Science.gov

Sample records for methanol temperature dependence

  1. Temperature dependence of structural quantum effects in liquid methanol

    NASA Astrophysics Data System (ADS)

    Tomberli, B.; Benmore, C. J.; Egelstaff, P. A.; Neuefeind, J.; Honkimäki, V.

    2001-08-01

    High-energy electromagnetic radiation scattering techniques have been used to measure the structural differences between liquids composed of four different isotopes of methanol (CH3OH,CD3OD,CH3OD and CD3OH) at temperatures of 24.5 °C and - 80 °C. We measured the magnitude of the isotopic effect, which increases with decreasing temperature and comprises of both intramolecular and intermolecular effects. Intramolecularly, the C-O, O-H, and to a lesser extent the C-H bond lengths, shorten upon deuteration. Intermolecularly, the winding hydrogen bonded chain structure is affected significantly. The results show that hydrogenated simple alcohols are more disordered liquids than deuterated alcohols at the same temperature. Substitution at the methyl site is compared to substitution at the hydroxyl site and the effect is shown to increase more rapidly as temperature is decreased.

  2. Pressure and temperature dependence of excess enthalpies of methanol + tetraethylene glycol dimethyl ether and methanol + polyethylene glycol dimethyl ether 250

    SciTech Connect

    Lopez, E.R.; Coxam, J.Y.; Fernandez, J.; Grolier, J.P.E.

    1999-12-01

    The excess molar enthalpies at 323.15 K, 373.15 K, and 423.15 K, at 8 MPa, are reported for the binary mixtures methanol + tetraethylene glycol dimethyl ether (TEGDME) and methanol + poly(ethylene glycol) dimethyl ether 250 (PEGDME 250). Excess molar enthalpies were determined with a Setaram C-80 calorimeter equipped with a flow mixing cell. For both systems, the excess enthalpies are positive over the whole composition range, increasing with temperature. The H{sup E}(x) curves are slightly asymmetrical, and their maxima are skewed toward the methanol-rich region. The excess enthalpies slightly change with the pressure, the sign of this change being composition-dependent. In the case of mixtures with TEGDME, the experimental H{sup E} values have been compared with those predicted with the Gmehling et al. version of UNIFAC (Dortmund) and the Nitta-Chao and DISQUAC group contribution models.

  3. Bioinduced Room-Temperature Methanol Reforming.

    PubMed

    Heim, Leo E; Thiel, Daniel; Gedig, Christian; Deska, Jan; Prechtl, Martin H G

    2015-08-24

    Imitating nature's approach in nucleophile-activated formaldehyde dehydrogenation, air-stable ruthenium complexes proved to be exquisite catalysts for the dehydrogenation of formaldehyde hydrate as well as for the transfer hydrogenation to unsaturated organic substrates at loadings as low as 0.5 mol %. Concatenation of the chemical hydrogen-fixation route with an oxidase-mediated activation of methanol gives an artificial methylotrophic in vitro metabolism providing methanol-derived reduction equivalents for synthetic hydrogenation purposes. Moreover, for the first time methanol reforming at room temperature was achieved on the basis of this bioinduced dehydrogenation path delivering hydrogen gas from aqueous methanol.

  4. Temperature and site dependence of the rate of hydrogen and deuterium abstraction by methyl radicals in methanol glasses

    SciTech Connect

    Doba, T.; Ingold, K.U.; Siebrand, W.; Wildman, T.A.

    1984-07-19

    Rate constants are reported for hydrogen and deuterium abstraction by methyl radicals in CH/sub 3/OH and CD/sub 3/OD glasses in the ranges 5-89 and 77-97 K, respectively. At each temperature, they show a distribution due to a variation of radical trapping sites. The rate constants of this distribution are analyzed theoretically to yield a quantitative relation between tunneling rate and equilibrium tunneling distance. 20 references, 2 figures.

  5. Low temperature catalyst system for methanol production

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.

    1984-04-20

    This patent discloses a catalyst and process useful at low temperatures (150/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen. The catalyst components are used in slurry form and comprise (1) a complex reducing agent derived from the component structure NaH-ROH-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms and (2) a metal carbonyl of a group VI (Mo, Cr, W) metal. For the first component, Nic is preferred (where M = Ni and R = tertiary amyl). For the second component, Mo(CO)/sub 6/ is preferred. The mixture is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  6. Low temperature catalysts for methanol production

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-09-30

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1--6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  7. Using rare gas permeation to probe methanol diffusion near the glass transition temperature.

    PubMed

    Matthiesen, Jesper; Smith, R Scott; Kay, Bruce D

    2009-12-11

    The permeation of rare-gas atoms through deeply supercooled metastable liquid methanol films is used to probe the diffusivity. The technique allows for measurement of supercooled liquid mobility at temperatures near the glass transition. The temperature dependence of the diffusivity is well described by a Vogel-Fulcher-Tamman equation. These new measurements and the temperature dependent kinetic parameters obtained from their analysis provide clear evidence that methanol is a fragile liquid near the glass transition. PMID:20366212

  8. Using Rare Gas Permeation to Probe Methanol Diffusion near the Glass Transition Temperature

    NASA Astrophysics Data System (ADS)

    Matthiesen, Jesper; Smith, R. Scott; Kay, Bruce D.

    2009-12-01

    The permeation of rare-gas atoms through deeply supercooled metastable liquid methanol films is used to probe the diffusivity. The technique allows for measurement of supercooled liquid mobility at temperatures near the glass transition. The temperature dependence of the diffusivity is well described by a Vogel-Fulcher-Tamman equation. These new measurements and the temperature dependent kinetic parameters obtained from their analysis provide clear evidence that methanol is a fragile liquid near the glass transition.

  9. Low temperature catalysts for methanol production

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-10-28

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is NiC (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  10. Low temperature catalysts for methanol production

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.; Mahajan, Devinder

    1986-01-01

    A catalyst and process useful at low temperatures (below about 160.degree. C.) and preferably in the range 80.degree.-120.degree. C. used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa--M(OAc).sub.2 where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M=Ni and R=tertiary amyl). Mo(CO).sub.6 is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  11. Low temperature catalysts for methanol production

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1985-03-12

    A catalyst and process useful at low temperatures (below about 160/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH-RONa-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)/sub 6/ is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  12. Structures of protonated methanol clusters and temperature effects.

    PubMed

    Fifen, Jean Jules; Nsangou, Mama; Dhaouadi, Zoubeida; Motapon, Ousmanou; Jaidane, Nejm-Eddine

    2013-05-14

    The accurate evaluation of pKa's, or solvation energies of the proton in methanol at a given temperature is subject to the determination of the most favored structures of various isomers of protonated (H(+)(MeOH)n) and neutral ((MeOH)n) methanol clusters in the gas phase and in methanol at that temperature. Solvation energies of the proton in a given medium, at a given temperature may help in the determination of proton affinities and proton dissociation energies related to the deprotonation process in that medium and at that temperature. pKa's are related to numerous properties of drugs. In this work, we were interested in the determination of the most favored structures of various isomers of protonated methanol clusters in the gas phase and in methanol, at a given temperature. For this aim, the M062X/6-31++G(d,p) and B3LYP/6-31++G(d,p) levels of theory were used to perform geometries optimizations and frequency calculations on various isomers of (H(+)(MeOH)n) in both phases. Thermal effects were retrieved using our homemade FORTRAN code. Thus, we accessed the relative populations of various isomers of protonated methanol clusters, in both phases for temperatures ranging from 0 to 400 K. As results, in the gas phase, linear structures are entropically more favorable at high temperatures, while more compact ones are energetically more favorable at lower temperatures. The trend is somewhat different when bulk effects are taken into account. At high temperatures, the linear structure only dominates the population for n ≤ 6, while it is dominated by the cyclic structure for larger cluster sizes. At lower temperatures, compact structures still dominate the population, but with an order different from the one established in the gas phase. Hence, temperature effects dominate solvent effects in small cluster sizes (n ≤ 6), while the reverse trend is noted for larger cluster sizes. PMID:23676038

  13. Methanol Uptake by Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Essin, A. M.; Golden, D. M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The global methanol budget is currently unbalanced, with source terms significantly larger than the sinks terms. To evaluate possible losses of gaseous methanol to sulfate aerosols, the solubility and reactivity of methanol in aqueous sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosols is under investigation. Methanol will partition into sulfate aerosols according to its Henry's law solubility. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H*, for cold (196 - 220 K) solutions ranging between 45 and 70 wt % H2SO4. We have found that methanol solubility ranges from approx. 10(exp 5) - 10(exp 7) M/atm for UT/LS conditions. Solubility increases with decreasing temperature and with increasing sulfuric acid content. Although methanol is slightly more soluble than are acetone and formaldehyde, current data indicate that uptake by clean aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These solubility measurements include uptake due to physical solvation and any rapid equilibria which are established in solution. Reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H is not significant over our experimental time scale for solutions below 80 wt % H2SO4. To confirm this directly, results obtained using a complementary equilibrium measurement technique will also be presented.

  14. Methanol Uptake By Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    To evaluate the role of upper tropospheric and lower stratospheric aerosols in the global budget of methanol, the solubility and reactivity of CH3OH in aqueous sulfuric acid solutions are under investigation. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H(*), for methanol dissolution into 45 to 70 percent by weight H2SO4. We find that methanol solubility ranges from 10(exp 5) to 10(exp 8) M/atm and increases with decreasing temperature and with increasing sulfuric acid content. These solubility measurements include uptake due to physical solvation and all rapid equilibria which are established in solution. Our data indicate that simple uptake by aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These results differ from those recently reported in the literature, and an explanation of this disparity will be presented. In addition to solvation, reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H may proceed in the atmosphere but is not significant under our experimental conditions. Results obtained using a complementary equilibrium measurement technique confirm this directly. In addition, the extent of methanol sequestration via formation of mono- and dimethylsulfate will be evaluated under several atmospheric conditions.

  15. Methanol dimer formation drastically enhances hydrogen abstraction from methanol by OH at low temperature.

    PubMed

    Siebrand, Willem; Smedarchina, Zorka; Martínez-Núñez, Emilio; Fernández-Ramos, Antonio

    2016-08-10

    The kinetics of the reaction of methanol with hydroxyl radicals is revisited in light of the reported new kinetic data, measured in cold expansion beams. The rate constants exhibit an approximately 10(2)-fold increase when the temperature decreases from 200 to 50 K, a result that cannot be fully explained by tunneling, as we confirm by new calculations. These calculations also show that methanol dimers are much more reactive to hydroxyl than monomers and imply that a dimer concentration of about 30% of the equilibrium concentration can account quantitatively for the observed rates. The assumed presence of dimers is supported by the observation of cluster formation in these and other cold beams of molecules subject to hydrogen bonding. The calculations imply an important caveat with respect to the use of cold expansion beams for the study of interstellar chemistry. PMID:27479134

  16. Methanol

    Integrated Risk Information System (IRIS)

    Methanol ; CASRN 67 - 56 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  17. Temperature of maximum density and excess thermodynamics of aqueous mixtures of methanol

    NASA Astrophysics Data System (ADS)

    González-Salgado, D.; Zemánková, K.; Noya, E. G.; Lomba, E.

    2016-05-01

    In this work, we present a study of representative excess thermodynamic properties of aqueous mixtures of methanol over the complete concentration range, based on extensive computer simulation calculations. In addition to test various existing united atom model potentials, we have developed a new force-field which accurately reproduces the excess thermodynamics of this system. Moreover, we have paid particular attention to the behavior of the temperature of maximum density (TMD) in dilute methanol mixtures. The presence of a temperature of maximum density is one of the essential anomalies exhibited by water. This anomalous behavior is modified in a non-monotonous fashion by the presence of fully miscible solutes that partly disrupt the hydrogen bond network of water, such as methanol (and other short chain alcohols). In order to obtain a better insight into the phenomenology of the changes in the TMD of water induced by small amounts of methanol, we have performed a new series of experimental measurements and computer simulations using various force fields. We observe that none of the force-fields tested capture the non-monotonous concentration dependence of the TMD for highly diluted methanol solutions.

  18. Temperature of maximum density and excess thermodynamics of aqueous mixtures of methanol.

    PubMed

    González-Salgado, D; Zemánková, K; Noya, E G; Lomba, E

    2016-05-14

    In this work, we present a study of representative excess thermodynamic properties of aqueous mixtures of methanol over the complete concentration range, based on extensive computer simulation calculations. In addition to test various existing united atom model potentials, we have developed a new force-field which accurately reproduces the excess thermodynamics of this system. Moreover, we have paid particular attention to the behavior of the temperature of maximum density (TMD) in dilute methanol mixtures. The presence of a temperature of maximum density is one of the essential anomalies exhibited by water. This anomalous behavior is modified in a non-monotonous fashion by the presence of fully miscible solutes that partly disrupt the hydrogen bond network of water, such as methanol (and other short chain alcohols). In order to obtain a better insight into the phenomenology of the changes in the TMD of water induced by small amounts of methanol, we have performed a new series of experimental measurements and computer simulations using various force fields. We observe that none of the force-fields tested capture the non-monotonous concentration dependence of the TMD for highly diluted methanol solutions.

  19. Temperature of maximum density and excess thermodynamics of aqueous mixtures of methanol.

    PubMed

    González-Salgado, D; Zemánková, K; Noya, E G; Lomba, E

    2016-05-14

    In this work, we present a study of representative excess thermodynamic properties of aqueous mixtures of methanol over the complete concentration range, based on extensive computer simulation calculations. In addition to test various existing united atom model potentials, we have developed a new force-field which accurately reproduces the excess thermodynamics of this system. Moreover, we have paid particular attention to the behavior of the temperature of maximum density (TMD) in dilute methanol mixtures. The presence of a temperature of maximum density is one of the essential anomalies exhibited by water. This anomalous behavior is modified in a non-monotonous fashion by the presence of fully miscible solutes that partly disrupt the hydrogen bond network of water, such as methanol (and other short chain alcohols). In order to obtain a better insight into the phenomenology of the changes in the TMD of water induced by small amounts of methanol, we have performed a new series of experimental measurements and computer simulations using various force fields. We observe that none of the force-fields tested capture the non-monotonous concentration dependence of the TMD for highly diluted methanol solutions. PMID:27179493

  20. High-temperature passive direct methanol fuel cells operating with concentrated fuels

    NASA Astrophysics Data System (ADS)

    Zhao, Xuxin; Yuan, Wenxiang; Wu, Qixing; Sun, Hongyuan; Luo, Zhongkuan; Fu, Huide

    2015-01-01

    Conventionally, passive direct methanol fuel cells (DMFC) are fed with diluted methanol solutions and can hardly be operated at elevated temperatures (>120 °C) because the ionic conductivity of Nafion-type proton exchange membranes depends strongly on water content. Such a system design would limit its energy density and power density in mobile applications. In this communication, a passive vapor feed DMFC capable of operating with concentrated fuels at high temperatures is reported. The passive DMFC proposed in this work consists of a fuel reservoir, a perforated silicone sheet, a vapor chamber, two current collectors and a membrane electrode assembly (MEA) based on a phosphoric acid doped polybenzimidazole (PBI) membrane. The experimental results reveal that the methanol crossover through a PBI membrane is substantially low when compared with the Nafion membranes and the PBI-based passive DMFC can yield a peak power density of 37.2 mW cm-2 and 22.1 mW cm-2 at 180 °C when 16 M methanol solutions and neat methanol are used respectively. In addition, the 132 h discharge test indicates that the performance of this new DMFC is quite stable and no obvious performance degradation is observed after activation, showing its promising applications in portable power sources.

  1. Mixing it up - Measuring diffusion in supercooled liquid solutions of methanol and ethanol at temperatures near the glass transition

    SciTech Connect

    Matthiesen, Jesper; Smith, R. Scott; Kay, Bruce D.

    2011-03-17

    Do liquid mixtures, cooled to temperatures below their freezing point, behave as normal liquids? We address this question using nanoscale films of methanol and ethanol supercooled liquid solutions of varying composition (7 -93% methanol) at temperatures near their glass transition,Tg. The permeation of Kr through these films is used to determine the diffusivities of the supercooled liquid mixtures. We find that the temperature dependent diffusivities of the mixtures are well-fit by a Vogel-Fulcher-Tamman equation indicating that the mixtures exhibit fragile behavior at temperatures just above their Tg. Further, for a given temperature, the composition dependent diffusivity is well-fit by a Vignes-type equation, i.e. the diffusivity of any mixture can be predicted using an exponential weighting of the diffusion of the pure methanol and ethanol diffusivities. These results show that deeply supercooled liquid mixtures can be used to provide valuable insight into the properties of normal liquid mixtures.

  2. Methanol induces low temperature resilient methanogens and improves methane generation from domestic wastewater at low to moderate temperatures.

    PubMed

    Saha, Shaswati; Badhe, Neha; De Vrieze, Jo; Biswas, Rima; Nandy, Tapas

    2015-01-01

    Low temperature (<20 °C) limits bio-methanation of sewage. Literature shows that hydrogenotrophic methanogens can adapt themselves to low temperature and methanol is a preferred substrate by methanogens in cold habitats. The study hypothesizes that methanol can induce the growth of low-temperature resilient, methanol utilizing, hydrogenotrophs in UASB reactor. The hypothesis was tested in field conditions to evaluate the impact of seasonal temperature variations on methane yield in the presence and absence of methanol. Results show that 0.04% (v/v) methanol increased methane up to 15 times and its effect was more pronounced at lower temperatures. The qPCR analysis showed the presence of Methanobacteriales along with Methanosetaceae in large numbers. This indicates methanol induced the growth of both the hydrogenotrophic and acetoclastic groups through direct and indirect routes, respectively. This study thus demonstrated that methanol can impart resistance in methanogenic biomass to low temperature and can improve performance of UASB reactor.

  3. Solubility of methanol in low-temperature aqueous sulfuric acid and implications for atmospheric particle composition

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Using traditional Knudsen cell techniques, we find well-behaved Henry's law uptake of methanol in aqueous 45 - 70 wt% H2SO4 solutions at temperatures between 197 and 231 K. Solubility of methanol increases with decreasing temperature and increasing acidity, with an effective Henry's law coefficient ranging from 10(exp 5) - 10(exp 8) M/atm. Equilibrium uptake of methanol into sulfuric acid aerosol particles in the upper troposphere and lower stratosphere will not appreciably alter gas-phase concentrations of methanol. The observed room temperature reaction between methanol and sulfuric acid is too slow to provide a sink for gaseous methanol at the temperatures of the upper troposphere and lower stratosphere. It is also too slow to produce sufficient quantities of soluble reaction products to explain the large amount of unidentified organic material seen in particles of the upper troposphere.

  4. Lanthanide-Dependent Regulation of Methanol Oxidation Systems in Methylobacterium extorquens AM1 and Their Contribution to Methanol Growth

    PubMed Central

    Vu, Huong N.; Subuyuj, Gabriel A.; Vijayakumar, Srividhya; Good, Nathan M.; Martinez-Gomez, N. Cecilia

    2016-01-01

    ABSTRACT Methylobacterium extorquens AM1 has two distinct types of methanol dehydrogenase (MeDH) enzymes that catalyze the oxidation of methanol to formaldehyde. MxaFI-MeDH requires pyrroloquinoline quinone (PQQ) and Ca in its active site, while XoxF-MeDH requires PQQ and lanthanides, such as Ce and La. Using MeDH mutant strains to conduct growth analysis and MeDH activity assays, we demonstrate that M. extorquens AM1 has at least one additional lanthanide-dependent methanol oxidation system contributing to methanol growth. Additionally, the abilities of different lanthanides to support growth were tested and strongly suggest that both XoxF and the unknown methanol oxidation system are able to use La, Ce, Pr, Nd, and, to some extent, Sm. Further, growth analysis using increasing La concentrations showed that maximum growth rate and yield were achieved at and above 1 μM La, while concentrations as low as 2.5 nM allowed growth at a reduced rate. Contrary to published data, we show that addition of exogenous lanthanides results in differential expression from the xox1 and mxa promoters, upregulating genes in the xox1 operon and repressing genes in the mxa operon. Using transcriptional reporter fusions, intermediate expression from both the mxa and xox1 promoters was detected when 50 to 100 nM La was added to the growth medium, suggesting that a condition may exist under which M. extorquens AM1 is able to utilize both enzymes simultaneously. Together, these results suggest that M. extorquens AM1 actively senses and responds to lanthanide availability, preferentially utilizing the lanthanide-dependent MeDHs when possible. IMPORTANCE The biological role of lanthanides is a nascent field of study with tremendous potential to impact many areas in biology. Our studies demonstrate that there is at least one additional lanthanide-dependent methanol oxidation system, distinct from the MxaFI and XoxF MeDHs, that may aid in classifying additional environmental organisms as

  5. Process assessment of small scale low temperature methanol synthesis

    SciTech Connect

    Hendriyana; Susanto, Herri Subagjo

    2015-12-29

    Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H{sub 2} to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H{sub 2} for increasing H{sub 2}/CO ratio. CO{sub 2} removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy

  6. Process assessment of small scale low temperature methanol synthesis

    NASA Astrophysics Data System (ADS)

    Hendriyana, Susanto, Herri; Subagjo

    2015-12-01

    Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H2 to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H2 for increasing H2/CO ratio. CO2 removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy balance and economic

  7. Temperature dependent BRDF facility

    NASA Astrophysics Data System (ADS)

    Airola, Marc B.; Brown, Andrea M.; Hahn, Daniel V.; Thomas, Michael E.; Congdon, Elizabeth A.; Mehoke, Douglas S.

    2014-09-01

    Applications involving space based instrumentation and aerodynamically heated surfaces often require knowledge of the bi-directional reflectance distribution function (BRDF) of an exposed surface at high temperature. Addressing this need, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) developed a BRDF facility that features a multiple-port vacuum chamber, multiple laser sources covering the spectral range from the longwave infrared to the ultraviolet, imaging pyrometry and laser heated samples. Laser heating eliminates stray light that would otherwise be seen from a furnace and requires minimal sample support structure, allowing low thermal conduction loss to be obtained, which is especially important at high temperatures. The goal is to measure the BRDF of ceramic-coated surfaces at temperatures in excess of 1000°C in a low background environment. Most ceramic samples are near blackbody in the longwave infrared, thus pyrometry using a LWIR camera can be very effective and accurate.

  8. Degradation of Coflon in Methanol at Temperatures Around 140 C

    NASA Technical Reports Server (NTRS)

    Campion, R. P.; Samulak, M.; Morgan, C. J.

    1995-01-01

    An unexpected and significant physico-chemical degradation of Coflon PVDF specimens was observed at the end of 1994 during routine scheduled exposure exercises on strained material. The intent was to age various samples, including some strained in a 4-point bend configuration, in methanol at 140 C and subsequently submit the aged samples to various tests including dynamic fatigue and fracture toughness. However, the samples deteriorated to such an extent that such testing was not possible: only when conditions were made less severe was it found possible to perform such testing. The purpose of the current report is to describe the nature of the PVDF deterioration observed during a number of tests performed to examine this phenomenon. This report also records, as Appendix 1, some SEM/X-ray microanalysis data on Coflon samples exposed to a methanol/amine mixture, and to other amine or H2S-aged samples.

  9. Biomarkers to evaluate the effects of temperature and methanol on recombinant Pichia pastoris

    PubMed Central

    Zepeda, Andrea B.; Figueroa, Carolina A.; Abdalla, Dulcineia S.P.; Maranhão, Andrea Q.; Ulloa, Patricio H.; Pessoa, Adalberto; Farías, Jorge G.

    2014-01-01

    Pichia pastoris is methylotrophic yeast used as an efficient expression system for heterologous protein production. In order to evaluate the effects of temperature (10 and 30 °C) and methanol (1 and 3% (v/v)) on genetically-modified Pichia pastoris, different biomarkers were evaluated: Heat stress (HSF-1 and Hsp70), oxidative stress (OGG1 and TBARS) and antioxidant (GLR). Three yeast cultures were performed: 3X = 3% methanol-10 °C, 4X = 3% methanol-30 °C, and 5X = 1% methanol-10°C. The expression level of HIF-1α, HSF-1, HSP-70 and HSP-90 biomarkers were measured by Western blot and in situ detection was performed by immunocytochemistry. Ours results show that at 3% methanol −30 °C there is an increase of mitochondrial OGG1 (mtOGG1), Glutathione Reductase (GLR) and TBARS. In addition, there was a cytosolic expression of HSF-1 and HSP-70, which indicates a deprotection against nucleolar fragmentation (apoptosis). On the other hand, at 3% methanol −10 °C and 1% and at methanol −10 °C conditions there was nuclear expression of OGG1, lower levels of TBARS and lower expression of GLR, cytosolic expression of HSF-1 and nuclear expression HSP-70. In conclusion, our results suggest that 3% methanol-30 °C is a condition that induces a strong oxidative stress and risk factors of apoptosis in modified-genetically P. pastoris. PMID:25242930

  10. Biomarkers to evaluate the effects of temperature and methanol on recombinant Pichia pastoris.

    PubMed

    Zepeda, Andrea B; Figueroa, Carolina A; Abdalla, Dulcineia S P; Maranhão, Andrea Q; Ulloa, Patricio H; Pessoa, Adalberto; Farías, Jorge G

    2014-01-01

    Pichia pastoris is methylotrophic yeast used as an efficient expression system for heterologous protein production. In order to evaluate the effects of temperature (10 and 30 °C) and methanol (1 and 3% (v/v)) on genetically-modified Pichia pastoris, different biomarkers were evaluated: Heat stress (HSF-1 and Hsp70), oxidative stress (OGG1 and TBARS) and antioxidant (GLR). Three yeast cultures were performed: 3X = 3% methanol-10 °C, 4X = 3% methanol-30 °C, and 5X = 1% methanol-10°C. The expression level of HIF-1α, HSF-1, HSP-70 and HSP-90 biomarkers were measured by Western blot and in situ detection was performed by immunocytochemistry. Ours results show that at 3% methanol -30 °C there is an increase of mitochondrial OGG1 (mtOGG1), Glutathione Reductase (GLR) and TBARS. In addition, there was a cytosolic expression of HSF-1 and HSP-70, which indicates a deprotection against nucleolar fragmentation (apoptosis). On the other hand, at 3% methanol -10 °C and 1% and at methanol -10 °C conditions there was nuclear expression of OGG1, lower levels of TBARS and lower expression of GLR, cytosolic expression of HSF-1 and nuclear expression HSP-70. In conclusion, our results suggest that 3% methanol-30 °C is a condition that induces a strong oxidative stress and risk factors of apoptosis in modified-genetically P. pastoris. PMID:25242930

  11. Effect of temperature on the chromatographic retention of ionizable compounds. I. Methanol-water mobile phases.

    PubMed

    Castells, Cecilia B; Gagliardi, Leonardo G; Ràfols, Clara; Rosés, Martí; Bosch, Elisabeth

    2004-07-01

    The retention mechanism of acids and bases in reversed-phase liquid chromatography (RPLC) has been experimentally studied by examining the temperature dependence of retention, with emphasis on the role of the buffer ionization equilibria in the retention and selectivity. Retention factors of several ionizable compounds in a typical octadecylsilica column and using buffers dissolved in 50% (w/w) methanol as eluents at three temperatures in the range of 25-50 degrees C were measured. Two pairs of buffer solutions were prepared by a close adjusting of their pH at 25 degrees C; differences in their ionization enthalpies determined a different degree of ionization when temperature was raised and, as a consequence, a different shift in the eluent pH. Predictive equations of retention that take into account the temperature effect on both the transfer and the ionization processes are proposed. This study demonstrates the significant role that the selected buffer would have in retention and selectivity in RPLC at temperatures higher than 25 degrees C, particularly for co-eluted solutes. PMID:15296385

  12. Effect of temperature on the chromatographic retention of ionizable compounds. I. Methanol-water mobile phases.

    PubMed

    Castells, Cecilia B; Gagliardi, Leonardo G; Ràfols, Clara; Rosés, Martí; Bosch, Elisabeth

    2004-07-01

    The retention mechanism of acids and bases in reversed-phase liquid chromatography (RPLC) has been experimentally studied by examining the temperature dependence of retention, with emphasis on the role of the buffer ionization equilibria in the retention and selectivity. Retention factors of several ionizable compounds in a typical octadecylsilica column and using buffers dissolved in 50% (w/w) methanol as eluents at three temperatures in the range of 25-50 degrees C were measured. Two pairs of buffer solutions were prepared by a close adjusting of their pH at 25 degrees C; differences in their ionization enthalpies determined a different degree of ionization when temperature was raised and, as a consequence, a different shift in the eluent pH. Predictive equations of retention that take into account the temperature effect on both the transfer and the ionization processes are proposed. This study demonstrates the significant role that the selected buffer would have in retention and selectivity in RPLC at temperatures higher than 25 degrees C, particularly for co-eluted solutes.

  13. Surface-Bound Intermediates in Low-Temperature Methanol Synthesis on Copper. Participants and Spectators

    SciTech Connect

    Yang, Yong; Mei, Donghai; Peden, Charles H.F.; Campbell, Charles T.; Mims, Charles A.

    2015-11-03

    The reactivity of surface adsorbed species present on copper catalysts during methanol synthesis at low temperatures was studied by simultaneous infrared spectroscopy (IR) and mass spectroscopy (MS) measurements during “titration” (transient surface reaction) experiments with isotopic tracing. The results show that adsorbed formate is a major bystander species present on the surface under steady-state methanol synthesis reaction conditions, but it cannot be converted to methanol by reaction with pure H2, nor with H2 plus added water. Formate-containing surface adlayers for these experiments were produced during steady state catalysis in (a) H2:CO2 (with substantial formate coverage) and (b) moist H2:CO (with no IR visible formate species). Both these reaction conditions produce methanol at steady state with relatively high rates. Adlayers containing formate were also produced by (c) formic acid adsorption. Various "titration" gases were used to probe these adlayers at modest temperatures (T = 410-450K) and 6 bar total pressure. Methanol gas (up to ~1% monolayer equivalent) was produced in "titration" from the H2:CO2 catalytic adlayers by H2 plus water, but not by dry hydrogen. The decay in the formate IR features accelerated in the presence of added water vapor. The H2:CO:H2O catalytic adlayer produced similar methanol titration yields in H2 plus water but showed no surface formate features in IR (less than 0.2% monolayer coverage). Finally, formate from formic acid chemisorption produced no methanol under any titration conditions. Even under (H2:CO2) catalytic reaction conditions, isotope tracing showed that pre-adsorbed formate from formic acid did not contribute to the methanol produced. Although non-formate intermediates exist during low temperature methanol synthesis on copper which can be converted to methanol gas

  14. Viscosity and density of methanol/water mixtures at low temperatures

    NASA Technical Reports Server (NTRS)

    Austin, J. G.; Kurata, F.; Swift, G. W.

    1968-01-01

    Viscosity and density are measured at low temperatures for three methanol/water mixtures. Viscosity is determined by a modified falling cylinder method or a calibrated viscometer. Density is determined by the volume of each mixture contained in a calibrated glass cell placed in a constant-temperature bath.

  15. Coadsorbed species explain the mechanism of methanol temperature-desorption on CeO2(111)

    DOE PAGESBeta

    Sutton, Jonathan E.; Steven H. Overbury; Beste, Ariana

    2016-03-24

    Here, we have used density functional theory calculations to investigate the temperature-programmed desorption (TPD) of methanol from CeO2(111). For the first time, low-temperature water formation and high-temperature methanol desorption are explained by our calculations. High coverages of methanol, which correspond to experimental conditions, are required to properly describe these features of the TPD spectrum. We identify a mechanism for the low-temperature formation of water involving the dissociation of two methanol molecules on the same surface O atom and filling of the resulting surface vacancy with one of the methoxy products. After water desorption, methoxy groups are stabilized on the surfacemore » and react at higher temperatures to form methanol and formaldehyde by a disproportionation mechanism. Alternatively, the stabilized methoxy groups undergo sequential C–H scission reactions to produce formaldehyde. Calculated energy requirements and methanol/formaldehyde selectivity agree with the experimental data.« less

  16. Dynamics of water, methanol, and ethanol in a room temperature ionic liquid.

    PubMed

    Kramer, Patrick L; Giammanco, Chiara H; Fayer, Michael D

    2015-06-01

    The dynamics of a series of small molecule probes with increasing alkyl chain length: water, methanol, and ethanol, diluted to low concentration in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, was investigated with 2D infrared vibrational echo (2D IR) spectroscopy and polarization resolved pump-probe (PP) experiments on the deuterated hydroxyl (O-D) stretching mode of each of the solutes. The long timescale spectral diffusion observed by 2D IR, capturing complete loss of vibrational frequency correlation through structural fluctuation of the medium, shows a clear but not dramatic slowing as the probe alkyl chain length is increased: 23 ps for water, 28 ps for methanol, and 34 ps for ethanol. Although in each case, only a single population of hydroxyl oscillators contributes to the infrared line shapes, the isotropic pump-probe decays (normally caused by population relaxation) are markedly nonexponential at short times. The early time features correspond to the timescales of the fast spectral diffusion measured with 2D IR. These fast isotropic pump-probe decays are produced by unequal pumping of the OD absorption band to a nonequilibrium frequency dependent population distribution caused by significant non-Condon effects. Orientational correlation functions for these three systems, obtained from pump-probe anisotropy decays, display several periods of restricted angular motion (wobbling-in-a-cone) followed by complete orientational randomization. The cone half-angles, which characterize the angular potential, become larger as the experimental frequency moves to the blue. These results indicate weakening of the angular potential with decreasing hydrogen bond strength. The slowest components of the orientational anisotropy decays are frequency-independent and correspond to the complete orientational randomization of the solute molecule. These components slow appreciably with increasing chain length: 25 ps for water

  17. Dynamics of water, methanol, and ethanol in a room temperature ionic liquid

    NASA Astrophysics Data System (ADS)

    Kramer, Patrick L.; Giammanco, Chiara H.; Fayer, Michael D.

    2015-06-01

    The dynamics of a series of small molecule probes with increasing alkyl chain length: water, methanol, and ethanol, diluted to low concentration in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, was investigated with 2D infrared vibrational echo (2D IR) spectroscopy and polarization resolved pump-probe (PP) experiments on the deuterated hydroxyl (O-D) stretching mode of each of the solutes. The long timescale spectral diffusion observed by 2D IR, capturing complete loss of vibrational frequency correlation through structural fluctuation of the medium, shows a clear but not dramatic slowing as the probe alkyl chain length is increased: 23 ps for water, 28 ps for methanol, and 34 ps for ethanol. Although in each case, only a single population of hydroxyl oscillators contributes to the infrared line shapes, the isotropic pump-probe decays (normally caused by population relaxation) are markedly nonexponential at short times. The early time features correspond to the timescales of the fast spectral diffusion measured with 2D IR. These fast isotropic pump-probe decays are produced by unequal pumping of the OD absorption band to a nonequilibrium frequency dependent population distribution caused by significant non-Condon effects. Orientational correlation functions for these three systems, obtained from pump-probe anisotropy decays, display several periods of restricted angular motion (wobbling-in-a-cone) followed by complete orientational randomization. The cone half-angles, which characterize the angular potential, become larger as the experimental frequency moves to the blue. These results indicate weakening of the angular potential with decreasing hydrogen bond strength. The slowest components of the orientational anisotropy decays are frequency-independent and correspond to the complete orientational randomization of the solute molecule. These components slow appreciably with increasing chain length: 25 ps for water

  18. Liquid phase low temperature method for production of methanol from synthesis gas and catalyst formulations therefor

    DOEpatents

    Mahajan, Devinder

    2005-07-26

    The invention provides a homogenous catalyst for the production of methanol from purified synthesis gas at low temperature and low pressure which includes a transition metal capable of forming transition metal complexes with coordinating ligands and an alkoxide, the catalyst dissolved in a methanol solvent system, provided the transition metal complex is not transition metal carbonyl. The coordinating ligands can be selected from the group consisting of N-donor ligands, P-donor ligands, O-donor ligands, C-donor ligands, halogens and mixtures thereof.

  19. Development of Anodic Flux and Temperature Controlling System for Micro Direct Methanol Fuel Cell

    NASA Astrophysics Data System (ADS)

    Li, M. M.; Liu, C.; Liang, J. S.; Wu, C. B.; Xu, Z.

    2006-10-01

    Micro Direct Methanol Fuel Cell (μDMFC) is a kind of newly developed power sources, which effective apparatus for its performance evaluation is still in urgent need at present. In this study, a testing system was established for the purpose of testing the continuous working performance such as micro flux and temperature of μDMFC. In view of the temperature controlling for micro-flux liquid fuel, a heating block with labyrinth-like single pass channel inside for heating up the methanol solution was fabricated. A semiconductorrefrigerating chip was utilized to heat and cool the liquid flow during testing procedures. On the other hand, the two channels of a high accuracy double-channel syringe pump that can suck and pump in turn so as to transport methanol solution continuously was adopted. Based on the requirements of wide-ranged temperature and micro flux controlling, the solenoid valves and the correlative component were used. A hydraulic circuit, which can circulate the fed methanol cold to hot in turn, has also been constructed to test the fatigue life of the μDMFC. The automatic control was actualized by software module written with Visual C++. Experimental results show that the system is perfect in stability and it may provide an important and advanced evaluation apparatus to satisfy the needs for real time performance testing of μDMFC.

  20. Dehydrogenation of anhydrous methanol at room temperature by o-aminophenol-based photocatalysts.

    PubMed

    Wakizaka, Masanori; Matsumoto, Takeshi; Tanaka, Ryota; Chang, Ho-Chol

    2016-01-01

    Dehydrogenation of anhydrous methanol is of great importance, given its ubiquity as an intermediate for the production of a large number of industrial chemicals. Since dehydrogenation of methanol is an endothermic reaction, heterogeneous or homogeneous precious-metal-based catalysts and high temperatures are usually required for this reaction to proceed. Here we report the photochemical dehydrogenation of anhydrous methanol at room temperature catalysed by o-aminophenol (apH2), o-aminophenolate (apH(-)) and the non-precious metal complex trans-[Fe(II)(apH)2(MeOH)2]. Under excitation at 289±10 nm and in the absence of additional photosensitizers, these photocatalysts generate hydrogen and formaldehyde from anhydrous methanol with external quantum yields of 2.9±0.15%, 3.7±0.19% and 4.8±0.24%, respectively, which are the highest values reported so far to the best of our knowledge. Mechanistic investigations reveal that the photo-induced formation of hydrogen radicals triggers the reaction. PMID:27457731

  1. Dehydrogenation of anhydrous methanol at room temperature by o-aminophenol-based photocatalysts

    PubMed Central

    Wakizaka, Masanori; Matsumoto, Takeshi; Tanaka, Ryota; Chang, Ho-Chol

    2016-01-01

    Dehydrogenation of anhydrous methanol is of great importance, given its ubiquity as an intermediate for the production of a large number of industrial chemicals. Since dehydrogenation of methanol is an endothermic reaction, heterogeneous or homogeneous precious-metal-based catalysts and high temperatures are usually required for this reaction to proceed. Here we report the photochemical dehydrogenation of anhydrous methanol at room temperature catalysed by o-aminophenol (apH2), o-aminophenolate (apH−) and the non-precious metal complex trans-[FeII(apH)2(MeOH)2]. Under excitation at 289±10 nm and in the absence of additional photosensitizers, these photocatalysts generate hydrogen and formaldehyde from anhydrous methanol with external quantum yields of 2.9±0.15%, 3.7±0.19% and 4.8±0.24%, respectively, which are the highest values reported so far to the best of our knowledge. Mechanistic investigations reveal that the photo-induced formation of hydrogen radicals triggers the reaction. PMID:27457731

  2. Temperature Dependence of Cesium Iodine

    NASA Astrophysics Data System (ADS)

    Valentine, John David

    The gamma-ray excited, temperature dependent scintillation characteristics of CsI(T1) are reported over the temperature range of -100 to +50^circ C. The modified Bollinger-Thomas and shaped square wave methods were used to measure the rise and decay times. Emission spectra were measured using a monochromator and corrected for monochromator and photocathode spectral efficiencies. The shaped square wave method was also used to determine the scintillation yield as was a current mode method. The thermoluminescence emission of CsI(T1) were measured using the same current mode method. At room temperature, CsI(T1) was found to have two primary decay components with decay time constants of tau_1 = 679 +/- 9 ns (63.7%) and tau_2 = 3.34 +/- 0.10 mus (36.1%), an absolute scintillation yield of 65,500 +/- 4,100 photons/MeV, and emission bands at about 400 and 560 nm. The tau_1 luminescent state was observed to be populated by an exponential process with a resulting rise time constant of 19.6 +/- 1.9 ns at room temperature. An ultra-fast decay component with a <0.5 ns decay time was found to emit about 0.2% of the total scintillation light (about 100 photons/MeV). Except for the ultra-fast decay time, the rise and decay time constants were observed to increase exponentially with inverse temperature. At -80 ^circC, tau_1 and tau_2 were determined to be 2.22 +/- 0.31 mu s and 18.0 +/- 1.44 mus, respectively, while the 400 nm emission band was not observed below -50 ^circC. At +50^circ C, the decay constants were found to be 628 +/- 3 ns (70.5%) and 2.63 +/- 0.03 mus (29.3%) and both emission bands are present. The scintillation yield of CsI(T1) was observed to be only slightly temperature dependent between -40 and +50^circ C, peaking at about -30 ^circC (about 6% above the room temperature yield). Four different commercially-available CsI(T1) crystals were used. Minimal variations in the measured scintillation characteristics were observed among these four crystals

  3. Temperature dependence of basalt weathering

    NASA Astrophysics Data System (ADS)

    Li, Gaojun; Hartmann, Jens; Derry, Louis A.; West, A. Joshua; You, Chen-Feng; Long, Xiaoyong; Zhan, Tao; Li, Laifeng; Li, Gen; Qiu, Wenhong; Li, Tao; Liu, Lianwen; Chen, Yang; Ji, Junfeng; Zhao, Liang; Chen, Jun

    2016-06-01

    The homeostatic balance of Earth's long-term carbon cycle and the equable state of Earth's climate are maintained by negative feedbacks between the levels of atmospheric CO2 and the chemical weathering rate of silicate rocks. Though clearly demonstrated by well-controlled laboratory dissolution experiments, the temperature dependence of silicate weathering rates, hypothesized to play a central role in these weathering feedbacks, has been difficult to quantify clearly in natural settings at landscape scale. By compiling data from basaltic catchments worldwide and considering only inactive volcanic fields (IVFs), here we show that the rate of CO2 consumption associated with the weathering of basaltic rocks is strongly correlated with mean annual temperature (MAT) as predicted by chemical kinetics. Relations between temperature and CO2 consumption rate for active volcanic fields (AVFs) are complicated by other factors such as eruption age, hydrothermal activity, and hydrological complexities. On the basis of this updated data compilation we are not able to distinguish whether or not there is a significant runoff control on basalt weathering rates. Nonetheless, the simple temperature control as observed in this global dataset implies that basalt weathering could be an effective mechanism for Earth to modulate long-term carbon cycle perturbations.

  4. Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature.

    PubMed

    Narsimhan, Karthik; Iyoki, Kenta; Dinh, Kimberly; Román-Leshkov, Yuriy

    2016-06-22

    The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C-H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolites at low reaction temperatures (483-498 K). Reaction kinetics studies show sustained catalytic activity and high selectivity for a variety of commercially available zeolite topologies under mild conditions (e.g., 483 K and atmospheric pressure). Transient and steady state measurements with isotopically labeled molecules confirm catalytic turnover. The catalytic rates and apparent activation energies are affected by the zeolite topology, with caged-based zeolites (e.g., Cu-SSZ-13) showing the highest rates. Although the reaction rates are low, the discovery of catalytic sites in copper-exchanged zeolites will accelerate the development of strategies to directly oxidize methane into methanol under mild conditions. PMID:27413787

  5. Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature

    PubMed Central

    2016-01-01

    The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C–H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolites at low reaction temperatures (483–498 K). Reaction kinetics studies show sustained catalytic activity and high selectivity for a variety of commercially available zeolite topologies under mild conditions (e.g., 483 K and atmospheric pressure). Transient and steady state measurements with isotopically labeled molecules confirm catalytic turnover. The catalytic rates and apparent activation energies are affected by the zeolite topology, with caged-based zeolites (e.g., Cu-SSZ-13) showing the highest rates. Although the reaction rates are low, the discovery of catalytic sites in copper-exchanged zeolites will accelerate the development of strategies to directly oxidize methane into methanol under mild conditions. PMID:27413787

  6. The electrolyte challenge for a direct methanol-air polymer electrolyte fuel cell operating at temperatures up to 200 C

    NASA Technical Reports Server (NTRS)

    Savinell, Robert; Yeager, Ernest; Tryk, Donald; Landau, Uziel; Wainright, Jesse; Gervasio, Dominic; Cahan, Boris; Litt, Morton; Rogers, Charles; Scherson, Daniel

    1993-01-01

    Novel polymer electrolytes are being evaluated for use in a direct methanol-air fuel cell operating at temperatures in excess of 100 C. The evaluation includes tests of thermal stability, ionic conductivity, and vapor transport characteristics. The preliminary results obtained to date indicate that a high temperature polymer electrolyte fuel cell is feasible. For example, Nafion 117 when equilibrated with phosphoric acid has a conductivity of at least 0.4 Omega(exp -1)cm(exp -1) at temperatures up to 200 C in the presence of 400 torr of water vapor and methanol vapor cross over equivalent to 1 mA/cm(exp 2) under a one atmosphere methanol pressure differential at 135 C. Novel polymers are also showing similar encouraging results. The flexibility to modify and optimize the properties by custom synthesis of these novel polymers presents an exciting opportunity to develop an efficient and compact methanol fuel cell.

  7. Pressure, temperature and density drops along supercritical fluid chromatography columns in different thermal environments. III. Mixtures of carbon dioxide and methanol as the mobile phase.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2014-01-01

    The pressure, temperature and density drops along SFC columns eluted with a CO2/methanol mobile phase were measured and compared with theoretical values. For columns packed with 3- and 5-μm particles the pressure and temperature drops were measured using a mobile phase of 95% CO2 and 5% methanol at a flow rate of 5mL/min, at temperatures from 20 to 100°C, and outlet pressures from 80 to 300bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath, either bare or covered with foam insulation. The experimental measurements were compared to theoretical results obtained by numerical simulation. For the convective air condition at outlet pressures above 100bar the average difference between the experimental and calculated temperature drops and pressure drops were 0.1°C and 0.7% for the bare 3-μm column, respectively, and were 0.6°C and 4.1% for the insulated column. The observed temperature drops for the insulated columns are consistent with those predicted by the Joule-Thomson coefficients for isenthalpic expansion. The dependence of the temperature and the pressure drops on the Joule-Thomson coefficient and kinematic viscosity are described for carbon dioxide mobile phases containing up to 20% methanol.

  8. Shape-dependent electrocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles.

    PubMed

    Solla-Gullón, J; Vidal-Iglesias, F J; López-Cudero, A; Garnier, E; Feliu, J M; Aldaz, A

    2008-07-01

    Reactivity towards methanol and formic acid electrooxidation on Pt nanoparticles with well characterised surfaces were studied and compared with the behaviour of single crystal electrodes with basal orientations. Polyoriented and preferential (100), (111) and (100)-(111) Pt nanoparticles were synthesised, cleaned preserving its surface structure, characterised and employed to evaluate the influence of the surface structure/shape of the Pt nanoparticles on these two relevant electrochemical reactions. The results pointed out that, in agreement with fundamental studies with Pt single crystal electrodes, the surface structure of the electrodes plays an important role on the reactivity of both oxidation processes, and thus the electrocatalytic properties strongly depend on the surface structure/shape of the nanoparticles, in particular on the presence of sites with (111) symmetry. These findings open the possibility of designing new and better electrocatalytic materials using decorated shape-controlled Pt nanoparticles as previously described with Pt single crystal electrodes. PMID:18563230

  9. Composition dependent structural organization in trihexyl(tetradecyl)phosphonium chloride ionic liquid-methanol mixtures

    SciTech Connect

    Gupta, Aditya; Sharma, Shobha; Kashyap, Hemant K.

    2015-04-07

    This article reports results from the molecular dynamics simulations on the structural arrangement of the ions and molecules in the mixtures of trihexyl(tetradecyl)phosphonium chloride ([P{sub 666,14}{sup +}][Cl{sup −}]) ionic liquid (IL) and methanol (MeOH) over the entire composition range. Effects of composition on the charge and polarity orderings have been investigated via computation of X-ray scattering structure function, S(q), and by using a partitioning scheme proposed for such multi-component mixtures. Except for the neat methanol liquid, the total S(q) shows two peaks in its intermolecular region for all the mole-fractions. The lowest q peak is dominated primarily by anion-anion, cation-anion, and methanol-anion correlations. Our results signify that the methanol bulk structure, which predominantly has short-distance characteristic correlations and is governed by polar group of methanol, is retained for x{sub IL} ≤ 0.1. Then, the mixture goes through gradual structural changes from methanol-like to the IL-like for 0.1 < x{sub IL} ≤ 0.7. The dipolar interaction between methanol molecules weakens in this range, and the structural landscape of the mixture is steered by strong ion-ion, anion-methanol, and nonpolar interactions. The IL-like structural arrangement is virtually recovered for x{sub IL} > 0.7. At all the compositions studied, while the cation head groups are predominantly solvated by anions and subsequently by methanol molecules, the polar hydroxyl group of methanol is preferentially solvated by the anions. The radial distribution functions of selected pair of atomic species have also confirmed these observations.

  10. Reduced graphene oxide coated optical fiber for methanol and ethanol vapor detection at room temperature

    NASA Astrophysics Data System (ADS)

    Kavinkumar, T.; Sastikumar, D.; Manivannan, S.

    2014-10-01

    Successful isolation of single layer of graphene from graphite by mechanical exfoliation method, attracted a great attention due to its unique structural, optical, mechanical and electronic properties. This makes the graphene as a promising material in many possible applications such as energy-storage, sensing, electronic, optical devices and polymer composite materials. High quality of reduced graphene oxide (rGO) material was prepared by chemical reduction method at 100°C. The structural and optical properties of the rGO sheets were characterized by FT-IR, micro Raman, powder XRD and UV-vis-NIR techniques. FT-IR reveals the absence of oxygen functional groups on rGO due to the reduction process. Powder XRD shows the broad peak at 2θ=24.3° corresponding to interlayer spacing 3.66Å which is smaller than the graphene oxide (GO). UV-vis-NIR of rGO displays the absorption peak at 271 nm indicates the reduction of GO and the restoration of C=C bonds in the rGO sheets. The cladding removed and rGO coated poly-methyl methacrylate (PMMA) optical fiber is used for methanol and ethanol vapors detection in the concentration ranging from 0 to 500 ppm at room temperature. The spectral characteristics along with output intensity modulation of cladding removed and rGO coated fiber optic sensor reveal the potential of methanol and ethanol vapor sensing properties.

  11. Studies on methanol - oxidizing yeast. III. Enzyme.

    PubMed

    Volfová, O

    1975-01-01

    Oxidation of methanol, formaldehyde and formic acid was studied in cells and cell-free extract of the yeast Candida boidinii No. 11Bh. Methanol oxidase, an enzyme oxidizing methanol to formaldehyde, was formed inducibly after the addition of methanol to yeast cells. The oxidation of methanol by cell-free extract was dependent on the presence of oxygen and independent of any addition of nicotine-amide nucleotides. Temperature optimum for the oxidation of methanol to formaldehyde was 35 degrees C, pH optimum was 8.5. The Km for methanol was 0.8mM. The cell-free extract exhibited a broad substrate specificity towards primary alcohols (C1--C6). The activity of methanol oxidase was not inhibited by 1mM KCN, EDTA or monoiodoacetic acid. The strongest inhibitory action was exerted by p-chloromercuribenzoate. Both the cells and the cell-free extract contained catalase which participated in the oxidation of methanol to formaldehyde; the enzyme was constitutively formed by the yeast. The pH optimum for the degradation of H2O2 was in the same range as the optimum for methanol oxidation, viz. at 8.5. Catalase was more resistant to high pH than methanol oxidase. The cell-free extract contained also GSH-dependent NAD-formaldehyde dehydrogenase with Km = 0.29mM and NAD-formate dehydrogenase with Km = 55mM. PMID:240764

  12. Insights on the effective incorporation of a foam-based methanol reformer in a high temperature polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Avgouropoulos, George; Papavasiliou, Joan; Ioannides, Theophilos; Neophytides, Stylianos

    2015-11-01

    Highly active Al-doped CuMnOx catalyst supported on metallic copper foam was prepared via the combustion method and placed adjacent to the anode electrocatalyst of a high temperature PEM fuel cell operating at 200-210 °C. The addition of aluminum oxide in the catalyst composition enhanced the specific surface area (19.1 vs. 8.6 m2 g-1) and the reducibility of the Cu-Mn spinel oxide. Accordingly, the catalytic performance of CuMnOx was also improved. The doped sample is up to 2.5 times more active than the undoped sample at 200 °C, depending on the methanol concentration at the inlet, while CO selectivity is less than 0.8% in all cases. A membrane-electrode assembly comprising the ADVENT cross-linked TPS® high-temperature polymer electrolyte was integrated with the Cu-based methanol reformer in an Internal Reforming Methanol Fuel Cell (IRMFC). In order to avoid extensive poisoning of the reforming catalyst by H3PO4, a thin separation plate was placed between the reforming catalyst and the electrooxidation catalyst. Preliminary results obtained from a single-cell laboratory prototype demonstrated the improved functionality of the unit. Indeed, promising electrochemical performance was obtained during the first 24 h, during which the required H2 for achieving 580 mV at 0.2 A cm-2, was supplied from the reformer.

  13. Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperatures.

    PubMed

    Liu, Haichao; Iglesia, Enrique

    2005-02-17

    RuO2 domains supported on SnO2, ZrO2, TiO2, Al2O3, and SiO2 catalyze the oxidative conversion of methanol to formaldehyde, methylformate, and dimethoxymethane with unprecedented rates and high combined selectivity (>99%) and yield at low temperatures (300-400 K). Supports influence turnover rates and the ability of RuO2 domains to undergo redox cycles required for oxidation turnovers. Oxidative dehydrogenation turnover rates and rates of stoichiometric reduction of RuO2 in H2 increased in parallel when RuO2 domains were dispersed on more reducible supports. These support effects, the kinetic effects of CH3OH and O2 on reaction rates, and the observed kinetic isotope effects with CH3OD and CD3OD reactants are consistent with a sequence of elementary steps involving kinetically relevant H-abstraction from adsorbed methoxide species using lattice oxygen atoms and with methoxide formation in quasi-equilibrated CH3OH dissociation on nearly stoichiometric RuO2 surfaces. Anaerobic transient experiments confirmed that CH3OH oxidation to HCHO requires lattice oxygen atoms and that selectivities are not influenced by the presence of O2. Residence time effects on selectivity indicate that secondary HCHO-CH3OH acetalization reactions lead to hemiacetal or methoxymethanol intermediates that convert to dimethoxymethane in reactions with CH3OH on support acid sites or dehydrogenate to form methylformate on RuO2 and support redox sites. These conclusions are consistent with the tendency of Al2O3 and SiO2 supports to favor dimethoxymethane formation, while SnO2, ZrO2, and TiO2 preferentially form methylformate. These support effects on secondary reactions were confirmed by measured CH3OH oxidation rates and selectivities on physical mixtures of supported RuO2 catalysts and pure supports. Ethanol also reacts on supported RuO2 domains to form predominately acetaldehyde and diethoxyethane at 300-400 K. The bifunctional nature of these reaction pathways and the remarkable ability of Ru

  14. Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperatures

    SciTech Connect

    Liu, Haichao; Iglesia, Enrique

    2004-03-04

    RuO2 domains supported on SnO2, ZrO2, TiO2, Al2O3, and SiO2 catalyze the oxidative conversion of methanol to formaldehyde, methylformate, and dimethoxymethane with unprecedented rates and high combined selectivity (>99 percent) and yield at low temperatures (300-400 K). Supports influence turnover rates and the ability of RuO2 domains to undergo redox cycles required for oxidation turnovers. Oxidative dehydrogenation turnover rates and rates of stoichiometric reduction of RuO2 in H2 increased in parallel when RuO2 domains were dispersed on more reducible supports. These support effects, the kinetic effects of CH3OH and O2 on reaction rates, and the observed kinetic isotope effects with CH3OD and CD3OD reactants are consistent with a sequence of elementary steps involving kinetically relevant H-abstraction from adsorbed methoxide species using lattice oxygen atoms and with methoxide formation in quasi-equilibrated CH3OH dissociation on nearly stoichiometric RuO2 surfaces. Anaerobic transient experiments confirmed that CH3OH oxidation to HCHO requires lattice oxygen atoms and that selectivities are not influenced by the presence of O2. Residence time effects on selectivity indicate that secondary HCHO-CH3OH acetalization reactions lead to hemiacetal or methoxymethanol intermediates that convert to dimethoxymethane in reactions with CH3OH on support acid sites or dehydrogenate to form methylformate on RuO2 and support redox sites. These conclusions are consistent with the tendency of Al2O3 and SiO2 supports to favor dimethoxymethane formation, while SnO2, ZrO2, and TiO2 preferentially form methylformate. These support effects on secondary reactions were confirmed by measured CH3OH oxidation rates and selectivities on physical mixtures of supported RuO2 catalysts and pure supports. Ethanol also reacts on supported RuO2 domains to form predominately acetaldehyde and diethoxyethane at 300-400 K. The bifunctional nature of these reaction pathways and the remarkable

  15. Escherichia coli survival in waters: Temperature dependence

    EPA Science Inventory

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  16. Durable Cu composite catalyst for hydrogen production by high temperature methanol steam reforming

    NASA Astrophysics Data System (ADS)

    Matsumura, Yasuyuki

    2014-12-01

    Durable catalysts are necessitated for the high temperature methanol steam reforming in compact hydrogen processors. The high durability at 400 °C can be obtained with a composite Cu catalyst where a small amount of Cu-ZnO-ZrO2-Y2O3-In2O3 is coprecipitated on a zirconia support. The lifetime of the composite catalyst containing 3 wt.% Cu is estimated to be as long as 53 × 102 h at 400 °C to produce the full conversion at a contact time of 250 g h m-3. The deactivation rate empirically relates to the cube of the activity. The gradual deactivation is caused by the gradual reduction of the Cu surface amount and also by the reduction of the surface activity which is believed to decrease with an increase in the Cu particle size. The interaction between the thin layer of the coprecipitate and the support surface probably suppresses the aggregation of the coprecipitate leading to Cu sintering.

  17. Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature.

    PubMed

    Yu, Kai Man Kerry; Tong, Weiyi; West, Adam; Cheung, Kevin; Li, Tong; Smith, George; Guo, Yanglong; Tsang, Shik Chi Edman

    2012-01-01

    A non-syngas direct steam reforming route is investigated for the conversion of methanol to hydrogen and carbon dioxide over a CuZnGaO(x) catalyst at 150-200 °C. This route is in marked contrast with the conventional complex route involving steam reformation to syngas (CO/H2) at high temperature, followed by water gas shift and CO cleanup stages for hydrogen production. Here we report that high quality hydrogen and carbon dioxide can be produced in a single-step reaction over the catalyst, with no detectable CO (below detection limit of 1 ppm). This can be used to supply proton exchange membrane fuel cells for mobile applications without invoking any CO shift and cleanup stages. The working catalyst contains, on average, 3-4 nm copper particles, alongside extremely small size of copper clusters stabilized on a defective ZnGa2O4 spinel oxide surface, providing hydrogen productivity of 393.6 ml g(-1)-cat h(-1) at 150 °C. PMID:23187630

  18. Temperature dependence of sapphire fiber Raman scattering

    DOE PAGESBeta

    Liu, Bo; Yu, Zhihao; Tian, Zhipeng; Homa, Daniel; Hill, Cary; Wang, Anbo; Pickrell, Gary

    2015-04-27

    Anti-Stokes Raman scattering in sapphire fiber has been observed for the first time. Temperature dependence of Raman peaks’ intensity, frequency shift, and linewidth were also measured. Three anti-Stokes Raman peaks were observed at temperatures higher than 300°C in a 0.72-m-long sapphire fiber excited by a second-harmonic Nd YAG laser. The intensity of anti-Stokes peaks are comparable to that of Stokes peaks when the temperature increases to 1033°C. We foresee the combination of sapphire fiber Stokes and anti-Stokes measurement in use as a mechanism for ultrahigh temperature sensing.

  19. Two-step method preparation of graphene without hydrogen on methanol pretreatment copper substrate by PECVD at low temperature

    NASA Astrophysics Data System (ADS)

    Han, Linzhi; Liu, JingJing; Zhao, Zhanxia; Chen, Shumin; Ma, Zhongquan; Zhao, Lei

    2016-10-01

    Plasma enhanced chemical vapor deposition (PECVD) is one effective method to prepare graphene at low temperature in a short time. However, the low temperature in PECVD could not provide substrate a proper state for large area and few layer graphene preparation. Herein, we propose a two-step method to grow graphene on Cu foils. In the first step, in order to acquire a smooth and oxide-free surface state, methanol was used as a reductant to pretreat Cu. In the second step, graphene films were prepared on Cu foils by PECVD using CH4 as carbon source with H2-free. Few-layer graphene sheets with diameter about 1 μm under low temperature (700 °C) and at a short time (10 min) on well pretreated Cu foils were successfully gotten. The effect of methanol pretreatment on graphene synthesis and the graphene growth mechanism on Cu substrate by PECVD are analyzed comprehensively.

  20. The solvent dependent shift of the amide I band of a fully solvated peptide in methanol/water mixtures as a local probe for the solvent composition in the peptide/solvent interface

    SciTech Connect

    Gnanakaran, S

    2008-01-01

    We determine the shift and line-shape of the amide I band of a model AK-peptide from molecular dynamics (MD) simulations of the peptide dissolved in methanol/water mixtures with varying composition. The IR-spectra are determined from a transition dipole coupling exciton model. A simplified empirical model Hamiltonian is employed, taking both the effect of hydrogen bonding, as well as intramolecular vibrational coupling into account. We consider a single isolated AK-peptide in a mostly helical conformation, while the solvent is represented by 2600 methanol or water molecules, simulated for a pressure of 1 bar and a temperature of 300 K. Over the course of the simulations minor reversible conformational changes at the termini are observed, which are found to only slightly affect the calculated spectral properties. Over the entire composition range, varying from pure water to the pure methanol solvent, a monotonous blue-shift of the IR amide I band of about 8 wavenumbers is observed. The shift is found to be caused by two counter-compensating effects: An intramolecular red-shift of about 1.2 wavenumbers, due to stronger intramolecular hydrogen-bonding in a methanol-rich environment. Dominating, however, is the intermolecular solvent-dependent blue-shift of about 10 wavenumbers, being attributed to the less effective hydrogen bond donor capabilities of methanol compared to water. The importance of solvent-contribution to the IR-shift, as well as the significantly different hydrogen formation capabilities of water and methanol make the amide I band sensitive to composition changes in the local environment close the peptide/solvent interface. This allows, in principle, an experimental determination of the composition of the solvent in close proximity to the peptide surface. For the AK-peptide case they observe at low methanol concentrations a significantly enhanced methanol concentration at the peptide/solvent-interface, supposedly promoted by the partially hydrophobic

  1. Study of the use of methanol-filled Er-doped suspended-core fibres in a temperature-sensing ring laser system

    NASA Astrophysics Data System (ADS)

    Martín, J. C.; Berdejo, V.; Vallés, J. A.; Sánchez-Martín, J. A.; Díez, A.; Andrés, M. V.

    2013-10-01

    We report on an experimental/numerical investigation into the use of methanol-filled Er-doped suspended-core fibres (SCFs) in temperature-sensing ring laser systems. We have adopted a ring laser configuration that includes an Er-doped SCF as a temperature-dependent attenuator (TDA) with a step-index Er-doped fibre (EDF) as the laser active medium. The laser performance dependence on the temperature was measured both in continuous wave (CW) and transient regimes. CW laser output power and build-up time values are compared with those of similar laser systems based on other types of Er-doped PCFs or using other laser configurations. A notable variation of 0.73% °C-1 was achieved in CW operation. Then, by means of parameters obtained by numerically fitting the experimental results, the potential sensing performance of the laser configuration with an SCF as a TDA is studied. Moreover, two ring cavity laser configurations (with the SCF acting basically as an attenuator or also as the active media) are compared and the influence of the position of the coupler inside the ring cavity and the contribution of the erbium doping to improve the sensor features are analysed. The longer interaction lengths compatible with laser action using the Er-doped SCF as a TDA could provide variations of laser output power up to 8.6% °C-1 for 90 mW pump power and a 1 m methanol-filled SCF.

  2. Investigations of Low Temperature Time Dependent Cracking

    SciTech Connect

    Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.

  3. Temperature dependence of polymer photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Nakazawa, Yuko

    One of many steps to develop a sustainable society is to reduce the use of fossil fuels by replacing them with renewable energy sources, such as solar energy. This dissertation concerns one of the most contemporary methods to harvest solar radiation and covert it to electricity, using thin polymer films. The photovoltaic devices in this study consisted of a thin layer of p-phenylenevinylene (PPV) based semiconducting polymer sandwiched between two metals (semi-transparent ITO and evaporated metal electrode). Two modified device structures were studied, an interfacial heterojunction device, which includes an additional layer of inorganic n-type semiconductor (Ti-oxides) and a bulk heterojunction device, which is formed by blending electron-attracting materials. Both modifications resulted in higher device performances under ambient conditions due to an increased number of dissociation sites. From studies of inorganic solar cells, it is well known that temperature has a large effect on device performance. However, there are only a few studies on organic Solar cells, concerning the temperature dependence. This thesis focuses on understanding the temperature dependent behaviors of polymer photovoltaic devices. Temperature dependence study allows us to examine how the device parameters such as short circuit current (Isc) and open circuit voltage (Voc) are affected by the material properties and the device architectures. The current-voltage relationships were measured in a temperature controlled OXFORD cryostat operating between 150K and 404K. From the dark current-voltage measurements, the field-independent hole mobility (mu0) was extracted, using a space charge limited current analysis. From the photocurrent-voltage measurements, the temperature dependence on Isc, Voc, and fill factor were studied. The temperature characteristics of Isc (T) were compared to that of mu0(T), and two different dependencies were obtained for different device architectures. The temperature

  4. Temperature dependence of optically induced cell deformations

    NASA Astrophysics Data System (ADS)

    Fritsch, Anatol; Kiessling, Tobias R.; Stange, Roland; Kaes, Josef A.

    2012-02-01

    The mechanical properties of any material change with temperature, hence this must be true for cellular material. In biology many functions are known to undergo modulations with temperature, like myosin motor activity, mechanical properties of actin filament solutions, CO2 uptake of cultured cells or sex determination of several species. As mechanical properties of living cells are considered to play an important role in many cell functions it is surprising that only little is known on how the rheology of single cells is affected by temperature. We report the systematic temperature dependence of single cell deformations in Optical Stretcher (OS) measurements. The temperature is changed on a scale of about 20 minutes up to hours and compared to defined temperature shocks in the range of milliseconds. Thereby, a strong temperature dependence of the mechanics of single suspended cells is revealed. We conclude that the observable differences arise rather from viscosity changes of the cytosol than from structural changes of the cytoskeleton. These findings have implications for the interpretation of many rheological measurements, especially for laser based approaches in biological studies.

  5. Temperature dependence of BCF plastic scintillation detectors

    PubMed Central

    Wootton, Landon; Beddar, Sam

    2013-01-01

    We examined temperature dependence in plastic scintillation detectors (PSDs) made of BCF-60 or BCF-12 scintillating fiber coupled to optical fiber with cyanoacrylate. PSDs were subjected to a range of temperatures using a temperature-controlled water bath and irradiated at each temperature while either the dose was measured using a CCD camera or the spectral output was measured using a spectrometer. The spectrometer was used to examine the intensity and spectral distribution of scintillation light emitted by the PSDs, Cerenkov light generated within the PSD, and light transmitted through an isolated optical coupling. BCF-60 PSDs exhibited a 0.50% decrease and BCF-12 PSDs a 0.09% decrease in measured dose per °C increase, relative to dose measured at 22°C. Spectrometry revealed that the total intensity of the light generated by BCF-60 and BCF-12 PSDs decreased by 0.32% and 0.13%, respectively, per °C increase. The spectral distribution of the light changed slightly with temperature for both PSDs, accounting for the disparity between the change in measured dose and total light output. The generation of Cerenkov light was temperature independent. However, light transmitted through optical coupling between the scintillator and the optical fiber also exhibited temperature dependence. PMID:23574889

  6. Electric conductivities of 1:1 electrolytes in liquid methanol along the liquid-vapor coexistence curve up to the critical temperature. II. KBr and KI solutions

    NASA Astrophysics Data System (ADS)

    Hoshina, Taka-aki; Tanaka, Kensuke; Tsuchihashi, Noriaki; Ibuki, Kazuyasu; Ueno, Masakatsu

    2004-11-01

    The molar conductivities Λ of KBr and KI in dilute methanol solutions were measured along the liquid-vapor coexistence curve up to the critical temperature (240 °C). The concentration dependence of Λ in each condition was analyzed by the Fuoss-Chen-Justice equation to obtain the limiting molar conductivities and the molar association constants. Using the present data together with the literature ones, the validity of the Hubbard-Onsager (HO) dielectric friction theory based on the sphere-in-continuum model was examined for the translational friction coefficients ζ of the halide ions (the Cl-, Br-, and I- ions) in methanol in the density range of 2.989ρc⩾ρ⩾1.506ρc, where ρc=0.2756 g cm-3 is the critical density of methanol. For all the halide ions studied, the friction coefficient decreased with decreasing density at ρ>2.0ρc, while the nonviscous contribution Δζ/ζ increased; Δζ was defined as the difference between ζ and the friction coefficient estimated by the Stokes law. The density dependence of ζ and Δζ/ζ were well reproduced by the HO theory at ρ>2.0ρc. The HO theory also explained the ion-size dependence of Δζ/ζ which decreased with ion-size at ρ>2.0ρc. At ρ<2.0ρc, on the other hand, the HO theory could not explain the density and the ion-size dependences of ζ and Δζ/ζ. These results indicated that the application limit of the HO theory lied about ρ=2.0ρc which is the same as the application limit observed for the alkali metal ions. The present results were also compared with the results in subcritical aqueous solutions.

  7. The complete, temperature resolved experimental spectrum of methanol (CH{sub 3}OH) between 560 and 654 GHz

    SciTech Connect

    Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.

    2014-02-20

    The complete spectrum of methanol (CH{sub 3}OH) has been characterized over a range of astrophysically significant temperatures in the 560.4-654.0 GHz spectral region. Absolute intensity calibration and analysis of 166 experimental spectra recorded over a slow 248-398 K temperature ramp provide a means for the simulation of the complete spectrum of methanol as a function of temperature. These results include contributions from v{sub t} = 3 and other higher states that are difficult to model via quantum mechanical (QM) techniques. They also contain contributions from the {sup 13}C isotopologue in terrestrial abundance. In contrast to our earlier work on semi-rigid species, such as ethyl cyanide and vinyl cyanide, significant intensity differences between these experimental values and those calculated by QM methods were found for many of the lines. Analysis of these differences shows the difficulty of the calculation of dipole matrix elements in the context of the internal rotation of the methanol molecule. These results are used to both provide catalogs in the usual line frequency, linestrength, and lower state energy format, as well as in a frequency point-by-point catalog that is particularly well suited for the characterization of blended lines.

  8. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference.

    PubMed

    Keltjens, Jan T; Pol, Arjan; Reimann, Joachim; Op den Camp, Huub J M

    2014-01-01

    Methanol dehydrogenase (MDH) catalyzes the first step in methanol use by methylotrophic bacteria and the second step in methane conversion by methanotrophs. Gram-negative bacteria possess an MDH with pyrroloquinoline quinone (PQQ) as its catalytic center. This MDH belongs to the broad class of eight-bladed β propeller quinoproteins, which comprise a range of other alcohol and aldehyde dehydrogenases. A well-investigated MDH is the heterotetrameric MxaFI-MDH, which is composed of two large catalytic subunits (MxaF) and two small subunits (MxaI). MxaFI-MDHs bind calcium as a cofactor that assists PQQ in catalysis. Genomic analyses indicated the existence of another MDH distantly related to the MxaFI-MDHs. Recently, several of these so-called XoxF-MDHs have been isolated. XoxF-MDHs described thus far are homodimeric proteins lacking the small subunit and possess a rare-earth element (REE) instead of calcium. The presence of such REE may confer XoxF-MDHs a superior catalytic efficiency. Moreover, XoxF-MDHs are able to oxidize methanol to formate, rather than to formaldehyde as MxaFI-MDHs do. While structures of MxaFI- and XoxF-MDH are conserved, also regarding the binding of PQQ, the accommodation of a REE requires the presence of a specific aspartate residue near the catalytic site. XoxF-MDHs containing such REE-binding motif are abundantly present in genomes of methylotrophic and methanotrophic microorganisms and also in organisms that hitherto are not known for such lifestyle. Moreover, sequence analyses suggest that XoxF-MDHs represent only a small part of putative REE-containing quinoproteins, together covering an unexploited potential of metabolic functions.

  9. The joint effects of room temperature ionic liquids and ordered media on fluorescence characteristics of estrogens in water and methanol.

    PubMed

    Wang, Huili; Duan, Ailian; Dahlgren, Randy A; Li, Yanyan; Li, Changli; Wang, Wenwei; Zeng, Aibing; Wang, Xuedong

    2014-07-15

    This study investigated the steady-state and time-resolved fluorescence properties of 17α-ethinylestradiol (EE2) and 17β-estradiol (E2) in the presence of ordered media (β-cyclodextrins (β-CD) and cetyltrimethylammonium bromide (CTAB)). In addition, we analyzed the effects of four room temperature ionic liquids (RTILs) on the fluorescence intensities (FIs) of EE2/β-CD and E2/β-CD inclusion complexes in methanol. Both β-CD and CTAB enhanced the fluorescence of EE2 and E2. The FIs of EE2 and E2 with β-CD or CTAB in methanol were greater than those in water, possibly resulting from decreased oxygen-quenching in H2O molecules. β-CD and CTAB may form inclusion complexes with estrogen in both water and methanol. The inclusion ratio of the complex was 1:1 and the inclusion constant (K) values in water were greater than those in methanol. The fluorescence lifetimes were 2.50 and 4.13 ns for EE2 and 2.58 and 4.03 ns for E2 in aqueous solution and methanol, respectively. The changing trend of fluorescence lifetimes for EE2 and E2 in β-CD or CTAB was similar to the steady-state FIs. The four RTILs had a significant quenching effect on the FIs of EE2/β-CD and E2/β-CD, and the quenching process for EE2/β-CD and E2/β-CD by RTILs was demonstrated to be a dynamic quenching mechanism. Fluorescent data obtained from these complex systems provide a theoretical foundation for understanding the interaction mechanisms between ordered media and RTILs in the analysis of estrogens.

  10. The joint effects of room temperature ionic liquids and ordered media on fluorescence characteristics of estrogens in water and methanol

    NASA Astrophysics Data System (ADS)

    Wang, Huili; Duan, Ailian; Dahlgren, Randy A.; Li, Yanyan; Li, Changli; Wang, Wenwei; Zeng, Aibing; Wang, Xuedong

    2014-07-01

    This study investigated the steady-state and time-resolved fluorescence properties of 17α-ethinylestradiol (EE2) and 17β-estradiol (E2) in the presence of ordered media (β-cyclodextrins (β-CD) and cetyltrimethylammonium bromide (CTAB)). In addition, we analyzed the effects of four room temperature ionic liquids (RTILs) on the fluorescence intensities (FIs) of EE2/β-CD and E2/β-CD inclusion complexes in methanol. Both β-CD and CTAB enhanced the fluorescence of EE2 and E2. The FIs of EE2 and E2 with β-CD or CTAB in methanol were greater than those in water, possibly resulting from decreased oxygen-quenching in H2O molecules. β-CD and CTAB may form inclusion complexes with estrogen in both water and methanol. The inclusion ratio of the complex was 1:1 and the inclusion constant (K) values in water were greater than those in methanol. The fluorescence lifetimes were 2.50 and 4.13 ns for EE2 and 2.58 and 4.03 ns for E2 in aqueous solution and methanol, respectively. The changing trend of fluorescence lifetimes for EE2 and E2 in β-CD or CTAB was similar to the steady-state FIs. The four RTILs had a significant quenching effect on the FIs of EE2/β-CD and E2/β-CD, and the quenching process for EE2/β-CD and E2/β-CD by RTILs was demonstrated to be a dynamic quenching mechanism. Fluorescent data obtained from these complex systems provide a theoretical foundation for understanding the interaction mechanisms between ordered media and RTILs in the analysis of estrogens.

  11. Temperature dependence of the hyperfine interaction at

    SciTech Connect

    Lopez-Garcia, Alberto; de la Presa, Patricia; Ayala, Alejandro

    2001-06-01

    The temperature dependence of the quadrupole hyperfine parameters covering the temperature range from 293 to 1173 K was measured at {sup 181}Ta probes in SrHfO{sub 3} by perturbed angular correlation spectroscopy. A fluctuating distribution of quadrupole interactions model was applied to interpret the data. At low temperatures above {approximately}300 K a static, asymmetric, and distributed electric quadrupole interaction was detected. At intermediate temperatures ({approx}600 K) a different quadrupole interaction appears, characterized by a fluctuating distribution of axially symmetric electric field gradient tensors. Above 873 K, the unique presence of a nuclear spin relaxation mechanism shows a second change in the perturbation acting on probes. These changes in the hyperfine interaction are consistent with the structural phase transitions detected by diffraction techniques. The probe effects were also analyzed, comparing {sup 181}Ta with {sup 111}Cd experiments.

  12. Coupled temperature dependences of volume and compressibility

    NASA Astrophysics Data System (ADS)

    Lawson, A. C.; Ledbetter, H.

    2011-04-01

    We present a new method for understanding the changes with temperature of the volume and compressibility of solids. These changes depend on five parameters: V 0, B 0, Θ, γ G and δ T. V 0 and B 0 are the atomic volume and bulk modulus at T = 0 K, Θ is the Debye temperature, γ G is the Grüneisen parameter, and δ T is the Anderson-Grüneisen parameter. Equations for the temperature-dependent volume, bulk modulus and thermal expansion are given, and examples of the use of these equations are provided, with particular emphasis on the light actinides. For the elements, we examine the relationship between experimental values of γ G and δ T, and find no clear correlation. In particular, Swenson's rule, which states that the bulk modulus does not change with temperature if the volume is held constant, is a poor approximation to the data. We reveal a new useful approximate relationship between dB/dP and γ G. We find that the thermodynamic quantity q, which describes the variation in γ G with volume, distributes around 2, not around 1, as often assumed. We show that the thermal- expansion behavior of Si and Ge (including negative thermal expansion at low temperatures) are well described with the use of a two-level invar model.

  13. The Complete, Temperature Resolved Experimental Spectrum of Methanol (CH3OH) between 214.6 and 265.4 GHz

    NASA Astrophysics Data System (ADS)

    McMillan, James P.; Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.

    2014-11-01

    The spectrum of methanol (CH3OH) has been characterized between 214.6 and 265.4 GHz for astrophysically significant temperatures. Four hundred and eighty-six spectra with absolute intensity calibration recorded between 240 and 389 K provided a means for the calculation of the complete experimental spectrum (CES) of methanol as a function of temperature. The CES includes contributions from vt = 3 and other higher states that are difficult to model quantum mechanically (QM). It also includes the spectrum of the 13C isotopologue in terrestrial abundance. In general the QM models provide frequencies that are within 1 MHz of their experimental values, but there are several outliers that differ by tens of MHz. As in our recent work on methanol in the 560-654 GHz region, significant intensity differences between our experimental intensities and cataloged values were found. In this work these differences are explored in the context of several QM analyses. The experimental results presented here are analyzed to provide a frequency point-by-point catalog that is well suited for the simulation of crowded and overlapped spectra. Additionally, a catalog in the usual line frequency, line strength, and lower state energy format is provided.

  14. Temperature dependent light transmission in ferrofluids

    NASA Astrophysics Data System (ADS)

    Brojabasi, Surajit; Mahendran, V.; Lahiri, B. B.; Philip, John

    2015-05-01

    We investigate the influence of temperature on the magnetic field induced light transmission in a kerosene based ferrofluid containing oleic acid coated Fe3O4 nanoparticles, where the direction of propagation of light is parallel to the direction of the external magnetic field. At a fixed temperature the transmitted light intensity is found to monotonically increase with incident wavelength due to reduced extinction efficiency at higher wavelength. The transmitted intensity decreases with external magnetic field due to enhanced scattering from the field induced linear chain like structures along the direction of the external magnetic field and due to the build-up of standing waves inside the scattering medium. The extinction of the field induced transmitted light intensity is found to occur at a lower external field as the sample temperature is lowered. The rate of extinction of normalized transmitted light intensity decreased linearly with increasing sample temperature due to slower field induced aggregation kinetics because of an increased Brownian motion of the suspended nanoparticles and a reduced coupling constant. The observed temperature dependent magneto-optical properties of magnetic nanofluids can be exploited for applications in optical devices.

  15. Methanol test

    MedlinePlus

    ... sources of methanol in the body include fruits, vegetables, and diet drinks that contain aspartame. Methanol is ... eat or drink it in toxic amounts. Methanol poisoning mainly affects the digestive system, nervous system, and ...

  16. Detection of a plant enzyme exhibiting chlorogenate-dependant caffeoyltransferase activity in methanolic extracts of arbuscular mycorrhizal tomato roots.

    PubMed

    Negrel, Jonathan; Javelle, Francine; Morandi, Dominique

    2013-05-01

    When Glomus intraradices-colonised tomato roots were extracted in methanol at 6 °C, chlorogenic acid (5-caffeoylquinic acid), naturally present in the extract, was slowly converted by transesterification into methyl caffeate. The progress of the reaction could be monitored by HPLC. The reaction only occurred when the ground roots were left in contact with the hydro-alcoholic extract and required the presence of 15-35% water in the mixture. When the roots were extracted in ethanol, chlorogenic acid was transformed to ethyl caffeate in the same conditions. The reaction was also detected in Glomus mosseae-colonised tomato root extracts. It was also detectable in non-mycorrhizal root extracts but was 10-25 times slower. By contrast it was undetectable in extracts of the aerial parts of tomato plants, which also contain high amounts of chlorogenic acid, whether or not these plants were inoculated by the arbuscular mycorrhizal fungus. We found that this transesterification reaction is catalysed by a tomato enzyme, which remains active in hydro-alcoholic mixtures and exhibits chlorogenate-dependant caffeoyltransferase activity in the presence of methanol or ethanol. This transferase activity is inhibited by phenylmethanesulfonyl fluoride. The 4- and 3-caffeoylquinic acid isomers were also used as substrates but were less active than chlorogenic acid. Highest activity was detected in mycorrhizal roots of nutrient-deprived tomato plants. Surprisingly this caffeoyltransferase activity could also be detected in hydro-alcoholic extracts of G. intraradices-colonised roots of leek, sorghum or barrel medic.

  17. Temperature-dependent ion beam mixing

    SciTech Connect

    Rehn, L.E.; Alexander, D.E.

    1993-08-01

    Recent work on enhanced interdiffusion rates during ion-beam mixing at elevated temperatures is reviewed. As discussed previously, expected increase in ion-beam mixing rates due to `radiation-enhanced diffusion` (RED), i.e. the free migration of isolated vacancy and interstitial defects, is well documented in single-crystal specimens in the range of 0.4 to 0.6 of absolute melting temperature. In contrast, the increase often observed at somewhat lower temperatures during ion-beam mixing of polycrystalline specimens is not well understood. However, sufficient evidence is available to show that this increase reflects intracascade enhancement of a thermally-activated process that also occurs without irradiation. Recent evidence is presented which suggests that this process is Diffusion-induced Grain-Boundary Migration (DIGM). An important complementary conclusion is that because ion-beam mixing in single-crystal specimens exhibits no significant temperature dependence below that of RED, models that invoke only irradiation-specific phenomena, e.g., cascade-overlap, thermal-spikes, or liquid-diffusion, and hence which predict no difference in mixing behavior between single- or poly-crystalline specimens, cannot account for the existing results.

  18. Methylotrophic Bacillus methanolicus Encodes Two Chromosomal and One Plasmid Born NAD+ Dependent Methanol Dehydrogenase Paralogs with Different Catalytic and Biochemical Properties

    PubMed Central

    Müller, Jonas E. N.; Kupper, Christiane E.; Schneider, Olha; Vorholt, Julia A.; Ellingsen, Trond E.; Brautaset, Trygve

    2013-01-01

    Bacillus methanolicus can utilize methanol as the sole carbon source for growth and it encodes an NAD+-dependent methanol dehydrogenase (Mdh), catalyzing the oxidation of methanol to formaldehyde. Recently, the genomes of the B. methanolicus strains MGA3 (ATCC53907) and PB1 (NCIMB13113) were sequenced and found to harbor three different putative Mdh encoding genes, each belonging to the type III Fe-NAD+-dependent alcohol dehydrogenases. In each strain, two of these genes are encoded on the chromosome and one on a plasmid; only one chromosomal act gene encoding the previously described activator protein ACT was found. The six Mdhs and the ACT proteins were produced recombinantly in Escherichia coli, purified, and characterized. All Mdhs required NAD+ as cosubstrate, were catalytically stimulated by ACT, exhibited a broad and different substrate specificity range and displayed both dehydrogenase and reductase activities. All Mdhs catalyzed the oxidation of methanol; however the catalytic activity for methanol was considerably lower than for most other alcohols tested, suggesting that these enzymes represent a novel class of alcohol dehydrogenases. The kinetic constants for the Mdhs were comparable when acting as pure enzymes, but together with ACT the differences were more pronounced. Quantitative PCR experiments revealed major differences with respect to transcriptional regulation of the paralogous genes. Taken together our data indicate that the repertoire of methanol oxidizing enzymes in thermotolerant bacilli is larger than expected with complex mechanisms involved in their regulation. PMID:23527128

  19. Escherichia coli survival in waters: temperature dependence.

    PubMed

    Blaustein, R A; Pachepsky, Y; Hill, R L; Shelton, D R; Whelan, G

    2013-02-01

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q₁₀ model. This suggestion was made 34 years ago based on 20 survival curves taken from published literature, but has not been revisited since then. The objective of this study was to re-evaluate the accuracy of the Q₁₀ equation, utilizing data accumulated since 1978. We assembled a database of 450 E. coli survival datasets from 70 peer-reviewed papers. We then focused on the 170 curves taken from experiments that were performed in the laboratory under dark conditions to exclude the effects of sunlight and other field factors that could cause additional variability in results. All datasets were tabulated dependencies "log concentration vs. time." There were three major patterns of inactivation: about half of the datasets had a section of fast log-linear inactivation followed by a section of slow log-linear inactivation; about a quarter of the datasets had a lag period followed by log-linear inactivation; and the remaining quarter were approximately linear throughout. First-order inactivation rate constants were calculated from the linear sections of all survival curves and the data grouped by water sources, including waters of agricultural origin, pristine water sources, groundwater and wells, lakes and reservoirs, rivers and streams, estuaries and seawater, and wastewater. Dependency of E. coli inactivation rates on temperature varied among the water sources. There was a significant difference in inactivation rate values at the reference temperature between rivers and agricultural waters, wastewaters and agricultural waters, rivers and lakes, and wastewater and lakes. At specific sites, the Q₁₀ equation was more accurate in rivers and coastal waters than in lakes making the value of

  20. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.

    PubMed

    Shi, Lei; Yang, Guohui; Tao, Kai; Yoneyama, Yoshiharu; Tan, Yisheng; Tsubaki, Noritatsu

    2013-08-20

    converted in situ via one of two main routes. The first is to use Fischer-Tropsch synthesis (FTS), a process that catalytically converts syngas to hydrocarbons of varying molecular weights. The second is methanol synthesis. The latter has better atomic economy, since the oxygen atom in CO is included in the product and CO₂ can be blended into syngas as a reactant. However, production of methanol is very inefficient in this reaction: only 10-15% one-pass conversion typically at 5.0-10.0 MPa and 523-573 K, due to the severe thermodynamic limitations of this exothermal reaction (CO + 2H₂ = CH₃OH). In this Account, we propose and develop a new route of low-temperature methanol synthesis from CO₂-containing syngas only by adding alcohols, including methanol itself. These alcohols act as homogeneous cocatalysts and the solvent, realizing 70-100% one-pass conversion at only 5.0 MPa and 443 K. The key step is the reaction of the adsorbed formate species with alcohols to yield ester species at low temperatures, followed by the hydrogenation of ester by hydrogen atoms on metallic Cu. This changes the normal reaction path of conventional, high-temperature methanol synthesis from formate via methoxy to methanol.

  1. Mechanism for stabilizing mRNAs involved in methanol-dependent methanogenesis of cold-adaptive Methanosarcina mazei zm-15.

    PubMed

    Cao, Yi; Li, Jie; Jiang, Na; Dong, Xiuzhu

    2014-02-01

    Methylotrophic methanogenesis predominates at low temperatures in the cold Zoige wetland in Tibet. To elucidate the basis of cold-adapted methanogenesis in these habitats, Methanosarcina mazei zm-15 was isolated, and the molecular basis of its cold activity was studied. For this strain, aceticlastic methanogenesis was reduced 7.7-fold during growth at 15°C versus 30°C. Methanol-derived methanogenesis decreased only 3-fold under the same conditions, suggesting that it is more cold adaptive. Reverse transcription-quantitative PCR (RT-qPCR) detected <2-fold difference in the transcript abundances of mtaA1, mtaB1, and mtaC1, the methanol methyltransferase (Mta) genes, in 30°C versus 15°C culture, while ackA and pta mRNAs, encoding acetate kinase (Ack) and phosphotransacetylase (Pta) in aceticlastic methanogenesis, were 4.5- and 6.8-fold higher in 30°C culture than in 15°C culture. The in vivo half-lives of mtaA1 and mtaC1B1 mRNAs were similar in 30°C and 15°C cultures. However, the pta-ackA mRNA half-life was significantly reduced in 15°C culture compared to 30°C culture. Using circularized RNA RT-PCR, large 5' untranslated regions (UTRs) (270 nucleotides [nt] and 238 nt) were identified for mtaA1 and mtaC1B1 mRNAs, while only a 27-nt 5' UTR was present in the pta-ackA transcript. Removal of the 5' UTRs significantly reduced the in vitro half-lives of mtaA1 and mtaC1B1 mRNAs. Remarkably, fusion of the mtaA1 or mtaC1B1 5' UTRs to pta-ackA mRNA increased its in vitro half-life at both 30°C and 15°C. These results demonstrate that the large 5' UTRs significantly enhance the stability of the mRNAs involved in methanol-derived methanogenesis in the cold-adaptive M. mazei zm-15.

  2. Temperature dependent nonlinear metal matrix laminae behavior

    NASA Technical Reports Server (NTRS)

    Barrett, D. J.; Buesking, K. W.

    1986-01-01

    An analytical method is described for computing the nonlinear thermal and mechanical response of laminated plates. The material model focuses upon the behavior of metal matrix materials by relating the nonlinear composite response to plasticity effects in the matrix. The foundation of the analysis is the unidirectional material model which is used to compute the instantaneous properties of the lamina based upon the properties of the fibers and matrix. The unidirectional model assumes that the fibers properties are constant with temperature and assumes that the matrix can be modelled as a temperature dependent, bilinear, kinematically hardening material. An incremental approach is used to compute average stresses in the fibers and matrix caused by arbitrary mechanical and thermal loads. The layer model is incorporated in an incremental laminated plate theory to compute the nonlinear response of laminated metal matrix composites of general orientation and stacking sequence. The report includes comparisons of the method with other analytical approaches and compares theoretical calculations with measured experimental material behavior. A section is included which describes the limitations of the material model.

  3. Reduction of methanol in brewed wine by the use of atmospheric and room-temperature plasma method and the combination optimization of malt with different adjuncts.

    PubMed

    Liang, Ming-Hua; Liang, Ying-Jie; Chai, Jiang-Yan; Zhou, Shi-Shui; Jiang, Jian-Guo

    2014-11-01

    Methanol, often generated in brewed wine, is highly toxic for human health. To decrease the methanol content of the brewed wine, atmospheric and room-temperature plasma (ARTP) was used as a new mutagenesis tool to generate a mutant of Saccharomyces cerevisiae with lower methanol content. Headspace gas chromatography was used to determine the identity and concentration of methanol with butyl acetate as internal standard in brewed wine. With 47.4% higher and 26.3% positive mutation rates were obtained, the ARTP jet exhibited a strong effect on mutation breeding of S. cerevisiae. The mutant S. cerevisiae S12 exhibited the lowest methanol content, which was decreased by 72.54% compared with that of the wild-type strain. Subsequently, the mutant S. cerevisiae S12 was used to ferment different combinations of malt and adjuncts for lower methanol content and higher alcoholic content. It was shown that the culture 6#, which was 60% malt, 20% wheat, and 20% corn, was the best combinations of malt and adjuncts, with the lowest methanol content (104.8 mg/L), and a relatively higher alcoholic content (15.3%, v/v). The optimal malt-adjunct culture 6#, treated with the glucoamylase dose of 0.04 U/mg of grain released the highest reducing sugars (201.6 mg/mL). It was indicated that the variation in reducing sugars among the combinations of malt and different adjuncts could be due to the dose of exogenous enzymes.

  4. Effects of concentration, temperature and solvent composition on density and apparent molar volume of the binary mixtures of cationic-anionic surfactants in methanol-water mixed solvent media.

    PubMed

    Bhattarai, Ajaya; Chatterjee, Sujeet Kumar; Niraula, Tulasi Prasad

    2013-01-01

    The accurate measurements on density of the binary mixtures of cetyltrimethylammonium bromide and sodium dodecyl sulphate in pure water and in methanol(1) + water (2) mixed solvent media containing (0.10, 0.20, and 0.30) volume fractions of methanol at 308.15, 318.15, and 323.15 K are reported. The concentrations are varied from (0.03 to 0.12) mol.l(-1) of sodium dodecyl sulphate in presence of ~ 5.0×10(-4) mol.l(-1) cetyltrimethylammonium bromide. The results showed almost increase in the densities with increasing surfactant mixture concentration, also the densities are found to decrease with increasing temperature over the entire concentration range, investigated in a given mixed solvent medium and these values are found to decrease with increasing methanol content in the solvent composition. The concentration dependence of the apparent molar volumes appear to be negligible over the entire concentration range, investigated in a given mixed solvent medium and the apparent molar volumes increase with increasing temperature and are found to decrease with increasing methanol content in the solvent composition.

  5. Accelerated chemistry in the reaction between the hydroxyl radical and methanol at interstellar temperatures facilitated by tunnelling.

    PubMed

    Shannon, Robin J; Blitz, Mark A; Goddard, Andrew; Heard, Dwayne E

    2013-09-01

    Understanding the abundances of molecules in dense interstellar clouds requires knowledge of the rates of gas-phase reactions between uncharged species. However, because of the low temperatures within these clouds, reactions with an activation barrier were considered too slow to play an important role. Here we show that, despite the presence of a barrier, the rate coefficient for the reaction between the hydroxyl radical (OH) and methanol--one of the most abundant organic molecules in space--is almost two orders of magnitude larger at 63 K than previously measured at ∼200 K. We also observe the formation of the methoxy radical product, which was recently detected in space. These results are interpreted by the formation of a hydrogen-bonded complex that is sufficiently long-lived to undergo quantum-mechanical tunnelling to form products. We postulate that this tunnelling mechanism for the oxidation of organic molecules by OH is widespread in low-temperature interstellar environments.

  6. Dielectric relaxation studies of binary mixture of β-picoline and methanol using time domain reflectometry at different temperatures

    NASA Astrophysics Data System (ADS)

    Trivedi, C. M.; Rana, V. A.; Hudge, P. G.; Kumbharkhane, A. C.

    2016-08-01

    Complex permittivity spectra of binary mixtures of varying concentrations of β-picoline and Methanol (MeOH) have been obtained using time domain reflectometry (TDR) technique over frequency range 10 MHz to 25 GHz at 283.15, 288.15, 293.15 and 298.15 K temperatures. The dielectric relaxation parameters namely static permittivity (ɛ0), high frequency limit permittivity (ɛ∞1) and the relaxation time (τ) were determined by fitting complex permittivity data to the single Debye/Cole-Davidson model. Complex nonlinear least square (CNLS) fitting procedure was carried out using LEVMW software. The excess permittivity (ɛ0E) and the excess inverse relaxation time (1/τ)E which contain information regarding molecular structure and interaction between polar-polar liquids were also determined. From the experimental data, parameters such as effective Kirkwood correlation factor (geff), Bruggeman factor (fB) and some thermo dynamical parameters have been calculated. Excess parameters were fitted to the Redlich-Kister polynomial equation. The values of static permittivity and relaxation time increase nonlinearly with increase in the mol-fraction of MeOH at all temperatures. The values of excess static permittivity (ɛ0E) and the excess inverse relaxation time (1/τ)E are negative for the studied β-picoline — MeOH system at all temperatures.

  7. Phosphorus-doped glass proton exchange membranes for low temperature direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Prakash, Shruti; Mustain, William E.; Park, SeongHo; Kohl, Paul A.

    Phosphorus-doped silicon dioxide thin films were used as ion exchange membranes in low temperature proton exchange membrane fuel cells. Phosphorus-doped silicon dioxide glass (PSG) was deposited via plasma-enhanced chemical vapor deposition (PECVD). The plasma deposition of PSG films allows for low temperature fabrication that is compatible with current microelectronic industrial processing. SiH 4, PH 3 and N 2O were used as the reactant gases. The effect of plasma deposition parameters, substrate temperature, RF power, and chamber pressure, on the ionic conductivity of the PSG films is elucidated. PSG conductivities as high as 2.54 × 10 -4 S cm -1 were realized, which is 250 times higher than the conductivity of pure SiO 2 films (1 × 10 -6 S cm -1) under identical deposition conditions. The higher conductivity films were deposited at low temperature, moderate pressure, limited reactant gas flow rate, and high RF power.

  8. Temperature-dependent spectral mismatch corrections

    DOE PAGESBeta

    Osterwald, Carl R.; Campanelli, Mark; Moriarty, Tom; Emery, Keith A.; Williams, Rafell

    2015-11-01

    This study develops the mathematical foundation for a translation of solar cell short-circuit current from one thermal and spectral irradiance operating condition to another without the use of ill-defined and error-prone temperature coefficients typically employed in solar cell metrology. Using the partial derivative of quantum efficiency with respect to temperature, the conventional isothermal expression for spectral mismatch corrections is modified to account for changes of current due to temperature; this modification completely eliminates the need for short-circuit-current temperature coefficients. An example calculation is provided to demonstrate use of the new translation.

  9. Improving Performance and Operational Stability of Porcine Interferon-α Production by Pichia pastoris with Combinational Induction Strategy of Low Temperature and Methanol/Sorbitol Co-feeding.

    PubMed

    Gao, Min-Jie; Zhan, Xiao-Bei; Gao, Peng; Zhang, Xu; Dong, Shi-Juan; Li, Zhen; Shi, Zhong-Ping; Lin, Chi-Chung

    2015-05-01

    Various induction strategies were investigated for effective porcine interferon-α (pIFN-α) production by Pichia pastoris in a 10 L fermenter. We found that pIFN-α concentration could be significantly improved with the strategies of low-temperature induction or methanol/sorbitol co-feeding. On this basis, a combinational strategy of induction at lower temperature (20 °C) with methanol/sorbitol co-feeding has been proposed for improvement of pIFN-α production. The results reveal that maximal pIFN-α concentration and antiviral activity reach the highest level of 2.7 g/L and 1.8 × 10(7) IU/mg with the proposed induction strategy, about 1.3-2.1 folds higher than those obtained with other sub-optimal induction strategies. Metabolic analysis and online multi-variable measurement results indicate that energy metabolic enrichment is responsible for the performance enhancement of pIFN-α production, as a large amount of ATP could be simultaneously produced from both formaldehyde oxidation pathway in methanol metabolism and tricarboxylic acid (TCA) cycle in sorbitol metabolism. In addition, the proposed combinational induction strategy enables P. pastoris to be resistant to high methanol concentration (42 g/L), which conceivably occur associating with the error-prone methanol over-feeding. As a result, the proposed combinational induction strategy simultaneously increased the targeted protein concentration and operational stability leading to significant improvement of pIFN-α production.

  10. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    SciTech Connect

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

    2014-03-01

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

  11. Water temperature dependence of single bubble sonoluminescence threshold.

    PubMed

    Germano, M; Alippi, A; Bettucci, A; Brizi, F; Passeri, D

    2010-01-01

    Water temperature dependence of single bubble sonoluminescence (SBSL) threshold has been experimentally measured to perform measurements at different temperatures on the very same bubble. Results show lower thresholds, i.e. an easier prime of mechanism, of sonoluminescence at lower water temperatures. Dependence is almost linear at lower temperatures while between 14 degrees C and about 20 degrees C the curve changes its slope reaching soon a virtual independence from water temperature above about 20 degrees C.

  12. Modeling temperature dependence of trace element concentrations in groundwater using temperature dependent distribution coefficient

    NASA Astrophysics Data System (ADS)

    Saito, H.; Saito, T.; Hamamoto, S.; Komatsu, T.

    2015-12-01

    In our previous study, we have observed trace element concentrations in groundwater increased when groundwater temperature was increased with constant thermal loading using a 50-m long vertical heat exchanger installed at Saitama University, Japan. During the field experiment, 38 degree C fluid was circulated in the heat exchanger resulting 2.8 kW thermal loading over 295 days. Groundwater samples were collected regularly from 17-m and 40-m deep aquifers at four observation wells located 1, 2, 5, and 10 m, respectively, from the heat exchange well and were analyzed with ICP-MS. As a result, concentrations of some trace elements such as boron increased with temperature especially at the 17-m deep aquifer that is known as marine sediment. It has been also observed that the increased concentrations have decreased after the thermal loading was terminated indicating that this phenomenon may be reversible. Although the mechanism is not fully understood, changes in the liquid phase concentration should be associated with dissolution and/or desorption from the solid phase. We therefore attempt to model this phenomenon by introducing temperature dependence in equilibrium linear adsorption isotherms. We assumed that distribution coefficients decrease with temperature so that the liquid phase concentration of a given element becomes higher as the temperature increases under the condition that the total mass stays constant. A shape function was developed to model the temperature dependence of the distribution coefficient. By solving the mass balance equation between the liquid phase and the solid phase for a given element, a new term describing changes in the concentration was implemented in a source/sink term of a standard convection dispersion equation (CDE). The CDE was then solved under a constant ground water flow using FlexPDE. By calibrating parameters in the newly developed shape function, the changes in element concentrations observed were quite well predicted. The

  13. Temperature Dependence of Phonons in Pyrolitic Graphite

    DOE R&D Accomplishments Database

    Brockhouse, B. N.; Shirane, G.

    1977-01-01

    Dispersion curves for longitudinal and transverse phonons propagating along and near the c-axis in pyrolitic graphite at temperatures between 4°K and 1500°C have been measured by neutron spectroscopy. The observed frequencies decrease markedly with increasing temperature (except for the transverse optical ''rippling'' modes in the hexagonal planes). The neutron groups show interesting asymmetrical broadening ascribed to interference between one phonon and many phonon processes.

  14. Temperature dependence of interaction-induced entanglement

    SciTech Connect

    Khasin, Michael; Kosloff, Ronnie

    2005-11-15

    Both direct and indirect weak nonresonant interactions are shown to produce entanglement between two initially disentangled systems prepared as a tensor product of thermal states, provided the initial temperature is sufficiently low. Entanglement is determined by the Peres-Horodecki criterion, which establishes that a composite state is entangled if its partial transpose is not positive. If the initial temperature of the thermal states is higher than an upper critical value T{sub uc} the minimal eigenvalue of the partially transposed density matrix of the composite state remains positive in the course of the evolution. If the initial temperature of the thermal states is lower than a lower critical value T{sub lc}{<=}T{sub uc} the minimal eigenvalue of the partially transposed density matrix of the composite state becomes negative, which means that entanglement develops. We calculate the lower bound T{sub lb} for T{sub lc} and show that the negativity of the composite state is negligibly small in the interval T{sub lb}temperature T{sub lb} can be considered as the critical temperature for the generation of entanglement. It is conjectured that above this critical temperature a composite quantum system could be simulated using classical computers.

  15. Conversion of methane to methanol: nickel, palladium, and platinum (d9) cations as catalysts for the oxidation of methane by ozone at room temperature.

    PubMed

    Božović, Andrea; Feil, Stefan; Koyanagi, Gregory K; Viggiano, Albert A; Zhang, Xinhao; Schlangen, Maria; Schwarz, Helmut; Bohme, Diethard K

    2010-10-11

    The room-temperature chemical kinetics has been measured for the catalytic activity of Group 10 atomic cations in the oxidation of methane to methanol by ozone. Ni(+) is observed to be the most efficient catalyst. The complete catalytic cycle with Ni(+) is interpreted with a computed potential energy landscape and, in principle, has an infinite turnover number for the oxidation of methane, without poisoning side reactions. The somewhat lower catalytic activity of Pd(+) is reported for the first time and also explored with DFT calculations. Pt(+) is seen to be ineffective as a catalyst because of the observed failure of PtO(+) to convert methane to methanol. PMID:20827690

  16. Temperature dependence of electrical conductivity and lunar temperatures

    NASA Technical Reports Server (NTRS)

    Olhoeft, G. R.; Strangway, D. W.; Sharpe, H.; Frisillo, A. L.

    1974-01-01

    Metallic conduction mechanicsms are probably not important in lunar materials because of the small amounts of free metal and metallic oxides present. This is confirmed by the extremely low conductivities measured to date and the fact that the conductivity increases with temperature. The major conduction mechanicsm appears to be ionic. This conduction mechanism is very strongly controlled by temperature, by deviations from stoichiometry, by electric field strengths, and by oxygen fugacity.

  17. Temperature dependent electrical resistivity of liquid Sn

    NASA Astrophysics Data System (ADS)

    Prajapati, A. V.; Sonvane, Y. A.; Patel, H. P.; Thakor, P. B.

    2016-05-01

    The present paper deals with the effect of temperature variation on the electrical resistivity (ρ) of liquid Sn(Tin). We have used a new parameter free pseudopotential along with screening Taylor et al and Farid et al local field correction functions. The Percus-Yevick Hard Sphere (PYHS) reference system is used to describe structural information. Zeeman formula has been used for finding resistivity with the variation of temperature. The balanced harmonies between present data and experimental data have been achieved with a minimal deviation. So, we concluded that our newly constructed model potential is an effective one to produce the data of electrical resistivity of liquid Sn(Tin) as a function of temperature.

  18. Temperature Dependent Electrical Properties of PZT Wafer

    NASA Astrophysics Data System (ADS)

    Basu, T.; Sen, S.; Seal, A.; Sen, A.

    2016-04-01

    The electrical and electromechanical properties of lead zirconate titanate (PZT) wafers were investigated and compared with PZT bulk. PZT wafers were prepared by tape casting technique. The transition temperature of both the PZT forms remained the same. The transition from an asymmetric to a symmetric shape was observed for PZT wafers at higher temperature. The piezoelectric coefficient (d 33) values obtained were 560 pc/N and 234 pc/N, and the electromechanical coupling coefficient (k p) values were 0.68 and 0.49 for bulk and wafer, respectively. The reduction in polarization after fatigue was only ~3% in case of PZT bulk and ~7% for PZT wafer.

  19. Electro-osmotic drag coefficient of water and methanol in polymer electrolytes at elevated temperatures

    SciTech Connect

    Weng, D.; Wainright, J.S.; Landau, U.; Savinell, R.F.

    1996-04-01

    The electro-osmotic drag coefficient of water in two polymer electrolytes was experimentally determined as a function of water activity and current density for temperatures up to 200 C. The results show that the electro-osmotic drag coefficient varies from 0.2 to 0.6 in Nafion{reg_sign}/H{sub 3}PO{sub 4} membrane electrolyte, but is essentially zero in phosphoric acid-doped PBI (polybenzimidazole) membrane electrolyte over the range of water activity considered. The near-zero electro-osmotic drag coefficient found in PBI indicates that this electrolyte should lessen the problems associated with water redistribution in proton exchange membrane fuel cells.

  20. Temperature dependence of soil water potential

    SciTech Connect

    Mohamed, A.M.O.; Yong, R.N. ); Cheung, S.C.H. )

    1992-12-01

    To understand the process of coupled heat and water transport, the relationship between temperature and soil water potential must be known. Two clays, Avonlea bentonite and Lake Agassiz clay, are being considered as the clay-based sealing materials for the Canadian nuclear fuel waste disposal vault. Avonlea bentonite is distinguished from Lake Agassiz clay by its high sealing potential in water. A series of experiments was performed in which the two clays were mixed with equal amounts of sand and were compacted to a dry density of 1.67 Mg/m[sup 3] under various moisture contents and temperatures. A psychrometer was placed within the compacted clay-sand to measure the soil water potential based on the electromotive force measured by the psychrometer. The results indicate that the soil water potential at a particular temperature is higher for both clay-sand mixtures than predicted by the change in the surface tension of water; this effect is much more prominent in the Avonlea bentonite and at low moisture contents. The paper presents empirical equations relating the soil water potential with the moisture content and temperature of the two clay-sand mixtures. 24 refs., 8 figs., 2 tabs.

  1. Temperature dependence of gramicidin channel conductance

    NASA Astrophysics Data System (ADS)

    Song, Hyundeok; Beck, Thomas

    2010-03-01

    The gramicidin channel is the smallest known biological ion channel, and it exhibits cation selectivity. Recently, Dr. John Cuppoletti's group at the University of Cincinnati has shown that the gramicidin channel can function at high temperatures with significant currents. This finding may have implications for fuel cell technologies. In order to explore the effect of temperature on channel conductance, we examined the gramicidin system at 300K, 330K, and 360K by computer simulation. Two forms of gramicidin, the head-to-head helical dimer and the intertwined double helix, were examined. Both the decrease of the free energy barrier and the increase of the diffusion of potassium ions inside the gramicidin channel at high temperatures imply an increase of current. We found that higher temperatures also affect the lifetime of hydrogen bonds, the distribution of the bending angle, the distribution of the distance between dimers, and the size of the pore radius for the helical dimer structure. These finding may be related to the gating of the gramicidin channel.

  2. Quasipermanent magnets of high temperature superconductor - Temperature dependence

    NASA Technical Reports Server (NTRS)

    Chen, In-Gann; Liu, Jianxiong; Ren, Yanru; Weinstein, Roy; Kozlowski, Gregory; Oberly, Charles E.

    1993-01-01

    We report on persistent field in quasi-permanent magnets of high temperature superconductors. Magnets composed of irradiated Y(1+)Ba2Cu3O7 trapped field Bt = 1.52 T at 77 K and 1.9 T at lower temperature. However, the activation magnet limited Bt at lower temperature. We present data on Jc(H,T) for unirradiated materials, and calculate Bt at various T. Based upon data at 65 K, we calculate Bt in unirradiated single grains at 20 K and find that 5.2 T will be trapped for grain diameter d about 1.2 cm, and 7.9 T for d = 2.3 cm. Irradiated grains will trap four times these values.

  3. The universality of enzymatic rate-temperature dependency.

    PubMed

    Elias, Mikael; Wieczorek, Grzegorz; Rosenne, Shaked; Tawfik, Dan S

    2014-01-01

    Organismal adaptation to extreme temperatures yields enzymes with distinct configurational stabilities, including thermophilic and psychrophilic enzymes, which are adapted to high and low temperatures, respectively. These enzymes are widely assumed to also have unique rate-temperature dependencies. Thermophilic enzymes, for example, are considered optimal at high temperatures and effectively inactive at low temperatures due to excess rigidity. Surveying published data, we find that thermophilic, mesophilic, and psychrophilic enzymes exhibit indistinguishable rate-temperature dependencies. Furthermore, given the nonenzymatic rate-temperature dependency, all enzymes, regardless of their operation temperatures, become >10-fold less powerful catalysts per 25 °C temperature increase. Among other factors, this loss of rate acceleration may be ascribed to thermally induced vibrations compromising the active-site catalytic configuration, suggesting that many enzymes are in fact insufficiently rigid.

  4. Temperature dependence of the internal friction of polycrystalline indium

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, K. V.; Golyandin, S. N.; Kustov, S. B.

    2010-12-01

    The temperature dependences of the internal friction and the elastic modulus of polycrystalline indium have been investigated in the temperature range 7-320 K at oscillatory loading frequencies of approximately 100 kHz. The effect of temperature on the amplitude dependence and the effect of high-amplitude loading at 7 K on the temperature and amplitude dependences of the internal friction of indium have been analyzed. It has been demonstrated that the thermocycling leads to microplastic deformation of indium due to the anisotropy of thermal expansion and the appearance of a "recrystallization" maximum in the spectrum of the amplitude-dependent internal friction. The conclusion has been drawn that the bulk diffusion of vacancies and impurities begins at temperatures of approximately 90 K and that, at lower temperatures, the diffusion occurs in the vicinity of dislocations. It has been revealed that the high-temperature internal friction background becomes noticeable after the dissolution of Cottrell atmospheres.

  5. Antioxidant Activity and ROS-Dependent Apoptotic Effect of Scurrula ferruginea (Jack) Danser Methanol Extract in Human Breast Cancer Cell MDA-MB-231

    PubMed Central

    Marvibaigi, Mohsen; Amini, Neda; Supriyanto, Eko; Abdul Majid, Fadzilah Adibah; Kumar Jaganathan, Saravana; Jamil, Shajarahtunnur; Hamzehalipour Almaki, Javad; Nasiri, Rozita

    2016-01-01

    Scurrula ferruginea (Jack) Danser is one of the mistletoe species belonging to Loranthaceae family, which grows on the branches of many deciduous trees in tropical countries. This study evaluated the antioxidant activities of S. ferruginea extracts. The cytotoxic activity of the selected extracts, which showed potent antioxidant activities, and high phenolic and flavonoid contents, were investigated in human breast cancer cell line (MDA-MB-231) and non-cancer human skin fibroblast cells (HSF-1184). The activities and characteristics varied depending on the different parts of S. ferruginea, solvent polarity, and concentrations of extracts. The stem methanol extract showed the highest amount of both phenolic (273.51 ± 4.84 mg gallic acid/g extract) and flavonoid contents (163.41 ± 4.62 mg catechin/g extract) and strong DPPH• radical scavenging (IC50 = 27.81 μg/mL) and metal chelation activity (IC50 = 80.20 μg/mL). The stem aqueous extract showed the highest ABTS•+ scavenging ability. The stem methanol and aqueous extracts exhibited dose-dependent cytotoxic activity against MDA-MB-231 cells with IC50 of 19.27 and 50.35 μg/mL, respectively. Furthermore, the extracts inhibited the migration and colony formation of MDA-MB-231 cells in a concentration-dependent manner. Morphological observations revealed hallmark properties of apoptosis in treated cells. The methanol extract induced an increase in ROS generation and mitochondrial depolarization in MDA-MB-231 cells, suggesting its potent apoptotic activity. The present study demonstrated that the S. ferruginea methanol extract mediated MDA-MB-231 cell growth inhibition via induction of apoptosis which was confirmed by Western blot analysis. It may be a potential anticancer agent; however, its in vivo anticancer activity needs to be investigated. PMID:27410459

  6. Antioxidant Activity and ROS-Dependent Apoptotic Effect of Scurrula ferruginea (Jack) Danser Methanol Extract in Human Breast Cancer Cell MDA-MB-231.

    PubMed

    Marvibaigi, Mohsen; Amini, Neda; Supriyanto, Eko; Abdul Majid, Fadzilah Adibah; Kumar Jaganathan, Saravana; Jamil, Shajarahtunnur; Hamzehalipour Almaki, Javad; Nasiri, Rozita

    2016-01-01

    Scurrula ferruginea (Jack) Danser is one of the mistletoe species belonging to Loranthaceae family, which grows on the branches of many deciduous trees in tropical countries. This study evaluated the antioxidant activities of S. ferruginea extracts. The cytotoxic activity of the selected extracts, which showed potent antioxidant activities, and high phenolic and flavonoid contents, were investigated in human breast cancer cell line (MDA-MB-231) and non-cancer human skin fibroblast cells (HSF-1184). The activities and characteristics varied depending on the different parts of S. ferruginea, solvent polarity, and concentrations of extracts. The stem methanol extract showed the highest amount of both phenolic (273.51 ± 4.84 mg gallic acid/g extract) and flavonoid contents (163.41 ± 4.62 mg catechin/g extract) and strong DPPH• radical scavenging (IC50 = 27.81 μg/mL) and metal chelation activity (IC50 = 80.20 μg/mL). The stem aqueous extract showed the highest ABTS•+ scavenging ability. The stem methanol and aqueous extracts exhibited dose-dependent cytotoxic activity against MDA-MB-231 cells with IC50 of 19.27 and 50.35 μg/mL, respectively. Furthermore, the extracts inhibited the migration and colony formation of MDA-MB-231 cells in a concentration-dependent manner. Morphological observations revealed hallmark properties of apoptosis in treated cells. The methanol extract induced an increase in ROS generation and mitochondrial depolarization in MDA-MB-231 cells, suggesting its potent apoptotic activity. The present study demonstrated that the S. ferruginea methanol extract mediated MDA-MB-231 cell growth inhibition via induction of apoptosis which was confirmed by Western blot analysis. It may be a potential anticancer agent; however, its in vivo anticancer activity needs to be investigated. PMID:27410459

  7. Vaporisation characteristics of methanol, ethanol and heptane droplets in opposed stagnation flow at low temperature and pressure

    NASA Astrophysics Data System (ADS)

    Zhu, Huayang; Kee, Robert J.; Chen, Longhua; Cao, Jingjing; Xu, Min; Zhang, Yuyin

    2012-08-01

    A computational model is developed and applied to study the vaporisation behaviour of three liquid fuels. This fundamental study is motivated by a need to understand how the performance of direct-injection-spark-ignition (DISI) engines may be affected by changes in fuel composition, especially alcohols. Currently, most DISI engines are designed for homogeneous-charge combustion, where the in-cylinder fuel injection, vaporisation and mixing is accomplished during the intake and early in the compression process. Thus the temperature and pressure are low, compared to post-compression conditions. The two-phase axisymmetric model is based upon an ideal opposed stagnation flow field. Liquid droplets are carried in one air stream that is met by an opposed air flow. Because of stagnation-flow similarity, the mathematical model can be represented as a one-dimensional boundary-value problem. Results show significant differences between methanol, ethanol and heptane fuels, which have potentially important impacts on the design and modification of fuel-injection systems for direct-injection engines with alternative fuels.

  8. Temperature dependence of heterogeneous nucleation: Extension of the Fletcher model

    NASA Astrophysics Data System (ADS)

    McGraw, Robert; Winkler, Paul; Wagner, Paul

    2015-04-01

    Recently there have been several cases reported where the critical saturation ratio for onset of heterogeneous nucleation increases with nucleation temperature (positive slope dependence). This behavior contrasts with the behavior observed in homogeneous nucleation, where a decreasing critical saturation ratio with increasing nucleation temperature (negative slope dependence) seems universal. For this reason the positive slope dependence is referred to as anomalous. Negative slope dependence is found in heterogeneous nucleation as well, but because so few temperature-dependent measurements have been reported, it is not presently clear which slope condition (positive or negative) will become more frequent. Especially interesting is the case of water vapor condensation on silver nanoparticles [Kupc et al., AS&T 47: i-iv, 2013] where the critical saturation ratio for heterogeneous nucleation onset passes through a maximum, at about 278K, with higher (lower) temperatures showing the usual (anomalous) temperature dependence. In the present study we develop an extension of Fletcher's classical, capillarity-based, model of heterogeneous nucleation that explicitly resolves the roles of surface energy and surface entropy in determining temperature dependence. Application of the second nucleation theorem, which relates temperature dependence of nucleation rate to cluster energy, yields both necessary and sufficient conditions for anomalous temperature behavior in the extended Fletcher model. In particular it is found that an increasing contact angle with temperature is a necessary, but not sufficient, condition for anomalous temperature dependence to occur. Methods for inferring microscopic contact angle and its temperature dependence from heterogeneous nucleation probability measurements are discussed in light of the new theory.

  9. Crossing regimes of temperature dependence in animal movement.

    PubMed

    Gibert, Jean P; Chelini, Marie-Claire; Rosenthal, Malcolm F; DeLong, John P

    2016-05-01

    A pressing challenge in ecology is to understand the effects of changing global temperatures on food web structure and dynamics. The stability of these complex ecological networks largely depends on how predator-prey interactions may respond to temperature changes. Because predators and prey rely on their velocities to catch food or avoid being eaten, understanding how temperatures may affect animal movement is central to this quest. Despite our efforts, we still lack a mechanistic understanding of how the effect of temperature on metabolic processes scales up to animal movement and beyond. Here, we merge a biomechanical approach, the Metabolic Theory of Ecology and empirical data to show that animal movement displays multiple regimes of temperature dependence. We also show that crossing these regimes has important consequences for population dynamics and stability, which depend on the parameters controlling predator-prey interactions. We argue that this dependence upon interaction parameters may help explain why experimental work on the temperature dependence of interaction strengths has so far yielded conflicting results. More importantly, these changes in the temperature dependence of animal movement can have consequences that go well beyond ecological interactions and affect, for example, animal communication, mating, sensory detection, and any behavioral modality dependent on the movement of limbs. Finally, by not taking into account the changes in temperature dependence reported here we might not be able to properly forecast the impact of global warming on ecological processes and propose appropriate mitigation action when needed. PMID:26854767

  10. DNAzyme catalytic beacon sensors that resist temperature-dependent variations.

    PubMed

    Nagraj, Nandini; Liu, Juewen; Sterling, Stephanie; Wu, Jenny; Lu, Yi

    2009-07-21

    The temperature-dependent variability of a Pb2+-specific 8-17E DNAzyme catalytic beacon sensor has been addressed through the introduction of mismatches in the DNAzyme, and the resulting sensors resist temperature-dependent variations from 4 to 30 degrees C.

  11. Determination of steroids in human plasma using temperature-dependent inclusion chromatography for metabolomic investigations.

    PubMed

    Zarzycki, Paweł K; Kulhanek, Kathrin M; Smith, Roger; Clifton, Vicki L

    2006-02-01

    Clinical and metabolomic investigations of complex human fluids require cost-effective methodologies that can rapidly assess the steroid hormone milieu of individual samples. The efficiency of quantification of many steroids is limited using immunoassays as these methods can only measure a single component of biological samples and are dependent upon the specificity of the antiserum used in the protocol. In this study, we optimised the solid-phase extraction protocol for the extraction of a range of steroids of varied polarity from estetrol to progesterone from human plasma. The final SPE procedure for efficient extraction of steroids was a washing mixture of 5 ml of 30% methanol and an elution solvent of 2 ml of 100% methanol using 0.5 g C-18 cartridges. This protocol resulted in a high recovery rate, ranging from 85.2 to 99.9% for both the internal standard (7,8-dimethoxyflavone) and steroids of interest. We also improved the separation methodology of our previous work using temperature dependent inclusion chromatography with a mobile phase composition of 35% acetonitrile and 12 mM of beta-cyclodextrin at 29 degrees C. Under these conditions most of the fluid components including estetrol were detected in the first 10 min with progesterone appearing at 43 min. This method is simplistic, inexpensive and reproducible with the capabilities of accurate quantification of steroids. Therefore it could have numerous clinical and metabolomic applications. PMID:16364333

  12. Temperature dependence of the excited state absorption of alexandrite

    SciTech Connect

    Shand, M.L.; Jenssen, H.P.

    1983-03-01

    The temperature dependence from 28 to 290/sup 0/C of the excited-state absorption cross section sigma /SUB 2a/ (E) in the gain wavelength region of alexandrite has been determined from the temperature dependence of the single pass gain (SPG) and of the fluorescence. sigma /SUB 2a/ (E) and the emission cross section increase with temperature at approximately the same rate.

  13. Temperature dependence of unsaturated hydraulic conductivity of two soils.

    USGS Publications Warehouse

    Constantz, J.

    1982-01-01

    The temperature dependence of the soil water matric potential, surface tension, and diffuse double-layer thickness are discussed in terms of their possible interaction with the unsaturated conductivity values obtained. A case is presented for further study to isolate these temperature-sensitive parameters as well as additional parameters related to fluid flow path changes with temperature.-from Author

  14. Temperature dependence of conductivity measurement for conducting polymer

    NASA Astrophysics Data System (ADS)

    Gutierrez, Leandro; Duran, Jesus; Isah, Anne; Albers, Patrick; McDougall, Michael; Wang, Weining

    2014-03-01

    Conducting polymer-based solar cells are the newest generation solar cells. While research on this area has been progressing, the efficiency is still low because certain important parameters of the solar cell are still not well understood. It is of interest to study the temperature dependence of the solar cell parameters, such as conductivity of the polymer, open circuit voltage, and reverse saturation current to gain a better understanding on the solar cells. In this work, we report our temperature dependence of conductivity measurement using our in-house temperature-varying apparatus. In this project, we designed and built a temperature varying apparatus using a thermoelectric cooler module which gives enough temperature range as we need and costs much less than a cryostat. The set-up of the apparatus will be discussed. Temperature dependence of conductivity measurements for PEDOT:PSS films with different room-temperature conductivity will be compared and discussed. NJSGC-NASA Fellowship grant

  15. NMR-based microbial metabolomics and the temperature-dependent coral pathogen Vibrio coralliilyticus.

    PubMed

    Boroujerdi, Arezue F B; Vizcaino, Maria I; Meyers, Alexander; Pollock, Elizabeth C; Huynh, Sara Lien; Schock, Tracey B; Morris, Pamela J; Bearden, Daniel W

    2009-10-15

    Coral bleaching occurs when the symbioses between coral animals and their zooxanthellae is disrupted, either as part of a natural cycle or as the result of unusual events. The bacterium Vibrio coralliilyticus (type strain ATCC BAA-450) has been linked to coral disease globally (for example in the Mediterranean, Red Sea, Indian Ocean, and Great Barrier Reef) and like many other Vibrio species exhibits a temperature-dependent pathogenicity. The temperature-dependence of V. corallillyticus in regard to its metabolome was investigated. Nuclear magnetic resonance (NMR) spectra were obtained of methanol-water extracts of intracellula rmetabolites (endometabolome) from multiple samples of the bacteria cultured into late stationary phase at 27 degrees C (virulent form) and 24 degrees C (avirulent form). The spectra were subjected to principal components analysis (PCA), and significant temperature-based separations in PC1, PC2, and PC3 dimensions were observed. Betaine, succinate, and glutamate were identified as metabolites that caused the greatest temperature-based separations in the PC scores plots. With increasing temperature, betaine was shown to be down regulated, while succinate and glutamate were up regulated.

  16. Temperature dependence of DNA condensation at high ionic concentration

    NASA Astrophysics Data System (ADS)

    Mao, Wei; Gao, Qingqing; Liu, Yanhui; Fan, Yangtao; Hu, Lin; Xu, Houqiang

    2016-08-01

    A series of experiments pointed out that compact states of DNA condensed by multivalent cation prefer higher temperature. The condensed DNA takes elongated coil or compact globule states and the population of the compact globule states increases with an increase in temperature. At the same time, a recent experimental work carried out in buffer solution without multivalent cation points out that DNA persistence length strongly depends on the temperature. DNA persistence length is a key parameter for quantitative interpretation of the conformational properties of DNA and related to the bending rigidity of DNA. It is necessary to revolve the effects of temperature dependence of persistence length on DNA condensation, and a model including the temperature dependence of persistence length and strong correlation of multivalent cation on DNA is provided. The autocorrelation function of the tangent vectors is found as an effective way to detect the temperature dependence of toroid conformations. With an increase in temperature, the first periodic oscillation in the autocorrelation function shifts left and the number of segments containing the first periodic oscillation decreases gradually. According to the experiments mentioned above, the long-axis length is defined to estimate the temperature dependence of condensation process further. At the temperatures defined in experiments mentioned above, the relation between long-axis length and temperature matches the experimental results.

  17. Position dependent analysis of membrane electrode assembly degradation of a direct methanol fuel cell via electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Hartmann, Peter; Zamel, Nada; Gerteisen, Dietmar

    2013-11-01

    The performance of a direct methanol fuel cell MEA degraded during an operational period of more than 3000 h in a stack is locally examined using electrochemical impedance spectroscopy. Therefore, after disassembling the MEA is cut into small pieces and analyzed in a 1 cm2 test cell. Using a reference electrode, we were capable of measuring the anode and cathode spectra separately. The spectra of the segments at different positions do not follow a specified trend from methanol inlet to outlet of the stack flow field. The anode spectra were analyzed with an equivalent circuit simulation. The conductance of the charge transfer was found to increase with current density up to a point where a raising limitation process of the complex methanol oxidation dominates, which is not a bottleneck at low current density. Further, an increase of the double layer capacitance with current density was observed. The diffusion resistance was calculated as an effective diffusion coefficient in the order of 10-10 m2 s-1; implying that the diffusion limitation is not the bulk diffusion in the backing layer. Finally, the degree of poisoning of the catalysts by carbon monoxide was measured as a pseudo inductive arc and decreases with increasing current.

  18. Investigation of Methanol Formation Mechanisms in H2O+CH4 Ices Subjected to 5 keV Electrons at a 10-100 K Temperature Range

    NASA Astrophysics Data System (ADS)

    Stelmach, K. B.; Cooper, P. D.

    2014-12-01

    Methane (CH4) and water are one of the most common molecules in both planetary bodies and interstellar dust grains. Another common molecule, methanol (CH3OH), is thought to form in CH4+H2O ices. However, the exact formation mechanisms of methanol from cosmic rays are not well known, especially in the temperatures of interest. Experiments were performed using high energy electrons (5 keV) to irradiate mixtures of 1:10, 1:5, and 1:3 CH4+H2O ices under a temperature range of 10-100 Kelvin with Fourier Transform Infrared (FTIR) spectroscopy being used to identify the products. Isotopologues of the two molecules (D2O and CD4) were used to probe for the mechanisms. Other products were formed as well and their potential mechanisms are identified. The implications of the mechanisms for planetary and interstellar chemistry are discussed.

  19. Temperature dependent vibrational modes of glycosidic bond in disaccharide sugars.

    PubMed

    Seo, Jeong-Ah; Kwon, Hyun-Joung; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2008-03-17

    We studied the temperature dependent vibrational modes of the glycosidic bond in trehalose, sucrose, and maltose at wavenumbers ranging from 1000 to 1200 cm(-1). We found that the slope of temperature dependent Raman shifts of the glycosidic bond in trehalose and sucrose changed at temperatures around 120 degrees C, indicating a bond length or a bond angle (dihedral and torsional angles) change. However, we did not observe any slope change in maltose because the melting temperature of maltose is very close to 120 degrees C. We also found, at temperatures below 120 degrees C, that Raman shifts of the vibrational modes of the glycosidic bond in trehalose showed the strongest temperature dependence among the three disaccharides.

  20. Climate change and temperature-dependent sex determination in reptiles.

    PubMed Central

    Janzen, F J

    1994-01-01

    Despite increasing concern over the possible impact of global temperature change, there is little empirical evidence of direct temperature effects on biotic interactions in natural systems. Clear assessment of the ecological and evolutionary impact of changing climatic temperature requires a natural system in which populations exhibit a direct unambiguous fitness response to thermal fluctuation. I monitored nests of a population of painted turtles (Chrysemys picta) with temperature-dependent sex determination to investigate the causal relationship between local climatic variation in temperature and offspring sex ratio. Consistent with theoretical predictions, annual offspring sex ratio was highly correlated with mean July air temperature, validating concerns about the effect of climate change on population demography. This correlation implies that even modest increases in mean temperature (< 2 degrees C) may drastically skew the sex ratio. Statistical evaluation of the variance in climate change indicates that an increase in mean temperature of 4 degrees C would effectively eliminate production of male offspring. Quantitative genetic analyses and behavioral data suggest that populations with temperature-dependent sex determination may be unable to evolve rapidly enough to counteract the negative fitness consequences of rapid global temperature change. Populations of species with temperature-dependent sex determination may serve as ideal indicators of the biological impact of global temperature change. PMID:8052608

  1. Thermal fission rates with temperature dependent fission barriers

    NASA Astrophysics Data System (ADS)

    Zhu, Yi; Pei, J. C.

    2016-08-01

    Background: The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. Purpose: We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and collective mass parameters. Methods: The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures has to incorporate the reflection above barriers. Results: Our results of spontaneous fission rates reasonably agree with other studies and experiments. The temperature dependencies of fission barrier heights and curvatures have been discussed. The temperature dependent behaviors of mass parameters have also been discussed. The thermal fission rates from low to high temperatures with a smooth connection have been given by different approaches. Conclusions: Since the temperature dependencies of fission barrier heights and curvatures, and the mass parameters can vary rapidly for different nuclei, the microscopic descriptions of thermal fission rates are very valuable. Our studies without free parameters provide a consistent picture to study various fissions such as that in fast-neutron reactors, astrophysical environments, and fusion reactions for superheavy nuclei.

  2. Temperature dependent electrical transport of disordered reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Muchharla, Baleeswaraiah; Narayanan, T. N.; Balakrishnan, Kaushik; Ajayan, Pulickel M.; Talapatra, Saikat

    2014-06-01

    We report on the simple route for the synthesis of chemically reduced graphene oxide (rGO) using ascorbic acid (a green chemical) as a reducing agent. Temperature-dependent electrical transport properties of rGO thin films have been studied in a wide range (50 K T 400 K) of temperature. Electrical conduction in rGO thin films was displayed in two different temperature regimes. At higher temperatures, Arrhenius-like temperature dependence of resistance was observed indicating a band gap dominating transport behavior. At lower temperatures, the rGO sample showed a conduction mechanism consistent with Mott's two-dimensional variable range hopping (2D-VRH). An unsaturated negative magnetoresistance (MR) was observed up to 3 T field. A decrease in negative MR at high temperatures is attributed to the phonon scattering of charge carriers.

  3. Oxidation of C1 compounds by particulate fractions from Methylococcus capsulatus: properties of methanol oxidase and methanol dehydrogenase.

    PubMed Central

    Wadzinski, A M; Ribbons, D W

    1975-01-01

    Methanol (and formaldehyde) oxidizing activities in crude extracts of Methylococcus capsulatus are associated mainly with particulate fractions sedimenting between 3,000 and 40,000 X g. Most of the phenazine methosulfate (PMS)-dependent methanol (and formaldehyde) dehydrogenase activity observed resides in the soluble fraction but represents only 40% of the total (PMS dependent plus independent) activity. Both PMS-dependent methanol dehydrogenase activity and PMS-independent methanol oxidase activity are found in particulate fractions, and the PMS-dependent dehydrogenase is easily solubilized by treatment with certain phospholipases or detergents. The properties of the PMS-dependent dehydrogenase activities in the soluble fraction and that solubilized from the particles suggested that they may be identical proteins. Their pH optima, temperature dependence, thermolabilities, and sensitivities to the presence of specific antisera were indistinguishable. Homogeneous preparations of the enzyme proteins obtained from the soluble fractions of extracts and the particulate fractions solubilized by detergents had similar: (i) electrophoretic mobilities in native and denatured states (subunit size in sodium dodecyl sulfate 62,000 daltons); (ii) molecular radii under native conditions, (iii) visible absorption spectra, lambdamax 350 nm, (iv) kinetic constants for methanol and formaldehyde; (v) substrate specificity; and (vi) immunological characteristics--antisera to each enzyme preparation showed precipitin lines of identity to either of the enzymes. It is suggested that the major site of methanol and formaldehyde oxidation in M. capsulatus occurs on the intracytoplasmic membranes in vivo and is coupled to oxygen reduction. Images PMID:238947

  4. Identification of temperature-dependent thermal conductivity and experimental verification

    NASA Astrophysics Data System (ADS)

    Pan, Weizhen; Yi, Fajun; Zhu, Yanwei; Meng, Songhe

    2016-07-01

    A modified Levenberg-Marquardt method (LMM) for the identification of temperature-dependent thermal conductivity is proposed; the experiment and structure of the specimen for identification are also designed. The temperature-dependent thermal conductivities of copper C10200 and brass C28000 are identified to verify the effectiveness of the proposed identification method. The comparison between identified results and the measured data of laser flash diffusivity apparatus indicates the fine consistency and potential usage of the proposed method.

  5. Temperature Dependence of Thermopower in Strongly Correlated Multiorbital Systems

    SciTech Connect

    Sekino, M; Okamoto, Satoshi; Koshibae, W; Mori, Michiyasu; Maekawa, Sadamichi

    2014-01-01

    Temperature dependence of thermopower in the multiorbital Hubbard model is studied by using the dynamical mean-field theory with the non-crossing approximation impurity solver. It is found that the Coulomb interaction, the Hund coupling, and the crystal filed splitting bring about nonmonotonic temperature dependence of the hermopower, including its sign reversal. The implication of our theoretical results to some materials is discussed.

  6. Temperature and size-dependent Hamaker constants for metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Jiang, K.; Pinchuk, P.

    2016-08-01

    Theoretical values of the Hamaker constant have been calculated for metal nanoparticles using Lifshitz theory. The theory describes the Hamaker constant in terms of the permittivity of the interacting bodies. Metal nanoparticles exhibit an internal size effect that alters the dielectric permittivity of the particle when its size falls below the mean free path of the conducting electrons. This size dependence of the permittivity leads to size-dependence of the Hamaker constant for metal nanoparticles. Additionally, the electron damping and the plasma frequency used to model the permittivity of the particle exhibit temperature-dependence, which lead to temperature dependence of the Hamaker constant. In this work, both the size and temperature dependence for gold, silver, copper, and aluminum nanoparticles is demonstrated. The results of this study might be of interest for studying the colloidal stability of nanoparticles in solution.

  7. Temperature Dependence of Radiative and Nonradiative Rates from Time-Dependent Correlation Function Methods.

    PubMed

    Banerjee, Shiladitya; Baiardi, Alberto; Bloino, Julien; Barone, Vincenzo

    2016-02-01

    The temperature dependence of the rate constants in radiative and nonradiative decays from excited electronic states has been studied using a time-dependent correlation function approach in the framework of the adiabatic representation and the harmonic oscillator approximation. The present work analyzes the vibrational aspect of the processes, which gives rise to the temperature dependence, with the inclusion of mode-mixing, as well as of frequency change effects. The temperature dependence of the rate constants shows a contrasting nature, depending on whether the process has been addressed within the Franck-Condon approximation or beyond it. The calculation of the Duschinsky matrix and the shift vector between the normal modes of the two states can be done in Cartesian and/or internal coordinates, depending on the flexibility of the investigated molecule. A new computational code has been developed to calculate the rates of intersystem crossing, internal conversion, and fluorescence for selected molecules as functions of temperature. PMID:26683207

  8. The temperature dependence of electrical excitability in fish hearts.

    PubMed

    Vornanen, Matti

    2016-07-01

    Environmental temperature has pervasive effects on the rate of life processes in ectothermic animals. Animal performance is affected by temperature, but there are finite thermal limits for vital body functions, including contraction of the heart. This Review discusses the electrical excitation that initiates and controls the rate and rhythm of fish cardiac contraction and is therefore a central factor in the temperature-dependent modulation of fish cardiac function. The control of cardiac electrical excitability should be sensitive enough to respond to temperature changes but simultaneously robust enough to protect against cardiac arrhythmia; therefore, the thermal resilience and plasticity of electrical excitation are physiological qualities that may affect the ability of fishes to adjust to climate change. Acute changes in temperature alter the frequency of the heartbeat and the duration of atrial and ventricular action potentials (APs). Prolonged exposure to new thermal conditions induces compensatory changes in ion channel expression and function, which usually partially alleviate the direct effects of temperature on cardiac APs and heart rate. The most heat-sensitive molecular components contributing to the electrical excitation of the fish heart seem to be Na(+) channels, which may set the upper thermal limit for the cardiac excitability by compromising the initiation of the cardiac AP at high temperatures. In cardiac and other excitable cells, the different temperature dependencies of the outward K(+) current and inward Na(+) current may compromise electrical excitability at temperature extremes, a hypothesis termed the temperature-dependent depression of electrical excitation. PMID:27385752

  9. Genome Characteristics of Two Novel Type I Methanotrophs Enriched from North Sea Sediments Containing Exclusively a Lanthanide-Dependent XoxF5-Type Methanol Dehydrogenase.

    PubMed

    Vekeman, Bram; Speth, Daan; Wille, Jasper; Cremers, Geert; De Vos, Paul; Op den Camp, Huub J M; Heylen, Kim

    2016-10-01

    Microbial methane oxidizers play a crucial role in the oxidation of methane in marine ecosystems, as such preventing the escape of excessive methane to the atmosphere. Despite the important role of methanotrophs in marine ecosystems, only a limited number of isolates are described, with only four genomes available. Here, we report on two genomes of gammaproteobacterial methanotroph cultures, affiliated with the deep-sea cluster 2, obtained from North Sea sediment. Initial enrichments using methane as sole source of carbon and energy and mimicking the in situ conditions followed by serial subcultivations and multiple extinction culturing events over a period of 3 years resulted in a highly enriched culture. The draft genomes of the methane oxidizer in both cultures showed the presence of genes typically found in type I methanotrophs, including genes encoding particulate methane monooxygenase (pmoCAB), genes for tetrahydromethanopterin (H4MPT)- and tetrahydrofolate (H4F)-dependent C1-transfer pathways, and genes of the ribulose monophosphate (RuMP) pathway. The most distinctive feature, when compared to other available gammaproteobacterial genomes, is the absence of a calcium-dependent methanol dehydrogenase. Both genomes reported here only have a xoxF gene encoding a lanthanide-dependent XoxF5-type methanol dehydrogenase. Thus, these genomes offer novel insight in the genomic landscape of uncultured diversity of marine methanotrophs. PMID:27457652

  10. Temperature dependence of photovoltaic cells, modules, and systems

    SciTech Connect

    Emery, K.; Burdick, J.; Caiyem, Y.

    1996-05-01

    Photovoltaic (PV) cells and modules are often rated in terms of a set of standard reporting conditions defined by a temperature, spectral irradiance, and total irradiance. Because PV devices operates over a wide range of temperatures and irradiances, the temperature and irradiance related behavior must be known. This paper surveys the temperature dependence of crystalline and thin-film, state-of-the-art, research-size cells, modules, and systems measured by a variety of methods. The various error sources and measurement methods that contribute to cause differences in the temperature coefficient for a given cell or module measured with various methods are discussed.

  11. Temperature dependence of helium diffusion through common epoxies

    NASA Astrophysics Data System (ADS)

    Lovinger, D. J.; Hallock, R. B.

    2012-12-01

    Helium gas at room temperature is known to diffuse through the epoxies commonly used in various low temperature applications, which can complicate leak detection. The helium flux typically decreases with decreasing temperature. We have measured the flux of helium that passes though thin sections of as-cast clear Stycast 1266, Stycast 2850FT (black) and TRA-BOND 2151 (blue) epoxies as a function of temperature in the range 130K < T < 300K. We analyze the data to create normalized (to constant sample thickness and pressure differential) data for comparison. We report the preliminary temperature-dependent fluxes we have measured, which show significant differences among the epoxies studied.

  12. Temperature dependent droplet impact dynamics on flat and textured surfaces

    SciTech Connect

    Azar Alizadeh; Vaibhav Bahadur; Sheng Zhong; Wen Shang; Ri Li; James Ruud; Masako Yamada; Liehi Ge; Ali Dhinojwala; Manohar S Sohal

    2012-03-01

    Droplet impact dynamics determines the performance of surfaces used in many applications such as anti-icing, condensation, boiling and heat transfer. We study impact dynamics of water droplets on surfaces with chemistry/texture ranging from hydrophilic to superhydrophobic and across a temperature range spanning below freezing to near boiling conditions. Droplet retraction shows very strong temperature dependence especially for hydrophilic surfaces; it is seen that lower substrate temperatures lead to lesser retraction. Physics-based analyses show that the increased viscosity associated with lower temperatures can explain the decreased retraction. The present findings serve to guide further studies of dynamic fluid-structure interaction at various temperatures.

  13. A temperature dependent SPICE macro-model for power MOSFETs

    SciTech Connect

    Pierce, D.G.

    1991-01-01

    The power MOSFET SPICE Macro-Model has been developed suitable for use over the temperature range {minus}55 to 125 {degrees}C. The model is comprised of a single parameter set with temperature dependence accessed through the SPICE .TEMP card. SPICE parameter extraction techniques for the model and model predictive accuracy are discussed. 7 refs., 8 figs., 1 tab.

  14. Frequency and temperature dependence of dielectric properties of chicken meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric properties of chicken breast meat were measured with an open-ended coaxial-line probe between 200 MHz and 20 GHz at temperatures ranging from -20 degree C to +25 degree C. At a given temperature, the frequency dependence of the dielectric constant reveals two relaxations while those of th...

  15. The complete, temperature resolved experimental spectrum of methanol (CH{sub 3}OH) between 214.6 and 265.4 GHz

    SciTech Connect

    McMillan, James P.; Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.

    2014-11-01

    The spectrum of methanol (CH{sub 3}OH) has been characterized between 214.6 and 265.4 GHz for astrophysically significant temperatures. Four hundred and eighty-six spectra with absolute intensity calibration recorded between 240 and 389 K provided a means for the calculation of the complete experimental spectrum (CES) of methanol as a function of temperature. The CES includes contributions from v{sub t} = 3 and other higher states that are difficult to model quantum mechanically (QM). It also includes the spectrum of the {sup 13}C isotopologue in terrestrial abundance. In general the QM models provide frequencies that are within 1 MHz of their experimental values, but there are several outliers that differ by tens of MHz. As in our recent work on methanol in the 560-654 GHz region, significant intensity differences between our experimental intensities and cataloged values were found. In this work these differences are explored in the context of several QM analyses. The experimental results presented here are analyzed to provide a frequency point-by-point catalog that is well suited for the simulation of crowded and overlapped spectra. Additionally, a catalog in the usual line frequency, line strength, and lower state energy format is provided.

  16. Temperature dependence of the diffusion coefficient of nanoparticles

    NASA Astrophysics Data System (ADS)

    Rudyak, V. Ya.; Dubtsov, S. N.; Baklanov, A. M.

    2008-06-01

    The temperature dependence of the diffusion coefficient of nanoparticles in gases has been experimentally studied. It is established that this dependence significantly differs from that predicted by various correlations, in particular, by the Cunningham-Millikan-Davies correlation that is used as an instrumental basis for virtually all methods of measurement of the diffusion coefficient in aerosols.

  17. Temperature Dependence of Viscosities of Common Carrier Gases

    ERIC Educational Resources Information Center

    Sommers, Trent S.; Nahir, Tal M.

    2005-01-01

    Theoretical and experimental evidence for the dependence of viscosities of the real gases on temperature is described, suggesting that this dependence is greater than that predicted by the kinetic theory of gases. The experimental results were obtained using common modern instrumentation and could be reproduced by students in analytical or…

  18. The temperature dependent amide I band of crystalline acetanilide

    NASA Astrophysics Data System (ADS)

    Cruzeiro, Leonor; Freedman, Holly

    2013-10-01

    The temperature dependent anomalous peak in the amide I band of crystalline acetanilide is thought to be due to self-trapped states. On the contrary, according to the present model, the anomalous peak comes from the fraction of ACN molecules strongly hydrogen-bonded to a neighboring ACN molecule, and its intensity decreases because, on average, this fraction decreases as temperature increases. This model provides, for the first time, an integrated and theoretically consistent view of the temperature dependence of the full amide I band and a qualitative explanation of some of the features of nonlinear pump-probe experiments.

  19. TEMPERATURE DEPENDENCE OF THERMAL NEUTRONS FROM THE MOON

    SciTech Connect

    R.C. LITTLE; W. FELDMAN; ET AL

    2000-10-01

    Planetary thermal neutron fluxes provide a sensitive proxy for mafic and feldspathic terranes, and are also necessary for translating measured gamma-ray line strengths to elemental abundances. Both functions require a model for near surface temperatures and a knowledge of the dependence of thermal neutron flux on temperature. We have explored this dependence for a representative sample of lunar soil compositions and surface temperatures using MCNP{trademark}. For all soil samples, the neutron density is found to be independent of temperature, in accord with neutron moderation theory. The thermal neutron flux, however, does vary with temperature in a way that depends on {Delta}, the ratio of macroscopic absorption to energy-loss cross sections of soil compositions. The weakest dependence is for the largest {Delta} (which corresponds to the Apollo 17 high Ti basalt in our soil selection), and the largest dependence is for the lowest {Delta} (which corresponds to ferroan anorthosite, [FAN] in our selection). For the lunar model simulated, the depth at which the thermal neutron population is most sensitive to temperature is {approx}30 g/cm{sup 2}.

  20. Temperature dependence of acoustic impedance for specific fluorocarbon liquids.

    PubMed

    Marsh, Jon N; Hall, Christopher S; Wickline, Samuel A; Lanza, Gregory M

    2002-12-01

    Recent studies by our group have demonstrated the efficacy of perfluorocarbon liquid nanoparticles for enhancing the reflectivity of tissuelike surfaces to which they are bound. The magnitude of this enhancement depends in large part on the difference in impedances of the perfluorocarbon, the bound substrate, and the propagating medium. The impedance varies directly with temperature because both the speed of sound and the mass density of perfluorocarbon liquids are highly temperature dependent. However, there are relatively little data in the literature pertaining to the temperature dependence of the acoustic impedance of these compounds. In this study, the speed of sound and density of seven different fluorocarbon liquids were measured at specific temperatures between 20 degrees C and 45 degrees C. All of the samples demonstrated negative, linear dependencies on temperature for both speed of sound and density and, consequently, for the acoustic impedance. The slope of sound speed was greatest for perfluorohexane (-278 +/- 1.5 cm/s-degrees C) and lowest for perfluorodichlorooctane (-222 +/- 0.9 cm/s-degrees C). Of the compounds measured, perfluorohexane exhibited the lowest acoustic impedance at all temperatures, and perfluorodecalin the highest at all temperatures. Computations from a simple transmission-line model used to predict reflectivity enhancement from surface-bound nanoparticles are discussed in light of these results.

  1. AlN bandgap temperature dependence from its optical properties

    NASA Astrophysics Data System (ADS)

    Silveira, E.; Freitas, J. A.; Schujman, S. B.; Schowalter, L. J.

    2008-08-01

    In the present work we report on the AlN gap energy temperature dependence studied through the optical properties of high-quality large bulk AlN single crystals grown by a sublimation-recondensation technique. The cathodoluminescence, transmission/absorption as well as optical reflectance measurements at low temperature show a clear feature at about 6.03 eV, which could be attributed to the free exciton A. Even using a rather thick sample it was possible to observe the absorption due to the free exciton A in this energy range due to its large binding energy. We followed the temperature evolution of these features up to room temperature and inferred the gap energy temperature dependence using the exciton binding energy obtained by our group in the past.

  2. Temperature-dependent μ-Raman investigation of struvite crystals

    NASA Astrophysics Data System (ADS)

    Prywer, Jolanta; Kasprowicz, D.; Runka, T.

    2016-04-01

    The effect of temperature on the vibrational properties of struvite crystals grown from silica gels was systematically studied by μ-Raman spectroscopy. The time-dependent Raman spectra recorded in the process of long time annealing of struvite crystal at 353 K do not indicate structural changes in the struvite crystal with the time of annealing. The temperature-dependent Raman spectra recorded in the range 298-423 K reveal a phase transition in struvite at about 368 K. Above this characteristic temperature, some of bands assigned to vibrations of the PO4 and NH4 tetrahedra and water molecules observed in the Raman spectra in low temperatures (orthorhombic phase) change their spectral parameters or disappear, which indicates a transition to a higher symmetry structure of struvite in the range of high temperatures.

  3. Temperature Dependence of Surface Layering in a Dielectric Liquid

    SciTech Connect

    Mo,H.; Kewalramani, S.; Evmenenko, G.; Kim, K.; Ehrlich, S.; Dutta, P.

    2007-01-01

    The temperature dependence of the density oscillations (layers) at the free surface of tetrakis(2-ethylhexoxy)silane, a nonmetallic molecular liquid, was investigated using x-ray reflectivity. Below {approx}215K , the layer parameters weakly vary with temperature, if at all. Above this temperature, the layer spacings and intrinsic layer widths increase continuously, until there is no identifiable layering above 230K . This transition occurs at T/{Tc}{approx}0.23 , a temperature region that is usually accessible in metallic liquids but is preempted by freezing in many dielectric liquids.

  4. Temperature dependence of the water retention curve for dry soils

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Goss, K.-U.

    2011-03-01

    Water retention curves (WRCs) are equivalent to water adsorption isotherms that display the soil water content as a function of water activity in the pore space. The use of water activity implies that pure (unbound) water at the given temperature is considered to be a reference state. In this study we measured the temperature dependence of WRCs for nine European soils under dry conditions (i.e., water activity < 90% relative humidity (RH), matrix tension <-1.5 MPa). The results show a significant temperature dependence of the WRCs. The absolute value of the adsorption enthalpy of water, ?, which reflects this temperature dependence, increased with decreasing water content and thus deviated from the condensation enthalpy of a pure (unbound) water phase, ?. These results are explained by the following facts: under increasingly drier conditions the interactions between water molecules and the mineral surfaces become more and more dominant because the sorbed water film becomes very thin. These interactions between water and minerals are stronger than those between pure water molecules. The observed temperature dependence of WRCs varied only a little between the studied soils. Therefore, the average equation, ?, derived from our experimental data may serve as a good approximation of ? for soils in general and thus allow the temperature extrapolation of WRCs (in the dry region down to 30% RH) between 5°C and 40°C without the need for additional experimental information.

  5. Arrhenius temperature dependence of in vitro tissue plasminogen activator thrombolysis

    NASA Astrophysics Data System (ADS)

    Shaw, George J.; Dhamija, Ashima; Bavani, Nazli; Wagner, Kenneth R.; Holland, Christy K.

    2007-06-01

    Stroke is a devastating disease and a leading cause of death and disability. Currently, the only FDA approved therapy for acute ischemic stroke is the intravenous administration of the thrombolytic medication, recombinant tissue plasminogen activator (tPA). However, this treatment has many contraindications and can have dangerous side effects such as intra-cerebral hemorrhage. These treatment limitations have led to much interest in potential adjunctive therapies, such as therapeutic hypothermia (T <= 35 °C) and ultrasound enhanced thrombolysis. Such interest may lead to combining these therapies with tPA to treat stroke, however little is known about the effects of temperature on the thrombolytic efficacy of tPA. In this work, we measure the temperature dependence of the fractional clot mass loss Δm(T) resulting from tPA exposure in an in vitro human clot model. We find that the temperature dependence is well described by an Arrhenius temperature dependence with an effective activation energy Eeff of 42.0 ± 0.9 kJ mole-1. Eeff approximates the activation energy of the plasminogen-to-plasmin reaction of 48.9 kJ mole-1. A model to explain this temperature dependence is proposed. These results will be useful in predicting the effects of temperature in future lytic therapies.

  6. Temperature dependence of proton relaxation times in vitro.

    PubMed

    Nelson, T R; Tung, S M

    1987-01-01

    Accurate measurement of tissue relaxation characteristics is dependent on many factors, including field strength and temperature. The purpose of this study was to evaluate the relationship between sample temperature, viscosity and proton spin-lattice relaxation time (T1) and spin-spin relaxation time (T2). A review of two basic models of relaxation the simple molecular motion model and the fast exchange two state model is given with reference to their thermal dependencies. The temperature dependence for both T1 and T2 was studied on a 0.15 Tesla whole body magnetic resonance imager. Thirteen samples comprising both simple and complex materials were investigated by using a standard spin-echo (SE) technique and a modified Carr-Purcell-Meiboom-Gill (CPMG) multi-echo sequence. A simple linear relationship between T1 and temperature was observed for all samples over the range of 20 degrees C to 50 degrees C. There is an inverse relationship between viscosity and T1 and T2. A quantity called the temperature dependence coefficient (TDC) is introduced and defined as the percent rate of change of the proton relaxation time referenced to a specific temperature. The large TDC found for T1 values, e.g. 2.37%/degrees C for CuSO4 solutions and 3.59%/degrees C for light vegetable oils at 22 degrees C, indicates that a temperature correction should be made when comparing in-vivo and in-vitro T1 times. The T2 temperature dependence is relatively small. PMID:3041151

  7. Substrate-dependent temperature sensitivity of soil organic matter decomposition

    NASA Astrophysics Data System (ADS)

    Myachina, Olga; Blagodatskaya, Evgenia

    2015-04-01

    Activity of extracellular enzymes responsible for decomposition of organics is substrate dependent. Quantity of the substrate is the main limiting factor for enzymatic or microbial heterotrophic activity in soils. Different mechanisms of enzymes response to temperature suggested for low and high substrate availability were never proved for real soil conditions. We compared the temperature responses of enzymes-catalyzed reactions in soils. Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found that substrate affinity of enzymes (which is usually decreases with the temperature) differently responded to warming for the process of depolymerisation versus monomers oxidation. We suggest the mechanism to temperature acclimation based on different temperature sensitivity of enzymes kinetics for hydrolysis of polymers and for monomers oxidation.

  8. Temperature Dependent Constitutive Modeling for Magnesium Alloy Sheet

    SciTech Connect

    Lee, Jong K.; Lee, June K.; Kim, Hyung S.; Kim, Heon Y.

    2010-06-15

    Magnesium alloys have been increasingly used in automotive and electronic industries because of their excellent strength to weight ratio and EMI shielding properties. However, magnesium alloys have low formability at room temperature due to their unique mechanical behavior (twinning and untwining), prompting for forming at an elevated temperature. In this study, a temperature dependent constitutive model for magnesium alloy (AZ31B) sheet is developed. A hardening law based on non linear kinematic hardening model is used to consider Bauschinger effect properly. Material parameters are determined from a series of uni-axial cyclic experiments (T-C-T or C-T-C) with the temperature ranging 150-250 deg. C. The influence of temperature on the constitutive equation is introduced by the material parameters assumed to be functions of temperature. Fitting process of the assumed model to measured data is presented and the results are compared.

  9. Temperature dependence of the Soret coefficient of ionic colloids

    NASA Astrophysics Data System (ADS)

    Sehnem, A. L.; Figueiredo Neto, A. M.; Aquino, R.; Campos, A. F. C.; Tourinho, F. A.; Depeyrot, J.

    2015-10-01

    The temperature dependence of the Soret coefficient ST(T ) in electrostatically charged magnetic colloids is investigated. Two different ferrofluids, with different particles' mean dimensions, are studied. In both cases we obtain a thermophilic behavior of the Soret effect. The temperature dependence of the Soret coefficient is described assuming that the nanoparticles migrate along the ionic thermoelectric field created by the thermal gradient. A model based on the contributions from the thermoelectrophoresis and variation of the double-layer energy, without fitting parameters, is used to describe the experimental results of the colloid with the bigger particles. To do so, independent measurements of the ζ potential, mass diffusion coefficient, and Seebeck coefficient are performed. The agreement of the theory and the experimental results is rather good. In the case of the ferrofluid with smaller particles, it is not possible to get experimentally reliable values of the ζ potential and the model described is used to evaluate this parameter and its temperature dependence.

  10. On the detection of precipitation dependence on temperature

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Luo, Ming; Leung, Yee

    2016-05-01

    Employing their newly proposed interannual difference method (IADM), Liu et al. (2009) and Shiu et al. (2012) reported a shocking increase of around 100% K-1 in heavy precipitation with warming global temperature in 1979-2007. Such increase is alarming and prompts us to probe into the IADM. In this study, both analytical derivations and numerical analyses demonstrate that IADM provides no additional information to that of the conventional linear regression, and also, it may give a false indication of dependence. For clarity and simplicity, we therefore recommend linear regression analysis over the IADM for the detection of dependence. We also find that heavy precipitation decreased during the global warming hiatus, and the precipitation dependence on temperature drops by almost 50% when the study period is extended to 1979-2014 and it may keep dropping in the near future. The risk of having heavy precipitation under warming global temperature may have been overestimated.

  11. Temperature dependent surface modification of silica spheres with methacrylate

    NASA Astrophysics Data System (ADS)

    Kang, Kwang-Sun; Kim, Byoung-Ju; Jo, Dong-Hyun; Lim, Sae-Han; Park, Jin-Young; Kim, Do-gyun

    2014-09-01

    Surface modification of silica spheres with 3-(Trimethoxysilyl)propylmethacrylate (TMSPM) has been performed at ambient condition. However, the FTIR spectra and field emission scanning electron microscope (FESEM) images show no evidence of the surface modification. The reaction temperatures were varied from 60 to 80 °C with various reaction periods. Small absorption shoulder of the C=O stretching vibration was at 1700 cm-1, and slightly increased with the increase of the reaction time at 60 °C. The clear absorption peak appeared at 1698 cm-1 for the spheres reacted for 80 min at 70 °C and shifted toward 1720 cm-1 with the increase the reaction time. Strong absorption peak showed at 1698 cm-1 and shifted toward 1725 cm-1 with the increase of the reaction time at 80 °C. The spheres were dispersed to methanol and added photoinitiator (Irgacure-184). The solution was poured to a patterned glass substrate and exposed to the 254 nm UV-light during a self-assembly process. A large area and crack-free silica sphere film was formed. To increase the mechanical stability, a cellulose acetate solution was spin-coated to the film. The film was lift-off from the glass substrate to analyze the surface nanostructures. The surface nanostructures were maintained, and the film is stable enough to use as a mold to duplicate the nanopattern and flexible.

  12. Temperature dependence of protein hydration hydrodynamics by molecular dynamics simulations.

    SciTech Connect

    Lau, E Y; Krishnan, V V

    2007-07-18

    The dynamics of water molecules near the protein surface are different from those of bulk water and influence the structure and dynamics of the protein itself. To elucidate the temperature dependence hydration dynamics of water molecules, we present results from the molecular dynamic simulation of the water molecules surrounding two proteins (Carboxypeptidase inhibitor and Ovomucoid) at seven different temperatures (T=273 to 303 K, in increments of 5 K). Translational diffusion coefficients of the surface water and bulk water molecules were estimated from 2 ns molecular dynamics simulation trajectories. Temperature dependence of the estimated bulk water diffusion closely reflects the experimental values, while hydration water diffusion is retarded significantly due to the protein. Protein surface induced scaling of translational dynamics of the hydration waters is uniform over the temperature range studied, suggesting the importance protein-water interactions.

  13. Origins of the temperature dependence of hammerhead ribozyme catalysis.

    PubMed Central

    Peracchi, A

    1999-01-01

    The difficulties in interpreting the temperature dependence of protein enzyme reactions are well recognized. Here, the hammerhead ribozyme cleavage was investigated under single-turnover conditions between 0 and 60 degrees C as a model for RNA-catalyzed reactions. Under the adopted conditions, the chemical step appears to be rate-limiting. However, the observed rate of cleavage is affected by pre-catalytic equilibria involving deprotonation of an essential group and binding of at least one low-affinity Mg2+ion. Thus, the apparent entropy and enthalpy of activation include contributions from the temperature dependence of these equilibria, precluding a simple physical interpretation of the observed activation parameters. Similar pre-catalytic equilibria likely contribute to the observed activation parameters for ribozyme reactions in general. The Arrhenius plot for the hammerhead reaction is substantially curved over the temperature range considered, which suggests the occurrence of a conformational change of the ribozyme ground state around physiological temperatures. PMID:10390528

  14. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  15. Temperature dependence of DNA translocations through solid-state nanopores.

    PubMed

    Verschueren, Daniel V; Jonsson, Magnus P; Dekker, Cees

    2015-06-12

    In order to gain a better physical understanding of DNA translocations through solid-state nanopores, we study the temperature dependence of λ-DNA translocations through 10 nm diameter silicon nitride nanopores, both experimentally and theoretically. The measured ionic conductance G, the DNA-induced ionic-conductance blockades [Formula: see text] and the event frequency Γ all increase with increasing temperature while the DNA translocation time τ decreases. G and [Formula: see text] are accurately described when bulk and surface conductances of the nanopore are considered and access resistance is incorporated appropriately. Viscous drag on the untranslocated part of the DNA coil is found to dominate the temperature dependence of the translocation times and the event rate is well described by a balance between diffusion and electrophoretic motion. The good fit between modeled and measured properties of DNA translocations through solid-state nanopores in this first comprehensive temperature study, suggest that our model captures the relevant physics of the process.

  16. Temperature and Depth Dependence of Order in Liquid Crystal Interfaces

    SciTech Connect

    Martinez-Miranda,L.; Hu, Y.

    2006-01-01

    We have studied the depth dependence and temperature behavior of the ordering of smectic-A films close to the smectic A-nematic transition, deposited on grated glass. X-ray grazing incidence geometry in reflection mode through the glass substrate was used to characterize the samples. Our results indicate the presence of a structure similar to the helical twist grain boundary phase. The structure has two maxima, one close to the glass-liquid crystal interface and another about 8 {mu}m above the surface. The structure at 8 {mu}m is the one that dominates at higher temperatures. In addition, we find that order is preserved to temperatures close to the nematic-isotropic transition temperature for the deeper gratings. We find also a dependence of the orientation of the structure with the depth of the grating and the elastic constant of the liquid crystal.

  17. Methanol in dark clouds

    NASA Technical Reports Server (NTRS)

    Friberg, P.; Hjalmarson, A.; Madden, S. C.; Irvine, W. M.

    1988-01-01

    The first observation of methanol in cold dark clouds TMC 1, L 134 N, and B 335 is reported. In all three clouds, the relative abundance of methanol was found to be in the range of 10 to the -9th (i.e., almost an order of magnitude more abundant than acetaldehyde), with no observable variation between the clouds. Methanol emission showed a complex velocity structure; in TMC 1, clear indications of non-LTE were observed. Dimethyl ether was searched for in L 134 N; the upper limit of the column density of dimethyl ether in L 134 N was estimated to be 4 x 10 to the 12th/sq cm, assuming 5 K rotation temperature and LTE. This limit makes the abundance ratio (CH3)2O/CH3OH not higher than 1/5, indicating that dimethyl ether is not overabundant in this dark cloud.

  18. Temperature dependent sensor response caused by polymer-solvent interactions

    SciTech Connect

    Butler, M A

    1992-01-01

    Absorption of organic solvents by a range of polymers has been used as the chemical transduction mechanism for a variety of sensors. This paper examines the effect of the polymer-solvent interaction on the temperature dependence of the sensor response. Optical interferometric cavities are formed on the end of an optical fiber by plasma-deposition of a fluorocarbon polymer. Swelling of the polymer when exposed to various solvent vapors produces changes in the reflectivity of the fiber tip. The temperature dependence of the sensor response is related to the strength of the polymer-solvent interaction and the heat of vaporization of the solvent.

  19. Anomalous temperature dependence of the IR spectrum of polyalanine

    NASA Astrophysics Data System (ADS)

    Helenius, V.; Korppi-Tommola, J.; Kotila, S.; Nieminen, J.; Lohikoski, R.; Timonen, J.

    1997-12-01

    We have studied the temperature dependence of the infrared spectra of acetanilide (ACN), tryptophan-(alanine) 15, and tyrosine-(alanine) 15. No sidebands of the amide-I vibration were observed in the polypeptides, but two anomalous sidebands of the NH stretch with a similar temperature dependence as that of the anomalous amide-I vibrational mode at 1650 cm -1 of crystalline ACN were detected. Fermi resonance combined with the appearance of a red-shifted sideband of NH stretch through coupling to lattice modes seems to explain this band structure. Observations are indicative of excitons that may occur in polypeptides as well as in single crystals of ACN.

  20. Temperature dependence of VUV transmission of synthetic fused silica

    NASA Astrophysics Data System (ADS)

    Franke, St.; Lange, H.; Schoepp, H.; Witzke, H.-D.

    2006-07-01

    The temperature dependence of the VUV transmission of synthetic fused silica is of interest for commercial applications as well as for fundamental research. In this work the transmission properties of Suprasil 2 from Heraeus with an absorption edge at very low wavelengths is investigated. The absorption edge of this quartz glass shifts from 170 to 180 nm between 789 and 1129 K. The Urbach rule is discussed for the characterization of the temperature dependent transmission curves. The results are applied to the diagnostics of the Hg 185 nm line from a high pressure mercury discharge lamp.

  1. Temperature Dependence of Photosynthesis in Agropyron smithii Rydb. 1

    PubMed Central

    Monson, Russell K.; Stidham, Mark A.; Williams, George J.; Edwards, Gerald E.; Uribe, Ernest G.

    1982-01-01

    As part of an extensive analysis of the factors regulating photosynthesis in Agropyron smithii Rydb., a C3 grass, we have examined the response of leaf gas exchange and ribulose-1,5-bisphosphate (RuBP) carboxylase activity to temperature. Emphasis was placed on elucidating the specific processes which regulate the temperature response pattern. The inhibitory effects of above-optimal temperatures on net CO2 uptake were fully reversible up to 40°C. Below 40°C, temperature inhibition was primarily due to O2 inhibition of photosynthesis, which reached a maximum of 65% at 45°C. The response of stomatal conductance to temperature did not appear to have a significant role in determining the overall temperature response of photosynthesis. The intracellular conductance to CO2 increased over the entire experimental temperature range, having a Q10 of 1.2 to 1.4. Increases in the apparent Michaelis constant (Kc) for RuBP carboxylase were observed in both in vitro and in vivo assays. The Q10 values for the maximum velocity (Vmax) of CO2 fixation by RuBP carboxylase in vivo was lower (1.3-1.6) than those calculated from in vitro assays (1.8-2.2). The results suggest that temperature-dependent changes in enzyme capacity may have a role in above-optimum temperature limitations below 40°C. At leaf temperatures above 40°C, decreases in photosynthetic capacity were partially dependent on temperature-induced irreversible reductions in the quantum yield for CO2 uptake. PMID:16662320

  2. The temperature dependence of ponded infiltration under isothermal conditions

    USGS Publications Warehouse

    Constantz, J.; Murphy, F.

    1991-01-01

    A simple temperature-sensitive modification to the Green and Ampt infiltration equation is described; this assumes that the temperature dependence of the hydraulic conductivity is reciprocally equal to the temperature dependence of the viscosity of liquid water, and that both the transmission zone saturation and the wetting front matric potential gradient are independent of temperature. This modified Green and Ampt equation is compared with ponded, isothermal infiltration experiments run on repacked columns of Olympic Sand and Aiken Loam at 5, 25, and 60??C. Experimental results showed increases in infiltration rates of at least 300% between 5 and 60??C for both soil materials, with subsequent increases in cumulative infiltration of even greater magnitudes for the loam. There is good agreement between measured and predicted initial infiltration rates at 25??C for both soil materials, yet at 60??C, the predicted results overestimate initial infiltration rates for the sand and underestimate initial rates for the loam. Measurements of the wetting depth vs. cumulative infiltration indicate that the transmission zone saturation increased with increasing temperature for both soil materials. In spite of this increased saturation with temperature, the final infiltration rates at both 25 and 60??C were predicted accurately using the modified Green and Ampt equation. This suggests that increased saturation occurred primarily in dead-end pore spaces, so that transmission zone hydraulic conductivities were unaffected by these temperature-induced changes in saturation. In conclusion, except for initial infiltration rates at 60??C, the measured influence of temperature on infiltration rates was fully accounted for by the temperature dependence of the viscosity of liquid water. ?? 1991.

  3. Electric conductivities of 1:1 electrolytes in liquid methanol along the liquid-vapor coexistence curve up to the critical temperature. I. NaCl, KCl, and CsCl solutions

    NASA Astrophysics Data System (ADS)

    Hoshina, Taka-aki; Tsuchihashi, Noriaki; Ibuki, Kazuyasu; Ueno, Masakatsu

    2004-03-01

    The molar conductivities Λ of NaCl, KCl, and CsCl in liquid methanol were measured in the concentration range of (0.3-2.0)×10-3 mol dm-3 and the temperature range of 60-240 °C along the liquid-vapor coexistence curve. The temperature range corresponds to the solvent density range of (2.78-1.55)ρc, where ρc=0.2756 g cm-3 is the critical density of methanol. The concentration dependence of Λ at each temperature and density (pressure) has been analyzed by the Fuoss-Chen-Justice equation to obtain the limiting molar conductivity Λ0 and the molar association constant KA. For all the electrolytes studied, Λ0 increased almost linearly with decreasing density at densities above 2.0ρc, while the opposite tendency was observed at lower densities. The relative contribution of the nonhydrodynamic effect on the translational friction coefficient ζ was estimated in terms of Δζ/ζ, where the residual friction coefficient Δζ is the difference between ζ and the Stokes friction coefficient ζS. At densities above 2.0ρc, Δζ/ζ increased with decreasing density though ζ and Δζ decrease, and the tendencies are common for all the ions studied. The density dependences of ζ and Δζ/ζ were explained well by the Hubbard-Onsager (HO) dielectric friction theory based on the sphere-in-continuum model. At densities below 2.0ρc, however, the experimental results cannot be explained by the HO theory.

  4. Temperature dependent energy levels of methylammonium lead iodide perovskite

    SciTech Connect

    Foley, Benjamin J.; Marlowe, Daniel L.; Choi, Joshua J. E-mail: mgupta@virginia.edu; Sun, Keye; Gupta, Mool C. E-mail: mgupta@virginia.edu; Saidi, Wissam A.; Scudiero, Louis E-mail: mgupta@virginia.edu

    2015-06-15

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  5. Temperature dependence of nucleation rate in a binary solid solution

    NASA Astrophysics Data System (ADS)

    Wang, H. Y.; Philippe, T.; Duguay, S.; Blavette, D.

    2012-12-01

    The influence of regression (partial dissolution) effects on the temperature dependence of nucleation rate in a binary solid solution has been studied theoretically. The results of the analysis are compared with the predictions of the simplest Volmer-Weber theory. Regression effects are shown to have a strong influence on the shape of the curve of nucleation rate versus temperature. The temperature TM at which the maximum rate of nucleation occurs is found to be lowered, particularly for low interfacial energy (coherent precipitation) and high-mobility species (e.g. interstitial atoms).

  6. Measurement of Temperature Dependent Apparent Specific Heat Capacity in Electrosurgery.

    PubMed

    Karaki, Wafaa; Akyildiz, Ali; Borca Tasciuc, Diana-Andra; De, Suvranu

    2016-01-01

    This paper reports on the measurement of temperature dependent apparent specific heat of ex-vivo porcine liver tissue during radiofrequency alternating current heating for a large temperature range. The difference between spatial and temporal evolution of experimental temperature, obtained during electrosurgical heating by infrared thermometry, and predictions based on finite element modeling was minimized to obtain the apparent specific heat. The model was based on transient heat transfer with internal heat generation considering heat storage along with conduction. Such measurements are important to develop computational models for real time simulation of electrosurgical procedures. PMID:27046573

  7. NICMOS Flats and temperature dependence of the DQE

    NASA Astrophysics Data System (ADS)

    Boeker, Torsten

    2001-07-01

    The purpose of this proposal is to obtain initial estimates of the detective quantum efficiency {DQE} of the NICMOS detectors and its temperature dependence in the previously uncharted temperature regime expected for operation under the NICMOS Cooling System {NCS}. The observations will measure the relative {via flat field morphology} and absolute DQE variation at three temperature setpoints. In addition, they will provide a monitor for particulate contamination {"Grot"} and detector lateral position {from the coronagraphic spot and FDA vignetting}. When stars are present in the field of view, they will enable a preliminary focus determination.

  8. Measurement of Temperature Dependent Apparent Specific Heat Capacity in Electrosurgery.

    PubMed

    Karaki, Wafaa; Akyildiz, Ali; Borca Tasciuc, Diana-Andra; De, Suvranu

    2016-01-01

    This paper reports on the measurement of temperature dependent apparent specific heat of ex-vivo porcine liver tissue during radiofrequency alternating current heating for a large temperature range. The difference between spatial and temporal evolution of experimental temperature, obtained during electrosurgical heating by infrared thermometry, and predictions based on finite element modeling was minimized to obtain the apparent specific heat. The model was based on transient heat transfer with internal heat generation considering heat storage along with conduction. Such measurements are important to develop computational models for real time simulation of electrosurgical procedures.

  9. The Temperature Dependence of Biological Rates from Enzymes to Ecosystems

    NASA Astrophysics Data System (ADS)

    Arcus, V. L.; Schipper, L. A.

    2014-12-01

    Can enzymology and thermodynamics shed light on the response of the biosphere to a changing climate? We have recently developed a theory describing the temperature dependence of biological rates. We have called this MacroMolecular Rate Theory (MMRT) to reflect some fundamental thermodynamic properties peculiar to biological macromolecules. This theory scales well from enzymes to ecosystems and explains the curved temperature dependence of ecosystem processes such as respiration, as described by Lloyd and Taylor 20 years ago. MMRT also accounts for temperature optima which are a feature of all biological processes including respiration, photosynthsis and net ecosystem exchange. MMRT begins with enzymes. Enzymes drive metabolism and enable life by catalysing a myraid of chemical reactions with phenomenal rate enhancements. According to the classical thermodynamics description, enzymes achieve catalysis by binding to the transition state for the reaction and thus, lowering the reaction barrier. The dissociation constant, Kd, for the enzyme-transition state complex, commensurate with the observed rate enhancements, is extreme (Kd ~ 10-22 M). Such tight binding of the transition state influences the thermodynamic parameter, Cp, the heat capacity of the molecule. The difference in heat capacity, ∆C‡P, between the enzyme-substrate complex (Kd ~ 10-5 M) and the enzyme-transition state complex (Kd ~ 10-22 M) has important implications for the temperature dependence of enzyme catalyzed rates. ∆C‡P is close to zero for reactions that involve small molecules, but is generally large and negative for reactions that involve macromolecules such as enzymes. The result is a curved temperature dependence of enzyme catalyzed rates and a temperature optimum above which, the rate decreases. This ∆C‡P signature is pervasive and scales from enzymes, to microbial growth rates, to microbial metabolism and ecosystem fluxes. It also has important implications for the temperature

  10. High temperature dependence of thermal transport in graphene foam

    NASA Astrophysics Data System (ADS)

    Li, Man; Sun, Yi; Xiao, Huying; Hu, Xuejiao; Yue, Yanan

    2015-03-01

    In contrast to the decreased thermal property of carbon materials with temperature according to the Umklapp phonon scattering theory, highly porous free-standing graphene foam (GF) exhibits an abnormal characteristic that its thermal property increases with temperature above room temperature. In this work, the temperature dependence of thermal properties of free-standing GF is investigated by using the transient electro-thermal technique. Significant increase for thermal conductivity and thermal diffusivity from ˜0.3 to 1.5 W m-1 K-1 and ˜4 × 10-5 to ˜2 × 10-4 m2 s-1 respectively is observed with temperature from 310 K to 440 K for three GF samples. The quantitative analysis based on a physical model for porous media of Schuetz confirms that the thermal conductance across graphene contacts rather than the heat conductance inside graphene dominates thermal transport of our GFs. The thermal expansion effect at an elevated temperature makes the highly porous structure much tighter is responsible for the reduction in thermal contact resistance. Besides, the radiation heat exchange inside the pores of GFs improves the thermal transport at high temperatures. Since free-standing GF has great potential for being used as supercapacitor and battery electrode where the working temperature is always above room temperature, this finding is beneficial for thermal design of GF-based energy applications.

  11. High temperature dependence of thermal transport in graphene foam.

    PubMed

    Li, Man; Sun, Yi; Xiao, Huying; Hu, Xuejiao; Yue, Yanan

    2015-03-13

    In contrast to the decreased thermal property of carbon materials with temperature according to the Umklapp phonon scattering theory, highly porous free-standing graphene foam (GF) exhibits an abnormal characteristic that its thermal property increases with temperature above room temperature. In this work, the temperature dependence of thermal properties of free-standing GF is investigated by using the transient electro-thermal technique. Significant increase for thermal conductivity and thermal diffusivity from ∼0.3 to 1.5 W m(-1) K(-1) and ∼4 × 10(-5) to ∼2 × 10(-4) m(2) s(-1) respectively is observed with temperature from 310 K to 440 K for three GF samples. The quantitative analysis based on a physical model for porous media of Schuetz confirms that the thermal conductance across graphene contacts rather than the heat conductance inside graphene dominates thermal transport of our GFs. The thermal expansion effect at an elevated temperature makes the highly porous structure much tighter is responsible for the reduction in thermal contact resistance. Besides, the radiation heat exchange inside the pores of GFs improves the thermal transport at high temperatures. Since free-standing GF has great potential for being used as supercapacitor and battery electrode where the working temperature is always above room temperature, this finding is beneficial for thermal design of GF-based energy applications.

  12. Enthalpies and constants of dissociation of several neutral and cationic acids in aqueous and methanol/water solutions at various temperatures.

    PubMed

    Shoghi, Elham; Romero, Lilian; Reta, Mario; Ràfols, Clara; Bosch, Elisabeth

    2009-05-01

    The acidic dissociation enthalpies and constants of anilinium, protonated tris(hydroxymethyl)aminomethane (HTris(+)), benzoic and acetic acids, have been determined at several temperatures in pure water and in methanol/water mixtures by potentiometry and by isothermal titration microcalorimetry (ITC). The pK(a) values determined by both techniques are in accordance when the dissociation process involves large amounts of heat. However, for the neutral acids the ITC technique gave slightly lower pK(a) values than those from potentiometry at the highest temperatures studied due to the small amounts of heat involved in the acidic dissociation. The dissociation enthalpies have been determined directly by calorimetry and the obtained values slightly decrease with the increase of temperature. Therefore, only a rough estimation of the dissociation enthalpies can be obtained from potentiometric pK(a) by means of the Van't Hoff approach.

  13. Enthalpies and constants of dissociation of several neutral and cationic acids in aqueous and methanol/water solutions at various temperatures.

    PubMed

    Shoghi, Elham; Romero, Lilian; Reta, Mario; Ràfols, Clara; Bosch, Elisabeth

    2009-05-01

    The acidic dissociation enthalpies and constants of anilinium, protonated tris(hydroxymethyl)aminomethane (HTris(+)), benzoic and acetic acids, have been determined at several temperatures in pure water and in methanol/water mixtures by potentiometry and by isothermal titration microcalorimetry (ITC). The pK(a) values determined by both techniques are in accordance when the dissociation process involves large amounts of heat. However, for the neutral acids the ITC technique gave slightly lower pK(a) values than those from potentiometry at the highest temperatures studied due to the small amounts of heat involved in the acidic dissociation. The dissociation enthalpies have been determined directly by calorimetry and the obtained values slightly decrease with the increase of temperature. Therefore, only a rough estimation of the dissociation enthalpies can be obtained from potentiometric pK(a) by means of the Van't Hoff approach. PMID:19261425

  14. Efficiencies of thermodynamics when temperature-dependent energy levels exist.

    PubMed

    Yamano, Takuya

    2016-03-14

    Based on a generalized form of the second law of thermodynamics, in which the temperature-dependent energy levels of a system are appropriately included in entropy generation, we show that the effect reasonably appears in efficiencies of thermodynamic processes. PMID:26890276

  15. Investigation of temperature dependence of development and aging

    NASA Technical Reports Server (NTRS)

    Sacher, G. A.

    1969-01-01

    Temperature dependence of maturation and metabolic rates in insects, and the failure of vital processes during development were investigated. The paper presented advances the general hypothesis that aging in biological systems is a consequence of the production of entropy concomitant with metabolic activity.

  16. Temperature dependence of soliton diffusion in trans-polyacetylene

    SciTech Connect

    Tang, J.; Norris, J.R.; Isoya, J.

    1997-07-01

    The temperature dependence of 1-D diffusion rate of solitons in transpolyacetylene is determined by time-domain analysis of ESR measurements. The diffusion rate appears to obey a simple power law. Monte Carlo simulation of 1-D diffusion process in impure chains indicates that overall diffusion can be much slower than that without traps.

  17. Anomalous temperature dependence of the fluorescence lifetime of phycobiliproteins

    NASA Astrophysics Data System (ADS)

    Maksimov, E. G.; Schmitt, F.-J.; Hätti, P.; Klementiev, K. E.; Paschenko, V. Z.; Renger, G.; Rubin, A. B.

    2013-05-01

    Using a single photon counting technique we have investigated fluorescence decay spectra of phycobiliproteins with picosecond time resolution. The studies were performed in a wide range of temperatures—from 4 to 300 K. Comparing the fluorescence decay kinetics of samples rapidly frozen in liquid nitrogen with samples that were frozen slowly revealed that the temperature-dependent changes of phycobiliproteins fluorescence lifetime reflect the presence of three different stages, with a phase transition between 273 and 263 K that strongly depends on the rate of freezing. When the temperature decreases from 300 to 273 K, the fluorescence lifetime increases from 1.6 to 1.8 ns. In the region from 273 to 263 K we observed a decrease of the fluorescence lifetime, which strongly depends on the freezing rate: a slight decrease at high freezing rate and a drop down to 200 ps lifetime at slow freezing rate. In the low-temperature regime from 263 to 4 K a linear increase in the fluorescence lifetime was observed for all samples. It was found that the strong temperature dependence of the phycobiliprotein fluorescence, especially in the range between 263 and 273 K, is due to the interaction of the solvent with the chromophore bound to the protein. This feature is explained by a photoisomerization of the phycobiliproteins into a quenching form which is naturally prevented by the protein environment. The formation of ice microcrystals at low freezing rate eliminates this ‘protective’ effect of the protein environment.

  18. Time- and temperature-dependent failures of a bonded joint

    SciTech Connect

    Sihn, Sangwook; Miyano, Yasushi; Tsai, S.W.

    1997-07-01

    Time and temperature dependent properties of a tubular lap bonded joint are reported. The joint bonds a cast iron rod and a composite pipe together with an epoxy type of an adhesive material containing chopped glass fiber. A new fabrication method is proposed.

  19. Temperature dependence of liquid crystals electrical response by impedance analysis

    NASA Astrophysics Data System (ADS)

    Torres, J. C.; Gaona, N.; Pérez, I.; Urruchi, V.; Pena, J. M. S.

    2007-05-01

    Liquid crystals are a growing technology bringing solutions for a number of applications in high performance displays featuring video-rate, color and high resolution images, and in prototypes of photonic devices. Electrooptic response of antiferroelectric liquid crystals (AFLC) might be superior to nematic liquid crystals that are been customarily employed nowadays. AFLC show reduced time response being promising candidates for portable multimedia devices, optical routing applications, among others. In this work, temperature and frequency dependence of impedance measurements, in passive devices of commercial antiferroelectric liquid crystals, has been studied. Measurements of the temperature dependence of optical transmission have been obtained. 1Hz triangular waveforms with different amplitude have been applied to the devices to carry out such characterization. Simultaneous measurements of optical transmission and electrical impedance have been performed. Specific addressing schemes have been tested in order to obtain the optimum electrooptical performance. Display blanking takes place when a saturation pulse is applied. Results achieved show that increasing temperature shifts the dynamic range of the analogue grayscale towards lower voltages. Impedance analysis of these devices upon switching has been performed as well. Temperature and frequency dependence of the impedance measurements have been characterized. Negative phase responses show there is a combined capacitive and resistive behavior. As the frequency increases the capacitive effect grows. Magnitude shows a linear decrease on a log-log frequency scale. As temperature increases, phase profile becomes slight more complex. New capacitive effects are suggested in a model of the electric response of AFLC cells at low frequencies.

  20. Temperature dependent phonon shifts in few-layer black phosphorus.

    PubMed

    Late, Dattatray J

    2015-03-18

    Atomically thin two-dimensional (2D) sheets of black phosphorus have attracted much attention due to their potential for future nanoelectronic and photonics device applications. Present investigations deal with the temperature dependent phonon shifts in a few-layer black phosphorus nanosheet sample prepared using micromechanical exfoliation on a 300 nm SiO2/Si substrate. The temperature dependent Raman spectroscopy experiments were carried out on a few-layer black phosphorus sample, which depicts softening of Ag(1), B2g, and Ag(2) modes as temperature increases from 77 to 673 K. The calculated temperature coefficients for Ag(1), B2g, and Ag(2) modes of the few-layer black phosphorus nanosheet sample were observed to be -0.01, -0.013, and -0.014 cm(-1) K(-1), respectively. The temperature dependent softening modes of black phosphorus results were explained on the basis of a double resonance process which is more active in an atomically thin sample. This process can also be fundamentally pertinent in other promising and emerging 2D ultrathin layer and heterostructured materials.

  1. Study of the PTW microLion chamber temperature dependence.

    PubMed

    Gómez, F; González-Castaño, D; Díaz-Botana, P; Pardo-Montero, J

    2014-06-01

    The use of liquid ionization chambers in radiotherapy has grown during the past few years. While for air ionization chambers the k(TP) correction for air mass density due to pressure and temperature variations is well known, less work has been done on the case of liquid ionization chambers, where there is still the need to take into account the influence of temperature in the free ion yield. We have measured the PTW microLion isooctane-filled ionization chamber temperature dependence in a ~ ±10 °C interval around the standard 20 °C room temperature for three operation voltages, including the manufacturer recommended voltage, and two beam qualities, (60)Co and 50 kV x-rays. Within the measured temperature range, the microLion signal exhibits a positive linear dependence, which is around 0.24% K(-1) at 800 V with (60)Co irradiation. This effect is of the same order of magnitude as the T dependence found in air ionization chambers, but its nature is completely different and its sign opposite to that of an air chamber. Onsager theory has been used to model the results and is consistent with this linear behaviour. However, some inconsistencies in the modelling of the 50 kV x-ray results have been found that are attributed to the failure of Onsager's isolated pair assumption for such radiation quality.

  2. Stress versus temperature dependent activation energies in creep

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Raj, S. V.; Walker, K. P.

    1990-01-01

    The activation energy for creep at low stresses and elevated temperatures is lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from that of dislocation climb to one of obstacle-controlled dislocation glide. Along with this change, there occurs a change in the activation energy. It is shown that a temperature-dependent Gibbs free energy does a good job of correlating steady-state creep data, while a stress-dependent Gibbs free energy does a less desirable job of correlating the same data. Applications are made to copper and a LiF-22 mol. percent CaF2 hypereutectic salt.

  3. Unconventional temperature dependence of the cuprate excitation spectrum

    NASA Astrophysics Data System (ADS)

    Sacks, William; Mauger, Alain; Noat, Yves

    2016-08-01

    Key properties of the cuprates, such as the pseudogap observed above the critical temperature Tc, remain highly debated. Given their importance, we recently proposed a novel mechanism based on the Bose-like condensation of mutually interacting Cooper pairs [W. Sacks, A. Mauger, Y. Noat, Supercond. Sci. Technol. 28, 105014 (2015)]. In this work, we calculate the temperature dependent DOS using this model for different doping levels from underdoped to overdoped. In all situations, due to the presence of excited pairs, a pseudogap is found above Tc while the normal DOS is recovered at T∗, the pair formation temperature. A similar behavior is found as a function of magnetic field, crossing a vortex, where a pseudogap exists in the vortex core. We show that the precise DOS shape depends on combined pair (boson) and quasiparticle (fermion) excitations, allowing for a deeper understanding of the SC to the PG transition.

  4. Stress versus temperature dependence of activation energies for creep

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Raj, S. V.; Walker, K. P.

    1992-01-01

    The activation energy for creep at low stresses and elevated temperatures is associated with lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from dislocation climb to obstacle-controlled dislocation glide. Along with this change in deformation mechanism occurs a change in the activation energy. When the rate controlling mechanism for deformation is obstacle-controlled dislocation glide, it is shown that a temperature-dependent Gibbs free energy does better than a stress-dependent Gibbs free energy in correlating steady-state creep data for both copper and LiF-22mol percent CaF2 hypereutectic salt.

  5. Temperature dependence of penetration depth in thin film niobium

    NASA Technical Reports Server (NTRS)

    More, N.; Muhlfelder, B.; Lockhart, J.

    1989-01-01

    A novel technique is presented which should allow precise determination of the temperature dependence of the inductance, and hence of the penetration depth, of superconducting niobium thin-film structures. Four niobium thin-film stripline inductors are arranged in a bridge configuration, and inductance differences are measured using a potentiometric technique with a SQUID (superconducting quantum interference device) as the null detector. Numerical simulations of the stripline inductances are presented which allow the performance of the measurement technique to be evaluated. The prediction of the two-fluid model for the penetration-depth temperature dependence is given for reduced temperatures of 0.3 to 0.9. The experimental apparatus and its resolution and accuracy are discussed.

  6. Temperature dependence of angular momentum transport across interfaces

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Lin, Weiwei; Chien, C. L.; Zhang, Shufeng

    2016-08-01

    Angular momentum transport in magnetic multilayered structures plays a central role in spintronic physics and devices. The angular momentum currents or spin currents are carried by either quasiparticles such as electrons and magnons, or by macroscopic order parameters such as local magnetization of ferromagnets. Based on the generic interface exchange interaction, we develop a microscopic theory that describes interfacial spin conductance for various interfaces among nonmagnetic metals, ferromagnetic insulators, and antiferromagnetic insulators. Spin conductance and its temperature dependence are obtained for different spin batteries including spin pumping, temperature gradient, and spin Hall effect. As an application of our theory, we calculate the spin current in a trilayer made of a ferromagnetic insulator, an antiferromagnetic insulator, and a nonmagnetic heavy metal. The calculated results on the temperature dependence of spin conductance quantitatively agree with the existing experiments.

  7. Sensitive Dependence of Gibbs Measures at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Coronel, Daniel; Rivera-Letelier, Juan

    2015-09-01

    The Gibbs measures of an interaction can behave chaotically as the temperature drops to zero. We observe that for some classical lattice systems there are interactions exhibiting a related phenomenon of sensitive dependence of Gibbs measures: An arbitrarily small perturbation of the interaction can produce significant changes in the low-temperature behavior of its Gibbs measures. For some one-dimensional XY models we exhibit sensitive dependence of Gibbs measures for a (nearest-neighbor) interaction given by a smooth function, and for perturbations that are small in the smooth category. We also exhibit sensitive dependence of Gibbs measures for an interaction on a classical lattice system with finite-state space. This interaction decreases exponentially as a function of the distance between sites; it is given by a Lipschitz continuous potential in the configuration space. The perturbations are small in the Lipschitz topology. As a by-product we solve some problems stated by Chazottes and Hochman.

  8. Temperature Dependence of Carbon Isotope Fractionation in CAM Plants 1

    PubMed Central

    Deleens, Eliane; Treichel, Isabel; O'Leary, Marion H.

    1985-01-01

    The carbon isotope fractionation associated with nocturnal malic acid synthesis in Kalanchoë daigremontiana and Bryophyllum tubiflorum was calculated from the isotopic composition of carbon-4 of malic acid, after appropriate corrections. In the lowest temperature treatment (17°C nights, 23°C days), the isotope fractionation for both plants is −4‰ (that is, malate is enriched in 13C relative to the atmosphere). For K. daigremontiana, the isotope fractionation decreases with increasing temperature, becoming approximately 0‰ at 27°C/33°C. Detailed analysis of temperature effects on the isotope fractionation indicates that stomatal aperture decreases with increasing temperature and carboxylation capacity increases. For B. tubiflorum, the temperature dependence of the isotope fractionation is smaller and is principally attributed to the normal temperature dependences of the rates of diffusion and carboxylation steps. The small change in the isotopic composition of remaining malic acid in both species which is observed during deacidification indicates that malate release, rather than decarboxylation, is rate limiting in the deacidification process. PMID:16664371

  9. Temperature dependence of denitrification in phototrophic river biofilms.

    PubMed

    Boulêtreau, S; Salvo, E; Lyautey, E; Mastrorillo, S; Garabetian, F

    2012-02-01

    Denitrification is an ecosystem service of nitrogen load regulation along the terrestrial-freshwater-marine continuum. The present study documents the short-term temperature sensitivity of denitrification enzyme activity in phototrophic river biofilms as a typical microbial assemblage of this continuum. Denitrification measurements were performed using the acetylene inhibition method at four incubation temperatures: 1.1, 12.1, 21.2 and 30.9°C. For this range of temperature, N(2)O production could be fitted to an exponential function of incubation temperature, yielding mean (±standard error) activation energy of 1.42 (±0.24) eV and Q(10) of 7.0 (±1.4). This first quantification of denitrification enzyme activity temperature dependence in phototrophic river biofilms compares with previous studies performed in soils and sediments. This demonstrates the high temperature dependence of denitrification as compared to other community-level metabolisms such as respiration or photosynthesis. This result suggests that global warming can unbalance natural community metabolisms in phototrophic river biofilms and affect their biogeochemical budget.

  10. TEMPERATURE-DEPENDENT INFRARED OPTICAL CONSTANTS OF OLIVINE AND ENSTATITE

    SciTech Connect

    Zeidler, S.; Mutschke, H.; Posch, Th. E-mail: harald.mutschke@uni-jena.de

    2015-01-10

    Since the Infrared Space Observatory (ISO) mission, it has become clear that dust in circumstellar disks and outflows consists partly of crystalline silicates of pyroxene and olivine type. An exact mineralogical analysis of the dust infrared emission spectra relies on laboratory spectra, which, however, have been mostly measured at room temperature so far. Given that infrared spectral features depend on the thermal excitation of the crystal's vibrational modes, laboratory spectra measured at various (low and high) temperatures, corresponding to the thermal conditions at different distances from the star, can improve the accuracy of such analyses considerably. We have measured the complex refractive index in a temperature range of 10-973 K for one mineral of each of those types of silicate, i.e., for an olivine and an enstatite of typical (terrestrial) composition. Thus, our data extend the temperature range of previous data to higher values and the compositional range to higher iron contents. We analyze the temperature dependence of oscillator frequencies and damping parameters governing the spectral characteristics of the bands and calculate absorption cross-sectional spectra that can be compared with astronomical emission spectra. We demonstrate the usefulness of our new data by comparing spectra calculated for a 100 K dust temperature with the ISO SWS spectrum of IRAS 09425-6040.

  11. Temperature dependence of single-axis acoustic levitation

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Wei, B.

    2003-03-01

    The temperature-dependent physical conditions for single-axis acoustic levitation are theoretically analyzed with consideration of the deviation of the actual acoustic field from the plane standing wave approximation. The effects of temperature variation on the resonant conditions, levitation force and threshold pressures pm (the minimum entrapping pressure) and pM (the maximum pressure to keep the integration of a liquid drop) are discussed by assuming a quasi-static heating and cooling process. The first resonant spacing H1 between the reflector and emitter is larger than that predicted for plane standing waves, and its temperature dependence comes mainly from the variation of wavelength, which is proportional to T1/2. The maximum levitation force FM has a drastic decreasing tendency with temperature rise due to its sensitivity to the ratios of the geometric parameters to wavelength. For the containerless processing of water and the Pb-Sn eutectic alloy, pm decreases whereas pM increases with the enhancement of temperature, which narrows the allowed pressure range for the safe and stable levitation of the processed drops at higher temperatures. As an experimental application of these analyses, the acoustically levitated water and the Pb-Sn eutectic alloy melt are highly undercooled by up to 24 and 38 K, respectively.

  12. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    PubMed

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems. PMID:26881922

  13. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    PubMed

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  14. Temperature dependent Raman and DFT study of creatine.

    PubMed

    Gangopadhyay, Debraj; Sharma, Poornima; Singh, Ranjan K

    2015-01-01

    Temperature dependent Raman spectra of creatine powder have been recorded in the temperature range 420-100K at regular intervals and different clusters of creatine have been optimized using density functional theory (DFT) in order to determine the effect of temperature on the hydrogen bonded network in the crystal structure of creatine. Vibrational assignments of all the 48 normal modes of the zwitterionic form of creatine have been done in terms of potential energy distribution obtained from DFT calculations. Precise analysis gives information about thermal motion and intermolecular interactions with respect to temperature in the crystal lattice. Formation of higher hydrogen bonded aggregates on cooling can be visualized from the spectra through clear signature of phase transition between 200K and 180K. PMID:26010702

  15. Temperature dependence of contact resistance at metal/MWNT interface

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Eui; Moon, Kyoung-Seok; Sohn, Yoonchul

    2016-07-01

    Although contact resistance of carbon nanotube (CNT) is one of the most important factors for practical application of electronic devices, a study regarding temperature dependence on contact resistance of CNTs with metal electrodes has not been found. Here, we report an investigation of contact resistance at multiwalled nanotube (MWNT)/Ag interface as a function of temperature, using MWNT/polydimethylsiloxane (PDMS) composite. Electrical resistance of MWNT/PDMS composite revealed negative temperature coefficient (NTC). Excluding the contact resistance with Ag electrode, the NTC effect became less pronounced, showing lower intrinsic resistivity with the activation energy of 0.019 eV. Activation energy of the contact resistance of MWNT/Ag interface was determined to be 0.04 eV, two times larger than that of MWNT-MWNT network. The increase in the thermal fluctuation assisted electron tunneling is attributed to conductivity enhancement at both MWNT/MWNT and MWNT/Ag interfaces with increasing temperature.

  16. Temperature-dependent liquid metal flowrate control device

    DOEpatents

    Carlson, Roger D.

    1978-01-01

    A temperature-dependent liquid metal flowrate control device includes a magnet and a ferromagnetic member defining therebetween a flow path for liquid metal, the ferromagnetic member being formed of a material having a curie temperature at which a change in the flow rate of the liquid metal is desired. According to the preferred embodiment the magnet is a cylindrical rod magnet axially disposed within a cylindrical member formed of a curie material and having iron pole pieces at the ends. A cylindrical iron shunt and a thin wall stainless steel barrier are disposed in the annulus between magnet and curie material. Below the curie temperature flow between steel barrier and curie material is impeded and above the curie temperature flow impedance is reduced.

  17. Temperature dependent relativistic mean field for highly excited hot nuclei

    NASA Astrophysics Data System (ADS)

    Gambhir, Y. K.; Maharana, J. P.; Lalazissis, G. A.; Panos, C. P.; Ring, P.

    2000-11-01

    The temperature dependent relativistic mean field (RMF-T) results obtained by using nonlinear Lagrangian parameter set NL3 are presented for a few selected representative spherical and deformed nuclei. The calculated total binding energy (entropy) decrease (increase) as temperature (T) increases. The depths of the potentials and the single particle (sp) energies change very little with temperature. The density slightly spreads out; as a result the radius increases as temperature rises. For well deformed nuclei the shell effects disappear at around T~3 MeV. This value of T is relatively higher as compared to the corresponding value of T (~1.8 MeV) obtained in the Strutinsky-type calculations. This difference in the value of T is shown to be due to the use of the effective nucleon mass (< the bare mass) appearing in the Skyrme III interaction or emerging from the RMF Lagrangian.

  18. Multiaxial Temperature- and Time-Dependent Failure Model

    NASA Technical Reports Server (NTRS)

    Richardson, David; McLennan, Michael; Anderson, Gregory; Macon, David; Batista-Rodriquez, Alicia

    2003-01-01

    A temperature- and time-dependent mathematical model predicts the conditions for failure of a material subjected to multiaxial stress. The model was initially applied to a filled epoxy below its glass-transition temperature, and is expected to be applicable to other materials, at least below their glass-transition temperatures. The model is justified simply by the fact that it closely approximates the experimentally observed failure behavior of this material: The multiaxiality of the model has been confirmed (see figure) and the model has been shown to be applicable at temperatures from -20 to 115 F (-29 to 46 C) and to predict tensile failures of constant-load and constant-load-rate specimens with failure times ranging from minutes to months..

  19. Multi-Relaxation Temperature-Dependent Dielectric Model of the Arctic Soil at Positive Temperatures

    NASA Astrophysics Data System (ADS)

    Savin, I. V.; Mironov, V. L.

    2014-11-01

    Frequency spectra of the dielectric permittivity of the Arctic soil of Alaska are investigated with allowance for the dipole and ionic relaxation of molecules of the soil moisture at frequencies from 40 MHz to 16 GHz and temperatures from -5 to +25°С. A generalized temperature-dependent multi-relaxation refraction dielectric model of the humid Arctic soil is suggested.

  20. A nanoscale temperature-dependent heterogeneous nucleation theory

    SciTech Connect

    Cao, Y. Y.; Yang, G. W.

    2015-06-14

    Classical nucleation theory relies on the hypothetical equilibrium of the whole nucleation system, and neglects the thermal fluctuations of the surface; this is because the high entropic gains of the (thermodynamically extensive) surface would lead to multiple stable states. In fact, at the nanometer scale, the entropic gains of the surface are high enough to destroy the stability of the thermal equilibrium during nucleation, comparing with the whole system. We developed a temperature-dependent nucleation theory to elucidate the heterogeneous nucleation process, by considering the thermal fluctuations based on classical nucleation theory. It was found that the temperature not only affected the phase transformation, but also influenced the surface energy of the nuclei. With changes in the Gibbs free energy barrier, nucleation behaviors, such as the nucleation rate and the critical radius of the nuclei, showed temperature-dependent characteristics that were different from those predicted by classical nucleation theory. The temperature-dependent surface energy density of a nucleus was deduced based on our theoretical model. The agreement between the theoretical and experimental results suggested that the developed nucleation theory has the potential to contribute to the understanding and design of heterogeneous nucleation at the nanoscale.

  1. Temperature-dependent internal photoemission probe for band parameters

    NASA Astrophysics Data System (ADS)

    Lao, Yan-Feng; Perera, A. G. Unil

    2012-11-01

    The temperature-dependent characteristic of band offsets at the heterojunction interface was studied by an internal photoemission (IPE) method. In contrast to the traditional Fowler method independent of the temperature (T), this method takes into account carrier thermalization and carrier/dopant-induced band-renormalization and band-tailing effects, and thus measures the band-offset parameter at different temperatures. Despite intensive studies in the past few decades, the T dependence of this key band parameter is still not well understood. Re-examining a p-type doped GaAs emitter/undoped AlxGa1-xAs barrier heterojunction system disclosed its previously ignored T dependency in the valence-band offset, with a variation up to ˜-10-4 eV/K in order to accommodate the difference in the T-dependent band gaps between GaAs and AlGaAs. Through determining the Fermi energy level (Ef), IPE is able to distinguish the impurity (IB) and valence bands (VB) of extrinsic semiconductors. One important example is to determine Ef of dilute magnetic semiconductors such as GaMnAs, and to understand whether it is in the IB or VB.

  2. Time- and temperature-dependent failures of a bonded joint

    NASA Astrophysics Data System (ADS)

    Sihn, Sangwook

    This dissertation summarizes my study of time- and temperature-dependent behavior of a tubular lap bonded joint to provide a design methodology for windmill blade structures. The bonded joint is between a cast-iron rod and a GFRP composite pipe. The adhesive material is an epoxy containing chopped glass fibers. We proposed a new fabrication method to make concentric and void-less specimens of the tubular joint with a thick adhesive bondline to stimulate the root bond of a blade. The thick bondline facilitates the joint assembly of actual blades. For a better understanding of the behavior of the bonded joint, we studied viscoelastic behavior of the adhesive materials by measuring creep compliance at several temperatures during loading period. We observed that the creep compliance depends highly on the period of loading and the temperature. We applied time-temperature equivalence to the creep compliance of the adhesive material to obtain time-temperature shift factors. We also performed constant-rate of monotonically increased uniaxial tensile tests to measure static strength of the tubular lap joint at several temperatures and different strain-rates. We observed two failure modes from load-deflection curves and failed specimens. One is the brittle mode, which was caused by weakness of the interfacial strength occurring at low temperature and short period of loading. The other is the ductile mode, which was caused by weakness of the adhesive material at high temperature and long period of loading. Transition from the brittle to the ductile mode appeared as the temperature or the loading period increased. We also performed tests under uniaxial tensile-tensile cyclic loadings to measure fatigue strength of the bonded joint at several temperatures, frequencies and stress ratios. The fatigue data are analyzed statistically by applying the residual strength degradation model to calculate statistical distribution of the fatigue life. Combining the time-temperature

  3. Temperature-Dependent Giant Magnetoimpedance Effect in Amorphous Soft Magnets

    NASA Astrophysics Data System (ADS)

    Kurniawan, M.; Roy, R. K.; Panda, A. K.; Greve, D. W.; Ohodnicki, P.; McHenry, M. E.

    2014-12-01

    Giant magnetoimpedance (GMI)-based devices offer potential as next-generation low-cost, flexible, ultrasensitive sensors. They can be used in applications that include current sensors, field sensors, stress sensors, and others. Challenging applications involve operation at high temperatures, and therefore studies of GMI temperature dependence and performance of soft magnetic materials are needed. We present a high-temperature GMI study on an amorphous soft magnetic microwire from room temperature to 560°C. The GMI ratio was observed to be nearly constant at ˜86% at low temperatures and to decrease rapidly at ˜290°C, finally reaching a near-zero value at 500°C. The rapid drop in GMI ratio at 290°C is associated with a reduction in the long-range ferromagnetic order as measured by the spontaneous magnetization ( M) at the Curie temperature ( T c). We also correlated the impedance with the magnetic properties of the material. From room temperature to 290°C, the impedance was found to be proportional to the square root of the magnetization to magnetic anisotropy ratio. Lastly, M( T) has been fit using a Handrich-Kobe model, which describes the system with a modified Brillouin function and an asymmetrical distribution of exchange interactions. We infer that the structural fluctuations of the amorphous phase result in a relatively small asymmetry in the fluctuation parameters.

  4. Temperature-dependent solvation modulates the dimensions of disordered proteins

    PubMed Central

    Wuttke, René; Hofmann, Hagen; Nettels, Daniel; Borgia, Madeleine B.; Mittal, Jeetain; Best, Robert B.; Schuler, Benjamin

    2014-01-01

    For disordered proteins, the dimensions of the chain are an important property that is sensitive to environmental conditions. We have used single-molecule Förster resonance energy transfer to probe the temperature-induced chain collapse of five unfolded or intrinsically disordered proteins. Because this behavior is sensitive to the details of intrachain and chain–solvent interactions, the collapse allows us to probe the physical interactions governing the dimensions of disordered proteins. We find that each of the proteins undergoes a collapse with increasing temperature, with the most hydrophobic one, λ-repressor, undergoing a reexpansion at the highest temperatures. Although such a collapse might be expected due to the temperature dependence of the classical “hydrophobic effect,” remarkably we find that the largest collapse occurs for the most hydrophilic, charged sequences. Using a combination of theory and simulation, we show that this result can be rationalized in terms of the temperature-dependent solvation free energies of the constituent amino acids, with the solvation properties of the most hydrophilic residues playing a large part in determining the collapse. PMID:24706910

  5. Temperature-dependent solvation modulates the dimensions of disordered proteins.

    PubMed

    Wuttke, René; Hofmann, Hagen; Nettels, Daniel; Borgia, Madeleine B; Mittal, Jeetain; Best, Robert B; Schuler, Benjamin

    2014-04-01

    For disordered proteins, the dimensions of the chain are an important property that is sensitive to environmental conditions. We have used single-molecule Förster resonance energy transfer to probe the temperature-induced chain collapse of five unfolded or intrinsically disordered proteins. Because this behavior is sensitive to the details of intrachain and chain-solvent interactions, the collapse allows us to probe the physical interactions governing the dimensions of disordered proteins. We find that each of the proteins undergoes a collapse with increasing temperature, with the most hydrophobic one, λ-repressor, undergoing a reexpansion at the highest temperatures. Although such a collapse might be expected due to the temperature dependence of the classical "hydrophobic effect," remarkably we find that the largest collapse occurs for the most hydrophilic, charged sequences. Using a combination of theory and simulation, we show that this result can be rationalized in terms of the temperature-dependent solvation free energies of the constituent amino acids, with the solvation properties of the most hydrophilic residues playing a large part in determining the collapse.

  6. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  7. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  8. A temperature dependent SPICE macro-model for power MOSFETs

    SciTech Connect

    Pierce, D.G.

    1992-05-01

    A power MOSFET macro-model for use with the circuit simulator SPICE has been developed suitable for use over the temperature range of {minus}55 to 125{degrees}C. The model is comprised of a single parameter set with the temperature dependence accessed through the SPICE TEMP card. This report describes in detail the development of the model and the extraction algorithms used to obtain model parameters. The extraction algorithms are described in sufficient detail to allow for automated measurements which in turn allows for rapid and cost effective development of an accurate SPICE model for any power MOSFET. 22 refs.

  9. Temperature-dependent dielectric properties of a thermoplastic gelatin

    NASA Astrophysics Data System (ADS)

    Landi, Giovanni; Neitzert, Heinz C.; Sorrentino, Andrea

    2016-05-01

    The frequency and the temperature dependence of the dielectric properties of a thermoplastic gelatin based bio-material have been investigated. At lower frequencies the dielectric response is strongly affected by charge carrier accumulation at the electrodes which modifies the dominating hopping conduction mechanism. The variation of the ac conductivity with frequency obeys a Jonscher type power law except for a small deviation in the low frequency range due to the electrode polarization effect. The master curve of the ac conductivity data shows that the conductivity relaxation of the gelatin is temperature independent.

  10. Temperature dependence of the thermal conductivity of thin silicon nanowires.

    PubMed

    Donadio, Davide; Galli, Giulia

    2010-03-10

    We compute the lattice thermal conductivity (kappa) of silicon nanowires as a function of temperature by molecular dynamics simulations. In wires with amorphous surfaces kappa may reach values close to that of amorphous silicon and is nearly constant between 200 and 600 K; this behavior is determined by the presence of a majority of nonpropagating vibrational modes. We develop a parameter-free model that accounts for the temperature dependence observed in our simulations and provides a qualitative explanation of recent experiments. PMID:20163124

  11. Temperature dependence of the electrical conductivity of imidazolium ionic liquids.

    PubMed

    Leys, Jan; Wübbenhorst, Michael; Preethy Menon, Chirukandath; Rajesh, Ravindran; Thoen, Jan; Glorieux, Christ; Nockemann, Peter; Thijs, Ben; Binnemans, Koen; Longuemart, Stéphane

    2008-02-14

    The electrical conductivities of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids and of 1-hexyl-3-methylimidazolium ionic liquids with different anions were determined in the temperature range between 123 and 393 K on the basis of dielectric measurements in the frequency range from 1 to 10(7) Hz. Most of the ionic liquids form a glass and the conductivity values obey the Vogel-Fulcher-Tammann equation. The glass transition temperatures are increasing with increasing length of the alkyl chain. The fragility is weakly dependent on the alkyl chain length but is highly sensitive to the structure of the anion.

  12. Temperature dependence of predation depends on the relative performance of predators and prey.

    PubMed

    Öhlund, Gunnar; Hedström, Per; Norman, Sven; Hein, Catherine L; Englund, Göran

    2015-01-22

    The temperature dependence of predation rates is a key issue for understanding and predicting the responses of ecosystems to climate change. Using a simple mechanistic model, we demonstrate that differences in the relative performances of predator and prey can cause strong threshold effects in the temperature dependence of attack rates. Empirical data on the attack rate of northern pike (Esox lucius) feeding on brown trout (Salmo trutta) confirm this result. Attack rates fell sharply below a threshold temperature of +11°C, which corresponded to a shift in relative performance of pike and brown trout with respect to maximum attack and escape swimming speeds. The average attack speed of pike was an order of magnitude lower than the escape speed of brown trout at 5°C, but approximately equal at temperatures above 11°C. Thresholds in the temperature dependence of ecological rates can create tipping points in the responses of ecosystems to increasing temperatures. Thus, identifying thresholds is crucial when predicting future effects of climate warming.

  13. The importance of temperature dependent energy gap in the understanding of high temperature thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Singh, Saurabh; Pandey, Sudhir K.

    2016-10-01

    In this work, we show the importance of temperature dependent energy band gap, E g (T), in understanding the high temperature thermoelectric (TE) properties of material by considering LaCoO3 (LCO) and ZnV2O4 (ZVO) compounds as a case study. For the fix value of band gap, E g , deviation in the values of α has been observed above 360 K and 400 K for LCO and ZVO compounds, respectively. These deviation can be overcomed by consideration of temperature dependent band gap. The change in used value of E g with respect to temperature is ∼4 times larger than that of In As. This large temperature dependence variation in E g can be attributed to decrement in the effective on-site Coulomb interaction due to lattice expansion. At 600 K, the value of ZT for n and p-doped, LCO is ∼0.35 which suggest that it can be used as a potential material for TE device. This work clearly suggest that one should consider the temperature dependent band gap in predicting the high temperature TE properties of insulating materials.

  14. Temperature dependence of carrier capture by defects in gallium arsenide

    SciTech Connect

    Wampler, William R.; Modine, Normand A.

    2015-08-01

    This report examines the temperature dependence of the capture rate of carriers by defects in gallium arsenide and compares two previously published theoretical treatments of this based on multi phonon emission (MPE). The objective is to reduce uncertainty in atomistic simulations of gain degradation in III-V HBTs from neutron irradiation. A major source of uncertainty in those simulations is poor knowledge of carrier capture rates, whose values can differ by several orders of magnitude between various defect types. Most of this variation is due to different dependence on temperature, which is closely related to the relaxation of the defect structure that occurs as a result of the change in charge state of the defect. The uncertainty in capture rate can therefore be greatly reduced by better knowledge of the defect relaxation.

  15. Temperature Dependence of Internal Deformation Field in Zeolites

    NASA Astrophysics Data System (ADS)

    Cha, Wonsuk; Song, Sanghoon; Jeong, Nak Cheon; Pham, Tung; Harder, Ross; Xiong, Gang; Yoon, Kyung Byung; Robinson, Ian K.; Kim, Hyunjung

    2011-03-01

    We studied temperature dependent internal deformation field distributions in zeolite microcrystals using coherent x-ray diffraction. We measured the coherent x-ray diffraction patterns around (200) and (020) Bragg peaks of the crystals. The three-dimensional real space images were obtained by phasing and inverting the oversampled diffraction patterns using the phase retrieval algorithm combined with error reduction and hybrid input-output method. The internal deformation fields show unusual temperature dependent behaviors which might be originated from the synthesis and calcination process. This work was supported by National Research Foundation of Korea (Nos. 2010-0000112 and R15-2008-006-01001-0), Seoul Research and Business Development Program (10816), and Sogang University Research Grant (2010).

  16. Temperature dependent transport characteristics of graphene/n-Si diodes

    NASA Astrophysics Data System (ADS)

    Parui, S.; Ruiter, R.; Zomer, P. J.; Wojtaszek, M.; van Wees, B. J.; Banerjee, T.

    2014-12-01

    Realizing an optimal Schottky interface of graphene on Si is challenging, as the electrical transport strongly depends on the graphene quality and the fabrication processes. Such interfaces are of increasing research interest for integration in diverse electronic devices as they are thermally and chemically stable in all environments, unlike standard metal/semiconductor interfaces. We fabricate such interfaces with n-type Si at ambient conditions and find their electrical characteristics to be highly rectifying, with minimal reverse leakage current (<10-10 A) and rectification of more than 106. We extract Schottky barrier height of 0.69 eV for the exfoliated graphene and 0.83 eV for the CVD graphene devices at room temperature. The temperature dependent electrical characteristics suggest the influence of inhomogeneities at the graphene/n-Si interface. A quantitative analysis of the inhomogeneity in Schottky barrier heights is presented using the potential fluctuation model proposed by Werner and Güttler.

  17. Time temperature-stress dependence of boron fiber deformation

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1976-01-01

    Flexural stress relaxation (FSR) and flexural internal friction (FIF) techniques were employed to measure the time-dependent deformation of boron fibers from -190 to 800 C. The principal specimens were 203 micrometers diameter fibers commercially produced by chemical vapor deposition (CVD) on a 13 micrometer tungsten substrate. The observation of complete creep strain recovery with time and temperature indicated that CVD boron fibers deform flexurally as anelastic solids with no plastic component.

  18. Effect of solvent strength and temperature on retention for a polar-endcapped, octadecylsiloxane-bonded silica stationary phase with methanol-water mobile phases.

    PubMed

    Kiridena, Waruna; Poole, Colin F; Koziol, Wladyslaw W

    2004-12-10

    Synergi Hydro-RP is a new type of polar-endcapped, octadecylsiloxane-bonded silica packing for reversed-phase liquid chromatography. Its retention properties as a function of solvent strength and temperature are evaluated from the change in retention factors over the composition range (0-70% v/v methanol) and temperature range (25-65 degrees C) using the solvation parameter model and response surface methodologies. The main factors that affect retention are solute size and hydrogen-bond basicity, with minor contributions from solute hydrogen-bond acidity, dipole-type and electron lone pair interactions. Within the easily accessible range for both temperature and solvent strength, the ability to change selectivity is much greater for solvent strength than temperature. Also, a significant portion of the effect of increasing temperature is to reduce retention without changing selectivity. Response surfaces for the system constants are smooth and non-linear, except for cavity formation and dispersion interactions (v system constant), which is linear. Modeling of the response surfaces suggests that solvent strength and temperature are not independent factors for the b, s and e system constants and for the model intercept (c term). PMID:15628160

  19. Temperature-Dependent Conformations of Model Viscosity Index Improvers

    SciTech Connect

    Ramasamy, Uma Shantini; Cosimbescu, Lelia; Martini, Ashlie

    2015-05-01

    Lubricants are comprised of base oils and additives where additives are chemicals that are deliberately added to the oil to enhance properties and inhibit degradation of the base oils. Viscosity index (VI) improvers are an important class of additives that reduce the decline of fluid viscosity with temperature [1], enabling optimum lubricant performance over a wider range of operating temperatures. These additives are typically high molecular weight polymers, such as, but not limited to, polyisobutylenes, olefin copolymer, and polyalkylmethacrylates, that are added in concentrations of 2-5% (w/w). Appropriate polymers, when dissolved in base oil, expand from a coiled to an uncoiled state with increasing temperature [2]. The ability of VI additives to increase their molar volume and improve the temperature-viscosity dependence of lubricants suggests there is a strong relationship between molecular structure and additive functionality [3]. In this work, we aim to quantify the changes in polymer size with temperature for four polyisobutylene (PIB) based molecular structures at the nano-scale using molecular simulation tools. As expected, the results show that the polymers adopt more conformations at higher temperatures, and there is a clear indication that the expandability of a polymer is strongly influenced by molecular structure.

  20. Temperature dependent bacteriophages of a tropical bacterial pathogen

    PubMed Central

    Shan, Jinyu; Korbsrisate, Sunee; Withatanung, Patoo; Adler, Natalie Lazar; Clokie, Martha R. J.; Galyov, Edouard E.

    2014-01-01

    There is an increasing awareness of the multiple ways that bacteriophages (phages) influence bacterial evolution, population dynamics, physiology, and pathogenicity. By studying a novel group of phages infecting a soil borne pathogen, we revealed a paradigm shifting observation that the phages switch their lifestyle according to temperature. We sampled soil from an endemic area of the serious tropical pathogen Burkholderia pseudomallei, and established that podoviruses infecting the pathogen are frequently present in soil, and many of them are naturally occurring variants of a common virus type. Experiments on one phage in the related model B. thailandensis demonstrated that temperature defines the outcome of phage-bacteria interactions. At higher temperatures (37°C), the phage predominantly goes through a lytic cycle, but at lower temperatures (25°C), the phage remains temperate. This is the first report of a naturally occurring phage that follows a lytic or temperate lifestyle according to temperature. These observations fundamentally alter the accepted views on the abundance, population biology and virulence of B. pseudomallei. Furthermore, when taken together with previous studies, our findings suggest that the phenomenon of temperature dependency in phages is widespread. Such phages are likely to have a profound effect on bacterial biology, and on our ability to culture and correctly enumerate viable bacteria. PMID:25452746

  1. Temperature dependence of the reconstruction of zigzag edges in graphene.

    PubMed

    He, Kuang; Robertson, Alex W; Fan, Ye; Allen, Christopher S; Lin, Yung-Chang; Suenaga, Kazu; Kirkland, Angus I; Warner, Jamie H

    2015-05-26

    We examine the temperature dependence of graphene edge terminations at the atomic scale using an in situ heating holder within an aberration-corrected transmission electron microscope. The relative ratios of armchair, zigzag, and reconstructed zigzag edges from over 350 frames at each temperature are measured. Below 400 °C, the edges are dominated by zigzag terminations, but above 600 °C, this changes dramatically, with edges dominated by armchair and reconstructed zigzag edges. We show that at low temperature chemical etching effects dominate and cause deviation to the thermodynamics of the system. At high temperatures (600 and 800 °C), adsorbates are evaporated from the surface of graphene and chemical etching effects are significantly reduced, enabling the thermodynamic distribution of edge types to be observed. The growth rate of holes at high temperature is also shown to be slower than at room temperature, indicative of the reduced chemical etching process. These results provide important insights into the role of chemical etching effects in the hole formation, edge sputtering, and edge reconstruction in graphene.

  2. Temperature dependence of hydrogenated amorphous silicon solar cell performances

    NASA Astrophysics Data System (ADS)

    Riesen, Y.; Stuckelberger, M.; Haug, F.-J.; Ballif, C.; Wyrsch, N.

    2016-01-01

    Thin-film hydrogenated amorphous silicon solar (a-Si:H) cells are known to have better temperature coefficients than crystalline silicon cells. To investigate whether a-Si:H cells that are optimized for standard conditions (STC) also have the highest energy yield, we measured the temperature and irradiance dependence of the maximum power output (Pmpp), the fill factor (FF), the short-circuit current density (Jsc), and the open-circuit voltage (Voc) for four series of cells fabricated with different deposition conditions. The parameters varied during plasma-enhanced chemical vapor deposition (PE-CVD) were the power and frequency of the PE-CVD generator, the hydrogen-to-silane dilution during deposition of the intrinsic absorber layer (i-layer), and the thicknesses of the a-Si:H i-layer and p-type hydrogenated amorphous silicon carbide layer. The results show that the temperature coefficient of the Voc generally varies linearly with the Voc value. The Jsc increases linearly with temperature mainly due to temperature-induced bandgap reduction and reduced recombination. The FF temperature dependence is not linear and reaches a maximum at temperatures between 15 °C and 80 °C. Numerical simulations show that this behavior is due to a more positive space-charge induced by the photogenerated holes in the p-layer and to a recombination decrease with temperature. Due to the FF(T) behavior, the Pmpp (T) curves also have a maximum, but at a lower temperature. Moreover, for most series, the cells with the highest power output at STC also have the best energy yield. However, the Pmpp (T) curves of two cells with different i-layer thicknesses cross each other in the operating cell temperature range, indicating that the cell with the highest power output could, for instance, have a lower energy yield than the other cell. A simple energy-yield simulation for the light-soaked and annealed states shows that for Neuchâtel (Switzerland) the best cell at STC also has the best energy

  3. Temperature dependence of the Soret coefficient of ionic colloids.

    PubMed

    Sehnem, A L; Figueiredo Neto, A M; Aquino, R; Campos, A F C; Tourinho, F A; Depeyrot, J

    2015-10-01

    The temperature dependence of the Soret coefficient S(T)(T) in electrostatically charged magnetic colloids is investigated. Two different ferrofluids, with different particles' mean dimensions, are studied. In both cases we obtain a thermophilic behavior of the Soret effect. The temperature dependence of the Soret coefficient is described assuming that the nanoparticles migrate along the ionic thermoelectric field created by the thermal gradient. A model based on the contributions from the thermoelectrophoresis and variation of the double-layer energy, without fitting parameters, is used to describe the experimental results of the colloid with the bigger particles. To do so, independent measurements of the ζ potential, mass diffusion coefficient, and Seebeck coefficient are performed. The agreement of the theory and the experimental results is rather good. In the case of the ferrofluid with smaller particles, it is not possible to get experimentally reliable values of the ζ potential and the model described is used to evaluate this parameter and its temperature dependence. PMID:26565244

  4. Temperature-dependent particle-number projected moment of inertia

    SciTech Connect

    Allal, N. H.; Fellah, M.; Benhamouda, N.; Oudih, M. R.

    2008-05-15

    Expressions of the parallel and perpendicular temperature-dependent particle-number projected nuclear moment of inertia have been established by means of a discrete projection method. They generalize that of the FTBCS method and are well adapted to numerical computation. The effects of particle-number fluctuations have been numerically studied for some even-even actinide nuclei by using the single-particle energies and eigenstates of a deformed Woods-Saxon mean field. It has been shown that the parallel moment of inertia is practically not modified by the use of the projection method. In contrast, the discrepancy between the projected and FTBCS perpendicular moment of inertia values may reach 5%. Moreover, the particle-number fluctuation effects vary not only as a function of the temperature but also as a function of the deformation for a given temperature. This is not the case for the system energy.

  5. Density of biogas digestate depending on temperature and composition.

    PubMed

    Gerber, Mandy; Schneider, Nico

    2015-09-01

    Density is one of the most important physical properties of biogas digestate to ensure an optimal dimensioning and a precise design of biogas plant components like stirring devices, pumps and heat exchangers. In this study the density of biogas digestates with different compositions was measured using pycnometers at ambient pressure in a temperature range from 293.15 to 313.15K. The biogas digestates were taken from semi-continuous experiments, in which the marine microalga Nannochloropsis salina, corn silage and a mixture of both were used as feedstocks. The results show an increase of density with increasing total solid content and a decrease with increasing temperature. Three equations to calculate the density of biogas digestate were set up depending on temperature as well as on the total solid content, organic composition and elemental composition, respectively. All correlations show a relative deviation below 1% compared to experimental data.

  6. Temperature dependence of the properties of vapor-deposited polyimide

    NASA Astrophysics Data System (ADS)

    Tsai, F. Y.; Blanton, T. N.; Harding, D. R.; Chen, S. H.

    2003-04-01

    The Young's modulus and helium gas permeability of vapor-deposited poly(4,4'-oxydiphenylenepyromellitimide) were measured at cryogenic and elevated temperatures (10-573 K). The Young's modulus decreased with increasing temperature from 5.5 GPa at 10 K to 1.8 GPa at 573 K. The temperature dependency of the permeability followed the Arrhenius' relationship, with different activation energy for permeation for samples imidized under different conditions. The effect of the imidization conditions on the permeation properties could be explained in terms of morphology/crystallinity as determined by x-ray diffraction techniques. Imidizing in air instead of nitrogen increased the permeability while lowering the activation energy for permeation and crystallinity. Imidizing at higher heating rates (in nitrogen) resulted in higher permeability, lower activation energy for permeation, and larger and fewer crystallites with better-aligned lattice planes.

  7. Temperature dependence of charge transport in conjugated single molecule junctions

    NASA Astrophysics Data System (ADS)

    Huisman, Eek; Kamenetska, Masha; Venkataraman, Latha

    2011-03-01

    Over the last decade, the break junction technique using a scanning tunneling microscope geometry has proven to be an important tool to understand electron transport through single molecule junctions. Here, we use this technique to probe transport through junctions at temperatures ranging from 5K to 300K. We study three amine-terminated (-NH2) conjugated molecules: a benzene, a biphenyl and a terphenyl derivative. We find that amine groups bind selectively to undercoordinate gold atoms gold all the way down to 5K, yielding single molecule junctions with well-defined conductances. Furthermore, we find that the conductance of a single molecule junction increases with temperature and we present a mechanism for this temperature dependent transport result. Funded by a Rubicon Grant from The Netherlands Organisation for Scientific Research (NWO) and the NSEC program of NSF under grant # CHE-0641523.

  8. Density of biogas digestate depending on temperature and composition.

    PubMed

    Gerber, Mandy; Schneider, Nico

    2015-09-01

    Density is one of the most important physical properties of biogas digestate to ensure an optimal dimensioning and a precise design of biogas plant components like stirring devices, pumps and heat exchangers. In this study the density of biogas digestates with different compositions was measured using pycnometers at ambient pressure in a temperature range from 293.15 to 313.15K. The biogas digestates were taken from semi-continuous experiments, in which the marine microalga Nannochloropsis salina, corn silage and a mixture of both were used as feedstocks. The results show an increase of density with increasing total solid content and a decrease with increasing temperature. Three equations to calculate the density of biogas digestate were set up depending on temperature as well as on the total solid content, organic composition and elemental composition, respectively. All correlations show a relative deviation below 1% compared to experimental data. PMID:26026294

  9. Temperature dependence of DNA translocations through solid-state nanopores

    PubMed Central

    Verschueren, Daniel V.; Jonsson, Magnus P.; Dekker, Cees

    2015-01-01

    In order to gain a better physical understanding of DNA translocations through solid-state nanopores, we study the temperature dependence of λ-DNA translocations through 10 nm-in-diameter silicon-nitride nanopores, both experimentally and theoretically. The measured ionic conductance G, the DNA-induced ionic-conductance blockades ΔG and the event frequency Γ all increase with increasing temperature while the DNA translocation time τ decreases. G and ΔG are accurately described when bulk and surface conductances of the nanopore are considered and access resistance is incorporated appropriately. Viscous drag on the untranslocated part of the DNA coil is found to dominate the temperature dependence of the translocation times and the event rate is well described by a balance between diffusion and electrophoretic motion. The good fit between modeled and measured properties of DNA translocations through solid-state nanopores in this first comprehensive temperature study, suggest that our model captures the relevant physics of the process. PMID:25994084

  10. Temperature Dependent Cyclic Deformation Mechanisms in Haynes 188 Superalloy

    NASA Technical Reports Server (NTRS)

    Rao, K. Bhanu Sankara; Castelli, Michael G.; Allen, Gorden P.; Ellis, John R.

    1995-01-01

    The cyclic deformation behavior of a wrought cobalt-base superalloy, Haynes 188, has been investigated over a range of temperatures between 25 and 1000 C under isothermal and in-phase thermomechanical fatigue (TMF) conditions. Constant mechanical strain rates (epsilon-dot) of 10(exp -3)/s and 10(exp -4)/s were examined with a fully reversed strain range of 0.8%. Particular attention was given to the effects of dynamic strain aging (DSA) on the stress-strain response and low cycle fatigue life. A correlation between cyclic deformation behavior and microstructural substructure was made through detailed transmission electron microscopy. Although DSA was found to occur over a wide temperature range between approximately 300 and 750 C the microstructural characteristics and the deformation mechanisms responsible for DSA varied considerably and were dependent upon temperature. In general, the operation of DSA processes led to a maximum of the cyclic stress amplitude at 650 C and was accompanied by pronounced planar slip, relatively high dislocation density, and the generation of stacking faults. DSA was evidenced through a combination of phenomena, including serrated yielding, an inverse dependence of the maximum cyclic hardening with epsilon-dot, and an instantaneous inverse epsilon-dot sensitivity verified by specialized epsilon-dot -change tests. The TMF cyclic hardening behavior of the alloy appeared to be dictated by the substructural changes occuring at the maximum temperature in the TMF cycle.

  11. Temperature dependence of Brewer UV measurements at Rome station

    NASA Astrophysics Data System (ADS)

    Siani, Anna M.; Benevento, Giuseppe; Casale, Giuseppe R.

    2003-11-01

    Decreasing trends of total ozone affect mainly solar ultraviolet (UV) levels at ground level with adverse effects on the biosphere. Highly accurate measurements of solar UV irradiance have become an important issue to assess UV trends. To detect these trends stations with well calibrated instruments, with long-term stability and Quality Assurance (QA)/ Quality Control (QC) carefully followed procedures, are necessary. The Solar Radiometry Observatory of Rome, University "La Sapienza" (city center) is one of the stations regularly measuring UV irradiance in Italy. Measurements of UV spectral (290-325 nm) irradiance started in 1992, using Brewer MKIV 067. Measurements of total irradiance contained in the 280 - 320 nm waveband begun in 2000 with the YES UVB-1 broad-band radiometer. An investigation of the internal temperature dependence of the spectral responsivity to improve the quality of the Brewer UV data was carried out. The study was based on the analysis of responsivity files recorded during the years 2000-2002. Responsivities are provided by specific tests through a set of five 50 W quartz tungsten-halogen lamps, traceable to the standards of the National Institute of Standards and Technology (NIST). The lamp tests allow to measure any changes in the instrument response over time. It was observed that a decrease in the instrument's responsivity resulted from an increase of the internal temperature. A methodology based on a family of responsivity files at different temperature intervals is proposed to allow correction of UV irradiances using the responsivity file at the corresponding temperatures. The mean percentage differnce between temperature corrected and non-corrected Brewer data varies from 0.8% to 1.5% over an internal temperature of 8°C-42°C. In addition the results of a field evaluation in Rome between Brewer 067 and two temperature stabilized instruments, a broad-band radiometer (YES UVB-1) and a moderate bandwidth multichannel radiometer

  12. Si doping influence on the catalytic performance of Pt/TiO2 mesoporous film catalyst for low-temperature methanol combustion

    NASA Astrophysics Data System (ADS)

    Zheng, Zhangzhang; Wang, Xiaohong; Liu, Jun; Xiao, Jinhua; Hu, Zhiyu

    2014-08-01

    A series of Si-doped mesoporous TiO2 thin films with anatase phase were synthesized and used as the supporters of Pt catalyst for low-temperature catalytic combustion of gaseous methanol. The introduced Pt ions were processed by a simple photo-reduction method. The catalytic performance of thin film catalysts with different Si doping content were measured by gas chromatography method. It was found that the catalytic performance of Pt/TiO2 can be improved a lot by Si doping and the optimized value of Si/Ti ratio is 0.1. At this point, Pt/TiO2 exhibited the best catalytic activity towards methanol combustion reaching up to 92.8% at 100 °C. This conversion rate was 13.2% higher than that of the catalyst without doping. Moreover, the mechanism for Si affecting on the catalytic performance was proposed based on the XRD, FT-IR, SEM, TEM, N2 adsorption-desorption and XPS characterizations.

  13. Sources and seasonality of atmospheric methanol based on tall tower measurements in the US Upper Midwest

    NASA Astrophysics Data System (ADS)

    Hu, L.; Mohr, M.; Wells, K. C.; Griffis, T. J.; Helmig, D.; Millet, D. B.

    2011-12-01

    Methanol (CH3OH) plays an important role in the atmosphere as a source of carbon monoxide (CO) and formaldehyde (HCHO), however the magnitude and distribution of methanol emissions remain poorly constrained. Here we present over one year of continuous atmospheric methanol measurements from the University of Minnesota tall tower Trace Gas Observatory (KCMP tall tower; 185 m a.g.l.), and interpret the dataset in terms of constraints on regional methanol sources and seasonality. The seasonal cycle of methanol concentrations observed at the KCMP tall tower is generally similar to that simulated by a global 3-D chemical transport model (GEOS-Chem, driven with MEGANv2.0 biogenic emissions) except the seasonal peak occurs ~1 month earlier in the observations, apparently reflecting a model underestimate of emission rates for younger versus older leaves. Based on a source tracer approach, which we evaluate using GEOS-Chem and with multiple tracers, we estimate that anthropogenic emissions account for approximately 40% of ambient methanol abundance during winter and 10% during summer. During daytime in summer, methanol concentrations increase exponentially with temperature, reflecting the temperature sensitivity of the biogenic source, and the observed temperature dependence is statistically consistent with that in the model. Nevertheless, summertime concentrations are underestimated by on average 35% in the model for this region. The seasonal importance of methanol as a source of HCHO and CO is highest in spring through early summer, when biogenic methanol emissions are high but isoprene emissions are still relatively low. During that time observed methanol concentrations account for on average 20% of the total CO and HCHO production rates as simulated by GEOS-Chem, compared to 12% later in the summer and 12% on an annual average basis. The biased seasonality in the model means that the photochemical role for methanol early in the growing season is presently underestimated.

  14. Temperature dependent deformation mechanisms in pure amorphous silicon

    SciTech Connect

    Kiran, M. S. R. N. Haberl, B.; Williams, J. S.; Bradby, J. E.

    2014-03-21

    High temperature nanoindentation has been performed on pure ion-implanted amorphous silicon (unrelaxed a-Si) and structurally relaxed a-Si to investigate the temperature dependence of mechanical deformation, including pressure-induced phase transformations. Along with the indentation load-depth curves, ex situ measurements such as Raman micro-spectroscopy and cross-sectional transmission electron microscopy analysis on the residual indents reveal the mode of deformation under the indenter. While unrelaxed a-Si deforms entirely via plastic flow up to 200 °C, a clear transition in the mode of deformation is observed in relaxed a-Si with increasing temperature. Up to 100 °C, pressure-induced phase transformation and the observation of either crystalline (r8/bc8) end phases or pressure-induced a-Si occurs in relaxed a-Si. However, with further increase of temperature, plastic flow rather than phase transformation is the dominant mode of deformation. It is believed that the elevated temperature and pressure together induce bond softening and “defect” formation in structurally relaxed a-Si, leading to the inhibition of phase transformation due to pressure-releasing plastic flow under the indenter.

  15. Temperature dependent vibration analysis of functionally graded rectangular plates

    NASA Astrophysics Data System (ADS)

    Kim, Young-Wann

    2005-06-01

    A theoretical method is developed to investigate vibration characteristics of initially stressed functionally graded rectangular plates made up of metal and ceramic in thermal environment. The temperature is assumed to be constant in the plane of the plate and to vary in the thickness direction only. Two types of thermal condition are considered. The first type is that one value of the temperature is imposed on the upper surface and the other (or same) value on the lower surface. The second is that the heat flows from the upper surface to the lower one held at a prescribed temperature. Material properties are assumed to be temperature dependent, and vary continuously through the thickness according to a power law distribution in terms of the volume fraction of the constituents. The third-order shear deformation plate theory to account for rotary inertia and transverse shear strains is adopted to formulate the theoretical model. The Rayleigh-Ritz procedure is applied to obtain the frequency equation. The analysis is based on an expansion of the displacements in the double Fourier series that satisfy the boundary conditions. The effect of material compositions, plate geometry, and temperature fields on the vibration characteristics is examined. The present theoretical results are verified by comparing with those in literature.

  16. Temperature dependence of the hydrophobic interaction in protein folding.

    PubMed Central

    Baldwin, R L

    1986-01-01

    Accurate calorimetric data for the thermodynamics of transfer of six liquid hydrocarbons to water have been combined with solubility data to provide a model for the temperature dependence of the hydrophobic interaction in protein folding. The model applies at temperatures for which the change in heat capacity (delta Cp) is constant. The extrapolated value of the temperature (Ts) at which the entropy of transfer (delta S degrees) reaches zero is strikingly similar (Ts = 112.8 degrees C +/- 2.2 degrees C) for the six hydrocarbons. This finding provides an interpretation for the empirical relation discovered by Sturtevant: the ratio delta S degrees/delta Cp measured at 25 degrees C is constant for the transfer of nonpolar substances from nonaqueous media to water. Constancy of this ratio is equivalent to Ts = constant. When applied to protein folding, the hydrocarbon model gives estimates of the contributions of the hydrophobic interaction to the entropy and enthalpy changes on unfolding and, by difference, estimates of the residual contributions from other sources. The major share of the large enthalpy change observed on unfolding at high temperatures comes from the hydrophobic interaction. The hydrophobic interaction changes from being entropy-driven at 22 degrees C to being enthalpy-driven at 113 degrees C. Finally, the hydrocarbon model predicts that plots of the specific entropy change on unfolding versus temperature should nearly intersect close to 113 degrees C, as observed by Privalov. PMID:3464944

  17. Temperature-dependent Refractive Index of Silicon and Germanium

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.; Madison, Timothy J.

    2006-01-01

    Silicon and germanium are perhaps the two most well-understood semiconductor materials in the context of solid state device technologies and more recently micromachining and nanotechnology. Meanwhile, these two materials are also important in the field of infrared lens design. Optical instruments designed for the wavelength range where these two materials are transmissive achieve best performance when cooled to cryogenic temperatures to enhance signal from the scene over instrument background radiation. In order to enable high quality lens designs using silicon and germanium at cryogenic temperatures, we have measured the absolute refractive index of multiple prisms of these two materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature. For silicon, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 20 to 300 K at wavelengths from 1.1 to 5.6 pin, while for germanium, we cover temperatures ranging from 20 to 300 K and wavelengths from 1.9 to 5.5 microns. We compare our measurements with others in the literature and provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. Citing the wide variety of values for the refractive indices of these two materials found in the literature, we reiterate the importance of measuring the refractive index of a sample from the same batch of raw material from which final optical components are cut when absolute accuracy greater than k5 x 10" is desired.

  18. Methanol Oxidation on Pt3Sn(111) for Direct Methanol Fuel Cells: Methanol Decomposition.

    PubMed

    Lu, Xiaoqing; Deng, Zhigang; Guo, Chen; Wang, Weili; Wei, Shuxian; Ng, Siu-Pang; Chen, Xiangfeng; Ding, Ning; Guo, Wenyue; Wu, Chi-Man Lawrence

    2016-05-18

    PtSn alloy, which is a potential material for use in direct methanol fuel cells, can efficiently promote methanol oxidation and alleviate the CO poisoning problem. Herein, methanol decomposition on Pt3Sn(111) was systematically investigated using periodic density functional theory and microkinetic modeling. The geometries and energies of all of the involved species were analyzed, and the decomposition network was mapped out to elaborate the reaction mechanisms. Our results indicated that methanol and formaldehyde were weakly adsorbed, and the other derivatives (CHxOHy, x = 1-3, y = 0-1) were strongly adsorbed and preferred decomposition rather than desorption on Pt3Sn(111). The competitive methanol decomposition started with the initial O-H bond scission followed by successive C-H bond scissions, (i.e., CH3OH → CH3O → CH2O → CHO → CO). The Brønsted-Evans-Polanyi relations and energy barrier decomposition analyses identified the C-H and O-H bond scissions as being more competitive than the C-O bond scission. Microkinetic modeling confirmed that the vast majority of the intermediates and products from methanol decomposition would escape from the Pt3Sn(111) surface at a relatively low temperature, and the coverage of the CO residue decreased with an increase in the temperature and decrease in partial methanol pressure.

  19. Temperature dependence of the energy gap of semiconductors in the low-temperature limit.

    PubMed

    Cardona, Manuel; Meyer, T A; Thewalt, M L W

    2004-05-14

    The temperature dependence of the electronic states and energy gaps of semiconductors is an old but still important experimental and theoretical topic. Remarkably, extant results do not clarify the asymptotic T-->0 behavior. Recent breakthroughs in the spectroscopy of enriched 28Si allow us to measure changes in the band gap over the liquid 4He temperature range with an astounding precision of one part in 10(8), revealing a T4.0+/-0.2 decrease with increasing T. This is in excellent agreement with a theoretical argument predicting an exponent of 4. This power law should apply, in the low temperature limit, to the temperature dependence of the energies of all electronic states in semiconductors and insulators.

  20. Temperature dependence and shape effect in high-temperature microwave heating of nickel oxide powders

    NASA Astrophysics Data System (ADS)

    Sugawara, H.; Kashimura, K.; Hayashi, M.; Matsumuro, T.; Watanabe, T.; Mitani, T.; Shinohara, N.

    2015-02-01

    The temperature dependence of microwave absorption was investigated for Ni1-yO particles over the frequency range 2.0-13.5 GHz and temperature range 25-1000 °C. Using a coaxial transmission line method with a network analyzer, both the real and imaginary parts of the relative permittivity (ε‧r and ε″r, respectively) and permeability (μ‧r and μ″r, respectively) were measured; finding that both are largely dependent on the temperature at all frequencies. Furthermore, permeability loss factors related to shape effects were observed at high frequencies, indicating an increase in the microwave-absorption properties. A modified form of Mie's theory was applied to discuss these effects, wherein a spherical model demonstrating a close fit to the shape effect data suggests a more complex microwave-absorption behavior at increased temperature.

  1. New approaches towards novel composite and multilayer membranes for intermediate temperature-polymer electrolyte fuel cells and direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Branco, Carolina Musse; Sharma, Surbhi; de Camargo Forte, Maria Madalena; Steinberger-Wilckens, Robert

    2016-06-01

    This review analyses the current and existing literature on novel composite and multilayer membranes for Polymer Electrolyte Fuel Cell applications, including intermediate temperature polymer electrolyte fuel cell (IT-PEFC) and direct methanol fuel cell (DMFC) systems. It provides a concise scrutiny of the vast body of literature available on organic and inorganic filler based polymer membranes and links it to the new emerging trend towards novel combinations of multilayered polymer membranes for applications in DMFC and IT-PEFC. The paper carefully explores the advantages and disadvantages of the most common preparation techniques reported for multilayered membranes such as hot-pressing, casting and dip-coating and also summarises various other fresh and unique techniques employed for multilayer membrane preparation.

  2. Electro-osmotic drag effect on the methanol permeation for sulfonated poly(ether ether ketone) and nafion 117 membranes.

    PubMed

    Chi, Nguyen Thi Que; Bae, Byungchan; Kim, Dukjoon

    2013-11-01

    Electro-osmotic drag effect on the methanol permeation was investigated for sulfonated poly(ether ether ketone) (sPEEK) membrane, and its result was compared with that of Nafion 117 membrane. The electro-osmotic drag coefficient was determined from the limiting current density measured at different temperature. The methanol permeability of sPEEK membrane increased with temperature but its temperature dependence was not as strong as that of Nafion 117 membrane. The methanol permeability or the total methanol flux of Nafion 117 membrane was at least twice higher than that of sPEEK70 membrane (sPEEK membrane with 70% sulfonation degree), as the methanol permeation was highly contributed by the electro-osmotic drag effect. This higher electro-osmotic drag of Nafion 117 membrane is attributed to the bigger ion cluster and waster channel in nanophase and thus more free water absorption than sPEEK membrane.

  3. Methanol incorporation in clathrate hydrates and the implications for oil and gas pipeline flow assurance and icy planetary bodies.

    PubMed

    Shin, Kyuchul; Udachin, Konstantin A; Moudrakovski, Igor L; Leek, Donald M; Alavi, Saman; Ratcliffe, Christopher I; Ripmeester, John A

    2013-05-21

    One of the best-known uses of methanol is as antifreeze. Methanol is used in large quantities in industrial applications to prevent methane clathrate hydrate blockages from forming in oil and gas pipelines. Methanol is also assigned a major role as antifreeze in giving icy planetary bodies (e.g., Titan) a liquid subsurface ocean and/or an atmosphere containing significant quantities of methane. In this work, we reveal a previously unverified role for methanol as a guest in clathrate hydrate cages. X-ray diffraction (XRD) and NMR experiments showed that at temperatures near 273 K, methanol is incorporated in the hydrate lattice along with other guest molecules. The amount of included methanol depends on the preparative method used. For instance, single-crystal XRD shows that at low temperatures, the methanol molecules are hydrogen-bonded in 4.4% of the small cages of tetrahydrofuran cubic structure II hydrate. At higher temperatures, NMR spectroscopy reveals a number of methanol species incorporated in hydrocarbon hydrate lattices. At temperatures characteristic of icy planetary bodies, vapor deposits of methanol, water, and methane or xenon show that the presence of methanol accelerates hydrate formation on annealing and that there is unusually complex phase behavior as revealed by powder XRD and NMR spectroscopy. The presence of cubic structure I hydrate was confirmed and a unique hydrate phase was postulated to account for the data. Molecular dynamics calculations confirmed the possibility of methanol incorporation into the hydrate lattice and show that methanol can favorably replace a number of methane guests.

  4. Temperature dependence of the electrical properties of hydrogen titanate nanotubes

    SciTech Connect

    Alves, Diego C. B.; Brandão, Frederico D.; Krambrock, Klaus; Ferlauto, Andre S.; Fonseca, Fabio C.

    2014-11-14

    The temperature dependence of the electrical properties of hydrogen-rich titanate nanotubes (H-TNTs) in the 90–270 °C range was investigated by impedance spectroscopy. Three types of dominant conduction were found which depend on the previous thermal treatment of the samples. For untreated samples, at low temperatures (T < 100 °C), electrical conductivity is relatively high (>10{sup −4} S/cm at T ≈ 90 °C) and is dominated by protonic transport within structural water molecules. For thermal annealing in inert atmosphere up to 150 °C, water molecules are released from the nanotube structure resulting in a dehydrated H{sub 2}Ti{sub 3}O{sub 7} phase. Such phase has a low, thermally-dependent, electrical conductivity (10{sup −8} S/cm at T ≈ 90 °C) with activation energy of 0.68 eV. For samples annealed up to 260 °C, loss of OH groups, and consequent generation of oxygen vacancies, occurs that result in the non-stoichiometric H{sub 2(1−z)}Ti{sub 3}O{sub 7−z} phase. This phase has much higher conductivity (10{sup −5} S/cm at T ≈ 90 °C) and lower associated activation energy (0.40 eV). The generation of oxygen vacancies is confirmed by electron paramagnetic resonance measurements at room temperature, which revealed the presence of single-electron-trapped oxygen vacancies. The activation energy value found is consistent with the thermal ionization energy of the oxygen vacancies. Such defect formation represents the initial stage of the phase transformation from titanate to TiO{sub 2} (B). X-ray diffraction and Raman spectroscopy measurements also support such interpretation.

  5. Temperature dependent photoluminescence from lead sulfide nanosheets and nanocubes.

    PubMed

    Kim, Jungdong; Kim, Seung Gi; Oh, Eunsoon; Kim, Sang Hyuk; Choi, Won Jun

    2016-01-29

    We studied temperature dependent photoluminescence (PL) spectra in the mid-infrared range from lead sulfide (PbS) nanosheets with an average thickness of 25 nm and nanocubes grown by solvothermal and hydrothermal methods. Distinct bandedge PL emission was observed in the whole temperature range between 10 and 300 K, indicating the high optical quality of these nanostructures. The PL peak of the nanosheets was found at 0.326 eV at 10 K, about 40 meV higher than that of bulk PbS due to the quantum confinement effect, whereas no confinement effect was observed for the nanocubes. We also demonstrate that the absorption edges of the nanocubes and nanosheets in the transmission spectra agree very well with their fundamental bandgap.

  6. Simulations of the temperature dependence of amide I vibration.

    PubMed

    Kaminský, Jakub; Bouř, Petr; Kubelka, Jan

    2011-01-13

    For spectroscopic studies of peptide and protein thermal denaturation it is important to single out the contribution of the solvent to the spectral changes from those originated in the molecular structure. To obtain insights into the origin and size of the temperature solvent effects on the amide I spectra, combined molecular dynamics and density functional simulations were performed with the model N-methylacetamide molecule (NMA). The computations well reproduced frequency and intensity changes previously observed in aqueous NMA solutions. An empirical correction of vacuum frequencies in single NMA molecule based on the electrostatic potential of the water molecules provided superior results to a direct density functional average obtained for a limited number of solute-solvent clusters. The results thus confirm that the all-atom quantum and molecular mechanics approach captures the overall influence of the temperature dependent solvent properties on the amide I spectra and can improve the accuracy and reliability of molecular structural studies.

  7. Temperature-dependent potential in cluster-decay process

    NASA Astrophysics Data System (ADS)

    Gharaei, R.; Zanganeh, V.

    2016-08-01

    Role of the thermal effects of the parent nucleus in the Coulomb barrier and the half-life of 28 cluster-decays is systematically analyzed within the framework of the proximity formalism, namely proximity potential 2010. The WKB approximation is used to determine the penetration probability of the emitted cluster. It is shown that the height and width of the Coulomb barrier in the temperature-dependent proximity potential are less than its temperature-independent version. Moreover, this investigation reveals that the calculated values of half-life for selected cluster-decays are in better agreement with the experimental data when the mentioned effects are imposed on the proximity approach. A discussion is also presented about the predictions of the present thermal approach for cluster-decay half-lives of the super-heavy-elements.

  8. Temperature dependence of bulk viscosity in water using acoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Holmes, M. J.; Parker, N. G.; Povey, M. J. W.

    2011-01-01

    Despite its fundamental role in the dynamics of compressible fluids, bulk viscosity has received little experimental attention and there remains a paucity of measured data. Acoustic spectroscopy provides a robust and accurate approach to measuring this parameter. Working from the Navier-Stokes model of a compressible fluid one can show that the bulk viscosity makes a significant and measurable contribution to the frequency-squared acoustic attenuation. Here we employ this methodology to determine the bulk viscosity of Millipore water over a temperature range of 7 to 50°C. The measured attenuation spectra are consistent with the theoretical predictions, while the bulk viscosity of water is found to be approximately three times larger than its shear counterpart, reinforcing its significance in acoustic propagation. Moreover, our results demonstrate that this technique can be readily and generally applied to fluids to accurately determine their temperature dependent bulk viscosities.

  9. Localized subcritical convective cells in temperature-dependent viscosity fluids

    NASA Astrophysics Data System (ADS)

    Solomatov, V. S.

    2012-06-01

    Numerical simulations of infinite Prandtl number convection in the stagnant lid regime of temperature-dependent viscosity convection demonstrate the existence of spatially localized, stable convective cells below the critical Rayleigh number (subcritical convection). These solutions are in stark contrast to the usual, supercritical, convective planforms, where convective cells form in the entire layer. The isolated cell has a shape of an axisymmetric dome with an upwelling at the center and thus appears as a very weak plume. Formation of these structures requires subcritical conditions and a localized initial temperature perturbation but does not require any spatial heterogeneity in the material properties or the heat flux. When several localized plumes form, they tend to attract to each other and form stable clusters. This type of subcritical convection may play a role in the formation and longevity of localized features on planetary bodies, including the crustal dichotomy and Tharsis region on Mars and the asymmetric pattern of volcanism on Mercury.

  10. On the temperature dependence of oceanic export efficiency

    NASA Astrophysics Data System (ADS)

    Cael, B. B.; Follows, Michael J.

    2016-05-01

    Quantifying the fraction of primary production exported from the euphotic layer (termed the export efficiency ef) is a complicated matter. Studies have suggested empirical relationships with temperature which offer attractive potential for parameterization. Here we develop what is arguably the simplest mechanistic model relating the two, using established thermodynamic dependencies for primary production and respiration. It results in a single-parameter curve that constrains the envelope of possible efficiencies, capturing the upper bounds of several ef-T data sets. The approach provides a useful theoretical constraint on this relationship and extracts the variability in ef due to temperature but does not idealize out the remaining variability which evinces the substantial complexity of the system in question.

  11. Temperature dependencies of Henry's law constants for different plant sesquiterpenes.

    PubMed

    Copolovici, Lucian; Niinemets, Ülo

    2015-11-01

    Sesquiterpenes are plant-produced hydrocarbons with important ecological functions in plant-to-plant and plant-to-insect communication, but due to their high reactivity they can also play a significant role in atmospheric chemistry. So far, there is little information of gas/liquid phase partition coefficients (Henry's law constants) and their temperature dependencies for sesquiterpenes, but this information is needed for quantitative simulation of the release of sesquiterpenes from plants and modeling atmospheric reactions in different phases. In this study, we estimated Henry's law constants (Hpc) and their temperature responses for 12 key plant sesquiterpenes with varying structure (aliphatic, mono-, bi- and tricyclic sesquiterpenes). At 25 °C, Henry's law constants varied 1.4-fold among different sesquiterpenes, and the values were within the range previously observed for monocyclic monoterpenes. Hpc of sesquiterpenes exhibited a high rate of increase, on average ca. 1.5-fold with a 10 °C increase in temperature (Q10). The values of Q10 varied 1.2-fold among different sesquiterpenes. Overall, these data demonstrate moderately high variation in Hpc values and Hpc temperature responses among different sesquiterpenes. We argue that these variations can importantly alter the emission kinetics of sesquiterpenes from plants. PMID:26291755

  12. Temperature and moisture dependence of dielectric constant for silica aerogels

    SciTech Connect

    Hrubesh, L.H., LLNL

    1997-03-01

    The dielectric constants of silica aerogels are among the lowest measured for any solid material. The silica aerogels also exhibit low thermal expansion and are thermally stable to temperatures exceeding 500{degrees}C. However, due to the open porosity and large surface areas for aerogels, their dielectric constants are strongly affected by moisture and temperature. This paper presents data for the dielectric constants of silica aerogels as a function of moisture content at 25{degrees}C, and as a function of temperature, for temperatures in the range from 25{degrees}C to 450{degrees}C. Dielectric constant data are also given for silica aerogels that are heat treated in dry nitrogen at 500{degrees}C, then cooled to 25{degrees}C for measurements in dry air. All measurements are made on bulk aerogel spheres at 22GHz microwave frequency, using a cavity perturbation method. The results of the dependence found here for bulk materials can be inferred to apply also to thin films of silica aerogels having similar nano-structures and densities.

  13. Temperature Dependence of the O + HO2 Rate Coefficient

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Wine, P. H.

    1997-01-01

    A pulsed laser photolysis technique has been employed to investigate the kinetics of the radical-radical reaction O((sup 3)P) + HO2 OH + O2 over the temperature range 266-391 K in 80 Torr of N2 diluent gas. O((sup 3)P) was produced by 248.5-nm KrF laser photolysis of O3 followed by rapid quenching of O(1D) to O((sup 3)P) while HO2 was produced by simultaneous photolysis of H2O2 to create OH radicals which, in turn, reacted with H2O2 to yield HO2. The O((sup 3)P) temporal profile was monitored by using time-resolved resonance fluorescence spectroscopy. The HO2 concentration was calculated based on experimentally measured parameters. The following Arrhenius expression describes our experimental results: k(sub 1)(T) equals (2.91 +/- 0.70) x 10(exp -11) exp[(228 +/- 75)/T] where the errors are 2 sigma and represent precision only. The absolute uncertainty in k, at any temperature within the range 266-391 K is estimated to be +/- 22 percent. Our results are in excellent agreement with a discharge flow study of the temperature dependence of k(sub 1) in 1 Torr of He diluent reported by Keyser, and significantly reduce the uncertainty in the rate of this important stratospheric reaction at subambient temperatures.

  14. Temperature dependent optical properties of pentacene films on zinc oxide

    SciTech Connect

    Helzel, J.; Jankowski, S.; El Helou, M.; Witte, G.; Heimbrodt, W.

    2011-11-21

    The optical transitions of pentacene films deposited on ZnO have been studied by absorption spectroscopy as a function of temperature in the range of room temperature down to 10 K. The pentacene films were prepared with thicknesses of 10 nm, 20 nm, and 100 nm on the ZnO-O(000-1) surface by molecular beam deposition. A unique temperature dependence has been observed for the two Davydov components of the excitons for different film thicknesses. At room temperature, the energetic positions of the respective absorption bands are the same for all films, whereas the positions differ more than 20 meV at 10 K caused by the very different expansion coefficients of pentacene and ZnO. Although the pentacene is just bonded via van der Waals interaction to the ZnO substrate, the very first pentacene monolayer (adlayer) is forced to keep the initial position on the ZnO surface and suffering, therefore, a substantial tensile strain. For all the subsequent pentacene monolayers, the strain is reduced step by step resulting electronically in a strong potential gradient at the interface.

  15. Temperature Dependence of the Flare Fluence Scaling Exponent

    NASA Astrophysics Data System (ADS)

    Kretzschmar, M.

    2015-12-01

    Solar flares result in an increase of the solar irradiance at all wavelengths. While the distribution of the flare fluence observed in coronal emission has been widely studied and found to scale as f(E)˜ E^{-α}, with α slightly below 2, the distribution of the flare fluence in chromospheric lines is poorly known. We used the solar irradiance measurements observed by the SDO/EVE instrument at a 10 s cadence to investigate the dependency of the scaling exponent on the formation region of the lines (or temperature). We analyzed all flares above the C1 level since the start of the EVE observations (May 2010) to determine the flare fluence distribution in 16 lines covering a wide range of temperatures, several of which were not studied before. Our results show a weak downward trend with temperature of the scaling exponent of the PDF that reaches from above 2 at lower temperature (a few 104 K) to {˜ }1.8 for hot coronal emission (several 106 K). However, because colder lines also have fainter contrast, we cannot exclude that this behavior is caused by including more noise for smaller flares for these lines. We discuss the method and its limitations and tentatively associate this possible trend with the different mechanisms responsible for the heating of the chromosphere and corona during flares.

  16. Calibration of Gyros with Temperature Dependent Scale Factors

    NASA Technical Reports Server (NTRS)

    Belur, Sheela V.; Harman, Richard

    2001-01-01

    The general problem of gyro calibration can be stated as the estimation of the scale factors, misalignments, and drift-rate biases of the gyro using the on-orbit sensor measurements. These gyro parameters have been traditionally treated as temperature-independent in the operational flight dynamics ground systems at NASA Goddard Space Flight Center (GSFC), a scenario which has been successfully applied in the gyro calibration of a large number of missions. A significant departure from this is the Microwave Anisotropy Probe (MAP) mission where, due to the high thermal variations expected during the mission phase, it is necessary to model the scale factors as functions of temperature. This paper addresses the issue of gyro calibration for the MAP gyro model using a manufacturer-supplied model of the variation of scale factors with temperature. The problem is formulated as a least squares problem and solved using the Levenberg-Marquardt algorithm in the MATLAB(R) library function NLSQ. The algorithm was tested on simulated data with Gaussian noise for the quaternions as well as the gyro rates and was found to consistently converge close to the true values. Significant improvement in accuracy was noticed due to the estimation of the temperature-dependent scale factors as against constant scale factors.

  17. Investigating temperature degradation in THz quantum cascade lasers by examination of temperature dependence of output power

    SciTech Connect

    Albo, Asaf Hu, Qing

    2015-03-30

    In this paper, we demonstrate a method to investigate the temperature degradation of THz quantum cascade lasers (QCLs) based on analyzing the dependence of lasing output power on temperature. The output power is suggested to decrease exponentially with some characteristic activation energy indicative of the degradation mechanism. As a proof of concept, Arrhenius plots of power versus temperature are used to extract the activation energy in vertical transition THz QCLs. The extracted energies are consistent with thermally activated longitudinal optical-phonon scattering being the dominant degradation mechanism, as is generally accepted. The extracted activation energy values are shown to be in good agreement with the values predicted from laser spectra.

  18. Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals.

    PubMed

    Mitra, Somak; Švrček, Vladimir; Macias-Montero, Manual; Velusamy, Tamilselvan; Mariotti, Davide

    2016-01-01

    In this work we report on temperature-dependent photoluminescence measurements (15-300 K), which have allowed probing radiative transitions and understanding of the appearance of various transitions. We further demonstrate that transitions associated with oxide in SiNCs show characteristic vibronic peaks that vary with surface characteristics. In particular we study differences and similarities between silicon nanocrystals (SiNCs) derived from porous silicon and SiNCs that were surface-treated using a radio-frequency (RF) microplasma system. PMID:27296771

  19. Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals

    PubMed Central

    Mitra, Somak; Švrček, Vladimir; Macias-Montero, Manual; Velusamy, Tamilselvan; Mariotti, Davide

    2016-01-01

    In this work we report on temperature-dependent photoluminescence measurements (15–300 K), which have allowed probing radiative transitions and understanding of the appearance of various transitions. We further demonstrate that transitions associated with oxide in SiNCs show characteristic vibronic peaks that vary with surface characteristics. In particular we study differences and similarities between silicon nanocrystals (SiNCs) derived from porous silicon and SiNCs that were surface-treated using a radio-frequency (RF) microplasma system. PMID:27296771

  20. Prominence oscillations: Effect of a time-dependent background temperature

    NASA Astrophysics Data System (ADS)

    Ballester, J. L.; Carbonell, M.; Soler, R.; Terradas, J.

    2016-06-01

    Context. Small amplitude oscillations in prominences have been known about for a long time, and from a theoretical point of view, these oscillations have been interpreted in terms of standing or propagating linear magnetohydrodynamic (MHD) waves. In general, these oscillations were studied by producing small perturbations in a background equilibrium with stationary physical properties. Aims: Taking into account that prominences are dynamic plasma structures, the assumption of a stationary equilibrium is not realistic. Therefore, our main aim is to study the effects produced by a non-stationary background on slow MHD waves, which could be responsible for prominence oscillations. Methods: Assuming that the radiation term is proportional to temperature and constant external heating, we have derived an expression for the temporal variation of the background temperature, which depends on the imbalance between heating and cooling processes. Furthermore, radiative losses, together with parallel thermal conduction, have also been included as damping mechanisms for the waves. Results: As temperature increases with time, the period of slow waves decreases and the amplitude of the velocity perturbations is damped. The inclusion of radiative losses enhances the damping. As temperature decreases with time, the period of slow waves increases and the amplitude of velocity perturbations grows while, as expected, the inclusion of radiative losses contributes to the damping of oscillations. Conclusions: There is observational evidence that, in different locations of the same prominence, oscillations are damped or amplified with time. This temporal damping or amplification can be obtained by a proper combination of a variable background temperature, together with radiative damping. Furthermore, decayless oscillations can also be obtained with an appropriate choice of the characteristic radiation time.

  1. Dependence of the volume characteristics and viscosity of solutions of methanol-octane-naphthalene on composition at 25°C

    NASA Astrophysics Data System (ADS)

    Dyshin, A. A.; Eliseeva, O. V.; Kiselev, M. G.

    2014-10-01

    The limiting solubility of naphthalene in a mixture of methanol-octane at 25°C is determined via isothermal saturation. The kinematic viscosity of a mixture of methanol-octane-naphthalene is measured at 25°C. Data on the density of triple mixtures of methanol-octane-naphthalene, used to calculate the partial and apparent molar volumes of naphthalene, are obtained with a high degree of accuracy. The obtained results are discussed in terms of the interactions that occur in solution.

  2. Temperature dependence of the two photon absorption in indium arsenide

    SciTech Connect

    Berryman, K.W.; Rella, C.W.

    1995-12-31

    Nonlinear optical processes in semiconductors have long been a source of interesting physics. Two photon absorption (TPA) is one such process, in which two photons provide the energy for the creation of an electron-hole pair. Researchers at other FEL centers have studied room temperature TPA in InSb, InAs, and HgCdTe. Working at the Stanford Picosecond FEL Center, we have extended and refined this work by measuring the temperature dependence of the TPA coefficient in InAs over the range from 80 to 350 K at four wavelengths: 4.5, 5.06, 6.01, and 6.3 microns. The measurements validate the functional dependence of recent band structure calculations with enough precision to discriminate parabolic from non-parabolic models, and to begin to observe smaller effects, such as contributions due to the split-off band. These experiments therefore serve as a strong independent test of the Kane band theory, as well as providing a starting point for detailed observations of other nonlinear absorption mechanisms.

  3. Optofluidic intracavity spectroscopy for spatially, temperature, and wavelength dependent refractometry

    NASA Astrophysics Data System (ADS)

    Kindt, Joel D.

    A microfluidic refractometer was designed based on previous optofluidic intracavity spectroscopy (OFIS) chips utilized to distinguish healthy and cancerous cells. The optofluidic cavity is realized by adding high reflectivity dielectric mirrors to the top and bottom of a microfluidic channel. This creates a plane-plane Fabry-Perot optical cavity in which the resonant wavelengths are highly dependent on the optical path length inside the cavity. Refractometry is a useful method to determine the nature of fluids, including the concentration of a solute in a solvent as well as the temperature of the fluid. Advantages of microfluidic systems are the easy integration with lab-on-chip devices and the need for only small volumes of fluid. The unique abilities of the microfluidic refractometer in this thesis include its spatial, temperature, and wavelength dependence. Spatial dependence of the transmission spectrum is inherent through a spatial filtering process implemented with an optical fiber and microscope objective. A sequence of experimental observations guided the change from using the OFIS chip as a cell discrimination device to a complimentary refractometer. First, it was noted the electrode structure within the microfluidic channel, designed to trap and manipulate biological cells with dielectrophoretic (DEP) forces, caused the resonant wavelengths to blue-shift when the electrodes were energized. This phenomenon is consistent with the negative dn/dT property of water and water-based solutions. Next, it was necessary to develop a method to separate the optical path length into physical path length and refractive index. Air holes were placed near the microfluidic channel to exclusively measure the cavity length with the known refractive index of air. The cavity length was then interpolated across the microfluidic channel, allowing any mechanical changes to be taken into account. After the separation of physical path length and refractive index, it was of interest

  4. Strain rate and temperature dependent mechanical behavior of nanocrystalline gold

    NASA Astrophysics Data System (ADS)

    Karanjgaokar, Nikhil J.

    Nanocrystalline metal films are candidate materials for microelectronics and Microelectromechanical Systems (MEMS). The long term mechanical stability of metal films requires quantitative understanding of their thermo-mechanical behavior in the large range of operating strain rates and temperatures. This dissertation research studied (a) the role of thermally activated processes based on the strain rate and temperature dependent mechanical behavior of nanocrystalline Au thin films, and (b) deformation processes at nominally elastic loads that lead to creep strain over a moderate temperature range that is relevant to MEMS applications. The rate dependent mechanical behavior of nanocrystalline Au thin films was first investigated at room temperature ~ 25 °C and at strain rates between 10-6 to 20 s-1. The use of digital image correlation (DIC) facilitated repeatable and accurate measurements of fullfield strain from free-standing nanocrystalline Au thin films. The experimental stress-strain curves were used to calculate activation volumes for two film thicknesses (0.85 mum, and 1.75 mum), which were 4.5b3 and 8.1b3, at strain rates smaller than 10-4 s-1 and 12.5b3 and 14.6b3 at strain rates higher than 10-4 s-1. The reduced activation volume and increased strain rate sensitivity at slow strain rates were attributed to grain boundary (GB) diffusional processes that result in creep strain. The room temperature strain rate results were augmented with microscale strain rate experiments at temperatures up to 110 °C. Two methods for heating free-standing microscale thin film specimens, namely uniform heating using a custom-built microheater and resistive (Joule) heating, were evaluated using a combination of full-field strain measurements by optical microscopy and full-field temperature measurements by infrared (IR) thermal imaging. It was shown for the first time that the Joule specimen heating method results in large underestimation of the inelastic material properties

  5. Anomalous Temperature Dependence of the Band Gap in Black Phosphorus.

    PubMed

    Villegas, Cesar E P; Rocha, A R; Marini, Andrea

    2016-08-10

    Black phosphorus (BP) has gained renewed attention due to its singular anisotropic electronic and optical properties that might be exploited for a wide range of technological applications. In this respect, the thermal properties are particularly important both to predict its room temperature operation and to determine its thermoelectric potential. From this point of view, one of the most spectacular and poorly understood phenomena is indeed the BP temperature-induced band gap opening; when temperature is increased, the fundamental band gap increases instead of decreases. This anomalous thermal dependence has also been observed recently in its monolayer counterpart. In this work, based on ab initio calculations, we present an explanation for this long known and yet not fully explained effect. We show that it arises from a combination of harmonic and lattice thermal expansion contributions, which are in fact highly interwined. We clearly narrow down the mechanisms that cause this gap opening by identifying the peculiar atomic vibrations that drive the anomaly. The final picture we give explains both the BP anomalous band gap opening and the frequency increase with increasing volume (tension effect). PMID:27428304

  6. Influence of temperature on 31P NMR chemical shifts of phospholipids and their metabolites I. In chloroform-methanol-water.

    PubMed

    Estrada, Rosendo; Stolowich, Neal; Yappert, M Cecilia

    2008-09-01

    Spectral overlap of (31)P NMR resonances and the lack of reproducibility in chemical shifts corresponding to phospholipids in organic solvents challenge the accuracy of band assignments and quantification. To alleviate these problems, the use of temperature coefficients is proposed. Changes in temperature enable the resolution of overlapped resonances and provide a facile approach for the computation of temperature coefficients. The coefficients were evaluated for various glycero- and sphingo-phospholipids. Their values suggest that differences in H-bonding between the phosphate and the head groups are responsible for the changes of chemical shift with temperature. Among parent phospholipids, and in addition to sphingomyelin, the smallest temperature coefficient values (closest to zero) were observed for phosphatidylcholine, phosphatidylglycerol, dihydrosphingomyelin, and cardiolipin. The highest values were exhibited by phospholipids with protonated head groups, such as phosphatidylserine and phosphatidylethanolamine. The lowest and, in fact, negative values were measured for phospholipids with an exposed phosphate group: phosphatidic acid, ceramide-1-phosphate, and dihydroceramide-1-phosphate. Diacyl, alkyl-acyl, and alkenyl-acyl phospholipids with the same head group exhibited comparable coefficients but differed slightly in chemical shifts. Compared to their parent glycerophospholipids, all lyso analogs had greater temperature coefficients, possibly due to the presence of an extra OH capable of forming a H-bond with the phosphate group. PMID:18534182

  7. Temperature-dependent transient creep and dynamics of cratonic lithosphere

    NASA Astrophysics Data System (ADS)

    Birger, Boris I.

    2013-11-01

    Large-scale mantle convection forms the upper boundary layer (lithosphere) where the vertical temperature drop is about 1300 K. Theoretical rheology and laboratory experiments with rock samples show that transient creep occurs while creep strains are sufficiently small. The transient creep is described by the temperature-dependent Andrade rheological model. Since plate tectonics allows only small deformations in lithospheric plates, creep of the lithosphere plates is transient whereas steady-state creep, described by non-Newtonian power-law rheological model, takes place in the underlying mantle. The solution of stability problem shows that the lithosphere is stable but small-scale convective oscillations are attenuated very weakly in regions of thickened lithosphere beneath continental cratons (subcratonic roots) where the thickness of the lithosphere is about 200 km. These oscillations create small-scale convective cells (the horizontal dimensions of the cells are of the order of the subcratonic lithosphere thickness). Direction of motion within the cells periodically changes (the period of convective oscillations is of the order of 3 × 108 yr). In this study, the oscillations of cratonic lithosphere caused by initial relief perturbation are considered. This relief perturbation is assumed to be created by overthrusting in orogenic belts surrounding cratons. The perturbation of the Earth's surface relief leads to a fast isothermal process of isostatic recovery. In the presence of vertical temperature gradient, vertical displacements, associated with the recovery process in the lithosphere interior, instantly produce the initial temperature perturbations exciting thermoconvective oscillations in the cratonic lithosphere. These small-amplitude convective oscillations cause oscillatory crustal movements which form sedimentary basins on cratons.

  8. The Temperature Dependence of Water's Latent Heat of Freezing

    NASA Astrophysics Data System (ADS)

    Szedlak, A.; Blanchard, A. V.; Kostinski, A. B.; Cantrell, W. H.

    2009-12-01

    Freezing of water in Earth's atmosphere affects cloud dynamics through the release of the latent heat. The latent heat released is a function of how deeply the cloud water is supercooled before freezing begins - the deeper the supercooling, the less heat is released to the atmosphere. We present new measurements of the temperature dependent latent heat of freezing of water, measured using a Perkin Elmer DSC 7 and a Mettler Toledo Polymer DSC. Both instruments have been calibrated against melting transitions of water, dodecane, undecane,and tetradecane, and both agree within the error of the measurements with values in the literature. However, the two measurements show dramatic differences for the latent heat of freezing of water, which we attribute to the different methods used to extract a heat flux. At higher temperatures our measurements with the Perkin Elmer, which is a power compensation type calorimeter, are comparable to those of Bertolini et al. (1985). At lower temperatures, our measurements diverge from those of Bertolini et al. (1985), which we again attribute to the different principle of operation of the calorimeters. We conclude that temperature gradients within the freezing water play a critical role in the quantity of heat eventually exchanged with the surroundings. Finally, we reconcile the measurements with Kirchhoff's relation, which can be written (∂ΔH/∂T)p = Δcp where ΔH is the enthalpy difference between product and reactant (supercooled water and ice in this case) and Δcp is the difference in their heat capacities. [Bertolini, D., M. Cassettari, and G. Salvetti, Anomalies in the latent-heat of solidification of supercooled water. Chem. Phys. Lett., 119, 553-555, 1985.

  9. The toxicity of methanol

    SciTech Connect

    Tephly, T.R. )

    1991-01-01

    Methanol toxicity in humans and monkeys is characterized by a latent period of many hours followed by a metabolic acidosis and ocular toxicity. This is not observed in most lower animals. The metabolic acidosis and blindness is apparently due to formic acid accumulation in humans and monkeys, a feature not seen in lower animals. The accumulation of formate is due to a deficiency in formate metabolism which is, in turn, related, in part, to low hepatic tetrahydrofolate (H{sub 4}folate). An excellent correlation between hepatic H{sub 4} folate and formate oxidation rates has been shown within and across species. Thus, humans and monkeys possess low hepatic H{sub 4}folate levels, low rates of formate oxidation and accumulation of formate after methanol. Formate, itself, produces blindness in monkeys in the absence of metabolic acidosis. In addition to low hepatic H{sub 4}folate concentrations, monkeys and humans also have low hepatic 10-formyl H{sub 4}folate dehydrogenase levels, the enzyme which is the ultimate catalyst for conversion of formate to carbon dioxide. This review presents the basis for the role of folic acid-dependent reactions in the regulation of methanol toxicity.

  10. Carbon microspheres from ethanol at low temperature: Fabrication, characterization and their use as an electrocatalyst support for methanol oxidation

    SciTech Connect

    Lian, Suoyuan; Ming, Hai; Huang, Hui; Kang, Zhenhui; Liu, Yang

    2012-11-15

    Highlights: ► Carbon microbeads were prepared by the carbonization of ethanol at low temperature. ► The low temperature carbonization of ethanol was catalyzed by iodine. ► Carbon microbeads can serve as ideal candidate for catalyst supports. -- Abstract: Carbon microspheres (CMSs) with a diameter range of 2–3 μm were prepared by the iodine-catalyzed carbonization of ethanol at low temperatures by solvothermal synthesis. The reaction time, concentrations of reactants, temperatures, different alcohols as carbon precursors and reaction environments were systematically altered to determine the optimal synthesis conditions. The size and shape were characterized by scanning and transmission electron microscopy and their structure was characterized by X-ray powder diffraction and Raman spectroscopy. Energy dispersive X-ray spectroscopy, Fourier transform infrared and X-ray photoelectron spectroscopy showed that abundant oxygen-containing functional groups remain on the surface of the carbon spheres. The formation mechanism involves iodine promotion of the oxidation of ethanol, which results in formation of the CMSs. The specific activity of the CMS-supported Pt catalyst is higher than that of a commercial Pt catalyst from E-TEK or the unsupported Pt catalyst.

  11. Temperature dependence of the electronic structure of semiconductors and insulators

    SciTech Connect

    Poncé, S. Gillet, Y.; Laflamme Janssen, J.; Gonze, X.; Marini, A.; Verstraete, M.

    2015-09-14

    The renormalization of electronic eigenenergies due to electron-phonon coupling (temperature dependence and zero-point motion effect) is sizable in many materials with light atoms. This effect, often neglected in ab initio calculations, can be computed using the perturbation-based Allen-Heine-Cardona theory in the adiabatic or non-adiabatic harmonic approximation. After a short description of the recent progresses in this field and a brief overview of the theory, we focus on the issue of phonon wavevector sampling convergence, until now poorly understood. Indeed, the renormalization is obtained numerically through a slowly converging q-point integration. For non-zero Born effective charges, we show that a divergence appears in the electron-phonon matrix elements at q → Γ, leading to a divergence of the adiabatic renormalization at band extrema. This problem is exacerbated by the slow convergence of Born effective charges with electronic wavevector sampling, which leaves residual Born effective charges in ab initio calculations on materials that are physically devoid of such charges. Here, we propose a solution that improves this convergence. However, for materials where Born effective charges are physically non-zero, the divergence of the renormalization indicates a breakdown of the adiabatic harmonic approximation, which we assess here by switching to the non-adiabatic harmonic approximation. Also, we study the convergence behavior of the renormalization and develop reliable extrapolation schemes to obtain the converged results. Finally, the adiabatic and non-adiabatic theories, with corrections for the slow Born effective charge convergence problem (and the associated divergence) are applied to the study of five semiconductors and insulators: α-AlN, β-AlN, BN, diamond, and silicon. For these five materials, we present the zero-point renormalization, temperature dependence, phonon-induced lifetime broadening, and the renormalized electronic band structure.

  12. Cloning and high-level expression of β-xylosidase from Selenomonas ruminantium in Pichia pastoris by optimizing of pH, methanol concentration and temperature conditions.

    PubMed

    Dehnavi, Ehsan; Ranaei Siadat, Seyed Omid; Fathi Roudsari, Mehrnoosh; Khajeh, Khosro

    2016-08-01

    β-xylosidase and several other glycoside hydrolase family members, including xylanase, cooperate together to degrade hemicelluloses, a commonly found xylan polymer of plant-cell wall. β-d-xylosidase/α-l-arabinofuranosidase from the ruminal anaerobic bacterium Selenomonas ruminantium (SXA) has potential utility in industrial processes such as production of fuel ethanol and other bioproducts. The optimized synthetic SXA gene was overexpressed in methylotrophic Pichia pastoris under the control of alcohol oxidase I (AOX1) promoter and secreted into the medium. Recombinant protein showed an optimum pH 4.8 and optimum temperature 50 °C. Furthermore, optimization of growth and induction conditions in shake flask was carried out. Using the optimum expression condition (pH 6, temperature 20 °C and 1% methanol induction), protein production was increased by about three times in comparison to the control. The recombinant SXA we have expressed here showed higher turnover frequency using ρ-nitrophenyl β-xylopyranoside (PNPX) substrate, in contrast to most xylosidase experiments reported previously. This is the first report on the cloning and expression of a β-xylosidase gene from glycoside hydrolase (GH) family 43 in Pichia pastoris. Our results confirm that P. pastoris is an appropriate host for high level expression and production of SXA for industrial applications. PMID:27154901

  13. Cloning and high-level expression of β-xylosidase from Selenomonas ruminantium in Pichia pastoris by optimizing of pH, methanol concentration and temperature conditions.

    PubMed

    Dehnavi, Ehsan; Ranaei Siadat, Seyed Omid; Fathi Roudsari, Mehrnoosh; Khajeh, Khosro

    2016-08-01

    β-xylosidase and several other glycoside hydrolase family members, including xylanase, cooperate together to degrade hemicelluloses, a commonly found xylan polymer of plant-cell wall. β-d-xylosidase/α-l-arabinofuranosidase from the ruminal anaerobic bacterium Selenomonas ruminantium (SXA) has potential utility in industrial processes such as production of fuel ethanol and other bioproducts. The optimized synthetic SXA gene was overexpressed in methylotrophic Pichia pastoris under the control of alcohol oxidase I (AOX1) promoter and secreted into the medium. Recombinant protein showed an optimum pH 4.8 and optimum temperature 50 °C. Furthermore, optimization of growth and induction conditions in shake flask was carried out. Using the optimum expression condition (pH 6, temperature 20 °C and 1% methanol induction), protein production was increased by about three times in comparison to the control. The recombinant SXA we have expressed here showed higher turnover frequency using ρ-nitrophenyl β-xylopyranoside (PNPX) substrate, in contrast to most xylosidase experiments reported previously. This is the first report on the cloning and expression of a β-xylosidase gene from glycoside hydrolase (GH) family 43 in Pichia pastoris. Our results confirm that P. pastoris is an appropriate host for high level expression and production of SXA for industrial applications.

  14. Boundary formulations for shape sensitivity of temperature dependent conductivity problems

    NASA Technical Reports Server (NTRS)

    Kane, James H.; Wang, Hua

    1992-01-01

    Used in concert with the Kirchhoff transformation, implicit differentiation of the discretized boundary integral equations governing the conduction of heat in solids with temperature dependent thermal conductivity is shown to generate an accurate and economical approach for computation of shape sensitivities. For problems with specified temperature and heat flux boundary conditions, a linear problem results for both the analysis and sensitivity analysis. In problems with either convection or radiation boundary conditions, a nonlinear problem is generated. Several iterative strategies are presented for the solution of the resulting sets of nonlinear equations and the computational performances examined in detail. Multizone analysis and zone condensation strategies are demonstrated to provide substantive computational economies in this process for models with either localized nonlinear boundary conditions or regions of geometric insensitivity to design variables. A series of nonlinear example problems is presented that have closed form solutions. Exact analytical expressions for the shape sensitivities associated with these problems are developed and these are compared with the sensitivities computed using the boundary element formulation.

  15. Model for temperature-dependent magnetization of nanocrystalline materials

    SciTech Connect

    Bian, Q.; Niewczas, M.

    2015-01-07

    A magnetization model of nanocrystalline materials incorporating intragrain anisotropies, intergrain interactions, and texture effects has been extended to include the thermal fluctuations. The method relies on the stochastic Landau–Lifshitz–Gilbert theory of magnetization dynamics and permits to study the magnetic properties of nanocrystalline materials at arbitrary temperature below the Currie temperature. The model has been used to determine the intergrain exchange constant and grain boundary anisotropy constant of nanocrystalline Ni at 100 K and 298 K. It is found that the thermal fluctuations suppress the strength of the intergrain exchange coupling and also reduce the grain boundary anisotropy. In comparison with its value at 2 K, the interparticle exchange constant decreases by 16% and 42% and the grain boundary anisotropy constant decreases by 28% and 40% at 100 K and 298 K, respectively. An application of the model to study the grain size-dependent magnetization indicates that when the thermal activation energy is comparable to the free energy of grains, the decrease in the grain size leads to the decrease in the magnetic permeability and saturation magnetization. The mechanism by which the grain size influences the magnetic properties of nc–Ni is discussed.

  16. Model for temperature-dependent magnetization of nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2015-01-01

    A magnetization model of nanocrystalline materials incorporating intragrain anisotropies, intergrain interactions, and texture effects has been extended to include the thermal fluctuations. The method relies on the stochastic Landau-Lifshitz-Gilbert theory of magnetization dynamics and permits to study the magnetic properties of nanocrystalline materials at arbitrary temperature below the Currie temperature. The model has been used to determine the intergrain exchange constant and grain boundary anisotropy constant of nanocrystalline Ni at 100 K and 298 K. It is found that the thermal fluctuations suppress the strength of the intergrain exchange coupling and also reduce the grain boundary anisotropy. In comparison with its value at 2 K, the interparticle exchange constant decreases by 16% and 42% and the grain boundary anisotropy constant decreases by 28% and 40% at 100 K and 298 K, respectively. An application of the model to study the grain size-dependent magnetization indicates that when the thermal activation energy is comparable to the free energy of grains, the decrease in the grain size leads to the decrease in the magnetic permeability and saturation magnetization. The mechanism by which the grain size influences the magnetic properties of nc-Ni is discussed.

  17. Time-temperature-stress dependence of boron fiber deformation

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1976-01-01

    The time-dependent deformation of boron fibers over the temperature range from -190 to 800 C is studied by flexural stress relaxation and flexural internal friction techniques on 203-micron diam specimen fibers commercially produced by chemical vapor deposition (CVD) on a 13-micron tungsten substrate. It is shown that up to at least 800 C all nonelastic behavior observed during axial deformation of CVD boron fibers can be explained solely by anelastic mechanisms and that although creep strains are small, boron fiber anelasticity can produce significant mechanical effects which would otherwise be neglected under the elastic approximation. Relations are obtained to demonstrate the considerable effects of anelasticity on such fiber/composite properties as modulus, creep, creep recovery, stress relaxation, and damping capacity. For an elastic-core/anelastic-sheath model, boron fibers on tungsten substrates are shown to have predictable fracture stresses for time-temperature conditions ranging from impact to long-time stress rupture. Possible techniques for altering these stresses are discussed.

  18. The Temperature Dependent Enthalpy of Vaporization of Pure Substances

    NASA Astrophysics Data System (ADS)

    Tian, Jianxiang

    Recently the universal behavior of the temperature dependent enthalpy of vaporization along with the whole liquid-vapor coexistence curve at equilibrium is described and explained by Roman et al.5 The work (called RWVM relation) succeeds in the combination of the linear relation near the triple point and the renormalization group theory result near the critical point. For the convenience of chemical designs and engineering applications, we report its b values yielding the minimum average absolute deviation (AAD) for 74 pure substances from the NIST web-book and compare the results with other correlations. We find that with an adapted b value, the RWVM relation predicts the data of 47 pure substances with an AAD less than 0.0093, with six more than 0.02 and all less than 0.03 except quantum fluid hydrogen, that is clearly better than other correlations. For most pure substances, b covers the range from 0 to 1. Only one negative value stands for the quantum fluid helium because of its enthalpy of vaporization being experimentally not a monotonic function of the temperature in the range near the triple point.

  19. Temperature dependences of rate coefficients for electron catalyzed mutual neutralization

    SciTech Connect

    Shuman, Nicholas S.; Miller, Thomas M.; Friedman, Jeffrey F.; Viggiano, Albert A.; Maeda, Satoshi; Morokuma, Keiji

    2011-07-14

    The flowing afterglow technique of variable electron and neutral density attachment mass spectrometry (VENDAMS) has recently yielded evidence for a novel plasma charge loss process, electron catalyzed mutual neutralization (ECMN), i.e., A{sup +}+ B{sup -}+ e{sup -}{yields} A + B + e{sup -}. Here, rate constants for ECMN of two polyatomic species (POCl{sub 3}{sup -} and POCl{sub 2}{sup -}) and one diatomic species (Br{sub 2}{sup -}) each with two monatomic cations (Ar{sup +}and Kr{sup +}) are measured using VENDAMS over the temperature range 300 K-500 K. All rate constants show a steep negative temperature dependence, consistent with that expected for a three body process involving two ions and an electron. No variation in rate constants as a function of the cation type is observed outside of uncertainty; however, rate constants of the polyatomic anions ({approx}1 x 10{sup -18} cm{sup 6} s{sup -1} at 300 K) are measurably higher than that for Br{sub 2}{sup -}[(5.5 {+-} 2) x 10{sup -19} cm{sup 6} s{sup -1} at 300 K].

  20. Fish introductions reveal the temperature dependence of species interactions

    PubMed Central

    Hein, Catherine L.; Öhlund, Gunnar; Englund, Göran

    2014-01-01

    A major area of current research is to understand how climate change will impact species interactions and ultimately biodiversity. A variety of environmental conditions are rapidly changing owing to climate warming, and these conditions often affect both the strength and outcome of species interactions. We used fish distributions and replicated fish introductions to investigate environmental conditions influencing the coexistence of two fishes in Swedish lakes: brown trout (Salmo trutta) and pike (Esox lucius). A logistic regression model of brown trout and pike coexistence showed that these species coexist in large lakes (more than 4.5 km2), but not in small, warm lakes (annual air temperature more than 0.9–1.5°C). We then explored how climate change will alter coexistence by substituting climate scenarios for 2091–2100 into our model. The model predicts that brown trout will be extirpated from approximately half of the lakes where they presently coexist with pike and from nearly all 9100 lakes where pike are predicted to invade. Context dependency was critical for understanding pike–brown trout interactions, and, given the widespread occurrence of context-dependent species interactions, this aspect will probably be critical for accurately predicting climate impacts on biodiversity. PMID:24307673

  1. Temperature Dependence in Femtosecond Desorption at Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Misewich, James

    1998-03-01

    Femtosecond laser induced desorption at metal surfaces is distinguished by two salient observations: the high yield of the reaction and the short correlation time in pump-probe measurements. This has led to the proposal of a model for desorption induced by multiple electronic transitions (DIMET). (J.A. Misewich, T.F. Heinz, and D.M. Newns, Phys. Rev. Lett. v.68 (1992) 3737.) The effect of the adsorbate temperature in DIMET has been studied using stochastic trajectory calculations with initial adsorbate vibrational quantum state occupation. We find that initial vibrational excitation substantially increases the desorption yield. These findings are related to two experimental observations. The long time-scale wings found in femtosecond time-resolved correlation measurements are thought to reflect the residual vibrational excitation left in the undesorbed adlayer following the first laser pulse. (J.A. Misewich, A. Kalamarides, T.F. Heinz, U. Hoefer, and M.M.T. Loy, J. Chem. Phys. v.100 (1994) 736.) Also, the wavelength dependence of femtosecond desorption experiments (S. Deliwala, R.J. Finlay, J.R. Goldman, T.H. Her, W.D. Mieher, and E. Mazur, Chem. Phys. Lett. v.242 (1995) 617 and D.G. Busch and W. Ho, Phys. Rev. Lett. v.77 (1996) 1338.) suggests a role for nonthermalized electrons which is interpreted in terms of the vibrational excitation left in the adlayer from unsuccessful DIET (single excitation) events as a result of the wavelength dependent nonthermalized electron distribution.

  2. Method of steam reforming methanol to hydrogen

    DOEpatents

    Beshty, Bahjat S.

    1990-01-01

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  3. [Methanol metabolism in plants].

    PubMed

    Stepanov, S S; Zolotar'ova, O K

    2011-01-01

    Methabolism of methanol in plant organisms is considered in the paper. Enzymes of consecutive oxidation of methanol and enzymes responsible for incorporation of carbon from methanol molecule to methyl groups of phospholipids, carboxylic acids and carbohydrates have been described. The peculiarity of plant organisms is in interaction of reactions of methanol transformation with pathways of photorespiration and C1-metabolism and in the capacity to use methanol carbon to form organic matter through photosynthesis. The inclusion of methanol metabolites in anabolic processes occurs at the level of formaldehyde and formiate. As a result, exogenous methanol at low concentrations can stimulate the photosynthetic efficiency of plants.

  4. Temperature dependence of polyhedral cage volumes in clathrate hydrates

    USGS Publications Warehouse

    Chakoumakos, B.C.; Rawn, C.J.; Rondinone, A.J.; Stern, L.A.; Circone, S.; Kirby, S.H.; Ishii, Y.; Jones, C.Y.; Toby, B.H.

    2003-01-01

    The polyhedral cage volumes of structure I (sI) (carbon dioxide, methane, trimethylene oxide) and structure II (sII) (methane-ethane, propane, tetrahydrofuran, trimethylene oxide) hydrates are computed from atomic positions determined from neutron powder-diffraction data. The ideal structural formulas for sI and sII are, respectively, S2L6 ?? 46H2O and S16L???8 ?? 136H2O, where S denotes a polyhedral cage with 20 vertices, L a 24-cage, and L??? a 28-cage. The space-filling polyhedral cages are defined by the oxygen atoms of the hydrogen-bonded network of water molecules. Collectively, the mean cage volume ratio is 1.91 : 1.43 : 1 for the 28-cage : 24-cage : 20-cage, which correspond to equivalent sphere radii of 4.18, 3.79, and 3.37 A??, respectively. At 100 K, mean polyhedral volumes are 303.8, 227.8, and 158.8 A??3 for the 28-cage, 24-cage, and 20-cage, respectively. In general, the 20-cage volume for a sII is larger than that of a sI, although trimethylene oxide is an exception. The temperature dependence of the cage volumes reveals differences between apparently similar cages with similar occupants. In the case of trimethylene oxide hydrate, which forms both sI and sII, the 20-cages common to both structures contract quite differently. From 220 K, the sII 20-cage exhibits a smooth monotonic reduction in size, whereas the sI 20-cage initially expands upon cooling to 160 K, then contracts more rapidly to 10 K, and overall the sI 20-cage is larger than the sII 20-cage. The volumes of the large cages in both structures contract monotonically with decreasing temperature. These differences reflect reoriented motion of the trimethyelene oxide molecule in the 24-cage of sI, consistent with previous spectroscopic and calorimetric studies. For the 20-cages in methane hydrate (sI) and a mixed methane-ethane hydrate (sII), both containing methane as the guest molecule, the temperature dependence of the 20-cage volume in sII is much less than that in sI, but sII is overall

  5. Stability of CdTe solar cells at elevated temperatures: Bias, temperature, and Cu dependence

    NASA Astrophysics Data System (ADS)

    Hiltner, Jason F.; Sites, James R.

    1999-03-01

    A systematic study of the stability of CdTe solar cells fabricated by SCI and NREL has been made. Cells were stressed at elevated temperatures under various bias conditions, both with illumination (˜2 suns) and in the dark. An activation energy of approximately 1 eV is implied from cells stressed at various elevated temperatures. The stability of CdTe solar cells was found to be bias dependent and device-specific. Cells made with thick CdTe and no back-contact copper as well as by at least one SCI recipe were very stable. Extrapolation of effects assuming Arrhenius behavior yields estimated lifetime expectations for the cells stressed at elevated temperatures.

  6. Temperature dependence of the deformation behavior of 316 stainless steel after low temperature neutron irradiation

    SciTech Connect

    Pawel-Robertson, J.E.; Rowcliffe, A.F.; Grossbeck, M.L.

    1996-10-01

    The effects of low temperature neutron irradiation on the tensile behavior of 316 stainless steel have been investigated. A single heat of solution annealed 316 was irradiated to 7 and 18 dpa at 60, 200, 330, and 400{degrees}C. The tensile properties as a function of dose and as a function of temperature were examined. Large changes in yield strength, deformation mode, strain to necking, and strain hardening capacity were seen in this irradiation experiment. The magnitudes of the changes are dependent on both irradiation temperature and neutron dose. Irradiation can more than triple the yield strength over the unirradiated value and decrease the strain to necking (STN) to less than 0.5% under certain conditions. A maximum increase in yield strength and a minimum in the STN occur after irradiation at 330{degrees}C but the failure mode remains ductile.

  7. Rapid starting methanol reactor system

    DOEpatents

    Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  8. Temperature dependence of microwave oscillations in magnetic tunnel junctions with a perpendicularly magnetized free layer

    SciTech Connect

    Guo, Peng; Feng, Jiafeng E-mail: jiafengfeng@iphy.ac.cn; Wei, Hongxiang E-mail: jiafengfeng@iphy.ac.cn; Han, Xiufeng; Fang, Bin; Zhang, Baoshun; Zeng, Zhongming

    2015-01-05

    We experimentally study the temperature dependence of the spin-transfer-torque-induced microwave oscillations in MgO-based magnetic tunnel junction nanopillars with a perpendicularly magnetized free layer. We demonstrate that the oscillation frequency increases rapidly with decreasing temperature, which is mainly ascribed to the temperature dependence of both the saturation magnetization and the perpendicular magnetic anisotropy. We also find that a strong temperature dependence of the output power while a nonmonotonic temperature dependence of spectral linewidth are maintained for a constant dc bias in measured temperature range. Possible mechanisms leading to the different dependences of oscillation frequency, output power, and linewidth are discussed.

  9. Are reptiles predisposed to temperature-dependent sex determination?

    PubMed

    Georges, A; Ezaz, T; Quinn, A E; Sarre, S D

    2010-01-01

    Vertebrates show an astonishing array of sex determining mechanisms, including male and female heterogamety, multiple sex chromosome systems, environmental sex determination, parthenogenesis and hermaphroditism. Sex determination in mammals and birds is extraordinarily conservative compared to that of reptiles, amphibians and fish. In this paper, we explore possible explanations for the diversity of sex determining modes in reptiles, and in particular, address the prevalence of reptilian temperature-dependent sex determination (TSD) and its almost haphazard distribution across the reptile phylogeny. We suggest that reptiles are predisposed to evolving TSD from genotypic sex determination (GSD) by virtue of the uniquely variable thermal environment experienced by their embryos during the critical period in which sex is determined. Explicit mechanisms for canalization of sexual phenotype in the face of high thermal variation during development provide a context for thermolability in sex determination at extremes and the raw material for natural selection to move this thermolability into the developmental mainstream when there is a selective advantage to do so. Release of cryptic variation when canalization is challenged and fails at extremes may accelerate evolutionary transitions between GSD and TSD.

  10. Temperature Dependence of Lateral Charge Transport in Silicon Nanomembranes

    NASA Astrophysics Data System (ADS)

    Hu, Weiwei; Scott, Shelley; Jacobson, Rb; Sookchoo, Pornsatit; Savage, Donald; Eriksson, Mark; Lagally, Max

    2014-03-01

    Thin sheets of single-crystal silicon (nanomembranes), electrically isolated from a bulk substrate by a dielectric layer, are an exceptional tool for studying the electronic transport properties of surfaces in the absence of an extended bulk. Under UHV, we measure the conductivity, and a back gate allows us to look into the depletion region, where we can determine the minimum conductance. For hydrogen-terminated Si(001) NMs, for which the surface has no conductivity, the minimum conductance decreases with decreasing NM thickness (220-42nm), demonstrating the reduction in carriers for thinner NMs. For the clean Si(2 ×1)surface, mobile charge exists in the π* surface band. For thicknesses below 200nm surface conduction dominates, rendering the thickness independence of the minimum. We determine a surface charge mobility of ~50cm2V-1s-1. We have measured the temperature dependence of the conductance of a 42nm thick HF treated SiNM. The results show that the Fermi level is pinned 0.21 +/- 0 . 01 eV below the conduction band minimum, in agreement with XPS results. Supported by DOE.

  11. Temperature dependence of electronic eigenenergies in the adiabatic harmonic approximation

    NASA Astrophysics Data System (ADS)

    Poncé, S.; Antonius, G.; Gillet, Y.; Boulanger, P.; Laflamme Janssen, J.; Marini, A.; Côté, M.; Gonze, X.

    2014-12-01

    The renormalization of electronic eigenenergies due to electron-phonon interactions (temperature dependence and zero-point motion effect) is important in many materials. We address it in the adiabatic harmonic approximation, based on first principles (e.g., density-functional theory), from different points of view: directly from atomic position fluctuations or, alternatively, from Janak's theorem generalized to the case where the Helmholtz free energy, including the vibrational entropy, is used. We prove their equivalence, based on the usual form of Janak's theorem and on the dynamical equation. We then also place the Allen-Heine-Cardona (AHC) theory of the renormalization in a first-principles context. The AHC theory relies on the rigid-ion approximation, and naturally leads to a self-energy (Fan) contribution and a Debye-Waller contribution. Such a splitting can also be done for the complete harmonic adiabatic expression, in which the rigid-ion approximation is not required. A numerical study within the density-functional perturbation theory framework allows us to compare the AHC theory with frozen-phonon calculations, with or without the rigid-ion approximation. For the two different numerical approaches without non-rigid-ion terms, the agreement is better than 7 μ eV in the case of diamond, which represent an agreement to five significant digits. The magnitude of the non-rigid-ion terms in this case is also presented, distinguishing specific phonon modes contributions to different electronic eigenenergies.

  12. Soft self-assembled nanoparticles with temperature-dependent properties

    NASA Astrophysics Data System (ADS)

    Rovigatti, Lorenzo; Capone, Barbara; Likos, Christos N.

    2016-02-01

    The fabrication of versatile building blocks that reliably self-assemble into desired ordered and disordered phases is amongst the hottest topics in contemporary materials science. To this end, microscopic units of varying complexity, aimed at assembling the target phases, have been thought, designed, investigated and built. Such a path usually requires laborious fabrication techniques, especially when specific functionalisation of the building blocks is required. Telechelic star polymers, i.e., star polymers made of a number of f di-block copolymers consisting of solvophobic and solvophilic monomers grafted on a central anchoring point, spontaneously self-assemble into soft patchy particles featuring attractive spots (patches) on the surface. Here we show that the tunability of such a system can be widely extended by controlling the physical and chemical parameters of the solution. Indeed, under fixed external conditions the self-assembly behaviour depends only on the number of arms and on the ratio of solvophobic to solvophilic monomers. However, changes in temperature and/or solvent quality make it possible to reliably change the number and size of the attractive patches. This allows the steering of the mesoscopic self-assembly behaviour without modifying the microscopic constituents. Interestingly, we also demonstrate that diverse combinations of the parameters can generate stars with the same number of patches but different radial and angular stiffness. This mechanism could provide a neat way of further fine-tuning the elastic properties of the supramolecular network without changing its topology.

  13. Sources and seasonality of atmospheric methanol based on tall tower measurements in the US Upper Midwest

    NASA Astrophysics Data System (ADS)

    Hu, L.; Millet, D. B.; Mohr, M. J.; Wells, K. C.; Griffis, T. J.; Helmig, D.

    2011-11-01

    We present over one year (January 2010-February 2011) of continuous atmospheric methanol measurements from the University of Minnesota tall tower Trace Gas Observatory (KCMP tall tower; 244 m a.g.l.), and interpret the dataset in terms of constraints on regional methanol sources and seasonality. The seasonal cycle of methanol concentrations observed at the KCMP tall tower is generally similar to that simulated by a global 3-D chemical transport model (GEOS-Chem, driven with MEGANv2.0 biogenic emissions) except the seasonal peak occurs ~1 month earlier in the observations, apparently reflecting a model underestimate of emission rates for younger versus older leaves. Based on a source tracer approach, which we evaluate using GEOS-Chem and with multiple tracers, we estimate that anthropogenic emissions account for approximately 40% of ambient methanol abundance during winter and 10% during summer. During daytime in summer, methanol concentrations increase exponentially with temperature, reflecting the temperature sensitivity of the biogenic source, and the observed temperature dependence is statistically consistent with that in the model. Nevertheless, summertime concentrations are underestimated by on average 35% in the model for this region. The seasonal importance of methanol as a source of formaldehyde (HCHO) and carbon monoxide (CO) is highest in spring through early summer, when biogenic methanol emissions are high but isoprene emissions are still relatively low. During that time observed methanol concentrations account for on average 20% of the total CO and HCHO production rates as simulated by GEOS-Chem, compared to 12% later in the summer and 12% on an annual average basis. The biased seasonality in the model means that the photochemical role for methanol early in the growing season is presently underestimated.

  14. Sources and seasonality of atmospheric methanol based on tall tower measurements in the US Upper Midwest

    NASA Astrophysics Data System (ADS)

    Hu, L.; Mohr, M. J.; Wells, K. C.; Griffis, T. J.; Helmig, D.; Millet, D. B.

    2011-06-01

    We present over one year of continuous atmospheric methanol measurements from the University of Minnesota tall tower Trace Gas Observatory (KCMP tall tower; 244 m a.g.l.), and interpret the dataset in terms of constraints on regional methanol sources and seasonality. The seasonal cycle of methanol concentrations observed at the KCMP tall tower is generally similar to that simulated by a global 3-D chemical transport model (GEOS-Chem, driven with MEGANv2.0 biogenic emissions) except the seasonal peak occurs ~1 month earlier in the observations, apparently reflecting a model underestimate of emission rates for younger versus older leaves. Based on a source tracer approach, which we evaluate using GEOS-Chem and with multiple tracers, we estimate that anthropogenic emissions account for approximately 40 % of ambient methanol abundance during winter and 10 % during summer. During daytime in summer, methanol concentrations increase exponentially with temperature, reflecting the temperature sensitivity of the biogenic source, and the observed temperature dependence is statistically consistent with that in the model. Nevertheless, summertime concentrations are underestimated by on average 35 % in the model for this region. The seasonal importance of methanol as a source of formaldehyde (HCHO) and carbon monoxide (CO) is highest in spring through early summer, when biogenic methanol emissions are high but isoprene emissions are still relatively low. During that time observed methanol concentrations account for on average 20 % of the total CO and HCHO production rates as simulated by GEOS-Chem, compared to 12 % later in the summer and 12 % on an annual average basis. The biased seasonality in the model means that the photochemical role for methanol early in the growing season is presently underestimated.

  15. Effects of methanol vapor on human neurobehavioral measures.

    PubMed

    Cook, M R; Bergman, F J; Cohen, H D; Gerkovich, M M; Graham, C; Harris, R K; Siemann, L G

    1991-08-01

    Methanol could become an important motor fuel. The objective of this exploratory study was to provide preliminary information about whether or not acute exposure to methanol at 250 mg/m3 for 75 minutes would have adverse effects on human neurobehavioral functions important in everyday life. This concentration level was selected because it is at the upper limit of the traffic scenario estimates provided by the U.S. Environmental Protection Agency (EPA)2 (86 to 240 mg/m3), but is below the maximum concentrations for eight-hour average exposures currently recommended by the National Institute of Occupational Safety and Health (NIOSH) and the American Conference of Government and Industrial Hygienists (ACGIH) (260 mg/m3). Although traffic scenario exposure estimates suggest that such high levels of exposure last less than 15 minutes, we used a 75-minute exposure to increase the probability of identifying dependent measures that should be studied in more detail in a future confirmatory study. Twelve healthy young men, each serving as his own control, participated in two sham exposures and two methanol exposures under counterbalanced, double-blind control conditions. Because methanol is present in many foods, and because high preexposure levels of methanol or formate might obscure exposure effects, subjects were required to strictly limit their diets for 12 hours before each experimental session. The following endpoints were examined before, during, and after exposure to methanol and sham vapors: blood and urinary methanol; plasma formate; oral temperature; blood pressure; subjective mood, alertness, fatigue, workload, and symptom scales; spectral analysis of the electroencephalogram; visual- and auditory-event-related potentials; contingent negative variation; respiration; cardiac interbeat interval; Symbol Digit substitution task; three-choice reaction time; Stroop color-word test; simple reaction time; visual function; critical flicker fusion frequency; hand

  16. Physical characteristics of bright Class I methanol masers

    NASA Astrophysics Data System (ADS)

    Leurini, S.; Menten, K. M.; Walmsley, C. M.

    2016-07-01

    Context. Class I methanol masers are thought to be tracers of interstellar shock waves. However, they have received relatively little attention mostly as a consequence of their low luminosities compared to other maser transitions. This situation has changed recently and Class I methanol masers are now routinely used as signposts of outflow activity especially in high extinction regions. The recent detection of polarisation in Class I lines now makes it possible to obtain direct observational information about magnetic fields in interstellar shocks. Aims: We make use of newly calculated collisional rate coefficients for methanol to investigate the excitation of Class I methanol masers and to reconcile the observed Class I methanol maser properties with model results. Methods: We performed large velocity gradient calculations with a plane-parallel slab geometry appropriate for shocks to compute the pump and loss rates which regulate the interactions of the different maser systems with the maser reservoir. We study the dependence of the pump rate coefficient, the maser loss rate, and the inversion efficiency of the pumping scheme of several Class I masers on the physics of the emitting gas. Results: We predict inversion in all transitions where maser emission is observed. Bright Class I methanol masers are mainly high-temperature (>100 K) high-density (n(H2) ~ 107-108 cm-3) structures with methanol maser emission measures, ξ, corresponding to high methanol abundances close to the limits set by collisional quenching. Our model predictions reproduce reasonably well most of the observed properties of Class I methanol masers. Class I masers in the 25 GHz series are the most sensitive to the density of the medium and mase at higher densities than other lines. Moreover, even at high density and high methanol abundances, their luminosity is predicted to be lower than that of the 44 GHz and 36 GHz masers. Our model predictions also reflect the observational result that the

  17. Adsorption and dissociation of methanol on the fully oxidized and partially reduced (111) cerium oxide surface: dependence on the configuration of the cerium 4f electrons

    SciTech Connect

    Beste, Ariana; Mullins, David R; Overbury, Steven {Steve} H; Harrison, Robert J

    2008-01-01

    The adsorption and dissociation of methanol on the fully oxidized and partially reduced (111) cerium oxide surface is studied using the PW91 functional as well as the PW91+U scheme. We investigate the influence of the detailed electronic structure of the Ce 4f band on the chemistry of methanol on the surface. For the partially reduced surface we obtain a spin delocalized, a ferromagnetic, and an anti-ferromagnetic solution. We find that the qualitative conclusions are independent of the surface type used. Methanol adsorption is exothermic on the fully oxidized as well as on the partially reduced surface. Also dissociation of methanol on the surface is exothermic but strongly enhanced by the presence of a vacancy. We localize an on-top methoxy species as a dissociation product on the fully oxidized surface and a triply bridged methoxy species on the partially reduced surface where the methoxy oxygen partly fills the oxygen vacancy in the surface. Adsorption energies are influenced by the introduction of the repulsive Hubbard (U) term. On the other hand, relative surface stabilities like dissociation energies are less sensitive.

  18. [Temperature dependence of the structurized state of water].

    PubMed

    Savostikova, O N; Stekhin, A A; Iakovleva, G V; Kochetkova, M G

    2009-01-01

    The paper provides the results of studies of the impact of temperature on the structural and energetic state of drinking water and shows that the altered temperature conditions of water causes a change in its supramolecular structure and biological value.

  19. Temperature dependence of the Cl atom reaction with deuterated methanes.

    PubMed

    Sauer, Frank; Portmann, Robert W; Ravishankara, A R; Burkholder, James B

    2015-05-14

    Kinetic isotope effect (KIE) and reaction rate coefficients, k1-k4, for the gas-phase reaction of Cl atoms with (12)CH3D (k1), (12)CH2D2 (k2), (12)CHD3 (k3), and (12)CD4 (k4) over the temperature range 223-343 K in 630 Torr of synthetic air are reported. Rate coefficients were measured using a relative rate technique with (12)CH4 as the primary reference compound. Fourier transform infrared spectroscopy was used to monitor the methane isotopologue loss. The obtained KIE values were (12)CH3D: KIE1(T) = (1.227 ± 0.004) exp((43 ± 5)/T); (12)CH2D2: KIE2(T) = (1.14 ± 0.20) exp((191 ± 60)/T); (12)CHD3: KIE3(T) = (1.73 ± 0.34) exp((229 ± 60)/T); and (12)CD4: KIE4(T) = (1.01 ± 0.3) exp((724 ± 19)/T), where KIEx(T) = kCl+(12)CH4(T)/kx(T). The quoted uncertainties are at the 2σ (95% confidence) level and represent the precision of our data. The following Arrhenius expressions and 295 K rate coefficient values (in units of cm(3) molecule(-1) s(-1)) were derived from the above KIE using a rate coefficient of 7.3 × 10(-12) exp(-1280/T) cm(3) molecule(-1) s(-1) for the reaction of Cl with (12)CH4: k1(T) = (5.95 ± 0.70) × 10(-12) exp(-(1323 ± 50)/T), k1(295 K) = (6.7 ± 0.8) × 10(-14); k2(T) = (6.4 ± 1.3) × 10(-12) exp(-(1471 ± 60)/T), k2(295 K) = (4.4 ± 0.9) × 10(-14); k3(T) = (4.2 ± 1.0) × 10(-12) exp(-(1509 ± 60)/T), k3(295 K) = (2.53 ± 0.6) × 10(-14); and k4(T) = (7.13 ± 2.3) × 10(-12) exp(-(2000 ± 120)/T), k4(295 K) = (0.81 ± 0.26) × 10(-14). The reported uncertainties in the pre-exponential factors are 2σ and include estimated systematic errors in our measurements and the uncertainty in the reference reaction rate coefficient. The results from this study are compared with previously reported room-temperature rate coefficients for each of the deuterated methanes as well as the available temperature dependent data for the Cl atom reactions with CH3D and CD4. A two-dimensional atmospheric chemistry model was used to examine the implications of the

  20. Temperature dependence of the Cl atom reaction with deuterated methanes.

    PubMed

    Sauer, Frank; Portmann, Robert W; Ravishankara, A R; Burkholder, James B

    2015-05-14

    Kinetic isotope effect (KIE) and reaction rate coefficients, k1-k4, for the gas-phase reaction of Cl atoms with (12)CH3D (k1), (12)CH2D2 (k2), (12)CHD3 (k3), and (12)CD4 (k4) over the temperature range 223-343 K in 630 Torr of synthetic air are reported. Rate coefficients were measured using a relative rate technique with (12)CH4 as the primary reference compound. Fourier transform infrared spectroscopy was used to monitor the methane isotopologue loss. The obtained KIE values were (12)CH3D: KIE1(T) = (1.227 ± 0.004) exp((43 ± 5)/T); (12)CH2D2: KIE2(T) = (1.14 ± 0.20) exp((191 ± 60)/T); (12)CHD3: KIE3(T) = (1.73 ± 0.34) exp((229 ± 60)/T); and (12)CD4: KIE4(T) = (1.01 ± 0.3) exp((724 ± 19)/T), where KIEx(T) = kCl+(12)CH4(T)/kx(T). The quoted uncertainties are at the 2σ (95% confidence) level and represent the precision of our data. The following Arrhenius expressions and 295 K rate coefficient values (in units of cm(3) molecule(-1) s(-1)) were derived from the above KIE using a rate coefficient of 7.3 × 10(-12) exp(-1280/T) cm(3) molecule(-1) s(-1) for the reaction of Cl with (12)CH4: k1(T) = (5.95 ± 0.70) × 10(-12) exp(-(1323 ± 50)/T), k1(295 K) = (6.7 ± 0.8) × 10(-14); k2(T) = (6.4 ± 1.3) × 10(-12) exp(-(1471 ± 60)/T), k2(295 K) = (4.4 ± 0.9) × 10(-14); k3(T) = (4.2 ± 1.0) × 10(-12) exp(-(1509 ± 60)/T), k3(295 K) = (2.53 ± 0.6) × 10(-14); and k4(T) = (7.13 ± 2.3) × 10(-12) exp(-(2000 ± 120)/T), k4(295 K) = (0.81 ± 0.26) × 10(-14). The reported uncertainties in the pre-exponential factors are 2σ and include estimated systematic errors in our measurements and the uncertainty in the reference reaction rate coefficient. The results from this study are compared with previously reported room-temperature rate coefficients for each of the deuterated methanes as well as the available temperature dependent data for the Cl atom reactions with CH3D and CD4. A two-dimensional atmospheric chemistry model was used to examine the implications of the

  1. Determination of the Temperature Dependence of the Rate Constants for HO2/Acetonylperoxy Reaction and Acetonylperoxy Self-Reaction

    NASA Astrophysics Data System (ADS)

    Darby, E. C.; Grieman, F. J.; Hui, A. O.; Okumura, M.; Sander, S. P.

    2014-12-01

    Reactions of hydroperoxy radical, HO2, with carbonyl containing RO2 can play an important role in the oxidation chemistry of the troposphere. Discovered radical product channels in addition to radical termination channels have resulted in increased study of these important reactions. In our continued study of HO2 reactions with acetonylperoxy and acetylperoxy radicals, we report here our first results on the kinetics of the acetonylperoxy system. Previous studies have resulted in conflicting results and no temperature dependence of the rate constants. Using the Infrared Kinetic Spectroscopy (IRKS) method in which a temperature-controlled slow-flow tube apparatus and laser flash photolysis of Cl2 are used to produce HO2 and CH3C(O)CH2O2 from methanol and acetone, respectively, we studied the chemical kinetics involved over the temperature range of 295 to 240 K. Rates of chemical reaction were determined by monitoring the HO2 concentration as a function of time by sensitive near-IR diode laser wavelength modulation spectroscopy while simultaneously measuring the disappearance of [CH3C(O)CH2O2] in the ultraviolet at 300 nm. The simultaneous fits resulted in the determination of the temperature dependence of the rate constants for the HO2/acetonylperoxy reaction and the acetonylperoxy self-reaction. At the lower temperatures, the reactions of HO2 and CH3C(O)CH2O2 with the adducts HO2•CH3OH and HO2•CH3C(O)CH3 formed in significant concentrations needed to be included in the fitting models.

  2. Temperature-dependent macromolecular X-ray crystallography

    SciTech Connect

    Weik, Martin Colletier, Jacques-Philippe

    2010-04-01

    The dynamical behaviour of crystalline macromolecules and their surrounding solvent as a function of cryo-temperature is reviewed. X-ray crystallography provides structural details of biological macromolecules. Whereas routine data are collected close to 100 K in order to mitigate radiation damage, more exotic temperature-controlled experiments in a broader temperature range from 15 K to room temperature can provide both dynamical and structural insights. Here, the dynamical behaviour of crystalline macromolecules and their surrounding solvent as a function of cryo-temperature is reviewed. Experimental strategies of kinetic crystallography are discussed that have allowed the generation and trapping of macromolecular intermediate states by combining reaction initiation in the crystalline state with appropriate temperature profiles. A particular focus is on recruiting X-ray-induced changes for reaction initiation, thus unveiling useful aspects of radiation damage, which otherwise has to be minimized in macromolecular crystallography.

  3. Temperature and frequency dependence of ultrasonic attenuation in selected tissues

    NASA Technical Reports Server (NTRS)

    Gammell, P. M.; Croissette, D. H. L.; Heyser, R. C.

    1979-01-01

    Ultrasonic attenuation over the frequency range of 1.5-10 MHz has been measured as a function of temperature for porcine liver, backfat, kidney and spleen as well as for a single specimen of human liver. The attenuation in these excised specimens increases nearly linearly with frequency. Over the temperature range of approximately 4-37 C the attenuation decreases with increasing temperature for most soft tissue studied.

  4. Features of the temperature dependence of pressure of solid helium at low temperatures

    NASA Astrophysics Data System (ADS)

    Lisunov, A. A.; Maidanov, V. A.; Rubanskii, V. Y.; Rubets, S. P.; Rudavskii, E. Y.; Rybalko, A. S.; Syrkin, E. S.

    2012-06-01

    A series of experiments has been performed to investigate the conditions of formation of a disordered (glass-like) state in crystals of 3He. With the help of precise measurements of pressure at constant volume it has been established that a glass phase is formed easily in rapidly cooled crystals grown under homogeneous temperature conditions in the presence of large numbers of nucleation centers. This phase can be removed only by careful annealing. This result has been found in both 3He and 4He, and is independent of type of quantum statistics and determined mainly by crystal growth conditions. An analysis of similar measurements has been performed using a different cell where during the crystal growth a directed temperature gradient was created. In this case, additional defects created as a result of deformation of the crystal were necessary to form a glass-like phase. The degree of deformation of a crystal, achievable in the experiment, was sufficient to form a glass-like phase in solid 4He, but not in a crystal of 3He where the atoms have a large amplitude of zero-point oscillations. Analyzing a temperature dependence of pressure, a study of the features of a phonon contribution to the pressure was also carried out. It was found that in both crystals 3He and 4He at different thicknesses of samples the phonon pressure differs by several times. This effect is qualitatively explained by that that in thin samples an interaction among layers of atoms becomes stronger. This leads to decreasing the phonon contribution to the thermodynamic properties of the helium crystal at low temperatures.

  5. Temperature-dependant study of phosphorus ion implantation in germanium

    NASA Astrophysics Data System (ADS)

    Razali, M. A.; Smith, A. J.; Jeynes, C.; Gwilliam, R. M.

    2012-11-01

    We present experimental results on shallow junction formation in germanium by phosphorus ion implantation and standard rapid thermal processing. An attempt is made to improve phosphorus activation by implanting phosphorus at high and low temperature. The focus is on studying the germanium damage and phosphorus activation as a function of implant temperature. Rutherford backscattering spectrometry with channelling and Hall Effect measurements are employed for characterisation of germanium damage and phosphorus activation, respectively. High and low temperature implants were found to be better compared to room temperature implant.

  6. Temperature-dependent fecundity associates with latitude in Caenorhabditis briggsae.

    PubMed

    Prasad, Anisha; Croydon-Sugarman, Melanie J F; Murray, Rosalind L; Cutter, Asher D

    2011-01-01

    Populations of organisms separated by latitude provide striking examples of local adaptation, by virtue of ecological gradients that correlate with latitudinal position on the globe. Ambient temperature forms one key ecological variable that varies with latitude, and here we investigate its effects on the fecundity of self-fertilizing nematodes of the species Caenorhabditis briggsae that exhibits strong genetically based differentiation in association with latitude. We find that isogenic strains from a Tropical phylogeographic clade have greater lifetime fecundity when reared at extreme high temperatures and lower lifetime fecundity at extreme low temperatures than do strains from a Temperate phylogeographic clade, consistent with adaptation to local temperature regimes. Further, we determine experimentally that the mechanism underlying reduced fecundity at extreme temperatures differs for low versus high temperature extremes, but that the total number of sperm produced by the gonad is unaffected by rearing temperature. Low rearing temperatures result in facultatively reduced oocyte production by hermaphrodites, whereas extreme high temperatures experienced during development induce permanent defects in sperm fertility. Available and emerging genetic tools for this organism will permit the characterization of the evolutionary genetic basis to this putative example of adaptation in latitudinally separated populations. PMID:20731713

  7. Temperature dependence of looping rates in a short peptide.

    PubMed

    Roccatano, Danilo; Sahoo, Harekrushna; Zacharias, Martin; Nau, Werner M

    2007-03-15

    Knowledge of the influence of chain length and amino acid sequence on the structural and dynamic properties of small peptides in solution provides essential information on protein folding pathways. The combination of time-resolved optical spectroscopy and molecular dynamics (MD) simulation methods has become a powerful tool to investigate the kinetics of end-to-end collisions (looping rates) in short peptides, which are relevant in early protein folding events. We applied the combination of both techniques to study temperature-dependent (280-340 K) looping rates of the Dbo-AlaGlyGln-Trp-NH2 peptide, where Dbo represents a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine, which served as a fluorescent probe in the time-resolved spectroscopic experiments. The experimental looping rates increased from 4.8 x 10(7) s(-1) at 283 K to 2.0 x 10(8) s(-1) at 338 K in H2O. The corresponding Arrhenius plot provided as activation parameters Ea = 21.5 +/- 1.0 kJ mol(-1) and ln(A/s-1) = 26.8 +/- 0.2 in H2O. The results in D2O were consistent with a slight solvent viscosity effect, i.e., the looping rates were 10-20% slower. MD simulations were performed with the GROMOS96 force field in a water solvent model, which required first a parametrization of the synthetic amino acid Dbo. After corrections for solvent viscosity effects, the calculated looping rates varied from 1.5 x 10(8) s(-1) at 280 K to 8.2 x 10(8) s(-1) at 340 K in H2O, which was about four times larger than the experimental data. The calculated activation parameters were Ea = 24.7 +/- 1.5 kJ mol(-1) and ln(A/s(-1)) = 29.4 +/- 0.1 in H2O.

  8. Temperature-dependent macromolecular X-ray crystallography

    PubMed Central

    Weik, Martin; Colletier, Jacques-Philippe

    2010-01-01

    X-ray crystallography provides structural details of biological macromolecules. Whereas routine data are collected close to 100 K in order to mitigate radiation damage, more exotic temperature-controlled experiments in a broader temperature range from 15 K to room temperature can provide both dynamical and structural insights. Here, the dynamical behaviour of crystalline macromolecules and their surrounding solvent as a function of cryo-temperature is reviewed. Experimental strategies of kinetic crystallography are discussed that have allowed the generation and trapping of macromolecular intermediate states by combining reaction initiation in the crystalline state with appropriate temperature profiles. A particular focus is on recruiting X-ray-induced changes for reaction initiation, thus unveiling useful aspects of radiation damage, which otherwise has to be minimized in macromolecular crystallography. PMID:20382997

  9. Temperature-dependence of wetting properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Fatemeh; Gholamian Moghaddam, Melika

    2016-07-01

    We have carried out molecular dynamics simulations to study the spontaneous imbibition of water into a single-wall carbon nanotube (CNT) at various temperatures, ranging from 270 K to 370 K. The simulations indicate that by increasing the temperature, the rate of mass uptake improves as well. Considering the end-loss friction as the main source of energy dissipation and ignoring the inertial effect on the nano-scale transport, we derive a simple expression that relates the CNT's wettability to the fluid viscosity and the rate of imbibition over the temperature range that we study. Our results also indicate that the increase in the wettability of the CNT, and the reduction in the viscosity of water at higher temperatures cause enhancement of water uptake into the nanotube. They also enable us to estimate the wetting transition temperature for TIP3P model of water in the CNTs.

  10. [Temperature dependence of courtship in male guppies, Poecilia reticulata Peters (Pisces, Cyprinidae)].

    PubMed

    Laudien, H; Fechner, W; Schumann, W

    1980-01-01

    In poikilothermal animals, modes of behaviour as well as other physiological functions are dependent on the environmental temperature. Individual adaptation can decrease or cancel out this dependency. In experiments involving abrupt and slow temperature changes, we were able to prove temperature compensations and stress effects in the courting behaviour of the male Poecilia reticulata.

  11. Size- and temperature-dependent Young's modulus and size-dependent thermal expansion coefficient of thin films.

    PubMed

    Zhou, Xiao-Ye; Huang, Bao-Ling; Zhang, Tong-Yi

    2016-08-21

    Nanomaterials possess a high surface/volume ratio and surfaces play an essential role in size-dependent material properties. In the present study, nanometer-thick thin films were taken as an ideal system to investigate the surface-induced size- and temperature-dependent Young's modulus and size-dependent thermal expansion coefficient. The surface eigenstress model was further developed with the consideration of thermal expansion, leading to analytic formulas of size- and temperature-dependent Young's modulus, and size-dependent thermal expansion coefficient of thin films. Molecular dynamics (MD) simulations on face-centered cubic (fcc) Ag, Cu, and Ni(001) thin films were conducted at temperatures ranging from 300 K to 600 K. The MD simulation results are perfectly consistent with the theoretical predictions, thereby verifying the theoretical approach. The newly developed surface eigenstress model will be able to attack similar problems in other types of nanomaterials. PMID:27426852

  12. Temperature Dependence of Isotope Ratios in Tree Rings

    PubMed Central

    Libby, L. M.; Pandolfi, L. J.

    1974-01-01

    The stable isotope ratios of carbon, oxygen, and hydrogen have been measured for a German oak in wood samples of roughly three years each, for the years 1712-1954 A.D., and correlated with the existing weather records from England, Basel, and Geneva to evaluate the empirical temperature coefficients. Isotope ratios in a second official oak, measured for the years 1530-1800 A.D., show the cold temperatures of the Little Ice Age interspersed with warm intervals. PMID:16592163

  13. Temperature-dependent phagotrophy and phototrophy in a mixotrophic chrysophyte.

    PubMed

    Princiotta, Sarah DeVaul; Smith, Brian T; Sanders, Robert W

    2016-06-01

    The roles of temperature and light on grazing and photosynthesis were examined for Dinobryon sociale, a common freshwater mixotrophic alga. Photosynthetic rate was determined for D. sociale adapted to temperatures of 8, 12, 16, and 20°C under photosynthetically active radiation light irradiances of 25, 66, and 130 μmol photons · m(-2)  · s(-1) , with concurrent measurement of bacterial ingestion at all temperatures under medium and high light (66 and 130 μmol photons · m(-2)  · s(-1) ). Rates of ingestion and photosynthesis increased with temperature to a maximum at 16°C under the two higher light regimes, and declined at 20°C. Although both light and temperature had a marked effect on photosynthesis, there was no significant difference in bacterivory at medium and high irradiances at any given temperature. At the lowest light condition (25 μmol photons · m(-2)  · s(-1) ), photosynthesis remained low and relatively stable at all temperatures. D. sociale acquired the majority of carbon from photosynthesis, although the low photosynthetic rate without a concurrent decline in feeding rate at 8°C suggested 20%-30% of the carbon budget could be attributed to bacterivory at low temperatures. Grazing experiments in nutrient-modified media revealed that this mixotroph had increased ingestion rates when either dissolved nitrogen or phosphorus was decreased. This work increases our understanding of environmental effects on mixotrophic nutrition. Although the influence of abiotic factors on phagotrophy and phototrophy in pure heterotrophs and phototrophs has been well studied, much less is known for mixotrophic organisms. PMID:27273535

  14. Dependence of Precipitation Extremes on Temperature over United States

    NASA Astrophysics Data System (ADS)

    H, V.; Singh, J.; Karmakar, S.; Ghosh, S.

    2014-12-01

    Hydrologic disturbances are commonly associated with the phenomenal occurrence of extreme events. The human kind has always been facing problem with hydrologic extremes in terms of deaths and economic loss. Hence, a complete analysis of observed extreme events will have a substantial role in planning, designing and management of the water resource systems. Over the United States, precipitation extremes, temperature and streamflow, have increased during the twentieth century and has been attributed to many natural and anthropogenic influences. The present study examines the association of precipitation extremes on temperature over US for the period of 1950-2000. The annual maxima (AM) precipitation has been extracted for hot and cold years. The spatial mean of surface temperature/ sea surface temperature from 1950 to 2000, so obtained is arranged in ascending order. The corresponding years, with lowest temperature of 25 years are defined as cold years and highest temperature of 25 years are defined as hot years respectively. The spatio-temporal variability of 50 year return level (RL) for the AM is determined considering generalized extreme value (GEV) and non-parametric kernel distributions. To identify the significant changes in the derived RL from cold to hot years, a bootstrap-based approach is implemented. The results exhibited no significant changes in the 50 year RL of AM precipitation between hot and cold years, with 70% of total grids showing no significant changes with respect to both land surface and sea surface temperature at 20% significance level. The scatter plot between the spatial mean of AM precipitation and both land surface and sea surface temperature over US showed no association. Further the comparison with the CMIP5 models revealed that the models are showed significant association between both land surface and sea surface temperature with the AM of precipitation. The major decision making and planning rely on the model predictions, which

  15. Temperature-Dependent Regulation of Vocal Pattern Generator

    PubMed Central

    Yamaguchi, Ayako; Gooler, David; Herrold, Amy; Patel, Shailja; Pong, Winnie W.

    2008-01-01

    Vocalizations of Xenopus laevis are generated by central pattern generators (CPGs). The advertisement call of male X. laevis is a complex biphasic motor rhythm consisting of fast and slow trills (a train of clicks). We found that the trill rate of these advertisement calls is sensitive to temperature and that this rate modification of the vocal rhythms originates in the central pattern generators. In vivo the rates of fast and slow trills increased linearly with an increase in temperature. In vitro a similar linear relation between temperature and compound action potential frequency in the laryngeal nerve was found when fictive advertisement calls were evoked in the isolated brain. Temperature did not limit the contractile properties of laryngeal muscles within the frequency range of vocalizations. We next took advantage of the temperature sensitivity of the vocal CPG in vitro to localize the source of the vocal rhythms. We focused on the dorsal tegmental area of the medulla (DTAM), a brain stem nucleus that is essential for vocal production. We found that bilateral cooling of DTAM reduced both fast and slow trill rates. Thus we conclude that DTAM is a source of biphasic vocal rhythms. PMID:18829853

  16. Temperature-dependent regulation of vocal pattern generator.

    PubMed

    Yamaguchi, Ayako; Gooler, David; Herrold, Amy; Patel, Shailja; Pong, Winnie W

    2008-12-01

    Vocalizations of Xenopus laevis are generated by central pattern generators (CPGs). The advertisement call of male X. laevis is a complex biphasic motor rhythm consisting of fast and slow trills (a train of clicks). We found that the trill rate of these advertisement calls is sensitive to temperature and that this rate modification of the vocal rhythms originates in the central pattern generators. In vivo the rates of fast and slow trills increased linearly with an increase in temperature. In vitro a similar linear relation between temperature and compound action potential frequency in the laryngeal nerve was found when fictive advertisement calls were evoked in the isolated brain. Temperature did not limit the contractile properties of laryngeal muscles within the frequency range of vocalizations. We next took advantage of the temperature sensitivity of the vocal CPG in vitro to localize the source of the vocal rhythms. We focused on the dorsal tegmental area of the medulla (DTAM), a brain stem nucleus that is essential for vocal production. We found that bilateral cooling of DTAM reduced both fast and slow trill rates. Thus we conclude that DTAM is a source of biphasic vocal rhythms. PMID:18829853

  17. Temperature dependence of Schottky diode characteristics prepared with photolithography technique

    NASA Astrophysics Data System (ADS)

    Korucu, Demet; Turut, Abdulmecit

    2014-11-01

    A Richardson constant (RC) of 8.92 Acm-2K-2 from the conventional Richardson plot has been obtained because the current-voltage data of the device quite well obey the thermionic emission (TE) model in 190-320 K range. The experimental nT versus T plot of the device has given a value of T0 = 7.40 K in temperature range of 160-320 K. The deviations from the TE current mechanism at temperatures below 190 K have been ascribed to the patches introduced by lateral inhomogeneity of the barrier heights. Therefore, an experimental RC value of 7.49 A(cmK)-2 has been obtained by considering Tung's patch model in the temperature range of 80-190 K. This value is in very close agreement with the known value of 8.16 Acm-2K-2 for n-type GaAs.

  18. Parallel temperature-dependent microrheological measurements in a microfluidic chip.

    PubMed

    Josephson, Lilian Lam; Galush, William J; Furst, Eric M

    2016-07-01

    Microfluidic stickers are used as a sample environment to measure the microrheology of monoclonal antibody (mAb) protein solutions. A Peltier-based microscope stage is implemented and validated, and is capable of controlling the sample temperature over the range 0.9-40 °C. The design accounts for heat transfer to and from the objective, controls the sample environment humidity to mitigate condensation, and provides adequate damping to reduce vibration from the cooling system. A concentrated sucrose solution is used as a standard sample to provide an in situ temperature measurement by the Stokes-Einstein-Sutherland relation. By combining microfluidic stickers and microrheology, 72 temperature-concentration viscosity measurements of mAb solutions can be made in 1 day, a significant increase in throughput over conventional rheometry. PMID:27375825

  19. TEMPERATURE DEPENDANT BEHAVIOUR OBSERVED IN THE AFIP-6 IRRADIATION TEST

    SciTech Connect

    A. B. Robinson; D. M. Wachs; P. Medvedev; S.J. Miller; F. J. Rice; M. K. Meyer; D. M. Perez

    2012-03-01

    The AFIP-6 test assembly was irradiated for one cycle in the Advanced Test Reactor at Idaho National Laboratory. The experiment was designed to test two monolithic fuel plates at power and burn-ups which bounded the operating conditions of both ATR and HFIR driver fuel. Both plates contained a solid U-Mo fuel foil with a zirconium diffusion barrier between 6061-aluminum cladding plates bonded by hot isostatic pressing. The experiment was designed with an orifice to restrict the coolant flow in order to obtain prototypic coolant temperature conditions. While these coolant temperatures were obtained, the reduced flow resulted in a sufficiently low heat transfer coefficient that failure of the fuel plates occurred. The increased fuel temperature led to significant variations in the fission gas retention behaviour of the U-Mo fuel. These variations in performance are outlined herein.

  20. Temperature dependence of impact ionization coefficients in InP

    NASA Astrophysics Data System (ADS)

    Taguchi, Kenko; Torikai, Toshitaka; Sugimoto, Yoshimasa; Makita, Kikuo; Ishihara, Hisahiro

    1986-01-01

    Impact ionization coefficients for electrons and holes in InP were measured experimentally at 25-175 °C in the 400-600 kV/cm electric field range with planar avalanche photodiodes, in which the n-InP avalanche region was separated from the light absorbing InGaAs and/or InGaAsP layers. α and β monotonically decreased with elevated temperatures; β/α slightly decreased with increasing temperature. Comparison of the experimental results with Okuto-Crowell formula on the impact ionization coefficient gave the phonon energy ERO=46 meV and the phonon scattering mean free path λ0=41.7 Å for electron impact ionization and ERO=36 meV and λ0=41.3 Å for hole impact ionization, respectively. Curves calculated by using these parameters agree with the experimental results quite satisfactorily at each temperature.

  1. Amplified temperature dependence in ecosystems developing on the lava flows of Mauna Loa, Hawai'i

    PubMed Central

    Anderson-Teixeira, Kristina J.; Vitousek, Peter M.; Brown, James H.

    2008-01-01

    Through its effect on individual metabolism, temperature drives biologically controlled fluxes and transformations of energy and materials in ecological systems. Because primary succession involves feedbacks among multiple biological and abiotic processes, we expected it to exhibit complex dynamics and unusual temperature dependence. We present a model based on first principles of chemical kinetics to explain how biologically mediated temperature dependence of “reactant” concentrations can inflate the effective temperature dependence of such processes. We then apply this model to test the hypothesis that the temperature dependence of early primary succession is amplified due to more rapid accumulation of reactants at higher temperatures. Using previously published data from the lava flows of Mauna Loa, HI, we show that rates of vegetation and soil accumulation as well as rates of community compositional change all display amplified temperature dependence (Q10 values of ≈7–50, compared with typical Q10 values of 1.5–3 for the constituent biological processes). Additionally, in young ecosystems, resource concentrations increase with temperature, resulting in inflated temperature responses of biogeochemical fluxes. Mauna Loa's developing ecosystems exemplify how temperature-driven, biologically mediated gradients in resource availability can alter the effective temperature dependence of ecological processes. This mechanistic theory should contribute to understanding the complex effects of temperature on the structure and dynamics of ecological systems in a world where regional and global temperatures are changing rapidly. PMID:18156366

  2. Achieving a Strongly Temperature-Dependent Casimir Effect

    SciTech Connect

    Rodriguez, Alejandro W.; Woolf, David; Capasso, Federico; McCauley, Alexander P.; Joannopoulos, John D.; Johnson, Steven G.

    2010-08-06

    We propose a method of achieving large temperature T sensitivity in the Casimir force that involves measuring the stable separation between dielectric objects immersed in a fluid. We study the Casimir force between slabs and spheres using realistic material models, and find large >2 nm/K variations in their stable separations (hundreds of nanometers) near room temperature. In addition, we analyze the effects of Brownian motion on suspended objects, and show that the average separation is also sensitive to changes in T. Finally, this approach also leads to rich qualitative phenomena, such as irreversible transitions, from suspension to stiction, as T is varied.

  3. Measurement of temperature-dependent specific heat of biological tissues.

    PubMed

    Haemmerich, Dieter; Schutt, David J; dos Santos, Icaro; Webster, John G; Mahvi, David M

    2005-02-01

    We measured specific heat directly by heating a sample uniformly between two electrodes by an electric generator. We minimized heat loss by styrofoam insulation. We measured temperature from multiple thermocouples at temperatures from 25 degrees C to 80 degrees C while heating the sample, and corrected for heat loss. We confirm method accuracy with a 2.5% agar-0.4% saline physical model and obtain specific heat of 4121+/-89 J (kg K)(-1), with an average error of 3.1%.

  4. A thermally stable, durable and temperature-dependent oleophobic surface of a polymethylsilsesquioxane film.

    PubMed

    Urata, Chihiro; Masheder, Benjamin; Cheng, Dalton F; Hozumi, Atsushi

    2013-04-25

    Polymethylsilsesquioxane (PMSQ) films prepared by a simple sol-gel reaction of methyltriethoxysilane were found to possess thermally stable, durable, and temperature-dependent oleophobic properties under high temperature (~350 °C) conditions. PMID:23493793

  5. A thermally stable, durable and temperature-dependent oleophobic surface of a polymethylsilsesquioxane film.

    PubMed

    Urata, Chihiro; Masheder, Benjamin; Cheng, Dalton F; Hozumi, Atsushi

    2013-04-25

    Polymethylsilsesquioxane (PMSQ) films prepared by a simple sol-gel reaction of methyltriethoxysilane were found to possess thermally stable, durable, and temperature-dependent oleophobic properties under high temperature (~350 °C) conditions.

  6. Temperature-dependent indentation behavior of transformation-toughened zirconia-based ceramics

    NASA Technical Reports Server (NTRS)

    Tikare, Veena; Heuer, Arthur H.

    1991-01-01

    Indentation behavior of Ce-TZP, Y-TZP, and Mg-PSZ between room temperature and 1300 C was investigated. Hardness decreased with increasing temperature for all three materials, but indentation cracking increased with increasing temperature. The opposing temperature dependences are discussed in terms of dislocation and transformation plasticity.

  7. Temperature Dependences on Various Types of Photovoltaic (PV) Panel

    NASA Astrophysics Data System (ADS)

    Audwinto, I. A.; Leong, C. S.; Sopian, K.; Zaidi, S. H.

    2015-09-01

    Temperature is one of the key roles in PV technology performance, since with the increases of temperature the open-circuit voltage will drop accordingly so do the electrical efficiency and power output generation. Different types of Photovoltaic (PV) panels- silicon solar panels and thin film solar panels; mono-crystalline, poly-crystalline, CIS, CIGS, CdTe, back-contact, and bi-facial solar panel under 40°C to 70°C approximately with 5°C interval have been comparatively analyzed their actual performances with uniformly distribution of light illumination from tungsten halogen light source, ±500W/m2. DC-Electronic Load and Data Logger devices with “Lab View” data program interface were used to collect all the necessary parameters in this study. Time needed to achieve a certain degree of temperature was recorded. Generally, each of the panels needed 15 minutes to 20 minutes to reach 70°C. Halogen based light source is not compatible in short wave-length in response to thin-film solar cell. Within this period of times, all the panels are facing a performance loss up to 15%. Other parameters; Pmax, Vmax, Imax, Voc, Isc, Rserries, Rshunt, Fillfactor were collected as study cases. Our study is important in determining Photovoltaic type selection and system design as for study or industrial needed under different temperature condition.

  8. [Temperature dependence of parameters of plant photosynthesis models: a review].

    PubMed

    Borjigidai, Almaz; Yu, Gui-Rui

    2013-12-01

    This paper reviewed the progress on the temperature response models of plant photosynthesis. Mechanisms involved in changes in the photosynthesis-temperature curve were discussed based on four parameters, intercellular CO2 concentration, activation energy of the maximum rate of RuBP (ribulose-1,5-bisphosphate) carboxylation (V (c max)), activation energy of the rate of RuBP regeneration (J(max)), and the ratio of J(max) to V(c max) All species increased the activation energy of V(c max) with increasing growth temperature, while other parameters changed but differed among species, suggesting the activation energy of V(c max) might be the most important parameter for the temperature response of plant photosynthesis. In addition, research problems and prospects were proposed. It's necessary to combine the photosynthesis models at foliage and community levels, and to investigate the mechanism of plants in response to global change from aspects of leaf area, solar radiation, canopy structure, canopy microclimate and photosynthetic capacity. It would benefit the understanding and quantitative assessment of plant growth, carbon balance of communities and primary productivity of ecosystems.

  9. Temperature-dependent structure of Tb-doped magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Rice, Katherine P.; Russek, Stephen E.; Geiss, Roy H.; Shaw, Justin M.; Usselman, Robert J.; Evarts, Eric R.; Silva, Thomas J.; Nembach, Hans T.; Arenholz, Elke; Idzerda, Yves U.

    2015-02-01

    High quality 5 nm cubic Tb-doped magnetite nanoparticles have been synthesized by a wet-chemical method to investigate tailoring of magnetic properties for imaging and biomedical applications. We show that the Tb is incorporated into the octahedral 3+ sites. High-angle annular dark-field microscopy shows that the dopant is well-distributed throughout the particle, and x-ray diffraction measurements show a small lattice parameter shift with the inclusion of a rare-earth dopant. Magnetization and x-ray magnetic circular dichroism data indicate that the Tb spins are unpolarized and weakly coupled to the iron spin lattice at room temperature, and begin to polarize and couple to the iron oxide lattice at temperatures below 50 K. Broadband ferromagnetic resonance measurements show no increase in magnetic damping at room temperature for Tb-doped nanoparticles relative to undoped nanoparticles, further confirming weak coupling between Fe and Tb spins at room temperature. The Gilbert damping constant, α, is remarkably low for the Tb-doped nanoparticles, with α = 0.024 ± 0.003. These nanoparticles, which have a large fixed moment, a large fluctuating moment and optically active rare-earth elements, are potential high-relaxivity T1 and T2 MRI agents with integrated optical signatures.

  10. Enzyme surface rigidity tunes the temperature dependence of catalytic rates.

    PubMed

    Isaksen, Geir Villy; Åqvist, Johan; Brandsdal, Bjørn Olav

    2016-07-12

    The structural origin of enzyme adaptation to low temperature, allowing efficient catalysis of chemical reactions even near the freezing point of water, remains a fundamental puzzle in biocatalysis. A remarkable universal fingerprint shared by all cold-active enzymes is a reduction of the activation enthalpy accompanied by a more negative entropy, which alleviates the exponential decrease in chemical reaction rates caused by lowering of the temperature. Herein, we explore the role of protein surface mobility in determining this enthalpy-entropy balance. The effects of modifying surface rigidity in cold- and warm-active trypsins are demonstrated here by calculation of high-precision Arrhenius plots and thermodynamic activation parameters for the peptide hydrolysis reaction, using extensive computer simulations. The protein surface flexibility is systematically varied by applying positional restraints, causing the remarkable effect of turning the cold-active trypsin into a variant with mesophilic characteristics without changing the amino acid sequence. Furthermore, we show that just restraining a key surface loop causes the same effect as a point mutation in that loop between the cold- and warm-active trypsin. Importantly, changes in the activation enthalpy-entropy balance of up to 10 kcal/mol are almost perfectly balanced at room temperature, whereas they yield significantly higher rates at low temperatures for the cold-adapted enzyme.

  11. Le Chatelier's Principle Applied to the Temperature Dependence of Solubility.

    ERIC Educational Resources Information Center

    Treptow, Richard S.

    1984-01-01

    One effect of temperature is its influence on solubility, and that effect is used as a common example when teaching Le Chatelier's principle. Attempts to clarify the question of whether the principle holds in the case of the solubility of ionic compounds in water by investigating the literature data in detail. (JN)

  12. Temperature-dependent structure of Tb-doped magnetite nanoparticles

    SciTech Connect

    Rice, Katherine P.; Russek, Stephen E. Shaw, Justin M.; Usselman, Robert J.; Evarts, Eric R.; Silva, Thomas J.; Nembach, Hans T.; Geiss, Roy H.; Arenholz, Elke; Idzerda, Yves U.

    2015-02-09

    High quality 5 nm cubic Tb-doped magnetite nanoparticles have been synthesized by a wet-chemical method to investigate tailoring of magnetic properties for imaging and biomedical applications. We show that the Tb is incorporated into the octahedral 3+ sites. High-angle annular dark-field microscopy shows that the dopant is well-distributed throughout the particle, and x-ray diffraction measurements show a small lattice parameter shift with the inclusion of a rare-earth dopant. Magnetization and x-ray magnetic circular dichroism data indicate that the Tb spins are unpolarized and weakly coupled to the iron spin lattice at room temperature, and begin to polarize and couple to the iron oxide lattice at temperatures below 50 K. Broadband ferromagnetic resonance measurements show no increase in magnetic damping at room temperature for Tb-doped nanoparticles relative to undoped nanoparticles, further confirming weak coupling between Fe and Tb spins at room temperature. The Gilbert damping constant, α, is remarkably low for the Tb-doped nanoparticles, with α = 0.024 ± 0.003. These nanoparticles, which have a large fixed moment, a large fluctuating moment and optically active rare-earth elements, are potential high-relaxivity T1 and T2 MRI agents with integrated optical signatures.

  13. Temperature-dependent bioaccumulation of polycyclic aromatic hydrocarbons.

    PubMed

    Muijs, Barry; Jonker, Michiel T O

    2009-06-15

    Bioaccumulation factors (BAFs) play a key role in risk assessment of chemicals in sediments and soils. For hydrophobic organic chemicals (HOCs), BAFs are, however, difficult to determine and values are mostly obtained by modeling. Apart from a lack of reliable data, the applicability of lab-derived values in the field situation is unknown, as exposure conditions (e.g., temperature, pH, salinity, test species, number of chemicals) are standardized in the lab, whereas they may vary in the field. In this study, the effect of temperature on the bioaccumulation of a series of moderate to very hydrophobic PAHs in aquatic worms was studied by using polydimethylsiloxane (PDMS)-coated solid phase microextraction (SPME) fibers. The results indicated that bioaccumulation of nonmetabolizable HOCs is an exothermic, enthalpy-driven process, thus decreasing with increasing temperature. As such, biotic concentrations may be several times higher in winter than in summertime, which could have ecotoxicological consequences. A two-parameter linear free energy relationship was derived with which PAH bioaccumulation can be predicted from temperature and the chemicals' hydrophobicities. Comparing the determined (thermodynamics of) PAH partitioning into organisms and PDMS indicated that the latter phase cannot be used as a surrogate phase for animal lipids. Still, SPME provides an appropriate analytical tool for the measurement of aqueous concentrations, from which bioaccumulation can subsequently be estimated by using BAFs. PMID:19603671

  14. Enzyme surface rigidity tunes the temperature dependence of catalytic rates.

    PubMed

    Isaksen, Geir Villy; Åqvist, Johan; Brandsdal, Bjørn Olav

    2016-07-12

    The structural origin of enzyme adaptation to low temperature, allowing efficient catalysis of chemical reactions even near the freezing point of water, remains a fundamental puzzle in biocatalysis. A remarkable universal fingerprint shared by all cold-active enzymes is a reduction of the activation enthalpy accompanied by a more negative entropy, which alleviates the exponential decrease in chemical reaction rates caused by lowering of the temperature. Herein, we explore the role of protein surface mobility in determining this enthalpy-entropy balance. The effects of modifying surface rigidity in cold- and warm-active trypsins are demonstrated here by calculation of high-precision Arrhenius plots and thermodynamic activation parameters for the peptide hydrolysis reaction, using extensive computer simulations. The protein surface flexibility is systematically varied by applying positional restraints, causing the remarkable effect of turning the cold-active trypsin into a variant with mesophilic characteristics without changing the amino acid sequence. Furthermore, we show that just restraining a key surface loop causes the same effect as a point mutation in that loop between the cold- and warm-active trypsin. Importantly, changes in the activation enthalpy-entropy balance of up to 10 kcal/mol are almost perfectly balanced at room temperature, whereas they yield significantly higher rates at low temperatures for the cold-adapted enzyme. PMID:27354533

  15. Temperature-dependent bioaccumulation of polycyclic aromatic hydrocarbons.

    PubMed

    Muijs, Barry; Jonker, Michiel T O

    2009-06-15

    Bioaccumulation factors (BAFs) play a key role in risk assessment of chemicals in sediments and soils. For hydrophobic organic chemicals (HOCs), BAFs are, however, difficult to determine and values are mostly obtained by modeling. Apart from a lack of reliable data, the applicability of lab-derived values in the field situation is unknown, as exposure conditions (e.g., temperature, pH, salinity, test species, number of chemicals) are standardized in the lab, whereas they may vary in the field. In this study, the effect of temperature on the bioaccumulation of a series of moderate to very hydrophobic PAHs in aquatic worms was studied by using polydimethylsiloxane (PDMS)-coated solid phase microextraction (SPME) fibers. The results indicated that bioaccumulation of nonmetabolizable HOCs is an exothermic, enthalpy-driven process, thus decreasing with increasing temperature. As such, biotic concentrations may be several times higher in winter than in summertime, which could have ecotoxicological consequences. A two-parameter linear free energy relationship was derived with which PAH bioaccumulation can be predicted from temperature and the chemicals' hydrophobicities. Comparing the determined (thermodynamics of) PAH partitioning into organisms and PDMS indicated that the latter phase cannot be used as a surrogate phase for animal lipids. Still, SPME provides an appropriate analytical tool for the measurement of aqueous concentrations, from which bioaccumulation can subsequently be estimated by using BAFs.

  16. Enzyme surface rigidity tunes the temperature dependence of catalytic rates

    PubMed Central

    Isaksen, Geir Villy; Åqvist, Johan; Brandsdal, Bjørn Olav

    2016-01-01

    The structural origin of enzyme adaptation to low temperature, allowing efficient catalysis of chemical reactions even near the freezing point of water, remains a fundamental puzzle in biocatalysis. A remarkable universal fingerprint shared by all cold-active enzymes is a reduction of the activation enthalpy accompanied by a more negative entropy, which alleviates the exponential decrease in chemical reaction rates caused by lowering of the temperature. Herein, we explore the role of protein surface mobility in determining this enthalpy–entropy balance. The effects of modifying surface rigidity in cold- and warm-active trypsins are demonstrated here by calculation of high-precision Arrhenius plots and thermodynamic activation parameters for the peptide hydrolysis reaction, using extensive computer simulations. The protein surface flexibility is systematically varied by applying positional restraints, causing the remarkable effect of turning the cold-active trypsin into a variant with mesophilic characteristics without changing the amino acid sequence. Furthermore, we show that just restraining a key surface loop causes the same effect as a point mutation in that loop between the cold- and warm-active trypsin. Importantly, changes in the activation enthalpy–entropy balance of up to 10 kcal/mol are almost perfectly balanced at room temperature, whereas they yield significantly higher rates at low temperatures for the cold-adapted enzyme. PMID:27354533

  17. Temperature Dependence in Desorption Induced by Electronic Transitions.

    NASA Astrophysics Data System (ADS)

    Heinz, T. F.; Misewich, J. A.

    1996-03-01

    The process of desorption induced by electronic transitions (DIET) is a subject of great theoretical and experimental interest. We have extended the classic MGR model for DIET to include initial thermal excitation of the adsorbate. In the MGR model, an electronic transition causes the adsorbate to move on excited potential energy surface. Desorption ensues whenever the adsorbate stays in the excited state long enough to acquire the necessary energy to escape from the surface. At finite temperatures, the initial transition occurs from a distribution of ground-state vibrational energies and momenta. Compared with the zero temperature desorption yield some components of the finite-temperature distribution will have enhanced yields while others will have suppressed yields. Averaging over the initial distribution, we find that the desorption yield increases substantially with temperature, particularly for short excited-state lifetimes. These findings and their extension to the multiple excitation regime are relevant to understanding the long-time scale response observed in femtosecond two-pulse correlation measurements of O_2/Pd(111). J. A. Misewich et al., J. Chem. Phys. 100, 736 (1994)

  18. Finite-element technique applied to heat conduction in solids with temperature dependent thermal conductivity

    NASA Technical Reports Server (NTRS)

    Aguirre-Ramirez, G.; Oden, J. T.

    1969-01-01

    Finite element method applied to heat conduction in solids with temperature dependent thermal conductivity, using nonlinear constitutive equation for heat ABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGH

  19. Lava flow dynamics driven by temperature-dependent viscosity variations

    NASA Astrophysics Data System (ADS)

    Diniega, S.; Smrekar, S. E.; Anderson, S. W.; Stofan, E. R.

    2011-12-01

    As lava viscosity can change 1-2 orders of magnitude due to small changes in temperature, several studies have predicted the formation of low-viscosity/high-temperature "fingers" (similar to a Saffman-Taylor type instability) within an initially near-uniform flow. We examine the onset and evolution of such fingers within a uniform lava sheet flow due to an influx of lava with slightly-variable temperature. We assume Hele-shaw-type geometry (depth << other dimensions), Newtonian and laminar fluid flow, a simple Nahme's exponential law relating temperature and viscosity, and radiative heat-loss through the flow's upper surface. Through the use of numerical simulation and steady-state analysis of model equations, we identify solutions that provide pahoehoe lava flows with a natural mechanism for the formation of lava channels/tubes within a sheet flow. Preliminary results indicate that flow-focusing occurs rapidly due to the thermo-viscosity relation, but zones of hotter flow commonly settle into a new steady-state and it is difficult to create perpetually-lengthening hot-fingers of lava (which seem more physically similar to developing lava tubes). This suggests that additional and/or discontinuous physical processes (such as decreasing radiative rates due to thickening of the surface crust or crystallization abruptly retarding flow within lower-temperature regions) may play important roles in the continued growth of preferred flow zones. We also derive qualitative and quantitative estimates of environmental controls on finger size, spacing, and location. This work has application to Earth and planetary volcanology studies as pahoehoe flows dominate terrestrial basaltic lavas and the eruption/emplacement mechanics that yield long lava flows on the Earth and Mars are not yet well understood.

  20. A method to correct for temperature dependence and measure simultaneously dose and temperature using a plastic scintillation detector

    PubMed Central

    Therriault-Proulx, Francois; Wootton, Landon; Beddar, Sam

    2015-01-01

    Plastic scintillation detectors (PSDs) work well for radiation dosimetry. However, they show some temperature dependence, and a priori knowledge of the temperature surrounding the PSD is required to correct for this dependence. We present a novel approach to correct PSD response values for temperature changes instantaneously and without the need for prior knowledge of the temperature value. In addition to rendering the detector temperature-independent, this approach allows for actual temperature measurement using solely the PSD apparatus. With a temperature-controlled water tank, the temperature was varied from room temperature to more than 40°C and the PSD was used to measure the dose delivered from a cobalt-60 photon beam unit to within an average of 0.72% from the expected value. The temperature was measured during each acquisition with the PSD and a thermocouple and values were within 1°C of each other. The depth-dose curve of a 6-MV photon beam was also measured under warm non-stable conditions and this curve agreed to within an average of −0.98% from the curve obtained at room temperature. The feasibility of rendering PSDs temperature-independent was demonstrated with our approach, which also enabled simultaneous measurement of both dose and temperature. This novel approach improves both the robustness and versatility of PSDs. PMID:26407188

  1. Conversion of crude methanol to gasoline with extraction

    SciTech Connect

    Harandi, M.N.; Owen, H.; Smyth, S.C.

    1987-11-24

    A continuous process for converting crude methanol to gasoline boiling range hydrocarbons in a catalytic reaction zone with a crystalline acid zeolite catalyst at elevated temperature and pressure is described comprising the steps of: (a) contacting a crude methanol feedstock containing a minor amount of water with a liquid hydrocarbon extraction stream under extraction conditions favorable to selective extraction of the methanol, thereby providing an extract liquid stream rich in methanol and an aqueous raffinate stream lean in methanol; (b) charging the extracted methanol substantially free of water to the reaction zone under process conditions to convert substantially all methanol to hydrocarbons; (c) cooling reaction effluent to recover aqueous liquid by-product stream, gas rich in C/sub 2/ + hydrocarbons, liquid rich in C/sub 3/-C/sub 4/ and C/sub 5/ + hydrocarbons; and (d) contacting crude methanol feedstock with at least a portion of the liquid hydrocarbons employed as extraction liquid.

  2. Temperature-dependent high resolution absorption cross sections of propane

    NASA Astrophysics Data System (ADS)

    Beale, Christopher A.; Hargreaves, Robert J.; Bernath, Peter F.

    2016-10-01

    High resolution (0.005 cm-1) absorption cross sections have been measured for pure propane (C3H8). These cross sections cover the 2550-3500 cm-1 region at five temperatures (from 296 to 700 K) and were measured using a Fourier transform spectrometer and a quartz cell heated by a tube furnace. Calibrations were made by comparison to the integrated cross sections of propane from the Pacific Northwest National Laboratory. These are the first high resolution absorption cross sections of propane for the 3 μm region at elevated temperatures. The cross sections provided may be used to monitor propane in combustion environments and in astronomical sources such as the auroral regions of Jupiter, brown dwarfs and exoplanets.

  3. Temperature dependence of porous silica antireflective (AR) coating

    NASA Astrophysics Data System (ADS)

    Tang, Yongxing; Le, Yueqin; Zhang, Weiqing; Jiang, Minhua; Sun, Jinren; Liu, Xiaolin

    1998-02-01

    In this paper, the antireflective coatings consisting of porous silica particles from a silica sol are applied by dip method. The relationships among composition, viscosity and temperature have been studied. The coating homogeneity is opium for the laser wavelengths of 1064 nm, 532 nm and 355 nm. The peak transmission of coated BK-7 glass substrate is higher than 99.5%. The laser induced damage thresholds of the antireflective coatings were range of 7 - 10 J/cm2, for 1 ns pulse width and 1064 nm wavelength. These damage thresholds were suitable for our national ICF program. It is noted that the optical homogeneity of coating and the viscosity of coating sol were strongly influenced by the temperatures in the duration of sol ripening.

  4. Rate dependent of strength in metallic glasses at different temperatures.

    PubMed

    Wang, Y W; Bian, X L; Wu, S W; Hussain, I; Jia, Y D; Yi, J; Wang, G

    2016-01-01

    The correlation between the strength at the macroscale and the elastic deformation as well as shear cracking behavior at the microscale of bulk metallic glasses (BMGs) is investigated. The temperatures of 298 K and 77 K as well as the strain rate ranging from 10(-6) s(-1) to 10(-2) s(-1) are applied to the BMGs, in which the mechanical responses of the BMGs are profiled through the compression tests. The yield strength is associated with the activation of the elementary deformation unit, which is insensitive to the strain rate. The maximum compressive strength is linked to the crack propagation during shear fracture process, which is influenced by the strain rate. The cryogenic temperature of 77 K significantly improves the yield strength and the maximum compressive strength of the BMGs. PMID:27270688

  5. Temperature dependence of nanoscale friction for Fe on YBCO

    NASA Astrophysics Data System (ADS)

    Altfeder, Igor; Krim, Jacqueline

    2012-05-01

    A magnetic probe microscopy study of levitation and atomic-scale friction is reported for Fe on YBCO (Tc = 92.5 K) in the temperature range 65-293 K. Below Tc, the friction coefficient is constant and exhibits no correlation with the strength of superconducting levitation forces. Above Tc, the friction coefficient increases progressively, and nearly doubles between Tc and room temperature. The results are discussed within the context of the underlying atomic-scale electronic and phononic mechanisms that give rise to friction, and it is concluded that contact electrification and static electricity may play a significant role in the non-superconducting phase. Given that the properties of YBCO can be finely tuned, the results point the way to a variety of interesting studies of friction and superconductors.

  6. Rate dependent of strength in metallic glasses at different temperatures

    PubMed Central

    Wang, Y. W.; Bian, X. L.; Wu, S. W.; Hussain, I.; Jia, Y. D.; Yi, J.; Wang, G.

    2016-01-01

    The correlation between the strength at the macroscale and the elastic deformation as well as shear cracking behavior at the microscale of bulk metallic glasses (BMGs) is investigated. The temperatures of 298 K and 77 K as well as the strain rate ranging from 10−6 s−1 to 10−2 s−1 are applied to the BMGs, in which the mechanical responses of the BMGs are profiled through the compression tests. The yield strength is associated with the activation of the elementary deformation unit, which is insensitive to the strain rate. The maximum compressive strength is linked to the crack propagation during shear fracture process, which is influenced by the strain rate. The cryogenic temperature of 77 K significantly improves the yield strength and the maximum compressive strength of the BMGs. PMID:27270688

  7. Temperature dependence of the magnetic excitations in Gd

    SciTech Connect

    Cable, J.W.; Nicklow, R.M.; Wakabayashi, N.

    1985-08-01

    Magnetic excitation spectra were measured for Gd in the and directions over the temperature range from 9 to 320/sup 0/K (T/sub c/ = 292.7/sup 0/K). Spin-wave-like modes are observed at T greater than or equal to T/sub c/. The critical wavevector for the appearance of these modes is proportional to the inverse correlation length.

  8. Evaporation and condensation at a liquid surface. II. Methanol

    NASA Astrophysics Data System (ADS)

    Matsumoto, Mitsuhiro; Yasuoka, Kenji; Kataoka, Yosuke

    1994-11-01

    The rates of evaporation and condensation of methanol under the vapor-liquid equilibrium condition at the temperature of 300 and 350 K are investigated with a molecular dynamics computer simulation. Compared with the argon system (reported in part I), the ratio of self-reflection is similar (˜10%), but the ratio of molecule exchange is several times larger than the argon, which suggests that the conventional assumption of condensation as a unimolecular process completely fails for associating fluids. The resulting total condensation coefficient is 20%-25%, and has a quantitative agreement with a recent experiment. The temperature dependence of the evaporation-condensation behavior is not significant.

  9. Temperature dependent primary irritant dermatitis from lemon perfume.

    PubMed

    Rothenborg, H W; Menné, T; Sjolin, K E

    1977-02-01

    In a recent outbreak of hand eczema amongst cleaning personnel after the introduction of a new, lemon-scented detergent, it was noted that the patients complained of a burning, stinging sensation when their hands were submerged in hot detergent solutions. Since routine patch testing with the Standard Series and perfume components was of no help in pinpointing the responsible agent, testing with selected perfume components was repeated at higher temperatures. Identical tests were placed on both forearms for 20 min, one arm being exposed to 43 degrees C, the other to 23-25 degrees C. Little or no reaction was seen on the "cold" arm, whereas the lemon perfume component Citral proved to be a strong primary irritant at higher temperatures. Histological examination of the test sites showed the reaction to be of a toxic (primary irritant) nature. Surprisingly, the toxic character could still be recongized in biopsies taken as late as 48 h after exposure. It is suggested that: 1. Heat plays an important part in the outbreak of primary irritant (toxic) dermatitis and can be used as an accelerating factor when testing for primary irritants. 2. It is important to be sure that detergents and detergent perfumes do not contain substances which act as irritants at the temperatures at which they are habitually used (45-50 degrees C). 3. We probably ought to use lukewarm rather than hot water for manual dishwashing and cleaning whenever it is possible.

  10. Temperature dependence of histidine ionization constants in myoglobin.

    PubMed Central

    Bhattacharya, S; Lecomte, J T

    1997-01-01

    The standard enthalpy of ionization of six titratable histidines in horse metaquomyoglobin was determined by repeating proton NMR titrations as a function of temperature and using the van't Hoff relationship. It was found that deltaH degrees varies between 16 and 37 kJ mol(-1) in the protein, compared with a value of 29 kJ mol(-1) in free histidine. The standard entropy change was evaluated by combining the enthalpy and free energy changes derived from the pKa values. Although the entropy change could not be precisely and accurately obtained by this method, it could be established that it spans a wide range, from -60 to 0 J K(-1) mol(-1), about the value of -23 J K(-1) mol(-1) for the free histidine. The entropy change was used within the framework of enthalpy-entropy compensation to partition the solvation component from the standard thermodynamic quantities for each of the titrating residues. It was shown that the partitioning of the values in the protein is not readily understood in terms of solvent accessibility or electrostatic interactions. The contribution of solvation effects to the temperature response appeared to be significant only in the case of His-119 and His-48. The standard quantities were also used to explore the energetics of proton binding in the native state at temperatures below the onset of thermal denaturation. Images FIGURE 6 PMID:9414235

  11. Efficiency and temperature dependence of water removal by membrane dryers

    NASA Technical Reports Server (NTRS)

    Leckrone, K. J.; Hayes, J. M.

    1997-01-01

    The vapor pressure of water in equilibrium with sorption sites within a Nafion membrane is given by log P(WN) = -3580/T + 10.01, where P(WN) is expressed in Torr and T is the membrane temperature, in kelvin. The efficiency of dryers based on selective permeation of water through Nafion can thus be enhanced by cooling the membrane. Residual water in effluents exceeds equilibrium levels if insufficient time is allowed for water to diffuse to the membrane surface as gas passes through the dryer. For tubular configurations, this limitation can be avoided if L > or = Fc(10(3.8)/120 pi D), where L is the length of the tubular membrane, in centimeters, Fc is the gas flow rate, in mL/ min, and D is the diffusion coefficient for water in the carrier gas at the operating temperature of the dryer, in cm2/s. An efficient dryer that at room temperature dries gas to a dew point of -61 degrees C is described; the same dryer maintained at 0 degrees C yields a dew point of -80 degrees C and removes water as effectively as Mg(ClO4)2 or a dry ice/acetone slush. The use of Nafion membranes to construct devices capable of delivering gas streams with low but precisely controlled humidities is discussed.

  12. Temperature Dependence of the Microwave Dielectric Behavior of Selected Materials

    NASA Technical Reports Server (NTRS)

    Dahiya, Jai N.

    1996-01-01

    A very sensitive thermal bath is designed to study the effect of temperature on the microwave dielectric response of a sample of nickel oxide and cobalt oxide. The sample under study is placed in a microwave resonant cavity in the TE(sub 011) mode. The perturbations of the electric field are recorded in terms of the frequency shifts and the width changes of the microwave resonant signal as seen on the oscilloscope. The real and imaginary parts of the dielectric constant are calculated by using the values of the frequency shifts and width changes in the Slater's perturbation equations. The dielectric behavior of nickel oxide and cobalt oxide and also their mixture is studied at a microwave frequency of 9.2 GHz as a function of temperature. A computer program is written to analyze the dielectric constant values at different temperatures. The resonant cavity seems to be very sensitive in studying the dielectric relaxation mechanism in these materials. The dielectric behavior is also analyzed using Debye's equations, and relaxation times for these materials are calculated at microwave frequencies.

  13. A physical explanation of the temperature dependence of physiological processes mediated by cilia and flagella.

    PubMed

    Humphries, Stuart

    2013-09-01

    The majority of biological rates are known to exhibit temperature dependence. Here I reveal a direct link between temperature and ecologically relevant rates such as swimming speeds in Archaea, Bacteria, and Eukaryotes as well as fluid-pumping and filtration rates in many metazoans, and show that this relationship is driven by movement rates of cilia and flagella. I develop models of the temperature dependence of cilial and flagellar movement rates and evaluate these with an extensive compilation of data from the literature. The model captures the temperature dependence of viscosity and provides a mechanistic and biologically interpretable explanation for the temperature dependence of a range of ecologically relevant processes; it also reveals a clear dependence on both reaction rate-like processes and the physics of the environment. The incorporation of viscosity allows further insight into the effects of environmental temperature variation and of processes, such as disease, that affect the viscosity of blood or other body fluids.

  14. Temperature dependent elasticity and damping in dehydrated sandstone

    NASA Astrophysics Data System (ADS)

    Darling, T. W.; Struble, W.

    2013-12-01

    Work reported previously at this conference, outlining our observation of anomalously large elastic softening and damping in dehydrated Berea sandstone at elevated temperatures, has been analysed to study shear and compressional effects separately. Modeling of the sample using COMSOL software was necessary to identify modes, as the vibration spectrum of the sample is poorly approximated by a uniform isotropic solid. The first torsional mode of our evacuated, dry, core softens at nearly twice the rate of Young's modulus modes (bending and compressional) and is also damped nearly twice as strongly as temperature increases. We consider two possible models for explaining this behavior, based on the assumption that the mechanical properties of the sandstone are dominated by the framework of quartz grains and polycrystalline cementation, neglecting initially the effects of clay and feldspar inclusions. The 20cm x 2.54cm diameter core is dry such that the pressure of water vapor in the experiment chamber is below 1e-6 Torr at 70C, suggesting that surface water beyond a small number of monolayers is negligible. Our models consider (1) enhanced sliding of grain boundaries in the cementation at elevated temperature and reduced internal water content, and (2) strain microcracking of the cementatioin at low water content due to anisotropic expansion in the quartz grains. In model (1) interfaces parallel to polyhedral grain surfaces were placed in the cement bonds and assigned frictional properties. Model (2) has not yet been implemented. The overall elasticity of a 3-D several-grain model network was determined by modeling quasistatic loading and measuring displacements. Initial results with a small number of grains/bonds suggests that only the first model provides softening and damping for all the modes, however the details of the effects of defect motioin at individual interfaces as the source for the frictional properties is still being evaluated. Nonlinear effects are

  15. Time and temperature dependences of the magnetization reversal in a Co /Pd multilayer film

    NASA Astrophysics Data System (ADS)

    Brown, C. Scott; Harrell, J. W.; Matsunuma, S.

    2006-09-01

    The time and temperature dependences of the magnetization reversal have been measured in a high-coercivity Co /Pd multilayer film characterized by nucleation and domain wall motion. The time and field dependences of magnetic relaxation curves at room temperature were interpreted in terms of an energy barrier that depends linearly on reverse field, suggesting a Sharrock-type [M. P. Sharrock and J. T. McKinney, IEEE Trans. Magn. 17, 3020 (1981)] equation for the time and temperature dependences of coercivity with unity exponent. The sweep rate and temperature dependence of the coercivity were analyzed using the Sharrock equation to obtain the temperature dependence of the intrinsic, short-time coercivity H0 and the zero-field energy barrier E0. A single power law behavior was found for H0 versus the saturation magnetization Ms.

  16. Molecular players involved in temperature-dependent sex determination and sex differentiation in Teleost fish

    PubMed Central

    2014-01-01

    The molecular mechanisms that underlie sex determination and differentiation are conserved and diversified. In fish species, temperature-dependent sex determination and differentiation seem to be ubiquitous and molecular players involved in these mechanisms may be conserved. Although how the ambient temperature transduces signals to the undifferentiated gonads remains to be elucidated, the genes downstream in the sex differentiation pathway are shared between sex-determining mechanisms. In this paper, we review recent advances on the molecular players that participate in the sex determination and differentiation in fish species, by putting emphasis on temperature-dependent sex determination and differentiation, which include temperature-dependent sex determination and genetic sex determination plus temperature effects. Application of temperature-dependent sex differentiation in farmed fish and the consequences of temperature-induced sex reversal are discussed. PMID:24735220

  17. Dynamical properties of water-methanol solutions.

    PubMed

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Cirino; Vasi, Sebastiano; Stanley, H Eugene

    2016-02-14

    We study the relaxation times tα in the water-methanol system. We examine new data and data from the literature in the large temperature range 163 < T < 335 K obtained using different experimental techniques and focus on how tα affects the hydrogen bond structure of the system and the hydrophobicity of the alcohol methyl group. We examine the relaxation times at a fixed temperature as a function of the water molar fraction XW and observe two opposite behaviors in their curvature when the system moves from high to low T regimes. This behavior differs from that of an ideal solution in that it has excess values located at different molar fractions (XW = 0.5 for high T and 0.75 in the deep supercooled regime). We analyze the data and find that above a crossover temperature T ∼ 223 K, hydrophobicity plays a significant role and below it the water tetrahedral network dominates. This temperature is coincident with the fragile-to-strong dynamical crossover observed in confined water and supports the liquid-liquid phase transition hypothesis. At the same time, the reported data suggest that this crossover temperature (identified as the Widom line temperature) also depends on the alcohol concentration.

  18. The Methanol Economy Project

    SciTech Connect

    Olah, George; Prakash, G. K.

    2014-02-01

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO2 capture using supported amines, co-electrolysis of CO2 and water to formate and syngas, decomposition of formate to CO2 and H2, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields.

  19. Temperature Dependence of Diffusivities in Liquid Elements (LMD)

    NASA Technical Reports Server (NTRS)

    Banish, R. Michael; Rosenberger, Franz

    1998-01-01

    This research was to advance the understanding of diffusion mechanisms in liquid metals and alloys through accurate diffusivity measurements over a wide range of temperatures, including the proximity of the materials melting points. Specifically, it was driven towards developing a methodology (and subsequent flight hardware) to enable several diffusion coefficient measurements (i.e., at several different temperatures) to be performed using a single sample. The Liquid Metal Diffusion (LMD) was funded as a Flight Definition Project in February 1993 in response to NRA 91-OSSA-20 (Microgravity Science and Applications Division). The Science Concept Review for LAID was held during April 1994. In January 1995 we were informed that we had failed this review and the project was change to ground-based activities only. A new proposal was submitted for the next NRA addressing the panels concerns. As part of NASA's Risk Mitigation program, a scaled-down version of the hardware was funded in July of 1995 for a flight opportunity utilizing experiment on the Microgravity Isolation Mount. This experiment was to determine the self-diffusivity of indium at 185 C. The LMD was transferred to the Mir Space Station in STS-81 and returned on STS-84 (January - May 1997). Three, out of five, self-diffusion data sets were returned. A description of this experiment/hardware is included below. This summary is only intended to give the reader an overview of the results obtained for the tasks outlined in the original proposal. Research that was not published is explained in more detail. At the end of this report is a list of refereed publications and invited talks that were given as a result of this work. The reader is directed to these for further details. Attachment: Real-time diffusivity measurements in liquids at several temperatures with one sample, On the insensitivity of liquid diffusivity measurements to deviations from 1D transport, and Numerical simulations of the convective

  20. THE TEMPERATURE-DEPENDENT NATURE OF CORONAL DIMMINGS

    SciTech Connect

    Robbrecht, Eva; Wang Yiming E-mail: Yi.Wang@nrl.navy.mi

    2010-09-01

    The opening-up of the magnetic field during solar eruptive events is often accompanied by a dimming of the local coronal emission. From observations of filament eruptions recorded with the Extreme-Ultraviolet Imager on STEREO during 2008-2009, it is evident that these dimmings are much more pronounced in 19.5 nm than in the lower-temperature line 17.1 nm, as viewed either on the disk or above the limb. We conclude that most of the cooler coronal plasma is not ejected but remains gravitationally bound when the loops open up. This result is consistent with Doppler measurements by Imada and coworkers, who found that the upflow speeds in a transient coronal hole increased dramatically above a temperature of 1 MK; it is also consistent with the quasistatic behavior of polar plumes, as compared with the hotter interplume regions that are the main source of the fast solar wind. When the open flux reconnects and closes down again, the trapped plasma is initially heated to such high temperatures that it is no longer visible at Fe IX 17.1 nm. Correspondingly, 17.1 nm images show a dark ribbon or 'heat wave' propagating away from the polarity inversion line and coinciding with the brightened Fe XV 28.4 nm and Fe XII 19.5 nm post-eruptive loops and their footpoint areas. Such dark ribbons provide a clear example of dimmings that are not caused by a density depletion. The propagation of the 'heat wave' is driven by the closing-down, not the opening-up, of the flux and can be observed both off-limb and on-disk.

  1. Temperature dependent cubic and hexagonal close packing in micellar structures.

    PubMed

    Wolff, Nicole; Gerth, Stefan; Gutfreund, Philipp; Wolff, Max

    2014-11-14

    The interfacial structure and phase diagram of a micellar solution formed by the three block copolymer (EO20-PO70-EO20) also known as P123 solved in deuterated water close to a solid boundary is investigated with respect to temperature. We find a hysteretic behavior of the d-spacing of the micellar crystal and a spontaneous change in the lateral correlation length going hand in hand with a structural reorganization between cubic and hexagonal. The phase transitions may be initiated by a change in the shape of the micelles from spherical to elongated together with a minimization of the polymer water interface. PMID:25212786

  2. Engineering a Hyperthermophilic Archaeon for Temperature-Dependent Product Formation

    SciTech Connect

    Basen, M; Sun, JS; Adams, MWW

    2012-02-24

    Microorganisms growing near the boiling point have enormous biotechnological potential but only recently have molecular engineering tools become available for them. We have engineered the hyperthermophilic archaeon Pyrococcus furiosus, which grows optimally at 100 degrees C, to switch its end products of fermentation in a temperature-controlled fashion without the need for chemical inducers. The recombinant strain (LAC) expresses a gene (ldh) encoding lactate dehydrogenase from the moderately thermophilic Caldicellulosiruptor bescii (optimal growth temperature [T-opt] of 78 degrees C) controlled by a "cold shock" promoter that is upregulated when cells are transferred from 98 degrees C to 72 degrees C. At 98 degrees C, the LAC strain fermented sugar to produce acetate and hydrogen as end products, and lactate was not detected. When the LAC strain was grown at 72 degrees C, up to 3 mM lactate was produced instead. Expression of a gene from a moderately thermophilic bacterium in a hyperthermophilic archaeon at temperatures at which the hyperthermophile has low metabolic activity provides a new perspective to engineering microorganisms for bioproduct and biofuel formation. IMPORTANCE Extremely thermostable enzymes from microorganisms that grow near or above the boiling point of water are already used in biotechnology. However, the use of hyperthermophilic microorganisms themselves for biotechnological applications has been limited by the lack of their genetic accessibility. Recently, a genetic system for Pyrococcus furiosus, which grows optimally near 100 degrees C, was developed in our laboratory. In this study, we present the first heterologous protein expression system for a microorganism that grows optimally at 100 degrees C, a first step towards the potential expression of genes involved in biomass degradation or biofuel production in hyperthermophiles. Moreover, we developed the first system for specific gene induction in P. furiosus. As the cold shock promoter

  3. Binary accretion rates: dependence on temperature and mass ratio

    NASA Astrophysics Data System (ADS)

    Young, M. D.; Clarke, C. J.

    2015-09-01

    We perform a series of 2D smoothed particle hydrodynamics simulations of gas accretion on to binaries via a circumbinary disc, for a range of gas temperatures and binary mass ratios (q). We show that increasing the gas temperature increases the accretion rate on to the primary for all values of the binary mass ratio: for example, for q = 0.1 and a fixed binary separation, an increase of normalized sound speed by a factor of 5 (from our `cold' to `hot' simulations) changes the fraction of the accreted gas that flows on to the primary from 10 to ˜40 per cent. We present a simple parametrization for the average accretion rate of each binary component accurate to within a few per cent and argue that this parametrization (rather than those in the literature based on warmer simulations) is relevant to supermassive black hole accretion and all but the widest stellar binaries. We present trajectories for the growth of q during circumbinary disc accretion and argue that the period distribution of stellar `twin' binaries is strong evidence for the importance of circumbinary accretion. We also show that our parametrization of binary accretion increases the minimum mass ratio needed for spin alignment of supermassive black holes to q ˜ 0.4, with potentially important implications for the magnitude of velocity kicks acquired during black hole mergers.

  4. Seafloor Weathering Dependence on Temperature and Dissolved Inorganic Carbon

    NASA Astrophysics Data System (ADS)

    Abbot, D. S.; Farahat, N. X.; Archer, D. E.

    2015-12-01

    Most thinking on Earth's carbon cycle implicates silicate weathering as the dominant control of atmospheric CO2 concentration over long timescales. Recent analyses of alteration of basalt at the seafloor, however, suggest that seafloor weathering (low-temperature (<60C) chemical alteration of the upper oceanic crust due to hydrothermal seawater circulation) increases dramatically in warm, high CO2 periods of Earth's history. This raises the possibility that seafloor weathering could complement silicate weathering in maintaining Earth's long term climate stability. Moreover, seafloor weathering would be the only type of weathering available on an exoplanet entirely covered by water, so understanding how it might work is essential for understanding the habitable zones of such waterworlds. We have built a 2D numerical model of the flow of seawater through porous basalt coupled to chemical alteration reactions that can calculate alkalinity fluxes and carbonate deposition (seafloor weathering). I will present simulations in which we vary the seawater temperature and dissolved inorganic carbon concentration, which are boundary conditions to our model, over large ranges. These results will provide a constraint on the ability of seafloor weathering to act as an effective climate buffer on Earth and other planets. I can't give you a preview of the results yet because at the time of writing this abstract we haven't completed the simulations!

  5. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    NASA Astrophysics Data System (ADS)

    Hathwar, Raghuraj; Dutta, Maitreya; Koeck, Franz A. M.; Nemanich, Robert J.; Chowdhury, Srabanti; Goodnick, Stephen M.

    2016-06-01

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco® Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures

  6. Temperature Dependence on The Synthesis of Jatropha Biolubricant

    NASA Astrophysics Data System (ADS)

    Gunam Resul, Muhammad Faiz M.; Idaty Mohd Ghazi, Tinia; Idris, Azni

    2011-02-01

    Jatropha oil has good potential as the renewable energy as well as lubricant feedstock. The synthesis of jatropha biolubricant was performed by transesterification of jatropha methyl ester (JME) with trimethyl-ol-propane (TMP) with sodium methoxide (NaOCH3) catalyst. The effects of temperature on the synthesis were studied at a range between 120°C and 200°C with pressure kept at 10mbar. The conversion of JME to jatropha biolubricant was found to be the highest (47%) at 200°C. However, it was suggested that the optimum temperature of the reaction is at 150°C due to insignificant improvement in biolubricant production. To maintain forward reaction, the excess amount of JME was maintained at 3.9:1 ratios to TMP. Kinetic study was done and compared. The synthesis was found to follow a second order reaction with overall rate constant of 1.49 × 10-1 (%wt/wt.min.°C)-1. The estimated activation energy was 3.94 kJ/mol. Pour point for jatropha biolubricant was at -3°C and Viscosity Index (VI) ranged from 178 to 183. The basic properties of jatropha biolubricant, pour point and viscosities are found comparable to other plant based biolubricant, namely palm oil and soybean based biolubricant.

  7. Temperature dependent effects during Ag deposition on Cu(110)

    SciTech Connect

    Taylor, T.N.; Muenchausen, R.E.; Hoffbauer, M.A.; Denier van der Gon, A.W.; van der Veen, J.F.; FOM-Instituut voor Atoom-en Molecuulfysica, Amsterdam )

    1989-01-01

    The composition, structure, and morphology of ultrathin films grown by Ag deposition on Cu(110) were monitored as a function of temperature using low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and medium energy ion scattering (MEIS). Aligned backscattering measurements with 150 keV He ions indicate that the Ag resides on top of the Cu and there is no significant surface compound formation. Measurements with LEED show that the Ag is initially confined to the substrate troughs. Further deposition forces the Ag out of the troughs and results in a split c(2 {times} 4) LEED pattern, which is characteristic of a distorted Ag(111) monolayer template. As verified by both AES and MEIS measurements, postmonolayer deposition of Ag on Cu(110) at 300K leads to a pronounced 3-dimensional clustering. Ion blocking analysis of the Ag clusters show that the crystallites have a (110)-like growth orientation, implying that the Ag monolayer template undergoes a rearrangement. These data are confirmed by low temperature LEED results in the absence of clusters, which indicate that Ag multilayers grow from a Ag--Cu interface where the Ag is captured in the troughs. Changes observed in the film structure and morphology are consistent with a film growth mechanism that is driven by overlayer strain response to the substrate corrugation. 16 refs., 4 figs.

  8. Microbial dynamics of commercial makgeolli depending on the storage temperature.

    PubMed

    Kim, Hye-Ryun; Lee, Ae Ran; Kim, Jae-Ho; Ahn, Byung-Hak

    2012-08-01

    Market fresh makgeolli was stored at different temperatures of 4°C and 25°C to assess the change of the microbial diversity according to the storage temperature and period. Yeast counts increased until day 3 of storage and decreased thereafter. General and lactic acid bacterial counts continuously increased during storage. The data indicated that the control of growth of microorganisms, particularly general bacteria and lactic acid bacteria (LAB), is essential. Total acid levels started to decrease in the makgeolli stored at 4°C, and increased from day 6 of storage in the makgeolli stored at 25°C. The increase of total acid in the non-refrigerated condition greatly affected the quality of makgeolli. In both the fresh makgeolli samples stored at 4°C and 25°C, yeast (Saccharomyces cerevisiae) and molds (Aspergillus tubingensis, Candida glaebosa, and Aspergillus niger) were noted. Denaturing gradient gel electrophoresis (DGGE) band patterns were almost constant regardless of the storage period. As for bacteria, Lactobacillus crustorum, L. brevis, and Microlaena stipoides were found in the makgeolli stored at 4°C, and L. crustorum, Lactobacillus sp., L. plantarum, L. brevis, L. rhamnosus, and L. similis were found in the makgeolli stored at 25°C. In particular, in the makgeolli stored at 25°C, L. crustorum and L. plantarum presented dark bands and were identified as the primary microorganisms that affected spoilage of fresh makgeolli. PMID:22713986

  9. Engineering Escherichia coli for methanol conversion.

    PubMed

    Müller, Jonas E N; Meyer, Fabian; Litsanov, Boris; Kiefer, Patrick; Potthoff, Eva; Heux, Stéphanie; Quax, Wim J; Wendisch, Volker F; Brautaset, Trygve; Portais, Jean-Charles; Vorholt, Julia A

    2015-03-01

    Methylotrophic bacteria utilize methanol and other reduced one-carbon compounds as their sole source of carbon and energy. For this purpose, these bacteria evolved a number of specialized enzymes and pathways. Here, we used a synthetic biology approach to select and introduce a set of "methylotrophy genes" into Escherichia coli based on in silico considerations and flux balance analysis to enable methanol dissimilation and assimilation. We determined that the most promising approach allowing the utilization of methanol was the implementation of NAD-dependent methanol dehydrogenase and the establishment of the ribulose monophosphate cycle by expressing the genes for hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloisomerase (Phi). To test for the best-performing enzymes in the heterologous host, a number of enzyme candidates from different donor organisms were selected and systematically analyzed for their in vitro and in vivo activities in E. coli. Among these, Mdh2, Hps and Phi originating from Bacillus methanolicus were found to be the most effective. Labeling experiments using (13)C methanol with E. coli producing these enzymes showed up to 40% incorporation of methanol into central metabolites. The presence of the endogenous glutathione-dependent formaldehyde oxidation pathway of E. coli did not adversely affect the methanol conversion rate. Taken together, the results of this study represent a major advancement towards establishing synthetic methylotrophs by gene transfer.

  10. Advances in direct oxidation methanol fuel cells

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Narayanan, S. R.; Vamos, E.; Frank, H.; Halpert, G.; Laconti, Anthony B.; Kosek, J.; Prakash, G. K. Surya; Olah, G. A.

    1993-01-01

    Fuel cells that can operate directly on fuels such as methanol are attractive for low to medium power applications in view of their low weight and volume relative to other power sources. A liquid feed direct methanol fuel cell has been developed based on a proton exchange membrane electrolyte and Pt/Ru and Pt catalyzed fuel and air/O2 electrodes, respectively. The cell has been shown to deliver significant power outputs at temperatures of 60 to 90 C. The cell voltage is near 0.5 V at 300 mA/cm(exp 2) current density and an operating temperature of 90 C. A deterrent to performance appears to be methanol crossover through the membrane to the oxygen electrode. Further improvements in performance appear possible by minimizing the methanol crossover rate.

  11. Temperature Dependence of Errors in Parameters Derived from Van't Hoff Studies.

    ERIC Educational Resources Information Center

    Dec, Steven F.; Gill, Stanley J.

    1985-01-01

    The method of Clarke and Glew is broadly applicable to studies of the temperature dependence of equilibrium constant measurements. The method is described and examples of its use in comparing calorimetric results and temperature dependent gas solubility studies are provided. (JN)

  12. Dependence of electric strength on the ambient temperature

    SciTech Connect

    Čaja, Alexander E-mail: patrik.nemec@fstroj.uniza.sk Nemec, Patrik E-mail: patrik.nemec@fstroj.uniza.sk Malcho, Milan E-mail: patrik.nemec@fstroj.uniza.sk

    2014-08-06

    At present, the volume concentration of electronic components in their miniaturization to different types of microchips and increasing their performance raises the problem of cooling such elements due to the increasing density of heat flow of heat loss. Compliance with safe operating temperature of active semiconductor element is very closely related to the reliability and durability not only components, but also the entire device. Often it is also necessary to electrically isolate the unit from the side of the cooler air. Cooling demand by natural convection is typical for applications with high operating reliability. To the reliability of the system for removing heat loss increased, it is necessary to minimize need to use the mechanically or electrically powered elements, such as circulation pumps or fans. Experience to date with applications of heat pipe in specific systems appears to be the most appropriate method of cooling.

  13. Symmetry-, time-, and temperature-dependent strength of carbon nanotubes

    PubMed Central

    Dumitrica, Traian; Hua, Ming; Yakobson, Boris I.

    2006-01-01

    Although the strength of carbon nanotubes has been of great interest, their ideal value has remained elusive both experimentally and theoretically. Here, we present a comprehensive analysis of underlying atomic mechanisms and evaluate the yield strain for arbitrary nanotubes at realistic conditions. For this purpose, we combine detailed quantum mechanical computations of failure nucleation and transition-state barriers with the probabilistic approach of the rate theory. The numerical results are then summarized in a concise set of equations for the breaking strain. We reveal a competition between two alternative routes of brittle bond breaking and plastic relaxation, determine the domains of their dominance, and map the nanotube strength as a function of chiral symmetry, tensile test time, and temperature. PMID:16581906

  14. Radiation influence on the temperature-dependent parameters of fluids.

    PubMed

    Bulavin, L A; Cherevko, K V; Gavryushenko, D A; Sysoev, V M; Vlasenko, T S

    2016-03-01

    Based on the fundamental Bogolyubov chain of equations, a model relating the structural and thermophysical properties of the nonequilibrium liquid systems under irradiation in stationary state is introduced. The obtained results suggest that the thermophysical properties of the liquid systems under irradiation are defined by the "effective temperature" that can be calculated from the perturbed momentum distribution functions of the systems. It is shown that the structural changes in the liquid systems under irradiation are caused by the changes in the coefficients of the Maxwell distribution function due to the momentum exchange between the active particles and the particles forming the liquid. To confirm the theoretical predictions, a qualitative comparison of the model with the existing experimental data on irradiation influence on the surface tension coefficients of liquids is performed. PMID:27078318

  15. Temperature dependence of the lowest excitonic transition for an InAs ultrathin quantum well

    NASA Astrophysics Data System (ADS)

    Singh, S. D.; Porwal, S.; Sharma, T. K.; Rustagi, K. C.

    2006-03-01

    Temperature dependent photoluminescence and photoreflectance techniques are used to investigate the lowest excitonic transition of InAs ultrathin quantum well. It is shown that the temperature dependence of the lowest energy transition follows the band gap variation of GaAs barrier, which is well reproduced by calculated results based on the envelope function approximation with significant corrections due to strain and temperature dependences of the confinement potential. A redshift in photoluminescence peak energy compared to photoreflectance is observed at low temperatures. This is interpreted to show that the photoluminescence signal originates from the recombination of carriers occupying the band-tail states below the lowest critical point.

  16. Temperature dependence of intensities of the 8-12 micron bands of CFCl3

    NASA Technical Reports Server (NTRS)

    Nanes, R.; Silvaggio, P. M.; Boese, R. W.

    1980-01-01

    The absolute intensities of the 8-12 micron bands from Freon 11 (CFCl3) were measured at temperatures of 294 and 216 K. Intensities of the bands centered at 798, 847, 934, and 1082 per cm are all observed to depend on temperature. The temperature dependence for the 847 and 1082 per cm fundamental regions is attributed to underlying hot bands; for the nu2 + nu5 combination band (934 per cm), the observed temperature dependence is in close agreement with theoretical prediction. The implication of these results on atmospheric IR remote-sensing is briefly discussed.

  17. Compact Fuel-Cell System Would Consume Neat Methanol

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Kindler, Andrew; Valdez, Thomas

    2007-01-01

    In a proposed direct methanol fuel-cell electric-power-generating system, the fuel cells would consume neat methanol, in contradistinction to the dilute aqueous methanol solutions consumed in prior direct methanol fuel-cell systems. The design concept of the proposed fuel-cell system takes advantage of (1) electro-osmotic drag and diffusion processes to manage the flows of hydrogen and water between the anode and the cathode and (2) evaporative cooling for regulating temperature. The design concept provides for supplying enough water to the anodes to enable the use of neat methanol while ensuring conservation of water for the whole fuel-cell system.

  18. Simulation of Temperature-Dependent Charge Transport in Organic Semiconductors with Various Degrees of Disorder.

    PubMed

    Heck, Alexander; Kranz, Julian J; Elstner, Marcus

    2016-07-12

    Different trends in the temperature dependence of the mobility can be observed in organic semiconductors, which constitutes a serious challenge for theoretical approaches. In this work, we apply an atomistic bottom-up simulation for the calculation of temperature-dependent mobilities of a broad selection of materials, ranging from single crystal to amorphous solid. We evaluate how well the method is able to distinguish temperature dependences of different materials and how the findings relate to experimental observations. The applied method is able to cover the full range of temperature dependencies from activated transport in amorphous materials to band-like transport in crystals. In well-characterized materials, we find good agreement with the experiment and a band-like temperature dependence. In less-ordered materials, we find discrepancies from the experiment that indicated that experimentally studied materials possess a higher degree of disorder than do the simulated defect-free morphologies. PMID:27224054

  19. Integrated optic current transducers incorporating photonic crystal fiber for reduced temperature dependence.

    PubMed

    Chu, Woo-Sung; Kim, Sung-Moon; Oh, Min-Cheol

    2015-08-24

    Optical current transducers (OCT) are indispensable for accurate monitoring of large electrical currents in an environment suffering from severe electromagnetic interference. Temperature dependence of OCTs caused by its components, such as wave plates and optical fibers, should be reduced to allow temperature-independent operation. A photonic crystal fiber with a structural optical birefringence was incorporated instead of a PM fiber, and a spun PM fiber was introduced to overcome the temperature-dependent linear birefringence of sensing fiber coil. Moreover, an integrated optic device that provides higher stability than fiber-optics was employed to control the polarization and detect the phase of the sensed optical signal. The proposed OCT exhibited much lower temperature dependence than that from a previous study. The OCT satisfied the 0.5 accuracy class (IIEC 60044-8) and had a temperature dependence less than ± 1% for a temperature range of 25 to 78 °C.

  20. Temperature dependence of resistance in epitaxial Fe/MgO/Fe magnetic tunnel junctions

    SciTech Connect

    Ma, Q. L.; Wang, Shouguo; Wang, Y.; Zhang, J.; Ward, R. C. C.; Kohn, A.; Zhang, Xiaoguang; Han, Prof. X. F.

    2009-01-01

    The temperature dependence of resistance in parallel P and antiparallel AP configurations RP,AP has been investigated in epitaxial Fe/MgO/Fe junctions with varying MgO barrier thicknesses tMgO. RAP exhibits a substantial decrease with increasing temperature for samples with tMgO ranging from 3.0 to 1.5 nm. In contrast, RP is approximately temperature independent when tMgO =3.0 nm and increases with temperature when tMgO=2.1 and 1.5 nm. Possible origins of this temperature dependence of resistance, which include taking into account a spin independent term and consideration of spin-flip scattering, are discussed. We attribute the temperature dependence of RP,AP to the misalignment of magnetic moments in the electrodes due to thermal excitations and its effect on the spin dependent tunneling.

  1. Integrated optic current transducers incorporating photonic crystal fiber for reduced temperature dependence.

    PubMed

    Chu, Woo-Sung; Kim, Sung-Moon; Oh, Min-Cheol

    2015-08-24

    Optical current transducers (OCT) are indispensable for accurate monitoring of large electrical currents in an environment suffering from severe electromagnetic interference. Temperature dependence of OCTs caused by its components, such as wave plates and optical fibers, should be reduced to allow temperature-independent operation. A photonic crystal fiber with a structural optical birefringence was incorporated instead of a PM fiber, and a spun PM fiber was introduced to overcome the temperature-dependent linear birefringence of sensing fiber coil. Moreover, an integrated optic device that provides higher stability than fiber-optics was employed to control the polarization and detect the phase of the sensed optical signal. The proposed OCT exhibited much lower temperature dependence than that from a previous study. The OCT satisfied the 0.5 accuracy class (IIEC 60044-8) and had a temperature dependence less than ± 1% for a temperature range of 25 to 78 °C. PMID:26368249

  2. Resolving the energy and temperature dependence of C6H6 (∗) collisional relaxation via time-dependent bath temperature measurements.

    PubMed

    West, Niclas A; Winner, Joshua D; Bowersox, Rodney D W; North, Simon W

    2016-07-01

    The relaxation of highly vibrationally excited benzene, generated by 193 nm laser excitation, was studied using the transient rotational-translational temperature rise of the N2 bath, which was measured by proxy using two-line laser induced fluorescence of seeded NO. The resulting experimentally measured time-dependent N2 temperature rises were modeled with MultiWell based simulations of Collisional Energy Transfer (CET) from benzene vibration to N2 rotation-translation. We find that the average energy transferred in benzene deactivating collisions depends linearly on the internal energy of the excited benzene molecules and depends approximately linearly on the N2 bath temperature between 300 K and 600 K. The results are consistent with experimental studies and classical trajectory calculations of CET in similar systems. PMID:27394109

  3. Resolving the energy and temperature dependence of C6H6∗ collisional relaxation via time-dependent bath temperature measurements

    NASA Astrophysics Data System (ADS)

    West, Niclas A.; Winner, Joshua D.; Bowersox, Rodney D. W.; North, Simon W.

    2016-07-01

    The relaxation of highly vibrationally excited benzene, generated by 193 nm laser excitation, was studied using the transient rotational-translational temperature rise of the N2 bath, which was measured by proxy using two-line laser induced fluorescence of seeded NO. The resulting experimentally measured time-dependent N2 temperature rises were modeled with MultiWell based simulations of Collisional Energy Transfer (CET) from benzene vibration to N2 rotation-translation. We find that the average energy transferred in benzene deactivating collisions depends linearly on the internal energy of the excited benzene molecules and depends approximately linearly on the N2 bath temperature between 300 K and 600 K. The results are consistent with experimental studies and classical trajectory calculations of CET in similar systems.

  4. Effect of interband interactions on the pressure dependence on transition temperature of MgB2

    NASA Astrophysics Data System (ADS)

    Ogbuu, Okechukwu A.; Abah, Obinna

    2015-12-01

    A two-band BCS model with interactions, both phonon and non-phonon induced interactions, were employed to investigate the pressure dependence on superconducting transition temperature of two-band superconductor. We derived the transition temperature and its pressure dependence within Bogoliubov--Valatin formalism for magnesium diboride superconductor. We examined the influence of interband interactions on transition temperature at varying pressure and analyzed the relevance of this calculation in magnesium diboride, MgB2.

  5. Temperature Dependence of the Piezotronic and Piezophototronic Effects in a-axis GaN Nanobelts.

    PubMed

    Wang, Xingfu; Yu, Ruomeng; Peng, Wenbo; Wu, Wenzhuo; Li, Shuti; Wang, Zhong Lin

    2015-12-22

    The temperature dependence of the piezotronic and piezophototronic effects in a-axis GaN nanobelts from 77 to 300 K is investigated. The piezotronic effect is enhanced by over 440% under lower temp-eratures. Two independent processes are discovered to form a competing mechanism through the investigation of the temperature dependence of the piezophototronic effect in a-axis GaN nanobelts.

  6. Analysis of microwave heating of materials with temperature-dependent properties

    SciTech Connect

    Ayappa, K.G.; Davis, H.T. ); Davis, E.A.; Gordon, J. )

    1991-03-01

    In this paper transient temperature profiles in multilayer slabs are predicted, by simultaneously solving Maxwell's equations with the heat conduction equation, using Galerkin-finite elements. It is assumed that the medium is homogeneous and has temperature-dependent dielectric and thermal properties. The method is illustrated with applications involving the heating of food and polymers with microwaves. The temperature dependence of dielectric properties affects the heating appreciably, as is shown by comparison with a constant property model.

  7. Mechanisms of time-dependent crack growth at elevated temperature

    SciTech Connect

    Saxena, A.; Stock, S.R.

    1990-04-15

    Objective of this 3-y study was to conduct creep and creep-fatigue crack growth experiments and to characterize the crack tip damage mechanisms in a model material (Cu-1wt%Sb), which is known to cavitate at grain boundaries under creep deformation. Results were: In presence of large scale cavitation damage and crack branching, time rate of creep crack growth da/dt does not correlate with C[sub t] or C[sup *]. When cavitation damage is constrained, da/dt is characterized by C[sub t]. Area fraction of grain boundary cavitated is the single damage parameter for the extent of cavitation damage ahead of crack tips. C[sub t] is used for the creep-fatigue crack growth behavior. In materials prone to rapid cavity nucleation, creep cracks grow faster initially and then reach a steady state whose growth rate is determined by C[sub t]. Percent creep life exhausted correlates with average cavity diameter and fraction of grain boundary area occupied by cavities. Synchrotron x-ray tomographic microscopy was used to image individual cavities in Cu-1wt% Sb. A methodology was developed for predicting the remaining life of elevated temperature power plant components; (C[sub t])[sub avg] was used to correlate creep-fatigue crack growth in Cr-Mo and Cr-Mo-V steel and weldments.

  8. Analytical model of the temperature dependent properties of microresonators immersed in a gas

    SciTech Connect

    Ilin, E. A.; Kehrbusch, J.; Radzio, B.; Oesterschulze, E.

    2011-02-01

    A comprehensive theoretical model of microresonators immersed in a viscous gas of varying temperature is presented and verified by experiments. Analytical expressions for both the temperature dependent resonant frequency and quality factor of the first flexural eigenmode were derived extending Sader's theory of viscous damping to small temperature variations. The model provides useful implications for the thermal stabilization of microresonators immersed in a gas as well as for the reduction in the influence of the temperature dependent gas properties on the resonant frequency. Finally, an analytical expression is deduced for the mass detection capability of a microresonator that undergoes temperature variations.

  9. Temperature-Dependent Diffusion Coefficients from ab initio Computations: Hydrogen in Nickel

    SciTech Connect

    E Wimmer; W Wolf; J Sticht; P Saxe; C Geller; R Najafabadi; G Young

    2006-03-16

    The temperature-dependent mass diffusion coefficient is computed using transition state theory. Ab initio supercell phonon calculations of the entire system provide the attempt frequency, the activation enthalpy, and the activation entropy as a function of temperature. Effects due to thermal lattice expansion are included and found to be significant. Numerical results for the case of hydrogen in nickel demonstrate a strong temperature dependence of the migration enthalpy and entropy. Trapping in local minima along the diffusion path has a pronounced effect especially at low temperatures. The computed diffusion coefficients with and without trapping bracket the available experimental values over the entire temperature range between 0 and 1400 K.

  10. Temperature dependence of optically dumped far-infrared (FIR) laser output power

    NASA Technical Reports Server (NTRS)

    Lawandy, N. M.

    1978-01-01

    The temperature dependence of the small signal gain and saturation power are derived using temperature-dependent rates in a four-level model. An expression is developed for the output power of a far-infrared oscillator as a function of temperature for both fixed pressure and fixed density. The results are valid in the regime of homogeneous broadening of the rotational transition and Doppler broadening of the pump transition. It is shown that, for most lasers, both the small signal gain and the saturation power decrease with increasing temperature. These effects have the overall result of increasing output power with decreasing temperatures.

  11. Temperature dependant electrical properties of formyl-TIPPCu(II)/p-Si heterojunction diode

    NASA Astrophysics Data System (ADS)

    Khan, Dil Nawaz; Sayyad, Muhammad Hassan; Wahab, Fazal; Tahir, Muhammad; Yaseen, Muhammad; Munawar, Munawar Ali; Ali, Mukhtar

    2014-05-01

    This paper reports the temperature dependent electrical characterization of formyl-TIPPCu(II)/p-Si heterojunction diode which was fabricated by growing thin films of formyl-TIPPCu(II) on the p-type silicon substrate by thermal sublimation technique. The variation in electrical characteristics of the fabricated devices has been systematically investigated as the function of temperature by using current-voltage (I-V) measurements in the temperature range 299-339 K. The diode parameters like ideality factor, zero bias barrier height and parasitic series resistance have been found to be strongly temperature dependant. The zero bias barrier height increases while ideality factor and series resistance decreases with increasing temperature.

  12. Temperature and Humidity Dependence of a Polymer-Based Gas Sensor

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Buehler, M. G.

    1997-01-01

    This paper quantifies the temperature and humidity dependence of a polymer-based gas sensor. The measurement and analysis of three polymers indicates that resistance changes in the polymer films, due to temperature and humidity, can be positive or negative. The temperature sensitivity ranged from +1600 to -320 ppm/nd the relative sensitivity ranged from +1100 to -260 ppm/%.

  13. Temperature dependence of single-event burnout in n-channel power MOSFETs

    NASA Astrophysics Data System (ADS)

    Johnson, Gregory H.; Schrimpf, Ronald D.; Galloway, Kenneth F.; Koga, Rocky

    1992-12-01

    The temperature dependence of single-event burnout (SEB) in n-channel power MOSFETs is investigated experimentally and analytically. Experimental data are presented which indicate that the SEB susceptibility of the power MOSFET decreases with increasing temperature. A previously reported analytical model that describes the SEB mechanism is updated to include temperature variations. This model is shown to agree with the experimental trends.

  14. On the temperature dependence of spin pumping in ferromagnet-topological insulator-ferromagnet spin valves

    NASA Astrophysics Data System (ADS)

    Baker, A. A.; Figueroa, A. I.; van der Laan, G.; Hesjedal, T.

    Topological insulators (TIs) have a large potential for spintronic devices owing to their spin-polarized, counter-propagating surface states. Recently, we have investigated spin pumping in a ferromagnet-TI-ferromagnet structure at room temperature. Here, we present the temperature-dependent measurement of spin pumping down to 10 K, which shows no variation with temperature.

  15. Hartmann flow with temperature-dependent physical properties. [magnetohydrodynamics of liquid metal

    NASA Technical Reports Server (NTRS)

    Linn, G. T.; Walker, J. S.

    1978-01-01

    Attention is given to the steady, fully developed, one-dimensional flow of a liquid metal in which thermal conductivity, electrical conductivity, and viscosity are functions of temperature. It is found that the properties are decreasing functions of temperature and the first differences between temperature-dependent and constant properties are discussed.

  16. Temperature Dependence of Photodegradation of Dissolved Organic Matter to Dissolved Inorganic Carbon and Particulate Organic Carbon

    PubMed Central

    Porcal, Petr; Dillon, Peter J.; Molot, Lewis A.

    2015-01-01

    Photochemical transformation of dissolved organic matter (DOM) has been studied for more than two decades. Usually, laboratory or “in-situ” experiments are used to determine photodegradation variables. A common problem with these experiments is that the photodegradation experiments are done at higher than ambient temperature. Five laboratory experiments were done to determine the effect of temperature on photochemical degradation of DOM. Experimental results showed strong dependence of photodegradation on temperature. Mathematical modeling of processes revealed that two different pathways engaged in photochemical transformation of DOM to dissolved inorganic carbon (DIC) strongly depend on temperature. Direct oxidation of DOM to DIC dominated at low temperatures while conversion of DOM to intermediate particulate organic carbon (POC) prior to oxidation to DIC dominated at high temperatures. It is necessary to consider this strong dependence when the results of laboratory experiments are interpreted in regard to natural processes. Photodegradation experiments done at higher than ambient temperature will necessitate correction of rate constants. PMID:26106898

  17. Temperature dependence of the frequency noise in a mid-IR DFB quantum cascade laser from cryogenic to room temperature.

    PubMed

    Tombez, Lionel; Schilt, Stéphane; Di Francesco, Joab; Thomann, Pierre; Hofstetter, Daniel

    2012-03-26

    We report on the measurement of the frequency noise power spectral density in a distributed feedback quantum cascade laser over a wide temperature range, from 128 K to 303 K. As a function of the device temperature, we show that the frequency noise behavior is characterized by two different regimes separated by a steep transition at ≈200 K. While the frequency noise is nearly unchanged above 200 K, it drastically increases at lower temperature with an exponential dependence. We also show that this increase is entirely induced by current noise intrinsic to the device. In contrast to earlier publications, a single laser is used here in a wide temperature range allowing the direct assessment of the temperature dependence of the frequency noise.

  18. Spectral and temperature-dependent infrared emissivity measurements of painted metals for improved temperature estimation during laser damage testing

    NASA Astrophysics Data System (ADS)

    Baumann, Sean M.; Keenan, Cameron; Marciniak, Michael A.; Perram, Glen P.

    2014-10-01

    A database of spectral and temperature-dependent emissivities was created for painted Al-alloy laser-damage-testing targets for the purpose of improving the uncertainty to which temperature on the front and back target surfaces may be estimated during laser-damage testing. Previous temperature estimates had been made by fitting an assumed gray-body radiance curve to the calibrated spectral radiance data collected from the back surface using a Telops Imaging Fourier Transform Spectrometer (IFTS). In this work, temperature-dependent spectral emissivity measurements of the samples were made from room temperature to 500 °C using a Surface Optics Corp. SOC-100 Hemispherical Directional Reflectometer (HDR) with Nicolet FTS. Of particular interest was a high-temperature matte-black enamel paint used to coat the rear surfaces of the Al-alloy samples. The paint had been assumed to have a spectrally flat and temperatureinvariant emissivity. However, the data collected using the HDR showed both spectral variation and temperature dependence. The uncertainty in back-surface temperature estimation during laser-damage testing made using the measured emissivities was improved from greater than +10 °C to less than +5 °C for IFTS pixels away from the laser burn-through hole, where temperatures never exceeded those used in the SOC-100 HDR measurements. At beam center, where temperatures exceeded those used in the SOC-100 HDR, uncertainty in temperature estimates grew beyond those made assuming gray-body emissivity. Accurate temperature estimations during laser-damage testing are useful in informing a predictive model for future high-energy-laser weapon applications.

  19. High temperature intensifies negative density dependence of fitness in red flour beetles

    PubMed Central

    Halliday, William D; Thomas, Alison S; Blouin-Demers, Gabriel

    2015-01-01

    Competition for food, space, or other depletable resources has strong impacts on the fitness of organisms and can lead to a pattern known as negative density dependence, where fitness decreases as population density increases. Yet, many resources that have strong impacts on fitness are nondepletable (e.g., moisture or temperature). How do these nondepletable resources interact with depletable resources to modify negative density dependence? We tested the hypothesis that negative density dependence is modulated by temperature in red flour beetles and tested the prediction that the strength of negative density dependence should decrease as temperature decreases. We measured the number of eggs laid, offspring development time, and the number of offspring that reached maturity at three temperatures and two food treatment combinations as we simultaneously manipulated adult population density. We demonstrated that low temperatures weaken negative density dependence in the number of eggs laid; this pattern was most evident when food was abundant. Density had no effect on development time, but low temperatures increased development time. The percent of eggs that emerged as adults decreased with both density and temperature and increased with food. Temperature, an abiotic driver, can thus modulate density-dependent processes in ectotherms. Therefore, models of population growth for ectotherms should incorporate the effects of temperature. PMID:25798223

  20. Temperature dependence of amino acid side chain IR absorptions in the amide I' region.

    PubMed

    Anderson, Benjamin A; Literati, Alex; Ball, Borden; Kubelka, Jan

    2014-05-01

    Amide I' IR spectra are widely used for studies of structural changes in peptides and proteins as a function of temperature. Temperature dependent absorptions of amino acid side-chains that overlap the amide I' may significantly complicate the structural analyses. While the side-chain IR spectra have been investigated previously, thus far their dependence on temperature has not been reported. Here we present the study of the changes in the IR spectra with temperature for side-chain groups of aspartate, glutamate, asparagine, glutamine, arginine, and tyrosine in the amide I' region (in D2O). Band fitting analysis was employed to extract the temperature dependence of the individual spectral parameters, such as peak frequency, integrated intensity, band width, and shape. As expected, the side-chain IR bands exhibit significant changes with temperature. The majority of the spectral parameters, particularly the frequency and intensity, show linear dependence on temperature, but the direction and magnitude vary depending on the particular side-chain group. The exception is arginine, which exhibits a distinctly nonlinear frequency shift with temperature for its asymmetric CN3H5(+) bending signal, although a linear fit can account for this change to within ~1/3 cm(-1). The applicability of the determined spectral parameters for estimations of temperature-dependent side-chain absorptions in peptides and proteins are discussed.

  1. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  2. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  3. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    2001-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  4. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  5. Temperature dependence of DNA condensation at high ionic concentration

    NASA Astrophysics Data System (ADS)

    Mao, Wei; Gao, Qingqing; Liu, Yanhui; Fan, Yangtao; Hu, Lin; Xu, Houqiang

    2016-08-01

    A series of experiments pointed out that compact states of DNA condensed by multivalent cation prefer higher temperature. The condensed DNA takes elongated coil or compact globule states and the population of the compact globule states increases with an increase in temperature. At the same time, a recent experimental work carried out in buffer solution without multivalent cation points out that DNA persistence length strongly depends on the temperature. DNA persistence length is a key parameter for quantitative interpretation of the conformational properties of DNA and related to the bending rigidity of DNA. It is necessary to revolve the effects of temperature dependence of persistence length on DNA condensation, and a model including the temperature dependence of persistence length and strong correlation of multivalent cation on DNA is provided. The autocorrelation function of the tangent vectors is found as an effective way to detect the temperature dependence of toroid conformations. With an increase in temperature, the first periodic oscillation in the autocorrelation function shifts left and the number of segments containing the first periodic oscillation decreases gradually. According to the experiments mentioned above, the long-axis length is defined to estimate the temperature dependence of condensation process further. At the temperatures defined in experiments mentioned above, the relation between long-axis length and temperature matches the experimental results.

  6. Fluctuating temperatures and ectotherm growth: distinguishing non-linear and time-dependent effects.

    PubMed

    Kingsolver, Joel G; Higgins, Jessica K; Augustine, Kate E

    2015-07-01

    Most terrestrial ectotherms experience diurnal and seasonal variation in temperature. Because thermal performance curves are non-linear, mean performance can differ in fluctuating and constant thermal environments. However, time-dependent effects--effects of the order and duration of exposure to temperature--can also influence mean performance. We quantified the non-linear and time-dependent effects of diurnally fluctuating temperatures for larval growth rates in the tobacco hornworm, Manduca sexta L., with four main results. First, the shape of the thermal performance curve for growth rate depended on the duration of exposure: for example, optimal temperature and thermal breadth were greater for growth rates measured over short (24 h during the last instar) compared with long (the entire period of larval growth) time periods. Second, larvae reared in diurnally fluctuating temperatures had significantly higher optimal temperatures and maximal growth rates than larvae reared in constant temperatures. Third, for larvae maintained at three mean temperatures (20, 25 and 30°C) and three diurnal temperature ranges (±0, ±5 and ±10°C), diurnal fluctuations had opposite effects on mean growth rates at low versus high mean temperature. Fourth, both short- and long-term thermal performance curves yielded poor predictions of the non-linear effects of fluctuating temperature on mean growth rates (compared with our experimental results) at higher mean temperatures. Our results suggest caution in using constant temperature studies to model the consequences of variable thermal environments. PMID:25987738

  7. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures.

    PubMed

    Rossmanna, Christian; Haemmerich, Dieter

    2014-01-01

    The application of supraphysiological temperatures (>40°C) to biological tissues causes changes at the molecular, cellular, and structural level, with corresponding changes in tissue function and in thermal, mechanical and dielectric tissue properties. This is particularly relevant for image-guided thermal treatments (e.g. hyperthermia and thermal ablation) delivering heat via focused ultrasound (FUS), radiofrequency (RF), microwave (MW), or laser energy; temperature induced changes in tissue properties are of relevance in relation to predicting tissue temperature profile, monitoring during treatment, and evaluation of treatment results. This paper presents a literature survey of temperature dependence of electrical (electrical conductivity, resistivity, permittivity) and thermal tissue properties (thermal conductivity, specific heat, diffusivity). Data of soft tissues (liver, prostate, muscle, kidney, uterus, collagen, myocardium and spleen) for temperatures between 5 to 90°C, and dielectric properties in the frequency range between 460 kHz and 3 GHz are reported. Furthermore, perfusion changes in tumors including carcinomas, sarcomas, rhabdomyosarcoma, adenocarcinoma and ependymoblastoma in response to hyperthmic temperatures up to 46°C are presented. Where appropriate, mathematical models to describe temperature dependence of properties are presented. The presented data is valuable for mathematical models that predict tissue temperature during thermal therapies (e.g. hyperthermia or thermal ablation), as well as for applications related to prediction and monitoring of temperature induced tissue changes. PMID:25955712

  8. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures

    PubMed Central

    Rossmann, Christian; Haemmerich, Dieter

    2016-01-01

    The application of supraphysiological temperatures (>40°C) to biological tissues causes changes at the molecular, cellular, and structural level, with corresponding changes in tissue function and in thermal, mechanical and dielectric tissue properties. This is particularly relevant for image-guided thermal treatments (e.g. hyperthermia and thermal ablation) delivering heat via focused ultrasound (FUS), radiofrequency (RF), microwave (MW), or laser energy; temperature induced changes in tissue properties are of relevance in relation to predicting tissue temperature profile, monitoring during treatment, and evaluation of treatment results. This paper presents a literature survey of temperature dependence of electrical (electrical conductivity, resistivity, permittivity) and thermal tissue properties (thermal conductivity, specific heat, diffusivity). Data of soft tissues (liver, prostate, muscle, kidney, uterus, collagen, myocardium and spleen) for temperatures between 5 to 90°C, and dielectric properties in the frequency range between 460 kHz and 3 GHz are reported. Furthermore, perfusion changes in tumors including carcinomas, sarcomas, rhabdomyosarcoma, adenocarcinoma and ependymoblastoma in response to hyperthmic temperatures up to 46°C are presented. Where appropriate, mathematical models to describe temperature dependence of properties are presented. The presented data is valuable for mathematical models that predict tissue temperature during thermal therapies (e.g. hyperthermia or thermal ablation), as well as for applications related to prediction and monitoring of temperature induced tissue changes. PMID:25955712

  9. Simultaneous retrieval of temperature-dependent absorption coefficient and conductivity of participating media

    PubMed Central

    Ren, Yatao; Qi, Hong; Zhao, Fangzhou; Ruan, Liming; Tan, Heping

    2016-01-01

    A secondary optimization technique was proposed to estimate the temperature-dependent thermal conductivity and absorption coefficient. In the proposed method, the stochastic particle swarm optimization was applied to solve the inverse problem. The coupled radiation and conduction problem was solved in a 1D absorbing, emitting, but non-scattering slab exposed to a pulse laser. It is found that in the coupled radiation and conduction problem, the temperature response is highly sensitive to conductivity but slightly sensitive to the optical properties. On the contrary, the radiative intensity is highly sensitive to optical properties but slightly sensitive to thermal conductivity. Therefore, the optical and thermal signals should both be considered in the inverse problem to estimate the temperature-dependent properties of the transparent media. On this basis, the temperature-dependent thermal conductivity and absorption coefficient were both estimated accurately by measuring the time-dependent temperature, and radiative response at the boundary of the slab. PMID:26912418

  10. Temperature dependent electrical transport behavior of InN/GaN heterostructure based Schottky diodes

    SciTech Connect

    Roul, Basanta; Kumar, Mahesh; Rajpalke, Mohana K.; Bhat, Thirumaleshwara N.; Krupanidhi, S. B.; Sinha, Neeraj; Kalghatgi, A. T.

    2011-02-15

    InN/GaN heterostructure based Schottky diodes were fabricated by plasma-assisted molecular beam epitaxy. The temperature dependent electrical transport properties were carried out for InN/GaN heterostructure. The barrier height and the ideality factor of the Schottky diodes were found to be temperature dependent. The temperature dependence of the barrier height indicates that the Schottky barrier height is inhomogeneous in nature at the heterostructure interface. The higher value of the ideality factor and its temperature dependence suggest that the current transport is primarily dominated by thermionic field emission (TFE) other than thermionic emission (TE). The room temperature barrier height obtained by using TE and TFE models were 1.08 and 1.43 eV, respectively.

  11. Electrostatic control over temperature-dependent tunnelling across a single-molecule junction

    PubMed Central

    Garrigues, Alvar R.; Wang, Lejia; del Barco, Enrique; Nijhuis, Christian A.

    2016-01-01

    Understanding how the mechanism of charge transport through molecular tunnel junctions depends on temperature is crucial to control electronic function in molecular electronic devices. With just a few systems investigated as a function of bias and temperature so far, thermal effects in molecular tunnel junctions remain poorly understood. Here we report a detailed charge transport study of an individual redox-active ferrocene-based molecule over a wide range of temperatures and applied potentials. The results show the temperature dependence of the current to vary strongly as a function of the gate voltage. Specifically, the current across the molecule exponentially increases in the Coulomb blockade regime and decreases at the charge degeneracy points, while remaining temperature-independent at resonance. Our observations can be well accounted for by a formal single-level tunnelling model where the temperature dependence relies on the thermal broadening of the Fermi distributions of the electrons in the leads. PMID:27211787

  12. Electrostatic control over temperature-dependent tunnelling across a single-molecule junction

    NASA Astrophysics Data System (ADS)

    Garrigues, Alvar R.; Wang, Lejia; Del Barco, Enrique; Nijhuis, Christian A.

    2016-05-01

    Understanding how the mechanism of charge transport through molecular tunnel junctions depends on temperature is crucial to control electronic function in molecular electronic devices. With just a few systems investigated as a function of bias and temperature so far, thermal effects in molecular tunnel junctions remain poorly understood. Here we report a detailed charge transport study of an individual redox-active ferrocene-based molecule over a wide range of temperatures and applied potentials. The results show the temperature dependence of the current to vary strongly as a function of the gate voltage. Specifically, the current across the molecule exponentially increases in the Coulomb blockade regime and decreases at the charge degeneracy points, while remaining temperature-independent at resonance. Our observations can be well accounted for by a formal single-level tunnelling model where the temperature dependence relies on the thermal broadening of the Fermi distributions of the electrons in the leads.

  13. Analysis of printed organic MOSFET characteristics with a focus on the temperature dependence

    NASA Astrophysics Data System (ADS)

    Zenitani, Hiroshi; Maiti, Tapas Kumar; Hayashi, Takuro; Tanimoto, Yuta; Sato, Kenshiro; Chen, Lei; Kikuchihara, Hideyuki; Miura-Mattausch, Mitiko; Jürgen Mattausch, Hans

    2016-04-01

    An experimental and theoretical investigation of the device characteristics of printed organic MOSFETs with a focus on the temperature dependence is reported. In particular, an anomalous behavior of the temperature dependence of the I ds-V gs characteristic is observed, which is found to be increased at higher temperature in MOSFETs fabricated with the printing technology. Our analysis suggests that the temperature dependence of the trap density and the carrier transport mechanism are the causes for this anomalous increase at higher temperature. The results obtained with the compact model HiSIM-Organic, developed based on the physics of carrier dynamics in organic materials, confirm these conclusions. Improving stable characteristics in circuit applications are demonstrated to be achievable at higher temperatures, due to these anomalous properties of organic MOSFETs fabricated by applying the printing technology.

  14. Pharmacokinetics of methanol and formate in female cynomolgus monkeys exposed to methanol vapors.

    PubMed

    Medinsky, M A; Dorman, D C; Bond, J A; Moss, O R; Janszen, D B; Everitt, J I

    1997-06-01

    The 1990 Clean Air Act Amendments contain mandates for reduced automotive emissions and add new requirements for the use of alternative fuels such as methanol to reduce certain automotive pollutants. Methanol is acutely toxic in humans at relatively low doses, and the potential for exposure to methanol will be increased if it is used in automotive fuel. Formate is the metabolite responsible for neurotoxic effects of acute methanol exposure. Since formate metabolism is dependent on folate, potentially sensitive folate-deficient subpopulations, such as pregnant women, may accumulate formate and be at higher risk from low-level methanol exposure. Our objective was to determine the pharmacokinetics of 14C-methanol and 14C-formate in normal and folate-deficient monkeys after exposure to 14C-methanol vapors at environmentally relevant concentrations: below the threshold limit value (TLV), at the TLV of 200 parts per million (ppm), and above the TLV. Four normal adult female cynomolgus monkeys were individually anesthetized with isoflurane, and each was exposed by endotracheal intubation to 10, 45, 200, or 900 ppm 14C-methanol for 2 hours. Concentrations of the inhaled and exhaled 14C-methanol, blood concentrations of 14C-methanol and 14C-formate, exhaled 14C-carbon dioxide (14CO2), and respiratory parameters were measured during exposure. After exposure, 14C-methanol and 14CO2 exhaled, 14C-methanol and 14C-formate excreted in urine, and 14C-methanol and 14C-formate in blood were quantified. The amounts of exhaled 14C-methanol and 14CO2, blood concentrations of 14C-methanol and 14C-formate, and 14C-methanol and 14C-formate excreted in urine were linearly related to methanol exposure concentration. For all exposures, blood concentrations of 14C-methanol-derived formate were 10 to 1000 times lower than endogenous blood formate concentrations (100 to 200 mM) reported for monkeys and were several orders of magnitude lower than levels of formate known to be toxic. Since the

  15. Methanol Oxidation Using Ozone on Titania-Supported Vanadium Catalyst

    EPA Science Inventory

    Ozone-enhanced catalytic oxidation of methanol has been conducted at mild temperatures of 100 to 250NC using V2O5/TiO2 catalyst prepared by the sol-gel method. The catalyst was characterized using XRD, surface area measurements, and temperature-programmed desorption of methanol. ...

  16. Dietary methanol and autism.

    PubMed

    Walton, Ralph G; Monte, Woodrow C

    2015-10-01

    The authors sought to establish whether maternal dietary methanol during pregnancy was a factor in the etiology of autism spectrum disorders. A seven item questionnaire was given to women who had given birth to at least one child after 1984. The subjects were solicited from a large primary care practice and several internet sites and separated into two groups - mothers who had given birth to a child with autism and those who had not. Average weekly methanol consumption was calculated based on questionnaire responses. 550 questionnaires were completed by women who gave birth to a non-autistic child. On average these women consumed 66.71mg. of methanol weekly. 161 questionnaires were completed by women who had given birth to an autistic child. The average estimated weekly methanol consumption for this group was 142.31mg. Based on the results of the Wilcoxon rank sum-test, we see a significant difference between the reported methanol consumption rates of the two groups. This study suggests that women who have given birth to an autistic child are likely to have had higher intake of dietary sources of methanol than women who have not. Further investigation of a possible link of dietary methanol to autism is clearly warranted.

  17. Exponential temperature dependence of the penetration depth in single crystal MgB2.

    PubMed

    Manzano, F; Carrington, A; Hussey, N E; Lee, S; Yamamoto, A; Tajima, S

    2002-01-28

    The temperature dependence of the London penetration depth, lambda(T), was measured in both single crystal and polycrystalline MgB2 samples by a high-resolution, radio frequency technique. A clear exponential temperature dependence of lambda(T) was observed at low temperature, indicating s-wave pairing. A BCS fit to the lowest temperature data gives an in-plane energy gap Delta of 30+/-2 K (2Delta/T(c) = 1.5+/-0.1), which is significantly smaller than the standard BCS weak coupling value of 3.5. We find that the data are best described by a two-gap model.

  18. Temperature dependence of spin Hall magnetoresistance in W/CoFeB bilayer

    NASA Astrophysics Data System (ADS)

    Okuno, Takaya; Taniguchi, Takuya; Kim, Sanghoon; Baek, Seung-heon Chris; Park, Byong-Guk; Moriyama, Takahiro; Kim, Kab-Jin; Ono, Teruo

    2016-08-01

    We investigate the temperature dependence of the spin Hall magnetoresistance (SMR) in a W/CoFeB bilayer. The SMR is found to increase with decreasing temperature. An analysis based on the SMR theory suggests that the spin Hall angle of W and/or the spin polarization of CoFeB can be the origin of the temperature dependence of the SMR. We also find that the spin diffusion length and the resistivity of W do not significantly vary with temperature, which indicates the necessity of further study on the electron transport mechanism in W films to reveal the origin of the spin Hall effect in W.

  19. Temperature dependence of the electron Landé g-factor in cubic GaN

    NASA Astrophysics Data System (ADS)

    Buß, J. H.; Schupp, T.; As, D. J.; Hägele, D.; Rudolph, J.

    2015-12-01

    The temperature dependence of the electron Landé g-factor in bulk cubic GaN is investigated over an extremely broad temperature range from 15 K up to 500 K by time-resolved Kerr-rotation spectroscopy. The g-factor is found to be approximately constant over the full investigated temperature range. Calculations by k .p -theory predict a negligible temperature dependence g(T) in complete agreement with the experiment as a consequence of the large band-gap and small spin orbit splitting in cubic GaN.

  20. Series solution to coupled nonlinear heat and moisture transfer in slabs with temperature-dependent diffusivities

    NASA Astrophysics Data System (ADS)

    Chiba, Ryoichi

    2014-12-01

    The two-dimensional differential transform method (DTM) is applied to solve the one-dimensional coupled heat and moisture diffusion problem for a slab with temperature-dependent thermal and moisture diffusivities, which are expressed by a linear function and an exponential function of temperature, respectively. One surface of the slab is subjected to convective hygrothermal loading and the other has constant prescribed temperature and moisture. Approximate analytical (series) solutions for the temperature and moisture profiles in the slab are derived. The transformed functions included in the solutions are obtained through a simple recursive procedure. Numerical results for a slab subjected to a sudden change in surface temperature illustrate the effects of temperature-dependent diffusivities on the transient temperature and moisture profiles of the slab. The results indicate that the nonlinear effect originating from the varying moisture diffusivity is not negligible for resin composites. The DTMis a useful new analytical method for solving nonlinear coupled transient problems.

  1. Temperature dependent photoluminescence and micromapping of multiple stacks InAs quantum dots

    SciTech Connect

    Xu, Ming Jaffré, Alexandre Alvarez, José Kleider, Jean-Paul Boutchich, Mohamed; Jittrong, Apichat; Chokamnuai, Thitipong; Panyakeow, Somsak; Kanjanachuchai, Songphol

    2015-02-27

    We utilized temperature dependent photoluminescence (PL) techniques to investigate 1, 3 and 5 stack InGaAs quantum dots (QDs) grown on cross-hatch patterns. PL mapping can well reproduce the QDs distribution as AFM and position dependency of QD growth. It is possible to observe crystallographic dependent PL. The temperature dependent spectra exhibit the QDs energy distribution which reflects the size and shape. The inter-dot carrier coupling effect is observed and translated as a red shift of 120mV on the [1–10] direction peak is observed at 30K on 1 stack with regards to 3 stacks samples, which is assigned to lateral coupling.

  2. Sex reversal triggers the rapid transition from genetic to temperature-dependent sex.

    PubMed

    Holleley, Clare E; O'Meally, Denis; Sarre, Stephen D; Marshall Graves, Jennifer A; Ezaz, Tariq; Matsubara, Kazumi; Azad, Bhumika; Zhang, Xiuwen; Georges, Arthur

    2015-07-01

    Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination). Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene-environment interactions. Most mechanistic models of transitions invoke a role for sex reversal. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish and rarely in amphibians. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change.

  3. Quantitative Analysis of Temperature Dependence of Raman shift of monolayer WS2

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoting; Gao, Yang; Yang, Tianqi; Ren, Wencai; Cheng, Hui-Ming; Lai, Tianshu

    2016-08-01

    We report the temperature-dependent evolution of Raman spectra of monolayer WS2 directly CVD-grown on a gold foil and then transferred onto quartz substrates over a wide temperature range from 84 to 543 K. The nonlinear temperature dependence of Raman shifts for both and A1g modes has been observed. The first-order temperature coefficients of Raman shifts are obtained to be ‑0.0093 (cm‑1/K) and ‑0.0122 (cm‑1/K) for and A1g peaks, respectively. A physical model, including thermal expansion and three- and four-phonon anharmonic effects, is used quantitatively to analyze the observed nonlinear temperature dependence. Thermal expansion coefficient (TEC) of monolayer WS2 is extracted from the experimental data for the first time. It is found that thermal expansion coefficient of out-plane mode is larger than one of in-plane mode, and TECs of and A1g modes are temperature-dependent weakly and strongly, respectively. It is also found that the nonlinear temperature dependence of Raman shift of mode mainly originates from the anharmonic effect of three-phonon process, whereas one of A1g mode is mainly contributed by thermal expansion effect in high temperature region, revealing that thermal expansion effect cannot be ignored.

  4. Quantitative Analysis of Temperature Dependence of Raman shift of monolayer WS2

    PubMed Central

    Huang, Xiaoting; Gao, Yang; Yang, Tianqi; Ren, Wencai; Cheng, Hui-Ming; Lai, Tianshu

    2016-01-01

    We report the temperature-dependent evolution of Raman spectra of monolayer WS2 directly CVD-grown on a gold foil and then transferred onto quartz substrates over a wide temperature range from 84 to 543 K. The nonlinear temperature dependence of Raman shifts for both and A1g modes has been observed. The first-order temperature coefficients of Raman shifts are obtained to be −0.0093 (cm−1/K) and −0.0122 (cm−1/K) for and A1g peaks, respectively. A physical model, including thermal expansion and three- and four-phonon anharmonic effects, is used quantitatively to analyze the observed nonlinear temperature dependence. Thermal expansion coefficient (TEC) of monolayer WS2 is extracted from the experimental data for the first time. It is found that thermal expansion coefficient of out-plane mode is larger than one of in-plane mode, and TECs of and A1g modes are temperature-dependent weakly and strongly, respectively. It is also found that the nonlinear temperature dependence of Raman shift of mode mainly originates from the anharmonic effect of three-phonon process, whereas one of A1g mode is mainly contributed by thermal expansion effect in high temperature region, revealing that thermal expansion effect cannot be ignored. PMID:27576751

  5. Quantitative Analysis of Temperature Dependence of Raman shift of monolayer WS2.

    PubMed

    Huang, Xiaoting; Gao, Yang; Yang, Tianqi; Ren, Wencai; Cheng, Hui-Ming; Lai, Tianshu

    2016-01-01

    We report the temperature-dependent evolution of Raman spectra of monolayer WS2 directly CVD-grown on a gold foil and then transferred onto quartz substrates over a wide temperature range from 84 to 543 K. The nonlinear temperature dependence of Raman shifts for both and A1g modes has been observed. The first-order temperature coefficients of Raman shifts are obtained to be -0.0093 (cm(-1)/K) and -0.0122 (cm(-1)/K) for and A1g peaks, respectively. A physical model, including thermal expansion and three- and four-phonon anharmonic effects, is used quantitatively to analyze the observed nonlinear temperature dependence. Thermal expansion coefficient (TEC) of monolayer WS2 is extracted from the experimental data for the first time. It is found that thermal expansion coefficient of out-plane mode is larger than one of in-plane mode, and TECs of and A1g modes are temperature-dependent weakly and strongly, respectively. It is also found that the nonlinear temperature dependence of Raman shift of mode mainly originates from the anharmonic effect of three-phonon process, whereas one of A1g mode is mainly contributed by thermal expansion effect in high temperature region, revealing that thermal expansion effect cannot be ignored. PMID:27576751

  6. In-situ high temperature irradiation setup for temperature dependent structural studies of materials under swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Kulriya, P. K.; Kumari, Renu; Kumar, Rajesh; Grover, V.; Shukla, R.; Tyagi, A. K.; Avasthi, D. K.

    2015-01-01

    An in-situ high temperature (1000 K) setup is designed and installed in the materials science beam line of superconducting linear accelerator at the Inter-University Accelerator Centre (IUAC) for temperature dependent ion irradiation studies on the materials exposed with swift heavy ion (SHI) irradiation. The Gd2Ti2O7 pyrochlore is irradiated using 120 MeV Au ion at 1000 K using the high temperature irradiation facility and characterized by ex-situ X-ray diffraction (XRD). Another set of Gd2Ti2O7 samples are irradiated with the same ion beam parameter at 300 K and simultaneously characterized using in-situ XRD available in same beam line. The XRD studies along with the Raman spectroscopic investigations reveal that the structural modification induced by the ion irradiation is strongly dependent on the temperature of the sample. The Gd2Ti2O7 is readily amorphized at an ion fluence 6 × 1012 ions/cm2 on irradiation at 300 K, whereas it is transformed to a radiation-resistant anion-deficient fluorite structure on high temperature irradiation, that amorphized at ion fluence higher than 1 × 1013 ions/cm2. The temperature dependent ion irradiation studies showed that the ion fluence required to cause amorphization at 1000 K irradiation is significantly higher than that required at room temperature irradiation. In addition to testing the efficiency of the in-situ high temperature irradiation facility, the present study establishes that the radiation stability of the pyrochlore is enhanced at higher temperatures.

  7. Temperature dependence of spectral induced polarization data: experimental results and membrane polarization theory

    NASA Astrophysics Data System (ADS)

    Bairlein, Katharina; Bücker, Matthias; Hördt, Andreas; Hinze, Björn

    2016-04-01

    Spectral induced polarization measurements are affected by temperature variations due to a variety of temperature-dependent parameters that control the complex electrical conductivity. Most important is the influence of the ion mobility, which increases with increasing temperature. It is responsible for the increase of the conductivity of the fluid in the pores with temperature and influences the electrical double layer on the mineral surface. This work is based on laboratory measurements of 13 sandstone samples from different sources with different geological and petrophysical characteristics. We measured the complex impedance in a frequency range from 0.01 to 100 Hz and a temperature range from 0 to 40 °C. The main observation is a decrease of the characteristic time (defined by the inverse of the frequency, at which the phase shift is maximum) with increasing temperature. The strength of this decrease differs from one sample to another. The temperature dependence of the phase shift magnitude cannot easily be generalized, as it depends on the particular sample. The experimental findings suggest that neglecting the influence of temperature on complex conductivity may lead to significant errors when estimating hydraulic conductivity from relaxation time. We also simulate the temperature dependence with a theoretical model of membrane polarization and review some of the model properties, with an emphasis on the temperature dependence of the parameters. The model reproduces several features characterizing the measured data, including the temperature dependence of the characteristic times. Computed tomography and microscope images of the pore structure of three samples also allow us to associate differences in the geometrical parameters used in the modelling with pore scale parameters of the actual samples.

  8. Temperature dependence of proton permeation through a voltage-gated proton channel

    PubMed Central

    Kuno, Miyuki; Ando, Hiroyuki; Morihata, Hirokazu; Sakai, Hiromu; Mori, Hiroyuki; Sawada, Makoto

    2009-01-01

    Voltage-gated proton channels are found in many different types of cells, where they facilitate proton movement through the membrane. The mechanism of proton permeation through the channel is an issue of long-term interest, but it remains an open question. To address this issue, we examined the temperature dependence of proton permeation. Under whole cell recordings, rapid temperature changes within a few milliseconds were imposed. This method allowed for the measurement of current amplitudes immediately before and after a temperature jump, from which the ratios of these currents (Iratio) were determined. The use of Iratio for evaluating the temperature dependence minimized the contributions of factors other than permeation. Temperature jumps of various degrees (ΔT, −15 to 15°C) were applied over a wide temperature range (4–49°C), and the Q10s for the proton currents were evaluated from the Iratios. Q10 exhibited a high temperature dependence, varying from 2.2 at 10°C to 1.3 at 40°C. This implies that processes with different temperature dependencies underlie the observed Q10. A novel resistivity pulse method revealed that the access resistance with its low temperature dependence predominated in high temperature ranges. The measured temperature dependence of Q10 was decomposed into Q10 of the channel and of the access resistances. Finally, the Q10 for proton permeation through the voltage-gated proton channel itself was calculated and found to vary from 2.8 at 5°C to 2.2 at 45°C, as expected for an activation enthalpy of 64 kJ/mol. The thermodynamic features for proton permeation through proton-selective channels were discussed for the underlying mechanism. PMID:19720960

  9. Fight versus flight: physiological basis for temperature-dependent behavioral shifts in lizards.

    PubMed

    Herrel, A; James, R S; Van Damme, R

    2007-05-01

    Previous studies have demonstrated that a behavioral shift from flight to aggressive behavior occurs at low temperatures in some lizards. Our data for the agamid lizard Trapelus pallida demonstrate how the effect of temperature on whole organism performance traits such as sprint speed (much lower performance at lower temperature) and bite force (largely independent of temperature) may explain the shift from flight to fight behavior with decreasing temperature. Moreover, our data hint at the physiological basis for this effect as isolated muscle power output, twitch and tetanus time traits, relevant to sprinting, appear to be strongly temperature-dependent muscle properties. Maximal muscle force production, on the other hand, appears largely independent of temperature. Unexpectedly, differences in the physiological properties of jaw versus limb muscle were observed that enhance the ability of the jaw muscle to generate maximal force at all temperatures tested. Thus our data show how behavioral responses may be determined by the limitations set by temperature on physiological processes.

  10. Temperature-dependent stress response in oysters, Crassostrea virginica: pollution reduces temperature tolerance in oysters.

    PubMed

    Lannig, Gisela; Flores, Jason F; Sokolova, Inna M

    2006-09-12

    Combined effects of temperature and a toxic metal, cadmium (Cd), on energy metabolism were studied in a model marine bivalve, the eastern oyster Crassostrea virginica, acclimated at 20, 24 and 28 degrees C and exposed to 50microgl(-1) of Cd. Both increasing temperature and Cd exposure led to a rise in standard metabolic rates, and combined stressors appeared to override the capability for aerobic energy production resulting in impaired stress tolerance. Oysters exposed to elevated temperature but not Cd showed no significant change in condition, survival rate and lipid peroxidation, whereas those exposed to both Cd and temperature stress suffered high mortality accompanied by low condition index and elevated lipid peroxidation. Furthermore, RNA/DNA ratios indicative of protein synthesis rate, and levels of glutathione, which is involved in metal detoxification, increased in Cd-exposed oysters at 20 degrees C but not at 28 degrees C. Implications of the synergism between elevated temperatures and cadmium stress on energy metabolism of oysters are discussed in the light of the potential effects of climate change on oyster populations in polluted areas.

  11. Temperature dependence of elastic and strength properties of T300/5208 graphite-epoxy

    NASA Technical Reports Server (NTRS)

    Milkovich, S. M.; Herakovich, C. T.

    1984-01-01

    Experimental results are presented for the elastic and strength properties of T300/5208 graphite-epoxy at room temperature, 116K (-250 F), and 394K (+250 F). Results are presented for unidirectional 0, 90, and 45 degree laminates, and + or - 30, + or - 45, and + or - 60 degree angle-ply laminates. The stress-strain behavior of the 0 and 90 degree laminates is essentially linear for all three temperatures and that the stress-strain behavior of all other laminates is linear at 116K. A second-order curve provides the best fit for the temperature is linear at 116K. A second-order curve provides the best fit for the temperature dependence of the elastic modulus of all laminates and for the principal shear modulus. Poisson's ratio appears to vary linearly with temperature. all moduli decrease with increasing temperature except for E (sub 1) which exhibits a small increase. The strength temperature dependence is also quadratic for all laminates except the 0 degree - laminate which exhibits linear temperature dependence. In many cases the temperature dependence of properties is nearly linear.

  12. Temperature dependency of resonance fluorescence from InAs/GaAs quantum dots: Dephasing mechanisms

    NASA Astrophysics Data System (ADS)

    Zajac, Joanna M.; Erlingsson, Sigurdur I.

    2016-07-01

    We report a study on temperature-dependent resonant fluorescence from InAs/GaAs quantum dots. We combined spectral and temporal measurements in order to identify sources of dephasing. In the spectral domain, we observed temperature-dependent broadening of the zero-phonon line as 0.3 μ eV /K , and a temperature-dependent phonon broadband. Time-resolved autocorrelation measurements revealed temperature-dependent spin pumping times between T1 ,s=6 ns (4 K) and 0.5 ns (15 K). These results are compared against theoretical modeling with a master equation for a four-level system coupled to phonon and spin baths. We explained the results by phonon-mediated hole-spin scattering between two excited states, with the piezophonons as a dominant mechanism.

  13. Accelerated life testing and temperature dependence of device characteristics in GaAs CHFET devices

    NASA Technical Reports Server (NTRS)

    Gallegos, M.; Leon, R.; Vu, D. T.; Okuno, J.; Johnson, A. S.

    2002-01-01

    Accelerated life testing of GaAs complementary heterojunction field effect transistors (CHFET) was carried out. Temperature dependence of single and synchronous rectifier CHFET device characteristics were also obtained.

  14. Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells.

    PubMed

    Foxman, Ellen F; Storer, James A; Fitzgerald, Megan E; Wasik, Bethany R; Hou, Lin; Zhao, Hongyu; Turner, Paul E; Pyle, Anna Marie; Iwasaki, Akiko

    2015-01-20

    Most isolates of human rhinovirus, the common cold virus, replicate more robustly at the cool temperatures found in the nasal cavity (33-35 °C) than at core body temperature (37 °C). To gain insight into the mechanism of temperature-dependent growth, we compared the transcriptional response of primary mouse airway epithelial cells infected with rhinovirus at 33 °C vs. 37 °C. Mouse airway cells infected with mouse-adapted rhinovirus 1B exhibited a striking enrichment in expression of antiviral defense response genes at 37 °C relative to 33 °C, which correlated with significantly higher expression levels of type I and type III IFN genes and IFN-stimulated genes (ISGs) at 37 °C. Temperature-dependent IFN induction in response to rhinovirus was dependent on the MAVS protein, a key signaling adaptor of the RIG-I-like receptors (RLRs). Stimulation of primary airway cells with the synthetic RLR ligand poly I:C led to greater IFN induction at 37 °C relative to 33 °C at early time points poststimulation and to a sustained increase in the induction of ISGs at 37 °C relative to 33 °C. Recombinant type I IFN also stimulated more robust induction of ISGs at 37 °C than at 33 °C. Genetic deficiency of MAVS or the type I IFN receptor in infected airway cells permitted higher levels of viral replication, particularly at 37 °C, and partially rescued the temperature-dependent growth phenotype. These findings demonstrate that in mouse airway cells, rhinovirus replicates preferentially at nasal cavity temperature due, in part, to a less efficient antiviral defense response of infected cells at cool temperature.

  15. Temperature dependence of the spin relaxation in highly degenerate ZnO thin films

    SciTech Connect

    Prestgard, M. C.; Siegel, G.; Tiwari, A.; Roundy, R.; Raikh, M.

    2015-02-28

    Zinc oxide is considered a potential candidate for fabricating next-generation transparent spintronic devices. However, before this can be achieved, a thorough scientific understanding of the various spin transport and relaxation processes undergone in this material is essential. In the present paper, we are reporting our investigations into these processes via temperature dependent Hanle experiments. ZnO thin films were deposited on c-axis sapphire substrates using a pulsed laser deposition technique. Careful structural, optical, and electrical characterizations of the films were performed. Temperature dependent non-local Hanle measurements were carried out using an all-electrical scheme for spin injection and detection over the temperature range of 20–300 K. From the Hanle data, spin relaxation time in the films was determined at different temperatures. A detailed analysis of the data showed that the temperature dependence of spin relaxation time follows the linear-in-momentum Dyakonov-Perel mechanism.

  16. Methanol Cannon Demonstrations Revisited.

    ERIC Educational Resources Information Center

    Dolson, David A.; And Others

    1995-01-01

    Describes two variations on the traditional methanol cannon demonstration. The first variation is a chain reaction using real metal chains. The second example involves using easily available components to produce sequential explosions that can be musical in nature. (AIM)

  17. The Methanol Multibeam Survey

    NASA Astrophysics Data System (ADS)

    Green, James A.; Cohen, R. J.; Caswell, J. L.; Fuller, G. A.; Brooks, K.; Burton, M. G.; Chrysostomou, A.; Diamond, P. J.; Ellingsen, S. P.; Gray, M. D.; Hoare, M. G.; Masheder, M. R. W.; McClure-Griffiths, N.; Pestalozzi, M.; Phillips, C.; Quinn, L.; Thompson, M. A.; Voronkov, M.; Walsh, A.; Ward-Thompson, D.; Wong-McSweeney, D.; Yates, J. A.; Cox, J.

    2007-03-01

    A new 7-beam methanol multibeam receiver is being used to survey the Galaxy for newly forming massive stars, that are pinpointed by strong methanol maser emission at 6.668 GHz. The receiver, jointly constructed by Jodrell Bank Observatory (JBO) and the Australia Telescope National Facility (ATNF), was successfully commissioned at Parkes in January 2006. The Parkes-Jodrell survey of the Milky Way for methanol masers is two orders of magnitude faster than previous systematic surveys using 30-m class dishes, and is the first systematic survey of the entire Galactic plane. The first 53 days of observations with the Parkes telescope have yielded 518 methanol sources, of which 218 are new discoveries. We present the survey methodology as well as preliminary results and analysis.

  18. Temperature dependence diode parameters studies of Al/CuPc/n-Si/Al structure

    NASA Astrophysics Data System (ADS)

    Kumar, Ratnesh; Kaur, Ramneek; Sharma, Mamta; Kaur, Maninder; Tripathi, S. K.

    2015-08-01

    This paper presents the fabrication of Al/CuPc/n-Si/Al metal-organic-semiconductor diode. The copper phthalocyanine as organic layer is deposited on Si substrate by thermal evaporation technique. The temperature dependent current-voltage measurements are performed on Al/CuPc/n-Si structure. The important diode parameters i.e. the barrier height and ideality factor have been calculated. The temperature dependence of barrier height and ideality factor has been studied.

  19. The temperature-dependence of rapid low temperature reactions: experiment, understanding and prediction.

    PubMed

    Smith, Ian W M; Sage, Amy M; Donahue, Neil M; Herbst, Eric; Quan, Donghui

    2006-01-01

    Despite the success of the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme) method in measuring rate coefficients for neutral-neutral reactions of radicals down close to the very low temperatures prevalent in dense interstellar clouds (ISCs), there are still many reactions of potential importance in the chemistry of these objects for which there have been no measurements of low temperature rate coefficients. One important class of reactions is that between atomic and molecular free radicals and unsaturated hydrocarbons; that is, alkynes and alkenes. Based on semi-empirical arguments and correlations of 'room temperature' rate coefficients, k(298 K), for reactions of this type with the difference between the ionisation energy of the alkyne/alkene and the electron affinity of the radical, we suggest which reactions between the radicals, C(3P), O(3P), N(4S), CH, C2H and CN, and carbon chain molecules (Cn) and cyanopolyynes (HC2nCN and NCC2nCN) are likely to be fast at the temperature of dense ISCs. These reactions and rate coefficients have been incorporated into a purely gas-phase model (osu2005) of ISC chemistry. The results of these calculations are presented and discussed.

  20. Temperature-dependent isovector pairing gap equations using a path integral approach

    SciTech Connect

    Fellah, M.; Allal, N. H.; Belabbas, M.; Oudih, M. R.; Benhamouda, N.

    2007-10-15

    Temperature-dependent isovector neutron-proton (np) pairing gap equations have been established by means of the path integral approach. These equations generalize the BCS ones for the pairing between like particles at finite temperature. The method has been numerically tested using the one-level model. It has been shown that the gap parameter {delta}{sub np} has a behavior analogous to that of {delta}{sub nn} and {delta}{sub pp} as a function of the temperature: one notes the presence of a critical temperature. Moreover, it has been shown that the isovector pairing effects remain beyond the critical temperature that corresponds to the pairing between like particles.

  1. Temperature Dependence of Rheology and Polymer Diffusion in Silica/Polystyrene Nanocomposites

    NASA Astrophysics Data System (ADS)

    Tung, Wei-Shao; Clarke, Nigel; Composto, Russell; Meth, Jeffrey; Winey, Karen

    2015-03-01

    Time-temperature superposition using the WLF equation is well-established for both the zero shear viscosity and the polymer diffusion coefficient in homopolymer melts. This talk will present the temperature-dependence of polymer dynamics in polymer nanocomposites comprised of polystyrene and phenyl-capped silica nanoparticles (0 - 50 vol%). The WLF equation fits the temperature dependence of the tracer polymer diffusion coefficient and the fitting parameter (B/fo) decreases smoothly with nanoparticle concentration suggesting an increase in the thermal expansion coefficient for the free volume. The WLF equation also fits the temperature dependence of the zero shear viscosity from oscillatory shear experiments, although the fitting parameter (B/fo) increases substantially with nanoparticle concentration. This discrepancy between the diffusion and rheology will be discussed with respect to the reptation model, which predicts that the temperature dependence of polymer diffusion depends predominately on the temperature dependence of local viscosity, and the elastic response in nanocomposites. National Science Foundation DMR-12-10379.

  2. Ultrawideband temperature-dependent dielectric properties of animal liver tissue in the microwave frequency range.

    PubMed

    Lazebnik, Mariya; Converse, Mark C; Booske, John H; Hagness, Susan C

    2006-04-01

    The development of ultrawideband (UWB) microwave diagnostic and therapeutic technologies, such as UWB microwave breast cancer detection and hyperthermia treatment, is facilitated by accurate knowledge of the temperature- and frequency-dependent dielectric properties of biological tissues. To this end, we characterize the temperature-dependent dielectric properties of a representative tissue type-animal liver-from 0.5 to 20 GHz. Since discrete-frequency linear temperature coefficients are impractical and inappropriate for applications spanning wide frequency and temperature ranges, we propose a novel and compact data representation technique. A single-pole Cole-Cole model is used to fit the dielectric properties data as a function of frequency, and a second-order polynomial is used to fit the Cole-Cole parameters as a function of temperature. This approach permits rapid estimation of tissue dielectric properties at any temperature and frequency.

  3. In-vitro study of the temperature dependence of the optoacoustic conversion efficiency in biological tissues

    SciTech Connect

    Nikitin, S M; Khokhlova, Tanya D; Pelivanov, Ivan M

    2012-03-31

    The applicability of the optoacoustic (OA) method for monitoring temperature during thermal impact on biological tissues is studied experimentally. Tissues under study were chicken breast (as a model of muscle), porcine lard (as a model of fatty tissue) and porcine liver (as a model of richly perfused tissue). The temperature dependences of the amplitude of the OA signals excited in biological tissues were measured in-vitro in the temperature range of 20 - 80 Degree-Sign C under the narrow laser beam conditions. Measurements were performed in two regimes: during heating and cooling. Similarities and differences in the behaviour of the dependences in different temperature ranges associated with different structural composition of the samples were obtained. The accuracy of temperature reconstruction from experimental data for the investigated tissue types was evaluated. It is shown that during tissue coagulation its temperature can be determined with an accuracy of about 1 Degree-Sign C.

  4. Temperature-dependent magnetostriction as the key factor for martensite reorientation in magnetic field

    NASA Astrophysics Data System (ADS)

    L’vov, Victor A.; Kosogor, Anna

    2016-09-01

    The magnetic field application leads to spatially inhomogeneous magnetostriction of twinned ferromagnetic martensite. When the increasing field and magnetostrictive strain reach certain threshold values, the motion of twin boundaries and magnetically induced reorientation (MIR) of twinned martensite start. The MIR leads to giant magnetically induced deformation of twinned martensite. In the present article, the threshold field (TF) and temperature range of observability of MIR were calculated for the Ni–Mn–Ga martensite assuming that the threshold strain (TS) is temperature-independent. The calculations show that if the TS is of the order of 10‑4, the TF strongly depends on temperature and MIR can be observed only above the limiting temperature (~220 K). If the TS is of the order of 10‑6, the TF weakly depends on temperature and MIR can be observed at extremely low temperatures. The obtained theoretical results are in agreement with available experimental data.

  5. ENDF/B-VII.1 Beta4 Temperature Dependent Cross Section Library.

    2011-07-22

    Version 00 As distributed, the ENDF/B-VII.1 data includes cross sections represented in the form of a combination of resonance parameters and/or tabulated energy dependent cross sections, nominally at 0 Kelvin temperature. For use in applications the ENDF/B-VII.1 library has been processed into the form of temperature dependent cross sections at eight neutron reactor like temperatures, between 0 and 2100 Kelvin, in steps of 300 Kelvin (the exception being 293.6 Kelvin, for exact room temperature atmore » 20 Celsius). It has also been processed to five astrophysics like temperatures—1, 10, and 100 eV; and 1 and 10 keV. For reference purposes, 300 Kelvin is approximately 1/40 eV, so that 1 eV is approximately 12,000 Kelvin. At each temperature the cross sections are tabulated and linearly interpolable in energy.« less

  6. ENDF/B-VII.1 Beta4 Temperature Dependent Cross Section Library.

    2011-11-13

    Version 01 As distributed, the ENDF/B-VII.1 data includes cross sections represented in the form of a combination of resonance parameters and/or tabulated energy dependent cross sections, nominally at 0 Kelvin temperature. For use in applications the ENDF/B-VII.1 library has been processed into the form of temperature dependent cross sections at eight neutron reactor like temperatures, between 0 and 2100 Kelvin, in steps of 300 Kelvin (the exception being 293.6 Kelvin, for exact room temperature atmore » 20 Celsius). It has also been processed to five astrophysics like temperatures—1, 10, and 100 eV; and 1 and 10 keV. For reference purposes, 300 Kelvin is approximately 1/40 eV, so that 1 eV is approximately 12,000 Kelvin. At each temperature the cross sections are tabulated and linearly interpolable in energy.« less

  7. ENDF/B-VII.1 Beta4 Temperature Dependent Cross Section Library.

    2008-12-03

    Version 00 As distributed, the ENDF/B-VII.1 data includes cross sections represented in the form of a combination of resonance parameters and/or tabulated energy dependent cross sections, nominally at 0 Kelvin temperature. For use in applications the ENDF/B-VII.1 library has been processed into the form of temperature dependent cross sections at eight neutron reactor like temperatures, between 0 and 2100 Kelvin, in steps of 300 Kelvin (the exception being 293.6 Kelvin, for exact room temperature atmore » 20 Celsius). It has also been processed to five astrophysics like temperatures—1, 10, and 100 eV; and 1 and 10 keV. For reference purposes, 300 Kelvin is approximately 1/40 eV, so that 1 eV is approximately 12,000 Kelvin. At each temperature the cross sections are tabulated and linearly interpolable in energy.« less

  8. In-vitro study of the temperature dependence of the optoacoustic conversion efficiency in biological tissues

    NASA Astrophysics Data System (ADS)

    Nikitin, S. M.; Khokhlova, Tanya D.; Pelivanov, Ivan M.

    2012-03-01

    The applicability of the optoacoustic (OA) method for monitoring temperature during thermal impact on biological tissues is studied experimentally. Tissues under study were chicken breast (as a model of muscle), porcine lard (as a model of fatty tissue) and porcine liver (as a model of richly perfused tissue). The temperature dependences of the amplitude of the OA signals excited in biological tissues were measured in-vitro in the temperature range of 20 — 80 °C under the narrow laser beam conditions. Measurements were performed in two regimes: during heating and cooling. Similarities and differences in the behaviour of the dependences in different temperature ranges associated with different structural composition of the samples were obtained. The accuracy of temperature reconstruction from experimental data for the investigated tissue types was evaluated. It is shown that during tissue coagulation its temperature can be determined with an accuracy of about 1 °C.

  9. Temperature-dependent magnetostriction as the key factor for martensite reorientation in magnetic field

    NASA Astrophysics Data System (ADS)

    L'vov, Victor A.; Kosogor, Anna

    2016-09-01

    The magnetic field application leads to spatially inhomogeneous magnetostriction of twinned ferromagnetic martensite. When the increasing field and magnetostrictive strain reach certain threshold values, the motion of twin boundaries and magnetically induced reorientation (MIR) of twinned martensite start. The MIR leads to giant magnetically induced deformation of twinned martensite. In the present article, the threshold field (TF) and temperature range of observability of MIR were calculated for the Ni-Mn-Ga martensite assuming that the threshold strain (TS) is temperature-independent. The calculations show that if the TS is of the order of 10-4, the TF strongly depends on temperature and MIR can be observed only above the limiting temperature (~220 K). If the TS is of the order of 10-6, the TF weakly depends on temperature and MIR can be observed at extremely low temperatures. The obtained theoretical results are in agreement with available experimental data.

  10. Examination of temperature dependent subgroup formulations in direct whole core transport calculation for power reactors

    SciTech Connect

    Jung, Y. S.; Lee, U. C.; Joo, H. G.

    2012-07-01

    The traditional subgroup method which has been applied for lattice transport calculations has an inherent limitation for non-uniform temperature distributions. As a measure to incorporate temperature dependence into the subgroup formulation, the subgroup level and number density adjustment method have been proposed. In this paper, the temperature dependent subgroup formulations employed for reflecting the non-uniform temperature effects on the resonance spatial self-shielding are examined for the whole core transport calculation with the thermal feedback. For 2D pin-cell problem with non-uniform temperature profiles, the inherent limitation of conventional subgroup method is confirmed. And the improvement in terms of reactivity is observed with the proposed adjustment scheme. For the real PWR core calculation with thermal feedback in the hot-full-power condition, the noticeable correction for the fuel temperature coefficient by about 10% more negative is obtained with the correction schemes. (authors)

  11. Temperature-Dependent Friction and Wear Behavior of PTFE and MoS2

    DOE PAGESBeta

    Babuska, T. F.; Pitenis, A. A.; Jones, M. R.; Nation, B. L.; Sawyer, W. G.; Argibay, N.

    2016-06-16

    We present an investigation of the temperature-dependent friction behavior of PTFE, MoS2, and PTFE-on- MoS2. Friction behavior was measured while continuously varying contact temperature in the range -150 to 175°C while sliding in dry nitrogen, as well as for self-mated PTFE immersed in liquid nitrogen. These results contrast with previous reports of monotonic inverse temperature dependent friction behavior, as well as reported high-friction transitions and plateaus at temperatures below about -20°C that were not observed, providing new insights about the molecular mechanisms of macro-scale friction. The temperature-dependent friction behavior characteristic of self-mated PTFE was found also on the PTFE-on-MoS2 slidingmore » contact, suggesting that PTFE friction was defined by sub-surface deformation mechanisms and internal friction even when sliding against a lamellar lubricant with extremely low friction coefficient (μ ~ 0.02). The various relaxation temperatures of PTFE were found in the temperature-dependent friction behavior, showing excellent agreement with reported values acquired using torsional techniques measuring internal friction. Additionally, hysteresis in friction behavior suggests an increase in near-surface crystallinity at upon exceeding the high temperature relaxation, Tα~ 116°C.« less

  12. (abstract) Ulysses Solar Wind Ion Temperatures: Radial, Latitudinal, and Dynamical Dependencies

    NASA Technical Reports Server (NTRS)

    Goldstein, B. E.; Smith, E. J.; Gosling, J. T.; McComas, D. J.; Balogh, A.

    1996-01-01

    Observations of the Ulysses SWOOPS plasma experiment are used to determine the dependencies of solar wind ion temperatures upon radial distance, speed, and other parameters, and to estimate solar wind heating. Comparisons with three dimensional temperature estimates determined from the ion spectra by a least squares fitting program will be provided (only small samples of data have been reduced with this program).

  13. Temperature dependence dynamical permeability characterization of magnetic thin film using near-field microwave microscopy

    NASA Astrophysics Data System (ADS)

    Hung, Le Thanh; Phuoc, Nguyen N.; Wang, Xuan-Cong; Ong, C. K.

    2011-08-01

    A temperature dependence characterization system of microwave permeability of magnetic thin film up to 5 GHz in the temperature range from room temperature up to 423 K is designed and fabricated as a prototype measurement fixture. It is based on the near field microwave microscopy technique (NFMM). The scaling coefficient of the fixture can be determined by (i) calibrating the NFMM with a standard sample whose permeability is known; (ii) by calibrating the NFMM with an established dynamic permeability measurement technique such as shorted microstrip transmission line perturbation method; (iii) adjusting the real part of the complex permeability at low frequency to fit the value of initial permeability. The algorithms for calculating the complex permeability of magnetic thin films are analyzed. A 100 nm thick FeTaN thin film deposited on Si substrate by sputtering method is characterized using the fixture. The room temperature permeability results of the FeTaN film agree well with results obtained from the established short-circuited microstrip perturbation method. Temperature dependence permeability results fit well with the Landau-Lifshitz-Gilbert equation. The temperature dependence of the static magnetic anisotropy H_K^{sta}, the dynamic magnetic anisotropy H_K^{dyn}, the rotational anisotropy Hrot, together with the effective damping coefficient αeff, ferromagnetic resonance fFMR, and frequency linewidth Δf of the thin film are investigated. These temperature dependent magnetic properties of the magnetic thin film are important to the high frequency applications of magnetic devices at high temperatures.

  14. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various frequencies.

    PubMed

    Maraghechi, Borna; Hasani, Mojtaba H; Kolios, Michael C; Tavakkoli, Jahan

    2016-05-01

    Ultrasound-based thermometry requires a temperature-sensitive acoustic parameter that can be used to estimate the temperature by tracking changes in that parameter during heating. The objective of this study is to investigate the temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various pulse transmit frequencies from 1 to 20 MHz. Simulations were conducted using an expanded form of the Khokhlov-Zabolotskaya-Kuznetsov nonlinear acoustic wave propagation model in which temperature dependence of the medium parameters was included. Measurements were performed using single-element transducers at two different transmit frequencies of 3.3 and 13 MHz which are within the range of frequencies simulated. The acoustic pressure signals were measured by a calibrated needle hydrophone along the axes of the transducers. The water temperature was uniformly increased from 26 °C to 46 °C in increments of 5 °C. The results show that the temperature dependence of the harmonic generation is different at various frequencies which is due to the interplay between the mechanisms of absorption, nonlinearity, and focusing gain. At the transmit frequencies of 1 and 3.3 MHz, the harmonic amplitudes decrease with increasing the temperature, while the opposite temperature dependence is observed at 13 and 20 MHz. PMID:27250143

  15. THE TEMPERATURE DEPENDENCE OF THE EMISSION OF PERCHLORO- ETHYLENE FROM DRY CLEANED FABRICS

    EPA Science Inventory

    A study was conducted to evaluate the emission of perchloroethylene (tetrachloroethylene) from freshly dry cleaned fabrics using small environmental test chambers. The temperature dependence of the release of perchloroethylene was evaluated over a temperature range of 20 to 45°C....

  16. Experimental determination of the temperature dependence of water activities for a selection of aqueous organic solutions

    NASA Astrophysics Data System (ADS)

    Ganbavale, G.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Stratmann, G.; Peter, T.

    2014-09-01

    This work presents experimental data of the temperature dependence of water activity in aqueous organic solutions relevant for tropospheric conditions (200-273 K). Water activity (aw) at low temperatures (T) is a crucial parameter for predicting homogeneous ice nucleation. We investigated temperature-dependent water activities, ice freezing and melting temperatures of solutions, and vapour pressures of a selection of atmospherically relevant aqueous organic systems. To measure aw over a wide composition range and with a focus on low temperatures, we use various aw measurement techniques and instruments: a dew point water activity meter, an electrodynamic balance (EDB), differential scanning calorimetry (DSC), and a setup to measure the total gas phase pressure at equilibrium over aqueous solutions. Water activity measurements were performed for aqueous multicomponent and multifunctional organic mixtures containing the functional groups typically found in atmospheric organic aerosols, such as hydroxyl, carboxyl, ketone, ether, ester, and aromatic groups. The aqueous organic systems studied at several fixed compositions over a considerable temperature range differ significantly in their temperature dependence. Aqueous organic systems of 1,4-butanediol and methoxyacetic acid show a moderate decrease in aw with decreasing temperature. The aqueous M5 system (a multicomponent system containing five different dicarboxylic acids) and aqueous 2-(2-ethoxyethoxy)ethanol solutions both show a strong increase of water activity with decreasing temperature at high solute concentrations for T < 270 K and T < 260 K, respectively. These measurements show that the temperature trend of aw can be reversed at low temperatures and that linear extrapolations of high-temperature data may lead to erroneous predictions. To avoid this, experimentally determined aw at low temperature are needed to improve thermodynamic models towards lower temperatures and for improved predictions of the ice

  17. Experimental determination of the temperature dependence of water activities for a selection of aqueous organic solutions

    NASA Astrophysics Data System (ADS)

    Ganbavale, G.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Stratmann, G.; Peter, T.

    2014-05-01

    This work presents experimental data of the temperature dependence of water activity in aqueous organic solutions relevant for tropospheric conditions (200-273 K). Water activity (aw) at low temperatures (T) is a crucial parameter for predicting homogeneous ice nucleation. We investigated temperature dependent water activities, ice freezing and melting temperatures of solutions, and vapour pressures of a selection of atmospherically relevant aqueous organic systems. To measure aw over a wide composition range and with a focus on low temperatures, we use various aw measurement techniques and instruments: a dew point water activity meter, an electrodynamic balance (EDB), differential scanning calorimetry (DSC), and a setup to measure the total gas phase pressure at equilibrium over aqueous solutions. Water activity measurements were performed for aqueous multicomponent and multifunctional organic mixtures containing the functional groups typically found in atmospheric organic aerosols, such as hydroxyl, carboxyl, ketone, ether, ester, and aromatic groups. The aqueous organic systems studied at several fixed compositions over a considerable temperature range differ significantly in their temperature dependence. Aqueous organic systems of 1,4-butanediol and methoxyacetic acid show a moderate decrease in aw with decreasing temperature. The aqueous M5 system (a multicomponent system containing five different dicarboxylic acids) and aqueous 2-(2-ethoxyethoxy)ethanol solutions both show a strong increase of water activity with decreasing temperature at high solute concentrations for T<270 K and T<260 K, respectively. These measurements show that the temperature trend of aw can be reversed at low temperatures and that linear extrapolations of high temperature data may lead to erroneous predictions. To avoid this, experimentally determined aw at low temperature are needed to improve thermodynamic models towards lower temperatures and for improved predictions of the ice

  18. Temperature-dependent stability of supported five-fold twinned copper nanocrystals.

    PubMed

    Silly, Fabien; Castell, Martin R

    2009-04-28

    The temperature-dependent structure transition of supported Cu nanocrystals on SrTiO3(001)-(2 x 1) is investigated by scanning tunneling microscopy (STM). We experimentally determine the phase map of supported Cu icosahedral, decahedral, and truncated octahedral nanocrystal shapes as a function of substrate temperature during Cu deposition. We show that a supported nanocrystal of 8500 atoms at a nucleation temperature of 480 degrees C has the same probability of adopting an icosahedral or octahedral shape. PMID:19323548

  19. Temperature dependence of single-event burnout in n-channel power MOSFET's

    NASA Astrophysics Data System (ADS)

    Johnson, G. H.; Schrimpf, R. D.; Galloway, K. F.; Koga, R.

    1994-03-01

    The temperature dependence of single-event burnout (SEB) in n-channel power metal-oxide-semiconductor field effect transistors (MOSFET's) is investigated experimentally and analytically. Experimental data are presented which indicate that the SEB susceptibility of the power MOSFET decreases with increasing temperature. A previously reported analytical model that describes the SEB mechanism is updated to include temperature variations. This model is shown to agree with the experimental trends.

  20. Generalized inverse analysis for fins of different profiles with all temperature-dependent parameters

    NASA Astrophysics Data System (ADS)

    Singh, Kuljeet; Das, Ranjan

    2016-08-01

    An inverse analysis is done to predict unknown and optimal dimensions of a fin satisfying either a given temperature or maximizing heat transfer rate. The profile simulating many geometries involves all temperature-dependent heat transfer modes. A hybrid algorithm is used to estimate relevant fin parameters. The present study shall be useful in selecting optimal dimensions to achieve either a particular temperature distribution or maximize heat transfer rate on various profiles.

  1. Pressure dependence of the melting temperature of solids - Rare-gas solids

    NASA Technical Reports Server (NTRS)

    Schlosser, Herbert; Ferrante, John

    1991-01-01

    A method presented by Schlosser et al. (1989) for analyzing the pressure dependence of experimental melting-temperature data is applied to rare-gas solids. The plots of the logarithm of the reduced melting temperature vs that of the reduced pressure are straight lines in the absence of phase transitions. The plots of the reduced melting temperatures for Ar, Kr, and Xe are shown to be approximately straight lines.

  2. Anomalous temperature dependence of gas chromatographic retention indices of polar compounds on nonpolar phases

    NASA Astrophysics Data System (ADS)

    Zenkevich, I. G.; Pavlovskii, A. A.

    2016-05-01

    The character of the temperature dependences of the retention indices RI( T) of polar sorbates on nonpolar stationary phases was found to depend on the dosed amounts of sorbates, but not on column overloading. A physicochemical model was suggested to explain the observed anomalies in RI( T).

  3. Dielectric relaxation and solvation dynamics in a room-temperature ionic liquid: temperature dependence.

    PubMed

    Shim, Youngseon; Kim, Hyung J

    2013-10-01

    Dielectric relaxation, related polarization and conductivity, and solvation dynamics of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMI(+)PF6(-)) are studied via molecular dynamics computer simulations in the temperature range 300 K ≤ T ≤ 500 K. Two main bands of its dielectric loss spectrum show differing temperature behaviors. As T increases, the absorption band in the microwave region shifts to higher frequencies rapidly, whereas the location of the bimodal far-IR band remains nearly unchanged. Their respective intensities tend to decrease and increase. The static dielectric constant of BMI(+)PF6(-) is found to decrease weakly with T. The ultrafast inertial component of solvation dynamics remains largely unchanged, while their dissipative relaxation component becomes faster. Roles played by ion reorientations and translations in governing dynamic and static dielectric properties of the ionic liquid are examined. A brief comparison with available experimental results is also made.

  4. Temperature-dependent thermal expansivities of silicate melts: The system anorthite-diopside

    SciTech Connect

    Knoche, R.; Dingwell, D.B.; Webb, S.L. )

    1992-02-01

    The temperature-dependent thermal expansivities of melts along the join anorthite-diopside have been determined on glassy and liquid samples using a combination of calorimetry, dilatometry, and Pt double bob Archimedean densitometry. Supercooled liquid volumes and molar thermal expansivities were determined using scanning calorimetric and dilatometric measurements of properties in the glass region and their behavior at the glass transition. The extraction of low-temperature liquid molar expansivities from dilatometry/calorimetry is based on an assumed equivalence of the relaxation of volume and enthalpy at the glass transition using a method developed and tested by Webb et al. (1992). This method corrects for transient effects at the glass transition which can lead to serious overestimates of liquid thermal expansivity from peak' values. Superliquidus volumes were determined using double Pt bob Archimedean densitometry at temperatures up to 1,650C. The resulting data for liquid volumes near glass transition temperatures (810-920C) and at superliquidus temperatures (1,400-1,650C) are combined to yield thermal expansivities over the entire supercooled and stable liquid range. The molar expansivities are, in general, temperature dependent. The temperature-dependence of thermal expansivity increases from anorthite to diopside composition. The thermal expansivity of anorthite is essentially temperature independent, whereas that of diopside decreases by {congruent} 50% between 800 and 1,500C, with the consequence that the thermal expansivities of the liquids in the anorthite-diopside system converge at high temperature.

  5. Improved AIOMFAC model parameterisation of the temperature dependence of activity coefficients for aqueous organic mixtures

    NASA Astrophysics Data System (ADS)

    Ganbavale, G.; Zuend, A.; Marcolli, C.; Peter, T.

    2014-06-01

    This study presents a new, improved parameterisation of the temperature dependence of activity coefficients in the AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) model applicable for aqueous as well as water-free organic solutions. For electrolyte-free organic and organic-water mixtures the AIOMFAC model uses a group-contribution approach based on UNIFAC (UNIversal quasi-chemical Functional-group Activity Coefficients). This group-contribution approach explicitly accounts for interactions among organic functional groups and between organic functional groups and water. The previous AIOMFAC version uses a simple parameterisation of the temperature dependence of activity coefficients, aimed to be applicable in the temperature range from ~275 to ~400 K. With the goal to improve the description of a wide variety of organic compounds found in atmospheric aerosols, we extend the AIOMFAC parameterisation for the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon to atmospherically relevant low temperatures with the introduction of a new temperature dependence parameterisation. The improved temperature dependence parameterisation is derived from classical thermodynamic theory by describing effects from changes in molar enthalpy and heat capacity of a multicomponent system. Thermodynamic equilibrium data of aqueous organic and water-free organic mixtures from the literature are carefully assessed and complemented with new measurements to establish a comprehensive database, covering a wide temperature range (~190 to ~440 K) for many of the functional group combinations considered. Different experimental data types and their processing for the estimation of AIOMFAC model parameters are discussed. The new AIOMFAC parameterisation for the temperature dependence of activity coefficients from low to high temperatures shows an overall improvement of 25% in comparison to

  6. Temperature dependence of mode conversion in warm, unmagnetized plasmas with a linear density profile

    SciTech Connect

    Yu, Dae Jung; Lee, Dong-Hun; Kim, Kihong

    2013-06-15

    We study theoretically the linear mode conversion between electromagnetic waves and Langmuir waves in warm, stratified, and unmagnetized plasmas, using a numerically precise calculation based on the invariant imbedding method. We verify that the principle of reciprocity for the forward and backward mode conversion coefficients holds precisely regardless of temperature. We also find that the temperature dependence of the mode conversion coefficient is substantially stronger than that previously reported. Depending on the wave frequency and the incident angle, the mode conversion coefficient is found to increase or decrease with the increase of temperature.

  7. Temperature dependent spin transport properties of platinum inferred from spin Hall magnetoresistance measurements

    SciTech Connect

    Meyer, Sibylle Althammer, Matthias; Geprägs, Stephan; Opel, Matthias; Goennenwein, Sebastian T. B.; Gross, Rudolf

    2014-06-16

    We study the temperature dependence of the spin Hall magnetoresistance (SMR) in yttrium iron garnet/platinum hybrid structures via magnetization orientation dependent magnetoresistance measurements. Our experiments show a decrease of the SMR magnitude with decreasing temperature. Using the sensitivity of the SMR to the spin transport properties of the normal metal, we interpret our data in terms of a decrease of the spin Hall angle in platinum from 0.11 at room temperature to 0.075 at 10 K, while the spin diffusion length and the spin mixing conductance of the ferrimagnetic insulator/normal metal interface remain almost constant.

  8. Temperature-dependent hyperfine interactions at 111Cd-C complex in germanium

    NASA Astrophysics Data System (ADS)

    Mola, Genene Tessema

    2013-09-01

    The temperature dependent nuclear hyperfine interaction of 111Cd-carbon complex in germanium has been studied using the perturbed γ- γ angular correlation (PAC) method. The parameters of the hyperfine interaction representing substitutional carbon-cadmium complex in germanium ( ν Q1=207(1) MHz ( η=0.16)) shows dependence on temperature. The formation and thermal stability of the complex has been reported by the same author earlier. It was found in this study that the quadrupole coupling constant of the interaction increases at sample temperature below 293 K. The results are encouraging toward better understanding of the complex in the host matrix.

  9. Comparative study on size dependence of melting temperatures of pure metal and alloy nanoparticles

    SciTech Connect

    Chen, C. L.; Lee, J.-G.; Arakawa, K.; Mori, H.

    2011-07-04

    A comparative study on the size dependence of the melting temperatures of pure metal and alloy nanoparticles has been carried out. It was found that the melting temperatures of Bi-Sn, In-Sn, and Pb-Sn alloy nanoparticles decreased more rapidly with decreasing particle size than those of the constituent metal nanoparticles (Bi, In, Pb, Sn). Namely, the size dependence of the melting temperature was stronger for the alloy nanoparticles than that for the constituent metal nanoparticles. Results calculated with a thermodynamic model were in good agreement with the experimental observations.

  10. Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes

    SciTech Connect

    Tian, Pengfei; McKendry, Jonathan J. D.; Herrnsdorf, Johannes; Ferreira, Ricardo; Watson, Ian M.; Gu, Erdan Dawson, Martin D.; Watson, Scott; Kelly, Anthony E.

    2014-10-27

    Temperature-dependent trends in radiative and Auger recombination coefficients have been determined at different injection carrier concentrations using InGaN micro-light emitting diodes 40 μm in diameter. The differential lifetime was obtained first from the measured modulation bandwidth and was then employed to calculate the carrier concentration in the quantum well active region. When the temperature increases, the carrier concentration increases, but both the radiative and Auger recombination coefficients decrease. In addition, the temperature dependence of radiative and Auger recombination coefficients is weaker at a higher injection carrier concentration, which is strongly related to phase space filling.

  11. Temperature dependence of fracture toughness in HT9 steel neutron-irradiated up to 145 dpa

    SciTech Connect

    Baek, Jong-Hyuk; Byun, Thak Sang; Maloy, S; Toloczko, M

    2014-01-01

    The temperature dependence of fracture toughness in HT9 steel irradiated to high doses was investigated using miniature three-point bend (TPB) fracture specimens. These specimens were from the ACO-3 fuel duct wall of the Fast Flux Test Facility (FFTF), in which irradiation doses were in the range of 3.2 144.8 dpa and irradiation temperatures in the range of 380.4 502.6 oC. A miniature specimen reuse technique has been established for this investigation: the specimens used were the tested halves of miniature Charpy impact specimens (~13 3 4 mm) with diamond-saw cut in the middle. The fatigue precracking for specimens and fracture resistance (J-R) tests were carried out in a MTS servo-hydraulic testing machine with a vacuum furnace following the standard procedure described in the ASTM Standard E 1820-09. For each of five irradiated and one archive conditions, 7 to 9 J-R tests were performed at selected temperatures ranging from 22 C to 600 C. The fracture toughness of the irradiated HT9 steel was strongly dependent on irradiation temperatures rather than irradiation dose. When the irradiation temperature was below about 430 C, the fracture toughness of irradiated HT9 increased with test temperature, reached an upper shelf of 180 200 MPa m at 350 450 C and then decreased with test temperature. When the irradiation temperature 430 C, the fracture toughness was nearly unchanged until about 450 C and decreased with test temperature in higher temperature range. Similar test temperature dependence was observed for the archive material although the highest toughness values are lower after irradiation. Ductile stable crack growth occurred except for a few cases where both the irradiation temperature and test temperature are relatively low.

  12. Temperature-dependent selection in the transmission of mitochondrial DNA in Drosophila.

    PubMed

    Matsuura, E T; Niki, Y; Chigusa, S I

    1993-04-01

    We previously reported a selective mode of mitochondrial DNA (mtDNA) transmission in mtDNA heteroplasmy that was induced artificially in Drosophila melanogaster; the transmission bias appeared to depend on the particular temperature at which heteroplasmic lines were maintained. Here we report investigations of the temperature-dependent mode of mtDNA transmission in heteroplasmic lines for intra- and interspecific combinations maintained separately at 22.5 degrees C, 25 degrees C and 29 degrees C for 20 generations. We have examined a selection model for mitochondrial transmission, similar to genetic selection in haploid organisms. Changes in the relative proportions of two types of mtDNA fit the expectations from the model well. The intensity of selection estimated as a selection coefficient depends on temperature. Temperature-sensitive processes thus appear to be involved in the transmission and maintenance of mitochondria.

  13. Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond

    NASA Astrophysics Data System (ADS)

    Acosta, V. M.; Bauch, E.; Ledbetter, M. P.; Waxman, A.; Bouchard, L.-S.; Budker, D.

    2010-02-01

    The temperature dependence of the magnetic-resonance spectra of nitrogen-vacancy (NV-) ensembles in the range of 280-330 K was studied. Four samples prepared under different conditions were analyzed with NV- concentrations ranging from 10 ppb to 15 ppm. For all samples, the axial zero-field splitting (ZFS) parameter D was found to vary significantly with temperature, T, as dD/dT=-74.2(7)kHz/K. The transverse ZFS parameter E was nonzero (between 4 and 11 MHz) in all samples, and exhibited a temperature dependence of dE/(EdT)=-1.4(3)×10-4K-1. The results might be accounted for by considering local thermal expansion. The temperature dependence of the ZFS parameters presents a significant challenge for diamond magnetometers and may ultimately limit their bandwidth and sensitivity.

  14. Subcritical dyke propagation in a host rock with temperature-dependent viscoelastic properties

    NASA Astrophysics Data System (ADS)

    Chen, Zuan; Jin, Z.-H.

    2011-09-01

    In this paper, we examine the effects of temperature-dependent viscoelastic properties of the host rock on the subcritical growth of a dyke from a magma chamber. A theoretical relationship between the velocity of subcritical dyke growth and dyke length is established using a perturbation solution of stress intensity factor at the dyke tip and a viscoelastic crack growth theory in which the temperature-dependent creep properties are taken into account. The temperature field around the dyke is calculated using an analytic solution. The numerical results for a dyke subcritically propagating from a magma chamber indicate that while the general dyke growth characteristics are similar to those with constant creep properties, the subcritical dyke growth velocity is increased by an order of magnitude by considering the temperature dependence of the creep properties. Hence, the subcritical growth duration before the dyke reaches the unstable growth state is significantly shortened.

  15. Effects of Phase Lags on Three-Dimensional Wave Propagation with Temperature-Dependent Properties

    NASA Astrophysics Data System (ADS)

    Kalkal, Kapil Kumar; Deswal, Sunita

    2014-05-01

    A three-dimensional model of equations for a homogeneous and isotropic medium with temperature-dependent mechanical properties is established under the purview of two-phase-lag thermoelasticity theory. The modulus of elasticity is taken as a linear function of the reference temperature. The resulting non-dimensional coupled equations are applied to a specific problem of a half-space whose surface is traction-free and is subjected to a time-dependent thermal shock. The analytical expressions for the displacement component, stress, temperature field, and strain are obtained in the physical domain by employing normal mode analysis. These expressions are also calculated numerically for a copper-like material and depicted graphically. Discussions have been made to highlight the joint effects of the temperature-dependent modulus of elasticity and time on these physical fields. The phenomenon of a finite speed of propagation is observed graphically for each field.

  16. Temperature dependence of magnetic susceptibility in the vicinity of martensitic transformation in ferromagnetic shape memory alloys.

    PubMed

    Zablotskii, V; Pérez-Landazábal, J I; Recarte, V; Gómez-Polo, C

    2010-08-11

    Temperature dependences of low-field quasistatic magnetic susceptibility in the vicinity of martensitic transitions in an NiFeGa alloy are studied both by experiment and analytically. Pronounced reversible jumps of the magnetic susceptibility were observed near the martensitic transition temperature. A general description of the temperature dependences of the susceptibility in ferromagnetic austenite and martensite phases and the susceptibility jump at the transition is suggested. As a result, the main factors governing the temperature dependences of the magnetic susceptibility in the magnetic shape memory alloys are revealed. The magnetic susceptibility jump value is found to be related to changes of: (i) magnetic anisotropy; (ii) magnetic domain wall geometrical constraints (those determined by the alignment and size of twin variants) and (iii) mean magnetic domain spacing.

  17. The Properties of Cu Thin Films on Ru Depending on the ALD Temperature.

    PubMed

    Yoon, Hyeong-Chul; Shin, Jin-Ha; Park, Hwa-Sun; Suh, Su-Jeong

    2015-02-01

    The copper thin films were deposited by Atomic layer deposition (ALD) on a ruthenium depending on the substrate temperatures. The substrate deposited Ru and TaN on SiO2 by plasma enhanced ALD (PEALD) before Cu deposition for an adhesion layer between Si and Cu. The copper thin films were deposited 200 cycles. The thickness of Cu was different depending on the substrate temperatures. The properties of copper thin films were investigated by a 4 point probe, SEM, and AFM. TaN and Ru layers were deposited by plasma enhanced ALD (PEALD) for the adhesion layer. Also, TaN and Ru layers were observed as TEM because the thickness was too thin. The thickness and roughness of Cu thin film increased depending on the deposition temperatures but, Cu thin film was not deposited at 110 °C. The best sheet resistance of the copper thin film was obtained at a deposition temperature of 170 °C.

  18. Room-temperature ionic liquids: temperature dependence of gas solubility selectivity

    SciTech Connect

    Alexia Finotello; Jason E. Bara; Dean Camper; Richard D. Noble

    2008-05-15

    This study focuses on bulk fluid solubility of carbon dioxide (CO{sub 2}), methane (CH{sub 4}), hydrogen (H{sub 2}), and nitrogen (N{sub 2}) gases in the imidazolium-based RTILs: 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ((emim)(Tf{sub 2}N)),1-ethyl-3-methylimidazolium tetrafluoroborate ((emim)(BF{sub 4})),1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide((hmim)(Tf{sub 2}N)), and 1,3-dimethylimidazolium methyl sulfate ((mmim)(MeSO{sub 4})) as a function of temperature (25, 40, 55, and 70{sup o}C) at near-atmospheric pressures. The experimental behaviors are explained in terms of thermodynamic relationships that account for the negligible vapor pressure of the RTIL as well as the low solubilities of the gases. Results show that, as temperature increases, the solubility of CO{sub 2} decreases in all RTILs, the solubility of CH{sub 4} remains constant in (emim)(Tf{sub 2}N) and (hmim)(Tf{sub 2}N) but increases in(mmim)(MeSO{sub 4}) and (emim)(BF{sub 4}), and the solubility of N{sub 2} and H{sub 2} increases. Also, the ideal solubility selectivity (ratio of pure-component solubilities) increases as temperature decreases for CO{sub 2}/N{sub 2}, CO{sub 2}/CH{sub 4}, and CO{sub 2}/H{sub 2} systems. Experimental values for the enthalpy and entropy of solvation are reported.

  19. Investigation of temperature-dependent photoluminescence in multi-quantum wells

    PubMed Central

    Fang, Yutao; Wang, Lu; Sun, Qingling; Lu, Taiping; Deng, Zhen; Ma, Ziguang; Jiang, Yang; Jia, Haiqiang; Wang, Wenxin; Zhou, Junming; Chen, Hong

    2015-01-01

    Photoluminescence (PL) is a nondestructive and powerful method to investigate carrier recombination and transport characteristics in semiconductor materials. In this study, the temperature dependences of photoluminescence of GaAs-AlxGa1-xAs multi-quantum wells samples with and without p-n junction were measured under both resonant and non-resonant excitation modes. An obvious increase of photoluminescence(PL) intensity as the rising of temperature in low temperature range (T < 50 K), is observed only for GaAs-AlxGa1-xAs quantum wells sample with p-n junction under non-resonant excitation. The origin of the anomalous increase of integrated PL intensity proved to be associated with the enhancement of carrier drifting because of the increase of carrier mobility in the temperature range from 15 K to 100 K. For non-resonant excitation, carriers supplied from the barriers will influence the temperature dependence of integrated PL intensity of quantum wells, which makes the traditional methods to acquire photoluminescence characters from the temperature dependence of integrated PL intensity unavailable. For resonant excitation, carriers are generated only in the wells and the temperature dependence of integrated PL intensity is very suitable to analysis the photoluminescence characters of quantum wells. PMID:26228734

  20. Microcantilever-Based Label-Free Characterization of Temperature-Dependent Biomolecular Affinity Binding

    PubMed Central

    Wang, Bin; Huang, Fengliang; Nguyen, ThaiHuu; Xu, Yong; Lin, Qiao

    2014-01-01

    This paper presents label-free characterization of temperature-dependent biomolecular affinity binding on solid surfaces using a microcantilever-based device. The device consists of a Parylene cantilever one side of which is coated with a gold film and functionalized with molecules as an affinity receptor to a target analyte. The cantilever is located in a poly(dimethylsiloxane) (PDMS) microfluidic chamber that is integrated with a transparent indium tin oxide (ITO) resistive temperature sensor on the underlying substrate. The ITO sensor allows for real-time measurements of the chamber temperature, as well as unobstructed optical access for reflection-based optical detection of the cantilever deflection. To test the temperature-dependent binding between the target and receptor, the temperature of the chamber is maintained at a constant setpoint, while a solution of unlabeled analyte molecules is continuously infused through the chamber. The measured cantilever deflection is used to determine the target-receptor binding characteristics. We demonstrate label-free characterization of temperature-dependent binding kinetics of the platelet-derived growth factor (PDGF) protein with an aptamer receptor. Affinity binding properties including the association and dissociation rate constants as well as equilibrium dissociation constant are obtained, and shown to exhibit significant dependencies on temperature. PMID:24723743

  1. Temperature dependences of the contact resistivity in ohmic contacts to n{sup +}-InN

    SciTech Connect

    Sachenko, A. V.; Belyaev, A. E.; Boltovets, N. S.; Brunkov, P. N.; Jmerik, V. N.; Ivanov, S. V.; Kapitanchuk, L. M.; Konakova, R. V. Klad’ko, V. P.; Romanets, P. N.; Saja, P. O.; Safryuk, N. V.; Sheremet, V. N.

    2015-04-15

    The temperature dependences of the contact resistivity (ρ{sub c}) of ohmic contacts based on the Au-Ti-Pd-InN system are measured at an InN doping level of 2 × 10{sup 18} cm{sup −3} in the temperature range of 4.2–300 K. At temperatures T > 150 K, linearly increasing dependences ρ{sub c}(T) are obtained. The dependences are explained within the mechanism of thermionic current flow through metal shunts associated with dislocations. Good agreement between theoretical and experimental dependences is achieved assuming that the flowing current is limited by the total resistance of the metal shunts, and the density of conductive dislocations is ∼5 × 10{sup 9} cm{sup −2}. Using the X-ray diffraction method, the density of screw and edge dislocations in the structure under study is measured: their total density exceeds 10{sup 10} cm{sup −2}.

  2. Temperature extremes, density dependence, and southern pine beetle (Coleoptera: Curculionidae) population dynamics in east Texas.

    PubMed

    Friedenberg, Nicholas A; Sarkar, Sudipta; Kouchoukos, Nicholas; Billings, Ronald F; Ayres, Matthew P

    2008-06-01

    Previous studies of the southern pine beetle, Dendroctonus frontalis Zimm., established that its population in east Texas responds to a delayed density-dependent process, whereas no clear role of climate has been determined. We tested two biological hypotheses for the influence of extreme temperatures on annual southern pine beetle population growth in the context of four alternative hypotheses for density-dependent population regulation. The significance of climate variables and their interaction with population regulation depended on the model of density dependence. The best model included both direct and delayed density dependence of a cubic rather than linear form. Population growth declined with the number of days exceeding 32 degrees C, temperatures previously reported to reduce brood survival. Density dependence also changed with the number of hot days. Growth was highest in years with average minimum winter temperatures. Severely cold winters may reduce survival, whereas warm winters may reduce the efficiency of spring infestation formation. Whereas most previous studies have incorporated climate as an additive effect on growth, we found that the form of delayed density dependence changed with the number of days >32 degrees C. The interaction between temperature and regulation, a potentially common phenomenon in ecology, may explain why southern pine beetle outbreaks do not occur at perfectly regular intervals. Factors other than climate, such as forest management and direct suppression, may have contributed significantly to the timing, severity, and eventual cessation of outbreaks since the mid-1950s.

  3. The instantaneous rate dependence in low temperature laboratory rock friction and rock deformation experiments

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.; Kronenberg, A.K.; Reinen, L.A.

    2007-01-01

    Earthquake occurrence probabilities that account for stress transfer and time-dependent failure depend on the product of the effective normal stress and a lab-derived dimensionless coefficient a. This coefficient describes the instantaneous dependence of fault strength on deformation rate, and determines the duration of precursory slip. Although an instantaneous rate dependence is observed for fracture, friction, crack growth, and low temperature plasticity in laboratory experiments, the physical origin of this effect during earthquake faulting is obscure. We examine this rate dependence in laboratory experiments on different rock types using a normalization scheme modified from one proposed by Tullis and Weeks [1987]. We compare the instantaneous rate dependence in rock friction with rate dependence measurements from higher temperature dislocation glide experiments. The same normalization scheme is used to compare rate dependence in friction to rock fracture and to low-temperature crack growth tests. For particular weak phyllosilicate minerals, the instantaneous friction rate dependence is consistent with dislocation glide. In intact rock failure tests, for each rock type considered, the instantaneous rate dependence is the same size as for friction, suggesting a common physical origin. During subcritical crack growth in strong quartzofeldspathic and carbonate rock where glide is not possible, the instantaneous rate dependence measured during failure or creep tests at high stress has long been thought to be due to crack growth; however, direct comparison between crack growth and friction tests shows poor agreement. The crack growth rate dependence appears to be higher than the rate dependence of friction and fracture by a factor of two to three for all rock types considered. Copyright 2007 by the American Geophysical Union.

  4. Improved Regression Analysis of Temperature-Dependent Strain-Gage Balance Calibration Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2015-01-01

    An improved approach is discussed that may be used to directly include first and second order temperature effects in the load prediction algorithm of a wind tunnel strain-gage balance. The improved approach was designed for the Iterative Method that fits strain-gage outputs as a function of calibration loads and uses a load iteration scheme during the wind tunnel test to predict loads from measured gage outputs. The improved approach assumes that the strain-gage balance is at a constant uniform temperature when it is calibrated and used. First, the method introduces a new independent variable for the regression analysis of the balance calibration data. The new variable is designed as the difference between the uniform temperature of the balance and a global reference temperature. This reference temperature should be the primary calibration temperature of the balance so that, if needed, a tare load iteration can be performed. Then, two temperature{dependent terms are included in the regression models of the gage outputs. They are the temperature difference itself and the square of the temperature difference. Simulated temperature{dependent data obtained from Triumph Aerospace's 2013 calibration of NASA's ARC-30K five component semi{span balance is used to illustrate the application of the improved approach.

  5. Temperature-dependent elastic properties of α -beryllium from first principles

    NASA Astrophysics Data System (ADS)

    Kádas, K.; Vitos, L.; Ahuja, R.; Johansson, B.; Kollár, J.

    2007-12-01

    Using density functional theory formulated within the framework of the exact muffin-tin orbitals method, we investigate the temperature dependence of the structural parameters and the elastic properties of the hexagonal closed-packed phase of Be (α-Be) . We find that the elastic constants follow a normal behavior with temperature: decrease with increasing temperature with a slightly increasing slope. Up to the melting point, the monocrystalline elastic constants decrease by an average of 16% and the polycrystalline elastic constants by 10%. These trends contradict the large temperature factor observed in high-temperature direct pulse ultrasonic experiments. At the same time, the low-temperature pulse echo measurements confirm the present theoretical findings. Our results call for further accurate experimental studies on the elastic properties of α-Be at high temperatures.

  6. Temperature dependence of the photoluminescence of MnS/ZnS core—shell quantum dots

    NASA Astrophysics Data System (ADS)

    Fang, Dai-Feng; Ding, Xing; Dai, Ru-Cheng; Zhao, Zhi; Wang, Zhong-Ping; Zhang, Zeng-Ming

    2014-12-01

    The temperature dependence of the photoluminescence (PL) from MnS/ZnS core—shell quantum dots is investigated in a temperature range of 8 K-300 K. The orange emission from the 4T1 → 6A1 transition of Mn2+ ions and the blue emission related to the trapped surface state are observed in the MnS/ZnS core—shell quantum dots. As the temperature increases, the orange emission is shifted toward a shorter wavelength while the blue emission is shifted towards the longer wavelength. Both the orange and blue emissions reduce their intensities with the increase of temperature but the blue emission is quenched faster. The temperature-dependent luminescence intensities of the two emissions are well explained by the thermal quenching theory.

  7. Temperature dependence of light power propagation in bending plastic optical fiber

    NASA Astrophysics Data System (ADS)

    Jing, Ning; Teng, Chuanxin; Zheng, Jie; Wang, Guanjun; Zhang, Minjuan; Wang, Zhibin

    2016-09-01

    This study investigates the effect of temperature variation on the light power propagation in bending plastic optical fiber (POF). The transmittance of bending POFs with curvature radius of 2-30 mm and turns of 1/4, 1/2, 1, and 2 are measured over temperature of 20-70 °C. The temperature dependent loss of the bending POF is obtained. It is found that the temperature dependent loss of the bending POF changes with curvature radius and turns. The temperature effect reaches the highest value of 0.011 dB/°C with 2 turns, and is less than 0.002 dB/°C with curvature radius greater than 25 mm.

  8. Temperature Dependence of Sound Velocity in High-Strength Fiber-Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Nomura, Ryuji; Yoneyama, Keiichi; Ogasawara, Futoshi; Ueno, Masashi; Okuda, Yuichi; Yamanaka, Atsuhiko

    2003-08-01

    Longitudinal sound velocity in unidirectional hybrid composites or high-strength fiber-reinforced plastics (FRPs) was measured along the fiber axis over a wide temperature range (from 77 K to 420 K). We investigated two kinds of high-strength crystalline polymer fibers, polyethylene (Dyneema) and polybenzobisoxazole (Zylon), which are known to have negative thermal expansion coefficients and high thermal conductivities along the fiber axis. Both FRPs had very high sound velocities of about 9000 m/s at low temperatures and their temperature dependences were very strong. Sound velocity monotonically decreased with increasing temperature. The temperature dependence of sound velocity was much stronger in Dyneema-FRP than in Zylon-FRP.

  9. Temperature dependent study of thermal diffusion for aqueous solutions of α-, β-, and γ- cyclodextrin

    NASA Astrophysics Data System (ADS)

    Shinohara, Haruka; Kita, Rio; Shinyashiki, Naoki; Yagihara, Shin; Kabayama, Kazuya; Inazu, Toshiyuki

    2013-02-01

    The Ludwig-Soret effect for aqueous solutions of α-cyclodextrin (CD), β-CD, γ-CD, and glucose was studied by thermal diffusion forced Rayleigh scattering (TDFRS) in the temperature range of 15-55°C. The Soret coefficient and the thermal diffusion coefficient show the sign inversion behavior from negative to positive with increasing temperature. The values of the temperature dependence of the Soret coefficient for α-CD, β-CD, and γ-CD are identical at all temperatures measured, although the Soret coefficient of glucose is positive at all temperatures. The studies of dye concentration dependence for CDs and glucose show an effect of the inclusion ability of CDs on thermal diffusion behavior.

  10. Concept for a high-resolution thermometer utilizing the temperature dependence of the magnetic penetration depth

    NASA Technical Reports Server (NTRS)

    Shirron, P. J.; Dipirro, M. J.

    1993-01-01

    A thermometer using the temperature dependence of the magnetic penetration depth in superconductors is described which has the potential for temperature resolution, when using a dc SQUID readout, on the order of 1 pK. One such device has been fabricated and characterized to demonstrate proof of concept. It consists of primary and secondary coils of NbTi wire wound on a copper toroidal core on which a thin layer of In (Tc = 3.4 K) has been deposited. The temperature dependence of the mutual inductance, M(T), or self-inductance, is used to detect changes in temperature. Measurements of M(T) have been made with an ac excitation of the primary for various frequencies and peak magnetic field strengths. Estimates of ultimate temperature resolution are given.

  11. Analysis of Tensile Deformation and Failure in Austenitic Stainless Steels: Part I- Temperature Dependence

    SciTech Connect

    Kim, Jin Weon; Byun, Thak Sang

    2010-01-01

    This paper describes the temperature dependence of deformation and failure behaviors in the austenitic stainless steels (annealed 304, 316, 316LN, and 20% cold-worked 316LN) in terms of equivalent true stress-true strain curves. The true stress-true strain curves up to the final fracture were calculated from the tensile test data obtained at -150 ~ 450oC using an iterative technique of finite element simulation. Analysis was largely focused on the necking deformation and fracture: Key parameters such as the strain hardening rate, equivalent fracture stress, fracture strain, and tensile fracture energy were evaluated, and their temperature dependencies were investigated. It was shown that a significantly high strain hardening rate was still retained during unstable deformation although overall strain hardening rate beyond the onset of necking was lower than that of the uniform deformation. The values of the parameters except for fracture strain decreased with temperature up to 200oC and were saturated as the temperature came close to the maximum test temperature 450oC. The fracture strain increased and had a maximum at -50oC to 20oC before decreasing with temperature. It was explained that these temperature dependencies of fracture properties were associated with a change in the dominant strain hardening mechanism with test temperature. Also, it was seen that the pre-straining of material has little effect on the strain hardening rate during necking deformation and on fracture properties.

  12. Temperature dependence of thermal conductivities of coupled rotator lattice and the momentum diffusion in standard map

    NASA Astrophysics Data System (ADS)

    Li, Yunyun; Li, Nianbei; Li, Baowen

    2015-07-01

    In contrary to other 1D momentum-conserving lattices such as the Fermi-Pasta-Ulam β (FPU- β) lattice, the 1D coupled rotator lattice is a notable exception which conserves total momentum while exhibits normal heat conduction behavior. The temperature behavior of the thermal conductivities of 1D coupled rotator lattice had been studied in previous works trying to reveal the underlying physical mechanism for normal heat conduction. However, two different temperature behaviors of thermal conductivities have been claimed for the same coupled rotator lattice. These different temperature behaviors also intrigue the debate whether there is a phase transition of thermal conductivities as the function of temperature. In this work, we will revisit the temperature dependent thermal conductivities for the 1D coupled rotator lattice. We find that the temperature dependence follows a power law behavior which is different with the previously found temperature behaviors. Our results also support the claim that there is no phase transition for 1D coupled rotator lattice. We also give some discussion about the similarity of diffusion behaviors between the 1D coupled rotator lattice and the single kicked rotator also called the Chirikov standard map. It is found that the momentum diffusion constant for 1D coupled rotator lattice follows a power-law temperature dependence of T -3.2 which is close to that of Chirikov standard map which follows a behavior of T -3.

  13. Temperature-dependent striped antiferromagnetism of LaFeAsO in a Green's function approach.

    PubMed

    Liu, Gui-Bin; Liu, Bang-Gui

    2009-05-13

    We use a Green's function method to study the temperature-dependent average moment and magnetic phase-transition temperature of the striped antiferromagnetism of LaFeAsO, and other similar compounds, as the parents of FeAs-based superconductors. We consider the nearest and the next-nearest couplings in the FeAs layer, and the nearest coupling for inter-layer spin interaction. The dependence of the transition temperature T(N) and the zero-temperature average spin on the interaction constants is investigated. We obtain an analytical expression for T(N) and determine our temperature-dependent average spin from zero temperature to T(N) in terms of unified self-consistent equations. For LaFeAsO, we obtain a reasonable estimation of the coupling interactions with the experimental transition temperature T(N) = 138 K. Our results also show that a non-zero antiferromagnetic (AFM) inter-layer coupling is essential for the existence of a non-zero T(N), and the many-body AFM fluctuations reduce substantially the low-temperature magnetic moment per Fe towards the experimental value. Our Green's function approach can be used for other FeAs-based parent compounds and these results should be useful to understand the physical properties of FeAs-based superconductors.

  14. Temperature-dependent conformational changes in the bacteriopheophytins of Rhodobacter sphaeroides reaction centers.

    PubMed

    Peloquin, J M; Violette, C A; Frank, H A; Bocian, D F

    1990-05-22

    Resonance Raman (RR) spectra are reported for the photosynthetic reaction center (RC) protein from Rhodobacter sphaeroides 2.4.1. The spectra were obtained with a variety of excitation wavelengths, spanning the UV, violet, and yellow-green regions of the absorption spectrum, and at a number of temperatures ranging from 30 to 270 K. The RR data indicate that the frequencies of certain vibrational modes of the bacteriochlorin pigments in the RC shift with temperature. These shifts are reversible and do not depend on external factors such as solvent or detergent. The acetyl carbonyl bands exhibit the largest shifts with temperature. These shifts are attributed to thermal effects involving the torsional vibrations of the acetyl groups of several (or all) of the bacteriochlorins rather than to specific pigment-protein interactions. The frequency of the structure-sensitive skeletal mode near 1610 cm-1 of one of the two bacteriopheophytins (BPhs) in the RC is also sensitive to temperature. In contrast, no temperature sensitivity is observed for the analogous modes of the bacteriochlorophylls or other BPhs. Over the range 160-100 K, the skeletal mode of the BPh upshifts by approximately 4 cm-1. This upshift is attributed to a flattening of the macrocycle at low temperatures. It is suggested that the BPh active in the electron-transfer process is the pigment whose structure is temperature dependent. It is further suggested that such structural changes could be responsible in part for the temperature dependence of the electron-transfer rates in photosynthetic RCs.

  15. Temperature-dependent, polarization-induced bias errors in a resonator integrated optical gyroscope

    NASA Astrophysics Data System (ADS)

    Lei, Ming; Feng, Lishuang; Zhi, Yinzhou

    2014-03-01

    The performance of a resonator integrated optical gyroscope (RIOG) is inevitably influenced by polarization noise. In this work, the effects of temperature-dependent polarization on the performances of an integrated optical resonator (IOR) and a RIOG are formulated mathematically and analyzed. Firstly, resonant curves with different polarization extinction ratios (PERs) and different temperature fluctuations are demonstrated. The main performances of the IOR, i.e. depth and full width at half maximum (FWHM), are not only influenced by the waveguide birefringence, but also by the intensity coupling coefficient of the couplers, both of which change with the variation of temperature. Secondly, the relationship between the variation of temperature and the variation of depth, as well as the FWHM, are obtained. Thirdly, in order to evaluate the zero bias error caused by the temperature-dependent polarization, resonant asymmetry ratio (RAR) is introduced, which is strongly dependent on the temperature fluctuation. A relationship between the bias error caused by the polarization and the temperature fluctuation is proposed. A large PER of the input beam and a high temperature stability are required to reduce the bias error and achieve a high bias stability of the silica RIOG.

  16. Temperature-dependent fluorescence quenching of a cavitand derivative by copper ions

    NASA Astrophysics Data System (ADS)

    Secenji, Györgyi; Matisz, Gergely; Csók, Zsolt; Kollár, László; Kunsági-Máté, Sándor

    2016-07-01

    Temperature dependence of fluorescence quenching of a cavitand derivative by Cu2+ ion has been studied in dimethylformamide solution. Results derived from PL studies highlighted two temperature regions where the formation of cavitand-Cu2+ complexes is based on significantly different molecular processes. From the experimental results and the comparison of the calculated interaction energies of the possible complex structures obtained by density functional calculations, it is assumed that at lower temperatures the Cu2+ ion takes place in the cavity while at higher temperature region Cu2+ is coordinated to the outer part of the cavitand with its almost retained solvation shell.

  17. Temperature dependence of inductively coupled plasma assisted growth of TiN thin films.

    SciTech Connect

    Meng, W. J.; Curtis, T. J.; Rehn, L. E.; Baldo, P. M.; Materials Science Division; Louisiana State Univ.

    1999-11-01

    The use of low pressure high density plasmas to assist the synthesis of ceramic thin film materials is in its infancy. Using an inductively coupled plasma assisted magnetron sputtering system, we examine the dependence of plasma-assisted growth of TiN thin films on growth temperature at different ratios of ion flux to neutral atom flux. Our results indicate that a temperature independent densification of TiN films occurs above a certain ion to neutral atom flux ratio. As an example of this temperature independent densification, we demonstrate the formation of dense B1 TiN crystalline thin films at growth temperatures down to {approx}100 K.

  18. Spatial organization and time dependence of Jupiter's tropospheric temperatures, 1980-1993

    NASA Technical Reports Server (NTRS)

    Orton, Glenn S.; Friedson, A. James; Yanamandra-Fisher, Padmavati A.; Caldwell, John; Hammel, Heidi B.; Baines, Kevin H.; Bergstralh, Jay T.; Martin, Terry Z.; West, Robert A.; Veeder, Glenn J., Jr.

    1994-01-01

    The spatial organization and time dependence of Jupiter's temperature near 250-millibar pressure were measured through a jovian year by imaging thermal emission at 18 micrometers. The temperature field is influenced by seasonal radiative forcing, and its banded organization is closely correlated with the visible cloud field. Evidence was found for a quasi-periodic oscillation of temperatures in the Equatorial Zone, a correlation between tropospheric and stratospheric waves in the North Equatorial Belt, and slowly moving thermal features in the North and South Equatorial Belts. There appears to be no common relation between temporal changes of temperature and changes in the visual albedo of the various axisymmetric bands.

  19. Temperature dependence of oxygen evolution through catalase-like activity of horseradish peroxidase

    NASA Astrophysics Data System (ADS)

    Popović-Bijelić, A.; Bijelić, G.; Kolar-Anić, Lj.; Vukojević, V.

    2007-09-01

    By experimental investigations of the temperature dependence of catalase-like activity of horseradish peroxidase in the temperature range 278 328 K, different kinetic profiles for oxygen evolution were found below and above 298 K. Extension of the model is proposed to account for these observations. By numeric simulations of the reaction kinetics at different temperatures, it was found that enhanced evaporation of molecular oxygen from the reaction solution is the main root through which oxygen is lost at elevated temperatures in laboratory conditions.

  20. Temperature dependence properties of holographic gratings in phenanthrenquinone doped poly(methyl methacrylate) photopolymers.

    PubMed

    Russo, Juan Manuel; Kostuk, Raymond K

    2007-10-20

    We examine the temperature dependence of edge-illuminated holographic filters formed in phenanthrenquinone doped poly(methyl methacrylate) (PQ/PMMA) operating at 1550 nm. It was found that the thermally induced change to the refractive index and volume can be used to select the wavelength filtered by the grating. The temperature can be varied over a range of 15 degrees C without introducing noticeable hysteresis effects. The wavelength can be tuned at a rate of 0.03 nm/degrees C over this temperature range. A model for the temperature tuning effect is presented and compared to experimental results.