Adding small amounts of isolated Pt atoms into the Cu surface to form PtCu single atom alloys (SAAs) greatly enhances the dehydrogenation activity of Cu. Under the same reaction conditions, the yields of formaldehyde from PtCu SAA nanoparticles are more than one order of magnitude higher than on the Cu nanoparticles, indicating a significant promotional effect of individual, isolated Pt atoms. Moreover, this study also shows the unexpected role of water in the activation of methanol. Water, a catalyst for methanol dehydrogenation at low temperatures, becomes a reactant in the methanol steam reforming reactions only at higher temperatures over the same metal catalyst.

  8. Heterogeneous Chemistry Involving Methanol in Tropospheric Clouds

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Yokelson, R. J.; Singh, H. B.; Hobbs, P. V.; Crawford, J. H.; Iraci, L. T.

    2004-01-01

    In this report we analyze airborne measurements to suggest that methanol in biomass burning smoke is lost heterogeneously in clouds. When a smoke plume intersected a cumulus cloud during the SAFARI 2000 field project, the observed methanol gas phase concentration rapidly declined. Current understanding of gas and aqueous phase chemistry cannot explain the loss of methanol documented by these measurements. Two plausible heterogeneous reactions are proposed to explain the observed simultaneous loss and production of methanol and formaldehyde, respectively. If the rapid heterogeneous processing of methanol, seen in a cloud impacted by smoke, occurs in more pristine clouds, it could affect the oxidizing capacity of the troposphere on a global scale.

  9. Heterogeneous Chemistry Involving Methanol in Tropospheric Clouds

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Yokelson, R. J.; Singh, H. B.; Hobbs, P. V.; Crawford, J. H.; Iraci, L. T.

    2004-01-01

    In this report we analyze airborne measurements to suggest that methanol in biomass burning smoke is lost heterogeneously in clouds. When a smoke plume intersected a cumulus cloud during the SAFARI 2000 field project, the observed methanol gas phase concentration rapidly declined. Current understanding of gas and aqueous phase chemistry cannot explain the loss of methanol documented by these measurements. Two plausible heterogeneous reactions are proposed to explain the observed simultaneous loss and production of methanol and formaldehyde, respectively. If the rapid heterogeneous processing of methanol, seen in a cloud impacted by smoke, occurs in more pristine clouds, it could affect the oxidizing capacity of the troposphere on a global scale.

  10. Application of near ambient pressure gas-phase X-ray photoelectron spectroscopy to the investigation of catalytic properties of copper in methanol oxidation

    NASA Astrophysics Data System (ADS)

    Prosvirin, Igor P.; Bukhtiyarov, Andrey V.; Bluhm, Hendrik; Bukhtiyarov, Valerii I.

    2016-02-01

    Application of near ambient pressure (NAP) X-ray photoelectron spectroscopy for characterization of catalytic properties of a heterogeneous catalyst through measurement and analysis of the core-level spectra from gas phase constituents, which become measurable in submillibar pressure range, has been demonstrated for the reaction of methanol oxidation over polycrystalline copper foil. To improve the accuracy of quantitative analysis of the gas phase signals for the routine XPS spectrometer with double Al/Mg anode used in these experiments, the sample was removed from XPS analysis zone, but it was still located in high-pressure gas cell. As consequence, only gas phase peaks from reagents and reaction products have been observed in XPS spectra. Quantitative analysis of the spectra has allowed us to calculate conversions of the reagents and yields of the reaction products, or, other words, to characterize the catalytic properties of the catalyst and to track their changes with temperature. Further comparison of the catalytic properties with concentration of the surface species measured by in situ XPS in separate experiments, but under the same conditions, gives a possibility to discuss the reaction mechanisms.

  11. Formaldehyde and methanol formation from reaction of carbon monoxide and hydrogen on neutral Fe2S2 clusters in the gas phase.

    PubMed

    Yin, Shi; Wang, Zhechen; Bernstein, Elliot R

    2013-04-07

    Reaction of CO with H2 on neutral FemSn clusters in a fast flow reactor is investigated both experimentally and theoretically. Single photon ionization at 118 nm is used to detect neutral cluster distributions through time of flight mass spectrometry. FemSn clusters are generated through laser ablation of a mixed iron-sulfur target in the presence of a pure helium carrier gas. A strong size dependent reactivity of (FeS)m clusters toward CO is characterized. The reaction FeS + CO → Fe + OCS is found for the FeS cluster, and the association product Fe2S2CO is observed for the Fe2S2 cluster. Products Fe2S2(13)COH2 and Fe2S2(13)COH4 are identified for reactions of (13)CO and H2 on Fe2S2 clusters: this suggests that the Fe2S2 cluster has a high catalytic activity for hydrogenation reactions of CO to form formaldehyde and methanol. Density functional theory (DFT) calculations are performed to explore the potential energy surfaces for the two reactions: Fe2S2 + CO + 2H2 → Fe2S2 + CH3OH; and Fe2S2 + CO + H2 → Fe2S2 + CH2O. A barrierless, thermodynamically favorable pathway is obtained for both catalytic processes. Catalytic cycles for formaldehyde and methanol formation from CO and H2 on a Fe2S2 cluster are proposed based on our experimental and theoretical investigations. The various reaction mechanisms explored by DFT are in good agreement with the experimental results. Condensed phase iron sulfide, which contains exposed Fe2S2 units on its surface, is suggested to be a good catalyst for low temperature formaldehyde/methanol synthesis.

  12. Direct methanol fuel cell and system

    DOEpatents

    Wilson, Mahlon S.

    2004-10-26

    A fuel cell having an anode and a cathode and a polymer electrolyte membrane located between anode and cathode gas diffusion backings uses a methanol vapor fuel supply. A permeable polymer electrolyte membrane having a permeability effective to sustain a carbon dioxide flux equivalent to at least 10 mA/cm.sup.2 provides for removal of carbon dioxide produced at the anode by reaction of methanol with water. Another aspect of the present invention includes a superabsorpent polymer material placed in proximity to the anode gas diffusion backing to hold liquid methanol or liquid methanol solution without wetting the anode gas diffusion backing so that methanol vapor from the liquid methanol or liquid methanol-water solution is supplied to the membrane.

  13. On-line monitoring of methanol and methyl formate in the exhaust gas of an industrial formaldehyde production plant by a mid-IR gas sensor based on tunable Fabry-Pérot filter technology.

    PubMed

    Genner, Andreas; Gasser, Christoph; Moser, Harald; Ofner, Johannes; Schreiber, Josef; Lendl, Bernhard

    2017-01-01

    On-line monitoring of key chemicals in an industrial production plant ensures economic operation, guarantees the desired product quality, and provides additional in-depth information on the involved chemical processes. For that purpose, rapid, rugged, and flexible measurement systems at reasonable cost are required. Here, we present the application of a flexible mid-IR filtometer for industrial gas sensing. The developed prototype consists of a modulated thermal infrared source, a temperature-controlled gas cell for absorption measurement and an integrated device consisting of a Fabry-Pérot interferometer and a pyroelectric mid-IR detector. The prototype was calibrated in the research laboratory at TU Wien for measuring methanol and methyl formate in the concentration ranges from 660 to 4390 and 747 to 4610 ppmV. Subsequently, the prototype was transferred and installed at the project partner Metadynea Austria GmbH and linked to their Process Control System via a dedicated micro-controller and used for on-line monitoring of the process off-gas. Up to five process streams were sequentially monitored in a fully automated manner. The obtained readings for methanol and methyl formate concentrations provided useful information on the efficiency and correct functioning of the process plant. Of special interest for industry is the now added capability to monitor the start-up phase and process irregularities with high time resolution (5 s).

  14. Spatially resolved characterization of catalyst-coated membranes by distance-controlled scanning mass spectrometry utilizing catalytic methanol oxidation as gas-solid probe reaction.

    PubMed

    Li, Nan; Assmann, Jens; Schuhmann, Wolfgang; Muhler, Martin

    2007-08-01

    The spatially resolved catalytic activity of a catalyst-coated membrane (CCM), which is the essential part of PEM fuel cells, was visualized rapidly without any damage by a distance-controlled scanning mass spectrometer with an improved resolution of 250 microm. Methanol oxidation was identified as a suitable gas-solid probe reaction for the characterization of local catalytic activity. In addition, defects were manually generated in the CCM to simulate inhomogeneous coating and pinholes. The measurements successfully demonstrated that catalytically active and less active regions can be clearly distinguished. Simultaneously, the local topography was recorded, providing additional information on the location of the scratches and pinholes. The catalytic results were highly reproducible due to the constant-distance feedback loop rendering scanning mass spectrometry a promising tool for the quantitative quality control of CCMs.

  15. Fuel cell integrated with steam reformer

    DOEpatents

    Beshty, Bahjat S.; Whelan, James A.

    1987-01-01

    A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

  16. Methanol selective fibre-optic gas sensor with a nanoporous thin film of organic-inorganic hybrid multilayers

    NASA Astrophysics Data System (ADS)

    Wang, T.; Okuda, H.; Lee, S.-W.

    2015-07-01

    The development of an evanescent wave optical fibre (EWOF) sensor modified with an organic-inorganic hybrid nanoporous thin film for alcohol vapor detection was demonstrated. The optical fibre with a core diameter of 200 μm was bent into U-shape probe optic fibre to enhance the penetation depth of light transferred into the evanescent filed. The bended region of the fibre was modified with a multilayered thin film of poly(allyamine hydrochloride) and silica nanoparticels, (PAH/SiO2)n, by a layer-by-layer (LbL) film deposition technique, followed by infusion of tetrakis(4- sulfophenyl)porphine, TPPS. The mesoporous film structure showed high sensitivity and selectivity to methanol by the aid of the TPPS infused inside the film. The optical sensor response was reversible and reproducible over many times of exposures to analytes, which was caused by the change in refractive index (RI) of the film.

  17. Two new methanol converters

    SciTech Connect

    Westerterp, K.R.; Bodewes, T.N.; Vrijiand, M.S.A.; Kuczynski, M. )

    1988-11-01

    Two novel converter systems were developed for the manufacture of methanol from synthesis gas: the Gas-Solid-Solid Trickle Flow Reactor (GSSTFR) and the Reactor System with Interstage Product Removal (RSIPR). In the GSSTFR version, the product formed at the catalyst surface is directly removed from the reaction zone by means of a solid adsorbent. This adsorbent continuously trickles over the catalyst bed. High reactant conversions up to 100% can be achieved in a single pass so that the usual recycle loop for the unconverted reactants is absent or greatly reduced in size. In the RSIPR version, high conversions per pass are achieved in a series of adiabatic or isothermal fixed bed reactors with selective product removal in absorbers between the reactor stages. The feasibility and economics of the two systems are discussed on the basis of 1,000 tpd methanol plants compared with a low-pressure Lurgi system.

  18. OTEC energy via methanol production

    SciTech Connect

    Avery, W.H.; Richards, D.; Niemeyer, W.G.; Shoemaker, J.D.

    1983-01-01

    The conceptual design of an 160 MW/sub e/ OTEC plantship has been documented; it is designed to produce 1000 tonne/day of fuel-grade methanol from coal slurry shipped to the plantship, using oxygen and hydrogen from the on-board electrolysis of water. Data and components are used that were derived by Brown and Root Development, Inc. (BARDI) in designing a barge-mounted plant to make methanol from natural gas for Litton Industries and in the design and construction of a coal-to-ammonia demonstration plant in operation at Muscle Shoals, Alabama, for the Tennessee Valley Authority (TVA). The OTEC-methanol plant design is based on the use of the Texaco gasifier and Lurgi synthesis units. The sale price of OTEC methanol delivered to port from this first-of-a-kind plant is estimated to be marginally competitive with methanol from other sources at current market prices.

  19. Non-catalytic recuperative reformer

    SciTech Connect

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  20. Efficient utilization of greenhouse gases in a gas-to-liquids process combined with CO2/steam-mixed reforming and Fe-based Fischer-Tropsch synthesis.

    PubMed

    Zhang, Chundong; Jun, Ki-Won; Ha, Kyoung-Su; Lee, Yun-Jo; Kang, Seok Chang

    2014-07-15

    Two process models for carbon dioxide utilized gas-to-liquids (GTL) process (CUGP) mainly producing light olefins and Fischer-Tropsch (F-T) synthetic oils were developed by Aspen Plus software. Both models are mainly composed of a reforming unit, an F-T synthesis unit and a recycle unit, while the main difference is the feeding point of fresh CO2. In the reforming unit, CO2 reforming and steam reforming of methane are combined together to produce syngas in flexible composition. Meanwhile, CO2 hydrogenation is conducted via reverse water gas shift on the Fe-based catalysts in the F-T synthesis unit to produce hydrocarbons. After F-T synthesis, the unreacted syngas is recycled to F-T synthesis and reforming units to enhance process efficiency. From the simulation results, it was found that the carbon efficiencies of both CUGP options were successfully improved, and total CO2 emissions were significantly reduced, compared with the conventional GTL processes. The process efficiency was sensitive to recycle ratio and more recycle seemed to be beneficial for improving process efficiency and reducing CO2 emission. However, the process efficiency was rather insensitive to split ratio (recycle to reforming unit/total recycle), and the optimum split ratio was determined to be zero.

  1. Rapid starting methanol reactor system

    DOEpatents

    Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  2. Hydrogen-bonded ring closing and opening of protonated methanol clusters H(+)(CH3OH)(n) (n = 4-8) with the inert gas tagging.

    PubMed

    Li, Ying-Cheng; Hamashima, Toru; Yamazaki, Ryoko; Kobayashi, Tomohiro; Suzuki, Yuta; Mizuse, Kenta; Fujii, Asuka; Kuo, Jer-Lai

    2015-09-14

    The preferential hydrogen bond (H-bond) structures of protonated methanol clusters, H(+)(MeOH)n, in the size range of n = 4-8, were studied by size-selective infrared (IR) spectroscopy in conjunction with density functional theory calculations. The IR spectra of bare clusters were compared with those with the inert gas tagging by Ar, Ne, and N2, and remarkable changes in the isomer distribution with the tagging were found for clusters with n≥ 5. The temperature dependence of the isomer distribution of the clusters was calculated by the quantum harmonic superposition approach. The observed spectral changes with the tagging were well interpreted by the fall of the cluster temperature with the tagging, which causes the transfer of the isomer distribution from the open and flexible H-bond network types to the closed and rigid ones. Anomalous isomer distribution with the tagging, which has been recently found for protonated water clusters, was also found for H(+)(MeOH)5. The origin of the anomaly was examined by the experiments on its carrier gas dependence.

  3. Production of syngas via partial oxidation and CO{sub 2} reforming of coke oven gas over a Ni catalyst

    SciTech Connect

    Jianzhong Guo; Zhaoyin Hou; Jing Gao; Xiaoming Zheng

    2008-05-15

    The partial oxidation and CO{sub 2} reforming of coke oven gas (COG) to syngas was investigated on differently sized Ni catalysts in a fluidized-bed reactor. It was found that the catalytic performance of Ni depends strongly on its particle size. The small-sized Ni catalyst exhibited higher activity and higher selectivity in the partial oxidation of COG. The conversion of CH{sub 4} was kept at 80.7% at a lower temperature (750{sup o}C) and a wide space velocity (from 8000 to 80 000 h{sup -1}). CO{sub 2} reforming of COG is also an efficient route for syngas production. The H{sub 2}/CO ratio in the COG-derived syngas could be controlled by manipulating the concentration of O{sub 2} or CO{sub 2} added in the feed. The yield of produced syngas increases with an increase in temperature. 19 refs., 10 figs., 2 tabs.

  4. Acidities of Water and Methanol in Aqueous Solution and DMSO

    ERIC Educational Resources Information Center

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  5. Acidities of Water and Methanol in Aqueous Solution and DMSO

    ERIC Educational Resources Information Center

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  6. Understanding the effect of reformate gas components and stack component impurities on the performance of PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Gu, Tao

    The performance can be lost depending on the concentration and type of reformate components. Gas crossover in PEMFCs can also cause performance loss and these effects are also presented. Impurities such as acetone coming from composite stack components and sealants can also deteriorate the performance severely. Electrochemical impedance spectroscopy (EIS) is used as a diagnostic tool to study the impurity poisoning. Reformate contains N2 and CO2 and these components affect performance differently. These effects were quantified using anode overvoltage. Data for anode overvoltage shows that CO2 yields a significant poisoning effect (about 30 mV) on a Pt electrode. Cyclic voltammetry (CV) data showed that CO was produced in-situ from CO2 and H 2 (reverse water gas shift (RWGS) reaction) on both Pt and Pt/Ru electrodes. The coverage of CO achieved by RWGS can reach 5 x 10-7 mol/cm2 on an electrode with 0.4 mg/cm2 Pt under open circuit with normal operating conditions. This work also investigated how pressure, gas composition, and temperature affect the RWGS reaction in a PEMFC for both Pt and Pt/Ru alloy catalysts. The data are shown to be consistent with a kinetic catalytic model and not with an equilibrium model. Data was presented on H2 and O2 crossover in PEMFCs. Electrochemical techniques and mass balance measurements were used to quantify the crossover under typical working conditions. Mixed potential theory was applied to analyze the effect of gas crossover on open circuit voltage (OCV) of PEMFCs. Off-gassing from bipolar plates previously identified styrene, acetone, t-butyl alcohol, and dimethyl succinate as impurities. The effects of those impurities were quantified with both poisoning-recovery transient curves and steady state VI curves before, during, and after poisoning on anode and cathode side respectively. The poisoning effects of them to the anode side are smaller than to the cathode side. Cyclic voltammetry and electrochemical impedance spectroscopy

  7. Conversion of glycerol to hydrogen rich gas.

    PubMed

    Tran, Nguyen H; Kannangara, G S Kamali

    2013-12-21

    Presently there is a glut of glycerol as the by-product of biofuel production and it will grow as production increases. The conundrum is how we can consume this material and convert it into a more useful product. One potential route is to reform glycerol to hydrogen rich gas including synthesis gas (CO + H2) and hydrogen. However, there is recent literature on various reforming techniques which may have a bearing on the efficiency of such a process. Hence in this review reforming of glycerol at room temperature (normally photo-catalytic), catalysis at moderate and high temperature and a non-catalytic pyrolysis process are presented. The high temperature processes allow the generation of synthesis gas with the hydrogen to carbon monoxide ratios being suitable for synthesis of dimethyl ether, methanol and for the Fischer-Tropsch process using established catalysts. Efficient conversion of synthesis gas to hydrogen involves additional catalysts that assist the water gas shift reaction, or involves in situ capture of carbon dioxide and hydrogen. Reforming at reduced temperatures including photo-reforming offers the opportunity of producing synthesis gas or hydrogen using single catalysts. Together, these processes will assist in overcoming the worldwide glut of glycerol, increasing the competitiveness of the biofuel production and reducing our dependency on the fossil based, hydrogen rich gas.

  8. Separation of aromatic solvents from oil refinery reformates by a newly designed ionic liquid using gas chromatography with flame ionization detection.

    PubMed

    Bahadur, Indra; Mabaso, Mbongeni; Redhi, Gan; Singh, Prashant; Kumar, Sudharsan; Moodley, Kandasamy

    2015-03-01

    The aim of this study was to determine whether the new ionic liquid, N,N-dimethyl-2-oxopyrrolidonium iodide, synthesized in our laboratory is a suitable solvent for the separation of aromatic components benzene, toluene, ethylbenzene, and xylenes from petroleum mixtures (reformates) in liquid-liquid extraction. In pursuance of the above aim, a method to extract all components of a mixture, containing four aromatic components simultaneously, was developed. A new ionic liquid and a previously used liquid were compared for their extraction abilities. These ionic liquids were, respectively, N,N-dimethyl-2-oxopyrrolidinium iodide and 1-ethyl-3-methyl imidazolium ethyl sulfate. The concentrations of each benzene, toluene, ethylbenzene, and xylenes component in the extract and raffinate phases were measured by gas chromatography with flame ionization detection as volume percent to determine the extraction ability of the ionic liquids. The results obtained for both the reformate samples and model mixtures indicated that the new ionic liquid was effective as an extracting solvent for the recovery of aromatic components from reformates. Also the analysis results, using gas chromatography with flame ionization detection, for the reformate samples were as good as the results obtained by a local oil refinery. The extraction results also show that the developed method is very suitable for the separation and analysis of aromatic components in reformates.

  9. Novel method for identification and quantification of methanol and ethanol in alcoholic beverages by gas chromatography-Fourier transform infrared spectroscopy and horizontal attenuated total reflectance-Fourier transform infrared spectroscopy.

    PubMed

    Sharma, Kakali; Sharma, Shiba Prasad; Lahiri, Sujit Chandra

    2009-01-01

    Numerous methods are being used to identify and quantify methanol and ethanol in alcoholic beverages, including country liquors. Some of the known methods are density and refractive index measurements, and spectrophotometric measurements using Schiff's reagent or chromatropic acid. Other advanced techniques involve head space gas chromatography (GC), GC-flame ionization detection, high-performance liquid chromatography, enzymatic reactions, and biosensors. However, identification and quantification of methanol and ethanol in beverages can be accurately done using GC-Fourier transform infrared spectroscopy (FTIR) and horizontal attenuated total reflectance (HATR)-FTIR. Identification of alcohols is possible from library matching of the IR spectra obtained from GC-FTIR. In water, methanol and ethanol show a very strong peak for C-O, stretching at 1015.3 and 1044.2 cm(-1), respectively. The strong absorption of vibrational stretching frequency of C-O present in alcohols was used for quantification purposes. The absorptions of C-O group frequency of alcohols in water mixtures were measured using HATR-FTIR with a zinc-selenide crystal. Samples were placed directly on the HATR crystal, with alcohol concentrations ranging from 0.2 to 50.0% (v/v). The plot of absorptions against concentrations of methanol and ethanol obeyed Beer's law (r2 = 0.9998 and 0.9987, respectively), from which alcohol in the mixtures was quantified. Propan-2-ol and n-butanol showed no interference. The method is validated from absorption measurements of known mixtures of standard ethanol in water. This is a simple, specific, rapid, accurate, and nondestructive method of identification and quantification of methanol and ethanol in mixtures. It can be used to ascertain methanol contamination in alcoholic beverages that can lead to death or methanol poisoning by alcohol consumption.

  10. Slab reformer

    DOEpatents

    Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.

    1985-03-12

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  11. Slab reformer

    DOEpatents

    Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.

    1984-02-07

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  12. Slab reformer

    DOEpatents

    Spurrier, F.R.; DeZubay, E.A.; Murray, A.P.; Vidt, E.J.

    1984-02-07

    Slab-shaped high efficiency catalytic reformer configurations are disclosed particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant. 14 figs.

  13. Slab reformer

    NASA Technical Reports Server (NTRS)

    Spurrier, Francis R. (Inventor); DeZubay, Egon A. (Inventor); Murray, Alexander P. (Inventor); Vidt, Edward J. (Inventor)

    1984-01-01

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  14. Slab reformer

    NASA Technical Reports Server (NTRS)

    Spurrier, Francis R. (Inventor); DeZubay, Egon A. (Inventor); Murray, Alexander P. (Inventor); Vidt, Edward J. (Inventor)

    1985-01-01

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  15. Pakistan oil, gas reforms tied to bid for energy self-sufficiency by 2000

    SciTech Connect

    Not Available

    1991-12-09

    This paper reports on oil and gas exploration and development which is accelerating in Pakistan as it seeks to achieve energy self-sufficiency by 2000. In addition to backing out some domestic oil use with burgeoning natural gas supplies and cutting refined products imports by boosting refining capacity, Pakistan is targeting a sharp increase in oil production. Ultimately, industry officials in Pakistan would like to see it become a significant net exporter of oil, perhaps qualifying it for eventual membership in the Organization of Petroleum Exporting Countries. And foreign investment will play a key role in that effort as the government takes steps to sweeten incentives for foreign oil and gas companies. Consequently, drilling activity and the number of foreign operated concessions are at record levels in Pakistan. Meantime, state owned Oil and Gas Development Corp. has embarked on an ambitious program of exploration in underexplored basins while seeking foreign assistance in hiking oil recovery rates in existing fields.

  16. Studying the characteristics of a 5 kW power installation on solid-oxide fuel cells with steam reforming of natural gas

    NASA Astrophysics Data System (ADS)

    Munts, V. A.; Volkova, Yu. V.; Plotnikov, N. S.; Dubinin, A. M.; Tuponogov, V. G.; Chernishev, V. A.

    2015-11-01

    The results from tests of a 5 kW power plant on solid-oxide fuel cells (SOFCs), in which natural gas is used as fuel, are presented. The installation's process circuit, the test procedure, and the analysis of the obtained results are described. The characteristics of the power plant developed by the Ural Industrial Company are investigated in four steady-state modes of its operation: with the SOFC nominal power capacity utilized by 40% (2 kW), 60% (3 kW), 90% (4.5 kW) and 110% (5.4 kW) (the peaking mode). The electrical and thermodynamic efficiencies are calculated for all operating modes, and the most efficient mode, in which the electrical efficiency reached almost 70%, is determined. The air excess coefficient and heat loss with flue gases q 2 are determined, and it is revealed that the heat loss q 5 decreases from 40 to 25% with increasing the load. Thermal balances are drawn up for the following components of the system the reformer, the SOFC battery, the catalytic burner for afterburning anode gases, the heat exchanger for heating the cathode air and the mixture of natural gas and steam, and the actual fuel utilization rates in the electrochemical generator are calculated. An equation for the resulting natural gas steam reforming reaction was obtained based on the results from calculating the equilibrium composition of reforming products for the achieved temperatures at the reformer outlet t 3.

  17. Intrinsic gas-phase reactivity toward methanol of trinuclear tungsten W(3)S(4) complexes bearing W-X (X = Br, OH) groups.

    PubMed

    Vicent, Cristian; Feliz, Marta; Llusar, Rosa

    2008-12-11

    Electrospray ionization (ESI) tandem mass spectrometry is used to investigate the gas-phase dissociation of trinuclear sulfide W(3)S(4) complexes containing three diphosphane ligands and three terminal bromine atoms, namely, [W(3)S(4)(dmpe)(3)(Br)(3)](+) (1(+)) or hydroxo groups, [W(3)S(4)(dmpe)(3)(OH)(3)](+) (2(+)) (dmpe = 1,2-bis(dimethylphosphanyl)ethane). Sequential evaporation of two diphosphane ligands is the sole fragmentation channel for the 1(+) cation that yields product ions with one or two unsaturated W-Br functional groups, respectively. Conversely, evaporation of one diphosphane ligand followed by two water molecules is observed for cation 2(+). Complementary deuterium-labeling experiments in conjunction with computational studies provide deep insight into the thermodynamically favored product ion structures found along the fragmentation pathways. From these results, the formation of a series of cluster cations with WBr, WOH, and WO functional groups either on saturated or unsaturated metal sites is proposed. The effect of the properties of these cluster cations, among them chemical composition and coordinative saturation, on their reactivity toward methanol is discussed.

  18. Water, methanol and dense gas tracers in the local ULIRG Arp 220: results from the new SEPIA Band 5 Science Verification campaign

    NASA Astrophysics Data System (ADS)

    Galametz, M.; Zhang, Z.-Y.; Immer, K.; Humphreys, E.; Aladro, R.; De Breuck, C.; Ginsburg, A.; Madden, S. C.; Møller, P.; Arumugam, V.

    2016-10-01

    We present a line survey of the ultraluminous infrared galaxy Arp 220, taken with the newly installed SEPIA (Swedish-European Southern Observatory PI receiver for APEX) Band 5 instrument on APEX (Atacama Pathfinder Experiment). We illustrate the capacity of SEPIA to detect the 183.3 GHz H2O 31,3-22,0 line against the atmospheric H2O absorption feature. We confirm the previous detection of the HCN(2-1) line, and detect new transitions of standard dense gas tracers such as HNC(2-1), HCO+(2-1), CS(4-3), C34S(4-3) and HC3N(20-19). We also detect HCN(2-1) v2 = 1 and the 193.5 GHz methanol (4-3) group for the first time. The absence of time variations in the megamaser water line compared to previous observations seems to rule out an AGN nuclear origin for the line. It could, on the contrary, favour a thermal origin instead, but also possibly be a sign that the megamaser emission is associated with star-forming cores washed out in the beam. We finally discuss how the new transitions of HCN, HNC and HCO+ refine our knowledge of the interstellar medium physical conditions in Arp 220.

  19. Synfuels from natural gas: The ethermix process

    SciTech Connect

    Antonelli, G.B.; Micheli, E.; Miracca, I.

    1996-12-31

    Ethermix is a technology under development for the transformation of the dry fraction of natural gas into ethers, mainly MTBE. The process is performed in a series of steps that include the reforming of methane to a mixture of hydrogen and carbon monoxide, the combined synthesis of methanol and branched higher alcohols, mainly isobutanol, the dehydration of higher alcohols to the corresponding olefins, and the etherification of said olefins with methanol to form a mixture of ethers. The state-of-art on the subject is reported, including evaluation of the blending properties of the product and a preliminary economical analysis. 4 refs., 2 figs., 1 tab.

  20. Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation-Experimental studies

    NASA Astrophysics Data System (ADS)

    Damle, Ashok S.

    One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. Continuous separation of product hydrogen from the reforming gas mixture is expected to increase the yield of hydrogen significantly as predicted by model simulations. In the laboratory-scale experimental studies reported here steam reforming of liquid hydrocarbon fuels, butane, methanol and Clearlite ® was conducted to produce pure hydrogen in a single step membrane reformer using commercially available Pd-Ag foil membranes and reforming/WGS catalysts. All of the experimental results demonstrated increase in hydrocarbon conversion due to hydrogen separation when compared with the hydrocarbon conversion without any hydrogen separation. Increase in hydrogen recovery was also shown to result in corresponding increase in hydrocarbon conversion in these studies demonstrating the basic concept. The experiments also provided insight into the effect of individual variables such as pressure, temperature, gas space velocity, and steam to carbon ratio. Steam reforming of butane was found to be limited by reaction kinetics for the experimental conditions used: catalysts used, average gas space velocity, and the reactor characteristics of surface area to volume ratio. Steam reforming of methanol in the presence of only WGS catalyst on the other hand indicated that the membrane reactor performance was limited by membrane permeation, especially at lower temperatures and lower feed pressures due to slower reconstitution of CO and H 2 into methane thus maintaining high hydrogen partial pressures in the reacting gas mixture. The limited amount of data collected with steam reforming of Clearlite ® indicated very good match between theoretical predictions and

  1. Indonesia to build methanol plant

    SciTech Connect

    Alperowicz, N.

    1992-08-05

    P.T. Kaltim Methanol Industri (Jakarta), a company set up to build a new methanol plant in Indonesia, expects to award contracts for the construction of a new plant, Indonesia's second methanol unit, by the end of this year. P.T. Kaltim Methanol is a private company owned by P.T. Humpuss, an industrial group active in transport, airlines, and shipping of LNG and methanol. The 2,000-m.t./day plant will be built at Bontang, Kalimantan Island, close to the fertilizer producer P.T. Pupuk Kaltim and near the country's largest natural gas reserves. The site is also a deepsea port, handy for transportation of ready product. Three groups are in discussions with the investor on plant supply as well as methanol offtake deals. They are H G/Kockner; John Brown/Davy/Lucky Goldstar, offering the ICI process independently; and Lurgi/Metallgesellschaft (MG), proposing the Lurgi process. At least 60% of the output is expected to be exported, and both ICI and MG are understood to be interested in selling product from the future plant. Japan, Southeast Asia, and the US are targeted.

  2. Methanol conversion to higher hydrocarbons

    SciTech Connect

    Tabak, S.A.

    1994-12-31

    Several indirect options exist for producing chemicals and transportation fuels from coal, natural gas, or biomass. All involve an initial conversion step to synthesis gas (CO and H{sub 2}). Presently, there are two commercial technologies for converting syngas to liquids: Fischer-Tropsch, which yields a range of aliphatic hydrocarbons with molecular weights determined by Schulz-Flory kinetics, and methanol synthesis. Mobil`s diversity of technology for methanol conversion gives the methanol synthesis route flexibility for production of either gasoline, distillate or chemicals. Mobil`s ZSM-5 catalyst is the key in several processes for producing chemicals and transportation fuels from methanol: MTO for light olefins, MTG for gasoline, MOGD for distillates. The MTG process has been commercialized in New Zealand since 1985, producing one-third of the country`s gasoline supply, while MTO and MOGD have been developed and demonstrated at greater than 100 BPD scale. This paper will discuss recent work in understanding methanol conversion chemistry and the various options for its use.

  3. BHP may scale up methanol production

    SciTech Connect

    Alperowicz, N.

    1993-06-23

    Broken Hill Pty. (BHP: Melbourne) says otherwise uneconomic gas reserves in the Timor Sea off northwest Australia could be developed if the company`s plans to commercialize a novel gas-to-methanol technology prove to be viable. BHP is building an A$70-million ($50 million) research unit in Victoria using ICI`s Leading Concept Methanol gas-to-methanol process. If this unit proves viable, it could be put on a vessel and taken to Timor Sea where BHP has oil exploration and production interests. Timor gas is not economically viable because of lack of nearby markets. The 54,000-m.t./year research plant, located at Werrbee near Melbourne, is scheduled to start production in the second half of 1994, according to BHP manager Joe Evon. The plant is being built by Davy/John Brown. Provided the economic climate is right, BHP is expected to build a world-scale methanol plant offshore.

  4. Partial Reform Equilibrium in Russia: A Case Study of the Political Interests of and in the Russian Gas and Oil Industry

    NASA Astrophysics Data System (ADS)

    Everett, Rabekah

    While several theories abound that attempt to explain the obstacles to democracy in Russia, Joel Hellman's partial reform equilibrium model is an institutional theory that illustrates how weak institutions, combined with an instrumentalist cultural approach to the law and authoritarian-minded leadership, allowed the struggle over interests to craft and determine the nature of Russia's political structure. This thesis builds on the work of Hellman by using the partial reform theory to understand the evolution of interest infiltration and their impact on the formation of policies and institutions in favour of the elites or winners from 2004 to the present time period that allow them to wield law as a political weapon. The hypothesis posits that through their vested interests in state politics, the political and economic elites of the oil and gas industry have successfully stalled reform in Russia resulting in partial reform equilibrium. This is illustrated in a case study that was designed to collect the names, backgrounds, and social networks of gas and oil executives in order to determine how many of them have a history of, or are currently working as, ministers in the government or representatives in the Federation Council. The objective being to measure the degree to which gas and oil interests are present in government decision-making and conversely, the degree to which the government is present in the gas and oil industry. The thesis stresses the importance of institutional structure in determining Russia's political evolution, and uses vested interests as a primary source of structural institutional change, while also stressing on the social and international implications of this evolution.

  5. Integration of methanol production into a U.S. coal-to-SNG complex

    SciTech Connect

    Howard, E.C.

    1995-12-31

    The concept for the Great Plains synfuels plant utilizing North Dakota lignite and Lake Sakakawea reservoir water, surfaced in the early 1970`s when there was a national commitment to energy independence. Construction of Great Plains was completed in 1984. Dakota Gasification Company produces primarily synthetic natural gas (SNG) from lignite coal using a unique combination of technologies. This product is marketed to four companies utilizing firm contracts through the year 2009. In addition to the primary product, SNG, several byproducts are produced in the form of sulfur, anhydrous ammonia, liquid nitrogen, phenols, cresylic acid, naphtha, and krypton/xenon. Construction projects presently underway will greatly increase the anhydrous ammonia available and will also provide ammonium sulfate fertilizer. To insure the long-term financial success of the gasification plant, DGC is actively pursuing new byproduct development such as tar oil derivatives, CO{sub 2}, and the subject product of this conference--methanol. DGC presently produces 1.7 MMGPY of methanol from a small unit of Lurgi design. The product, although not AA Grade, is satisfactory for the Rectisol operation and most importantly, relatively inexpensive to produce. The unit employs a single reactor and requires no further reforming other than that provided through the gasification process. DGC has been advised by Lurgi that a similar design could be utilized to develop a world scale methanol plant. Or, alternatively a conventional oxygen blown reformer could easily be incorporated as well. The paper discusses the advantages of methanol production and DGC`s plans. Flowsheets are presented for the current processing scheme and methanol production.

  6. Unusual case of methanol poisoning

    SciTech Connect

    Shapiro, L.; Henderson, M. . Dept. of Chemical Pathology); Madi, S.; Mellor, L. . Dept. of Medicine, and Pharmacy)

    1993-01-09

    A 31-year-old man with a history of alcohol abuse presented to the accident and emergency department complaining of blurred vision. 4 h previously he had drunk 300 mL de-icer fluid. Electrolytes, urea, creatinine, glucose, and blood-gas analysis were normal. Measured osmolality, however, was 368 mosmol/kg with a calculated osmolality of 300 mosmol/kg, which indicated a greatly increased osmolar gap. He was therefore given 150 mL whisky and admitted. Methanol was later reported as 200 mg/dL. Ethylene glycol was not detected, but another glycol, propylene glycol, was present at 47 mg/dL. 10 h after ingestion an intravenous infusion of ethanol was started and he was hemodialysed for 7 h. After dialysis he was given a further 100 mL whisky and the rate of ethanol infusion was reduced to 11 g per h. Methanol and ethanol were measured twice daily until methanol was under 10/mg/dL: The recommendation is that blood ethanol be maintained between 100 and 200 mg/dL during treatment of methanol poisoning. This concentration was not achieved, presumably because of the high rate of ethanol metabolism often found in alcoholics. Antifreeze solutions commonly contain methanol and ethylene glycol. Sometimes propylene glycol is substituted because it has properties similar to those of ethylene glycol but is less toxic. The authors postulate that propylene glycol inhibited the metabolism of methanol in the patient, thus sparing him from the toxic effects of methanol.

  7. Determination of low levels of methanol in crude oils by multi-dimensional gas chromatography (MDGC) using novel micro channel flow technology.

    PubMed

    Tipler, Andrew; Marotta, Lee; DiSanzo, Frank; Grecsek, Heidi

    2012-03-01

    The accurate and precise determination of methanol in crude oils at concentrations less than 10 ppm is of economic value to the petroleum industry. This report presents the optimization, results and long term performance of a flow switching device MDGC hardware, the Swafer™, for the rapid and precise analysis of methanol from approximately 0.4 ppm (w/w) to 1000 ppm. The use of low temperature injection and backflush technique decreases maintenance and increases sample throughput. The short term quantitative percent relative standard deviations at 1, 30 and 1000 ppm (w/w) methanol in crude oils are 5, 3 and 0.3, respectively. The MDGC procedure follows closely that described in ASTM D7059 for determination of crude oils; however, D7059 previously has not been evaluated at concentrations of less than 10 ppm. This work further extends the application of D7059 to concentrations of <10 ppm.

  8. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification.

    PubMed

    Castro-Dominguez, Bernardo; Mardilovich, Ivan P; Ma, Liang-Chih; Ma, Rui; Dixon, Anthony G; Kazantzis, Nikolaos K; Ma, Yi Hua

    2016-09-19

    Palladium-based catalytic membrane reactors (CMRs) effectively remove H₂ to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H₂, CO and CO₂. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H₂O, CO₂ and H₂. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H₂ and induce higher methane and CO conversions while yielding ultrapure H₂ and compressed CO₂ ready for dehydration. Experimental results involving (i) a conventional packed bed reactor packed (PBR) for MSR, (ii) a PBR with five layers of two catalysts in series and (iii) a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD) model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H₂ permeance and purity, high CH₄ conversion levels and reduced CO yields.

  9. Determination of methanol in Iranian herbal distillates.

    PubMed

    Shirani, Kobra; Hassani, Faezeh Vahdati; Azar-Khiavi, Kamal Razavi; Moghaddam, Zohreh Samie; Karimi, Gholamreza

    2016-06-01

    Herbal distillates have been used as beverages, for flavoring, or as phytomedicines in many countries for a long time. Recently, the occurrence of blindness after drinking herbal distillates has created concerns in Iran. The aim of this study was to determine the concentrations of methanol in herbal distillates produced in Iran. Eighty-four most commonly used herbal distillates purchased from herbal distillate factories were analyzed for methanol contents by gas chromatography and flame ionization detection, with ethanol as internal standard. In 15 herbal distillates, the methanol concentration was below the limit of quantitation. The methanol concentrations in all samples ranged from 43 to 277 mg/L. Forty-five samples contained methanol in excess of the Iranian standard. The maximum concentration was found in an herbal distillate of Mentha piperita (factory E) (277±12), and the minimum in a distillate of Carum carvi (factory B) (42.6 ± 0.5). Since the 45 Iranian herbal distillates containing methanol levels were beyond the legal limits according to the Iranian standard, it seems necessary to monitor the amount of methanol and give a warning to watch out for the latent risk problem of methanol uptake, and establish a definitive relationship between the degree of intoxication observed and the accumulation of methanol in the blood.

  10. Neat methanol fuel cell power plant

    NASA Astrophysics Data System (ADS)

    Abens, S.; Farooque, M.

    1985-12-01

    Attention is given to a fuel cell development effort which has been directed, by ease-of-supply, low weight, and low volume criteria toward the use of undiluted methanol. Partial oxidation and internal water recovery concepts are incorporated, allowing the onboard dilution of methanol fuel through mixing with exhaust-recovered water. This scheme is successfully demonstrated for the case of a 3 kW unit employing commercial cross flow heat exchangers, as well as for a 5 kW reformer flue exhaust water recovery design with U.S. Air force baseload stationary applications. The USAF powerplant has an overall thermal efficiency of 32 percent at rated load.

  11. Development of alternative fuels from coal-derived synthesis gas: Final topical report, demonstration of one-step slurry-phase process for the co-production of methanol and isobutanol

    SciTech Connect

    1996-06-01

    Liquid phase co-production of methanol and isobutanol (LPIBOH) was de, demonstrated at DOE`s Alternative Fuels Development Unit (AFDU) in LaPorte, Texas. Methanol and isobutanol are key intermediates in a synthesis gas-based route to methyl t-butyl ether (MTBE). The technology was demonstrated in a new 18 in. slurry bubble-column reactor that was designed to demonstrate higher pressures and temperatures,higher gas superficial velocities, and lower gas hourly space velocities--all of which are conducive to obtaining optimal isobutanol yield. The integration of the new reactor into the AFDU included the addition of a high-pressure synthesis gas compressor, a high-pressure hydrogen feed source, and a closed-loop methanol- solvent absorption system to remove CO{sub 2} from the unconverted synthesis gas. These modifications were completed in January 1994. The LPIBOH run followed after a short turnaround. It employed a cesium- promoted Cu/ZnO/Al{sub 2}O{sub 3} catalyst developed in Air Products` laboratories and subsequently scaled up to a production- sized batch. Over a thirteen day campaign on simulated Shell gasifier gas, the catalyst and reactor system were tested at a matrix of pressures (750, 1300, 1735 psig) and space velocities (3000, 5000, 8200 sL/kg-hr), representing numerous first-of-a-kind run conditions for the AFDU. Inlet gas superficial velocities spanned an impressive 0.16 to 1.0 ft/sec. Stable reactor performance for a full twelve-hour data period at 1.0 ft/sec was another significant milestone for the liquid phase technology program. Apart from the catalyst deactivation, the run successfully demonstrated mixed alcohol synthesis in a slurry bubble-column reactor, as well as all of the new equipment installed for the trial. Although the full capabilities of the new oxygenates system will not be tested until future runs, the design objectives for the modifications were met with respect to the LPIBOH run.

  12. MPC improves reformer control

    SciTech Connect

    Jung, C.S.; Noh, K.K.; Yi, S.; Kim, J.S.; Song, H.K.; Hyun, J.C.

    1995-04-01

    A model predictive control strategy was applied to a synthesis gas reformer of Samsung-BP Chemicals in Korea that produces carbon monoxide and hydrogen from naphtha. A strongly endothermic reaction occurs in a catalytic reformer, and reformer outlet temperature is considered to have the most significant effect on product composition. The newly developed reformer is known to be a cost-effective process operating at high reaction temperatures and low steam-to-carbon ratio, but its drawback is temperature control difficulty due to the use of offgas as a part of the fuel. Without smooth control of the reformer outlet temperature, stable operation of the downstream separation units cannot be expected. Therefore, it is a great challenge to apply a model predictive control technique for tight control of reformer outlet temperature. The paper describes model predictive control, the process advanced control project, computer system architecture, analysis of operating condition, control structure, sampling rate, and disturbance estimation.

  13. Dry reforming of methane to syngas: a potential alternative process for value added chemicals-a techno-economic perspective.

    PubMed

    Mondal, Kartick; Sasmal, Sankar; Badgandi, Srikant; Chowdhury, Dipabali Roy; Nair, Vinod

    2016-11-01

    During the past decade, there has been increasing global concern over the rise of anthropogenic CO2 emission into the Earth's atmosphere (J Air Waste Manage Assoc 53:645-715, 2003). The utilization of CO2 to produce any valuable product is need of the hour. The production of syngas from CO2 and CH4 seems to be one of the promising alternatives in terms of industrial utilization, as it offers several advantages: (a) mitigation of CO2, (b) transformation of natural gas and CO2 into valuable syngas, and (c) producing syngas with H2/CO ratio 1 which may further be used for the production of valuable petrochemicals (J Air Waste Manage Assoc 53:645-715, 2003). A conceptual design for the production of synthesis gas by dry reforming of methane is presented here. An economic assessment of this process with an integrated methanol production section as a case was conceptualized and compared with the conventional steam methane reforming route to produce methanol. The economic study indicated that dry reforming of natural gas/methane is a competitive process with lower operating and capital costs in comparison with steam reforming assuming negligible cost of CO2 import.

  14. Associated species in vaporized methanol-formaldehyde solutions

    SciTech Connect

    Silverman, D.C.; Freeman, J.J.

    1983-07-01

    Analysis of vaporized methanolic formaldehyde (50 mol % methanol) by gas chromatography revealed a sum of mole percents of formaldehyde, water, and methanol greater than 100%. This inconsistency was not found with vaporized solutions containing 1 or 10 mol % methanol. Direct evidence for an adduct of methanol and formaldehyde (CH/sub 3/OCH/sub 2/OH) in the vapor phase was found by use of infrared spectroscopy. The spectrum exhibited an absorption at 1140 cm/sup -1/ corresponding to a C-O-C stretch. Reasonable agreement was found between the C-O-C mole percent estimated from infrared spectroscopy, the increased amount of material detected by gas chromatography, and the estimated equilibrium mole percent of the adduct CH/sub 3/OCH/sub 2/OH. These results confirm that in completely vaporized methanolic formaldehyde at 373 to 423 K, one type of adduct predominates. It contains one molecule each of formaldehyde and methanol.

  15. Homogeneous catalyst formulations for methanol production

    DOEpatents

    Mahajan, Devinder; Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.

    1991-02-12

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.-), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  16. Homogeneous catalyst formulations for methanol production

    DOEpatents

    Mahajan, Devinder; Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.

    1990-01-01

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.13 ), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  17. Standalone ethanol micro-reformer integrated on silicon technology for onboard production of hydrogen-rich gas.

    PubMed

    Pla, D; Salleras, M; Morata, A; Garbayo, I; Gerbolés, M; Sabaté, N; Divins, N J; Casanovas, A; Llorca, J; Tarancón, A

    2016-08-07

    A novel design of a silicon-based micro-reformer for onboard hydrogen generation from ethanol is presented in this work. The micro-reactor is fully fabricated with mainstream MEMS technology and consists of an active low-thermal-mass structure suspended by an insulating membrane. The suspended structure includes an embedded resistive metal heater and an array of ca. 20k vertically aligned through-silicon micro-channels per square centimetre. Each micro-channel is 500 μm in length and 50 μm in diameter allowing a unique micro-reformer configuration that presents a total surface per projected area of 16 cm(2) cm(-2) and per volume of 320 cm(2) cm(-3). The walls of the micro-channels become the active surface of the micro-reformer when coated with a homogenous thin film of Rh-Pd/CeO2 catalyst. The steam reforming of ethanol under controlled temperature conditions (using the embedded heater) and using the micro-reformer as a standalone device are evaluated. Fuel conversion rates above 94% and hydrogen selectivity values of ca. 70% were obtained when using operation conditions suitable for application in micro-solid oxide fuel cells (micro-SOFCs), i.e. 750 °C and fuel flows of 0.02 mlL min(-1) (enough to feed a one watt power source).

  18. World methanol situation poses challenge in process design

    SciTech Connect

    Haggin, J.

    1984-07-16

    A review is presented of the technology and economics of methanol production processes. Synthesis gas production based on methane or coal are compared. Since methane-based synthesis gas is hydrogen rich and coal-based synthesis gas is carbon rich, the combination of both processes, as suggested by the M.W. Kellogg Co., should be economically attractive. A liquid-phase synthesis in the developmental stages and two reactor configurations under consideration for its use are discussed. The Wentworth system of catalytic processing, a Lurgi process using coal and methane for methanol, a Lurgi process for utilizing methanol in a variation of the Mobil methanol-to-gasoline process, and another Lurgi process to produce a methanol fuel mixture for direct use as a motor fuel, consisting of methanol and oxygenates, are also discussed.

  19. Reforming Science: Structural Reforms

    PubMed Central

    2012-01-01

    Science has a critical role to play in addressing humanity's most important challenges in the twenty-first century. However, the contemporary scientific enterprise has developed in ways that prevent it from reaching maximum effectiveness and detract from the appeal of a research career. To be effective, the methodological and culture reforms discussed in the accompanying essay must be accompanied by fundamental structural reforms that include a renewed vigorous societal investment in science and scientists. PMID:22184420

  20. Catalytic Reforming

    SciTech Connect

    Little, D.M.

    1985-01-01

    Don Little's Catalytic Reforming deals exclusively with reforming. With the increasing need for unleaded gasoline, the importance of this volume has escalated since it combines various related aspects of reforming technology into a single publication. For those with no practical knowledge of catalytic reforming, the chemical reactions, flow schemes and how the cat reformer fits into the overall refinery process will be of interest. Contents include: Catalytic reforming in refinery processing: How catalytic reformers work - chemical reactions; Process design; The catalyst, process variables and unit operation; Commercial processes; BTX operation; Feed preparation; naphtha hydrotreating and catalytic reforming; Index.

  1. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification

    PubMed Central

    Castro-Dominguez, Bernardo; Mardilovich, Ivan P.; Ma, Liang-Chih; Ma, Rui; Dixon, Anthony G.; Kazantzis, Nikolaos K.; Ma, Yi Hua

    2016-01-01

    Palladium-based catalytic membrane reactors (CMRs) effectively remove H2 to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H2, CO and CO2. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H2O, CO2 and H2. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H2 and induce higher methane and CO conversions while yielding ultrapure H2 and compressed CO2 ready for dehydration. Experimental results involving (i) a conventional packed bed reactor packed (PBR) for MSR, (ii) a PBR with five layers of two catalysts in series and (iii) a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD) model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H2 permeance and purity, high CH4 conversion levels and reduced CO yields. PMID:27657143

  2. Method for reforming hydrocarbons

    SciTech Connect

    Brinkmeyer, F.M.; Ewert, W.M.; Fox, H.M.; Rohr, D.F. Jr.

    1993-08-10

    A method is described for reforming a hydrocarbon feedstock using a steam-active reforming catalyst which includes a metal from Group VIII of the Periodic Table of Elements, said method comprising the steps of: (a) contacting a first fixed bed of said catalyst with a regeneration mixture consisting essentially of steam and a source of free oxygen in order to remove deactivating material from said catalyst in said first bed by combustion and produce a regeneration effluent gas stream consisting essentially of steam, inert gas, and free oxygen which is not consumed when said deactivating material is removed from said catalyst in said first bed; (b) removing from said regeneration effluent gas stream said free oxygen which is not consumed when said deactivating material is removed from said catalyst in said first bed; and (c) reforming said hydrocarbon feedstock in a second fixed bed of said catalyst and in the presence of said regeneration effluent gas stream.

  3. Vacuum-Ultraviolet (VUV) Photoionization of Small Methanol and Methanol-Water Clusters

    SciTech Connect

    Kostko, Oleg; Belau, Leonid; Wilson, Kevin R.; Ahmed, Musahid

    2008-04-24

    In this work, we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH+(n = 1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH n(H2O)H+ (n = 2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH+, (CH3OH)2+, (CH3OH)nH+ (n = 1-9), and (CH3OH)n(H2O)H+ (n = 2-9) as a function of photon energy. With an increasein the water content in the molecular beam, there is an enhancement of photoionization intensity for the methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  4. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    SciTech Connect

    Ahmed, Musahid; Ahmed, Musahid; Wilson, Kevin R.; Belau, Leonid; Kostko, Oleg

    2008-05-12

    In this work we report on thevacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuumultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH + (n=1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H + (n=2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH +, (CH 3OH)2 +, (CH3OH)nH + (n=1-9), and (CH 3OH)n(H2O)H + (n=2-9 ) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  5. Preparation of ammonia synthesis gas

    SciTech Connect

    Shires, P.J.; van Dijk, C.P.; Cassata, J.R.; Mandelik, B.G.

    1984-10-30

    Ammonia synthesis gas having excess nitrogen is produced in a reactor-exchanger primary reformer followed by an autothermal secondary reformer wherein process air for the latter is preheated by heat exchange with gas turbine exhaust and the primary reformer is heated by synthesis gas from the secondary reformer.

  6. Catalytic reforming process

    SciTech Connect

    Swan, G.A.

    1982-09-07

    A process, or procedure, is disclosed for the start-up of reforming units, particularly those employing highly active sulfur-sensitive polymetallic, promoted noble metal containing catalysts. On start -up of a reforming unit, a sulfur-containing naphtha feed is fed at reforming conditions over a platinum-catalyst containing lead reactor of a series while bypassing subsequent reactors of the series, the product therefrom is separated into hydrogen-containing gas and C5+ liquid fractions, the hydrogen-containing gas fraction is desulfurized and dried and recycled to the platinum-catalyst containing lead reactor and, after sufficient hydrogen has been generated for operation of a hydrofiner which is used to hydrodesulfurize the naphtha feed for the reformer, product from the platinum-catalyst containing lead reactor is fed to subsequent reactors of the series which contain the more sulfur-sensitive catalysts.

  7. Methanol production method and system

    DOEpatents

    Chen, Michael J.; Rathke, Jerome W.

    1984-01-01

    Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

  8. Hierarchical multiscale mechanism development for methane partial oxidation and reforming and for thermal decomposition of oxygenates on Rh.

    PubMed

    Mhadeshwar, A B; Vlachos, D G

    2005-09-08

    A thermodynamically consistent C1 microkinetic model is developed for methane partial oxidation and reforming and for oxygenate (methanol and formaldehyde) decomposition on Rh via a hierarchical multiscale methodology. Sensitivity analysis is employed to identify the important parameters of the semiempirical unity bond index quadratic exponential potential (UBI-QEP) method and these parameters are refined using quantum mechanical density functional theory. With adjustment of only two pre-exponentials in the CH4 oxidation subset, the C1 mechanism captures a multitude of catalytic partial oxidation (CPOX) and reforming experimental data as well as thermal decomposition of methanol and formaldehyde. We validate the microkinetic model against high-pressure, spatially resolved CPOX experimental data. Distinct oxidation and reforming zones are predicted to exist, in agreement with experiments, suggesting that hydrogen is produced from reforming of methane by H2O formed in the oxidation zone. CO is produced catalytically by partial oxidation up to moderately high pressures, with water-gas shift taking place in the gas-phase at sufficiently high pressures resulting in reduction of CO selectivity.

  9. Silicon-based miniaturized-reformer for portable fuel cell applications

    NASA Astrophysics Data System (ADS)

    Kwon, Oh Joong; Hwang, Sun-Mi; Ahn, Jin-Goo; Kim, Jae Jeong

    A micro-reformer was made by using silicon fabrication technology and a new catalyst loading method of 'fill-and-dry coating'. The techniques of silicon wet etching, bonding and thin-film deposition were applied in the micro-reformer process, and a commercial Cu-ZnO-Al 2O 3 catalyst served as the reforming catalyst. The volume of the single micro-reactor was 0.55 cm 3 and the micro-reformer stack, which consists of one vaporizer and two reformers, occupied 15 cm 3. Methanol solution was used as the reactant and the composition and feed rate were varied. The operating temperature of the reformer was in the range of 280-320 °C and was controlled by an electrical thin-film heater at a fixed vaporizer temperature of 150 °C. The product gas was composed of 75% H 2, 25% CO 2 and 2100 ppm CO. The maximum hydrogen production rate and conversion were about 200 cm 3 and 95% at 320 °C, respectively.

  10. Capacity additions ease tight methanol supply

    SciTech Connect

    Greek, B.F. )

    1988-10-03

    Two menthanol plants now in operation - one in the U.S., the other in Chile - will boost global supplies of methanol more than 375 million gal annually. This large capacity addition and smaller expansions in other parts of the world will exceed demand growth during 1988 and 1989, easing the squeeze on supplies. As the result of increased supplies, methanol prices could slip slightly in the fourth quarter. They are more likely to decline next year, however. The two plants, which started up in August, are owned and operated by Tenneco Oil Co. Processing and Marketing and by Cape Horn Methanol (CHM). The Tenneco plant, located in Pasadena, Tex., was restarted after a shutdown in 1982 when prices for methanol were low. It now is running at full capacity of 125 million gal per year. The plant uses the low-pressure process technology of Lurgi, reportedly requiring for feedstock and energy between 100,000 and 125,000 cu ft of methane per gallon. Global trade in methanol smooths out the supply and demand inconsistencies. Surging methanol demand in the U.S. and in Western Europe has been met by imports from areas where methanol production is most economical - that is, where natural gas is readily available and has no other application as high in value. Canada, Chile, and Trinidad are examples of those areas.

  11. Methanol as an alternative fuel: Economic and health effects

    SciTech Connect

    Yuecel, M.K. )

    1991-09-01

    Switching from gasoline to methanol fuels has important economic and health effects. Replacing gasoline with methanol will affect oil markets by lowering the demand for oil and thus lowering oil prices. Increased demand for the natural gas feedstock will increase natural gas prices. Because methanol is more costly than gasoline, fuel prices will also increase. On the other hand, methanol use will reduce ozone pollution and some of the health risks associated with gasoline. Considering all three markets affected by the phasing-out of gasoline, the switch to methanol results in net gains. The health benefits from lower pollution and the lives saved from the switch from gasoline to methanol are in addition to these gains. Overall, the benefits of the policy far outweigh the costs. However, the gains in the oil market, arising from the US monopsony power in the world oil market, can be captured by other, more efficient policies. 21 refs., 2 figs., 3 tabs.

  12. Methanol production from fermentor off-gases

    NASA Astrophysics Data System (ADS)

    Dale, B. E.; Moreira, A. R.

    The off gases from an acetone butanol fermentation facility are composed mainly of CO2 and H2. Such a gas stream is an ideal candidate as a feed to a methanol synthesis plant utilizing modern technology recently developed and known as the CDH-methanol process. A detailed economic analysis for the incremental cost of a methanol synthesis plant utilizing the off gases from an acetone butanol fermentation indicates a profitable rate of return of 25 to 30% under the most likely production conditions. Bench scale studies at different fermentor mixing rates indicate that the volume of gases released during the fermentation is a strong function of the agitation rate and point to a potential interaction between the volume of H2 evolved and the levels of butanol present in the final fermented broth. Such interaction may require establishing optimum operating conditions for an integrated butanol fermentation methanol synthesis plant.

  13. Methanol in the sky with diamonds

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.; Tielens, A. G. G. M.; Herbst, T.

    1991-01-01

    The present of gas phase methanol in dense interstellar molecular clouds was established by radio detection of its rotational emission lines. However, the position, width, and profile of a absorption band near 1470 cm(exp -1) in the IR spectra of many dense molecular clouds strongly suggests that solid methanol is an important component of interstellar ices. In an attempt to better constrain the identification of 1470 cm(exp -1) feature, we began a program to search for other characteristic absorption bands of solid state methanol in the spectra of objects known to produce this band. One such feature is now identified in the spectra of several dense molecular clouds and its position, width, and profile fit well with those of laboratory H2O:CH3OH ices. Thus, the presence of methanol-bearing ices in space is confirmed.

  14. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    SciTech Connect

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  15. Methane reforming in a temperature-controlled DBD reactor

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Raja, Laxminarayan

    2015-09-01

    Methane and carbon dioxide are among the main products of human activity. Therefore, they are considered among greenhouse gases, which may cause the global warming. On the other hand, methane is widely used in everyday life as an energy source and in industry for the synthesis of different chemicals. In order to utilize greenhouse gases or to generate chemicals from methane, one needs first to dissociate it. Then, this gas converts into desired products such as methanol, gasoline, syn-gas etc. Nowadays, there are several methods for CH4 conversion. Steam reforming, partial oxidation, thermal and non-thermal plasmas are among them. During the last decades, the use of non-thermal plasma for methane reforming attracts more and more attention. This is caused by the possibility to control the process of methane conversion as well as the gas component content at the reactor outlet. In addition, the use of non-thermal plasma facilitates the control of reactor start up. The goal of the present work is the deep understanding of the plasma chemical processes accompanying the methane-air conversion in a temperature-controlled DBD reactor. To do this, we have developed the kinetic mechanism of CH4/N2/O2 conversion for the gas temperature range 300-800 K and applied it to the global model.

  16. Ceramic oxygen transport membrane array reactor and reforming method

    SciTech Connect

    Kelly, Sean M.; Christie, Gervase Maxwell; Rosen, Lee J.; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-09-27

    A commercially viable modular ceramic oxygen transport membrane reforming reactor for producing a synthesis gas that improves the thermal coupling of reactively-driven oxygen transport membrane tubes and catalyst reforming tubes required to efficiently and effectively produce synthesis gas.

  17. Tri-reforming and combined reforming of methane for producing syngas with desired hydrogen/carbon monoxide ratios

    NASA Astrophysics Data System (ADS)

    Pan, Wei

    This dissertation is an exploratory study of a new process concept for direct production of synthesis gas (CO + H2) with desired H 2/CO ratios (1.5--2.0) for methanol synthesis and F-T synthesis, using CO2 together with steam and unconverted O2 in flue gas from fossil fuel-fired electric power plants to react with methane or natural gas. This new process is called tri-reforming, referring to simultaneous CO2-steam-O2 reforming of methane or natural gas. This study included (1) The investigation of carbon formation in the tri-reforming process. For comparison, carbon formation in the combined reforming and CO2 reforming reaction was studied as well. (2) The effect of reaction conditions and feed compositions on equilibrium composition (e.g. H2/CO ratio) and equilibrium conversions in the tri-reforming process. (3) The role of catalysts in the tri-reforming process, especially the effect of catalysts on CO2 conversion in the presence of H 2O and O2. It was clearly evidenced from this study that CO in the product stream is probably the major source of carbon over Ni/Al2O3 in the equimolar CO2-CH4 reforming at 650°C and 1 atm. Addition of either O2 or H2O into the CO 2 reforming reaction system can suppress carbon formation. It was demonstrated that carbon-free operation can be achieved in the tri-reforming process. A thermodynamic comparison of tri-reforming with feed compositions of (H2O+CO2+0.5O2)/CH4 (mol ratio) = 1 showed that O2 improves equilibrium CH4 conversion, yet greatly decreases equilibrium CO2 conversion. H2O in tri-reforming has a significant effect on the H2/CO ratio in the products, while O2 has a minor effect. A kinetic study and catalytic performance tests indicated that the support in a supported catalyst has a significant role in enhancing CO2 conversion to CO in the presence of H2O and O2 in tri-reforming. The Ni/MgO catalyst showed superior performance with close to equilibrium CH4 and CO2 conversions at 850°C, 1 atm, and 32,000 ml

  18. Improve syngas production using autothermal reforming

    SciTech Connect

    Christensen, T.S.; Primdahl, I.I. )

    1994-03-01

    Synthesis gas or syngas, i.e., mixtures of CO and H[sub 2], is a major route from hydrocarbons to many important bulk chemicals ranging from acetic acid to ammonia. Syngas conversion uses hydrocarbon feedstocks, steam, O[sub 2] and CO[sub 2], either separately or in combinations. Autothermal reforming (ATR) is a low-investment process using a simple reactor design. The process is soot-free due to burner design and fixed-bed catalyst. Developed in the late '50s, ATR's main application was for ammonia and methanol syntheses. In ammonia plants, hydrogen production was maximized by operating at high H[sub 2]O/C ratios ranging from 2.5 to 3.5 mole/mole. In methanol units, CO[sub 2] recycle adjusted the syngas composition. ATR is also used to co-produce CO and H[sub 2] as separate streams at H[sub 2]O/C ratios of 1.4 to 2.0 mole/mole. recent developments and optimizations allow cost-effective operation at very low H[sub 2]O/C feed ratios to produce CO-rich syngas. The paper describes the process, including feedstocks and reactor design, the chemical reactions, development and improvements to the process, test results, soot formation, burner design, burner testing, applications, thermodynamic calculations, industrial application, noncatalytic and catalytic partial oxidation, and future uses.

  19. A multi-level simulation platform of natural gas internal reforming solid oxide fuel cell-gas turbine hybrid generation system - Part II. Balancing units model library and system simulation

    NASA Astrophysics Data System (ADS)

    Bao, Cheng; Cai, Ningsheng; Croiset, Eric

    2011-10-01

    Following our integrated hierarchical modeling framework of natural gas internal reforming solid oxide fuel cell (IRSOFC), this paper firstly introduces the model libraries of main balancing units, including some state-of-the-art achievements and our specific work. Based on gPROMS programming code, flexible configuration and modular design are fully realized by specifying graphically all unit models in each level. Via comparison with the steady-state experimental data of Siemens-Westinghouse demonstration system, the in-house multi-level SOFC-gas turbine (GT) simulation platform is validated to be more accurate than the advanced power system analysis tool (APSAT). Moreover, some units of the demonstration system are designed reversely for analysis of a typically part-load transient process. The framework of distributed and dynamic modeling in most of units is significant for the development of control strategies in the future.

  20. First methanol-to-gasoline plant nears startup in New Zealand

    SciTech Connect

    Haggin, J.

    1985-03-25

    Sometime during the summer 1985, New Zealand Synthetic Fuels Co. was scheduled to begin operating its new plant at Motunui, New Zealand. It marks the first commercial application of the Mobil methanol-to-gasoline (MTG) process. Moreover, as the result of a modular approach directed by Bechtel Corp. personnel, the plant represents a major construction success. It is also the first example of a new technology that may seriously challenge traditional Fischer-Tropsch chemistry as a route to synthetic fuels and organic feedstocks. The MTG plant will produce 14,000 barrels per day of gasoline with an octane number rating of 92 to 94 (according to research results). This amount is about one third of present New Zealand demand. The gasoline will be made by catalytic conversion of methanol coming from two plants, each producing about 220 metric tons per day for the single-train MTG plant. The methanol, in turn, is derived from reforming of natural gas from offshore fields in the Tasman Sea.

  1. Selective hydrogen production from methanol with a defined iron pincer catalyst under mild conditions.

    PubMed

    Alberico, Elisabetta; Sponholz, Peter; Cordes, Christoph; Nielsen, Martin; Drexler, Hans-Joachim; Baumann, Wolfgang; Junge, Henrik; Beller, Matthias

    2013-12-23

    Molecularly well-defined iron pincer complexes promote the aqueous-phase reforming of methanol to carbon dioxide and hydrogen, which is of interest in the context of a methanol and hydrogen economy. For the first time, the use of earth-abundant iron complexes under mild conditions for efficient hydrogen generation from alcohols is demonstrated.

  2. Investigation of the In-Situ Oxidation of Methanol in Fuel Cells.

    DTIC Science & Technology

    1981-09-01

    ability of the catalyst to tolerate carbon monoxide. Finally, a performance curve was obtained for the anodic oxidation of methanol : CH3OH ... CH3OH + H20 •» C02 + 3H2 In present methanol -air fuel cell power plants , the steam reforming process is usually carried out in a unit which is...KCY YIO"(CS (Continue on reverse ride it neeessnry and identity ay block number) Fuel Cell Platinum Catalysts Methanol Direct Oxidation Internal

  3. Hydrogen production by reforming of simulated hot coke oven gas over nickel catalysts promoted with lanthanum and cerium in a membrane reactor

    SciTech Connect

    Hongwei Cheng; Xionggang Lu; Yuwen Zhang; Weizhong Ding

    2009-05-15

    Catalysts of Ni/Mg(Al)O promoted with lanthanum and cerium were tested in a BaCo{sub 0.7}Fe{sub 0.2}Nb{sub 0.1}O{sub 3{delta}} (BCFNO) membrane reactor by catalytic partial oxidation of simulated hot coke oven gas (COG) with toluene as a model tar compound under atmospheric pressure. Analysis of the catalysts suggested that the hydrotalcite precursor after thermal treatment lead to a good dispersion of nickel forming the solid solution NiO-MgO and spinel (Ni,Mg)Al{sub 2}O{sub 4}. The promoted catalysts had higher oxygen permeation flux, better catalytic activity, and better resistance to carbon formation, which will be promising catalysts in the catalytic partial oxidation reforming of hot COG. 29 refs., 11 figs., 2 tabs.

  4. Autothermal hydrogen generation from methanol in a ceramic microchannel network

    NASA Astrophysics Data System (ADS)

    Moreno, Angela M.; Wilhite, Benjamin A.

    In this paper, the authors present the first demonstration of a new class of integrated ceramic microchannel reactors for all-in-one reforming of hydrocarbon fuels. The reactor concept employs precision-machined metal distributors capable of realizing complex flow distribution patterns with extruded ceramic microchannel networks for cost-effective thermal integration of multiple chemical processes. The presently reported reactor is comprised of five methanol steam reforming channels packed with CuO/γ-Al 2O 3, interspersed with four methanol combustion channels washcoated with Pt/γ-Al 2O 3, for autothermal hydrogen production (i.e., without external heating). Results demonstrate the capability of this new device for integrating combustion and steam reforming of methanol for autothermal production of hydrogen, owing to the axially self-insulating nature of distributor-packaged ceramic microchannels. In the absence of any external insulation, stable reforming of methanol to hydrogen at conversions >90% and hydrogen yields >70% was achieved at a maximum reactor temperature of 400 °C, while simultaneously maintaining a packaging temperature <50 °C.

  5. On direct and indirect methanol fuel cells for transportation applications

    SciTech Connect

    Ren, Xiaoming; Wilson, M.S.; Gottesfeld, S.

    1995-09-01

    Power densities in electrolyte Direct Methanol Fuel Cells have been achieved which are only three times lower than those achieved with similar reformate/air fuel cells. Remaining issues are: improved anode catalyst activity, demonstrated long-term stable performance, and high fuel efficiencies.

  6. The JPL Direct Methanol Liquid-feed PEM Fuel Cell

    NASA Technical Reports Server (NTRS)

    Halpert, G.; Surampudi, S.

    1994-01-01

    Recently, there has been a breakthrough in fuel cell technology in the Energy Storage Systems Group at the Jet Propulsion Laboratory with the develpment of a direct methanol, liquid-feed, solid polymer electrolyte membrane (PEM) fuel cell... The methanol liquid-feed, solid polymer electrolyte (PEM) design has numerous system level advantages over the gas-feed design. These include:...

  7. Millisecond autothermal catalytic reforming of carbohydrates for synthetic fuels by reactive flash volatilization

    NASA Astrophysics Data System (ADS)

    Dauenhauer, Paul Jakob

    Carbohydrates including glucose, cellulose, starch and polyols including glycerol, ethylene glycol and methanol produced in large quantities from biomass are considered as a carbon-based feedstock for high temperature catalytic reforming by catalytic partial oxidation. Autothermal catalytic partial oxidation of methanol, ethylene glycol, and glycerol with Rh and Pt-based catalysts with ceria on alumina foam supports at residence times less than ten milliseconds produced equilibrium selectivity to synthesis gas. The addition of steam at S/C>4 produced selectivity to H2 higher than 80% with little or no selectivity to minor products. In a new process referred to as 'reactive flash volatilization,' catalytic partial oxidation was combined with pyrolysis of biomass by directly impinging particles of cellulose, starch, polyethylene, soy oil, or Aspen (Populous Tremuloides) on an operating Rh-based reforming catalyst at 700-800°C. Solid particles endothermically pyrolyzed to volatile organic compounds which mixed with air and reformed on the catalyst exothermically generating heat to drive the overall process. Particles of ˜250 mum microcrystalline cellulose processed at the conditions of C/O=1.0 on a RhCe/gamma-Al2O3/alpha-Al 2O3 at a residence time of ˜70 milliseconds produced a gaseous effluent stream selecting for 50% H2 and 50% CO with no observable side products other than H2O and CO2, and <1% CH4. To obtain a more optimal synthesis gas stream, the reforming of ˜400 mum microcrystalline particles was examined over a fixed bed of RhCe/gamma-Al2O3/alpha-Al2O 3 spheres by varying the feed ratio of N2/O2, the temperature of the feed gas, the total particle feed rate, and the addition of steam permitting cellulose conversion with ˜75% fuel efficiency. Cellulose, sucrose, and glycerol particle conversion was examined with high-speed photography (1000 frames/second) revealing the formation of a liquid intermediate from cellulose permitting extremely high heat flux (

  8. Environmental life cycle assessment of methanol and electricity co-production system based on coal gasification technology.

    PubMed

    Śliwińska, Anna; Burchart-Korol, Dorota; Smoliński, Adam

    2017-01-01

    This paper presents a life cycle assessment (LCA) of greenhouse gas emissions generated through methanol and electricity co-production system based on coal gasification technology. The analysis focuses on polygeneration technologies from which two products are produced, and thus, issues related to an allocation procedure for LCA are addressed in this paper. In the LCA, two methods were used: a 'system expansion' method based on two approaches, the 'avoided burdens approach' and 'direct system enlargement' methods and an 'allocation' method involving proportional partitioning based on physical relationships in a technological process. Cause-effect relationships in the analysed production process were identified, allowing for the identification of allocation factors. The 'system expansion' method involved expanding the analysis to include five additional variants of electricity production technologies in Poland (alternative technologies). This method revealed environmental consequences of implementation for the analysed technologies. It was found that the LCA of polygeneration technologies based on the 'system expansion' method generated a more complete source of information on environmental consequences than the 'allocation' method. The analysis shows that alternative technologies chosen for generating LCA results are crucial. Life cycle assessment was performed for the analysed, reference and variant alternative technologies. Comparative analysis was performed between the analysed technologies of methanol and electricity co-production from coal gasification as well as a reference technology of methanol production from the natural gas reforming process.

  9. Dietary methanol and autism.

    PubMed

    Walton, Ralph G; Monte, Woodrow C

    2015-10-01

    The authors sought to establish whether maternal dietary methanol during pregnancy was a factor in the etiology of autism spectrum disorders. A seven item questionnaire was given to women who had given birth to at least one child after 1984. The subjects were solicited from a large primary care practice and several internet sites and separated into two groups - mothers who had given birth to a child with autism and those who had not. Average weekly methanol consumption was calculated based on questionnaire responses. 550 questionnaires were completed by women who gave birth to a non-autistic child. On average these women consumed 66.71mg. of methanol weekly. 161 questionnaires were completed by women who had given birth to an autistic child. The average estimated weekly methanol consumption for this group was 142.31mg. Based on the results of the Wilcoxon rank sum-test, we see a significant difference between the reported methanol consumption rates of the two groups. This study suggests that women who have given birth to an autistic child are likely to have had higher intake of dietary sources of methanol than women who have not. Further investigation of a possible link of dietary methanol to autism is clearly warranted.

  10. Microfluidic distillation chip for methanol concentration detection.

    PubMed

    Wang, Yao-Nan; Liu, Chan-Chiung; Yang, Ruey-Jen; Ju, Wei-Jhong; Fu, Lung-Ming

    2016-03-17

    An integrated microfluidic distillation system is proposed for separating a mixed ethanol-methanol-water solution into its constituent components. The microfluidic chip is fabricated using a CO2 laser system and comprises a serpentine channel, a boiling zone, a heating zone, and a cooled collection chamber filled with de-ionized (DI) water. In the proposed device, the ethanol-methanol-water solution is injected into the microfluidic chip and driven through the serpentine channel and into the collection chamber by means of a nitrogen carrier gas. Following the distillation process, the ethanol-methanol vapor flows into the collection chamber and condenses into the DI water. The resulting solution is removed from the collection tank and reacted with a mixed indicator. Finally, the methanol concentration is inversely derived from the absorbance measurements obtained using a spectrophotometer. The experimental results show the proposed microfluidic system achieves an average methanol distillation efficiency of 97%. The practicality of the proposed device is demonstrated by detecting the methanol concentrations of two commercial fruit wines. It is shown that the measured concentration values deviate by no more than 3% from those obtained using a conventional bench top system.

  11. Identification of non-cross-linked compounds in methanolic extracts of cured and aged linseed oil-based paint films using gas chromatography-mass spectrometry.

    PubMed

    van den Berg, Jorrit D J; van den Berg, Klaas Jan; Boon, Jaap J

    2002-03-15

    Methanolic extracts of paint samples of different composition and age were qualitatively investigated by GC-MS using an on-column injector after off-line methylation or trimethylsilyl derivatisation, and on-line thermally assisted (trans)methylation with tetramethylammonium hydroxide using Curie-point pyrolysis-GC-MS. The combination of these three analytical strategies led to the identification of typical oxidation products of unsaturated fatty acids by interpretation of their mass spectrum. Some of the identified compounds have not been reported before. Both the off-line and on-line GC-MS strategy show series of short-chain fatty (di)acids and C16 and (oxidised) C18 fatty acids. The major advantage of the on-line pyrolysis-GC-MS approach is that chemical work-up is minimal and very quick. With this technique both the carboxylic acid functionalities, and hydroxyl groups are methylated. Young paint films are shown to contain relatively more oxidised C18 fatty acids and less diacids compared to older paints, which is indicative for the on-going oxidation processes within the paint. After trimethylsilylation, monoacylglycerols are detected indicative for hydrolytic processes, which reflect the relative distribution of the most prominent silylated fatty acids present. Relatively more C16 and C18 monoacylglycerols are found in young paints, whereas older paints contain higher amounts of monoacylglycerols of diacids.

  12. Gas-phase reactions of the rhenium oxide anions, [ReOx]- (x = 2 - 4) with the neutral organic substrates methane, ethene, methanol and acetic acid.

    PubMed

    O'Hair, Richard A J; Canale, Valentino; Zavras, Athanasios; Khairallah, George N; d'Alessandro, Nicola

    2015-01-01

    The ion-molecule reactions of the rhenium oxide anions, [ReOx](-) (x = 2 - 4) with the organic substrates methane, ethene, methanol and acetic acid have been examined in a linear ion trap mass spectrometer. The only reactivity observed was between [ReO(2)](-) and acetic acid. Isotope labelled experiments and high-resolution mass spectrometry measurements were used to assign the formulas of the ionic products. Collision-induced dissociation and ion-molecule reactions with acetic acid were used to probe the structures of the mass-selected primary product ions. Density functional theory calculations [PBE0/LanL2DZ6-311+G(d)] were used to suggest possible structures. The three primary product channels observed are likely to arise from the formation of: the metallalactone [ReO(2)(CH(2)CO(2))](-) (m/z 277) and H(2); [CH(3)ReO(2)(OH)](-) (m/z 251) and CO; and [ReO(3)](-) (m/z 235), H(2) and CH(2)CO.

  13. Far-infrared Intensity Measurements of Methanol

    NASA Astrophysics Data System (ADS)

    Brauer, Carolyn; Sung, K.; Pearson, J. C.; Brown, L. R.; Xu, L. H.

    2009-12-01

    Line intensities of methanol (CH3OH) are generally derived using the dipole moments determined from Stark effect measurements. However, the rotational intensities typically do not account for the torsional dependence of the dipole moment, and are thus incomplete. This effect may be significant in some transitions and can lead to confusion in interpreting observational data. Given the expectations associated with modern observation facilities such as Herschel, ALMA and SOFIA, and the ubiquity of methanol in interstellar gas, precise knowledge of the methanol spectrum is critical. Furthermore, methanol has been used as a calibration gas for the Herschel HIFI instrument and precision intensity data facilitates calibration of the relative sideband gain and local oscillator mixer standing wave patterns. Because the torsional dependence of the dipole moment cannot be accurately calculated, it must be extracted from line intensity measurements. In this work, an empirical database of methanol line intensities from 300 to 500 cm-1 has been compiled from far-infrared measurements recorded on the Bruker IFS 125 HR Fourier transform spectrometer located at the Jet Propulsion Laboratory. This room temperature spectrum was taken at resolutions between 0.0014 and 0.0050 cm-1 using a 20.26 cm glass cell with wedged high-density polyethylene windows, and detected with a He-cooled bolometer. The results from this study will support the analyses of astronomical observations taken from orbit by the Herschel HIFI instrument.

  14. Experimental Evaluation of SI Engine Operation Supplemented by Hydrogen Rich Gas from a Compact Plasma Boosted Reformer

    SciTech Connect

    J. B. Green, Jr.; N. Domingo; J. M. E. Storey; R.M. Wagner; J.S. Armfield; L. Bromberg; D. R. Cohn; A. Rabinovich; N. Alexeev

    2000-06-19

    It is well known that hydrogen addition to spark-ignited (SI) engines can reduce exhaust emissions and increase efficiency. Micro plasmatron fuel converters can be used for onboard generation of hydrogen-rich gas by partial oxidation of a wide range of fuels. These plasma-boosted microreformers are compact, rugged, and provide rapid response. With hydrogen supplement to the main fuel, SI engines can run very lean resulting in a large reduction in nitrogen oxides (NO x ) emissions relative to stoichiometric combustion without a catalytic converter. This paper presents experimental results from a microplasmatron fuel converter operating under variable oxygen to carbon ratios. Tests have also been carried out to evaluate the effect of the addition of a microplasmatron fuel converter generated gas in a 1995 2.3-L four-cylinder SI production engine. The tests were performed with and without hydrogen-rich gas produced by the plasma boosted fuel converter with gasoline. A one hundred fold reduction in NO x due to very lean operation was obtained under certain conditions. An advantage of onboard plasma-boosted generation of hydrogen-rich gas is that it is used only when required and can be readily turned on and off. Substantial NO x reduction should also be obtainable by heavy exhaust gas recirculation (EGR) facilitated by use of hydrogen-rich gas with stoichiometric operation.

  15. Biological Methanol Production by a Type II Methanotroph Methylocystis bryophila.

    PubMed

    Patel, Sanjay K S; Mardina, Primata; Kim, Sang-Yong; Lee, Jung-Kul; Kim, In-Won

    2016-04-28

    Methane (CH₄) is the most abundant component in natural gas. To reduce its harmful environmental effect as a greenhouse gas, CH₄ can be utilized as a low-cost feed for the synthesis of methanol by methanotrophs. In this study, several methanotrophs were examined for their ability to produce methanol from CH₄; including Methylocella silvestris, Methylocystis bryophila, Methyloferula stellata, and Methylomonas methanica. Among these methanotrophs, M. bryophila exhibited the highest methanol production. The optimum process parameters aided in significant enhancement of methanol production up to 4.63 mM. Maximum methanol production was observed at pH 6.8, 30°C, 175 rpm, 100 mM phosphate buffer, 50 mM MgCl₂ as a methanol dehydrogenase inhibitor, 50% CH₄ concentration, 24 h of incubation, and 9 mg of dry cell mass ml(-1) inoculum load, respectively. Optimization of the process parameters, screening of methanol dehydrogenase inhibitors, and supplementation with formate resulted in significant improvements in methanol production using M. bryophila. This report suggests, for the first time, the potential of using M. bryophila for industrial methanol production from CH₄.

  16. The Methanol Multibeam Survey

    NASA Astrophysics Data System (ADS)

    Green, James A.; Cohen, R. J.; Caswell, J. L.; Fuller, G. A.; Brooks, K.; Burton, M. G.; Chrysostomou, A.; Diamond, P. J.; Ellingsen, S. P.; Gray, M. D.; Hoare, M. G.; Masheder, M. R. W.; McClure-Griffiths, N.; Pestalozzi, M.; Phillips, C.; Quinn, L.; Thompson, M. A.; Voronkov, M.; Walsh, A.; Ward-Thompson, D.; Wong-McSweeney, D.; Yates, J. A.; Cox, J.

    2007-03-01

    A new 7-beam methanol multibeam receiver is being used to survey the Galaxy for newly forming massive stars, that are pinpointed by strong methanol maser emission at 6.668 GHz. The receiver, jointly constructed by Jodrell Bank Observatory (JBO) and the Australia Telescope National Facility (ATNF), was successfully commissioned at Parkes in January 2006. The Parkes-Jodrell survey of the Milky Way for methanol masers is two orders of magnitude faster than previous systematic surveys using 30-m class dishes, and is the first systematic survey of the entire Galactic plane. The first 53 days of observations with the Parkes telescope have yielded 518 methanol sources, of which 218 are new discoveries. We present the survey methodology as well as preliminary results and analysis.

  17. Methanol Cannon Demonstrations Revisited.

    ERIC Educational Resources Information Center

    Dolson, David A.; And Others

    1995-01-01

    Describes two variations on the traditional methanol cannon demonstration. The first variation is a chain reaction using real metal chains. The second example involves using easily available components to produce sequential explosions that can be musical in nature. (AIM)

  18. Methanol Cannon Demonstrations Revisited.

    ERIC Educational Resources Information Center

    Dolson, David A.; And Others

    1995-01-01

    Describes two variations on the traditional methanol cannon demonstration. The first variation is a chain reaction using real metal chains. The second example involves using easily available components to produce sequential explosions that can be musical in nature. (AIM)

  19. Dominant conformer of tetrahydropyran-2-methanol and its clusters in the gas phase explored by the use of VUV photoionization and vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhan, Huaqi; Hu, Yongjun; Wang, Pengchao; Chen, Jiaxin

    2017-04-01

    Tetrahydropyran-2-methanol (THPM) is a typical alcohol containing a six-member cyclic ether, which can be considered as the model molecule of cyclic sugar. Herein, vacuum ultraviolet (VUV) photodissociation spectroscopy is employed to study fragmentation pathways and infrared (IR) plus VUV photoionization spectroscopy to investigate the structures of neutral THPM and its clusters with the size up to the trimer. Qualitative structural assignments are confirmed for the neutral species and ions based on MP2/aug-cc-pVTZ and ωB97X-D/cc-pVTZ calculations. The fragment cations at m/z = 84, 85, and 98 arise by the losing of CH2OH, CH3OH, and H2O from the monomer, respectively, as a result of C-C bond and C-O bond dissociation under the VUV (118 nm) radiation. It is found that the loss of CH3OH and H2O involves hydrogen transfer from the CH2 group to the dissociating CH2 and OH groups. Comparing the observed and calculated spectra of the monomer THPM, it suggests that the conformer containing a chair tetrahydropyran ring and an intramolecular hydrogen bond would be dominantly survived in a supersonic beam. Moreover, the IR spectra of larger clusters n > 1 (n = 2, 3) show only the broad hydrogen bonded OH stretch mode, and thus these larger clusters would form a closed-cyclic structure, where all OH groups are participating in hydrogen bonding. Partially the CH stretch positions of THPM clusters do not change significantly with the increasing of cluster size, thus the CH and CH2 groups are not involved in H-bonding interactions.

  20. A novel process for methanol synthesis

    SciTech Connect

    Tierney, J.W.; Wender, I.

    1992-01-01

    A bench-scale reactor is being used to study the conversion of synthesis gas to methanol (MEOH) in the liquid phase by a novel method. In previous reports, we provided evidence for a two step reaction consisting of a carbonylation reaction taking place mainly in the film'' close to a copper chromite surface followed by a hydrogenolysis reaction taking place on the surface of the copper chromite. The interaction between the two catalysts enhances the rate of methanol formation. In this quarter, we reexamined the equilibrium concentration for methyl formate and obtained data at higher loadings of copper chromite.

  1. The Asian methanol market

    SciTech Connect

    Nagase, Hideki

    1995-12-31

    For the purpose of this presentation, Asia has been broadly defined as a total of 15 countries, namely Japan, Korea, Taiwan, China, Hong Kong, the Philippines, Thailand, Malaysia, Singapore, Indonesia, Myanmar, India, Vietnam, Australia and New Zealand. In 1994 and the first half of 1995, the methanol industry and its derivative industries experienced hard time, because of extraordinarily high methanol prices. In spite of this circumstance, methanol demand in Asian countries has been growing steadily and remarkably, following Asian high economic growth. Most of this growth in demand has been and will continue to be met by outside supply. However, even with increased import of methanol from outside of Asia, as a result of this growth, Asian trade volume will be much larger in the coming years. Asian countries must turn their collective attention to making logistics and transportation for methanol and its derivatives more efficient in the Asian region to make better use of existing supply resources. The author reviews current economic growth as his main topic, and explains the forecast of the growth of methanol demand and supply in Asian countries in the near future.

  2. Reformer Fuel Injector

    NASA Technical Reports Server (NTRS)

    Suder, Jennifer L.

    2004-01-01

    Today's form of jet engine power comes from what is called a gas turbine engine. This engine is on average 14% efficient and emits great quantities of green house gas carbon dioxide and air pollutants, Le. nitrogen oxides and sulfur oxides. The alternate method being researched involves a reformer and a solid oxide fuel cell (SOFC). Reformers are becoming a popular area of research within the industry scale. NASA Glenn Research Center's approach is based on modifying the large aspects of industry reforming processes into a smaller jet fuel reformer. This process must not only be scaled down in size, but also decrease in weight and increase in efficiency. In comparison to today's method, the Jet A fuel reformer will be more efficient as well as reduce the amount of air pollutants discharged. The intent is to develop a 10kW process that can be used to satisfy the needs of commercial jet engines. Presently, commercial jets use Jet-A fuel, which is a kerosene based hydrocarbon fuel. Hydrocarbon fuels cannot be directly fed into a SOFC for the reason that the high temperature causes it to decompose into solid carbon and Hz. A reforming process converts fuel into hydrogen and supplies it to a fuel cell for power, as well as eliminating sulfur compounds. The SOFC produces electricity by converting H2 and CO2. The reformer contains a catalyst which is used to speed up the reaction rate and overall conversion. An outside company will perform a catalyst screening with our baseline Jet-A fuel to determine the most durable catalyst for this application. Our project team is focusing on the overall research of the reforming process. Eventually we will do a component evaluation on the different reformer designs and catalysts. The current status of the project is the completion of buildup in the test rig and check outs on all equipment and electronic signals to our data system. The objective is to test various reformer designs and catalysts in our test rig to determine the most

  3. Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell

    SciTech Connect

    Wang, J.T.; Wasmus, S.; Savinell, R.F.

    1996-04-01

    The products of methanol crossover through the acid-doped polybenzimidazole polymer electrolyte membrane (PBI PEM) to the cathode of a prototype direct methanol fuel cell (DMFC) were analyzed using multipurpose electrochemical mass spectrometry (MPEMS) coupled to the cathode exhaust gas outlet. It was found that the methanol crossing over reacts almost quantitatively to CO{sub 2} at the cathode with the platinum of the cathode acting as a heterogeneous catalyst. The cathode open-circuit potential is inversely proportional to the amount of CO{sub 2} formed. A poisoning effect on the oxygen reduction also was found. Methods for the estimation of the methanol crossover rate at operating fuel cells are suggested.

  4. Removal of sulfur contaminants in methanol for fuel cell applications

    SciTech Connect

    Lee, S.H.D.; Kumar, R.; Sederquist, R.

    1996-12-31

    Fuel cell power plants are being developed for transit bus and passenger car applications that use methanol as the on-board fuel. Commodity methanol by itself contains very little sulfur; however, it may occasionally be contaminated with up to about 1% diesel fuel or gasoline in current liquid-fuel distribution systems, leading to the presence of sulfur in the methanol fuel. This sulfur must be removed because of its deleterious effect on the reforming catalysts. International Fuel Cells has set the allowable sulfur limit in the methanol fuel at less than 1 ppm. The equilibrium adsorption isotherm and breakthrough data were used to assess the feasibility of developing a granular activated carbon adsorber for the removal of sulfur from transportation fuel cell systems.

  5. Integrated reforming/aromatization process

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1990-06-26

    This patent describes an integrated process for increasing the gasoline yield from a catalytic reforming process. It comprises: charging a naphtha boiling range feedstream to a catalytic reforming reaction zone under reforming conversion conditions; withdrawing a reactor effluent stream from the reforming reaction zone; separating the reactor effluent stream into a hydrogen-rich gas stream and an unstabilized reformate stream; further separating the unstabilized reformate in a fractionator into an overhead stream containing C{sub 4} - components and a bottom stream containing C{sub 6} + components; charging the fractionator overhead stream to a catalytic aromatization zone under aromatization conversion conditions; withdrawing an aromatization zone effluent stream from the aromatization zone; cooling the aromatization zone effluent stream; separating the cooled aromatization zone effluent steam into a C{sub 4} - stream and a C{sub 5} + stream; and refluxing the C{sub 5} + aromatic gasoline stream to the fractionation zone.

  6. Modern Processes of Hydrocarbon Migration and Re-Formation of Oil and Gas Fields (Based on the Results of Monitoring and Geochemical Studies)

    NASA Astrophysics Data System (ADS)

    Plotnikova, Irina; Salakhidinova, Gulmira; Nosova, Fidania; Pronin, Nikita; Ostroukhov, Sergey

    2015-04-01

    Special geochemical studies of oils allowed to allocate a movable migration component of oils in the industrial oil deposits. In the field the migration component of oils varies in different parts of the field. The largest percentage of the light migration component (gas condensate of the oil) was detected in the central part of the Kama-Kinel troughs system. Monitoring of the composition of water, oil and gas (condensate light oil component) in the sedimentary cover and ni crystalline basement led to the conclusion of modern migration of hydrocarbons in sedimentary cover. This proves the existence of the modern processes of formation and reformation of oil and gas fields. This presentation is dedicated to the problem of definition of geochemical criteria of selection of hydrocarbons deposit reformation zone in the sample wells of Minibaevskaya area of Romashkinskoye field. While carrying out this work we examined 11 samples of oil from the Upper Devonian Pashiysky horizon. Four oil samples were collected from wells reckoned among the "anomalous" zones that were marked out according to the results of geophysical, oil field and geological research. Geochemical studies of oils were conducted in the laboratory of geochemistry of the Kazan (Volga-region) Federal University. The wells where the signs of hydrocarbons influx from the deep zones of the crust were recorded are considered to be "anomalous". A number of scientists connect this fact to the hypothesis about periodic influx of deep hydrocarbons to the oil deposits of Romashkinskoye field. Other researchers believe that the source rocks of the adjacent valleys sedimentary cover generate gases when entering the main zone of gas formation, which then migrate up the section and passing through the previously formed deposits of oil, change and "lighten" their composition. Regardless of the point of view on the source of the hydrocarbons, the study of the process of deposits refilling with light hydrocarbons is an

  7. Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation-Model simulations

    NASA Astrophysics Data System (ADS)

    Damle, Ashok S.

    One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. In a membrane reactor process, the thermal energy needed for the endothermic hydrocarbon reforming may be provided by combustion of the membrane reject gas. The energy efficiency of the overall hydrogen generation is maximized by controlling the hydrogen product yield such that the heat value of the membrane reject gas is sufficient to provide all of the heat necessary for the integrated process. Optimization of the system temperature, pressure and operating parameters such as net hydrogen recovery is necessary to realize an efficient integrated membrane reformer suitable for compact portable hydrogen generation. This paper presents results of theoretical model simulations of the integrated membrane reformer concept elucidating the effect of operating parameters on the extent of fuel conversion to hydrogen and hydrogen product yield. Model simulations indicate that the net possible hydrogen product yield is strongly influenced by the efficiency of heat recovery from the combustion of membrane reject gas and from the hot exhaust gases. When butane is used as a fuel, a net hydrogen recovery of 68% of that stoichiometrically possible may be achieved with membrane reformer operation at 600 °C (873 K) temperature and 100 psig (0.791 MPa) pressure provided 90% of available combustion and exhaust gas heat is recovered. Operation at a greater pressure or temperature provides a marginal improvement in the performance whereas operation at a significantly lower temperature or pressure will not be able to achieve the optimal hydrogen yield. Slightly higher, up to 76%, net hydrogen recovery is possible when methanol is used as a fuel due to the lower heat

  8. Methanol as a gasoline extender: a critique.

    PubMed

    Wigg, E E

    1974-11-29

    The tests conducted with the three vehicles at different emission control levels suggest that, in the area of fuel economy and emissions, potential benefits with methanol blends are related to carburetion and are only significant in the case of the rich-operating cars built before emission control standards were imposed. Theoretical considerations related to methanol's leaning effect on carburetion support this conclusion. Potential advantages for methanol in these areas are therefore continuously diminishing as the older cars leave the roads. At present, these older cars use only about one-fourth of the totalc motor gasoline consumed and, before methanol could be used on a large scale, this fraction would be much smaller. The use of methanol in gasoline would almost certainly create severe product quality problems. Water contamination could lead to phase separation in the distribution system and possibly in the car tank as well, and this would require additional investment in fuel handling and blending equipment. Excess fuel volatility in hot weather may also have adverse effects on car performance if the methanol blends include typical concentrations of butanes and pentanes. Removal of these light hydrocarbon components would detract from methanol's role as a gasoline extender and if current fuel volatility specifications were maintained, its use could lead to a net loss in the total available energy for use in motor fuels. Car performance problems associated with excessively lean operation would also be expected in the case of a significant proportion of late-model cars which are adjusted to operate on lean fuel-air mixtures. If methanol does become available in large quantities, these factors suggest that it would be more practical to use it for purposes other than those related to the extending of motor gasoline, such as for gas turbines used for electric power generation. In this case, the "pure" methanol would act as a cleanburning fuel, having none of the

  9. Improved Performance of Ru/γ-Al2O3 Catalysts in the Selective Methanation of CO in CO2-Rich Reformate Gases upon Transient Exposure to Water-Containing Reaction Gas.

    PubMed

    Abdel-Mageed, Ali M; Widmann, Daniel; Eckle, Stephan; Behm, R Jürgen

    2015-11-01

    To better understand the role of water in the selective methanation of CO in CO2-rich reformate gases on Ru/Al2O3 catalysts, the influence of exposing these catalysts to H2O-rich reformate gases on their reaction characteristics in transient experiments was investigated by employing kinetic and in situ spectroscopic measurements as well as ex situ catalyst characterization. Transient exposure of the ruthenium catalyst to wet reaction gas (5 or 15% H2O) results in significantly enhanced activity and selectivity for CO methanation in subsequent reactions in dry reformate compared with activation and reaction in dry reformate directly. Operando X-ray absorption spectroscopy results reveal that this is in accordance with a significant decrease in ruthenium particle size, which is stable during subsequent reaction in dry reformate. The implications of these data and additional results from in situ IR spectroscopy on the role and influence of H2O on the reaction, also in technical applications, are discussed.

  10. Opportunities for coal to methanol conversion

    SciTech Connect

    Not Available

    1980-04-01

    The accumulations of mining residues in the anthracite coal regions of Pennsylvania offer a unique opportunity to convert the coal content into methanol that could be utilized in that area as an alternative to gasoline or to extend the supplies through blending. Additional demand may develop through the requirements of public utility gas turbines located in that region. The cost to run this refuse through coal preparation plants may result in a clean coal at about $17.00 per ton. After gasification and synthesis in a 5000 ton per day facility, a cost of methanol of approximately $3.84 per million Btu is obtained using utility financing. If the coal is to be brought in by truck or rail from a distance of approximately 60 miles, the cost of methanol would range between $4.64 and $5.50 per million Btu depending upon the mode of transportation. The distribution costs to move the methanol from the synthesis plant to the pump could add, at a minimum, $2.36 per million Btu to the cost. In total, the delivered cost at the pump for methanol produced from coal mining wastes could range between $6.20 and $7.86 per million Btu.

  11. Methanol in dark clouds

    NASA Technical Reports Server (NTRS)

    Friberg, P.; Hjalmarson, A.; Madden, S. C.; Irvine, W. M.

    1988-01-01

    The first observation of methanol in cold dark clouds TMC 1, L 134 N, and B 335 is reported. In all three clouds, the relative abundance of methanol was found to be in the range of 10 to the -9th (i.e., almost an order of magnitude more abundant than acetaldehyde), with no observable variation between the clouds. Methanol emission showed a complex velocity structure; in TMC 1, clear indications of non-LTE were observed. Dimethyl ether was searched for in L 134 N; the upper limit of the column density of dimethyl ether in L 134 N was estimated to be 4 x 10 to the 12th/sq cm, assuming 5 K rotation temperature and LTE. This limit makes the abundance ratio (CH3)2O/CH3OH not higher than 1/5, indicating that dimethyl ether is not overabundant in this dark cloud.

  12. Methanol in dark clouds

    NASA Technical Reports Server (NTRS)

    Friberg, P.; Hjalmarson, A.; Madden, S. C.; Irvine, W. M.

    1988-01-01

    The first observation of methanol in cold dark clouds TMC 1, L 134 N, and B 335 is reported. In all three clouds, the relative abundance of methanol was found to be in the range of 10 to the -9th (i.e., almost an order of magnitude more abundant than acetaldehyde), with no observable variation between the clouds. Methanol emission showed a complex velocity structure; in TMC 1, clear indications of non-LTE were observed. Dimethyl ether was searched for in L 134 N; the upper limit of the column density of dimethyl ether in L 134 N was estimated to be 4 x 10 to the 12th/sq cm, assuming 5 K rotation temperature and LTE. This limit makes the abundance ratio (CH3)2O/CH3OH not higher than 1/5, indicating that dimethyl ether is not overabundant in this dark cloud.

  13. A techno-economic & environmental analysis of a novel technology utilizing an internal combustion engine as a compact, inexpensive micro-reformer for a distributed gas-to-liquids system

    NASA Astrophysics Data System (ADS)

    Browne, Joshua B.

    Anthropogenic greenhouse gas emissions (GHG) contribute to global warming, and must be mitigated. With GHG mitigation as an overarching goal, this research aims to study the potential for newfound and abundant sources of natural gas to play a role as part of a GHG mitigation strategy. However, recent work suggests that methane leakage in the current natural gas system may inhibit end-use natural gas as a robust mitigation strategy, but that natural gas as a feedstock for other forms of energy, such as electricity generation or liquid fuels, may support natural-gas based mitigation efforts. Flaring of uneconomic natural gas, or outright loss of natural gas to the atmosphere results in greenhouse gas emissions that could be avoided and which today are very large in aggregate. A central part of this study is to look at a new technology for converting natural gas into methanol at a unit scale that is matched to the size of individual natural gas wells. The goal is to convert stranded or otherwise flared natural gas into a commercially valuable product and thereby avoid any unnecessary emission to the atmosphere. A major part of this study is to contribute to the development of a novel approach for converting natural gas into methanol and to assess the environmental impact (for better or for worse) of this new technology. This Ph. D. research contributes to the development of such a system and provides a comprehensive techno-economic and environmental assessment of this technology. Recognizing the distributed nature of methane leakage associated with the natural gas system, this work is also intended to advance previous research at the Lenfest Center for Sustainable Energy that aims to show that small, modular energy systems can be made economic. This thesis contributes to and analyzes the development of a small-scale gas-to-liquids (GTL) system aimed at addressing flared natural gas from gas and oil wells. This thesis includes system engineering around a design that

  14. Formation and spectra of clathrate hydrates of methanol and methanol-ether mixtures

    NASA Astrophysics Data System (ADS)

    Williams, Kenneth Dixon; Devlin, J. Paul

    1997-10-01

    Infrared spectra of mixed clathrate hydrates, with either ethylene oxide (EO) or tetrahydrofuran (THF) and methanol molecules as the guest species, have been obtained from thin films prepared by vapor deposition of D 2O mixtures in the 115-130 K range. Although methanol acts as a suppressant to the direct vapor deposition of a type I clathrate with EO, nearly complete conversion of 115 K amorphous codeposits, to the crystalline mixed clathrate, occurs upon warming near 150 K. By contrast, the type II clathrate of THF shows an increased crystalline quality when methanol is included in the vapor deposits of the mixed clathrate hydrate at 130 K. The observation of the OD stretch-mode band of weakly bonded CD 3OD near 2575 cm -1 is part of the evidence that the methanol molecules are encaged. However, as shown theoretically by Tanaka, the clathrate hydrates of methanol, even when mixed with an ether help gas, are not stable structures but form at low temperatures because of kinetic factors, only to decompose in the 140-160 K range. Attempts to prepare a simple type I or type II clathrate hydrate of methanol have produced mixed results. Limited amounts of clathrate hydrate form during deposition but annealing does not result in complete conversion to crystalline clathrates, particularly for host : guest ratios of 17 : 1.

  15. Process Design and Economics for the Conversion of Lignocellulosic Biomass to High Octane Gasoline: Thermochemical Research Pathway with Indirect Gasification and Methanol Intermediate

    SciTech Connect

    Tan, Eric; Talmadge, M.; Dutta, Abhijit; Hensley, Jesse; Schaidle, Josh; Biddy, Mary J.; Humbird, David; Snowden-Swan, Lesley J.; Ross, Jeff; Sexton, Danielle; Yap, Raymond; Lukas, John

    2015-03-01

    The U.S. Department of Energy (DOE) promotes research for enabling cost-competitive liquid fuels production from lignocellulosic biomass feedstocks. The research is geared to advance the state of technology (SOT) of biomass feedstock supply and logistics, conversion, and overall system sustainability. As part of their involvement in this program, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) investigate the economics of conversion pathways through the development of conceptual biorefinery process models. This report describes in detail one potential conversion process for the production of high octane gasoline blendstock via indirect liquefaction (IDL). The steps involve the conversion of biomass to syngas via indirect gasification followed by gas cleanup and catalytic syngas conversion to a methanol intermediate; methanol is then further catalytically converted to high octane hydrocarbons. The conversion process model leverages technologies previously advanced by research funded by the Bioenergy Technologies Office (BETO) and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via tar and hydrocarbons reforming was one of the key technology advancements as part of that research. The process described in this report evaluates a new technology area with downstream utilization of clean biomass-syngas for the production of high octane hydrocarbon products through a methanol intermediate, i.e., dehydration of methanol to dimethyl ether (DME) which subsequently undergoes homologation to high octane hydrocarbon products.

  16. A passive fuel delivery system for portable direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Cao, Y.

    A passive device is utilized for transferring methanol into water through a wick material. The wick material preferentially has a higher wicking capability with respect to methanol than water, and operates in a siphon fashion with the intake end in contact with methanol and the discharge end in contact with water. Due to the difference of wicking capabilities, a net amount of methanol is pumped into water. The device described above is used as a fuel delivery component for a liquid-feed fuel cell system, such as a direct methanol fuel cell (DMFC), which directly utilizes a liquid fuel without an intermediate reforming process. In the present experimental study, methanol and water are stored separately in two containers and a wick is positioned between the containers as a siphon, with the aqueous methanol solution communicating with the anode of the DMFC. Methanol is siphoned from the methanol container to the water container in situ when the methanol in the water is consumed during the operation of the fuel cell. Through a proper selection of the wick and the containers, the methanol concentration near the anode of the DMFC was maintained within a preferred range.

  17. Educational Reform.

    ERIC Educational Resources Information Center

    Winter, Janet

    The need exists for educational reform. Student achievement scores are down, unemployment and dropout rates are up, social and welfare costs are up, economic productivity has declined, and shortages of qualified teachers are imminent. After Chapter 1 of this paper provides background and history for school reform, Chapter 2 reviews the literature,…

  18. Methanol fuel mixture

    SciTech Connect

    Thrasher, D.A.; Greiner, L.; Cooper, G.

    1990-06-12

    This patent describes a fuel composition. It comprises: a major portion of fuel comprising 85 to 95% by volume of methanol; demineralized water, from 3 to 15% of the fuel; a fluorosurfactant for increasing the lubricity of the fuel, comprising approximately 0.01 to 0.05 weight percent of the fuel.

  19. Methanol from coal

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1978-01-01

    Economic feasibility of methanol or methyl fuel produced from coal using existing technology is discussed. Other factors considered include environmental, safety, toxicity, transportation, so storage, ease of burning, and retrofitting of present boilers. Demonstrations of its uses as a boiler fuel and as a turbine fuel are cited.

  20. Methanol-methanol and methanol-water systems: the intermolecular interactions controlling the transition from small clusters to the liquid phase.

    PubMed

    Albertí, Margarita; Amat, Anna; Aguilar, Antonio; Pirani, Fernando

    2017-06-28

    The present paper focuses on the characterization of the properties of methanol and water molecules in gas and liquid environments. A force field for methanol-methanol and methanol-water interactions, useful to be applied in Molecular Dynamics (MD) simulations, is proposed. The electrostatic interaction contributions, arising from permanent charge and/or from anisotropic charge distributions originating from permanent electric multipoles (Vel), different in gas and in liquid phases, are combined with the non electrostatic ones (Vnel), defined by means of Improved Lennard-Jones (ILJ) functions [F. Pirani et al., Phys. Chem. Chem. Phys., 2008, 10, 5489-5503]. Interestingly, the relevant parameters of the ILJ functions are not fitted to reproduce the selected properties of the systems but calculated from the molecular polarizability, which is considered the key property to define size (or Pauli) repulsion and dispersion and induction attractions. The constructed force field predicts binding energies and geometries of the methanol-methanol and methanol-water dimers, in good agreement with available data. On the other hand, several bulk and structural properties of liquid methanol, such as densities, vaporization enthalpies, diffusion coefficients, coefficients of cubic thermal expansion, heat capacities at constant pressure and some relevant radial distribution functions, calculated considering 2744 molecules and different conditions of pressure and temperature, have also been found to be in good agreement with experimental data. The study has been completed by calculating the density values at 298 K and 1 bar of some methanol-water mixtures, which have also been found to be in good agreement with experimental data.

  1. Soil moisture by extraction and gas chromatography

    NASA Technical Reports Server (NTRS)

    Merek, E. L.; Carle, G. C.

    1973-01-01

    To determine moisture content of soils rapidly and conveniently extract moisture with methanol and determine water content of methanol extract by gas chromatography. Moisture content of sample is calculated from weight of water and methanol in aliquot and weight of methanol added to sample.

  2. Gas

    MedlinePlus

    ... intestine. Certain foods may cause gas. Foods that produce gas in one person may not cause gas in another. You can reduce the amount of gas you have by Drinking lots of water and non-fizzy drinks Eating more slowly so you swallow less air ...

  3. Swarm intelligence for multi-objective optimization of synthesis gas production

    NASA Astrophysics Data System (ADS)

    Ganesan, T.; Vasant, P.; Elamvazuthi, I.; Ku Shaari, Ku Zilati

    2012-11-01

    In the chemical industry, the production of methanol, ammonia, hydrogen and higher hydrocarbons require synthesis gas (or syn gas). The main three syn gas production methods are carbon dioxide reforming (CRM), steam reforming (SRM) and partial-oxidation of methane (POM). In this work, multi-objective (MO) optimization of the combined CRM and POM was carried out. The empirical model and the MO problem formulation for this combined process were obtained from previous works. The central objectives considered in this problem are methane conversion, carbon monoxide selectivity and the hydrogen to carbon monoxide ratio. The MO nature of the problem was tackled using the Normal Boundary Intersection (NBI) method. Two techniques (Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO)) were then applied in conjunction with the NBI method. The performance of the two algorithms and the quality of the solutions were gauged by using two performance metrics. Comparative studies and results analysis were then carried out on the optimization results.

  4. Thermal decomposition of methanol in the sonolysis of methanol-water mixtures. Spin-trapping evidence for isotope exchange reactions

    SciTech Connect

    Krishna, C.M.; Lion, Y.; Kondo, T.; Riesz, P.

    1987-11-05

    The spin trap 3,5-dibromo-4-nitrosobenzenesulfonate was used to monitor the yield of free radicals produced during sonolysis of water-methanol mixtures. Methyl radicals and CH/sub 2/OH radicals were observed as well as the isotopically mixed radicals CH/sub 2/D and CHD/sub 2/ when CH/sub 3/OD:D/sub 2/O mixtures were studied. The results clearly show that thermal decomposition of methanol to methyl radicals occurs in the gas phase. The methyl radical yield rises sharply at very low concentrations of methanol, reaches a maximum at 5 mol dm/sup -3/ in water and decreases to a smaller value in methanol. The yield of methyl radicals as a function of methanol concentration is discussed in terms of the different factors influencing the sonochemistry.

  5. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  6. Waste-to-methanol: Process and economics assessment.

    PubMed

    Iaquaniello, Gaetano; Centi, Gabriele; Salladini, Annarita; Palo, Emma; Perathoner, Siglinda; Spadaccini, Luca

    2017-07-01

    The waste-to-methanol (WtM) process and related economics are assessed to evidence that WtM is a valuable solution both from economic, strategic and environmental perspectives. Bio-methanol from Refuse-derived-fuels (RdF) has an estimated cost of production of about 110€/t for a new WtM 300t/d plant. With respect to waste-to-energy (WtE) approach, this solution allows various advantages. In considering the average market cost of methanol and the premium as biofuel, the WtM approach results in a ROI (Return of Investment) of about 29%, e.g. a payback time of about 4years. In a hybrid scheme of integration with an existing methanol plant from natural gas, the cost of production becomes a profit even without considering the cap for bio-methanol production. The WtM process allows to produce methanol with about 40% and 30-35% reduction in greenhouse gas emissions with respect to methanol production from fossil fuels and bio-resources, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Atmospheric deposition of methanol over the Atlantic Ocean.

    PubMed

    Yang, Mingxi; Nightingale, Philip D; Beale, Rachael; Liss, Peter S; Blomquist, Byron; Fairall, Christopher

    2013-12-10

    In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air-sea methanol transfer along a ∼10,000-km north-south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air-sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at ∼5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface-an important term for improving air-sea gas exchange models.

  8. Atmospheric deposition of methanol over the Atlantic Ocean

    PubMed Central

    Yang, Mingxi; Nightingale, Philip D.; Beale, Rachael; Liss, Peter S.; Blomquist, Byron; Fairall, Christopher

    2013-01-01

    In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air–sea methanol transfer along a ∼10,000-km north–south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air–sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at ∼5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface—an important term for improving air–sea gas exchange models. PMID:24277830

  9. Methanol from Wood Waste: A Technical and Economic Study.

    DTIC Science & Technology

    1977-06-01

    percent of the gas is converted to methanol , the balance passing as inerts to the boiler. The reaction is as follows: catalyst 2H + CO ’ CH3OH 2 *-3...the boiler. Catalyst life is expected to be 6 years for methanol synthesis and 2 to 3 years for the shift reactor . PLANT SIZE In a chemical processing...percent of methyl alcohol ( methanol ) in gasoline for automotive use. / At a current consumption rate of 110 billion gallons per year (gpy), 11 billion

  10. Catalytic reforming

    SciTech Connect

    Aldag, A.W. Jr.

    1986-01-28

    This patent describes a process for the catalytic reforming of a feedstock which contains at least one reformable organic compound. The process consists of contacting the feedstock under suitable reforming conditions with a catalyst composition selected from the group consisting of a catalyst. The catalyst essentially consists of zinc oxide and a spinel structure alumina. Another catalyst consists essentially of a physical mixture of zinc titanate and a spinel structure alumina in the presence of sufficient added hydrogen to substantially prevent the formation of coke. Insufficient zinc is present in the catalyst composition for the formation of a bulk zinc aluminate.

  11. Reforming process

    SciTech Connect

    Mitsche, R.T.; Pope, G.N.

    1981-01-06

    A process for reforming a naphtha feedstock is disclosed. The reforming process is effected at reforming conditions in contact with a catalyst comprising a platinum group metal component and a group iv-a metal component composited with an alumina support wherein said support is prepared by admixing an alpha alumina monohydrate with an aqueous ammoniacal solution having a ph of at least about 7.5 to form a stable suspension. A salt of a strong acid, e.g., aluminum nitrate, is commingled with the suspension to form an extrudable paste or dough. On extrusion, the extrudate is dried and calcined to form said alumina support.

  12. A novel process for manufacture of methanol

    SciTech Connect

    Tierney, J.W.; Wender, I.

    1990-01-01

    A bench-scale reactor is being used to conduct studies of the conversion of synthesis gas to methanol by a novel process. During the last quarter, the effect of potassium methoxide and Cu-chromite loading on the MeOH formation rate was investigated. The rate obtained with Cu-chromite was compared to that using Cu-ZnO as catalyst. Work also continued on the modification of the experimental equipment to permit on-line monitoring of liquid and gas compositions.

  13. Polymer electrolyte direct methanol fuel cells: an option for transportation applications

    SciTech Connect

    Gottesfeld, S.; Cleghorn, S.J.C.; Ren, X.; Springer, T.E.; Wilson, M.S.; Zawodzinski, T.A.

    1996-10-01

    PEFCs most frequently considered for electric vehicles have been based on either hydrogen carried aboard, or steam-reforming of methanol on board to produce H2 + CO2. Direct methanol fuel cells (DMFCs), which use a liquid methanol fuel feed, completely avoid the complexity and weight penalties of the reformer, but have not been considered a serious option until recently, because of much lower power densities. Recent advances in DMFCs have been dramatic, however, with the DMFC reaching power densities which are significant fractions of those provided by reformate/air fuel cells. Use of established Pt-Ru anode electrocatalysts and Pt cathode electrocatalysts in polymer electrolyte DMFCs has resulted in enhanced DMFC performance, particularly when operated above 100 C and when catalyst layer composition and structure are optimized. The higher DMFC power densities recently achieved provide a new basis for considering DMFCs for transportation applications.

  14. Eucomic acid methanol monosolvate

    PubMed Central

    Li, Guo-Qiang; Li, Yao-Lan; Wang, Guo-Cai; Liang, Zhi-Hong; Jiang, Ren-Wang

    2011-01-01

    In the crystal structure of the title compound [systematic name: 2-hy­droxy-2-(4-hy­droxy­benz­yl)butane­dioic acid methanol monosolvate], C11H12O6·CH3OH, the dihedral angles between the planes of the carboxyl groups and the benzene ring are 51.23 (9) and 87.97 (9)°. Inter­molecular O—H⋯O hydrogen-bonding inter­actions involving the hy­droxy and carb­oxy­lic acid groups and the methanol solvent mol­ecule give a three-dimensional structure. PMID:22091200

  15. A novel process for methanol synthesis. [Concurrent sythesis of methly formate and methanol

    SciTech Connect

    Tierney, J.W.; Wender, I.

    1992-01-01

    A bench-scale reactor is being used to conduct studies of the conversion of synthesis gas to methanol (MeOH) by a novel process. In previous reports, we provided evidence for a two-step reaction in series, the carbonylation reaction taking place mainly in a non-equilibrium region in the vicinity of the copper chromite surface, and the hydrogenolysis reaction taking place on the surface of the copper chromite. Interaction between the two catalysts enhances the rate of methanol formation. In this quarter, we investigated the effect of pore diffusion on reaction rate and obtained an expression for the rate of reaction for the methanol/methyl formate concurrent synthesis.

  16. Approach to the Treatment of Methanol Intoxication.

    PubMed

    Kraut, Jeffrey A

    2016-07-01

    Methanol intoxication is an uncommon but serious poisoning. Its adverse effects are due primarily to the impact of its major metabolite formic acid and lactic acid resulting from cellular hypoxia. Symptoms including abdominal pain and loss of vision can appear a few hours to a few days after exposure, reflecting the time necessary for accumulation of the toxic byproducts. In addition to a history of exposure, increases in serum osmolal and anion gaps can be clues to its presence. However, increments in both parameters can be absent depending on the nature of the toxic alcohol, time of exposure, and coingestion of ethanol. Definitive diagnosis requires measurement with gas or liquid chromatography, which are laborious and expensive procedures. Tests under study to detect methanol or its metabolite formate might facilitate the diagnosis of this poisoning. Treatment can include administration of ethanol or fomepizole, both inhibitors of the enzyme alcohol dehydrogenase to prevent formation of its metabolites, and hemodialysis to remove methanol and formate. In this Acid-Base and Electrolyte Teaching Case, a patient with methanol intoxication due to ingestion of model airplane fuel is described, and the value and limitations of current and new diagnostic and treatment measures are discussed. Published by Elsevier Inc.

  17. A novel process for methanol synthesis

    SciTech Connect

    Tierney, J.W.; Wender, I.

    1991-01-01

    A bench-scale reactor is being used to conduct studies of the conversion of synthesis gas to methanol by a novel process. In previous reports, we provided evidence for a two step reaction in series, the carbonylation reaction mainly taking place in a non-equilibrium region in the vicinity of the Cu-chromite surface, and the hydrogenolysis reaction taking place on the surface of the Cu-chromite. The synergism between the two catalysts enhances the rate of methanol formation. In this quarter, we studied the effect of pressure and temperature on the rate of MeOH synthesis. We also compared the reaction rate of a syngas feed simulated for an H{sub 2}/CO ratio from a Texaco gasifier with a methanol balanced syngas feed (H{sub 2}/CO=2). Atomic absorption analysis of solid and liquid samples for the KOMe/Cu-chromite runs was undertaken to identify the distribution of potassium at the end of the methanol synthesis runs. Modelling studies were initiated with emphasis on both kinetic and process behavior. 12 refs., 7 figs., 1 tab.

  18. The toxicity of methanol

    SciTech Connect

    Tephly, T.R. )

    1991-01-01

    Methanol toxicity in humans and monkeys is characterized by a latent period of many hours followed by a metabolic acidosis and ocular toxicity. This is not observed in most lower animals. The metabolic acidosis and blindness is apparently due to formic acid accumulation in humans and monkeys, a feature not seen in lower animals. The accumulation of formate is due to a deficiency in formate metabolism which is, in turn, related, in part, to low hepatic tetrahydrofolate (H{sub 4}folate). An excellent correlation between hepatic H{sub 4} folate and formate oxidation rates has been shown within and across species. Thus, humans and monkeys possess low hepatic H{sub 4}folate levels, low rates of formate oxidation and accumulation of formate after methanol. Formate, itself, produces blindness in monkeys in the absence of metabolic acidosis. In addition to low hepatic H{sub 4}folate concentrations, monkeys and humans also have low hepatic 10-formyl H{sub 4}folate dehydrogenase levels, the enzyme which is the ultimate catalyst for conversion of formate to carbon dioxide. This review presents the basis for the role of folic acid-dependent reactions in the regulation of methanol toxicity.

  19. Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies. Phase 1, Final report

    SciTech Connect

    Not Available

    1994-03-01

    This report documents a portion of the work performed Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective for development is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near- and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.

  20. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water

    NASA Astrophysics Data System (ADS)

    Cortright, R. D.; Davda, R. R.; Dumesic, J. A.

    2002-08-01

    Concerns about the depletion of fossil fuel reserves and the pollution caused by continuously increasing energy demands make hydrogen an attractive alternative energy source. Hydrogen is currently derived from nonrenewable natural gas and petroleum, but could in principle be generated from renewable resources such as biomass or water. However, efficient hydrogen production from water remains difficult and technologies for generating hydrogen from biomass, such as enzymatic decomposition of sugars, steam-reforming of bio-oils and gasification, suffer from low hydrogen production rates and/or complex processing requirements. Here we demonstrate that hydrogen can be produced from sugars and alcohols at temperatures near 500K in a single-reactor aqueous-phase reforming process using a platinum-based catalyst. We are able to convert glucose-which makes up the major energy reserves in plants and animals-to hydrogen and gaseous alkanes, with hydrogen constituting 50% of the products. We find that the selectivity for hydrogen production increases when we use molecules that are more reduced than sugars, with ethylene glycol and methanol being almost completely converted into hydrogen and carbon dioxide. These findings suggest that catalytic aqueous-phase reforming might prove useful for the generation of hydrogen-rich fuel gas from carbohydrates extracted from renewable biomass and biomass waste streams.

  1. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.

    PubMed

    Cortright, R D; Davda, R R; Dumesic, J A

    2002-08-29

    Concerns about the depletion of fossil fuel reserves and the pollution caused by continuously increasing energy demands make hydrogen an attractive alternative energy source. Hydrogen is currently derived from nonrenewable natural gas and petroleum, but could in principle be generated from renewable resources such as biomass or water. However, efficient hydrogen production from water remains difficult and technologies for generating hydrogen from biomass, such as enzymatic decomposition of sugars, steam-reforming of bio-oils and gasification, suffer from low hydrogen production rates and/or complex processing requirements. Here we demonstrate that hydrogen can be produced from sugars and alcohols at temperatures near 500 K in a single-reactor aqueous-phase reforming process using a platinum-based catalyst. We are able to convert glucose -- which makes up the major energy reserves in plants and animals -- to hydrogen and gaseous alkanes, with hydrogen constituting 50% of the products. We find that the selectivity for hydrogen production increases when we use molecules that are more reduced than sugars, with ethylene glycol and methanol being almost completely converted into hydrogen and carbon dioxide. These findings suggest that catalytic aqueous-phase reforming might prove useful for the generation of hydrogen-rich fuel gas from carbohydrates extracted from renewable biomass and biomass waste streams.

  2. California methanol assessment. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Otoole, R.; Dutzi, E.; Gershman, R.; Heft, R.; Kalema, W.; Maynard, D.

    1983-01-01

    Energy feedstock sources for methanol; methanol and other synfuels; transport, storage, and distribution; air quality impact of methanol use in vehicles, chemical methanol production and use; methanol utilization in vehicles; methanol utilization in stationary applications; and environmental and regulatory constraints are discussed.

  3. Single-Step Syngas-to-Distillates (S2D) Synthesis via Methanol and Dimethyl Ether Intermediates: Final Report

    SciTech Connect

    Dagle, Robert A.; Lebarbier, Vanessa MC; Lizarazo Adarme, Jair A.; King, David L.; Zhu, Yunhua; Gray, Michel J.; Jones, Susanne B.; Biddy, Mary J.; Hallen, Richard T.; Wang, Yong; White, James F.; Holladay, Johnathan E.; Palo, Daniel R.

    2013-11-26

    The objective of the work was to enhance price-competitive, synthesis gas (syngas)-based production of transportation fuels that are directly compatible with the existing vehicle fleet (i.e., vehicles fueled by gasoline, diesel, jet fuel, etc.). To accomplish this, modifications to the traditional methanol-to-gasoline (MTG) process were investigated. In this study, we investigated direct conversion of syngas to distillates using methanol and dimethyl ether intermediates. For this application, a Pd/ZnO/Al2O3 (PdZnAl) catalyst previously developed for methanol steam reforming was evaluated. The PdZnAl catalyst was shown to be far superior to a conventional copper-based methanol catalyst when operated at relatively high temperatures (i.e., >300°C), which is necessary for MTG-type applications. Catalytic performance was evaluated through parametric studies. Process conditions such as temperature, pressure, gas-hour-space velocity, and syngas feed ratio (i.e., hydrogen:carbon monoxide) were investigated. PdZnAl catalyst formulation also was optimized to maximize conversion and selectivity to methanol and dimethyl ether while suppressing methane formation. Thus, a PdZn/Al2O3 catalyst optimized for methanol and dimethyl ether formation was developed through combined catalytic material and process parameter exploration. However, even after compositional optimization, a significant amount of undesirable carbon dioxide was produced (formed via the water-gas-shift reaction), and some degree of methane formation could not be completely avoided. Pd/ZnO/Al2O3 used in combination with ZSM-5 was investigated for direct syngas-to-distillates conversion. High conversion was achieved as thermodynamic constraints are alleviated when methanol and dimethyl are intermediates for hydrocarbon formation. When methanol and/or dimethyl ether are products formed separately, equilibrium restrictions occur. Thermodynamic relaxation also enables the use of lower operating pressures than what

  4. ISOBUTANOL-METHANOL MIXTURES FROM SYNTHESIS GAS

    SciTech Connect

    Enrique Iglesia

    1998-09-01

    Isobutanol is potential as a fuel additive or precursor to methyl tert-butyl ether (MTBE). Alkali-promoted Cu/ZnO/Al{sub 2}O{sub 3} and Cu/MgO/CeO{sub 2} materials have been found to catalyze the formation of isobutanol from CO and H{sub 2} at temperatures (573-623 K) that allow their use in slurry reactors. Our studies focus on the mechanism and structural requirements for selective isobutanol synthesis on these types of catalysts. Alkali promoted Cu/MgO/CeO{sub 2}, Cu/MgO/ZnO, and CuZnAlO{sub x} materials and their individual components Cu/MgO, MgO/CeO{sub 2}, MgO and CeO{sub 2} have been prepared for the use in kinetic studies of alcohol coupling reactions, in identification of reaction intermediates, and in isobutanol synthesis at high pressures. These samples were prepared by coprecipitation of mixed nitrate solutions with an aqueous solution of KOH (2M) and K{sub 2}CO{sub 3} (1M) at 338 K at a constant pH of 9, except for Cs-Cu/ZnO/Al{sub 2}O{sub 3} at a pH of 7, in a well-stirred thermostated container. The precipitate was filtered, washed thoroughly with dioinized water at 303 K in order to remove residual K ions, and dried at 353 K overnight. Dried samples were calcined at 723 K, except for Cs-Cu/ZnO/Al{sub 2}O{sub 3} at 623 K, for 4 h in order to form the corresponding mixed oxides. Alkali addition (K or Cs) was performed by incipient wetness using K{sub 2}CO{sub 3} (0.25 M) and CH{sub 3}COOCs (0.25 M) aqueous solutions. The crystallinity and phase structures of resulting materials were analyzed by powered X-ray diffraction.

  5. Laboratory Submillimeter Spectroscopy as a Probe of Methanol Photodissociation

    NASA Astrophysics Data System (ADS)

    Laas, Jacob C.; Weaver, Susanna L. Widicus

    2011-06-01

    Radical-radical addition reactions on the ice surfaces of interstellar grains lead to the formation of many complex organic molecules in the interstellar medium. Methanol photodissociation is the dominant source of the three organic radicals CH_3O, CH_2OH, and CH_3. Recent chemical models show that changes to the methanol photodissociation branching ratios directly impact the relative abundances of many complex organics, most notably methyl formate and its structural isomers glycolaldehyde and acetic acid. Neither the condensed-phase nor the gas-phase methanol photodissociation branching ratios required for these models have been quantified in the laboratory. Interpretation of the results from condensed-phase measurements rely upon the use of complicated chemical networks that offer only a limited view of the chemistry and often lead to difficulty in obtaining more than semi-quantitative results. However, gas-phase measurements enable independent, quantitative monitoring of each dissociation channel. We are therefore studying the methanol photodissociation mechanism using submillimeter spectroscopy to directly detect the gas-phase photodissociation products. Here we will present our progress toward the quantification of the gas-phase methanol photodissociation branching ratios, and will discuss these results in the context of interstellar organic chemistry.

  6. Formaldehyde, methanol and hydrocarbon emissions from methanol-fueled cars

    SciTech Connect

    Williams, R.L.; Lipari, F.; Potter, R.A. )

    1990-05-01

    Exhaust and evaporative emissions tests were conducted on several methanol- and gasoline-fueled vehicles. Separate samples for chromatographic analysis of formaldehyde, methanol, and individual hydrocarbons were collected in each of the three phases of the driving cycle and in each of the two portions of the evaporative emissions test. One vehicle, equipped with an experimental variable-fuel engine, was tested using methanol/gasoline fuel mixtures of 100, 85, 50, 15, and 0 percent methanol. Combustion-generated hydrocarbons were lowest using methanol fuel, and increased several-fold as the gasoline fraction was increased. Gasoline components in the exhaust increased from zero as the gasoline fraction of the fuel was increased. On the other hand, formaldehyde emissions were several times higher using methanol fuel than they were using gasoline. A dedicated methanol car and the variable-fuel car gave similar emissions patterns when they both were tested using methanol fuel. The organic-carbon composition of the exhaust was 85-90 percent methanol, 5-7 percent formaldehyde, and 3-9 percent hydrocarbons. Several cars that were tested using gasoline emitted similar distributions of hydrocarbons, even through the vehicles represented a broad range of current and developmental engine families and emissions control systems.

  7. Depolymerization of polyethylene terephthalate in supercritical methanol

    NASA Astrophysics Data System (ADS)

    Goto, Motonobu; Koyamoto, Hiroshi; Kodama, Akio; Hirose, Tsutomu; Nagaoka, Shoji

    2002-11-01

    The degradation of polyethylene terephthalate (PET) in supercritical methanol was investigated with the aim of developing a process for chemical recycling of waste plastics. A batch reactor was used at temperatures of 573-623 K under an estimated pressure of 20 MPa for a reaction time of 2-120 min. PET was decomposed to its monomers, dimethyl terephthalate and ethylene glycol, by methanolysis in supercritical methanol. The reaction products were analysed using size-exclusion chromatography, gas chromatography-mass spectrometry, and reversed-phase liquid chromatography. The molecular weight distribution of the products was obtained as a function of reaction time. The yields of monomer components of the decomposition products including by-products were measured. Continuous kinetics analysis was performed on the experimental data.

  8. Methanol-Air Batteries.

    DTIC Science & Technology

    1977-01-01

    Cells charged with 120 ml of anolyte , consisting of 6 M methanol in 11 M KOH, have operated for 2,230 hours under cyclic load drains of 50 mA for 13...minutes and 2 A for 1 second. One cell operated for more than 8,000 hours with periodic refilling of fresh anolyte , demonstrating the long serviceable...life of the electrode components. Fuel utilization efficiencies as high as 84% have been obtained from cells charged with an anolyte solution of

  9. Catalytic gasification of bagasse for the production of methanol

    SciTech Connect

    Baker, E.G.; Brown, M.D.; Robertus, R.J.

    1985-10-01

    The purpose of the study was to evaluate the technical and economic feasibility of catalytic gasification of bagasse to produce methanol. In previous studies, a catalytic steam gasification process was developed which converted wood to methanol synthesis gas in one step using nickel based catalysts in a fluid-bed gasifier. Tests in a nominal 1 ton/day process development unit (PDU) gasifier with these same catalysts showed bagasse to be a good feedstock for fluid-bed gasifiers, but the catalysts deactivated quite rapidly in the presence of bagasse. Laboratory catalyst screening tests showed K/sub 2/CO/sub 3/ doped on the bagasse to be a promising catalyst for converting bagasse to methanol synthesis gas. PDU tests with 10 wt % K/sub 2/CO/sub 3/ doped on bagasse showed the technical feasibility of this type of catalyst on a larger scale. A high quality synthesis gas was produced and carbon conversion to gas was high. The gasifier was successfully operated without forming agglomerates of catalyst, ash, and char in the gasifier. There was no loss of activity throughout the runs because catalysts is continually added with the bagasse. Laboratory tests showed about 80% of the potassium carbonate could be recovered and recycled with a simple water wash. An economic evaluation of the process for converting bagasse to methanol showed the required selling price of methanol to be significantly higher than the current market price of methanol. Several factors make this current evaluaton using bagasse as a feedstock less favorable: (1) capital costs are higher due to inflation and some extra costs required to use bagasse, (2) smaller plant sizes were considered so economies of scale are lost, and (3) the market price of methanol in the US has fallen 44% in the last six months. 24 refs., 14 figs., 16 tabs.

  10. Sulfur removal from diesel fuel-contaminated methanol.

    SciTech Connect

    Lee, S. H. D.; Kumar, R.; Krumpelt, M.; Chemical Engineering

    2002-03-01

    Methanol is considered to be a potential on-board fuel for fuel cell-powered vehicles. In current distribution systems for liquid fuels used in the transportation sector, commodity methanol can occasionally become contaminated with the sulfur in diesel fuel or gasoline. This sulfur would poison the catalytic materials used in fuel reformers for fuel cells. We tested the removal of this sulfur by means of ten activated carbons (AC) that are commercially available. Tests were conducted with methanol doped with 1 vol.% grade D-2 diesel fuel containing 0.29% sulfur, which was present essentially as 33-35 wt.% benzothiophenes (BTs) and 65-67 wt.% dibenzothiophenes (DBT). In general, coconut shell-based carbons activated by high-temperature steam were more effective at sulfur removal than coal-based carbons. Equilibrium sorption data showed linear increase in sulfur capture with the increase of sulfur concentration in methanol. Both types of carbons had similar breakthrough characteristics, with the dynamic sorption capacity of each being about one-third of its equilibrium sorption capacity. Results of this study suggest that a fixed-bed sorber of granular AC can be used, such as in refueling stations, for the removal of sulfur in diesel fuel-contaminated methanol.

  11. Applications of internal reforming molten carbonate fuel cells

    SciTech Connect

    Maru, H.C.; Baker, B.S.

    1986-03-01

    A modified version of the molten carbonate fuel cell (MCFC) is being developed which is capable of direct utilization of hydrocarbon fuels such as natural gas, methanol, alcohol, propane, coal-derived synthetic gas and others. This version is termed internal reforming MCFC or Direct Fuel Cell, DFC. The DFC provides an ideal match of heat and mass transfer requirements within the cell, and minimizes external processing equipment. Efficiencies as high as 55 to 60% can be expected, making DFC a unique and practical device. The overall system is expected to be simple and cost effective. Many attractive applications exist for the simple and highly efficient DFC generators. Natural gas fueled dispersed generators in the size range of 500kW to 10 Mw may provide early market entry. DFC applications to smaller-size on-site power plants, large coal-powered central stations and industrial cogeneration applications can follow once the technology is demonstrated and manufacturing base is established. 8 references, 3 figures, 2 table.

  12. Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton.

    PubMed

    Mincer, Tracy J; Aicher, Athena C

    2016-01-01

    Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS) method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus), and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata) produced methanol, ranging from 0.8-13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09-0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world's oceans.

  13. Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton

    PubMed Central

    Mincer, Tracy J.; Aicher, Athena C.

    2016-01-01

    Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS) method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus), and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata) produced methanol, ranging from 0.8–13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09–0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world’s oceans. PMID:26963515

  14. Room temperature stable CO x -free H2 production from methanol with magnesium oxide nanophotocatalysts.

    PubMed

    Liu, Zhengqing; Yin, Zongyou; Cox, Casandra; Bosman, Michel; Qian, Xiaofeng; Li, Na; Zhao, Hongyang; Du, Yaping; Li, Ju; Nocera, Daniel G

    2016-09-01

    Methanol, which contains 12.6 weight percent hydrogen, is a good hydrogen storage medium because it is a liquid at room temperature. However, by releasing the hydrogen, undesirable CO and/or CO2 byproducts are formed during catalytic fuel reforming. We show that alkaline earth metal oxides, in our case MgO nanocrystals, exhibit stable photocatalytic activity for CO/CO2-free H2 production from liquid methanol at room temperature. The performance of MgO nanocrystals toward methanol dehydrogenation increases with time and approaches ~320 μmol g(-1) hour(-1) after a 2-day photocatalytic reaction. The CO x -free H2 production is attributed to methanol photodecomposition to formaldehyde, photocatalyzed by surface electronic states of unique monodispersed, porous MgO nanocrystals, which were synthesized with a novel facile colloidal chemical strategy. An oxygen plasma treatment allows for the removal of organic surfactants, producing MgO nanocrystals that are well dispersible in methanol.

  15. Transport of methanol by pipeline

    SciTech Connect

    Not Available

    1985-04-01

    This report examines and evaluates the problems and considerations that could affect the feasibility of transporting methanol by pipeline. The following are the major conclusions: Though technical problems, such as methanol water contamination and materials incompatibility, remain to be solved, none appears insolvable. Methanol appears to be less toxic, and therefore to represent less of a health hazard, than gasoline, the fuel for which methanol is expected to substitute. The primary safety hazards of methanol, fire and explosion, are no worse than those of gasoline. The environmental hazards that can be associated with methanol are not as significant as those of petroleum. Provided quantities of throughput sufficient to justify pipeline transport are available, there appear to be no economic impediments to the transport of methanol by pipeline. Based on these, it appears that it can be concluded that the pipelining of methanol, whether via an existing petroleum pipeline or a new methanol-dedicated pipeline, is indeed feasible. 66 refs., 3 figs., 27 tabs.

  16. Methanol-reinforced kraft pulping

    SciTech Connect

    Norman, E.; Olm, L.; Teder, A. )

    1993-03-01

    The addition of methanol to a high-sulfidity kraft cook on Scandinavian softwood chips was studied under different process conditions. Delignification and the degradation of carbohydrates were accelerated, but the effect on delignification was greater. Thus, methanol addition improved selectivity. The positive effect of methanol could also be observed for modified kraft cooks having a leveled out alkali concentration and lower concentration of sodium ions and dissolved lignin at the end of the cook. Methanol addition had no discernible effect on pulp strength or on pulp bleachability.

  17. A Critical Assessment of the Direct Catalytic Oxidation of Methane to Methanol.

    PubMed

    Ravi, Manoj; Ranocchiari, Marco; van Bokhoven, Jeroen A

    2017-06-23

    Despite the emerging number of disparate approaches for the direct selective partial oxidation of methane, none of them has translated into an industrial process. The oxidation of methane to methanol is a difficult yet intriguing and rewarding task as it has the potential to eliminate the prevalent natural gas flaring by providing novel routes to its valorisation. This review considers the synthesis of methanol and methanol derivatives from methane by homogeneous and heterogeneous pathways. In establishing the severe limitations related to the direct catalytic synthesis of methanol from methane, we highlight the vastly superior performance of systems, which produce methanol derivatives or incorporate specific measures such as the use of multi-component catalysts to stabilise methanol. We thereby identify methanol protection as being indispensable in homogeneous and heterogeneous catalysis with regard to future research on this topic. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Applications of solar reforming technology

    SciTech Connect

    Spiewak, I.; Tyner, C.E.; Langnickel, U.

    1993-11-01

    Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

  19. Methanol observation of IRAS 19312+1950: A possible new type of class I methanol maser

    NASA Astrophysics Data System (ADS)

    Nakashima, Jun-ichi; Sobolev, Andrej M.; Salii, Svetlana V.; Zhang, Yong; Yung, Bosco H. K.; Deguchi, Shuji

    2015-10-01

    We report the result of a systematic methanol observation toward IRAS 19312+1950. The properties of the SiO, H2O, and OH masers of this object are consistent with those of mass-losing evolved stars, but some other properties are difficult to explain in the standard scheme of stellar evolution in its late stage. Interestingly, a tentative detection of radio methanol lines was suggested toward this object by a previous observation. To date, there are no confirmed detections of methanol emission towards evolved stars, so investigation of this possible detection is important to better understand the circumstellar physical/chemical environment of IRAS 19312+1950. In this study, we systematically observed multiple methanol lines of IRAS 19312+1950 in the λ = 3 mm, 7 mm, and 13 mm bands, and detected six lines including four thermal lines and two class I maser lines. We derived basic physical parameters, including kinetic temperature and relative abundances, by fitting a radiative transfer model. According to the derived excitation temperature and line profiles, a spherically expanding outflow lying at the center of the nebulosity is excluded from the possibilities for methanol emission regions. The detection of class I methanol maser emission suggests that a shock region is involved in the system of IRAS 19312+1950. If the central star of IRAS 19312+1950 is an evolved star as suggested in the past, the class I maser detected in the present observation is the first case detected in an interaction region between an evolved star outflow and ambient molecular gas.

  20. Hydrogen Production by Steam Reforming of Liquefied Natural Gas (LNG) Over Nickel-Phosphorus-Alumina Xerogel Catalyst Prepared by a Carbon-Templating Epoxide-Driven Sol-Gel Method.

    PubMed

    Bang, Yongju; Park, Seungwon; Han, Seung Ju; Yoo, Jaekyeong; Choi, Jung Ho; Kang, Tae Hun; Lee, Jinwon; Song, In Kyu

    2016-05-01

    A nickel-phosphorus-alumina xerogel catalyst was prepared by a carbon-templating epoxide-driven sol-gel method (denoted as CNPA catalyst), and it was applied to the hydrogen production by steam reforming of liquefied natural gas (LNG). For comparison, a nickel-phosphorus-alumina xerogel catalyst was also prepared by a similar method in the absence of carbon template (denoted as NPA catalyst). The effect of carbon template addition on the physicochemical properties and catalytic activities of the catalysts in the steam reforming of LNG was investigated. Both CNPA and NPA catalysts showed excellent textural properties with well-developed mesoporous structure. However, CNPA catalyst retained a more reducible nickel aluminate phase than NPA catalyst. XRD analysis of the reduced CNPA and NPA catalysts revealed that nickel sintering on the CNPA catalyst was suppressed compared to that on the NPA catalyst. From H2-TPD and CH4-TPD measurements of the reduced CNPA and NPA catalysts, it was also revealed that CNPA catalyst with large amount of hydrogen uptake and strong hydrogen-binding sites showed larger amount of methane adsorption than NPA catalyst. In the hydrogen production by steam reforming of LNG, CNPA catalyst with large methane adsorption capacity showed a better catalytic activity than NPA catalyst.

  1. Development incentives for fossil fuel subsidy reform

    NASA Astrophysics Data System (ADS)

    Jakob, Michael; Chen, Claudine; Fuss, Sabine; Marxen, Annika; Edenhofer, Ottmar

    2015-08-01

    Reforming fossil fuel subsidies could free up enough funds to finance universal access to water, sanitation, and electricity in many countries, as well as helping to cut global greenhouse-gas emissions.

  2. Effects of methanol on a methanol-tolerant bacterial lipase.

    PubMed

    Santambrogio, Carlo; Sasso, Francesco; Natalello, Antonino; Brocca, Stefania; Grandori, Rita; Doglia, Silvia Maria; Lotti, Marina

    2013-10-01

    Methanol is often employed in biocatalysis with the purpose of increasing substrates solubility or as the acyl acceptor in transesterification reactions, but inhibitory effects are observed in several cases. We have studied the influence of methanol on the catalytic activity and on the conformation of the lipase from Burkholderia glumae, which is reported to be highly methanol tolerant if compared with other lipases. We detected highest activity in the presence of 50-70 % methanol. Under these conditions, however, the enzyme stability is perturbed, leading to gradual protein unfolding and finally to aggregation. These results surmise that, for this lipase, methanol-induced deactivation does not depend on inhibition of catalytic activity but rather on negative effects on the conformational stability of the catalyst.

  3. Effects of fuel cell anode recycle on catalytic fuel reforming

    SciTech Connect

    shekhawat, D.; Berry, D.; Gardner, T.; Haynes, D.; Spivey, J.

    2007-01-01

    The presence of steam in the reactant gas of a catalytic fuel reformer decreases the formation of carbon, minimizing catalyst deactivation. However, the operation of the reformer without supplemental water reduces the size, weight, cost, and overall complexity of the system. The work presented here examines experimentally two options for adding steam to the reformer inlet: (I) recycle of a simulated fuel cell anode exit gas (comprised of mainly CO2, H2O, and N2 and some H2 and CO) and (II) recycle of the reformate from the reformer exit back to the reformer inlet (mainly comprised of H2, CO, and N2 and some H2O and CO2). As expected, anode gas recycle reduced the carbon formation and increased the hydrogen concentration in the reformate. However, reformer recycle was not as effective due principally to the lower water content in the reformate compared to the anode gas. In fact, reformate recycle showed slightly increased carbon formation compared to no recycle. In an attempt to understand the effects of individual gases in these recycle streams (H2, CO, CO2, N2, and H2O), individual gas species were independently introduced to the reformer feed. Published by Elsevier B.V.

  4. Effects of Fuel Cell Anode Recycle on Catalytic Fuel Reforming

    SciTech Connect

    Shekhawat, Dushyant; Berry, D.A.; Gardner, T.H.; Haynes, D.J.; Spivey, J.J.

    2007-06-01

    The presence of steam in the reactant gas of a catalytic fuel reformer decreases the formation of carbon, minimizing catalyst deactivation. However, the operation of the reformer without supplemental water reduces the size, weight, cost, and overall complexity of the system. The work presented here examines experimentally two options for adding steam to the reformer inlet: (I) recycle of a simulated fuel cell anode exit gas (comprised of mainly CO2, H2O, and N2 and some H2 and CO) and (II) recycle of the reformate from the reformer exit back to the reformer inlet (mainly comprised of H2, CO, and N2 and some H2O and CO2). As expected, anode gas recycle reduced the carbon formation and increased the hydrogen concentration in the reformate. However, reformer recycle was not as effective due principally to the lower water content in the reformate compared to the anode gas. In fact, reformate recycle showed slightly increased carbon formation compared to no recycle. In an attempt to understand the effects of individual gases in these recycle streams (H2, CO, CO2, N2, and H2O), individual gas species were independently introduced to the reformer feed.

  5. Partial oxidation fuel reforming for automotive power systems.

    SciTech Connect

    Ahmed, S.; Chalk, S.; Krumpelt, M.; Kumar, R.; Milliken, J.

    1999-09-07

    For widespread use of fuel cells to power automobiles in the near future, it is necessary to convert gasoline or other transportation fuels to hydrogen on-board the vehicle. Partial oxidation reforming is particularly suited to this application as it eliminates the need for heat exchange at high temperatures. Such reformers offer rapid start and good dynamic performance. Lowering the temperature of the partial oxidation process, which requires the development of a suitable catalyst, can increase the reforming efficiency. Catalytic partial oxidation (or autothermal) reformers and non-catalytic partial oxidation reformers developed by various organizations are presently undergoing testing and demonstration. This paper summarizes the process chemistries as well as recent test data from several different reformers operating on gasoline, methanol, and other fuels.

  6. Scaffoldless engineered enzyme assembly for enhanced methanol utilization

    DOE PAGES

    Price, J. Vincent; Chen, Long; Whitaker, W. Brian; ...

    2016-10-24

    Methanol is an important feedstock derived from natural gas and can be chemically converted into commodity and specialty chemicals at high pressure and temperature. Although biological conversion of methanol can proceed at ambient conditions, there is a dearth of engineered microorganisms that use methanol to produce metabolites. In nature, methanol dehydrogenase (Mdh), which converts methanol to formaldehyde, highly favors the reverse reaction. Thus, efficient coupling with the irreversible sequestration of formaldehyde by 3-hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloseisomerase (Phi) serves as the key driving force to pull the pathway equilibrium toward central metabolism. An emerging strategy to promote efficient substrate channelingmore » is to spatially organize pathway enzymes in an engineered assembly to provide kinetic driving forces that promote carbon flux in a desirable direction. Here, we report a scaffoldless, self-assembly strategy to organize Mdh, Hps, and Phi into an engineered supramolecular enzyme complex using an SH3–ligand interaction pair, which enhances methanol conversion to fructose-6-phosphate (F6P). To increase methanol consumption, an “NADH Sink” was created using Escherichia coli lactate dehydrogenase as an NADH scavenger, thereby preventing reversible formaldehyde reduction. Combination of the two strategies improved in vitro F6P production by 97-fold compared with unassembled enzymes. The beneficial effect of supramolecular enzyme assembly was also realized in vivo as the engineered enzyme assembly improved whole-cell methanol consumption rate by ninefold. This approach will ultimately allow direct coupling of enhanced F6P synthesis with other metabolic engineering strategies for the production of many desired metabolites from methanol.« less

  7. Scaffoldless engineered enzyme assembly for enhanced methanol utilization.

    PubMed

    Price, J Vincent; Chen, Long; Whitaker, W Brian; Papoutsakis, Eleftherios; Chen, Wilfred

    2016-10-24

    Methanol is an important feedstock derived from natural gas and can be chemically converted into commodity and specialty chemicals at high pressure and temperature. Although biological conversion of methanol can proceed at ambient conditions, there is a dearth of engineered microorganisms that use methanol to produce metabolites. In nature, methanol dehydrogenase (Mdh), which converts methanol to formaldehyde, highly favors the reverse reaction. Thus, efficient coupling with the irreversible sequestration of formaldehyde by 3-hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloseisomerase (Phi) serves as the key driving force to pull the pathway equilibrium toward central metabolism. An emerging strategy to promote efficient substrate channeling is to spatially organize pathway enzymes in an engineered assembly to provide kinetic driving forces that promote carbon flux in a desirable direction. Here, we report a scaffoldless, self-assembly strategy to organize Mdh, Hps, and Phi into an engineered supramolecular enzyme complex using an SH3-ligand interaction pair, which enhances methanol conversion to fructose-6-phosphate (F6P). To increase methanol consumption, an "NADH Sink" was created using Escherichia coli lactate dehydrogenase as an NADH scavenger, thereby preventing reversible formaldehyde reduction. Combination of the two strategies improved in vitro F6P production by 97-fold compared with unassembled enzymes. The beneficial effect of supramolecular enzyme assembly was also realized in vivo as the engineered enzyme assembly improved whole-cell methanol consumption rate by ninefold. This approach will ultimately allow direct coupling of enhanced F6P synthesis with other metabolic engineering strategies for the production of many desired metabolites from methanol.

  8. Reform Evaluation.

    ERIC Educational Resources Information Center

    Yoloye, E. Ayotunde

    1981-01-01

    Focuses on issues in evaluating educational change. Topics include what should be evaluated, management of reform and evaluation, evaluation as a threat, attitudes toward evaluation, factors in drawing up an evaluation plan, management information systems, evaluation techniques, financing evaluation, and indicators of success. (KC)

  9. Toothless Reform?

    ERIC Educational Resources Information Center

    Smarick, Andy

    2010-01-01

    To many education reformers, the passage of the federal government's massive stimulus plan, the American Recovery and Reinvestment Act (ARRA), appeared to be a final bright star falling into alignment. The ARRA seemed to complete the constellation: an astounding $100 billion of new federal funds--nearly twice the annual budget of the U.S.…

  10. Rethinking Reform

    ERIC Educational Resources Information Center

    Garland, James C.

    2010-01-01

    As president of Miami University of Ohio from 1996 until 2006, James C. Garland redefined the public institution as a "semi-private" university by implementing the same tuition for both in-state and out-of-state students. Students from Ohio with need received large scholarships--but those who could afford to pay more did so. The reform,…

  11. Toothless Reform?

    ERIC Educational Resources Information Center

    Smarick, Andy

    2010-01-01

    To many education reformers, the passage of the federal government's massive stimulus plan, the American Recovery and Reinvestment Act (ARRA), appeared to be a final bright star falling into alignment. The ARRA seemed to complete the constellation: an astounding $100 billion of new federal funds--nearly twice the annual budget of the U.S.…

  12. Hydrogen generation utilizing integrated CO2 removal with steam reforming

    DOEpatents

    Duraiswamy, Kandaswamy; Chellappa, Anand S

    2013-07-23

    A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

  13. S. 625: Natural Gas Regulatory Reform Act of 1989. Introduced in the Senate of the United States, One Hundredth First Congress, First Session, March 16, 1989

    SciTech Connect

    Not Available

    1989-01-01

    S. 625 would eliminate artificial distortions in the natural gas marketplace to promote competition in the natural gas industry. It would do this by amending certain sections of the Natural Gas Policy Act of 1978. Title I: Decontrol of Natural Gas describes provisions for elimination of wellhead price controls; coordination with the Natural Gas Act; application to first sales; technical and conforming amendments; effective date (January 1, 1993). Title II: Transitional Provisions describes the decontrol of natural gas subject to a newly executed contract, a renegotiated contract, a terminated contract, or to a contract which expires; coordination with the Natural Gas Act; and effective date (enactment of this bill).

  14. Gasoline from natural gas by sulfur processing. Quarterly report No. 5 for the period July 1994--September 1994

    SciTech Connect

    Erekson, E.J.; Miao, F.Q.

    1994-10-01

    Natural gas is an abundant resource in various parts of the world. The major component of natural gas is methane, often comprising over 90% of the hydrocarbon fraction of the gas. The expanded use of natural gas as fuel is often hampered because of difficulties in storing and handling a gaseous fuel. This is especially true for natural gas in remote areas such as the North Slope of Alaska. The successful implementation of a natural gas-to-gasoline process would decrease dependence on imported oil for transportation fuels. These factors make it very desirable to convert natural gas to more valuable liquids. There are commercial processes for converting natural gas to gasoline-range liquids. These processes, such as the Fischer-Tropsch synthesis and Mobil`s MTG (Methanol To Gasoline), start with the steam reforming of methane. Steam reforming of methane requires the removal of sulfur compounds present in natural gas down to less than 0.1 ppm. This additional gas cleanup step, with its additional cost, is necessary because the catalysts are quickly poisoned by sulfur compounds.

  15. Class i Methanol Maser Conditions Near SNRS

    NASA Astrophysics Data System (ADS)

    McEwen, Bridget C.; Pihlström, Ylva M.; Sjouwerman, Loránt O.

    2015-06-01

    We present results from calculations of the physical conditions necessary for the occurrence of 36.169 (4-1-30 E), 44.070 (70-61 A^+), 84.521 (5-1-40 E), and 95.169 (80-71 A^+) GHz methanol (CH_3OH) maser emission lines near supernova remnants (SNRs), using the MOLPOP-CEP program. The calculations show that given a sufficient methanol abundance, methanol maser emission arises over a wide range of densities and temperatures, with optimal conditions at n˜ 10^4-10^6 cm-3 and T>60 K. The 36~GHz and 44~GHz transitions display more significant maser optical depths compared to the 84~GHz and 95~GHz transitions over the majority of physical conditions. It is also shown that line ratios are an important and applicable probe of the gas conditions. The line ratio changes are largely a result of the E-type transitions becoming quenched faster at increasing densities. The modeling results will be discussed using recent observations of CH_3OH masers near the SNRs G1.4-0.1, W28, and Sgr A East and used as a diagnostic tool to estimate densities and temperatures of the regions in which the CH_3OH masers are observed.

  16. Torsion-rotation intensities in methanol

    NASA Astrophysics Data System (ADS)

    Pearson, John

    Methanol exists in numerous kinds of astronomical objects featuring a wide range of local conditions. The light nature of the molecule coupled with the internal rotation of the methyl group with respect to the hydroxyl group results in a rich, strong spectrum that spans the entire far-infrared region. As a result, any modest size observational window will have a number of strong methanol transitions. This has made it the gas of choice for testing THz receivers and to extract the local physical conditions from observations covering small frequency windows. The latter has caused methanol to be dubbed the Swiss army knife of astrophysics. Methanol has been increasingly used in this capacity and will be used even more for subsequent investigations into the Herschel archive, and with SOFIA and ALMA. Interpreting physical conditions on the basis of a few methanol lines requires that the molecular data, line positions, intensities, and collision rates, be complete, consistent and accurate to a much higher level than previously required for astrophysics. The need for highly reliable data is even more critical for modeling the two classes of widespread maser action and many examples of optical pumping through the torsional bands. Observation of the torsional bands in the infrared will be a unique opportunity to directly connect JWST observations with those of Herschel, SOFIA, and ALMA. The theory for the intensities of torsion-rotation transitions in a molecule featuring a single internally rotating methyl group is well developed after 70 years of research. However, other than a recent very preliminary and not completely satisfactory investigation of a few CH3OH torsional bands, this theory has never been experimentally tested for any C3V internal rotor. More alarming is a set of recent intensity calibrated microwave measurements that showed deviations relative to calculations of up to 50% in some ground state rotational transitions commonly used by astronomers to extract

  17. Evaluation of the feasibility of ethanol steam reforming in a molten carbonate fuel cell

    SciTech Connect

    Cavallaro, S.; Passalacqua, E.; Maggio, G.; Patti, A.; Freni, S.

    1996-12-31

    The molten carbonate fuel cells (MCFCs) utilizing traditional fuels represent a suitable technological progress in comparison with pure hydrogen-fed MCFCs. The more investigated fuel for such an application is the methane, which has the advantages of low cost and large availability; besides, several authors demonstrated the feasibility of a methane based MCFC. In particular, the methane steam-reforming allows the conversion of the fuel in hydrogen also inside the cell (internal reforming configuration), utilizing the excess heat to compensate the reaction endothermicity. In this case, however, both the catalyst and the cell materials are subjected to thermal stresses due to the cold spots arising near to the reaction sites MCFC. An alternative, in accordance with the recent proposals of other authors, may be to produce hydrogen from methane by the partial oxidation reaction, rather than by steam reforming. This reaction is exothermic ({Delta}H{degrees}=-19.1 kJ/mol H{sub 2}) and it needs to verify the possibility to obtain an acceptable distribution of the temperature inside the cell. The alcohols and, in particular, methanol shows the gas reformed compositions as a function of the steam/ethanol molar ratio, ranging from 1.0 to 3.5. The hydrogen production enhances with this ratio, but it presents a maximum at S/EtOH of about 2.0. Otherwise, the increase of S/EtOH depresses the production of CO and CH{sub 4}, and ethanol may be a further solution for the hydrogen production inside a MCFC. In this case, also, the reaction in cell is less endothermic compared with the methane steam reforming with the additional advantage of a liquid fuel more easily storable and transportable. Aim of the present work is to perform a comparative evaluation of the different solutions, with particular reference to the use of ethanol.

  18. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts.

    PubMed

    Lin, Lili; Zhou, Wu; Gao, Rui; Yao, Siyu; Zhang, Xiao; Xu, Wenqian; Zheng, Shijian; Jiang, Zheng; Yu, Qiaolin; Li, Yong-Wang; Shi, Chuan; Wen, Xiao-Dong; Ma, Ding

    2017-04-06

    Polymer electrolyte membrane fuel cells (PEMFCs) running on hydrogen are attractive alternative power supplies for a range of applications, with in situ release of the required hydrogen from a stable liquid offering one way of ensuring its safe storage and transportation before use. The use of methanol is particularly interesting in this regard, because it is inexpensive and can reform itself with water to release hydrogen with a high gravimetric density of 18.8 per cent by weight. But traditional reforming of methanol steam operates at relatively high temperatures (200-350 degrees Celsius), so the focus for vehicle and portable PEMFC applications has been on aqueous-phase reforming of methanol (APRM). This method requires less energy, and the simpler and more compact device design allows direct integration into PEMFC stacks. There remains, however, the need for an efficient APRM catalyst. Here we report that platinum (Pt) atomically dispersed on α-molybdenum carbide (α-MoC) enables low-temperature (150-190 degrees Celsius), base-free hydrogen production through APRM, with an average turnover frequency reaching 18,046 moles of hydrogen per mole of platinum per hour. We attribute this exceptional hydrogen production-which far exceeds that of previously reported low-temperature APRM catalysts-to the outstanding ability of α-MoC to induce water dissociation, and to the fact that platinum and α-MoC act in synergy to activate methanol and then to reform it.

  19. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts

    NASA Astrophysics Data System (ADS)

    Lin, Lili; Zhou, Wu; Gao, Rui; Yao, Siyu; Zhang, Xiao; Xu, Wenqian; Zheng, Shijian; Jiang, Zheng; Yu, Qiaolin; Li, Yong-Wang; Shi, Chuan; Wen, Xiao-Dong; Ma, Ding

    2017-03-01

    Polymer electrolyte membrane fuel cells (PEMFCs) running on hydrogen are attractive alternative power supplies for a range of applications, with in situ release of the required hydrogen from a stable liquid offering one way of ensuring its safe storage and transportation before use. The use of methanol is particularly interesting in this regard, because it is inexpensive and can reform itself with water to release hydrogen with a high gravimetric density of 18.8 per cent by weight. But traditional reforming of methanol steam operates at relatively high temperatures (200-350 degrees Celsius), so the focus for vehicle and portable PEMFC applications has been on aqueous-phase reforming of methanol (APRM). This method requires less energy, and the simpler and more compact device design allows direct integration into PEMFC stacks. There remains, however, the need for an efficient APRM catalyst. Here we report that platinum (Pt) atomically dispersed on α-molybdenum carbide (α-MoC) enables low-temperature (150-190 degrees Celsius), base-free hydrogen production through APRM, with an average turnover frequency reaching 18,046 moles of hydrogen per mole of platinum per hour. We attribute this exceptional hydrogen production—which far exceeds that of previously reported low-temperature APRM catalysts—to the outstanding ability of α-MoC to induce water dissociation, and to the fact that platinum and α-MoC act in synergy to activate methanol and then to reform it.

  20. Single-Pass Catalytic Conversion of Syngas into Olefins via Methanol.

    PubMed

    Olsbye, Unni

    2016-06-20

    All together now: Combination in a single reactor of the catalysts for converting syngas into methanol and methanol into olefins was recently reported by Cheng et al. This approach considerably simplifies the catalytic conversion of natural gas. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effect of methanol on the liquefaction reaction of biomass in hot compressed water under microwave energy

    Treesearch

    Junming Xu; Jianchun Jiang; Chun-Yun Hse; Todd F. Shupe

    2013-01-01

    Liquefaction of sawdust was studied in methanol-water solutions using an acid catalyst under microwave energy. The effect of the methanol concentration on the changes of components in the liquefied products was analyzed by gas chromatography−mass spectrometry (GC−MS). It was found that 5-hydroxymethylfurfural (HMF) and levulinic acid are the...

  2. California methanol assessment. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    Otoole, R.; Dutzi, E.; Gershman, R.; Heft, R.; Kalema, W.; Maynard, D.

    1983-01-01

    The near term methanol industry, the competitive environment, long term methanol market, the transition period, air quality impacts of methanol, roles of the public and private sectors are considered.

  3. Performance of a miniaturized silicon reformer-PrOx-fuel cell system

    NASA Astrophysics Data System (ADS)

    Kwon, Oh Joong; Hwang, Sun-Mi; Chae, Je Hyun; Kang, Moo Seong; Kim, Jae Jeong

    A fuel cell made with silicon is operated with hydrogen supplied by a reformer and a preferential oxidation (PrOx) reactor those are also made with silicon. The performance and durability of the fuel cell is analyzed and tested, then compared with the results obtained with pure hydrogen. Three components of the system are made using silicon technologies and micro electro-mechanical system (MEMS) technology. The commercial Cu-ZnO-Al 2O 3 catalyst for the reformer and the Pt-Al 2O 3 catalyst for the PrOx reactor are coated by means of a fill-and-dry method. A conventional membrane electrode assembly composed of a 0.375 mg cm -2 PtRu/C catalyst for the anode, a 0.4 mg cm -2 Pt/C catalyst for the cathode, and a Nafion™ 112 membrane is introduced to the fuel cell. The reformer gives a 27 cm 3 min -1 gas production rate with 3177 ppm CO concentration at a 1 cm 3 h -1 methanol feed rate and the PrOx reactor shows almost 100% CO conversion under the experimental conditions. Fuel cells operated with this fuel-processing system produce 230 mW cm -2 at 0.6 V, which is similar to that obtained with pure hydrogen.

  4. Structures of protonated methanol clusters and temperature effects

    NASA Astrophysics Data System (ADS)

    Fifen, Jean Jules; Nsangou, Mama; Dhaouadi, Zoubeida; Motapon, Ousmanou; Jaidane, Nejm-Eddine

    2013-05-01

    The accurate evaluation of pKa's, or solvation energies of the proton in methanol at a given temperature is subject to the determination of the most favored structures of various isomers of protonated (H+(MeOH)n) and neutral ((MeOH)n) methanol clusters in the gas phase and in methanol at that temperature. Solvation energies of the proton in a given medium, at a given temperature may help in the determination of proton affinities and proton dissociation energies related to the deprotonation process in that medium and at that temperature. pKa's are related to numerous properties of drugs. In this work, we were interested in the determination of the most favored structures of various isomers of protonated methanol clusters in the gas phase and in methanol, at a given temperature. For this aim, the M062X/6-31++G(d,p) and B3LYP/6-31++G(d,p) levels of theory were used to perform geometries optimizations and frequency calculations on various isomers of (H+(MeOH)n) in both phases. Thermal effects were retrieved using our homemade FORTRAN code. Thus, we accessed the relative populations of various isomers of protonated methanol clusters, in both phases for temperatures ranging from 0 to 400 K. As results, in the gas phase, linear structures are entropically more favorable at high temperatures, while more compact ones are energetically more favorable at lower temperatures. The trend is somewhat different when bulk effects are taken into account. At high temperatures, the linear structure only dominates the population for n ⩽ 6, while it is dominated by the cyclic structure for larger cluster sizes. At lower temperatures, compact structures still dominate the population, but with an order different from the one established in the gas phase. Hence, temperature effects dominate solvent effects in small cluster sizes (n ⩽ 6), while the reverse trend is noted for larger cluster sizes.

  5. Discovery of Methanol in a Planetary Birthplace

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Data from the Atacama Large Millimeter/submillimeter Array (ALMA) has recently revealed the first detection of gas-phase methanol, a derivative of methane, in a protoplanetary disk. This milestone discovery is an important step in understanding the conditions for planet formation that can lead to life-supporting planets like Earth.Planetary ChemistryOne major goal in the study of exoplanets is to find planets that orbit in their host stars habitable zones, a measure that determines whether the planet receives the right amount of sunlight to support liquid water. But theres another crucial element in the formation of a life-supporting planet: chemistry.To understand the chemistry of newly born planets, we need to study protoplanetary disks because its from these that young planets form. The elements and molecules contained in these dusty disks are what initially make up the atmospheres of planets forming within the disks.The Atacama Large Millimeter/submillimeter Array under the southern sky. [ESO/B. Tafreshi]The Hunt for ComplexityThe detection of complex molecules in protoplanetary disks is an important milestone, because complex molecules are necessary to build the correct chemistry to support life. Unfortunately, detecting these molecules is very difficult, requiring observations with both high spatial resolution and high sensitivity. Thus far, though weve observed elements and simple molecules in protoplanetary disks, detections of complex molecules have been elusive with only one success before now.Luckily, we now have an observatory up to the challenge! ALMAs unprecedented spatial resolution and sensitivity has recently allowed a team of scientists led by Catherine Walsh (Leiden University) to observe gas-phase methanol in a protoplanetary disk for the first time. This detection was made in the disk around the young star TW Hya, and it represents one of the largest molecules that has ever been observed in a disk to date.Locating IcesThe model (purple line

  6. Hydrocarbon reforming catalyst material and configuration of the same

    DOEpatents

    Singh, Prabhakar; Shockling, Larry A.; George, Raymond A.; Basel, Richard A.

    1996-01-01

    A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall.

  7. Hydrocarbon reforming catalyst material and configuration of the same

    DOEpatents

    Singh, P.; Shockling, L.A.; George, R.A.; Basel, R.A.

    1996-06-18

    A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall. 5 figs.

  8. Hydrogen Generation Via Fuel Reforming

    NASA Astrophysics Data System (ADS)

    Krebs, John F.

    2003-07-01

    Reforming is the conversion of a hydrocarbon based fuel to a gas mixture that contains hydrogen. The H2 that is produced by reforming can then be used to produce electricity via fuel cells. The realization of H2-based power generation, via reforming, is facilitated by the existence of the liquid fuel and natural gas distribution infrastructures. Coupling these same infrastructures with more portable reforming technology facilitates the realization of fuel cell powered vehicles. The reformer is the first component in a fuel processor. Contaminants in the H2-enriched product stream, such as carbon monoxide (CO) and hydrogen sulfide (H2S), can significantly degrade the performance of current polymer electrolyte membrane fuel cells (PEMFC's). Removal of such contaminants requires extensive processing of the H2-rich product stream prior to utilization by the fuel cell to generate electricity. The remaining components of the fuel processor remove the contaminants in the H2 product stream. For transportation applications the entire fuel processing system must be as small and lightweight as possible to achieve desirable performance requirements. Current efforts at Argonne National Laboratory are focused on catalyst development and reactor engineering of the autothermal processing train for transportation applications.

  9. Thermally efficient melting and fuel reforming for glass making

    DOEpatents

    Chen, Michael S.; Painter, Corning F.; Pastore, Steven P.; Roth, Gary S.; Winchester, David C.

    1991-01-01

    An integrated process for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling.

  10. Thermally efficient melting and fuel reforming for glass making

    DOEpatents

    Chen, M.S.; Painter, C.F.; Pastore, S.P.; Roth, G.S.; Winchester, D.C.

    1991-10-15

    An integrated process is described for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling. 2 figures.

  11. Infrared Spectrum of Methanol: A First-Year Student Experiment.

    ERIC Educational Resources Information Center

    Boehm, Garth; Dwyer, Mark

    1981-01-01

    Describes an experiment providing an experimental introduction to vibrational spectroscopy and experience in using an elementary vacuum line. The experiment, using a gas cell charged with methanol, is completed in a three-hour laboratory period and is directed toward understanding vibrational spectroscopy rather than the diagnostic value of the…

  12. Infrared Spectrum of Methanol: A First-Year Student Experiment.

    ERIC Educational Resources Information Center

    Boehm, Garth; Dwyer, Mark

    1981-01-01

    Describes an experiment providing an experimental introduction to vibrational spectroscopy and experience in using an elementary vacuum line. The experiment, using a gas cell charged with methanol, is completed in a three-hour laboratory period and is directed toward understanding vibrational spectroscopy rather than the diagnostic value of the…

  13. Reforming catalyst

    SciTech Connect

    Baird, W.C. Jr.; Swan, G.A.

    1991-11-19

    This patent describes a catalyst useful for reforming a naphtha feed at high severity reforming conditions. It comprises the metals, platinum, rhenium and iridium on a refractory porous inorganic oxide support, the support consisting essentially of alumina, wherein the concentration by weight of each of the metals platinum and rhenium is at least 0.1 percent and iridium at least 0.15 percent and at least one of the metals is present in a concentration of at least 0.3 percent, and the sum-total; concentration of the metals is greater than 0.9 percent, and wherein each catalyst particle contains all three of the metals platinum, rhenium and iridium. This patent also describes this composition wherein the catalyst contains from about 0.1 percent to about 3 percent of a halogen and from about 0.05 percent to about 0.02 percent sulfur.

  14. Catalytic reforming process

    SciTech Connect

    Winter, W.E.; Markley, G.E.

    1984-04-03

    A process wherein, in a series of reforming zones, or reactors, each of which contains a bed, or beds of catalyst, the catalyst in the rearward most reforming zones is constituted of a high rhenium, platinum rhenium catalyst, viz., a catalyst comprising supported platinum and a relatively high concentration of rhenium relative to the platinum, and preferably the catalyst in the forwardmost reforming zone, or reactor of the series, is constituted of platinum, or platinum and a relatively low concentration of rhenium relative to the platinum. At least 30 percent, preferably from 40 percent to about 90 percent, of the rearward most reactors of the unit, or even 100 percent, based on the total weight of the catalyst in all of the reactors of the unit, contain a high rhenium, platinum rhenium catalyst, the weight ratio of rhenium:platinum being at least about 1.5:1. The beds of catalyst are contacted with a hydrocarbon or naphtha feed, and hydrogen, and the reaction continued for a period of at least 700 hours, preferably from about 700 hours to about 2750 hours, while conducting the reaction at temperatures ranging from about 850/sup 0/ F. to about 950/sup 0/ F. (E.I.T.), at pressures ranging from about 150 psig to about 350 psig, and at gas rates ranging from about 2500 SCF/B to about 4500 SCF/B.

  15. Methanol - The efficient conversion of valueless fuels into a versatile fuel and chemical feedstock

    NASA Astrophysics Data System (ADS)

    Othmer, D. F.

    1981-01-01

    The production of fuel-grade methanol and methyl chemicals is discussed with attention to production costs. Natural gas and low grade solid fuels such as peat, lignite, and sub-bituminous coal combined with water or ash can be converted to methanol with a thermal efficiency of 50 to 65%. Methanol can be used as a fuel for transportation engines and in electric power generation. The advantages of methanol use, such as ease and safety of transportation, are considered. The projected cost is 17 to 34 cents per gallon, or $2.50 to $5.00 per million Btu.

  16. Single passive direct methanol fuel cell supplied with pure methanol

    NASA Astrophysics Data System (ADS)

    Feng, Ligang; Zhang, Jing; Cai, Weiwei; Liang, Liang; Xing, Wei; Liu, Changpeng

    2011-03-01

    A new single passive direct methanol fuel cell (DMFC) supplied with pure methanol is designed, assembled and tested using a pervaporation membrane (PM) to control the methanol transport. The effect of the PM size on the fuel cell performances and the constant current discharge of the fuel cell with one-fueling are studied. The results show that the fuel cell with PM 9 cm2 can yield a maximum power density of about 21 mW cm-2, and a stable performances at a discharge current of 100 mA can last about 45 h. Compared with DMFC supplied with 3 M methanol solution, the energy density provided by this new DMFC has increased about 6 times.

  17. Hydrogen production with CO 2 capture by coupling steam reforming of methane and chemical-looping combustion: Use of an iron-based waste product as oxygen carrier burning a PSA tail gas

    NASA Astrophysics Data System (ADS)

    Ortiz, María; Gayán, Pilar; de Diego, Luis F.; García-Labiano, Francisco; Abad, Alberto; Pans, Miguel A.; Adánez, Juan

    In this work it is analyzed the performance of an iron waste material as oxygen carrier for a chemical-looping combustion (CLC) system. CLC is a novel combustion technology with the benefit of inherent CO 2 separation that can be used as a source of energy for the methane steam reforming process (SR). The tail gas from the PSA unit is used as fuel in the CLC system. The oxygen carrier behaviour with respect to gas combustion was evaluated in a continuous 500 W th CLC prototype using a simulated PSA off-gas stream as fuel. Methane or syngas as fuel were also studied for comparison purposes. The oxygen carrier showed enough high oxygen transport capacity and reactivity to fully convert syngas at 880 °C. However, lower conversion of the fuel was observed with methane containing fuels. An estimated solids inventory of 1600 kg MW th -1 would be necessary to fully convert the PSA off-gas to CO 2 and H 2O. An important positive effect of the oxygen carrier-to-fuel ratio up to 1.5 and the reactor temperature on the combustion efficiency was found. A characterization of the calcined and after-used particles was carried out showing that this iron-based material can be used as oxygen carrier in a CLC plant since particles maintain their properties (reactivity, no agglomeration, high durability, etc.) after more than 111 h of continuous operation.

  18. Reforming Science Education.

    ERIC Educational Resources Information Center

    Donmoyer, Robert, Ed.; Merryfield, Merry M., Ed.

    1995-01-01

    This theme issue highlights the diversity of reform initiatives in order to provide a deep understanding of the complexities associated with educational reform in general and the reform of science education in particular. Systemic reform initiatives at the national and state levels along with locally-inspired efforts at reform are outlined.…

  19. Methanol crossover in direct methanol fuel cell systems.

    SciTech Connect

    Pivovar, B. S.; Bender, G.; Davey, J. R.; Zelenay, P.

    2003-01-01

    Direct methanol fuel cells (DMFCs) are currently being investigated for a number of different applications from several milliwatts to near kilowatt size scales (cell phones, laptops, auxiliary power units, etc .). Because methanol has a very high energy density, over 6000 W hr/kg, a DMFC can possibly have greatly extended lifetimes compared to the batteries, doesn't present the storage problems associated with hydrogen fuel cells and can possibly operate more efficiently and cleanly than internal combustion engines.

  20. Attrition resistant fluidizable reforming catalyst

    DOEpatents

    Parent, Yves O.; Magrini, Kim; Landin, Steven M.; Ritland, Marcus A.

    2011-03-29

    A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

  1. Methanol Oxidation on Pt3Sn(111) for Direct Methanol Fuel Cells: Methanol Decomposition.

    PubMed

    Lu, Xiaoqing; Deng, Zhigang; Guo, Chen; Wang, Weili; Wei, Shuxian; Ng, Siu-Pang; Chen, Xiangfeng; Ding, Ning; Guo, Wenyue; Wu, Chi-Man Lawrence

    2016-05-18

    PtSn alloy, which is a potential material for use in direct methanol fuel cells, can efficiently promote methanol oxidation and alleviate the CO poisoning problem. Herein, methanol decomposition on Pt3Sn(111) was systematically investigated using periodic density functional theory and microkinetic modeling. The geometries and energies of all of the involved species were analyzed, and the decomposition network was mapped out to elaborate the reaction mechanisms. Our results indicated that methanol and formaldehyde were weakly adsorbed, and the other derivatives (CHxOHy, x = 1-3, y = 0-1) were strongly adsorbed and preferred decomposition rather than desorption on Pt3Sn(111). The competitive methanol decomposition started with the initial O-H bond scission followed by successive C-H bond scissions, (i.e., CH3OH → CH3O → CH2O → CHO → CO). The Brønsted-Evans-Polanyi relations and energy barrier decomposition analyses identified the C-H and O-H bond scissions as being more competitive than the C-O bond scission. Microkinetic modeling confirmed that the vast majority of the intermediates and products from methanol decomposition would escape from the Pt3Sn(111) surface at a relatively low temperature, and the coverage of the CO residue decreased with an increase in the temperature and decrease in partial methanol pressure.

  2. Solubility of methanol in low-temperature aqueous sulfuric acid and implications for atmospheric particle composition

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Using traditional Knudsen cell techniques, we find well-behaved Henry's law uptake of methanol in aqueous 45 - 70 wt% H2SO4 solutions at temperatures between 197 and 231 K. Solubility of methanol increases with decreasing temperature and increasing acidity, with an effective Henry's law coefficient ranging from 10(exp 5) - 10(exp 8) M/atm. Equilibrium uptake of methanol into sulfuric acid aerosol particles in the upper troposphere and lower stratosphere will not appreciably alter gas-phase concentrations of methanol. The observed room temperature reaction between methanol and sulfuric acid is too slow to provide a sink for gaseous methanol at the temperatures of the upper troposphere and lower stratosphere. It is also too slow to produce sufficient quantities of soluble reaction products to explain the large amount of unidentified organic material seen in particles of the upper troposphere.

  3. Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst.

    PubMed

    Hwang, In Yeub; Hur, Dong Hoon; Lee, Jae Hoon; Park, Chang-Ho; Chang, In Seop; Lee, Jin Won; Lee, Eun Yeol

    2015-03-01

    Recently, methane has attracted much attention as an alternative carbon feedstock since it is the major component of abundant shale and natural gas. In this work, we produced methanol from methane using whole cells of Methylosinus trichosporium OB3b as the biocatalyst. M. trichosporium OB3b was cultured on NMS medium with a supply of 7:3 air/methane ratio at 30°C. The optimal concentrations of various methanol dehydrogenase inhibitors such as potassium phosphate and EDTA were determined to be 100 and 0.5 mM, respectively, for an efficient production of methanol. Sodium formate (40 mM) as a reducing power source was added to enhance the conversion efficiency. A productivity of 49.0 mg/l·h, titer of 0.393 g methanol/l, and conversion of 73.8% (mol methanol/mol methane) were obtained under the optimized batch condition.

  4. Methanol unity frays, discounting returns

    SciTech Connect

    Morris, G.D.L.

    1997-02-05

    This article reviews the price variation in methanol for February 1997 and how the company Methanex compares to other producers. The discrepancy between posting prices and transaction prices is noted.

  5. Millimeter/submillimeter Spectroscopy to Measure the Branching Ratios for Methanol Photolysis

    NASA Astrophysics Data System (ADS)

    McCabe, Morgan N.; Powers, Carson Reed; Zinga, Samuel; Widicus Weaver, Susanna L.

    2016-06-01

    Methanol is one of the most abundant and important molecules in the interstellar medium, playing a key role in driving more complex organic chemistry both on grain surfaces and through gas-phase ion-molecule reactions. Methanol photolysis produces many radicals such as hydroxyl, methoxy, hydroxymethyl, and methyl that may serve as the building blocks for more complex organic chemistry in star-forming regions. The branching ratios for methanol photolysis may govern the relative abundances of many of the more complex species already detected in these environments. However, no direct, comprehensive, quantitative measurement of methanol photolysis branching ratios is available. Using a 193 nm excimer laser, the gas phase photolysis of methanol was studied in the (sub)millimeter range, where the rotational spectroscopic signatures of the photolysis products were probed. Here we present preliminary results from this experiment.

  6. Environmental information volume: Liquid Phase Methanol (LPMEOH{trademark}) project

    SciTech Connect

    1996-05-01

    The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature.

  7. Acute methanol toxicity in minipigs

    SciTech Connect

    Dorman, D.C.; Dye, J.A.; Nassise, M.P.; Ekuta, J.; Bolon, B.

    1993-01-01

    The pig has been proposed as a potential animal model for methanol-induced neuro-ocular toxicosis in humans because of its low liver tetrahydrofolate levels and slower rate of formate metabolism compared to those of humans. To examine the validity of this animal model, 12 4-month-old female minipigs (minipig YU) were given a single oral dose of water or methanol at 1.0, 2.5, or 5.0 g/kg body wt by gavage (n = 3 pigs/dose). Dose-dependent signs of acute methanol intoxication, which included mild CNS depression, tremors, ataxia, and recumbency, developed within 0.5 to 2.0 hr, and resolved by 52 hr. Methanol- and formate-dosed pigs did not develop optic nerve lesions, toxicologically significant formate accumulation, or metabolic acidosis. Based on results following a single dose, female minipigs do not appear to be overtly sensitive to methanol and thus may not be a suitable animal model for acute methanol-induced neuroocular toxicosis.

  8. Gasification Evaluation of Gas Turbine Combustion

    SciTech Connect

    Battelle

    2003-12-30

    This report provides a preliminary assessment of the potential for use in gas turbines and reciprocating gas engines of gases derived from biomass by pyrolysis or partial oxidation with air. Consideration was given to the use of mixtures of these gases with natural gas as a means of improving heating value and ensuring a steady gas supply. Gas from biomass, and mixtures with natural gas, were compared with natural gas reformates from low temperature partial oxidation or steam reforming. The properties of such reformates were based on computations of gas properties using the ChemCAD computational tools and energy inputs derived from known engine parameters. In general, the biomass derived fuels compare well with reformates, so far as can be judged without engine testing. Mild reforming has potential to produce a more uniform quality of fuel gas from very variable qualities of natural gas, and could possibly be applied to gas from biomass to eliminate organic gases and condensibles other than methane.

  9. Auxiliary reactor for a hydrocarbon reforming system

    DOEpatents

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.

    2006-01-17

    An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.

  10. Development of an efficient, low cost, small-scale natural gas fuel reformer for residential scale electric power generation. Final report for the period October 1, 1998 - December 31, 1999

    SciTech Connect

    Kreutz, Thomas G; Ogden, Joan M

    2000-07-01

    In the final report, we present results from a technical and economic assessment of residential scale PEM fuel cell power systems. The objectives of our study are to conceptually design an inexpensive, small-scale PEMFC-based stationary power system that converts natural gas to both electricity and heat, and then to analyze the prospective performance and economics of various system configurations. We developed computer models for residential scale PEMFC cogeneration systems to compare various system designs (e.g., steam reforming vs. partial oxidation, compressed vs. atmospheric pressure, etc.) and determine the most technically and economically attractive system configurations at various scales (e.g., single family, residential, multi-dwelling, neighborhood).

  11. Performance and endurance of a PEMFC operated with synthetic reformate fuel feed

    NASA Astrophysics Data System (ADS)

    Sishtla, Chakravarthy; Koncar, Gerald; Platon, Renato; Gamburzev, Serguei; Appleby, A. John; Velev, Omourtag A.

    Widespread implementation of polymer electrolyte membrane fuel cell (PEMFC) powerplants for stationary and vehicular applications will be dependent in the near future on using readily available hydrocarbon fuels as the source of the hydrogen fuel. Methane and propane are ideal fuels for stationary applications, while methanol, gasoline, and diesel fuel are better suited for vehicular applications. Various means of fuel processing are possible to produce a gaseous fuel containing H2, CO2 and CO. CO is a known electrocatalyst poison and must be reduced to low (10's) ppm levels and CO2 is said to cause additional polarization effects. Even with no CO in the feed gas a H2/CO2/H2O gas mixture will form some CO. Therefore, as a first step of developing a PEMFC that can operate for thousands of hours using a reformed fuel, we used an anode gas feed of 80% H2 and 20% CO2 to simulate the reforming of CH4. To investigate the effect of reformate on cell performance and endurance, a single cell with an active area of 58 cm2 was assembled with a membrane electrode assembly (MEA) furnished by Texas A&M University using IGT's internally manifolded heat exchange (IMHEX™) design configuration. The MEA consisted of a Nafion 112 membrane with anode and cathode Pt catalyst loadings of 0.26 and 1.46 mg/cm2, respectively. The cell was set to operate on a synthetic reformate-air at 60°C and 1 atm and demonstrated over 5000 h of endurance with a decay rate of less than 1%/1000 h of operation. The cell also underwent four successful thermal cycles with no appreciable loss in performance. The stable performance is attributed to a combination of the IGT IMHEX plate design with its inherent uniform gas flow distribution across the entire active area and MEA quality. The effects of temperature, gas composition, fuel utilization (stoics) and thermal cycle on cell performance are described.

  12. DFT study of methanol adsorption on PtCo(111)

    NASA Astrophysics Data System (ADS)

    Orazi, V.; Bechthold, P.; Jasen, P. V.; Faccio, R.; Pronsato, M. E.; González, E. A.

    2017-10-01

    Methanol adsorption on PtCo(111) surface at low coverage is studied using Density Functional Theory (DFT) calculations without and with van der Waals corrections. We investigated the PtCo FCT alloy surface with a uniform distribution. The most favorable site for CH3OH adsorption is on top of a Co atom, with an adsorption energy of -0.92 eV. Methanol attachs to the surface by the O atom, with a distance of 2.24 Å. The molecule presents a small distortion after adsorption. The Csbnd Osbnd Co bond angle is 142°. The Csbnd H bonds are strengthened whereas the Csbnd O and Osbnd H bonds are weakened. A charge transfer from C atom to O atom occurs upon adsorption, and then further transfer occurs to the Co atom on the surface. The calculated vibrational frequencies for adsorbed methanol present a red-shift displacement compared to gas-phase, confirming the adsorption process.

  13. The Revised Version of Class I Methanol Maser Catalog

    NASA Astrophysics Data System (ADS)

    Larionov, G. M.; Litovchenko, I. D.; Val'tts, I. E.; Alakoz, A. V.

    2011-05-01

    The revised version of the class I methanol maser catalog is presented. It contains 198 sources in total. New class I methanol masers detected in the direction of EGOs (38 sources) were added to the previous list containing ˜ 160 sources (the list have been published in the first version of this catalog - see reference in the text). Electronic version of the catalog has been generated in the form of html file - http://www.asc.rssi.ru/MMI. A statistical analysis was carried out within 2' around a maser position to find an identification of class I methanol masers with any objects typical for star-forming regions - UCHII regions, IRAS sources, dark clouds, bipolar outflows, CS lines as of dense gas tracer, and other masers (class II methanol masers, OH and H_2O). Class I methanol masers identification was made with short-wave infrared objects EGO (extended green objects), which are tracers of bipolar outflows in young stellar objects. It was shown that in the new version of catalog more than 50% of class I methanol masers are identified with bipolar outflow - given EGOs as bipolar outflows (compared with the result of 22% in the first version of the catalog that contains no information about EGO). This result is a strong evidence in favor of the fact that EGOs are indeed active bipolar outflows. At the same time it is important to note, that none of the bipolar outflow, already registered in the direction of class I methanol maser, did not coincide with EGO (with the exception of G45.47+0.07). The results are submitted in a form of a diagram.

  14. Physical characteristics of bright Class I methanol masers

    NASA Astrophysics Data System (ADS)

    Leurini, S.; Menten, K. M.; Walmsley, C. M.

    2016-07-01

    Context. Class I methanol masers are thought to be tracers of interstellar shock waves. However, they have received relatively little attention mostly as a consequence of their low luminosities compared to other maser transitions. This situation has changed recently and Class I methanol masers are now routinely used as signposts of outflow activity especially in high extinction regions. The recent detection of polarisation in Class I lines now makes it possible to obtain direct observational information about magnetic fields in interstellar shocks. Aims: We make use of newly calculated collisional rate coefficients for methanol to investigate the excitation of Class I methanol masers and to reconcile the observed Class I methanol maser properties with model results. Methods: We performed large velocity gradient calculations with a plane-parallel slab geometry appropriate for shocks to compute the pump and loss rates which regulate the interactions of the different maser systems with the maser reservoir. We study the dependence of the pump rate coefficient, the maser loss rate, and the inversion efficiency of the pumping scheme of several Class I masers on the physics of the emitting gas. Results: We predict inversion in all transitions where maser emission is observed. Bright Class I methanol masers are mainly high-temperature (>100 K) high-density (n(H2) ~ 107-108 cm-3) structures with methanol maser emission measures, ξ, corresponding to high methanol abundances close to the limits set by collisional quenching. Our model predictions reproduce reasonably well most of the observed properties of Class I methanol masers. Class I masers in the 25 GHz series are the most sensitive to the density of the medium and mase at higher densities than other lines. Moreover, even at high density and high methanol abundances, their luminosity is predicted to be lower than that of the 44 GHz and 36 GHz masers. Our model predictions also reflect the observational result that the

  15. AC plasma torch with a H2O/CO2/CH4 mix as the working gas for methane reforming

    NASA Astrophysics Data System (ADS)

    Rutberg, Ph G.; Nakonechny, Gh V.; Pavlov, A. V.; Popov, S. D.; Serba, E. O.; Surov, A. V.

    2015-06-01

    This paper presents results of investigations implemented during construction of the three-phase ac plasma torch working on a mixture of steam with carbon dioxide and methane (H2O/CO2/CH4) with power upto 120 kW. Such thermal plasma generators are needed in industrial technologies for methane reforming with the aim of producing the syngas comprising of the hydrogen and carbon mono-oxide (H2/CO). It was shown that during plasma torch work there are two character parts of the high-voltage arc. In these parts, the arc column has a different diameter and temperature about (8.5  -  8.3) · 103 K and (10.5  -  10.0) · 103 K, respectively. The plasma torch output characteristics have been obtained for working regimes with various flow rates of the methane (0.0-0.8 g s-1) in the plasma-forming mix and constant flow rates of the carbon dioxide and water steam (each of 3.0 g s-1). For the mentioned mix of gases, the unit generates plasma with the mass-average temperature ~(3.2-3.3) · 103K and the thermal efficiency ~94-96%. This provides effective reforming of methane.

  16. SMALL SCALE FUEL CELL AND REFORMER SYSTEMS FOR REMOTE POWER

    SciTech Connect

    Dennis Witmer

    2003-12-01

    New developments in fuel cell technologies offer the promise of clean, reliable affordable power, resulting in reduced environmental impacts and reduced dependence on foreign oil. These developments are of particular interest to the people of Alaska, where many residents live in remote villages, with no roads or electrical grids and a very high cost of energy, where small residential power systems could replace diesel generators. Fuel cells require hydrogen for efficient electrical production, however. Hydrogen purchased through conventional compressed gas suppliers is very expensive and not a viable option for use in remote villages, so hydrogen production is a critical piece of making fuel cells work in these areas. While some have proposed generating hydrogen from renewable resources such as wind, this does not appear to be an economically viable alternative at this time. Hydrogen can also be produced from hydrocarbon feed stocks, in a process known as reforming. This program is interested in testing and evaluating currently available reformers using transportable fuels: methanol, propane, gasoline, and diesel fuels. Of these, diesel fuels are of most interest, since the existing energy infrastructure of rural Alaska is based primarily on diesel fuels, but this is also the most difficult fuel to reform, due to the propensity for coke formation, due to both the high vaporization temperature and to the high sulfur content in these fuels. There are several competing fuel cell technologies being developed in industry today. Prior work at UAF focused on the use of PEM fuel cells and diesel reformers, with significant barriers identified to their use for power in remote areas, including stack lifetime, system efficiency, and cost. Solid Oxide Fuel Cells have demonstrated better stack lifetime and efficiency in demonstrations elsewhere (though cost still remains an issue), and procuring a system for testing was pursued. The primary function of UAF in the fuel cell

  17. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  18. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  19. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  20. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  1. Conceptual process design and economics for the production of high-octane gasoline blendstock via indirect liquefaction of biomass through methanol/dimethyl ether intermediates

    SciTech Connect

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit; Hensley, Jesse; Snowden-Swan, Lesley J.; Humbird, David; Schaidle, Joshua; Biddy, Mary

    2015-10-28

    This paper describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas via indirect gasification, gas clean-up via reforming of tars and other hydrocarbons, catalytic conversion of syngas to methanol, methanol dehydration to dimethyl ether (DME), and the homologation of DME over a zeolite catalyst to high-octane gasoline-range hydrocarbon products. The current process configuration has similarities to conventional methanol-to-gasoline (MTG) technologies, but there are key distinctions, specifically regarding the product slate, catalysts, and reactor conditions. A techno-economic analysis is performed to investigate the production of high-octane gasoline blendstock. The design features a processing daily capacity of 2000 tonnes (2205 short tons) of dry biomass. The process yields 271 liters of liquid fuel per dry tonne of biomass (65 gal/dry ton), for an annual fuel production rate of 178 million liters (47 MM gal) at 90% on-stream time. The estimated total capital investment for an nth-plant is $438 million. The resulting minimum fuel selling price (MFSP) is $0.86 per liter or $3.25 per gallon in 2011 US dollars. A rigorous sensitivity analysis captures uncertainties in costs and plant performance. Sustainability metrics for the conversion process are quantified and assessed. The potential premium value of the high-octane gasoline blendstock is examined and found to be at least as competitive as fossil-derived blendstocks. A simple blending strategy is proposed to demonstrate the potential for blending the biomass-derived blendstock with petroleum-derived intermediates. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts and Biorefining published by Society of Industrial Chemistry and John Wiley & Sons Ltd.

  2. Conceptual process design and economics for the production of high-octane gasoline blendstock via indirect liquefaction of biomass through methanol/dimethyl ether intermediates

    DOE PAGES

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit; ...

    2015-10-28

    This paper describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas via indirect gasification, gas clean-up via reforming of tars and other hydrocarbons, catalytic conversion of syngas to methanol, methanol dehydration to dimethyl ether (DME), and the homologation of DME over a zeolite catalyst to high-octane gasoline-range hydrocarbon products. The current process configuration has similarities to conventional methanol-to-gasoline (MTG) technologies, but there are key distinctions, specifically regarding the product slate, catalysts, and reactor conditions. A techno-economicmore » analysis is performed to investigate the production of high-octane gasoline blendstock. The design features a processing daily capacity of 2000 tonnes (2205 short tons) of dry biomass. The process yields 271 liters of liquid fuel per dry tonne of biomass (65 gal/dry ton), for an annual fuel production rate of 178 million liters (47 MM gal) at 90% on-stream time. The estimated total capital investment for an nth-plant is $438 million. The resulting minimum fuel selling price (MFSP) is $0.86 per liter or $3.25 per gallon in 2011 US dollars. A rigorous sensitivity analysis captures uncertainties in costs and plant performance. Sustainability metrics for the conversion process are quantified and assessed. The potential premium value of the high-octane gasoline blendstock is examined and found to be at least as competitive as fossil-derived blendstocks. A simple blending strategy is proposed to demonstrate the potential for blending the biomass-derived blendstock with petroleum-derived intermediates. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts and Biorefining published by Society of Industrial Chemistry and John Wiley & Sons Ltd.« less

  3. Results from the second year of operation of the Federal Methanol Fleet at Oak Ridge National Laboratory

    SciTech Connect

    West, B.H.; McGill ); Hillis, S.L. )

    1990-09-01

    The Oak Ridge National Laboratory has completed its second year of operation of ten vehicles for the Federal Methanol Fleet Project; five of the vehicles are fueled with methanol. Over 56,000 miles were accumulated on the vehicles in the second year bringing the total to over 152,000 miles. Energy consumption for the methanol cars was slightly higher than that of the gasoline cars again this year, most likely as a result of shorter average trip lengths for the methanol gas. Iron and lead have accumulated at greater rates in the lubricating oil of the methanol cars. Driver's ratings of vehicles reflected some dissatisfaction with the cold-weather performance of the methanol cars, but the cars have no special provisions for cold weather starting, and the fuel vapor pressure has not been tailored to the season as at other test sites. Otherwise, drivers' opinions of the methanol cars have been favorable. 13 refs., 4 figs., 10 tabs.

  4. Building carbon–carbon bonds using a biocatalytic methanol condensation cycle

    PubMed Central

    Bogorad, Igor W.; Chen, Chang-Ting; Theisen, Matthew K.; Wu, Tung-Yun; Schlenz, Alicia R.; Lam, Albert T.; Liao, James C.

    2014-01-01

    Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C–C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through 13C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives. PMID:25355907

  5. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle.

    PubMed

    Bogorad, Igor W; Chen, Chang-Ting; Theisen, Matthew K; Wu, Tung-Yun; Schlenz, Alicia R; Lam, Albert T; Liao, James C

    2014-11-11

    Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C-C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through (13)C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives.

  6. Reforming Again: Now Teachers

    ERIC Educational Resources Information Center

    Marx, Ronald W.

    2014-01-01

    Background: Educational reform responds to local and national pressures to improve educational outcomes, and reform efforts cycle as similar pressures recur. Currently, reform efforts focus on teachers, even though confidence in a host of American social institutions is dropping. One of the most widespread reforms regarding teachers is the…

  7. X-ray photodesorption from methanol ice

    NASA Astrophysics Data System (ADS)

    Andrade, D. P. P.; Rocco, M. L. M.; Boechat-Roberty, H. M.

    2010-12-01

    The abundances of molecules and ions depend on the mechanisms of their formation and destruction that can occur both in the gas phase and in the condensed phase on grain surfaces. Photodesorption of grain surface species may explain the relative high abundances of gaseous neutral or ionic species detected in cold environments. X-ray photons from young stars are able to penetrate cold and dense regions inside protoplanetary discs, leading to molecular dissociation and desorption of photo-products from icy molecules on grain mantles. This paper aims to experimentally investigate the contribution of ion desorption from methanol ice stimulated by soft X-rays for producing chemically active ions in protoplanetary discs. The measurements were carried out at the Brazilian synchrotron light source (LNLS), using X-ray photons at the methanol O1s resonance energy (537 eV). Some possible pathways for the H- and O- formation from singly charged desorbed ions are suggested. The photodesorption yields for positive and negative ions were determined and compared with previous results obtained using different ionization agents, such as electrons, heavy ions and photons at different energies. We also correlate our results to the ion production in protoplanetary discs.

  8. A novel process for methanol synthesis

    SciTech Connect

    Tierney, J.W.; Wender, I.

    1990-01-01

    A bench-salce reactor is being used to conduct studies of the conversion of synthesis gas to methanol by a novel process. During the last quarter, we investigated the nature of the reactions involved and the nature of the Cu-chromite catalyst being used. There is evidence that methanol is formed via a two step reaction with a methyl formate intermediate rather than by the direct hydrogenation of CO. The carbonylation reaction predominantly takes place in the liquid phase while the hydrogenolysis reaction is restricted to the surface of Cu-chromite. At steady state, the carbonylation reaction taking place in the region close to the Cu-chromite surface is probably the main source of MeF. This model also explains the increased tolerance of the process to CO. A mechanistic model is proposed to explain the interaction of different species in the reaction mixture. The topography of the Cu-chromite surface is also investigated by X-ray diffraction and scanning electron microscopy. 15 refs., 5 figs., 1 tab.

  9. Biodiesel production by supercritical process with crude bio-methanol prepared by wood gasification.

    PubMed

    Isayama, Yohei; Saka, Shiro

    2008-07-01

    In order to prepare a genuine biodiesel, it is essential to use methanol prepared from biomass but not natural gas for biodiesel production. Thus, we have proposed to use crude bio-methanol produced by wood gasification for biodiesel production. Since such a bio-methanol contains some impurities, an effect of its impurities was studied on the biodiesel production by supercritical method. In general, impurities in crude bio-methanol are reported to include methyl formate, ethanol, 1-butanol, diisopropyl ether, water, etc. Triglycerides and oleic acids were, thus, treated with these impurities under supercritical conditions. As a result, it was found that methyl formate, ethanol and 1-butanol could convert them to fatty acid alkyl esters (BDF), whereas no conversion was achieved with diisopropyl ether. Thus, crude bio-methanol can be used for BDF production as a substitute for methanol from fossil resources. However, due to more efficient reaction, crude bio-methanol can be more applicable to the two-step supercritical methanol process, consisting of hydrolysis of triglycerides and subsequent esterification of fatty acids, compared with the one-step supercritical methanol process, where transesterification of triglycerides is a major reaction.

  10. Conversion of methanol to gasoline extended project: methanol to olefins modification and operation of the demonstration plant milestone report

    SciTech Connect

    Johnson, D.; Soto, J.; Avidan, A.; Gierlich, H.; Thiagaraja, N.

    1986-04-01

    This milestone report documents operation of the fluid-bed Methanol-to Olefins (MTO process in a 100 BPD demonstration plant. The MTO process converts methanol to light olefins over Mobil's shape selective zeolite catalyst. High octane gasoline is a coproduct. The olefin mixture produced is especially well suited for production of premium diesel or jet fuel via Mobil's Olefins to Gasoline and Distillate (MOGD) Process. The scope of this project, however, covered only the MTO process. Specific conclusions which can be drawn from the 100 BPD demonstration plant operation and the 4 BPD pilot plant pretests, are: Total olefins yield in both units were within 1 to 2 wt% when compared at similar conditions; methanol breakthrough occurred at a lower propane/propene ratio, indicating better conversion efficiency, in the 100 BPT unit; stable steady-state operation with continuous regeneration and fresh catalyst makeup was successfully demonstrated in the 100 BPD plant; lower pressure increased total olefins yield at constant methanol conversion. Pressure could not be reduced below about 2.2 bar in the 100 BPD demonstration plant, due to bottlenecks in the gas compressor and in heat removal; and higher reactor temperatures increased total olefins yield at constant methanol conversion. however, higher reactor temperatures also increased light paraffins yield.

  11. Effect of operating parameters and anode gas impurities upon polymer electrolyte fuel cells

    SciTech Connect

    Weisbrod, K.R.; Vanderborgh, N.E.

    1994-07-01

    PEM fuel cells are actively under development for transportation and other applications. Integration of a PEM fuel cell stack with a methanol reformer requires an understanding of single cell performance under a range of operating conditions using anode gas contaminated with impurities. The effect of temperature, pressure, and anode gas impurities on single cell PEM performance was investigated with platinum black electrodes. Single cell performance remained unchanged as temperature was varied between 80 and 100 at 3 atm pressure. High water partial pressures at 120C produced a mass transfer limiting current. While operation at 120C did not reverse CO{sub 2} poisoning, anode air addition proved effective. Air injection also decreased CO poisoning at injected concentrations up to 200 ppm CO. Higher single cell tolerance was observed for CH{sub 3}OH than CO. Up to 1 mole % CH{sub 3}OH in the gas phase reduced the current density by less than 10%.

  12. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons via Indirect Liquefaction. Thermochemical Research Pathway to High-Octane Gasoline Blendstock Through Methanol/Dimethyl Ether Intermediates

    SciTech Connect

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit; Hensley, Jesse; Schaidle, Josh; Biddy, Mary; Humbird, David; Snowden-Swan, Lesley J.; Ross, Jeff; Sexton, Danielle; Yap, Raymond; Lukas, John

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s (BETO’s) efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from lignocellulosic biomass feedstocks. The research funded by BETO is designed to advance the state of technology of biomass feedstock supply and logistics, conversion, and overall system sustainability. It is expected that these research improvements will be made within the 2022 timeframe. As part of their involvement in this research and development effort, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory investigate the economics of conversion pathways through the development of conceptual biorefinery process models and techno-economic analysis models. This report describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas or syngas via indirect gasification, gas cleanup, catalytic conversion of syngas to methanol intermediate, methanol dehydration to dimethyl ether (DME), and catalytic conversion of DME to high-octane, gasoline-range hydrocarbon blendstock product. The conversion process configuration leverages technologies previously advanced by research funded by BETO and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via reforming of tars and other hydrocarbons is one of the key technology advancements realized as part of this prior research and 2012 demonstrations. The process described in this report evaluates a new technology area for the downstream utilization of clean biomass-derived syngas for the production of high-octane hydrocarbon products through methanol and DME intermediates. In this process, methanol undergoes dehydration to

  13. Photoionization of methanol and formaldehyde

    NASA Technical Reports Server (NTRS)

    Warneck, P.

    1971-01-01

    Photoions produced in methanol and formaldehyde by radiation in the spectral region 450-1150 A were analyzed mass spectrometrically, and their relative yields were determined as a function of wavelength. First ionization potentials were determined, and the ion yield curves were interpreted in terms of ionization processes in conjunction with other data. Fragment ions were detected on mass numbers of 31, 30, 29, 15, and 14 for methanol, and 29, 2, and 1 for formaldehyde. The associated appearance potentials were determined and were used to calculate heats of formation of the ions CH2OH(+) and HCO(+), and the radicals CH3, CH2, and HCO.

  14. Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether

    NASA Astrophysics Data System (ADS)

    Faungnawakij, Kajornsak; Kikuchi, Ryuji; Eguchi, Koichi

    Thermodynamic analysis of dimethyl ether steam reforming (DME SR) was investigated for carbon formation boundary, DME conversion, and hydrogen yield for fuel cell application. The equilibrium calculation employing Gibbs free minimization was performed to figure out the required steam-to-carbon ratio (S/C = 0-5) and reforming temperature (25-1000 °C) where coke formation was thermodynamically unfavorable. S/C, reforming temperature and product species strongly contributed to the coke formation and product composition. When chemical species DME, methanol, CO 2, CO, H 2, H 2O and coke were considered, complete conversion of DME and hydrogen yield above 78% without coke formation were achieved at the normal operating temperatures of molten carbonate fuel cell (600 °C) and solid oxide fuel cell (900 °C), when S/C was at or above 2.5. When CH 4 was favorable, production of coke and that of hydrogen were significantly suppressed.

  15. A novel process for methanol synthesis

    SciTech Connect

    Tierney, J.W.; Wender, I.

    1993-02-12

    A bench-scale reactor is being used to conduct studies of the conversion of synthesis gas to methanol (MeOH) in the liquid phase by a novel process. In previous reports, we provided evidence for a two step reaction in series, the carbonylation reaction mainly takng place close and the hydrogenolysis reaction taking place on the surface of the copper chromate. The interaction between the two catalyst enhances the rate of MeOH formation. In the last quarter, we showed that under present operating conditions, the methyl formate (MeOH) concentration is not in equilibrium and hence both the carboxylation and the hydrogenolysis reactions influence the rate of MEOH formation. The activities of other alkali and alkaline earth compounds as catalysts, the effect of water and the controlling reaction in the concurrent synthesis is described in this report.

  16. Catalytic decomposition of methanol for onboard hydrogen generation

    NASA Technical Reports Server (NTRS)

    Brabbs, T.

    1978-01-01

    The steam reformation of an equimolar mixture of methanol and water on a copper chromite catalyst was studied at three furnace temperatures and at feed space velocities from 800 to 2600 per hour. The hydrogen space velocity could be related to the reactor temperature by the equation Sv = A exp (-omega T), where A and omega are constants determined for each value of alpha and T is temperature. At a methanol conversion of 0.87 and a reactor temperature of 589 K, the extrapolated value of the hydrogen space velocity was 9400 per hour. This velocity was used to estimate the size of an onboard hydrogen reactor for automotive applications. Such a reactor would need only about 0.8 liter of catalyst to produce 7630 STP liters (1.5 lb) of hydrogen per hour. This quantity of catalyst would fit into nine tubes 17.8 centimeters along and 2.54 centimeters in inside diameter, which is smaller than most mufflers. The reactor products would contain 12 to 13 percent more chemical energy than the incoming methanol and water.

  17. Printable enzyme-embedded materials for methane to methanol conversion

    SciTech Connect

    Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.; DeOtte, Joshua R.; Oakdale, James S.; Maiti, Amitesh; Lenhardt, Jeremy M.; Sirajuddin, Sarah; Rosenzweig, Amy C.; Baker, Sarah E.

    2016-06-15

    An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scale structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions.

  18. Printable enzyme-embedded materials for methane to methanol conversion

    DOE PAGES

    Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.; ...

    2016-06-15

    An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scalemore » structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions.« less

  19. Printable enzyme-embedded materials for methane to methanol conversion

    PubMed Central

    Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.; DeOtte, Joshua R.; Oakdale, James S.; Maiti, Amitesh; Lenhardt, Jeremy M.; Sirajuddin, Sarah; Rosenzweig, Amy C.; Baker, Sarah E.

    2016-01-01

    An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scale structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions. PMID:27301270

  20. [Study of blood concentration analysis for formate in acute methanol poisoning].

    PubMed

    Morikawa, Go; Okazawa, Katsuko; Shimizu, Takahiro; Otagiri, Sayoko; Fuwa, Fumiko; Nakagawa, Saori; Yamato, Susumu

    2015-09-01

    A 53-year-old woman ingested about 300 mL of 95% methanol. After immediate ethanol antagonist therapy and hemodialysis, she recovered completely. Few days later, the plasma concentration of methanol and formate was measured. A gas chromatography was used for the plasma methanol concentration measurement, and a colorimetric method was used for plasma formate concentration measurement (Formate Colorimetric Assay Kit; BioVision, California, USA). Patient's plasma methanol concentration before hemodialysis was 676.9 mg/dL and plasma formate concentration was 16.9 mg/dL. By removing blood methanol and formate using hemodialysis before formate accumulations in the body, the patient was discharged without any sequelae. We were able to obtain correlation between a gas chromatography and colorimetric method without gas chromatography-mass spectrometry, with good correlation coefficients. The sensitivity was sufficient for analyzing blood sample. Monitoring formate concentration is useful in determining the treatment and evaluating the prognosis of methanol poisoning. We suggest that this colorimetric method is useful in a facility with no access to a gas chromatography in order to measure a plasma formate concentration.

  1. Production of methanol from heat-stressed pepper and corn leaf disks

    SciTech Connect

    Anderson, J.A. . Dept. of Horticulture and Landscape Architecture)

    1994-05-01

    Early Calwonder'' pepper (Capsicum annuum L.) and Jubilee'' corn (Zea mays L.) leaf disks exposed to high temperature stress produced ethylene, ethane, methanol, acetaldehyde, and ethanol based on comparison of retention times during gas chromatography to authentic standards. Methanol, ethanol, and acetaldehyde were also identified by mass spectroscopy. Corn leaf disks produced lower levels of ethylene, ethane, and methanol, but more acetaldehyde and ethanol than pepper. Production of ethane, a by-product of lipid peroxidation, coincided with an increase in electrolyte leakage (EL) in pepper but not in corn. Compared with controls, pepper leaf disks infiltrated with linolenic acid evolved significantly greater amounts of ethane, acetaldehyde, and methanol and similar levels of ethanol. EL and volatile hydrocarbon production were not affected by fatty acid infiltration in corn. Infiltration of pepper leaves with buffers increasing in pH from 5.5 to 9.5 increased methanol production.

  2. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  3. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  4. Effect of SiO 2-ZrO 2 supports prepared by a grafting method on hydrogen production by steam reforming of liquefied natural gas over Ni/SiO 2-ZrO 2 catalysts

    NASA Astrophysics Data System (ADS)

    Seo, Jeong Gil; Youn, Min Hye; Song, In Kyu

    SiO 2-ZrO 2 supports with various zirconium contents are prepared by grafting a zirconium precursor onto the surface of commercial Carbosil silica. Ni(20 wt.%)/SiO 2-ZrO 2 catalysts are then prepared by an impregnation method, and are applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of SiO 2-ZrO 2 supports on the performance of the Ni(20 wt.%)/SiO 2-ZrO 2 catalysts is investigated. SiO 2-ZrO 2 prepared by a grafting method serves as an efficient support for the nickel catalyst in the steam reforming of LNG. Zirconia enhances the resistance of silica to steam significantly and increases the interaction between nickel and the support, and furthermore, prevents the growth of nickel oxide species during the calcination process through the formation of a ZrO 2-SiO 2 composite structure. The crystalline structures and catalytic activities of the Ni(20 wt.%)/SiO 2-ZrO 2 catalysts are strongly influenced by the amount of zirconium grafted. The conversion of LNG and the yield of hydrogen show volcano-shaped curves with respect to zirconium content. Among the catalysts tested, the Ni(20 wt.%)/SiO 2-ZrO 2 (Zr/Si = 0.54) sample shows the best catalytic performance in terms of both LNG conversion and hydrogen yield. The well-developed and pure tetragonal phase of ZrO 2-SiO 2 (Zr/Si = 0.54) appears to play an important role in the adsorption of steam and subsequent spillover of steam from the support to the active nickel. The small particle size of the metallic nickel in the Ni(20 wt.%)/SiO 2-ZrO 2 (Zr/Si = 0.54) catalyst is also responsible for its high performance.

  5. Safety concerns and suggested design approaches to the HTGR Reformer process concept

    SciTech Connect

    Green, R.C.

    1981-09-01

    This report is a safety review of the High Temperature Gas-Cooled Reactor Reformer Application Study prepared by Gas-Cooled Reactor Associates (GCRA) of La Jolla, California. The objective of this review was to identify safety concerns and suggests design approaches to minimize risk in the High Temperature Gas-Cooled Reactor Reformer (HTGR-R) process concept.

  6. Air Breathing Direct Methanol Fuel Cell

    DOEpatents

    Ren; Xiaoming

    2003-07-22

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  7. Fatal methanol poisoning: features of liver histopathology.

    PubMed

    Akhgari, Maryam; Panahianpour, Mohammad Hadi; Bazmi, Elham; Etemadi-Aleagha, Afshar; Mahdavi, Amirhosein; Nazari, Saeed Hashemi

    2013-03-01

    Methanol poisoning has become a considerable problem in Iran. Liver can show some features of poisoning after methanol ingestion. Therefore, our concern was to examine liver tissue histopathology in fatal methanol poisoning cases in Iranian population. In this study, 44 cases of fatal methanol poisoning were identified in a year. The histological changes of the liver were reviewed. The most striking features of liver damage by light microscopy were micro-vesicular steatosis, macro-vesicular steatosis, focal hepatocyte necrosis, mild intra-hepatocyte bile stasis, feathery degeneration and hydropic degeneration. Blood and vitreous humor methanol concentrations were examined to confirm the proposed history of methanol poisoning. The majority of cases were men (86.36%). In conclusion, methanol poisoning can cause histological changes in liver tissues. Most importantly in cases with mean blood and vitreous humor methanol levels greater than 127 ± 38.9 mg/dL more than one pathologic features were detected.

  8. Methanol along the path from envelope to protoplanetary disc

    NASA Astrophysics Data System (ADS)

    Drozdovskaya, Maria N.; Walsh, Catherine; Visser, Ruud; Harsono, Daniel; van Dishoeck, Ewine F.

    2014-11-01

    Interstellar methanol is considered to be a parent species of larger, more complex organic molecules. A physicochemical simulation of infalling parcels of matter is performed for a low-mass star-forming system to trace the chemical evolution from cloud to disc. An axisymmetric 2D semi-analytic model generates the time-dependent density and velocity distributions, and full continuum radiative transfer is performed to calculate the dust temperature and the UV radiation field at each position as a function of time. A comprehensive gas-grain chemical network is employed to compute the chemical abundances along infall trajectories. Two physical scenarios are studied, one in which the dominant disc growth mechanism is viscous spreading, and another in which continuous infall of matter prevails. The results show that the infall path influences the abundance of methanol entering each type of disc, ranging from complete loss of methanol to an enhancement by a factor of >1 relative to the prestellar phase. Critical chemical processes and parameters for the methanol chemistry under different physical conditions are identified. The exact abundance and distribution of methanol is important for the budget of complex organic molecules in discs, which will be incorporated into forming planetary system objects such as protoplanets and comets. These simulations show that the comet-forming zone contains less methanol than in the precollapse phase, which is dominantly of prestellar origin, but also with additional layers built up in the envelope during infall. Such intriguing links will soon be tested by upcoming data from the Rosetta mission.

  9. Performance of a Diesel, JP-8 Reformer

    DTIC Science & Technology

    2006-11-01

    reformate gas that can be directly used by the fuel cells. To reduce logistics problem, the Army has one logistic fuel ( Diesel or JP-8) policy. Diesel ...significantly higher fuel to electrons efficiency . More detailed results will be presented at the conference. 2. MICROLITH TECHNOLOGY The heat and mass...and H2O:C ratios was studied with both JP-8 and diesel . The reformate gas was analyzed by a GC at various S:C and O:C ratios, inlet temperatures and

  10. Integrated reformer and shift reactor

    DOEpatents

    Bentley, Jeffrey M.; Clawson, Lawrence G.; Mitchell, William L.; Dorson, Matthew H.

    2006-06-27

    A hydrocarbon fuel reformer for producing diatomic hydrogen gas is disclosed. The reformer includes a first reaction vessel, a shift reactor vessel annularly disposed about the first reaction vessel, including a first shift reactor zone, and a first helical tube disposed within the first shift reactor zone having an inlet end communicating with a water supply source. The water supply source is preferably adapted to supply liquid-phase water to the first helical tube at flow conditions sufficient to ensure discharge of liquid-phase and steam-phase water from an outlet end of the first helical tube. The reformer may further include a first catalyst bed disposed in the first shift reactor zone, having a low-temperature shift catalyst in contact with the first helical tube. The catalyst bed includes a plurality of coil sections disposed in coaxial relation to other coil sections and to the central longitudinal axis of the reformer, each coil section extending between the first and second ends, and each coil section being in direct fluid communication with at least one other coil section.

  11. Enhanced methanol utilization in direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2001-10-02

    The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

  12. Optimization of manifold design for 1 kW-class flat-tubular solid oxide fuel cell stack operating on reformed natural gas

    NASA Astrophysics Data System (ADS)

    Rashid, Kashif; Dong, Sang Keun; Khan, Rashid Ali; Park, Seung Hwan

    2016-09-01

    This study focuses on optimizing the manifold design for a 1 kW-class flat-tubular solid oxide fuel cell stack by performing extensive three-dimensional numerical simulations on numerous manifold designs. The stack flow uniformity and the standard flow deviation indexes are implemented to characterize the flow distributions in the stack and among the channels of FT-SOFC's, respectively. The results of the CFD calculations demonstrate that the remodeled manifold without diffuser inlets and 6 mm diffuser front is the best among investigated designs with uniformity index of 0.996 and maximum standard flow deviation of 0.423%. To understand the effect of manifold design on the performance of stack, both generic and developed manifold designs are investigated by applying electrochemical and internal reforming reactions modeling. The simulation results of the stack with generic manifold are validated using experimental data and then validated models are adopted to simulate the stack with the developed manifold design. The results reveal that the stack with developed manifold design achieves more uniform distribution of species, temperature, and current density with comparatively lower system pressure drop. In addition, the results also showed ∼8% increase in the maximum output power due to the implementation of uniform fuel velocity distributions in the cells.

  13. Fermentation of methanol in the sheep rumen.

    PubMed

    Pol, A; Demeyer, D I

    1988-03-01

    Sheep fed a hay-concentrate diet were adapted to pectin administration and ruminal infusion of methanol. Both treatments resulted in a strong increase in the rate of methanogenesis from methanol. Quantitative data show that methanol was exclusively converted into methane. Treatments did not influence ruminal volatile fatty acid percentages.

  14. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  15. Density functional study of methanol decomposition on clean and O or OH adsorbed PdZn(111)

    NASA Astrophysics Data System (ADS)

    Huang, Yucheng; He, Xiang; Chen, Zhao-Xu

    2013-05-01

    Methanol is the future and clean fuel, and its chemistry on metal surfaces has received much attention. In this paper we explore methanol dissociation on the clean and O or OH covered PdZn(111) that mimics Pd/ZnO catalyst studied as a promising catalyst for methanol steam reforming, using density functional theory at PW91 level and slab model. Our study demonstrates that unlike the situation on Pd (111), methanol preferentially undergoes the O-H bond scission on the PdZn (111). The presence of O and OH species hinders the C-H bond dissociation, but significantly reduces the O-H bond-breaking barrier. The present results indicate that in the course of methanol steam reforming, methanol first loses the hydrogen atom of the hydroxyl group, forming methoxy. This step is greatly enhanced when there are O and/or OH species (i.e., after water dissociation happens). Analyses reveal that CH2O is formed mainly from CH3O, not from CH2OH.

  16. Effects of fuel evaporation on the octane number of methanol-gasoline blended fuels

    SciTech Connect

    Moran, D.P.

    1994-10-01

    A procedure is described to estimate the influence of end-gas temperature on Octane Number. Blending methanol with gasoline is known to cause a disproportionate increase in Research Octane Number, and this is found to correlate well with the evaporative cooling characteristics of these blends. The Motor Octane Number test eliminates evaporative effects, and the difference between the two test methods is evaluated in terms of evaporative cooling. It is concluded that the high heat of vaporization of methanol is largely responsible for the excellent RON performance of methanol-gasoline blended fuels. 17 refs., 11 refs., 2 tabs.

  17. Molecular dynamics study of liquid methanol with a flexible three-site model

    SciTech Connect

    Palinkas, G.; Hawlicka, E.; Heinzinger, K.

    1987-07-30

    A new potential is presented which describes the methanol-methanol interactions on the basis of a flexible three-site model. The intramolecular part of the potential has been derived from spectroscopic data. A molecular dynamics study has been performed with this potential at 286 K. The structural properties of liquid methanol calculated from the simulations are in good agreement with X-ray measurements. The average geometrical arrangement of nearest neighbors and their hydrogen bonding are discussed. The potential describes correctly the gas-liquid frequency shifts of the intramolecular vibrations. Several thermodynamic properties calculated from the simulation compare favorably with experimental results.

  18. Infrared spectroscopy of the methanol cation and its methylene-oxonium isomer

    SciTech Connect

    Mosley, J. D.; Young, J. W.; Duncan, M. A. E-mail: maduncan@uga.edu; Huang, M.; McCoy, A. B. E-mail: maduncan@uga.edu

    2015-03-21

    The carbenium ion with nominal formula [C,H{sub 4},O]{sup +} is produced from methanol or ethylene glycol in a pulsed-discharge supersonic expansion source. The ion is mass selected, and its infrared spectrum is measured from 2000 to 4000 cm{sup −1} using laser photodissociation spectroscopy and the method of rare gas atom tagging. Computational chemistry predicts two isomers, the methanol and methylene-oxonium cations. Predicted vibrational spectra based on scaled harmonic and reduced dimensional treatments are compared to the experimental spectra. The methanol cation is the only isomer produced when methanol is used as a precursor. When ethylene glycol is used as the precursor, methylene-oxonium is produced in addition to the methanol cation. Theoretical results at the CCSD(T)/cc-pVTZ level show that methylene-oxonium is lower in energy than methanol cation by 6.4 kcal/mol, and is in fact the global minimum isomer on the [C,H{sub 4},O]{sup +} potential surface. Methanol cation is trapped behind an isomerization barrier in our source, providing a convenient method to produce and characterize this transient species. Analysis of the spectrum of the methanol cation provides evidence for strong CH stretch vibration/torsion coupling in this molecular ion.

  19. Integrated hydrocarbon reforming system and controls

    DOEpatents

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Thijssen, Johannes; Davis, Robert; Papile, Christopher; Rumsey, Jennifer W.; Longo, Nathan; Cross, III, James C.; Rizzo, Vincent; Kleeburg, Gunther; Rindone, Michael; Block, Stephen G.; Sun, Maria; Morriseau, Brian D.; Hagan, Mark R.; Bowers, Brian

    2003-11-04

    A hydrocarbon reformer system including a first reactor configured to generate hydrogen-rich reformate by carrying out at least one of a non-catalytic thermal partial oxidation, a catalytic partial oxidation, a steam reforming, and any combinations thereof, a second reactor in fluid communication with the first reactor to receive the hydrogen-rich reformate, and having a catalyst for promoting a water gas shift reaction in the hydrogen-rich reformate, and a heat exchanger having a first mass of two-phase water therein and configured to exchange heat between the two-phase water and the hydrogen-rich reformate in the second reactor, the heat exchanger being in fluid communication with the first reactor so as to supply steam to the first reactor as a reactant is disclosed. The disclosed reformer includes an auxiliary reactor configured to generate heated water/steam and being in fluid communication with the heat exchanger of the second reactor to supply the heated water/steam to the heat exchanger.

  20. A survey of 44-GHz Class I methanol masers toward High Mass Protostellar Objects

    NASA Astrophysics Data System (ADS)

    Berenice Rodríguez Garza, Carolina; Kurtz, Stan

    2016-01-01

    We present preliminary results of 44-GHz Class I methanol maser observations made with the Very Large Array toward a sample of 55 High Mass Protostellar Objects. We found a 44% detection rate of methanol maser emission. We present a statistical description of our results, along with a comparison of the location of the 44-GHz masers with respect to shocked gas, traced by Extended Green Objects seen in the Spitzer/IRAC bands.

  1. A bottom-up perspective of the net land methanol flux: synthesis of global eddy covariance flux measurements

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, Georg; Amelynck, Crist; Ammann, Christof; Arneth, Almut; Bamberger, Ines; Goldstein, Allen; Hansel, Armin; Heinesch, Bernhard; Holst, Thomas; Hörtnagl, Lukas; Karl, Thomas; Neftel, Albrecht; McKinney, Karena; Munger, William; Schade, Gunnar; Schoon, Niels

    2014-05-01

    Methanol (CH3OH) is, after methane, the second most abundant VOC in the troposphere and globally represents nearly 20% of the total biospheric VOC emissions. With typical concentrations of 1-10 ppb in the continental boundary layer, methanol plays a crucial role in atmospheric chemistry, which needs to be evaluated in the light of ongoing changes in land use and climate. Previous global methanol budgets have approached the net land flux by summing up the various emission terms (namely primary biogenic and anthropogenic emissions, plant decay and biomass burning) and by subtracting dry and wet deposition, resulting in a net land flux in the range of 75-245 Tg y-1. The data underlying these budget calculations largely stem from small-scale leaf gas exchange measurements and while recently column-integrated remotely sensed methanol concentrations have become available for constraining budget calculations, there have been few attempts to contrast model calculations with direct net ecosystem-scale methanol flux measurements. Here we use eddy covariance methanol flux measurements from 8 sites in Europe and North America to study the magnitude of and controls on the diurnal and seasonal variability in the net ecosystem methanol flux. In correspondence with leaf-level literature, our data show that methanol emission and its strong environmental and biotic control (by temperature and stomatal conductance) prevailed at the more productive (agricultural) sites and at a perturbed forest site. In contrast, at more natural, less productive sites substantial deposition of methanol occurred, in particular during periods of surface wetness. These deposition processes are poorly represented by currently available temperature/light and/or production-driven modelling algorithms. A new framework for modelling the bi-directional land-atmosphere methanol exchange is proposed which accounts for the production of methanol in leaves, the regulation of leaf methanol emission by stomatal

  2. Catalytic steam gasification of bagasse for the production of methanol

    SciTech Connect

    Baker, E.G.; Brown, M.D.

    1983-12-01

    Pacific Northwest Laboratory (PNL) tested the catalytic gasification of bagasse for the production of methanol synthesis gas. The process uses steam, indirect heat, and a catalyst to produce synthesis gas in one step in fluidized bed gasifier. Both laboratory and process development scale (nominal 1 ton/day) gasifiers were used to test two different catalyst systems: (1) supported nickel catalysts and (2) alkali carbonates doped on the bagasse. This paper presents the results of laboratory and process development unit gasification tests and includes an economic evaluation of the process. 20 references, 6 figures, 9 tables.

  3. China's Health Reform Update.

    PubMed

    Liu, Gordon G; Vortherms, Samantha A; Hong, Xuezhi

    2017-03-20

    China experienced both economic and epistemological transitions within the past few decades, greatly increasing demand for accessible and affordable health care. These shifts put significant pressure on the existing outdated, highly centralized bureaucratic system. Adjusting to growing demands, the government has pursued a new round of health reforms since the late 2000s; the main goals are to reform health care financing, essential drug policies, and public hospitals. Health care financing reform led to universal basic medical insurance, whereas the public hospital reform required more complex measures ranging from changes in regulatory, operational, and service delivery settings to personnel management. This article reviews these major policy changes and the literature-based evidence of the effects of reforms on cost, access, and quality of care. It then highlights the outlook for future reforms. We argue that a better understanding of the unintended consequences of reform policies and of how practitioners' and patients' interests can be better aligned is essential for reforms to succeed.

  4. The direct methanol fuel cell

    SciTech Connect

    Halpert, G.; Narayanan, S.R.; Frank, H.

    1995-08-01

    This presentation describes the approach and progress in the ARPA-sponsored effort to develop a Direct Methanol, Liquid-Feed Fuel Cell (DMLFFC) with a solid Polymer Electrolyte Membrane (PEM) for battery replacement in small portable applications. Using Membrane Electrode Assemblies (MEAs) developed by JPL and Giner, significant voltage was demonstrated at relatively high current densities. The DMLFFC utilizes a 3 percent aqueous solution of methanol that is oxidized directly in the anode (fuel) chamber and oxygen (air) in the cathode chamber to produce water and significant power. The only products are water and CO{sub 2}. The ARPA effort is aimed at replacing the battery in the BA 5590 military radio.

  5. Startup procedure for reforming catalysts

    SciTech Connect

    McHale, W.D.; Schoennagel, H.J.

    1984-08-14

    Process for reforming a hydrocarbon charge under reforming conditions in a reforming zone containing a sulfur-sensitive metal containing reforming catalyst wherein over-cracking of the charge stock and excessive temperature rise in the reforming zone is suppressed by pre-conditioning the catalyst, prior to contact with the charge, with a reformate of specified octane number and aromatics content.

  6. The shock sensitivity of nitromethane/methanol mixtures

    NASA Astrophysics Data System (ADS)

    Bartram, Brian; Dattelbaum, Dana; Sheffield, Steve; Gibson, Lee

    2013-06-01

    The dilution of liquid explosives has multiple effects on detonation properties including an increase in critical diameter, spatiotemporal lengthening of the chemical reaction zone, and the development of propagating wave instabilities. Earlier detonation studies of NM/methanol mixtures have shown several effects of increasing dilution, including: 1) a continual increase in the critical diameter, 2) lowering of the Chapman-Jouguet detonation pressure, and 3) slowing of the steady detonation velocity (Koldunov et al., Comb. Expl. Shock Waves). Here, we present the results of a series of gas gun-driven plate-impact experiments to study the shock-to-detonation transition in NM/methanol mixtures. Embedded electromagnetic gauges were used to obtain in situ particle velocity wave profiles at multiple Lagrangian positions in the initiating explosive mixture. From the wave profiles obtained in each experiment, an unreacted Hugoniot locus, the initiation mechanism, and the overtake-time-to-detonation were obtained as a function of shock input condition for mixture concentrations from 100% NM to 50 wt%/50 wt% NM/methanol. Desensitization with dilution is less than expected. For example, little change in overtake time occurs in 80 wt%/20 wt% NM/methanol when compared with neat NM. Furthermore, the shock wave profiles from the gauges indicate that wave instabilities grow in as the overdriven detonation wave settles down following the shock-to-detonation transition.

  7. Determination of Methanol Photolysis Branching Ratios via Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Powers, Carson Reed; McCabe, Morgan N.; Widicus Weaver, Susanna L.

    2017-06-01

    Methanol, a ubiquitous molecule in the interstellar medium (ISM), has an important role in the production of more complex organic molecules (COMs) in both grain-surface and gas-phase interstellar chemistry. Some of the direct products of methanol photolysis, including radicals such as methoxy, hydroxymethyl, hydroxyl, and methyl, are believed to directly influence the relative abundances of important COMs that are both detected and theorized to be in the ISM. However, no laboratory study has been performed to date which has determined the individual branching ratios of these photolysis products, because many of the channels cannot be distinguished using traditional techniques. To address this problem, we used a 193 nm excimer laser to photolyze methanol in the throat of a supersonic expansion, and probed the resultant products using a millimeter/submillimeter direct absorption spectrometer. Each product channel has a unique rotational spectrum, allowing quantitative density and temperature information to be determined. This information can in turn be used to calculate the full set of branching ratios for methanol photolysis. In this talk we will present the results of this experiment and discuss the implications for astrochemistry.

  8. Methanol market slowly tightens as Brazil starts soaking up material

    SciTech Connect

    Young, I.

    1992-11-25

    Although the US methanol market's response to mandated oxygen requirements in reformulated gasoline has been disappointing, the European market has surprisingly been tightening in recent weeks and looks set for a price rise in first-quarter 1993. The tightness is being felt mainly in the Mediterranean market, where the Libyan methanol plant is running at only 70% because of problems with gas feedstock supplies. More significantly, the Brazilian government has now given the go-ahead for a yearlong extension on imports of methanol for use as an ethanol replacement in fuel blending. The new authorization sets a monthly import limit of 48,000 m.t. during that period. Libya is an important supplier of methanol to the Brazilian market and has already shipped about 20,000 m.t. since the authorization was given. Another major supplier to Brazil is Russia, from its two giant 750,000-m.t./year plants at Gubakha and Tomsk. The material is shipped from the terminal at Yuzhnyy on the Black Sea, in Ukrainian territory since the collapse of the Soviet Union.

  9. Generation Performance of a Fuel Cell Using Hydrogen and Di-methyl-ether (DME) Mixed Gas

    NASA Astrophysics Data System (ADS)

    Haraguchi, Tadao; Watanabe, Takashi; Yamashita, Masahiro; Tsutsumi, Yasuyuki; Yamashita, Susumu

    Di-methyl-ether (DME), an oxygenated hydrocarbon, can facilitate hydrogen manufacture by steam reforming reaction at low temperature. Methanol and DME steam reforming at 250-300°C, reforming DME into hydrogen, can be performed easily with small-scale and simple equipment. Whether the hydrogen output from the reformer for supply to the fuel cell includes DME, and how this affects the generation performance has yet to be confirmed. The purpose of this paper is to investigate the supply of a fuel cell with mixtures of DME and H2 in varying proportions and to clarify the effect on generation performance. Conclusions are as follows: (1) For a supply of DME and H2 mixed gas, DME is consumed after the H2 is consumed. By comparing the experimental values with theoretical values of consumption of pure H2, a mixture of DME and H2, and pure DME, it proved to be possible to roughly predict the experimental values by calculation. (2) The voltage value moved to near the DME voltage after the H2 was consumed, the current density increased after the H2 was consumed. (3) During continuous running the voltage load was observed to fluctuate.

  10. A novel process for methanol synthesis

    SciTech Connect

    Tierney, J.W.; Wender, I.

    1992-01-01

    A bench-scale reactor is being used to study the conversion of synthesis gas to methanol (MeOH) by a novel process. In previous reports, we provided evidence that the reaction takes place in two steps. A molecule of MeOH is first carbonylated to form methyl formate (MeF) which then reacts with H{sub 2} to form two molecules of MeOH. The second reaction occurs on the surface of a heterogeneous catalyst such as copper chromite, while the first reaction requires a homegenous catalyst such as potassium methoxide (KOMe) and takes place in a non-equilibrium region in the vicinity of the heterogeneous catalyst. A synergism between the two catalysts enhances the rate of MeOH formation. In this quarter, we studied the effect of reaction conditions on the rate of formation of MeF and the effect of CO{sub 2} concentration in the feed gas on the rate of MeOH synthesis. Kinetic studies were also initiated and rate expressions were examined.

  11. The toxicity of inhaled methanol vapors

    SciTech Connect

    Kavet, R.; Nauss, K.M. )

    1990-01-01

    Methanol could become a major automotive fuel in the U.S., and its use may result in increased exposure of the public to methanol vapor. Nearly all of the available information on methanol toxicity in humans relates to the consequences of acute, rather than chronic, exposures. Acute methanol toxicity evolves in a well-understood pattern and consists of an uncompensated metabolic acidosis with superimposed toxicity to the visual system. The toxic properties of methanol are rooted in the factors that govern both the conversion of methanol to formic acid and the subsequent metabolism of formate to carbon dioxide in the folate pathway. In short, the toxic syndrome sets in if formate generation continues at a rate that exceeds its rate of metabolism. Current evidence indicates that formate accumulation will not challenge the metabolic capacity of the folate pathway at the anticipated levels of exposure to automotive methanol vapor.117 references.

  12. Plasma-catalyzed fuel reformer

    DOEpatents

    Hartvigsen, Joseph J.; Elangovan, S.; Czernichowski, Piotr; Hollist, Michele

    2013-06-11

    A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.

  13. Anchors for Education Reforms

    ERIC Educational Resources Information Center

    Alok, Kumar

    2012-01-01

    Education reforms, considering their significance, deserve better methods than mere "trial and error." This article conceptualizes a network of six anchors for education reforms: education policy, education system, curriculum, pedagogy, assessment, and teacher education. It establishes the futility to reform anchors in isolation and…

  14. Sputnik Reform Revisited.

    ERIC Educational Resources Information Center

    Strickland, Charles E.

    1985-01-01

    Educational reforms being called for in the 1980's are compared to reforms of the 1950's. The Sputnik-inspired quest for quality called for reform in the content and structure of basic subjects. Current reports say that what educators are doing in the basic subjects is ok, but they need to do more. (RM)

  15. Anchors for Education Reforms

    ERIC Educational Resources Information Center

    Alok, Kumar

    2012-01-01

    Education reforms, considering their significance, deserve better methods than mere "trial and error." This article conceptualizes a network of six anchors for education reforms: education policy, education system, curriculum, pedagogy, assessment, and teacher education. It establishes the futility to reform anchors in isolation and…

  16. Time for Reform.

    ERIC Educational Resources Information Center

    Policy Brief, 1993

    1993-01-01

    Parents, teachers, and government officials agree that America's schools must be reformed. However, new research suggests that most reforms will not work without closer attention to one critical resource--time. This document presents findings of a study conducted by the Rand Institute on Education and Training, which found that any reform takes…

  17. History and Educational Reform.

    ERIC Educational Resources Information Center

    Hampel, Robert L.; And Others

    1996-01-01

    Features comments from Robert L. Hampel, William R. Johnson, Diane Ravitch, and David N. Plank on David Tyack and Larry Cuban's book, "Tinkering toward Utopia: A Century of Public School Reform." The book argues that educational reformers in the 20th century have attempted large-scale systemic reforms instituted from the top down. (MJP)

  18. School Reform Resource Manual.

    ERIC Educational Resources Information Center

    Mid-Continent Research for Education and Learning, Aurora, CO.

    This manual is designed to help schools make successful school reform a reality. It provides the background and perspectives necessary for a school constituency to understand the current climate of education reform in the United States and what is known about successful school reform. The manual also provides inquiry-based techniques for…

  19. History and Educational Reform.

    ERIC Educational Resources Information Center

    Hampel, Robert L.; And Others

    1996-01-01

    Features comments from Robert L. Hampel, William R. Johnson, Diane Ravitch, and David N. Plank on David Tyack and Larry Cuban's book, "Tinkering toward Utopia: A Century of Public School Reform." The book argues that educational reformers in the 20th century have attempted large-scale systemic reforms instituted from the top down. (MJP)

  20. Sputnik Reform Revisited.

    ERIC Educational Resources Information Center

    Strickland, Charles E.

    1985-01-01

    Educational reforms being called for in the 1980's are compared to reforms of the 1950's. The Sputnik-inspired quest for quality called for reform in the content and structure of basic subjects. Current reports say that what educators are doing in the basic subjects is ok, but they need to do more. (RM)

  1. Beyond Reform: Transformation

    ERIC Educational Resources Information Center

    Davidson, Jill

    2007-01-01

    The Coalition of Essential Schools (CES) is not a reform movement. To reform is to make a thing again; reformation implies a stasis that doesn't deliver enough for the educational future. This issue of Horace demonstrates that Essential schools and the districts and networks that support them are at various points in the journey of transformation,…

  2. STATISTICAL PROPERTIES OF 12.2 GHz METHANOL MASERS ASSOCIATED WITH A COMPLETE SAMPLE OF 6.7 GHz METHANOL MASERS

    SciTech Connect

    Breen, S. L.; Caswell, J. L.; Green, J. A.; Voronkov, M. A.; Ellingsen, S. P.; Fuller, G. A.; Quinn, L. J.; Avison, A.

    2011-06-01

    We present definitive detection statistics for 12.2 GHz methanol masers toward a complete sample of 6.7 GHz methanol masers detected in the Methanol Multibeam survey south of declination -20{sup 0}. In total, we detect 250 12.2 GHz methanol masers toward 580 6.7 GHz methanol masers. This equates to a detection rate of 43.1%, which is lower than that of previous significant searches of comparable sensitivity. Both the velocity ranges and the flux densities of the target 6.7 GHz sources surpass that of their 12.2 GHz companion in almost all cases. Eighty percent of the detected 12.2 GHz methanol maser peaks are coincident in velocity with the 6.7 GHz maser peak. Our data support an evolutionary scenario whereby the 12.2 GHz sources are associated with a somewhat later evolutionary stage than the 6.7 GHz sources devoid of this transition. Furthermore, we find that the 6.7 GHz and 12.2 GHz methanol sources increase in luminosity as they evolve. In addition to this, evidence for an increase in velocity range with evolution is presented. This implies that it is not only the luminosity but also the volume of gas conducive to the different maser transitions that increases as the sources evolve. Comparison with GLIMPSE mid-infrared sources has revealed a coincidence rate between the locations of the 6.7 GHz methanol masers and GLIMPSE point sources similar to that achieved in previous studies. Overall, the properties of the GLIMPSE sources with and without 12.2 GHz counterparts are similar. There is a higher 12.2 GHz detection rate toward those 6.7 GHz methanol masers that are coincident with extended green objects.

  3. Ceria-based model catalysts: fundamental studies on the importance of the metal–ceria interface in CO oxidation, the water–gas shift, CO 2 hydrogenation, and methane and alcohol reforming

    DOE PAGES

    Rodriguez, José A.; Grinter, David C.; Liu, Zongyuan; ...

    2017-02-17

    Model metal/ceria and ceria/metal catalysts have been shown to be excellent systems for studying fundamental phenomena linked to the operation of technical catalysts. In the last fifteen years, many combinations of well-defined systems involving different kinds of metals and ceria have been prepared and characterized using the modern techniques of surface science. So far most of the catalytic studies have been centered on a few reactions: CO oxidation, the hydrogenation of CO2, and the production of hydrogen through the water–gas shift reaction and the reforming of methane or alcohols. By using model catalysts it is been possible to examine inmore » detail correlations between the structural, electronic and catalytic properties of ceria–metal interfaces. In situ techniques (X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, infrared spectroscopy, scanning tunneling microscopy) have been combined to study the morphological changes under reaction conditions and investigate the evolution of active phases involved in the cleavage of C–O, C–H and C–C bonds. Several studies with model ceria catalysts have shown the importance of strong metal–support interactions. Generally, a substantial body of knowledge has been acquired and concepts have been developed for a more rational approach to the design of novel technical catalysts containing ceria.« less

  4. Ceria-based model catalysts: fundamental studies on the importance of the metal-ceria interface in CO oxidation, the water-gas shift, CO2 hydrogenation, and methane and alcohol reforming.

    PubMed

    Rodriguez, José A; Grinter, David C; Liu, Zongyuan; Palomino, Robert M; Senanayake, Sanjaya D

    2017-04-03

    Model metal/ceria and ceria/metal catalysts have been shown to be excellent systems for studying fundamental phenomena linked to the operation of technical catalysts. In the last fifteen years, many combinations of well-defined systems involving different kinds of metals and ceria have been prepared and characterized using the modern techniques of surface science. So far most of the catalytic studies have been centered on a few reactions: CO oxidation, the hydrogenation of CO2, and the production of hydrogen through the water-gas shift reaction and the reforming of methane or alcohols. Using model catalysts it has been possible to examine in detail correlations between the structural, electronic and catalytic properties of ceria-metal interfaces. In situ techniques (X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, infrared spectroscopy, scanning tunneling microscopy) have been combined to study the morphological changes under reaction conditions and investigate the evolution of active phases involved in the cleavage of C-O, C-H and C-C bonds. Several studies with model ceria catalysts have shown the importance of strong metal-support interactions. In general, a substantial body of knowledge has been acquired and concepts have been developed for a more rational approach to the design of novel technical catalysts containing ceria.

  5. Compatibility of selected ceramics with steam-methane reformer environments

    SciTech Connect

    Keiser, J.R.; Howell, M.; Williams, J.J.; Rosenberg, R.A.

    1996-04-01

    Conventional steam reforming of methane to synthesis gas (CO and H{sub 2}) hasa conversion efficiency of about 85%. Replacement of metal tubes in the reformer with ceramic tubes offers the potential for operation at temperatures high enough to increase the efficiency to 98-99%. However, the two candidate ceramic materials being given strongest consideration, sintered alpha Si carbide and Si carbide particulate-strengthened alumina, have been shown to react with components of the reformer environment. Extent of degradation as a function of steam partial pressure and exposure time has been studied, and results suggest limits under which these structural ceramics can be used in advanced steam-methane reformers.

  6. Pyrochlore catalysts for hydrocarbon fuel reforming

    DOEpatents

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-08-14

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2B2-y-zB'yB"zO7-.DELTA., where y>0 and z.gtoreq.0. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.

  7. Formaldehyde-methanol, metallic-oxide agents head scavengers list

    SciTech Connect

    Schaack, J.P.; Chan, F.

    1989-01-23

    Use of batch-operated chemical H/sub 2/S scavengers as an inexpensive gas-sweetening process may be an attractive alternative for moderately sour gas wells with small production remote from a gas-processing plant. This article begins a four-part series describing the most common H/sub 2/S scavengers available to the natural gas-producing industry. Advantages, disadvantages, health and safety aspects, case histories, design guidelines, and economics of these scavengers will be addressed. Currently available, nonregenerative scavengers for small-plant H/sub 2/S removal may be categorized into four groups: Formaldehyde-methanol-based, metallic oxide-based, caustic-based, and other processes.

  8. Once-through methanol project support study: Final report

    SciTech Connect

    Daniels, L.E.; Kelly, D.A.

    1987-12-01

    This report summarizes the results of a gas characterization study conducted at TVA's 200 tons of coal per day Ammonia From Coal facility under EPRI contract RP2563-3 (TV-50942A, subagreement No. 27). The main thrust of the study was to determine the levels of trace components that are potentially harmful to a methanol catalyst in unshifted synthesis gas from a partial-oxidation gasifier. The study also included an evaluation of the performance of gas cleanup equipment while using unshifted gas. Data were gathered during operation with three different coals: Utah, Illinois No. 6, and Pittsburgh No. 8. Additional data were gathered during an environmental characterization study using a western Maryland coal. 3 refs., 9 figs., 39 tabs.

  9. Photoprocessing of Methanol Ice: Formation and Liberation of CO

    NASA Astrophysics Data System (ADS)

    Smith, Houston H.; Mesko, AJ; Zinga, Samuel; Milam, Stefanie N.; Widicus Weaver, Susanna L.

    2017-06-01

    The relevance of interstellar ice to the chemical complexity of the interstellar medium has dramatically increased over the past 15 years. Previous astrochemical models including only gas-phase reactions were unable to explain the abundances of many complex organics observed in the interstellar medium. To correct for this, current models have added grain-surface chemistry as a source for some organic molecules that serve as building blocks to biologically-relevant complex organic compounds. We have therefore built a new experiment to investigate the gas-phase chemistry above interstellar ice analogs during thermal and photoprocessing using millimeter/submillimeter spectroscopy. Our first experiments have focused on pure methanol ices to 1) demonstrate this unique technique 2) optimize the experiment and 3) to compare our results with recent work by Cruz-Diaz et al. and Beltran et al. and do further analysis of products they are unable to measure (e.g. isomers CH3O and CH2OH). We have detected CO as a major product of methanol photoprocessing. But it is unclear from our initial results how the formation and photodesorption of CO from methanol ice is related to the ice temperature during the photoprocessing. We have therefore conducted two experiments: simultaneous photoprocessing and thermal desorption, and photoprocessing at a low temperature followed by temperature programmed desorption to liberate the CO. The initial results from both of these experiments will be presented in this talk, as well as the implications of these results for astrochemistry.

  10. Gradients in microbial methanol uptake: productive coastal upwelling waters to oligotrophic gyres in the Atlantic Ocean

    PubMed Central

    Dixon, Joanna L; Sargeant, Stephanie; Nightingale, Philip D; Colin Murrell, J

    2013-01-01

    Methanol biogeochemistry and its importance as a carbon source in seawater is relatively unexplored. We report the first microbial methanol carbon assimilation rates (k) in productive coastal upwelling waters of up to 0.117±0.002 d−1 (∼10 nmol l−1 d−1). On average, coastal upwelling waters were 11 times greater than open ocean northern temperate (NT) waters, eight times greater than gyre waters and four times greater than equatorial upwelling (EU) waters; suggesting that all upwelling waters upon reaching the surface (⩽20 m), contain a microbial population that uses a relatively high amount of carbon (0.3–10 nmol l−1 d−1), derived from methanol, to support their growth. In open ocean Atlantic regions, microbial uptake of methanol into biomass was significantly lower, ranging between 0.04–0.68 nmol l−1 d−1. Microbes in the Mauritanian coastal upwelling used up to 57% of the total methanol for assimilation of the carbon into cells, compared with an average of 12% in the EU, and 1% in NT and gyre waters. Several methylotrophic bacterial species were identified from open ocean Atlantic waters using PCR amplification of mxaF encoding methanol dehydrogenase, the key enzyme in bacterial methanol oxidation. These included Methylophaga sp., Burkholderiales sp., Methylococcaceae sp., Ancylobacter aquaticus, Paracoccus denitrificans, Methylophilus methylotrophus, Methylobacterium oryzae, Hyphomicrobium sp. and Methylosulfonomonas methylovora. Statistically significant correlations for upwelling waters between methanol uptake into cells and both chlorophyll a concentrations and methanol oxidation rates suggest that remotely sensed chlorophyll a images, in these productive areas, could be used to derive total methanol biological loss rates, a useful tool for atmospheric and marine climatically active gas modellers, and air–sea exchange scientists. PMID:23178665

  11. Gradients in microbial methanol uptake: productive coastal upwelling waters to oligotrophic gyres in the Atlantic Ocean.

    PubMed

    Dixon, Joanna L; Sargeant, Stephanie; Nightingale, Philip D; Colin Murrell, J

    2013-03-01

    Methanol biogeochemistry and its importance as a carbon source in seawater is relatively unexplored. We report the first microbial methanol carbon assimilation rates (k) in productive coastal upwelling waters of up to 0.117±0.002 d(-1) (~10 nmol l(-1 )d(-1)). On average, coastal upwelling waters were 11 times greater than open ocean northern temperate (NT) waters, eight times greater than gyre waters and four times greater than equatorial upwelling (EU) waters; suggesting that all upwelling waters upon reaching the surface (≤20 m), contain a microbial population that uses a relatively high amount of carbon (0.3-10 nmol l(-1 )d(-1)), derived from methanol, to support their growth. In open ocean Atlantic regions, microbial uptake of methanol into biomass was significantly lower, ranging between 0.04-0.68 nmol l(-1 )d(-1). Microbes in the Mauritanian coastal upwelling used up to 57% of the total methanol for assimilation of the carbon into cells, compared with an average of 12% in the EU, and 1% in NT and gyre waters. Several methylotrophic bacterial species were identified from open ocean Atlantic waters using PCR amplification of mxaF encoding methanol dehydrogenase, the key enzyme in bacterial methanol oxidation. These included Methylophaga sp., Burkholderiales sp., Methylococcaceae sp., Ancylobacter aquaticus, Paracoccus denitrificans, Methylophilus methylotrophus, Methylobacterium oryzae, Hyphomicrobium sp. and Methylosulfonomonas methylovora. Statistically significant correlations for upwelling waters between methanol uptake into cells and both chlorophyll a concentrations and methanol oxidation rates suggest that remotely sensed chlorophyll a images, in these productive areas, could be used to derive total methanol biological loss rates, a useful tool for atmospheric and marine climatically active gas modellers, and air-sea exchange scientists.

  12. Metabolic methanol: molecular pathways and physiological roles.

    PubMed

    Dorokhov, Yuri L; Shindyapina, Anastasia V; Sheshukova, Ekaterina V; Komarova, Tatiana V

    2015-04-01

    Methanol has been historically considered an exogenous product that leads only to pathological changes in the human body when consumed. However, in normal, healthy individuals, methanol and its short-lived oxidized product, formaldehyde, are naturally occurring compounds whose functions and origins have received limited attention. There are several sources of human physiological methanol. Fruits, vegetables, and alcoholic beverages are likely the main sources of exogenous methanol in the healthy human body. Metabolic methanol may occur as a result of fermentation by gut bacteria and metabolic processes involving S-adenosyl methionine. Regardless of its source, low levels of methanol in the body are maintained by physiological and metabolic clearance mechanisms. Although human blood contains small amounts of methanol and formaldehyde, the content of these molecules increases sharply after receiving even methanol-free ethanol, indicating an endogenous source of the metabolic methanol present at low levels in the blood regulated by a cluster of genes. Recent studies of the pathogenesis of neurological disorders indicate metabolic formaldehyde as a putative causative agent. The detection of increased formaldehyde content in the blood of both neurological patients and the elderly indicates the important role of genetic and biochemical mechanisms of maintaining low levels of methanol and formaldehyde. Copyright © 2015 the American Physiological Society.

  13. Endogenous Methanol Regulates Mammalian Gene Activity

    PubMed Central

    Komarova, Tatiana V.; Petrunia, Igor V.; Shindyapina, Anastasia V.; Silachev, Denis N.; Sheshukova, Ekaterina V.; Kiryanov, Gleb I.; Dorokhov, Yuri L.

    2014-01-01

    We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH) converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP) and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis. PMID:24587296

  14. First Detection of Methanol in a Class O Protostellar Disk

    NASA Technical Reports Server (NTRS)

    Velusamy, T.; Langer, William D.; Goldsmith, Paul F.

    2000-01-01

    We report the detection of emission from methanol in a compact source coincident with the position of the L1157 infrared source, which we attribute to molecules in the disk surrounding this young, Class O protostellar object. In addition, we identify a spectral feature in the outflow corresponding to an ethanol transition. Using the Caltech Owens Valley Millimeter Array with a synthesized beam size of 2", we detect spatially unresolved methanol in the 2(sub k) - 1(sub k) transitions at 3mm, which is coincident in position with the peak of the continuum emission. The gas phase methanol could be located in the central region (< 100 AU radius) of a flat disk, or in an extended heated surface layer (approx. 200 AU radius) of a flared disk. The fractional abundance of methanol X(CH3OH) is approx. 2 x l0(exp -8) in the flat disk model, and 3 x l0(exp -7) for the flared disk. The fractional abundance is small in the disk as a whole, but considerably larger in the warm portions. This difference indicates that substantial chemical processing probably takes place in the disk via depletion and desorption. The methanol desorbed from the grains in the warm surface layers returns to the icy grain mantles in the cooler interior of the disk, where it is available to become part of the composition of solar system-like bodies, such as comets, formed in the outer circumstellar region. This first millimeter-wavelength detection of a complex organic molecule in a young protostellar disk has implications for disk structure and chemical evolution and for potential use as a temperature probe. The research of TV and WL was conducted at the Jet Propulsion Laboratory, California Institute of Technology with support from the National Aeronautics and Space Administration.

  15. First Detection of Methanol in a Class O Protostellar Disk

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, William D.; Goldsmith, Paul F.

    2000-01-01

    We report the detection of emission from methanol in a compact source coincident with the position of the L1157 infrared source, which we attribute to molecules in the disk surrounding this young, Class O protostellar object. In addition, we identify a spectral feature in the outflow corresponding to an ethanol transition. Using the Caltech Owens Valley Millimeter Array with a synthesized beam size of 2", we detect spatially unresolved methanol in the 2k - 1k transitions at 3mm, which is coincident in position with the peak of the continuum emission. The gas phase methanol could be located in the central region (< 100 AU radius) of a flat disk, or in an extended heated surface layer (approx. 200 AU radius) of a flared disk. The fractional abundance of methanol X(CH3OH) is approx. 2 x l0-8 in the flat disk model, and 3 x l0-7 for the flared disk. The fractional abundance is small in the disk as a whole, but considerably larger in the warm portions. This difference indicates that substantial chemical processing probably takes place in the disk via depletion and desorption. The methanol desorbed from the grains in the warm surface layers returns to the icy grain mantles in the cooler interior of the disk, where it is available to become part of the composition of solar system-like bodies, such as comets, formed in the outer circumstellar region. This first millimeter-wavelength detection of a complex organic molecule in a young protostellar disk has implications for disk structure and chemical evolution and for potential use as a temperature probe. The research of TV and WL was conducted at the Jet Propulsion Laboratory, California Institute of Technology with support from the National Aeronautics and Space Administration.

  16. First Detection of Methanol in a Class O Protostellar Disk

    NASA Technical Reports Server (NTRS)

    Velusamy, T.; Langer, William D.; Goldsmith, Paul F.

    2000-01-01

    We report the detection of emission from methanol in a compact source coincident with the position of the L1157 infrared source, which we attribute to molecules in the disk surrounding this young, Class O protostellar object. In addition, we identify a spectral feature in the outflow corresponding to an ethanol transition. Using the Caltech Owens Valley Millimeter Array with a synthesized beam size of 2", we detect spatially unresolved methanol in the 2(sub k) - 1(sub k) transitions at 3mm, which is coincident in position with the peak of the continuum emission. The gas phase methanol could be located in the central region (< 100 AU radius) of a flat disk, or in an extended heated surface layer (approx. 200 AU radius) of a flared disk. The fractional abundance of methanol X(CH3OH) is approx. 2 x l0(exp -8) in the flat disk model, and 3 x l0(exp -7) for the flared disk. The fractional abundance is small in the disk as a whole, but considerably larger in the warm portions. This difference indicates that substantial chemical processing probably takes place in the disk via depletion and desorption. The methanol desorbed from the grains in the warm surface layers returns to the icy grain mantles in the cooler interior of the disk, where it is available to become part of the composition of solar system-like bodies, such as comets, formed in the outer circumstellar region. This first millimeter-wavelength detection of a complex organic molecule in a young protostellar disk has implications for disk structure and chemical evolution and for potential use as a temperature probe. The research of TV and WL was conducted at the Jet Propulsion Laboratory, California Institute of Technology with support from the National Aeronautics and Space Administration.

  17. Towards a methanol economy based on homogeneous catalysis: methanol to H2 and CO2 to methanol.

    PubMed

    Alberico, E; Nielsen, M

    2015-04-21

    The possibility to implement both the exhaustive dehydrogenation of aqueous methanol to hydrogen and CO2 and the reverse reaction, the hydrogenation of CO2 to methanol and water, may pave the way to a methanol based economy as part of a promising renewable energy system. Recently, homogeneous catalytic systems have been reported which are able to promote either one or the other of the two reactions under mild conditions. Here, we review and discuss these developments.

  18. Design and Operation of an Electrochemical Methanol Concentration Sensor for Direct Methanol Fuel Cell Systems

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Valdez, T. I.; Chun, W.

    2000-01-01

    The development of a 150-Watt packaged power source based on liquid feed direct methanol fuel cells is being pursued currently at the Jet propulsion Laboratory for defense applications. In our studies we find that the concentration of methanol in the fuel circulation loop affects the electrical performance and efficiency the direct methanol fuel cell systems significantly. The practical operation of direct methanol fuel cell systems, therefore, requires accurate monitoring and control of methanol concentration. The present paper reports on the principle and demonstration of an in-house developed electrochemical sensor suitable for direct methanol fuel cell systems.

  19. Design and Operation of an Electrochemical Methanol Concentration Sensor for Direct Methanol Fuel Cell Systems

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Valdez, T. I.; Chun, W.

    2000-01-01

    The development of a 150-Watt packaged power source based on liquid feed direct methanol fuel cells is being pursued currently at the Jet propulsion Laboratory for defense applications. In our studies we find that the concentration of methanol in the fuel circulation loop affects the electrical performance and efficiency the direct methanol fuel cell systems significantly. The practical operation of direct methanol fuel cell systems, therefore, requires accurate monitoring and control of methanol concentration. The present paper reports on the principle and demonstration of an in-house developed electrochemical sensor suitable for direct methanol fuel cell systems.

  20. Recent Studies on Methanol Crossover in Liquid-Feed Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    In this work, the effects of methanol crossover and airflow rates on the cathode potential of an operating direct methanol fuel cell are explored. Techniques for quantifying methanol crossover in a fuel cell and for separating the electrical performance of each electrode in a fuel cell are discussed. The effect of methanol concentration on cathode potential has been determined to be significant. The cathode is found to be mass transfer limited when operating on low flow rate air and high concentrations of methanol. Improvements in cathode structure and operation at low methanol concentration have been shown to result in improved cell performance.

  1. On-board reforming of biodiesel and bioethanol for high temperature PEM fuel cells: Comparison of autothermal reforming and steam reforming

    NASA Astrophysics Data System (ADS)

    Martin, Stefan; Wörner, Antje

    2011-03-01

    In the 21st century biofuels will play an important role as alternative fuels in the transportation sector. In this paper different reforming options (steam reforming (SR) and autothermal reforming (ATR)) for the on-board conversion of bioethanol and biodiesel into a hydrogen-rich gas suitable for high temperature PEM (HTPEM) fuel cells are investigated using the simulation tool Aspen Plus. Special emphasis is placed on thermal heat integration. Methyl-oleate (C19H36O2) is chosen as reference substance for biodiesel. Bioethanol is represented by ethanol (C2H5OH). For the steam reforming concept with heat integration a maximum fuel processing efficiency of 75.6% (76.3%) is obtained for biodiesel (bioethanol) at S/C = 3. For the autothermal reforming concept with heat integration a maximum fuel processing efficiency of 74.1% (75.1%) is obtained for biodiesel (bioethanol) at S/C = 2 and λ = 0.36 (0.35). Taking into account the better dynamic behaviour and lower system complexity of the reforming concept based on ATR, autothermal reforming in combination with a water gas shift reactor is considered as the preferred option for on-board reforming of biodiesel and bioethanol. Based on the simulation results optimum operating conditions for a novel 5 kW biofuel processor are derived.

  2. BP-sterling methanol startup

    SciTech Connect

    Cornitius, T.

    1996-11-27

    BP chemicals ceased being the only major acetic acid maker without a captive feedstock source late last month when its 150-million gal/year methanol joint venture with Sterling Chemicals came onstream at Texas City, TX. Most of the new plant`s output will feed Sterling`s 800-million lbs/year on-site acid plant; the rest will feed BP`s acetic production elsewhere or be sold in the merchant market. BP already markets all Sterling`s acetic acid production and holds an equity position in the acetic acid unit, the company says. Acetic acid producers are still smarting from their last failed attempt to increase prices, which foundered because anticipated strengthening in vinyl acetate monomer (VAM) did not occur. Based on their overconfidence in VAM, acetic acid sellers nominated higher third-quarter prices in the Far East then the market could bear. Customers balked and contracts settled lower than expected. The price slipped again in the fourth quarter. The US acetic acid market has been tight since the Hoechst Celanese outage at Clear Lake, TX last April, when sellers started pushing prices globally. Quantum also recently restarted its acetic acid complex at Deer Park, TX after a 60-day outage. The Far East is a global indicator and heavily influences other markets, analysts say. Third-quarter price increases in Europe did not go through, and fourth-quarter contracts stay flat at $560-$580/m.t. Prices are at about $500/m.t. in Taiwan and Korea. US producers saw third-quarter contracts edge up to 23 cts-25 cts/lb. Although the BP methanol plant will not be a big merchant seller, it does return some existing volumes to the market. Methanol has been firming in the fourth quarter, after a weak first half. Supplies worldwide are tight.

  3. Solar photocatalytic conversion of CO{sub 2} to methanol

    SciTech Connect

    Ryba, G.; Shelnutt, J.; Prairie, M.R.; Assink, R.A.

    1997-02-01

    This report summarizes the three-year LDRD program directed at developing catalysts based on metalloporphyrins to reduce carbon dioxide. Ultimately it was envisioned that such catalysts could be made part of a solar-driven photoredox cycle by coupling metalloporphyrins with semiconductor systems. Such a system would provide the energy required for CO{sub 2} reduction to methanol, which is an uphill 6-electron reduction. Molecular modeling and design capabilities were used to engineer metalloporphyrin catalysts for converting CO{sub 2} to CO and higher carbon reduction products like formaldehyde, formate, and methanol. Gas-diffusion electrochemical cells were developed to carry out these reactions. A tin-porphyrin/alumina photocatalyst system was partially developed to couple solar energy to this reduction process.

  4. Selective anaerobic oxidation of methane enables direct synthesis of methanol.

    PubMed

    Sushkevich, Vitaly L; Palagin, Dennis; Ranocchiari, Marco; van Bokhoven, Jeroen A

    2017-05-05

    Direct functionalization of methane in natural gas remains a key challenge. We present a direct stepwise method for converting methane into methanol with high selectivity (~97%) over a copper-containing zeolite, based on partial oxidation with water. The activation in helium at 673 kelvin (K), followed by consecutive catalyst exposures to 7 bars of methane and then water at 473 K, consistently produced 0.204 mole of CH3OH per mole of copper in zeolite. Isotopic labeling confirmed water as the source of oxygen to regenerate the zeolite active centers and renders methanol desorption energetically favorable. On the basis of in situ x-ray absorption spectroscopy, infrared spectroscopy, and density functional theory calculations, we propose a mechanism involving methane oxidation at Cu(II) oxide active centers, followed by Cu(I) reoxidation by water with concurrent formation of hydrogen. Copyright © 2017, American Association for the Advancement of Science.

  5. Methods of conditioning direct methanol fuel cells

    DOEpatents

    Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon

    2005-11-08

    Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

  6. Room temperature stable COx-free H2 production from methanol with magnesium oxide nanophotocatalysts

    PubMed Central

    Liu, Zhengqing; Yin, Zongyou; Cox, Casandra; Bosman, Michel; Qian, Xiaofeng; Li, Na; Zhao, Hongyang; Du, Yaping; Li, Ju; Nocera, Daniel G.

    2016-01-01

    Methanol, which contains 12.6 weight percent hydrogen, is a good hydrogen storage medium because it is a liquid at room temperature. However, by releasing the hydrogen, undesirable CO and/or CO2 byproducts are formed during catalytic fuel reforming. We show that alkaline earth metal oxides, in our case MgO nanocrystals, exhibit stable photocatalytic activity for CO/CO2-free H2 production from liquid methanol at room temperature. The performance of MgO nanocrystals toward methanol dehydrogenation increases with time and approaches ~320 μmol g−1 hour−1 after a 2-day photocatalytic reaction. The COx-free H2 production is attributed to methanol photodecomposition to formaldehyde, photocatalyzed by surface electronic states of unique monodispersed, porous MgO nanocrystals, which were synthesized with a novel facile colloidal chemical strategy. An oxygen plasma treatment allows for the removal of organic surfactants, producing MgO nanocrystals that are well dispersible in methanol. PMID:28508036

  7. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  8. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  9. Photodebromination behaviors of polybrominated diphenyl ethers in methanol/water systems: Mechanisms and predicting descriptors.

    PubMed

    Wang, Rui; Li, Huafeng; Tao, Xueqin; Tang, Ting; Lin, Haozhong; Huang, Kaibo; Zhong, Zhiyi; Yang, Xingjian; Dang, Zhi; Yin, Hua; Lu, Guining

    2017-10-01

    This study investigated the photodebromination behaviors of polybrominated diphenyl ethers (PBDEs) in methanol or methanol/water systems. The kinetics of three sets of bromated diphenyl ether (BDE) isomers were compared in the same reactors, and the results showed that the PBDE isomers with lower energy of lowest unoccupied molecular orbital and higher energy of highest occupied molecular orbital will be degraded faster by ultraviolet (UV) light than other BDE isomers. The overall debromination pathways of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) were elucidated, and we found that the bromine substituents with higher Mulliken charges were preferentially removed. This demonstrated that Mulliken charges can be used to predict the photodebromination pathways of PBDEs. In methanol/water systems, when the ratio of methanol and water decreased, the degradation rate of BDE-47 decreased, whereas that of diphenyl ether increased. This phenomenon can be attributed to the mechanism of photodegradation of PBDEs gradually shifting from the reductive debromination to the undebromination process as the ratio of methanol and water decreases. The chromatogram of high-performance liquid chromatography and gas chromatography-mass spectrometry during this process also verified this explanation. The debromination pathways of BDE-47 are consistent in methanol/water systems with different methanol to water ratios and in different organic solvents. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A validated near-infrared spectroscopic method for methanol detection in biodiesel

    NASA Astrophysics Data System (ADS)

    Paul, Andrea; Bräuer, Bastian; Nieuwenkamp, Gerard; Ent, Hugo; Bremser, Wolfram

    2016-06-01

    Biodiesel quality control is a relevant issue as biodiesel properties influence diesel engine performance and integrity. Within the European metrology research program (EMRP) ENG09 project ‘Metrology for Biofuels’, an on-line/at-site suitable near-infrared spectroscopy (NIRS) method has been developed in parallel with an improved EN14110 headspace gas chromatography (GC) analysis method for methanol in biodiesel. Both methods have been optimized for a methanol content of 0.2 mass% as this represents the maximum limit of methanol content in FAME according to EN 14214:2009. The NIRS method is based on a mobile NIR spectrometer equipped with a fiber-optic coupled probe. Due to the high volatility of methanol, a tailored air-tight adaptor was constructed to prevent methanol evaporation during measurement. The methanol content of biodiesel was determined from evaluation of NIRS spectra by partial least squares regression (PLS). Both GC analysis and NIRS exhibited a significant dependence on biodiesel feedstock. The NIRS method is applicable to a content range of 0.1% (m/m) to 0.4% (m/m) of methanol with uncertainties at around 6% relative for the different feedstocks. A direct comparison of headspace GC and NIRS for samples of FAMEs yielded that the results of both methods are fully compatible within their stated uncertainties.

  11. Test method for the measurement of methanol emissions from stationary sources

    SciTech Connect

    Pate, B.A.; Peterson, M.R.; Rickman, E.E.; Jayanty, R.K.M.

    1994-05-01

    Methanol was designated under Title III of the Clean Air Act Amendments of 1990 as a pollutant to be regulated. A test method has been developed for the measurement of methanol emissions from stationary sources. The methanol sampling train (MST) consists of a glass-lined heated probe, two condensate knockout traps, and three sorbent cartridges packed with Anasorb 747. The Anasorb samples were desorbed with a 1:1 mixture of carbon disulfide and N,N-dimethylformamide. All samples were analyzed by gas chromatography with flame ionization detection. Following laboratory testing, field tests of the MST and the National Council of the Paper Industry for Air and Stream Improvement (NCASI) sampling method for methanol were conducted at two pulp and paper mills. In accordance with EPA Methol 301, two pairs of trains were run in parallel for six runs, collecting a total of 24 samples by each method. During each run, half of the trains were spiked with a known amount of methanol. The sampling location at the first test was an inlet vent to a softwood bleach plant scrubber where the methanol concentration was about 30 ppm. A second field test was conducted at the vent of a black liquor oxidation tank where the methanol concentration was about 350 ppm. Samples were shown to be stable for at least 2 weeks after collection.

  12. Convenient quantification of methanol concentration detection utilizing an integrated microfluidic chip

    PubMed Central

    Wang, Yao-Nan; Yang, Ruey-Jen; Ju, Wei-Jhong; Wu, Ming-Chang; Fu, Lung-Ming

    2012-01-01

    A rapid and simple technique is proposed for methanol concentration detection using a PMMA (Polymethyl-Methacrylate) microfluidic chip patterned using a commercially available CO2 laser scriber. In the proposed device, methanol and methanol oxidase (MOX) are injected into a three-dimensional circular chamber and are mixed via a vortex stirring effect. The mixture is heated to prompt the formation of formaldehyde and is flowed into a rectangular chamber, to which fuchsin-sulphurous acid is then added. Finally, the microchip is transferred to a UV spectrophotometer for methanol detection purposes. The experimental results show that a correlation coefficient of R2 = 0.9940 is obtained when plotting the optical density against the methanol concentration for samples and an accuracy as high as 93.1% are compared with the determined by the high quality gas chromatography with concentrations in the range of 2 ∼ 100 ppm. The methanol concentrations of four commercial red wines are successfully detected using the developed device. Overall, the results show that the proposed device provides a rapid and accurate means of detecting the methanol concentration for a variety of applications in the alcoholic beverage inspection and control field. PMID:23940501

  13. Convenient quantification of methanol concentration detection utilizing an integrated microfluidic chip.

    PubMed

    Wang, Yao-Nan; Yang, Ruey-Jen; Ju, Wei-Jhong; Wu, Ming-Chang; Fu, Lung-Ming

    2012-09-01

    A rapid and simple technique is proposed for methanol concentration detection using a PMMA (Polymethyl-Methacrylate) microfluidic chip patterned using a commercially available CO2 laser scriber. In the proposed device, methanol and methanol oxidase (MOX) are injected into a three-dimensional circular chamber and are mixed via a vortex stirring effect. The mixture is heated to prompt the formation of formaldehyde and is flowed into a rectangular chamber, to which fuchsin-sulphurous acid is then added. Finally, the microchip is transferred to a UV spectrophotometer for methanol detection purposes. The experimental results show that a correlation coefficient of R(2) = 0.9940 is obtained when plotting the optical density against the methanol concentration for samples and an accuracy as high as 93.1% are compared with the determined by the high quality gas chromatography with concentrations in the range of 2 ∼ 100 ppm. The methanol concentrations of four commercial red wines are successfully detected using the developed device. Overall, the results show that the proposed device provides a rapid and accurate means of detecting the methanol concentration for a variety of applications in the alcoholic beverage inspection and control field.

  14. Methanol exposure to car occupants from windshield washing fluid: a pilot study.

    PubMed

    Becalski, A; Bartlett, K H

    2006-04-01

    Automobile occupants might be exposed to considerable amounts of methanol from previously unreported source, namely via the inhalation of vapors of winter-grade, methanol-based, windshield washing fluid that drains to the intake air ducts of the car. Air samples were collected in passenger cars during simulated operating conditions and analyzed for methanol via headspace gas chromatography-mass spectrometry, electron impact, selected ion monitoring. The method was linear in the 2-2000 ppm range. Concentrations exceeding 1000 ppm were recorded. Using a winter-grade, methanol-based, windshield washing fluid for windshield cleaning in a passenger car can result in a methanol concentration in the air of the passenger cabin in excess of 1000 ppm. In view of the widespread use of this product, more studies are necessary to elucidate, in depth, the concentrations of methanol vapors which could be encountered in various weather and driving conditions as well as the concomitant contributing influences of car design. These studies are necessary to properly assess the hazards associated with use of the fluid and possible mitigation approaches which might include substitution of methanol by less toxic formulations.

  15. Internal reforming characteristics of cermet supported solid oxide fuel cell using yttria stabilized zirconia fed with partially reformed methane

    NASA Astrophysics Data System (ADS)

    Momma, Akihiko; Takano, Kiyonami; Tanaka, Yohei; Negishi, Akira; Kato, Ken; Nozaki, Ken; Kato, Tohru; Ichigi, Takenori; Matsuda, Kazuyuki; Ryu, Takashi

    In order to investigate the internal reforming characteristics in a cermet supported solid oxide fuel cell (SOFC) using YSZ as the electrolyte, the concentration profiles of the gaseous species along the gas flow direction in the anode were measured. Partially reformed methane using a pre-reformer kept at a constant temperature is supplied to the center of the cell which is operated with a seal-less structure at the gas outlet. The anode gas is sucked in via silica capillaries to the initially evacuated gas tanks. The process is simultaneously carried out using five sampling ports. The sampled gas is analyzed by a gas chromatograph. Most of the measurements are made at the cell temperature (T cell) of 750 °C and at various temperatures of the pre-reformer (T ref) with various fuel utilizations (U f) of the cell. The composition of the fuel at the inlet of the anode was confirmed to be almost the same as that theoretically calculated assuming equilibrium at the temperature of the pre-reformer. The effect of internal reforming in the anode is clearly observed as a steady decrease in the methane concentration along the flow axis. The effect of the water-gas shift reaction is also observed as a decrease in the CO 2 concentration and an increase of CO concentration around the gas inlet region, as the water-gas shift reaction inversely proceeds when T cell is higher than T ref. The diffusion of nitrogen from the seal-less outermost edge is observed, and the diffusion is confirmed to be more significant as U f decreases. The observations are compared with the results obtained by the SOFC supported by lanthanum gallate electrolyte. With respect to the internal reforming performance, the cell investigated here is found to be more effective when compared to the previously reported electrolyte supported cell.

  16. Direct methanol fuel cell for portable applications

    SciTech Connect

    Valdez, T.I.; Narayanan, S.R.; Frank, H.; Chun, W.

    1997-12-01

    A five cell direct methanol fuel cell stack has been developed at the Jet Propulsion Laboratory. Presently direct methanol fuel cell technology is being incorporated into a system for portable applications. Electrochemical performance and its dependence on flow rate and temperature for a five cell stack are presented. Water transport data, and water transport mechanisms for direct methanol fuel cells are discussed. Stack response to pulse loads has been characterized. Implications of stack performance and operating conditions on system design have been addressed.

  17. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  18. Intermittent hemodialysis is superior to continuous veno-venous hemodialysis/hemodiafiltration to eliminate methanol and formate during treatment for methanol poisoning

    PubMed Central

    Zakharov, Sergey; Pelclova, Daniela; Navratil, Tomas; Belacek, Jaromir; Kurcova, Ivana; Komzak, Ondrej; Salek, Tomas; Latta, Jiri; Turek, Radovan; Bocek, Robert; Kucera, Cyril; Hubacek, Jaroslav A; Fenclova, Zdenka; Petrik, Vit; Cermak, Martin; Hovda, Knut Erik

    2014-01-01

    During an outbreak of methanol poisonings in the Czech Republic in 2012, we were able to study methanol and formate elimination half-lives during intermittent hemodialysis (IHD) and continuous veno-venous hemodialysis/hemodiafiltration (CVVHD/HDF) and the relative impact of dialysate and blood flow rates on elimination. Data were obtained from 11 IHD and 13 CVVHD/HDF patients. Serum methanol and formate concentrations were measured by gas chromatography and an enzymatic method. The groups were relatively comparable, but the CVVHD/HDF group was significantly more acidotic (mean pH 6.9 vs. 7.1 IHD). The mean elimination half-life of methanol was 3.7 and formate 1.6 h with IHD, versus 8.1 and 3.6 h, respectively, with CVVHD/HDF (both significant). The 54% greater reduction in methanol and 56% reduction in formate elimination half-life during IHD resulted from the higher blood and dialysate flow rates. Increased blood and dialysate flow on the CVVHD/HDF also increased elimination significantly. Thus, IHD is superior to CVVHD/HDF for more rapid methanol and formate elimination, and if CVVHD/HDF is the only treatment available then elimination is greater with greater blood and dialysate flow rates. PMID:24621917

  19. Intermittent hemodialysis is superior to continuous veno-venous hemodialysis/hemodiafiltration to eliminate methanol and formate during treatment for methanol poisoning.

    PubMed

    Zakharov, Sergey; Pelclova, Daniela; Navratil, Tomas; Belacek, Jaromir; Kurcova, Ivana; Komzak, Ondrej; Salek, Tomas; Latta, Jiri; Turek, Radovan; Bocek, Robert; Kucera, Cyril; Hubacek, Jaroslav A; Fenclova, Zdenka; Petrik, Vit; Cermak, Martin; Hovda, Knut Erik

    2014-07-01

    During an outbreak of methanol poisonings in the Czech Republic in 2012, we were able to study methanol and formate elimination half-lives during intermittent hemodialysis (IHD) and continuous veno-venous hemodialysis/hemodiafiltration (CVVHD/HDF) and the relative impact of dialysate and blood flow rates on elimination. Data were obtained from 11 IHD and 13 CVVHD/HDF patients. Serum methanol and formate concentrations were measured by gas chromatography and an enzymatic method. The groups were relatively comparable, but the CVVHD/HDF group was significantly more acidotic (mean pH 6.9 vs. 7.1 IHD). The mean elimination half-life of methanol was 3.7 and formate 1.6 h with IHD, versus 8.1 and 3.6 h, respectively, with CVVHD/HDF (both significant). The 54% greater reduction in methanol and 56% reduction in formate elimination half-life during IHD resulted from the higher blood and dialysate flow rates. Increased blood and dialysate flow on the CVVHD/HDF also increased elimination significantly. Thus, IHD is superior to CVVHD/HDF for more rapid methanol and formate elimination, and if CVVHD/HDF is the only treatment available then elimination is greater with greater blood and dialysate flow rates.

  20. Effect of the cathode open ratios on the water management of a passive vapor-feed direct methanol fuel cell fed with neat methanol

    NASA Astrophysics Data System (ADS)

    Li, Xianglin; Faghri, Amir

    2011-08-01

    A novel approach has been proposed to improve the water management of a passive direct methanol fuel cell (DMFC) fed with neat methanol without increasing its volume or weight. By adopting perforated covers with different open ratios at the cathode, the water management has been significantly improved in a DMFC fed with neat methanol. An optimized cathode open ratio could ensure both the sufficient supply of oxygen and low water loss. While changing the open ratio of anode vaporizer can adjust the methanol crossover rate in a DMFC. Furthermore, the gas mixing layer, added between the anode vaporizer and the anode current collector to increase the mass transfer resistance, can improve the cell performance, decrease the methanol crossover, and increase the fuel efficiency. For the case of a DMFC fed with neat methanol, an anode vaporizer with the open ratio of 12% and a cathode open ratio of 20% produced the highest peak power density, 22.7 mW cm-2, and high fuel efficiency, 70.1%, at room temperature of 25 ± 1 °C and ambient humidity of 25-50%.