Sample records for methionine sulfoximine msx

  1. A common transport system for methionine, L-methionine-DL-sulfoximine (MSX), and phosphinothricin (PPT) in the diazotrophic cyanobacterium Nostoc muscorum.

    PubMed

    Singh, Arvind Kumar; Syiem, Mayashree B; Singh, Rajkumar S; Adhikari, Samrat; Rai, Amar Nath

    2008-05-01

    We present evidence, for the first time, of the occurrence of a transport system common for amino acid methionine, and methionine/glutamate analogues L-methionine-DL-sulfoximine (MSX) and phosphinothricin (PPT) in cyanobacterium Nostoc muscorum. Methionine, which is toxic to cyanobacterium, enhanced its nitrogenase activity at lower concentrations. The cyanobacterium showed a biphasic pattern of methionine uptake activity that was competitively inhibited by the amino acids alanine, isoleucine, leucine, phenylalanine, proline, valine, glutamine, and asparagine. The methionine/glutamate analogue-resistant N. muscorum strains (MSX-R and PPT-R strains) also showed methionine-resistant phenotype accompanied by a drastic decrease in 35S methionine uptake activity. Treatment of protein extracts from these mutant strains with MSX and PPT reduced biosynthetic glutamine synthetase (GS) activity only in vitro and not in vivo. This finding implicated that MSX- and PPT-R phenotypes may have arisen due to a defect in their MSX and PPT transport activity. The simultaneous decrease in methionine uptake activity and in vitro sensitivity toward MSX and PPT of GS protein in MSX- and PPT-R strains indicated that methionine, MSX, and PPT have a common transport system that is shared by other amino acids as well in N. muscorum. Such information can become useful for isolation of methionine-producing cyanobacterial strains.

  2. Transport and Assimilation of Nitrogen by Stichococcus bacillaris Grown in the Presence of Methionine Sulfoximine.

    PubMed

    Ahmad, I; Hellebust, J A

    1985-12-01

    Stichococcus bacillaris Naeg., a green soil alga, can grow in the presence of methionine sulfoximine (MSX), an inhibitor of glutamine synthetase, by maintaining a high level of NADPH-glutamate dehydrogenase activity. MSX-grown cells can utilize both NH(4) (+) and NO(3) (-) as nitrogen source for growth. [(14)C]Methylammonium is not metabolized by S. bacillaris, and is transported by a carrier system that obeys Michaelis Menten kinetics, and is insensitive to MSX.

  3. Transport and Assimilation of Nitrogen by Stichococcus bacillaris Grown in the Presence of Methionine Sulfoximine 1

    PubMed Central

    Ahmad, Iftikhar; Hellebust, Johan A.

    1985-01-01

    Stichococcus bacillaris Naeg., a green soil alga, can grow in the presence of methionine sulfoximine (MSX), an inhibitor of glutamine synthetase, by maintaining a high level of NADPH-glutamate dehydrogenase activity. MSX-grown cells can utilize both NH4+ and NO3− as nitrogen source for growth. [14C]Methylammonium is not metabolized by S. bacillaris, and is transported by a carrier system that obeys Michaelis Menten kinetics, and is insensitive to MSX. PMID:16664542

  4. In Salmonella enterica, the Gcn5-Related Acetyltransferase MddA (Formerly YncA) Acetylates Methionine Sulfoximine and Methionine Sulfone, Blocking Their Toxic Effects

    PubMed Central

    Hentchel, Kristy L.

    2014-01-01

    Protein and small-molecule acylation reactions are widespread in nature. Many of the enzymes catalyzing acylation reactions belong to the Gcn5-related N-acetyltransferase (GNAT; PF00583) family, named after the yeast Gcn5 protein. The genome of Salmonella enterica serovar Typhimurium LT2 encodes 26 GNATs, 11 of which have no known physiological role. Here, we provide in vivo and in vitro evidence for the role of the MddA (methionine derivative detoxifier; formerly YncA) GNAT in the detoxification of oxidized forms of methionine, including methionine sulfoximine (MSX) and methionine sulfone (MSO). MSX and MSO inhibited the growth of an S. enterica ΔmddA strain unless glutamine or methionine was present in the medium. We used an in vitro spectrophotometric assay and mass spectrometry to show that MddA acetylated MSX and MSO. An mddA+ strain displayed biphasic growth kinetics in the presence of MSX and glutamine. Deletion of two amino acid transporters (GlnHPQ and MetNIQ) in a ΔmddA strain restored growth in the presence of MSX. Notably, MSO was transported by GlnHPQ but not by MetNIQ. In summary, MddA is the mechanism used by S. enterica to respond to oxidized forms of methionine, which MddA detoxifies by acetyl coenzyme A-dependent acetylation. PMID:25368301

  5. Methionine sulfoximine-treatment and carbon starvation elicit Snf1-independent phosphorylation of the transcription activator Gln3 in Saccharomyces cerevisiae

    PubMed Central

    Tate, Jennifer J.; Rai, Rajendra; Cooper, Terrance G.

    2008-01-01

    SUMMARY Tor proteins are global regulators situated at the top of a signal transduction pathway conserved from yeast to humans. Specific inhibition of the two S. cerevisiae Tor proteins by rapamycin alters many cellular processes and the expression of hundreds of genes. Among the regulated genes are those whose expression is activated by the GATA-family transcription activator, Gln3. The extent of Gln3 phosphorylation has been thought to determine its intracellular localization, with phosphorylated and dephosphorylated forms accumulating in the cytoplasm and nucleus, respectively. Data presented here demonstrate that rapamycin and the glutamine synthetase inhibitor, methionine sulfoximine (MSX), although eliciting the same outcomes with respect to Gln3-Myc13 nuclear accumulation and NCR-sensitive transcription, generate diametrically opposite effects on Gln3-Myc13 phosphorylation. MSX increases Gln3-Myc13 phosphorylation while rapamycin decreases it. Gln3-Myc13 phosphorylation levels are regulated by at least three mechanisms: (i) one, observed during carbon starvation, depends on Snf1 kinase, (ii) another, observed during both carbon-starvation and MSX-treatment, is Snf1-independent, and (iii) the last is rapamycin-induced dephosphorylation. MSX and rapamycin act additively on Gln3-Myc13 phosphorylation, but MSX clearly predominates. These results suggest that MSX- and rapamycin-inhibited proteins are more likely to function in separate regulatory pathways than they are to function tandemly in a single pathway as previously thought. Further, Gln3 phosphorylation/dephosphorylation, that we and others have detected thus far, is not a demonstrably required step in achieving Gln3 nuclear localization and NCR-sensitive transcription in response to MSX- or rapamycin-treatment. PMID:15911613

  6. Limitations to the development of recombinant human embryonic kidney 293E cells using glutamine synthetase-mediated gene amplification: Methionine sulfoximine resistance.

    PubMed

    Yu, Da Young; Noh, Soo Min; Lee, Gyun Min

    2016-08-10

    To investigate the feasibility of glutamine synthetase (GS)-mediated gene amplification in HEK293 cells for the high-level stable production of therapeutic proteins, HEK293E cells were transfected by the GS expression vector containing antibody genes and were selected at various methionine sulfoximine (MSX) concentrations in 96-well plates. For a comparison, CHOK1 cells were transfected by the same GS expression vector and selected at various MSX concentrations. Unlike CHOK1 cells, HEK293E cells producing high levels of antibodies were not selected at all. For HEK293E cells, the number of wells with the cell pool did not decrease with an increase in the concentration of MSX up to 500μM MSX. A q-RT-PCR analysis confirmed that the antibody genes in the HEK293E cells, unlike the CHOK1 cells, were not amplified after increasing the MSX concentration. It was found that the GS activity in HEK293E cells was much higher than that in CHOK1 cells (P<0.05). In a glutamine-free medium, the GS activity of HEK293E cells was approximately 4.8 times higher than that in CHOK1 cells. Accordingly, it is inferred that high GS activity of HEK293E cells results in elevated resistance to MSX and therefore hampers GS-mediated gene amplification by MSX. Thus, in order to apply the GS-mediated gene amplification system to HEK293 cells, the endogenous GS expression level in HEK293 cells needs to be minimized by knock-out or down-regulation methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Nitrogen-responsive Regulation of GATA Protein Family Activators Gln3 and Gat1 Occurs by Two Distinct Pathways, One Inhibited by Rapamycin and the Other by Methionine Sulfoximine*

    PubMed Central

    Georis, Isabelle; Tate, Jennifer J.; Cooper, Terrance G.; Dubois, Evelyne

    2011-01-01

    Nitrogen availability regulates the transcription of genes required to degrade non-preferentially utilized nitrogen sources by governing the localization and function of transcription activators, Gln3 and Gat1. TorC1 inhibitor, rapamycin (Rap), and glutamine synthetase inhibitor, methionine sulfoximine (Msx), elicit responses grossly similar to those of limiting nitrogen, implicating both glutamine synthesis and TorC1 in the regulation of Gln3 and Gat1. To better understand this regulation, we compared Msx- versus Rap-elicited Gln3 and Gat1 localization, their DNA binding, nitrogen catabolite repression-sensitive gene expression, and the TorC1 pathway phosphatase requirements for these responses. Using this information we queried whether Rap and Msx inhibit sequential steps in a single, linear cascade connecting glutamine availability to Gln3 and Gat1 control as currently accepted or alternatively inhibit steps in two distinct parallel pathways. We find that Rap most strongly elicits nuclear Gat1 localization and expression of genes whose transcription is most Gat1-dependent. Msx, on the other hand, elicits nuclear Gln3 but not Gat1 localization and expression of genes that are most Gln3-dependent. Importantly, Rap-elicited nuclear Gln3 localization is absolutely Sit4-dependent, but that elicited by Msx is not. PP2A, although not always required for nuclear GATA factor localization, is highly required for GATA factor binding to nitrogen-responsive promoters and subsequent transcription irrespective of the gene GATA factor specificities. Collectively, our data support the existence of two different nitrogen-responsive regulatory pathways, one inhibited by Msx and the other by rapamycin. PMID:22039046

  8. Nitrogen-responsive regulation of GATA protein family activators Gln3 and Gat1 occurs by two distinct pathways, one inhibited by rapamycin and the other by methionine sulfoximine.

    PubMed

    Georis, Isabelle; Tate, Jennifer J; Cooper, Terrance G; Dubois, Evelyne

    2011-12-30

    Nitrogen availability regulates the transcription of genes required to degrade non-preferentially utilized nitrogen sources by governing the localization and function of transcription activators, Gln3 and Gat1. TorC1 inhibitor, rapamycin (Rap), and glutamine synthetase inhibitor, methionine sulfoximine (Msx), elicit responses grossly similar to those of limiting nitrogen, implicating both glutamine synthesis and TorC1 in the regulation of Gln3 and Gat1. To better understand this regulation, we compared Msx- versus Rap-elicited Gln3 and Gat1 localization, their DNA binding, nitrogen catabolite repression-sensitive gene expression, and the TorC1 pathway phosphatase requirements for these responses. Using this information we queried whether Rap and Msx inhibit sequential steps in a single, linear cascade connecting glutamine availability to Gln3 and Gat1 control as currently accepted or alternatively inhibit steps in two distinct parallel pathways. We find that Rap most strongly elicits nuclear Gat1 localization and expression of genes whose transcription is most Gat1-dependent. Msx, on the other hand, elicits nuclear Gln3 but not Gat1 localization and expression of genes that are most Gln3-dependent. Importantly, Rap-elicited nuclear Gln3 localization is absolutely Sit4-dependent, but that elicited by Msx is not. PP2A, although not always required for nuclear GATA factor localization, is highly required for GATA factor binding to nitrogen-responsive promoters and subsequent transcription irrespective of the gene GATA factor specificities. Collectively, our data support the existence of two different nitrogen-responsive regulatory pathways, one inhibited by Msx and the other by rapamycin.

  9. Supplementation of Nucleosides During Selection can Reduce Sequence Variant Levels in CHO Cells Using GS/MSX Selection System.

    PubMed

    Tang, Danming; Lam, Cynthia; Louie, Salina; Hoi, Kam Hon; Shaw, David; Yim, Mandy; Snedecor, Brad; Misaghi, Shahram

    2018-01-01

    In the process of generating stable monoclonal antibody (mAb) producing cell lines, reagents such as methotrexate (MTX) or methionine sulfoximine (MSX) are often used. However, using such selection reagent(s) increases the possibility of having higher occurrence of sequence variants in the expressed antibody molecules due to the effects of MTX or MSX on de novo nucleotide synthesis. Since MSX inhibits glutamine synthase (GS) and results in both amino acid and nucleoside starvation, it is questioned whether supplementing nucleosides into the media could lower sequence variant levels without affecting titer. The results show that the supplementation of nucleosides to the media during MSX selection decreased genomic DNA mutagenesis rates in the selected cells, probably by reducing nucleotide mis-incorporation into the DNA. Furthermore, addition of nucleosides enhance clone recovery post selection and does not affect antibody expression. It is further observed that nucleoside supplements lowered DNA mutagenesis rates only at the initial stage of the clone selection and do not have any effect on DNA mutagenesis rates after stable cell lines are established. Therefore, the data suggests that addition of nucleosides during early stages of MSX selection can lower sequence variant levels without affecting titer or clone stability in antibody expression. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Comprehensive characterization of glutamine synthetase-mediated selection for the establishment of recombinant CHO cells producing monoclonal antibodies.

    PubMed

    Noh, Soo Min; Shin, Seunghyeon; Lee, Gyun Min

    2018-03-29

    To characterize a glutamine synthetase (GS)-based selection system, monoclonal antibody (mAb) producing recombinant CHO cell clones were generated by a single round of selection at various methionine sulfoximine (MSX) concentrations (0, 25, and 50 μM) using two different host cell lines (CHO-K1 and GS-knockout CHO). Regardless of the host cell lines used, the clones selected at 50 μM MSX had the lowest average specific growth rate and the highest average specific production rates of toxic metabolic wastes, lactate and ammonia. Unlike CHO-K1, high producing clones could be generated in the absence of MSX using GS-knockout CHO with an improved selection stringency. Regardless of the host cell lines used, the clones selected at various MSX concentrations showed no significant difference in the GS, heavy chain, and light chain gene copies (P > 0.05). Furthermore, there was no correlation between the specific mAb productivity and these three gene copies (R 2  ≤ 0.012). Taken together, GS-mediated gene amplification does not occur in a single round of selection at a MSX concentration up to 50 μM. The use of the GS-knockout CHO host cell line facilitates the rapid generation of high producing clones with reduced production of lactate and ammonia in the absence of MSX.

  11. Phosphinothricin Acetyltransferases Identified Using In Vivo, In Vitro, and Bioinformatic Analyses

    PubMed Central

    VanDrisse, Chelsey M.; Hentchel, Kristy L.

    2016-01-01

    ABSTRACT Acetylation of small molecules is widespread in nature, and in some cases, cells use this process to detoxify harmful chemicals. Streptomyces species utilize a Gcn5 N-acetyltransferase (GNAT), known as Bar, to acetylate and detoxify a self-produced toxin, phosphinothricin (PPT), a glutamate analogue. Bar homologues, such as MddA from Salmonella enterica, acetylate methionine analogues such as methionine sulfoximine (MSX) and methionine sulfone (MSO), but not PPT, even though Bar homologues are annotated as PPT acetyltransferases. S. enterica was used as a heterologous host to determine whether or not putative PPT acetyltransferases from various sources could acetylate PPT, MSX, and MSO. In vitro and in vivo analyses identified substrates acetylated by putative PPT acetyltransferases from Deinococcus radiodurans (DR_1057 and DR_1182) and Geobacillus kaustophilus (GK0593 and GK2920). In vivo, synthesis of DR_1182, GK0593, and GK2920 blocked the inhibitory effects of PPT, MSX, and MSO. In contrast, DR_1057 did not detoxify any of the above substrates. Results of in vitro studies were consistent with the in vivo results. In addition, phylogenetic analyses were used to predict the functionality of annotated PPT acetyltransferases in Burkholderia xenovorans, Bacillus subtilis, Staphylococcus aureus, Acinetobacter baylyi, and Escherichia coli. IMPORTANCE The work reported here provides an example of the use of a heterologous system for the identification of enzyme function. Many members of this superfamily of proteins do not have a known function, or it has been annotated solely on the basis of sequence homology to previously characterized enzymes. The critical role of Gcn5 N-acetyltransferases (GNATs) in the modulation of central metabolic processes, and in controlling metabolic stress, necessitates approaches that can reveal their physiological role. The combination of in vivo, in vitro, and bioinformatics approaches reported here identified GNATs that can acetylate and detoxify phosphinothricin. PMID:27694229

  12. Development of an Improved Mammalian Overexpression Method for Human CD62L

    PubMed Central

    Brown, Haley A.; Roth, Gwynne; Holzapfel, Genevieve; Shen, Sarek; Rahbari, Kate; Ireland, Joanna; Zou, Zhongcheng; Sun, Peter D.

    2014-01-01

    We have previously developed a glutamine synthetase (GS)-based mammalian recombinant protein expression system that is capable of producing 5 to 30 mg/L recombinant proteins. The over expression is based on multiple rounds of target gene amplification driven by methionine sulfoximine (MSX), an inhibitor of glutamine synthetase. However, like other stable mammalian over expression systems, a major shortcoming of the GS-based expression system is its lengthy turn-around time, typically taking 4–6 months to produce. To shorten the construction time, we replaced the muti-round target gene amplifications with single-round in situ amplifications, thereby shortening the cell line construction to 2 months. The single-round in situ amplification method resulted in highest recombinant CD62L expressing CHO cell lines producing ~5mg/L soluble CD62L, similar to those derived from the multi-round amplification and selection method. In addition, we developed a MSX resistance assay as an alternative to utilizing ELISA for evaluating the expression level of stable recombinant CHO cell lines. PMID:25286402

  13. Nitrogen Starvation Acclimation in Synechococcus elongatus: Redox-Control and the Role of Nitrate Reduction as an Electron Sink

    PubMed Central

    Klotz, Alexander; Reinhold, Edgar; Doello, Sofía; Forchhammer, Karl

    2015-01-01

    Nitrogen starvation acclimation in non-diazotrophic cyanobacteria is characterized by a process termed chlorosis, where the light harvesting pigments are degraded and the cells gradually tune down photosynthetic and metabolic activities. The chlorosis response is governed by a complex and poorly understood regulatory network, which converges at the expression of the nblA gene, the triggering factor for phycobiliprotein degradation. This study established a method that allows uncoupling metabolic and redox-signals involved in nitrogen-starvation acclimation. Inhibition of glutamine synthetase (GS) by a precise dosage of l-methionine-sulfoximine (MSX) mimics the metabolic situation of nitrogen starvation. Addition of nitrate to such MSX-inhibited cells eliminates the associated redox-stress by enabling electron flow towards nitrate/nitrite reduction and thereby, prevents the induction of nblA expression and the associated chlorosis response. This study demonstrates that nitrogen starvation is perceived not only through metabolic signals, but requires a redox signal indicating over-reduction of PSI-reduced electron acceptors. It further establishes a cryptic role of nitrate/nitrite reductases as electron sinks to balance conditions of over-reduction. PMID:25780959

  14. Glutamine synthetase gene knockout-human embryonic kidney 293E cells for stable production of monoclonal antibodies.

    PubMed

    Yu, Da Young; Lee, Sang Yoon; Lee, Gyun Min

    2018-05-01

    Previously, it was inferred that a high glutamine synthetase (GS) activity in human embryonic kidney (HEK) 293E cells results in elevated resistance to methionine sulfoximine (MSX) and consequently hampers GS-mediated gene amplification and selection by MSX. To overcome this MSX resistance in HEK293E cells, a GS-knockout HEK293E cell line was generated using the CRISPR/Cas9 system to target the endogenous human GS gene. The GS-knockout in the HEK293E cell line (RK8) was confirmed by Western blot analysis of GS and by observation of glutamine-dependent growth. Unlike the wild type HEK293E cells, the RK8 cells were successfully used as host cells to generate a recombinant HEK293E cell line (rHEK293E) producing a monoclonal antibody (mAb). When the RK8 cells were transfected with the GS expression vector containing the mAb gene, rHEK293E cells producing the mAb could be selected in the absence as well as in the presence of MSX. The gene copies and mRNA expression levels of the mAb in rHEK293E cells were also quantified using qRT-PCR. Taken together, the GS-knockout HEK293E cell line can be used as host cells to generate stable rHEK293E cells producing a mAb through GS-mediated gene selection in the absence as well as in the presence of MSX. © 2018 Wiley Periodicals, Inc.

  15. Methionine sulfoximine supplementation enhances productivity in GS-CHOK1SV cell lines through glutathione biosynthesis.

    PubMed

    Feary, Marc; Racher, Andrew J; Young, Robert J; Smales, C Mark

    2017-01-01

    In Lonza Biologics' GS Gene Expression System™, recombinant protein-producing GS-CHOK1SV cell lines are generated by transfection with an expression vector encoding both GS and the protein product genes followed by selection in MSX and glutamine-free medium. MSX is required to inhibit endogenous CHOK1SV GS, and in effect create a glutamine auxotrophy in the host that can be complemented by the expression vector encoded GS in selected cell lines. However, MSX is not a specific inhibitor of GS as it also inhibits the activity of GCL (a key enzyme in the glutathione biosynthesis pathway) to a similar extent. Glutathione species (GSH and GSSG) have been shown to provide both oxidizing and reducing equivalents to ER-resident oxidoreductases, raising the possibility that selection for transfectants with increased GCL expression could result in the isolation of GS-CHOKISV cell lines with improved capacity for recombinant protein production. In this study we have begun to address the relationship between MSX supplementation, the amount of intracellular GCL subunit and mAb production from a panel of GS-CHOK1SV cell lines. We then evaluated the influence of reduced GCL activity on batch culture of an industrially relevant mAb-producing GS-CHOK1SV cell line. To the best of our knowledge, this paper describes for the first time the change in expression of GCL subunits and recombinant mAb production in these cell lines with the degree of MSX supplementation in routine subculture. Our data also shows that partial inhibition of GCL activity in medium containing 75 µM MSX increases mAb productivity, and its more specific inhibitor BSO used at a concentration of 80 µM in medium increases the specific rate of mAb production eight-fold and the concentration in harvest medium by two-fold. These findings support a link between the inhibition of glutathione biosynthesis and recombinant protein production in industrially relevant systems and provide a process-driven method for increasing mAb productivity from GS-CHOK1SV cell lines. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:17-25, 2017. © 2016 American Institute of Chemical Engineers.

  16. Epilepsy, regulation of brain energy metabolism and neurotransmission.

    PubMed

    Cloix, Jean-François; Hévor, Tobias

    2009-01-01

    Seizures are the result of a sudden and temporary synchronization of neuronal activity, the reason for which is not clearly understood. Astrocytes participate in the control of neurotransmitter storage and neurotransmission efficacy. They provide fuel to neurons, which need a high level of energy to sustain normal and pathological neuronal activities, such as during epilepsy. Various genetic or induced animal models have been developed and used to study epileptogenic mechanisms. Methionine sulfoximine induces both seizures and the accumulation of brain glycogen, which might be considered as a putative energy store to neurons in various animals. Animals subjected to methionine sulfoximine develop seizures similar to the most striking form of human epilepsy, with a long pre-convulsive period of several hours, a long convulsive period during up to 48 hours and a post convulsive period during which they recover normal behavior. The accumulation of brain glycogen has been demonstrated in both the cortex and cerebellum as early as the pre-convulsive period, indicating that this accumulation is not a consequence of seizures. The accumulation results from an activation of gluconeogenesis specifically localized to astrocytes, both in vivo and in vitro. Both seizures and brain glycogen accumulation vary when using different inbred strains of mice. C57BL/6J is the most "resistant" strain to methionine sulfoximine, while CBA/J is the most "sensitive" one. The present review describes the data obtained on methionine sulfoximine dependent seizures and brain glycogen in the light of neurotransmission, highlighting the relevance of brain glycogen content in epilepsies.

  17. Role of medullary astroglial glutamine synthesis in tooth pulp hypersensitivity associated with frequent masseter muscle contraction.

    PubMed

    Watase, Tetsuro; Shimizu, Kohei; Ohara, Kinuyo; Komiya, Hiroki; Kanno, Kohei; Hatori, Keisuke; Noma, Noboru; Honda, Kuniya; Tsuboi, Yoshiyuki; Katagiri, Ayano; Shinoda, Masamichi; Ogiso, Bunnai; Iwata, Koichi

    2018-01-01

    Background The mechanisms underlying tooth pulp hypersensitivity associated with masseter muscle hyperalgesia remain largely underinvestigated. In the present study, we aimed to determine whether masseter muscle contraction induced by daily electrical stimulation influences the mechanical head-withdrawal threshold and genioglossus electromyography activity caused by the application of capsaicin to the upper first molar tooth pulp. We further investigated whether astroglial glutamine synthesis is involved in first molar tooth pulp hypersensitivity associated with masseter muscle contraction. Methods The first molar tooth pulp was treated with capsaicin or vehicle in masseter muscle contraction or sham rats, following which the astroglial glutamine synthetase inhibitor methionine sulfoximine or Phosphate buffered saline (PBS) was applied. Astroglial activation was assessed via immunohistochemistry. Results The mechanical head-withdrawal threshold of the ipsilateral masseter muscle was significantly decreased in masseter muscle contraction rats than in sham rats. Genioglossus electromyography activity was significantly higher in masseter muscle contraction rats than sham rats. Glial fibrillary acidic protein-immunoreactive cell density was significantly higher in masseter muscle contraction rats than in sham rats. Administration of methionine sulfoximine induced no significant changes in the density of glial fibrillary acidic protein-immunoreactive cells relative to PBS treatment. However, mechanical head-withdrawal threshold was significantly higher in masseter muscle contraction rats than PBS-treated rats after methionine sulfoximine administration. Genioglossus electromyography activity following first molar tooth pulp capsaicin treatment was significantly lower in methionine sulfoximine-treated rats than in PBS-treated rats. In the ipsilateral region, the total number of phosphorylated extracellular signal-regulated protein kinase immunoreactive cells in the medullary dorsal horn was significantly smaller upon first molar tooth pulp capsaicin application in methionine sulfoximine-treated rats than in PBS-treated rats. Conclusions Our results suggest that masseter muscle contraction induces astroglial activation, and that this activation spreads from caudal to the obex in the medullary dorsal horn, resulting in enhanced neuronal excitability associated with astroglial glutamine synthesis in medullary dorsal horn neurons receiving inputs from the tooth pulp. These findings provide significant insight into the mechanisms underlying tooth pulp hypersensitivity associated with masseter muscle contraction.

  18. Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch.

    PubMed

    Poulain, Adeline; Perret, Sylvie; Malenfant, Félix; Mullick, Alaka; Massie, Bernard; Durocher, Yves

    2017-08-10

    To rapidly produce large amounts of recombinant proteins, the generation of stable Chinese Hamster Ovary (CHO) cell pools represents a useful alternative to large-scale transient gene expression (TGE). We have developed a cell line (CHO BRI/rcTA ) allowing the inducible expression of recombinant proteins, based on the cumate gene switch. After the identification of optimal plasmid DNA topology (supercoiled vs linearized plasmid) for PEIpro™ mediated transfection and of optimal conditions for methionine sulfoximine (MSX) selection, we were able to generate CHO BRI/rcTA pools producing high levels of recombinant proteins. Volumetric productivities of up to 900mg/L were reproducibly achieved for a Fc fusion protein and up to 350mg/L for an antibody after 14days post-induction in non-optimized fed-batch cultures. In addition, we show that CHO pool volumetric productivities are not affected by a freeze-thaw cycle or following maintenance in culture for over one month in the presence of MSX. Finally, we demonstrate that volumetric protein production with the CR5 cumate-inducible promoter is three- to four-fold higher than with the human CMV or hybrid EF1α-HTLV constitutive promoters. These results suggest that the cumate-inducible CHO BRI/rcTA stable pool platform is a powerful and robust system for the rapid production of gram amounts of recombinant proteins. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  19. Five Conditions Commonly Used to Down-regulate Tor Complex 1 Generate Different Physiological Situations Exhibiting Distinct Requirements and Outcomes*

    PubMed Central

    Tate, Jennifer J.; Cooper, Terrance G.

    2013-01-01

    Five different physiological conditions have been used interchangeably to establish the sequence of molecular events needed to achieve nitrogen-responsive down-regulation of TorC1 and its subsequent regulation of downstream reporters: nitrogen starvation, methionine sulfoximine (Msx) addition, nitrogen limitation, rapamycin addition, and leucine starvation. Therefore, we tested a specific underlying assumption upon which the interpretation of data generated by these five experimental perturbations is premised. It is that they generate physiologically equivalent outcomes with respect to TorC1, i.e. its down-regulation as reflected by TorC1 reporter responses. We tested this assumption by performing head-to-head comparisons of the requirements for each condition to achieve a common outcome for a downstream proxy of TorC1 inactivation, nuclear Gln3 localization. We demonstrate that the five conditions for down-regulating TorC1 do not elicit physiologically equivalent outcomes. Four of the methods exhibit hierarchical Sit4 and PP2A phosphatase requirements to elicit nuclear Gln3-Myc13 localization. Rapamycin treatment required Sit4 and PP2A. Nitrogen limitation and short-term nitrogen starvation required only Sit4. G1 arrest-correlated, long-term nitrogen starvation and Msx treatment required neither PP2A nor Sit4. Starving cells of leucine or treating them with leucyl-tRNA synthetase inhibitors did not elicit nuclear Gln3-Myc13 localization. These data indicate that the five commonly used nitrogen-related conditions of down-regulating TorC1 are not physiologically equivalent and minimally involve partially differing regulatory mechanisms. Further, identical requirements for Msx treatment and long-term nitrogen starvation raise the possibility that their effects are achieved through a common regulatory pathway with glutamine, a glutamate or glutamine metabolite level as the sensed metabolic signal. PMID:23935103

  20. The Molecular Basis of TnrA Control by Glutamine Synthetase in Bacillus subtilis*

    PubMed Central

    Hauf, Ksenia; Kayumov, Airat; Gloge, Felix; Forchhammer, Karl

    2016-01-01

    TnrA is a master regulator of nitrogen assimilation in Bacillus subtilis. This study focuses on the mechanism of how glutamine synthetase (GS) inhibits TnrA function in response to key metabolites ATP, AMP, glutamine, and glutamate. We suggest a model of two mutually exclusive GS conformations governing the interaction with TnrA. In the ATP-bound state (A-state), GS is catalytically active but unable to interact with TnrA. This conformation was stabilized by phosphorylated l-methionine sulfoximine (MSX), fixing the enzyme in the transition state. When occupied by glutamine (or its analogue MSX), GS resides in a conformation that has high affinity for TnrA (Q-state). The A- and Q-state are mutually exclusive, and in agreement, ATP and glutamine bind to GS in a competitive manner. At elevated concentrations of glutamine, ATP is no longer able to bind GS and to bring it into the A-state. AMP efficiently competes with ATP and prevents formation of the A-state, thereby favoring GS-TnrA interaction. Surface plasmon resonance analysis shows that TnrA bound to a positively regulated promoter fragment binds GS in the Q-state, whereas it rapidly dissociates from a negatively regulated promoter fragment. These data imply that GS controls TnrA activity at positively controlled promoters by shielding the transcription factor in the DNA-bound state. According to size exclusion and multiangle light scattering analysis, the dodecameric GS can bind three TnrA dimers. The highly interdependent ligand binding properties of GS reveal this enzyme as a sophisticated sensor of the nitrogen and energy state of the cell to control the activity of DNA-bound TnrA. PMID:26635369

  1. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells.

    PubMed

    Fan, Lianchun; Kadura, Ibrahim; Krebs, Lara E; Hatfield, Christopher C; Shaw, Margaret M; Frye, Christopher C

    2012-04-01

    Although Chinese hamster ovary (CHO) cells, with their unique characteristics, have become a major workhorse for the manufacture of therapeutic recombinant proteins, one of the major challenges in CHO cell line generation (CLG) is how to efficiently identify those rare, high-producing clones among a large population of low- and non-productive clones. It is not unusual that several hundred individual clones need to be screened for the identification of a commercial clonal cell line with acceptable productivity and growth profile making the cell line appropriate for commercial application. This inefficiency makes the process of CLG both time consuming and laborious. Currently, there are two main CHO expression systems, dihydrofolate reductase (DHFR)-based methotrexate (MTX) selection and glutamine synthetase (GS)-based methionine sulfoximine (MSX) selection, that have been in wide industrial use. Since selection of recombinant cell lines in the GS-CHO system is based on the balance between the expression of the GS gene introduced by the expression plasmid and the addition of the GS inhibitor, L-MSX, the expression of GS from the endogenous GS gene in parental CHOK1SV cells will likely interfere with the selection process. To study endogenous GS expression's potential impact on selection efficiency, GS-knockout CHOK1SV cell lines were generated using the zinc finger nuclease (ZFN) technology designed to specifically target the endogenous CHO GS gene. The high efficiency (∼2%) of bi-allelic modification on the CHO GS gene supports the unique advantages of the ZFN technology, especially in CHO cells. GS enzyme function disruption was confirmed by the observation of glutamine-dependent growth of all GS-knockout cell lines. Full evaluation of the GS-knockout cell lines in a standard industrial cell culture process was performed. Bulk culture productivity improved two- to three-fold through the use of GS-knockout cells as parent cells. The selection stringency was significantly increased, as indicated by the large reduction of non-producing and low-producing cells after 25 µM L-MSX selection, and resulted in a six-fold efficiency improvement in identifying similar numbers of high-productive cell lines for a given recombinant monoclonal antibody. The potential impact of GS-knockout cells on recombinant protein quality is also discussed. Copyright © 2011 Wiley Periodicals, Inc.

  2. A nitrogen response pathway regulates virulence in plant pathogenic fungi: role of TOR and the bZIP protein MeaB.

    PubMed

    López-Berges, Manuel S; Rispail, Nicolas; Prados-Rosales, Rafael C; Di Pietro, Antonio

    2010-12-01

    Virulence in plant pathogenic fungi is controlled through a variety of cellular pathways in response to the host environment. Nitrogen limitation has been proposed to act as a key signal to trigger the in planta expression of virulence genes. Moreover, a conserved Pathogenicity mitogen activated protein kinase (MAPK) cascade is strictly required for plant infection in a wide range of pathogens. We investigated the relationship between nitrogen signaling and the Pathogenicity MAPK cascade in controlling infectious growth of the vascular wilt fungus Fusarium oxysporum. Several MAPK-activated virulence functions such as invasive growth, vegetative hyphal fusion and host adhesion were strongly repressed in the presence of the preferred nitrogen source ammonium. Repression of these functions by ammonium was abolished by L-Methionine sulfoximine (MSX) or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR (Target Of Rapamycin), respectively, and was dependent on the bZIP protein MeaB. Supplying tomato plants with ammonium rather than nitrate resulted in a significant delay of vascular wilt symptoms caused by the F. oxysporum wild type strain, but not by the ΔmeaB mutant. Ammonium also repressed invasive growth in two other pathogens, the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. Our results suggest the presence of a conserved nitrogen-responsive pathway that operates via TOR and MeaB to control infectious growth in plant pathogenic fungi.

  3. Resistance to Phosphinothricin (Glufosinate) and Its Utilization as a Nitrogen Source by Chlamydomonas reinhardtii

    PubMed Central

    Franco, A. R.; Lopez-Siles, F. J.; Cardenas, J.

    1996-01-01

    Wild-type strain 21gr of the green alga Chlamydomonas reinhardtii was resistant to the ammonium salt of l-phosphinothricin (PPT, also called glufosinate), an irreversible inhibitor of glutamine synthetase activity and the main active component of the herbicide BASTA (AgrEvo, Frankfurt am Main, Germany). Under the same conditions, however, this strain was highly sensitive to l-methionine-S-sulfoximine, a structural analog of PPT which has been reported to be 5 to 10 times less effective than PPT as an inhibitor in plants. Moreover, this alga was able to grow with PPT as the sole nitrogen source when this compound was provided at low concentrations. This utilization of PPT was dependent upon the addition of acetate and light and did not take place in the presence of ammonium. Resistance was due neither to the presence of N-acetyltransferase or transaminase activity nor to the presence of glutamine synthetase isoforms resistant to PPT. By using l-[methyl-(sup14)C]PPT, we demonstrated that resistance is due to lack of PPT transport into the cells. This strongly suggests that PPT and l-methionine-S-sulfoximine enter the cells through different systems. Growth with PPT is supported by its deamination by an l-amino acid oxidase activity which has been previously described to be located at the periplasm. PMID:16535427

  4. Activation of Nrf2 is required for up-regulation of the π class of glutathione S-transferase in rat primary hepatocytes with L-methionine starvation.

    PubMed

    Lin, Ai-Hsuan; Chen, Haw-Wen; Liu, Cheng-Tze; Tsai, Chia-Wen; Lii, Chong-Kuei

    2012-07-04

    Numerous genes expression is regulated in response to amino acid shortage, which helps organisms adapt to amino acid limitation. The expression of the π class of glutathione (GSH) S-transferase (GSTP), a highly inducible phase II detoxification enzyme, is regulated mainly by activates activating protein 1 (AP-1) binding to the enhancer I of GSTP (GPEI). Here we show the critical role of nuclear factor erythroid-2-related factor 2 (Nrf2) in up-regulating GSTP gene transcription. Primary rat hepatocytes were cultured in a methionine-restricted medium, and immunoblotting and RT-PCR analyses showed that methionine restriction time-dependently increased GSTP protein and mRNA expression over a 48 h period. Nrf2 translocation to the nucleus, nuclear proteins binding to GPEI, and antioxidant response element (ARE) luciferase reporter activity were increased by methionine restriction as well as by l-buthionine sulfoximine (BSO), a GSH synthesis inhibitor. Transfection with Nrf2 siRNA knocked down Nrf2 expression and reversed the methionine-induced GSTP expression and GPEI binding activity. Chromatin immunoprecipitation assay confirmed the binding of Nrf2 to the GPEI. Phosphorylation of extracellular signal-regulated kinase 2 (ERK2) was increased in methionine-restricted and BSO-treated cells. ERK2 siRNA abolished methionine restriction-induced Nrf2 nuclear translocation, GPEI binding activity, ARE-luciferase reporter activity, and GSTP expression. Our results suggest that the up-regulation of GSTP gene transcription in response to methionine restriction likely occurs via the ERK-Nrf2-GPEI signaling pathway.

  5. Nitrogen Starvation and TorC1 Inhibition Differentially Affect Nuclear Localization of the Gln3 and Gat1 Transcription Factors Through the Rare Glutamine tRNACUG in Saccharomyces cerevisiae

    PubMed Central

    Tate, Jennifer J.; Rai, Rajendra; Cooper, Terrance G.

    2015-01-01

    A leucine, leucyl-tRNA synthetase–dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, is not subject to leucine-dependent TorC1 activation. This led us to conclude that excess nitrogen-dependent down-regulation of Gln3 occurs via a second mechanism that is independent of leucine-dependent TorC1 activation. A major site of Gln3 and Gat1 (another GATA-binding transcription activator) control occurs at their access to the nucleus. In excess nitrogen, Gln3 and Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner. They become nuclear and activate transcription when nitrogen becomes limiting. Long-term nitrogen starvation and treatment of cells with the glutamine synthetase inhibitor methionine sulfoximine (Msx) also elicit nuclear Gln3 localization. The sensitivity of Gln3 localization to glutamine and inhibition of glutamine synthesis prompted us to investigate the effects of a glutamine tRNA mutation (sup70-65) on nitrogen-responsive control of Gln3 and Gat1. We found that nuclear Gln3 localization elicited by short- and long-term nitrogen starvation; growth in a poor, derepressive medium; Msx or rapamycin treatment; or ure2Δ mutation is abolished in a sup70-65 mutant. However, nuclear Gat1 localization, which also exhibits a glutamine tRNACUG requirement for its response to short-term nitrogen starvation or growth in proline medium or a ure2Δ mutation, does not require tRNACUG for its response to rapamycin. Also, in contrast with Gln3, Gat1 localization does not respond to long-term nitrogen starvation. These observations demonstrate the existence of a specific nitrogen-responsive component participating in the control of Gln3 and Gat1 localization and their downstream production of nitrogenous precursors. This component is highly sensitive to the function of the rare glutamine tRNACUG, which cannot be replaced by the predominant glutamine tRNACAA. Our observations also demonstrate distinct mechanistic differences between the responses of Gln3 and Gat1 to rapamycin inhibition of TorC1 and nitrogen starvation. PMID:25527290

  6. Monoamines and glycogen levels in cerebral cortices of fast and slow methionine sulfoximine-inbred mice.

    PubMed

    Boissonnet, Arnaud; Hévor, Tobias; Landemarre, Ludovic; Cloix, Jean-François

    2013-05-01

    The experimental model of seizures which depends upon methionine sulfoximine (MSO) simulates the most striking form of human epilepsy. MSO generates epileptiform seizures in a large variety of animals, increases brain glycogen content and induces brain monoamines modifications. We selected two inbred lines of mice based upon their latency toward MSO-dependent seizures, named as MSO-Fast (sensitive), having short latency toward MSO, and MSO-Slow (resistant) with a long latency. We determined 13 monoamines and glycogen contents in brain cortices of the MSO-Fast and slow lines in order to determine the relationships with MSO-dependent seizures. The present data show that using these MSO-Fast and MSO-Slow inbred lines it could be demonstrated that: (1) in basal conditions the neurotransmitter 5-HT is significantly higher in MSO-Fast mice than in MSO-Slow ones; (2) MSO in both lines induced a significant increase in brain content of DOPAC (3,4-dihydroxyphenylacetic acid), HVA (homovanillic acid), MHPG (3-methoxy-4-hydroxyphenylglycol), and 5-HT (serotonin); a significant decrease in MSO-Slow mice in brain content of NME (normetepinephrine), and 5-HIAA (5-hydroxyindoleacetic acid) and the variation of other monoamines were not significant; (3) the brain glycogen content is significantly higher in MSO-Fast mice than in MSO-Slow ones, both in basal conditions and after MSO administration. From our data, we propose that brain glycogen content may constitute a defense against epileptic attack, as glycogen may be degraded down to glucose-6-phosphate that can be used to either postpone the epileptic attack or to provide neurons with energy when they needed it. Brain glycogen might therefore be considered as a molecule that can contribute to struggle seizures, at least in MSO-dependent seizure. The 5-HT content may constitute a defense against MSO-dependent epilepsy. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Acute Liver Injury Induces Nucleocytoplasmic Redistribution of Hepatic Methionine Metabolism Enzymes

    PubMed Central

    Delgado, Miguel; Garrido, Francisco; Pérez-Miguelsanz, Juliana; Pacheco, María; Partearroyo, Teresa; Pérez-Sala, Dolores

    2014-01-01

    Abstract Aims: The discovery of methionine metabolism enzymes in the cell nucleus, together with their association with key nuclear processes, suggested a putative relationship between alterations in their subcellular distribution and disease. Results: Using the rat model of d-galactosamine intoxication, severe changes in hepatic steady-state mRNA levels were found; the largest decreases corresponded to enzymes exhibiting the highest expression in normal tissue. Cytoplasmic protein levels, activities, and metabolite concentrations suffered more moderate changes following a similar trend. Interestingly, galactosamine treatment induced hepatic nuclear accumulation of methionine adenosyltransferase (MAT) α1 and S-adenosylhomocysteine hydrolase tetramers, their active assemblies. In fact, galactosamine-treated livers showed enhanced nuclear MAT activity. Acetaminophen (APAP) intoxication mimicked most galactosamine effects on hepatic MATα1, including accumulation of nuclear tetramers. H35 cells that overexpress tagged-MATα1 reproduced the subcellular distribution observed in liver, and the changes induced by galactosamine and APAP that were also observed upon glutathione depletion by buthionine sulfoximine. The H35 nuclear accumulation of tagged-MATα1 induced by these agents correlated with decreased glutathione reduced form/glutathione oxidized form ratios and was prevented by N-acetylcysteine (NAC) and glutathione ethyl ester. However, the changes in epigenetic modifications associated with tagged-MATα1 nuclear accumulation were only prevented by NAC in galactosamine-treated cells. Innovation: Cytoplasmic and nuclear changes in proteins that regulate the methylation index follow opposite trends in acute liver injury, their nuclear accumulation showing potential as disease marker. Conclusion: Altogether these results demonstrate galactosamine- and APAP-induced nuclear accumulation of methionine metabolism enzymes as active oligomers and unveil the implication of redox-dependent mechanisms in the control of MATα1 subcellular distribution. Antioxid. Redox Signal. 20, 2541–2554. PMID:24124652

  8. Role of glutamine in cobinamide biosynthesis in Propionibacterium shermanii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliseev, A.A.; Pushkin, A.V.; Belozerova, E.V.

    1987-01-10

    The role of glutamine as a possible donor of amide groups in the biosynthesis of vitamin B/sub 12/ was investigated. In the incubation of P. shermanii cells preliminarily exhausted with respect to nitrogen on media containing ammonium sulfate or asparagine, the glutamine synthetase inhibitor methionine sulfoximine suppressed the formation of cobinamide (factor B) from the monoamide of cobiric acid (by 75 and 59%, respectively). At the same time, the inhibitor did not affect cobinamide synthesis on a medium with glutamine. The amide group of glutamine, labeled with /sup 13/N, was used for the amidation of corrinoids four times as efficientlymore » as the amine group. It was concluded that a glutamine-dependent synthetase, which catalyzes the amidation of cobiric acids with the formation of cobinamide, functions in cells of propionic acid bacteria.« less

  9. Relationships among msx gene structure and function in zebrafish and other vertebrates.

    PubMed

    Ekker, M; Akimenko, M A; Allende, M L; Smith, R; Drouin, G; Langille, R M; Weinberg, E S; Westerfield, M

    1997-10-01

    The zebrafish genome contains at least five msx homeobox genes, msxA, msxB, msxC, msxD, and the newly isolated msxE. Although these genes share structural features common to all Msx genes, phylogenetic analyses of protein sequences indicate that the msx genes from zebrafish are not orthologous to the Msx1 and Msx2 genes of mammals, birds, and amphibians. The zebrafish msxB and msxC are more closely related to each other and to the mouse Msx3. Similarly, although the combinatorial expression of the zebrafish msx genes in the embryonic dorsal neuroectoderm, visceral arches, fins, and sensory organs suggests functional similarities with the Msx genes of other vertebrates, differences in the expression patterns preclude precise assignment of orthological relationships. Distinct duplication events may have given rise to the msx genes of modern fish and other vertebrate lineages whereas many aspects of msx gene functions during embryonic development have been preserved.

  10. Targeted Reduction of Vascular Msx1 and Msx2 Mitigates Arteriosclerotic Calcification and Aortic Stiffness in LDLR-Deficient Mice Fed Diabetogenic Diets

    PubMed Central

    Cheng, Su-Li; Behrmann, Abraham; Shao, Jian-Su; Ramachandran, Bindu; Krchma, Karen; Bello Arredondo, Yoanna; Kovacs, Attila; Mead, Megan; Maxson, Robert

    2014-01-01

    When fed high-fat diets, male LDLR−/− mice develop obesity, hyperlipidemia, hyperglycemia, and arteriosclerotic calcification. An osteogenic Msx-Wnt regulatory program is concomitantly upregulated in the vasculature. To better understand the mechanisms of diabetic arteriosclerosis, we generated SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR−/− mice, assessing the impact of Msx1+Msx2 gene deletion in vascular myofibroblast and smooth muscle cells. Aortic Msx2 and Msx1 were decreased by 95% and 34% in SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR−/− animals versus Msx1(fl/fl);Msx2(fl/fl);LDLR−/− controls, respectively. Aortic calcium was reduced by 31%, and pulse wave velocity, an index of stiffness, was decreased in SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR−/− mice vs. controls. Fasting blood glucose and lipids did not differ, yet SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR−/− siblings became more obese. Aortic adventitial myofibroblasts from SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR−/− mice exhibited reduced osteogenic gene expression and mineralizing potential with concomitant reduction in multiple Wnt genes. Sonic hedgehog (Shh) and Sca1, markers of aortic osteogenic progenitors, were also reduced, paralleling a 78% reduction in alkaline phosphatase (TNAP)–positive adventitial myofibroblasts. RNA interference revealed that although Msx1+Msx2 supports TNAP and Wnt7b expression, Msx1 selectively maintains Shh and Msx2 sustains Wnt2, Wnt5a, and Sca1 expression in aortic adventitial myofibroblast cultures. Thus, Msx1 and Msx2 support vascular mineralization by directing the osteogenic programming of aortic progenitors in diabetic arteriosclerosis. PMID:25056439

  11. Targeted reduction of vascular Msx1 and Msx2 mitigates arteriosclerotic calcification and aortic stiffness in LDLR-deficient mice fed diabetogenic diets.

    PubMed

    Cheng, Su-Li; Behrmann, Abraham; Shao, Jian-Su; Ramachandran, Bindu; Krchma, Karen; Bello Arredondo, Yoanna; Kovacs, Attila; Mead, Megan; Maxson, Robert; Towler, Dwight A

    2014-12-01

    When fed high-fat diets, male LDLR(-/-) mice develop obesity, hyperlipidemia, hyperglycemia, and arteriosclerotic calcification. An osteogenic Msx-Wnt regulatory program is concomitantly upregulated in the vasculature. To better understand the mechanisms of diabetic arteriosclerosis, we generated SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) mice, assessing the impact of Msx1+Msx2 gene deletion in vascular myofibroblast and smooth muscle cells. Aortic Msx2 and Msx1 were decreased by 95% and 34% in SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) animals versus Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) controls, respectively. Aortic calcium was reduced by 31%, and pulse wave velocity, an index of stiffness, was decreased in SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) mice vs. controls. Fasting blood glucose and lipids did not differ, yet SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) siblings became more obese. Aortic adventitial myofibroblasts from SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) mice exhibited reduced osteogenic gene expression and mineralizing potential with concomitant reduction in multiple Wnt genes. Sonic hedgehog (Shh) and Sca1, markers of aortic osteogenic progenitors, were also reduced, paralleling a 78% reduction in alkaline phosphatase (TNAP)-positive adventitial myofibroblasts. RNA interference revealed that although Msx1+Msx2 supports TNAP and Wnt7b expression, Msx1 selectively maintains Shh and Msx2 sustains Wnt2, Wnt5a, and Sca1 expression in aortic adventitial myofibroblast cultures. Thus, Msx1 and Msx2 support vascular mineralization by directing the osteogenic programming of aortic progenitors in diabetic arteriosclerosis. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  12. Novel Pieces for the Emerging Picture of Sulfoximines in Drug Discovery: Synthesis and Evaluation of Sulfoximine Analogues of Marketed Drugs and Advanced Clinical Candidates.

    PubMed

    Sirvent, Juan Alberto; Lücking, Ulrich

    2017-04-06

    Sulfoximines have gained considerable recognition as an important structural motif in drug discovery of late. In particular, the clinical kinase inhibitors for the treatment of cancer, roniciclib (pan-CDK inhibitor), BAY 1143572 (P-TEFb inhibitor), and AZD 6738 (ATR inhibitor), have recently drawn considerable attention. Whilst the interest in this underrepresented functional group in drug discovery is clearly on the rise, there remains an incomplete understanding of the medicinal-chemistry-relevant properties of sulfoximines. Herein we report the synthesis and in vitro characterization of a variety of sulfoximine analogues of marketed drugs and advanced clinical candidates to gain a better understanding of this neglected functional group and its potential in drug discovery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. In Vivo Conversion of 5-Oxoproline to Glutamate by Higher Plants 1

    PubMed Central

    Mazelis, Mendel; Pratt, Helen M.

    1976-01-01

    l-(U-14C)-5-oxoproline (pyrollidone carboxylic acid or pyroglutamic acid) was infiltrated into detached leaves of a number of species and incubated for 1 to 6 hours. In every case, conversion to labeled glutamate and glutamine was observed. The amount converted varied from 1 to 64% of the total label fed depending on the species. The ratio of glutamate-14C to glutamine-14C ranged from 5 in Vicia faba to 1 in sugar beet. This ratio could be affected by preinfiltrating various compounds before allowing the uptake of the 5-oxoproline. When l-methionine-dl-sulfoximine was prefed to sugar beet leaves, the glutamate-glutamine ratio increased from 1 to 10. Prior treatment of V. faba leaves with azaserine resulted in essentially only labeled glutamine being recovered. Preinfiltration with NaF or ATP gave similar results in that the glutamate-glutamine ratio was greatly decreased. The results are consistent with glutamate being produced from the 5-oxoproline and then being converted to glutamine. PMID:16659431

  14. Factors affecting the photoproduction of ammonia from dinitrogen and water by the cyanobacterium Anabaena sp. strain ATCC 33047.

    PubMed

    Ramos, J L; Guerrero, M G; Losada, M

    1987-04-01

    Synthesis of ammonia from dinitrogen and water by suspensions of Anabaena sp. Strain ATCC 33047 treated with the glutamine synthetase inhibitor L-methionine-D,L-sulfoximine is strictly dependent on light. Under otherwise optimal conditions, the yield of ammonia production is influenced by irradiance, as well as by the density, depth, and turbulence of the cell suspension. The interaction among these factors seems to determine the actual amount of light available to each single cell or filament in the suspension for the photoproduction process. Under convenient illumination, the limiting factor in the synthesis of ammonia seems to be the cellular nitrogenase activity level, but under limiting light conditions the limiting factor could, however, be the assimilatory power required for nitrogen fixation. Photosynthetic ammonia production from atmospheric nitrogen and water can operate with an efficiency of ca. 10% of its theoretical maximum, representing a remarkable process for the conversion of light energy into chemical energy.

  15. Dual regulation of Ca2+-dependent glutamate release from astrocytes: vesicular glutamate transporters and cytosolic glutamate levels.

    PubMed

    Ni, Yingchun; Parpura, Vladimir

    2009-09-01

    Vesicular glutamate transporters (VGLUTs) are responsible for vesicular glutamate storage and exocytotic glutamate release in neurons and astrocytes. Here, we selectively and efficiently overexpressed individual VGLUT proteins (VGLUT1, 2, or 3) in solitary astrocytes and studied their effects on mechanical stimulation-induced Ca2+-dependent glutamate release. Neither VGLUT1 nor VGLUT2 overexpression changed the amount of glutamate release, whereas overexpression of VGLUT3 significantly enhanced Ca2+-dependent glutamate release from astrocytes. None of the VGLUT overexpression affected mechanically induced intracellular Ca2+ increase. Inhibition of glutamine synthetase activity by L-methionine sulfoximine in astrocytes, which leads to increased cytosolic glutamate concentration, greatly increased their mechanically induced Ca2+-dependent glutamate release, without affecting intracellular Ca2+ dynamics. Taken together, these data indicate that both VGLUT3 and the cytosolic concentration of glutamate are key limiting factors in regulating the Ca2+-dependent release of glutamate from astrocytes.

  16. Zebrafish msxB, msxC and msxE function together to refine the neural-nonneural border and regulate cranial placodes and neural crest development.

    PubMed

    Phillips, Bryan T; Kwon, Hye-Joo; Melton, Colt; Houghtaling, Paul; Fritz, Andreas; Riley, Bruce B

    2006-06-15

    The zebrafish muscle segment homeobox genes msxB, msxC and msxE are expressed in partially overlapping domains in the neural crest and preplacodal ectoderm. We examined the roles of these msx genes in early development. Disrupting individual msx genes causes modest variable defects, whereas disrupting all three produces a reproducible severe phenotype, suggesting functional redundancy. Neural crest differentiation is blocked at an early stage. Preplacodal development begins normally, but placodes arising from the msx expression domain later show elevated apoptosis and are reduced in size. Cell proliferation is normal in these tissues. Unexpectedly, Msx-deficient embryos become ventralized by late gastrulation whereas misexpression of msxB dorsalizes the embryo. These effects appear to involve Distal-less (Dlx) protein activity, as loss of dlx3b and dlx4b suppresses ventralization in Msx-depleted embryos. At the same time, Msx-depletion restores normal preplacodal gene expression to dlx3b-dlx4b mutants. These data suggest that mutual antagonism between Msx and Dlx proteins achieves a balance of function required for normal preplacodal differentiation and placement of the neural-nonneural border.

  17. Differential expression of homeobox-containing genes Msx-1 and Msx-2 and homeoprotein Msx-2 expression during chick craniofacial development.

    PubMed

    Nishikawa, K; Nakanishi, T; Aoki, C; Hattori, T; Takahashi, K; Taniguchi, S

    1994-03-01

    The expression pattern of chick Msx-1 and Msx-2 homeobox genes in craniofacial primordia was examined by in situ hybridization using cRNA probes. Both genes were expressed in the distal region of the facial primordia, where the distribution of Msx-2 expression was restricted distally within the Msx-1 expression domain. On the contrary, Msx-2 expression in the lateral choroid plexus and cranial skull was broader and more intensive than Msx-1 expression. Our findings suggest that these two genes cooperate to play differential roles in craniofacial development. Msx-2 protein was detected immunohistochemically, and its localization essentially corresponded to the mRNA expression pattern, substantiating the involvement of Msx-2 protein as a transcriptional regulator in developing limb and face.

  18. Domain duplication, divergence, and loss events in vertebrate Msx paralogs reveal phylogenomically informed disease markers

    PubMed Central

    Finnerty, John R; Mazza, Maureen E; Jezewski, Peter A

    2009-01-01

    Background Msx originated early in animal evolution and is implicated in human genetic disorders. To reconstruct the functional evolution of Msx and inform the study of human mutations, we analyzed the phylogeny and synteny of 46 metazoan Msx proteins and tracked the duplication, diversification and loss of conserved motifs. Results Vertebrate Msx sequences sort into distinct Msx1, Msx2 and Msx3 clades. The sister-group relationship between MSX1 and MSX2 reflects their derivation from the 4p/5q chromosomal paralogon, a derivative of the original "MetaHox" cluster. We demonstrate physical linkage between Msx and other MetaHox genes (Hmx, NK1, Emx) in a cnidarian. Seven conserved domains, including two Groucho repression domains (N- and C-terminal), were present in the ancestral Msx. In cnidarians, the Groucho domains are highly similar. In vertebrate Msx1, the N-terminal Groucho domain is conserved, while the C-terminal domain diverged substantially, implying a novel function. In vertebrate Msx2 and Msx3, the C-terminal domain was lost. MSX1 mutations associated with ectodermal dysplasia or orofacial clefting disorders map to conserved domains in a non-random fashion. Conclusion Msx originated from a MetaHox ancestor that also gave rise to Tlx, Demox, NK, and possibly EHGbox, Hox and ParaHox genes. Duplication, divergence or loss of domains played a central role in the functional evolution of Msx. Duplicated domains allow pleiotropically expressed proteins to evolve new functions without disrupting existing interaction networks. Human missense sequence variants reside within evolutionarily conserved domains, likely disrupting protein function. This phylogenomic evaluation of candidate disease markers will inform clinical and functional studies. PMID:19154605

  19. Domain duplication, divergence, and loss events in vertebrate Msx paralogs reveal phylogenomically informed disease markers.

    PubMed

    Finnerty, John R; Mazza, Maureen E; Jezewski, Peter A

    2009-01-20

    Msx originated early in animal evolution and is implicated in human genetic disorders. To reconstruct the functional evolution of Msx and inform the study of human mutations, we analyzed the phylogeny and synteny of 46 metazoan Msx proteins and tracked the duplication, diversification and loss of conserved motifs. Vertebrate Msx sequences sort into distinct Msx1, Msx2 and Msx3 clades. The sister-group relationship between MSX1 and MSX2 reflects their derivation from the 4p/5q chromosomal paralogon, a derivative of the original "MetaHox" cluster. We demonstrate physical linkage between Msx and other MetaHox genes (Hmx, NK1, Emx) in a cnidarian. Seven conserved domains, including two Groucho repression domains (N- and C-terminal), were present in the ancestral Msx. In cnidarians, the Groucho domains are highly similar. In vertebrate Msx1, the N-terminal Groucho domain is conserved, while the C-terminal domain diverged substantially, implying a novel function. In vertebrate Msx2 and Msx3, the C-terminal domain was lost. MSX1 mutations associated with ectodermal dysplasia or orofacial clefting disorders map to conserved domains in a non-random fashion. Msx originated from a MetaHox ancestor that also gave rise to Tlx, Demox, NK, and possibly EHGbox, Hox and ParaHox genes. Duplication, divergence or loss of domains played a central role in the functional evolution of Msx. Duplicated domains allow pleiotropically expressed proteins to evolve new functions without disrupting existing interaction networks. Human missense sequence variants reside within evolutionarily conserved domains, likely disrupting protein function. This phylogenomic evaluation of candidate disease markers will inform clinical and functional studies.

  20. Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish.

    PubMed

    Akimenko, M A; Johnson, S L; Westerfield, M; Ekker, M

    1995-02-01

    To study the genetic regulation of growth control and pattern formation during fin development and regeneration, we have analysed the expression of four homeobox genes, msxA, msxB, msxC and msxD in zebrafish fins. The median fin fold, which gives rise to the unpaired fins, expresses these four msx genes during development. Transcripts of the genes are also present in cells of the presumptive pectoral fin buds. The most distal cells, the apical ectodermal ridge of the paired fins and the cleft and flanking cells of the median fin fold express all these msx genes with the exception of msxC. Mesenchymal cells underlying the most distal cells express all four genes. Expression of the msx genes in the fin fold and fin buds is transient and, by 3 days after fertilization, msx expression in the median fin fold falls below levels detectable by in situ hybridization. Although the fins of adult zebrafish normally have levels of msx transcripts undetectable by in situ hybridization, expression of all four genes is strongly reinduced during regeneration of both paired and unpaired fins. Induction of msx gene expression in regenerating caudal fins occurs as early as 30 hours postamputation. As the blastema forms, the levels of expression increase and reach a maximum between the third and fifth days. Then, msx expression progressively declines and disappears by day 12 when the caudal fin has grown back to its normal size. In the regenerating fin, the blastema cells that develop at the tip of each fin ray express msxB and msxC. Cells of the overlying epithelium express msxA and msxD, but do not express msxB or msxC. Amputations at various levels along the proximodistal axis of the fin suggest that msxB expression depends upon the position of the blastema, with cells of the rapidly proliferating proximal blastema expressing higher levels than the cells of the less rapidly proliferating distal blastema. Expression of msxC and msxD is independent of the position of the blastema cell along this axis. Our results suggest distinct roles for each of the four msx genes during fin development and regeneration and differential regulation of their expression.

  1. Regulated expression of homeobox genes Msx-1 and Msx-2 in mouse mammary gland development suggests a role in hormone action and epithelial-stromal interactions.

    PubMed

    Friedmann, Y; Daniel, C W

    1996-07-10

    The murine homeobox genes Msx-1 and Msx-2 are related to the Drosophila msh gene and are expressed in a variety of tissues during mouse embryogenesis. We now report the developmentally regulated expression of Msx-1 and Msx-2 in the mouse mammary gland and show that their expression patterns point toward significant functional roles. Msx-1 and Msx-2 transcripts were present in glands of virgin mice and in glands of mice in early pregnancy, but transcripts decreased dramatically during late pregnancy. Low levels of Msx-1 transcripts were detected in glands from lactating animals and during the first days of involution, whereas Msx-2 expression was not detected during lactation or early involution. Expression of both genes increased gradually as involution progressed. Msx-2 but not Msx-1 expression was decreased following ovariectomy or following exposure to anti-estrogen implanted directly into the gland. Hormonal regulation of Msx-2 expression was confirmed when transcripts returned to normal levels after estrogen was administered to ovariectomized animals. In situ molecular hybridization for Msx-1 showed transcripts localized to the mammary epithelium, whereas Msx-2 expression was confined to the periductal stroma. Mammary stroma from which mammary epithelium had been removed did not transcribe detectable amounts of Msx-2, showing that expression is regulated by contiguous mammary epithelium, and indicating a role for these homeobox genes in mesenchymal-epithelial interactions during mammary development.

  2. Expression of Msx genes in regenerating and developing limbs of axolotl.

    PubMed

    Koshiba, K; Kuroiwa, A; Yamamoto, H; Tamura, K; Ide, H

    1998-12-15

    Msx genes, homeobox-containing genes, have been isolated as homologues of the Drosophila msh gene and are thought to play important roles in the development of chick or mouse limb buds. We isolated two Msx genes, Msx1 and Msx2, from regenerating blastemas of axolotl limbs and examined their expression patterns using Northern blot and whole mount in situ hybridization during regeneration and development. Northern blot analysis revealed that the expression level of both Msx genes increased during limb regeneration. The Msx2 expression level increased in the blastema at the early bud stage, and Msx1 expression level increased at the late bud stage. Whole mount in situ hybridization revealed that Msx2 was expressed in the distal mesenchyme and Msx1 in the entire mesenchyme of the blastema at the late bud stage. In the developing limb bud, Msx1 was expressed in the entire mesenchyme, while Msx2 was expressed in the distal and peripheral mesenchyme. The expression patterns of Msx genes in the blastemas and limb buds of the axolotl were different from those reported for chick or mouse limb buds. These expression patterns of axolotl Msx genes are discussed in relation to the blastema or limb bud morphology and their possible roles in limb patterning.

  3. Msh homeobox 1 (Msx1)- and Msx2-overexpressing bone marrow-derived mesenchymal stem cells resemble blastema cells and enhance regeneration in mice.

    PubMed

    Taghiyar, Leila; Hesaraki, Mahdi; Sayahpour, Forough Azam; Satarian, Leila; Hosseini, Samaneh; Aghdami, Naser; Baghaban Eslaminejad, Mohamadreza

    2017-06-23

    Amputation of the proximal region in mammals is not followed by regeneration because blastema cells (BCs) and expression of regenerative genes, such as Msh homeobox ( Msx ) genes, are absent in this animal group. The lack of BCs and positional information in other cells is therefore the main obstacle to therapeutic approaches for limb regeneration. Hence, this study aimed to create blastema-like cells (BlCs) by overexpressing Msx1 and Msx2 genes in mouse bone marrow-derived mesenchymal stem cells (mBMSCs) to regenerate a proximally amputated digit tip. We transduced mBMSCs with Msx1 and Msx2 genes and compared osteogenic activity and expression levels of several Msx -regulated genes ( Bmp4 , Fgf8 , and keratin 14 ( K14 )) in BlC groups, including MSX1, MSX2, and MSX1/2 (in a 1:1 ratio) with those in mBMSCs and BCs in vitro and in vivo following injection into the amputation site. We found that Msx gene overexpression increased expression of specific blastemal markers and enhanced the proliferation rate and osteogenesis of BlCs compared with mBMSCs and BCs via activation of Fgf8 and Bmp4 Histological analyses indicated full regrowth of digit tips in the Msx -overexpressing groups, particularly in MSX1/2, through endochondral ossification 6 weeks post-injection. In contrast, mBMSCs and BCs formed abnormal bone and nail. Full digit tip was regenerated only in the MSX1/2 group and was related to boosted Bmp4, Fgf8 , and K14 gene expression and to limb-patterning properties resulting from Msx1 and Msx2 overexpression. We propose that Msx -transduced cells that can regenerate epithelial and mesenchymal tissues may potentially be utilized in limb regeneration. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. BMP-Mediated Functional Cooperation between Dlx5;Dlx6 and Msx1;Msx2 during Mammalian Limb Development

    PubMed Central

    Vieux-Rochas, Maxence; Bouhali, Kamal; Mantero, Stefano; Garaffo, Giulia; Provero, Paolo; Astigiano, Simonetta; Barbieri, Ottavia; Caratozzolo, Mariano F.; Tullo, Apollonia; Guerrini, Luisa; Lallemand, Yvan; Robert, Benoît

    2013-01-01

    The Dlx and Msx homeodomain transcription factors play important roles in the control of limb development. The combined disruption of Msx1 and Msx2, as well as that of Dlx5 and Dlx6, lead to limb patterning defects with anomalies in digit number and shape. Msx1;Msx2 double mutants are characterized by the loss of derivatives of the anterior limb mesoderm which is not observed in either of the simple mutants. Dlx5;Dlx6 double mutants exhibit hindlimb ectrodactyly. While the morphogenetic action of Msx genes seems to involve the BMP molecules, the mode of action of Dlx genes still remains elusive. Here, examining the limb phenotypes of combined Dlx and Msx mutants we reveal a new Dlx-Msx regulatory loop directly involving BMPs. In Msx1;Dlx5;Dlx6 triple mutant mice (TKO), beside the expected ectrodactyly, we also observe the hallmark morphological anomalies of Msx1;Msx2 double mutants suggesting an epistatic role of Dlx5 and Dlx6 over Msx2. In Msx2;Dlx5;Dlx6 TKO mice we only observe an aggravation of the ectrodactyly defect without changes in the number of the individual components of the limb. Using a combination of qPCR, ChIP and bioinformatic analyses, we identify two Dlx/Msx regulatory pathways: 1) in the anterior limb mesoderm a non-cell autonomous Msx-Dlx regulatory loop involves BMP molecules through the AER and 2) in AER cells and, at later stages, in the limb mesoderm the regulation of Msx2 by Dlx5 and Dlx6 occurs also cell autonomously. These data bring new elements to decipher the complex AER-mesoderm dialogue that takes place during limb development and provide clues to understanding the etiology of congenital limb malformations. PMID:23382810

  5. BMP-mediated functional cooperation between Dlx5;Dlx6 and Msx1;Msx2 during mammalian limb development.

    PubMed

    Vieux-Rochas, Maxence; Bouhali, Kamal; Mantero, Stefano; Garaffo, Giulia; Provero, Paolo; Astigiano, Simonetta; Barbieri, Ottavia; Caratozzolo, Mariano F; Tullo, Apollonia; Guerrini, Luisa; Lallemand, Yvan; Robert, Benoît; Levi, Giovanni; Merlo, Giorgio R

    2013-01-01

    The Dlx and Msx homeodomain transcription factors play important roles in the control of limb development. The combined disruption of Msx1 and Msx2, as well as that of Dlx5 and Dlx6, lead to limb patterning defects with anomalies in digit number and shape. Msx1;Msx2 double mutants are characterized by the loss of derivatives of the anterior limb mesoderm which is not observed in either of the simple mutants. Dlx5;Dlx6 double mutants exhibit hindlimb ectrodactyly. While the morphogenetic action of Msx genes seems to involve the BMP molecules, the mode of action of Dlx genes still remains elusive. Here, examining the limb phenotypes of combined Dlx and Msx mutants we reveal a new Dlx-Msx regulatory loop directly involving BMPs. In Msx1;Dlx5;Dlx6 triple mutant mice (TKO), beside the expected ectrodactyly, we also observe the hallmark morphological anomalies of Msx1;Msx2 double mutants suggesting an epistatic role of Dlx5 and Dlx6 over Msx2. In Msx2;Dlx5;Dlx6 TKO mice we only observe an aggravation of the ectrodactyly defect without changes in the number of the individual components of the limb. Using a combination of qPCR, ChIP and bioinformatic analyses, we identify two Dlx/Msx regulatory pathways: 1) in the anterior limb mesoderm a non-cell autonomous Msx-Dlx regulatory loop involves BMP molecules through the AER and 2) in AER cells and, at later stages, in the limb mesoderm the regulation of Msx2 by Dlx5 and Dlx6 occurs also cell autonomously. These data bring new elements to decipher the complex AER-mesoderm dialogue that takes place during limb development and provide clues to understanding the etiology of congenital limb malformations.

  6. Msx1 is expressed in retina endothelial cells at artery branching sites.

    PubMed

    Lopes, Miguel; Goupille, Olivier; Saint Cloment, Cécile; Robert, Benoît

    2012-04-15

    Msx1 and Msx2 encode homeodomain transcription factors that play a role in several embryonic developmental processes. Previously, we have shown that in the adult mouse, Msx1(lacZ) is expressed in vascular smooth muscle cells (VSMCs) and pericytes, and that Msx2(lacZ) is also expressed in VSMCs as well as in a few endothelial cells (ECs). The mouse retina and choroid are two highly vascularized tissues. Vessel alterations in the retina are associated with several human diseases and the retina has been intensely used for angiogenesis studies, whereas the choroid has been much less investigated. Using the Msx1(lacZ) and Msx2(lacZ) reporter alleles, we observed that Msx2 is not expressed in the eye vascular tree in contrast to Msx1, for which we establish the spatial and temporal expression pattern in these tissues. In the retina, expression of Msx1 takes place from P3, and by P10, it becomes confined to a subpopulation of ECs at branching points of superficial arterioles. These branching sites are characterized by a subpopulation of mural cells that also show specific expression programs. Specific Msx gene inactivation in the endothelium, using Msx1 and Msx2 conditional mutant alleles together with a Tie2-Cre transgene, did not lead to conspicuous structural defects in the retinal vascular network. Expression of Msx1 at branching sites might therefore be linked to vessel physiology. The retinal blood flow is autonomously regulated and perfusion of capillaries has been proposed to depend on arteriolar precapillary structures that might be the sites for Msx1 expression. On the other hand, branching sites are subject to shear stress that might induce Msx1 expression. In the choroid vascular layer Msx1(lacZ) is expressed more broadly and dynamically. At birth Msx1(lacZ) expression takes place in the endothelium but at P21 its expression has shifted towards the mural layer. We discuss the possible functions of Msx1 in the eye vasculature.

  7. Msx1 is expressed in retina endothelial cells at artery branching sites

    PubMed Central

    Lopes, Miguel; Goupille, Olivier; Saint Cloment, Cécile; Robert, Benoît

    2012-01-01

    Summary Msx1 and Msx2 encode homeodomain transcription factors that play a role in several embryonic developmental processes. Previously, we have shown that in the adult mouse, Msx1lacZ is expressed in vascular smooth muscle cells (VSMCs) and pericytes, and that Msx2lacZ is also expressed in VSMCs as well as in a few endothelial cells (ECs). The mouse retina and choroid are two highly vascularized tissues. Vessel alterations in the retina are associated with several human diseases and the retina has been intensely used for angiogenesis studies, whereas the choroid has been much less investigated. Using the Msx1lacZ and Msx2lacZ reporter alleles, we observed that Msx2 is not expressed in the eye vascular tree in contrast to Msx1, for which we establish the spatial and temporal expression pattern in these tissues. In the retina, expression of Msx1 takes place from P3, and by P10, it becomes confined to a subpopulation of ECs at branching points of superficial arterioles. These branching sites are characterized by a subpopulation of mural cells that also show specific expression programs. Specific Msx gene inactivation in the endothelium, using Msx1 and Msx2 conditional mutant alleles together with a Tie2-Cre transgene, did not lead to conspicuous structural defects in the retinal vascular network. Expression of Msx1 at branching sites might therefore be linked to vessel physiology. The retinal blood flow is autonomously regulated and perfusion of capillaries has been proposed to depend on arteriolar precapillary structures that might be the sites for Msx1 expression. On the other hand, branching sites are subject to shear stress that might induce Msx1 expression. In the choroid vascular layer Msx1lacZ is expressed more broadly and dynamically. At birth Msx1lacZ expression takes place in the endothelium but at P21 its expression has shifted towards the mural layer. We discuss the possible functions of Msx1 in the eye vasculature. PMID:23213427

  8. [Expression of homeobox gene Msx-1, Msx-2 and Dlx-2 during murine mandibular first molar development].

    PubMed

    Ma, Li; Chen, Zhi; Song, Guang-tai; Fan, Ming-wen; Zhang, Qi; Wang, Zhi-feng

    2003-11-01

    To observe the expression of homeobox gene Msx-1, Msx-2 and Dlx-2 during murine mandibular first molar development. The murine heads or mandibles on embryonic days 11-18 (E11-18) and postnatal day 1-3 (P1-3) were removed, fixed and embedded, 5 micro m serial sections were cut in the coronal plane. Msx-1, Msx-2 and Dlx-2 RNA probes were synthesized by in vitro transcription and labeled with digoxigenin. Msx-1, Msx-2 and Dlx-2 mRNA expression was observed after in situ hybridization. During molar development Msx-1 transcripts appeared only in mesenchymal cells, not in epithelial cells. Msx-2 and Dlx-2 both expressed in the epithelial and mesenchymal cells. At the initiation stage of the molar development Msx-2 and Dlx-2 had similar expression. At the bud stage (E13-14) Msx-2 mRNA signaling was intensive in the enamel organ and slight in the dental mesenchyme; Dlx-2 signaling was stronger in the dental papilla. At cap stage (E15-16) Msx-2 showed prominent mRNA signaling in enamel knot and Dlx-2 was maximal in the dental papilla. At the late bell stage (P2-3) Msx-2 transcripts were observed in odontoblasts but not labeled in ameloblasts, and Dlx-2 transcripts appeared in ameloblasts but no labeling was seen in odontoblasts. Msx-1, Msx-2 and Dlx-2 are expressed in various patterns during murine mandibular first molar development, suggesting they possibly play a role in the interaction between the epithelium and mesenchyme during the molar development.

  9. Isolation, characterization, and expression of Le-msx, a maternally expressed member of the msx gene family from the glossiphoniid leech, Helobdella.

    PubMed

    Master, V A; Kourakis, M J; Martindale, M Q

    1996-12-01

    The msx gene family is one of the most highly conserved of the nonclustered homeobox-containing genes. We have isolated an msx homolog (Le-msx) from the glossiphoniid leech, Helobdella robusta, and characterized its pattern of expression by whole mount in situ hybridization. In situ expression and reverse transcription polymerase chain reaction (RT-PCR) data results show that Le-msx is a maternal transcript initially uniformly distributed in the cortex of immature oocytes that becomes asymmetrically localized to the polar regions of the uncleaved zygote. This is the earliest reported expression for the msx gene family and the first maternally expressed homeodomain-containing transcription factor reported in annelids. During embryonic development, Le-msx is expressed in all 10 embryonic stem cells and their segmental founder cell descendants. At midembryonic stages, Le-msx is expressed in the expanding germinal plate. Le-msx is confined to the central nervous system and nephridia at late (stage 9) stages and subsequently disappears from nephridia. In addition, we present a phylogenetic hypothesis for the evolution of the msx gene family, including the identification of a putative C. elegans msx homolog and the realignment of the sponge msx homolog to the NK class of homeodomain genes.

  10. Regulation of Msx-1, Msx-2, Bmp-2 and Bmp-4 during foetal and postnatal mammary gland development.

    PubMed

    Phippard, D J; Weber-Hall, S J; Sharpe, P T; Naylor, M S; Jayatalake, H; Maas, R; Woo, I; Roberts-Clark, D; Francis-West, P H; Liu, Y H; Maxson, R; Hill, R E; Dale, T C

    1996-09-01

    Expression of the Msx-1 and Msx-2 homeobox genes have been shown to be coordinately regulated with the Bmp-2 and Bmp-4 ligands in a variety of developing tissues. Here we report that transcripts from all four genes are developmentally regulated during both foetal and postnatal mammary gland development. The location and time-course of the Bmp and Msx expression point to a role for Msx and Bmp gene products in the control of epithelial-mesenchymal interactions. Expression of Msx-2, but not Msx-1, Bmp-2 or Bmp-4 was decreased following ovariectomy, while expression of the human Msx-2 homologue was regulated by 17beta-oestradiol in the MCF-7 breast cancer cell line. The regulation of Msx-2 expression by oestrogen raises the possibility that hormonal regulation of mammary development is mediated through the control of epithelial-mesenchymal interactions.

  11. A homeodomain transcription factor gene, PfMSX, activates expression of Pif gene in the pearl oyster Pinctada fucata.

    PubMed

    Zhao, Mi; He, Maoxian; Huang, Xiande; Wang, Qi

    2014-01-01

    We reported pearl oyster Pinctada fucata cDNA and genomic characterization of a new homeobox-containing protein, PfMSX. The PfMSX gene encodes a transcription factor that was localized to the nucleus. Analyses of PfMSX mRNA in tissues and developmental stages showed high expressions in mantle or D-shaped larvae. In electrophoretic mobility shift assays (EMSAs) PfMSX binded to MSX consensus binding sites in the 5' flanking region of the Pif promoter. In co-transfection experiment PfMSX transactivated reporter constructs containing Pif promoter sequences, and mutation of the MSX-binding sites attenuated transactivation. A knockdown experiment using PfMSX dsRNA showed decreased Pif mRNA and unregular crystallization of the nacreous layer using scanning electron microscopy. Our results suggested that PfMSX was a conserved homeodomain transcription factor gene, which can activate Pif gene expression through MSX binding site, and was then involved in the mineralization process in pearl oyster Pinctada fucata. Our data provided important clues about mechanisms regulating biomineralization in pearl oyster.

  12. A Homeodomain Transcription Factor Gene, PfMSX, Activates Expression of Pif Gene in the Pearl Oyster Pinctada fucata

    PubMed Central

    Zhao, Mi; He, Maoxian; Huang, Xiande; Wang, Qi

    2014-01-01

    We reported pearl oyster Pinctada fucata cDNA and genomic characterization of a new homeobox-containing protein, PfMSX. The PfMSX gene encodes a transcription factor that was localized to the nucleus. Analyses of PfMSX mRNA in tissues and developmental stages showed high expressions in mantle or D-shaped larvae. In electrophoretic mobility shift assays (EMSAs) PfMSX binded to MSX consensus binding sites in the 5′ flanking region of the Pif promoter. In co-transfection experiment PfMSX transactivated reporter constructs containing Pif promoter sequences, and mutation of the MSX-binding sites attenuated transactivation. A knockdown experiment using PfMSX dsRNA showed decreased Pif mRNA and unregular crystallization of the nacreous layer using scanning electron microscopy. Our results suggested that PfMSX was a conserved homeodomain transcription factor gene, which can activate Pif gene expression through MSX binding site, and was then involved in the mineralization process in pearl oyster Pinctada fucata. Our data provided important clues about mechanisms regulating biomineralization in pearl oyster. PMID:25099698

  13. The murine homeobox gene Msx-3 shows highly restricted expression in the developing neural tube.

    PubMed

    Shimeld, S M; McKay, I J; Sharpe, P T

    1996-04-01

    The mouse homeobox-genes Msx-1 and Msx-2 are expressed in several areas of the developing embryo, including the neural tube, neural crest, facial processes and limb buds. Here we report the characterisation of a third mouse Msx gene, which we designate Msx-3. The embryonic expression of Msx-3 was found to differ from that of Msx-1 and -2 in that it was confined to the dorsal neural tube. In embryos with 5-8 somites a segmental pattern of expression was observed in the hindbrain, with rhombomeres 3 and 5 lacking Msx-3 while other rhombomeres expressed Msx-3. This pattern was transient, however, such that in embryos with 18 or more somites expression was continuous throughout the dorsal hindbrain and anterior dorsal spinal cord. Differentiation of dorsal cell types in the neural tube can be induced by addition of members of the Tgf-beta family. Additionally, Msx-1 and -2 have been shown to be activated by addition of the Tgf-beta family member Bmp-4. To determine if Bmp-4 could activate Msx-3, we incubated embryonic hindbrain explants with exogenous Bmp-4. The dorsal expression of Msx-3 was seen to expand into more ventral regions of the neurectoderm in Bmp-4-treated cultures, implying that Bmp-4 may be able to mimic an in vivo signal that induces Msx-3.

  14. Msx1 and Msx2 are expressed in sub-populations of vascular smooth muscle cells.

    PubMed

    Goupille, Olivier; Saint Cloment, Cécile; Lopes, Miguel; Montarras, Didier; Robert, Benoît

    2008-08-01

    Using an nlacZ reporter gene inserted at the Msx1 and Msx2 loci, we could analyze the expression of these homeogenes in the adult mouse. We observed that Msx genes are prominently expressed in a subset of blood vessels. The Msx2nlacZ allele is mainly expressed in a restricted population of mural cells in peripheral arteries and veins. Msx1nlacZ is expressed to a lesser extent by vascular smooth muscle cells of peripheral arteries, but is highly expressed in arterioles and capillaries, making Msx1 a novel marker for a subpopulation of pericytes. Expression is set up early in developing vessels and maintained throughout life. In addition, expression of both genes is observed in a few endothelial cells of the aorta at fetal stages, and only Msx2 continues to be expressed in this layer at the adult stage. These results suggest major functions for Msx genes in vascular mural cell formation and remodeling. Copyright (c) 2008 Wiley-Liss, Inc.

  15. Ground control system for the midcourse space experiment UTC clock

    NASA Technical Reports Server (NTRS)

    Dragonette, Richard

    1994-01-01

    One goal of the Midcourse Space Experiment (MSX) spacecraft Operations Planning Center is to maintain the onboard satellite UTC clock (UTC(MSX)) to within 1 millisecond of UTC(APL) (the program requirement is 10 msec). The UTC(MSX) clock employs as its time base an APL built 5 MHz quartz oscillator, which is expected to have frequency instabilities (aging rate + drift rate + frequency offset) that will cause the clock to drift approximately two to ten milliseconds per day. The UTC(MSX) clock can be advanced or retarded by the APL MSX satellite ground control center by integer multiples of 1 millisecond. The MSX Operations Planning Center is developing software which records the drift of UTC(MSX) relative to UTC(APL) and which schedules the time of day and magnitude of UTC(MSX) clock updates up to 48 hours in advance. Because of the manner in which MSX spacecraft activities are scheduled, MSX clock updates are planned 24 to 48 hours in advance, and stored in the satellite's computer controller for later execution. Data will be collected on the drift of UTC(MSX) relative to UTC(APL) over a three to five day period. Approximately six times per day, the time offset between UTC(MSX) and UTC(APL) will be measured by APL with a resolution of less than 100 microseconds. From this data a second order analytical model of the clock's drift will be derived. This model will be used to extrapolate the offset of the MSX clock in time from the present to 48 hours in the future. MSX clock updates will be placed on the spacecraft's daily schedule whenever the predicted clock offset exceeds 0.5 milliseconds. The paper includes a discussion of how the empirical model of the MSX clock is derived from satellite telemetry data, as well as the algorithm used to schedule MSX clock updates based on the model.

  16. Possible involvement of MSX-2 homeoprotein in v-ras-induced transformation.

    PubMed

    Takahashi, C; Akiyama, N; Kitayama, H; Takai, S; Noda, M

    1997-04-01

    A truncated MSX-2 homeoprotein was found to induce flat reversion when expressed in v-Ki-ras-transformed NIH3T3 cells. Although the expression of endogenous MSX-2 gene is low in most of the normal adult tissues examined, it is frequently activated in carcinoma-derived cell lines. Likewise, the gene is inactive in untransformed cells but is transcriptionally activated after transformation by v-Ki-ras oncogene, suggesting that the intact MSX-2 may play a positive, rather than suppressive, role in cell transformation. To test this possibility, we isolated a full-length human MSX-2 cDNA and tested its activities in two cell systems: fibroblast and myoblast. In NIH3T3 fibroblasts, although the gene by itself failed to confer a transformed phenotype, antisense MSX-2 cDNA as well as truncated MSX-2 cDNA interfered with the transforming activities of both v-Ki-ras and v-raf oncogene. In C2C12 myoblasts, MSX-2 was found to suppress MyoD gene expression, as do activated ras oncogenes, under certain culture conditions, and truncated MSX-2 cDNA was found to inhibit the activities of both MSX-2 and ras in this system as well. Our findings not only suggest that the truncated version MSX-2 may act as a dominant suppressor of intact MSX-2 but also raise the possibility that MSX-2 gene may be an important downstream target for the Ras signaling pathways.

  17. Homeobox genes Msx-1 and Msx-2 are associated with induction and growth of skin appendages.

    PubMed

    Noveen, A; Jiang, T X; Ting-Berreth, S A; Chuong, C M

    1995-05-01

    The mechanism involved in the morphogenesis of skin appendages is a fundamental issue underlying the development and healing of skin. To identify molecules involved in the induction and growth of skin appendages, we studied the expression of two homeobox genes, Msx-1 and Msx-2, during embryonic chicken skin development. We found that i) both Msx-1 and Msx-2 are early markers of epithelial placodes for skin appendages; ii) both Msx-1 and Msx-2 are expressed in the growing feather bud epithelia but not in the interbud epithelia; iii) although mostly overlapping, there are differences between the expression of the two Msx genes, Msx-1 being expressed more toward the anterior whereas Msx-2 is expressed more toward the distal feather bud; iv) there is no body-position-specific expression pattern as was observed for members of the Hox A-D clusters; v) in the feather follicle, Msx-1 and 2 are expressed in the collar and barb ridge epithelia, both regions of continuous cell proliferation; vi) when feather-bud growth was inhibited by forskolin, an activator of adenylyl cyclase, the expression of both genes was reduced. These results showed that Msx genes are specifically expressed in epithelial domains destined to become skin appendages. Its function in skin-appendage morphogenesis may be twofold, first in making epithelial cells competent to become skin appendages and, second, in making epithelial cells maintain their potential for continuous growth.

  18. Expression of an Msx homeobox gene in ascidians: insights into the archetypal chordate expression pattern.

    PubMed

    Ma, L; Swalla, B J; Zhou, J; Dobias, S L; Bell, J R; Chen, J; Maxson, R E; Jeffery, W R

    1996-03-01

    The Msx homeobox genes are expressed in complex patterns during vertebrate development in conjunction with inductive tissue interactions. As a means of understanding the archetypal role of Msx genes in chordates, we have isolated and characterized an Msx gene in ascidians, protochordates with a relatively simple body plan. The Mocu Msx-a and McMsx-a genes, isolated from the ascidians Molgula oculata and Molgula citrina, respectively, have homeodomains that place them in the msh-like subclass of Msx genes. Therefore, the Molgula Msx-a genes are most closely related to the msh genes previously identified in a number of invertebrates. Southern blot analysis suggests that there are one or two copies of the Msx-a gene in the Molgula genome. Northern blot and RNase protection analysis indicate that Msx-a transcripts are restricted to the developmental stages of the life cycle. In situ hybridization showed that Msx-a mRNA first appears just before gastrulation in the mesoderm (presumptive notochord and muscle) and ectoderm (neural plate) cells. Transcript levels decline in mesoderm cells after the completion of gastrulation, but are enhanced in the folding neural plate during neurulation. Later, Msx-a mRNA is also expressed in the posterior ectoderm and in a subset of the tail muscle cells. The ectoderm and mesoderm cells that express Msx-a are undergoing morphogenetic movements during gastrulation, neurulation, and tail formation. Msx-a expression ceases after these cells stop migrating. The ascidian M. citrina, in which adult tissues and organs begin to develop precociously in the larva, was used to study Msx-a expression during adult development. Msx-a transcripts are expressed in the heart primordium and the rudiments of the ampullae, epidermal protrusions with diverse functions in the juvenile. The heart and ampullae develop in regions where mesenchyme cells interact with endodermal or epidermal epithelia. A comparison of the expression patterns of the Molgula genes with those of their vertebrate congeners suggests that the archetypal roles of the Msx genes may be in morphogenetic movements during embryogenesis and in mesenchymal-epithelial interactions during organogenesis.

  19. The evolution of Msx gene function: expression and regulation of a sea urchin Msx class homeobox gene.

    PubMed

    Dobias, S L; Ma, L; Wu, H; Bell, J R; Maxson, R

    1997-01-01

    Msx- class homeobox genes, characterized by a distinct and highly conserved homeodomain, have been identified in a wide variety of metazoans from vertebrates to coelenterates. Although there is evidence that they participate in inductive tissue interactions that underlie vertebrate organogenesis, including those that pattern the neural crest, there is little information about their function in simple deuterostomes. Both to learn more about the ancient function of Msx genes, and to shed light on the evolution of developmental mechanisms within the lineage that gave rise to vertebrates, we have isolated and characterized Msx genes from ascidians and echinoderms. Here we describe the sequence and expression of a sea urchin (Strongylocentrotus purpouratus) Msx gene whose homeodomain is very similar to that of vertebrate Msx2. This gene, designated SpMsx, is first expressed in blastula stage embryos, apparently in a non-localized manner. Subsequently, during the early phases of gastrulation, SpMsx transcripts are expressed intensely in the invaginating archenteron and secondary mesenchyme, and at reduced levels in the ectoderm. In the latter part of gastrulation, SpMsx transcripts are concentrated in the oral ectoderm and gut, and continue to be expressed at those sites through the remainder of embryonic development. That vertebrate Msx genes are regulated by inductive tissue interactions and growth factors suggested to us that the restriction of SpMsx gene expression to the oral ectoderm and derivatives of the vegetal plate might similarly be regulated by the series of signaling events that pattern these embryonic territories. As a first test of this hypothesis, we examined the influence of exogastrulation and cell-dissociation on SpMsx gene expression. In experimentally-induced exogastrulae, SpMsx transcripts were distributed normally in the oral ectoderm, evaginated gut, and secondary mesenchyme. However, when embryos were dissociated into their component cells, SpMsx transcripts failed to accumulate. These data show that the localization of SpMsx transcripts in gastrulae does not depend on interactions between germ layers, yet the activation and maintenance of SpMsx expression does require cell-cell or cell-matrix interactions.

  20. Muscle segment homeobox genes direct embryonic diapause by limiting inflammation in the uterus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cha, Jeeyeon; Burnum-Johnson, Kristin E.; Bartos, Amanda

    Embryonic diapause (delayed implantation) is a reproductive strategy widespread in the animal kingdom. Under this condition, embryos at the blastocyst stage become dormant simultaneously with uterine quiescence until environmental or physiological conditions are favorable for the survival of the mother and newborn. Under favorable conditions, activation of the blastocyst and uterus ensues with implantation and progression of pregnancy. Although endocrine factors are known to participate in this process, the underlying molecular mechanism coordinating this phenomenon is not clearly understood. We recently found that uterine muscle segment homeobox (Msx) transcription factors are critical for the initiation and maintenance of delayed implantationmore » in mice. To better understand why Msx genes are critical for delayed implantation, we compared uterine proteomics profiles between littermate floxed (Msx1/Msx2f/f) mice and mice with uterine deletion of Msx genes (Msx1/Msx2d/d) under delayed conditions. In Msx1/Msx2d/d uteri, pathways including protein translation, ubiquitin-proteasome system, inflammation, chaperone-mediated protein folding, and endoplasmic reticulum (ER) stress were enriched, and computational modeling showed intersection of these pathways on inflammatory responses. Indeed, increases in the ubiquitin-proteasome system and inflammation conformed to proteotoxic and ER stress in Msx1/Msx2d/d uteri under delayed conditions. Interestingly, treatment with a proteasome inhibitor bortezomib further exacerbated ER stress in Msx1/Msx2d/d uteri with aggravated inflammatory response, deteriorating rate of blastocyst recovery and failure to sustain delayed implantation. This study highlights a previously unrecognized role for Msx in preventing proteotoxic stress and inflammatory responses to coordinate embryo dormancy and uterine quiescence during embryonic diapause.« less

  1. Uterine inactivation of muscle segment homeobox (Msx) genes alters epithelial cell junction proteins during embryo implantation

    PubMed Central

    Sun, Xiaofei; Park, Craig B.; Deng, Wenbo; Potter, S. Steven; Dey, Sudhansu K.

    2016-01-01

    Embryo implantation requires that the uterus differentiate into the receptive state. Failure to attain uterine receptivity will impede blastocyst attachment and result in a compromised pregnancy. The molecular mechanism by which the uterus transitions from the prereceptive to the receptive stage is complex, involving an intricate interplay of various molecules. We recently found that mice with uterine deletion of Msx genes (Msx1d/d/Msx2d/d) are infertile because of implantation failure associated with heightened apicobasal polarity of luminal epithelial cells during the receptive period. However, information on Msx’s roles in regulating epithelial polarity remains limited. To gain further insight, we analyzed cell-type–specific gene expression by RNA sequencing of separated luminal epithelial and stromal cells by laser capture microdissection from Msx1d/d/Msx2d/d and floxed mouse uteri on d 4 of pseudopregnancy. We found that claudin-1, a tight junction protein, and small proline-rich (Sprr2) protein, a major component of cornified envelopes in keratinized epidermis, were substantially up-regulated in Msx1d/d/Msx2d/d uterine epithelia. These factors also exhibited unique epithelial expression patterns at the implantation chamber (crypt) in Msx1f/f/Msx2f/f females; the patterns were lost in Msx1d/d/Msx2d/d epithelia on d 5, suggesting important roles during implantation. The results suggest that Msx genes play important roles during uterine receptivity including modulation of epithelial junctional activity.—Sun, X., Park, C. B., Deng, W., Potter, S. S., Dey, S. K. Uterine inactivation of muscle segment homeobox (Msx) genes alters epithelial cell junction proteins during embryo implantation. PMID:26667042

  2. Heterodimerization of Msx and Dlx homeoproteins results in functional antagonism.

    PubMed

    Zhang, H; Hu, G; Wang, H; Sciavolino, P; Iler, N; Shen, M M; Abate-Shen, C

    1997-05-01

    Protein-protein interactions are known to be essential for specifying the transcriptional activities of homeoproteins. Here we show that representative members of the Msx and Dlx homeoprotein families form homo- and heterodimeric complexes. We demonstrate that dimerization by Msx and Dlx proteins is mediated through their homeodomains and that the residues required for this interaction correspond to those necessary for DNA binding. Unlike most other known examples of homeoprotein interactions, association of Msx and Dlx proteins does not promote cooperative DNA binding; instead, dimerization and DNA binding are mutually exclusive activities. In particular, we show that Msx and Dlx proteins interact independently and noncooperatively with homeodomain DNA binding sites and that dimerization is specifically blocked by the presence of such DNA sites. We further demonstrate that the transcriptional properties of Msx and Dlx proteins display reciprocal inhibition. Specifically, Msx proteins act as transcriptional repressors and Dlx proteins act as activators, while in combination, Msx and Dlx proteins counteract each other's transcriptional activities. Finally, we show that the expression patterns of representative Msx and Dlx genes (Msx1, Msx2, Dlx2, and Dlx5) overlap in mouse embryogenesis during limb bud and craniofacial development, consistent with the potential for their protein products to interact in vivo. Based on these observations, we propose that functional antagonism through heterodimer formation provides a mechanism for regulating the transcriptional actions of Msx and Dlx homeoproteins in vivo.

  3. [Construction and functional identification of eukaryotic expression vector carrying Sprague-Dawley rat MSX-2 gene].

    PubMed

    Yang, Xian-Xian; Zhang, Mei; Yan, Zhao-Wen; Zhang, Ru-Hong; Mu, Xiong-Zheng

    2008-01-01

    To construct a high effective eukaryotic expressing plasmid PcDNA 3.1-MSX-2 encoding Sprague-Dawley rat MSX-2 gene for the further study of MSX-2 gene function. The full length SD rat MSX-2 gene was amplified by PCR, and the full length DNA was inserted in the PMD1 8-T vector. It was isolated by restriction enzyme digest with BamHI and Xhol, then ligated into the cloning site of the PcDNA3.1 expression plasmid. The positive recombinant was identified by PCR analysis, restriction endonudease analysis and sequence analysis. Expression of RNA and protein was detected by RT-PCR and Western blot analysis in PcDNA3.1-MSX-2 transfected HEK293 cells. Sequence analysis and restriction endonudease analysis of PcDNA3.1-MSX-2 demonstrated that the position and size of MSX-2 cDNA insertion were consistent with the design. RT-PCR and Western blot analysis showed specific expression of mRNA and protein of MSX-2 in the transfected HEK293 cells. The high effective eukaryotic expression plasmid PcDNA3.1-MSX-2 encoding Sprague-Dawley Rat MSX-2 gene which is related to craniofacial development can be successfully reconstructed. It may serve as the basis for the further study of MSX-2 gene function.

  4. Metabolic syndrome: a common problem among office workers.

    PubMed

    Alavi, S S; Makarem, J; Mehrdad, R; Abbasi, M

    2015-01-01

    Metabolic syndrome (MSx) is associated with several health problems. Workers are an important part of any organization. To determine the prevalence of MSx and related variables among office workers. This cross-sectional study evaluated 1488 office workers in Qom province, Central Iran, by using a multi-stage cluster sampling. Diagnosis of MSx was based on blood HDL-cholesterol, triglyceride, and fasting blood sugar (FBS) levels and waist circumference, and blood pressure. The overall prevalence of MSx was 35.9% (95% CI 33.5% to 38.3%), higher in men (37.2%) than in women (20.6%), and increased with age. The most common laboratory findings of MSx were hypertriglyceridemia (45.9%) and low HDL-cholesterol level (45.5%). Office workers with MSx had a significantly (p<0.001) higher body mass index than those without MSx. Lack of regular leisure time physical activity (p=0.003), and low intake of fruits (p=0.02) were associated with MSx. The prevalence of MSx was very high among office workers. Workplace health improvement programs through identifying and preventing MSx are necessary for improvement of staff's health.

  5. Analysis of Msx1 and Msx2 transactivation function in the context of the heat shock 70 (Hspa1b) gene promoter.

    PubMed

    Zhuang, Fengfeng; Nguyen, Manuel P; Shuler, Charles; Liu, Yi-Hsin

    2009-04-03

    Previous studies have shown that Msx proteins control gene transcription predominantly through repression mechanisms. However, gene expression studies using either the gain-of-function or the loss-of-function mutants revealed many gene targets whose expression require functional Msx proteins. To date, investigations into the mechanisms of Msx-dependent transactivation have been hindered by the lack of a responsive promoter. Here, we demonstrated the usefulness of the mouse Hspa1b promoter in probing Msx-dependent mechanisms of gene activation. We showed that Msx protein activates Hspa1b promoter via its C-terminal domain. The activation absolutely depends on the HSEs and physical interactions between Msx proteins and heat shock factors may play a contributing role.

  6. Anyalysis of Msx1 and Msx2 Transactivation Function in the Context of the Heat Shock 70 (Hspa1b) Gene Promoter

    PubMed Central

    Zhuang, Fengfeng; Nguyen, Manuel P.; Shuler, Charles; Liu, Yi-Hsin

    2009-01-01

    Previous studies have shown that Msx proteins control gene transcription predominantly through repression mechanisms. However, gene expression studies using either the gain-of-function or the loss-of-function mutants revealed many gene targets whose expression require functional Msx proteins. To date, investigations into the mechanisms of Msx-dependent trans-activation have been hindered by the lack of a responsive promoter. Here, we demonstrated the usefulness of the mouse Hspa1b promoter in probing Msx-dependent mechanisms of gene activation. We showed that Msx protein activates Hspa1b promoter via its C-terminal domain. The activation absolutely depends on the HSEs and physical interactions between Msx proteins and Heat shock factors may play a contributing role. PMID:19338779

  7. MSX-1 gene expression and regulation in embryonic palatal tissue.

    PubMed

    Nugent, P; Greene, R M

    1998-01-01

    The palatal cleft seen in Msx-1 knock-out mice suggests a role for this gene in normal palate development. The cleft is presumed secondary to tooth and jaw malformations, since in situ hybridization suggests that Msx-1 mRNA is not highly expressed in developing palatal tissue. In this study we demonstrate, by Northern blot analysis, the expression of Msx-1, but not Msx-2, in the developing palate and in primary cultures of murine embryonic palate mesenchymal cells. Furthermore, we propose a role for Msx-1 in retinoic acid-induced cleft palate, since retinoic acid inhibits Msx-1 mRNA expression in palate mesenchymal cells. We also demonstrate that transforming growth factor beta inhibits Msx-1 mRNA expression in palate mesenchymal cells, with retinoic acid and transforming growth factor beta acting synergistically when added simultaneously to these cells. These data suggest a mechanistic interaction between retinoic acid, transforming growth factor beta, and Msx-1 in the etiology of retinoic acid-induced cleft palate.

  8. SAR studies directed toward the pyridine moiety of the sap-feeding insecticide sulfoxaflor (Isoclast™ active).

    PubMed

    Loso, Michael R; Benko, Zoltan; Buysse, Ann; Johnson, Timothy C; Nugent, Benjamin M; Rogers, Richard B; Sparks, Thomas C; Wang, Nick X; Watson, Gerald B; Zhu, Yuanming

    2016-02-01

    Sap-feeding insect pests constitute a major insect pest complex that includes a range of aphids, whiteflies, planthoppers and other insect species. Sulfoxaflor (Isoclast™ active), a new sulfoximine class insecticide, targets sap-feeding insect pests including those resistant to many other classes of insecticides. A structure activity relationship (SAR) investigation of the sulfoximine insecticides revealed the importance of a 3-pyridyl ring and a methyl substituent on the methylene bridge linking the pyridine and the sulfoximine moiety to achieving strong Myzus persicae activity. A more in depth QSAR investigation of pyridine ring substituents revealed a strong correlation with the calculated logoctanol/water partition coefficient (SlogP). Model development resulted in a highly predictive model for a set of 18 sulfoximines including sulfoxaflor. The model is consistent with and helps explain the highly optimized pyridine substitution pattern for sulfoxaflor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Transmission of the haplosporidian parasite MSX Haplosporidium nelsoni to the eastern oyster Crassostrea virginica in an upweller system.

    PubMed

    Sunila, I; Karolus, J; Lang, E P; Mroczka, M E; Volk, J

    2000-08-31

    The haplosporidian oyster parasite MSX (Multinucleated Sphere X) Haplosporidium nelsoni was transmitted to eastern oysters Crassostrea virginica. Hatchery-raised, MSX-free juvenile oysters were placed in upweller tanks. Water to the tanks was filtered through a screen with 1 mm2 openings and originated from the water column overlaying naturally infected oysters beds (MSX prevalence 17 to 57%). MSX was diagnosed by histopathological analysis. MSX-disease (57% prevalence) with increased mortality (19%) was observed 11 wk after the beginning of the exposure and mortality of 80% after 16 wk. The study demonstrates transmission of MSX via water-borne infectious agents capable of passing through a 1 mm filter.

  10. Bone Morphogenetic Protein-Induced Msx1 and Msx2 Inhibit Myocardin-Dependent Smooth Muscle Gene Transcription▿

    PubMed Central

    Hayashi, Ken'ichiro; Nakamura, Seiji; Nishida, Wataru; Sobue, Kenji

    2006-01-01

    During the onset and progression of atherosclerosis, the vascular smooth muscle cell (VSMC) phenotype changes from differentiated to dedifferentiated, and in some cases, this change is accompanied by osteogenic transition, resulting in vascular calcification. One characteristic of dedifferentiated VSMCs is the down-regulation of smooth muscle cell (SMC) marker gene expression. Bone morphogenetic proteins (BMPs), which are involved in the induction of osteogenic gene expression, are detected in calcified vasculature. In this study, we found that the BMP2-, BMP4-, and BMP6-induced expression of Msx transcription factors (Msx1 and Msx2) preceded the down-regulation of SMC marker expression in cultured differentiated VSMCs. Either Msx1 or Msx2 markedly reduced the myocardin-dependent promoter activities of SMC marker genes (SM22α and caldesmon). We further investigated interactions between Msx1 and myocardin/serum response factor (SRF)/CArG-box motif (cis element for SRF) using coimmunoprecipitation, gel-shift, and chromatin immunoprecipitation assays. Our results showed that Msx1 or Msx2 formed a ternary complex with SRF and myocardin and inhibited the binding of SRF or SRF/myocardin to the CArG-box motif, resulting in inhibition of their transcription. PMID:17030628

  11. Bone morphogenetic protein-induced MSX1 and MSX2 inhibit myocardin-dependent smooth muscle gene transcription.

    PubMed

    Hayashi, Ken'ichiro; Nakamura, Seiji; Nishida, Wataru; Sobue, Kenji

    2006-12-01

    During the onset and progression of atherosclerosis, the vascular smooth muscle cell (VSMC) phenotype changes from differentiated to dedifferentiated, and in some cases, this change is accompanied by osteogenic transition, resulting in vascular calcification. One characteristic of dedifferentiated VSMCs is the down-regulation of smooth muscle cell (SMC) marker gene expression. Bone morphogenetic proteins (BMPs), which are involved in the induction of osteogenic gene expression, are detected in calcified vasculature. In this study, we found that the BMP2-, BMP4-, and BMP6-induced expression of Msx transcription factors (Msx1 and Msx2) preceded the down-regulation of SMC marker expression in cultured differentiated VSMCs. Either Msx1 or Msx2 markedly reduced the myocardin-dependent promoter activities of SMC marker genes (SM22alpha and caldesmon). We further investigated interactions between Msx1 and myocardin/serum response factor (SRF)/CArG-box motif (cis element for SRF) using coimmunoprecipitation, gel-shift, and chromatin immunoprecipitation assays. Our results showed that Msx1 or Msx2 formed a ternary complex with SRF and myocardin and inhibited the binding of SRF or SRF/myocardin to the CArG-box motif, resulting in inhibition of their transcription.

  12. Uterine inactivation of muscle segment homeobox (Msx) genes alters epithelial cell junction proteins during embryo implantation.

    PubMed

    Sun, Xiaofei; Park, Craig B; Deng, Wenbo; Potter, S Steven; Dey, Sudhansu K

    2016-04-01

    Embryo implantation requires that the uterus differentiate into the receptive state. Failure to attain uterine receptivity will impede blastocyst attachment and result in a compromised pregnancy. The molecular mechanism by which the uterus transitions from the prereceptive to the receptive stage is complex, involving an intricate interplay of various molecules. We recently found that mice with uterine deletion ofMsxgenes (Msx1(d/d)/Msx2(d/d)) are infertile because of implantation failure associated with heightened apicobasal polarity of luminal epithelial cells during the receptive period. However, information on Msx's roles in regulating epithelial polarity remains limited. To gain further insight, we analyzed cell-type-specific gene expression by RNA sequencing of separated luminal epithelial and stromal cells by laser capture microdissection fromMsx1(d/d)/Msx2(d/d)and floxed mouse uteri on d 4 of pseudopregnancy. We found that claudin-1, a tight junction protein, and small proline-rich (Sprr2) protein, a major component of cornified envelopes in keratinized epidermis, were substantially up-regulated inMsx1(d/d)/Msx2(d/d)uterine epithelia. These factors also exhibited unique epithelial expression patterns at the implantation chamber (crypt) inMsx1(f/f)/Msx2(f/f)females; the patterns were lost inMsx1(d/d)/Msx2(d/d)epithelia on d 5, suggesting important roles during implantation. The results suggest thatMsxgenes play important roles during uterine receptivity including modulation of epithelial junctional activity.-Sun, X., Park, C. B., Deng, W., Potter, S. S., Dey, S. K. Uterine inactivation of muscle segment homeobox (Msx) genes alters epithelial cell junction proteins during embryo implantation. © FASEB.

  13. Homeobox protein MSX-1 inhibits expression of bone morphogenetic protein 2, bone morphogenetic protein 4, and lymphoid enhancer-binding factor 1 via Wnt/β-catenin signaling to prevent differentiation of dental mesenchymal cells during the late bell stage.

    PubMed

    Feng, Xiao-Yu; Wu, Xiao-Shan; Wang, Jin-Song; Zhang, Chun-Mei; Wang, Song-Lin

    2018-02-01

    Homeobox protein MSX-1 (hereafter referred to as MSX-1) is essential for early tooth-germ development. Tooth-germ development is arrested at bud stage in Msx1 knockout mice, which prompted us to study the functions of MSX-1 beyond this stage. Here, we investigated the roles of MSX-1 during late bell stage. Mesenchymal cells of the mandibular first molar were isolated from mice at embryonic day (E)17.5 and cultured in vitro. We determined the expression levels of β-catenin, bone morphogenetic protein 2 (Bmp2), Bmp4, and lymphoid enhancer-binding factor 1 (Lef1) after knockdown or overexpression of Msx1. Our findings suggest that knockdown of Msx1 promoted expression of Bmp2, Bmp4, and Lef1, resulting in elevated differentiation of odontoblasts, which was rescued by blocking the expression of these genes. In contrast, overexpression of Msx1 decreased the expression of Bmp2, Bmp4, and Lef1, leading to a reduction in odontoblast differentiation. The regulation of Bmp2, Bmp4, and Lef1 by Msx1 was mediated by the Wnt/β-catenin signaling pathway. Additionally, knockdown of Msx1 impaired cell proliferation and slowed S-phase progression, while overexpression of Msx1 also impaired cell proliferation and prolonged G1-phase progression. We therefore conclude that MSX-1 maintains cell proliferation by regulating transition of cells from G1-phase to S-phase and prevents odontoblast differentiation by inhibiting expression of Bmp2, Bmp4, and Lef1 at the late bell stage via the Wnt/β-catenin signaling pathway. © 2017 Eur J Oral Sci.

  14. Reduced homeobox protein MSX1 in human endometrial tissue is linked to infertility.

    PubMed

    Bolnick, Alan D; Bolnick, Jay M; Kilburn, Brian A; Stewart, Tamika; Oakes, Jonathan; Rodriguez-Kovacs, Javier; Kohan-Ghadr, Hamid-Reza; Dai, Jing; Diamond, Michael P; Hirota, Yasushi; Drewlo, Sascha; Dey, Sudhansu K; Armant, D Randall

    2016-09-01

    Is protein expression of the muscle segment homeobox gene family member MSX1 altered in the human secretory endometrium by cell type, developmental stage or fertility? MSX1 protein levels, normally elevated in the secretory phase endometrium, were significantly reduced in endometrial biopsies obtained from women of infertile couples. Molecular changes in the endometrium are important for fertility in both animals and humans. Msx1 is expressed in the preimplantation mouse uterus and regulates uterine receptivity for implantation. The MSX protein persists a short time, after its message has been down-regulated. Microarray analysis of the human endometrium reveals a similar pattern of MSX1 mRNA expression that peaks before the receptive period, with depressed expression at implantation. Targeted deletion of uterine Msx1 and Msx2 in mice prevents the loss of epithelial cell polarity during implantation and causes infertility. MSX1 mRNA and cell type-specific levels of MSX1 protein were quantified from two retrospective cohorts during the human endometrial cycle. MSX1 protein expression patterns were compared between fertile and infertile couples. Selected samples were dual-labeled by immunofluorescence microscopy to localize E-cadherin and β-catenin in epithelial cells. MSX1 mRNA was quantified by PCR in endometrium from hysterectomies (n = 14) determined by endometrial dating to be in the late-proliferative (cycle days 10-13), early-secretory (cycle days 14-19) or mid-secretory (cycle days 20-24) phase. MSX1 protein was localized using high-throughput, semi-quantitative immunohistochemistry with sectioned endometrial biopsy tissues from fertile (n = 89) and infertile (n = 89) couples. Image analysis measured stain intensity specifically within the luminal epithelium, glands and stroma during the early-, mid- and late- (cycle days 25-28) secretory phases. MSX1 transcript increased 5-fold (P < 0.05) between the late-proliferative and early secretory phase and was then down-regulated (P < 0.05) prior to receptivity for implantation. In fertile patients, MSX1 protein displayed strong nuclear localization in the luminal epithelium and glands, while it was weakly expressed in nuclei of the stroma. MSX1 protein levels accumulated throughout the secretory phase in all endometrial cellular compartments. MSX1 protein decreased (P < 0.05) in the glands between mid- and late-secretory phases. However, infertile patients demonstrated a broad reduction (P < 0.001) of MSX1 accumulation in all cell types throughout the secretory phase that was most pronounced (∼3-fold) in stroma and glands. Infertility was associated with persistent co-localization of E-cadherin and β-catenin in epithelial cell junctions in the mid- and late-secretory phases. Details of the infertility diagnoses and other patient demographic data were not available. Therefore, patients with uterine abnormalities (Mullerian) could not be distinguished from other sources of infertility. Antibody against human MSX2 is not available, limiting the study to MSX1. However, both RNAs in the human endometrium are similarly regulated. In mice, Msx1 and Msx2 are imperative for murine embryo implantation, with Msx2 compensating for genetic ablation of Msx1 through its up-regulation in a knockout model. This investigation establishes that the MSX1 homeobox protein accumulation is associated with the secretory phase in endometrium of fertile couples, and is widely disrupted in infertile patients. It is the first study to examine MSX1 protein localization in the human endometrium, and supported by genetic findings in mice, suggests that genes regulated by MSX1 are linked to the loss of epithelial cell polarity required for uterine receptivity during implantation. This research was supported by the NICHD National Cooperative Reproductive Medicine Network grant HD039005 (M.P.D.), NIH grants HD068524 (S.K.D.), HD071408 (D.R.A., M.P.D.), and HL128628 (S.D.), the Intramural Research Program of the NICHD, March of Dimes (S.K.D., S.D.) and JSPS KAKENHI grant 26112506 (Y.H.). There were no conflicts or competing interests. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Role of RANKL (TNFSF11)-dependent osteopetrosis in the dental phenotype of Msx2 null mutant mice.

    PubMed

    Castaneda, Beatriz; Simon, Yohann; Ferbus, Didier; Robert, Benoit; Chesneau, Julie; Mueller, Christopher; Berdal, Ariane; Lézot, Frédéric

    2013-01-01

    The MSX2 homeoprotein is implicated in all aspects of craniofacial skeletal development. During postnatal growth, MSX2 is expressed in all cells involved in mineralized tissue formation and plays a role in their differentiation and function. Msx2 null (Msx2 (-/-)) mice display complex craniofacial skeleton abnormalities with bone and tooth defects. A moderate form osteopetrotic phenotype is observed, along with decreased expression of RANKL (TNFSF11), the main osteoclast-differentiating factor. In order to elucidate the role of such an osteopetrosis in the Msx2 (-/-) mouse dental phenotype, a bone resorption rescue was performed by mating Msx2 (-/-) mice with a transgenic mouse line overexpressing Rank (Tnfrsf11a). Msx2 (-/-) Rank(Tg) mice had significant improvement in the molar phenotype, while incisor epithelium defects were exacerbated in the enamel area, with formation of massive osteolytic tumors. Although compensation for RANKL loss of function could have potential as a therapy for osteopetrosis, but in Msx2 (-/-) mice, this approach via RANK overexpression in monocyte-derived lineages, amplified latent epithelial tumor development in the peculiar continuously growing incisor.

  16. [Comparative study of expression of homeobox gene Msx-1, Msx-2 mRNA during the hard tissue formation of mouse tooth development].

    PubMed

    Wang, Y; Wang, J; Gao, Y

    2001-07-01

    To observe and compare the expression pattern of Msx-1, Msx-2 mRNA during the different stages of hard tissue formation in the first mandibular molar of mouse and investigate the relationship between the two genes. First mandibular molar germs from 1, 3, 7 and 14-days old mouse were separated and reverse transcription-polymerase chain reaction was performed on the total RNA of them using Msx-1, Msx-2 specific primers separately. Expression of both genes were detected during the different stages of hard tissue formation in the mouse first mandibular molars, but there was some interesting differences in the quantitiy between the two genes. Msx-1 transcripts appeared at the 1 day postnatally, and increase through 3 day, 7 day, then maximally expressed at 14 days postnatally; while Msx-2 mRNA was seen and expressed maximally at the 3 days postnatally, then there was a gradual reduction at 7 days, and 14 days postnatally. The homeobox gene Msx-1, Msx-2 may play a role in the events of the hard tissue formation. The complementary expression pattern of them during the specific stage of hard tissue formation indicates that there may be some functional redundancy between them during the biomineralization.

  17. Regulation of Msx genes by a Bmp gradient is essential for neural crest specification.

    PubMed

    Tribulo, Celeste; Aybar, Manuel J; Nguyen, Vu H; Mullins, Mary C; Mayor, Roberto

    2003-12-01

    There is evidence in Xenopus and zebrafish embryos that the neural crest/neural folds are specified at the border of the neural plate by a precise threshold concentration of a Bmp gradient. In order to understand the molecular mechanism by which a gradient of Bmp is able to specify the neural crest, we analyzed how the expression of Bmp targets, the Msx genes, is regulated and the role that Msx genes has in neural crest specification. As Msx genes are directly downstream of Bmp, we analyzed Msx gene expression after experimental modification in the level of Bmp activity by grafting a bead soaked with noggin into Xenopus embryos, by expressing in the ectoderm a dominant-negative Bmp4 or Bmp receptor in Xenopus and zebrafish embryos, and also through Bmp pathway component mutants in the zebrafish. All the results show that a reduction in the level of Bmp activity leads to an increase in the expression of Msx genes in the neural plate border. Interestingly, by reaching different levels of Bmp activity in animal cap ectoderm, we show that a specific concentration of Bmp induces msx1 expression to a level similar to that required to induce neural crest. Our results indicate that an intermediate level of Bmp activity specifies the expression of Msx genes in the neural fold region. In addition, we have analyzed the role that msx1 plays on neural crest specification. As msx1 has a role in dorsoventral pattering, we have carried out conditional gain- and loss-of-function experiments using different msx1 constructs fused to a glucocorticoid receptor element to avoid an early effect of this factor. We show that msx1 expression is able to induce all other early neural crest markers tested (snail, slug, foxd3) at the time of neural crest specification. Furthermore, the expression of a dominant negative of Msx genes leads to the inhibition of all the neural crest markers analyzed. It has been previously shown that snail is one of the earliest genes acting in the neural crest genetic cascade. In order to study the hierarchical relationship between msx1 and snail/slug we performed several rescue experiments using dominant negatives for these genes. The rescuing activity by snail and slug on neural crest development of the msx1 dominant negative, together with the inability of msx1 to rescue the dominant negatives of slug and snail strongly argue that msx1 is upstream of snail and slug in the genetic cascade that specifies the neural crest in the ectoderm. We propose a model where a gradient of Bmp activity specifies the expression of Msx genes in the neural folds, and that this expression is essential for the early specification of the neural crest.

  18. The human homeobox genes MSX-1, MSX-2, and MOX-1 are differentially expressed in the dermis and epidermis in fetal and adult skin.

    PubMed

    Stelnicki, E J; Kömüves, L G; Holmes, D; Clavin, W; Harrison, M R; Adzick, N S; Largman, C

    1997-10-01

    In order to identify homeobox genes which may regulate skin development and possibly mediate scarless fetal wound healing we have screened amplified human fetal skin cDNAs by polymerase chain reaction (PCR) using degenerate oligonucleotide primers designed against highly conserved regions within the homeobox. We identified three non-HOX homeobox genes, MSX-1, MSX-2, and MOX-1, which were differentially expressed in fetal and adult human skin. MSX-1 and MSX-2 were detected in the epidermis, hair follicles, and fibroblasts of the developing fetal skin by in situ hybridization. In contrast, MSX-1 and MSX-2 expression in adult skin was confined to epithelially derived structures. Immunohistochemical analysis of these two genes suggested that their respective homeoproteins may be differentially regulated. While Msx-1 was detected in the cell nucleus of both fetal and adult skin; Msx-2 was detected as a diffuse cytoplasmic signal in fetal epidermis and portions of the hair follicle and dermis, but was localized to the nucleus in adult epidermis. MOX-1 was expressed in a pattern similar to MSX early in gestation but then was restricted exclusively to follicular cells in the innermost layer of the outer root sheath by 21 weeks of development. Furthermore, MOX-1 expression was completely absent in adult cutaneous tissue. These data imply that each of these homeobox genes plays a specific role in skin development.

  19. The novel adenosine A(2A) antagonist prodrug MSX-4 is effective in animal models related to motivational and motor functions.

    PubMed

    Santerre, Jessica L; Nunes, Eric J; Kovner, Rotem; Leser, Chelsea E; Randall, Patrick A; Collins-Praino, Lyndsey E; Lopez Cruz, Laura; Correa, Merce; Baqi, Younis; Müller, Christa E; Salamone, John D

    2012-10-01

    Adenosine A(2A) and dopamine D2 receptors interact to regulate diverse aspects of ventral and dorsal striatal functions related to motivational and motor processes, and it has been suggested that adenosine A(2A) antagonists could be useful for the treatment of depression, parkinsonism and other disorders. The present experiments were performed to characterize the effects of MSX-4, which is an amino acid ester prodrug of the potent and selective adenosine A(2A) receptor antagonist MSX-2, by assessing its ability to reverse pharmacologically induced motivational and motor impairments. In the first group of studies, MSX-4 reversed the effects of the D2 antagonist eticlopride on a concurrent lever pressing/chow feeding task that is used as a measure of effort-related choice behavior. MSX-4 was less potent after intraperitoneal administration than the comparison compound, MSX-3, though both were equally efficacious. With this task, MSX-4 was orally active in the same dose range as MSX-3. MSX-4 also reversed the locomotor suppression induced by eticlopride in the open field, but did not induce anxiogenic effects as measured by the relative amount of interior activity. Behaviorally active doses of MSX-4 also attenuated the increase in c-Fos and pDARPP-32(Thr34) expression in nucleus accumbens core that was induced by injections of eticlopride. In addition, MSX-4 suppressed the oral tremor induced by the anticholinesterase galantamine, which is consistent with an antiparkinsonian profile. These actions of MSX-4 indicate that this compound could have potential utility as a treatment for parkinsonism, as well as some of the motivational symptoms of depression and other disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Msx1 Homeodomain Protein Represses the αGSU and GnRH Receptor Genes During Gonadotrope Development

    PubMed Central

    Xie, Huimin; Cherrington, Brian D.; Meadows, Jason D.; Witham, Emily A.

    2013-01-01

    Multiple homeodomain transcription factors are crucial for pituitary organogenesis and cellular differentiation. A homeodomain repressor, Msx1, is expressed from the ventral aspect of the developing anterior pituitary and implicated in gonadotrope differentiation. Here, we find that Msx1 represses transcription of lineage-specific pituitary genes such as the common α-glycoprotein subunit (αGSU) and GnRH receptor (GnRHR) promoters in the mouse gonadotrope-derived cell lines, αT3-1 and LβT2. Repression of the mouse GnRHR promoter by Msx1 is mediated through a consensus-binding motif in the downstream activin regulatory element (DARE). Truncation and mutation analyses of the human αGSU promoter map Msx1 repression to a site at −114, located at the junctional regulatory element (JRE). Dlx activators are closely related to the Msx repressors, acting through the same elements, and Dlx3 and Dlx2 act as transcriptional activators for GnRHR and αGSU, respectively. Small interfering RNA knockdown of Msx1 in αT3-1 cells increases endogenous αGSU and GnRHR mRNA expression. Msx1 gene expression reaches its maximal expression at the rostral edge at e13.5. The subsequent decline in Msx1 expression specifically coincides with the onset of expression of both αGSU and GnRHR. The expression levels of both αGSU and GnRHR in Msx1-null mice at e18.5 are higher compared with wild type, further confirming a role for Msx1 in the repression of αGSU and GnRHR. In summary, Msx1 functions as a negative regulator early in pituitary development by repressing the gonadotrope-specific αGSU and GnRHR genes, but a temporal decline in Msx1 expression alleviates this repression allowing induction of GnRHR and αGSU, thus serving to time the onset of gonadotrope-specific gene program. PMID:23371388

  1. Msx1 homeodomain protein represses the αGSU and GnRH receptor genes during gonadotrope development.

    PubMed

    Xie, Huimin; Cherrington, Brian D; Meadows, Jason D; Witham, Emily A; Mellon, Pamela L

    2013-03-01

    Multiple homeodomain transcription factors are crucial for pituitary organogenesis and cellular differentiation. A homeodomain repressor, Msx1, is expressed from the ventral aspect of the developing anterior pituitary and implicated in gonadotrope differentiation. Here, we find that Msx1 represses transcription of lineage-specific pituitary genes such as the common α-glycoprotein subunit (αGSU) and GnRH receptor (GnRHR) promoters in the mouse gonadotrope-derived cell lines, αT3-1 and LβT2. Repression of the mouse GnRHR promoter by Msx1 is mediated through a consensus-binding motif in the downstream activin regulatory element (DARE). Truncation and mutation analyses of the human αGSU promoter map Msx1 repression to a site at -114, located at the junctional regulatory element (JRE). Dlx activators are closely related to the Msx repressors, acting through the same elements, and Dlx3 and Dlx2 act as transcriptional activators for GnRHR and αGSU, respectively. Small interfering RNA knockdown of Msx1 in αT3-1 cells increases endogenous αGSU and GnRHR mRNA expression. Msx1 gene expression reaches its maximal expression at the rostral edge at e13.5. The subsequent decline in Msx1 expression specifically coincides with the onset of expression of both αGSU and GnRHR. The expression levels of both αGSU and GnRHR in Msx1-null mice at e18.5 are higher compared with wild type, further confirming a role for Msx1 in the repression of αGSU and GnRHR. In summary, Msx1 functions as a negative regulator early in pituitary development by repressing the gonadotrope-specific αGSU and GnRHR genes, but a temporal decline in Msx1 expression alleviates this repression allowing induction of GnRHR and αGSU, thus serving to time the onset of gonadotrope-specific gene program.

  2. Cross-talk between Msx/Dlx homeobox genes and vitamin D during tooth mineralization.

    PubMed

    Lézot, F; Descroix, V; Mesbah, M; Hotton, D; Blin, C; Papagerakis, P; Mauro, N; Kato, S; MacDougall, M; Sharpe, P; Berdal, A

    2002-01-01

    Rickets is associated with site-specific disorders of enamel and dentin formation, which may reflect the impact of vitamin D on a morphogenetic pathway. This study is devoted to potential cross-talk between vitamin D and Msx/Dlx transcription factors. We raised the question of a potential link between tooth defects seen in mice with rickets and Msx2 gene misexpression, using mutant mice lacking the nuclear vitamin D receptor as an animal model. Our data showed a modulation of Msx2 expression. In order to search for a functional impact of this Msx2 misexpression secondary to rickets, we focused our attention on osteocalcin as a target gene for both vitamin D and Msx2. Combining Msx2 overexpression and vitamin D addition in vitro, we showed an inhibitory effect on osteocalcin expression in immortalized MO6-G3 odontoblasts. Finally, in the same cells, such combinations appeared to modulate VDR expression outlining the existence of complex cross-regulations between vitamin D and Msx/Dix pathways.

  3. Expression of homeobox genes Msx-1 (Hox-7) and Msx-2 (Hox-8) during cardiac development in the chick.

    PubMed

    Chan-Thomas, P S; Thompson, R P; Robert, B; Yacoub, M H; Barton, P J

    1993-07-01

    The vertebrate homeobox genes Msx-1 and Msx-2 are related to the Drosophila msh gene and are expressed in a variety of tissues during embryogenesis. We have examined their expression by in situ hybridisation during critical stages of cardiac development in the chick from stages 15+ to 37. Msx-1 expression is apparent in a number of non-myocardial cell populations, including cells undergoing an epithelial to mesenchymal transformation in the atrioventricular and the outflow tract regions that play an integral role in heart septation and valve formation. Msx-2 expression is restricted to a distinct subpopulation of myocardial cells that, in later stages, coincides morphologically with the cardiac conduction system. The timing of Msx-2 expression suggests that it plays a role in conduction system tissue formation and that it identifies precursor cells of this specialised myocardium. The pattern of Msx-2 expression is discussed with reference to current models of conduction tissue development.

  4. Endothelial Msx1 transduces hemodynamic changes into an arteriogenic remodeling response

    PubMed Central

    Vandersmissen, Ine; Craps, Sander; Depypere, Maarten; Coppiello, Giulia; van Gastel, Nick; Maes, Frederik; Carmeliet, Geert; Schrooten, Jan; Jones, Elizabeth A.V.; Umans, Lieve; Devlieger, Roland; Koole, Michel; Gheysens, Olivier; Zwijsen, An; Aranguren, Xabier L.

    2015-01-01

    Collateral remodeling is critical for blood flow restoration in peripheral arterial disease and is triggered by increasing fluid shear stress in preexisting collateral arteries. So far, no arterial-specific mediators of this mechanotransduction response have been identified. We show that muscle segment homeobox 1 (MSX1) acts exclusively in collateral arterial endothelium to transduce the extrinsic shear stimulus into an arteriogenic remodeling response. MSX1 was specifically up-regulated in remodeling collateral arteries. MSX1 induction in collateral endothelial cells (ECs) was shear stress driven and downstream of canonical bone morphogenetic protein–SMAD signaling. Flow recovery and collateral remodeling were significantly blunted in EC-specific Msx1/2 knockout mice. Mechanistically, MSX1 linked the arterial shear stimulus to arteriogenic remodeling by activating the endothelial but not medial layer to a proinflammatory state because EC but not smooth muscle cellMsx1/2 knockout mice had reduced leukocyte recruitment to remodeling collateral arteries. This reduced leukocyte infiltration in EC Msx1/2 knockout mice originated from decreased levels of intercellular adhesion molecule 1 (ICAM1)/vascular cell adhesion molecule 1 (VCAM1), whose expression was also in vitro driven by promoter binding of MSX1. PMID:26391659

  5. Role of RANKL (TNFSF11)-Dependent Osteopetrosis in the Dental Phenotype of Msx2 Null Mutant Mice

    PubMed Central

    Castaneda, Beatriz; Simon, Yohann; Ferbus, Didier; Robert, Benoit; Chesneau, Julie; Mueller, Christopher

    2013-01-01

    The MSX2 homeoprotein is implicated in all aspects of craniofacial skeletal development. During postnatal growth, MSX2 is expressed in all cells involved in mineralized tissue formation and plays a role in their differentiation and function. Msx2 null (Msx2 −/−) mice display complex craniofacial skeleton abnormalities with bone and tooth defects. A moderate form osteopetrotic phenotype is observed, along with decreased expression of RANKL (TNFSF11), the main osteoclast-differentiating factor. In order to elucidate the role of such an osteopetrosis in the Msx2 −/− mouse dental phenotype, a bone resorption rescue was performed by mating Msx2 −/− mice with a transgenic mouse line overexpressing Rank (Tnfrsf11a). Msx2 −/− RankTg mice had significant improvement in the molar phenotype, while incisor epithelium defects were exacerbated in the enamel area, with formation of massive osteolytic tumors. Although compensation for RANKL loss of function could have potential as a therapy for osteopetrosis, but in Msx2 −/− mice, this approach via RANK overexpression in monocyte-derived lineages, amplified latent epithelial tumor development in the peculiar continuously growing incisor. PMID:24278237

  6. Msx1-modulated muscle satellite cells retain a primitive state and exhibit an enhanced capacity for osteogenic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Ke, E-mail: dingke@med.uestc.edu.cn; Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072; Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing 400038

    Multipotent muscle satellite cells (MuSCs) have been identified as potential seed cells for bone tissue engineering. However, MuSCs exhibit a rapid loss of stemness after in vitro culturing, thereby compromising their therapeutic efficiency. Muscle segment homeobox gene 1 (msx1) has been found to induce the dedifferentiation of committed progenitor cells, as well as terminally differentiated myotubes. In this study, a Tet-off retroviral gene delivery system was used to modulate msx1 expression. After ten passages, MuSCs that did not express msx-1 (e.g., the non-msx1 group) were compared with MuSCs with induced msx-1 expression (e.g., the msx1 group). The latter group exhibitedmore » a more juvenile morphology, it contained a significantly lower percentage of senescent cells characterized by positive β-galactosidase staining, and it exhibited increased proliferation and a higher proliferation index. Immunocytochemical stainings further detected a more primitive gene expression profile for the msx1 group, while osteogenic differentiation assays and ectopic bone formation assays demonstrated an improved capacity for the msx1 group to undergo osteogenic differentiation. These results suggest that transient expression of msx1 in MuSCs can retain a primitive state, thereby enhancing their capacity for osteogenic differentiation and restoring the potential for MuSCs to serve as seed cells for bone tissue engineering.« less

  7. Necdin interacts with the Msx2 homeodomain protein via MAGE-D1 to promote myogenic differentiation of C2C12 cells.

    PubMed

    Kuwajima, Takaaki; Taniura, Hideo; Nishimura, Isao; Yoshikawa, Kazuaki

    2004-09-24

    Necdin is a potent growth suppressor that is expressed predominantly in postmitotic cells such as neurons and skeletal muscle cells. Necdin shows a significant homology to MAGE (melanoma antigen) family proteins, all of which contain a large homology domain. MAGE-D1 (NRAGE, Dlxin-1) interacts with the Dlx/Msx family homeodomain proteins via an interspersed hexapeptide repeat domain distinct from the homology domain. Here we report that necdin associates with the Msx homeodomain proteins via MAGE-D1 to modulate their function. In vitro binding and co-immunoprecipitation analyses revealed that MAGE-D1 directly interacted with necdin via the homology domain and Msx1 (or Msx2) via the repeat domain. A ternary complex of necdin, MAGE-D1, and Msx2 was formed in vitro, and an endogenous complex containing these three proteins was detected in differentiating embryonal carcinoma cells. Co-expression of necdin and MAGE-D1 released Msx-dependent transcriptional repression. C2C12 myoblast cells that were stably transfected with Msx2 cDNA showed a marked reduction in myogenic differentiation, and co-expression of necdin and MAGE-D1 canceled the Msx2-dependent repression. These results suggest that necdin and MAGE-D1 cooperate to modulate the function of Dlx/Msx homeodomain proteins in cellular differentiation. Copyright 2004 American Society for Biochemistry and Molecular Biology, Inc.

  8. Msx1-modulated muscle satellite cells retain a primitive state and exhibit an enhanced capacity for osteogenic differentiation.

    PubMed

    Ding, Ke; Liu, Wen-Ying; Zeng, Qiang; Hou, Fang; Xu, Jian-Zhong; Yang, Zhong

    2017-03-01

    Multipotent muscle satellite cells (MuSCs) have been identified as potential seed cells for bone tissue engineering. However, MuSCs exhibit a rapid loss of stemness after in vitro culturing, thereby compromising their therapeutic efficiency. Muscle segment homeobox gene 1 (msx1) has been found to induce the dedifferentiation of committed progenitor cells, as well as terminally differentiated myotubes. In this study, a Tet-off retroviral gene delivery system was used to modulate msx1 expression. After ten passages, MuSCs that did not express msx-1 (e.g., the non-msx1 group) were compared with MuSCs with induced msx-1 expression (e.g., the msx1 group). The latter group exhibited a more juvenile morphology, it contained a significantly lower percentage of senescent cells characterized by positive β-galactosidase staining, and it exhibited increased proliferation and a higher proliferation index. Immunocytochemical stainings further detected a more primitive gene expression profile for the msx1 group, while osteogenic differentiation assays and ectopic bone formation assays demonstrated an improved capacity for the msx1 group to undergo osteogenic differentiation. These results suggest that transient expression of msx1 in MuSCs can retain a primitive state, thereby enhancing their capacity for osteogenic differentiation and restoring the potential for MuSCs to serve as seed cells for bone tissue engineering. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. msh/Msx gene family in neural development.

    PubMed

    Ramos, Casto; Robert, Benoît

    2005-11-01

    The involvement of Msx homeobox genes in skull and tooth formation has received a great deal of attention. Recent studies also indicate a role for the msh/Msx gene family in development of the nervous system. In this article, we discuss the functions of these transcription factors in neural-tissue organogenesis. We will deal mainly with the interactions of the Drosophila muscle segment homeobox (msh) gene with other homeobox genes and the repressive cascade that leads to neuroectoderm patterning; the role of Msx genes in neural-crest induction, focusing especially on the differences between lower and higher vertebrates; their implication in patterning of the vertebrate neural tube, particularly in diencephalon midline formation. Finally, we will examine the distinct activities of Msx1, Msx2 and Msx3 genes during neurogenesis, taking into account their relationships with signalling molecules such as BMP.

  10. Mirror-image duplication of the primary axis and heart in Xenopus embryos by the overexpression of Msx-1 gene.

    PubMed

    Chen, Y; Solursh, M

    1995-10-01

    The Msx-1 gene (formerly known as Hox-7) is a member of a discrete subclass of homeobox-containing genes. Examination of the expression pattern of Msx-1 in murine and avian embryos suggests that this gene may be involved in the regionalization of the medio-lateral axis during earlier development. We have examined the possible functions of Xenopus Msx-1 during early Xenopus embryonic development by overexpression of the Msx-1 gene. Overexpression of Msx-1 causes a left-right mirror-image duplication of primary axial structures, including notochord, neural tube, somites, suckers, and foregut. The embryonic developing heart is also mirror-image duplicated, including looping directions and polarity. These results indicate that Msx-1 may be involved in the mesoderm formation as well as left-right patterning in the early Xenopus embryonic development.

  11. Oncogenic deregulation of NKL homeobox gene MSX1 in mantle cell lymphoma.

    PubMed

    Nagel, Stefan; Ehrentraut, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G; MacLeod, Roderick A F

    2014-08-01

    NKL homeobox gene MSX1 is physiologically expressed during embryonic hematopoiesis. Here, we detected MSX1 overexpression in three examples of mantle cell lymphoma (MCL) and one of acute myeloid leukemia (AML) by screening 96 leukemia/lymphoma cell lines via microarray profiling. Moreover, in silico analysis identified significant overexpression of MSX1 in 3% each of patients with MCL and AML, confirming aberrant activity in subsets of both types of malignancies. Comparative expression profiling analysis and subsequent functional studies demonstrated overexpression of histone acetyltransferase PHF16 together with transcription factors FOXC1 and HLXB9 as activators of MSX1 transcription. Additionally, we identified regulation of cyclin D1/CCND1 by MSX1 and its repressive cofactor histone H1C. Fluorescence in situ hybridization in MCL cells showed that t(11;14)(q13;q32) results in detachment of CCND1 from its corresponding repressive MSX1 binding site. Taken together, we uncovered regulators and targets of homeobox gene MSX1 in leukemia/lymphoma cells, supporting the view of a recurrent genetic network that is reactivated in malignant transformation.

  12. EGF does not induce Msx-1 and Msx-2 in dental mesenchyme.

    PubMed

    Wang, Y H; Kollar, E J; Upholt, W B; Mina, M

    1998-01-01

    Previous heterospecific tissue recombinations indicate that mandibular epithelium exerts the first known inductive signal for odontogenesis in mouse embryos. BMP-4 and EGF are two growth factors implicated as signaling molecules mediating the initial inductive epithelial-mesenchymal interactions during odontogenesis. The purpose of the present study was to examine and compare the effects of these growth factors and mouse mandibular epithelium on expression of Msx-1 and Msx-2 genes in molar-forming mesenchyme. Agarose beads soaked in growth factors or pieces of mouse mandibular epithelium (E11) were placed in contact with E11 molar-forming mesenchyme and cultured for 24 h. Whole-mount in situ hybridization analysis revealed that, in contrast to mouse mandibular epithelium and BMP-4-releasing beads, EGF-releasing beads did not induce the expression of Msx-1 and Msx-2 in E11 molar-forming mesenchyme. These observations suggest that whereas BMP-4 may be involved in activation of Msx-1 and Msx-2 in the underlying mesenchyme, EGF may regulate events involved in the formation of dental lamina.

  13. Expression of bone morphogenetic proteins and Msx genes during root formation.

    PubMed

    Yamashiro, T; Tummers, M; Thesleff, I

    2003-03-01

    Like crown development, root formation is also regulated by interactions between epithelial and mesenchymml tissues. Bone morphogenetic proteins (BMPs), together with the transcription factors Msx1 and Msx2, play important roles in these interactions during early tooth morphogenesis. To investigate the involvement of this signaling pathway in root development, we analyzed the expression patterns of Bmp2, Bmp3, Bmp4, and Bmp7 as well as Msx1 and Msx2 in the roots of mouse molars. Bmp4 was expressed in the apical mesenchyme and Msx2 in the root sheath. However, Bmps were not detected in the root sheath epithelium, and Msx transcripts were absent from the underlying mesenchyme. These findings indicate that this Bmp signaling pathway, required for tooth initiation, does not regulate root development, but we suggest that root shape may be regulated by a mechanism similar to that regulating crown shape in cap-stage tooth germs. Msx2 expression continued in the epithelial cell rests of Malassez, and the nearby cementoblasts intensely expressed Bmp3, which may regulate some functions of the fragmented epithelium.

  14. Msx homeobox genes inhibit differentiation through upregulation of cyclin D1.

    PubMed

    Hu, G; Lee, H; Price, S M; Shen, M M; Abate-Shen, C

    2001-06-01

    During development, patterning and morphogenesis of tissues are intimately coordinated through control of cellular proliferation and differentiation. We describe a mechanism by which vertebrate Msx homeobox genes inhibit cellular differentiation by regulation of the cell cycle. We show that misexpression of Msx1 via retroviral gene transfer inhibits differentiation of multiple mesenchymal and epithelial progenitor cell types in culture. This activity of Msx1 is associated with its ability to upregulate cyclin D1 expression and Cdk4 activity, while Msx1 has minimal effects on cellular proliferation. Transgenic mice that express Msx1 under the control of the mouse mammary tumor virus long terminal repeat (MMTV LTR) display impaired differentiation of the mammary epithelium during pregnancy, which is accompanied by elevated levels of cyclin D1 expression. We propose that Msx1 gene expression maintains cyclin D1 expression and prevents exit from the cell cycle, thereby inhibiting terminal differentiation of progenitor cells. Our model provides a framework for reconciling the mutant phenotypes of Msx and other homeobox genes with their functions as regulators of cellular proliferation and differentiation during embryogenesis.

  15. [Association of muscle segment homeobox gene 1 polymorphisms with nonsyndromic cleft lip with or without cleft palate].

    PubMed

    Zhang, Li; Tang, Jun-Ling; Liang, Shang-Zheng

    2008-06-01

    Muscle segment homeobox gene (MSX)1 has been proposed as a gene in which mutations may contribute to nonsyndromic cleft lip with or without cleft palate (NSCL/P). To study MSX1 polymorphisms in NSCL/ P by means of polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP), and investigate the association of MSX1 exons 1 polymorphisms with NSCL/P. DNA were extracted from blood samples from NSCL/P and unrelated normal subjects. Genome DNA from peripheral leukocyte with these blood samples were extracted, which was used as template to amplify desired gene fragment of MSX1 exons 1 by means of polymerase chain reaction (PCR). The PCR products were examined by single-strand conformation polymorphism (SSCP). The MSX1 exons 1 polymorphisms were examined by sequencing if mutations were found. MSX1 genes of exon 1 mutation was not been found in the NSCL/P and unrelated normal subjects by SSCP. No correlation between MSX1 exon 1 and NSCL/P was found. MSX1 exon 1 may not be a key gene (susceptibility gene) in NSCL/P.

  16. Analysis of Msx1; Msx2 double mutants reveals multiple roles for Msx genes in limb development.

    PubMed

    Lallemand, Yvan; Nicola, Marie-Anne; Ramos, Casto; Bach, Antoine; Cloment, Cécile Saint; Robert, Benoît

    2005-07-01

    The homeobox-containing genes Msx1 and Msx2 are highly expressed in the limb field from the earliest stages of limb formation and, subsequently, in both the apical ectodermal ridge and underlying mesenchyme. However, mice homozygous for a null mutation in either Msx1 or Msx2 do not display abnormalities in limb development. By contrast, Msx1; Msx2 double mutants exhibit a severe limb phenotype. Our analysis indicates that these genes play a role in crucial processes during limb morphogenesis along all three axes. Double mutant limbs are shorter and lack anterior skeletal elements (radius/tibia, thumb/hallux). Gene expression analysis confirms that there is no formation of regions with anterior identity. This correlates with the absence of dorsoventral boundary specification in the anterior ectoderm, which precludes apical ectodermal ridge formation anteriorly. As a result, anterior mesenchyme is not maintained, leading to oligodactyly. Paradoxically, polydactyly is also frequent and appears to be associated with extended Fgf activity in the apical ectodermal ridge, which is maintained up to 14.5 dpc. This results in a major outgrowth of the mesenchyme anteriorly, which nevertheless maintains a posterior identity, and leads to formation of extra digits. These defects are interpreted in the context of an impairment of Bmp signalling.

  17. Msx homeobox genes critically regulate embryo implantation by controlling paracrine signaling between uterine stroma and epithelium.

    PubMed

    Nallasamy, Shanmugasundaram; Li, Quanxi; Bagchi, Milan K; Bagchi, Indrani C

    2012-01-01

    The mammalian Msx homeobox genes, Msx1 and Msx2, encode transcription factors that control organogenesis and tissue interactions during embryonic development. We observed overlapping expression of these factors in uterine epithelial and stromal compartments of pregnant mice prior to embryo implantation. Conditional ablation of both Msx1 and Msx2 in the uterus resulted in female infertility due to a failure in implantation. In these mutant mice (Msx1/2(d/d)), the uterine epithelium exhibited persistent proliferative activity and failed to attach to the embryos. Gene expression profiling of uterine epithelium and stroma of Msx1/2(d/d) mice revealed an elevated expression of several members of the Wnt gene family in the preimplantation uterus. Increased canonical Wnt signaling in the stromal cells activated β-catenin, stimulating the production of a subset of fibroblast growth factors (FGFs) in these cells. The secreted FGFs acted in a paracrine manner via the FGF receptors in the epithelium to promote epithelial proliferation, thereby preventing differentiation of this tissue and creating a non-receptive uterus refractory to implantation. Collectively, these findings delineate a unique signaling network, involving Msx1/2, Wnts, and FGFs, which operate in the uterus at the time of implantation to control the mesenchymal-epithelial dialogue critical for successful establishment of pregnancy.

  18. Msx genes define a population of mural cell precursors required for head blood vessel maturation.

    PubMed

    Lopes, Miguel; Goupille, Olivier; Saint Cloment, Cécile; Lallemand, Yvan; Cumano, Ana; Robert, Benoît

    2011-07-01

    Vessels are primarily formed from an inner endothelial layer that is secondarily covered by mural cells, namely vascular smooth muscle cells (VSMCs) in arteries and veins and pericytes in capillaries and veinules. We previously showed that, in the mouse embryo, Msx1(lacZ) and Msx2(lacZ) are expressed in mural cells and in a few endothelial cells. To unravel the role of Msx genes in vascular development, we have inactivated the two Msx genes specifically in mural cells by combining the Msx1(lacZ), Msx2(lox) and Sm22α-Cre alleles. Optical projection tomography demonstrated abnormal branching of the cephalic vessels in E11.5 mutant embryos. The carotid and vertebral arteries showed an increase in caliber that was related to reduced vascular smooth muscle coverage. Taking advantage of a newly constructed Msx1(CreERT2) allele, we demonstrated by lineage tracing that the primary defect lies in a population of VSMC precursors. The abnormal phenotype that ensues is a consequence of impaired BMP signaling in the VSMC precursors that leads to downregulation of the metalloprotease 2 (Mmp2) and Mmp9 genes, which are essential for cell migration and integration into the mural layer. Improper coverage by VSMCs secondarily leads to incomplete maturation of the endothelial layer. Our results demonstrate that both Msx1 and Msx2 are required for the recruitment of a population of neural crest-derived VSMCs.

  19. Ectopic expression of Msx2 in mammalian myotubes recapitulates aspects of amphibian muscle dedifferentiation.

    PubMed

    Yilmaz, Atilgan; Engeler, Rachel; Constantinescu, Simona; Kokkaliaris, Konstantinos D; Dimitrakopoulos, Christos; Schroeder, Timm; Beerenwinkel, Niko; Paro, Renato

    2015-11-01

    In contrast to urodele amphibians and teleost fish, mammals lack the regenerative responses to replace large body parts. Amphibian and fish regeneration uses dedifferentiation, i.e., reversal of differentiated state, as a means to produce progenitor cells to eventually replace damaged tissues. Therefore, induced activation of dedifferentiation responses in mammalian tissues holds an immense promise for regenerative medicine. Here we demonstrate that ectopic expression of Msx2 in cultured mouse myotubes recapitulates several aspects of amphibian muscle dedifferentiation. We found that MSX2, but not MSX1, leads to cellularization of myotubes and downregulates the expression of myotube markers, such as MHC, MRF4 and myogenin. RNA sequencing of myotubes ectopically expressing Msx2 showed downregulation of over 500 myotube-enriched transcripts and upregulation of over 300 myoblast-enriched transcripts. MSX2 selectively downregulated expression of Ptgs2 and Ptger4, two members of the prostaglandin pathway with important roles in myoblast fusion during muscle differentiation. Ectopic expression of Msx2, as well as Msx1, induced partial cell cycle re-entry of myotubes by upregulating CyclinD1 expression but failed to initiate S-phase. Finally, MSX2-induced dedifferentiation in mouse myotubes could be recapitulated by a pharmacological treatment with trichostatin A (TSA), bone morphogenetic protein 4 (BMP4) and fibroblast growth factor 1 (FGF1). Together, these observations indicate that MSX2 is a major driver of dedifferentiation in mammalian muscle cells. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Regulation of proliferation in developing human tooth germs by MSX homeodomain proteins and cyclin-dependent kinase inhibitor p19INK4d.

    PubMed

    Kero, Darko; Vukojevic, Katarina; Stazic, Petra; Sundov, Danijela; Mardesic Brakus, Snjezana; Saraga-Babic, Mirna

    2017-10-02

    Before the secretion of hard dental tissues, tooth germs undergo several distinctive stages of development (dental lamina, bud, cap and bell). Every stage is characterized by specific proliferation patterns, which is regulated by various morphogens, growth factors and homeodomain proteins. The role of MSX homeodomain proteins in odontogenesis is rather complex. Expression domains of genes encoding for murine Msx1/2 during development are observed in tissues containing highly proliferative progenitor cells. Arrest of tooth development in Msx knockout mice can be attributed to impaired proliferation of progenitor cells. In Msx1 knockout mice, these progenitor cells start to differentiate prematurely as they strongly express cyclin-dependent kinase inhibitor p19 INK4d . p19 INK4d induces terminal differentiation of cells by blocking the cell cycle in mitogen-responsive G1 phase. Direct suppression of p19 INK4d by Msx1 protein is, therefore, important for maintaining proliferation of progenitor cells at levels required for the normal progression of tooth development. In this study, we examined the expression patterns of MSX1, MSX2 and p19 INK4d in human incisor tooth germs during the bud, cap and early bell stages of development. The distribution of expression domains of p19 INK4d throughout the investigated period indicates that p19 INK4d plays active role during human tooth development. Furthermore, comparison of expression domains of p19 INK4d with those of MSX1, MSX2 and proliferation markers Ki67, Cyclin A2 and pRb, indicates that MSX-mediated regulation of proliferation in human tooth germs might not be executed by the mechanism similar to one described in developing tooth germs of wild-type mouse.

  1. Msx1 and Msx2 are functional interacting partners of T-box factors in the regulation of Connexin43.

    PubMed

    Boogerd, Kees-Jan; Wong, L Y Elaine; Christoffels, Vincent M; Klarenbeek, Meinke; Ruijter, Jan M; Moorman, Antoon F M; Barnett, Phil

    2008-06-01

    T-box factors Tbx2 and Tbx3 play key roles in the development of the cardiac conduction system, atrioventricular canal, and outflow tract of the heart. They regulate the gap-junction-encoding gene Connexin43 (Cx43) and other genes critical for heart development and function. Discovering protein partners of Tbx2 and Tbx3 will shed light on the mechanisms by which these factors regulate these gene programs. Employing an yeast 2-hybrid screen and subsequent in vitro pull-down experiments we demonstrate that muscle segment homeobox genes Msx1 and Msx2 are able to bind the cardiac T-box proteins Tbx2, Tbx3, and Tbx5. This interaction, as that of the related Nkx2.5 protein, is supported by the T-box and homeodomain alone. Overlapping spatiotemporal expression patterns of Msx1 and Msx2 together with the T-box genes during cardiac development in mouse and chicken underscore the biological significance of this interaction. We demonstrate that Msx proteins together with Tbx2 and Tbx3 suppress Cx43 promoter activity and down regulate Cx43 gene activity in a rat heart-derived cell line. Using chromatin immunoprecipitation analysis we demonstrate that Msx1 can bind the Cx43 promoter at a conserved binding site located in close proximity to a previously defined T-box binding site, and that the activity of Msx proteins on this promoter appears dependent in the presence of Tbx3. Msx1 and Msx2 can function in concert with the T-box proteins to suppress Cx43 and other working myocardial genes.

  2. NKL homeobox gene MSX1 acts like a tumor suppressor in NK-cell leukemia

    PubMed Central

    Nagel, Stefan; Pommerenke, Claudia; Meyer, Corinna; Kaufmann, Maren; MacLeod, Roderick A.F.; Drexler, Hans G.

    2017-01-01

    NKL homeobox gene MSX1 is physiologically expressed in lymphoid progenitors and subsequently downregulated in developing T- and B-cells. In contrast, elevated expression levels of MSX1 persist in mature natural killer (NK)-cells, indicating a functional role in this compartment. While T-cell acute lymphoblastic leukemia (T-ALL) subsets exhibit aberrant overexpression of MSX1, we show here that in malignant NK-cells the level of MSX1 transcripts is aberrantly downregulated. Chromosomal deletions at 4p16 hosting the MSX1 locus have been described in NK-cell leukemia patients. However, NK-cell lines analyzed here showed normal MSX1 gene configurations, indicating that this aberration might be uncommon. To identify alternative MSX1 regulatory mechanisms we compared expression profiling data of primary normal NK-cells and malignant NK-cell lines. This procedure revealed several deregulated genes including overexpressed IRF4, MIR155HG and MIR17HG and downregulated AUTS2, EP300, GATA3 and HHEX. As shown recently, chromatin-modulator AUTS2 is overexpressed in T-ALL subsets where it mediates aberrant transcriptional activation of MSX1. Here, our data demonstrate that in malignant NK-cell lines AUTS2 performed MSX1 activation as well, but in accordance with downregulated MSX1 transcription therein we detected reduced AUTS2 expression, a small genomic deletion at 7q11 removing exons 3 and 4, and truncating mutations in exon 1. Moreover, genomic profiling and chromosomal analyses of NK-cell lines demonstrated amplification of IRF4 at 6p25 and deletion of PRDM1 at 6q21, highlighting their potential oncogenic impact. Functional analyses performed via knockdown or forced expression of these genes revealed regulatory network disturbances effecting downregulation of MSX1 which may underlie malignant development in NK-cells. PMID:28977998

  3. Joint operations planning for space surveillance missions on the MSX satellite

    NASA Technical Reports Server (NTRS)

    Stokes, Grant; Good, Andrew

    1994-01-01

    The Midcourse Space Experiment (MSX) satellite, sponsored by BMDO, is intended to gather broad-band phenomenology data on missiles, plumes, naturally occurring earthlimb backgrounds and deep space backgrounds. In addition the MSX will be used to conduct functional demonstrations of space-based space surveillance. The JHU/Applied Physics Laboratory (APL), located in Laurel, MD, is the integrator and operator of the MSX satellite. APL will conduct all operations related to the MSX and is charged with the detailed operations planning required to implement all of the experiments run on the MSX except the space surveillance experiments. The non-surveillance operations are generally amenable to being defined months ahead of time and being scheduled on a monthly basis. Lincoln Laboratory, Massachusetts Institute of Technology (LL), located in Lexington, MA, is the provider of one of the principle MSX instruments, the Space-Based Visible (SBV) sensor, and the agency charged with implementing the space surveillance demonstrations on the MSX. The planning timelines for the space surveillance demonstrations are fundamentally different from those for the other experiments. They are generally amenable to being scheduled on a monthly basis, but the specific experiment sequence and pointing must be refined shortly before execution. This allocation of responsibilities to different organizations implies the need for a joint mission planning system for conducting space surveillance demonstrations. This paper details the iterative, joint planning system, based on passing responsibility for generating MSX commands for surveillance operations from APL to LL for specific scheduled operations. The joint planning system, including the generation of a budget for spacecraft resources to be used for surveillance events, has been successfully demonstrated during ground testing of the MSX and is being validated for MSX launch within the year. The planning system developed for the MSX forms a model possibly applicable to developing distributed mission planning systems for other multi-use satellites.

  4. Growth factors FGF8 and FGF2 and their receptor FGFR1, transcriptional factors Msx-1 and MSX-2, and apoptotic factors p19 and RIP5 participate in the early human limb development.

    PubMed

    Becic, Tina; Kero, Darko; Vukojevic, Katarina; Mardesic, Snjezana; Saraga-Babic, Mirna

    2018-04-01

    The expression pattern of fibroblast growth factors FGF8 and FGF2 and their receptor FGFR1, transcription factors MSX-1 and MSX-2, as well as cell proliferation (Ki-67) and cell death associated caspase-3, p19 and RIP5 factors were analyzed in histological sections of eight 4th-9th-weeks developing human limbs by immunohistochemistry and semi-thin sectioning. Increasing expression of all analyzed factors (except FGF8) characterized both the multilayered human apical ectodermal ridge (AER), sub-ridge mesenchyme (progress zone) and chondrocytes in developing human limbs. While cytoplasmic co-expression of MSX-1 and MSX-2 was observed in both limb epithelium and mesenchyme, p19 displayed strong cytoplasmic expression in non-proliferating cells. Nuclear expression of Ki-67 proliferating cells, and partly of MSX-1 and MSX-2 was detected in the whole limb primordium. Strong expression of factors p19 and RIP5, both in the AER and mesenchyme of human developing limbs indicates their possible involvement in control of cell senescence and cell death. In contrast to animal studies, expression of FGFR1 in the surface ectoderm and p19 in the whole limb primordium might reflect interspecies differences in limb morphology. Expression of FGF2 and downstream RIP5 gene, and transcription factors Msx-1 and MSX-2 did not show human-specific changes in expression pattern. Based on their spatio-temporal expression during human limb development, our study indicates role of FGFs and Msx genes in stimulation of cell proliferation, limb outgrowth, digit elongation and separation, and additionally MSX-2 in control of vasculogenesis. The cascade of orchestrated gene expressions, including the analyzed developmental factors, jointly contribute to the complex human limb development. Copyright © 2018 Elsevier GmbH. All rights reserved.

  5. Identification of a spatially specific enhancer element in the chicken Msx-2 gene that regulates its expression in the apical ectodermal ridge of the developing limb buds of transgenic mice.

    PubMed

    Sumoy, L; Wang, C K; Lichtler, A C; Pierro, L J; Kosher, R A; Upholt, W B

    1995-07-01

    Msx-2 is a member of the Msx family of homeobox-containing genes expressed in a variety of embryonic tissues involved in epithelial-mesenchymal interactions and pattern formation. In the developing chick limb bud, Msx-2 is expressed in the apical ectodermal ridge, which plays a crucial role in directing the growth and patterning of limb mesoderm. In addition, Msx-2 is expressed in the anterior nonskeletal-forming mesoderm of the limb bud, in the posterior necrotic zone, and in the interdigital mesenchyme. Studies of the altered expression patterns of Msx-2 in amelic and polydactylous mutant chick limbs have suggested that the apical ectodermal ridge and mesodermal domains of Msx-2 expression are independently regulated and that there might be separate cis-regulatory elements in the Msx-2 gene controlling its spatially distinct domains of expression. To test this hypothesis, we have isolated the chicken Msx-2 gene and have tested the ability of various regions of the gene to target expression of LacZ reporter gene to specific regions of the limbs of transgenic mice. A variety of these constructs are consistently expressed only in the apical ectodermal ridge and the ectoderm of the genital tubercle and are not expressed in the mesoderm of the limb bud or in other regions of the embryo where the endogenous Msx-2 gene is expressed. These results suggest the presence of spatially specific cis-regulatory elements in the Msx-2 gene. We identified a 348-bp region in the 5' flanking region of the Msx-2 gene which can act as an apical ectodermal ridge enhancer element when placed in reverse orientation in front of the reporter gene with transcription initiation directed by the minimal hsp68 promoter.

  6. Copper-catalyzed Green and Expeditious N-Arylation of Sulfoximines using Diaryliodonium Salts

    EPA Science Inventory

    An ultrasound-accelerated green route for an expeditious N-arylation of NH-sulfoximines is described that involves the use of benign diaryliodonium salts in aqueous polyethylene glycol-400 and copper(I) bromide as catalyst at room temperature. The high yields of the products and...

  7. MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis.

    PubMed

    Lee, Hansol; Habas, Raymond; Abate-Shen, Cory

    2004-06-11

    During embryogenesis, differentiation of skeletal muscle is regulated by transcription factors that include members of the Msx homeoprotein family. By investigating Msx1 function in repression of myogenic gene expression, we identified a physical interaction between Msx1 and H1b, a specific isoform of mouse histone H1. We found that Msx1 and H1b bind to a key regulatory element of MyoD, a central regulator of skeletal muscle differentiation, where they induce repressed chromatin. Moreover, Msx1 and H1b cooperate to inhibit muscle differentiation in cell culture and in Xenopus animal caps. Our findings define a previously unknown function for "linker" histones in gene-specific transcriptional regulation.

  8. Msx genes are expressed in the carapacial ridge of turtle shell: a study of the European pond turtle, Emys orbicularis.

    PubMed

    Vincent, Christine; Bontoux, Martine; Le Douarin, Nicole M; Pieau, Claude; Monsoro-Burq, Anne-Hélène

    2003-09-01

    The turtle shell forms by extensive ossification of dermis ventrally and dorsally. The carapacial ridge (CR) controls early dorsal shell formation and is thought to play a similar role in shell growth as the apical ectodermal ridge during limb development. However, the molecular mechanisms underlying carapace development are still unknown. Msx genes are involved in the development of limb mesenchyme and of various skeletal structures. In particular, precocious Msx expression is recorded in skeletal precursors that develop close to the ectoderm, such as vertebral spinous processes or skull. Here, we have studied the embryonic expression of Msx genes in the European pond turtle, Emys orbicularis. The overall Msx expression in head, limb, and trunk is similar to what is observed in other vertebrates. We have focused on the CR area and pre-skeletal shell condensations. The CR expresses Msx genes transiently, in a pattern similar to that of fgf10. In the future carapace domain, the dermis located dorsal to the spinal cord expresses Msx genes, as in other vertebrates, but we did not see expansion of this expression in the dermis located more laterally, on top of the dermomyotomes. In the ventral plastron, although the dermal osseous condensations form in the embryonic Msx-positive somatopleura, we did not observe enhanced Msx expression around these elements. These observations may indicate that common mechanisms participate in limb bud and CR early development, but that pre-differentiation steps differ between shell and other skeletal structures and involve other gene activities than that of Msx genes.

  9. Msx-2 expression and glucocorticoid-induced overexpression in embryonic mouse submandibular glands.

    PubMed

    Jaskoll, T; Luo, W; Snead, M L

    1998-01-01

    It is well known that the process of branching morphogenesis requires epithelial-mesenchymal interactions. One outstanding model for the study of tissue interactions during branching morphogenesis is the embryonic mouse submandibular gland (SMG). Although it has been clearly demonstrated that the branching pattern is dependent on interactions between the epithelium and the surrounding mesenchyme, little is known about the molecular mechanism underlying the branching process. One group of transcription factors that likely participates in the control of epithelial-mesenchymal inductive interactions are the Msx-class of homeodomain-containing proteins. In this paper, we focus on Msx-2 because its developmental expression is correlated with inductive interactions, suggesting that Msx-2 may play a functional role during cell-cell interactions. We demonstrate the expression of Msx-2 mRNA and protein to be primarily in the branching epithelia with progressive embryonic (E13 to E15) SMG development and, to a lesser extent, in the mesenchyme. We also show that Msx-2 is expressed by embryonic SMG primordia cultured under defined conditions. In addition, to begin to delineate a functional role for Msx-2, we employed an experimental strategy by using exogenous glucocorticoid (CORT) treatment of embryonic SMGs in vitro and in vivo to significantly enhance branching morphogenesis and evaluate the effect of CORT treatment on embryonic SMG Msx-2 expression. A marked increase in Msx-2 transcripts and protein is detected with in vitro and in vivo CORT treatment. Our studies indicate that one mechanism of CORT regulation of salivary gland morphogenesis is likely through the modulation of Msx-2 gene expression.

  10. Msx-1 is suppressed in bisphosphonate-exposed jaw bone analysis of bone turnover-related cell signalling after bisphosphonate treatment.

    PubMed

    Wehrhan, F; Hyckel, P; Amann, K; Ries, J; Stockmann, P; Schlegel, Ka; Neukam, Fw; Nkenke, E

    2011-05-01

    Bone-destructive disease treatments include bisphosphonates and antibodies against receptor activator for nuclear factor κB ligand (aRANKL). Osteonecrosis of the jaw (ONJ) is a side-effect. Aetiopathology models failed to explain their restriction to the jaw. The osteoproliferative transcription factor Msx-1 is expressed constitutively only in mature jaw bone. Msx-1 expression might be impaired in bisphosphonate-related ONJ. This study compared the expression of Msx-1, Bone Morphogenetic Protein (BMP)-2 and RANKL, in ONJ-affected and healthy jaw bone. An automated immunohistochemistry-based alkaline phosphatase-anti-alkaline phosphatase method was used on ONJ-affected and healthy jaw bone samples (n = 20 each): cell-number ratio (labelling index, Bonferroni adjustment). Real-time RT-PCR was performed to quantitatively compare Msx-1, BMP-2, RANKL and GAPDH mRNA levels. Labelling indices were significantly lower for Msx-1 (P < 0.03) and RANKL (P < 0.003) and significantly higher (P < 0.02) for BMP-2 in ONJ compared with healthy bone. Expression was sevenfold lower (P < 0.03) for Msx-1, 22-fold lower (P < 0.001) for RANKL and eightfold higher (P < 0.02) for BMP-2 in ONJ bone. Msx-1, RANKL suppression and BMP-2 induction were consistent with the bisphosphonate-associated osteopetrosis and impaired bone remodelling in BP- and aRANKL-induced ONJ. Msx-1 suppression suggested a possible explanation of the exclusivity of ONJ in jaw bone. Functional analyses of Msx-1- RANKL interaction during bone remodelling should be performed in the future. © 2011 John Wiley & Sons A/S.

  11. Characterization of a human MSX-2 cDNA and its fragment isolated as a transformation suppressor gene against v-Ki-ras oncogene.

    PubMed

    Takahashi, C; Akiyama, N; Matsuzaki, T; Takai, S; Kitayama, H; Noda, M

    1996-05-16

    A cDNA (termed CT124) encoding a carboxyl-terminal fragment of the human homeobox protein MSX-2 was found to induce flat reversion when expressed in v-Ki-ras-transformed NIH3T3 cells. Although the expression of endogenous MSX-2 gene is low in most of the normal adult tissues examined, it is frequently activated in carcinoma-derived cell lines. Likewise, the gene is inactive in NIH3T3 cells but is transcriptionally activated after transformation by v-Ki-ras oncogene, suggesting that the intact MSX-2 may play a positive, rather than suppressive, role in cell transformation. To test this possibility, we isolated a near full-length human MSX-2 cDNA and tested its activities in two cell systems, i.e. fibroblast and myoblast. In NIH3T3 fibroblasts, although the gene by itself failed to confer a transformed phenotype, antisense MSX-2 cDNA as well as truncated CT124 cDNA interfered with the transforming activities of v-Ki-ras oncogene. In C2C12 myoblasts, MSX-2 was found to suppress MyoD gene expression, as do activated ras oncogenes, under certain culture conditions, and CT124 was found to inhibit the activities of both MSX-2 and ras in this system as well. Our findings not only suggest that CT124 may act as a dominant suppressor of MSX-2 but also raise the possibility that MSX-2 gene may be an important downstream target for the Ras signaling pathways.

  12. Bioinformatic analysis of Msx1 and Msx2 involved in craniofacial development.

    PubMed

    Dai, Jiewen; Mou, Zhifang; Shen, Shunyao; Dong, Yuefu; Yang, Tong; Shen, Steve Guofang

    2014-01-01

    Msx1 and Msx2 were revealed to be candidate genes for some craniofacial deformities, such as cleft lip with/without cleft palate (CL/P) and craniosynostosis. Many other genes were demonstrated to have a cross-talk with MSX genes in causing these defects. However, there is no systematic evaluation for these MSX gene-related factors. In this study, we performed systematic bioinformatic analysis for MSX genes by combining using GeneDecks, DAVID, and STRING database, and the results showed that there were numerous genes related to MSX genes, such as Irf6, TP63, Dlx2, Dlx5, Pax3, Pax9, Bmp4, Tgf-beta2, and Tgf-beta3 that have been demonstrated to be involved in CL/P, and Fgfr2, Fgfr1, Fgfr3, and Twist1 that were involved in craniosynostosis. Many of these genes could be enriched into different gene groups involved in different signaling ways, different craniofacial deformities, and different biological process. These findings could make us analyze the function of MSX gens in a gene network. In addition, our findings showed that Sumo, a novel gene whose polymorphisms were demonstrated to be associated with nonsyndromic CL/P by genome-wide association study, has protein-protein interaction with MSX1, which may offer us an alternative method to perform bioinformatic analysis for genes found by genome-wide association study and can make us predict the disrupted protein function due to the mutation in a gene DNA sequence. These findings may guide us to perform further functional studies in the future.

  13. Multiplexed data independent acquisition (MSX-DIA) applied by high resolution mass spectrometry improves quantification quality for the analysis of histone peptides

    PubMed Central

    Sidoli, Simone; Fujiwara, Rina; Garcia, Benjamin A.

    2016-01-01

    We present the mass spectrometry (MS) based application of the innovative, although scarcely exploited, multiplexed data-independent acquisition (MSX-DIA) for the analysis of histone post-translational modifications (PTMs). Histones are golden standard for complexity in MS based proteomics, due to their large number of combinatorial modifications, leading to isobaric peptides after proteolytic digestion. DIA has thus gained popularity for the purpose as it allows for MS/MS-based quantification without upfront assay development. In this work, we evaluated the performance of traditional DIA versus MSX-DIA in terms of MS/MS spectra quality, instrument scan rate and quantification precision using histones from HeLa cells. We used an MS/MS isolation window of 10 and 6 m/z for DIA and MSX-DIA, respectively. Four MS/MS scans were multiplexed for MSX-DIA. Despite MSX-DIA was programmed to perform 2-fold more MS/MS events than traditional DIA, it acquired on average ~5% more full MS scans, indicating even faster scan rate. Results highlighted an overall decrease of background ion signals using MSX-DIA, and we illustrated specific examples where peptides of different precursor masses were co-fragmented by DIA but not MSX-DIA. Taken together, MSX-DIA proved thus to be a more favorable method for histone analysis in data independent mode. PMID:27193262

  14. Multiplexed data independent acquisition (MSX-DIA) applied by high resolution mass spectrometry improves quantification quality for the analysis of histone peptides.

    PubMed

    Sidoli, Simone; Fujiwara, Rina; Garcia, Benjamin A

    2016-08-01

    We present the MS-based application of the innovative, although scarcely exploited, multiplexed data-independent acquisition (MSX-DIA) for the analysis of histone PTMs. Histones are golden standard for complexity in MS based proteomics, due to their large number of combinatorial modifications, leading to isobaric peptides after proteolytic digestion. DIA has, thus, gained popularity for the purpose as it allows for MS/MS-based quantification without upfront assay development. In this work, we evaluated the performance of traditional DIA versus MSX-DIA in terms of MS/MS spectra quality, instrument scan rate and quantification precision using histones from HeLa cells. We used an MS/MS isolation window of 10 and 6 m/z for DIA and MSX-DIA, respectively. Four MS/MS scans were multiplexed for MSX-DIA. Despite MSX-DIA was programmed to perform two-fold more MS/MS events than traditional DIA, it acquired on average ∼5% more full MS scans, indicating even faster scan rate. Results highlighted an overall decrease of background ion signals using MSX-DIA, and we illustrated specific examples where peptides of different precursor masses were co-fragmented by DIA but not MSX-DIA. Taken together, MSX-DIA proved thus to be a more favorable method for histone analysis in data independent mode. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Disruption of Msx-1 and Msx-2 reveals roles for these genes in craniofacial, eye, and axial development.

    PubMed

    Foerst-Potts, L; Sadler, T W

    1997-05-01

    In mouse embryos, the muscle segment homeobox genes, Msx-1 and Msx-2 are expressed during critical stages of neural tube, neural crest, and craniofacial development, suggesting that these genes play important roles in organogenesis and cell differentiation. Although the patterns of expression are intriguing, little is known about the function of these genes in vertebrate embryonic development. Therefore, the expression of both genes, separately and together, was disrupted using antisense oligodeoxynucleotides and whole embryo culture techniques. Antisense attenuation of Msx-1 during early stages of neurulation produced hypoplasia of the maxillary, mandibular, and frontonasal prominences, eye anomalies, and somite and neural tube abnormalities. Eye defects consisted of enlarged optic vesicles, which may ultimately result in micropthalmia similar to that observed in Small eye mice homozygous for mutations in the Pax-6 gene. Histological sections and SEM analysis revealed a thinning of the neuroepithelium in the diencephalon and optic vesicle and mesenchymal deficiencies in the craniofacial region. Injections of Msx-2 antisense oligodeoxynucleotides produced similar malformations as those targeting Msx-1, with the exception that there was an increase in number and severity of neural tube and somite defects. Embryos injected with the combination of Msx-1 + Msx-2 antisense oligodeoxynucleotides showed no novel abnormalities, suggesting that the genes do not operate in a redundant manner.

  16. A new role for muscle segment homeobox genes in mammalian embryonic diapause

    PubMed Central

    Cha, Jeeyeon; Sun, Xiaofei; Bartos, Amanda; Fenelon, Jane; Lefèvre, Pavine; Daikoku, Takiko; Shaw, Geoff; Maxson, Robert; Murphy, Bruce D.; Renfree, Marilyn B.; Dey, Sudhansu K.

    2013-01-01

    Mammalian embryonic diapause is a phenomenon defined by the temporary arrest in blastocyst growth and metabolic activity within the uterus which synchronously becomes quiescent to blastocyst activation and implantation. This reproductive strategy temporally uncouples conception from parturition until environmental or maternal conditions are favourable for the survival of the mother and newborn. The underlying molecular mechanism by which the uterus and embryo temporarily achieve quiescence, maintain blastocyst survival and then resume blastocyst activation with subsequent implantation remains unknown. Here, we show that uterine expression of Msx1 or Msx2, members of an ancient, highly conserved homeobox gene family, persists in three unrelated mammalian species during diapause, followed by rapid downregulation with blastocyst activation and implantation. Mice with uterine inactivation of Msx1 and Msx2 fail to achieve diapause and reactivation. Remarkably, the North American mink and Australian tammar wallaby share similar expression patterns of MSX1 or MSX2 as in mice—it persists during diapause and is rapidly downregulated upon blastocyst activation and implantation. Evidence from mouse studies suggests that the effects of Msx genes in diapause are mediated through Wnt5a, a known transcriptional target of uterine Msx. These studies provide strong evidence that the Msx gene family constitutes a common conserved molecular mediator in the uterus during embryonic diapause to improve female reproductive fitness. PMID:23615030

  17. A new role for muscle segment homeobox genes in mammalian embryonic diapause.

    PubMed

    Cha, Jeeyeon; Sun, Xiaofei; Bartos, Amanda; Fenelon, Jane; Lefèvre, Pavine; Daikoku, Takiko; Shaw, Geoff; Maxson, Robert; Murphy, Bruce D; Renfree, Marilyn B; Dey, Sudhansu K

    2013-04-24

    Mammalian embryonic diapause is a phenomenon defined by the temporary arrest in blastocyst growth and metabolic activity within the uterus which synchronously becomes quiescent to blastocyst activation and implantation. This reproductive strategy temporally uncouples conception from parturition until environmental or maternal conditions are favourable for the survival of the mother and newborn. The underlying molecular mechanism by which the uterus and embryo temporarily achieve quiescence, maintain blastocyst survival and then resume blastocyst activation with subsequent implantation remains unknown. Here, we show that uterine expression of Msx1 or Msx2, members of an ancient, highly conserved homeobox gene family, persists in three unrelated mammalian species during diapause, followed by rapid downregulation with blastocyst activation and implantation. Mice with uterine inactivation of Msx1 and Msx2 fail to achieve diapause and reactivation. Remarkably, the North American mink and Australian tammar wallaby share similar expression patterns of MSX1 or MSX2 as in mice-it persists during diapause and is rapidly downregulated upon blastocyst activation and implantation. Evidence from mouse studies suggests that the effects of Msx genes in diapause are mediated through Wnt5a, a known transcriptional target of uterine Msx. These studies provide strong evidence that the Msx gene family constitutes a common conserved molecular mediator in the uterus during embryonic diapause to improve female reproductive fitness.

  18. Msx Homeobox Genes Critically Regulate Embryo Implantation by Controlling Paracrine Signaling between Uterine Stroma and Epithelium

    PubMed Central

    Nallasamy, Shanmugasundaram; Li, Quanxi; Bagchi, Milan K.; Bagchi, Indrani C.

    2012-01-01

    The mammalian Msx homeobox genes, Msx1 and Msx2, encode transcription factors that control organogenesis and tissue interactions during embryonic development. We observed overlapping expression of these factors in uterine epithelial and stromal compartments of pregnant mice prior to embryo implantation. Conditional ablation of both Msx1 and Msx2 in the uterus resulted in female infertility due to a failure in implantation. In these mutant mice (Msx1/2 d/d), the uterine epithelium exhibited persistent proliferative activity and failed to attach to the embryos. Gene expression profiling of uterine epithelium and stroma of Msx1/2 d/d mice revealed an elevated expression of several members of the Wnt gene family in the preimplantation uterus. Increased canonical Wnt signaling in the stromal cells activated β-catenin, stimulating the production of a subset of fibroblast growth factors (FGFs) in these cells. The secreted FGFs acted in a paracrine manner via the FGF receptors in the epithelium to promote epithelial proliferation, thereby preventing differentiation of this tissue and creating a non-receptive uterus refractory to implantation. Collectively, these findings delineate a unique signaling network, involving Msx1/2, Wnts, and FGFs, which operate in the uterus at the time of implantation to control the mesenchymal-epithelial dialogue critical for successful establishment of pregnancy. PMID:22383889

  19. Enamel protein regulation and dental and periodontal physiopathology in MSX2 mutant mice.

    PubMed

    Molla, Muriel; Descroix, Vianney; Aïoub, Muhanad; Simon, Stéphane; Castañeda, Beatriz; Hotton, Dominique; Bolaños, Alba; Simon, Yohann; Lezot, Frédéric; Goubin, Gérard; Berdal, Ariane

    2010-11-01

    Signaling pathways that underlie postnatal dental and periodontal physiopathology are less studied than those of early tooth development. Members of the muscle segment homeobox gene (Msx) family encode homeoproteins that show functional redundancy during development and are known to be involved in epithelial-mesenchymal interactions that lead to crown morphogenesis and ameloblast cell differentiation. This study analyzed the MSX2 protein during mouse postnatal growth as well as in the adult. The analysis focused on enamel and periodontal defects and enamel proteins in Msx2-null mutant mice. In the epithelial lifecycle, the levels of MSX2 expression and enamel protein secretion were inversely related. Msx2+/- mice showed increased amelogenin expression, enamel thickness, and rod size. Msx2-/- mice displayed compound phenotypic characteristics of enamel defects, related to both enamel-specific gene mutations (amelogenin and enamelin) in isolated amelogenesis imperfecta, and cell-cell junction elements (laminin 5 and cytokeratin 5) in other syndromes. These effects were also related to ameloblast disappearance, which differed between incisors and molars. In Msx2-/- roots, Malassez cells formed giant islands that overexpressed amelogenin and ameloblastin that grew over months. Aberrant expression of enamel proteins is proposed to underlie the regional osteopetrosis and hyperproduction of cellular cementum. These enamel and periodontal phenotypes of Msx2 mutants constitute the first case report of structural and signaling defects associated with enamel protein overexpression in a postnatal context.

  20. [Molecular cloning, expression of rat Msx-1 and Msx-2 during early embryo genesis and roles for mandibular chondrogenesis].

    PubMed

    Ishiguro, S

    1999-03-01

    Quail-chick chimera experiments have shown a contribution of carnial neural crest cells to the craniofacial skeletal elements. Moreover, tissue interactions between epithelial-mesenchymal interaction during early facial process development are required for both skeletal differentiation and morphogenesis. In this study, it was observed that Msx homeobox containing genes expressed in the facial process were important molecules of cartilage morphogenesis. Rat cDNAs were isolated and encoded by Msx-1 and -2, and then the expression patterns using in situ hybridization were investigated during early rat face development. These genes were correlatively expressed in the cranial neural crest forming area (E 9.5 dpc) and the facial process (E 12.5 dpc). Antisence inhibition of Msx genes in the E 12.5 mandibular process exhibited the alteration of their gene expression and cartilage patterns. Antisence inhibition of Msx-1 induced lack of the medial portion of cartilage, and antisence inhibition of Msx-2 enhanced chondrogenesis of mandibular process under the organ culture condition. Thus it was concluded that expression of Msx genes during mandibular process development comprises important signals of chondrogenesis.

  1. Ammonia Assimilation in Zea mays L. Infected with a Vesicular-Arbuscular Mycorrhizal Fungus Glomus fasciculatum.

    PubMed

    Cliquet, J. B.; Stewart, G. R.

    1993-03-01

    To investigate nitrogen assimilation and translocation in Zea mays L. colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum (Thax. sensu Gerd.), we measured key enzyme activities, 15N incorporation into free amino acids, and 15N translocation from roots to shoots. Glutamine synthetase and nitrate reductase activities were increased in both roots and shoots compared with control plants, and glutamate dehydrogenase activity increased in roots only. In the presence of [15N]ammonium, glutamine amide was the most heavily labeled product. More label was incorporated into amino acids in VAM plants. The kinetics of 15N labeling and effects of methionine sulfoximine on distribution of 15N-labeled products were entirely consistent with the operation of the glutamate synthase cycle. No evidence was found for ammonium assimilation via glutamate dehydrogenase. 15N translocation from roots to shoots through the xylem was higher in VAM plants compared with control plants. These results establish that, in maize, VAM fungi increase ammonium assimilation, glutamine production, and xylem nitrogen translocation. Unlike some ectomycorrhizal fungi, VAM fungi do not appear to alter the pathway of ammonium assimilation in roots of their hosts.

  2. Conditional deletion of Msx homeobox genes in the uterus inhibits blastocyst implantation by altering uterine receptivity.

    PubMed

    Daikoku, Takiko; Cha, Jeeyeon; Sun, Xiaofei; Tranguch, Susanne; Xie, Huirong; Fujita, Tomoko; Hirota, Yasushi; Lydon, John; DeMayo, Francesco; Maxson, Robert; Dey, Sudhansu K

    2011-12-13

    An effective bidirectional communication between an implantation-competent blastocyst and the receptive uterus is a prerequisite for mammalian reproduction. The blastocyst will implant only when this molecular cross-talk is established. Here we show that the muscle segment homeobox gene (Msh) family members Msx1 and Msx2, which are two highly conserved genes critical for epithelial-mesenchymal interactions during development, also play crucial roles in embryo implantation. Loss of Msx1/Msx2 expression correlates with altered uterine luminal epithelial cell polarity and affects E-cadherin/β-catenin complex formation through the control of Wnt5a expression. Application of Wnt5a in vitro compromised blastocyst invasion and trophoblast outgrowth on cultured uterine epithelial cells. The finding that Msx1/Msx2 genes are critical for conferring uterine receptivity and readiness to implantation could have clinical significance, because compromised uterine receptivity is a major cause of pregnancy failure in IVF programs. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Conditional deletion of MSX homeobox genes in the uterus inhibits blastocyst implantation by altering uterine receptivity

    PubMed Central

    Daikoku, Takiko; Cha, Jeeyeon; Sun, Xiaofei; Tranguch, Susanne; Xie, Huirong; Fujita, Tomoko; Hirota, Yasushi; Lydon, John; DeMayo, Francesco; Maxson, Robert; Dey, Sudhansu K.

    2011-01-01

    An effective bidirectional communication between an implantation-competent blastocyst and the receptive uterus is a prerequisite for mammalian reproduction. The blastocyst will implant only when this molecular cross-talk is established. Here we show that the muscle segment homeobox gene (Msh) family members Msx1 and Msx2, which are two highly conserved genes critical for epithelial-mesenchymal interactions during development, also play crucial roles in embryo implantation. Loss of Msx1/Msx2 expression correlates with altered uterine luminal epithelial cell polarity and affects E-cadherin/β-catenin complex formation through the control of Wnt5a expression. Application of Wnt5a in vitro compromised blastocyst invasion and trophoblast outgrowth on cultured uterine epithelial cells. The finding that Msx1/Msx2 genes are critical for conferring uterine receptivity and readiness to implantation could have clinical significance, because compromised uterine receptivity is a major cause of pregnancy failure in IVF programs. PMID:22100262

  4. Msx genes are important apoptosis effectors downstream of the Shh/Gli3 pathway in the limb.

    PubMed

    Lallemand, Yvan; Bensoussan, Vardina; Cloment, Cécile Saint; Robert, Benoît

    2009-07-15

    In tetrapods, the anteroposterior (AP) patterning of the limb is under the control of the antagonistic activities of the secreted factor Sonic hedgehog (Shh) and Gli3R, the truncated repressor form of the transcription factor Gli3. In this report, we show that Msx1 and Msx2 are targets and downstream effectors of Gli3R. Consequently, in Shh null mutants, Msx genes are overexpressed and, furthermore, partially responsible for the limb phenotype. This is exemplified by the fact that reducing Msx activity in Shh mutants partially restores a normal limb development. Finally, we show that the main action of the Msx genes, in both normal and Shh(-/-) limb development, is to control cell death in the mesenchyme. We propose that, in the limb, Msx genes act downstream of the Shh/Gli3 pathway by transducing BMP signaling and that, in the absence of Shh signaling, their deregulation contributes to the extensive apoptosis that impairs limb development.

  5. Msx-1 and Msx-2 in mammary gland development.

    PubMed

    Satoh, Kennichi; Ginsburg, Erika; Vonderhaar, Barbara K

    2004-04-01

    Homeobox genes do not generally function alone to determine cell fate and morphogenesis. Rather it is the distinct combination of various members of the homeobox family of genes and their spatiotemporal patterns of expression that determine cell identity and function. Functional redundancy often makes it difficult to clearly discern the role of any one given homeobox gene. The roles that Msx1 and Msx2 play in branching morphogenesis of the mammary gland are only now becoming more evident. Many signaling pathways and transcription factors are implicated in how these homeobox genes correctly determine the morphological development of the gland. Overexpression of Msx1 and Msx2 may also be involved in tumorigenesis. Additional studies are needed to elucidate the roles of these genes in both breast development and cancer.

  6. Expression of Msx-2 during development, regeneration, and wound healing in axolotl limbs.

    PubMed

    Carlson, M R; Bryant, S V; Gardiner, D M

    1998-12-15

    Msx genes are transcription factors that are expressed during embryogenesis of developing appendages in regions of epithelial-mesenchymal interactions. Various lines of evidence indicate that these genes function to maintain embryonic tissues in an undifferentiated, proliferative state. We have identified the axolotl homolog of Msx-2, and investigated its expression during limb development, limb regeneration, and wound healing. As in limb buds of higher vertebrates, axolotl Msx-2 is expressed in the apical epidermis and mesenchyme; however, its expression domain is more extensive, reflecting the broader region of the apical epidermal cap in amphibians. Msx-2 expression is downregulated at late stages of limb development, but is reexpressed within one hour after limb amputation. Msx-2 is also reexpressed during wound healing, and may be essential in the early stages of initiation of the limb regeneration cascade.

  7. Time maintenance system for the BMDO MSX spacecraft

    NASA Technical Reports Server (NTRS)

    Hermes, Martin J.

    1994-01-01

    The Johns Hopkins University Applied Physics Laboratory (APL) is responsible for designing and implementing a clock maintenance system for the Ballistic Missile Defense Organizations (BMDO) Midcourse Space Experiment (MSX) spacecraft. The MSX spacecraft has an on-board clock that will be used to control execution of time-dependent commands and to time tag all science and housekeeping data received from the spacecraft. MSX mission objectives have dictated that this spacecraft time, UTC(MSX), maintain a required accuracy with respect to UTC(USNO) of +/- 10 ms with a +/- 1 ms desired accuracy. APL's atomic time standards and the downlinked spacecraft time were used to develop a time maintenance system that will estimate the current MSX clock time offset during an APL pass and make estimates of the clock's drift and aging using the offset estimates from many passes. Using this information, the clock's accuracy will be maintained by uplinking periodic clock correction commands. The resulting time maintenance system is a combination of offset measurement, command/telemetry, and mission planning hardware and computing assets. All assets provide necessary inputs for deciding when corrections to the MSX spacecraft clock must be made to maintain its required accuracy without inhibiting other mission objectives. The MSX time maintenance system is described as a whole and the clock offset measurement subsystem, a unique combination of precision time maintenance and measurement hardware controlled by a Macintosh computer, is detailed. Simulations show that the system estimates the MSX clock offset to less than+/- 33 microseconds.

  8. MSX2 in ameloblast cell fate and activity

    PubMed Central

    Babajko, Sylvie; de La Dure-Molla, Muriel; Jedeon, Katia; Berdal, Ariane

    2015-01-01

    While many effectors have been identified in enamel matrix and cells via genetic studies, physiological networks underlying their expression levels and thus the natural spectrum of enamel thickness and degree of mineralization are now just emerging. Several transcription factors are candidates for enamel gene expression regulation and thus the control of enamel quality. Some of these factors, such as MSX2, are mainly confined to the dental epithelium. MSX2 homeoprotein controls several stages of the ameloblast life cycle. This chapter introduces MSX2 and its target genes in the ameloblast and provides an overview of knowledge regarding its effects in vivo in transgenic mouse models. Currently available in vitro data on the role of MSX2 as a transcription factor and its links to other players in ameloblast gene regulation are considered. MSX2 modulations are relevant to the interplay between developmental, hormonal and environmental pathways and in vivo investigations, notably in the rodent incisor, have provided insight into dental physiology. Indeed, in vivo models are particularly promising for investigating enamel formation and MSX2 function in ameloblast cell fate. MSX2 may be central to the temporal-spatial restriction of enamel protein production by the dental epithelium and thus regulation of enamel quality (thickness and mineralization level) under physiological and pathological conditions. Studies on MSX2 show that amelogenesis is not an isolated process but is part of the more general physiology of coordinated dental-bone complex growth. PMID:25601840

  9. Enamel Protein Regulation and Dental and Periodontal Physiopathology in Msx2 Mutant Mice

    PubMed Central

    Molla, Muriel; Descroix, Vianney; Aïoub, Muhanad; Simon, Stéphane; Castañeda, Beatriz; Hotton, Dominique; Bolaños, Alba; Simon, Yohann; Lezot, Frédéric; Goubin, Gérard; Berdal, Ariane

    2010-01-01

    Signaling pathways that underlie postnatal dental and periodontal physiopathology are less studied than those of early tooth development. Members of the muscle segment homeobox gene (Msx) family encode homeoproteins that show functional redundancy during development and are known to be involved in epithelial-mesenchymal interactions that lead to crown morphogenesis and ameloblast cell differentiation. This study analyzed the MSX2 protein during mouse postnatal growth as well as in the adult. The analysis focused on enamel and periodontal defects and enamel proteins in Msx2-null mutant mice. In the epithelial lifecycle, the levels of MSX2 expression and enamel protein secretion were inversely related. Msx2+/− mice showed increased amelogenin expression, enamel thickness, and rod size. Msx2−/− mice displayed compound phenotypic characteristics of enamel defects, related to both enamel-specific gene mutations (amelogenin and enamelin) in isolated amelogenesis imperfecta, and cell-cell junction elements (laminin 5 and cytokeratin 5) in other syndromes. These effects were also related to ameloblast disappearance, which differed between incisors and molars. In Msx2−/− roots, Malassez cells formed giant islands that overexpressed amelogenin and ameloblastin that grew over months. Aberrant expression of enamel proteins is proposed to underlie the regional osteopetrosis and hyperproduction of cellular cementum. These enamel and periodontal phenotypes of Msx2 mutants constitute the first case report of structural and signaling defects associated with enamel protein overexpression in a postnatal context. PMID:20934968

  10. Effect of glutathione on phytochelatin synthesis in tomato cells.

    PubMed

    Mendum, M L; Gupta, S C; Goldsbrough, P B

    1990-06-01

    Growth of cell suspension cultures of tomato, Lycopersicon esculentum Mill. cv VFNT-Cherry, in the presence of cadmium is inhibited by buthionine sulfoximine, an inhibitor of glutathione synthesis. Cell growth and phytochelatin synthesis are restored to cells treated with buthionine sulfoximine by the addition of glutathione to the medium. Glutathione stimulates the accumulation of phytochelatins in cadmium treated cells, indicating that availability of glutathione can limit synthesis of these peptides. Exogenous glutathione causes a disproportionate increase in the level of smaller phytochelatins, notably [gamma-Glu-Cys](2)-Gly. In the presence of buthionine sulfoximine and glutathione, phytochelatins that are produced upon exposure to cadmium incorporate little [(35)S]cysteine, indicating that these peptides are probably not synthesized by sequential addition of cysteine and glutamate to glutathione.

  11. Msx homeobox gene family and craniofacial development.

    PubMed

    Alappat, Sylvia; Zhang, Zun Yi; Chen, Yi Ping

    2003-12-01

    Vertebrate Msx genes are unlinked, homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene. These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development. Inductive interactions mediated by the Msx genes are essential for normal craniofacial, limb and ectodermal organ morphogenesis, and are also essential to survival in mice, as manifested by the phenotypic abnormalities shown in knockout mice and in humans. This review summarizes studies on the expression, regulation, and functional analysis of Msx genes that bear relevance to craniofacial development in humans and mice. Key words: Msx genes, craniofacial, tooth, cleft palate, suture, development, transcription factor, signaling molecule.

  12. Homeodomain Transcription Factor Msx-2 Regulates Uterine Progenitor Cell Response to Diethylstilbestrol.

    PubMed

    Yin, Yan; Lin, Congxing; Zhang, Ivy; Fisher, Alexander V; Dhandha, Maulik; Ma, Liang

    The fate of mouse uterine epithelial progenitor cells is determined between postnatal days 5 to 7. Around this critical time window, exposure to an endocrine disruptor, diethylstilbestrol (DES), can profoundly alter uterine cytodifferentiation. We have shown previously that a homeo domain transcription factor MSX-2 plays an important role in DES-responsiveness in the female reproductive tract (FRT). Mutant FRTs exhibited a much more severe phenotype when treated with DES, accompanied by gene expression changes that are dependent on Msx2 . To better understand the role that MSX-2 plays in uterine response to DES, we performed global gene expression profiling experiment in mice lacking Msx2 By comparing this result to our previously published microarray data performed on wild-type mice, we extracted common and differentially regulated genes in the two genotypes. In so doing, we identified potential downstream targets of MSX-2, as well as genes whose regulation by DES is modulated through MSX-2. Discovery of these genes will lead to a better understanding of how DES, and possibly other endocrine disruptors, affects reproductive organ development.

  13. NF-kappaB mediates FGF signal regulation of msx-1 expression.

    PubMed

    Bushdid, P B; Chen, C L; Brantley, D M; Yull, F; Raghow, R; Kerr, L D; Barnett, J V

    2001-09-01

    The nuclear factor-kappaB (NF-kappaB) family of transcription factors is involved in proliferation, differentiation, and apoptosis in a stage- and cell-dependent manner. Recent evidence has shown that NF-kappaB activity is necessary for both chicken and mouse limb development. We report here that the NF-kappaB family member c-rel and the homeodomain gene msx-1 have partially overlapping expression patterns in the developing chick limb. In addition, inhibition of NF-kappaB activity resulted in a decrease in msx-1 mRNA expression. Sequence analysis of the msx-1 promoter revealed three potential kappaB-binding sites similar to the interferon-gamma (IFN-gamma) kappaB-binding site. These sites bound to c-Rel, as shown by electrophoretic mobility shift assay (EMSA). Furthermore, inhibition of NF-kappaB activity significantly reduced transactivation of the msx-1 promoter in response to FGF-2/-4, known stimulators of msx-1 expression. These results suggest that NF-kappaB mediates the FGF-2/-4 signal regulation of msx-1 gene expression. Copyright 2001 Academic Press.

  14. Homeodomain Transcription Factor Msx-2 Regulates Uterine Progenitor Cell Response to Diethylstilbestrol

    PubMed Central

    Yin, Yan; Lin, Congxing; Zhang, Ivy; Fisher, Alexander V; Dhandha, Maulik; Ma, Liang

    2015-01-01

    The fate of mouse uterine epithelial progenitor cells is determined between postnatal days 5 to 7. Around this critical time window, exposure to an endocrine disruptor, diethylstilbestrol (DES), can profoundly alter uterine cytodifferentiation. We have shown previously that a homeo domain transcription factor MSX-2 plays an important role in DES-responsiveness in the female reproductive tract (FRT). Mutant FRTs exhibited a much more severe phenotype when treated with DES, accompanied by gene expression changes that are dependent on Msx2. To better understand the role that MSX-2 plays in uterine response to DES, we performed global gene expression profiling experiment in mice lacking Msx2 By comparing this result to our previously published microarray data performed on wild-type mice, we extracted common and differentially regulated genes in the two genotypes. In so doing, we identified potential downstream targets of MSX-2, as well as genes whose regulation by DES is modulated through MSX-2. Discovery of these genes will lead to a better understanding of how DES, and possibly other endocrine disruptors, affects reproductive organ development. PMID:26457333

  15. Proceedings of the 1997 Space Control Conference, Volume 2

    DTIC Science & Technology

    1997-03-27

    of attitude information are used in our orbit determination. The attitude history buffer on MSX holds quaternions and time tags at 100-second...being able to use the attitude quaternions , DYNAMO can also compute the park-mode attitude of MSX if, for example, some of the raw on-board attitude ... used to aid the target discrimination process. THE MSX SPACECRAFT The SBV sensor was launched on the BMDO supported MSX spacecraft on 24 April

  16. Comparative study of MSX-2, DLX-5, and DLX-7 gene expression during early human tooth development.

    PubMed

    Davideau, J L; Demri, P; Hotton, D; Gu, T T; MacDougall, M; Sharpe, P; Forest, N; Berdal, A

    1999-12-01

    Msx and Dlx family transcription factors are key elements of craniofacial development and act in specific combinations with growth factors to control the position and shape of various skeletal structures in mice. In humans, the mutations of MSX and DLX genes are associated with specific syndromes, such as tooth agenesis, craniosynostosis, and tricho-dento-osseous syndrome. To establish some relationships between those reported human syndromes, previous experimental data in mice, and the expression patterns of MSX and DLX homeogenes in the human dentition, we investigated MSX-2, DLX-5, and DLX-7 expression patterns and compared them in orofacial tissues of 7.5- to 9-wk-old human embryos by using in situ hybridization. Our data showed that MSX-2 was strongly expressed in the progenitor cells of human orofacial skeletal structures, including mandible and maxilla bones, Meckel's cartilage, and tooth germs, as shown for DLX-5. DLX-7 expression was restricted to the vestibular lamina and, later on, to the vestibular part of dental epithelium. The comparison of MSX-2, DLX-5, and DLX-7 expression patterns during the early stages of development of different human tooth types showed the existence of spatially ordered sequences of homeogene expression along the vestibular/lingual axis of dental epithelium. The expression of MSX-2 in enamel knot, as well as the coincident expression of MSX-2, DLX-5, and DLX-7 in a restricted vestibular area of dental epithelium, suggests the existence of various organizing centers involved in the control of human tooth morphogenesis.

  17. Murine homeobox-containing gene, Msx-1: analysis of genomic organization, promoter structure, and potential autoregulatory cis-acting elements.

    PubMed

    Kuzuoka, M; Takahashi, T; Guron, C; Raghow, R

    1994-05-01

    Detailed molecular organization of the coding and upstream regulatory regions of the murine homeodomain-containing gene, Msx-1, is reported. The protein-encoding portion of the gene is contained in two exons, 590 and 1214 bp in length, separated by a 2107-bp intron; the homeodomain is located in the second exon. The two-exon organization of the murine Msx-1 gene resembles a number of other homeodomain-containing genes. The 5'-(GTAAGT) and 3'-(CCCTAG) splicing junctions and the mRNA polyadenylation signal (UAUAA) of the murine Msx-1 gene are also characteristic of other vertebrate genes. By nuclease protection and primer extension assays, the start of transcription of the Msx-1 gene was located 256 bp upstream of the first AUG. Computer analysis of the promoter proximal 1280-bp sequence revealed a number of potentially important cis-regulatory sequences; these include the recognition elements for Ap-1, Ap-2, Ap-3, Sp-1, a possible binding site for RAR:RXR, and a number of TCF-1 consensus motifs. Importantly, a perfect reverse complement of (C/G)TTAATTG, which was recently shown to be an optimal binding sequence for the homeodomain of Msx-1 protein (K.M. Catron, N. Iler, and C. Abate (1993) Mol. Cell. Biol. 13:2354-2365), was also located in the murine Msx-1 promoter. Binding of bacterially expressed Msx-1 homeodomain polypeptide to Msx-1-specific oligonucleotide was experimentally demonstrated, raising a distinct possibility of autoregulation of this developmentally regulated gene.

  18. An amphioxus Msx gene expressed predominantly in the dorsal neural tube.

    PubMed

    Sharman, A C; Shimeld, S M; Holland, P W

    1999-04-01

    Genomic and cDNA clones of an Msx class homeobox gene were isolated from amphioxus (Branchiostoma floridae). The gene, AmphiMsx, is expressed in the neural plate from late gastrulation; in later embryos it is expressed in dorsal cells of the neural tube, excluding anterior and posterior regions, in an irregular reiterated pattern. There is transient expression in dorsal cells within somites, reminiscent of migrating neural crest cells of vertebrates. In larvae, mRNA is detected in two patches of anterior ectoderm proposed to be placodes. Evolutionary analyses show there is little phylogenetic information in Msx protein sequences; however, it is likely that duplication of Msx genes occurred in the vertebrate lineage.

  19. Msx and dlx homeogene expression in epithelial odontogenic tumors.

    PubMed

    Ruhin-Poncet, Blandine; Ghoul-Mazgar, Sonia; Hotton, Dominique; Capron, Frédérique; Jaafoura, Mohamed Habib; Goubin, Gérard; Berdal, Ariane

    2009-01-01

    Epithelial odontogenic tumors are rare jaw pathologies that raise clinical diagnosis and prognosis dilemmas notably between ameloblastomas and clear cell odontogenic carcinomas (CCOCs). In line with previous studies, the molecular determinants of tooth development-amelogenin, Msx1, Msx2, Dlx2, Dlx3, Bmp2, and Bmp4-were analyzed by RT-PCR, ISH, and immunolabeling in 12 recurrent ameloblastomas and in one case of CCOC. Although Msx1 expression imitates normal cell differentiation in these tumors, other genes showed a distinct pattern depending on the type of tumor and the tissue involved. In benign ameloblastomas, ISH localized Dlx3 transcripts and inconstantly detected Msx2 transcripts in epithelial cells. In the CCOC, ISH established a lack of both Dlx3 and Msx2 transcripts but allowed identification of the antisense transcript of Msx1, which imitates the same scheme of distribution between mesenchyme and epithelium as in the cup stage of tooth development. Furthermore, while exploring the expression pattern of signal molecules by RT-PCR, Bmp2 was shown to be completely inactivated in the CCOC and irregularly noticeable in ameloblastomas. Bmp4 was always expressed in all the tumors. Based on the established roles of Msx and Dlx transcription factors in dental cell fates, these data suggest that their altered expression is a proposed trail to explain the genesis and/or the progression of odontogenic tumors.

  20. Interactions between Bmp-4 and Msx-1 act to restrict gene expression to odontogenic mesenchyme.

    PubMed

    Tucker, A S; Al Khamis, A; Sharpe, P T

    1998-08-01

    Tooth development is regulated by a reciprocal series of epithelial-mesenchymal interactions. Bmp4 has been identified as a candidate signalling molecule in these interactions, initially as an epithelial signal and then later at the bud stage as a mesenchymal signal (Vainio et al. [1993] Cell 75:45-58). A target gene for Bmp4 signalling is the homeobox gene Msx-1, identified by the ability of recombinant Bmp4 protein to induce expression in mesenchyme. There is, however, no evidence that Bmp4 is the endogenous inducer of Msx-1 expression. Msx-1 and Bmp-4 show dynamic, interactive patterns of expression in oral epithelium and ectomesenchyme during the early stages of tooth development. In this study, we compare the temporal and spatial expression of these two genes to determine whether the changing expression patterns of these genes are consistent with interactions between the two molecules. We show that changes in Bmp-4 expression precede changes in Msx-1 expression. At embryonic day (E)10.5-E11.0, expression patterns are consistent with BMP4 from the epithelium, inducing or maintaining Msx-1 in underlying mesenchyme. At E11.5, Bmp-4 expression shifts from epithelium to mesenchyme and is rapidly followed by localised up-regulation of Msx-1 expression at the sites of Bmp-4 expression. Using cultured explants of developing mandibles, we confirm that exogenous BMP4 is capable of replacing the endogenous source in epithelium and inducing Msx-1 gene expression in mesenchyme. By using noggin, a BMP inhibitor, we show that endogenous Msx-1 expression can be inhibited at E10.5 and E11.5, providing the first evidence that endogenous Bmp-4 from the epithelium is responsible for regulating the early spatial expression of Msx-1. We also show that the mesenchymal shift in Bmp-4 is responsible for up-regulating Msx-1 specifically at the sites of future tooth formation. Thus, we establish that a reciprocal series of interactions act to restrict expression of both genes to future sites of tooth formation, creating a positive feedback loop that maintains expression of both genes in tooth mesenchymal cells.

  1. Conservation and diversification of Msx protein in metazoan evolution.

    PubMed

    Takahashi, Hirokazu; Kamiya, Akiko; Ishiguro, Akira; Suzuki, Atsushi C; Saitou, Naruya; Toyoda, Atsushi; Aruga, Jun

    2008-01-01

    Msx (/msh) family genes encode homeodomain (HD) proteins that control ontogeny in many animal species. We compared the structures of Msx genes from a wide range of Metazoa (Porifera, Cnidaria, Nematoda, Arthropoda, Tardigrada, Platyhelminthes, Mollusca, Brachiopoda, Annelida, Echiura, Echinodermata, Hemichordata, and Chordata) to gain an understanding of the role of these genes in phylogeny. Exon-intron boundary analysis suggested that the position of the intron located N-terminally to the HDs was widely conserved in all the genes examined, including those of cnidarians. Amino acid (aa) sequence comparison revealed 3 new evolutionarily conserved domains, as well as very strong conservation of the HDs. Two of the three domains were associated with Groucho-like protein binding in both a vertebrate and a cnidarian Msx homolog, suggesting that the interaction between Groucho-like proteins and Msx proteins was established in eumetazoan ancestors. Pairwise comparison among the collected HDs and their C-flanking aa sequences revealed that the degree of sequence conservation varied depending on the animal taxa from which the sequences were derived. Highly conserved Msx genes were identified in the Vertebrata, Cephalochordata, Hemichordata, Echinodermata, Mollusca, Brachiopoda, and Anthozoa. The wide distribution of the conserved sequences in the animal phylogenetic tree suggested that metazoan ancestors had already acquired a set of conserved domains of the current Msx family genes. Interestingly, although strongly conserved sequences were recovered from the Vertebrata, Cephalochordata, and Anthozoa, the sequences from the Urochordata and Hydrozoa showed weak conservation. Because the Vertebrata-Cephalochordata-Urochordata and Anthozoa-Hydrozoa represent sister groups in the Chordata and Cnidaria, respectively, Msx sequence diversification may have occurred differentially in the course of evolution. We speculate that selective loss of the conserved domains in Msx family proteins contributed to the diversification of animal body organization.

  2. Anti-glycation and anti-oxidative effects of a phenolic-enriched maple syrup extract and its protective effects on normal human colon cells.

    PubMed

    Liu, Weixi; Wei, Zhengxi; Ma, Hang; Cai, Ang; Liu, Yongqiang; Sun, Jiadong; DaSilva, Nicholas A; Johnson, Shelby L; Kirschenbaum, Louis J; Cho, Bongsup P; Dain, Joel A; Rowley, David C; Shaikh, Zahir A; Seeram, Navindra P

    2017-02-22

    Oxidative stress and free radical generation accelerate the formation of advanced glycation endproducts (AGEs) which are linked to several chronic diseases. Published data suggest that phenolic-rich plant foods, show promise as natural anti-AGEs agents due to their anti-oxidation capacities. A phenolic-enriched maple syrup extract (MSX) has previously been reported to show anti-inflammatory and neuroprotective effects but its anti-AGE effects remain unknown. Therefore, herein, we investigated the anti-glycation and anti-oxidation effects of MSX using biochemical and biophysical methods. MSX (500 μg mL -1 ) reduced the formation of AGEs by 40% in the bovine serum albumin (BSA)-fructose assay and by 30% in the BSA-methylglyoxal (MGO) assay. MSX also inhibited the formation of crosslinks typically seen in the late stage of glycation. Circular dichroism and differential scanning calorimeter analyses demonstrated that MSX maintained the structure of BSA during glycation. In the anti-oxidant assays, MSX (61.7 μg mL -1 ) scavenged 50% of free radicals (DPPH assay) and reduced free radical generation by 20% during the glycation process (electron paramagnetic resonance time scan). In addition, the intracellular levels of hydrogen peroxide induced reactive oxygen species were reduced by 27-58% with MSX (50-200 μg mL -1 ) in normal/non-tumorigenic human colon CCD-18Co cells. Moreover, in AGEs and MGO challenged CCD-18Co cells, higher cellular viabilities and rapid extracellular signal-regulated kinase (ERK) phosphorylation were observed in MSX treated cells, indicating its protective effects against AGEs-induced cytotoxicity. Overall, this study supports the biological effects of MSX, and warrants further investigation of its potential as a dietary agent against diseases mediated by oxidative stress and inflammation.

  3. Transcriptional control of the tissue-specific, developmentally regulated osteocalcin gene requires a binding motif for the Msx family of homeodomain proteins.

    PubMed

    Hoffmann, H M; Catron, K M; van Wijnen, A J; McCabe, L R; Lian, J B; Stein, G S; Stein, J L

    1994-12-20

    The OC box of the rat osteocalcin promoter (nt -99 to -76) is the principal proximal regulatory element contributing to both tissue-specific and developmental control of osteocalcin gene expression. The central motif of the OC box includes a perfect consensus DNA binding site for certain homeodomain proteins. Homeodomain proteins are transcription factors that direct proper development by regulating specific temporal and spatial patterns of gene expression. We therefore addressed the role of the homeodomain binding motif in the activity of the OC promoter. In this study, by the combined application of mutagenesis and site-specific protein recognition analysis, we examined interactions of ROS 17/2.8 osteosarcoma cell nuclear proteins and purified Msx-1 homeodomain protein with the OC box. We detected a series of related specific protein-DNA interactions, a subset of which were inhibited by antibodies directed against the Msx-1 homeodomain but which also recognize the Msx-2 homeodomain. Our results show that the sequence requirements for binding the Msx-1 or Msx-2 homeodomain closely parallel those necessary for osteocalcin gene promoter activity in vivo. This functional relationship was demonstrated by transient expression in ROS 17/2.8 osteosarcoma cells of a series of osteocalcin promoter (nt -1097 to +24)-reporter gene constructs containing mutations within and flanking the homeodomain binding site of the OC box. Northern blot analysis of several bone-related cell types showed that all of the cells expressed msx-1, whereas msx-2 expression was restricted to cells transcribing osteocalcin. Taken together, our results suggest a role for Msx-1 and -2 or related homeodomain proteins in transcription of the osteocalcin gene.

  4. Chemical compositional, biological, and safety studies of a novel maple syrup derived extract for nutraceutical applications.

    PubMed

    Zhang, Yan; Yuan, Tao; Li, Liya; Nahar, Pragati; Slitt, Angela; Seeram, Navindra P

    2014-07-16

    Maple syrup has nutraceutical potential given the macronutrients (carbohydrates, primarily sucrose), micronutrients (minerals and vitamins), and phytochemicals (primarily phenolics) found in this natural sweetener. We conducted compositional (ash, fiber, carbohydrates, minerals, amino acids, organic acids, vitamins, phytochemicals), in vitro biological, and in vivo safety (animal toxicity) studies on maple syrup extracts (MSX-1 and MSX-2) derived from two declassified maple syrup samples. Along with macronutrient and micronutrient quantification, thirty-three phytochemicals were identified (by HPLC-DAD), and nine phytochemicals, including two new compounds, were isolated and identified (by NMR) from MSX. At doses of up to 1000 mg/kg/day, MSX was well tolerated with no signs of overt toxicity in rats. MSX showed antioxidant (2,2-diphenyl-1-picrylhydrazyl (DPPH) assay) and anti-inflammatory (in RAW 264.7 macrophages) effects and inhibited glucose consumption (by HepG2 cells) in vitro. Thus, MSX should be further investigated for potential nutraceutical applications given its similarity in chemical composition to pure maple syrup.

  5. Chemical Compositional, Biological, and Safety Studies of a Novel Maple Syrup Derived Extract for Nutraceutical Applications

    PubMed Central

    2015-01-01

    Maple syrup has nutraceutical potential given the macronutrients (carbohydrates, primarily sucrose), micronutrients (minerals and vitamins), and phytochemicals (primarily phenolics) found in this natural sweetener. We conducted compositional (ash, fiber, carbohydrates, minerals, amino acids, organic acids, vitamins, phytochemicals), in vitro biological, and in vivo safety (animal toxicity) studies on maple syrup extracts (MSX-1 and MSX-2) derived from two declassified maple syrup samples. Along with macronutrient and micronutrient quantification, thirty-three phytochemicals were identified (by HPLC-DAD), and nine phytochemicals, including two new compounds, were isolated and identified (by NMR) from MSX. At doses of up to 1000 mg/kg/day, MSX was well tolerated with no signs of overt toxicity in rats. MSX showed antioxidant (2,2-diphenyl-1-picrylhydrazyl (DPPH) assay) and anti-inflammatory (in RAW 264.7 macrophages) effects and inhibited glucose consumption (by HepG2 cells) in vitro. Thus, MSX should be further investigated for potential nutraceutical applications given its similarity in chemical composition to pure maple syrup. PMID:24983789

  6. The homeobox gene Msx in development and transdifferentiation of jellyfish striated muscle.

    PubMed

    Galle, Sabina; Yanze, Nathalie; Seipel, Katja

    2005-01-01

    Bilaterian Msx homeobox genes are generally expressed in areas of cell proliferation and in association with multipotent progenitor cells. Likewise, jellyfish Msx is expressed in progenitor cells of the developing entocodon, a cell layer giving rise to the striated and smooth muscles of the medusa. However, in contrast to the bilaterian homologs, Msx gene expression is maintained at high levels in the differentiated striated muscle of the medusa in vivo and in vitro. This tissue exhibits reprogramming competence. Upon induction, the Msx gene is immediately switched off in the isolated striated muscle undergoing transdifferentiation, to be upregulated again in the emerging smooth muscle cells which, in a stem cell like manner, undergo quantal cell divisions producing two cell types, a proliferating smooth muscle cell and a differentiating nerve cell. This study indicates that the Msx protein may be a key component of the reprogramming machinery responsible for the extraordinary transdifferentation and regeneration potential of striated muscle in the hydrozoan jellyfish.

  7. A minimal murine Msx-1 gene promoter. Organization of its cis-regulatory motifs and their role in transcriptional activation in cells in culture and in transgenic mice.

    PubMed

    Takahashi, T; Guron, C; Shetty, S; Matsui, H; Raghow, R

    1997-09-05

    To dissect the cis-regulatory elements of the murine Msx-1 promoter, which lacks a conventional TATA element, a putative Msx-1 promoter DNA fragment (from -1282 to +106 base pairs (bp)) or its congeners containing site-specific alterations were fused to luciferase reporter and introduced into NIH3T3 and C2C12 cells, and the expression of luciferase was assessed in transient expression assays. The functional consequences of the sequential 5' deletions of the promotor revealed that multiple positive and negative regulatory elements participate in regulating transcription of the Msx-1 gene. Surprisingly, however, the optimal expression of Msx-1 promoter in either NIH3T3 or C2C12 cells required only 165 bp of the upstream sequence to warrant detailed examination of its structure. Therefore, the functional consequences of site-specific deletions and point mutations of the cis-acting elements of the minimal Msx-1 promoter were systematically examined. Concomitantly, potential transcriptional factor(s) interacting with the cis-acting elements of the minimal promoter were also studied by gel electrophoretic mobility shift assays and DNase I footprinting. Combined analyses of the minimal promoter by DNase I footprinting, electrophoretic mobility shift assays, and super shift assays with specific antibodies revealed that 5'-flanking regions from -161 to -154 and from -26 to -13 of the Msx-1 promoter contains an authentic E box (proximal E box), capable of binding a protein immunologically related to the upstream stimulating factor 1 (USF-1) and a GC-rich sequence motif which can bind to Sp1 (proximal Sp1), respectively. Additionally, we observed that the promoter activation was seriously hampered if the proximal E box was removed or mutated, and the promoter activity was eliminated completely if the proximal Sp1 site was similarly altered. Absolute dependence of the Msx-1 minimal promoter on Sp1 could be demonstrated by transient expression assays in the Sp1-deficient Drosophila cell line cotransfected with Msx-1-luciferase and an Sp1 expression vector pPacSp1. The transgenic mice embryos containing -165/106-bp Msx-1 promoter-LacZ DNA in their genomes abundantly expressed beta-galactosidase in maxillae and mandibles and in the cellular primordia involved in the formation of the meninges and the bones of the skull. Thus, the truncated murine Msx-1 promoter can target expression of a heterologous gene in the craniofacial tissues of transgenic embryos known for high level of expression of the endogenous Msx-1 gene and found to be severely defective in the Msx-1 knock-out mice.

  8. Msx2 Prevents Stratified Squamous Epithelium Formation in the Enamel Organ.

    PubMed

    Nakatomi, M; Ida-Yonemochi, H; Nakatomi, C; Saito, K; Kenmotsu, S; Maas, R L; Ohshima, H

    2018-06-01

    Tooth enamel is manufactured by the inner enamel epithelium of the multilayered enamel organ. Msx2 loss-of-function mutation in a mouse model causes an abnormal accumulation of epithelial cells in the enamel organ, but the underlying mechanism by which Msx2 regulates amelogenesis is poorly understood. We therefore performed detailed histological and molecular analyses of Msx2 null mice. Msx2 null ameloblasts and stratum intermedium (SI) cells differentiated normally in the early stages of amelogenesis. However, during subsequent developmental stages, the outer enamel epithelium (OEE) became highly proliferative and transformed into a keratinized stratified squamous epithelium that ectopically expressed stratified squamous epithelium markers, including Heat shock protein 25, Loricrin, and Keratin 10. Moreover, expression of hair follicle-specific keratin genes such as Keratin 26 and Keratin 73 was upregulated in the enamel organ of Msx2 mutants. With the accumulation of keratin in the stellate reticulum (SR) region and subsequent odontogenic cyst formation, SI cells gradually lost the ability to differentiate, and the expression of Sox2 and Notch1 was downregulated, leading to ameloblast depolarization. As a consequence, the organization of the Msx2 mutant enamel organ became disturbed and enamel failed to form in the normal location. Instead, there was ectopic mineralization that likely occurred within the SR. In summary, we show that during amelogenesis, Msx2 executes a bipartite function, repressing the transformation of OEE into a keratinized stratified squamous epithelium while simultaneously promoting the development of a properly differentiated enamel organ competent for enamel formation.

  9. Msx and Dlx Homeogene Expression in Epithelial Odontogenic Tumors

    PubMed Central

    Ruhin-Poncet, Blandine; Ghoul-Mazgar, Sonia; Hotton, Dominique; Capron, Frédérique; Jaafoura, Mohamed Habib; Goubin, Gérard; Berdal, Ariane

    2009-01-01

    Epithelial odontogenic tumors are rare jaw pathologies that raise clinical diagnosis and prognosis dilemmas notably between ameloblastomas and clear cell odontogenic carcinomas (CCOCs). In line with previous studies, the molecular determinants of tooth development—amelogenin, Msx1, Msx2, Dlx2, Dlx3, Bmp2, and Bmp4—were analyzed by RT-PCR, ISH, and immunolabeling in 12 recurrent ameloblastomas and in one case of CCOC. Although Msx1 expression imitates normal cell differentiation in these tumors, other genes showed a distinct pattern depending on the type of tumor and the tissue involved. In benign ameloblastomas, ISH localized Dlx3 transcripts and inconstantly detected Msx2 transcripts in epithelial cells. In the CCOC, ISH established a lack of both Dlx3 and Msx2 transcripts but allowed identification of the antisense transcript of Msx1, which imitates the same scheme of distribution between mesenchyme and epithelium as in the cup stage of tooth development. Furthermore, while exploring the expression pattern of signal molecules by RT-PCR, Bmp2 was shown to be completely inactivated in the CCOC and irregularly noticeable in ameloblastomas. Bmp4 was always expressed in all the tumors. Based on the established roles of Msx and Dlx transcription factors in dental cell fates, these data suggest that their altered expression is a proposed trail to explain the genesis and/or the progression of odontogenic tumors. (J Histochem Cytochem 57:69–78, 2009) PMID:18854600

  10. Effect of glutathione on phytochelatin synthesis in tomato cells. [Lycopersicon esculentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendum, M.L.; Gupta, S.C.; Goldsbrough, P.B.

    Growth of cell suspension cultures of tomato, Lycopersicon esculentum Mill. cv VFNT-Cherry, in the presence of cadmium is inhibited by buthionine sulfoximine, an inhibitor of glutathione synthesis. Cell growth and phytochelatin synthesis are restored to cells treated with buthionine sulfoximine by the addition of glutathione to the medium. Glutathione stimulates the accumulation of phytochelatins in cadmium treated cells, indicating that availability of glutathione can limit synthesis of these peptides. Exogenous glutathione causes a disproportionate increase in the level of smaller phytochelatins, notably ({gamma}-Glu-Cys){sub 2}-Gly. In the presence of buthionine sulfoximine and glutathione, phytochelatins that are produced upon exposure to cadmiummore » incorporate little ({sup 35}S)cysteine, indicating that these peptides are probably not synthesized by sequential addition of cysteine and glutamate to glutathione.« less

  11. Prediction and characterisation of a highly conserved, remote and cAMP responsive enhancer that regulates Msx1 gene expression in cardiac neural crest and outflow tract.

    PubMed

    Miller, Kerry Ann; Davidson, Scott; Liaros, Angela; Barrow, John; Lear, Marissa; Heine, Danielle; Hoppler, Stefan; MacKenzie, Alasdair

    2008-05-15

    Double knockouts of the Msx1 and Msx2 genes in the mouse result in severe cardiac outflow tract malformations similar to those frequently found in newborn infants. Despite the known role of the Msx genes in cardiac formation little is known of the regulatory systems (ligand receptor, signal transduction and protein-DNA interactions) that regulate the tissue-specific expression of the Msx genes in mammals during the formation of the outflow tract. In the present study we have used a combination of multi-species comparative genomics, mouse transgenic analysis and in-situ hybridisation to predict and validate the existence of a remote ultra-conserved enhancer that supports the expression of the Msx1 gene in migrating mouse cardiac neural crest and the outflow tract primordia. Furthermore, culturing of embryonic explants derived from transgenic lines with agonists of the PKC and PKA signal transduction systems demonstrates that this remote enhancer is influenced by PKA but not PKC dependent gene regulatory systems. These studies demonstrate the efficacy of combining comparative genomics and transgenic analyses and provide a platform for the study of the possible roles of Msx gene mis-regulation in the aetiology of congenital heart malformation.

  12. Ectopic expression of Msx-2 in posterior limb bud mesoderm impairs limb morphogenesis while inducing BMP-4 expression, inhibiting cell proliferation, and promoting apoptosis.

    PubMed

    Ferrari, D; Lichtler, A C; Pan, Z Z; Dealy, C N; Upholt, W B; Kosher, R A

    1998-05-01

    During early stages of chick limb development, the homeobox-containing gene Msx-2 is expressed in the mesoderm at the anterior margin of the limb bud and in a discrete group of mesodermal cells at the midproximal posterior margin. These domains of Msx-2 expression roughly demarcate the anterior and posterior boundaries of the progress zone, the highly proliferating posterior mesodermal cells underneath the apical ectodermal ridge (AER) that give rise to the skeletal elements of the limb and associated structures. Later in development as the AER loses its activity, Msx-2 expression expands into the distal mesoderm and subsequently into the interdigital mesenchyme which demarcates the developing digits. The domains of Msx-2 expression exhibit considerably less proliferation than the cells of the progress zone and also encompass several regions of programmed cell death including the anterior and posterior necrotic zones and interdigital mesenchyme. We have thus suggested that Msx-2 may be in a regulatory network that delimits the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed. In the present study we show that ectopic expression of Msx-2 via a retroviral expression vector in the posterior mesoderm of the progress zone from the time of initial formation of the limb bud severely impairs limb morphogenesis. Msx-2-infected limbs are typically very narrow along the anteroposterior axis, are occasionally truncated, and exhibit alterations in the pattern of formation of skeletal elements, indicating that as a consequence of ectopic Msx-2 expression the morphogenesis of large portions of the posterior mesoderm has been suppressed. We further show that Msx-2 impairs limb morphogenesis by reducing cell proliferation and promoting apoptosis in the regions of the posterior mesoderm in which it is ectopically expressed. The domains of ectopic Msx-2 expression in the posterior mesoderm also exhibit ectopic expression of BMP-4, a secreted signaling molecule that is coexpressed with Msx-2 during normal limb development in the anterior limb mesoderm, the posterior necrotic zone, and interdigital mesenchyme. This indicates that Msx-2 regulates BMP-4 expression and that the suppressive effects of Msx-2 on limb morphogenesis might be mediated in part by BMP-4. These studies indicate that during normal limb development Msx-2 is a key component of a regulatory network that delimits the boundaries of the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed, thus restricting the outgrowth and formation of skeletal elements and associated structures to the progress zone. We also report that rather large numbers of apoptotic cells as well as proliferating cells are present throughout the AER during all stages of normal limb development we have examined, indicating that many of the cells of the AER are continuously undergoing programmed cell death at the same time that new AER cells are being generated by cell proliferation. Thus, a balance between cell proliferation and programmed cell death may play a very important role in maintaining the activity of the AER. Copyright 1998 Academic Press.

  13. Comparison of bare and amino modified mesoporous silica@poly(ethyleneimine)s xerogel as indomethacin carrier: Superiority of amino modification.

    PubMed

    Li, Jing; Xu, Lu; Wang, Hongyu; Yang, Baixue; Liu, Hongzhuo; Pan, Weisan; Li, Sanming

    2016-02-01

    The purpose of this study was to facilely develop amino modified mesoporous silica xerogel synthesized using biomimetic method (B-AMSX) and to investigate its potential ability to be a drug carrier for loading poorly water-soluble drug indomethacin (IMC). For comparison, mesoporous silica xerogel without amino modification (B-MSX) was also synthesized using the same method. The changes of characteristics before and after IMC loading were systemically studied using fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS) and nitrogen adsorption/desorption analysis. The results showed that B-MSX and B-AMSX were spherical nanoparticles with mesoporous structure. Compared with B-MSX, IMC loading capacity of B-AMSX was higher because more drug molecules can be loaded through stronger hydrogen bonding force. DSC and SAXS analysis confirmed the amorphous state of IMC after being loaded into B-MSX and B-AMSX. The in vitro drug release study revealed that B-MSX and B-AMSX improved IMC release significantly, and B-AMSX released IMC a little faster than B-MSX because of larger pore diameter of IMC-AMSX. B-MSX and B-AMSX degraded gradually in dissolution medium evidenced by color reaction and absorbance value, and B-AMSX degraded slower than B-MSX due to amino modification. In conclusion, B-AMSX with superiority of higher loading capacity and enhanced dissolution release can be considered to be a good candidate as drug carrier for IMC. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB.

    PubMed

    López-Berges, Manuel S; Rispail, Nicolas; Prados-Rosales, Rafael C; Di Pietro, Antonio

    2010-07-01

    During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions are repressed by the preferred nitrogen source ammonium and restored by treatment with l-methionine sulfoximine or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR, respectively. Deletion of the bZIP protein MeaB also resulted in nitrogen source-independent activation of virulence mechanisms. Activation of these functions did not require the global nitrogen regulator AreA, suggesting that MeaB-mediated repression of virulence functions does not act through inhibition of AreA. Tomato plants (Solanum lycopersicum) supplied with ammonium rather than nitrate showed a significant reduction in vascular wilt symptoms when infected with the wild type but not with the DeltameaB strain. Nitrogen source also affected invasive growth in the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. We propose that a conserved nitrogen-responsive pathway might operate via TOR and MeaB to control virulence in plant pathogenic fungi.

  15. VizieR Online Data Catalog: IR-bright MSX sources in the SMC with Spitzer/IRS (Kraemer+, 2017)

    NASA Astrophysics Data System (ADS)

    Kraemer, K. E.; Sloan, G. C.; Wood, P. R.; Jones, O. C.; Egan, M. P.

    2017-07-01

    Our original set of infrared spectra of MSX SMC sources was obtained in Spitzer Cycle 1 (Program ID 3277, P.I. M. Egan). This program included 35 targets from the MSX SMC catalog. 24 targets were discussed in previous papers; this paper examines the remaining 11 sources in the sample. We also selected 4 objects in the MSX SMC catalog with similar photometric characteristics in an effort to uncover additional sources with crystalline dust. We observed these targets in Spitzer Cycle 3 (Program ID 30355, P.I. J. Houck). See tables 1 and 2 for observation data and basic properties of the targets. Table 3 lists 20 additional MSX SMC sources that were observed by other Spitzer IRS programs. Overall, 59 MSX SMC sources were observed with the IRS. The spectra were observed using the low-resolution modules of the IRS, Short-Low (SL) and Long-Low (LL), which provided spectra in the 5-14 and 14-37um ranges, respectively, at a resolution between ~60 and 120. For 10 evolved stars with oxygen-rich dust in our Cycle 1 program, we obtained spectra from 0.45 to 1.03um with the Double-Beam Spectrograph at the 2.3m telescope of the Australian National University at Siding Spring Observatory. A 0.45-0.89um spectrum for one of the stars in program 30355 was also observed. These spectra have a resolution of 10Å. Tables 5-7: catalog based on the 243 sources detected in the MSX survey of the SMC, updated with positions and photometry from more recent space-based missions and ground-based surveys. See the Appendix section for more details. The SMC catalog from MSX consists of the 243 sources in the main MSX catalog (Egan+ 2003, see V/114) that lie within the region 7°

  16. 76 FR 27669 - Automotive Components Holdings, LLC, a Subsidiary of Ford Motor Company, Saline Plant Division...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... Were Reported Under Ford Company, Visteon, MSX International, W.J. O'Neil Company, and Unibar, Saline... workers whose wages were reported under Ford Company, Visteon, MSX International, W.J. O'Neil Company, and... under Ford Company, Visteon, MSX International, W.J. O'Neil Company, and Unibar, meet the certification...

  17. Differential regulation of msx genes in the development of the gonopodium, an intromittent organ, and of the "sword," a sexually selected trait of swordtail fishes (Xiphophorus).

    PubMed

    Zauner, Hans; Begemann, Gerrit; Marí-Beffa, Manuel; Meyer, Axel

    2003-01-01

    The possession of a conspicuous extension of colored ventral rays of the caudal fin in male fish of swordtails (genus Xiphophorus) is a prominent example for a trait that evolved by sexual selection. To understand the evolutionary history of this so-called sword molecularly, it is of interest to unravel the developmental pathways responsible for extended growth of sword rays during development of swordtail males. We isolated two msx genes and showed that they are differentially regulated during sword outgrowth. During sword growth in juvenile males, as well as during testosterone-induced sword development and fin ray regeneration in the sword after amputation, expression of msxC is markedly up-regulated in the sword forming fin rays. In contrast, msxE/1 is not differentially expressed in ventral and dorsal male fin rays, suggesting a link between the development of male secondary sexual characters in fins and up-regulation of msxC expression. In addition, we showed that msx gene expression patterns differ significantly between Xiphophorus and zebrafish. We also included in our study the gonopodium, a testosterone-dependent anal fin modification that serves as a fertilization organ in males of live-bearing fishes. Our finding that increased levels of msxC expression are associated with the testosterone-induced outgrowth of the gonopodium might suggest either that at least parts of the signaling pathways that pattern the evolutionary older gonopodium have been coopted to evolve a sexually selected innovation such as the sword or that increased msxC expression may be inherent to the growth process of long fin rays in general.

  18. Maitake mushroom (Grifola frondosa) extract induces ovulation in patients with polycystic ovary syndrome: a possible monotherapy and a combination therapy after failure with first-line clomiphene citrate.

    PubMed

    Chen, Jui-Tung; Tominaga, Kunihiko; Sato, Yoshiaki; Anzai, Hideo; Matsuoka, Ryo

    2010-12-01

    Insulin resistance is a prominent feature of polycystic ovary syndrome (PCOS), and insulin-sensitizing drugs are used to induce ovulation. Recently, it was reported that an extract from Maitake mushroom (Grifola frondosa) improves insulin resistance. The objective was to explore the effects of Maitake extract (SX-fraction: MSX) to induce ovulation in patients with PCOS in comparison with and in combination with clomiphene citrate (CC). We conducted an open trial with 80 patients with PCOS at three clinics in Japan. Seventy-two (72) new patients were randomly assigned to receive MSX or CC monotherapy for up to 12 weeks. Eighteen (18) patients who did not respond to MSX or CC were subjected to combination therapy of MSX and CC for up to 16 weeks. Eight (8) patients with documented history of failure to CC received combination therapy from the beginning. Ovulation was assessed by ultrasonography. Twenty-six (26) patients in the MSX group and 31 in the CC group were evaluated for ovulation. The ovulation rates for MSX and CC were as follows: 76.9% (20/26) and 93.5% (29/31), respectively by the patients (NS), and 41.7% (30/72) and 69.9% (58/83), respectively, by the cycles (p = 0.0006). In the combination therapy, 7 of 7 patients who failed in MSX monotherapy and 6 of 8 patients who failed in CC monotherapy showed ovulation. The present study suggests that MSX alone may induce ovulation in PCOS patients and may be useful as an adjunct therapy for patients who failed first-line CC treatment.

  19. VizieR Online Data Catalog: The Red MSX Source Survey: massive protostars (Lumsden+, 2013)

    NASA Astrophysics Data System (ADS)

    Lumsden, S. L.; Hoare, M. G.; Urquhart, J. S.; Oudmaijer, R. D.; Davies, B.; Mottram, J. C.; Cooper, H. D. B.; Moore, T. J. T.

    2013-10-01

    The Midcourse Space Experiment (MSX) satellite mission included an astronomy experiment (SPIRIT III) designed to acquire mid-infrared photometry of sources in the Galactic plane (b<5°). MSX had a raw resolution of 18.3", a beam size 50 times smaller than that of IRAS at 12 and 25um. MSX observed six bands between 4 and 21um, of which the four between 8 and 21um are sensitive to astronomical sources. We used v2.3 of the MSX PSC (Egan et al. 2003, Cat. V/114) as our basic input, restricting ourselves to the main Galactic plane catalog, which excludes sources seen in only a single observing pass and those seen in multiple passes but with low significance. We restricted our catalog to 10

  20. Roles for Msx and Dlx homeoproteins in vertebrate development.

    PubMed

    Bendall, A J; Abate-Shen, C

    2000-04-18

    This review provides a comparative analysis of the expression patterns, functions, and biochemical properties of Msx and Dlx homeobox genes. These comprise multi-gene families that are closely related with respect to sequence features as well as expression patterns during vertebrate development. Thus, members of the Msx and Dlx families are expressed in overlapping, but distinct, patterns and display complementary or antagonistic functions, depending upon the context. A common theme shared among Msx and Dlx genes is that they are required during early, middle, and late phases of development where their differential expression mediates patterning, morphogenesis, and histogenesis of tissues in which they are expressed. With respect to their biochemical properties, Msx proteins function as transcriptional repressors, while Dlx proteins are transcriptional activators. Moreover, their ability to oppose each other's transcriptional actions implies a mechanism underlying their complementary or antagonistic functions during development.

  1. Midcourse Space Experiment (MSX)

    DTIC Science & Technology

    1992-08-01

    Facility (PCF), on South Base. The PPF houses the MSX spacecraft for the prelaunch operations (installation of payload fairing, battery charging , etc...include: unpacking the spacecraft from its shipping container; charging the onboard nickel-hydrogen batteries ; filling the cryostat with solid...activities, and will remain in orbit for several hundred years. The MSX spacecraft is solar powered with a battery backup. The battery is capable of

  2. The zebrafish genome: a review and msx gene case study.

    PubMed

    Postlethwait, J H

    2006-01-01

    Zebrafish is one of several important teleost models for understanding principles of vertebrate developmental, molecular, organismal, genetic, evolutionary, and genomic biology. Efficient investigation of the molecular genetic basis of induced mutations depends on knowledge of the zebrafish genome. Principles of zebrafish genomic analysis, including gene mapping, ortholog identification, conservation of syntenies, genome duplication, and evolution of duplicate gene function are discussed here using as a case study the zebrafish msxa, msxb, msxc, msxd, and msxe genes, which together constitute zebrafish orthologs of tetrapod Msx1, Msx2, and Msx3. Genomic analysis suggests orthologs for this difficult to understand group of paralogs.

  3. Novel human mutation and CRISPR/Cas genome-edited mice reveal the importance of C-terminal domain of MSX1 in tooth and palate development

    PubMed Central

    Mitsui, Silvia Naomi; Yasue, Akihiro; Masuda, Kiyoshi; Naruto, Takuya; Minegishi, Yoshiyuki; Oyadomari, Seiichi; Noji, Sumihare; Imoto, Issei; Tanaka, Eiji

    2016-01-01

    Several mutations, located mainly in the MSX1 homeodomain, have been identified in non-syndromic tooth agenesis predominantly affecting premolars and third molars. We identified a novel frameshift mutation of the highly conserved C-terminal domain of MSX1, known as Msx homology domain 6 (MH6), in a Japanese family with non-syndromic tooth agenesis. To investigate the importance of MH6 in tooth development, Msx1 was targeted in mice with CRISPR/Cas system. Although heterozygous MH6 disruption did not alter craniofacial development, homozygous mice exhibited agenesis of lower incisors with or without cleft palate at E16.5. In addition, agenesis of the upper third molars and the lower second and third molars were observed in 4-week-old mutant mice. Although the upper second molars were present, they were abnormally small. These results suggest that the C-terminal domain of MSX1 is important for tooth and palate development, and demonstrate that that CRISPR/Cas system can be used as a tool to assess causality of human disorders in vivo and to study the importance of conserved domains in genes. PMID:27917906

  4. Novel human mutation and CRISPR/Cas genome-edited mice reveal the importance of C-terminal domain of MSX1 in tooth and palate development.

    PubMed

    Mitsui, Silvia Naomi; Yasue, Akihiro; Masuda, Kiyoshi; Naruto, Takuya; Minegishi, Yoshiyuki; Oyadomari, Seiichi; Noji, Sumihare; Imoto, Issei; Tanaka, Eiji

    2016-12-05

    Several mutations, located mainly in the MSX1 homeodomain, have been identified in non-syndromic tooth agenesis predominantly affecting premolars and third molars. We identified a novel frameshift mutation of the highly conserved C-terminal domain of MSX1, known as Msx homology domain 6 (MH6), in a Japanese family with non-syndromic tooth agenesis. To investigate the importance of MH6 in tooth development, Msx1 was targeted in mice with CRISPR/Cas system. Although heterozygous MH6 disruption did not alter craniofacial development, homozygous mice exhibited agenesis of lower incisors with or without cleft palate at E16.5. In addition, agenesis of the upper third molars and the lower second and third molars were observed in 4-week-old mutant mice. Although the upper second molars were present, they were abnormally small. These results suggest that the C-terminal domain of MSX1 is important for tooth and palate development, and demonstrate that that CRISPR/Cas system can be used as a tool to assess causality of human disorders in vivo and to study the importance of conserved domains in genes.

  5. Chicken homeobox gene Msx-1: structure, expression in limb buds and effect of retinoic acid.

    PubMed

    Yokouchi, Y; Ohsugi, K; Sasaki, H; Kuroiwa, A

    1991-10-01

    A chicken gene carrying a homeobox highly homologous to the Drosophila muscle segment homeobox (msh) gene was isolated and designated as Msx-1. Conceptual translation from the longest ORF gave a protein of 259 amino acids lacking the conserved hexapeptide. Northern analysis detected a single 2.6 kb transcript. As early as day 2 of incubation, the transcript was detected but was not found in adult tissue. In situ hybridization analysis revealed that Msx-1 expression is closely related to a particular mesenchymal cell lineage during limb bud formation. In early stage embryos, Msx-1 was expressed in the somatopleure. When primordial mesenchyme cells for limb bud were generated from the Wolffian ridge of the somatopleure, Msx-1 expression began to diminish in the posterior half of the limb bud then in the presumptive cartilage-forming mesenchyme. In developing limb buds, remarkable expression was seen in the apical ectodermal ridge (AER), which is responsible for the sustained outgrowth and development of the limb. The Msx-1 transcripts were found in the limb mesenchymal cells in the region covering the necrotic zone and ectodermal cells overlying such mesenchymal cells. Both ectodermal and mesenchymal expression in limb bud were rapidly suppressed by local treatment of retinoic acid which can generate mirror-image duplication of digits. This indicates that retinoic acid alters the marginal presumptive non-cartilage forming mesenchyme cell lineage through suppression of Msx-1 expression.

  6. The MSX1 homeobox transcription factor is a downstream target of PHOX2B and activates the Delta-Notch pathway in neuroblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revet, Ingrid; Huizenga, Gerda; Chan, Alvin

    Neuroblastoma is an embryonal tumour of the peripheral sympathetic nervous system (SNS). One of the master regulator genes for peripheral SNS differentiation, the homeobox transcription factor PHOX2B, is mutated in familiar and sporadic neuroblastomas. Here we report that inducible expression of PHOX2B in the neuroblastoma cell line SJNB-8 down-regulates MSX1, a homeobox gene important for embryonic neural crest development. Inducible expression of MSX1 in SJNB-8 caused inhibition of both cell proliferation and colony formation in soft agar. Affymetrix micro-array and Northern blot analysis demonstrated that MSX1 strongly up-regulated the Delta-Notch pathway genes DLK1, NOTCH3, and HEY1. In addition, the proneuralmore » gene NEUROD1 was down-regulated. Western blot analysis showed that MSX1 induction caused cleavage of the NOTCH3 protein to its activated form, further confirming activation of the Delta-Notch pathway. These experiments describe for the first time regulation of the Delta-Notch pathway by MSX1, and connect these genes to the PHOX2B oncogene, indicative of a role in neuroblastoma biology. Affymetrix micro-array analysis of a neuroblastic tumour series consisting of neuroblastomas and the more benign ganglioneuromas showed that MSX1, NOTCH3 and HEY1 are more highly expressed in ganglioneuromas. This suggests a block in differentiation of these tumours at distinct developmental stages or lineages.« less

  7. Inactivation of Msx1 and Msx2 in neural crest reveals an unexpected role in suppressing heterotopic bone formation in the head

    PubMed Central

    Roybal, Paul G.; Wu, Nancy L.; Sun, Jingjing; Ting, Man-chun; Schaefer, Christopher; Maxson, Robert E.

    2011-01-01

    In an effort to understand the morphogenetic forces that shape the bones of the skull, we inactivated Msx1 and Msx2 conditionally in neural crest. We show that Wnt1-Cre inactivation of up to three Msx1/2 alleles results in a progressively larger defect in the neural crest-derived frontal bone. Unexpectedly, in embryos lacking all four Msx1/2 alleles, the large defect is filled in with mispatterned bone consisting of ectopic islands of bone between the reduced frontal bones, just anterior to the parietal bones. The bone is derived from neural crest, not mesoderm, and, from DiI cell marking experiments, originates in a normally non-osteogenic layer of cells through which the rudiment elongates apically. Associated with the heterotopic osteogeneis is an upregulation of Bmp signaling in this cell layer. Prevention of this upregulation by implantation of noggin-soaked beads in head explants also prevented heterotopic bone formation. These results suggest that Msx genes have a dual role in calvarial development: They are required for the differentiation and proliferation of osteogenic cells within rudiments, and they are also required to suppress an osteogenic program in a cell layer within which the rudiments grow. We suggest that the inactivation of this repressive activity may be one cause of Wormian bones, ectopic bones that are a feature of a variety of pathological conditions in which calvarial bone development is compromised. PMID:20398647

  8. Reduction procedures for accurate analysis of MSX surveillance experiment data

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. Mike; Lane, Mark T.; Abbot, Rick I.

    1994-01-01

    Technical challenges of the Midcourse Space Experiment (MSX) science instruments require careful characterization and calibration of these sensors for analysis of surveillance experiment data. Procedures for reduction of Resident Space Object (RSO) detections will be presented which include refinement and calibration of the metric and radiometric (and photometric) data and calculation of a precise MSX ephemeris. Examples will be given which support the reduction, and these are taken from ground-test data similar in characteristics to the MSX sensors and from the IRAS satellite RSO detections. Examples to demonstrate the calculation of a precise ephemeris will be provided from satellites in similar orbits which are equipped with S-band transponders.

  9. Characterization of a Smad motif similar to Drosophila mad in the mouse Msx 1 promoter.

    PubMed

    Alvarez Martinez, Cristina E; Binato, Renata; Gonzalez, Sayonara; Pereira, Monica; Robert, Benoit; Abdelhay, Eliana

    2002-03-01

    Mouse Msx 1 gene, orthologous of the Drosophila msh, is involved in several developmental processes. BMP family members are major proteins in the regulation of Msx 1 expression. BMP signaling activates Smad 1/5/8 proteins, which associate to Smad 4 before translocating to the nucleus. Analysis of Msx 1 promoter revealed the presence of three elements similar to the consensus established for Mad, the Smad 1 Drosophila counterpart. Notably, such an element was identified in an enhancer important for Msx 1 regulation. Gel shift analysis demonstrated that proteins from 13.5 dpc embryo associate to this enhancer. Remarkably, supershift assays showed that Smad proteins are present in the complex. Purified Smad 1 and 4 also bind to this fragment. We demonstrate that functional binding sites in this enhancer are confined to the Mad motif and flanking region. Our data suggest that this Mad motif may be functional in response to BMP signaling. ©2002 Elsevier Science (USA).

  10. Synthesis and properties of a new water-soluble prodrug of the adenosine A 2A receptor antagonist MSX-2.

    PubMed

    Vollmann, Karl; Qurishi, Ramatullah; Hockemeyer, Jörg; Müller, Christa E

    2008-02-12

    The compound L-valine-3-{8-[(E)-2-[3-methoxyphenyl)ethenyl]-7-methyl-1-propargylxanthine-3-yl}propyl ester hydrochloride (MSX-4) was synthesized as an amino acid ester prodrug of the adenosine A2A receptor antagonist MSX-2. It was found to be stable in artificial gastric acid, but readily cleaved by pig liver esterase.

  11. Developmental regulation of gonadotropin-releasing hormone gene expression by the MSX and DLX homeodomain protein families.

    PubMed

    Givens, Marjory L; Rave-Harel, Naama; Goonewardena, Vinodha D; Kurotani, Reiko; Berdy, Sara E; Swan, Christo H; Rubenstein, John L R; Robert, Benoit; Mellon, Pamela L

    2005-05-13

    Gonadotropin-releasing hormone (GnRH) is the central regulator of the hypothalamic-pituitary-gonadal axis, controlling sexual maturation and fertility in diverse species from fish to humans. GnRH gene expression is limited to a discrete population of neurons that migrate through the nasal region into the hypothalamus during embryonic development. The GnRH regulatory region contains four conserved homeodomain binding sites (ATTA) that are essential for basal promoter activity and cell-specific expression of the GnRH gene. MSX and DLX are members of the Antennapedia class of non-Hox homeodomain transcription factors that regulate gene expression and influence development of the craniofacial structures and anterior forebrain. Here, we report that expression patterns of the Msx and Dlx families of homeodomain transcription factors largely coincide with the migratory route of GnRH neurons and co-express with GnRH in neurons during embryonic development. In addition, MSX and DLX family members bind directly to the ATTA consensus sequences and regulate transcriptional activity of the GnRH promoter. Finally, mice lacking MSX1 or DLX1 and 2 show altered numbers of GnRH-expressing cells in regions where these factors likely function. These findings strongly support a role for MSX and DLX in contributing to spatiotemporal regulation of GnRH transcription during development.

  12. Expression of Dlx-5 and Msx-1 in Craniofacial Skeletons and Ilia of Rats Treated With Zoledronate.

    PubMed

    Xuan, Bin; Yang, Pan; Wu, Shichao; Li, Lin; Zhang, Jian; Zhang, Wenyi

    2017-05-01

    Because of the different embryologic origins of the craniofacial skeleton and ilium, differences in gene expression patterns have been observed between the jaw bones and ilium. Distal-less homeobox (Dlx) genes and Msh homeobox genes, particularly Dlx-5 and Msx-1, play major roles in cell differentiation and osteogenesis. The purpose of this study was to investigate the effects of zoledronate (ZOL) on the craniofacial skeleton and ilium by detecting changes in Dlx-5 and Msx-1 expression at both the protein and messenger RNA levels. A total of 24 female Sprague-Dawley rats were randomly divided into 2 groups: ZOL group (n = 12), in which the rats were injected intraperitoneally with zoledronic acid for 12 weeks, and control group (n = 12), in which the rats were injected with saline solution for 12 weeks. By use of immunohistochemistry, Western blotting, and real-time reverse transcription polymerase chain reaction, the expression levels of Dlx-5 and Msx-1 in the craniofacial skeleton (including the maxilla, mandible, and parietal bone) and ilium were examined. Dlx-5 expression in the maxilla and mandible was increased at the protein and messenger RNA levels in the ZOL group compared with the control group (P < .01). In addition, Msx-1 expression in the maxilla and mandible was decreased in the ZOL group (P < .01). Furthermore, Dlx-5 and Msx-1 expression in the ilium was decreased in the ZOL group (P < .05). However, no significant difference in Dlx-5 or Msx-1 expression in the parietal bone was observed between the 2 groups (P > .05). Site-specific differences in the effects of ZOL on the craniofacial skeleton and ilium could be explained by differently altered tendencies in Dlx-5 and Msx-1 expression. The jaw bones were more susceptible to the effects of ZOL than the parietal bone and ilium. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Morphological diversity of the avian foot is related with the pattern of msx gene expression in the developing autopod.

    PubMed

    Gañan, Y; Macias, D; Basco, R D; Merino, R; Hurle, J M

    1998-04-01

    The formation of the digits in amniota embryos is accompanied by apoptotic cell death of the interdigital mesoderm triggered through BMP signaling. Differences in the intensity of this apoptotic process account for the establishment of the different morphological types of feet observed in amniota (i.e., free-digits, webbed digits, lobulated digits). The molecular basis accounting for the differential pattern of interdigital cell death remains uncertain since the reduction of cell death in species with webbed digits is not accompanied by a parallel reduction in the pattern of expression of bmp genes in the interdigital regions. In this study we show that the duck interdigital web mesoderm exhibits an attenuated response to both BMP-induced apoptosis and TGFbeta-induced chondrogenesis in comparison with species with free digits. The attenuated response to these signals is accompanied by a reduced pattern of expression of msx-1 and msx-2 genes. Local application of FGF in the duck interdigit expands the domain of msx-2 expression but not the domain of msx-1 expression. This change in the expression of msx-2 is followed by a parallel increase in spontaneous and exogenous BMP-induced interdigital cell death, while the chondrogenic response to TGFbetas is unchanged. The regression of AER, as deduced by the pattern of extinction of fgf-8 expression, takes place in a similar fashion in the chick and duck regardless of the differences in interdigital cell death and msx gene expression. Implantation of BMP-beads in the distal limb mesoderm induces AER regression in both the chick and duck. This finding suggests an additional role for BMPs in the physiological regression of the AER. It is proposed that the formation of webbed vs free-digit feet in amniota results from a premature differentiation of the interdigital mesoderm into connective tissue caused by a reduced expression of msx genes in the developing autopod. Copyright 1998 Academic Press.

  14. Overlapping and differential localization of Bmp-2, Bmp-4, Msx-2 and apoptosis in the endocardial cushion and adjacent tissues of the developing mouse heart.

    PubMed

    Abdelwahid, E; Rice, D; Pelliniemi, L J; Jokinen, E

    2001-07-01

    The bone morphogenetic proteins BMP-2 and BMP-4 and the homeobox gene MSX-2 are required for normal development of many embryonic tissues. To elucidate their possible roles during the remodeling of the tubular heart into a fully septated four-chambered heart, we have localized the mRNA of Bmp-2, Bmp-4, Msx-2 and apoptotic cells in the developing mouse heart from embryonic day (E)11 to E17. mRNA was localized by in situ hybridization, and apoptotic cells by TUNEL (TDT-mediated dUTP-biotin nick end-labeling) as well as by transmission electron microscopy. By analyzing adjacent serial sections, we demonstrated that the expression of Msx-2 and Bmp-2 strikingly overlapped in the atrioventricular canal myocardium, in the atrioventricular junctional myocardium, and in the maturing myocardium of the atrioventricular valves. Bmp-4 was expressed in the outflow tract myocardium and in the endocardial cushion of the outflow tract ridges from E12 to E14. Msx-2 appeared in the mesenchyme of the atrioventricular endocardial cushion from E11 to E14, while Bmp-2 and Bmp-4 were detected between E11 and E14. Apoptotic cells were also detected in the mesenchyme of the endocardial cushion between E12 and E14. Our results suggest that BMP-2 and MSX-2 are tightly linked to the formation of the atrioventricular junction and valves and that BMP-4 is involved in the development of the outflow tract myocardium and of the endocardial cushion. In addition, BMP-2, BMP-4 and MSX-2 and apoptosis seem to be associated with differentiation of the endocardial cushion.

  15. Observations of the orbital debris complex by the Midcourse Space Experiment (MSX) satellite

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Anz-Meador, Phillip; Talent, Dave

    1997-01-01

    The midcourse space experiment (MSX) provides the opportunity to observe debris at multiple, simultaneous wavelengths, or in conjunction with other sensors and prior data sets. The instruments onboard MSX include an infrared telescope, an infrared interferometer, a visible telescope, an ultraviolet telescope and a spectroscopic imager. The spacecraft carries calibration spheres for instrument calibration and atmospheric drag studies. The experimental program, the implementation aspects, the data reduction techniques and the preliminary results are described.

  16. Developmental Regulation of Gonadotropin-releasing Hormone Gene Expression by the MSX and DLX Homeodomain Protein Families*

    PubMed Central

    Givens, Marjory L.; Rave-Harel, Naama; Goonewardena, Vinodha D.; Kurotani, Reiko; Berdy, Sara E.; Swan, Christo H.; Rubenstein, John L. R.; Robert, Benoit; Mellon, Pamela L.

    2010-01-01

    Gonadotropin-releasing hormone (GnRH) is the central regulator of the hypothalamic-pituitary-gonadal axis, controlling sexual maturation and fertility in diverse species from fish to humans. GnRH gene expression is limited to a discrete population of neurons that migrate through the nasal region into the hypothalamus during embryonic development. The GnRH regulatory region contains four conserved homeodomain binding sites (ATTA) that are essential for basal promoter activity and cell-specific expression of the GnRH gene. MSX and DLX are members of the Antennapedia class of non-Hox homeodomain transcription factors that regulate gene expression and influence development of the craniofacial structures and anterior forebrain. Here, we report that expression patterns of the Msx and Dlx families of homeodomain transcription factors largely coincide with the migratory route of GnRH neurons and co-express with GnRH in neurons during embryonic development. In addition, MSX and DLX family members bind directly to the ATTA consensus sequences and regulate transcriptional activity of the GnRH promoter. Finally, mice lacking MSX1 or DLX1 and 2 show altered numbers of GnRH-expressing cells in regions where these factors likely function. These findings strongly support a role for MSX and DLX in contributing to spatiotemporal regulation of GnRH transcription during development. PMID:15743757

  17. Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cells.

    PubMed

    Scheller, H V; Huang, B; Hatch, E; Goldsbrough, P B

    1987-12-01

    Cell suspension cultures of tomato, Lycopersicon esculentum Mill. cv VFNT-Cherry, produce phytochelatins (poly[gamma-glutamylcysteinyl]glycines) when exposed to cadmium. The synthesis of these peptides is accompanied by a decline in cellular levels of glutathione. Buthionine sulfoximine, an inhibitor of glutathione synthesis, inhibits the sustained production of phytochelatins. However, phytochelatin synthesis can occur in the presence of buthionine sulfoximine provided that sufficient glutathione is available. These results indicate that glutathione is a substrate for phytochelatin synthesis. The protein synthesis inhibitor cycloheximide does not affect the initial production of phytochelatin.

  18. Use of Competitive PCR to Detect and Quantify Haplosporidium nelsoni Infection (MSX disease) in the Eastern Oyster (Crassostrea virginica).

    PubMed

    Day, J Michael; Franklin, Dean E.; Brown, Bonnie L.

    2000-09-01

    This study was undertaken to develop a quantitative polymerase chain reaction assay that would improve the utility of PCR for detecting Haplosporidium nelsoni (MSX), a serious parasite of the eastern oyster Crassostrea virginica. A competitive PCR sequence was generated from the H. nelsoni small subunit ribosomal DNA fragment, originally described by Stokes and colleagues, that was amplified by the same PCR primers and had similar amplification performance. Assays performed using competitor dilutions ranging from 0.05 to 500 pg/µl DNA were used to test oyster samples designated using histological techniques as having "light" or "heavy" MSX infections. Visual diagnoses were confirmed equally well with three methods: densitometry of ethidium-bromide-stained agarose, densitometry of SYBRGreen-stained polyacrylamide gels, and analysis by GeneScan 3.0 of fluorescent products detected in ultrathin gels. Oysters diagnosed as negative for MSX tested as negative or light by PCR. Oysters with light MSX infections generally had less than 5 pg/µl infectious DNA. Oysters with heavy infections generally corresponded to 5 pg/µl or greater competitor dilutions.

  19. Msx1-Positive Progenitors in the Retinal Ciliary Margin Give Rise to Both Neural and Non-neural Progenies in Mammals.

    PubMed

    Bélanger, Marie-Claude; Robert, Benoit; Cayouette, Michel

    2017-01-23

    In lower vertebrates, stem/progenitor cells located in a peripheral domain of the retina, called the ciliary margin zone (CMZ), cooperate with retinal domain progenitors to build the mature neural retina. In mammals, it is believed that the CMZ lacks neurogenic potential and that the retina develops from one pool of multipotent retinal progenitor cells (RPCs). Here we identify a population of Msx1-expressing progenitors in the mouse CMZ that is both molecularly and functionally distinct from RPCs. Using genetic lineage tracing, we report that Msx1 progenitors have unique developmental properties compared with RPCs. Msx1 lineages contain both neural retina and non-neural ciliary epithelial progenies and overall generate fewer photoreceptors than classical RPC lineages. Furthermore, we show that the endocytic adaptor protein Numb regulates the balance between neural and non-neural fates in Msx1 progenitors. These results uncover a population of CMZ progenitors, distinct from classical RPCs, that also contributes to mammalian retinogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Functional metabolic interactions of human neuron-astrocyte 3D in vitro networks

    PubMed Central

    Simão, Daniel; Terrasso, Ana P.; Teixeira, Ana P.; Brito, Catarina; Sonnewald, Ursula; Alves, Paula M.

    2016-01-01

    The generation of human neural tissue-like 3D structures holds great promise for disease modeling, drug discovery and regenerative medicine strategies. Promoting the establishment of complex cell-cell interactions, 3D culture systems enable the development of human cell-based models with increased physiological relevance, over monolayer cultures. Here, we demonstrate the establishment of neuronal and astrocytic metabolic signatures and shuttles in a human 3D neural cell model, namely the glutamine-glutamate-GABA shuttle. This was indicated by labeling of neuronal GABA following incubation with the glia-specific substrate [2-13C]acetate, which decreased by methionine sulfoximine-induced inhibition of the glial enzyme glutamine synthetase. Cell metabolic specialization was further demonstrated by higher pyruvate carboxylase-derived labeling in glutamine than in glutamate, indicating its activity in astrocytes and not in neurons. Exposure to the neurotoxin acrylamide resulted in intracellular accumulation of glutamate and decreased GABA synthesis. These results suggest an acrylamide-induced impairment of neuronal synaptic vesicle trafficking and imbalanced glutamine-glutamate-GABA cycle, due to loss of cell-cell contacts at synaptic sites. This work demonstrates, for the first time to our knowledge, that neural differentiation of human cells in a 3D setting recapitulates neuronal-astrocytic metabolic interactions, highlighting the relevance of these models for toxicology and better understanding the crosstalk between human neural cells. PMID:27619889

  1. Functional metabolic interactions of human neuron-astrocyte 3D in vitro networks.

    PubMed

    Simão, Daniel; Terrasso, Ana P; Teixeira, Ana P; Brito, Catarina; Sonnewald, Ursula; Alves, Paula M

    2016-09-13

    The generation of human neural tissue-like 3D structures holds great promise for disease modeling, drug discovery and regenerative medicine strategies. Promoting the establishment of complex cell-cell interactions, 3D culture systems enable the development of human cell-based models with increased physiological relevance, over monolayer cultures. Here, we demonstrate the establishment of neuronal and astrocytic metabolic signatures and shuttles in a human 3D neural cell model, namely the glutamine-glutamate-GABA shuttle. This was indicated by labeling of neuronal GABA following incubation with the glia-specific substrate [2-(13)C]acetate, which decreased by methionine sulfoximine-induced inhibition of the glial enzyme glutamine synthetase. Cell metabolic specialization was further demonstrated by higher pyruvate carboxylase-derived labeling in glutamine than in glutamate, indicating its activity in astrocytes and not in neurons. Exposure to the neurotoxin acrylamide resulted in intracellular accumulation of glutamate and decreased GABA synthesis. These results suggest an acrylamide-induced impairment of neuronal synaptic vesicle trafficking and imbalanced glutamine-glutamate-GABA cycle, due to loss of cell-cell contacts at synaptic sites. This work demonstrates, for the first time to our knowledge, that neural differentiation of human cells in a 3D setting recapitulates neuronal-astrocytic metabolic interactions, highlighting the relevance of these models for toxicology and better understanding the crosstalk between human neural cells.

  2. Evidence for NH/sub 4//sup +/ switch-off regulation of nitrogenase activity by bacteria in salt marsh sediments and roots of the grass Spartina alterniflora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoch, D.C.; Whiting, G.J.

    1986-01-01

    The regulatory effect of NH/sub 4//sup +/ on nitrogen fixation in a Spartina alterniflora salt marsh was examined. Acetylene reduction activity (ARA) measured in situ was only partially inhibited by NH/sub 4//sup +/ in both the light and dark after 2 h. In vitro analysis of bulk sediment divided into sediment particles, live and dead roots, and rhizomes showed that microbes associated with sediment and dead roots have a great potential for anaerobic C/sub 2/H/sub 2/ reduction, but only if amended with a carbon source such as mannose. Only live roots had significant rates of ARA without an added carbonmore » source. In sediment, N/sub 2/-fixing mannose enrichment cultures could be distinguished from those enriched by lactate in that only the latter were rapidly inhibited by NH/sub 4//sup +/. Ammonia also inhibited ARA in dead and live roots and in surface-sterilized roots. The rate of this inhibition appeared to be too rapid to be attributed to the repression and subsequent dilution of nitrogenase. The kinetic characteristics of this inhibition and its prevention in root-associated microbes by methionine sulfoximine are consistent with the NH/sub 4//sup +/ switch-off-switch-on mechanism of nitrogenase regulation.« less

  3. A Nitrogen Response Pathway Regulates Virulence Functions in Fusarium oxysporum via the Protein Kinase TOR and the bZIP Protein MeaB[C][W

    PubMed Central

    López-Berges, Manuel S.; Rispail, Nicolas; Prados-Rosales, Rafael C.; Di Pietro, Antonio

    2010-01-01

    During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions are repressed by the preferred nitrogen source ammonium and restored by treatment with l-methionine sulfoximine or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR, respectively. Deletion of the bZIP protein MeaB also resulted in nitrogen source–independent activation of virulence mechanisms. Activation of these functions did not require the global nitrogen regulator AreA, suggesting that MeaB-mediated repression of virulence functions does not act through inhibition of AreA. Tomato plants (Solanum lycopersicum) supplied with ammonium rather than nitrate showed a significant reduction in vascular wilt symptoms when infected with the wild type but not with the ΔmeaB strain. Nitrogen source also affected invasive growth in the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. We propose that a conserved nitrogen-responsive pathway might operate via TOR and MeaB to control virulence in plant pathogenic fungi. PMID:20639450

  4. Elevation of Glucose 6-Phosphate Dehydrogenase Activity Induced by Amplified Insulin Response in Low Glutathione Levels in Rat Liver

    PubMed Central

    Taniguchi, Misako; Mori, Nobuko; Iramina, Chizuru

    2016-01-01

    Weanling male Wistar rats were fed on a 10% soybean protein isolate (SPI) diet for 3 weeks with or without supplementing 0.3% sulfur-containing amino acids (SAA; methionine or cystine) to examine relationship between glutathione (GSH) levels and activities of NADPH-producing enzymes, glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME), in the liver. Of rats on the 10% SPI diet, GSH levels were lower and the enzyme activities were higher than of those fed on an SAA-supplemented diet. Despite the lower GSH level, γ-glutamylcysteine synthetase (γ-GCS) activity was higher in the 10% SPI group than other groups. Examination of mRNAs of G6PD and ME suggested that the GSH-suppressing effect on enzyme induction occurred prior to and/or at transcriptional levels. Gel electrophoresis of G6PD indicated that low GSH status caused a decrease in reduced form and an increase in oxidized form of the enzyme, suggesting an accelerated turnover rate of the enzyme. In primary cultured hepatocytes, insulin response to induce G6PD activity was augmented in low GSH levels manipulated in the presence of buthionine sulfoximine. These findings indicated that elevation of the G6PD activity in low GSH levels was caused by amplified insulin response for expression of the enzyme and accelerated turnover rate of the enzyme molecule. PMID:27597985

  5. Epidermal dysplasia and abnormal hair follicles in transgenic mice overexpressing homeobox gene MSX-2.

    PubMed

    Jiang, T X; Liu, Y H; Widelitz, R B; Kundu, R K; Maxson, R E; Chuong, C M

    1999-08-01

    The homeobox gene Msx-2 is expressed specifically in sites of skin appendage formation. To explore its part in skin morphogenesis, we produced transgenic mice expressing Msx-2 under the control of the cytomegalovirus promoter. The skin of these transgenic mice was flaky, exhibiting desquamation and shorter hairs. Histologic analysis showed thickened epidermis with hyperproliferation, which was restricted to the basal layer. Hyperkeratosis was also evident. A wide zone of suprabasal cells were misaligned and coexpressed keratins 14 and 10. There was reduced expression of integrin beta 1 and DCC in the basal layer. Hair follicles were misaligned with a shrunken matrix region. The dermis showed increased cellularity and empty vacuoles. We suggest that Msx-2 is involved in the growth control of skin and skin appendages.

  6. Expression of Msx-1 is suppressed in bisphosphonate associated osteonecrosis related jaw tissue-etiopathology considerations respecting jaw developmental biology-related unique features

    PubMed Central

    2010-01-01

    Background Bone-destructive disease treatments include bisphosphonates and antibodies against the osteoclast differentiator, RANKL (aRANKL); however, osteonecrosis of the jaw (ONJ) is a frequent side-effect. Current models fail to explain the restriction of bisphosphonate (BP)-related and denosumab (anti-RANKL antibody)-related ONJ to jaws. Msx-1 is exclusively expressed in craniofacial structures and pivotal to cranial neural crest (CNC)-derived periodontal tissue remodeling. We hypothesised that Msx-1 expression might be impaired in bisphosphonate-related ONJ. The study aim was to elucidate Msx-1 and RANKL-associated signal transduction (BMP-2/4, RANKL) in ONJ-altered and healthy periodontal tissue. Methods Twenty ONJ and twenty non-BP exposed periodontal samples were processed for RT-PCR and immunohistochemistry. An automated staining-based alkaline phosphatase-anti-alkaline phosphatase method was used to measure the stained cells:total cell-number ratio (labelling index, Bonferroni adjustment). Real-time RT-PCR was performed on ONJ-affected and healthy jaw periodontal samples (n = 20 each) to quantitatively compare Msx-1, BMP-2, RANKL, and GAPDH mRNA levels. Results Semi-quantitative assessment of the ratio of stained cells showed decreased Msx-1 and RANKL and increased BMP-2/4 (all p < 0.05) expression in ONJ-adjacent periodontal tissue. ONJ tissue also exhibited decreased relative gene expression for Msx-1 (p < 0.03) and RANKL (p < 0.03) and increased BMP-2/4 expression (p < 0.02) compared to control. Conclusions These results explain the sclerotic and osteopetrotic changes of periodontal tissue following BP application and substantiate clinical findings of BP-related impaired remodeling specific to periodontal tissue. RANKL suppression substantiated the clinical finding of impaired bone remodelling in BP- and aRANKL-induced ONJ-affected bone structures. Msx-1 suppression in ONJ-adjacent periodontal tissue suggested a bisphosphonate-related impairment in cellular differentiation that occurred exclusively jaw remodelling. Further research on developmental biology-related unique features of jaw bone structures will help to elucidate pathologies restricted to maxillofacial tissue. PMID:20942943

  7. Expression of Msx-1 is suppressed in bisphosphonate associated osteonecrosis related jaw tissue-etiopathology considerations respecting jaw developmental biology-related unique features.

    PubMed

    Wehrhan, Falk; Hyckel, Peter; Ries, Jutta; Stockmann, Phillip; Nkenke, Emeka; Schlegel, Karl A; Neukam, Friedrich W; Amann, Kerstin

    2010-10-13

    Bone-destructive disease treatments include bisphosphonates and antibodies against the osteoclast differentiator, RANKL (aRANKL); however, osteonecrosis of the jaw (ONJ) is a frequent side-effect. Current models fail to explain the restriction of bisphosphonate (BP)-related and denosumab (anti-RANKL antibody)-related ONJ to jaws. Msx-1 is exclusively expressed in craniofacial structures and pivotal to cranial neural crest (CNC)-derived periodontal tissue remodeling. We hypothesised that Msx-1 expression might be impaired in bisphosphonate-related ONJ. The study aim was to elucidate Msx-1 and RANKL-associated signal transduction (BMP-2/4, RANKL) in ONJ-altered and healthy periodontal tissue. Twenty ONJ and twenty non-BP exposed periodontal samples were processed for RT-PCR and immunohistochemistry. An automated staining-based alkaline phosphatase-anti-alkaline phosphatase method was used to measure the stained cells:total cell-number ratio (labelling index, Bonferroni adjustment). Real-time RT-PCR was performed on ONJ-affected and healthy jaw periodontal samples (n = 20 each) to quantitatively compare Msx-1, BMP-2, RANKL, and GAPDH mRNA levels. Semi-quantitative assessment of the ratio of stained cells showed decreased Msx-1 and RANKL and increased BMP-2/4 (all p < 0.05) expression in ONJ-adjacent periodontal tissue. ONJ tissue also exhibited decreased relative gene expression for Msx-1 (p < 0.03) and RANKL (p < 0.03) and increased BMP-2/4 expression (p < 0.02) compared to control. These results explain the sclerotic and osteopetrotic changes of periodontal tissue following BP application and substantiate clinical findings of BP-related impaired remodeling specific to periodontal tissue. RANKL suppression substantiated the clinical finding of impaired bone remodelling in BP- and aRANKL-induced ONJ-affected bone structures. Msx-1 suppression in ONJ-adjacent periodontal tissue suggested a bisphosphonate-related impairment in cellular differentiation that occurred exclusively jaw remodelling. Further research on developmental biology-related unique features of jaw bone structures will help to elucidate pathologies restricted to maxillofacial tissue.

  8. Ectopic application of recombinant BMP-2 and BMP-4 can change patterning of developing chick facial primordia.

    PubMed

    Barlow, A J; Francis-West, P H

    1997-01-01

    The facial primordia initially consist of buds of undifferentiated mesenchyme, which give rise to a variety of tissues including cartilage, muscle and nerve. These must be arranged in a precise spatial order for correct function. The signals that control facial outgrowth and patterning are largely unknown. The bone morphogenetic proteins Bmp-2 and Bmp-4 are expressed in discrete regions at the distal tips of the early facial primordia suggesting possible roles for BMP-2 and BMP-4 during chick facial development. We show that expression of Bmp-4 and Bmp-2 is correlated with the expression of Msx-1 and Msx-2 and that ectopic application of BMP-2 and BMP-4 can activate Msx-1 and Msx-2 gene expression in the developing facial primordia. We correlate this activation of gene expression with changes in skeletal development. For example, activation of Msx-1 gene expression across the distal tip of the mandibular primordium is associated with an extension of Fgf-4 expression in the epithelium and bifurcation of Meckel's cartilage. In the maxillary primordium, extension of the normal domain of Msx-1 gene expression is correlated with extended epithelial expression of shh and bifurcation of the palatine bone. We also show that application of BMP-2 can increase cell proliferation of the mandibular primordia. Our data suggest that BMP-2 and BMP-4 are part of a signalling cascade that controls outgrowth and patterning of the facial primordia.

  9. MSX1 gene variant - its presence in tooth absence - a case control genetic study.

    PubMed

    Reddy, Naveen Admala; Adusumilli, Gopinath; Devanna, Raghu; Pichai, Saravanan; Rohra, Mayur Gobindram; Arjunan, Sharmila

    2013-10-01

    Non Syndromic tooth agenesis is a congenital anomaly with significant medical, psychological and social ramifications. There is sufficient evidence to hypothesize that locus for this condition can be identified by candidate genes. The aim of this study was to test whether MSX1 671 T>C gene variant was involved in etiology of Non Syndromic tooth agenesis in Raichur Patients. Blood samples were collected with informed consent from 50 subjects having Non Syndromic tooth agenesis and 50 controls. Genomic DNA was extracted from the blood samples, Polymerase Chain Reaction was performed (PCR) and Restriction Fragment Length Polymorphism (RFLP) was performed for digestion products that were evaluated. The RESULTS showed positive correlation between MSX1671 T>C gene variant and Non Syndromic tooth agenesis in Raichur Patients. MSX1 671 T>C gene variant may be a good screening marker for Non Syndromic tooth agenesis in Raichur Patients . How to cite this article:Reddy NA, Adusumilli G, Devanna R, Pichai S, Rohra MG, Arjunan S. Msx1 Gene Variant - Its Presence in Tooth Absence - A Case Control Genetic Study. J Int Oral Health 2013; 5(5):20-6.

  10. Msx1 Gene Variant - Its Presence in Tooth Absence - A Case Control Genetic Study

    PubMed Central

    Reddy, Naveen Admala; Adusumilli, Gopinath; Devanna, Raghu; Pichai, Saravanan; Rohra, Mayur Gobindram; Arjunan, Sharmila

    2013-01-01

    Background: Non Syndromic tooth agenesis is a congenital anomaly with significant medical, psychological and social ramifications. There is sufficient evidence to hypothesize that locus for this condition can be identified by candidate genes. The aim of this study was to test whether MSX1 671 T>C gene variant was involved in etiology of Non Syndromic tooth agenesis in Raichur Patients. Materials & Methods: Blood samples were collected with informed consent from 50 subjects having Non Syndromic tooth agenesis and 50 controls. Genomic DNA was extracted from the blood samples, Polymerase Chain Reaction was performed (PCR) and Restriction Fragment Length Polymorphism (RFLP) was performed for digestion products that were evaluated. Results: The Results showed positive correlation between MSX1671 T>C gene variant and Non Syndromic tooth agenesis in Raichur Patients. Conclusion: MSX1 671 T>C gene variant may be a good screening marker for Non Syndromic tooth agenesis in Raichur Patients . How to cite this article:Reddy NA, Adusumilli G, Devanna R, Pichai S, Rohra MG, Arjunan S. Msx1 Gene Variant - Its Presence in Tooth Absence - A Case Control Genetic Study. J Int Oral Health 2013; 5(5):20-6. PMID:24324300

  11. Sulfoximines as potent RORγ inverse agonists.

    PubMed

    Ouvry, Gilles; Bihl, Franck; Bouix-Peter, Claire; Christin, Olivier; Defoin-Platel, Claire; Deret, Sophie; Feret, Christophe; Froude, David; Hacini-Rachinel, Feriel; Harris, Craig S; Hervouet, Catherine; Lafitte, Guillaume; Luzy, Anne-Pascale; Musicki, Branislav; Orfila, Danielle; Parnet, Veronique; Pascau, Coralie; Pascau, Jonathan; Pierre, Romain; Raffin, Catherine; Rossio, Patricia; Spiesse, Delphine; Taquet, Nathalie; Thoreau, Etienne; Vatinel, Rodolphe; Vial, Emmanuel; Hennequin, Laurent F

    2018-05-01

    Progress in the identification of suitable RORγ inverse agonists as clinical candidates has been hampered by the high lipophilicity that seems required for high potency on this nuclear receptor. In this context, we decided to focus on the replacement of the hydroxymethyl group found on known modulators to determine if more polarity could be tolerated in this position. SAR of the replacement of this moiety is presented in this article leading to the identification of sulfoximine derivatives as potent modulators with pharmacological activity in the in vivo mouse Imiquimod psoriasis model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Effects of a Standardized Phenolic-Enriched Maple Syrup Extract on β-Amyloid Aggregation, Neuroinflammation in Microglial and Neuronal Cells, and β-Amyloid Induced Neurotoxicity in Caenorhabditis elegans.

    PubMed

    Ma, Hang; DaSilva, Nicholas A; Liu, Weixi; Nahar, Pragati P; Wei, Zhengxi; Liu, Yongqiang; Pham, Priscilla T; Crews, Rebecca; Vattem, Dhiraj A; Slitt, Angela L; Shaikh, Zahir A; Seeram, Navindra P

    2016-11-01

    Published data supports the neuroprotective effects of several phenolic-containing natural products, including certain fruit, berries, spices, nuts, green tea, and olive oil. However, limited data are available for phenolic-containing plant-derived natural sweeteners including maple syrup. Herein, we investigated the neuroprotective effects of a chemically standardized phenolic-enriched maple syrup extract (MSX) using a combination of biophysical, in vitro, and in vivo studies. Based on biophysical data (Thioflavin T assay, transmission electron microscopy, circular dichroism, dynamic light scattering, and zeta potential), MSX reduced amyloid β 1-42 peptide (Aβ 1-42 ) fibrillation in a concentration-dependent manner (50-500 μg/mL) with similar effects as the neuroprotective polyphenol, resveratrol, at its highest test concentration (63.5 % at 500 μg/mL vs. 77.3 % at 50 μg/mL, respectively). MSX (100 μg/mL) decreased H 2 O 2 -induced oxidative stress (16.1 % decrease in ROS levels compared to control), and down-regulated the production of lipopolysaccharide (LPS)-stimulated inflammatory markers (22.1, 19.9, 74.8, and 87.6 % decrease in NOS, IL-6, PGE 2 , and TNFα levels, respectively, compared to control) in murine BV-2 microglial cells. Moreover, in a non-contact co-culture cell model, differentiated human SH-SY5Y neuronal cells were exposed to conditioned media from BV-2 cells treated with MSX (100 μg/mL) and LPS or LPS alone. MSX-BV-2 media increased SH-SY5Y cell viability by 13.8 % compared to media collected from LPS-BV-2 treated cells. Also, MSX (10 μg/mL) showed protective effects against Aβ 1-42 induced neurotoxicity and paralysis in Caenorhabditis elegans in vivo. These data support the potential neuroprotective effects of MSX warranting further studies on this natural product.

  13. Effects of a Standardized Phenolic-Enriched Maple Syrup Extract on β-Amyloid Aggregation, Neuroinflammation in Microglial and Neuronal Cells, and β-Amyloid Induced Neurotoxicity in Caenorhabditis elegans

    PubMed Central

    Ma, Hang; DaSilva, Nicholas A.; Liu, Weixi; Nahar, Pragati P.; Wei, Zhengxi; Liu, Yongqiang; Pham, Priscilla T.; Crews, Rebecca; Vattem, Dhiraj A.; Slitt, Angela L.; Shaikh, Zahir A.; Seeram, Navindra P.

    2018-01-01

    Published data supports the neuroprotective effects of several phenolic-containing natural products, including certain fruit, berries, spices, nuts, green tea, and olive oil. However, limited data are available for phenolic-containing plant-derived natural sweeteners including maple syrup. Herein, we investigated the neuroprotective effects of a chemically standardized phenolic-enriched maple syrup extract (MSX) using a combination of biophysical, in vitro, and in vivo studies. Based on biophysical data (Thioflavin T assay, transmission electron microscopy, circular dichroism, dynamic light scattering, and zeta potential), MSX reduced amyloid β1–42 peptide (Aβ1–42) fibrillation in a concentration-dependent manner (50–500 μg/mL) with similar effects as the neuroprotective polyphenol, resveratrol, at its highest test concentration (63.5% at 500 μg/mL vs. 77.3% at 50 μg/mL, respectively). MSX (100 μg/mL) decreased H2O2-induced oxidative stress (16.1% decrease in ROS levels compared to control), and down-regulated the production of lipopolysaccharide (LPS)-stimulated inflammatory markers (22.1, 19.9, 74.8, and 87.6% decrease in NOS, IL-6, PGE2, and TNFα levels, respectively, compared to control) in murine BV-2 microglial cells. Moreover, in a non-contact co-culture cell model, differentiated human SH-SY5Y neuronal cells were exposed to conditioned media from BV-2 cells treated with MSX (100 μg/mL) and LPS or LPS alone. MSX-BV-2 media increased SH-SY5Y cell viability by 13.8% compared to media collected from LPS-BV-2 treated cells. Also, MSX (10 μg/mL) showed protective effects against Aβ1–42 induced neurotoxicity and paralysis in Caenorhabditis elegans in vivo. These data support the potential neuroprotective effects of MSX warranting further studies on this natural product. PMID:27418278

  14. Reinforcing and neurochemical effects of cannabinoid CB1 receptor agonists, but not cocaine, are altered by an adenosine A2A receptor antagonist.

    PubMed

    Justinová, Zuzana; Ferré, Sergi; Redhi, Godfrey H; Mascia, Paola; Stroik, Jessica; Quarta, Davide; Yasar, Sevil; Müller, Christa E; Franco, Rafael; Goldberg, Steven R

    2011-07-01

    Several recent studies suggest functional and molecular interactions between striatal adenosine A(2A) and cannabinoid CB(1) receptors. Here, we demonstrate that A(2A) receptors selectively modulate reinforcing effects of cannabinoids. We studied effects of A(2A) receptor blockade on the reinforcing effects of delta-9-tetrahydrocannabinol (THC) and the endogenous CB(1) receptor ligand anandamide under a fixed-ratio schedule of intravenous drug injection in squirrel monkeys. A low dose of the selective adenosine A(2A) receptor antagonist MSX-3 (1 mg/kg) caused downward shifts of THC and anandamide dose-response curves. In contrast, a higher dose of MSX-3 (3 mg/kg) shifted THC and anandamide dose-response curves to the left. MSX-3 did not modify cocaine or food pellet self-administration. Also, MSX-3 neither promoted reinstatement of extinguished drug-seeking behavior nor altered reinstatement of drug-seeking behavior by non-contingent priming injections of THC. Finally, using in vivo microdialysis in freely-moving rats, a behaviorally active dose of MSX-3 significantly counteracted THC-induced, but not cocaine-induced, increases in extracellular dopamine levels in the nucleus accumbens shell. The significant and selective results obtained with the lower dose of MSX-3 suggest that adenosine A(2A) antagonists acting preferentially at presynaptic A(2A) receptors might selectively reduce reinforcing effects of cannabinoids that lead to their abuse. However, the appearance of potentiating rather than suppressing effects on cannabinoid reinforcement at the higher dose of MSX-3 would likely preclude the use of such a compound as a medication for cannabis abuse. Adenosine A(2A) antagonists with more selectivity for presynaptic versus postsynaptic receptors could be potential medications for treatment of cannabis abuse. Addiction Biology © 2010 Society for the Study of Addiction. No claim to original US government works.

  15. Binding of [3H]MSX-2 (3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine) to rat striatal membranes--a new, selective antagonist radioligand for A(2A) adenosine receptors.

    PubMed

    Müller, C E; Maurinsh, J; Sauer, R

    2000-01-01

    The present study describes the preparation and binding properties of a new, potent, and selective A(2A) adenosine receptor (AR) antagonist radioligand, [3H]3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargy lxanth ine ([3H]MSX-2). [3H]MSX-2 binding to rat striatal membranes was saturable and reversible. Saturation experiments showed that [3H]MSX-2 labeled a single class of binding sites with high affinity (K(d)=8.0 nM) and limited capacity (B(max)=1.16 fmol.mg(-1) of protein). The presence of 100 microM GTP, or 10 mM magnesium chloride, respectively, had no effect on [3H]MSX-2 binding. AR agonists competed with the binding of 1 nM [3H]MSX-2 with the following order of potency: 5'-N-ethylcarboxamidoadenosine (NECA)>2-[4-(carboxyethyl)phenylethylamino]-5'-N-ethylcarboxami doaden osine (CGS-21680)>2-chloroadenosine (2-CADO)>N(6)-cyclopentyladenosine (CPA). AR antagonists showed the following order of potency: 8-(m-bromostyryl)-3, 7-dimethyl-1-propargylxanthine (BS-DMPX)>1, 3-dipropyl-8-cyclopentylxanthine (DPCPX)>(R)-5, 6-dimethyl-7-(1-phenylethyl)-2-(4-pyridyl)-7H-pyrrolo[2, 3-d]pyrimidine-4-amine (SH-128)>3,7-dimethyl-1-propargylxanthine (DMPX)>caffeine. The K(i) values for antagonists were in accordance with data from binding studies with the agonist radioligand [3H]CGS21680, while agonist affinities were 3-7-fold lower. [3H]MSX-2 is a highly selective A(2A) AR antagonist radioligand exhibiting a selectivity of at least two orders of magnitude versus all other AR subtypes. The new radioligand shows high specific radioactivity (85 Ci/mmol, 3150 GBq/mmol) and acceptable nonspecific binding at rat striatal membranes of 20-30%, at 1 nM.

  16. Crystal structure of the Msx-1 homeodomain/DNA complex.

    PubMed

    Hovde, S; Abate-Shen, C; Geiger, J H

    2001-10-09

    The Msx-1 homeodomain protein plays a crucial role in craniofacial, limb, and nervous system development. Homeodomain DNA-binding domains are comprised of 60 amino acids that show a high degree of evolutionary conservation. We have determined the structure of the Msx-1 homeodomain complexed to DNA at 2.2 A resolution. The structure has an unusually well-ordered N-terminal arm with a unique trajectory across the minor groove of the DNA. DNA specificity conferred by bases flanking the core TAAT sequence is explained by well ordered water-mediated interactions at Q50. Most interactions seen at the TAAT sequence are typical of the interactions seen in other homeodomain structures. Comparison of the Msx-1-HD structure to all other high resolution HD-DNA complex structures indicate a remarkably well-conserved sphere of hydration between the DNA and protein in these complexes.

  17. MSX Colors of Radio-Selected HII Regions in the Milky Way

    NASA Astrophysics Data System (ADS)

    Giveon, U.; Becker, R. H.; Helfand, D. J.; White, R. L.

    2004-12-01

    Investigation of the color properties of sources in the MSX catalog reveals two populations - a blue population composed of mainly evolved stars, masers and molecular clouds, and a red population composed mainly HII regions, planetary nebulae, and unclassified radio sources. We compare the MSX catalog to 5 GHz VLA maps of the first quadrant of the Galactic plane (350o

  18. Biomineralization, life-time of odontogenic cells and differential expression of the two homeobox genes MSX-1 and DLX-2 in transgenic mice.

    PubMed

    Lézot, F; Thomas, B; Hotton, D; Forest, N; Orestes-Cardoso, S; Robert, B; Sharpe, P; Berdal, A

    2000-03-01

    Msx and Dlx homeobox genes encode for transcription factors that control early morphogenesis. More specifically, Msx-1, Msx-2, and Dlx-2 homeobox genes contribute to the initial patterning of the dentition. The present study is devoted to the potential role of those homeobox genes during the late formation of mineralized tissues, using the rodent incisor as an experimental system. The continuously erupting mandibular incisor allows (1) the coinvestigation of the whole sequences of amelogenesis and dentinogenesis, aligned along the main dental axis in a single sample in situ and (2) the differential characterization of transcripts generated by epithelial and ectomesenchymal odontogenic cells. Northern blot experiments on microdissected cells showed the continuing expression of Msx-2 and Dlx-2 in the later stages of dental biomineralization, differentially in epithelial and ectomesenchymal compartments. Transgenic mice produced with LacZ reporter constructs for Dlx-2 and Msx-1 were used to detect different components of the gene expression patterns with the sensitive beta-galactosidase histoenzymology. The results show a prominent epithelial involvement of Dlx-2, with stage-specific variations in the cells involved in enamel formation. Quantitative analyses identified specific modulations of Dlx-2 expression in ameloblasts depending on the anatomical sites of the incisor, showing more specifically an inverse linear relationship between the Dlx-2 promoter activity level and enamel thickness. This investigation extends the role of homeoproteins to postmitotic stages, which would control secretory cell activity, in a site-specific manner as shown here for Dlx-2.

  19. Combination studies of platinum(II)-based metallointercalators with buthionine-S,R-sulfoximine, 3-bromopyruvate, cisplatin or carboplatin.

    PubMed

    Garbutcheon-Singh, K Benjamin; Harper, Benjamin W J; Myers, Simon; Aldrich-Wright, Janice R

    2014-01-01

    With current chemotherapeutic treatment regimes often limited by adverse side effects, the synergistic combination of complexes with anticancer activity appears to offer a promising strategy for effective cancer treatment. This work investigates the anti-proliferative activity using a combination therapy approach where metallointercalators of the type [Pt(IL)(AL)](2+) (where IL is the intercalating ligand and AL is the ancillary ligand) are used in combination with currently approved anticancer drugs cisplatin and carboplatin and organic molecules buthionine-S,R-sulfoximine and 3-bromopyruvate. Synergistic relationships were observed, indicating a potential to decrease dose-dependent toxicity and improve therapeutic efficacy.

  20. The adenosine A2A antagonist MSX-3 reverses the effort-related effects of dopamine blockade: differential interaction with D1 and D2 family antagonists.

    PubMed

    Worden, Lila T; Shahriari, Mona; Farrar, Andrew M; Sink, Kelly S; Hockemeyer, Jörg; Müller, Christa E; Salamone, John D

    2009-04-01

    Brain dopamine (DA) participates in the modulation of instrumental behavior, including aspects of behavioral activation and effort-related choice behavior. Rats with impaired DA transmission reallocate their behavior away from food-seeking behaviors that have high response requirements, and instead select less effortful alternatives. Although accumbens DA is considered a critical component of the brain circuitry regulating effort-related choice behavior, emerging evidence demonstrates a role for adenosine A(2A) receptors. Adenosine A(2A) receptor antagonism has been shown to reverse the effects of DA antagonism. The present experiments were conducted to determine if this effect was dependent upon the subtype of DA receptor that was antagonized to produce the changes in effort-related choice. The adenosine A(2A) receptor antagonist MSX-3 (0.5-2.0 mg/kg IP) was assessed for its ability to reverse the effects of the D1 family antagonist SCH39166 (ecopipam; 0.2 mg/kg IP) and the D2 family antagonist eticlopride (0.08 mg/kg IP), using a concurrent lever pressing/chow feeding procedure. MSX-3 produced a substantial dose-related reversal of the effects of eticlopride on lever pressing and chow intake. At the highest dose of MSX-3, there was a complete reversal of the effects of eticlopride on lever pressing. In contrast, MSX-3 produced only a minimal attenuation of the effects of SCH39166, as measured by regression and effect size analyses. The greater ability of MSX-3 to reverse the effects of D2 vs. D1 blockade may be related to the colocalization of D2 and adenosine A(2A) receptors on the same population of striatal neurons.

  1. Cerebral glucose metabolism and the glutamine cycle as detected by in vivo and in vitro 13C NMR spectroscopy.

    PubMed

    García-Espinosa, María A; Rodrigues, Tiago B; Sierra, Alejandra; Benito, Marina; Fonseca, Carla; Gray, Heather L; Bartnik, Brenda L; García-Martín, María L; Ballesteros, Paloma; Cerdán, Sebastián

    2004-01-01

    We review briefly 13C NMR studies of cerebral glucose metabolism with an emphasis on the roles of glial energetics and the glutamine cycle. Mathematical modeling analysis of in vivo 13C turnover experiments from the C4 carbons of glutamate and glutamine are consistent with: (i) the glutamine cycle being the major cerebral metabolic route supporting glutamatergic neurotransmission, (ii) glial glutamine synthesis being stoichiometrically coupled to glycolytic ATP production, (iii) glutamine serving as the main precursor of neurotransmitter glutamate and (iv) glutamatergic neurotransmission being supported by lactate oxidation in the neurons in a process accounting for 60-80% of the energy derived from glucose catabolism. However, more recent experimental approaches using inhibitors of the glial tricarboxylic acid (TCA) cycle (trifluoroacetic acid, TFA) or of glutamine synthase (methionine sulfoximine, MSO) reveal that a considerable portion of the energy required to support glutamine synthesis is derived from the oxidative metabolism of glucose in the astroglia and that a significant amount of the neurotransmitter glutamate is produced from neuronal glucose or lactate rather than from glial glutamine. Moreover, a redox switch has been proposed that allows the neurons to use either glucose or lactate as substrates for oxidation, depending on the relative availability of these fuels under resting or activation conditions, respectively. Together, these results suggest that the coupling mechanisms between neuronal and glial metabolism are more complex than initially envisioned.

  2. Decoupling of ammonium regulation and ntcA transcription in the diazotrophic marine cyanobacterium Trichodesmium sp. IMS101

    PubMed Central

    Post, Anton F; Rihtman, Branko; Wang, Qingfeng

    2012-01-01

    Nitrogen (N) physiology in the marine cyanobacterium Trichodesmium IMS101 was studied along with transcript accumulation of the N-regulatory gene ntcA and of two of its target genes: napA (nitrate assimilation) and nifH (N2 fixation). N2 fixation was impaired in the presence of nitrite, nitrate and urea. Strain IMS101 was capable of growth on these combined N sources at <2 μ but growth rates declined at elevated concentrations. Assimilation of nitrate and urea was impaired in the presence of ammonium. Whereas ecologically relevant N concentrations (2–20 μ) suppressed growth and assimilation, much higher concentrations were required to affect transcript levels. Transcripts of nifH accumulated under nitrogen-fixing conditions; these transcript levels were maintained in the presence of nitrate (100 μ) and ammonium (20 μ). However, nifH transcript levels were below detection at ammonium concentrations >20 μ. napA mRNA was found at low levels in both N2-fixing and ammonium-utilizing filaments, and it accumulated in filaments grown with nitrate. The positive effect of nitrate on napA transcription was abolished by ammonium additions of >200 μ. This effect was restored upon addition of the glutamine synthetase inhibitor -methionin--sulfoximine. Surprisingly, ntcA transcript levels remained high in the presence of ammonium, even at elevated concentrations. These findings indicate that ammonium repression is decoupled from transcriptional activation of ntcA in Trichodesmium IMS101. PMID:21938021

  3. Decoupling of ammonium regulation and ntcA transcription in the diazotrophic marine cyanobacterium Trichodesmium sp. IMS101.

    PubMed

    Post, Anton F; Rihtman, Branko; Wang, Qingfeng

    2012-03-01

    Nitrogen (N) physiology in the marine cyanobacterium Trichodesmium IMS101 was studied along with transcript accumulation of the N-regulatory gene ntcA and of two of its target genes: napA (nitrate assimilation) and nifH (N(2) fixation). N(2) fixation was impaired in the presence of nitrite, nitrate and urea. Strain IMS101 was capable of growth on these combined N sources at <2 μM but growth rates declined at elevated concentrations. Assimilation of nitrate and urea was impaired in the presence of ammonium. Whereas ecologically relevant N concentrations (2-20 μM) suppressed growth and assimilation, much higher concentrations were required to affect transcript levels. Transcripts of nifH accumulated under nitrogen-fixing conditions; these transcript levels were maintained in the presence of nitrate (100 μM) and ammonium (20 μM). However, nifH transcript levels were below detection at ammonium concentrations >20 μM. napA mRNA was found at low levels in both N(2)-fixing and ammonium-utilizing filaments, and it accumulated in filaments grown with nitrate. The positive effect of nitrate on napA transcription was abolished by ammonium additions of >200 μM. This effect was restored upon addition of the glutamine synthetase inhibitor L-methionin-DL-sulfoximine. Surprisingly, ntcA transcript levels remained high in the presence of ammonium, even at elevated concentrations. These findings indicate that ammonium repression is decoupled from transcriptional activation of ntcA in Trichodesmium IMS101.

  4. Simultaneous Occurence of an Autosomal Dominant Inherited MSX1 Mutation and an X-linked Recessive Inherited EDA Mutation in One Chinese Family with Non-syndromic Oligodontia.

    PubMed

    Zhang, Xiao Xia; Wong, Sing Wai; Han, Dong; Feng, Hai Lan

    2015-01-01

    To describe the simultaneous occurence of an autosomal dominant inherited MSX1 mutation and an X-linked recessive inherited EDA mutation in one Chinese family with nonsyndromic oligodontia. Clinical data of characteristics of tooth agenesis were collected. MSX1 and EDA gene mutations were detected in a Chinese family of non-syndromic oligodontia. Mild hypodontia in the parents and severe oligodontia in the son was recorded. A novel missense heterozygous mutation c.517C>A (p.Arg173Ser) was detected in the MSX1 gene in the boy and the father. A homozygous missense mutation c.1001G>A (p.Arg334His) was detected in the EDA gene in the boy and the same mutant occurred heterozygously in the mother. Simultaneous occurence of two different gene mutations with different inheritence patterns, which both caused oligodontia, which occurred in one subject and in one family, was reported.

  5. Structural and functional analysis of mouse Msx1 gene promoter: sequence conservation with human MSX1 promoter points at potential regulatory elements.

    PubMed

    Gonzalez, S M; Ferland, L H; Robert, B; Abdelhay, E

    1998-06-01

    Vertebrate Msx genes are related to one of the most divergent homeobox genes of Drosophila, the muscle segment homeobox (msh) gene, and are expressed in a well-defined pattern at sites of tissue interactions. This pattern of expression is conserved in vertebrates as diverse as quail, zebrafish, and mouse in a range of sites including neural crest, appendages, and craniofacial structures. In the present work, we performed structural and functional analyses in order to identify potential cis-acting elements that may be regulating Msx1 gene expression. To this end, a 4.9-kb segment of the 5'-flanking region was sequenced and analyzed for transcription-factor binding sites. Four regions showing a high concentration of these sites were identified. Transfection assays with fragments of regulatory sequences driving the expression of the bacterial lacZ reporter gene showed that a region of 4 kb upstream of the transcription start site contains positive and negative elements responsible for controlling gene expression. Interestingly, a fragment of 130 bp seems to contain the minimal elements necessary for gene expression, as its removal completely abolishes gene expression in cultured cells. These results are reinforced by comparison of this region with the human Msx1 gene promoter, which shows extensive conservation, including many consensus binding sites, suggesting a regulatory role for them.

  6. Possible linkage of non-syndromic cleft lip and palate to the MSX1 homebox gene on chromosome 4p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.; Walczak, C.; Erickson, R.P.

    1994-09-01

    The MSX1 (HOX7) gene has been shown recently to cause cleft palate in a mouse model deficient for its product. Several features of this mouse model make the human homolog of this gene an excellent candidate for non-syndromic cleft palate. We tested this hypothesis by linkage studies in two large multiplex human families using a microsatellite marker in the human MSX1 gene. A LOD score of 1.7 was obtained maximizing at a recombination fraction of 0.09. Computer simulation power calculations using the program SIMLINK indicated that a LOD score this large is expected to occur only about 1/200 times bymore » chance alone for a marker locus with comparable informativeness if unlinked to the disease gene. This suggestive finding is being followed up by attempts to recruit and study additional families and by DNA sequence analyses of the MSX1 gene in these families and other cleft lip and/or cleft palate subjects and these further results will also be reported.« less

  7. [Transmission disequilibrium test for nonsyndromic cleft lip and palate and segment homeobox gene-1 gene].

    PubMed

    Wu, Ping-An; Li, Yun-Liang; Wu, Han-Jiang; Wang, Kai; Fan, Guo-Zheng

    2007-09-01

    To investigate the relationship between muscle segment homeobox gene-1 (MSX1) and the genetic susceptibility of nonsyndromic cleft lip and palate (NSCLP) in Hunan Hans. One microsatellite DNA marker CA repeat in MSX1 intron region was used as genetic marker. The genotypes of 387 members in 129 NSCLP nuclear family trios were analyzed by polymerase chain reaction (PCR) and denaturing polyacrylamide gel electrophoresis. Then transmission disequilibrium test (TDT) and Logistic regression analysis were used to conduct association analysis. TDT analysis confirmed that CA4 allele in CL/P and CPO groups preferentially transmitted to the affected offspring (P = 0.018, P = 0.041). Logistic regression analysis indicated that the recessive model of inheritance was supported, and CA4 itself or CA4 acting as a marker for a disease allele or haplotype was inherited in a recessive fashion (P = 0.009). MSX1 gene is associated with NSCLP, and MSX1 gene may be directly involved either in the etiology of NSCLP or in linkage disequilibrium with disease-predisposing sites.

  8. Extended Galactic emission at l=312°: a comparison of mid-infrared and radio continuum (843 MHz) images

    NASA Astrophysics Data System (ADS)

    Cohen, Martin; Green, Anne J.

    2001-08-01

    We report on the comparison of images of a region of the Galactic plane (centred on l=312°) as seen by the Midcourse Space Experiment (MSX) at 8.3μm and by the Molonglo Observatory Synthesis Telescope (MOST) at 843MHz in the radio continuum. We note that the survey from each telescope is without peer and occupies a niche in panoramic coverage with high spatial resolution. Using independent classification of sources in the selected region, a detailed comparison of the two surveys was made. The aim of the project was to seek global characteristics for different types of source, with a view to establishing predictive criteria for identification and hence emission mechanisms. Several strong trends were found. There is a complete absence in this field of any detected MSX counterparts to non-thermal radio sources. Almost every Hii region in the radio image has its MSX counterpart, in the form of a polycyclic aromatic hydrocarbon halo in the neutral zone surrounding the ionized gas. Both surveys show large-scale `braided' filamentary structures, extending over 1°, which appear to be produced by thermal processes. These filaments may be structures in the warm ionized phase of the interstellar medium or extended haloes around Hii regions. The comparisons in this paper were made using both preliminary MSX 8.3-μm results with 46-arcsec resolution and final MSX images with the intrinsic 20-arcsec resolution of the instruments.

  9. Conserved gene regulatory module specifies lateral neural borders across bilaterians

    PubMed Central

    Li, Yongbin; Zhao, Di; Horie, Takeo; Chen, Geng; Bao, Hongcun; Chen, Siyu; Liu, Weihong; Horie, Ryoko; Liang, Tao; Dong, Biyu; Feng, Qianqian; Tao, Qinghua

    2017-01-01

    The lateral neural plate border (NPB), the neural part of the vertebrate neural border, is composed of central nervous system (CNS) progenitors and peripheral nervous system (PNS) progenitors. In invertebrates, PNS progenitors are also juxtaposed to the lateral boundary of the CNS. Whether there are conserved molecular mechanisms determining vertebrate and invertebrate lateral neural borders remains unclear. Using single-cell-resolution gene-expression profiling and genetic analysis, we present evidence that orthologs of the NPB specification module specify the invertebrate lateral neural border, which is composed of CNS and PNS progenitors. First, like in vertebrates, the conserved neuroectoderm lateral border specifier Msx/vab-15 specifies lateral neuroblasts in Caenorhabditis elegans. Second, orthologs of the vertebrate NPB specification module (Msx/vab-15, Pax3/7/pax-3, and Zic/ref-2) are significantly enriched in worm lateral neuroblasts. In addition, like in other bilaterians, the expression domain of Msx/vab-15 is more lateral than those of Pax3/7/pax-3 and Zic/ref-2 in C. elegans. Third, we show that Msx/vab-15 regulates the development of mechanosensory neurons derived from lateral neural progenitors in multiple invertebrate species, including C. elegans, Drosophila melanogaster, and Ciona intestinalis. We also identify a novel lateral neural border specifier, ZNF703/tlp-1, which functions synergistically with Msx/vab-15 in both C. elegans and Xenopus laevis. These data suggest a common origin of the molecular mechanism specifying lateral neural borders across bilaterians. PMID:28716930

  10. Conserved gene regulatory module specifies lateral neural borders across bilaterians.

    PubMed

    Li, Yongbin; Zhao, Di; Horie, Takeo; Chen, Geng; Bao, Hongcun; Chen, Siyu; Liu, Weihong; Horie, Ryoko; Liang, Tao; Dong, Biyu; Feng, Qianqian; Tao, Qinghua; Liu, Xiao

    2017-08-01

    The lateral neural plate border (NPB), the neural part of the vertebrate neural border, is composed of central nervous system (CNS) progenitors and peripheral nervous system (PNS) progenitors. In invertebrates, PNS progenitors are also juxtaposed to the lateral boundary of the CNS. Whether there are conserved molecular mechanisms determining vertebrate and invertebrate lateral neural borders remains unclear. Using single-cell-resolution gene-expression profiling and genetic analysis, we present evidence that orthologs of the NPB specification module specify the invertebrate lateral neural border, which is composed of CNS and PNS progenitors. First, like in vertebrates, the conserved neuroectoderm lateral border specifier Msx/vab-15 specifies lateral neuroblasts in Caenorhabditis elegans Second, orthologs of the vertebrate NPB specification module ( Msx/vab-15 , Pax3/7/pax-3 , and Zic/ref-2 ) are significantly enriched in worm lateral neuroblasts. In addition, like in other bilaterians, the expression domain of Msx/vab-15 is more lateral than those of Pax3/7/pax-3 and Zic/ref- 2 in C. elegans Third, we show that Msx/vab-15 regulates the development of mechanosensory neurons derived from lateral neural progenitors in multiple invertebrate species, including C. elegans , Drosophila melanogaster , and Ciona intestinalis We also identify a novel lateral neural border specifier, ZNF703/tlp-1 , which functions synergistically with Msx/vab- 15 in both C. elegans and Xenopus laevis These data suggest a common origin of the molecular mechanism specifying lateral neural borders across bilaterians.

  11. The adenosine A2A antagonist MSX-3 reverses the effort-related effects of dopamine blockade: differential interaction with D1 and D2 family antagonists

    PubMed Central

    Worden, Lila T.; Shahriari, Mona; Farrar, Andrew M.; Sink, Kelly S.; Hockemeyer, Jörg; Müller, Christa E.

    2010-01-01

    Rationale Brain dopamine (DA) participates in the modulation of instrumental behavior, including aspects of behavioral activation and effort-related choice behavior. Rats with impaired DA transmission reallocate their behavior away from food-seeking behaviors that have high response requirements, and instead select less effortful alternatives. Although accumbens DA is considered a critical component of the brain circuitry regulating effort-related choice behavior, emerging evidence demonstrates a role for adenosine A2A receptors. Objective Adenosine A2A receptor antagonism has been shown to reverse the effects of DA antagonism. The present experiments were conducted to determine if this effect was dependent upon the subtype of DA receptor that was antagonized to produce the changes in effort-related choice. Materials and methods The adenosine A2A receptor antagonist MSX-3 (0.5–2.0 mg/kg IP) was assessed for its ability to reverse the effects of the D1 family antagonist SCH39166 (ecopipam; 0.2 mg/kg IP) and the D2 family antagonist eticlopride (0.08 mg/kg IP), using a concurrent lever pressing/chow feeding procedure. Results MSX-3 produced a substantial dose-related reversal of the effects of eticlopride on lever pressing and chow intake. At the highest dose of MSX-3, there was a complete reversal of the effects of eticlopride on lever pressing. In contrast, MSX-3 produced only a minimal attenuation of the effects of SCH39166, as measured by regression and effect size analyses. Conclusions The greater ability of MSX-3 to reverse the effects of D2 vs. D1 blockade may be related to the colocalization of D2 and adenosine A2A receptors on the same population of striatal neurons. PMID:19048234

  12. MSX1 and PAX9 investigation in monozygotic twins with variable expression of tooth agenesis.

    PubMed

    Lopez, Sofia I N; Mundstock, Karina S; Paixão-Côrtes, Vanessa R; Schüler-Faccini, Lavínia; Mundstock, Carlos A; Bortolini, Maria Cátira; Salzano, Francisco M

    2013-12-01

    Non-syndromic agenesis of permanent teeth is one of the most common anomalies in human development, a multifactorial characteristic caused by genetic and environmental factors. We describe a pair of monozygotic twins who showed second premolar and third molar agenesis, albeit with different expressions. We studied the DNA of two genes, paired domain box gene 9 (PAX9) and muscle segment homeodomain-homeobox1 (MSX1), encoding transcription factors that earlier studies found were involved in the manifestation of this condition. No specific causative mutation was found. However, we detected a C→T change in MSX1 exon 2 in both twins, suggesting that this polymorphism might be involved in the trait's expression.

  13. The function and evolution of Msx genes: pointers and paradoxes.

    PubMed

    Davidson, D

    1995-10-01

    The Msx genes of vertebrates comprise a small family of chromosomally unlinked homeobox-containing genes related to the Drosophila gene muscle-segment homeobox (msh). Despite their ancient pedigree, the Msx genes are expressed in a range of vertebrate-specific tissues, including neural crest, cranial sensory placodes, bone and teeth. They are active in numerous systems, which have been used as models to study pattern formation and tissue interaction, and are, therefore, attracting a growing interest among developmental biologists. But beyond their presumed role as transcription factors, we do not know what their functions are in the cell or the embryo. Here, I review recent evidence that is beginning to address this problem and might eventually increase our understanding of how the vertebrate embryo has evolved.

  14. Transcriptional deregulation of homeobox gene ZHX2 in Hodgkin lymphoma.

    PubMed

    Nagel, Stefan; Schneider, Björn; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G; Macleod, Roderick A F

    2012-05-01

    Recently, we identified a novel chromosomal rearrangement in Hodgkin lymphoma (HL), t(4;8)(q27;q24), which targets homeobox gene ZHX2 at the recurrent breakpoint 8q24. This aberration deletes the far upstream region of ZHX2 and results in silenced transcription pinpointing loss of activatory elements. Here, we have looked for potential binding sites within this deleted region to analyze the transcriptional deregulation of this tumor suppressor gene in B-cell malignancies. SiRNA-mediated knockdown and reporter gene analyses identified two transcription factors, homeodomain protein MSX1 and bZIP protein XBP1, directly regulating ZHX2 expression. Furthermore, MSX1-cofactor histone H1C mediated repression of ZHX2 and showed enhanced expression levels in cell line L-1236. As demonstrated by fluorescence in situ hybridization and genomic array analysis, the gene loci of MSX1 at 4p16 and H1C at 6p22 were rearranged in several HL cell lines, correlating with their altered expression activity. The expression of XBP1 was reduced in 6/7 HL cell lines as compared to primary hematopoietic cells. Taken together, our results demonstrate multiple mechanisms decreasing expression of tumor suppressor gene ZHX2 in HL cell lines: loss of enhancing binding sites, reduced expression of activators MSX1 and XBP1, and overexpression of MSX1-corepressor H1C. Moreover, chromosomal deregulations of genes involved in this regulative network highlight their role in development and malignancy of B-cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Aberrantly Expressed OTX Homeobox Genes Deregulate B-Cell Differentiation in Hodgkin Lymphoma.

    PubMed

    Nagel, Stefan; Ehrentraut, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G; MacLeod, Roderick A F

    2015-01-01

    In Hodgkin lymphoma (HL) we recently reported that deregulated homeobox gene MSX1 mediates repression of the B-cell specific transcription factor ZHX2. In this study we investigated regulation of MSX1 in this B-cell malignancy. Accordingly, we analyzed expression and function of OTX homeobox genes which activate MSX1 transcription during embryonal development in the neural plate border region. Our data demonstrate that OTX1 and OTX2 are aberrantly expressed in both HL patients and cell lines. Moreover, both OTX loci are targeted by genomic gains in overexpressing cell lines. Comparative expression profiling and subsequent pathway modulations in HL cell lines indicated that aberrantly enhanced FGF2-signalling activates the expression of OTX2. Downstream analyses of OTX2 demonstrated transcriptional activation of genes encoding transcription factors MSX1, FOXC1 and ZHX1. Interestingly, examination of the physiological expression profile of ZHX1 in normal hematopoietic cells revealed elevated levels in T-cells and reduced expression in B-cells, indicating a discriminatory role in lymphopoiesis. Furthermore, two OTX-negative HL cell lines overexpressed ZHX1 in correlation with genomic amplification of its locus at chromosomal band 8q24, supporting the oncogenic potential of this gene in HL. Taken together, our data demonstrate that deregulated homeobox genes MSX1 and OTX2 respectively impact transcriptional inhibition of (B-cell specific) ZHX2 and activation of (T-cell specific) ZHX1. Thus, we show how reactivation of a specific embryonal gene regulatory network promotes disturbed B-cell differentiation in HL.

  16. Two domains in vertebral development: antagonistic regulation by SHH and BMP4 proteins.

    PubMed

    Watanabe, Y; Duprez, D; Monsoro-Burq, A H; Vincent, C; Le Douarin, N M

    1998-07-01

    It has previously been shown that the notochord grafted laterally to the neural tube enhances the differentiation of the vertebral cartilage at the expense of the derivatives of the dermomyotome. In contrast, the dorsomedial graft of a notochord inhibits cartilage differentiation of the dorsal part of the vertebra carrying the spinous process. Cartilage differentiation is preceded by the expression of transcription factors of the Pax family (Pax1/Pax9) in the ventrolateral domain and of the Msx family in the dorsal domain. The proliferation and differentiation of Msx-expressing cells in the dorsal precartilaginous domain of the vertebra are stimulated by BMP4, which acts upstream of Msx genes. It has previously been shown that the SHH protein arising from the notochord (and floor plate) is necessary for the survival and further development of Pax1/Pax9-expressing sclerotomal cells. We show here that SHH acts antagonistically to BMP4. SHH-producing cells grafted dorsally to the neural tube at E2 inhibit expression of Bmp4 and Msx genes and also inhibits the differentiation of the spinous process. We present a model that accounts for cartilage differentiation in the vertebra.

  17. Uterine Msx-1 and Wnt4 signaling becomes aberrant in mice with the loss of leukemia inhibitory factor or Hoxa-10: evidence for a novel cytokine-homeobox-Wnt signaling in implantation.

    PubMed

    Daikoku, Takiko; Song, Haengseok; Guo, Yong; Riesewijk, Anne; Mosselman, Sietse; Das, Sanjoy K; Dey, Sudhansu K

    2004-05-01

    Successful implantation absolutely depends on the reciprocal interaction between the implantation-competent blastocyst and the receptive uterus. Expression and gene targeting studies have shown that leukemia inhibitory factor (LIF), a cytokine of the IL-6 family, and Hoxa-10, an abdominalB-like homeobox gene, are crucial to implantation and decidualization in mice. Using these mutant mice, we sought to determine the importance of Msx-1 (another homeobox gene formerly known as Hox-7.1) and of Wnt4 (a ligand of the Wnt family) signaling in implantation because of their reported functions during development. We observed that Msx-1, Wnt4, and a Wnt antagonist sFRP4 are differentially expressed in the mouse uterus during the periimplantation period, suggesting their role in implantation. In addition, we observed an aberrant uterine expression of Msx-1 and sFRP4 in Lif mutant mice, and of Wnt4 and sFRP4 in Hoxa-10 mutant mice, further reinforcing the importance of these signaling pathways in implantation. Collectively, the present results provide evidence for a novel cytokine-homeotic-Wnt signaling network in implantation.

  18. MSX Colors of Radio-Selected HII Regions in the Milky Way

    NASA Astrophysics Data System (ADS)

    Giveon, U.; Becker, R. H.; Helfand, D. J.; White, R. L.

    2003-12-01

    Investigation of the color-space properties of mid-infrared sources in the MSX Galactic plane catalog reveals two distinct populations - a blue population composed mainly of evolved stars, masers and molecular clouds, and a red population comprising sources of a nebular nature - HII regions, planetary nebulae, and unclassified radio sources. We compare the MSX catalog to 5 GHz VLA maps of the first quadrant of the Galactic plane. A catalog extracted from these maps was published first by Becker et al., but we have re-reduced the data with significantly improved calibration and mosaicing procedures, resulting in an increase of ˜ 60% in the number of detected sources. Comparison of the radio and infrared catalogs resulted in a sample of 491 matches, out of which we estimate 38 to be false counterparts, all of them from the MSX red population. The radio sources with infrared counterparts are found to have extremely small scale height (FWHM of 14' or ˜ 35 pc), and have thermal radio spectrum. These properties suggest that the sample is dominated by HII regions, most of them are previously uncataloged. This research is supported be the National Science Foundation.

  19. Reduction of ammonia and lactate through the coupling of glutamine synthetase selection and downregulation of lactate dehydrogenase-A in CHO cells.

    PubMed

    Noh, Soo Min; Park, Jin Hyoung; Lim, Myung Sin; Kim, Jong Won; Lee, Gyun Min

    2017-02-01

    Chinese hamster ovary (CHO) cell cultivation for production of therapeutic proteins is accompanied by production of metabolic wastes, mostly ammonia and lactate. To reduce ammonia production, the glutamine synthetase (GS) system was used to develop therapeutic monoclonal antibody (mAb)-producing CHO cells (SM-0.025). Additionally, the lactate dehydrogenase-A (LDH-A) was downregulated with shRNA to reduce lactate production in SM-0.025. The resulting mAb-producing cell lines (#2, #46, and #52) produced less ammonia than the host cell line during the exponential phase due to GS protein overexpression. LDH-A downregulation in SM-0.025 not only reduced lactate production but also further reduced ammonia production. Among the three LDH-A-downregulated clones, clone #2 had the highest mAb production along with significantly reduced specific lactate and ammonia production rates compared to those in SM-0.025. Waste reduction increased the galactosylation level of N-glycosylation, which improved mAb quality. LDH-A downregulation was also successfully applied to the host cell lines (CHO K1 and GS knockout CHO-K1). However, LDH-A downregulated host cells could not survive the pool-selection process wherein glutamine was excluded and methionine sulfoximine was added to the media. Taken together, LDH-A downregulation in the mAb-producing cell line generated with the GS system successfully reduced both ammonia and lactate levels, improving mAb galactosylation. However, LDH-A downregulation could not be applied to host cell lines because it hampered the selection process of the GS system.

  20. Downregulation of Glutamine Synthetase via GLAST Suppression Induces Retinal Axonal Swelling in a Rat Ex Vivo Hydrostatic Pressure Model

    PubMed Central

    Yoshitomi, Takeshi; Zorumski, Charles F.; Izumi, Yukitoshi

    2011-01-01

    Purpose. High levels of glutamate can be toxic to retinal GCs. Thus, effective buffering of extracellular glutamate is important in preserving retinal structure and function. GLAST, a major glutamate transporter in the retina, and glutamine synthetase (GS) regulate extracellular glutamate accumulation and prevent excitotoxicity. This study was an examination of changes in function and expression of GLAST and GS in ex vivo rat retinas exposed to acute increases in ambient pressure. Methods. Ex vivo rat retinas were exposed to elevated hydrostatic pressure for 24 hours. The expression of GLAST and GS were examined using immunochemistry and real-time PCR analysis. Also examined were the effects of (2S,3S)-3-[3-[4-(trifluoromethyl) benzoylamino] benzyloxy] aspartate (TFB-TBOA), an inhibitor of glutamate transporters, and l-methionine-S-sulfoximine (MSO), an inhibitor of GS. Results. In this acute model, Western blot and real-time RT-PCR analyses revealed that substantially (75 mm Hg), but not moderately (35 mm Hg), elevated pressure depressed GLAST expression, diminished GS activity, and induced axonal swelling between the GC layer and the inner limiting membrane. However, at the moderately elevated pressure (35 mm Hg), administration of either TFB-TBOA or MSO also induced axonal swelling and excitotoxic neuronal damage. MSO did not depress GLAST expression but TFB-TBOA significantly suppressed GS, suggesting that downregulation of GS during pressure loading may result from impaired GLAST expression. Conclusions. The retina is at risk during acute intraocular pressure elevation due to downregulation of GS activity resulting from depressed GLAST expression. PMID:21775659

  1. Downregulation of glutamine synthetase via GLAST suppression induces retinal axonal swelling in a rat ex vivo hydrostatic pressure model.

    PubMed

    Ishikawa, Makoto; Yoshitomi, Takeshi; Zorumski, Charles F; Izumi, Yukitoshi

    2011-08-22

    PURPOSE. High levels of glutamate can be toxic to retinal GCs. Thus, effective buffering of extracellular glutamate is important in preserving retinal structure and function. GLAST, a major glutamate transporter in the retina, and glutamine synthetase (GS) regulate extracellular glutamate accumulation and prevent excitotoxicity. This study was an examination of changes in function and expression of GLAST and GS in ex vivo rat retinas exposed to acute increases in ambient pressure. METHODS. Ex vivo rat retinas were exposed to elevated hydrostatic pressure for 24 hours. The expression of GLAST and GS were examined using immunochemistry and real-time PCR analysis. Also examined were the effects of (2S,3S)-3-[3-[4-(trifluoromethyl) benzoylamino] benzyloxy] aspartate (TFB-TBOA), an inhibitor of glutamate transporters, and l-methionine-S-sulfoximine (MSO), an inhibitor of GS. RESULTS. In this acute model, Western blot and real-time RT-PCR analyses revealed that substantially (75 mm Hg), but not moderately (35 mm Hg), elevated pressure depressed GLAST expression, diminished GS activity, and induced axonal swelling between the GC layer and the inner limiting membrane. However, at the moderately elevated pressure (35 mm Hg), administration of either TFB-TBOA or MSO also induced axonal swelling and excitotoxic neuronal damage. MSO did not depress GLAST expression but TFB-TBOA significantly suppressed GS, suggesting that downregulation of GS during pressure loading may result from impaired GLAST expression. CONCLUSIONS. The retina is at risk during acute intraocular pressure elevation due to downregulation of GS activity resulting from depressed GLAST expression.

  2. gamma-Glutamyl amino acids. Transport and conversion to 5-oxoproline in the kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridges, R.J.; Meister, A.

    1985-06-25

    Transport of gamma-glutamyl amino acids, a step in the proposed glutathione-gamma-glutamyl transpeptidase-mediated amino acid transport pathway, was examined in mouse kidney. The transport of gamma-glutamyl amino acids was demonstrated in vitro in studies on kidney slices. Transport was followed by measuring uptake of /sup 35/S after incubation of the slices in media containing gamma-glutamyl methionine (/sup 35/S)sulfone. The experimental complication associated with extracellular conversion of the gamma-glutamyl amino acid to amino acid and uptake of the latter by slices was overcome by using 5-oxoproline formation (catalyzed by intracellular gamma-glutamyl-cyclotransferase) as an indicator of gamma-glutamyl amino acid transport. This method wasmore » also successfully applied to studies on transport of gamma-glutamyl amino acids in vivo. Transport of gamma-glutamyl amino acids in vitro and in vivo is inhibited by several inhibitors of gamma-glutamyl transpeptidase and also by high extracellular levels of glutathione. This seems to explain urinary excretion of gamma-glutamylcystine by humans with gamma-glutamyl transpeptidase deficiency and by mice treated with inhibitors of this enzyme. Mice depleted of glutathione by treatment with buthionine sulfoximine (which inhibits glutathione synthesis) or by treatment with 2,6-dimethyl-2,5-heptadiene-4-one (which effectively interacts with tissue glutathione) exhibited significantly less transport of gamma-glutamyl amino acids than did untreated controls. The findings suggest that intracellular glutathione functions in transport of gamma-glutamyl amino acids. Evidence was also obtained for transport of gamma-glutamyl gamma-glutamylphenylalanine into kidney slices.« less

  3. Haplosporidium nelsoni (MSX) in Japanese scallops Patinopecten yessoensis (Jay, 1857) from Dalian along the northern coast of the Yellow Sea, China.

    PubMed

    Wang, Zhongwei; Lu, Xin; Liang, Yubo

    2012-04-01

    The protozoan parasite Haplosporidium nelsoni (MSX) was identified in Japanese scallops Patinopecten yessoensis (Jay, 1857) from Dalian along the northern coast of the Yellow Sea, China by histopathologic examination, polymerase chain reaction (PCR) amplification, and in situ hybridization (ISH) assay. H. nelsoni plasmodia-like structures were identified in the digestive glands of scallops by histologic examination, but no parasite spores were observed. PCR using the Hap-F2, R2 primer pair produced a sequence with 100% homology with the corresponding small subunit rDNA region of H. nelsoni. An ISH assay using the oligonucleotide probe MSX1347 produced a positive reaction with the Japanese scallop parasite. This is the first report of H. nelsoni in P. yessoensis in China.

  4. Concurrent Overexpression of Arabidopsis thaliana Cystathionine γ-Synthase and Silencing of Endogenous Methionine γ-Lyase Enhance Tuber Methionine Content in Solanum tuberosum.

    PubMed

    Kumar, Pavan; Jander, Georg

    2017-04-05

    Potatoes (Solanum tuberosum) are deficient in methionine, an essential amino acid in human and animal diets. Higher methionine levels increase the nutritional quality and promote the typically pleasant aroma associated with baked and fried potatoes. Several attempts have been made to elevate tuber methionine levels by genetic engineering of methionine biosynthesis and catabolism. Overexpressing Arabidopsis thaliana cystathionine γ-synthase (AtCGS) in S. tuberosum up-regulates a rate-limiting step of methionine biosynthesis and increases tuber methionine levels. Alternatively, silencing S. tuberosum methionine γ-lyase (StMGL), which causes decreased degradation of methionine into 2-ketobutyrate, also increases methionine levels. Concurrently enhancing biosynthesis and reducing degradation were predicted to provide further increases in tuber methionine content. Here we report that S. tuberosum cv. Désirée plants with AtCGS overexpression and StMGL silenced by RNA interference are morphologically normal and accumulate higher free methionine levels than either single-transgenic line.

  5. Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats.

    PubMed

    Ishiwari, Keita; Madson, Lisa J; Farrar, Andrew M; Mingote, Susana M; Valenta, John P; DiGianvittorio, Michael D; Frank, Lauren E; Correa, Merce; Hockemeyer, Jörg; Müller, Christa; Salamone, John D

    2007-03-28

    There is considerable evidence of interactions between adenosine A2A receptors and dopamine D2 receptors in striatal areas, and antagonists of the A2A receptor have been shown to reverse the motor effects of DA antagonists in animal models. The D2 antagonist haloperidol produces parkinsonism in humans, and also induces motor effects in rats, such as suppression of locomotion. The present experiments were conducted to study the ability of the adenosine A2A antagonist MSX-3 to reverse the locomotor effects of acute or subchronic administration of haloperidol in rats. Systemic (i.p.) injections of MSX-3 (2.5-10.0 mg/kg) were capable of attenuating the suppression of locomotion induced by either acute or repeated (i.e., 14 day) administration of 0.5 mg/kg haloperidol. Bilateral infusions of MSX-3 directly into the nucleus accumbens core (2.5 microg or 5.0 microg in 0.5 microl per side) produced a dose-related increase in locomotor activity in rats treated with 0.5 mg/kg haloperidol either acutely or repeatedly. There were no overall significant effects of MSX-3 infused directly into the dorsomedial nucleus accumbens shell or the ventrolateral neostriatum. These results indicate that antagonism of adenosine A2A receptors can attenuate the locomotor suppression produced by DA antagonism, and that this effect may be at least partially mediated by A2A receptors in the nucleus accumbens core. These studies suggest that adenosine and dopamine systems interact to modulate the locomotor and behavioral activation functions of nucleus accumbens core.

  6. Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats

    PubMed Central

    Ishiwari, Keita; Madson, Lisa J.; Farrar, Andrew M.; Mingote, Susana M.; Valenta, John P.; DiGianvittorio, Michael D.; Frank, Lauren E.; Correa, Merce; Hockemeyer, Jörg; Müller, Christa; Salamone, John D.

    2009-01-01

    There is considerable evidence of interactions between adenosine A2A receptors and dopamine D2 receptors in striatal areas, and antagonists of the A2A receptor have been shown to reverse the motor effects of DA antagonists in animal models. The D2 antagonist haloperidol produces parkinsonism in humans, and also induces motor effects in rats, such as suppression of locomotion. The present experiments were conducted to study the ability of the adenosine A2A antagonist MSX-3 to reverse the locomotor effects of acute or subchronic administration of haloperidol in rats. Systemic (i.p.) injections of MSX-3 (2.5–10.0 mg/kg) were capable of attenuating the suppression of locomotion induced by either acute or repeated (i.e., 14 day) administration of 0.5 mg/kg haloperidol. Bilateral infusions of MSX-3 directly into the nucleus accumbens core (2.5 µg or 5.0 µg in 0.5 µl per side) produced a dose-related increase in locomotor activity in rats treated with 0.5 mg/kg haloperidol either acutely or repeatedly. There were no overall significant effects of MSX-3 infused directly into the dorsomedial nucleus accumbens shell or the ventrolateral neostriatum. These results indicate that antagonism of adenosine A2A receptors can attenuate the locomotor suppression produced by DA antagonism, and that this effect may be at least partially mediated by A2A receptors in the nucleus accumbens core. These studies suggest that adenosine and dopamine systems interact to modulate the locomotor and behavioral activation functions of nucleus accumbens core. PMID:17223207

  7. Inhibition of glutathione synthesis eliminates the adaptive response of ascitic hepatoma 22 cells to nedaplatin that targets thioredoxin reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yijun; Lu, Hongjuan; Wang, Dongxu

    2012-12-15

    Thioredoxin reductase (TrxR) is a target for cancer therapy and the anticancer mechanism of cisplatin involves TrxR inhibition. We hypothesize that the anticancer drug nedaplatin (NDP), an analogue of cisplatin and a second-generation platinum complex, also targets TrxR. Furthermore, we investigate whether the therapeutic efficacy of NDP can be enhanced by simultaneous modulation of 1) TrxR, via NDP, and 2) glutathione (GSH), via the GSH synthesis inhibitor buthionine sulfoximine (BSO). Mice bearing ascitic hepatoma 22 (H22) cells were treated with NDP alone or NDP plus BSO. TrxR activity of H22 cells was inhibited by NDP in a dose-dependent manner. Amore » high correlation between the inhibition of TrxR activity at 6 h and the inhibition of ascitic fluid volume at 72 h was established (r = 0.978, p < 0.01). As an adaptive response, the viable ascitic cancer cells after NDP treatment displayed an enlarged cell phenotype, assembled with several-fold more antioxidant enzymes and GSH-predominant non-protein free thiols. This adaptive response was largely eliminated when BSO was co-administered with NDP, leading to the decimation of the H22 cell population without enhancing renal toxicity, since at this dose, NDP did not inhibit renal TrxR activity. In conclusion, the pharmacological effect of NDP involves TrxR inhibition, and the adaptive response of NDP-treated ascitic H22 cells can be efficiently counteracted by BSO. Simultaneous modulation of TrxR and GSH on ascitic H22 cells using NDP plus BSO greatly enhances therapeutic efficacy as compared with the single modulation of TrxR using NDP alone. -- Highlights: ► Nedaplatin at a pharmacological dose inhibits TrxR in cancer cells but not in kidney. ► The nedaplatin-treated cancer cells exhibit adaptive response. ► Buthionine sulfoximine inhibits glutathione in both cancer cells and kidney. ► Buthionine sulfoximine counteracts the adaptive response to the nedaplatin treatment. ► Buthionine sulfoximine does not aggravate renal toxicity of the nedaplatin treatment.« less

  8. An opportunity analysis system for space surveillance experiments with the MSX

    NASA Technical Reports Server (NTRS)

    Sridharan, Ramaswamy; Duff, Gary; Hayes, Tony; Wiseman, Andy

    1994-01-01

    The Mid-Course Space Experiment consists of a set of payloads on a satellite being designed and built under the sponsorship of Ballistic Missile Defense Office. The MSX satellite will conduct a series of measurements of phenomenology of backgrounds, missile targets, plumes and resident space objects (RSO's); and will engage in functional demonstrations in support of detection, acquisition and tracking for ballistic missile defense and space-based space surveillance missions. A complex satellite like the MSX has several constraints imposed on its operation by the sensors, the supporting instrumentation, power resources, data recording capability, communications and the environment in which all these operate. This paper describes the implementation of an opportunity and feasibility analysis system, developed at Lincoln Laboratory, Massachusetts Institute of Technology, specifically to support the experiments of the Principal Investigator for space-based surveillance.

  9. On the Nature of Bright Infrared Sources in the Small Magellanic Cloud: Interpreting MSX through the Lens of Spitzer

    NASA Astrophysics Data System (ADS)

    Kraemer, Kathleen E.; Sloan, G. C.

    2015-01-01

    We compare infrared observations of the Small Magellanic Cloud (SMC) by the Midcourse Space Experiment (MSX) and the Spitzer Space Telescope to better understand what components of a metal-poor galaxy dominate radiative processes in the infrared. The SMC, at a distance of ~60 kpc and with a metallicity of ~0.1-0.2 solar, can serve as a nearby proxy for metal-poor galaxies at high redshift. The MSX Point Source Catalog contains 243 objects in the SMC that were detected at 8.3 microns, the most sensitive MSX band. Multi-epoch, multi-band mapping with Spitzer, supplemented with observations from the Two-Micron All-Sky Survey (2MASS) and the Wide-field Infrared Survey Explorer (WISE), provides variability information, and, together with spectra from Spitzer for ~15% of the sample, enables us to determine what these luminous sources are. How many remain simple point sources? What fraction break up into multiple stars? Which are star forming regions, with both bright diffuse emission and point sources? How do evolved stars and stellar remnants contribute at these wavelengths? What role do young stellar objects and HII regions play? Answering these questions sets the stage for understanding what we will see with the James Webb Space Telescope (JWST).

  10. MSX ₁ gene variant and non-syndromic clefting: association or rejection?

    PubMed

    Reddy, Naveen Admala; Gopinath, Adusumilli; Reddy, Jayaprakash Thirumala; Devanna, Raghu; Saravanan, Pichai; Rohra, Mayur G

    2014-01-01

    Non-syndromic cleft lip/palate (NSCL/P) is a congenital anomaly with significant medical, psychological and social ramifications. There is sufficient evidence to hypothesize that locus for this condition can be identified by candidate genes. The aim of this study is to amplify the chosen region (799 G >T) of MSX 1 gene, investigate the degree of association and perform a mutation research from Raichur cleft lip and palate patient sample. Case history and clinical examination of the patient were recorded to rule. Written consent was obtained from patients and controls for in vivo study. STUDY WAS DESIGNED IN FOUR STEPS AS FOLLOWS: a. Collection of a blood sample; b. Genomic deoxyribonucleic acid (DNA) extraction; c. Polymerase chain reaction (PCR); d. Restriction fragment length polymorphism (RFLP). Blood samples were collected from 50 subjects having NSCL/P and 50 controls. Genomic DNA was extracted, PCR and RFLP was performed for digestion products that were evaluated. Chi-square test with P value at 95% confidence intervals. The results showed a positive correlation between MSX 1 799 G >T gene variant and NSCL/P patients in Raichur patients. From a genetically diverse etiology MSX 1 799 G >T gene variant may be a good screening marker for NSCL/P in Raichur patients.

  11. Epidermal growth factor impairs palatal shelf adhesion and fusion in the Tgf-β 3 null mutant.

    PubMed

    Barrio, M Carmen; Del Río, Aurora; Murillo, Jorge; Maldonado, Estela; López-Gordillo, Yamila; Paradas-Lara, Irene; Hernandes, Luzmarina; Catón, Javier; Martínez-Álvarez, Concepción

    2014-01-01

    The cleft palate presented by transforming growth factor-β3 (Tgf-β3) null mutant mice is caused by altered palatal shelf adhesion, cell proliferation, epithelial-to-mesenchymal transformation and cell death. The expression of epidermal growth factor (EGF), transforming growth factor-β1 (Tgf-β1) and muscle segment homeobox-1 (Msx-1) is modified in the palates of these knockout mice, and the cell proliferation defect is caused by the change in EGF expression. In this study, we aimed to determine whether this change in EGF expression has any effect on the other mechanisms altered in Tgf-β3 knockout mouse palates. We tested the effect of inhibiting EGF activity in vitro in the knockout palates via the addition of Tyrphostin AG 1478. We also investigated possible interactions between EGF, Tgf-β1 and Msx-1 in Tgf-β3 null mouse palate cultures. The results show that the inhibition of EGF activity in Tgf-β3 null mouse palate cultures improves palatal shelf adhesion and fusion, with a particular effect on cell death, and restores the normal distribution pattern of Msx-1 in the palatal mesenchyme. Inhibition of TGF-β1 does not affect either EGF or Msx-1 expression. © 2014 S. Karger AG, Basel.

  12. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension.

    PubMed

    Cavuoto, Paul; Fenech, Michael F

    2012-10-01

    Methionine is an essential amino acid with many key roles in mammalian metabolism such as protein synthesis, methylation of DNA and polyamine synthesis. Restriction of methionine may be an important strategy in cancer growth control particularly in cancers that exhibit dependence on methionine for survival and proliferation. Methionine dependence in cancer may be due to one or a combination of deletions, polymorphisms or alterations in expression of genes in the methionine de novo and salvage pathways. Cancer cells with these defects are unable to regenerate methionine via these pathways. Defects in the metabolism of folate may also contribute to the methionine dependence phenotype in cancer. Selective killing of methionine dependent cancer cells in co-culture with normal cells has been demonstrated using culture media deficient in methionine. Several animal studies utilizing a methionine restricted diet have reported inhibition of cancer growth and extension of a healthy life-span. In humans, vegan diets, which can be low in methionine, may prove to be a useful nutritional strategy in cancer growth control. The development of methioninase which depletes circulating levels of methionine may be another useful strategy in limiting cancer growth. The application of nutritional methionine restriction and methioninase in combination with chemotherapeutic regimens is the current focus of clinical studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Methionine and serine synergistically suppress hyperhomocysteinemia induced by choline deficiency, but not by guanidinoacetic acid, in rats fed a low casein diet.

    PubMed

    Liu, Yi-qun; Liu, Ying; Morita, Tatsuya; Sugiyama, Kimio

    2011-01-01

    The effects of dietary supplementation with 0.5% methionine, 2.5% serine, or both on hyperhomocysteinemia induced by deprivation of dietary choline or by dietary addition of 0.5% guanidinoacetic acid (GAA) were investigated in rats fed a 10% casein diet. Hyperhomocysteinemia induced by choline deprivation was not suppressed by methionine alone and was only partially suppressed by serine alone, whereas it was completely suppressed by a combination of methionine and serine, suggesting a synergistic effect of methionine and serine. Fatty liver was also completely prevented by the combination of methionine and serine. Compared with methionine alone, the combination of methionine and serine decreased hepatic S-adenosylhomocysteine and homocysteine concentrations and increased hepatic betaine and serine concentrations and betaine-homocysteine S-methyltransferase activity. GAA-induced hyperhomocysteinemia was partially suppressed by methionine alone, but no interacting effect of methionine and serine was detected. In contrast, GAA-induced fatty liver was completely prevented by the combination of methionine and serine. These results indicate that a combination of methionine and serine is effective in suppressing both hyperhomocysteinemia and fatty liver induced by choline deprivation, and that methionine alone is effective in suppressing GAA-induced hyperhomocysteinemia partially.

  14. Sulfoximine-mediated syntheses of optically active alcohols. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Stark, C. J., Jr.

    1978-01-01

    Several routes are described for the production of optically active secondary and tertiary alcohols. In all cases, the asymmetry emanates from the use of (+)-(S)-N,S-dimethyl-S-phenyl-sulfoximine (1) at some point in the variation of the diastereomers. One route relies upon the separation of the diastereomers produced from the condensation of (+)-(S)-(N-methylphenyl-sulfonimidoyl) methyllithium with prochiral aldehydes and ketones. Subsequent carbon-sulfur bond cleavage of the separated diastereomeric beta-hydroxysulfoximines yields optically active alcohols. Alternatively, beta-hydroxysulfoximines were produced from the reduction of chiral beta-ketosulfoximines. The reductions were most successfully achieved with diborane generated externally and bubbled into a toluene solution of the ketone at -78 C. Optically active alcohols were also produced from prochiral ketones by reduction with diborane or lithium aluminum hydride complexes of resolved diastereomers of beta-hydroxysulfoximines.

  15. Response of rainbow trout to source and level of supplemental dietary methionine

    USGS Publications Warehouse

    Poston, H.A.

    1986-01-01

    1. Methionine and total sulfur amino acid (TSAA) requirements of rainbow trout (Salmo gairdneri) were investigated by feeding graded isosulfurous levels of l- and dl-methionine, l-cystine, and the free acid and calcium forms of methionine hydroxy analog (MHA).2. Added cystine did not promote growth, survival or prevent cataracts.3. l-methionine produced fastest growth, followed by dl-methionine, CaMHA and free acid MHA.4. Trout fed CaMHA gained 85.7 and 92.3% as much as those fed l-methionine and dl-methionine.5. Within each experiment, the level of L-methionine isomer that prevented cataracts was constant (1.86 g/100g protein in experiment (1), 1.45 in experiment (2) and was lower than for maximum growth (2.89 and 2.15 g) regardless of methionine source.

  16. Spectra from the IRS of Bright Oxygen-Rich Evolved Stars in the SMC

    NASA Astrophysics Data System (ADS)

    Kraemer, Kathleen E.; Sloan, Greg; Wood, Peter

    2016-06-01

    We have used Spitzer's Infrared Spectrograph (IRS) to obtain spectra of stars in the Small Magellanic Cloud (SMC). The targets were chosen from the Point Source Catalog of the Mid-Course Space Experiment (MSX), which detected the 243 brightest infrared sources in the SMC. Our SMC sample of oxygen-rich evolved stars shows more dust than found in previous samples, and the dust tends to be dominated by silicates, with little contribution from alumina. Both results may arise from the selection bias in the MSX sample and our sample toward more massive stars. Additionally, several sources show peculiar spectral features such as PAHs, crystalline silicates, or both carbon-rich and silicate features. The spectrum of one source, MSX SMC 145, is a combination of an ordinary AGB star and a background galaxy at z~0.16, rather than an OH/IR star as previously suggested.

  17. Can betaine partially replace or enhance the effect of methionine by improving broiler growth and carcase characteristics?

    PubMed

    McDevitt, R M; Mack, S; Wallis, I R

    2000-09-01

    1. Growth rates and carcase characteristics were measured in male broiler chickens fed on a control diet deficient in methionine (c. 2.8 g/kg methionine) or a series of diets containing graded levels of betaine or DL-methionine or both additives. 2. We aimed to answer 2 main questions. First, can betaine replace part of the methionine in a broiler ration? Secondly is there a synergism between methionine and betaine? 3. Birds given the control diet or that supplemented only with betaine ate less, grew more slowly, had higher food convension ratio (FCR) and varied more in mass at 42 d than birds fed diets with DL-methionine. Adding 1.2 g/kg DL-methionine to the control ration produced the heaviest birds at 42 d (2500 g) with the 2nd heaviest breast muscle (366 g). 4. After correcting for treatment differences in body mass (analysis of convariance), birds fed on the control diet and the diet supplemented with betaine only, had relatively lighter breast muscles but relatively heavier abdominal fat pads than those of birds given diets supplemented with DL-methionine. However, adding betaine to diets containing added methionine further improved the relative breast muscle yield. 5. After correcting for differences in body mass between treatments, birds fed on diets containing most methionine had lighter viscera than birds fed diets deficient in methionine. This demonstrated gut plasticity, suggesting that the viscera enlarged to sequester methionine from low-methionine diets. 6. Our data refute the hypothesis that betaine can substitute for methionine in broilers fed diets that are marginally deficient in methionine plus cystine. However, betaine may improve carcase composition, especially breast meat yield.

  18. Comparison of the effects of seleno-l-methionine, seleno-dl-methionine, and selenized yeast on reproduction of mallards

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.

    1996-01-01

    The toxicities of seleno-L-methionine, seleno-DL-methionine, and selenized yeast were compared. Ten pairs of mallards were fed a control diet and 15 pairs were fed diets containing 10 ppm selenium as seleno-DL-methionine, seleno-L-methionine, or selenized yeast. Hatching of fertile eggs was significantly lower for females fed 10 ppm selenium as seleno-DL-methionine (7.6%) and seleno-L-methionine (6.4%) than for controls (41.3%). Survival of ducklings was lower when their parents had been fed 10 ppm selenium as seleno-L-methionine (20.0%) than for controls (98.4%). The number of 6-day-old ducklings produced per female was significantly lower for mallards fed 10 ppm selenium as seleno-DL-methionine (0.47) or selenized yeast (2.67) than for controls (6.10), and was significantly lower for mallards fed seleno-L-methionine (0.13) than for mallards fed selenized yeast. The eighth eggs of females fed the DL or L forms of selenomethionine contained means of 9.2 and 8.9 ppm selenium, wet weight; these means were higher than the mean (6.6 ppm) for females fed selenized yeast. Among embryos that died at 7 days of age or older, the percentage of embryos that were deformed was 1.3% for controls, 24.6% for seleno-DL-methionine, 28.2% for seleno-L-methionine, and 11.0% for selenized yeast. The results suggested that seleno-DL-methionine and seleno-L-methionine were of similar toxicity and were both more toxic than selenium from selenized yeast.

  19. Proceedings of the 1998 Space Control Conference,

    DTIC Science & Technology

    1998-04-16

    later in this paper. The second radar under development was the HAVE STARE radar. This was also an X -band radar but was a mechanically steered, dish... spacecraft . The commands are sent via electronic link to Johns Hopkins Applied Physics Laboratory for inclusion in the MSX upload and are uplinked...with all the other sensors on the MSX along the + X axis of the spacecraft and is not sepa- rately gimbaled. Thus, to point the SBV, the entire

  20. The yeast two hybrid system in a screen for proteins interacting with axolotl (Ambystoma mexicanum) Msx1 during early limb regeneration.

    PubMed

    Abuqarn, Mehtap; Allmeling, Christina; Amshoff, Inga; Menger, Bjoern; Nasser, Inas; Vogt, Peter M; Reimers, Kerstin

    2011-07-01

    Urodele amphibians are exceptional in their ability to regenerate complex body structures such as limbs. Limb regeneration depends on a process called dedifferentiation. Under an inductive wound epidermis terminally differentiated cells transform to pluripotent progenitor cells that coordinately proliferate and eventually redifferentiate to form the new appendage. Recent studies have developed molecular models integrating a set of genes that might have important functions in the control of regenerative cellular plasticity. Among them is Msx1, which induced dedifferentiation in mammalian myotubes in vitro. Herein, we screened for interaction partners of axolotl Msx1 using a yeast two hybrid system. A two hybrid cDNA library of 5-day-old wound epidermis and underlying tissue containing more than 2×10⁶ cDNAs was constructed and used in the screen. 34 resulting cDNA clones were isolated and sequenced. We then compared sequences of the isolated clones to annotated EST contigs of the Salamander EST database (BLASTn) to identify presumptive orthologs. We subsequently searched all no-hit clone sequences against non redundant NCBI sequence databases using BLASTx. It is the first time, that the yeast two hybrid system was adapted to the axolotl animal model and successfully used in a screen for proteins interacting with Msx1 in the context of amphibian limb regeneration. 2011 Elsevier B.V. All rights reserved.

  1. Gene expression differences in the methionine remethylation and transsulphuration pathways under methionine restriction and recovery with D,L-methionine or D,L-HMTBA in meat-type chickens.

    PubMed

    Aggrey, S E; González-Cerón, F; Rekaya, R; Mercier, Y

    2018-02-01

    This study examined the molecular mechanisms of methionine pathways in meat-type chickens where birds were provided with a diet deficient in methionine from 3 to 5 weeks of age. The birds on the deficient diet were then provided with a diet supplemented with either D,L-methionine or D,L-HMTBA from 5 to 7 weeks. The diet of the control birds was supplemented with L-methionine from hatch till 7 weeks of age. We studied the mRNA expression of methionine adenosyltransferase 1, alpha, methionine adenosyltransferase 1, beta, 5-methyltetrahydrofolate-homocysteine methyltransferase, 5-methyltetrahydrofolate-homocysteine methyltransferase reductase, betaine-homocysteine S-methyltransferase, glycine N-methyltransferase, S-adenosyl-L-homocysteine hydrolase and cystathionine beta synthase genes in the liver, duodenum, Pectoralis (P.) major and the gastrocnemius muscle at 5 and 7 weeks. Feeding a diet deficient in dietary methionine affected body composition. Birds that were fed a methionine-deficient diet expressed genes that indicated that remethylation occurred via the one-carbon pathway in the liver and duodenum; however, in the P. major and the gastrocnemius muscles, gene expression levels suggested that homocysteine received methyl from both folate and betaine for remethylation. Birds who were switched from a methionine deficiency diet to one supplemented with either D,L-methionine or D,L-HMTBA showed a downregulation of all the genes studied in the liver. However, depending on the tissue or methionine form, either folate or betaine was elicited for remethylation. Thus, mRNA expressions show that genes in the remethylation and transsulphuration pathways were regulated according to tissue need, and there were some differences in the methionine form. © 2017 Blackwell Verlag GmbH.

  2. Methionine Deprivation Induces a Targetable Vulnerability in Triple-negative Breast Cancer Cells by Enhancing TRAIL Receptor-2 Expression

    PubMed Central

    Strekalova, Elena; Malin, Dmitry; Good, David M.; Cryns, Vincent L.

    2015-01-01

    Purpose Many neoplasms are vulnerable to methionine deficiency by mechanisms that are poorly understood. Because gene profiling studies have revealed that methionine depletion increases TNF-related apoptosis-inducing ligand receptor-2 (TRAIL-R2) mRNA, we postulated that methionine stress sensitizes breast cancer cells to proapoptotic TRAIL-R2 agonists. Experimental Design Human triple (ER/PR/HER2)-negative breast carcinoma cell lines were cultured in control or methionine-free media. The effects of methionine depletion on TRAIL receptor expression and sensitivity to chemotherapy or a humanized agonistic TRAIL-R2 monoclonal antibody (lexatumumab) were determined. The melanoma-associated antigen MAGED2 was silenced to delineate its functional role in sensitizing TNBC cells to methionine stress. An orthotopic TNBC model was utilized to evaluate the effects of dietary methionine deficiency, lexatumumab or the combination. Results Methionine depletion sensitized TNBC cells to lexatumumab-induced caspase activation and apoptosis by increasing TRAIL-R2 mRNA and cell surface expression. MCF-10A cells transformed by oncogenic H-Ras, but not untransformed cells, and matrix-detached TNBC cells were highly sensitive to the combination of lexatumumab and methionine depletion. Proteomics analyses revealed that MAGED2, which has been reported to reduce TRAIL-R2 expression, was suppressed by methionine stress. Silencing MAGED2 recapitulated features of methionine deprivation, including enhanced mRNA and cell surface expression of TRAIL receptors and increased sensitivity to TRAIL receptor agonists. Dietary methionine deprivation enhanced the antitumor effects of lexatumumab in an orthotopic metastatic TNBC model. Conclusion Methionine depletion exposes a targetable defect in TNBC cells by increasing TRAIL-R2 expression. Our findings provide the foundation for a clinical trial combining dietary methionine restriction and TRAIL-R2 agonists. PMID:25724522

  3. Sulfur amino acid deficiency upregulates intestinal methionine cycle activity and suppresses epithelial growth in neonatal pigs

    PubMed Central

    Bauchart-Thevret, Caroline; Stoll, Barbara; Chacko, Shaji; Burrin, Douglas G.

    2009-01-01

    We recently showed that the developing gut is a significant site of methionine transmethylation to homocysteine and transsulfuration to cysteine. We hypothesized that sulfur amino acid (SAA) deficiency would preferentially reduce mucosal growth and antioxidant function in neonatal pigs. Neonatal pigs were enterally fed a control or an SAA-free diet for 7 days, and then whole body methionine and cysteine kinetics were measured using an intravenous infusion of [1-13C;methyl-2H3]methionine and [15N]cysteine. Body weight gain and plasma methionine, cysteine, homocysteine, and taurine and total erythrocyte glutathione concentrations were markedly decreased (−46% to −85%) in SAA-free compared with control pigs. Whole body methionine and cysteine fluxes were reduced, yet methionine utilization for protein synthesis and methionine remethylation were relatively preserved at the expense of methionine transsulfuration, in response to SAA deficiency. Intestinal tissue concentrations of methionine and cysteine were markedly reduced and hepatic levels were maintained in SAA-free compared with control pigs. SAA deficiency increased the activity of methionine metabolic enzymes, i.e., methionine adenosyltransferase, methionine synthase, and cystathionine β-synthase, and S-adenosylmethionine concentration in the jejunum, whereas methionine synthase activity increased and S-adenosylmethionine level decreased in the liver. Small intestine weight and protein and DNA mass were lower, whereas liver weight and DNA mass were unchanged, in SAA-free compared with control pigs. Dietary SAA deficiency induced small intestinal villus atrophy, lower goblet cell numbers, and Ki-67-positive proliferative crypt cells in association with lower tissue glutathione, especially in the jejunum. We conclude that SAA deficiency upregulates intestinal methionine cycle activity and suppresses epithelial growth in neonatal pigs. PMID:19293331

  4. Factors influencing methionine toxicity in young bobwhite quail

    USGS Publications Warehouse

    Serafin, J.A.

    1981-01-01

    Young Bobwhite quail (Colinus virginianus) were fed low and adequate protein purified diets with and without excess methionine to evaluate factors affecting methionine toxicity. Growth of quail fed an adequate protein (27%) diet, without supplemental glycine, was depressed by 1.75% and 2.25% excess methionine. Supplemental glycine (.3%) alleviated growth depression caused by 2.25% excess methionine. Quail fed 1.75% and 2.25% excess methionine developed signs of toxicity characterized by weakness, a lowered, outstretched neck when moving, and ataxia. In addition, quail would fall on their sides when disturbed and spin with their heads retracted. These conditions were transient in nature. Growth of quail fed a low protein (18.9%) diet was depressed by 1% and 1.5% excess methionine and DL-homocystine. Quail fed 1% and 1.5% excess methionine in this diet also developed signs of toxicity, the incidence of which was greater and the duration longer than occurred with quail fed adequate protein. Supplementing a low protein (20.15%) diet with .3% or .6% glycine or threonine or a combination of these amino acids did not alleviate growth depression caused by 1.5% excess methionine; however, 2% and 3% supplemental glycine were somewhat effective. Supplements of glycine (2%, 3%) and threonine (1%) completely reversed growth depression from 1% excess methionine but did not influence growth of controls, indicating that both amino acids counteract methionine toxicity. Both glycine and threonine alone improved growth by about the same extent in diets with 1% or 1.5% excess methionine; however, these amino acids alleviated less than 30% of the growth depression resulting from 1.5% excess methionine. The effectiveness of glycine in alleviating methionine toxicity in a low protein diet was decreased, and hemoglobin levels were depressed with 1.5% excess methionine compared to less amounts.

  5. Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design.

    PubMed

    Krajewski, Wojciech W; Collins, Ruairi; Holmberg-Schiavone, Lovisa; Jones, T Alwyn; Karlberg, Tobias; Mowbray, Sherry L

    2008-01-04

    Glutamine synthetase (GS) catalyzes the ligation of glutamate and ammonia to form glutamine, with concomitant hydrolysis of ATP. In mammals, the activity eliminates cytotoxic ammonia, at the same time converting neurotoxic glutamate to harmless glutamine; there are a number of links between changes in GS activity and neurodegenerative disorders, such as Alzheimer's disease. In plants, because of its importance in the assimilation and re-assimilation of ammonia, the enzyme is a target of some herbicides. GS is also a central component of bacterial nitrogen metabolism and a potential drug target. Previous studies had investigated the structures of bacterial and plant GSs. In the present publication, we report the first structures of mammalian GSs. The apo form of the canine enzyme was solved by molecular replacement and refined at a resolution of 3 A. Two structures of human glutamine synthetase represent complexes with: a) phosphate, ADP, and manganese, and b) a phosphorylated form of the inhibitor methionine sulfoximine, ADP and manganese; these structures were refined to resolutions of 2.05 A and 2.6 A, respectively. Loop movements near the active site generate more closed forms of the eukaryotic enzymes when substrates are bound; the largest changes are associated with the binding of the nucleotide. Comparisons with earlier structures provide a basis for the design of drugs that are specifically directed at either human or bacterial enzymes. The site of binding the amino acid substrate is highly conserved in bacterial and eukaryotic GSs, whereas the nucleotide binding site varies to a much larger degree. Thus, the latter site offers the best target for specific drug design. Differences between mammalian and plant enzymes are much more subtle, suggesting that herbicides targeting GS must be designed with caution.

  6. Quantitating silver-stained neurodegeneration: the neurotoxicity of trimethlytin (TMT) in aged rats.

    PubMed

    Scallet, A C; Pothuluri, N; Rountree, R L; Matthews, J C

    2000-05-15

    This report describes the development of a histoanalytical procedure to measure the degree of neurodegeneration produced by the organometal toxicant trimethyltin (TMT). Based on a previous, non-quantitated experiment we hypothesized that the same dose of TMT would produce greater damage in animals of increasing age. Male rats aged 6, 12, 18, or 24 months at the time of dosing were given either 4.5 mg/kg TMT or saline (i.p.). One month after dosing, rats were perfused and their brains removed and processed to selectively silver-impregnate degenerating cell bodies as well as axon terminals and dendrites. Neurodegeneration was most prominent in the hippocampi (especially CA1 stratum radiatum) of TMT-treated rats, but not in the controls. Computer-assisted counting of the silver grains marking damage indicated greater neurotoxicity from the same dose of TMT when given to the older animals. Thus the grain density in the 6-month-old TMT-treated rats was not significantly elevated from the 6-month-old controls (P>0.10). The 12-month-old TMT-treated rats had significantly increased grain densities compared to their controls (P<0.05), but still larger increases of grain counts were observed in the 18- and 24-month-old rats (both P-values<0.01). Our findings with TMT are similar to previous, but nonquantitative, reports that the neurotoxic effects of kainic acid and methionine sulfoximine were also greater in older rats. An increased sensitivity to neurotoxicants might help explain the apparently spontaneous degeneration of cortical neurons in aging and in the neurological diseases of old age. The method we report here for quantitation of silver grains marking neurodegeneration should be adaptable to a wide range of histologically-based neurotoxicology investigations.

  7. Anethole dithiolethione prevents oxidative damage in glutathione-depleted astrocytes.

    PubMed

    Drukarch, B; Schepens, E; Stoof, J C; Langeveld, C H

    1997-06-25

    Astrocytes protect neurons against reactive oxygen species such as hydrogen peroxide, a capacity which reportedly is abolished following loss of the antioxidant glutathione. Anethole dithiolethione, a sulfur-containing compound which is used in humans, is known to increase cellular glutathione levels and thought thereby to protect against oxidative damage. In the present study we found that anethole dithiolethione increased the glutathione content of cultured rat striatal astrocytes. This effect was abolished by coincubation with the glutathione synthesis inhibitor buthionine sulfoximine. Nevertheless, in the presence of buthionine sulfoximine, despite the lack of an increase in the lowered glutathione level, anethole dithiolethione fully protected the astrocytes against the enhanced toxicity of hydrogen peroxide. Thus, apparently other mechanisms than stimulation of glutathione synthesis are involved in the compound's protective action in astrocytes. Considering the occurrence of lowered glutathione levels in neurodegenerative syndromes, we conclude that further evaluation of the therapeutic potential of anethole dithiolethione is warranted.

  8. The effects of glutathione depletion on thermotolerance and heat stress protein synthesis.

    PubMed Central

    Russo, A.; Mitchell, J. B.; McPherson, S.

    1984-01-01

    The effects of cellular glutathione depletion by buthionine sulfoximine on the development of thermotolerance and synthesis of heat stress protein was studied. Cellular glutathione levels were found to increase rapidly following an acute heat treatment of either 12 min at 45.5 degrees C or 1 h at 43 degrees C and remain elevated for prolonged periods. Glutathione depletion and prevention of glutathione synthesis by buthionine sulfoximine resulted in inhibition of the development of thermotolerance and a decrease in total protein as well as specific heat stress proteins. While the degree of inhibition of thermotolerance was similar for both glutathione depletion protocols, inhibition in heat stress protein synthesis was greater when glutathione was depleted to low levels prior to heating. The possible role of glutathione and the cellular redox state to thermotolerance and synthesis of heat stress protein is discussed. Images Figure 2 PMID:6733022

  9. Dry-extrusion of asian carp to supplement natural methionine in organic poultry production

    USDA-ARS?s Scientific Manuscript database

    Methionine, a sulfur containing amino acid, is essential for healthy poultry production. Synthetic methionine is commonly used as a supplement in conventional poultry. However, for organic poultry, a natural, cost effective source of methionine that can replace synthetic methionine is unavailable. I...

  10. [A novel chemo-resistant gene MSX2 discovered by establishment of two pancreatic cancer drug resistant cell lines JF305/CDDP and PANC-1/GEM].

    PubMed

    Yuan, W; Sui, C G; Ma, X; Ma, J

    2018-05-23

    Objective: To explore new multidrug resistant genes of pancreatic cancer by establishment and characterization of chemo-resistant cell lines. Methods: The cisplatin-resistant cell line JF305/CDDP and the gemcitabine-resistant cell line PANC-1/GEM were induced by high-dose intermittent treatment. CCK-8 assay was used to detect the 50% inhibiting concentration (IC(50)), drug resistance index (R), cross-resistance, and growth difference of different cells. The changes of cell cycle and migration ability of drug-resistant cells were determined by flow cytometry and transwell assay, respectively. And then real-time fluorescence quantitative PCR was used to detect the expression of multidrug resistance-related genes. Results: The drug resistance indexes of JF305/CDDP and PANC-1/GEM were 15.3 and 27.31, respectively, and there was cross-resistance. Compared with the parental cells, the proliferation rate of JF305/CDDP was decreased by 40% on the fourth day ( P <0.05); the proportion of S phase was decreased from (45±2)% to (30±2)% ( P <0.05), and the migration ability was enhanced from (32 ±1) cells per field to (158±5) cells per field ( P <0.01). The expression of multidrug resistance-related genes MRP2, MDR1, LRP and MSX2 was increased in JF305/CDDP cells ( P <0.05). Knockdown of MSX2 in JF305 cells reduced the expression of MRP2, whereas overexpression of MSX2 in PANC-1 cells upregulated MRP2 level ( P <0.05). Conclusions: Two stable multidrug resistant cell lines of pancreatic cancer, JF305/CDDP and PANC-1/GEM, were successfully established. MSX2 might be a new drug resistance related gene in pancreatic cancer cells by up-regulation of MRP2 expression.

  11. CHARACTERIZING THE POPULATION OF BRIGHT INFRARED SOURCES IN THE SMALL MAGELLANIC CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraemer, K. E.; Sloan, G. C.; Wood, P. R.

    We have used the Infrared Spectrograph (IRS) on the Spitzer Space Telescope to observe stars in the Small Magellanic Cloud (SMC) selected from the Point Source Catalog of the Midcourse Space Experiment (MSX). We concentrate on the dust properties of the oxygen-rich evolved stars. The dust composition has smaller contributions from alumina compared to the Galaxy. This difference may arise from the lower metallicity in the SMC, but it could be a selection effect, as the SMC sample includes more stars that are brighter and thus more massive. The distribution of the SMC stars along the silicate sequence looks moremore » like the Galactic sample of red supergiants than asymptotic giant branch stars (AGBs). While many of the SMC stars are definitively on the AGB, several also show evidence of hot bottom burning. Three of the supergiants show PAH emission at 11.3 μ m. Two other sources show mixed chemistry, with both carbon-rich and oxygen-rich spectral features. One, MSX SMC 134, may be the first confirmed silicate/carbon star in the SMC. The other, MSX SMC 049, is a candidate post-AGB star. MSX SMC 145, previously considered a candidate OH/IR star, is actually an AGB star with a background galaxy at z  = 0.16 along the same line of sight. We consider the overall characteristics of all the MSX sources, the most infrared-bright objects in the SMC, in light of the higher sensitivity and resolution of Spitzer , and compare them with the object types expected from the original selection criteria. This population represents what will be seen in more distant galaxies by the upcoming James Webb Space Telescope ( JWST ). Color–color diagrams generated from the IRS spectra and the mid-infrared filters on JWST show how one can separate evolved stars from young stellar objects (YSOs) and distinguish among different classes of YSOs.« less

  12. Characterizing the Population of Bright Infrared Sources in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kraemer, K. E.; Sloan, G. C.; Wood, P. R.; Jones, O. C.; Egan, M. P.

    2017-01-01

    We have used the Infrared Spectrograph (IRS) on the Spitzer Space Telescope to observe stars in the Small Magellanic Cloud (SMC) selected from the Point Source Catalog of the Midcourse Space Experiment (MSX). We concentrate on the dust properties of the oxygen-rich evolved stars. The dust composition has smaller contributions from alumina compared to the Galaxy. This difference may arise from the lower metallicity in the SMC, but it could be a selection effect, as the SMC sample includes more stars that are brighter and thus more massive. The distribution of the SMC stars along the silicate sequence looks more like the Galactic sample of red supergiants than asymptotic giant branch stars (AGBs). While many of the SMC stars are definitively on the AGB, several also show evidence of hot bottom burning. Three of the supergiants show PAH emission at 11.3 μm. Two other sources show mixed chemistry, with both carbon-rich and oxygen-rich spectral features. One, MSX SMC 134, may be the first confirmed silicate/carbon star in the SMC. The other, MSX SMC 049, is a candidate post-AGB star. MSX SMC 145, previously considered a candidate OH/IR star, is actually an AGB star with a background galaxy at z = 0.16 along the same line of sight. We consider the overall characteristics of all the MSX sources, the most infrared-bright objects in the SMC, in light of the higher sensitivity and resolution of Spitzer, and compare them with the object types expected from the original selection criteria. This population represents what will be seen in more distant galaxies by the upcoming James Webb Space Telescope (JWST). Color-color diagrams generated from the IRS spectra and the mid-infrared filters on JWST show how one can separate evolved stars from young stellar objects (YSOs) and distinguish among different classes of YSOs.

  13. Effects of supplements of folic acid, vitamin B12, and rumen-protected methionine on whole body metabolism of methionine and glucose in lactating dairy cows.

    PubMed

    Preynat, A; Lapierre, H; Thivierge, M C; Palin, M F; Matte, J J; Desrochers, A; Girard, C L

    2009-02-01

    The present experiment was undertaken to determine the effects of dietary supplements of rumen-protected methionine and intramuscular injections of folic acid and vitamin B(12), given 3 wk before to 16 wk after calving, on glucose and methionine metabolism of lactating dairy cows. Twenty-four multiparous Holstein cows were assigned to 6 blocks of 4 cows each according to their previous milk production. Within each block, 2 cows were fed a diet estimated to supply methionine as 1.83% metabolizable protein, equivalent to 76% of methionine requirement, whereas the 2 other cows were fed the same diet supplemented daily with 18 g of rumen-protected methionine. Within each diet, the cows were administrated either no vitamin supplement or weekly intramuscular injections of 160 mg of folic acid plus 10 mg of vitamin B(12.) To investigate metabolic changes at 12 wk of lactation, glucose and methionine kinetics were measured by isotope dilution using infusions of 3[U-(13)C]glucose, [(13)C]NaHCO(3) and 3[1-(13)C,(2)H(3)] methionine. Milk and plasma concentrations of folic acid and vitamin B(12) increased with vitamin injections. Supplementary B-vitamins increased milk production from 34.7 to 38.9 +/- 1.0 kg/d and increased milk lactose, protein, and total solids yields. Whole-body glucose flux tended to increase with vitamin supplementation with a similar quantitative magnitude as the milk lactose yield increase. Vitamin supplementation increased methionine utilization for protein synthesis through increased protein turnover when methionine was deficient and through decreased methionine oxidation when rumen-protected methionine was fed. Vitamin supplementation decreased plasma concentrations of homocysteine independently of rumen-protected methionine feeding, although no effect of vitamin supplementation was measured on methionine remethylation, but this could be due to the limitation of the technique used. Therefore, the effects of these B-vitamins on lactation performance were not mainly explained by methionine economy because of a more efficient methylneogenesis but were rather related to increased glucose availability and changes in methionine metabolism.

  14. Studies toward understanding the SAR around the sulfoximine moiety of the sap-feeding insecticide sulfoxaflor.

    PubMed

    Buysse, Ann M; Nugent, Benjamin M; Wang, Nick X; Benko, Zoltan; Breaux, Nneka; Rogers, Richard; Zhu, Yuanming

    2017-04-01

    The discovery of sulfoxaflor (Isoclast™ active) stemmed from a novel scaffold-based approach toward identifying bioactive molecules. It exhibits broad-spectrum control of many sap-feeding insect pests, including aphids, whiteflies, hoppers and Lygus. Systematic modifications of the substituents flanking each side of the sulfoximine moiety were carried out to determine whether these changes would improve potency. Structure-activity relationship (SAR) studies showed that, with respect to the methylene linker, both mono- and disubstitution with alkyl groups of varying sizes as well as cyclic analogs exhibited excellent control of cotton aphids. However, against green peach aphids a decrease in activity was observed with substituents larger than ethyl as well as larger cycloalkyl groups. At the terminal tail there appeared to be a narrow steric tolerance as well, with linear groups or small rings more active against green peach aphids than bulkier groups. A novel series of compounds exploring the substituents flanking the sulfoximine moiety of sulfoxaflor were prepared and tested for bioactivity against cotton aphids and green peach aphids. SAR studies indicated that a decrease in green peach aphid potency was observed at the methylene linker as well as at the terminal tail with bulkier substituents. A quantitative structure-activity relationship analysis of the compounds revealed significant correlation of activity with two molecular descriptors, vol (volume of a molecule) and GCUT_SMR_3 (molar refractivity). This predictive model helps to explain the observed activity with the various substituents. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. New tests of the common calibration context for ISO, IRTS, and MSX

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1997-01-01

    The work carried out in order to test, verify and validate the accuracy of the calibration spectra provided to the Infrared Space Observatory (ISO), to the Infrared Telescope in Space (IRTS) and to the Midcourse Space Experiment (MSX) for external calibration support of instruments, is reviewed. The techniques, used to vindicate the accuracy of the absolute spectra, are discussed. The work planned for comparing far infrared spectra of Mars and some of the bright stellar calibrators with long wavelength spectrometer data are summarized.

  16. Obionin B: An o-pyranonaphthoquinone decaketide from an unidentified fungus (MSX 63619) from the Order Pleosporales.

    PubMed

    Ayers, Sloan; Graf, Tyler N; Adcock, Audrey F; Kroll, David J; Shen, Qi; Swanson, Steven M; Wani, Mansukh C; Darveaux, Blaise A; Pearce, Cedric J; Oberlies, Nicholas H

    2011-10-05

    A fungal extract (MSX 63619), from the Mycosynthetix library of over 50,000 fungi, displayed promising cytotoxicity against a human tumor cell panel. Bioactivity-directed fractionation led to the isolation of an o-pyranonaphthoquinone decaketide, which we termed obionin B (1). The structure of 1 was deduced via spectroscopic and spectrometric techniques. The IC(50) value of 1 was moderate, ranging from 3 to 13 μM, depending on the cell line tested.

  17. The effects of dietary supplementation of methionine on genomic stability and p53 gene promoter methylation in rats.

    PubMed

    Amaral, Cátia Lira Do; Bueno, Rafaela de Barros E Lima; Burim, Regislaine Valéria; Queiroz, Regina Helena Costa; Bianchi, Maria de Lourdes Pires; Antunes, Lusânia Maria Greggi

    2011-05-18

    Methionine is a component of one-carbon metabolism and a precursor of S-adenosylmethionine (SAM), the methyl donor for DNA methylation. When methionine intake is high, an increase of S-adenosylmethionine (SAM) is expected. DNA methyltransferases convert SAM to S-adenosylhomocysteine (SAH). A high intracellular SAH concentration could inhibit the activity of DNA methyltransferases. Therefore, high methionine ingestion could induce DNA damage and change the methylation pattern of tumor suppressor genes. This study investigated the genotoxicity of a methionine-supplemented diet. It also investigated the diet's effects on glutathione levels, SAM and SAH concentrations and the gene methylation pattern of p53. Wistar rats received either a methionine-supplemented diet (2% methionine) or a control diet (0.3% methionine) for six weeks. The methionine-supplemented diet was neither genotoxic nor antigenotoxic to kidney cells, as assessed by the comet assay. However, the methionine-supplemented diet restored the renal glutathione depletion induced by doxorubicin. This fact may be explained by the transsulfuration pathway, which converts methionine to glutathione in the kidney. Methionine supplementation increased the renal concentration of SAH without changing the SAM/SAH ratio. This unchanged profile was also observed for DNA methylation at the promoter region of the p53 gene. Further studies are necessary to elucidate this diet's effects on genomic stability and DNA methylation. 2011 Elsevier B.V. All rights reserved.

  18. Response of growing goslings to dietary supplementation with methionine and betaine.

    PubMed

    Yang, Z; Wang, Z Y; Yang, H M; Zhao, F Z; Kong, L L

    2016-12-01

    An experiment with a 2 × 3 factorial design with two concentrations of dietary betaine (0 and 600 mg/kg) and three dietary concentrations of methionine (0, 600 and 1200 mg/kg) was conducted using goslings to estimate growth, nutrient utilisation and digestibility of amino acids from 21 to 70 d of age. Three hundred geese were randomised at 18 d of age into 6 groups with 5 replicates per treatment and 10 geese per replicate. Increasing dietary concentrations of methionine gave a linear increase in body weight and average daily gain. The coefficient of crude fat retention increased as dietary methionine increased and there was a significant non-linear response to increasing dietary methionine. Similarly, increasing supplemental methionine gave linear increases in the digestibility of methionine and cysteine. The results of this study indicated that optimal dietary supplementation of methionine could increase growth performance and methionine and cysteine utilisation in growing goslings. Betaine supplementation had no apparent sparing effect on methionine needs for growth performance, but did improve the apparent cysteine digestibility.

  19. Methionine Deprivation Induces a Targetable Vulnerability in Triple-Negative Breast Cancer Cells by Enhancing TRAIL Receptor-2 Expression.

    PubMed

    Strekalova, Elena; Malin, Dmitry; Good, David M; Cryns, Vincent L

    2015-06-15

    Many neoplasms are vulnerable to methionine deficiency by mechanisms that are poorly understood. Because gene profiling studies have revealed that methionine depletion increases TNF-related apoptosis-inducing ligand receptor-2 (TRAIL-R2) mRNA, we postulated that methionine stress sensitizes breast cancer cells to proapoptotic TRAIL-R2 agonists. Human triple (ER/PR/HER2)-negative breast carcinoma cell lines were cultured in control or methionine-free media. The effects of methionine depletion on TRAIL receptor expression and sensitivity to chemotherapy or a humanized agonistic TRAIL-R2 monoclonal antibody (lexatumumab) were determined. The melanoma-associated antigen MAGED2 was silenced to delineate its functional role in sensitizing TNBC cells to methionine stress. An orthotopic TNBC model was utilized to evaluate the effects of dietary methionine deficiency, lexatumumab, or the combination. Methionine depletion sensitized TNBC cells to lexatumumab-induced caspase activation and apoptosis by increasing TRAIL-R2 mRNA and cell surface expression. MCF-10A cells transformed by oncogenic H-Ras, but not untransformed cells, and matrix-detached TNBC cells were highly sensitive to the combination of lexatumumab and methionine depletion. Proteomics analyses revealed that MAGED2, which has been reported to reduce TRAIL-R2 expression, was suppressed by methionine stress. Silencing MAGED2 recapitulated features of methionine deprivation, including enhanced mRNA and cell surface expression of TRAIL receptors and increased sensitivity to TRAIL receptor agonists. Dietary methionine deprivation enhanced the antitumor effects of lexatumumab in an orthotopic metastatic TNBC model. Methionine depletion exposes a targetable defect in TNBC cells by increasing TRAIL-R2 expression. Our findings provide the foundation for a clinical trial combining dietary methionine restriction and TRAIL-R2 agonists. Clin Cancer Res; 21(12); 2780-91. ©2015 AACR. ©2015 American Association for Cancer Research.

  20. Optical diagnostics on the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Boguski, J. C.; Weber, T. E.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.; Hutchinson, T. M.; Gao, K. W.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high Alfvén Mach number, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. A suite of optical diagnostics has recently been fielded on MSX to characterize plasma conditions during the formation, acceleration, and stagnation phases of the experiment. CCD-backed streak and framing cameras, and a fiber-based visible light array, provide information regarding FRC shape, velocity, and instability growth. Time-resolved narrow and broadband spectroscopy provides information on pre-shock plasma temperature, impurity levels, shock location, and non-thermal ion distributions within the shock region. Details of the diagnostic design, configuration, and characterization will be presented along with initial results. This work is supported by the Center for Magnetic Self Organization, DoE OFES and NNSA under LANS contract DE-AC52-06NA25369. Approved for public release: LA-UR- 13-25190.

  1. Osteoclasts in the dental microenvironment: a delicate balance controls dental histogenesis.

    PubMed

    Berdal, A; Castaneda, B; Aïoub, M; Néfussi, J R; Mueller, C; Descroix, V; Lézot, F

    2011-01-01

    The impact of osteoclast activity on dental development has been previously analyzed but in the context of severe osteopetrosis. The present study sought to investigate the effects of osteoclast hypofunction,present in Msx2 gene knockin mutant mice (Msx2-/-), and hyperfunction, in transgenic mice driving RANK over-expression in osteoclast precursors (RANK(Tg)), on tooth development. In Msx2-/- mice, moderate osteopetrosis was observed, occurring exclusively in the periodontal region. Microradiographical and histological analyses revealed an abnormal dental epithelium histogenesis that gave rise to odontogenic tumor-like structures. This led to impaired tooth eruption, especially of the third mandibular molars. In RANK(Tg) mice, root histogenesis showed site-specific upregulation of dental cell proliferation and differentiation rates. This culminated in roots with a reduced diameter and pulp size albeit of normal length. These two reverse experimental systems will enable the investigation of distinctive dental cell and osteoclast communication in normal growth and tumorigenesis. Copyright © 2011 S. Karger AG, Basel.

  2. Oral tremor induced by the muscarinic agonist pilocarpine is suppressed by the adenosine A2A antagonists MSX-3 and SCH58261, but not the adenosine A1 antagonist DPCPX.

    PubMed

    Collins, Lyndsey E; Galtieri, Daniel J; Brennum, Lise T; Sager, Thomas N; Hockemeyer, Jörg; Müller, Christa E; Hinman, James R; Chrobak, James J; Salamone, John D

    2010-02-01

    Tremulous jaw movements in rats, which can be induced by dopamine (DA) antagonists, DA depletion, and cholinomimetics, have served as a useful model for studies of tremor. Although adenosine A(2A) antagonists can reduce the tremulous jaw movements induced by DA antagonists and DA depletion, there are conflicting reports about the interaction between adenosine antagonists and cholinomimetic drugs. The present studies investigated the ability of adenosine antagonists to reverse the tremorogenic effect of the muscarinic agonist pilocarpine. While the adenosine A(2A) antagonist MSX-3 was incapable of reversing the tremulous jaw movements induced by the 4.0mg/kg dose of pilocarpine, both MSX-3 and the adenosine A(2A) antagonist SCH58261 reversed the tremulous jaw movements elicited by 0.5mg/kg pilocarpine. Systemic administration of the adenosine A(1) antagonist DPCPX failed to reverse the tremulous jaw movements induced by either an acute 0.5mg/kg dose of the cholinomimetic pilocarpine or the DA D2 antagonist pimozide, indicating that the tremorolytic effects of adenosine antagonists may be receptor subtype specific. Behaviorally active doses of MSX-3 and SCH 58261 showed substantial in vivo occupancy of A(2A) receptors, but DPCPX did not. The results of these studies support the use of adenosine A(2A) antagonists for the treatment of tremor. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Necdin, a Prader-Willi syndrome candidate gene, regulates gonadotropin-releasing hormone neurons during development.

    PubMed

    Miller, Nichol L G; Wevrick, Rachel; Mellon, Pamela L

    2009-01-15

    Prader-Willi syndrome (PWS) is a complex genetic disorder characterized by hyperphagia, obesity and hypogonadotrophic hypogonadism, all highly suggestive of hypothalamic dysfunction. The NDN gene, encoding the MAGE family protein, necdin, maps to the PWS chromosome region and is highly expressed in mature hypothalamic neurons. Adult mice lacking necdin have reduced numbers of gonadotropin-releasing hormone (GnRH) neurons, but the mechanism for this reduction is unknown. Herein, we show that, although necdin is not expressed in an immature, migratory GnRH neuronal cell line (GN11), high levels are present in a mature GnRH neuronal cell line (GT1-7). Furthermore, overexpression of necdin activates GnRH transcription through cis elements bound by the homeodomain repressor Msx that are located in the enhancer and promoter of the GnRH gene, and knock-down of necdin expression reduces GnRH gene expression. In fact, overexpression of Necdin relieves Msx repression of GnRH transcription through these elements and necdin co-immunoprecipitates with Msx from GnRH neuronal cells, indicating that necdin may activate GnRH gene expression by preventing repression of GnRH gene expression by Msx. Finally, necdin is necessary for generation of the full complement of GnRH neurons during mouse development and extension of GnRH axons to the median eminence. Together, these results indicate that lack of necdin during development likely contributes to the hypogonadotrophic hypogonadal phenotype in individuals with PWS.

  4. Necdin, a Prader–Willi syndrome candidate gene, regulates gonadotropin-releasing hormone neurons during development

    PubMed Central

    Miller, Nichol L.G.; Wevrick, Rachel; Mellon, Pamela L.

    2009-01-01

    Prader–Willi syndrome (PWS) is a complex genetic disorder characterized by hyperphagia, obesity and hypogonadotrophic hypogonadism, all highly suggestive of hypothalamic dysfunction. The NDN gene, encoding the MAGE family protein, necdin, maps to the PWS chromosome region and is highly expressed in mature hypothalamic neurons. Adult mice lacking necdin have reduced numbers of gonadotropin-releasing hormone (GnRH) neurons, but the mechanism for this reduction is unknown. Herein, we show that, although necdin is not expressed in an immature, migratory GnRH neuronal cell line (GN11), high levels are present in a mature GnRH neuronal cell line (GT1-7). Furthermore, overexpression of necdin activates GnRH transcription through cis elements bound by the homeodomain repressor Msx that are located in the enhancer and promoter of the GnRH gene, and knock-down of necdin expression reduces GnRH gene expression. In fact, overexpression of Necdin relieves Msx repression of GnRH transcription through these elements and necdin co-immunoprecipitates with Msx from GnRH neuronal cells, indicating that necdin may activate GnRH gene expression by preventing repression of GnRH gene expression by Msx. Finally, necdin is necessary for generation of the full complement of GnRH neurons during mouse development and extension of GnRH axons to the median eminence. Together, these results indicate that lack of necdin during development likely contributes to the hypogonadotrophic hypogonadal phenotype in individuals with PWS. PMID:18930956

  5. Regulation of thrombosis and vascular function by protein methionine oxidation

    PubMed Central

    Gu, Sean X.; Stevens, Jeff W.

    2015-01-01

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. PMID:25900980

  6. Efficacy of DL-methionine hydroxy analogue-free acid in comparison to DL-methionine in growing male white Pekin ducks.

    PubMed

    Kluge, H; Gessner, D K; Herzog, E; Eder, K

    2016-03-01

    The present study was performed to assess the bioefficacy of DL-methionine hydroxy analogue-free acid (MHA) in comparison to DL-methionine (DLM) as sources of methionine for growing male white Pekin ducks in the first 3 wk of life. For this aim, 580 1-day-old male ducks were allocated into 12 treatment groups and received a basal diet that contained 0.29% of methionine, 0.34% of cysteine and 0.63% of total sulphur containing amino acids or the same diet supplemented with either DLM or MHA in amounts to supply 0.05, 0.10, 0.15, 0.20, and 0.25% of methionine equivalents. Ducks fed the control diet without methionine supplement had the lowest final body weights, daily body weight gains and feed intake among all groups. Supplementation of methionine improved final body weights and daily body weight gains in a dose dependent-manner. There was, however, no significant effect of the source of methionine on all of the performance responses. Evaluation of the data of daily body weight gains with an exponential model of regression revealed a nearly identical efficacy (slope of the curves) of both compounds for growth (DLM = 100%, MHA = 101%). According to the exponential model of regression, 95% of the maximum values of daily body weight gain were reached at methionine supplementary levels of 0.080% and 0.079% for DLM and MHA, respectively. Overall, the present study indicates that MHA and DLM have a similar efficacy as sources of methionine for growing ducks. It is moreover shown that dietary methionine concentrations of 0.37% are required to reach 95% of the maximum of daily body weight gains in ducks during the first 3 wk of life. © 2015 Poultry Science Association Inc.

  7. Methionine toxicity in chicks and poults.

    PubMed

    Hafez, Y S; Chavez, E; Vohra, P; Kratzer, F H

    1978-05-01

    In feeding experiments with poults, 2% DL-methionine caused a marked growth depression which could be alleviated by the addition of glycine. Homocystine at an equimolar level depressed growth to a lesser degree than methionine, and this growth depression could be alleviated by glycine. Betaine could alleviate the growth depression of homocystine but not that of methionine. Methionine-fed poults developed a cervical paralysis similar to that of a folic acid deficiency, but the addition of this vitamin at several times the requirement was ineffective in counteracting the toxicity of methionine in either chicks or poults.

  8. Methionine-supplemented diet affects the expression of cardiovascular disease-related genes and increases inflammatory cytokines in mice heart and liver.

    PubMed

    Aissa, Alexandre Ferro; Amaral, Catia Lira do; Venancio, Vinicius Paula; Machado, Carla da Silva; Hernandes, Lívia Cristina; Santos, Patrick Wellington da Silva; Curi, Rui; Bianchi, Maria de Lourdes Pires; Antunes, Lusânia Maria Greggi

    2017-01-01

    Some important environmental factors that influence the development of cardiovascular diseases (CVD) include tobacco, excess alcohol, and unhealthy diet. Methionine obtained from the diet participates in the synthesis of DNA, proteins, lipids and affects homocysteine levels, which is associated with the elevated risk for CVD development. Therefore, the aim of this study was to investigate the manner in which dietary methionine might affect cellular mechanisms underlying CVD occurrence. Swiss albino mice were fed either control (0.3% DL-methionine), methionine-supplemented (2% DL-methionine), or a methionine-deprived diet (0% DL-methionine) over a 10-week period. The parameters measured included plasma homocysteine concentrations, oxidative stress by reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, levels of inflammatory cytokines IL-1ß, TNF-α, and IL-6, as well as expression of genes associated with CVD. The levels of apolipoprotein A5 (APOA5), a regulator of plasma triglycerides, were measured. The methionine-supplemented diet increased oxidative stress by lowering the GSH/GSSG ratio in heart tissues and decreased expression of the genes Apob, Ctgf, Serpinb2, Spp1, Il1b, and Sell, but elevated expression of Thbs4, Tgfb2, Ccr1, and Vegfa. Methionine-deprived diet reduced expression of Col3a1, Cdh5, Fabp3, Bax, and Hbegf and increased expression of Sell, Ccl5, Itga2, Birc3, Msr1, Bcl2a1a, Il1r2, and Selp. Methionine-deprived diet exerted pro-inflammatory consequences as evidenced by elevated levels of cytokines IL-1ß, TNF-α, and IL-6 noted in liver. Methionine-supplemented diet increased hepatic IL-6 and cardiac TNF-α. Both methionine supplementation and deprivation lowered hepatic levels of APOA5. In conclusion, data demonstrated that a methionine-supplemented diet modulated important biological processes associated with high risk of CVD development.

  9. Quantitation of Cellular Metabolic Fluxes of Methionine

    PubMed Central

    Shlomi, Tomer; Fan, Jing; Tang, Baiqing; Kruger, Warren D.; Rabinowitz, Joshua D.

    2014-01-01

    Methionine is an essential proteogenic amino acid. In addition, it is a methyl donor for DNA and protein methylation and a propylamine donor for polyamine biosyn-thesis. Both the methyl and propylamine donation pathways involve metabolic cycles, and methods are needed to quantitate these cycles. Here, we describe an analytical approach for quantifying methionine metabolic fluxes that accounts for the mixing of intracellular and extracellular methionine pools. We observe that such mixing prevents isotope tracing experiments from reaching the steady state due to the large size of the media pools and hence precludes the use of standard stationary metabolic flux analysis. Our approach is based on feeding cells with 13C methionine and measuring the isotope-labeling kinetics of both intracellular and extracellular methionine by liquid chromatography−mass spectrometry (LC-MS). We apply this method to quantify methionine metabolism in a human fibrosarcoma cell line and study how methionine salvage pathway enzyme methylthioadenosine phosphorylase (MTAP), frequently deleted in cancer, affects methionine metabolism. We find that both transmethylation and propylamine transfer fluxes amount to roughly 15% of the net methionine uptake, with no major changes due to MTAP deletion. Our method further enables the quantification of flux through the pro-tumorigenic enzyme ornithine decarboxylase, and this flux increases 2-fold following MTAP deletion. The analytical approach used to quantify methionine metabolic fluxes is applicable for other metabolic systems affected by mixing of intracellular and extracellular metabolite pools. PMID:24397525

  10. Potential for Development of an Escherichia coli—Based Biosensor for Assessing Bioavailable Methionine: A Review

    PubMed Central

    Chalova, Vesela I.; Froelich, Clifford A.; Ricke, Steven C.

    2010-01-01

    Methionine is an essential amino acid for animals and is typically considered one of the first limiting amino acids in animal feed formulations. Methionine deficiency or excess in animal diets can lead to sub-optimal animal performance and increased environmental pollution, which necessitates its accurate quantification and proper dosage in animal rations. Animal bioassays are the current industry standard to quantify methionine bioavailability. However, animal-based assays are not only time consuming, but expensive and are becoming more scrutinized by governmental regulations. In addition, a variety of artifacts can hinder the variability and time efficacy of these assays. Microbiological assays, which are based on a microbial response to external supplementation of a particular nutrient such as methionine, appear to be attractive potential alternatives to the already established standards. They are rapid and inexpensive in vitro assays which are characterized with relatively accurate and consistent estimation of digestible methionine in feeds and feed ingredients. The current review discusses the potential to develop Escherichia coli-based microbial biosensors for methionine bioavailability quantification. Methionine biosynthesis and regulation pathways are overviewed in relation to genetic manipulation required for the generation of a respective methionine auxotroph that could be practical for a routine bioassay. A prospective utilization of Escherichia coli methionine biosensor would allow for inexpensive and rapid methionine quantification and ultimately enable timely assessment of nutritional profiles of feedstuffs. PMID:22319312

  11. Transmethylation of homocysteine to methionine: efficiency in the rat and chick.

    PubMed

    Baker, D H; Czarnecki, G L

    1985-10-01

    Experiments were conducted with young chicks and rats to quantify the efficacy of L-homocysteine as a methionine precursor. Linear growth responses were obtained to both L-methionine and L-homocysteine when added to a methionine-deficient intact-protein diet containing a plethora of cystine. Slope-ratio multiple regression methodology indicated L-homocysteine to be 64.5% as efficacious as L-methionine in rats and 62.5% as efficacious in chicks. Plasma-free methionine also increased linearly as graded levels of either L-methionine or L-homocysteine were added to the diet of rats. At higher dosages of L-homocysteine, betaine, but not choline, showed some efficacy in enhancing the conversion of homocysteine to methionine. In the linear response surface of the growth curve, however, supplemental betaine was without effect on L-homocysteine bioefficacy, as was also the case for supplemental sarcosine and N5-methyltetrahydrofolic acid.

  12. Redox Proteomics of Protein-bound Methionine Oxidation*

    PubMed Central

    Ghesquière, Bart; Jonckheere, Veronique; Colaert, Niklaas; Van Durme, Joost; Timmerman, Evy; Goethals, Marc; Schymkowitz, Joost; Rousseau, Frederic; Vandekerckhove, Joël; Gevaert, Kris

    2011-01-01

    We here present a new method to measure the degree of protein-bound methionine sulfoxide formation at a proteome-wide scale. In human Jurkat cells that were stressed with hydrogen peroxide, over 2000 oxidation-sensitive methionines in more than 1600 different proteins were mapped and their extent of oxidation was quantified. Meta-analysis of the sequences surrounding the oxidized methionine residues revealed a high preference for neighboring polar residues. Using synthetic methionine sulfoxide containing peptides designed according to the observed sequence preferences in the oxidized Jurkat proteome, we discovered that the substrate specificity of the cellular methionine sulfoxide reductases is a major determinant for the steady-state of methionine oxidation. This was supported by a structural modeling of the MsrA catalytic center. Finally, we applied our method onto a serum proteome from a mouse sepsis model and identified 35 in vivo methionine oxidation events in 27 different proteins. PMID:21406390

  13. Improving methionine and ATP availability by MET6 and SAM2 co-expression combined with sodium citrate feeding enhanced SAM accumulation in Saccharomyces cerevisiae.

    PubMed

    Chen, Hailong; Wang, Zhou; Wang, Zhilai; Dou, Jie; Zhou, Changlin

    2016-04-01

    S-adenosyl-L-methionine (SAM), biosynthesized from methionine and ATP, exhibited diverse pharmaceutical applications. To enhance SAM accumulation in S. cerevisiae CGMCC 2842 (wild type), improvement of methionine and ATP availability through MET6 and SAM2 co-expression combined with sodium citrate feeding was investigated here. Feeding 6 g/L methionine at 12 h into medium was found to increase SAM accumulation by 38 % in wild type strain. Based on this result, MET6, encoding methionine synthase, was overexpressed, which caused a 59 % increase of SAM. To redirect intracellular methionine into SAM, MET6 and SAM2 (encoding methionine adenosyltransferase) were co-expressed to obtain the recombinant strain YGSPM in which the SAM accumulation was 2.34-fold of wild type strain. The data obtained showed that co-expression of MET6 and SAM2 improved intracellular methionine availability and redirected the methionine to SAM biosynthesis. To elevate intracellular ATP levels, 6 g/L sodium citrate, used as an auxiliary energy substrate, was fed into the batch fermentation medium, and an additional 19 % increase of SAM was observed after sodium citrate addition. Meanwhile, it was found that addition of sodium citrate improved the isocitrate dehydrogenase activity which was associated with the intracellular ATP levels. The results demonstrated that addition of sodium citrate improved intracellular ATP levels which promoted conversion of methionine into SAM. This study presented a feasible approach with considerable potential for developing highly SAM-productive strains based on improving methionine and ATP availability.

  14. Reactions of aqueous L-methionine, L-phenylalanine, L-methionyl-L-phenylalanine, L-phenylalanyl-L-methionine and their mixtures with H atoms during steady radiolysis at pH 6. 5. [Gamma radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mee, L.K.; Adelstein, S.J.; Steinhart, C.M.

    Phenylalanine, methionine, and their mixtures, methionyl phenylalanine, phenylalnyl methionine, and mixtures of each dipeptide with phenylalanine were reacted with radiolytically generated H atoms in aqueous solution at pH 6.5. When methionine is irradiated alone, G(-methionine) = 2.0; the principal amino acid product is ..cap alpha..-amino-n-butyric acid. The initial destruction of phenylalanine, irradiated alone, is very low, G(-phenylalanine) approximately 0.15, and it decreases with dose. In mixtures of phenylalanine and methionine, radiolytic destruction of phenylalanine is potentiated, with a maximum potentiation at a phenylalanine:methionine ratio of 2 : 1. Repair reactions are postulated to account for the low initial yield ofmore » phenylalanine, its decrease with dose, and potentiation of destruction in mixtures with methionine. The destruction of the phenylalanyl and methionyl residues in the irradiated dipeptides is similar to that found for the loss of phenylalanine and methionine in 1 : 1 mixtures of the free amino acids; the destruction of residues in 1 : 1 mixtures of either dipeptide with phenylalanine is similar to that found in mixtures of phenylalanine:methionine at a ratio of 2 : 1. Thus, it is apparent already in simple mixtures of the divalent sulfur-containing methionine and the aromatic phenylalanine that kinetic interactions occur between these two kinds of amino acids which are not revealed by irradiation of these residues separately. The behavior of the dipeptides does not provide any evidence for intramolecular transfer of radical site.« less

  15. [Phenotypic and technological influences of the Lupinus mutabilis (Tarwi) seed on its methionine availability and sulfur content].

    PubMed

    Oliveros, M; Schoeneberger, H; Gross, R; Reynoso, Z

    1983-09-01

    The present study was carried out to determine the content of available methionine and sulphur in seed cultivars of Lupinus mutabilis from different Andean regions, and to study the influence of processing on methionine and sulphur contents. An additional objective was to evaluate interrelationships among these chemical characteristics and protein quality, as measured by the protein efficiency ratio (PER) method. Results revealed a high variability in the content of available methionine and sulphur between the different ecotypes and varieties of Lupinus mutabilis. Fertilization with CaSO4 (200 kg/ha) did alter the content of available methionine and sulphur in Lupinus albus seeds. Traditional water-debittering of lupines did not affect the methionine content of the seeds, whereas oil-extraction and alcohol-debittering led to a decrease in available methionine (14 and 23% reduction, respectively). Production of a protein isolate further reduced the methionine content (54%). Regression analysis revealed a high correlation between available methionine and sulphur (r = 0.83), between sulphur and PER (r = 0.98) in the processed lupine samples, and lupine mixtures with other protein sources.

  16. Galactic Bulge Giants: Probing Stellar and Galactic Evolution. 1. Catalogue of Spitzer IRAC and MIPS Sources (PREPRINT)

    DTIC Science & Technology

    2010-12-29

    1997), the 2 Micron All Sky Survey ( 2MASS ; Skrutskie et al. 2006), the Midcourse Space Experiment (MSX) catalogue, and the Infra- Red Astronomical...made for these sources with a search radius of 3.′′0 with DENIS and 2MASS , and 30.′′0 for identification with an MSX or IRAS counterpart. The... 2MASS and DENIS counterpart (depending on the field, between 3.1% and 6.7% of the sources), or (ii) a DENIS and 2MASS counterpart at a distance

  17. The Milky Way Project: A Census of Small Bubbles

    NASA Astrophysics Data System (ADS)

    Arvidsson, Kim; Wolf-Chase, G. A.; Way Project, Milky

    2013-01-01

    The first data release (DR1) from the Milky Way Project (MWP) contains 1362 visually identified small bubbles drawn by users. These small infrared bubbles typically have diameters <0.5' and can be found throughout the Galactic plane. This project seeks to determine what classes of objects make up the small bubble catalog by comparing their positions to a wide variety of existing data sets. The most successful match was with the MSX6C point source catalog; >90% of all small bubbles are MSX point sources.

  18. Methionine restriction inhibits chemically-induced malignant transformation in the BALB/c 3T3 cell transformation assay.

    PubMed

    Nicken, Petra; Empl, Michael T; Gerhard, Daniel; Hausmann, Julia; Steinberg, Pablo

    2016-09-01

    High consumption of red meat entails a higher risk of developing colorectal cancer. Methionine, which is more frequently a component of animal proteins, and folic acid are members of the one carbon cycle and as such important players in DNA methylation and cancer development. Therefore, dietary modifications involving altered methionine and folic acid content might inhibit colon cancer development. In the present study, the BALB/c 3T3 cell transformation assay was used to investigate whether methionine and folic acid are able to influence the malignant transformation of mouse fibroblasts after treatment with the known tumour initiator 3-methylcholanthrene. Three different methionine concentrations (representing a -40%, a "normal" and a +40% cell culture medium concentration, respectively) and two different folic acid concentrations (6 and 20 μM) were thereby investigated. Methionine restriction led to a decrease of type III foci, while enhancement of both methionine and folic acid did not significantly increase the cell transformation rate. Interestingly, the focus-lowering effect of methionine was only significant in conjunction with an elevated folic acid concentration. In summary, we conclude that the malignant transformation of mouse fibroblasts is influenced by methionine levels and that methionine restriction could be a possible approach to reduce cancer development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effects of methionine and betaine supplementation on growth performance, carcase composition and metabolism of lipids in male broilers.

    PubMed

    Zhan, X A; Li, J X; Xu, Z R; Zhao, R Q

    2006-10-01

    1. This study was conducted to investigate the effects of methionine and betaine supplementation on growth performance, carcase composition and lipid metabolism in growing broilers. 2. A total of 450 commercial broilers, 22 d of age, were randomly allocated to three groups, each of which included three replicates (50 birds per replicate). The groups received the same methionine-deficient diet supplemented with 0 or 1 g/kg methionine, or 0.5 g/kg betaine, respectively. 3. Methionine and betaine supplementation significantly improved weight gain and feed conversion. Supplemental methionine and betaine also significantly increased breast muscle yield and decreased abdominal fat content. Meanwhile, addition of methionine and betaine significantly increased the contents of creatine and free carnitine in liver, the activity of hormone-sensitive lipase in abdominal fat and the concentration of free fatty acid in serum, whereas uric acid concentration in serum was significantly decreased. 4. The results of this study suggest that betaine can spare methionine in its function as an essential amino acid and is as effective as methionine in improving performance and carcase quality of growing broilers if the diet is moderately deficient in methionine. The decrease in abdominal fat may be due to the increased carnitine synthesis in liver and hormone-sensitive lipase activity in abdominal fat.

  20. Regulation of thrombosis and vascular function by protein methionine oxidation.

    PubMed

    Gu, Sean X; Stevens, Jeff W; Lentz, Steven R

    2015-06-18

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. © 2015 by The American Society of Hematology.

  1. Induction and Repression in the S-Adenosylmethionine and Methionine Biosynthetic Systems of Saccharomyces cerevisiae

    PubMed Central

    Ferro, A. J.; Spence, K. D.

    1973-01-01

    Two methionine biosynthetic enzymes and the methionine adenosyltransferase are repressed in Saccharomyces cerevisiae when grown under conditions where the intracellular levels of S-adenosylmethionine are high. The nature of the co-repressor molecule of this repression was investigated by following the intracellular levels of methionine, S-adenosylmethionine, and S-adenosylhomocysteine, as well as enzyme activities, after growth under various conditions. Under all of the conditions found to repress these enzymes, there is an accompanying induction of the S-adenosylmethionine-homocysteine methyltransferase which suggests that this enzyme may play a key role in the regulation of S-adenosylmethionine and methionine balance and synthesis. S-methylmethionine also induces the methyltransferase, but unlike S-adenosylmethionine, it does not repress the methionine adenosyltransferase or other methionine biosynthetic enzymes tested. PMID:4583251

  2. Regulation of cell function by methionine oxidation and reduction

    PubMed Central

    Hoshi, Toshinori; Heinemann, Stefan H

    2001-01-01

    Reactive oxygen species (ROS) are generated during normal cellular activity and may exist in excess in some pathophysiological conditions, such as inflammation or reperfusion injury. These molecules oxidize a variety of cellular constituents, but sulfur-containing amino acid residues are especially susceptible. While reversible cysteine oxidation and reduction is part of well-established signalling systems, the oxidation and the enzymatically catalysed reduction of methionine is just emerging as a novel molecular mechanism for cellular regulation. Here we discuss how the oxidation of methionine to methionine sulfoxide in signalling proteins such as ion channels affects the function of these target proteins. Methionine sulfoxide reductase, which reduces methionine sulfoxide to methionine in a thioredoxin-dependent manner, is therefore not only an enzyme important for the repair of age- or degenerative disease-related protein modifications. It is also a potential missing link in the post-translational modification cycle involved in the specific oxidation and reduction of methionine residues in cellular signalling proteins, which may give rise to activity-dependent plastic changes in cellular excitability. PMID:11179387

  3. Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells

    PubMed Central

    Maddocks, Oliver D.K.; Labuschagne, Christiaan F.; Adams, Peter D.; Vousden, Karen H.

    2016-01-01

    Summary Crosstalk between cellular metabolism and the epigenome regulates epigenetic and metabolic homeostasis and normal cell behavior. Changes in cancer cell metabolism can directly impact epigenetic regulation and promote transformation. Here we analyzed the contribution of methionine and serine metabolism to methylation of DNA and RNA. Serine can contribute to this pathway by providing one-carbon units to regenerate methionine from homocysteine. While we observed this contribution under methionine-depleted conditions, unexpectedly, we found that serine supported the methionine cycle in the presence and absence of methionine through de novo ATP synthesis. Serine starvation increased the methionine/S-adenosyl methionine ratio, decreasing the transfer of methyl groups to DNA and RNA. While serine starvation dramatically decreased ATP levels, this was accompanied by lower AMP and did not activate AMPK. This work highlights the difference between ATP turnover and new ATP synthesis and defines a vital function of nucleotide synthesis beyond making nucleic acids. PMID:26774282

  4. Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells.

    PubMed

    Maddocks, Oliver D K; Labuschagne, Christiaan F; Adams, Peter D; Vousden, Karen H

    2016-01-21

    Crosstalk between cellular metabolism and the epigenome regulates epigenetic and metabolic homeostasis and normal cell behavior. Changes in cancer cell metabolism can directly impact epigenetic regulation and promote transformation. Here we analyzed the contribution of methionine and serine metabolism to methylation of DNA and RNA. Serine can contribute to this pathway by providing one-carbon units to regenerate methionine from homocysteine. While we observed this contribution under methionine-depleted conditions, unexpectedly, we found that serine supported the methionine cycle in the presence and absence of methionine through de novo ATP synthesis. Serine starvation increased the methionine/S-adenosyl methionine ratio, decreasing the transfer of methyl groups to DNA and RNA. While serine starvation dramatically decreased ATP levels, this was accompanied by lower AMP and did not activate AMPK. This work highlights the difference between ATP turnover and new ATP synthesis and defines a vital function of nucleotide synthesis beyond making nucleic acids. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. L-Methionine Production.

    PubMed

    Shim, Jihyun; Shin, Yonguk; Lee, Imsang; Kim, So Young

    L-Methionine has been used in various industrial applications such as the production of feed and food additives and has been used as a raw material for medical supplies and drugs. It functions not only as an essential amino acid but also as a physiological effector, for example, by inhibiting fat accumulation and enhancing immune response. Producing methionine from fermentation is beneficial in that microorganisms can produce L-methionine selectively using eco-sustainable processes. Nevertheless, the fermentative method has not been used on an industrial scale because it is not competitive economically compared with chemical synthesis methods. Presented are efforts to develop suitable strains, engineered enzymes, and alternative process of producing L-methionine that overcomes problems of conventional fermentation methods. One of the alternative processes is a two-step process in which the L-methionine precursor is produced by fermentation and then converted to L-methionine by enzymes. Directed efforts toward strain development and enhanced enzyme engineering will advance industrial production of L-methionine based on fermentation.

  6. Different regulation of limb development by p63 transcript variants.

    PubMed

    Kawata, Manabu; Taniguchi, Yuki; Mori, Daisuke; Yano, Fumiko; Ohba, Shinsuke; Chung, Ung-Il; Shimogori, Tomomi; Mills, Alea A; Tanaka, Sakae; Saito, Taku

    2017-01-01

    The apical ectodermal ridge (AER), located at the distal end of each limb bud, is a key signaling center which controls outgrowth and patterning of the proximal-distal axis of the limb through secretion of various molecules. Fibroblast growth factors (FGFs), particularly Fgf8 and Fgf4, are representative molecules produced by AER cells, and essential to maintain the AER and cell proliferation in the underlying mesenchyme, meanwhile Jag2-Notch pathway negatively regulates the AER and limb development. p63, a transcription factor of the p53 family, is expressed in the AER and indispensable for limb formation. However, the underlying mechanisms and specific roles of p63 variants are unknown. Here, we quantified the expression of p63 variants in mouse limbs from embryonic day (E) 10.5 to E12.5, and found that ΔNp63γ was strongly expressed in limbs at all stages, while TAp63γ expression was rapidly increased in the later stages. Fluorescence-activated cell sorting analysis of limb bud cells from reporter mouse embryos at E11.5 revealed that all variants were abundantly expressed in AER cells, and their expression was very low in mesenchymal cells. We then generated AER-specific p63 knockout mice by mating mice with a null and a flox allele of p63, and Msx2-Cre mice (Msx2-Cre;p63Δ/fl). Msx2-Cre;p63Δ/fl neonates showed limb malformation that was more obvious in distal elements. Expression of various AER-related genes was decreased in Msx2-Cre;p63Δ/fl limb buds and embryoid bodies formed by p63-knockdown induced pluripotent stem cells. Promoter analyses and chromatin immunoprecipitation assays demonstrated Fgf8 and Fgf4 as transcriptional targets of ΔNp63γ, and Jag2 as that of TAp63γ. Furthermore, TAp63γ overexpression exacerbated the phenotype of Msx2-Cre;p63Δ/fl mice. These data indicate that ΔNp63 and TAp63 control limb development through transcriptional regulation of different target molecules with different roles in the AER. Our findings contribute to further understanding of the molecular network of limb development.

  7. Cardiovascular and renal manifestations of glutathione depletion induced by buthionine sulfoximine.

    PubMed

    Vargas, Félix; Rodríguez-Gómez, Isabel; Pérez-Abud, Rocío; Vargas Tendero, Pablo; Baca, Yolanda; Wangensteen, Rosemary

    2012-06-01

    Oxidative stress contributes to the development of several cardiovascular diseases, including diabetes, renal insufficiency, and arterial hypertension. Animal studies have evidenced the association between higher blood pressure (BP) and increased oxidative stress, and treatment with antioxidants has been shown to reduce BP, while BP reduction due to antihypertensive drugs is associated with reduced oxidative stress. In 2000, it was first reported that oxidative stress and arterial hypertension were produced in normal Sprague-Dawley rats by oral administration of buthionine sulfoximine (BSO), which induces glutathione (GSH) depletion, indicating that oxidative stress may induce hypertension. The contribution of several potential pathogenic factors has been evaluated in the BSO rat model, the prototype of oxidative stress-induced hypertension, including vascular reactivity, endothelium-derived factors, renin-angiotensin system activity, TXA(2)-PGH(2) production, sodium sensitivity, renal dopamine-induced natriuresis, and sympathetic tone. This review summarizes the main factors implicated in the pathogenesis of BSO-induced hypertension and the alterations associated with GSH depletion that are related to renal function or BP control.

  8. Easy, Fast, and Reproducible Quantification of Cholesterol and Other Lipids in Human Plasma by Combined High Resolution MSX and FTMS Analysis

    NASA Astrophysics Data System (ADS)

    Gallego, Sandra F.; Højlund, Kurt; Ejsing, Christer S.

    2018-01-01

    Reliable, cost-effective, and gold-standard absolute quantification of non-esterified cholesterol in human plasma is of paramount importance in clinical lipidomics and for the monitoring of metabolic health. Here, we compared the performance of three mass spectrometric approaches available for direct detection and quantification of cholesterol in extracts of human plasma. These approaches are high resolution full scan Fourier transform mass spectrometry (FTMS) analysis, parallel reaction monitoring (PRM), and novel multiplexed MS/MS (MSX) technology, where fragments from selected precursor ions are detected simultaneously. Evaluating the performance of these approaches in terms of dynamic quantification range, linearity, and analytical precision showed that the MSX-based approach is superior to that of the FTMS and PRM-based approaches. To further show the efficacy of this approach, we devised a simple routine for extensive plasma lipidome characterization using only 8 μL of plasma, using a new commercially available ready-to-spike-in mixture with 14 synthetic lipid standards, and executing a single 6 min sample injection with combined MSX analysis for cholesterol quantification and FTMS analysis for quantification of sterol esters, glycerolipids, glycerophospholipids, and sphingolipids. Using this simple routine afforded reproducible and absolute quantification of 200 lipid species encompassing 13 lipid classes in human plasma samples. Notably, the analysis time of this procedure can be shortened for high throughput-oriented clinical lipidomics studies or extended with more advanced MSALL technology (Almeida R. et al., J. Am. Soc. Mass Spectrom. 26, 133-148 [1]) to support in-depth structural elucidation of lipid molecules. [Figure not available: see fulltext.

  9. BMPs regulate msx gene expression in the dorsal neuroectoderm of Drosophila and vertebrates by distinct mechanisms.

    PubMed

    Esteves, Francisco F; Springhorn, Alexander; Kague, Erika; Taylor, Erika; Pyrowolakis, George; Fisher, Shannon; Bier, Ethan

    2014-09-01

    In a broad variety of bilaterian species the trunk central nervous system (CNS) derives from three primary rows of neuroblasts. The fates of these neural progenitor cells are determined in part by three conserved transcription factors: vnd/nkx2.2, ind/gsh and msh/msx in Drosophila melanogaster/vertebrates, which are expressed in corresponding non-overlapping patterns along the dorsal-ventral axis. While this conserved suite of "neural identity" gene expression strongly suggests a common ancestral origin for the patterning systems, it is unclear whether the original regulatory mechanisms establishing these patterns have been similarly conserved during evolution. In Drosophila, genetic evidence suggests that Bone Morphogenetic Proteins (BMPs) act in a dosage-dependent fashion to repress expression of neural identity genes. BMPs also play a dose-dependent role in patterning the dorsal and lateral regions of the vertebrate CNS, however, the mechanism by which they achieve such patterning has not yet been clearly established. In this report, we examine the mechanisms by which BMPs act on cis-regulatory modules (CRMs) that control localized expression of the Drosophila msh and zebrafish (Danio rerio) msxB in the dorsal central nervous system (CNS). Our analysis suggests that BMPs act differently in these organisms to regulate similar patterns of gene expression in the neuroectoderm: repressing msh expression in Drosophila, while activating msxB expression in the zebrafish. These findings suggest that the mechanisms by which the BMP gradient patterns the dorsal neuroectoderm have reversed since the divergence of these two ancient lineages.

  10. BMPs Regulate msx Gene Expression in the Dorsal Neuroectoderm of Drosophila and Vertebrates by Distinct Mechanisms

    PubMed Central

    Esteves, Francisco F.; Taylor, Erika; Pyrowolakis, George; Fisher, Shannon; Bier, Ethan

    2014-01-01

    In a broad variety of bilaterian species the trunk central nervous system (CNS) derives from three primary rows of neuroblasts. The fates of these neural progenitor cells are determined in part by three conserved transcription factors: vnd/nkx2.2, ind/gsh and msh/msx in Drosophila melanogaster/vertebrates, which are expressed in corresponding non-overlapping patterns along the dorsal-ventral axis. While this conserved suite of “neural identity” gene expression strongly suggests a common ancestral origin for the patterning systems, it is unclear whether the original regulatory mechanisms establishing these patterns have been similarly conserved during evolution. In Drosophila, genetic evidence suggests that Bone Morphogenetic Proteins (BMPs) act in a dosage-dependent fashion to repress expression of neural identity genes. BMPs also play a dose-dependent role in patterning the dorsal and lateral regions of the vertebrate CNS, however, the mechanism by which they achieve such patterning has not yet been clearly established. In this report, we examine the mechanisms by which BMPs act on cis-regulatory modules (CRMs) that control localized expression of the Drosophila msh and zebrafish (Danio rerio) msxB in the dorsal central nervous system (CNS). Our analysis suggests that BMPs act differently in these organisms to regulate similar patterns of gene expression in the neuroectoderm: repressing msh expression in Drosophila, while activating msxB expression in the zebrafish. These findings suggest that the mechanisms by which the BMP gradient patterns the dorsal neuroectoderm have reversed since the divergence of these two ancient lineages. PMID:25210771

  11. Easy, Fast, and Reproducible Quantification of Cholesterol and Other Lipids in Human Plasma by Combined High Resolution MSX and FTMS Analysis.

    PubMed

    Gallego, Sandra F; Højlund, Kurt; Ejsing, Christer S

    2018-01-01

    Reliable, cost-effective, and gold-standard absolute quantification of non-esterified cholesterol in human plasma is of paramount importance in clinical lipidomics and for the monitoring of metabolic health. Here, we compared the performance of three mass spectrometric approaches available for direct detection and quantification of cholesterol in extracts of human plasma. These approaches are high resolution full scan Fourier transform mass spectrometry (FTMS) analysis, parallel reaction monitoring (PRM), and novel multiplexed MS/MS (MSX) technology, where fragments from selected precursor ions are detected simultaneously. Evaluating the performance of these approaches in terms of dynamic quantification range, linearity, and analytical precision showed that the MSX-based approach is superior to that of the FTMS and PRM-based approaches. To further show the efficacy of this approach, we devised a simple routine for extensive plasma lipidome characterization using only 8 μL of plasma, using a new commercially available ready-to-spike-in mixture with 14 synthetic lipid standards, and executing a single 6 min sample injection with combined MSX analysis for cholesterol quantification and FTMS analysis for quantification of sterol esters, glycerolipids, glycerophospholipids, and sphingolipids. Using this simple routine afforded reproducible and absolute quantification of 200 lipid species encompassing 13 lipid classes in human plasma samples. Notably, the analysis time of this procedure can be shortened for high throughput-oriented clinical lipidomics studies or extended with more advanced MS ALL technology (Almeida R. et al., J. Am. Soc. Mass Spectrom. 26, 133-148 [1]) to support in-depth structural elucidation of lipid molecules. Graphical Abstract ᅟ.

  12. Regulated methionine oxidation by monooxygenases

    PubMed Central

    Manta, Bruno; Gladyshev, Vadim N.

    2017-01-01

    Protein function can be regulated via post-translational modifications by numerous enzymatic and non-enzymatic mechanisms, including oxidation of cysteine and methionine residues. Redox-dependent regulatory mechanisms have been identified for nearly every cellular process, but the major paradigm has been that cellular components are oxidized (damaged) by reactive oxygen species (ROS) in a relatively unspecific way, and then reduced (repaired) by designated reductases. While this scheme may work with cysteine, it cannot be ascribed to other residues, such as methionine, whose reaction with ROS is too slow to be biologically relevant. However, methionine is clearly oxidized in vivo and enzymes for its stereoselective reduction are present in all three domains of life. Here, we revisit the chemistry and biology of methionine oxidation, with emphasis on its generation by enzymes from the monooxygenase family. Particular attention is placed on MICALs, a recently discovered family of proteins that harbor an unusual flavin-monooxygenase domain with an NADPH-dependent methionine sulfoxidase activity. Based on the structural and kinetic information we provide a rational framework to explain MICAL mechanism, inhibition, and regulation. Methionine residues that are targeted by MICALs are reduced back by methionine sulfoxide reductases, suggesting that reversible methionine oxidation may be a general mechanism analogous to the regulation by phosphorylation by kinases/phosphatases. The identification of new enzymes that catalyze the oxidation of methionine will open a new area of research at the forefront of redox signaling. PMID:28229915

  13. Cellular mechanisms of renal adaptation of sodium dependent sulfate cotransport to altered dietary sulfate in rats.

    PubMed

    Sagawa, K; DuBois, D C; Almon, R R; Murer, H; Morris, M E

    1998-12-01

    The renal transport and fractional reabsorption of inorganic sulfate is altered under conditions of sulfate deficiency or excess. The objective of this study was to examine the cellular mechanisms of adaptation of renal sodium/sulfate cotransport after varying dietary intakes of a sulfur containing amino acid, methionine. Female Lewis rats were divided into four groups and fed diets containing various concentrations of methionine (0, 0.3, 0.82 and 2.46%) for 8 days. Urinary excretion rates and renal clearance of sulfate were significantly decreased in the animals fed a 0% methionine diet or a 0.3% methionine diet, and significantly increased in the animals fed a 2.46% methionine diet when evaluated on days 4 and 7. Serum sulfate concentrations were unchanged by diet treatment in all animals. The fractional reabsorption of sulfate was significantly increased in the animals fed the 0% methionine diet and the 0.3% methionine diets, and decreased in the animals fed the 2.46% methionine diet. Increased mRNA and protein levels for the sodium/sulfate transporter (NaSi-1) were found in the kidney cortex following treatment with the 0 and 0.3% methionine diet groups. Sulfate homeostasis by renal reabsorption is maintained by an up-regulation of steady state levels of NaSi-1 mRNA and protein when the diet is low in methionine.

  14. The Pediatric Methionine Requirement Should Incorporate Remethylation Potential and Transmethylation Demands12

    PubMed Central

    2016-01-01

    The metabolic demand for methionine is great in neonates. Indeed, methionine is the only indispensable sulfur amino acid and is required not only for protein synthesis and growth but is also partitioned to a greater extent to transsulfuration for cysteine and taurine synthesis and to >50 transmethylation reactions that serve to methylate DNA and synthesize metabolites, including creatine and phosphatidylcholine. Therefore, the pediatric methionine requirement must accommodate the demands of rapid protein turnover as well as vast nonprotein demands. Because cysteine spares the methionine requirement, it is likely that the dietary provision of transmethylation products can also feasibly spare methionine. However, understanding the requirement of methionine is further complicated because demethylated methionine can be remethylated by the dietary methyl donors folate and betaine (derived from choline). Intakes of dietary methyl donors are highly variable, which is of particular concern for newborns. It has been demonstrated that many populations have enhanced requirements for these nutrients, and nutrient fortification may exacerbate this phenomenon by selecting phenotypes that increase methyl requirements. Moreover, higher transmethylation rates can limit methyl supply and affect other transmethylation reactions as well as protein synthesis. Therefore, careful investigations are needed to determine how remethylation and transmethylation contribute to the methionine requirement. The purpose of this review is to support our hypothesis that dietary methyl donors and consumers can drive methionine availability for protein synthesis and transmethylation reactions. We argue that nutritional strategies in neonates need to ensure that methionine is available to meet requirements for growth as well as for transmethylation products. PMID:27184279

  15. The Pediatric Methionine Requirement Should Incorporate Remethylation Potential and Transmethylation Demands.

    PubMed

    Robinson, Jason L; Bertolo, Robert F

    2016-05-01

    The metabolic demand for methionine is great in neonates. Indeed, methionine is the only indispensable sulfur amino acid and is required not only for protein synthesis and growth but is also partitioned to a greater extent to transsulfuration for cysteine and taurine synthesis and to >50 transmethylation reactions that serve to methylate DNA and synthesize metabolites, including creatine and phosphatidylcholine. Therefore, the pediatric methionine requirement must accommodate the demands of rapid protein turnover as well as vast nonprotein demands. Because cysteine spares the methionine requirement, it is likely that the dietary provision of transmethylation products can also feasibly spare methionine. However, understanding the requirement of methionine is further complicated because demethylated methionine can be remethylated by the dietary methyl donors folate and betaine (derived from choline). Intakes of dietary methyl donors are highly variable, which is of particular concern for newborns. It has been demonstrated that many populations have enhanced requirements for these nutrients, and nutrient fortification may exacerbate this phenomenon by selecting phenotypes that increase methyl requirements. Moreover, higher transmethylation rates can limit methyl supply and affect other transmethylation reactions as well as protein synthesis. Therefore, careful investigations are needed to determine how remethylation and transmethylation contribute to the methionine requirement. The purpose of this review is to support our hypothesis that dietary methyl donors and consumers can drive methionine availability for protein synthesis and transmethylation reactions. We argue that nutritional strategies in neonates need to ensure that methionine is available to meet requirements for growth as well as for transmethylation products. © 2016 American Society for Nutrition.

  16. Genetic and biochemical differences in populations bred for extremes in maize grain methionine content

    USDA-ARS?s Scientific Manuscript database

    Methionine is an important nutrient in animal feed and several approaches have been developed to increase methionine concentration in maize (Zea mays L.) grain. One approach is through traditional breeding using recurrent selection. Two populations selected were selected for high and low methionin...

  17. 21 CFR 172.399 - Zinc methionine sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Zinc methionine sulfate. 172.399 Section 172.399... CONSUMPTION Special Dietary and Nutritional Additives § 172.399 Zinc methionine sulfate. Zinc methionine... conditions: (a) The additive is the product of the reaction between equimolar amounts of zinc sulfate and DL...

  18. Dry-extrusion of Asian Carp to supplement natural methionine for organic poultry production

    USDA-ARS?s Scientific Manuscript database

    Methionine, a sulfur containing amino acid, is essential for healthy poultry production. Synthetic methionine is commonly used as a supplement in conventional poultry. However, for organic poultry in the United States, a natural, cost effective source of methionine that can replace synthetic methion...

  19. 7 CFR 205.603 - Synthetic substances allowed for use in organic livestock production.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Water Act. (i) Calcium hypochlorite. (ii) Chlorine dioxide. (iii) Sodium hypochlorite. (8) Electrolytes.... (1) DL-Methionine, DL-Methionine-hydroxy analog, and DL-Methionine-hydroxy analog calcium (CAS #'s 59... maximum levels of synthetic methionine per ton of feed: Laying and broiler chickens—2 pounds; turkeys and...

  20. 7 CFR 205.603 - Synthetic substances allowed for use in organic livestock production.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Water Act. (i) Calcium hypochlorite. (ii) Chlorine dioxide. (iii) Sodium hypochlorite. (8) Electrolytes.... (1) DL-Methionine, DL-Methionine-hydroxy analog, and DL-Methionine-hydroxy analog calcium (CAS #'s 59... maximum levels of synthetic methionine per ton of feed: Laying and broiler chickens—2 pounds; turkeys and...

  1. Pulsed Polarimetry and magnetic sensing on the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Smith, R. J.; Hutchinson, T. M.; Weber, T. E.; Taylor, S. F.; Hsu, S. C.

    2014-10-01

    MSX is uniquely positioned to generate the conditions for collision-less magnetized supercritical shocks with Alvenic Mach numbers (MA) of the order 10 and higher. Significant operational strides have been made in forming plasmas over wide parameter ranges: (Te + Ti) of 10-200 eV, average neof 5-60×10+21 m-3, speeds up to 150 km/s and fields up to 1T with a highest plasma flow MA of 5 to date. The MSX plasma is unique in regards to large plasma size of 10 cm and average β higher than 0.8 making the FRC and the magnetized shock structure candidates for the application of Pulsed Polarimetry, a polarization sensitive Lidar technique. The shock dynamics are presently being investigated using internal probes, interferometry and imaging. Internal probe results and an assessment of the shock parameters will dictate the use of the UW pulsed polarimeter system in which internal ne, Teand B are to be measured. Recent results will be presented. Supported by DOE Office of Fusion Energy Sciences Funding DE-FOA-0000755.

  2. The evolution of hydrocarbons past the asymptotic giant branch: the case of MSX SMC 029

    NASA Astrophysics Data System (ADS)

    Pauly, Tyler; Sloan, Gregory C.; Kraemer, Kathleen E.; Bernard-Salas, Jeronimo; Lebouteiller, Vianney; Goes, Christopher; Barry, Donald

    2015-01-01

    We present an optimally extracted high-resolution spectrum of MSX SMC 029 obtained by the Infrared Spectrograph on the Spitzer Space Telescope. MSX SMC 029 is a carbon-rich object in the Small Magellanic Cloud that has evolved past the asymptotic giant branch (AGB). The spectrum reveals a cool carbon-rich dust continuum with emission from polycyclic aromatic hydrocarbons (PAHs) and absorption from simpler hydrocarbons, both aliphatic and aromatic, including acetylene and benzene. The spectrum shows many similarities to the carbon-rich post-AGB objects SMP LMC 011 in the Large Magellanic Cloud and AFGL 618 in the Galaxy. Both of these objects also show infrared absorption features from simple hydrocarbons. All three spectra lack strong atomic emission lines in the infrared, indicating that we are observing the evolution of carbon-rich dust and free hydrocarbons in objects between the AGB and planetary nebulae. These three objects give us a unique view of the elusive phase when hydrocarbons exist both as relatively simple molecules and the much more complex and ubiquitous PAHs. We may be witnessing the assembly of amorphous carbon into PAHs.

  3. Murine craniofacial development requires Hdac3-mediated repression of Msx gene expression

    PubMed Central

    Singh, Nikhil; Gupta, Mudit; Trivedi, Chinmay M.; Singh, Manvendra K.; Li, Li; Epstein, Jonathan A.

    2013-01-01

    Craniofacial development is characterized by reciprocal interactions between neural crest cells and neighboring cell populations of ectodermal, endodermal and mesodermal origin. Various genetic pathways play critical roles in coordinating the development of cranial structures by modulating the growth, survival and differentiation of neural crest cells. However, the regulation of these pathways, particularly at the epigenomic level, remains poorly understood. Using murine genetics, we show that neural crest cells exhibit a requirement for the class I histone deacetylase Hdac3 during craniofacial development. Mice in which Hdac3 has been conditionally deleted in neural crest demonstrate fully penetrant craniofacial abnormalities, including microcephaly, cleft secondary palate and dental hypoplasia. Consistent with these abnormalities, we observe dysregulation of cell cycle genes and increased apoptosis in neural crest structures in mutant embryos. Known regulators of cell cycle progression and apoptosis in neural crest, including Msx1, Msx2 and Bmp4, are upregulated in Hdac3-deficient cranial mesenchyme. These results suggest that Hdac3 serves as a critical regulator of craniofacial morphogenesis, in part by repressing core apoptotic pathways in cranial neural crest cells. PMID:23506836

  4. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction.

    PubMed

    Kim, Daejin; Powell, Lawrence E; Delmau, Lætitia H; Peterson, Eric S; Herchenroeder, Jim; Bhave, Ramesh R

    2015-08-18

    The rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acid solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. The resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.

  5. Betaine: a promising antioxidant agent for enhancement of broiler meat quality.

    PubMed

    Alirezaei, M; Reza Gheisari, H; Reza Ranjbar, V; Hajibemani, A

    2012-01-01

    1. Antioxidant and methyl donor effects of betaine in experimental animal models have recently been demonstrated. The present study was therefore designed to examine the antioxidant effects of betaine on the antioxidant status and meat quality of breast muscles in broilers. 2. Cobb broilers were randomly divided into Control, Methionine low, Methionine low plus betaine, and Betaine groups. 3. The activity of the main antioxidant enzyme (glutathione peroxidase) in the Betaine and the Methionine low plus betaine groups significantly increased compared to the Methionine low and Control groups. Catalase and superoxide dismutase activities were significantly higher in the Betaine group compared to the Methionine low group, and lipid peroxidation was significantly higher in the Control and the Methionine low groups. 4. The present study indicates that adding betaine (1 g/kg) to a diet deficient in methionine can significantly improve antioxidant defences and meat quality, decreasing lipid peroxidation in the breast muscles of broiler chickens.

  6. 21 CFR 582.5477 - Methionine hydroxy analog and its calcium salts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methionine hydroxy analog and its calcium salts... Nutrients and/or Dietary Supplements 1 § 582.5477 Methionine hydroxy analog and its calcium salts. (a) Product. Methionine hydroxy analog and its calcium salts. (b) [Reserved] (c) Limitations, restrictions, or...

  7. 21 CFR 582.5477 - Methionine hydroxy analog and its calcium salts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Methionine hydroxy analog and its calcium salts... Nutrients and/or Dietary Supplements 1 § 582.5477 Methionine hydroxy analog and its calcium salts. (a) Product. Methionine hydroxy analog and its calcium salts. (b) [Reserved] (c) Limitations, restrictions, or...

  8. Sulphur Atoms from Methionines Interacting with Aromatic Residues Are Less Prone to Oxidation

    PubMed Central

    Aledo, Juan C.; Cantón, Francisco R.; Veredas, Francisco J.

    2015-01-01

    Methionine residues exhibit different degrees of susceptibility to oxidation. Although solvent accessibility is a relevant factor, oxidation at particular sites cannot be unequivocally explained by accessibility alone. To explore other possible structural determinants, we assembled different sets of oxidation-sensitive and oxidation-resistant methionines contained in human proteins. Comparisons of the proteins containing oxidized methionines with all proteins in the human proteome led to the conclusion that the former exhibit a significantly higher mean value of methionine content than the latter. Within a given protein, an examination of the sequence surrounding the non-oxidized methionine revealed a preference for neighbouring tyrosine and tryptophan residues, but not for phenylalanine residues. However, because the interaction between sulphur atoms and aromatic residues has been reported to be important for the stabilization of protein structure, we carried out an analysis of the spatial interatomic distances between methionines and aromatic residues, including phenylalanine. The results of these analyses uncovered a new determinant for methionine oxidation: the S-aromatic motif, which decreases the reactivity of the involved sulphur towards oxidants. PMID:26597773

  9. Time-course proteomics dataset to monitor protein-bound methionine oxidation in Bacillus cereus ATCC 14579.

    PubMed

    Madeira, Jean-Paul; Alpha-Bazin, Béatrice; Armengaud, Jean; Duport, Catherine

    2018-06-01

    Aerobic respiratory growth generates endogenous reactive oxygen species (ROS). ROS oxidize protein-bound methionine residues into methionine sulfoxide. Methionine sulfoxide reductases catalyze the reduction of methionine sulfoxide to methionine in proteins. Here, we use high-throughput nanoLC-MS/MS methodology to establish detailed maps of oxidized proteins from Bacillus cereus ATCC 14579 ΔpBClin15 and its mutant for which the methionine sulfoxide reductase AB gene ( msrAB ) has been inactivated (Madeira et al., 2017) [1]. Lists of oxidized peptides and proteins identified at early exponential, late exponential and stationary growth phases are supplied in this article as data files. Raw data are deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers, PXD006169 and PDX006205 (http://www.ebi.ac/uk). Given the importance of methionine oxidation in several key cellular processes and its impact in the field of medical and food microbiology, this paper should be useful for further insightful redox studies in B. cereus and its numerous relatives.

  10. MSX-3D: a tool to validate 3D protein models using mass spectrometry.

    PubMed

    Heymann, Michaël; Paramelle, David; Subra, Gilles; Forest, Eric; Martinez, Jean; Geourjon, Christophe; Deléage, Gilbert

    2008-12-01

    The technique of chemical cross-linking followed by mass spectrometry has proven to bring valuable information about the protein structure and interactions between proteic subunits. It is an effective and efficient way to experimentally investigate some aspects of a protein structure when NMR and X-ray crystallography data are lacking. We introduce MSX-3D, a tool specifically geared to validate protein models using mass spectrometry. In addition to classical peptides identifications, it allows an interactive 3D visualization of the distance constraints derived from a cross-linking experiment. Freely available at http://proteomics-pbil.ibcp.fr

  11. Methionine kinetics in adult men: effects of dietary betaine on L-(2H3-methyl-1-13C)methionine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storch, K.J.; Wagner, D.A.; Young, V.R.

    1991-08-01

    The effects of a daily 3-g supplement of betaine on kinetic aspects of L-(2H3-methyl-1-13C)methionine (MET) metabolism in healthy young adult men were explored. Four groups of four subjects each were given a control diet, based on an L-amino acid mixture supplying 29.5 and 21.9 mg.kg-1.d-1 of L-methionine and L-cystine for 4 d before the tracer study, conducted on day 5 during the fed state. Two groups received the control diet and two groups received the betaine supplement. Tracer was given intravenously (iv) or orally. The transmethylation rate of MET (TM), homocysteine remethylation (RM), and oxidation of methionine were estimated frommore » plasma methionine labeling and 13C enrichment of expired air. RM tended to increase (P = 0.14) but the TM and methionine oxidation were significantly (P less than 0.05) higher after betaine supplementation when estimated with the oral tracer. No differences were detected with the intravenous tracer. Methionine concentration in plasma obtained from blood taken from subjects in the fed state was higher (P less than 0.01) with betaine supplementation. These results suggest that excess methyl-group intake may increase the dietary requirement for methionine.« less

  12. Mechanisms to account for maintenance of the soluble methionine pool in transgenic Arabidopsis plants expressing antisense cystathionine gamma-synthase cDNA.

    PubMed

    Gakière, B; Ravanel, S; Droux, M; Douce, R; Job, D

    2000-10-01

    To investigate the role of cystathionine gamma-synthase (CGS) in the regulation of methionine synthesis Arabidopsis plants were transformed with a full-length antisense CGS cDNA and transformants analysed. Plants that were heterozygous for the transgene showed a 20-fold reduction of CGS activity that was accompanied by severe growth retardation and morphological abnormalities, from germination to flowering. Application of exogenous methionine to the transgenic lines restored normal growth. Surprisingly, transformed Arabidopsis plants exhibited a modest decrease in methionine content (35% reduction of the wild-type level) but a seven-fold decrease in the soluble pool of S-methylmethionine (SMM), a compound that plays a major role in storage and transport of reduced sulphur and labile methyl moieties. Several mechanisms can account for the maintenance of the soluble pool of methionine. First, the observed 20-fold increase in O-phosphohomoserine, a substrate of CGS, could compensate for the depressed level of CGS polypeptide by increasing the net rate of catalysis supported by the remaining enzyme. Second, the transgenic plants exhibited a two-fold increased level of cystathionine beta-lyase, the second enzyme in the methionine biosynthetic pathway. This indicates that enzymes other than CGS are subjected to a regulatory control by methionine or one of its metabolites. In addition to these mechanisms affecting de novo methionine synthesis, the recruitment of SMM to produce methionine may account for the small change of methionine levels in transgenic lines.

  13. The relative contribution of genes operating in the S-methylmethionine cycle to methionine metabolism in Arabidopsis seeds.

    PubMed

    Cohen, Hagai; Salmon, Asaf; Tietel, Zipora; Hacham, Yael; Amir, Rachel

    2017-05-01

    Enzymes operating in the S -methylmethionine cycle make a differential contribution to methionine synthesis in seeds. In addition, mutual effects exist between the S -methylmethionine cycle and the aspartate family pathway in seeds. Methionine, a sulfur-containing amino acid, is a key metabolite in plant cells. The previous lines of evidence proposed that the S-methylmethionine (SMM) cycle contributes to methionine synthesis in seeds where methionine that is produced in non-seed tissues is converted to SMM and then transported via the phloem into the seeds. However, the relative regulatory roles of the S-methyltransferases operating within this cycle in seeds are yet to be fully understood. In the current study, we generated transgenic Arabidopsis seeds with altered expression of three HOMOCYSTEINE S-METHYLTRANSFERASEs (HMTs) and METHIONINE S-METHYLTRANSFERASE (MMT), and profiled them for transcript and metabolic changes. The results revealed that AtHMT1 and AtHMT3, but not AtHMT2 and AtMMT, are the predominant enzymes operating in seeds as altered expression of these two genes affected the levels of methionine and SMM in transgenic seeds. Their manipulations resulted in adapted expression level of genes participating in methionine synthesis through the SMM and aspartate family pathways. Taken together, our findings provide new insights into the regulatory roles of the SMM cycle and the mutual effects existing between the two methionine biosynthesis pathways, highlighting the complexity of the metabolism of methionine and SMM in seeds.

  14. Impact of food supplementation and methionine on high densities of cotton rats: Support of the amino-acid-quality hypothesis?

    USGS Publications Warehouse

    Webb, R.E.; Leslie, David M.; Lochmiller, R.L.; Masters, R.E.

    2005-01-01

    Considerable research supports the tenet that quantity and quality of food limit vertebrate populations. We evaluated predictions that increased availabilities of food and the essential amino acid methionine were related to population limitation of the hispid cotton rat (Sigmodon hispidus). Effects of supplemental food and methionine on density, survival, and reproductive parameters of wild cotton rats were assessed in north-central Oklahoma in 1998-1999. Twelve enclosed groups of 16 adult cotton rats each (8 male, 8 female) were randomly assigned to either no supplementation (control), supplementation with a mixed ration that had methionine at slightly below maintenance levels (0.20%), or a methionine-enhanced mixed ration (1.20%). In general, densities of cotton rats were twice as high and were sustained longer with dietary supplementation, and methionine-supplemented populations maintained the highest densities. Treatment effects on survival depended on time of year, with higher survival in supplemented enclosures in October and November. Per capita recruitment was highest with methionine-enhanced food. Treatment effects on proportions of overall and female cotton rats in reproductive condition depended on sampling date, but males were most reproductively active with methionine supplementation. Methionine supplementation resulted in an earlier and longer reproductive season. Density-dependent and density-independent factors no doubt interplay to determine population dynamics of cotton rats, but our results suggest that methionine plays a role in the population dynamics of wild cotton rats, apparently by enhancing overall density, recruitment, and reproductive activity of males.

  15. Oxidation of Methionine Residues in Polypeptide Ions via Gas-Phase Ion/Ion Chemistry

    PubMed Central

    Pilo, Alice L.; McLuckey, Scott A.

    2014-01-01

    The gas-phase oxidation of methionine residues is demonstrated here using ion/ion reactions with periodate anions. Periodate anions are observed to attach to varying degrees to all polypeptide ions irrespective of amino acid composition. Direct proton transfer yielding a charge reduced peptide ion is also observed. In the case of methionine and, to a much lesser degree, tryptophan containing peptide ions, collisional activation of the complex ion generated by periodate attachment yields an oxidized peptide product (i.e., [M+H+O]+), in addition to periodic acid detachment. Detachment of periodic acid takes place exclusively for peptides that do not contain either a methionine or tryptophan side-chain. In the case of methionine containing peptides, the [M+H+O]+ product is observed at a much greater abundance than the proton transfer product (viz., [M+H]+). Collisional activation of oxidized Met-containing peptides yields a signature loss of 64 Da from the precursor and/or product ions. This unique loss corresponds to the ejection of methanesulfenic acid from the oxidized methionine side chain and is commonly used in solution-phase proteomics studies to determine the presence of oxidized methionine residues. The present work shows that periodate anions can be used to ‘label’ methionine residues in polypeptides in the gas-phase. The selectivity of the periodate anion for the methionine side chain suggests several applications including identification and location of methionine residues in sequencing applications. PMID:24671696

  16. Enhanced immune responses in broiler chicks fed methionine-supplemented diets.

    PubMed

    Tsiagbe, V K; Cook, M E; Harper, A E; Sunde, M L

    1987-07-01

    Effects of feeding supplementary methionine and choline on broiler growth and immunity were examined by supplementing a corn-soybean diet that contained 21% crude protein, 3,255 kcal metabolizable energy/kg diet, .35% methionine, .37% cystine, and .13% choline. Methionine (.063, .125, .25%) and choline (.125, .25%) were dietary variables. Sulfate (.055%) was added either alone or along with methionine (.125 or .25%) and choline (.125%). In one study, the .25% methionine diet was supplemented with .121% betaine. Sodium and chloride levels were constant in all the diets. Feed and distilled water were supplied ad libitum. Total antibodies, immunoglobulin (Ig) G (2-mercaptoethanol-resistant antibodies) and IgM (2-mercaptoethanol-sensitive antibodies) were determined in 3-wk-old chicks inoculated intraperitoneally with sheep red blood cells. The thymus-derived (T)-cell-dependent in vivo mitogen response to phytohemagglutinin-P (PHA-P) was assessed via wing web swelling. The methionine requirement for growth (0 to 3 wk of age) was approximately .413% of the diet (.35% in the basal diet plus .063% added). Supplementation of the basal diet with .125% choline stimulated growth to the same extent as did the extra .063% of methionine. Addition of .055% sulfate with .125% choline did not improve the ability of the latter to spare methionine. Supplemental methionine resulted in significant (P less than .05) dose-related increases in total antibody, IgG, and response to the mitogen PHA-P, but not in IgM. There were no effects of choline on the immune variables studied. These results suggest that methionine is required for select components of the antibody response, which effect might be related to T-cell help.

  17. Restriction of dietary methyl donors limits methionine availability and affects the partitioning of dietary methionine for creatine and phosphatidylcholine synthesis in the neonatal piglet.

    PubMed

    Robinson, Jason L; McBreairty, Laura E; Randell, Edward W; Brunton, Janet A; Bertolo, Robert F

    2016-09-01

    Methionine is required for protein synthesis and provides a methyl group for >50 critical transmethylation reactions including creatine and phosphatidylcholine synthesis as well as DNA and protein methylation. However, the availability of methionine depends on dietary sources as well as remethylation of demethylated methionine (i.e., homocysteine) by the dietary methyl donors folate and choline (via betaine). By restricting dietary methyl supply, we aimed to determine the extent that dietary methyl donors contribute to methionine availability for protein synthesis and transmethylation reactions in neonatal piglets. Piglets 4-8 days of age were fed a diet deficient (MD-) (n=8) or sufficient (MS+) (n=7) in folate, choline and betaine. After 5 days, dietary methionine was reduced to 80% of requirement in both groups to elicit a response. On day 8, animals were fed [(3)H-methyl]methionine for 6h to measure methionine partitioning into hepatic protein, phosphatidylcholine, creatine and DNA. MD- feeding reduced plasma choline, betaine and folate (P<.05) and increased homocysteine ~3-fold (P<.05). With MD- feeding, hepatic phosphatidylcholine synthesis was 60% higher (P<.05) at the expense of creatine synthesis, which was 30% lower during MD- feeding (P<.05); protein synthesis as well as DNA and protein methylation were unchanged. In the liver, ~30% of dietary label was traced to phosphatidylcholine and creatine together, with ~50% traced to methylation of proteins and ~20% incorporated in synthesized protein. Dietary methyl donors are integral to neonatal methionine requirements and can affect methionine availability for transmethylation pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Effect of L-methionine supplementation on plasma homocysteine and other free amino acids: a placebo-controlled double-blind cross-over study.

    PubMed

    Ditscheid, B; Fünfstück, R; Busch, M; Schubert, R; Gerth, J; Jahreis, G

    2005-06-01

    The essential amino acid L-methionine is a potential compound in the prophylaxis of recurrent or relapsing urinary tract infection due to acidification of urine. As an intermediate of L-methionine metabolism, homocysteine is formed. The objective was to study the metabolism of L-methionine and homocysteine, and to assess whether there are differences between patients with chronic urinary tract infection and healthy control subjects. A randomized placebo-controlled double-blind intervention study with cross-over design. Department of Nutritional Physiology, Institute of Nutrition in cooperation with the Department of Internal Medicine III, Friedrich Schiller University of Jena, Germany. Eight female patients with chronic urinary tract infection and 12 healthy women (controls). After a methionine-loading test, the volunteers received 500 mg L-methionine or a placebo three times daily for 4 weeks. Serum and urinary concentrations of methionine, homocysteine, cystathionine, cystine, serine, glycine and serum concentrations of vitamin B12, B6 and the state of folate. Homocysteine plasma concentrations increased from 9.4+/-2.7 micromol/l (patients) and 8.9+/-1.8 micromol/l (controls) in the placebo period to 11.2+/-4.1 micromol/l (P=0.031) and 11.0+/-2.3 micromol/l (P=0.000), respectively, during L-methionine supplementation. There were significant increases in serum methionine (53.6+/-22.0 micromol/l; P=0.003; n=20) and cystathionine (0.62+/-0.30 micromol/l; P=0.000; n=20) concentrations compared with the placebo period (33.0+/-12.0 and 0.30+/-0.10 micromol/l; n=20). Simultaneously, renal excretion of methionine and homocysteine was significantly higher during L-methionine intake. Despite an adequate vitamin status, the supplementation of 1500 mg of L-methionine daily significantly increases homocysteine plasma concentrations by an average of 2.0 micromol/l in patients and in control subjects. An optimal vitamin supplementation, especially with folate, might prevent such an increase.

  19. A machine learning approach for predicting methionine oxidation sites.

    PubMed

    Aledo, Juan C; Cantón, Francisco R; Veredas, Francisco J

    2017-09-29

    The oxidation of protein-bound methionine to form methionine sulfoxide, has traditionally been regarded as an oxidative damage. However, recent evidences support the view of this reversible reaction as a regulatory post-translational modification. The perception that methionine sulfoxidation may provide a mechanism to the redox regulation of a wide range of cellular processes, has stimulated some proteomic studies. However, these experimental approaches are expensive and time-consuming. Therefore, computational methods designed to predict methionine oxidation sites are an attractive alternative. As a first approach to this matter, we have developed models based on random forests, support vector machines and neural networks, aimed at accurate prediction of sites of methionine oxidation. Starting from published proteomic data regarding oxidized methionines, we created a hand-curated dataset formed by 113 unique polypeptides of known structure, containing 975 methionyl residues, 122 of which were oxidation-prone (positive dataset) and 853 were oxidation-resistant (negative dataset). We use a machine learning approach to generate predictive models from these datasets. Among the multiple features used in the classification task, some of them contributed substantially to the performance of the predictive models. Thus, (i) the solvent accessible area of the methionine residue, (ii) the number of residues between the analyzed methionine and the next methionine found towards the N-terminus and (iii) the spatial distance between the atom of sulfur from the analyzed methionine and the closest aromatic residue, were among the most relevant features. Compared to the other classifiers we also evaluated, random forests provided the best performance, with accuracy, sensitivity and specificity of 0.7468±0.0567, 0.6817±0.0982 and 0.7557±0.0721, respectively (mean ± standard deviation). We present the first predictive models aimed to computationally detect methionine sites that may become oxidized in vivo in response to oxidative signals. These models provide insights into the structural context in which a methionine residue become either oxidation-resistant or oxidation-prone. Furthermore, these models should be useful in prioritizing methinonyl residues for further studies to determine their potential as regulatory post-translational modification sites.

  20. Methionine metabolism in Yucatan miniature swine.

    PubMed

    McBreairty, Laura E

    2016-06-01

    Methionine is an essential amino acid which when not incorporated into protein, can be converted to S-adenosylmethionine, the universal methyl donor in over 200 transmethylation reactions, which include creatine and phosphatidylcholine (PC) synthesis, as well as deoxyribonucleic acid (DNA) methylation. Following transmethylation, homocysteine is formed, which can be converted to cysteine via transsulfuration or remethylated to methionine by receiving a methyl group from folate or betaine. Changes to methyl group availability in utero can lead to permanent changes in epigenetic patterns of DNA methylation, which has been implicated in "fetal programming", a phenomenon associated with poor nutrition during fetal development that results in low birth weight and disease in later life. It has been shown that programming can also occur in the neonate. Our global objective was to understand how the variability of nutrients involved in methionine metabolism can affect methionine and methyl group availability. We hypothesize that nutrients that converge on methionine metabolism can affect methionine availability for its various functions. In this thesis, we used intrauterine growth restricted (IUGR) piglets to investigate whether a global nutritional insult in utero can lead to a perturbed methionine metabolism. Our results demonstrate that IUGR piglets have a lower capacity to dispose of homocysteine via both transsulfuration and remethylation pathways, as well as a lower incorporation of methyl groups into PC. The second objective of this thesis was to determine whether variation in methionine supply and demand can affect methionine availability. We demonstrated that stimulating either acute or chronic creatine synthesis leads to lower methyl incorporation into protein and PC in pigs. Furthermore, when methionine is limiting, supplementation with either folate or betaine leads to higher methionine availability for protein synthesis. Finally, because creatine is increasingly being utilized as an ergogenic and neuroprotective supplement, we wanted to determine whether provision of the creatine precursor, guanidinoacetate (GAA), could effectively increase tissue creatine stores. We showed that 2.5 weeks of supplementation with GAA is more effective than creatine at increasing hepatic and muscle creatine stores. The results of this thesis demonstrate that the presence of IUGR, an increased demand for creatine synthesis, or the supplementation with remethylation nutrients can each affect methionine availability; all are important when considering neonatal nutrient requirements. Furthermore, although GAA is effective at increasing levels of tissue creatine, higher GAA methylation can limit methionine availability for growth and synthesis of PC.

  1. Identification of a TAAT-containing motif required for high level expression of the COL1A1 promoter in differentiated osteoblasts of transgenic mice

    NASA Technical Reports Server (NTRS)

    Dodig, M.; Kronenberg, M. S.; Bedalov, A.; Kream, B. E.; Gronowicz, G.; Clark, S. H.; Mack, K.; Liu, Y. H.; Maxon, R.; Pan, Z. Z.; hide

    1996-01-01

    Our previous studies have shown that the 49-base pair region of promoter DNA between -1719 and -1670 base pairs is necessary for transcription of the rat COL1A1 gene in transgenic mouse calvariae. In this study, we further define this element to the 13-base pair region between -1683 and -1670. This element contains a TAAT motif that binds homeodomain-containing proteins. Site-directed mutagenesis of this element in the context of a COL1A1-chloramphenicol acetyltransferase construct extending to -3518 base pairs decreased the ratio of reporter gene activity in calvariae to tendon from 3:1 to 1:1, suggesting a preferential effect on activity in calvariae. Moreover, chloramphenicol acetyltransferase-specific immunofluorescence microscopy of transgenic calvariae showed that the mutation preferentially reduced levels of chloramphenicol acetyltransferase protein in differentiated osteoblasts. Gel mobility shift assays demonstrate that differentiated osteoblasts contain a nuclear factor that binds to this site. This binding activity is not present in undifferentiated osteoblasts. We show that Msx2, a homeodomain protein, binds to this motif; however, Northern blot analysis revealed that Msx2 mRNA is present in undifferentiated bone cells but not in fully differentiated osteoblasts. In addition, cotransfection studies in ROS 17/2.8 osteosarcoma cells using an Msx2 expression vector showed that Msx2 inhibits a COL1A1 promoter-chloramphenicol acetyltransferase construct. Our results suggest that high COL1A1 expression in bone is mediated by a protein that is induced during osteoblast differentiation. This protein may contain a homeodomain; however, it is distinct from homeodomain proteins reported previously to be present in bone.

  2. A comparative examination of odontogenic gene expression in both toothed and toothless amniotes

    PubMed Central

    Lainoff, Alexis J.; Moustakas-Verho, Jacqueline E.; Hu, Diane; Kallonen, Aki; Marcucio, Ralph S.; Hlusko, Leslea J.

    2015-01-01

    A well-known tenet of murine tooth development is that BMP4 and FGF8 antagonistically initiate odontogenesis, but whether this tenet is conserved across amniotes is largely unexplored. Moreover, changes in BMP4-signaling have previously been implicated in evolutionary tooth loss in Aves. Here we demonstrate that Bmp4, Msx1, and Msx2 expression is limited proximally in the red-eared slider turtle (Trachemys scripta) mandible at stages equivalent to those at which odontogenesis is initiated in mice, a similar finding to previously reported results in chicks. To address whether the limited domains in the turtle and the chicken indicate an evolutionary molecular parallelism, or whether the domains simply constitute an ancestral phenotype, we assessed gene expression in a toothed reptile (the American alligator, Alligator mississippiensis) and a toothed non-placental mammal (the gray short-tailed opossum, Monodelphis domestica). We demonstrate that the Bmp4 domain is limited proximally in M. domestica and that the Fgf8 domain is limited distally in A. mississippiensis just preceding odontogenesis. Additionally, we show that Msx1 and Msx2 expression patterns in these species differ from those found in mice. Our data suggest that a limited Bmp4 domain does not necessarily correlate with edentulism, and reveal that the initiation of odontogenesis in non-murine amniotes is more complex than previously imagined. Our data also suggest a partially conserved odontogenic program in T. scripta, as indicated by conserved Pitx2, Pax9, and Barx1 expression patterns and by the presence of a Shh-expressing palatal epithelium, which we hypothesize may represent potential dental rudiments based on the Testudinata fossil record. PMID:25678399

  3. Semi-Annual Status Report

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1998-01-01

    This 6 month period continued the effort on absolute spectrally continuous stellar calibration begun in January 1991. The Midcourse Space Experiment (MSX) DCATT team has continued its analysis and intercomparisons of the Spatial Infrared Imaging Telescope (SPIRIT-III) ground calibration, the on-orbit stellar calibration (using our stellar spectra), and the on-orbit observations of the MIT Lincoln Labs. "emissive spheres". All three approaches are in very good agreement, at about the +/-3% level (absolute). This demonstrates the consistency of our overall calibration scheme and validates the context in which Infrared Space Observatory (ISO) and MSX data also reside. Final "globalization" of the overall MSX calibration is in progress, combining calibrations by stars, by the "emissive spheres" experiments, and by the NIST-traceable ground calibration. The work in support of the Infrared Telescope Satellite (IRTS) continues. I am currently calculating the contribution of diffuse starlight to the background in "dark" regions of the sky observed by the IRTS Near-IR Spectrometer. To accomplish this I am using the SKY model with a new extended wavelength capability, covering the 1.00-2.00 micron region for the first time. These calculations, together with models of the zodiacal light, will be used to seek the presence of a cosmic near-IR background. Papers VIII and IX in the calibration series appeared in this 6 month period. These describe our results on asteroid thermal nodes and anticipate the eventual production of a new network of stellar calibrators, numbering over 400 and extending over the whole sky. These will be constructed as stellar "templates", building on the legacy of our series of calibration papers. The first analyses of star counts from MSX are under way using SKY.

  4. Effect of the adenosine A2A receptor antagonist MSX-3 on motivational disruptions of maternal behavior induced by dopamine antagonism in the early postpartum rat.

    PubMed

    Pereira, Mariana; Farrar, Andrew M; Hockemeyer, Jörg; Müller, Christa E; Salamone, John D; Morrell, Joan I

    2011-01-01

    Mesolimbic dopamine (DA), particularly in the nucleus accumbens, importantly regulates activational aspects of maternal responsiveness. DA antagonism and accumbens DA depletions interfere with early postpartum maternal motivation by selectively affecting most forms of active maternal behaviors, while leaving nursing behavior relatively intact. Considerable evidence indicates that there is a functional interaction between DA D2 and adenosine A(2A) receptors in striatal areas, including the nucleus accumbens. This study was conducted to determine if adenosine A(2A) receptor antagonism could reverse the effects of DA receptor antagonism on early postpartum maternal behavior. The adenosine A(2A) receptor antagonist MSX-3 (0.25-2.0 mg/kg, IP) was investigated for its ability to reverse the effects of the DA D2 receptor antagonist haloperidol (0.1 mg/kg, IP) on the maternal behavior of early postpartum female rats. Haloperidol severely impaired the expression of active maternal components, including retrieval and grouping the pups at the nest site, pup licking, and nest building. Co-administration of MSX-3 (0.25-2.0 mg/kg, IP) with haloperidol produced a dose-related attenuation of the haloperidol-induced behavioral deficits in early postpartum females. Doses of MSX-3 that effectively reversed the effects of haloperidol (0.5, 1.0 mg/kg), when administered in the absence of haloperidol, did not affect maternal responding or locomotor activity. Adenosine and DA systems interact to regulate early postpartum maternal responsiveness. This research may potentially contribute to the development of strategies for treatments of psychiatric disorders during the postpartum period, with particular emphasis in maintaining or restoring the mother-infant relationship.

  5. Effect of the adenosine A2A receptor antagonist MSX-3 on motivational disruptions of maternal behavior induced by dopamine antagonism in the early postpartum rat

    PubMed Central

    Farrar, Andrew M.; Hockemeyer, Jörg; Müller, Christa E.; Salamone, John D.; Morrell, Joan I.

    2011-01-01

    Rationale Mesolimbic dopamine (DA), particularly in the nucleus accumbens, importantly regulates activational aspects of maternal responsiveness. DA antagonism and accumbens DA depletions interfere with early postpartum maternal motivation by selectively affecting most forms of active maternal behaviors, while leaving nursing behavior relatively intact. Considerable evidence indicates that there is a functional interaction between DA D2 and adenosine A2A receptors in striatal areas, including the nucleus accumbens. Objective This study was conducted to determine if adenosine A2A receptor antagonism could reverse the effects of DA receptor antagonism on early postpartum maternal behavior. Methods The adenosine A2A receptor antagonist MSX-3 (0.25–2.0 mg/kg, IP) was investigated for its ability to reverse the effects of the DA D2 receptor antagonist haloperidol (0.1 mg/kg, IP) on the maternal behavior of early postpartum female rats. Results Haloperidol severely impaired the expression of active maternal components, including retrieval and grouping the pups at the nest site, pup licking, and nest building. Co-administration of MSX-3 (0.25–2.0 mg/kg, IP) with haloperidol produced a dose-related attenuation of the haloperidol-induced behavioral deficits in early postpartum females. Doses of MSX-3 that effectively reversed the effects of haloperidol (0.5, 1.0 mg/kg), when administered in the absence of haloperidol, did not affect maternal responding or locomotor activity. Conclusions Adenosine and DA systems interact to regulate early postpartum maternal responsiveness. This research may potentially contribute to the development of strategies for treatments of psychiatric disorders during the postpartum period, with particular emphasis in maintaining or restoring the mother–infant relationship. PMID:20848086

  6. Gene expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in dental follicle cells during osteogenic differentiation in vitro.

    PubMed

    Morsczeck, C

    2006-02-01

    Recently, osteogenic precursor cells were isolated from human dental follicles, which differentiate into cementoblast- or osteoblast- like cells under in vitro conditions. However, mechanisms for osteogenic differentiation are not known in detail. Dental follicle cell long-term cultures supplemented with dexamethasone or with insulin resulted in mineralized nodules, whereas no mineralization or alkaline phosphatase activity was detected in the control culture without an osteogenic stimulus. A real-time reverse-transcriptase polymerase chain reaction (PCR) analysis was developed to investigate gene expression during osteogenic differentiation in vitro. Expression of the alkaline phosphatase (ALP) gene was detected during differentiation in the control culture and was similar to that in cultures with dexamethasone and insulin. DLX-3, DLX-5, runx2, and MSX-2 are differentially expressed during osteogenic differentiation in bone marrow mesenchymal stem cells. In dental follicle cells, gene expression of runx2, DLX-5, and MSX-2 was unaffected during osteogenic differentiation in vitro. Osteogenic differentiation appeared to be independent of MSX-2 expression; the same was true of runx2 and DLX-5, which were protagonists of osteogenic differentiation and osteocalcin promoter activity in bone marrow mesenchymal stem cells. Like in bone marrow-derived stem cells, DLX-3 gene expression was increased in dental follicle cells during osteogenic differentiation but similar to control cultures. However, gene expression of osterix was not detected in dental follicle cells during osteogenic differentiation; this gene is expressed during osteogenic differentiation in bone marrow stem cells. These real-time PCR results display molecular mechanisms in dental follicle precursor cells during osteogenic differentiation that are different from those in bone marrow-derived mesenchymal stem cells.

  7. Characterization of two polymorphs of salmeterol xinafoate crystallized from supercritical fluids.

    PubMed

    Tong, H H; Shekunov, B Y; York, P; Chow, A H

    2001-06-01

    To characterize two polymorphs of salmeterol xinafoate (SX-I and SX-II) produced by supercritical fluid crystallization. SX-I and SX-II were crystallized as fine powders using Solution Enhanced Dispersion by Supercritical Fluids (SEDS). The two polymorphs and a reference micronized SX sample (MSX) were characterized using powder X-ray diffractometry (PXRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), aqueous solubility (and dissolution) determination at 5-40 degrees C, BET adsorption analysis, and inverse gas chromatography (IGC). Compared with SX-I, SX-II exhibited a lower enthalpy of fusion, a higher equilibrium solubility, a higher intrinsic dissolution rate, a lower enthalpy of solution (based on van't Hoff solubility plots), and a different FTIR spectrum (reflecting differences in intermolecular hydrogen bonding). Solubility ratio plot yielded a transition temperature (-99 degrees C) below the melting points of both polymorphs. MSX showed essentially the same crystal form as SX-I (confirmed by PXRD and FTIR), but a distinctly different thermal behaviour. Mild trituration of SX-I afforded a similar DSC profile to MSX while prolonged grinding of SX-I gave rise to an endotherm at -109 degrees C, corresponding to solid-solid transition of SX-I to SX-II. Surface analysis of MSX, SX-I, and SX-II by IGC revealed significant differences in surface free energy in terms of both dispersive (nonpolar) interactions and specific (polar) acid-base properties. The SEDS-processed SX-I and SX-II display high polymorphic purity and distinctly different physical and surface properties. The polymorphs are related enantiotropically with SX-I being the thermodynamically stable form at room temperature.

  8. Dose-dependent effects of higher methionine levels on the transcriptome and metabolome of transgenic Arabidopsis seeds.

    PubMed

    Cohen, Hagai; Amir, Rachel

    2017-05-01

    Higher methionine levels in transgenic Arabidopsis seeds trigger the accumulation of stress-related transcripts and primary metabolites. These responses depend on the levels of methionine within seeds. Methionine, a sulfur-containing amino acid, is a key metabolite in plant cells. To reveal the regulatory role of the Arabidopsis thaliana CYSTATHIONINE γ-SYNTHASE (AtCGS), methionine main regulatory enzyme, in the synthesis of methionine in seeds, we generated transgenic RNAi seeds with targeted repression of AtCGS during late developmental stages of seeds. Unexpectedly, these seeds accumulated 2.5-fold more methionine than wild-type seeds. To study the nature of these seeds, transcriptomic and primary metabolite profiling were employed using Affymetrix ATH1 microarray and gas chromatography-mass spectrometry analyses, respectively. The results were compared to transgenic Arabidopsis seeds expressing a feedback-insensitive form of AtCGS (named SSE-AtD-CGS) that were previously showed to accumulate up to sixfold more soluble methionine than wild-type seeds. Statistical assessments showed that the nature of transcriptomic and metabolic changes that occurred in RNAi::AtCGS seeds were relatively similar, but to lesser extents, to those previously reported for SSE-AtD-CGS seeds, and linked to the induction of global transcriptomic and metabolic responses associated with stronger desiccation stress. As transgenic seeds obtained by both manipulations exhibited higher, but different methionine levels, the data strongly suggest that these changes depend on the absolute amounts of methionine within seeds and much less to the expression level of AtCGS.

  9. D-METHIONINE REDUCES TOBRAMYCIN-INDUCED OTOTOXICITY WITHOUT ANTIMICROBIAL INTERFERENCE IN ANIMAL MODELS

    PubMed Central

    Fox, Daniel J.; Cooper, Morris D.; Speil, Cristian A.; Roberts, Melissa H.; Yanik, Susan C.; Meech, Robert P.; Hargrove, Tim L.; Verhulst, Steven J.; Rybak, Leonard P.; Campbell, Kathleen C. M.

    2015-01-01

    Background Tobramycin is a critical cystic fibrosis treatment however it causes ototoxicity. This study tested D-methionine protection from tobramycin-induced ototoxicity and potential antimicrobial interference. Methods Auditory brainstem responses (ABR) and outer hair cell (OHC) quantifications measured protection in guinea pigs treated with tobramycin and a range of D-methionine doses. In vitro antimicrobial interference studies tested inhibition and post antibiotic effect assays. In vivo antimicrobial interference studies tested normal and neutropenic E. coli murine survival and intraperitoneal lavage bacterial counts. Results D-methionine conferred significant ABR threshold shift reductions. OHC protection was less robust but significant at 20 kHz in the 420 mg/kg/day group. In vitro studies did not detect D-methionine-induced antimicrobial interference. In vivo studies did not detect D-methionine-induced interference in normal or neutropenic mice. Conclusions D-methionine protects from tobramycin-induced ototoxicity without antimicrobial interference. The study results suggest D-met as a potential otoprotectant from clinical tobramycin use in cystic fibrosis patients. PMID:26166286

  10. d-Methionine reduces tobramycin-induced ototoxicity without antimicrobial interference in animal models.

    PubMed

    Fox, Daniel J; Cooper, Morris D; Speil, Cristian A; Roberts, Melissa H; Yanik, Susan C; Meech, Robert P; Hargrove, Tim L; Verhulst, Steven J; Rybak, Leonard P; Campbell, Kathleen C M

    2016-07-01

    Tobramycin is a critical cystic fibrosis treatment however it causes ototoxicity. This study tested d-methionine protection from tobramycin-induced ototoxicity and potential antimicrobial interference. Auditory brainstem responses (ABRs) and outer hair cell (OHC) quantifications measured protection in guinea pigs treated with tobramycin and a range of d-methionine doses. In vitro antimicrobial interference studies tested inhibition and post antibiotic effect assays. In vivo antimicrobial interference studies tested normal and neutropenic Escherichia coli murine survival and intraperitoneal lavage bacterial counts. d-Methionine conferred significant ABR threshold shift reductions. OHC protection was less robust but significant at 20kHz in the 420mg/kg/day group. In vitro studies did not detect d-methionine-induced antimicrobial interference. In vivo studies did not detect d-methionine-induced interference in normal or neutropenic mice. d-Methionine protects from tobramycin-induced ototoxicity without antimicrobial interference. The study results suggest d-met as a potential otoprotectant from clinical tobramycin use in cystic fibrosis patients. Published by Elsevier B.V.

  11. The importance of transmethylation reactions to methionine metabolism in sheep: effects of supplementation with creatine and choline.

    PubMed

    Lobley, G E; Connell, A; Revell, D

    1996-01-01

    The influence of administering the methylated products choline and creatine on methionine irreversible-loss rate (ILR) and recycling from homocysteine has been investigated in sheep fed close to energy and N equilibrium. Two methods to estimate methionine recycling were compared. The first involved [U-13C]methionine infused as part of a labelled amino acid mixture obtained from hydrolysed algal protein. In this approach the isotope dilution of methionine with all five C atoms labelled (m + 5) will represent the ILR which does not recycle through homocysteine, while that which includes molecules with C-1-C-4 labelled will allow for loss of the labelled methyl (5)-C atom and replacement by an unlabelled moiety in the remethylation of homocysteine. The second method involved a combined infusion of [1-13C]- and [S-methyl-2H3]methionine. These two approaches gave similar data for methionine ILR which does not include label recycled to the amino acid from homocysteine but differed for recycled methionine fluxes. Consequently the two procedures differed in the calculated extent of homocysteine methylation under control conditions (6 v. 28%). These extents of remethylation are within the range observed for the fed human subject, despite the fact that fewer dietary methyl groups are available for the ruminant. Using combined data from the infusions, significant depression of methionine recycling occurred in blood (P < 0.05), with a similar trend for plasma (P = 0.077), when choline plus creatine were infused. Wool growth, assessed by intradermal injection of [35S]cysteine, was not altered by supplementation with the methylated products. From changes in the label pattern of free methionine in aortal, hepatic portal and hepatic venous blood during U-13C-labelled algal hydrolysate infusion, the major sites of homocysteine remethylation appear to be the portal-drained viscera and the liver. This was confirmed by analysis of free methionine enrichments in various tissues following dual infusion of [1-13C]- and [S-methyl-2H3]methionine, with the greatest activities occurring in rumen, jejunum and liver. Of the non-splanchnic tissues examined, only kidney exhibited substantial methionine cycling; none was detected in muscle, heart, lung and skin. The implications of methyl group provision under net production conditions are discussed.

  12. Oxidation of methionine - is it limiting the diagnostic properties of 99mTc-labeled Exendin-4, a Glucagon-Like Peptide-1 receptor agonist?

    PubMed

    Janota, Barbara; Karczmarczyk, Urszula; Laszuk, Ewa; Garnuszek, Piotr; Mikołajczak, Renata

    2016-01-01

    Preliminary clinical evaluation of 99mTc-EDDA/HYNIC-Met14-Exendin-4 showed that the complex offers new diagnostic possibilities for insulinoma and MTC. Exendin-4 contains methionine at position 14 in the amino acid chain, which may be oxidized to methionine sulfoxide and, from the pharmaceutical point of view, the oxidized moiety becomes an undesired impurity in the final radioactive preparation. Therefore, the aim of this study was to investigate the influence of commonly used methods to eliminate the effect of methionine oxidation in peptides, i.e. the replacement of methionine by norleucine (Nle) and the addition of L-methionine, on the in vitro stability and the biodistribution. 99mTc-EDDA/HYNIC-Met14-Exendin-4, 99mTc-EDDA/HYNIC-Nle14-Exendin-4, 99mTc-EDDA/HYNIC-Met14-Ex-endin-4 with the addition of L-methionine and an oxidized form of Exendin-4, i.e. 99mTc-EDDA/HYNIC-Met14(ox)-Exendin-4 were compared in vivo with 68Ga-NODAGA-Nle14-Exendin-4 in normal Wistar rats. The stability and lipophilicity were determined in vitro. Biodistribution studies confirmed the specific uptake of all tested complexes in the GLP-1 positive organs: lungs, pancreas and stomach. The uptake of 99mTc-EDDA/HYNIC-Met14-Exendin-4 with the addition of L-methionine and for 68Ga-NODAGA-Nle14-Exendin-4 at 1h p.i. was around 2-fold higher than that of 99mTc-EDDA/HYNIC-Met14-Exendin-4 and 99mTc-EDDA/HYNIC-Nle14-Exendin-4. Although the substitution of methionine by norleucine in the HYNIC-Exendin-4 did not result in improved bio-distribution, the use of L-methionine, as the excipient that inhibits the oxidation of methionine in the peptide chain resulted in higher lung/blood and stomach/blood uptake ratios. Our results confirmed that methionine at position 14 of amino acid chain of Exendin-4 plays an important role in the interaction with GLP-1 receptor positive tissue.

  13. Chemoprotection by D-methionine against cisplatin-induced side-effects: insight from in vitro studies using human plasma.

    PubMed

    Sooriyaarachchi, Melani; White, Wade M; Narendran, Aru; Gailer, Jürgen

    2014-03-01

    Animal studies have shown that the nephrotoxicity and ototoxicity of the anti-cancer drug cisplatin (CP) can be ameliorated by the co-administration with D-methionine. The molecular mechanisms of this activity, however, are not well understood. Since CP is intravenously administered, the underlying chemistry may involve the interaction of CP-derived Pt-species with D-methionine in the bloodstream. Our previous studies have shown that the chemoprotective agents N-acetyl-l-cysteine and sodium thiosulfate modulate the metabolism of CP in human plasma in vitro, albeit in a different manner. Using a metallomics approach, we show that the incubation of human plasma with D-methionine and CP (molar ratio of 20 : 1) leads to the formation of a Pt-D-methionine complex independent of the order of addition. These results were corroborated by analogous experiments that were carried out using PBS-buffer instead of plasma. In addition, CP and D-methionine were added simultaneously to PBS-buffer and samples were analyzed at certain time intervals by the same metallomics method and LC-ESI-MS over a ∼21 h time period. Whereas the intermediate [Pt(NH3)Cl(D-methionine)](+) species was detected between 1-4 h, only the terminal [Pt(D-methionine)2](+) complex was present 21 h later. Combined, these studies demonstrate that in plasma and at the 20 : 1 D-methionine : CP molar ratio, an early CP hydrolysis product reacts with D-methionine to form a 1 : 1 complex that is followed by the formation of a 2 : 1 compound at a later time point. The formation of these Pt-D-methionine species may therefore play an important role in the processes by which D-methionine protects mammalian organisms against CP-induced toxicities.

  14. Thielavin B methyl ester: a cytotoxic benzoate trimer from an unidentified fungus (MSX 55526) from the Order Sordariales.

    PubMed

    Ayers, Sloan; Ehrmann, Brandie M; Adcock, Audrey F; Kroll, David J; Wani, Mansukh C; Pearce, Cedric J; Oberlies, Nicholas H

    2011-11-02

    As part of our ongoing investigation of filamentous fungi for anticancer leads, an active fungal extract was identified from the Mycosynthetix library (MSX 55526; from the Order Sordariales). Bioactivity-directed fractionation yielded the known ergosterol peroxide (2) and 5α,8α-epidioxyergosta-6,9(11),22-trien-3β-ol(3), and a new benzoate trimer, termed thielavin B methyl ester (1). The structure elucidation of 1 was facilitated by the use of HRMS coupled to an APPI (atmospheric pressure photoionization) source. Compound 1 proved to be moderately active against a panel of three cancer cell lines.

  15. Mission planning for space based satellite surveillance experiments with the MSX

    NASA Technical Reports Server (NTRS)

    Sridharan, R.; Fishman, T.; Robinson, E.; Viggh, H.; Wiseman, A.

    1994-01-01

    The Midcourse Space Experiment is a BMDO-sponsored scientific satellite set for launch within the year. The satellite will collect phenomenology data on missile targets, plumes, earth limb backgrounds and deep space backgrounds in the LWIR, visible and ultra-violet spectral bands. It will also conduct functional demonstrations for space-based space surveillance. The Space-Based Visible sensor, built by Lincoln Laboratory, Massachusetts Institute of Technology, is the primary sensor on board the MSX for demonstration of space surveillance. The SBV Processing, Operations and Control Center (SPOCC) is the mission planning and commanding center for all space surveillance experiments using the SBV and other MSX instruments. The guiding principle in the SPOCC Mission Planning System was that all routine functions be automated. Manual analyst input should be minimal. Major concepts are: (I) A high level language, called SLED, for user interface to the system; (2) A group of independent software processes which would generally be run in a pipe-line mode for experiment commanding but can be run independently for analyst assessment; (3) An integrated experiment cost computation function that permits assessment of the feasibility of the experiment. This paper will report on the design, implementation and testing of the Mission Planning System.

  16. Murine craniofacial development requires Hdac3-mediated repression of Msx gene expression.

    PubMed

    Singh, Nikhil; Gupta, Mudit; Trivedi, Chinmay M; Singh, Manvendra K; Li, Li; Epstein, Jonathan A

    2013-05-15

    Craniofacial development is characterized by reciprocal interactions between neural crest cells and neighboring cell populations of ectodermal, endodermal and mesodermal origin. Various genetic pathways play critical roles in coordinating the development of cranial structures by modulating the growth, survival and differentiation of neural crest cells. However, the regulation of these pathways, particularly at the epigenomic level, remains poorly understood. Using murine genetics, we show that neural crest cells exhibit a requirement for the class I histone deacetylase Hdac3 during craniofacial development. Mice in which Hdac3 has been conditionally deleted in neural crest demonstrate fully penetrant craniofacial abnormalities, including microcephaly, cleft secondary palate and dental hypoplasia. Consistent with these abnormalities, we observe dysregulation of cell cycle genes and increased apoptosis in neural crest structures in mutant embryos. Known regulators of cell cycle progression and apoptosis in neural crest, including Msx1, Msx2 and Bmp4, are upregulated in Hdac3-deficient cranial mesenchyme. These results suggest that Hdac3 serves as a critical regulator of craniofacial morphogenesis, in part by repressing core apoptotic pathways in cranial neural crest cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Muscle Segment Homeobox Genes Direct Embryonic Diapause by Limiting Inflammation in the Uterus*

    PubMed Central

    Cha, Jeeyeon; Burnum-Johnson, Kristin E.; Bartos, Amanda; Li, Yingju; Baker, Erin S.; Tilton, Susan C.; Webb-Robertson, Bobbie-Jo M.; Piehowski, Paul D.; Monroe, Matthew E.; Jegga, Anil G.; Murata, Shigeo; Hirota, Yasushi; Dey, Sudhansu K.

    2015-01-01

    Embryonic diapause is a reproductive strategy widespread in the animal kingdom. This phenomenon is defined by a temporary arrest in blastocyst growth and metabolic activity within a quiescent uterus without implantation until the environmental and maternal milieu become favorable for pregnancy to progress. We found that uterine Msx expression persists during diapause across species; their inactivation in the mouse uterus results in termination of diapause with the development of implantation-like responses (“pseudoimplantation”) that ultimately succumbed to resorption. To understand the cause of this failure, we compared proteome profiles between floxed and Msx-deleted uteri. In deleted uteri, several functional networks, including transcription/translation, ubiquitin-proteasome, inflammation, and endoplasmic reticulum stress, were dysregulated. Computational modeling predicted intersection of these pathways on an enhanced inflammatory signature. Further studies showed that this signature was reflected in increased phosphorylated IκB levels and nuclear NFκB in deleted uteri. This was associated with enhanced proteasome activity and endoplasmic reticulum stress. Interestingly, treatment with anti-inflammatory glucocorticoid (dexamethasone) reduced the inflammatory signature with improvement of the diapause phenotype. These findings highlight an unexpected role of uterine Msx in limiting aberrant inflammatory responses to maintain embryonic diapause. PMID:25931120

  18. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction

    DOE PAGES

    Kim, Daejin; Powell, Lawrence E.; Delmau, Lætitia H.; ...

    2015-06-24

    In this paper, the rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acidmore » solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. Finally, the resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.« less

  19. Influence of polymorphism on the surface energetics of salmeterol xinafoate crystallized from supercritical fluids.

    PubMed

    Tong, Henry H Y; Shekunov, Boris Yu; York, Peter; Chow, Albert H L

    2002-05-01

    To characterize the surface thermodynamic properties of two polymorphic forms (I and II) of salmeterol xinafoate (SX) prepared from supercritical fluids and a commercial micronized SX (form 1) sample (MSX). Inverse gas chromatographic analysis was conducted on the SX samples at 30, 40, 50, and 60 degrees C using the following probes at infinite dilution: nonpolar probes (NPs; alkane C5-C9 series); and polar probes (PPs; i.e., dichloromethane, chloroform, acetone, ethyl acetate, diethyl ether, and tetrahydrofuran). Surface thermodynamic parameters of adsorption and Hansen solubility parameters were calculated from the retention times of the probes. The free energies of adsorption (- deltaG(A)) of the three samples obtained at various temperatures follow this order: SX-II > MSX approximately/= SX-I for the NPs; and SX-II > MSX > SX-I for the PPs. For both NPs and PPs, SX-II exhibits a less negative enthalpy of adsorption (deltaH(A)) and a much less negative entropy of adsorption (ASA) than MSX and SX-I, suggesting that the high -AGA of SX-II is contributed by a considerably reduced entropy loss. The dispersive component of surface free energy (gammas(D)) is the highest for MSX but the lowest for SX-II at all temperatures studied, whereas the specific component of surface free energy of adsorption (-deltaG(A)SP) is higher for SX-II than for SX-I. That SX-II displays the highest -deltaG(A) for the NP but the lowest gammasD of all the SX samples may be explained by the additional -AGA change associated with an increased mobility of the probe molecules on the less stable and more disordered SX-II surface. The acid and base parameters, K(A) and K(D) that were derived from deltaH(A)SP reveal significant differences in the relative acid and base properties among the samples. The calculated Hansen solubility parameters (deltaD, deltap, and deltaH) indicate that the surface of SX-II is the most polar and most energetic of all the three samples in terms of specific interactions (mostly hydrogen bonding). The metastable SX-II polymorph possesses a higher surface free energy, higher surface entropy, and a more polar surface than the stable SX-I polymorph.

  20. Palm tocotrienol-rich fraction inhibits methionine-induced cystathionine β-synthase in rat liver.

    PubMed

    Kamisah, Yusof; Norsidah, Ku-Zaifah; Azizi, Ayob; Faizah, Othman; Nonan, Mohd Rizal; Asmadi, Ahmad Yusof

    2015-12-01

    Oxidative stress plays an important role in cardiovascular diseases. The study investigated the effects of dietary palm tocotrienol-rich fraction on homocysteine metabolism in rats fed a high-methionine diet. Forty-two male Wistar rats were randomly assigned to six groups. Five groups were fed with high-methionine diet (1%) for 10 weeks. Groups 2 to 5 were also given dietary folate (8 mg/kg) and three doses of palm tocotrienol-rich fraction (30, 60 and 150 mg/kg) from week 6 to week 10. The last group was only given basal rat chow. High-methionine diet increased plasma homocysteine after 10 weeks, which was prevented by the supplementations of folate and high-dose palm tocotrienol-rich fraction. Hepatic S-adenosyl methionine (SAM) content was unaffected in all groups but S-adenosyl homocysteine (SAH) content was reduced in the folate group. Folate supplementation increased the SAM/SAH ratio, while in the palm tocotrienol-rich fraction groups, the ratio was lower compared with the folate. Augmented activity of hepatic cystathionine β-synthase and lipid peroxidation content by high-methionine diet was inhibited by palm tocotrienol-rich fraction supplementations (moderate and high doses), but not by folate. The supplemented groups had lower hepatic lipid peroxidation than the high-methionine diet. In conclusion, palm tocotrienol-rich fraction reduced high-methionine-induced hyperhomocysteinaemia possibly by reducing hepatic oxidative stress in high-methionine-fed rats. It may also exert a direct inhibitory effect on hepatic cystathionine β-synthase.

  1. Phase 2 Clinical Trials: D-Methionine to Reduce Noise-Induced Hearing Loss

    DTIC Science & Technology

    2016-07-01

    no lapses in regulatory reports or approvals (IRB, HRPO, FDA). KEYWORDS: D-methionine, noise, protection, hearing loss , antioxidant, free radicals...25, 2012 2012“D-methionine (D-met) Pre- Loading Prior to Noise Exposure Significantly Reduces Temporary and Permanent Noise-Induced Hearing Loss ...1 AWARD NUMBER: W81XWH-11-C-0033 TITLE: Phase 2 Clinical Trials: D-Methionine to Reduce Noise-induced Hearing Loss PRINCIPAL INVESTIGATOR

  2. The effects of high dietary protein and nitrogen levels on the preformed methyl group requirement and methionine-induced growth depression in chicks.

    PubMed

    Pesti, G M; Benevenga, N J; Harper, A E; Sunde, M L

    1981-02-01

    The chick's choline and methionine requirements are both increased by high dietary protein level. Studies were conducted to test the hypothesis that the chicks' need for preformed methyl groups is increased by high protein diets (not methionine or choline per se). Chicks fed 25% isolated soybean protein (ISP) diets responded to methionine supplementation (162 vs 110 g gained in 14 days) but not to choline (119 g vs. 110 g), while those fed 50% ISP responded to either methionine (174 g vs. 126 g) or choline (181 g vs. 126 g) supplementation. Further, neither cystine nor homocystine could replace methionine in improving the growth of chicks fed the high protein diet. In other experiments, L-methionine and betaine HCl were found to alleviate the growth depression caused by excessive levels of L-glutamic acid. Excessive levels of L-methionine had a protective effect against growth depression caused by L-glutamate and diammonium citrate, and conversely, supplementary L-serine and sodium formate were not protective against glutamic acid- or arginine-induced growth depression. The results are consistent with the hypothesis that the preformed methyl group requirement is increased by high levels of dietary protein and excessive nitrogen from a single amino acid.

  3. Rhizobitoxine-induced Chlorosis Occurs in Coincidence with Methionine Deficiency in Soybeans

    PubMed Central

    Okazaki, Shin; Sugawara, Masayuki; Yuhashi, Ken-Ichi; Minamisawa, Kiwamu

    2007-01-01

    Background and Aims Rhizobitoxine, produced by the legume symbiont Bradyrhizobium elkanii, inhibits cystathionine-β-lyase (EC 4·4·1·8) in methionine biosynthesis and 1-aminocyclopropane-1-carboxylate synthase (ACC) in ethylene biosynthesis. Rhizobitoxine production by B. elkanii enhances nodulation of host legumes via the inhibition of ethylene synthesis, but causes foliar chlorosis in susceptible soybeans, though how it does so remains to be investigated. The aim of this study was to examine the physiological basis of rhizobitoxine-induced chlorosis in soybeans. Methods Wild-type B. elkanii and a rhizobitoxine-deficient mutant were inoculated in Glycine max ‘Lee’. Thirty days after inoculation, the upper parts of soybean shoots were analysed for amino acid contents. Chlorotic soybeans inoculated with wild-type B. elkanii were treated with methionine and ACC to assess the effects of the chemicals on the chlorosis. Key Results Chlorotic upper shoots of soybeans inoculated with wild-type B. elkanii had a lower methionine content and higher accumulation of the methionine precursors than those with the rhizobitoxine-deficient mutant. In addition, the foliar chlorosis was alleviated by the application of methionine. Conclusions Rhizobitoxine-induced chlorosis occurs in coincidence with methionine deficiency as a result of cystathione-β-lyase inhibition during methionine biosynthesis. PMID:17525098

  4. Toxicity of seleno-l-methionine, seleno-dl-methionine, high selenium wheat, and selenized yeast to mallard ducklings

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; LeCaptain, L.J.

    1996-01-01

    The toxicity of four chemical forms of selenium (seleno-L-methionine, seleno-DL-methionine, selenized yeast, and high selenium wheat) was compared in day-old mallard ducklings (Anas platyrhynchos). In the first experiment, in which the basal diet was 75% wheat, survival after 2 weeks was lower for ducklings fed 30 ?g/g selenium as seleno-L-methionine (36%) than for ducklings fed 30 ?g/g selenium as seleno-DL-methionine (100%) or 30 ?g/g selenium from high selenium yeast (88%). In a second experiment, in which the basal diet was a commercial duck feed, survival after 2 weeks was 100% in ducklings fed 30 ?g/g selenium as seleno-DL-methionine, seleno-L-methionine, or selenized yeast. The greater toxicity of the L form of selenomethionine was probably related to the palatability or nutritional nature of the wheat-based diet used in experiment 1, but the exact reason for the difference between the DL and L forms is unknown. Biologically incorporated selenium, derived from high selenium wheat was no more toxic than selenium derived from the two purified forms of selenomethionine, and the selenium in selenized yeast was not as toxic as that in the two forms of selenomethionine.

  5. Metabolism of 5-methylthioribose to methionine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, J.H.; Yang, S.F.

    1987-06-01

    During ethylene biosynthesis, the H/sub 3/CS-group of S-adenosylmethionine is released as 5'-methylthioadenosine, which is recycled to methionine via 5-methylthioribose (MTR). In mungbean hypocotyls and cell-free extracts of avocado, (/sup 14/C)MTR was converted into labeled methionine via 2-keto-4-methylthiobutyric acid (KMB) and 2-hydroxy-4-methylthiobutyric acid (HMB), as intermediates. Incubation of (ribose-U-/sup 14/C)MTR with avocado extract resulted in the production of (/sup 14/C)formate, indicating the conversion of MTR to KMB involves a loss of formate, presumably from C-1 of MTR. Tracer studies showed that KMB was converted readily in vivo and in vitro to methionine, while HMB was converted much more slowly. The conversionmore » of KMB to methionine by dialyzed avocado extract requires an amino donor. Among several potential donors examined, L-glutamine was the most efficient. Anaerobiosis inhibited only partially the oxidation of MTR to formate, KMB/HMB, and methionine by avocado extract. The role of O/sub 2/ in the conversion of MTR to methionine is discussed.« less

  6. Prediction of the Hydrogen Peroxide-Induced Methionine Oxidation Propensity in Monoclonal Antibodies.

    PubMed

    Agrawal, Neeraj J; Dykstra, Andrew; Yang, Jane; Yue, Hai; Nguyen, Xichdao; Kolvenbach, Carl; Angell, Nicolas

    2018-05-01

    Methionine oxidation in therapeutic antibodies can impact the product's stability, clinical efficacy, and safety and hence it is desirable to address the methionine oxidation liability during antibody discovery and development phase. Although the current experimental approaches can identify the oxidation-labile methionine residues, their application is limited mostly to the development phase. We demonstrate an in silico method that can be used to predict oxidation-labile residues based solely on the antibody sequence and structure information. Since antibody sequence information is available in the discovery phase, the in silico method can be applied very early on to identify the oxidation-labile methionine residues and subsequently address the oxidation liability. We believe that the in silico method for methionine oxidation liability assessment can aid in antibody discovery and development phase to address the liability in a more rational way. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Methionine production--a critical review.

    PubMed

    Willke, Thomas

    2014-12-01

    This paper presents an updated critical review about several attempts to contribute methionine (Met) to the world market with an emphasis on fermentation processes, especially from natural biological sources. Analytical methods for the determination of methionine are reviewed as well as applications in feed, food, pharmacy, and medicine. Fermentation studies published within the last five decades are elucidated critically, mainly with respect to the sulfur balance, substrate yield, and the analytical validity. From all the published fermentation data, it can be concluded that up to now no more than 5 g/L methionine are achievable without using genetically modified organisms (GMOs). The highest L-methionine concentration from natural sources reached so far amounts to 35 g/L and is published as a patent using a GMO of Escherichia coli. The review closes with a comprehensive overview of the role and activities of global methionine manufacturers. Some current market data is also presented.

  8. Safety of methionine, a novel biopesticide, to adult and larval honey bees (Apis mellifera L.).

    PubMed

    Weeks, Emma N I; Schmehl, Daniel R; Baniszewski, Julie; Tomé, Hudson V V; Cuda, James P; Ellis, James D; Stevens, Bruce R

    2018-03-01

    Methionine is an essential/indispensible amino acid nutrient required by adult and larval honey bees (Apis mellifera L. [Hymenoptera: Apidae]). Bees are unable to rear broods on pollen deficient in methionine, and reportedly behaviorally avoid collecting pollen or nectar from florets deficient in methioinine. In contrast, it has been demonstrated that methionine is toxic to certain pest insects; thus it has been proposed as an effective biopesticide. As an ecofriendly integrated pest management agent, methionine boasts a novel mode of action differentiating it from conventional pesticides, while providing non-target safety. Pesticides that minimize collateral effects on bees are desirable, given the economic and ecological concerns about honey bee health. The aim of the present study was to assess the potential impact of the biopesticide methionine on non-target adult and larval honey bees. Acute contact adult toxicology bioassays, oral adult assessments and chronic larval toxicity assessments were performed as per U.S. Environmental Protection Agency (EPA) requirements. Our results demonstrated that methionine fits the U.S. EPA category of practically nontoxic (i.e. lethal dose to 50% mortality or LD 50 > 11µg/bee) to adult honey bees. The contact LD 50 was > 25µg/bee and the oral LD 50 was > 100µg/bee. Mortality was observed in larval bees that ingested DL-methionine (effective concentration to 50% mortality or EC 50 560µg/bee). Therefore, we conclude that methionine poses little threat to the health of the honey bee, due to unlikely exposure at concentrations shown to elicit toxic effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The oxidation of methionine-54 of epoetinum alfa does not affect molecular structure or stability, but does decrease biological activity.

    PubMed

    Labrenz, Steven R; Calmann, Melissa A; Heavner, George A; Tolman, Glen

    2008-01-01

    Erythropoietin therapy is used to treat severe anemia in renal failure and chemotherapy patients. One of these therapies based on recombinant human erythropoietin is marketed under the trade name of EPREX and utilizes epoetinum alfa as the active pharmaceutical ingredient. The effect of oxidation of methionine-54 on the structure and stability of the erythropoietin molecule has not been directly tested. We have observed partial and full chemical oxidation of methionine-54 to methionine-54 sulfoxide, accomplished using tert-Butylhydroperoxide and hydrogen peroxide, respectively. A blue shift in the fluorescence center of spectral mass wavelength was observed as a linear response to the level of methionine sulfoxide in the epoetinum alfa molecule, presumably arising from a local change in the environment near tryptophan-51, as supported by potassium iodide quenching studies. Circular dichroism studies demonstrated no change in the folded structure of the molecule with methionine oxidation. The thermal unfolding profiles of partial and completely oxidized epoetinum alfa overlap, with a T(m) of 49.5 degrees C across all levels of methionine sulfoxide content. When the protein was tested for activity, a decrease in biological activity was observed, correlating with methionine sulfoxide levels. An allosteric effect between Met54, Trp51, and residues involved in receptor binding is proposed. These results indicate that methionine oxidation has no effect on the folded structure and global thermodynamic stability of the recombinant human erythropoietin molecule. Oxidation can affect potency, but only at levels significantly in excess of those seen in EPREX.

  10. Methionine biosynthesis is essential for infection in the rice blast fungus Magnaporthe oryzae.

    PubMed

    Saint-Macary, Marie Emmanuelle; Barbisan, Crystel; Gagey, Marie Josèphe; Frelin, Océane; Beffa, Roland; Lebrun, Marc Henri; Droux, Michel

    2015-01-01

    Methionine is a sulfur amino acid standing at the crossroads of several biosynthetic pathways. In fungi, the last step of methionine biosynthesis is catalyzed by a cobalamine-independent methionine synthase (Met6, EC 2.1.1.14). In the present work, we studied the role of Met6 in the infection process of the rice blast fungus, Magnaporthe oryzae. To this end MET6 null mutants were obtained by targeted gene replacement. On minimum medium, MET6 null mutants were auxotrophic for methionine. Even when grown in presence of excess methionine, these mutants displayed developmental defects, such as reduced mycelium pigmentation, aerial hypha formation and sporulation. They also displayed characteristic metabolic signatures such as increased levels of cysteine, cystathionine, homocysteine, S-adenosylmethionine, S-adenosylhomocysteine while methionine and glutathione levels remained unchanged. These metabolic perturbations were associated with the over-expression of MgCBS1 involved in the reversed transsulfuration pathway that metabolizes homocysteine into cysteine and MgSAM1 and MgSAHH1 involved in the methyl cycle. This suggests a physiological adaptation of M. oryzae to metabolic defects induced by the loss of Met6, in particular an increase in homocysteine levels. Pathogenicity assays showed that MET6 null mutants were non-pathogenic on both barley and rice leaves. These mutants were defective in appressorium-mediated penetration and invasive infectious growth. These pathogenicity defects were rescued by addition of exogenous methionine and S-methylmethionine. These results show that M. oryzae cannot assimilate sufficient methionine from plant tissues and must synthesize this amino acid de novo to fulfill its sulfur amino acid requirement during infection.

  11. Betaine is as effective as folate at re-synthesizing methionine for protein synthesis during moderate methionine deficiency in piglets.

    PubMed

    McBreairty, Laura E; Robinson, Jason L; Harding, Scott V; Randell, Edward W; Brunton, Janet A; Bertolo, Robert F

    2016-12-01

    Both folate and betaine (synthesized from choline) are nutrients used to methylate homocysteine to reform the amino acid methionine following donation of its methyl group; however, it is unclear whether both remethylation pathways are of equal importance during the neonatal period when remethylation rates are high. Methionine is an indispensable amino acid that is in high demand in neonates not only for protein synthesis, but is also particularly important for transmethylation reactions, such as creatine and phosphatidylcholine synthesis. The objective of this study was to determine whether supplementation with folate, betaine, or a combination of both can equally re-synthesize methionine for protein synthesis when dietary methionine is limiting. Piglets were fed a low methionine diet devoid of folate, choline, and betaine, and on day 6, piglets were supplemented with either folate, betaine, or folate + betaine (n = 6 per treatment) until day 10. [1- 13 C]-phenylalanine oxidation was measured as an indicator of methionine availability for protein synthesis both before and after 2 days of supplementation. Prior to supplementation, piglets had lower concentrations of plasma folate, betaine, and choline compared to baseline with no change in homocysteine. Post-supplementation, phenylalanine oxidation levels were 20-46 % lower with any methyl donor supplementation (P = 0.006) with no difference among different supplementation groups. Furthermore, both methyl donors led to similarly lower concentrations of homocysteine following supplementation (P < 0.05). These data demonstrate an equal capacity for betaine and folate to remethylate methionine for protein synthesis, as indicated by lower phenylalanine oxidation.

  12. Tuning Thermoresponsive Properties of Cationic Elastin-like Polypeptides by Varying Counterions and Side-Chains.

    PubMed

    Petitdemange, Rosine; Garanger, Elisabeth; Bataille, Laure; Bathany, Katell; Garbay, Bertrand; Deming, Timothy J; Lecommandoux, Sébastien

    2017-05-17

    We report the synthesis of methionine-containing recombinant elastin-like polypeptides (ELPs) of different lengths that contain periodically spaced methionine residues. These ELPs were chemoselectively alkylated at all methionine residues to give polycationic derivatives. Some of these samples were found to possess solubility transitions in water, where the temperature of these transitions varied with ELP concentration, nature of the methionine alkylating group, and nature of the sulfonium counterions. These studies show that introduction and controlled spacing of methionine sulfonium residues into ELPs can be used as a means both to tune their solubility transition temperatures in water using a variety of different parameters and to introduce new side-chain functionality.

  13. Hydrogen Exchange During Cell-Free Incorporation of Deuterated Amino Acids and an Approach to its Inhibition

    PubMed Central

    Tonelli, M.; Singarapu, K. K.; Markley, J. L.; Makino, S.; Sahu, S .C.; Matsubara, Y.; Endo, Y.; Kainosho, M.

    2012-01-01

    Perdeuteration, selective deuteration, and stereo array isotope labeling (SAIL) are valuable strategies for NMR studies of larger proteins and membrane proteins. To minimize scrambling of the label, it is best to use cell-free methods to prepare selectively labeled proteins. However, when proteins are prepared from deuterated amino acids by cell-free translation in H2O, exchange reactions can lead to contamination of 2H sites by 1H from the solvent. Examination of a sample of SAIL-chlorella ubiquitin prepared by Escherichia coli cell-free synthesis revealed that exchange had occurred at several residues (mainly at Gly, Ala, Asp, Asn, Glu, and Gln). We present results from a study aimed at identifying the exchanging sites and level of exchange and at testing a strategy for minimizing 1H contamination during wheat germ cell-free translation of proteins produced from deuterated amino acids by adding known inhibitors of transaminases (1 mM aminooxyacetic acid) and glutamate synthetase (0.1 mM L-methionine sulfoximine). By using a wheat germ cell-free expression system, we produced [U-2H,15N]-chlorella ubiquitin without and with added inhibitors, and [U-15N]-chlorella ubiquitin as a reference to determine the extent of deuterium incorporation. We also prepared a sample of [U-13C,15N]-chlorella ubiquitin, for use in assigning the sites of exchange. The added inhibitors did not reduce the protein yield and were successful in blocking hydrogen exchange at Cα sites with the exception of Gly. We discovered, in addition, that partial exchange occurred with or without the inhibitors at certain side-chain methyl and methylene groups: Ala-Hβ, Asn-Hβ, Asp-Hβ, Gln-Hγ, Glu-Hγ, and Lys-Hε. The side-chain labeling pattern, in particular the mixed chiral labeling resulting from partial exchange at certain sites, should be of interest in studies of large proteins, protein complexes, and membrane proteins. PMID:21984356

  14. β-Hydroxybutyrate Boosts Mitochondrial and Neuronal Metabolism but is not Preferred Over Glucose Under Activated Conditions.

    PubMed

    Achanta, Lavanya B; Rowlands, Benjamin D; Thomas, Donald S; Housley, Gary D; Rae, Caroline D

    2017-06-01

    The ketone body, β-hydroxybutyrate (βOHB), is metabolised by the brain alongside the mandatory brain fuel glucose. To examine the extent and circumstances by which βOHB can supplement glucose metabolism, we studied guinea pig cortical brain slices using increasing concentrations of [U- 13 C]D-βOHB in conjunction with [1- 13 C]D-glucose under conditions of normo- and hypoglycaemia, as well as under high potassium (40 mmol/L K + ) depolarization in normo- and hypoglycaemic conditions. The contribution of βOHB to synthesis of GABA was also probed by inhibiting the synthesis of glutamine, a GABA precursor, with methionine sulfoximine (MSO). [U- 13 C]D-βOHB at lower concentrations (0.25 and 1.25 mmol/L) stimulated mitochondrial metabolism, producing greater total incorporation of label into glutamate and GABA but did not have a similar effect in the cytosolic compartment where labelling of glutamine was reduced at 1.25 mmol/L [U- 13 C]D-βOHB. At higher concentrations (2.5 mmol/L) [U- 13 C]D-βOHB inhibited metabolism of [1- 13 C]D-glucose, and reduced total label incorporation and total metabolite pools. When glucose levels were reduced, βOHB was able to partially restore the loss of glutamate and GABA caused by hypoglycaemia, but was not able to supplement levels of lactate, glutamine or alanine or to prevent the increase in aspartate. Under depolarizing conditions glucose was the preferred substrate over βOHB, even in hypoglycaemic conditions where comparatively less βOHB was incorporated except into aspartate isotopomers. Inhibition of glutamine synthesis with MSO had no significant effect on incorporation of label from [U- 13 C]D-βOHB into GABA C2,1 indicating that the majority of this GABA was synthesized in GABAergic neurons from [U- 13 C]D-βOHB rather than from Gln C4,5 imported from astrocytes.

  15. Formation of glutamine from (/sup 13/N)ammonia, (/sup 13/N)dinitrogen, and (/sup 14/C)glutamate by heterocysts isolated from Anabaena cylindrica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, J.; Meeks, J.C.; Wolk, C.P.

    A method is described for the isolation of metabolically active heterocysts from Anabaena cylindrica. These isolated heterocysts accounted for up to 34% of the acetylene-reducing activity of whole filaments and had a specific activity of up to 1,560 nmol of C/sub 2/H/sub 4/ formed per mg of heterocyst chlorophyll per min. Activity of glutamine synthetase was coupled to activity of nitrogenase in isolated heterocysts as shown by acetylene-inhibitable formation of (/sup 13/N)NH/sub 3/ and of amide-labeled (/sup 13/N)glutamine from (/sup 13/N)N/sub 2/. A method is also described for the production of 6-mCi amounts of (/sup 13/N)NH/sub 3/. Isolated heterocysts formedmore » (/sup 13/N)glutamine from (/sup 13/N)NH/sub 3/ and glutamate, and (/sup 14/C)glutamine from NH/sub 3/ and (/sup 14/C)glutamate, in the presence of magnesium adenosine 5'-triphosphate. Methionine sulfoximine strongly inhibited these syntheses. Glutamate synthase is, after nitrogenase and glutamine synthetase, the third sequential enzyme involved in the assimilation of N/sub 2/ by intact filaments. However, the kinetics of solubilization of the activity of glutamate synthase during cavitation of suspensions of A. cylindrica indicated that very little, if any, of the activity of that enzyme was located in heterocysts. Concordantly, isolated heterocysts failed to form substantial amounts of radioactive glutamate from either (/sup 13/N)glutamine or ..cap alpha..-(/sup 14/C)ketoglutarate in the presence of other substrates and cofactors of the glutamate synthase reaction. However, they formed (/sup 14/C)glutamate rapidly from ..cap alpha..-(/sup 14/C)ketoglutarate by aminotransferase reactions, with various amino acids as the nitrogen donor. The implications of these findings with regard to the identities of the substances moving between heterocysts and vegetative cells are discussed.« less

  16. Ehrlichia chaffeensis Proliferation Begins with NtrY/NtrX and PutA/GlnA Upregulation and CtrA Degradation Induced by Proline and Glutamine Uptake

    PubMed Central

    Cheng, Zhihui; Lin, Mingqun

    2014-01-01

    ABSTRACT How the obligatory intracellular bacterium Ehrlichia chaffeensis begins to replicate upon entry into human monocytes is poorly understood. Here, we examined the potential role of amino acids in initiating intracellular replication. PutA converts proline to glutamate, and GlnA converts glutamate to glutamine. E. chaffeensis PutA and GlnA complemented Escherichia coli putA and glnA mutants. Methionine sulfoximine, a glutamine synthetase inhibitor, inhibited E. chaffeensis GlnA activity and E. chaffeensis infection of human cells. Incubation of E. chaffeensis with human cells rapidly induced putA and glnA expression that peaked at 24 h postincubation. E. chaffeensis took up proline and glutamine but not glutamate. Pretreatment of E. chaffeensis with a proline transporter inhibitor (protamine), a glutamine transporter inhibitor (histidine), or proline analogs inhibited E. chaffeensis infection, whereas pretreatment with proline or glutamine enhanced infection and upregulated putA and glnA faster than no treatment or glutamate pretreatment. The temporal response of putA and glnA expression was similar to that of NtrY and NtrX, a two-component system, and electrophoretic mobility shift assays showed specific binding of recombinant E. chaffeensis NtrX (rNtrX) to the promoter regions of E. chaffeensis putA and glnA. Furthermore, rNtrX transactivated E. chaffeensis putA and glnA promoter-lacZ fusions in E. coli. Growth-promoting activities of proline and glutamine were also accompanied by rapid degradation of the DNA-binding protein CtrA. Our results suggest that proline and glutamine uptake regulates putA and glnA expression through NtrY/NtrX and facilitates degradation of CtrA to initiate a new cycle of E. chaffeensis growth. PMID:25425236

  17. The metabolism of malate by cultured rat brain astrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKenna, M.C.; Tildon, J.T.; Couto, R.

    1990-12-01

    Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of 14CO2 production from L-(U-14C)malate in rat brain astrocytes. The 14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the 14CO2 production from the metabolism of labeled malate revealed biphasicmore » kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased 14CO2 production from malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, alpha-ketoglutarate and succinate decreased 14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, alpha-cyano-4-hydroxycinnamate and ouabain.« less

  18. The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy.

    PubMed

    McCarty, Mark F; Barroso-Aranda, Jorge; Contreras, Francisco

    2009-02-01

    Recent studies confirm that dietary methionine restriction increases both mean and maximal lifespan in rats and mice, achieving "aging retardant" effects very similar to those of caloric restriction, including a suppression of mitochondrial superoxide generation. Although voluntary caloric restriction is never likely to gain much popularity as a pro-longevity strategy for humans, it may be more feasible to achieve moderate methionine restriction, in light of the fact that vegan diets tend to be relatively low in this amino acid. Plant proteins - especially those derived from legumes or nuts - tend to be lower in methionine than animal proteins. Furthermore, the total protein content of vegan diets, as a function of calorie content, tends to be lower than that of omnivore diets, and plant protein has somewhat lower bioavailability than animal protein. Whole-food vegan diets that moderate bean and soy intake, while including ample amounts of fruit and wine or beer, can be quite low in methionine, while supplying abundant nutrition for health (assuming concurrent B12 supplementation). Furthermore, low-fat vegan diets, coupled with exercise training, can be expected to promote longevity by decreasing systemic levels of insulin and free IGF-I; the latter effect would be amplified by methionine restriction - though it is not clear whether IGF-I down-regulation is the sole basis for the impact of low-methionine diets on longevity in rodents.

  19. Methionine sulfoxide profiling of milk proteins to assess the influence of lipids on protein oxidation in milk.

    PubMed

    Wüst, Johannes; Pischetsrieder, Monika

    2016-06-15

    Thermal treatment of milk and milk products leads to protein oxidation, mainly the formation of methionine sulfoxide. Reactive oxygen species, responsible for the oxidation, can be generated by Maillard reaction, autoxidation of sugars, or lipid peroxidation. The present study investigated the influence of milk fat on methionine oxidation in milk. For this purpose, quantitative methionine sulfoxide profiling of all ten methionine residues of β-lactoglobulin, α-lactalbumin, and αs1-casein was carried out by ultrahigh-performance liquid chromatography-electrospray ionization tandem mass spectrometry with scheduled multiple reaction monitoring (UHPLC-ESI-MS/MS-sMRM). Analysis of defatted and regular raw milk samples after heating for up to 8 min at 120 °C and analysis of ultrahigh-temperature milk samples with 0.1%, 1.5%, and 3.5% fat revealed that methionine oxidation of the five residues of the whey proteins and of residues M 123, M 135, and M 196 of αs1-casein was not affected or even suppressed in the presence of milk fat. Only the oxidation of residues M 54 and M 60 of αs1-casein was promoted by lipids. In evaporated milk samples, formation of methionine sulfoxide was hardly influenced by the fat content of the samples. Thus, it can be concluded that lipid oxidation products are not the major cause of methionine oxidation in milk.

  20. Feed efficiency of diets with different energy and protein concentrations supplemented with methionine in laying quails

    NASA Astrophysics Data System (ADS)

    Ratriyanto, A.; Indreswari, R.; Nuhriawangsa, A. M. P.; Purwanti, E.

    2018-03-01

    The study was conducted to evaluate the feed efficiency of quail diets containing different concentrations of metabolizable energy (ME) and crude protein (CP) with constant ratio and supplemented with methionine. Four hundred laying quails (Coturnix coturnix japonica) were randomly assigned to four experimental diets in a 2×2 factorial arrangement. Each dietary treatment used 5 replicates of 20 quails. Two basal diets were formulated to contain 2,800 kcal kg-1 ME and 18.7% CP (High ME-CP) and 2,600 kcal kg-1 ME and 17.3% CP (Low ME-CP). Each basal diet was supplemented with 0 and 0.12% methionine. The High ME-CP diets generated lower feed consumption but higher egg mass and feed efficiency (P<0.01) compared with the Low ME-CP. Furthermore, supplementation of methionine increased egg mass, feed efficiency, energy efficiency ratio and protein efficiency ratio (P<0.01). The High ME-CP supplemented with methionine resulted the highest feed efficiency followed by the Low ME-CP supplemented with methionine, while both High ME-CP and Low ME-CP without methionine supplementation resulted the lowest feed efficiency (P<0.05). In addition, ME and CP consumption of the birds were not influenced by the treatments. Thus, feeding High ME-CP supplemented with 0.12% methionine provided benefit to improve the feed efficiency in laying quails.

  1. Replacement value of betaine for DL-methionine in male broiler chicks.

    PubMed

    Schutte, J B; De Jong, J; Smink, W; Pack, M

    1997-02-01

    The effect of DL-methionine and betaine supplementation on growth performance of 2,400 male broilers in the age period of 1 to 38 d, and on carcass composition of a subsample of 384 birds was examined. Three dose levels of DL-methionine (0, 0.05, and 0.10%) and two doses of betaine (0 and 0.04%) were supplemented in different combinations to methioninedeficient diets. Two types of diets were fed as starters and growers: either corn-soybean diets or practical diets typical for the Dutch broiler industry. All diets were fortified with 220 ppm choline in order to avoid a deficiency in methyl groups. Increasing DL-methionine supplementation significantly improved daily weight gain and feed conversion efficiency. Supplemental betaine did not affect bird growth. Betaine slightly improved feed conversion in diets without supplemental DL-methionine, but did not affect this parameter in diets with added DL-methionine. Breast meat yield was significantly increased by about 1.5 percentage points by the addition of 0.05% DL-methionine, whereas 0.04% betaine only tended to increase breast meat yield in the range of 0.3 to 0.6 percentage points. The type of diet did not have any effect on the responses obtained. In summary, there was no evidence for betaine to spare DL-methionine as an essential amino acid supplement in broiler diets.

  2. Methionine as a safe and effective novel biorational mosquito larvicide.

    PubMed

    Weeks, Emma N I; Baniszewski, Julie; Gezan, Salvador A; Allan, Sandra A; Cuda, James P; Stevens, Bruce R

    2018-06-11

    Mosquito larvicides provide a source-reduction strategy to diminish adult females that bite and potentially spread pathogens. Demands are mounting for new and innovative effective biorational larvicides, due to the development of resistance to some currently utilized mosquito larvicides, undesirable non-target effects, and U.S. Environmental Protection Agency (EPA) restrictions. Methionine is a human nutrient essential amino acid that unexpectedly has been shown to be a valuable safe pest management tool against select insect pests that possess alkaline gut physiology. The present study evaluated larvicidal toxicity of methionine in several pestiferous mosquito (Diptera: Culicidae) genera. Concentration-dependent DL-methionine kinetics assays of survival and pupation were conducted in larvae of Aedes albopictus Skuse, Anopheles quadrimaculatus Say, and Culex tarsalis Coquillett in glass jars. Higher concentrations of DL-methionine yielded 100% mortality for all test species and prevented pupation at a rate equivalent to Bacillus thuringiensis israelensis (Bti) treatments. Concentration kinetics indicated that An. quadrimaculatus was 10-fold more sensitive to DL-methionine than Ae. albopictus and Cx. tarsalis. EPA regulations currently exempt methionine in pesticide formulations applied to agricultural crops. This study demonstrates that methionine is a highly effective mosquito larvicide that can provide a beneficial new biorational, environmentally sustainable tool to control pestiferous mosquitoes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase.

    PubMed

    Olteanu, Horatiu; Munson, Troy; Banerjee, Ruma

    2002-11-12

    Methionine synthase reductase (MSR) catalyzes the conversion of the inactive form of human methionine synthase to the active state of the enzyme. This reaction is of paramount physiological importance since methionine synthase is an essential enzyme that plays a key role in the methionine and folate cycles. A common polymorphism in human MSR has been identified (66A --> G) that leads to replacement of isoleucine with methionine at residue 22 and has an allele frequency of 0.5. Another polymorphism is 524C --> T, which leads to the substitution of serine 175 with leucine, but its allele frequency is not known. The I22M polymorphism is a genetic determinant for mild hyperhomocysteinemia, a risk factor for cardiovascular disease. In this study, we have examined the kinetic properties of the M22/S175 and I22/S175 and the I22/L175 and I22/S175 pairs of variants. EPR spectra of the semiquinone forms of variants I22/S175 and M22/S175 are indistinguishable and exhibit an isotropic signal at g = 2.00. In addition, the electronic absorption and reduction stoichiometries with NADPH are identical in these variants. Significantly, the variants activate methionine synthase with the same V(max); however, a 3-4-fold higher ratio of MSR to methionine synthase is required to elicit maximal activity with the M22/S175 and I22/L175 variant versus the I22/S175 enzyme. Differences are also observed between the variants in the efficacies of reduction of the artificial electron acceptors: ferricyanide, 2,6-dichloroindophenol, 3-acetylpyridine adenine dinucleotide phosphate, menadione, and the anticancer drug doxorubicin. These results reveal differences in the interactions between the natural and artificial electron acceptors and MSR variants in vitro, which are predicted to result in less efficient reductive repair of methionine synthase in vivo.

  4. Effects of Glycine, Water, Ammonia, and Ammonium Bicarbonate on the Oligomerization of Methionine

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Furukawa, Yoshihiro; Otake, Tsubasa; Kakegawa, Takeshi

    2017-06-01

    The abiotic oligomerization of amino acids may have created primordial, protein-like biological catalysts on the early Earth. Previous studies have proposed and evaluated the potential of diagenesis for the amino acid oligomerization, simulating the formation of peptides that include glycine, alanine, and valine, separately. However, whether such conditions can promote the formation of peptides composed of multiple amino acids remains unclear. Furthermore, the chemistry of pore water in sediments should affect the oligomerization and degradation of amino acids and oligomers, but these effects have not been studied extensively. In this study, we investigated the effects of water, ammonia, ammonium bicarbonate, pH, and glycine on the oligomerization and degradation of methionine under high pressure (150 MPa) and high temperature conditions (175 °C) for 96 h. Methionine is more difficult to oligomerize than glycine and methionine dimer was formed in the incubation of dry powder of methionine. Methionine oligomers as long as trimers, as well as methionylglycine and glycylmethionine, were formed under every condition with these additional compounds. Among the compounds tested, the oligomerization reaction rate was accelerated by the presence of water and by an increase in pH. Ammonia also increased the oligomerization rate but consumed methionine by side reactions and resulted in the rapid degradation of methionine and its peptides. Similarly, glycine accelerated the oligomerization rate of methionine and the degradation of methionine, producing water, ammonia, and bicarbonate through its decomposition. With Gly, heterogeneous dimers (methionylglycine and glycylmethionine) were formed in greater amounts than with other additional compounds although smaller amount of these heterogeneous dimers were formed with other additional compounds. These results suggest that accelerated reaction rates induced by water and co-existing reactive compounds promote the oligomerization of less reactive amino acids during diagenesis and enhance the formation of peptides composed of multiple amino acids.

  5. Pulsed polarimetry progress on the LANL MSX magnetized shock experiment

    NASA Astrophysics Data System (ADS)

    Smith, R. J.; Intrator, T. P.; Weber, T. E.; Hutchinson, T. M.; Boguski, J. C.

    2013-10-01

    The UW pulsed polarimeter is a Lidar Thomson scattering diagnostic that can also provide measurements of the internal distribution of B| | as well as ne and Te for Magnetized High Energy Density targets with cm resolution. Scattering has now been observed in MSX and mirror issues that interrupted the last campaign have been corrected. Subsidiary diagnostics are being developed along side to aid in calibration. Fiber optic pulsed polarimetry is also being explored as both measurements can be performed simultaneously with the one instrument. The fiber sensing would allow measurements of modest fields using an internal cladded fiber. Progress in these directions will be presented. This work is supported by DOE Office of Fusion Energy Sciences.

  6. Targeting methionine cycle as a potential therapeutic strategy for immune disorders.

    PubMed

    Li, Heng; Lu, Huimin; Tang, Wei; Zuo, Jianping

    2017-08-23

    Methionine cycle plays an essential role in regulating many cellular events, especially transmethylation reactions, incorporating the methyl donor S-adenosylmethionine (SAM). The transmethylations and substances involved in the cycle have shown complicated effects and mechanisms on immunocytes developments and activations, and exert crucial impacts on the pathological processes in immune disorders. Areas covered: Methionine cycle has been considered as an effective means of drug developments. This review discussed the role of methionine cycle in immune responses and summarized the potential therapeutic strategies based on the cycle, including SAM analogs, methyltransferase inhibitors, S-adenosylhomocysteine hydrolase (SAHH) inhibitors, adenosine receptors specific agonists or antagonists and homocysteine (Hcy)-lowering reagents, in treating human immunodeficiency virus (HIV) infections, systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic sclerosis (SSc) and other immune disorders. Expert opinion: New targets and biomarkers grown out of methionine cycle have developed rapidly in the past decades. However, impacts of epigenetic regulations on immune disorders are unclear and whether the substances in methionine cycle can be clarified as biomarkers remains controversial. Therefore, further elucidation on the role of epigenetic regulations and substances in methionine cycle may contribute to exploring the cycle-derived biomarkers and drugs in immune disorders.

  7. 21 CFR 172.399 - Zinc methionine sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.399 Zinc methionine sulfate. Zinc methionine...

  8. l-Methionine anti-biofilm activity against Pseudomonas aeruginosa is enhanced by the cystic fibrosis transmembrane conductance regulator potentiator, ivacaftor.

    PubMed

    Cho, Do-Yeon; Lim, Dong-Jin; Mackey, Calvin; Weeks, Christopher G; Peña Garcia, Jaime A; Skinner, Daniel; Grayson, Jessica W; Hill, Harrison S; Alexander, David K; Zhang, Shaoyan; Woodworth, Bradford A

    2018-05-01

    Biofilms may contribute to refractory chronic rhinosinusitis (CRS), as they lead to antibiotic resistance and failure of effective clinical treatment. l-Methionine is an amino acid with reported biofilm-inhibiting properties. Ivacaftor is a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator with mild antimicrobial activity via inhibition of bacterial DNA gyrase and topoisomerase IV. The objective of this study was to evaluate whether co-treatment with ivacaftor and l-methionine can reduce the formation of Pseudomonas aeruginosa biofilms. P aeruginosa (PAO-1 strain) biofilms were studied in the presence of l-methionine and/or ivacaftor. For static biofilm assays, PAO-1 was cultured in a 48-well plate for 72 hours with stepwise combinations of these agents. Relative biofilm inhibitions were measured according to optical density of crystal violet stain at 590 nm. Live/dead assays (BacTiter-Glo™ assay, Promega) were imaged with laser scanning confocal microscopy. An agar diffusion test was used to confirm antibacterial effects of the drugs. l-Methionine (0.5 μM) significantly reduced PAO-1 biofilm mass (32.4 ± 18.0%; n = 4; p < 0.001) compared with controls. Low doses of ivacaftor alone (4, 8, and 12 μg/mL) had no effect on biofilm formation. When combined with ivacaftor (4 μg/mL), a synergistic anti-biofilm effect was noted at 0.05 μM and 0.5 μM of l-methionine (two-way analysis of variane, p = 0.0415) compared with corresponding concentrations of l-methionine alone. Ivacaftor enhanced the anti-biofilm activity of l-methionine against the PAO-1 strain of P aeruginosa. Further studies evaluating the efficacy of ivacaftor/l-methionine combinations for P aeruginosa sinusitis are planned. © 2018 ARS-AAOA, LLC.

  9. Methionine Biosynthesis is Essential for Infection in the Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Gagey, Marie Josèphe; Frelin, Océane; Beffa, Roland; Lebrun, Marc Henri; Droux, Michel

    2015-01-01

    Methionine is a sulfur amino acid standing at the crossroads of several biosynthetic pathways. In fungi, the last step of methionine biosynthesis is catalyzed by a cobalamine-independent methionine synthase (Met6, EC 2.1.1.14). In the present work, we studied the role of Met6 in the infection process of the rice blast fungus, Magnaporthe oryzae. To this end MET6 null mutants were obtained by targeted gene replacement. On minimum medium, MET6 null mutants were auxotrophic for methionine. Even when grown in presence of excess methionine, these mutants displayed developmental defects, such as reduced mycelium pigmentation, aerial hypha formation and sporulation. They also displayed characteristic metabolic signatures such as increased levels of cysteine, cystathionine, homocysteine, S-adenosylmethionine, S-adenosylhomocysteine while methionine and glutathione levels remained unchanged. These metabolic perturbations were associated with the over-expression of MgCBS1 involved in the reversed transsulfuration pathway that metabolizes homocysteine into cysteine and MgSAM1 and MgSAHH1 involved in the methyl cycle. This suggests a physiological adaptation of M. oryzae to metabolic defects induced by the loss of Met6, in particular an increase in homocysteine levels. Pathogenicity assays showed that MET6 null mutants were non-pathogenic on both barley and rice leaves. These mutants were defective in appressorium-mediated penetration and invasive infectious growth. These pathogenicity defects were rescued by addition of exogenous methionine and S-methylmethionine. These results show that M. oryzae cannot assimilate sufficient methionine from plant tissues and must synthesize this amino acid de novo to fulfill its sulfur amino acid requirement during infection. PMID:25856162

  10. Hypochlorous Acid Reacts with the N-Terminal Methionines of Proteins to Give Dehydromethionine, a Potential Biomarker for Neutrophil-Induced Oxidative Stress†

    PubMed Central

    Beal, Jennifer L.; Foster, Steven B.; Ashby, Michael T.

    2009-01-01

    Electrophilic halogenating agents, including hypohalous acids and haloamines, oxidize free methionine and the N-terminal methionines of peptides and proteins (e.g., Met-1 of anti-inflammatory peptide 1 and ubiquitin) to produce dehydromethionine (a five-membered isothiazolidinium heterocycle). Amide derivatives of methionine are oxidized to the corresponding sulfoxide derivatives under the same reaction conditions (e.g., Met-3 of anti-inflammatory peptide 1). Other biological oxidants, including hydrogen peroxide and peroxynitrite, also only produce the corresponding sulfoxides. Hypothiocyanite does not react with methionine residues. It is suggested that dehydromethionine may be a useful biomarker for the myeloperoxidase-induced oxidative stress associated with many inflammatory diseases. PMID:19839600

  11. Methionine sulfoxidation of the chloroplast small heat shock protein and conformational changes in the oligomer.

    PubMed Central

    Gustavsson, N.; Härndahl, U.; Emanuelsson, A.; Roepstorff, P.; Sundby, C.

    1999-01-01

    The small heat shock proteins (sHsps), which counteract heat and oxidative stress in an unknown way, belong to a protein family of sHsps and alpha-crystallins whose members form large oligomeric complexes. The chloroplast-localized sHsp, Hsp21, contains a conserved methionine-rich sequence, predicted to form an amphipatic helix with the methionines situated along one of its sides. Here, we report how methionine sulfoxidation was detected by mass spectrometry in proteolytically cleaved peptides that were produced from recombinant Arabidopsis thaliana Hsp21, which had been treated with varying concentrations of hydrogen peroxide. Sulfoxidation of the methionine residues in the conserved amphipatic helix coincided with a significant conformational change in the Hsp21 protein oligomer. PMID:10595556

  12. Physiological and molecular mechanisms of methionine restriction

    USDA-ARS?s Scientific Manuscript database

    The activation of miRNAs during methionine restriction (MR) provides a potential link between changes in methylation and the integrated stress responses in cells. Studies utilizing rainbow trout myosatellite cells in vitro and in vivo, have shown that methionine can regulate the level of expression ...

  13. 21 CFR 172.399 - Zinc methionine sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.399 Zinc methionine sulfate. Zinc methionine... conditions: (a) The additive is the product of the reaction between equimolar amounts of zinc sulfate and DL...

  14. 21 CFR 172.399 - Zinc methionine sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.399 Zinc methionine sulfate. Zinc methionine... conditions: (a) The additive is the product of the reaction between equimolar amounts of zinc sulfate and DL...

  15. Nuclear magnetic resonance studies of amino acids and proteins. Side-chain mobility of methionine in the crystalline amonio acid and in crystallne sperm whale (Physeter catodon) myoglobin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keniry, M.A.; Rothgeb, T.M.; Smith, R.L.

    1983-04-12

    Deuterium (/sup 2/H) nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation times (T/sub 1/) were obtained of L-(epsilon-/sup 2/H/sub 3/)methionine, L-(epsilon-/sup 2/H/sub 3/)methionine in a D,L lattice, and (S-methyl-/sup 2/H/sub 3/)methionine in the crystalline solid state, as a function of temperature, in addition to obtaining /sup 2/H T/sub 1/ and line-width results as a function of temperature on (epsilon-/sup 2/H/sub 3/)methionine-labeled sperm whale (Physeter catodon) myoglobins by using the method of magnetic ordering. Also recorded were /sup 13/C cross-polarization ''magic-angle'' sample-spinning NMR spectra of (epsilon-/sup 13/C)methionine-labeled crystalline cyanoferrimyoglobin (at 37.7 MHz, corresponding to a magnetic field strength of 3.52 T)more » and of the same protein in aqueous solution. (JMT)« less

  16. Muscle Segment Homeobox Genes Direct Embryonic Diapause by Limiting Inflammation in the Uterus.

    PubMed

    Cha, Jeeyeon; Burnum-Johnson, Kristin E; Bartos, Amanda; Li, Yingju; Baker, Erin S; Tilton, Susan C; Webb-Robertson, Bobbie-Jo M; Piehowski, Paul D; Monroe, Matthew E; Jegga, Anil G; Murata, Shigeo; Hirota, Yasushi; Dey, Sudhansu K

    2015-06-12

    Embryonic diapause is a reproductive strategy widespread in the animal kingdom. This phenomenon is defined by a temporary arrest in blastocyst growth and metabolic activity within a quiescent uterus without implantation until the environmental and maternal milieu become favorable for pregnancy to progress. We found that uterine Msx expression persists during diapause across species; their inactivation in the mouse uterus results in termination of diapause with the development of implantation-like responses ("pseudoimplantation") that ultimately succumbed to resorption. To understand the cause of this failure, we compared proteome profiles between floxed and Msx-deleted uteri. In deleted uteri, several functional networks, including transcription/translation, ubiquitin-proteasome, inflammation, and endoplasmic reticulum stress, were dysregulated. Computational modeling predicted intersection of these pathways on an enhanced inflammatory signature. Further studies showed that this signature was reflected in increased phosphorylated IκB levels and nuclear NFκB in deleted uteri. This was associated with enhanced proteasome activity and endoplasmic reticulum stress. Interestingly, treatment with anti-inflammatory glucocorticoid (dexamethasone) reduced the inflammatory signature with improvement of the diapause phenotype. These findings highlight an unexpected role of uterine Msx in limiting aberrant inflammatory responses to maintain embryonic diapause. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Methionine flux to transsulfuration is enhanced in the long living Ames dwarf mouse

    PubMed Central

    Uthus, Eric O.; Brown-Borg, Holly M.

    2007-01-01

    Long-lived Ames dwarf mice lack growth hormone, prolactin, and thyroid stimulating hormone. Additionally the dwarf mice have enzyme activities and levels that combat oxidative stress more efficiently than those of normal mice. We have shown that methionine metabolism in Ames mice is markedly different than in their wild type littermates. In our previous work we hypothesized that the flux of methionine to the transsulfuration pathway is enhanced in the dwarf mice. The current study was designed to determine whether the flux of methionine to the transsulfuration pathway is increased. We did this by injecting either l-[methyl-3H]-methionine or l-[35S]-methionine into dwarf or normal mice and then determined retained label (in form of S-adenosylmethionine) 45 min later. The amount of retained hepatic 3H and 35S label was significantly reduced in the dwarf mice; at 45 min the specific radioactivity of SAM (pCi/nmol SAM) was 56% lower (p < 0.05) for 3H-label and 64% lower (p < 0.005) for 35S-label in dwarf than wild type mice. Retention of 35S was significantly lower in the brain (37%, p < 0.04) and kidney (47%, p < 0.02) of the dwarf compared to wild type mice; there was no statistical difference in retained 3H-label in either brain or kidney. This suggests that both the methyl-moiety and the carbon chain of methionine are lost much faster in the dwarf compared to the wild type mouse, implying that both transmethylation in the liver and transsulfuration in the liver, brain, and kidney are increased in the dwarf mice. As further support, we determined by real-time RT PCR the expression of methionine metabolism genes in livers of mice. Compared to wild type, the Ames dwarf had increased expression of methionine adenosyltransferase 1a (2.3-fold, p = 0.013), glycine N-methyltransferase (3.8-fold, p = 0.023), betaine homocysteine methyltransferase (5.5-fold, p = 0.0006), S-adenosylhomocysteine hydrolase (3.8-fold, p = 0.0005), and cystathionase (2.6-fold; tended to be increased, p = 0.055). Methionine synthase expression was significantly decreased in dwarf compared to wild type (0.48-fold, p = 0.023). These results confirm that the flux of methionine to transsulfuration is enhanced in the Ames dwarf. This, along with data from previous studies support the hypothesis that altered methionine metabolism plays a significant role in the oxidative defense of the dwarf mouse and that the mechanism for the enhanced oxidative defense may be through altered GSH metabolism as a result of the distinctive methionine metabolism. PMID:16519922

  18. Methionine as a Precursor of Ethylene—Commentary

    USDA-ARS?s Scientific Manuscript database

    Lieberman et al. showed in a 1966 publication of Plant Physiology that methionine is a precursor of ethylene. It was the first paper that showed ethylene carbons are derived from carbons 3 and 4 of methionine. This paper catalyzed remarkable interest among plant biologists to elucidate the biosynth...

  19. Sulfur amino acids are necessary for normal intestinal mucosal growth in neonatal piglets

    USDA-ARS?s Scientific Manuscript database

    Sulfur amino acids (SAAs) methionine and cysteine play important metabolic and functional role in human health and disease. Gastrointestinal tract is an important site of transmethylation and transsulfuration of methionine and metabolizes approx. 20% of the dietary methionine intake (Riedijk et al. ...

  20. NKL homeobox gene activities in hematopoietic stem cells, T-cell development and T-cell leukemia.

    PubMed

    Nagel, Stefan; Pommerenke, Claudia; Scherr, Michaela; Meyer, Corinna; Kaufmann, Maren; Battmer, Karin; MacLeod, Roderick A F; Drexler, Hans G

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) cells represent developmentally arrested T-cell progenitors, subsets of which aberrantly express homeobox genes of the NKL subclass, including TLX1, TLX3, NKX2-1, NKX2-5, NKX3-1 and MSX1. Here, we analyzed the transcriptional landscape of all 48 members of the NKL homeobox gene subclass in CD34+ hematopoietic stem and progenitor cells (HSPCs) and during lymphopoiesis, identifying activities of nine particular genes. Four of these were expressed in HSPCs (HHEX, HLX1, NKX2-3 and NKX3-1) and three in common lymphoid progenitors (HHEX, HLX1 and MSX1). Interestingly, our data indicated downregulation of NKL homeobox gene transcripts in late progenitors and mature T-cells, a phenomenon which might explain the oncogenic impact of this group of genes in T-ALL. Using MSX1-expressing T-ALL cell lines as models, we showed that HHEX activates while HLX1, NKX2-3 and NKX3-1 repress MSX1 transcription, demonstrating the mutual regulation and differential activities of these homeobox genes. Analysis of a public T-ALL expression profiling data set comprising 117 patient samples identified 20 aberrantly activated members of the NKL subclass, extending the number of known NKL homeobox oncogene candidates. While 7/20 genes were also active during hematopoiesis, the remaining 13 showed ectopic expression. Finally, comparative analyses of T-ALL patient and cell line profiling data of NKL-positive and NKL-negative samples indicated absence of shared target genes but instead highlighted deregulation of apoptosis as common oncogenic effect. Taken together, we present a comprehensive survey of NKL homeobox genes in early hematopoiesis, T-cell development and T-ALL, showing that these genes generate an NKL-code for the diverse stages of lymphoid development which might be fundamental for regular differentiation.

  1. VizieR Online Data Catalog: Galactic CHaMP. II. Dense gas clumps. (Ma+, 2013)

    NASA Astrophysics Data System (ADS)

    Ma, B.; Tan, J. C.; Barnes, P. J.

    2015-04-01

    A total of 303 dense gas clumps have been detected using the HCO+(1-0) line in the CHaMP survey (Paper I, Barnes et al. 2011, J/ApJS/196/12). In this article we have derived the SED for these clumps using Spitzer, MSX, and IRAS data. The Midcourse Space Experiment (MSX) was launched in 1996 April. It conducted a Galactic plane survey (0

  2. Development of a Unique Small Molecule Modulator of CXCR4

    PubMed Central

    Yoon, Younghyoun; Lin, Songbai; Sasaki, Maiko; Klapproth, Jan-Michael A.; Yang, Hua; Grossniklaus, Hans E.; Xu, Jianguo; Rojas, Mauricio; Voll, Ronald J.; Goodman, Mark M.; Arrendale, Richard F.; Liu, Jin; Yun, C. Chris; Snyder, James P.; Liotta, Dennis C.; Shim, Hyunsuk

    2012-01-01

    Background Metastasis, the spread and growth of tumor cells to distant organ sites, represents the most devastating attribute and plays a major role in the morbidity and mortality of cancer. Inflammation is crucial for malignant tumor transformation and survival. Thus, blocking inflammation is expected to serve as an effective cancer treatment. Among anti-inflammation therapies, chemokine modulation is now beginning to emerge from the pipeline. CXC chemokine receptor-4 (CXCR4) and its ligand stromal cell-derived factor-1 (CXCL12) interaction and the resulting cell signaling cascade have emerged as highly relevant targets since they play pleiotropic roles in metastatic progression. The unique function of CXCR4 is to promote the homing of tumor cells to their microenvironment at the distant organ sites. Methodology/Principal Findings We describe the actions of N,N′-(1,4-phenylenebis(methylene))dipyrimidin-2-amine (designated MSX-122), a novel small molecule and partial CXCR4 antagonist with properties quite unlike that of any other reported CXCR4 antagonists, which was prepared in a single chemical step using a reductive amination reaction. Its specificity toward CXCR4 was tested in a binding affinity assay and a ligand competition assay using 18F-labeled MSX-122. The potency of the compound was determined in two functional assays, Matrigel invasion assay and cAMP modulation. The therapeutic potential of MSX-122 was evaluated in three different murine models for inflammation including an experimental colitis, carrageenan induced paw edema, and bleomycin induced lung fibrosis and three different animal models for metastasis including breast cancer micrometastasis in lung, head and neck cancer metastasis in lung, and uveal melanoma micrometastasis in liver in which CXCR4 was reported to play crucial roles. Conclusions/Significance We developed a novel small molecule, MSX-122, that is a partial CXCR4 antagonist without mobilizing stem cells, which can be safer for long-term blockade of metastasis than other reported CXCR4 antagonists. PMID:22485156

  3. NKL homeobox gene activities in hematopoietic stem cells, T-cell development and T-cell leukemia

    PubMed Central

    Pommerenke, Claudia; Scherr, Michaela; Meyer, Corinna; Kaufmann, Maren; Battmer, Karin; MacLeod, Roderick A. F.; Drexler, Hans G.

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) cells represent developmentally arrested T-cell progenitors, subsets of which aberrantly express homeobox genes of the NKL subclass, including TLX1, TLX3, NKX2-1, NKX2-5, NKX3-1 and MSX1. Here, we analyzed the transcriptional landscape of all 48 members of the NKL homeobox gene subclass in CD34+ hematopoietic stem and progenitor cells (HSPCs) and during lymphopoiesis, identifying activities of nine particular genes. Four of these were expressed in HSPCs (HHEX, HLX1, NKX2-3 and NKX3-1) and three in common lymphoid progenitors (HHEX, HLX1 and MSX1). Interestingly, our data indicated downregulation of NKL homeobox gene transcripts in late progenitors and mature T-cells, a phenomenon which might explain the oncogenic impact of this group of genes in T-ALL. Using MSX1-expressing T-ALL cell lines as models, we showed that HHEX activates while HLX1, NKX2-3 and NKX3-1 repress MSX1 transcription, demonstrating the mutual regulation and differential activities of these homeobox genes. Analysis of a public T-ALL expression profiling data set comprising 117 patient samples identified 20 aberrantly activated members of the NKL subclass, extending the number of known NKL homeobox oncogene candidates. While 7/20 genes were also active during hematopoiesis, the remaining 13 showed ectopic expression. Finally, comparative analyses of T-ALL patient and cell line profiling data of NKL-positive and NKL-negative samples indicated absence of shared target genes but instead highlighted deregulation of apoptosis as common oncogenic effect. Taken together, we present a comprehensive survey of NKL homeobox genes in early hematopoiesis, T-cell development and T-ALL, showing that these genes generate an NKL-code for the diverse stages of lymphoid development which might be fundamental for regular differentiation. PMID:28151996

  4. Methionine supply alters mammary gland antioxidant gene networks via phosphorylation of nuclear factor erythroid 2-like 2 (NFE2L2) protein in dairy cows during the periparturient period.

    PubMed

    Han, L; Batistel, F; Ma, Y; Alharthi, A S M; Parys, C; Loor, J J

    2018-06-13

    The periparturient period is the most critical period during the lactation cycle of dairy cows and is characterized by increased oxidative stress status. The objective of this experiment was to evaluate the effect of supplementing rumen-protected methionine on nuclear factor erythroid 2-like 2 (NFE2L2, formerly NRF2) protein and target gene expression in the mammary gland during the early postpartal period. Multiparous Holstein cows were used in a block design experiment with 30 cows per treatment. Treatments consisting of a basal control diet (control) or the basal diet plus rumen-protected methionine (methionine) were fed from d -28 to 60 relative to parturition. Mammary tissue biopsies were harvested on d 21 postpartum from 5 cows per treatment. Compared with control, methionine increased dry matter intake, milk yield, and milk protein content. Among plasma parameters measured, methionine led to greater methionine and lower reactive oxygen metabolites. Compared with control, methionine supply resulted in greater mRNA abundance of the NFE2L2 target genes glutamate-cysteine ligase catalytic subunit (GCLC), glutamate-cysteine ligase modifier subunit (GCLM), glutathione reductase (GSR), glutathione peroxidase 1 (GPX1), malic enzyme 1 (ME1), ferrochelatase (FECH), ferritin heavy chain 1 (FTH1), and NAD(P) H quinone dehydrogenase 1 (NQO1) in the mammary tissue. In addition, methionine upregulated the mRNA abundance of NFE2L2, NFKB1, MAPK14 and downregulated KEAP1. The ratio of phosphorylated NFE2L2 to total NFE2L2 protein, and total heme oxygenase 1 (HMOX1) protein were markedly greater in response to methionine supply. In contrast, total protein abundance of Kelch-like ECH-associated protein 1 (KEAP1), which sequesters NFE2L2 in the cytosol and reduces its activity, was lower with methionine. Besides the consistent positive effect of methionine supply on systemic inflammation and oxidative stress status, the present data indicate a positive effect also on antioxidant mechanisms within the mammary gland, which are regulated, at least in part, via phosphorylation of NFE2L2 and its target genes. The exact mechanisms for these responses merit further study. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  5. 21 CFR 172.399 - Zinc methionine sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.399 Zinc methionine sulfate. Zinc methionine sulfate, CAS Reg. No. 56329-42-1, may be safely used in accordance with the following prescribed conditions: (a) The additive is the product of the...

  6. Selective Tuning of Elastin-like Polypeptide Properties via Methionine Oxidation.

    PubMed

    Petitdemange, Rosine; Garanger, Elisabeth; Bataille, Laure; Dieryck, Wilfrid; Bathany, Katell; Garbay, Bertrand; Deming, Timothy J; Lecommandoux, Sébastien

    2017-02-13

    We have designed and prepared a recombinant elastin-like polypeptide (ELP) containing precisely positioned methionine residues, and performed the selective and complete oxidation of its methionine thioether groups to both sulfoxide and sulfone derivatives. Since these oxidation reactions substantially increase methionine residue polarity, they were found to be a useful means to precisely adjust the temperature responsive behavior of ELPs in aqueous solutions. In particular, lower critical solution temperatures were found to be elevated in oxidized sample solutions, but were not eliminated. These transition temperatures were found to be further tunable by the use of solvents containing different Hofmeister salts. Overall, the ability to selectively and fully oxidize methionine residues in ELPs proved to be a convenient postmodification strategy for tuning their transition temperatures in aqueous media.

  7. Suppression of a methionine synthase by calmodulin under environmental stress in the entomopathogenic fungus Beauveria bassiana.

    PubMed

    Kim, Jiyoung; Oh, Junsang; Yoon, Deok-Hyo; Sung, Gi-Ho

    2017-10-01

    Methionine synthase (MetE, EC 2.1.1.14) catalyses the final step in the methionine biosynthetic pathway. Methionine biosynthesis plays a major role in protein biogenesis and is the source of S-adenosyl methionine (SAM), the universal donor of methyl groups. In this study, we demonstrated that BbMetE acts as a typical MetE enzyme in the entomopathogenic fungus Beauveria bassiana. In addition, we found that BbMetE binds to calmodulin (CaM) in vitro and in vivo. The functional role of CaM binding to BbMetE was to negatively regulate BbMetE activity in B. bassiana. Our proton-nuclear magnetic resonance data revealed that CaM inhibitor W-7 increases methionine content in B. bassiana, suggesting that CaM negatively regulates the BbMetE activity. Environmental stress stimuli such as salt, H 2 O 2 and heat suppressed BbMetE activity in B. bassiana. W-7 reversed this effect, suggesting that the inhibitory mechanism is mediated through stimulation of CaM activity. Therefore, this work suggests that BbMetE plays an important role in methionine biosynthesis, which is mediated by environmental stress stimuli via the CaM signalling pathway. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Comparison of volatile sulphur compound production by cheese-ripening yeasts from methionine and methionine-cysteine mixtures.

    PubMed

    López Del Castillo-Lozano, M; Delile, A; Spinnler, H E; Bonnarme, P; Landaud, S

    2007-07-01

    Production of volatile sulphur compounds (VSC) was assessed in culture media supplemented with L-methionine or L-methionine/L-cysteine mixtures, using five cheese-ripening yeasts: Debaryomyces hansenii DH47(8), Kluyveromyces lactis KL640, Geotrichum candidum GC77, Yarrowia lipolytica YL200 and Saccharomyces cerevisiae SC45(3). All five yeasts produced VSC with L-methionine or L-methionine/L-cysteine, but different VSC profiles were found. GC77 and YL200 produced dimethyldisulphide and trace levels of dimethyltrisulphide while DH47(8), KL640 and SC45(3) produced mainly methionol and low levels of methional. S-methylthioacetate was produced by all the yeasts but at different concentrations. DH47(8), KL640 and SC45(3) also produced other minor VSC including 3-methylthiopropyl acetate, ethyl-3-methylthiopropanoate, a thiophenone, and an oxathiane. However, VSC production diminished in a strain-dependent behaviour when L-cysteine was supplemented, even at a low concentration (0.2 g l(-1)). This effect was due mainly to a significant decrease in L-methionine consumption in all the yeasts except YL200. Hydrogen sulphide produced by L-cysteine catabolism did not seem to contribute to VSC generation at the acid pH of yeast cultures. The significance of such results in the cheese-ripening context is discussed.

  9. Effects of Methionine Supplementation on the Expression of Protein Deposition-Related Genes in Acute Heat Stress-Exposed Broilers

    PubMed Central

    Grieser, Daiane Oliveira; Zancanela, Vittor; Voltolini, Débora Marques; Khatlab, Angélica Souza; Guimarães, Simone Eliza Facioni; Soares, Maria Amélia Menck; Neto, Adhemar Rodrigues Oliveira

    2015-01-01

    The objective of this study was to evaluate the effect of heat stress and methionine supplementation on the gene expression of insulin-like growth factor I (IGF-I), growth hormone receptor (GHR), phosphatidylinositol 3-kinase, and regulatory 1 (PI3KR1) in the liver, as well as the expression of the atrogin 1 and cathepsin L2 (CTSL2) genes in the breast muscle of broilers. Broilers from 1–21 and 22–42 days of age were divided into three treatments related to methionine supplementation as follows: without methionine supplementation (MD), recommended level of methionine (DL1), and excess supplementation of methionine (DL2). The animals were either maintained at a thermal comfort temperature or exposed to heat stress (HS) (38°C for 24 hours, starting on day 20 or day 41 for experiments 1 and 2, respectively). The heat stress increased the body temperature at both ages. Starter period: The HS animals presented increased plasma creatinine content (P<0.0001) and the highest CTSL2 gene expression (P<0.0001). The methionine supplementation increased the IGF-I (P = 0.0144) and GHR (P = 0.0011) gene expression and decreased the CTSL2 (P = 0.0004) and atrogin 1 (P = 0.0012) gene expression. Grower period: Significant effects for the interaction between supplementation and environment were observed for GHR (P = 0.0252) and CTSL2 (P = 0.0011) gene expression. The highest GHR expression was observed in animals that remained in thermal comfort on the DL2 diet, and the lowest expression occurred in the HS animals fed the MD diet. For CTSL2, the HS animals fed the MD diet presented the highest CTSL2 gene expression, and the lowest expression was observed in the animals maintained at thermal comfort on DL1 and DL2 diets. Only methionine supplementation had effect on atrogin-1 gene expression (P<0.0001), with higher methionine content in the diet lower atrogin-1 gene expression was observed. Our results suggest that heat stress induces greater protein degradation and that methionine supplementation could induce protein deposition because methionine increased the expression of genes related to protein synthesis and decreased the expression of genes related to protein breakdown. PMID:25714089

  10. Effect of methionine supplementation in chicken feed on the quality and shelf life of fresh poultry meat.

    PubMed

    Albrecht, Antonia; Herbert, Ulrike; Miskel, Dennis; Heinemann, Celine; Braun, Carina; Dohlen, Sophia; Zeitz, Johanna O; Eder, Klaus; Saremi, Behnam; Kreyenschmidt, Judith

    2017-08-01

    The aim of this study was to investigate the influence of different methionine sources and concentrations on the quality and spoilage process of broiler meat. The trial was comprised of 7 treatment groups: one basal group (suboptimal in Methionine+Cysteine; i.e., 0.89, 0.74, 0.69% in DM SID Met+Cys in starter, grower, and finisher diets, respectively) and 3 doses (0.10, 0.25, and 0.40%) of either DL-Methionine (DLM) or DL-2-hydroxy-4-methylthio butanoic acid (DL-HMTBA) on an equimolar basis of the DLM-supplemented groups. The broilers were fed the diets for 35 d, then slaughtered and processed. The filets were aerobically packed and stored under temperature controlled conditions at 4°C. Meat quality investigations were comprised of microbial investigations (total viable count and Pseudomonas spp.), pH and drip loss measurements of the filets. The shelf life of the meat samples was determined based on sensory parameters. After slaughtering, all supplemented meat samples showed a high quality, whereby no differences between the 2 methionine sources could be detected for the microbial load, pH, and drip loss. In comparison to the control group, the supplemented samples showed a higher sensory quality, characterized by a fresh smell and fresh red color. Methionine supplementation had a significant influence on meat quality parameters during storage. The microbial load, pH and drip loss of the chicken filets were positively correlated to the methionine concentration. Additionally, the microbial load at the end of storage was positively correlated to pH and drip loss values. Nevertheless, the microbial parameters were in a normal range and the positive correlation to methionine concentration did not affect the sensory shelf life. The mean sensory shelf life of the broiler filets varied between 7 to 9 d. During storage, no difference in the development of sensory parameters was observed between the supplemented groups, while the spoilage process of the basal group occurred slightly faster. In conclusion, methionine concentration, but not methionine source, effected meat quality parameters in breast muscles of broilers. © 2017 Poultry Science Association Inc.

  11. Cytotoxic xanthone-anthraquinone heterodimers from an unidentified fungus of the order Hypocreales (MSX 17022).

    PubMed

    Ayers, Sloan; Graf, Tyler N; Adcock, Audrey F; Kroll, David J; Shen, Qi; Swanson, Steven M; Matthew, Susan; Carcache de Blanco, Esperanza J; Wani, Mansukh C; Darveaux, Blaise A; Pearce, Cedric J; Oberlies, Nicholas H

    2012-01-01

    Two new xanthone-anthraquinone heterodimers, acremoxanthone C (5) and acremoxanthone D (2), have been isolated from an extract of an unidentified fungus of the order Hypocreales (MSX 17022) by bioactivity-directed fractionation as part of a search for anticancer leads from filamentous fungi. Two known related compounds, acremonidin A (4) and acremonidin C (3) were also isolated, as was a known benzophenone, moniliphenone (1). The structures of these isolates were determined via extensive use of spectroscopic and spectrometric tools in conjunction with comparisons to the literature. All compounds (1-5) were evaluated against a suite of biological assays, including those for cytotoxicity, inhibition of the 20S proteasome, mitochondrial transmembrane potential and nuclear factor-κB.

  12. Dysfunction of methionine sulfoxide reductases to repair damaged proteins by nickel nanoparticles.

    PubMed

    Feng, Po-Hao; Huang, Ya-Li; Chuang, Kai-Jen; Chen, Kuan-Yuan; Lee, Kang-Yun; Ho, Shu-Chuan; Bien, Mauo-Ying; Yang, You-Lan; Chuang, Hsiao-Chi

    2015-07-05

    Protein oxidation is considered to be one of the main causes of cell death, and methionine is one of the primary targets of reactive oxygen species (ROS). However, the mechanisms by which nickel nanoparticles (NiNPs) cause oxidative damage to proteins remain unclear. The objective of this study is to investigate the effects of NiNPs on the methionine sulfoxide reductases (MSR) protein repairing system. Two physically similar nickel-based nanoparticles, NiNPs and carbon-coated NiNP (C-NiNPs; control particles), were exposed to human epithelial A549 cells. Cell viability, benzo(a)pyrene diolepoxide (BPDE) protein adducts, methionine oxidation, MSRA and B3, microtubule-associated protein 1A/1B-light chain 3 (LC3) and extracellular signal-regulated kinase (ERK) phosphorylation were investigated. Exposure to NiNPs led to a dose-dependent reduction in cell viability and increased BPDE protein adduct production and methionine oxidation. The methionine repairing enzymatic MSRA and MSRB3 production were suppressed in response to NiNP exposure, suggesting the oxidation of methionine to MetO by NiNP was not reversed back to methionine. Additionally, LC3, an autophagy marker, was down-regulated by NiNPs. Both NiNP and C-NiNP caused ERK phosphorylation. LC3 was positively correlated with MSRA (r = 0.929, p < 0.05) and MSRB3 (r = 0.893, p < 0.05). MSR was made aberrant by NiNP, which could lead to the dysfunction of autophagy and ERK phosphorylation. The toxicological consequences may be dependent on the chemical characteristics of the nanoparticles. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Hepatic betaine-homocysteine methyltransferase activity in the chicken is influenced by dietary intake of sulfur amino acids, choline and betaine.

    PubMed

    Emmert, J L; Garrow, T A; Baker, D H

    1996-08-01

    There is much interest in the metabolism of homocysteine, because elevated plasma homocysteine [hyperhomocyst(e)inemia] is an independent risk factor for the development of cardiovascular disease. Four chick assays were conducted to determine the effects of varying dietary sulfur amino acids, choline and betaine on the activity of hepatic betaine-homocysteine methyltransferase (BHMT), an enzyme likely to be important in modulating plasma homocysteine. In Experiment 1, chicks were fed a purified crystalline amino acid diet containing adequate sulfur amino acids and choline. Excess dietary methionine, or the combination of excess cystine with choline or betaine, caused a small increase (P < 0.05) in BHMT activity. In Experiment 2, use of a methionine-deficient purified diet resulted in a threefold increase (P < 0.05) in BHMT activity, and addition of choline or betaine further increased (P < 0.05) BHMT activity. In Experiment 3, use of a methionine-deficient corn-peanut meal diet increased BHMT (P < 0.05) relative to that of chicks supplemented with adequate methionine, and addition of surfeit choline to the methionine-deficient basal diet caused a further increase (P < 0.05). In Experiment 4, addition of both surfeit choline and surfeit betaine to the methionine-deficient corn-peanut meal diet caused an increase (P < 0.05) in BHMT activity relative to that observed in chicks fed the methionine-deficient basal diet. These assays show that large increases in BHMT activity can be produced under methionine-deficient conditions, especially in the presence of excess choline or betaine.

  14. Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons.

    PubMed

    Gennaris, Alexandra; Ezraty, Benjamin; Henry, Camille; Agrebi, Rym; Vergnes, Alexandra; Oheix, Emmanuel; Bos, Julia; Leverrier, Pauline; Espinosa, Leon; Szewczyk, Joanna; Vertommen, Didier; Iranzo, Olga; Collet, Jean-François; Barras, Frédéric

    2015-12-17

    The reactive species of oxygen and chlorine damage cellular components, potentially leading to cell death. In proteins, the sulfur-containing amino acid methionine is converted to methionine sulfoxide, which can cause a loss of biological activity. To rescue proteins with methionine sulfoxide residues, living cells express methionine sulfoxide reductases (Msrs) in most subcellular compartments, including the cytosol, mitochondria and chloroplasts. Here we report the identification of an enzymatic system, MsrPQ, repairing proteins containing methionine sulfoxide in the bacterial cell envelope, a compartment particularly exposed to the reactive species of oxygen and chlorine generated by the host defence mechanisms. MsrP, a molybdo-enzyme, and MsrQ, a haem-binding membrane protein, are widely conserved throughout Gram-negative bacteria, including major human pathogens. MsrPQ synthesis is induced by hypochlorous acid, a powerful antimicrobial released by neutrophils. Consistently, MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation, including the primary periplasmic chaperone SurA. For this activity, MsrPQ uses electrons from the respiratory chain, which represents a novel mechanism to import reducing equivalents into the bacterial cell envelope. A remarkable feature of MsrPQ is its capacity to reduce both rectus (R-) and sinister (S-) diastereoisomers of methionine sulfoxide, making this oxidoreductase complex functionally different from previously identified Msrs. The discovery that a large class of bacteria contain a single, non-stereospecific enzymatic complex fully protecting methionine residues from oxidation should prompt a search for similar systems in eukaryotic subcellular oxidizing compartments, including the endoplasmic reticulum.

  15. The induction of menadione stress tolerance in the marine microalga, Dunaliella viridis, through cold pretreatment and modulation of the ascorbate and glutathione pools.

    PubMed

    Madadkar Haghjou, Maryam; Colville, Louise; Smirnoff, Nicholas

    2014-11-01

    The effect of cold pretreatment on menadione tolerance was investigated in the cells of the marine microalga, Dunaliella viridis. In addition, the involvement of ascorbate and glutathione in the response to menadione stress was tested by treating cell suspensions with l-galactono-1,4-lactone, an ascorbate precursor, and buthionine sulfoximine, an inhibitor of glutathione synthesis. Menadione was highly toxic to non cold-pretreated cells, and caused a large decrease in cell number. Cold pretreatment alleviated menadione toxicity and cold pretreated cells accumulated lower levels of reactive oxygen species, and had enhanced antioxidant capacity due to increased levels of β-carotene, reduced ascorbate and total glutathione compared to non cold-pretreated cells. Cold pretreatment also altered the response to l-galactono-1,4-lactone and buthionine sulfoximine treatments. Combined l-galactono-1,4-lactone and menadione treatment was lethal in non-cold pretreated cells, but in cold-pretreated cells it had a positive effect on cell numbers compared to menadione alone. Overall, exposure of Dunaliella cells to cold stress enhanced tolerance to subsequent oxidative stress induced by menadione. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Depletion of intracellular GSH and NPSH by buthionine sulfoximine and diethyl maleate: factors that influence enhancement of aerobic radiation response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varnes, M.E.; Biaglow, J.E.; Roizin-Towle, L.

    1984-08-01

    Many investigators have observed aerobic sensitization of V79, CHO and A549 (human lung carcinoma) cells upon depletion of GSH using buthionine sulfoximine (BSO). Recently the authors discovered that this aerobic sensitization can be reversed if WR-2721 or N-acetylcysteine is added to the cells just prior to irradiation. Reversal requires that the exogenous thiols be present during the time of irradiation. One possible explanation was that these thiols entered the cells and either increased the pool of cellular nonprotein thiols or reversed the thiol-depleted state by stimulation of GSH synthesis. Cells treated with BSO do not readily regenerate intracellular GSH becausemore » this agent irreversibly inhibits ..gamma..-glutamyl synthetase. They found that addition of WR-2721 or N-acetylcysteine to BSO-treated cells did not affect the rate of regeneration of intracellular GSH. Thus, reversal of the aerobic sensitization of A549 cells by BSO cannot be explained on the basis of intracellular thiol levels alone, or by rapid reversal of BSO inhibition. In addition, diethylmaleate (DEM)-treated cells are considerably different from BSO-treated cells with respect to the ability to regenerate GSH.« less

  17. Neuroprotective effects of nicergoline in immortalized neurons.

    PubMed

    Sortino, M A; Battaglia, A; Pamparana, F; Carfagna, N; Post, C; Canonico, P L

    1999-03-05

    We studied the potential neuroprotective action of nicergoline in immortalized hypothalamic GT1-7 cells exposed to agents which deplete levels of reduced glutathione, thus causing oxidative stress and cell death. Treatment with diethylmaleate (1 mM), buthionine sulfoximine (500 microM) or menadione (10-50 microM) caused diffuse GT1-7 cell degeneration, as assessed by using either the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay or the fluorescent dyes fluorescein diacetate and propidium iodide. Pre- and/or co-exposure of the cells to nicergoline significantly prevented diethylmaleate- or buthionine sulfoximine-induced neuronal death, whereas nicergoline was ineffective against menadione-induced toxicity. This effect was concentration-dependent and was mimicked by the classical antioxidants idebenone and vitamin E, and did not depend on interference with protein kinase C. Interestingly, the antineurodegenerative activity of nicergoline and vitamin E or idebenone was not additive, suggesting that these compounds share some intracellular mechanism(s) responsible for their protective effects. In conclusion, the present data indicate that nicergoline has neuroprotective activity, possibly mediated by the antioxidant activity of the molecule, and give support to the potential use of nicergoline in the prevention and therapy of neurodegenerative diseases.

  18. A NOVEL S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE FROM RAT LIVER CYTOSOL

    EPA Science Inventory

    A Novel S-Adenosyl-L-methionine: Arsenic(III) Methyltransferase from Rat Liver Cytosol
    Shan Lin, Qing Shi, F. Brent Nix, Miroslav Styblo, Melinda A. Beck, Karen M. Herbin-Davis, Larry L. Hall, Josef B. Simeonsson, and David J. Thomas
    S-adenosyl-L-methionine (AdoMet): ar...

  19. Supplementation of methionine to a low soybean protein diet strikingly increases pancreatic amylase activity in rats.

    PubMed

    Hara, H; Kiriyama, S; Kasai, T

    1997-02-01

    Feed efficiency in rats fed a low soybean protein isolate (SPI) diet (100 g/kg diet) was dramatically improved with the supplementation of L-methionine (3 g/kg diet). Pancreatic amylase activity was low in rats fed a low SPI diet, and was much higher in the supplemented group than in the non-supplemented group. Pancreatic trypsinogen and chymotrypsinogen contents (as activities of trypsin and chymotrypsin) were not changed with the methionine supplementation. In the small intestine, sucrase and leucine aminopeptidase in the jejunum and ileum were not clearly changed. In conclusion, a small amount of methionine supplemented to a low SPI diet especially induced pancreatic amylase among digestive enzymes. The factor involved in nutritional status, not the physiological action of methionine itself, may contribute the induction of amylase.

  20. Effects of methionine supplementation on the expression of oxidative stress-related genes in acute heat stress-exposed broilers.

    PubMed

    Del Vesco, Ana Paula; Gasparino, Eliane; Grieser, Daiane de Oliveira; Zancanela, Vittor; Soares, Maria Amélia Menck; Neto, Adhemar Rodrigues de Oliveira

    2015-02-28

    The aim of the present study was to evaluate the effects of heat stress (HS) and methionine supplementation on the markers of stress and on the gene expression levels of uncoupling proteins (UCP), betaine-homocysteine methyltransferase (BHMT), cystathionine β-synthase (CBS), glutathione synthetase (GSS) and glutathione peroxidase 7 (GPx7). Broilers from 1 to 21 d and from 22 to 42 d of age were divided into three treatment groups related to methionine supplementation: without methionine supplementation (MD); recommended level of methionine supplementation (DL1); excess methionine supplementation (DL2). The broilers were either kept at a comfortable thermal temperature or exposed to HS (38°C for 24 h). During the starter period, we observed the effects of the interaction between diet and environment on the gene expression levels of UCP, BHMT and GSS. Higher gene expression levels of UCP and BHMT were observed in broilers that were maintained at thermal comfort conditions and received the MD diet. HS broilers fed the DL1 and DL2 diets had the highest expression level of GSS. The expression levels of the CBS and GPx7 genes were influenced by both the environment and methionine supplementation. During the grower period, the gene expression levels of BHMT, CBS, GSS and GPx7 were affected by the diet × environment interaction. A higher expression level of BHMT was observed in broilers maintained at thermal comfort conditions and on the MD diet. HS induced higher expression levels of CBS, GSS and GPx7 in broilers that received the DL1 and DL2 diets. The present results suggest that under HS conditions, methionine supplementation could mitigate the effects of stress, since methionine contributed to the increased expression levels of genes related to antioxidant activity.

  1. Loss of conformational stability in calmodulin upon methionine oxidation.

    PubMed Central

    Gao, J; Yin, D H; Yao, Y; Sun, H; Qin, Z; Schöneich, C; Williams, T D; Squier, T C

    1998-01-01

    We have used electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD), and fluorescence spectroscopy to investigate the secondary and tertiary structural consequences that result from oxidative modification of methionine residues in wheat germ calmodulin (CaM), and prevent activation of the plasma membrane Ca-ATPase. Using ESI-MS, we have measured rates of modification and molecular mass distributions of oxidatively modified CaM species (CaMox) resulting from exposure to H2O2. From these rates, we find that oxidative modification of methionine to the corresponding methionine sulfoxide does not predispose CaM to further oxidative modification. These results indicate that methionine oxidation results in no large-scale alterations in the tertiary structure of CaMox, because the rates of oxidative modification of individual methionines are directly related to their solvent exposure. Likewise, CD measurements indicate that methionine oxidation results in little change in the apparent alpha-helical content at 28 degrees C, and only a small (0.3 +/- 0.1 kcal mol(-1)) decrease in thermal stability, suggesting the disruption of a limited number of specific noncovalent interactions. Fluorescence lifetime, anisotropy, and quenching measurements of N-(1-pyrenyl)-maleimide (PMal) covalently bound to Cys26 indicate local structural changes around PMal in the amino-terminal domain in response to oxidative modification of methionine residues in the carboxyl-terminal domain. Because the opposing globular domains remain spatially distant in both native and oxidatively modified CaM, the oxidative modification of methionines in the carboxyl-terminal domain are suggested to modify the conformation of the amino-terminal domain through alterations in the structural features involving the interdomain central helix. The structural basis for the linkage between oxidative modification and these global conformational changes is discussed in terms of possible alterations in specific noncovalent interactions that have previously been suggested to stabilize the central helix in CaM. PMID:9512014

  2. Fructo-oligosaccharides and intestinal barrier function in a methionine-choline-deficient mouse model of nonalcoholic steatohepatitis.

    PubMed

    Matsumoto, Kotaro; Ichimura, Mayuko; Tsuneyama, Koichi; Moritoki, Yuki; Tsunashima, Hiromichi; Omagari, Katsuhisa; Hara, Masumi; Yasuda, Ichiro; Miyakawa, Hiroshi; Kikuchi, Kentaro

    2017-01-01

    Impairments in intestinal barrier function, epithelial mucins, and tight junction proteins have been reported to be associated with nonalcoholic steatohepatitis. Prebiotic fructo-oligosaccharides restore balance in the gastrointestinal microbiome. This study was conducted to determine the effects of dietary fructo-oligosaccharides on intestinal barrier function and steatohepatitis in methionine-choline-deficient mice. Three groups of 12-week-old male C57BL/6J mice were studied for 3 weeks; specifically, mice were fed a methionine-choline-deficient diet, a methionine-choline-deficient diet plus 5% fructo-oligosaccharides in water, or a normal control diet. Fecal bacteria, short-chain fatty acids, and immunoglobulin A (IgA) levels were investigated. Histological and immunohistochemical examinations were performed using mice livers for CD14 and Toll-like receptor-4 (TLR4) expression and intestinal tissue samples for IgA and zonula occludens-1 expression in epithelial tight junctions. The methionine-choline-deficient mice administered 5% fructo-oligosaccharides maintained a normal gastrointestinal microbiome, whereas methionine-choline-deficient mice without prebiotic supplementation displayed increases in Clostridium cluster XI and subcluster XIVa populations and a reduction in Lactobacillales spp. counts. Methionine-choline-deficient mice given 5% fructo-oligosaccharides exhibited significantly decreased hepatic steatosis (p = 0.003), decreased liver inflammation (p = 0.005), a decreased proportion of CD14-positive Kupffer cells (p = 0.01), decreased expression of TLR4 (p = 0.04), and increases in fecal short-chain fatty acid and IgA concentrations (p < 0.04) compared with the findings in methionine-choline-deficient mice that were not administered this prebiotic. This study illustrated that in the methionine-choline-deficient mouse model, dietary fructo-oligosaccharides can restore normal gastrointestinal microflora and normal intestinal epithelial barrier function, and decrease steatohepatitis. The findings support the role of prebiotics, such as fructo-oligosaccharides, in maintaining a normal gastrointestinal microbiome; they also support the need for further studies on preventing or treating nonalcoholic steatohepatitis using dietary fructo-oligosaccharides.

  3. A False-Negative Case of Primary Central Nervous System Lymphoma on 11C-Methionine PET and Intense 18F-FDG Uptake.

    PubMed

    García-Garzon, J R; Villasboas-Rosciolesi, Diego; Baquero, Miguel; Bassa, Pere; Soler, Marina; Riera, Eduard

    2016-08-01

    We report a case of a 44-year-old man with neurological symptoms and MRI findings, which were unable to differentiate between glioma and lymphoma. Metabolic characterization by means of PET imaging with F-FDG and C-methionine is proposed to determine the benign or tumor (high- and low-grade) origin of brain lesions. In this case, the MRI lesion corresponded with an inconclusive metabolic pattern of intense F-FDG uptake and no significant C-methionine uptake. Pathological study revealed a false-negative case of C-methionine due to lymphoma.

  4. Role of white adipose lipolysis in the development of NASH induced by methionine-and choline-deficient diet

    PubMed Central

    Tanaka, Naoki; Takahashi, Shogo; Fang, Zhong-Ze; Matsubara, Tsutomu; Krausz, Kristopher W.; Qu, Aijuan; Gonzalez, Frank J.

    2014-01-01

    Methionine- and choline-deficient diet (MCD) is a model for nonalcoholic steatohepatitis (NASH) in rodents. However, the mechanism of NASH development by dietary methionine/choline deficiency remains undetermined. To elucidate the early metabolic changes associated with MCD-NASH, serum metabolomic analysis was performed using mice treated with MCD and control diet for three days and one week, revealing significant increases in oleic and linoleic acids after MCD treatment. These increases were correlated with reduced body weight and white adipose tissue (WAT) mass, increased phosphorylation of hormone-sensitive lipase, and up-regulation of genes encoding carboxylesterase 3 and β2-adrenergic receptor in WAT, indicating accelerated lipolysis in adipocytes. The changes in serum fatty acids and WAT by MCD treatment were reversed by methionine supplementation, and similar alterations were detected in mice fed a methionine-deficient diet (MD), thus demonstrating that dietary methionine deficiency enhances lipolysis in WAT. MD treatment decreased glucose and increased fibroblast growth factor 21 in serum, thus exhibiting a similar metabolic phenotype as the fasting response. Comparison between MCD and choline-deficient diet (CD) treatments suggested that the addition of MD-induced metabolic alterations, such as WAT lipolysis, to CD-induced hepatic steatosis promotes liver injury. Collectively, these results demonstrate an important role for dietary methionine deficiency and WAT lipolysis in the development of MCD-NASH. PMID:25178843

  5. Retrospective evaluation of methionine intoxication associated with urinary acidifying products in dogs: 1,525 cases (2001-2012).

    PubMed

    Hickey, Mara C; Son, Tolina T; Wismer, Tina

    2015-01-01

    To describe the signalment, clinical findings, timing of signs, outcome, and prognosis in a population of dogs exposed to methionine through the ingestion of urine acidifying products. Retrospective observational study from January 1, 2001 to December 31, 2012. Animal Poison Control Center. A total of 1,197 case calls yielding 1,525 dogs identified with presumed methionine ingestion. None. Records of dogs with presumptive methionine ingestion were reviewed from the American Society for the Prevention of Cruelty to Animals Animal Poison Control Center database. Ingested methionine doses ranged from 3.9 mg/kg to 23,462 mg/kg. Clinical signs developed in 47% of dogs. The most common clinical signs were gastrointestinal (GI) and neurologic. The mean onset of GI signs was 2.8 hours following ingestion. The mean onset of neurologic signs was 6.8 hours following ingestion. GI signs were identified with ingested doses ≥22.5 mg/kg. Vomiting was the most common GI sign. Neurologic signs were identified with ingested doses ≥94.6 mg/kg. Ataxia was the most common neurologic sign. Resolution of clinical signs occurred within 48 hours of ingestion, and no fatalities were reported. Prognosis for dogs with methionine intoxication is excellent. Vomiting and ataxia were the most common clinical signs associated with methionine toxicosis. © Veterinary Emergency and Critical Care Society 2015.

  6. Effects of probiotics on methionine choline deficient diet-induced steatohepatitis in rats.

    PubMed

    Karahan, Nermin; Işler, Mehmet; Koyu, Ahmet; Karahan, Aynur G; Başyığıt Kiliç, Gülden; Cırış, Ibrahim Metin; Sütçü, Recep; Onaran, Ibrahim; Cam, Hakan; Keskın, Muharrem

    2012-04-01

    Intestinal bacteria induce endogenous signals that play a pathogenic role in hepatic insulin resistance and non-alcoholic fatty liver disease. Probiotics could modulate the gut flora and could influence the gut-liver axis. We aimed to investigate the preventive effect of two probiotic mixtures on the methionine choline-deficient diet-induced non-alcoholic steatohepatitis model in rats. Two studies, short-term (2 weeks) and long-term (6 weeks), were carried out using 60 male Wistar rats. The 2-week study included six groups. Rats were fed with methionine choline-deficient diet or pair-fed control diet and were given a placebo or one of two probiotic mixtures (Pro-1 and Pro-2) by orogastric gavage. In the 6-week study, rats were allocated into four groups and were fed with methionine choline-deficient diet or pair-fed control diet and given a placebo or Pro-2. At the end of the 2- and 6-week periods, blood samples were obtained, the animals were sacrificed, and liver tissues were removed. Serum alanine aminotransferase activity was determined; histologic and immunohistochemical analysis was performed for steatosis, inflammation, protein expression of tumor necrosis factor-α, and apoptosis markers. In both studies, methionine choline-deficient diet caused an elevation of serum alanine aminotransferase activity, which was slightly reduced by Pro-1 and Pro-2. In the 2- and 6-week studies, feeding with methionine choline-deficient diet resulted in steatosis and inflammation, but not fibrosis, in all rats. In the 2-week study, in rats fed with methionine choline-deficient diet and given Pro-1, steatosis and inflammation were present in 2 of 6 rats. In rats fed with methionine choline-deficient diet and given Pro-2, steatosis was detected in 3 of 6 rats, while inflammation was present in 2 of 6 rats. In the 6-week study, in rats fed with methionine choline-deficient diet and given Pro-2, steatosis and inflammation were present in 3 of 6 rat livers. In both the 2- and 6-week studies, methionine choline-deficient diet resulted in tumor necrosis factor-α, proapoptotic Bax, caspase 3, caspase 8, and anti-apoptotic Bcl-2 expression in all rat livers. Pro-1 and Pro-2 treatment influenced protein expression involved in apoptosis and tumor necrosis factor-α in varying degrees. Pro-1 and Pro-2 decrease methionine choline-deficient diet-induced steatohepatitis in rats. The preventive effect of probiotics may be due, in part, to modulation of apoptosis and their anti-inflammatory activity.

  7. Variability of plasma and urine betaine in diabetes mellitus and its relationship to methionine load test responses: an observational study

    PubMed Central

    2012-01-01

    Background Since betaine is an osmolyte and methyl donor, and abnormal betaine loss is common in diabetes mellitus (>20% patients), we investigated the relationship between betaine and the post-methionine load rise in homocysteine, in diabetes and control subjects. The post-methionine load test is reported to be both an independent vascular risk factor and a measure of betaine sufficiency. Methods Patients with type 2 diabetes (n = 34) and control subjects (n = 17) were recruited. We measured baseline fasting plasma and 4-hour post-methionine load (L-methionine, 0.1 mg/kg body weight) concentrations of homocysteine, betaine, and the betaine metabolite N,N-dimethylglycine. Baseline urine excretions of betaine, dimethylglycine and glucose were measured on morning urine samples as the ratio to urine creatinine. Statistical determinants of the post-methionine load increase in homocysteine were identified in multiple linear regression models. Results Plasma betaine concentrations and urinary betaine excretions were significantly (p < 0.001) more variable in the subjects with diabetes compared with the controls. Dimethylglycine excretion (p = 0.00014) and plasma dimethylglycine concentrations (p = 0.039) were also more variable. In diabetes, plasma betaine was a significant negative determinant (p < 0.001) of the post-methionine load increase in homocysteine. However, it was not conclusive that this was different from the relationship in the controls. In the patients with diabetes, a strong relationship was found between urinary betaine excretion and urinary glucose excretion (but not with plasma glucose). Conclusions Both high and low plasma betaine concentrations, and high and low urinary betaine excretions, are more prevalent in diabetes. The availability of betaine affects the response in the methionine load test. The benefits of increasing betaine intake should be investigated. PMID:22510294

  8. Mechanistic and Kinetic Study of Singlet O2 Oxidation of Methionine by On-Line Electrospray Ionization Mass Spectrometry.

    PubMed

    Liu, Fangwei; Lu, Wenchao; Yin, Xunlong; Liu, Jianbo

    2016-01-01

    We report a reaction apparatus developed to monitor singlet oxygen ((1)O2) reactions in solution using on-line ESI mass spectrometry and spectroscopy measurements. (1)O2 was generated in the gas phase by the reaction of H2O2 with Cl2, detected by its emission at 1270 nm, and bubbled into aqueous solution continuously. (1)O2 concentrations in solution were linearly related to the emission intensities of airborne (1)O2, and their absolute scales were established based on a calibration using 9,10-anthracene dipropionate dianion as an (1)O2 trapping agent. Products from (1)O2 oxidation were monitored by UV-Vis absorption and positive/negative ESI mass spectra, and product structures were elucidated using collision-induced dissociation-tandem mass spectrometry. To suppress electrical discharge in negative ESI of aqueous solution, methanol was added to electrospray via in-spray solution mixing using theta-glass ESI emitters. Capitalizing on this apparatus, the reaction of (1)O2 with methionine was investigated. We have identified methionine oxidation intermediates and products at different pH, and measured reaction rate constants. (1)O2 oxidation of methionine is mediated by persulfoxide in both acidic and basic solutions. Persulfoxide continues to react with another methionine, yielding methionine sulfoxide as end-product albeit with a much lower reaction rate in basic solution. Density functional theory was used to explore reaction potential energy surfaces and establish kinetic models, with solvation effects simulated using the polarized continuum model. Combined with our previous study of gas-phase methionine ions with (1)O2, evolution of methionine oxidation pathways at different ionization states and in different media is described.

  9. The Galactic Distribution of Massive Star Formation from the Red MSX Source Survey

    NASA Astrophysics Data System (ADS)

    Figura, Charles C.; Urquhart, J. S.

    2013-01-01

    Massive stars inject enormous amounts of energy into their environments in the form of UV radiation and molecular outflows, creating HII regions and enriching local chemistry. These effects provide feedback mechanisms that aid in regulating star formation in the region, and may trigger the formation of subsequent generations of stars. Understanding the mechanics of massive star formation presents an important key to understanding this process and its role in shaping the dynamics of galactic structure. The Red MSX Source (RMS) survey is a multi-wavelength investigation of ~1200 massive young stellar objects (MYSO) and ultra-compact HII (UCHII) regions identified from a sample of colour-selected sources from the Midcourse Space Experiment (MSX) point source catalog and Two Micron All Sky Survey. We present a study of over 900 MYSO and UCHII regions investigated by the RMS survey. We review the methods used to determine distances, and investigate the radial galactocentric distribution of these sources in context with the observed structure of the galaxy. The distribution of MYSO and UCHII regions is found to be spatially correlated with the spiral arms and galactic bar. We examine the radial distribution of MYSOs and UCHII regions and find variations in the star formation rate between the inner and outer Galaxy and discuss the implications for star formation throughout the galactic disc.

  10. Mononuclear Cells from Dedifferentiation of Mouse Myotubes display Remarkable Regenerative Capability

    PubMed Central

    Yang, Zhong; Liu, Qiang; Mannix, Robert J.; Xu, Xiaoyin; Li, Hongli; Ma, Zhiyuan; Ingber, Donald E.; Allen, Paul D.; Wang, Yaming

    2015-01-01

    Certain lower organisms achieve organ regeneration by reverting differentiated cells into tissue-specific progenitors that re-enter embryonic programs. During muscle regeneration in the urodele amphibian, post-mitotic multinucleated skeletal myofibers transform into mononucleated proliferating cells upon injury, and a transcription factor-msx1 plays a role in their reprograming. Whether this powerful regeneration strategy can be leveraged in mammals remains unknown, as it has not been demonstrated that the dedifferentiated progenitor cells arising from muscle cells overexpressing Msx1 are lineage-specific and possess the same potent regenerative capability as their amphibian counterparts. Here we show that ectopic expression of Msx1 reprograms post-mitotic, multinucleated, primary mouse myotubes to become proliferating mononuclear cells. These dedifferentiated cells reactivate genes expressed by embryonic muscle progenitor cells and generate only muscle tissue in vivo both in an ectopic location and inside existing muscle. More importantly, distinct from adult muscle satellite cells, these cells appear both to fuse with existing fibers and to regenerate myofibers in a robust and time-dependent manner. Upon transplantation into a degenerating muscle, these dedifferentiated cells generated a large number of myofibers that increased over time and replenished almost half of the cross-sectional area of the muscle in only 12 weeks. Our study demonstrates that mammals can harness a muscle regeneration strategy used by lower organisms when the same molecular pathway is activated. PMID:24916688

  11. The browning value changes and spectral analysis on the Maillard reaction product from glucose and methionine model system

    NASA Astrophysics Data System (ADS)

    Al-Baarri, A. N.; Legowo, A. M.; Widayat

    2018-01-01

    D-glucose has been understood to provide the various effect on the reactivity in Maillard reaction resulting in the changes in physical performance of food product. Therefore this research was done to analyse physical appearance of Maillard reaction product made of D-glucose and methionine as a model system. The changes in browning value and spectral analysis model system were determined. The glucose-methionine model system was produced through the heating treatment at 50°C and RH 70% for 24 hours. The data were collected for every three hour using spectrophotometer. As result, browning value was elevated with the increase of heating time and remarkably high if compare to the D-glucose only. Furthermore, the spectral analysis showed that methionine turned the pattern of peak appearance. As conclusion, methionine raised the browning value and changed the pattern of spectral analysis in Maillard reaction model system.

  12. Biased expression, under the control of single promoter, of human interferon α-2b and Escherichia coli methionine amino peptidase genes in E. coli, irrespective of their distance from the promoter.

    PubMed

    Arif, Amina; Rashid, Naeem; Aslam, Farheen; Mahmood, Nasir; Akhtar, Muhammad

    2016-03-01

    Human interferon α-2b and Escherichia coli methionine amino peptidase genes were cloned independently as well as bicistronically in expression plasmid pET-21a (+). Production of human interferon α-2b was comparable to that of E. coli methionine amino peptidase when these genes were expressed independently in E. coli BL21-CodonPlus (DE3)-RIL. However, human interferon α-2b was produced in a much less amount whereas there was no difference in the production of methionine amino peptidase when the encoding genes were expressed bicistronically. It is important to note that human interferon α-2b was the first gene in order, after the promoter and E. coli methionine amino peptidase was the next with a linker sequence of 27 nucleotides between them.

  13. Targeting S-adenosylmethionine biosynthesis with a novel allosteric inhibitor of Mat2A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinlan, Casey L.; Kaiser, Stephen E.; Bolaños, Ben

    S-Adenosyl-L-methionine (SAM) is an enzyme cofactor used in methyl transfer reactions and polyamine biosynthesis. The biosynthesis of SAM from ATP and L-methionine is performed by the methionine adenosyltransferase enzyme family (Mat; EC 2.5.1.6). Human methionine adenosyltransferase 2A (Mat2A), the extrahepatic isoform, is often deregulated in cancer. We identified a Mat2A inhibitor, PF-9366, that binds an allosteric site on Mat2A that overlaps with the binding site for the Mat2A regulator, Mat2B. Studies exploiting PF-9366 suggested a general mode of Mat2A allosteric regulation. Allosteric binding of PF-9366 or Mat2B altered the Mat2A active site, resulting in increased substrate affinity and decreased enzymemore » turnover. These data support a model whereby Mat2B functions as an inhibitor of Mat2A activity when methionine or SAM levels are high, yet functions as an activator of Mat2A when methionine or SAM levels are low. The ramification of Mat2A activity modulation in cancer cells is also described.« less

  14. Effect of Dietary Combination of Methionine and Fish Oil on Cellular Immunity and Plasma Fatty Acids in Infectious Bursal Disease Challenged Chickens

    PubMed Central

    Kasim, Azhar; Yong Meng, Goh; Teck Chwen, Loh; Kamalidehghan, Behnam; Soleimani Farjam, Abdoreza

    2013-01-01

    This study was carried out to investigate the modulatory effects of dietary methionine and fish oil on immune response, plasma fatty acid profile, and blood parameters of infectious bursal disease (IBD) challenged broiler chickens. A total of 300 one-day-old male broiler chicks were assigned to one of six dietary treatment groups in a 3 × 2 factorial arrangement. There were three levels of fish oil (0, 2.5 and 5.5%), and two levels of methionine (NRC recommendation and twice NRC recommendation). The results showed that the birds fed with 5.5% fish oil had higher total protein, white blood cell count, and IL-2 concentration than those of other groups at 7 days after IBD challenge. Inclusion of fish oil in diet had no effect on IFN-γ concentration. However, supplementation of methionine twice the recommendation enhanced the serum IFN-γ and globulin concentration. Neither of fish oil nor methionine supplementation affected the liver enzymes concentration. It can be suggested that a balance of moderate level of fish oil (2.5%) and methionine level (twice NRC recommendation) might enhance immune response in IBD challenged broiler chickens. PMID:24198724

  15. Egg quality of quails fed low methionine diet supplemented with betaine

    NASA Astrophysics Data System (ADS)

    Ratriyanto, A.; Indreswari, R.; Dewanti, R.; Wahyuningsih, S.

    2018-03-01

    This experiment investigated the effect of betaine supplementation to low methionine diet on egg quality of quails. A total of 340 laying quails (Coturnix coturnix japonica) was divided into 4 dietary treatments with 5 replicates of 17 quails each. The experiment was assigned in a completely randomized design. The four dietary treatments were the low methionine diet (0.3% methionine) without betaine supplementation and the low methionine diet supplemented with 0.07, 0.14, and 0.21% betaine. The experimental diets were applied for 8 weeks and the egg quality traits were measured at the age of 16 and 20 weeks. The data were subjected to analysis of variance, and when the treatment indicated significant effect, it was continued to orthogonal polynomial test to determine the optimum level of betaine. Increasing dietary levels of betaine increased the fat content of the egg with the linear regression of y = 11.0949 + 4.1914x (R2 = 0.18). However, supplementation of betaine did not affect protein content, yolk, albumen, and eggshell percentage. It can be concluded that betaine supplementation up to 0.21% to low methionine diet only had little effect in improving the quality traits of quail eggs.

  16. Methionine supplementation influences melanin-based plumage colouration in Eurasian kestrel, Falco tinnunculus, nestlings.

    PubMed

    Parejo, Deseada; Silva, Nadia

    2009-11-01

    The extent to which the expression of melanin-based plumage colouration in birds is genetically or environmentally determined is controversial. Here, we performed a between-nest design supplementation with either the sulphur amino acid dl-methionine or with water to investigate the importance of the non-genetic component of melanin-based plumage colouration in the Eurasian kestrel, Falco tinnunculus. Methionine affects growth and immunity, thus we aimed to modify nestling growth and immunity before feather development. Then, we measured the effect of the experiment on colouration of two melanin-based plumage patches of nestling kestrels. We found that methionine slowed down nestling growth through treatment administration and that nestlings compensated by speeding up their growth later. We did not find any effects of methionine on nestling immunity (i.e. lymphocyte counts, natural antibody levels or complement-mediated immunity). Effects on growth seemed to be mirrored by changes in nestling colouration in the two sexes: methionine-nestlings showed less intense brown plumage on their backs compared with control nestlings. These results provide support for a non-genetic determination of a melanin-based plumage patch in the two sexes of nestling kestrels.

  17. Immune function and hematology of male cotton rats (Sigmodon hispidus) in response to food supplementation and methionine

    USGS Publications Warehouse

    Webb, R.E.; Leslie, David M.; Lochmiller, R.L.; Masters, R.E.

    2003-01-01

    We examined effects of supplementation of food quantity and quality (=enhanced methionine) on hematologic and immunologic parameters of wild, but enclosed, adult male cotton rats (Sigmodon hispidus) in north-central Oklahoma. Sheet metal enclosures were stocked with a high density of wild-caught cotton rats (160 animals/ha) and randomly assigned a treatment of no supplementation, mixed-ration supplementation or methionine-enhanced supplementation. Aside from small increases in counts of red blood cells and hematocrit levels, most indices of erythrocytic characteristics were not affected by supplementation with the mixed-ration or enhanced methionine. In contrast, platelet counts were highest in mixed-ration and methionine treatments and counts of total white blood cells were highest with methionine supplementation, albeit relative proportions of different leukocytes did not differ among treatments. Immunologically, neither delayed-type hypersensitivity response nor hemolytic-complement activity differed among treatments. Supplementation of food quantity and quality did not broadly affect hematologic parameters and immune function of male cotton rats, but enhanced platelet and leukocyte counts may confer advantages to overall health. Clarification of the role of such effects on population limitation or regulation requires additional research.

  18. Cognitive Impairment in Folate-Deficient Rats Corresponds to Depleted Brain Phosphatidylcholine and Is Prevented by Dietary Methionine without Lowering Plasma Homocysteine12

    PubMed Central

    Troen, Aron M.; Chao, Wei-Hsun; Crivello, Natalia A.; D'Anci, Kristen E.; Shukitt-Hale, Barbara; Smith, Don E.; Selhub, Jacob; Rosenberg, Irwin H.

    2008-01-01

    Poor folate status is associated with cognitive decline and dementia in older adults. Although impaired brain methylation activity and homocysteine toxicity are widely thought to account for this association, how folate deficiency impairs cognition is uncertain. To better define the role of folate deficiency in cognitive dysfunction, we fed rats folate-deficient diets (0 mg FA/kg diet) with or without supplemental L-methionine for 10 wk, followed by cognitive testing and tissue collection for hematological and biochemical analysis. Folate deficiency with normal methionine impaired spatial memory and learning; however, this impairment was prevented when the folate-deficient diet was supplemented with methionine. Under conditions of folate deficiency, brain membrane content of the methylated phospholipid phosphatidylcholine was significantly depleted, which was reversed with supplemental methionine. In contrast, neither elevated plasma homocysteine nor brain S-adenosylmethionine and S-adenosylhomocysteine concentrations predicted cognitive impairment and its prevention by methionine. The correspondence of cognitive outcomes to changes in brain membrane phosphatidylcholine content suggests that altered phosphatidylcholine and possibly choline metabolism might contribute to the manifestation of folate deficiency-related cognitive dysfunction. PMID:19022979

  19. New therapeutic options for the metabolic syndrome: what's next?

    PubMed

    Flordellis, Christodoulos S; Ilias, Ioannis; Papavassiliou, Athanasios G

    2005-08-01

    The metabolic syndrome (MSX), characterized by obesity, insulin resistance, dyslipidemia and hypertension, increases the risk of cardiovascular morbidity and mortality. It has recently been hypothesized that MSX and type 2 diabetes are caused by triglyceride and long-chain fatty acid accumulation in liver, muscle, pancreatic islets and selected brain areas. This lipocentric approach is integrated with analysis of inflammation associated with end-organ damage, including the vascular wall. Genes and proteins contributing to insulin resistance, beta cell dysfunction and vascular wall damage have been identified. Transcription factors and coactivators, including peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1 are crucial in mediating insulin resistance and accelerating vascular wall inflammation, and represent promising therapeutic targets. New pharmacological strategies include dual PPARalpha/gamma agonists, drugs with pleiotropic effects or combination therapies.

  20. Environmental monitors in the Midcourse Space Experiments (MSX)

    NASA Technical Reports Server (NTRS)

    Uy, O. M.

    1993-01-01

    The Midcourse Space Experiment (MSX) is an SDIO sponsored space based sensor experiment with a full complement of optical sensors. Because of the possible deleterious effect of both molecular and particulate contamination on these sensors, a suite of environmental monitoring instruments are also being flown with the spacecraft. These instruments are the Total Pressure Sensor based on the cold-cathode gauge, a quadrupole mass spectrometer, a Bennett-type ion mass spectrometer, a cryogenic quartz crystal microbalance (QCM), four temperature-controlled QCM's, and a Xenon and Krypton Flash Lamp Experiment. These instruments have been fully space-qualified, are compact and low cost, and are possible candidate sensors for near-term planetary and atmospheric monitoring. The philosophy adopted during design and fabrication, calibration and ground testing, and modeling will be discussed .

  1. Influence of dietary protein and excess methionine on choline needs for young bobwhite quail

    USGS Publications Warehouse

    Serafin, J.A.

    1982-01-01

    Experiments were conducted with young Bobwhite quail (Colinus virginianus) to investigate the effect of differing dietary protein levels and nondetrimental amounts of excess methionine on choline needs. Growth and feed consumption of quail fed an adequate (27.3%) protein purified diet supplemented with 2000 mg/kg of choline were unaffected by increasing the level of excess methionine to 1.75%; however, greater amounts (2.0%, 2.25%) of excess methionine depressed growth (P less than .01), reduced feed consumption (P less than .01), and decreased feed utilization (P less than .05). Quail fed a purified diet containing 13.85% protein and 515 mg/kg of choline grew poorly. Growth was unaffected by additional choline in this diet. Growth was suboptimal among quail fed purified diets containing adequate or high (41.55%) levels of protein in which choline was limiting; however, a high level of protein did not in itself affect performance. Growth was improved by supplemental choline in these diets. Growth of quail fed purified diets with up to 1.35% excess methionine which were limiting (531 mg/kg) in choline was less than that of groups fed 2000 mg/kg of added dietary choline (P less than .01); however, excess methionine did not significantly influence growth of quail fed choline-deficient diets. These experiments indicate that neither high dietary protein nor excess methionine, fed at non-growth-depressing levels, increases dietary choline needs for young Bobwhite quail.

  2. Influence of dietary protein level on the broiler chicken's response to methionine and betaine supplements.

    PubMed

    Garcia Neto, M; Pesti, G M; Bakalli, R I

    2000-10-01

    Two experiments were conducted to compare broiler chicken responses to methionine and betaine supplements when fed diets with low protein and relatively high metabolizable energy levels (17%, 3.3 kcal/g) or moderate protein and lower metabolizable energy levels (24%, 3.0 kcal/g), resulting in different levels of carcass fat. In Experiment 1, the basal diets were formulated with corn, soybean meal, poultry by-product meal, and poultry oil. In Experiment 2, glucose monohydrate was also added, so that identical amino acid profiles could be maintained in the 17 and 24% protein diets. On average, feeding the 17 vs. 24% protein diet decreased 21-d body weight gain by 20%, increased feed conversion ratio (FCR) by 13%, and increased abdominal fat pad weight by 104%. Methionine and betaine supplements improved the performance of chicks fed the 24% protein diet in both experiments, as indicated by body weight gain and FCR. Only supplementary methionine increased performance of chicks fed 17% protein diets, and then only in Experiment 2. Neither methionine nor betaine decreased abdominal fat pad size in either experiment. Methionine supplementation decreased relative liver size and increased breast muscle protein. Both methionine and betaine increased sample feather weight, but when expressed as a percentage of body weight, no significant differences were detected. It is concluded that increasing carcass fat by manipulating percentage dietary protein level or amino acid balance does not influence betaine's activity as a lipotropic agent.

  3. Phase II Clinical Trials: D-methionine to Reduce Noise-Induced Hearing Loss

    DTIC Science & Technology

    2012-03-01

    loss (NIHL) and tinnitus in our troops. Hypotheses: Primary Hypothesis: Administration of oral D-methionine prior to and during weapons...reduce or prevent noise-induced tinnitus . Primary outcome to test the primary hypothesis: Pure tone air-conduction thresholds. Primary outcome to...test the secondary hypothesis: Tinnitus questionnaires. Specific Aims: 1. To determine whether administering oral D-methionine (D-met) can

  4. Targeting Amino Acid Metabolism for Molecular Imaging of Inflammation Early After Myocardial Infarction.

    PubMed

    Thackeray, James T; Bankstahl, Jens P; Wang, Yong; Wollert, Kai C; Bengel, Frank M

    2016-01-01

    Acute tissue inflammation after myocardial infarction influences healing and remodeling and has been identified as a target for novel therapies. Molecular imaging holds promise for guidance of such therapies. The amino acid (11)C-methionine is a clinically approved agent which is thought to accumulate in macrophages, but not in healthy myocytes. We assessed the suitability of positron emission tomography (PET) with (11)C-methionine for imaging post-MI inflammation, from cell to mouse to man. Uptake assays demonstrated 7-fold higher (11)C-methionine uptake by polarized pro-inflammatory M1 macrophages over anti-inflammatory M2 subtypes (p<0.001). C57Bl/6 mice (n=27) underwent coronary artery ligation or no surgery. Serial (11)C-methionine PET was performed 3, 5 and 7d later. MI mice exhibited a perfusion defect in 32-50% of the left ventricle (LV). PET detected increased (11)C-methionine accumulation in the infarct territory at 3d (5.9±0.9%ID/g vs 4.7±0.9 in remote myocardium, and 2.6±0.5 in healthy mice; p<0.05 and <0.01 respectively), which declined by d7 post-MI (4.3±0.6 in infarct, 3.4±0.8 in remote; p=0.03 vs 3d, p=0.08 vs healthy). Increased (11)C-methionine uptake was associated with macrophage infiltration of damaged myocardium. Treatment with anti-integrin antibodies (anti-CD11a, -CD11b, -CD49d; 100µg) lowered macrophage content by 56% and (11)C-methionine uptake by 46% at 3d post-MI. A patient study at 3d after ST-elevation MI and early reperfusion confirmed elevated (11)C-methionine uptake in the hypoperfused myocardial region. Targeting of elevated amino acid metabolism in pro-inflammatory M1 macrophages enables PET imaging-derived demarcation of tissue inflammation after MI. (11)C-methionine-based molecular imaging may assist in the translation of novel image-guided, inflammation-targeted regenerative therapies.

  5. Dietary Methyl Donors Contribute to Whole-Body Protein Turnover and Protein Synthesis in Skeletal Muscle and the Jejunum in Neonatal Piglets.

    PubMed

    Robinson, Jason L; Harding, Scott V; Brunton, Janet A; Bertolo, Robert F

    2016-10-01

    The neonatal methionine requirement must consider not only the high demand for rapid tissue protein expansion but also the demands as the precursor for a suite of critical transmethylation reactions. However, methionine metabolism is inherently complex because upon transferring its methyl group during transmethylation, methionine can be reformed by the dietary methyl donors choline (via betaine) and folate. We sought to determine whether dietary methyl donors contribute to methionine availability for protein synthesis in neonatal piglets. Yucatan miniature piglets aged 4-8 d were fed a diet that provided 38 μg folate/(kg·d), 60 mg choline/(kg·d), and 238 mg betaine/(kg·d) [methyl-sufficient (MS); n = 8] or a diet devoid of these methyl precursors [methyl-deficient (MD); n = 8]. After 5 d, dietary methionine was reduced from 0.30 to 0.20 g/(kg·d) in both groups. On day 6, piglets received a constant [1- 13 C]phenylalanine infusion to measure whole-body protein kinetics, and on day 8 they received a constant [ 3 H-methyl]methionine infusion to measure tissue-specific protein synthesis in skeletal muscle, the liver, and the jejunum. Whole-body phenylalanine flux, protein synthesis, and protein breakdown were 13%, 12%, and 22% lower, respectively, in the MD group than in the MS group (P < 0.05). Reduced whole-body protein synthesis in the MD piglets was attributed to 50% lower protein synthesis in skeletal muscle and the jejunum than in the MS piglets (P < 0.05). Furthermore, methionine availability in skeletal muscle was halved in piglets fed the MD diet (P < 0.05), and the specific radioactivity of methionine was doubled in the jejunum of MD piglets (P < 0.05), suggesting lower intestinal remethylation. Liver protein synthesis did not significantly differ between the groups, but secreted proteins were not measured. Dietary methyl donors can affect whole-body and tissue-specific protein synthesis in neonatal piglets and should be considered when determining the methionine requirement. © 2016 American Society for Nutrition.

  6. Targeting Amino Acid Metabolism for Molecular Imaging of Inflammation Early After Myocardial Infarction

    PubMed Central

    Thackeray, James T.; Bankstahl, Jens P.; Wang, Yong; Wollert, Kai C.; Bengel, Frank M.

    2016-01-01

    Acute tissue inflammation after myocardial infarction influences healing and remodeling and has been identified as a target for novel therapies. Molecular imaging holds promise for guidance of such therapies. The amino acid 11C-methionine is a clinically approved agent which is thought to accumulate in macrophages, but not in healthy myocytes. We assessed the suitability of positron emission tomography (PET) with 11C-methionine for imaging post-MI inflammation, from cell to mouse to man. Uptake assays demonstrated 7-fold higher 11C-methionine uptake by polarized pro-inflammatory M1 macrophages over anti-inflammatory M2 subtypes (p<0.001). C57Bl/6 mice (n=27) underwent coronary artery ligation or no surgery. Serial 11C-methionine PET was performed 3, 5 and 7d later. MI mice exhibited a perfusion defect in 32-50% of the left ventricle (LV). PET detected increased 11C-methionine accumulation in the infarct territory at 3d (5.9±0.9%ID/g vs 4.7±0.9 in remote myocardium, and 2.6±0.5 in healthy mice; p<0.05 and <0.01 respectively), which declined by d7 post-MI (4.3±0.6 in infarct, 3.4±0.8 in remote; p=0.03 vs 3d, p=0.08 vs healthy). Increased 11C-methionine uptake was associated with macrophage infiltration of damaged myocardium. Treatment with anti-integrin antibodies (anti-CD11a, -CD11b, -CD49d; 100µg) lowered macrophage content by 56% and 11C-methionine uptake by 46% at 3d post-MI. A patient study at 3d after ST-elevation MI and early reperfusion confirmed elevated 11C-methionine uptake in the hypoperfused myocardial region. Targeting of elevated amino acid metabolism in pro-inflammatory M1 macrophages enables PET imaging-derived demarcation of tissue inflammation after MI. 11C-methionine-based molecular imaging may assist in the translation of novel image-guided, inflammation-targeted regenerative therapies. PMID:27570549

  7. Inhibition of the CXCL12/CXCR4-Axis as Preventive Therapy for Radiation-Induced Pulmonary Fibrosis

    PubMed Central

    Shu, Hui-Kuo G.; Yoon, Younghyoun; Hong, Samuel; Xu, Kaiming; Gao, Huiying; Hao, Chunhai; Torres-Gonzalez, Edilson; Nayra, Cardenes; Rojas, Mauricio; Shim, Hyunsuk

    2013-01-01

    Background A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process. Methodology/Principal Findings The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process. Conclusions/Significance CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung injury, presenting future therapeutic opportunities for patients requiring chest irradiation. PMID:24244561

  8. Inhibition of the CXCL12/CXCR4-axis as preventive therapy for radiation-induced pulmonary fibrosis.

    PubMed

    Shu, Hui-Kuo G; Yoon, Younghyoun; Hong, Samuel; Xu, Kaiming; Gao, Huiying; Hao, Chunhai; Torres-Gonzalez, Edilson; Nayra, Cardenes; Rojas, Mauricio; Shim, Hyunsuk

    2013-01-01

    A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process. The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process. CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung injury, presenting future therapeutic opportunities for patients requiring chest irradiation.

  9. Hyperhomocysteinemia induced by guanidinoacetic acid is effectively suppressed by choline and betaine in rats.

    PubMed

    Setoue, Minoru; Ohuchi, Seiya; Morita, Tatsuya; Sugiyama, Kimio

    2008-07-01

    Rats were fed 25% casein (25C) diets differing in choline levels (0-0.5%) with and without 0.5% guanidinoacetic acid (GAA) or 0.75% L-methionine for 7 d to determine the effects of dietary choline level on experimental hyperhomocysteinemia. The effects of dietary choline (0.30%) and betaine (0.34%) on GAA- and methionine-induced hyperhomocysteinemia were also compared. Dietary choline suppressed hyperhomocysteinemia induced by GAA, but not by methionine, in a dose-dependent manner. GAA-induced enhancement of the plasma homocysteine concentration was suppressed by choline and betaine to the same degree, but the effects of these compounds were relatively small on methionine-induced hyperhomocysteinemia. Dietary supplementation with choline and betaine significantly increased the hepatic betaine concentration in rats fed a GAA diet, but not in rats fed a methionine diet. These results indicate that choline and betaine are effective at relatively low levels in reducing plasma homocysteine, especially under the condition of betaine deficiency without a loading of homocysteine precursor.

  10. Biosynthesis of S-Methylcysteine in Radish Leaves1

    PubMed Central

    Thompson, John F.; Gering, Rose K.

    1966-01-01

    Investigation on the biosynthesis of S-methyl-L-cysteine in radish leaves has shown that it is formed by the methylation of cysteine. This conclusion is based on: A) the relatively high recovery of radioactivity in methylcysteine sulfoxide after the administration of cysteine or methyl-labeled methionine to radish leaves; B) the nearly complete recovery of label from methyl-labeled methionine in the methyl group of methylcysteine sulfoxide; and C) the similarity in the ratio of tritium to 14C in methylcysteine sulfoxide and in its methyl group to this ratio in the methyl group of methionine given to radish leaves. Direct evidence for the synthesis of methylcysteine in radishes was obtained for the first time. Conclusive evidence against the formation of methylcysteine from serine and a thiomethyl group from methionine as suggested for garlic was the more efficient incorporation of the methyl group of methionine as compared to the sulfur atom into methylcysteine sulfoxide. Images Fig. 1 PMID:16656400

  11. Protection against UVB-induced oxidative stress in human skin cells and skin models by methionine sulfoxide reductase A.

    PubMed

    Pelle, Edward; Maes, Daniel; Huang, Xi; Frenkel, Krystyna; Pernodet, Nadine; Yarosh, Daniel B; Zhang, Qi

    2012-01-01

    Environmental trauma to human skin can lead to oxidative damage of proteins and affect their activity and structure. When methionine becomes oxidized to its sulfoxide form, methionine sulfoxide reductase A (MSRA) reduces it back to methionine. We report here the increase in MSRA in normal human epidermal keratinocytes (NHEK) after ultraviolet B (UVB) radiation, as well as the reduction in hydrogen peroxide levels in NHEK pre-treated with MSRA after exposure. Further, when NHEK were pre-treated with a non-cytotoxic pentapeptide containing methionine sulfoxide (metSO), MSRA expression increased by 18.2%. Additionally, when the media of skin models were supplemented with the metSO pentapeptide and then exposed to UVB, a 31.1% reduction in sunburn cells was evident. We conclude that the presence of MSRA or an externally applied peptide reduces oxidative damage in NHEK and skin models and that MSRA contributes to the protection of proteins against UVB-induced damage in skin.

  12. [The level of available methionine and the biological value of fish protein].

    PubMed

    Lipka, Z; Ganowiak, Z

    1992-01-01

    Food value of fish protein in fish canning was evaluated biologically and chemically (by available methionine). High-temperature sterilization (126 degrees) proved the least adequate for it causes the greatest loss in the protein food value. The chemical method by available methionine showing close correlation with biological techniques (NPU and PER rates) is thought demonstrative and convenient for technological control in fish processing industry.

  13. Radiation-induced transmethylation and transsulfuration in the system DNA-methionine

    NASA Astrophysics Data System (ADS)

    Köhnlein, W.; Merwitz, O.; Ohneseit, P.

    Evidence is presented for the radiation-induced transmethylation and transsulfuration in a DNA-methionine model system. The extent of such alkylation of DNA is found to be comparable with that of alkylating agents. Therefore, both processes could be initial steps in radiation carcinogenesis. The protective effect of methionine on DNA strand breaks, due to scavenging of OH radicals, causes the formation of methyl and thiyl radicals.

  14. Intestinal uptake of betaine in vitro and the distribution of methyl groups from betaine, choline, and methionine in the body of broiler chicks.

    PubMed

    Kettunen, H; Peuranen, S; Tiihonen, K; Saarinen, M

    2001-02-01

    The efficiency of betaine absorption into small intestinal slices of broiler chicks was studied in vitro with 14C-labeled betaine. The relative proportion of Na+-coupled betaine uptake, as well as the total uptake capacity was larger in the duodenum than in the jejunum. Dietary betaine increased the Na+-coupled uptake in the duodenum. In in vivo-experiments, methyl-14C-labeled betaine, methionine, or choline was fed to broiler chicks. Betaine appeared in the blood more rapidly, and reached a higher total concentration than choline or methionine. The data suggest that choline and methionine were associated with plasma lipoproteins whereas betaine remained free in the plasma. The label distribution in liver, kidney, and intestinal tissues was studied 24 h after label ingestion. Most of the label from betaine was found in the aquaeous phase in the muscle, while in the liver and jejunum the label from betaine was distributed more evenly between the aquaeous, lipid, and protein phases. Label from choline accumulated in the lipid fraction, particularly so in the liver, whereas label from methionine showed a more variable distribution pattern. The distribution results are interpreted in terms of specific roles of betaine, choline, and methionine in methyl group metabolism.

  15. Advances in protein-amino acid nutrition of poultry.

    PubMed

    Baker, David H

    2009-05-01

    The ideal protein concept has allowed progress in defining requirements as well as the limiting order of amino acids in corn, soybean meal, and a corn-soybean meal mixture for growth of young chicks. Recent evidence suggests that glycine (or serine) is a key limiting amino acid in reduced protein [23% crude protein (CP) reduced to 16% CP] corn-soybean meal diets for broiler chicks. Research with sulfur amino acids has revealed that small excesses of cysteine are growth depressing in chicks fed methionine-deficient diets. Moreover, high ratios of cysteine:methionine impair utilization of the hydroxy analog of methionine, but not of methionine itself. A high level of dietary L: -cysteine (2.5% or higher) is lethal for young chicks, but a similar level of DL: -methionine, L: -cystine or N-acetyl-L: -cysteine causes no mortality. A supplemental dietary level of 3.0% L: -cysteine (7x requirement) causes acute metabolic acidosis that is characterized by a striking increase in plasma sulfate and decrease in plasma bicarbonate. S-Methylmethionine, an analog of S-adenosylmethionine, has been shown to have choline-sparing activity, but it only spares methionine when diets are deficient in choline and(or) betaine. Creatine, or its precursor guanidinoacetic acid, can spare dietary arginine in chicks.

  16. Adaptive antioxidant methionine accumulation in respiratory chain complexes explains the use of a deviant genetic code in mitochondria.

    PubMed

    Bender, Aline; Hajieva, Parvana; Moosmann, Bernd

    2008-10-28

    Humans and most other animals use 2 different genetic codes to translate their hereditary information: the standard code for nuclear-encoded proteins and a modern variant of this code in mitochondria. Despite the pivotal role of the genetic code for cell biology, the functional significance of the deviant mitochondrial code has remained enigmatic since its first description in 1979. Here, we show that profound and functionally beneficial alterations on the encoded protein level were causative for the AUA codon reassignment from isoleucine to methionine observed in most mitochondrial lineages. We demonstrate that this codon reassignment leads to a massive accumulation of the easily oxidized amino acid methionine in the highly oxidative inner mitochondrial membrane. This apparently paradoxical outcome can yet be smoothly settled if the antioxidant surface chemistry of methionine is taken into account, and we present direct experimental evidence that intramembrane accumulation of methionine exhibits antioxidant and cytoprotective properties in living cells. Our results unveil that methionine is an evolutionarily selected antioxidant building block of respiratory chain complexes. Collective protein alterations can thus constitute the selective advantage behind codon reassignments, which authenticates the "ambiguous decoding" hypothesis of genetic code evolution. Oxidative stress has shaped the mitochondrial genetic code.

  17. Effect of multi-nutrient insufficiency on markers of one carbon metabolism in young women: response to a methionine load.

    PubMed

    Katre, P; Joshi, S; Bhat, D S; Deshmukh, M; Gurav, N; Pandit, S; Lubree, H; Marczewski, S; Bennett, C; Gruca, L; Kalyanaraman, K; Naik, S S; Yajnik, C S; Kalhan, S C

    2016-06-01

    Multi-nutrient insufficiencies as a consequence of nutritional and economic factors are common in India and other developing countries. We have examined the impact of multi-nutrient insufficiency on markers of one carbon (1C) metabolism in the blood, and response to a methionine load in clinically healthy young women. Young women from Pune, India (n=10) and Cleveland, USA (n=13) were studied. Blood samples were obtained in the basal state and following an oral methionine load (50 mg/kg of body weight in orange juice). Plasma concentrations of vitamin B12, folate and B6 were measured in the basal state. The effect of methionine load on the levels of methionine, total homocysteine, cysteine, glutathione and amino acids was examined. Indian women were significantly shorter and lighter compared with the American women and had lower plasma concentration of vitamins B12, folate and B6, essential amino acids and glutathione, but higher concentration of total homocysteine. The homocysteine response to methionine load was higher in Indian women. The plasma concentrations of glycine and serine increased in the Indian women after methionine (in juice) load. A significant negative correlation between plasma B6 and homocysteine (r= -0.70), and plasma folate and glycine and serine levels were observed in the Indian group (P<0.05) but not in the American group. Multi-nutrient insufficiency in the Indian women caused unique changes in markers of whole body protein and 1C metabolism. These data would be useful in developing nutrient intervention strategies.

  18. Porphyromonas gingivalis hydrogen sulfide enhances methyl mercaptan-induced pathogenicity in mouse abscess formation.

    PubMed

    Nakamura, Suguru; Shioya, Koki; Hiraoka, B Yukihiro; Suzuki, Nao; Hoshino, Tomonori; Fujiwara, Taku; Yoshinari, Nobuo; Ansai, Toshihiro; Yoshida, Akihiro

    2018-04-01

    Porphyromonas gingivalis produces hydrogen sulfide (H2S) from l-cysteine. However, the role of H2S produced by P. gingivalis in periodontal inflammation is unclear. In this study, we identified the enzyme that catalyses H2S production from l-cysteine and analysed the role of H2S using a mouse abscess model. The enzyme identified was identical to methionine γ-lyase (PG0343), which produces methyl mercaptan (CH3SH) from l-methionine. Therefore, we analysed H2S and CH3SH production by P. gingivalis W83 and a PG0343-deletion mutant (ΔPG0343) with/without l-cysteine and/or l-methionine. The results indicated that CH3SH is produced constitutively irrespective of the presence of l-methionine, while H2S was greatly increased by both P. gingivalis W83 and ΔPG0343 in the presence of l-cysteine. In contrast, CH3SH production by ΔPG0343 was absent irrespective of the presence of l-methionine, and H2S production was eliminated in the absence of l-cysteine. Thus, CH3SH and H2S production involves different substrates, l-methionine or l-cysteine, respectively. Based on these characteristics, we analysed the roles of CH3SH and H2S in abscess formation in mice by P. gingivalis W83 and ΔPG0343. Abscess formation by P. gingivalis W83, but not ΔPG0343, differed significantly in the presence and absence of l-cysteine. In addition, the presence of l-methionine did not affect the size of abscesses generated by P. gingivalis W83 and ΔPG0343. Therefore, we conclude that H2S produced by P. gingivalis does not induce inflammation; however, H2S enhances inflammation caused by CH3SH. Thus, these results suggest the H2S produced by P. gingivalis plays a supportive role in inflammation caused by methionine γ-lyase.

  19. Determination of the methionine requirement of male and female broiler chicks using an indirect amino acid oxidation method.

    PubMed

    Chamruspollert, M; Pesti, G M; Bakalli, R I

    2002-07-01

    The methionine requirement of 250-to-300-g broiler chicks was estimated from the oxidation of L-[1-14C] phenylalanine of chicks given meals containing graded levels of DL-methionine. L-[1-14C] phenylalanine was used as an indicator amino acid for amino acid oxidation and, indirectly, protein synthesis. Four experiments were conducted using an incomplete block design with three replications each. Chicks were crop intubated with semifluid diets at a ratio of 1 g of diet per 45 g of bird weight. Two feedings 2 h apart were used to reduce variability, and the sample collection period was 3 h after the second feeding. Regression analysis of 14CO2 release from L-[1-14C] phenylalanine was used to estimate the methionine requirement. The model was as follows: response = max + rc x (req - x) x I, where max = plateau, rc = rate constant, req = requirement, and I = 1 when x < req, otherwise I = 0. The methionine requirements of Ross x Ross chicks were 0.57 +/- 0.03% and 0.52 +/- 0.08% for male and female chicks, respectively in Experiment 1 and 0.55 +/- 0.05% and 0.52 +/- 0.04%, respectively, in Experiment 2. In the third experiment (Arbor Acre High-Yield), phenylalanine oxidation stabilized at a low rate when dietary methionine levels reached 0.54 +/- 0.03% and 0.53 +/- 0.04% for males and females, respectively. In a growth trial covering a longer period (Experiment 4), the methionine requirements of male and female Ross x Ross chicks, based on feed conversion, were 0.52 +/- 0.05% and 0.45 +/- 0.02%, respectively, and based on body gain were 0.54 +/0.09% and 0.48 +/- 0.04%, respectively. The results suggested that the methionine requirement of male chicks tended to be higher than that of females in both strains. However, differences were small and not significant.

  20. A role for 11C-methionine PET imaging in ACTH-dependent Cushing's syndrome.

    PubMed

    Koulouri, Olympia; Steuwe, Andrea; Gillett, Daniel; Hoole, Andrew C; Powlson, Andrew S; Donnelly, Neil A; Burnet, Neil G; Antoun, Nagui M; Cheow, Heok; Mannion, Richard J; Pickard, John D; Gurnell, Mark

    2015-10-01

    We report our experience of functional imaging with (11)C-methionine positron emission tomography-computed tomography (PET-CT) co-registered with 3D gradient echo (spoiled gradient recalled (SPGR)) magnetic resonance imaging (MRI) in the investigation of ACTH-dependent Cushing's syndrome. Twenty patients with i) de novo Cushing's disease (CD, n=10), ii) residual or recurrent hypercortisolism following first pituitary surgery (±radiotherapy; n=8) or iii) ectopic Cushing's syndrome (n=2) were referred to our centre for functional imaging studies between 2010 and 2015. Six of the patients with de novo CD and five of those with persistent/relapsed disease had a suspected abnormality on conventional MRI. All patients underwent (11)C-methionine PET-CT. For pituitary imaging, co-registration of PET-CT images with contemporaneous SPGR MRI (1 mm slice thickness) was performed, followed by detailed mapping of (11)C-methionine uptake across the sella in three planes (coronal, sagittal and axial). This allowed us to determine whether suspected adenomas seen on structural imaging exhibited focal tracer uptake on functional imaging. In seven of ten patients with de novo CD, asymmetric (11)C-methionine uptake was observed within the sella, which co-localized with the suspected site of a corticotroph microadenoma visualised on SPGR MRI (and which was subsequently confirmed histologically following successful transsphenoidal surgery (TSS)). Focal (11)C-methionine uptake that correlated with a suspected abnormality on pituitary MRI was seen in five of eight patients with residual or recurrent Cushing's syndrome following first TSS (and pituitary radiotherapy in two cases). Two patients elected to undergo repeat TSS with histology confirming a corticotroph tumour in each case. In two patients with the ectopic ACTH syndrome, (11)C-methionine was concentrated in sites of distant metastases, with minimal uptake in the sellar region. (11)C-methionine PET-CT can aid the detection of ACTH-secreting tumours in Cushing's syndrome and facilitate targeted therapy. © 2015 European Society of Endocrinology.

  1. Development and evolution of the mammalian limb: adaptive diversification of nails, hooves, and claws.

    PubMed

    Hamrick, M W

    2001-01-01

    Paleontological evidence indicates that the evolutionary diversification of mammals early in the Cenozoic era was characterized by an adaptive radiation of distal limb structures. Likewise, neontological data show that morphological variation in distal limb integumentary appendages (e.g., nails, hooves, and claws) can be observed not only among distantly related mammalian taxa but also among closely related species within the same clade. Comparative analysis of nail, claw, and hoof morphogenesis reveals relatively subtle differences in mesenchymal and epithelial patterning underlying these adult differences in distal limb appendage morphology. Furthermore, studies of regulatory gene expression during vertebrate claw development demonstrate that many of the signaling molecules involved in patterning ectodermal derivatives such as teeth, hair, and feathers are also involved in organizing mammalian distal limb appendages. For example, Bmp4 signaling plays an important role during the recruitment of mesenchymal cells into the condensations forming the terminal phalanges, whereas Msx2 affects the length of nails and claws by suppressing proliferation of germinal epidermal cells. Evolutionary changes in the form of distal integumentary appendages may therefore result from changes in gene expression during formation of mesenchymal condensations (Bmp4, posterior Hox genes), induction of the claw fold and germinal matrix (shh), and/or proliferation of epidermal cells in the claw matrix (Msx1, Msx2). The prevalence of convergences and parallelisms in nail and claw structure among mammals underscores the existence of multiple morphogenetic pathways for evolutionary change in distal limb appendages.

  2. The kilometer-sized Main Belt asteroid population revealed by Spitzer

    NASA Astrophysics Data System (ADS)

    Ryan, E. L.; Mizuno, D. R.; Shenoy, S. S.; Woodward, C. E.; Carey, S. J.; Noriega-Crespo, A.; Kraemer, K. E.; Price, S. D.

    2015-06-01

    Aims: Multi-epoch Spitzer Space Telescope 24 μm data is utilized from the MIPSGAL and Taurus Legacy surveys to detect asteroids based on their relative motion. Methods: Infrared detections are matched to known asteroids and average diameters and albedos are derived using the near Earth asteroid thermal model (NEATM) for 1865 asteroids ranging in size from 0.2 to 169 km. A small subsample of these objects was also detected by IRAS or MSX and the single wavelength albedo and diameter fits derived from these data are within the uncertainties of the IRAS and/or MSX derived albedos and diameters and available occultation diameters, which demonstrates the robustness of our technique. Results: The mean geometric albedo of the small Main Belt asteroids in this sample is pV = 0.134 with a sample standard deviation of 0.106. The albedo distribution of this sample is far more diverse than the IRAS or MSX samples. The cumulative size-frequency distribution of asteroids in the Main Belt at small diameters is directly derived and a 3σ deviation from the fitted size-frequency distribution slope is found near 8 km. Completeness limits of the optical and infrared surveys are discussed. Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A42

  3. Methionine-Mediated Repression in Saccharomyces cerevisiae: a Pleiotropic Regulatory System Involving Methionyl Transfer Ribonucleic Acid and the Product of Gene eth2

    PubMed Central

    Cherest, H.; Surdin-Kerjan, Y.; De Robichon-Szulmajster, H.

    1971-01-01

    Detailed study of methionine-mediated repression of enzymes involved in methionine biosynthesis in Saccharomyces cerevisiae led to classification of these enzymes into two distinct regulatory groups. Group I comprises four enzymes specifically involved in different parts of methionine biosynthesis, namely, homoserine-O-transacetylase, homocysteine synthetase, adenosine triphosphate sulfurylase, and sulfite reductase. Repressibility of these enzymes is greatly decreased in strains carrying a genetically impaired methionyl-transfer ribonucleic acid (tRNA) synthetase (mutation ts− 296). Conditions leading to absence of repression in the mutant strain have been correlated with a sharp decrease in bulk tRNAmet charging, whereas conditions which restore repressibility of group I enzymes also restore tRNAmet charging. These findings implicate methionyl-tRNA in the regulatory process. However, the absence of a correlation in the wild type between methionyl-tRNA charging and the levels of methionine group I enzymes suggests that only a minor iso accepting species of tRNAmet may be devoted with a regulatory function. Repressibility of the same four enzymes (group I) was also decreased in strains carrying the regulatory mutation eth2r. Although structural genes coding for two of these enzymes, as well as mutations ts− 296 and eth2r segregate independently to each other, synthesis of group I enzymes is coordinated. The pleiotropic regulatory system involved seems then to comprise beside a “regulatory methionyl tRNAmet,” another element, product of gene eth2, which might correspond either to an aporepressor protein or to the “regulatory tRNAmet” itself. Regulation of group II enzymes is defined by response to exogenous methionine, absence of response to either mutations ts− 296 and eth2r, and absence of coordinacy with group I enzymes. However, the two enzymes which belong to this group and are both involved in threonine and methionine biosynthesis undergo distinct regulatory patterns. One, aspartokinase, is subject to a bivalent repression exerted by threonine and methionine, and the other, homoserine dehydrogenase, is subject only to methionine-mediated repression. Participation of at least another aporepressor and another corepressor, different from the ones involved in regulation of group I enzymes, is discussed. PMID:5557593

  4. Betaine supplementation is less effective than methionine restriction in correcting phenotypes of CBS deficient mice.

    PubMed

    Gupta, Sapna; Wang, Liqun; Kruger, Warren D

    2016-01-01

    Cystathionine beta synthase (CBS) deficiency is a recessive inborn error of metabolism characterized by elevated serum total homocysteine (tHcy). Betaine supplementation, which can lower tHcy by stimulating homocysteine remethylation to methionine, is often given to CBS deficient patients in combination with other treatments such as methionine restriction and supplemental B-vitamins. However, the effectiveness of betaine supplementation by itself in the treatment of CBS deficiency has not been well explored. Here, we have examined the effect of a betaine supplemented diet on the Tg-I278T Cbs (-/-) mouse model of CBS deficiency and compared its effectiveness to our previously published data using a methionine restricted diet. Tg-I278T Cbs (-/-) mice on betaine, from the time of weaning until for 240 days of age, had a 40 % decrease in mean tHcy level and a 137 % increase in serum methionine levels. Betaine-treated Tg-I278T Cbs (-/-) mice also exhibited increased levels of betaine-dependent homocysteine methyl transferase (BHMT), increased levels of the lipogenic enzyme stearoyl-coenzyme A desaturase (SCD-1), and increased lipid droplet accumulation in the liver. Betaine supplementation largely reversed the hair loss phenotype in Tg-I278T Cbs (-/-) animals, but was far less effective than methionine restriction in reversing the weight-loss, fat-loss, and osteoporosis phenotypes. Surprisingly, betaine supplementation had several negative effects in control Tg-I278T Cbs (+/-) mice including decreased weight gain, lean mass, and bone mineral density. Our findings indicate that while betaine supplementation does have some beneficial effects, it is not as effective as methionine restriction for reversing the phenotypes associated with severe CBS deficiency in mice.

  5. Changes in body-weight, composition and hepatic enzyme activities in response to dietary methionine, betaine and choline levels in growing chicks.

    PubMed

    Saunderson, C L; Mackinlay, J

    1990-03-01

    The experiments described here were set up (a) to investigate the effect of age and (b) to investigate the effect of giving five diets which varied in methionine and choline or betaine contents on some of the enzymes that metabolize these nutrients in chick liver. Growth and carcass composition of the chicks fed on the different diets were also examined. There was no obvious relationship between age and enzyme activity in young chicks. Only a diet low in methionine (but not one low in choline) showed a significant decrease in growth and a change in carcass composition. The effects of diet on enzyme activity were complex. Choline oxidase (EC 1.1.3.17) activity was affected by the level of choline in the diet, being high when choline was present at high levels, especially when methionine was limiting. 5-Methyltetrahydrofolate homocysteine methyltransferase (EC 2.1.1.3) had a high activity in the livers of chicks fed on a conventional diet compared with those given semi-purified diets. Other enzymes showed minor changes in response to the diet. The diet low in methionine showed a lower activity of cystathionine beta-synthase (EC 4.2.1.22) and slightly higher activities of methionine adenosyltransferase (EC 2.5.1.6) and betaine-homocysteine methyltransferase (EC 2.1.1.5; compared with other diets), suggesting that this diet encouraged re-methylation of homocysteine at the expense of trans-sulphuration to cystathionine. The findings obtained in these studies form a useful basis for further investigation of the metabolic interrelationships between methionine and related nutrients.

  6. Oxidation of an Exposed Methionine Instigates the Aggregation of Glyceraldehyde-3-phosphate Dehydrogenase*

    PubMed Central

    Samson, Andre L.; Knaupp, Anja S.; Kass, Itamar; Kleifeld, Oded; Marijanovic, Emilia M.; Hughes, Victoria A.; Lupton, Chris J.; Buckle, Ashley M.; Bottomley, Stephen P.; Medcalf, Robert L.

    2014-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous and abundant protein that participates in cellular energy production. GAPDH normally exists in a soluble form; however, following necrosis, GAPDH and numerous other intracellular proteins convert into an insoluble disulfide-cross-linked state via the process of “nucleocytoplasmic coagulation.” Here, free radical-induced aggregation of GAPDH was studied as an in vitro model of nucleocytoplasmic coagulation. Despite the fact that disulfide cross-linking is a prominent feature of GAPDH aggregation, our data show that it is not a primary rate-determining step. To identify the true instigating event of GAPDH misfolding, we mapped the post-translational modifications that arise during its aggregation. Solvent accessibility and energy calculations of the mapped modifications within the context of the high resolution native GAPDH structure suggested that oxidation of methionine 46 may instigate aggregation. We confirmed this by mutating methionine 46 to leucine, which rendered GAPDH highly resistant to free radical-induced aggregation. Molecular dynamics simulations suggest that oxidation of methionine 46 triggers a local increase in the conformational plasticity of GAPDH that likely promotes further oxidation and eventual aggregation. Hence, methionine 46 represents a “linchpin” whereby its oxidation is a primary event permissive for the subsequent misfolding, aggregation, and disulfide cross-linking of GAPDH. A critical role for linchpin residues in nucleocytoplasmic coagulation and other forms of free radical-induced protein misfolding should now be investigated. Furthermore, because disulfide-cross-linked aggregates of GAPDH arise in many disorders and because methionine 46 is irrelevant to native GAPDH function, mutation of methionine 46 in models of disease should allow the unequivocal assessment of whether GAPDH aggregation influences disease progression. PMID:25086035

  7. Role of S-Adenosylmethionine in Methionine Biosynthesis in Yeast

    PubMed Central

    Botsford, J. L.; Parks, L. W.

    1967-01-01

    Extracts of Saccharomyces cerevisiae were used to develop a cell-free system capable of converting the β-carbon of serine into the methyl group of methionine. No requirement for either S-adenosylmethionine or S-adenosylhomocysteine could be demonstrated for net methionine biosynthesis. Growth of the cells in B12 did not affect the reaction. The mechanism for the methylation of homocysteine in yeast appears to be similar to the non-B12 system in Escherichia coli. PMID:4293082

  8. The growth of Paracoccus halodenitrificans in a defined medium

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1984-01-01

    A synthetic medium, consisting of inorganic salts and any of a number of carbon sources, supported the aerobic growth of Paracoccus halodenitrificans when supplemented with thiamine. The same medium plus a nitrogenous oxide supported anaerobic growth when additionally supplemented with methionine. The observation that vitamin B12 or betaine replaced methionine suggested that P. halodenitrificans had a defect in the cobalamin dependent pathway for methionine biosynthesis, as well as the inability to synthesize betanine when growing anaerobically.

  9. The growth of paracoccus halodenitrificans in a defined medium

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1983-01-01

    A synthetic medium, consisting of inorganic salts and any of a number of carbon sources, supported the aerobic growth of Paracoccus halodenitrificans when supplemented with thiamine. The same medium plus a nitrogenous oxide supported anaerobic growth when additionally supplemented with methionine. The observation that vitamin B12 or betaine replaced methionine suggested that P. halodenitrificans had a defect in the cobalamin dependent pathway for methionine biosynthesis, as well as the inability to synthesize betaine when growing anaerobically.

  10. The methionine salvage pathway in Bacillus subtilis

    PubMed Central

    Sekowska, Agnieszka; Danchin, Antoine

    2002-01-01

    Background Polyamine synthesis produces methylthioadenosine, which has to be disposed of. The cell recycles it into methionine through methylthioribose (MTR). Very little was known about MTR recycling for methionine salvage in Bacillus subtilis. Results Using in silico genome analysis and transposon mutagenesis in B. subtilis we have experimentally uncovered the major steps of the dioxygen-dependent methionine salvage pathway, which, although similar to that found in Klebsiella pneumoniae, recruited for its implementation some entirely different proteins. The promoters of the genes have been identified by primer extension, and gene expression was analyzed by Northern blotting and lacZ reporter gene expression. Among the most remarkable discoveries in this pathway is the role of an analog of ribulose diphosphate carboxylase (Rubisco, the plant enzyme used in the Calvin cycle which recovers carbon dioxide from the atmosphere) as a major step in MTR recycling. Conclusions A complete methionine salvage pathway exists in B. subtilis. This pathway is chemically similar to that in K. pneumoniae, but recruited different proteins to this purpose. In particular, a paralogue or Rubisco, MtnW, is used at one of the steps in the pathway. A major observation is that in the absence of MtnW, MTR becomes extremely toxic to the cell, opening an unexpected target for new antimicrobial drugs. In addition to methionine salvage, this pathway protects B. subtilis against dioxygen produced by its natural biotope, the surface of leaves (phylloplane). PMID:12022921

  11. A Methionine-Induced Animal Model of Schizophrenia: Face and Predictive Validity.

    PubMed

    Wang, Lien; Alachkar, Amal; Sanathara, Nayna; Belluzzi, James D; Wang, Zhiwei; Civelli, Olivier

    2015-05-19

    Modulating the methylation process induces broad biochemical changes, some of which may be involved in schizophrenia. Methylation is in particular central to epigenesis, which is also recognized as a factor in the etiology of schizophrenia. Because methionine administration to patients with schizophrenia has been reported to exacerbate their psychotic symptoms and because mice treated with methionine exhibited social deficits and prepulse inhibition impairment, we investigated whether methionine administration could lead to behavioral changes that reflect schizophrenic symptoms in mice. l-Methionine was administered to mice twice a day for 7 days. We found that this treatment induces behavioral responses that reflect the 3 types of schizophrenia-like symptoms (positive, negative, or cognitive deficits) as monitored in a battery of behavioral assays (locomotion, stereotypy, social interaction, forced swimming, prepulse inhibition, novel object recognition, and inhibitory avoidance). Moreover, these responses were differentially reversed by typical haloperidol and atypical clozapine antipsychotics in ways that parallel their effects in schizophrenics. We thus propose the l-methionine treatment as an animal model recapitulating several symptoms of schizophrenia. We have established the face and predictive validity for this model. Our model relies on an essential natural amino acid and on an intervention that is relatively simple and time effective and may offer an additional tool for assessing novel antipsychotics. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  12. The effect of amino acid lysine and methionine addition on feed toward the growth and retention on mud crab (Scylla serrata)

    NASA Astrophysics Data System (ADS)

    Alissianto, Y. R.; Sandriani, Z. A.; Rahardja, B. S.; Agustono; Rozi

    2018-04-01

    High market demand of mud crab (Scylla serrata) encourages farmers to increase the production of mud crab. However, mud crab can not synthesize essential amino acids, so it is necessary to supply essential amino acids such as lysine and methionine in the diet. This study aims to determine the effect of lysine and methionine on feeds to increase growth and retention of mud crabs (Scylla serrata). In this study the amount of lysine amino acid and methionine added to the trash fish diet were: P0 (0: 0%); P1 (0.75: 0.75%); P2 (1: 1%); P3 (1.25: 1.25%); P4 (1.5: 1.5%) with the ratio of lysine and methionine 1: 1. The parameters observed in this study were Survival Rate (SR), Specific Growth Rate (SGR), Feed Conversion Ratio (FCR), Efficiency Feed (EF), protein retention and energy retention. The results of the 35-day maintenance study showed significant differences (P <0.05) against Specific Growth Rate (SGR), Feed Conversion Ratio (FCR), Efficiency Feed (EF), protein retention and no significant effect (P> 0.05) on energy retention and Survival Rate (SR) on mud crab. The best results in this study were found in P4 treatment with addition of lysine amino acids and methionine (1.5: 1.5%).

  13. Independent and additive effects of glutamic acid and methionine on yeast longevity.

    PubMed

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian

    2013-01-01

    It is established that glucose restriction extends yeast chronological and replicative lifespan, but little is known about the influence of amino acids on yeast lifespan, although some amino acids were reported to delay aging in rodents. Here we show that amino acid composition greatly alters yeast chronological lifespan. We found that non-essential amino acids (to yeast) methionine and glutamic acid had the most significant impact on yeast chronological lifespan extension, restriction of methionine and/or increase of glutamic acid led to longevity that was not the result of low acetic acid production and acidification in aging media. Remarkably, low methionine, high glutamic acid and glucose restriction additively and independently extended yeast lifespan, which could not be further extended by buffering the medium (pH 6.0). Our preliminary findings using yeasts with gene deletion demonstrate that glutamic acid addition, methionine and glucose restriction prompt yeast longevity through distinct mechanisms. This study may help to fill a gap in yeast model for the fast developing view that nutrient balance is a critical factor to extend lifespan.

  14. Independent and Additive Effects of Glutamic Acid and Methionine on Yeast Longevity

    PubMed Central

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian

    2013-01-01

    It is established that glucose restriction extends yeast chronological and replicative lifespan, but little is known about the influence of amino acids on yeast lifespan, although some amino acids were reported to delay aging in rodents. Here we show that amino acid composition greatly alters yeast chronological lifespan. We found that non-essential amino acids (to yeast) methionine and glutamic acid had the most significant impact on yeast chronological lifespan extension, restriction of methionine and/or increase of glutamic acid led to longevity that was not the result of low acetic acid production and acidification in aging media. Remarkably, low methionine, high glutamic acid and glucose restriction additively and independently extended yeast lifespan, which could not be further extended by buffering the medium (pH 6.0). Our preliminary findings using yeasts with gene deletion demonstrate that glutamic acid addition, methionine and glucose restriction prompt yeast longevity through distinct mechanisms. This study may help to fill a gap in yeast model for the fast developing view that nutrient balance is a critical factor to extend lifespan. PMID:24244480

  15. Amelioration of ethionine toxicity in the chick.

    PubMed

    Lowry, K R; Baker, D H

    1987-06-01

    Several chick bioassays were conducted to evaluate means of ameliorating ethionine toxicity. Supplementing a corn-soy diet marginally deficient in sulfur amino acids (methionine + cystine) with .075% D,L-ethionine reduced weight gain in 8-day-old chicks by 70% compared to gains of unsupplemented controls. Dietary addition of .50% DL-methionine prevented reduction in weight gain and feed intake resulting from ethionine supplementation whereas feeding supplemental L-cystine was without effect. Supplementation of the ethionine-containing diet with either choline or betaine ameliorated the growth depression, although neither compound was able to completely overcome the toxic effects of ethionine. Dietary ethionine did not affect plasma levels of free methionine or cystine but did increase plasma free glycine 6-fold. Dietary addition of .50% DL-methionine caused normalization of plasma glycine levels whereas it elevated plasma methionine concentration. Although results suggested the possibility of ethionine-induced serine or threonine deficiency, dietary additions of .75% L-serine or .75% L-threonine failed to improve chick weight gain. These studies suggest that ethionine, in addition to affecting transsulfuration and transmethylation activity may exert specific effects on certain amino acids in tissue pools.

  16. Hydrolysis of proteins with methanesulfonic acid for improved HPLC-ICP-MS determination of seleno-methionine in yeast and nuts.

    PubMed

    Wrobel, Katarzyna; Kannamkumarath, Sasi S; Wrobel, Kazimierz; Caruso, Joseph A

    2003-01-01

    In this work, the use of methanesulfonic acid for protein hydrolysis is proposed for evaluation of Se-methionine in yeast, Brazil nuts, and possibly other selenium-rich biological samples. The hydrolysis was carried out by heating the sample with 4 mol L(-1) acid at reflux for 8 h. Two chromatographic techniques (size-exclusion and ion-pairing) coupled with ICP-MS detection were used to compare the release of Se-methionine from proteins by enzymatic (proteinase K, protease XIV) and acid hydrolyses. A more efficient liberation of Se-methionine was observed by acid hydrolysis. For quantification, the sample extracts were introduced onto a C8 Alltima column, and the separation was achieved with a mobile phase containing 5 mmol L(-1) hexanesulfonic acid in citrate buffer (pH 4.5)/methanol (95:5). The results obtained by standard addition showed 816+/-17 micro g g(-1) and 36.2+/-1.5 micro g g(-1) of selenium in the form of Se-methionine in yeast and nuts, respectively (65% and 75% of total selenium).

  17. Purification and biochemical characterization of methionine aminopeptidase (MetAP) from Mycobacterium smegmatis mc2155.

    PubMed

    Narayanan, Sai Shyam; Ramanujan, Ajeena; Krishna, Shyam; Nampoothiri, Kesavan Madhavan

    2008-12-01

    The methionine aminopeptidase (MetAP) catalyzes the removal of amino terminal methionine from newly synthesized polypeptide. MetAP from Mycobacterium smegmatis mc(2) 155 was purified from the culture lysate in four sequential steps to obtain a final purification fold of 22. The purified enzyme exhibited a molecular weight of approximately 37 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Activity staining was performed to detect the methionine aminopeptidase activity on native polyacrylamide gel. The enzyme was characterized biochemically, using L-methionine p-nitroanilide as substrate. The enzyme was found to have a temperature and pH optimum of 50 degrees C and 8.5, respectively, and was found to be stable at 50 degrees C with half-life more than 8 h. The enzyme activity was enhanced by Mg(2+) and Co(2+) and was inhibited by Fe(2+) and Cu(2+). The enzyme activity inhibited by EDTA is restored in presence of Mg(2+) suggesting the possible role of Mg(2+) as metal cofactor of the enzyme in vitro.

  18. Photooxidation of Methionine

    ERIC Educational Resources Information Center

    Lewis, Catherine; Scouten, William H.

    1976-01-01

    Describes an experiment in which the photooxidation of methionine using free methylene blue as the sensitizer is applied to the isolated amino acid or to the methionyl residues of a complex polypeptide. (MLH)

  19. Transcriptional regulation of methionine synthase by homocysteine and choline in Aspergillus nidulans.

    PubMed Central

    Kacprzak, Magdalena M; Lewandowska, Irmina; Matthews, Rowena G; Paszewski, Andrzej

    2003-01-01

    Roles played by homocysteine and choline in the regulation of MS (methionine synthase) have been examined in fungi. The Aspergillus nidulans metH gene encoding MS was cloned and characterized. Its transcription was not regulated by methionine, but was enhanced by homocysteine and repressed by choline and betaine. MS activity levels were regulated in a similar way. The repression by betaine was due to its metabolic conversion to choline, which was found to be very efficient in A. nidulans. Betaine and choline supplementation stimulated growth of leaky metH mutants apparently by decreasing the demand for methyl groups and thus saving methionine and S -adenosylmethionine. We have also found that homocysteine stimulates transcription of MS-encoding genes in Saccharomyces cerevisiae and Schizosaccharomyces pombe. PMID:12954077

  20. [Tyrosine and methionine metabolism in various states of melaninogenesis].

    PubMed

    Kurbanov, Kh; Spiridonova, N A

    1990-01-01

    Excretion with urine of tyrosine and methionine metabolites as well as the activities of enzymes involved in their metabolism are correlated with the state and type of melanin synthesized in the skin. The response of tyrosine aminotransferase to melaninogenesis induction was more pronounced in animals with predominant pheomelaninogenesis, especially after tyrosine load, while that to dopachrome oxidoreductase--in animals with predominant eumelaninogenesis and after methionine load. Glutathione reductase and cystathionine-beta-synthase responded more vigorously to methionine injections, which was especially well pronounced in animals with prominent pheomelaninogenesis and in albino animals. The metabolic "block" in melanine synthesis in albino animals seems to be observed after the 5-S-cysteinyl-DOPA synthesis, whereas the initial steps of melaninogenesis in these animals are identical to pheomelanine synthesis reactions.

  1. Acetate metabolism does not reflect astrocytic activity, contributes directly to GABA synthesis, and is increased by silent information regulator 1 activation.

    PubMed

    Rowlands, Benjamin D; Klugmann, Matthias; Rae, Caroline D

    2017-03-01

    [ 13 C]Acetate is known to label metabolites preferentially in astrocytes rather than neurons and it has consequently been used as a marker for astrocytic activity. Recent discoveries suggest that control of acetate metabolism and its contributions to the synthesis of metabolites in brain is not as simple as first thought. Here, using a Guinea pig brain cortical tissue slice model metabolizing [1- 13 C]D-glucose and [1,2- 13 C]acetate, we investigated control of acetate metabolism and the degree to which it reflects astrocytic activity. Using a range of [1,2- 13 C]acetate concentrations, we found that acetate is a poor substrate for metabolism and will inhibit metabolism of itself and of glucose at concentrations in excess of 2 mmol/L. By activating astrocytes using potassium depolarization, we found that use of [1,2- 13 C]acetate to synthesize glutamine decreases significantly under these conditions showing that acetate metabolism does not necessarily reflect astrocytic activity. By blocking synthesis of glutamine using methionine sulfoximine, we found that significant amount of [1,2- 13 C]acetate are still incorporated into GABA and its metabolic precursors in neurons, with around 30% of the GABA synthesized from [1,2- 13 C]acetate likely to be made directly in neurons rather than from glutamine supplied by astrocytes. Finally, to test whether activity of the acetate metabolizing enzyme acetyl-CoA synthetase is under acetylation control in the brain, we incubated slices with the AceCS1 deacetylase silent information regulator 1 (SIRT1) activator SRT 1720 and showed consequential increased incorporation of [1,2- 13 C]acetate into metabolites. Taken together, these data show that acetate metabolism is not directly nor exclusively related to astrocytic metabolic activity, that use of acetate is related to enzyme acetylation and that acetate is directly metabolized to a significant degree in GABAergic neurons. Changes in acetate metabolism should be interpreted as modulation of metabolism through changes in cellular energetic status via altered enzyme acetylation levels rather than simply as an adjustment of glial-neuronal metabolic activity. © 2016 International Society for Neurochemistry.

  2. Higher Ammonium Transamination Capacity Can Alleviate Glutamate Inhibition on Winter Wheat (Triticum aestivum L.) Root Growth under High Ammonium Stress

    PubMed Central

    Liu, Yang; Tian, Zhongwei; Muhammad, Abid; Zhang, Yixuan; Jiang, Dong; Cao, Weixing; Dai, Tingbo

    2016-01-01

    Most of the studies about NH4+ stress mechanism simply address the effects of free NH4+, failing to recognize the changed nitrogen assimilation products. The objective of this study was to elucidate the effects of glutamate on root growth under high ammonium (NH4+) conditions in winter wheat (Triticum aestivum L.). Hydroponic experiments were conducted using two wheat cultivars, AK58 (NH4+-sensitive) and Xumai25 (NH4+-tolerant) with either 5 mM NH4+ nitrogen (AN) as stress treatment or 5 mM nitrate (NO3-) nitrogen as control. To evaluate the effects of NH4+-assimilation products on plant growth, 1 μM L-methionine sulfoximine (MSO) (an inhibitor of glutamine synthetase (GS)) and 1 mM glutamates (a primary N assimilation product) were added to the solutions, respectively. The AN significantly reduced plant biomass, total root length, surface area and root volume in both cultivars, but less effect was observed in Xumai25. The inhibition effects were alleviated by the application of MSO but strengthened by the application of glutamate. The AN increased the activities of GS, glutamate dehydrogenase (GDH) in both cultivars, resulting in higher glutamate contents. However, its contents were decreased by the application of MSO. Compared to AK58, Xumai25 showed lower glutamate contents due to its higher activities of glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT). With the indole-3-acetic acid (IAA) contents decreasing in roots, the ratio of shoot to root in IAA was increased, and further increased by the application of glutamate, and reduced by the application of MSO, but the ratio was lower in Xumai25. Meanwhile, the total soluble sugar contents and its root to shoot ratio also showed similar trends. These results indicate that the NH4+-tolerant cultivar has a greater transamination ability to prevent glutamate over-accumulation to maintain higher IAA transport ability, and consequently promoted soluble sugar transport to roots, further maintaining root growth. PMID:27512992

  3. Placentome Nutrient Transporters and Mammalian Target of Rapamycin Signaling Proteins Are Altered by the Methionine Supply during Late Gestation in Dairy Cows and Are Associated with Newborn Birth Weight.

    PubMed

    Batistel, Fernanda; Alharthi, Abdulrahman Sm; Wang, Ling; Parys, Claudia; Pan, Yuan-Xiang; Cardoso, Felipe C; Loor, Juan J

    2017-09-01

    Background: To our knowledge, most research demonstrating a link between maternal nutrition and both fetal growth and offspring development after birth has been performed with nonruminants. Whether such relationships exist in large ruminants is largely unknown. Objective: We aimed to investigate whether increasing the methionine supply during late pregnancy would alter uteroplacental tissue nutrient transporters and mammalian target of rapamycin (mTOR) and their relation with newborn body weight. Methods: Multiparous Holstein cows were used in a randomized complete block design experiment. During the last 28 d of pregnancy, cows were fed a control diet or the control diet plus ethylcellulose rumen-protected methionine (0.9 g/kg dry matter intake) (Mepron; Evonik Nutrition & Care GmbH) to achieve a 2.8:1 ratio of lysine to methionine in the metabolizable protein reaching the small intestine. We collected placentome samples at parturition and used them to assess mRNA and protein expression and the phosphorylation status of mTOR pathway proteins. Results: Newborn body weight was greater in the methionine group than in the control group (44.1 kg and 41.8 kg, respectively; P ≤ 0.05). Increasing the methionine supply also resulted in greater feed intake (15.8 kg/d and 14.6 kg/d), plasma methionine (11.9 μM and 15.3 μM), and plasma insulin (1.16 μg/L and 0.81 μg/L) in cows during late pregnancy. As a result, mRNA expression of genes involved in neutral amino acid transport [solute carrier (SLC) family members SLC3A2 , SLC7A5 , SLC38A1 , and SLC38A10 ], glucose transport [ SLC2A1 , SLC2A3 , and SLC2A4 ], and the mTOR pathway [mechanistic target of rapamycin and ribosomal protein S6 kinase B1] were upregulated ( P ≤ 0.07) in methionine-supplemented cows. Among 6 proteins in the mTOR pathway, increasing the methionine supply led to greater ( P ≤ 0.09) protein expression of α serine-threonine kinase (AKT), phosphorylated (p)-AKT, p-eukaryotic elongation factor 2, and the p-mTOR:mTOR ratio. Conclusion: Supplemental methionine during late gestation increases feed intake and newborn body weight in dairy cows, and this effect may be mediated by alterations in the uteroplacental transport of nondispensable and dispensable amino acids and glucose at least in part through changes in gene transcription and mTOR signaling. © 2017 American Society for Nutrition.

  4. Structure of massive star forming clumps from the Red MSX Source Survey

    NASA Astrophysics Data System (ADS)

    Figura, Charles C.; Urquhart, J. S.; Morgan, L.

    2014-01-01

    We present ammonia (1,1) and (2,2) emission maps of 61 high-mass star forming regions drawn from the Red MSX Source (RMS) Survey and observed with the Green Bank Telescope's K-Band Focal Plane Array. We use these observations to investigate the spatial distribution of the environmental conditions associated with this sample of embedded massive young stellar objects (MYSOs). Ammonia is an excellent high-density tracer of star-forming regions as its hyperfine structure allows relatively simple characterisation of the molecular environment. These maps are used to measure the column density, kinetic gas temperature distributions and velocity structure across these regions. We compare the distribution of these properties to that of the associated dust and mid-infrared emission traced by the ATLASGAL 870 micron emission maps and the Spitzer GLIMPSE IRAC images. We present a summary of these results and highlight some of more interesting finds.

  5. Infrared radiation scene generation of stars and planets in celestial background

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Hong, Yaohui; Xu, Xiaojian

    2014-10-01

    An infrared (IR) radiation generation model of stars and planets in celestial background is proposed in this paper. Cohen's spectral template1 is modified for high spectral resolution and accuracy. Based on the improved spectral template for stars and the blackbody assumption for planets, an IR radiation model is developed which is able to generate the celestial IR background for stars and planets appearing in sensor's field of view (FOV) for specified observing date and time, location, viewpoint and spectral band over 1.2μm ~ 35μm. In the current model, the initial locations of stars are calculated based on midcourse space experiment (MSX) IR astronomical catalogue (MSX-IRAC) 2 , while the initial locations of planets are calculated using secular variations of the planetary orbits (VSOP) theory. Simulation results show that the new IR radiation model has higher resolution and accuracy than common model.

  6. Benzoquinones and terphenyl compounds as phosphodiesterase-4B inhibitors from a fungus of the order Chaetothyriales (MSX 47445).

    PubMed

    El-Elimat, Tamam; Figueroa, Mario; Raja, Huzefa A; Graf, Tyler N; Adcock, Audrey F; Kroll, David J; Day, Cynthia S; Wani, Mansukh C; Pearce, Cedric J; Oberlies, Nicholas H

    2013-03-22

    Three bioactive compounds were isolated from an organic extract of an ascomycete fungus of the order Chaetothyriales (MSX 47445) using bioactivity-directed fractionation as part of a search for anticancer leads from filamentous fungi. Of these, two were benzoquinones [betulinan A (1) and betulinan C (3)], and the third was a terphenyl compound, BTH-II0204-207:A (2). The structures were elucidated using a set of spectroscopic and spectrometric techniques; the structure of the new compound (3) was confirmed via single-crystal X-ray diffraction. Compounds 1-3 were evaluated for cytotoxicity against a human cancer cell panel, for antimicrobial activity against Staphylococcus aureus and Candida albicans, and for phosphodiesterase (PDE4B2) inhibitory activities. The putative binding mode of 1-3 with PDE4B2 was examined using a validated docking protocol, and the binding and enzyme inhibitory activities were correlated.

  7. Overview and recent progress of the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Weber, T. E.; Intrator, T. P.; Smith, R. J.; Hutchinson, T. M.; Boguski, J. C.; Sears, J. A.; Swan, H. O.; Gao, K. W.; Chapdelaine, L. J.; Winske, D.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) has been constructed to study the physics of super-Alfvènic, supercritical, magnetized shocks. Exhibiting transitional length and time scales much smaller than can be produced through collisional processes, these shocks are observed to create non-thermal distributions, amplify magnetic fields, and accelerate particles to relativistic velocities. Shocks are produced through the acceleration and subsequent stagnation of Field Reversed Configuration (FRC) plasmoids against a high-flux magnetic mirror with a conducting boundary or a plasma target with embedded field. Adjustable shock velocity, density, and magnetic geometry (B parallel, perpendicular, or oblique to k) provide unique access to a wide range of dimensionless parameters relevant to astrophysical shocks. Information regarding the experimental configuration, diagnostics suite, recent simulations, experimental results, and physics goals will be presented. This work is supported by DOE OFES and NNSA under LANS contract DE-AC52-06NA25369 Approved for Public Release: LA-UR-13-24859.

  8. The Red MSX Source Survey: The Massive Young Stellar Population of Our Galaxy

    NASA Astrophysics Data System (ADS)

    Lumsden, S. L.; Hoare, M. G.; Urquhart, J. S.; Oudmaijer, R. D.; Davies, B.; Mottram, J. C.; Cooper, H. D. B.; Moore, T. J. T.

    2013-09-01

    We present the Red MSX Source survey, the largest statistically selected catalog of young massive protostars and H II regions to date. We outline the construction of the catalog using mid- and near-infrared color selection. We also discuss the detailed follow up work at other wavelengths, including higher spatial resolution data in the infrared. We show that within the adopted selection bounds we are more than 90% complete for the massive protostellar population, with a positional accuracy of the exciting source of better than 2 arcsec. We briefly summarize some of the results that can be obtained from studying the properties of the objects in the catalog as a whole; we find evidence that the most massive stars form: (1) preferentially nearer the Galactic center than the anti-center; (2) in the most heavily reddened environments, suggestive of high accretion rates; and (3) from the most massive cloud cores.

  9. Magnetic Diagnostics on the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Hutchinson, T. M.; Weber, T. E.; Boguski, J. C.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high-Alfvénic, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. An array of high-bandwidth, multi-axis, robust, internal magnetic probes has been constructed to characterize flux compression ratios, instability formation, and turbulent macro-scale features of the post-shock plasma. The mirror magnet is mounted on a linear translation stage, providing a capability to axially move the shock layer through the probe field of view. An independent, external probe array also provides conventional information on the FRC shape, velocity, and total pressure during the formation and acceleration phases. Probe design, characterization, configuration, and initial results are presented. This work is supported by the DOE OFES and NNSA under LANS contract DE-AC52-06NA25369. LA-UR-13-25189.

  10. Electromagnetic interaction of spacecraft with ambient environment

    NASA Astrophysics Data System (ADS)

    Ku, Hwar-Ching; Silver, David M.

    1993-01-01

    A model of the midcourse space experiment (MSX) spacecraft and its electromagnetic environment has been developed using the potential of large spacecraft in the Auroral region (POLAR) code. The geometric model has a resolution of 0.341 meters and uses six materials to simulate the electrical surface properties of MSX. The vehicle model includes features such as the major instruments, electronic boxes, radiators, a dewar and open bay, a booster attachment ring, and three different orientations of the solar panels. The electron and ion composition and temperature environment are modeled as a function of the solar activity. Additional parameters include the ram-wake orientation, the hot electron spectrum, day-night-twilight variations, latitudinal variations, and solar panel voltage biasing. Nominal low spacecraft charging cases are described. Calculation with a high peak energetic electron flux produces a ground potential of -180 volts and differential charging as high as 66 volts.

  11. Genome-Wide Meta-Analysis of Homocysteine and Methionine Metabolism Identifies Five One Carbon Metabolism Loci and a Novel Association of ALDH1L1 with Ischemic Stroke

    PubMed Central

    Chen, Fang; Liu, Xuan; Keene, Keith L.; Jacques, Paul; Chen, Wei-Min; Weinstein, Galit; Hsu, Fang-Chi; Beiser, Alexa; Wang, Liewei; Bookman, Ebony; Doheny, Kimberly F.; Wolf, Philip A.; Zilka, Michelle; Selhub, Jacob; Nelson, Sarah; Gogarten, Stephanie M.; Worrall, Bradford B.; Seshadri, Sudha; Sale, Michèle M.

    2014-01-01

    Circulating homocysteine levels (tHcy), a product of the folate one carbon metabolism pathway (FOCM) through the demethylation of methionine, are heritable and are associated with an increased risk of common diseases such as stroke, cardiovascular disease (CVD), cancer and dementia. The FOCM is the sole source of de novo methyl group synthesis, impacting many biological and epigenetic pathways. However, the genetic determinants of elevated tHcy (hyperhomocysteinemia), dysregulation of methionine metabolism and the underlying biological processes remain unclear. We conducted independent genome-wide association studies and a meta-analysis of methionine metabolism, characterized by post-methionine load test tHcy, in 2,710 participants from the Framingham Heart Study (FHS) and 2,100 participants from the Vitamin Intervention for Stroke Prevention (VISP) clinical trial, and then examined the association of the identified loci with incident stroke in FHS. Five genes in the FOCM pathway (GNMT [p = 1.60×10−63], CBS [p = 3.15×10−26], CPS1 [p = 9.10×10−13], ALDH1L1 [p = 7.3×10−13] and PSPH [p = 1.17×10−16]) were strongly associated with the difference between pre- and post-methionine load test tHcy levels (ΔPOST). Of these, one variant in the ALDH1L1 locus, rs2364368, was associated with incident ischemic stroke. Promoter analyses reveal genetic and epigenetic differences that may explain a direct effect on GNMT transcription and a downstream affect on methionine metabolism. Additionally, a genetic-score consisting of the five significant loci explains 13% of the variance of ΔPOST in FHS and 6% of the variance in VISP. Association between variants in FOCM genes with ΔPOST suggest novel mechanisms that lead to differences in methionine metabolism, and possibly the epigenome, impacting disease risk. These data emphasize the importance of a concerted effort to understand regulators of one carbon metabolism as potential therapeutic targets. PMID:24651765

  12. The effects of L-cysteine and N-acetyl-L-cysteine on homocysteine metabolism and haemostatic markers, and on cardiac and aortic histology in subchronically methionine-treated Wistar male rats.

    PubMed

    Kostić, Sanja; Mićovic, Žarko; Andrejević, Lazar; Cvetković, Saša; Stamenković, Aleksandra; Stanković, Sanja; Obrenović, Radmila; Labudović-Borović, Milica; Hrnčić, Dragan; Jakovljević, Vladimir; Djurić, Dragan

    2018-06-23

    Methionine is the precursor of homocysteine, a sulfur amino acid intermediate in the methylation and transsulfuration pathways; methionine-rich diets were used to induce hyperhomocysteinemia, and cardiovascular pathology was often observed. Other sulfur amino acids interfere with this metabolism, i.e., L-cysteine (Cys) and N-aceyl-L-cysteine (NAC), and probably also affect cardiovascular system. Their effects are controversial due to their ability to act both as anti- or pro-oxidant. Thus, this study aimed to elucidate their influence on levels of homocysteine, folate and vitamin B12, levels of different haemostatic parameters (fibrinogen, D-dimer, vWF Ag, vWF Ac) in rat serum or plasma as well as their effects on cardiac and aortic tissue histology in subchronically methionine-treated rats. Wistar albino rats were divided into 4 experimental groups: (a) control group (0.9% sodium chloride 0.1-0.2 mL/day) (n = 10) (K); (b) DL-methionine (0.8 mmol/kg/bw/day) (n = 10) (M); (c) DL-methionine (0.8 mmol/kg/bw/day) + L-cysteine (7 mg/kg/bw/day) (n = 8) (C); (d) DL-methionine (0.8 mmol/ kg/bw/day) + N-acetyl-L-cysteine (50 mg/kg/bw/day) (n = 8) (N). All substances were applied i.p., treatment duration 3 weeks. Lower levels of vitamin B12 in all the groups were found. Folate was reduced only in N group. Decreased fibrinogen was noted in C and N groups and increased D-dimer only in C. VWF activity was reduced in M and C groups. Deleterious effects in heart were observed, especially after Cys and NAC application. Aortic tissue remained unchanged. In conclusion, it could be said that sulfur amino acids have the significant impact on cardiovascular system in subchronically methionine-treated rats. This study points out the relevance of their complex interactions and deleterious effects mediated by either direct influence or procoagulant properties.

  13. Major regulatory factors in the evolution of development: the roles of goosecoid and Msx in the evolution of the direct-developing sea urchin Heliocidaris erythrogramma.

    PubMed

    Wilson, Keen A; Andrews, Mary E; Rudolf Turner, F; Raff, Rudolf A

    2005-01-01

    The transcription factors Gsc and Msx are expressed in the oral ectoderm of the indirect-developing sea urchin Heliocidaris tuberculata. Their patterns of expression are highly modified in the direct developer Heliocidaris erythrogramma, which lacks an oral ectoderm. We here test the hypothesis that they are large effect genes responsible for the loss of the oral ectoderm module in the direct-developing larva of H. erythrogramma as well as for the restoration of an overt oral ectoderm in H.e. xH.t. hybrids. We undertook misexpression/overexpression and knockdown assays in the two species and in hybrids by mRNA injection. The results indicate that dramatic changes of function of these transcription factors has occurred. One of these genes, Gsc, has the ability when misexpressed to partially restore oral ectoderm in H. erythrogramma. On the other hand, Msx has lost any oral function and instead has a role in mesoderm proliferation and patterning. In addition, we found that the H. tuberculataGsc is up regulated in H.e. xH.t. hybrids, showing a preferential use of the indirect developing parental gene in the development of the hybrid. We suggest that Gsc qualifies as a gene of large evolutionary effect and is partially responsible for the evolution of direct development of H. erythrogramma. We discuss these results in light of modularity and genetic networks in development, as well as in their implications for the rapid evolution of large morphological changes in development.

  14. BMP signaling in the human fetal ovary is developmentally regulated and promotes primordial germ cell apoptosis.

    PubMed

    Childs, Andrew J; Kinnell, Hazel L; Collins, Craig S; Hogg, Kirsten; Bayne, Rosemary A L; Green, Samira J; McNeilly, Alan S; Anderson, Richard A

    2010-08-01

    Primordial germ cells (PGCs) are the embryonic precursors of gametes in the adult organism, and their development, differentiation, and survival are regulated by a combination of growth factors collectively known as the germ cell niche. Although many candidate niche components have been identified through studies on mouse PGCs, the growth factor composition of the human PGC niche has not been studied extensively. Here we report a detailed analysis of the expression of components of the bone morphogenetic protein (BMP) signaling apparatus in the human fetal ovary, from postmigratory PGC proliferation to the onset of primordial follicle formation. We find developmentally regulated and reciprocal patterns of expression of BMP2 and BMP4 and identify germ cells to be the exclusive targets of ovarian BMP signaling. By establishing long-term cultures of human fetal ovaries in which PGCs are retained within their physiological niche, we find that BMP4 negatively regulates postmigratory PGC numbers in the human fetal ovary by promoting PGC apoptosis. Finally, we report expression of both muscle segment homeobox (MSX)1 and MSX2 in the human fetal ovary and reveal a selective upregulation of MSX2 expression in human fetal ovary in response to BMP4, suggesting this gene may act as a downstream effector of BMP-induced apoptosis in the ovary, as in other systems. These data reveal for the first time growth factor regulation of human PGC development in a physiologically relevant context and have significant implications for the development of cultures systems for the in vitro maturation of germ cells, and their derivation from pluripotent stem cells.

  15. Towards Defining Nutrient Conditions Encountered by the Rice Blast Fungus during Host Infection

    PubMed Central

    Wilson, Richard A.; Fernandez, Jessie; Quispe, Cristian F.; Gradnigo, Julien; Seng, Anya; Moriyama, Etsuko; Wright, Janet D.

    2012-01-01

    Fungal diseases cause enormous crop losses, but defining the nutrient conditions encountered by the pathogen remains elusive. Here, we generated a mutant strain of the devastating rice pathogen Magnaporthe oryzae impaired for de novo methionine biosynthesis. The resulting methionine-requiring strain grew strongly on synthetic minimal media supplemented with methionine, aspartate or complex mixtures of partially digested proteins, but could not establish disease in rice leaves. Live-cell-imaging showed the mutant could produce normal appressoria and enter host cells but failed to develop, indicating the availability or accessibility of aspartate and methionine is limited in the plant. This is the first report to demonstrate the utility of combining biochemical genetics, plate growth tests and live-cell-imaging to indicate what nutrients might not be readily available to the fungal pathogen in rice host cells. PMID:23071797

  16. Salt tolerance and methionine biosynthesis in Saccharomyces cerevisiae involve a putative phosphatase gene.

    PubMed Central

    Gläser, H U; Thomas, D; Gaxiola, R; Montrichard, F; Surdin-Kerjan, Y; Serrano, R

    1993-01-01

    The progressive salinization of irrigated land poses a threat to the future of agriculture in arid regions. The identification of crucial metabolic steps in salt tolerance is important for the understanding of stress physiology and may provide the tools for its genetic engineering. In the yeast Saccharomyces cerevisiae we have isolated a gene, HAL2, which upon increase in gene dosage improves growth under NaCl and LiCl stresses. The HAL2 protein is homologous to inositol phosphatases, enzymes known to be inhibited by lithium salts. Complementation analysis demonstrated that HAL2 is identical to MET22, a gene involved in methionine biosynthesis. Accordingly, methionine supplementation improves the tolerance of yeast to NaCl and LiCl. These results demonstrate an unsuspected interplay between methionine biosynthesis and salt tolerance. Images PMID:8393782

  17. Regulation of Selenoproteins and Methionine Sulfoxide Reductases A and B1 by Age, Calorie Restriction, and Dietary Selenium in Mice

    PubMed Central

    Novoselov, Sergey V.; Kim, Hwa-Young; Hua, Deame; Lee, Byung Cheon; Astle, Clinton M.; Harrison, David E.; Friguet, Bertrand; Moustafa, Mohamed E.; Carlson, Bradley A.; Hatfield, Dolph L.

    2010-01-01

    Abstract Methionine residues are susceptible to oxidation, but this damage may be reversed by methionine sulfoxide reductases MsrA and MsrB. Mammals contain one MsrA and three MsrBs, including a selenoprotein MsrB1. Here, we show that MsrB1 is the major methionine sulfoxide reductase in liver of mice and it is among the proteins that are most easily regulated by dietary selenium. MsrB1, but not MsrA activities, were reduced with age, and the selenium regulation of MsrB1 was preserved in the aging liver, suggesting that MsrB1 could account for the impaired methionine sulfoxide reduction in aging animals. We also examined regulation of Msr and selenoprotein expression by a combination of dietary selenium and calorie restriction and found that, under calorie restriction conditions, selenium regulation was preserved. In addition, mice overexpressing a mutant form of selenocysteine tRNA reduced MsrB1 activity to the level observed in selenium deficiency, whereas MsrA activity was elevated in these animals. Finally, we show that selenium regulation in inbred mouse strains is preserved in an outbred aging model. Taken together, these findings better define dietary regulation of methionine sulfoxide reduction and selenoprotein expression in mice with regard to age, calorie restriction, dietary Se, and a combination of these factors. Antioxid. Redox Signal. 12, 829–838. PMID:19769460

  18. Recombinant methioninase effectively targets a Ewing's sarcoma in a patient-derived orthotopic xenograft (PDOX) nude-mouse model

    PubMed Central

    Murakami, Takashi; Li, Shukuan; Han, Qinghong; Tan, Yuying; Kiyuna, Tasuku; Igarashi, Kentaro; Kawaguchi, Kei; Hwang, Ho Kyoung; Miyake, Kentaro; Singh, Arun S.; Nelson, Scott D.; Dry, Sarah M.; Li, Yunfeng; Hiroshima, Yukihiko; Lwin, Thinzar M.; DeLong, Jonathan C.; Chishima, Takashi; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Eilber, Fritz C.; Hoffman, Robert M.

    2017-01-01

    Methionine dependence is due to the overuse of methionine for aberrant transmethylation reactions in cancer. Methionine dependence may be the only general metabolic defect in cancer. In order to exploit methionine dependence for therapy, our laboratory previously cloned L-methionine α-deamino-γ-mercaptomethane lyase [EC 4.4.1.11]). The cloned methioninase, termed recombinant methioninase, or rMETase, has been tested in mouse models of human cancer cell lines. Ewing's sarcoma is recalcitrant disease even though development of multimodal therapy has improved patients'outcome. Here we report efficacy of rMETase against Ewing's sarcoma in a patient-derived orthotopic xenograft (PDOX) model. The Ewing's sarcoma was implanted in the right chest wall of nude mice to establish a PDOX model. Eight Ewing's sarcoma PDOX mice were randomized into untreated control group (n = 4) and rMETase treatment group (n = 4). rMETase (100 units) was injected intraperitoneally (i.p.) every 24 hours for 14 consecutive days. All mice were sacrificed on day-15, 24 hours after the last rMETase administration. rMETase effectively reduced tumor growth compared to untreated control. The methionine level both of plasma and supernatants derived from sonicated tumors was lower in the rMETase group. Body weight did not significantly differ at any time points between the 2 groups. The present study is the first demonstrating rMETase efficacy in a PDOX model, suggesting potential clinical development, especially in recalcitrant cancers such as Ewing's sarcoma. PMID:28404944

  19. Recombinant methioninase effectively targets a Ewing's sarcoma in a patient-derived orthotopic xenograft (PDOX) nude-mouse model.

    PubMed

    Murakami, Takashi; Li, Shukuan; Han, Qinghong; Tan, Yuying; Kiyuna, Tasuku; Igarashi, Kentaro; Kawaguchi, Kei; Hwang, Ho Kyoung; Miyake, Kentaro; Singh, Arun S; Nelson, Scott D; Dry, Sarah M; Li, Yunfeng; Hiroshima, Yukihiko; Lwin, Thinzar M; DeLong, Jonathan C; Chishima, Takashi; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Eilber, Fritz C; Hoffman, Robert M

    2017-05-30

    Methionine dependence is due to the overuse of methionine for aberrant transmethylation reactions in cancer. Methionine dependence may be the only general metabolic defect in cancer. In order to exploit methionine dependence for therapy, our laboratory previously cloned L-methionine α-deamino-γ-mercaptomethane lyase [EC 4.4.1.11]). The cloned methioninase, termed recombinant methioninase, or rMETase, has been tested in mouse models of human cancer cell lines. Ewing's sarcoma is recalcitrant disease even though development of multimodal therapy has improved patients'outcome. Here we report efficacy of rMETase against Ewing's sarcoma in a patient-derived orthotopic xenograft (PDOX) model. The Ewing's sarcoma was implanted in the right chest wall of nude mice to establish a PDOX model. Eight Ewing's sarcoma PDOX mice were randomized into untreated control group (n = 4) and rMETase treatment group (n = 4). rMETase (100 units) was injected intraperitoneally (i.p.) every 24 hours for 14 consecutive days. All mice were sacrificed on day-15, 24 hours after the last rMETase administration. rMETase effectively reduced tumor growth compared to untreated control. The methionine level both of plasma and supernatants derived from sonicated tumors was lower in the rMETase group. Body weight did not significantly differ at any time points between the 2 groups. The present study is the first demonstrating rMETase efficacy in a PDOX model, suggesting potential clinical development, especially in recalcitrant cancers such as Ewing's sarcoma.

  20. Elimination of remaining undifferentiated induced pluripotent stem cells in the process of human cardiac cell sheet fabrication using a methionine-free culture condition.

    PubMed

    Matsuura, Katsuhisa; Kodama, Fumiko; Sugiyama, Kasumi; Shimizu, Tatsuya; Hagiwara, Nobuhisa; Okano, Teruo

    2015-03-01

    Cardiac tissue engineering is a promising method for regenerative medicine. Although we have developed human cardiac cell sheets by integration of cell sheet-based tissue engineering and scalable bioreactor culture, the risk of contamination by induced pluripotent stem (iPS) cells in cardiac cell sheets remains unresolved. In the present study, we established a novel culture method to fabricate human cardiac cell sheets with a decreased risk of iPS cell contamination while maintaining viabilities of iPS cell-derived cells, including cardiomyocytes and fibroblasts, using a methionine-free culture condition. When cultured in the methionine-free condition, human iPS cells did not survive without feeder cells and could not proliferate or form colonies on feeder cells or in coculture with cells for cardiac cell sheet fabrication. When iPS cell-derived cells after the cardiac differentiation were transiently cultured in the methionine-free condition, gene expression of OCT3/4 and NANOG was downregulated significantly compared with that in the standard culture condition. Furthermore, in fabricated cardiac cell sheets, spontaneous and synchronous beating was observed in the whole area while maintaining or upregulating the expression of various cardiac and extracellular matrix genes. These findings suggest that human iPS cells are methionine dependent and a methionine-free culture condition for cardiac cell sheet fabrication might reduce the risk of iPS cell contamination.

  1. Endosperm Protein Synthesis and l-[35S]Methionine Incorporation in Maize Kernels Cultured In Vitro1

    PubMed Central

    Cully, David E.; Gengenbach, Burle G.; Smith, Jane A.; Rubenstein, Irwin; Connelly, James A.; Park, William D.

    1984-01-01

    This study was conducted to examine protein synthesis and l-[35S] methionine incorporation into the endosperm of Zea mays L. kernels developing in vitro. Two-day-old kernels of the inbred line W64A were placed in culture on a defined medium containing 10 microCuries l-[35S] methionine per milliliter (13 milliCuries per millimole) and harvested at 10, 15, 20, 25, 30, 35, and 40 days after pollination. Cultured kernels attained a final endosperm mass of 120 milligrams compared to 175 milligrams for field-grown controls. Field and cultured kernels had similar concentrations (microgram per milligram endospern) for total protein, albumin plus globulin, zein, and glutelin fractions at most kernel ages. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing patterns for endosperm proteins were similar for field and cultured kernels throughout development. By 15 days, over 70% of the l-[35S]methionine taken up was present in endosperm proteins. Label incorporation visualized by fluorography generally followed the protein intensity of the stained gels. The high methionine content, low molecular weight zeins (i.e. 15 and 9 kilodaltons) were highly labeled. All of the radioactivity in hydrolyzed zein samples was recovered in the methionine peak indicating minimal conversion to l-[35S]cysteine. The procedure described here is suitable for long term culture and labeling experiments in which continued kernel development is required. Images Fig. 2 Fig. 3 Fig. 4 PMID:16663428

  2. Optimization of L: -methionine feeding strategy for improving S-adenosyl-L: -methionine production by methionine adenosyltransferase overexpressed Pichia pastoris.

    PubMed

    Hu, Hui; Qian, Jiangchao; Chu, Ju; Wang, Yonghong; Zhuang, Yingping; Zhang, Siliang

    2009-07-01

    The recombinant Pichia pastoris harboring an improved methionine adenosyltransferase (MAT) shuffled gene was employed to biosynthesize S-adenosyl-L: -methionine (SAM). Two L: -methionine (L: -Met) addition strategies were used to supply the precursor: the batch addition strategy (L: -Met was added separately at three time points) and the continuous feeding strategies (L: -Met was fed continuously at the rate of 0.1, 0.2, and 0.5 g l(-1) h(-1), respectively). SAM accumulation, L: -Met conversion rate, and SAM productivity with the continuous feeding strategies were all improved over the batch addition strategy, which reached 8.46 +/- 0.31 g l(-1), 41.7 +/- 1.4%, and 0.18 +/- 0.01 g l(-1) h(-1) with the best continuous feeding strategy (0.2 g l(-1) h(-1)), respectively. The bottleneck for SAM production with the low L: -Met feeding rate (0.1 g L(-1) h(-1)) was the insufficient L: -Met supply. The analysis of the key enzyme activities indicated that the tricarboxylic acid cycle and glycolytic pathway were reduced with the increasing L: -Met feeding rate, which decreased the adenosine triphosphate (ATP) synthesis. The MAT activity also decreased as the L: -Met feeding rate rose. The reduced ATP synthesis and MAT activity were probably the reason for the low SAM accumulation when the L: -Met feeding rate reached 0.5 g l(-1) h(-1).

  3. Zoledronate, ibandronate and clodronate enhance osteoblast differentiation in a dose dependent manner--a quantitative in vitro gene expression analysis of Dlx5, Runx2, OCN, MSX1 and MSX2.

    PubMed

    Koch, Felix Peter; Merkel, Christina; Al-Nawas, Bilal; Smeets, Ralf; Ziebart, Thomas; Walter, Christian; Wagner, Wilfried

    2011-12-01

    Bisphosphonates are widely used in the clinical treatment of bone diseases with increased bone resorption. In terms of side effects, they are known to be associated with osteonecrosis of the jaw (BONJ). There are two groups of bisphosphonates: the nitrogen-containing bisphosphonates, e.g. zoledronate and ibandronate, and the non-nitrogen-containing bisphosphonates, e.g. clodronate. Their impact on bone metabolism seems to differ. The objective of this study was to compare the osteogenic differentiation potency of these two pharmacologic groups. Human osteoblasts were stimulated with zoledronate and ibandronate at concentrations of 5×10(-5) M, 5×10(-6) M and 5×10(-7) M over the experimental periods of 1, 2, 5, 10 and 14 days. Clodronate was applied with concentrations of 5×10(-3), 5×10(-5) M and 5×10(-6) M. At each time point, the cells were dissolved, the mRNA extracted, and the gene expression level of the osteoblast specific differentiation markers of the homeobox transcription factors MSX1 and MSX2, the distal-less homeobox 5 (Dlx5), the Runt-related transcription factor 2 (Runx2/CBF1a) and osteocalcin (OCN) were quantified by Real-Time PCR. The gene expression was compared to an unstimulated osteoblast cell culture as control. The results showed a significant difference between the nitrogen-containing and the non-nitrogen-containing bisphosphonates. Zoledronate and ibandronate at concentrations of 5×10(-5) M enhanced the gene expression of all differentiation markers by several hundred folds compared to unstimulated control after 10 days, whereas clodronate had less influence on gene expression, even at higher concentrations of 5×10(-3) M. Lower concentrations of zoledronate and ibandronate, however, led to a decreased gene expression. These data confirm the results of other studies which have shown the osteogenic stimulus on osteoblasts in a dose dependent manner. The nitrogen-containing bisphosphonates appear to enhance bone density by stimulation of osteoblast differentiation. Non-nitrogen-containing bisphosphonates seem to have less influence on osteoblast differentiation. Copyright © 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Regioselective syntheses of 1,2-benzothiazines by rhodium-catalyzed annulation reactions.

    PubMed

    Cheng, Ying; Bolm, Carsten

    2015-10-12

    Rhodium-catalyzed directed carbene insertions into aromatic CH bonds of S-aryl sulfoximines lead to intermediates, which upon dehydration provide 1,2-benzothiazines in excellent yields. The domino-type process is regioselective and shows a high functional-group tolerance. It is scalable, and the only by-products are dinitrogen and water. Three illustrative transformations underscore the synthetic value of the products. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Methionine catabolism and production of volatile sulphur compounds by OEnococcus oeni.

    PubMed

    Pripis-Nicolau, L; de Revel, G; Bertrand, A; Lonvaud-Funel, A

    2004-01-01

    During malolactic fermentation (MLF), the secondary metabolisms of lactic acid bacteria (LAB) contribute to the organoleptic modification of wine. To understand the contribution of MLF, we evaluated the capacity of various wine LAB to metabolize methionine. Using gas chromatography (GC) coupled either with mass spectrometry (MS) or a flame photometry detector in sulphur mode (FPD), we studied this metabolism in laboratory media and wine. In laboratory media, several LAB isolated from wine were able to metabolize methionine. They formed methanethiol, dimethyl disulphide, 3-(methylsulphanyl)propan-1-ol and 3-(methylsulphanyl)propionic acid. These are known to have powerful characteristic odours and play a role in the aromatic complexity of wine. In various red wines, after MLF only the 3-(methylsulphanyl)propionic acid concentration increased significantly, as verified with several commercial starter cultures. This compound, which is characterized by chocolate and roasted odours, could contribute to the aromatic complexity produced by MLF. This study shows that LAB isolated from wine, especially OEnococcus oeni strains, the major species in MLF, are able to metabolize methionine to form volatile sulphur compounds. This is the first study to demonstrate the capacity of wine LAB to metabolize methionine.

  6. Technical Note: Methionine, a precursor of methane in living plants

    NASA Astrophysics Data System (ADS)

    Lenhart, K.; Althoff, F.; Greule, M.; Keppler, F.

    2015-03-01

    When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued not only about their contribution to the global methane budget but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds to be identified. We made use of stable isotope techniques to verify the in vivo formation of methane, and, in order to identify the carbon precursor, 13C positionally labeled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labeled methionine clearly identified the sulfur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.

  7. Technical note: Methionine, a precursor of methane in living plants

    NASA Astrophysics Data System (ADS)

    Lenhart, K.; Althoff, F.; Greule, M.; Keppler, F.

    2014-11-01

    When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued, not only about their contribution to the global methane budget, but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds identified. We made use of stable isotope techniques to verify in vivo formation of methane and, in order to identify the carbon precursor, 13C-positionally labelled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labelled methionine clearly identified the sulphur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.

  8. Identification of hydrogen peroxide oxidation sites of alpha A- and alpha B-crystallins.

    PubMed

    Smith, J B; Jiang, X; Abraham, E C

    1997-02-01

    The alpha-crystallins are the most abundant structural proteins of the lens and, because of their chaperone activity, contribute to the solubility of the other crystallins. With aging, the lens crystallins undergo a variety of modifications which correlate with a loss of solubility and the development of cataract. A recent study demonstrating that alpha-crystallins exposed in vitro to FeCl3 and H2O2 exhibit decreased chaperone activity, implicates metal catalyzed oxidations of alpha-crystallins in this loss of solubility. The present study has determined that alpha-crystallins incubated with FeCl3 and H2O2 are modified by the nearly complete oxidation of all methionine residues to methionine sulfoxide, with no other detectable reaction products. The modifications were identified from the molecular weights of peptides formed by enzymatic digestion of the alpha-crystallins and located by tandem mass spectrometric analysis of the fragmentation pattern of the mass spectra of the fragments from peptides with oxidized methionine is loss of 64 Da, which corresponds to loss of CH3SOH from the methionine sulfoxide. These fragments are useful in identifying peptides that include oxidized methionine residues.

  9. Glutathione reductase mediates drug resistance in glioblastoma cells by regulating redox homeostasis.

    PubMed

    Zhu, Zhongling; Du, Shuangshuang; Du, Yibo; Ren, Jing; Ying, Guoguang; Yan, Zhao

    2018-01-01

    Glutathione (GSH) and GSH-related enzymes constitute the most important defense system that protects cells from free radical, radiotherapy, and chemotherapy attacks. In this study, we aim to explore the potential role and regulatory mechanism of the GSH redox cycle in drug resistance in glioblastoma multiforme (GBM) cells. We found that temozolomide (TMZ)-resistant glioma cells displayed lower levels of endogenous reactive oxygen species and higher levels of total antioxidant capacity and GSH than sensitive cells. Moreover, the expression of glutathione reductase (GSR), the key enzyme of the GSH redox cycle, was higher in TMZ-resistant cells than in sensitive cells. Furthermore, silencing GSR in drug-resistant cells improved the sensitivity of cells to TMZ or cisplatin. Conversely, the over-expression of GSR in sensitive cells resulted in resistance to chemotherapy. In addition, the GSR enzyme partially prevented the oxidative stress caused by pro-oxidant L-buthionine -sulfoximine. The modulation of redox state by GSH or L-buthionine -sulfoximine regulated GSR-mediated drug resistance, suggesting that the action of GSR in drug resistance is associated with the modulation of redox homeostasis. Intriguingly, a trend toward shorter progress-free survival was observed among GBM patients with high GSR expression. These results indicated that GSR is involved in mediating drug resistance and is a potential target for improving GBM treatment. © 2017 International Society for Neurochemistry.

  10. Vitamin E, γ-tocotrienol, Protects Against Buthionine Sulfoximine-Induced Cell Death by Scavenging Free Radicals in SH-SY5Y Neuroblastoma Cells.

    PubMed

    Tan, Jen-Kit; Then, Sue-Mian; Mazlan, Musalmah; Jamal, Rahman; Ngah, Wan Zurinah Wan

    2016-01-01

    The induction of reactive oxygen species (ROS) to selectively kill cancer cells is an important feature of radiotherapy and various chemotherapies. Depletion of glutathione can induce apoptosis in cancer cells or sensitize them to anticancer treatments intended to modulate ROS levels. In contrast, antioxidants protect cancer cells from oxidative stress-induced cell death by scavenging ROS. The role of exogenous antioxidants in cancer cells under oxidative insults remains controversial and unclear. This study aimed to identify protective pathways modulated by γ-tocotrienol (γT3), an isomer of vitamin E, in human neuroblastoma SH-SY5Y cells under oxidative stress. Using buthionine sulfoximine (BSO) as an inhibitor of glutathione synthesis, we found that BSO treatment reduced the viability of SH-SY5Y cells. BSO induced cell death by increasing apoptosis, decreased the level of reduced glutathione (GSH), and increased ROS levels in SH-SY5Y cells. Addition of γT3 increased the viability of BSO-treated cells, suppressed apoptosis, and decreased the ROS level induced by BSO, while the GSH level was unaffected. These results suggest that decreasing GSH levels by BSO increased ROS levels, leading to apoptosis in SH-SY5Y cells. γT3 attenuated the BSO-induced cell death by scavenging free radicals.

  11. Buthionine Sulfoximine Increases the Toxicity of Nifurtimox and Benznidazole to Trypanosoma cruzi

    PubMed Central

    Faundez, Mario; Pino, Laura; Letelier, Paula; Ortiz, Carla; López, Rodrigo; Seguel, Claudia; Ferreira, Jorge; Pavani, Mario; Morello, Antonio; Maya, Juan Diego

    2005-01-01

    l-Buthionine (S,R)-sulfoximine (BSO) increased the toxicity of nifurtimox and benznidazole toward the epimastigote, trypomastigote, and amastigote forms of Trypanosoma cruzi. BSO at 500 μM decreased total glutathione-derived thiols by 70 to 80% in 48 h. In epimastigotes, 500 μM BSO decreased the concentration of nifurtimox needed to inhibit constant growth of the parasites by 50%, from 14.0 to 9.0 μM, and decreased that of benznidazole from 43.6 to 24.1 μM. The survival of epimastigotes or trypomastigotes treated with nifurtimox or benznidazole, as measured by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) reduction, was significantly decreased by 500 μM BSO. In Vero cells infected with amastigotes, 25 μM BSO was able to potentiate the effect of nifurtimox and benznidazole as measured by the percentage of infected Vero cells multiplied by the average number of intracellular amastigotes (endocytic index). At 0.5 μM nifurtimox, the proportion of Vero cells infected decreased from 27 to 20% and the endocytic index decreased from 2,500 to 980 when 25 μM BSO was added. Similar results were obtained with benznidazole- and BSO-benznidazole-treated cells. This study indicates that potentiation of nifurtimox or benznidazole by BSO could decrease the clinical dose of both drugs and diminish the side effects or the length of therapy. PMID:15616285

  12. Cellular glutathione depletion by diethyl maleate or buthionine sulfoximine: no effect of glutathione depletion on the oxygen enhancement ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, J.B.; Russo, A.; Biaglow, J.E.

    1983-11-01

    The hypoxic and euoxic radiation response for Chinese hamster lung and A549 human lung carcinoma cells was obtained under conditions where their nonprotein thiols, consisting primarily of glutathione (GSH), were depleted by different mechanisms. The GSH conjugating reagent diethylmaleate (DEM) was compared to DL-buthionine-S,R-sulfoximine (BSO), an inhibitor of glutathionine biosynthesis. Each reagent depleted cellular GSH to less than 5% of control values. A 2-h exposure to 0.5 mM DEM or a 4- or 24-h exposure to BSO at 10 or 1 mM, respectively, depleted cellular GSH to less than 5% of control values. Both agents sensitized cells irradiated under airmore » or hypoxic conditions. When GSH levels are lowered to < 5% by both agents, hypoxic DEM-treated cells exhibited slightly greater x-ray sensitization than hypoxic BSO-treated cells. The aerobic and anoxic sensitization of the cells results in the OER's of 2.8 and 3.0 for the DEM- and BSO-treated cells compared to 2.9 for the V79 control A549. BSO-treated cells showed an OER of 3.3 versus 3 for the control. Our results suggest that GSH depletion by either BSO or DEM sensitizes aerobic cells to radiation but does not appreciably alter the OER.« less

  13. Characterisation of methionine adenosyltransferase from Mycobacterium smegmatis and M. tuberculosis

    PubMed Central

    Berger, Bradley J; Knodel, Marvin H

    2003-01-01

    Background Tuberculosis remains a serious world-wide health threat which requires the characterisation of novel drug targets for the development of future antimycobacterials. One of the key obstacles in the definition of new targets is the large variety of metabolic alterations that occur between cells in the active growth and chronic/dormant phases of tuberculosis. The ideal biochemical target should be active in both growth phases. Methionine adenosyltransferase, which catalyses the formation of S-adenosylmethionine from methionine and ATP, is involved in polyamine biosynthesis during active growth and is also required for the methylation and cyclopropylation of mycolipids necessary for survival in the chronic phase. Results The gene encoding methionine adenosyltransferase has been cloned from Mycobacterium tuberculosis and the model organism M. smegmatis. Both enzymes retained all amino acids known to be involved in catalysing the reaction. While the M. smegmatis enzyme could be functionally expressed, the M. tuberculosis homologue was insoluble and inactive under a large variety of expression conditions. For the M. smegmatis enzyme, the Vmax for S-adenosylmethionine formation was 1.30 μmol/min/mg protein and the Km for methionine and ATP was 288 μM and 76 μM respectively. In addition, the enzyme was competitively inhibited by 8-azaguanine and azathioprine with a Ki of 4.7 mM and 3.7 mM respectively. Azathioprine inhibited the in vitro growth of M. smegmatis with a minimal inhibitory concentration (MIC) of 500 μM, while the MIC for 8-azaguanine was >1.0 mM. Conclusion The methionine adenosyltransferase from both organisms had a primary structure very similar those previously characterised in other prokaryotic and eukaryotic organisms. The kinetic properties of the M. smegmatis enzyme were also similar to known prokaryotic methionine adenosyltransferases. Inhibition of the enzyme by 8-azaguanine and azathioprine provides a starting point for the synthesis of higher affinity purine-based inhibitors. PMID:12809568

  14. Prevention by Methionine of Enhancement of Hepatocarcinogenesis by Coadministration of a Choline‐deficient L‐Amino Acid‐defined Diet and Ethionine in Rats

    PubMed Central

    Tsujiuchi, Toshifumi; Kobayashi, Eisaku; Nakae, Dai; Mizumoto, Yasushi; Andoh, Nobuaki; Kitada, Hiromichi; Ohashi, Kazuo; Fukuda, Tomokazu; Kido, Akira; Tsutsumi, Masahiro; Denda, Ayumi

    1995-01-01

    The effects of methionine on hepatocarcinogenesis induced by Coadministration of a choline‐deflcient L‐amino acid‐defined (CDAA) diet and ethionine were examined. F344 male rats were divided into 4 experimental groups. Groups 1 and 2 received the CDAA diet and a choline‐supplemented L‐amino acid‐defined (CSAA) diet, respectively. Group 3 received the CDAA diet containing 0.05% ethionine, and group 4 the CDAA diet containing 0.05% ethionine and 0.47% methionine. Animals were killed after 12 weeks of treatment. Histologically, the CDAA diet induced intracellular fat accumulation and foci. In contrast, ethionine caused not only foci, but also hyperplastic nodules, cholangiofibrosis and the proliferation of oval cells without such fat accumulation. Methionine abolished the development of all of the liver lesions induced by Coadministration of the CDAA diet and ethionine. To investigate the effects of methionine on induction of c‐myc and c‐Ha‐ras expression, as well as generation of 8‐hydroxyguanine (8‐OHGua) and 2‐thiobarbituric acid‐reacting substances (TBARS), by Coadministration of the CDAA diet and ethionine, subgroups of 3 to 5 animals were killed at 2, 4, 8 or 11 days after the beginning of the experiment. Coadministration of the CDAA diet and ethionine markedly enhanced the level of expression of c‐myc and c‐Ha‐ras, 8‐OHGua formation and TBARS generation as compared with the CDAA or CSAA diet within 11 days, and methionine blocked these actions. These results indicate that addition of methionine prevents the induction of c‐myc and c‐Ha‐ras expression, 8‐OHGua formation and TBARS generation, as well as hepatocellular lesions, by Coadministration of the CDAA diet and ethionine in rats, and suggest a possible involvement of oxidative stress and gene expression in hepatocarcinogenesis by these agents. PMID:8636001

  15. Relationship between S-adenosylmethionine, S-adenosylhomocysteine, asymmetric dimethylarginine, and endothelial function in healthy human subjects during experimental hyper- and hypohomocysteinemia.

    PubMed

    Doshi, Sagar; McDowell, Ian; Goodfellow, Jonathan; Stabler, Sally; Boger, Rainer; Allen, Robert; Newcombe, Robert; Lewis, Malcolm; Moat, Stuart

    2005-03-01

    Experimental hyperhomocysteinemia after an oral methionine or homocysteine load is associated with impaired nitric oxide-dependent vasodilatation in healthy human beings. However, it remains unproven that this effect is mediated by elevations in plasma homocysteine. There is evidence that an increase in plasma homocysteine may increase the formation of asymmetric dimethylarginine (ADMA), an inhibitor of nitric oxide synthase. The methyl groups within ADMA are derived from the conversion of S -adenosylmethionine to S -adenosylhomocysteine intermediates in the methionine/homocysteine pathway. No previous study has assessed the role of methylation status, its impact on ADMA formation, and their association with endothelial function in healthy human beings. In a randomized, placebo-controlled, crossover study, 10 healthy subjects (mean age, 29.1 +/- 3.9 years) were administered an oral dose of methionine (0.1 g/kg), l -homocysteine (0.01 g/kg), N-acetylcysteine (NAC) (0.1 g/kg), or placebo. Endothelial function as assessed by flow-mediated dilatation (FMD) of the brachial artery was impaired after both the methionine and homocysteine load compared with placebo at 4 hours (36 +/- 15, 67 +/- 23 vs 219 +/- 26 microm, respectively, P < .001). N-Acetylcysteine had no effect on flow-mediated dilatation. Plasma total homocysteine was significantly elevated at 4 hours after methionine (23.1 +/- 6.2) and homocysteine (41.5 +/- 8.9) loading, but significantly reduced after NAC 2.4 +/- 0.6 vs 7.1 +/- 2.1 micromol/L in the placebo (P < .001). Plasma S-adenosylmethionine/S-adenosylhomocysteine ratio was significantly (P < .001) increased at 4 hours after methionine (10.9 +/- 0.7) compared with homocysteine (5.4 +/- 0.4), NAC (5.0 +/- 0.3), and placebo (6.0 +/- 0.5). Plasma ADMA concentrations were not altered by any intervention. Our results suggest that endothelial dysfunction due to methionine or homocysteine loading is not associated with an increase in plasma ADMA or a disruption in methylation status.

  16. Comparative genomics of transcriptional regulation of methionine metabolism in proteobacteria

    DOE PAGES

    Leyn, Semen A.; Suvorova, Inna A.; Kholina, Tatiana D.; ...

    2014-11-20

    Methionine metabolism and uptake genes in Proteobacteria are controlled by a variety of RNA and DNA regulatory systems. We have applied comparative genomics to reconstruct regulons for three known transcription factors, MetJ, MetR, and SahR, and three known riboswitch motifs, SAH, SAM-SAH, and SAM_alpha, in ~200 genomes from 22 taxonomic groups of Proteobacteria. We also identified two novel regulons: a SahR-like transcription factor SamR controlling various methionine biosynthesis genes in the Xanthomonadales group, and a potential RNA regulatory element with terminator-antiterminator mechanism controlling the metX or metZ genes in beta-proteobacteria. For each analyzed regulator we identified the core, taxon-specific andmore » genome-specific regulon members. By analyzing the distribution of these regulators in bacterial genomes and by comparing their regulon contents we elucidated possible evolutionary scenarios for the regulation of the methionine metabolism genes in Proteobacteria.« less

  17. Preparation, crystallization and preliminary X-ray analysis of the methionine synthase (MetE) from Streptococcus mutans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Tian-Min; Zhang, Xiao-Yan; Li, Lan-Fen

    2006-10-01

    Methionine synthase (MetE) from S. mutans was expressed, purified and crystallized. Diffraction data have been collected to 2.2 Å resolution. The Streptococcus mutans metE gene encodes methionine synthase (MetE), which catalyzes the direct transfer of a methyl group from methyltetrahydrofolate to homocysteine in the last step of methionine synthesis. metE was cloned into pET28a and the gene product was expressed at high levels in the Escherichia coli strain BL21 (DE3). MetE was purified to homogeneity using Ni{sup 2+}-chelating chromatography followed by size-exclusion chromatography. Crystals of the protein were obtained by the hanging-drop vapour-diffusion method and diffracted to 2.2 Å resolution.more » The crystal belongs to space group P2{sub 1}, with unit-cell parameters a = 52.85, b = 99.48, c = 77.88 Å, β = 94.55°.« less

  18. Discovery and SAR studies of methionine-proline anilides as dengue virus NS2B-NS3 protease inhibitors.

    PubMed

    Zhou, Guo-Chun; Weng, Zhibing; Shao, Xiaoxia; Liu, Fang; Nie, Xin; Liu, Jinsong; Wang, Decai; Wang, Chunguang; Guo, Kai

    2013-12-15

    A series of methionine-proline dipeptide derivatives and their analogues were designed, synthesized and assayed against the serotype 2 dengue virus NS2B-NS3 protease, and methionine-proline anilides 1 and 2 were found to be the most active DENV 2 NS2B-NS3 competitive inhibitors with Ki values of 4.9 and 10.5 μM. The structure and activity relationship and the molecular docking revealed that L-proline, L-methionine and p-nitroaniline in 1 and 2 are the important characters in blocking the active site of NS2B-NS3 protease. Our current results suggest that the title dipeptidic scaffold represents a promising structural core to discover a new class of active NS2B-NS3 competitive inhibitors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Inhibition of Monometalated Methionine Aminopeptidase: Inhibitor Discovery and Crystallographic Analysis†

    PubMed Central

    Huang, Min; Xie, Sheng-Xue; Ma, Ze-Qiang; Huang, Qing-Qing; Nan, Fa-Jun; Ye, Qi-Zhuang

    2008-01-01

    Two divalent metal ions are commonly seen in the active site cavity of methionine aminopeptidase, and at least one of the metal ions is directly involved in catalysis. Although ample structural and functional information is available for dimetalated enzyme, methionine aminopeptidase likely functions as a monometalated enzyme under physiological conditions. Information on structure, as well as catalysis and inhibition, of the monometalated enzyme is lacking. By improving conditions of high throughput screening, we identified a unique inhibitor with specificity toward the monometalated enzyme. Kinetic characterization indicates a mutual exclusivity in binding between the inhibitor and the second metal ion at the active site. This is confirmed by X-ray structure, and this inhibitor coordinates with the first metal ion and occupies the space normally occupied by the second metal ion. Kinetic and structural analyses of the inhibition by this and other inhibitors provide insight in designing effective inhibitors of methionine aminopeptidase. PMID:17948983

  20. Cloning and expression of VB12-independent methionine synthase gene responsive to alkaline stress in rice.

    PubMed

    Xie, Guo-Sheng; Liu, Shen-Kui; Takano, Tetsuo; You, Zong-Bin; Zhang, Duan-Pin

    2002-12-01

    VB12-independent methionine synthase is present in higher plants, and catalyzes the methylation of C-homocysteine to form methionine, which is very important for methylation reactions and syntheses of polyamines and ethylene. Under the alkaline condition, using cDNA-RAPD method, a new VB12-independent methionine synthase gene has been cloned and characterized for the first time in rice in this study. The results exhibited that, the cDNA gene entailed 2740 bp, had single copy in the rice genome and encoded peptide of 765 amino acids, the peptide showed 92% and 83% identity with that from Mesembryanthemum cystallinum (U84889) and Cathararanthus roseus (X83499), respectively. It enhanced the transcription more greatly after sodium carbonate treatment for 12 h and 24 h than that of sodium chloride treatment, and then obviously reduced in 48 h later, suggesting that it is related to this stress tolerance in rice.

Top