Sample records for method allowed detection

  1. Application of a Subspace-Based Fault Detection Method to Industrial Structures

    NASA Astrophysics Data System (ADS)

    Mevel, L.; Hermans, L.; van der Auweraer, H.

    1999-11-01

    Early detection and localization of damage allow increased expectations of reliability, safety and reduction of the maintenance cost. This paper deals with the industrial validation of a technique to monitor the health of a structure in operating conditions (e.g. rotating machinery, civil constructions subject to ambient excitations, etc.) and to detect slight deviations in a modal model derived from in-operation measured data. In this paper, a statistical local approach based on covariance-driven stochastic subspace identification is proposed. The capabilities and limitations of the method with respect to health monitoring and damage detection are discussed and it is explained how the method can be practically used in industrial environments. After the successful validation of the proposed method on a few laboratory structures, its application to a sports car is discussed. The example illustrates that the method allows the early detection of a vibration-induced fatigue problem of a sports car.

  2. Ion sensing method

    DOEpatents

    Smith, Richard Harding; Martin, Glenn Brian

    2004-05-18

    The present invention allows the determination of trace levels of ionic substances in a sample solution (ions, metal ions, and other electrically charged molecules) by coupling a separation method, such as liquid chromatography, with ion selective electrodes (ISE) prepared so as to allow detection at activities below 10.sup.-6 M. The separation method distributes constituent molecules into fractions due to unique chemical and physical properties, such as charge, hydrophobicity, specific binding interactions, or movement in an electrical field. The separated fractions are detected by means of the ISE(s). These ISEs can be used singly or in an array. Accordingly, modifications in the ISEs are used to permit detection of low activities, specifically, below 10.sup.-6 M, by using low activities of the primary analyte (the molecular species which is specifically detected) in the inner filling solution of the ISE. Arrays constructed in various ways allow flow-through sensing for multiple ions.

  3. Immunocytochemical detection of astrocytes in brain slices in combination with Nissl staining.

    PubMed

    Korzhevskii, D E; Otellin, V A

    2005-07-01

    The present study was performed to develop a simple and reliable method for the combined staining of specimens to allow the advantages of immunocytochemical detection of astrocytes and assessment of the functional state of neurons by the Nissl method to be assessed simultaneously. The protocol suggested for processing paraffin sections allows preservation of tissue structure at high quality and allows the selective identification of astrocytes with counterstaining of neurons by the Nissl method. The protocol can be used without modification for processing brain specimens from humans and various mammals--except mice and rabbits.

  4. Detecting entanglement with Jarzynski's equality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hide, Jenny; Vedral, Vlatko; Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543

    2010-06-15

    We present a method for detecting the entanglement of a state using nonequilibrium processes. A comparison of relative entropies allows us to construct an entanglement witness. The relative entropy can further be related to the quantum Jarzynski equality, allowing nonequilibrium work to be used in entanglement detection. To exemplify our results, we consider two different spin chains.

  5. Novel multiplex qualitative detection using universal primer-multiplex-PCR combined with pyrosequencing.

    PubMed

    Shang, Ying; Xu, Wentao; Wang, Yong; Xu, Yuancong; Huang, Kunlun

    2017-12-15

    This study described a novel multiplex qualitative detection method using pyrosequencing. Based on the principle of the universal primer-multiplex-PCR, only one sequencing primer was employed to realize the detection of the multiple targets. Samples containing three genetically modified (GM) crops in different proportions were used to validate the method. The dNTP dispensing order was designed based on the product sequences. Only 12 rounds (ATCTGATCGACT) of dNTPs addition and, often, as few as three rounds (CAT) under ideal conditions, were required to detect the GM events qualitatively, and sensitivity was as low as 1% of a mixture. However, when considering a mixture, calculating signal values allowed the proportion of each GM to be estimated. Based on these results, we concluded that our novel method not only realized detection but also allowed semi-quantitative detection of individual events. Copyright © 2017. Published by Elsevier Ltd.

  6. Fundamentals, achievements and challenges in the electrochemical sensing of pathogens.

    PubMed

    Monzó, Javier; Insua, Ignacio; Fernandez-Trillo, Francisco; Rodriguez, Paramaconi

    2015-11-07

    Electrochemical sensors are powerful tools widely used in industrial, environmental and medical applications. The versatility of electrochemical methods allows for the investigation of chemical composition in real time and in situ. Electrochemical detection of specific biological molecules is a powerful means for detecting disease-related markers. In the last 10 years, highly-sensitive and specific methods have been developed to detect waterborne and foodborne pathogens. In this review, we classify the different electrochemical techniques used for the qualitative and quantitative detection of pathogens. The robustness of electrochemical methods allows for accurate detection even in heterogeneous and impure samples. We present a fundamental description of the three major electrochemical sensing methods used in the detection of pathogens and the advantages and disadvantages of each of these methods. In each section, we highlight recent breakthroughs, including the utilisation of microfluidics, immunomagnetic separation and multiplexing for the detection of multiple pathogens in a single device. We also include recent studies describing new strategies for the design of future immunosensing systems and protocols. The high sensitivity and selectivity, together with the portability and the cost-effectiveness of the instrumentation, enhances the demand for further development in the electrochemical detection of microbes.

  7. Detection of proteins using a colorimetric bio-barcode assay.

    PubMed

    Nam, Jwa-Min; Jang, Kyung-Jin; Groves, Jay T

    2007-01-01

    The colorimetric bio-barcode assay is a red-to-blue color change-based protein detection method with ultrahigh sensitivity. This assay is based on both the bio-barcode amplification method that allows for detecting miniscule amount of targets with attomolar sensitivity and gold nanoparticle-based colorimetric DNA detection method that allows for a simple and straightforward detection of biomolecules of interest (here we detect interleukin-2, an important biomarker (cytokine) for many immunodeficiency-related diseases and cancers). The protocol is composed of the following steps: (i) conjugation of target capture molecules and barcode DNA strands onto silica microparticles, (ii) target capture with probes, (iii) separation and release of barcode DNA strands from the separated probes, (iv) detection of released barcode DNA using DNA-modified gold nanoparticle probes and (v) red-to-blue color change analysis with a graphic software. Actual target detection and quantification steps with premade probes take approximately 3 h (whole protocol including probe preparations takes approximately 3 days).

  8. Fingerprint detection

    DOEpatents

    Saunders, George C.

    1992-01-01

    A method for detection and visualization of latent fingerprints is provided and includes contacting a substrate containing a latent print thereon with a colloidal metal composition for time sufficient to allow reaction of said colloidal metal composition with said latent print, and preserving or recording the observable print. Further, the method for detection and visualization of latent fingerprints can include contacting the metal composition-latent print reaction product with a secondary metal-containing solution for time sufficient to allow precipitation of said secondary metal thereby enhancing the visibility of the latent print, and preserving or recording the observable print.

  9. Methods for the selective detection of alkyne-presenting molecules and related compositions and systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdez, Carlos A.; Vu, Alexander K.

    Provided herein are methods for selectively detecting an alkyne-presenting molecule in a sample and related detection reagents, compositions, methods and systems. The methods include contacting a detection reagent with the sample for a time and under a condition to allow binding of the detection reagent to the one or more alkyne-presenting molecules possibly present in the matrix to the detection reagent. The detection reagent includes an organic label moiety presenting an azide group. The binding of the azide group to the alkyne-presenting molecules results in emission of a signal from the organic label moiety.

  10. Label-Free Immuno-Sensors for the Fast Detection of Listeria in Food.

    PubMed

    Morlay, Alexandra; Roux, Agnès; Templier, Vincent; Piat, Félix; Roupioz, Yoann

    2017-01-01

    Foodborne diseases are a major concern for both food industry and health organizations due to the economic costs and potential threats for human lives. For these reasons, specific regulations impose the research of pathogenic bacteria in food products. Nevertheless, current methods, references and alternatives, take up to several days and require many handling steps. In order to improve pathogen detection in food, we developed an immune-sensor, based on Surface Plasmon Resonance imaging (SPRi) and bacterial growth which allows the detection of a very low number of Listeria monocytogenes in food sample in one day. Adequate sensitivity is achieved by the deposition of several antibodies in a micro-array format allowing real-time detection. This label-free method thus reduces handling and time to result compared with current methods.

  11. Invasive pulmonary aspergillosis: current diagnostic methodologies and a new molecular approach.

    PubMed

    Moura, S; Cerqueira, L; Almeida, A

    2018-05-13

    The fungus Aspergillus fumigatus is the main pathogenic agent responsible for invasive pulmonary aspergillosis. Immunocompromised patients are more likely to develop this pathology due to a decrease in the immune system's defense capacity. Despite of the low occurrence of invasive pulmonary aspergillosis, this pathology presents high rates of mortality, mostly due to late and unspecific diagnosis. Currently, the diagnostic methods used to detect this fungal infection are conventional mycological examination (direct microscopic examination, histological examination, and culture), imaging, non-culture-based tests for the detection of galactomannan, β(1,3)-glucan and an extracellular glycoprotein, and molecular tests based on PCR. However, most of these methods do not detect the species A. fumigatus; they only allow the identification of genus Aspergillus. The development of more specific detection methods is of extreme importance. Fluorescent in situ hybridization-based molecular methods can be a good alternative to achieve this purpose. In this review, it is intended to point out that most of the methods used for the diagnosis of invasive pulmonary aspergillosis do not allow to detect the fungus at the species level and that fluorescence in situ hybridization-based molecular method will be a promising approach in the A. fumigatus detection.

  12. Electro-active sensor, method for constructing the same; apparatus and circuitry for detection of electro-active species

    NASA Technical Reports Server (NTRS)

    Buehler, Martin (Inventor)

    2009-01-01

    An electro-active sensor includes a nonconductive platform with a first electrode set attached with a first side of a nonconductive platform. The first electrode set serves as an electrochemical cell that may be utilized to detect electro-active species in solution. A plurality of electrode sets and a variety of additional electrochemical cells and sensors may be attached with the nonconductive platform. The present invention also includes a method for constructing the aforementioned electro-active sensor. Additionally, an apparatus for detection and observation is disclosed, where the apparatus includes a sealable chamber for insertion of a portion of an electro-active sensor. The apparatus allows for monitoring and detection activities. Allowing for control of attached cells and sensors, a dual-mode circuitry is also disclosed. The dual-mode circuitry includes a switch, allowing the circuitry to be switched from a potentiostat to a galvanostat mode.

  13. Device for sampling and enriching impurities in hydrogen comprising hydrogen-permeable membrane

    DOEpatents

    Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon D. H.; Kumar, Romesh

    2017-01-31

    Provided herein are methods and devices to enrich trace quantities of impurities in gaseous mixtures, such as hydrogen fuel. The methods and devices rely on concentration of impurities so as to allow the detection of the impurities using commonly-available detection methods.

  14. Detecting and Estimating Contamination of Human DNA Samples in Sequencing and Array-Based Genotype Data

    PubMed Central

    Jun, Goo; Flickinger, Matthew; Hetrick, Kurt N.; Romm, Jane M.; Doheny, Kimberly F.; Abecasis, Gonçalo R.; Boehnke, Michael; Kang, Hyun Min

    2012-01-01

    DNA sample contamination is a serious problem in DNA sequencing studies and may result in systematic genotype misclassification and false positive associations. Although methods exist to detect and filter out cross-species contamination, few methods to detect within-species sample contamination are available. In this paper, we describe methods to identify within-species DNA sample contamination based on (1) a combination of sequencing reads and array-based genotype data, (2) sequence reads alone, and (3) array-based genotype data alone. Analysis of sequencing reads allows contamination detection after sequence data is generated but prior to variant calling; analysis of array-based genotype data allows contamination detection prior to generation of costly sequence data. Through a combination of analysis of in silico and experimentally contaminated samples, we show that our methods can reliably detect and estimate levels of contamination as low as 1%. We evaluate the impact of DNA contamination on genotype accuracy and propose effective strategies to screen for and prevent DNA contamination in sequencing studies. PMID:23103226

  15. Method for detecting and diagnosing disease caused by pathological protein aggregation

    DOEpatents

    Stevens, Fred J.; Myatt, Elizabeth A.; Solomon, Alan

    2000-01-01

    A method is provided for detecting pathological macromolecules in a patient, comprising obtaining body fluid from the patient, pretreating the body fluid, subjecting the pretreated body fluid to size-exclusion chromatography to create an excluded fluid, and analyzing the excluded fluid to detect macromolecules having a predetermined molecular weight. The method also allows for comparing elution spectra with reference spectra of suspect pathologic proteins.

  16. Photocleavable DNA barcode-antibody conjugates allow sensitive and multiplexed protein analysis in single cells.

    PubMed

    Agasti, Sarit S; Liong, Monty; Peterson, Vanessa M; Lee, Hakho; Weissleder, Ralph

    2012-11-14

    DNA barcoding is an attractive technology, as it allows sensitive and multiplexed target analysis. However, DNA barcoding of cellular proteins remains challenging, primarily because barcode amplification and readout techniques are often incompatible with the cellular microenvironment. Here we describe the development and validation of a photocleavable DNA barcode-antibody conjugate method for rapid, quantitative, and multiplexed detection of proteins in single live cells. Following target binding, this method allows DNA barcodes to be photoreleased in solution, enabling easy isolation, amplification, and readout. As a proof of principle, we demonstrate sensitive and multiplexed detection of protein biomarkers in a variety of cancer cells.

  17. Microfluidic platform for multiplexed detection in single cells and methods thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Meiye; Singh, Anup K.

    The present invention relates to a microfluidic device and platform configured to conduct multiplexed analysis within the device. In particular, the device allows multiple targets to be detected on a single-cell level. Also provided are methods of performing multiplexed analyses to detect one or more target nucleic acids, proteins, and post-translational modifications.

  18. Surface Plasmon Resonance Label-Free Monitoring of Antibody Antigen Interactions in Real Time

    ERIC Educational Resources Information Center

    Kausaite, Asta; van Dijk, Martijn; Castrop, Jan; Ramanaviciene, Almira; Baltrus, John P.; Acaite, Juzefa; Ramanavicius, Arunas

    2007-01-01

    Detection of biologically active compounds is one of the most important topics in molecular biology and biochemistry. One of the most promising detection methods is based on the application of surface plasmon resonance for label-free detection of biologically active compounds. This method allows one to monitor binding events in real time without…

  19. Integrated Fluorescence

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret (Inventor); Gruhlke, Russell W. (Inventor)

    1998-01-01

    A detection method is integrated with a filtering method and an enhancement method to create a fluorescence sensor that can be miniaturized. The fluorescence sensor comprises a thin film geometry including a waveguide layer, a metal film layer and sensor layer. The thin film geometry of the fluorescence sensor allows the detection of fluorescent radiation over a narrow wavelength interval. This enables wavelength discrimination and eliminates the detection of unwanted light from unknown or spurious sources.

  20. Search Radar Track-Before-Detect Using the Hough Transform.

    DTIC Science & Technology

    1995-03-01

    before - detect processing method which allows previous data to help in target detection. The technique provides many advantages compared to...improved target detection scheme, applicable to search radars, using the Hough transform image processing technique. The system concept involves a track

  1. Search by photo methodology for signature properties assessment by human observers

    NASA Astrophysics Data System (ADS)

    Selj, Gorm K.; Heinrich, Daniela H.

    2015-05-01

    Reliable, low-cost and simple methods for assessment of signature properties for military purposes are very important. In this paper we present such an approach that uses human observers in a search by photo assessment of signature properties of generic test targets. The method was carried out by logging a large number of detection times of targets recorded in relevant terrain backgrounds. The detection times were harvested by using human observers searching for targets in scene images shown by a high definition pc screen. All targets were identically located in each "search image", allowing relative comparisons (and not just rank by order) of targets. To avoid biased detections, each observer only searched for one target per scene. Statistical analyses were carried out for the detection times data. Analysis of variance was chosen if detection times distribution associated with all targets satisfied normality, and non-parametric tests, such as Wilcoxon's rank test, if otherwise. The new methodology allows assessment of signature properties in a reproducible, rapid and reliable setting. Such assessments are very complex as they must sort out what is of relevance in a signature test, but not loose information of value. We believe that choosing detection times as the primary variable for a comparison of signature properties, allows a careful and necessary inspection of observer data as the variable is continuous rather than discrete. Our method thus stands in opposition to approaches based on detections by subsequent, stepwise reductions in distance to target, or based on probability of detection.

  2. Bacteriophage Amplification-Coupled Detection and Identification of Bacterial Pathogens

    NASA Astrophysics Data System (ADS)

    Cox, Christopher R.; Voorhees, Kent J.

    Current methods of species-specific bacterial detection and identification are complex, time-consuming, and often require expensive specialized equipment and highly trained personnel. Numerous biochemical and genotypic identification methods have been applied to bacterial characterization, but all rely on tedious microbiological culturing practices and/or costly sequencing protocols which render them impractical for deployment as rapid, cost-effective point-of-care or field detection and identification methods. With a view towards addressing these shortcomings, we have exploited the evolutionarily conserved interactions between a bacteriophage (phage) and its bacterial host to develop species-specific detection methods. Phage amplification-coupled matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) was utilized to rapidly detect phage propagation resulting from species-specific in vitro bacterial infection. This novel signal amplification method allowed for bacterial detection and identification in as little as 2 h, and when combined with disulfide bond reduction methods developed in our laboratory to enhance MALDI-TOF-MS resolution, was observed to lower the limit of detection by several orders of magnitude over conventional spectroscopy and phage typing methods. Phage amplification has been combined with lateral flow immunochromatography (LFI) to develop rapid, easy-to-operate, portable, species-specific point-of-care (POC) detection devices. Prototype LFI detectors have been developed and characterized for Yersinia pestis and Bacillus anthracis, the etiologic agents of plague and anthrax, respectively. Comparable sensitivity and rapidity was observed when phage amplification was adapted to a species-specific handheld LFI detector, thus allowing for rapid, simple, POC bacterial detection and identification while eliminating the need for bacterial culturing or DNA isolation and amplification techniques.

  3. Method for detection of antibodies for metallic elements

    DOEpatents

    Barrick, C.W.; Clarke, S.M.; Nordin, C.W.

    1993-11-30

    An apparatus and method for detecting antibodies specific to non-protein antigens. The apparatus is an immunological plate containing a plurality of plastic projections coated with a non-protein material. Assays utilizing the plate are capable of stabilizing the non-protein antigens with detection levels for antibodies specific to the antigens on a nanogram level. A screening assay with the apparatus allows for early detection of exposure to non-protein materials. Specifically metallic elements are detected. 10 figures.

  4. An anomaly detection approach for the identification of DME patients using spectral domain optical coherence tomography images.

    PubMed

    Sidibé, Désiré; Sankar, Shrinivasan; Lemaître, Guillaume; Rastgoo, Mojdeh; Massich, Joan; Cheung, Carol Y; Tan, Gavin S W; Milea, Dan; Lamoureux, Ecosse; Wong, Tien Y; Mériaudeau, Fabrice

    2017-02-01

    This paper proposes a method for automatic classification of spectral domain OCT data for the identification of patients with retinal diseases such as Diabetic Macular Edema (DME). We address this issue as an anomaly detection problem and propose a method that not only allows the classification of the OCT volume, but also allows the identification of the individual diseased B-scans inside the volume. Our approach is based on modeling the appearance of normal OCT images with a Gaussian Mixture Model (GMM) and detecting abnormal OCT images as outliers. The classification of an OCT volume is based on the number of detected outliers. Experimental results with two different datasets show that the proposed method achieves a sensitivity and a specificity of 80% and 93% on the first dataset, and 100% and 80% on the second one. Moreover, the experiments show that the proposed method achieves better classification performance than other recently published works. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1985-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction.

  6. Ultraviolet resonance Raman spectroscopy for the detection of cocaine in oral fluid

    NASA Astrophysics Data System (ADS)

    D'Elia, Valentina; Montalvo, Gemma; Ruiz, Carmen García; Ermolenkov, Vladimir V.; Ahmed, Yasmine; Lednev, Igor K.

    2018-01-01

    Detecting and quantifying cocaine in oral fluid is of significant importance for practical forensics. Up to date, mainly destructive methods or biochemical tests have been used, while spectroscopic methods were only applied to pretreated samples. In this work, the possibility of using resonance Raman spectroscopy to detect cocaine in oral fluid without pretreating samples was tested. It was found that ultraviolet resonance Raman spectroscopy with 239-nm excitation allows for the detection of cocaine in oral fluid at 10 μg/mL level. Further method development will be needed for reaching the practically useful levels of cocaine detection.

  7. Recurrent neural network based virtual detection line

    NASA Astrophysics Data System (ADS)

    Kadikis, Roberts

    2018-04-01

    The paper proposes an efficient method for detection of moving objects in the video. The objects are detected when they cross a virtual detection line. Only the pixels of the detection line are processed, which makes the method computationally efficient. A Recurrent Neural Network processes these pixels. The machine learning approach allows one to train a model that works in different and changing outdoor conditions. Also, the same network can be trained for various detection tasks, which is demonstrated by the tests on vehicle and people counting. In addition, the paper proposes a method for semi-automatic acquisition of labeled training data. The labeling method is used to create training and testing datasets, which in turn are used to train and evaluate the accuracy and efficiency of the detection method. The method shows similar accuracy as the alternative efficient methods but provides greater adaptability and usability for different tasks.

  8. Cost and detection rate of glaucoma screening with imaging devices in a primary care center

    PubMed Central

    Anton, Alfonso; Fallon, Monica; Cots, Francesc; Sebastian, María A; Morilla-Grasa, Antonio; Mojal, Sergi; Castells, Xavier

    2017-01-01

    Purpose To analyze the cost and detection rate of a screening program for detecting glaucoma with imaging devices. Materials and methods In this cross-sectional study, a glaucoma screening program was applied in a population-based sample randomly selected from a population of 23,527. Screening targeted the population at risk of glaucoma. Examinations included optic disk tomography (Heidelberg retina tomograph [HRT]), nerve fiber analysis, and tonometry. Subjects who met at least 2 of 3 endpoints (HRT outside normal limits, nerve fiber index ≥30, or tonometry ≥21 mmHg) were referred for glaucoma consultation. The currently established (“conventional”) detection method was evaluated by recording data from primary care and ophthalmic consultations in the same population. The direct costs of screening and conventional detection were calculated by adding the unit costs generated during the diagnostic process. The detection rate of new glaucoma cases was assessed. Results The screening program evaluated 414 subjects; 32 cases were referred for glaucoma consultation, 7 had glaucoma, and 10 had probable glaucoma. The current detection method assessed 677 glaucoma suspects in the population, of whom 29 were diagnosed with glaucoma or probable glaucoma. Glaucoma screening and the conventional detection method had detection rates of 4.1% and 3.1%, respectively, and the cost per case detected was 1,410 and 1,435€, respectively. The cost of screening 1 million inhabitants would be 5.1 million euros and would allow the detection of 4,715 new cases. Conclusion The proposed screening method directed at population at risk allows a detection rate of 4.1% and a cost of 1,410 per case detected. PMID:28243057

  9. Remote NMR/MRI detection of laser polarized gases

    DOEpatents

    Pines, Alexander; Saxena, Sunil; Moule, Adam; Spence, Megan; Seeley, Juliette A.; Pierce, Kimberly L.; Han, Song-I; Granwehr, Josef

    2006-06-13

    An apparatus and method for remote NMR/MRI spectroscopy having an encoding coil with a sample chamber, a supply of signal carriers, preferably hyperpolarized xenon and a detector allowing the spatial and temporal separation of signal preparation and signal detection steps. This separation allows the physical conditions and methods of the encoding and detection steps to be optimized independently. The encoding of the carrier molecules may take place in a high or a low magnetic field and conventional NMR pulse sequences can be split between encoding and detection steps. In one embodiment, the detector is a high magnetic field NMR apparatus. In another embodiment, the detector is a superconducting quantum interference device. A further embodiment uses optical detection of Rb--Xe spin exchange. Another embodiment uses an optical magnetometer using non-linear Faraday rotation. Concentration of the signal carriers in the detector can greatly improve the signal to noise ratio.

  10. A novel SERRS sandwich-hybridization assay to detect specific DNA target.

    PubMed

    Feuillie, Cécile; Merheb, Maxime Mohamad; Gillet, Benjamin; Montagnac, Gilles; Daniel, Isabelle; Hänni, Catherine

    2011-01-01

    In this study, we have applied Surface Enhanced Resonance Raman Scattering (SERRS) technology to the specific detection of DNA. We present an innovative SERRS sandwich-hybridization assay that allows specific DNA detection without any enzymatic amplification, such as is the case with Polymerase Chain Reaction (PCR). In some substrates, such as ancient or processed remains, enzymatic amplification fails due to DNA alteration (degradation, chemical modification) or to the presence of inhibitors. Consequently, the development of a non-enzymatic method, allowing specific DNA detection, could avoid long, expensive and inconclusive amplification trials. Here, we report the proof of concept of a SERRS sandwich-hybridization assay that leads to the detection of a specific chamois DNA. This SERRS assay reveals its potential as a non-enzymatic alternative technology to DNA amplification methods (particularly the PCR method) with several applications for species detection. As the amount and type of damage highly depend on the preservation conditions, the present SERRS assay would enlarge the range of samples suitable for DNA analysis and ultimately would provide exciting new opportunities for the investigation of ancient DNA in the fields of evolutionary biology and molecular ecology, and of altered DNA in food frauds detection and forensics.

  11. A Novel SERRS Sandwich-Hybridization Assay to Detect Specific DNA Target

    PubMed Central

    Gillet, Benjamin; Montagnac, Gilles; Daniel, Isabelle; Hänni, Catherine

    2011-01-01

    In this study, we have applied Surface Enhanced Resonance Raman Scattering (SERRS) technology to the specific detection of DNA. We present an innovative SERRS sandwich-hybridization assay that allows specific DNA detection without any enzymatic amplification, such as is the case with Polymerase Chain Reaction (PCR). In some substrates, such as ancient or processed remains, enzymatic amplification fails due to DNA alteration (degradation, chemical modification) or to the presence of inhibitors. Consequently, the development of a non-enzymatic method, allowing specific DNA detection, could avoid long, expensive and inconclusive amplification trials. Here, we report the proof of concept of a SERRS sandwich-hybridization assay that leads to the detection of a specific chamois DNA. This SERRS assay reveals its potential as a non-enzymatic alternative technology to DNA amplification methods (particularly the PCR method) with several applications for species detection. As the amount and type of damage highly depend on the preservation conditions, the present SERRS assay would enlarge the range of samples suitable for DNA analysis and ultimately would provide exciting new opportunities for the investigation of ancient DNA in the fields of evolutionary biology and molecular ecology, and of altered DNA in food frauds detection and forensics. PMID:21655320

  12. Differences in Movement Pattern and Detectability between Males and Females Influence How Common Sampling Methods Estimate Sex Ratio.

    PubMed

    Rodrigues, João Fabrício Mota; Coelho, Marco Túlio Pacheco

    2016-01-01

    Sampling the biodiversity is an essential step for conservation, and understanding the efficiency of sampling methods allows us to estimate the quality of our biodiversity data. Sex ratio is an important population characteristic, but until now, no study has evaluated how efficient are the sampling methods commonly used in biodiversity surveys in estimating the sex ratio of populations. We used a virtual ecologist approach to investigate whether active and passive capture methods are able to accurately sample a population's sex ratio and whether differences in movement pattern and detectability between males and females produce biased estimates of sex-ratios when using these methods. Our simulation allowed the recognition of individuals, similar to mark-recapture studies. We found that differences in both movement patterns and detectability between males and females produce biased estimates of sex ratios. However, increasing the sampling effort or the number of sampling days improves the ability of passive or active capture methods to properly sample sex ratio. Thus, prior knowledge regarding movement patterns and detectability for species is important information to guide field studies aiming to understand sex ratio related patterns.

  13. Differences in Movement Pattern and Detectability between Males and Females Influence How Common Sampling Methods Estimate Sex Ratio

    PubMed Central

    Rodrigues, João Fabrício Mota; Coelho, Marco Túlio Pacheco

    2016-01-01

    Sampling the biodiversity is an essential step for conservation, and understanding the efficiency of sampling methods allows us to estimate the quality of our biodiversity data. Sex ratio is an important population characteristic, but until now, no study has evaluated how efficient are the sampling methods commonly used in biodiversity surveys in estimating the sex ratio of populations. We used a virtual ecologist approach to investigate whether active and passive capture methods are able to accurately sample a population’s sex ratio and whether differences in movement pattern and detectability between males and females produce biased estimates of sex-ratios when using these methods. Our simulation allowed the recognition of individuals, similar to mark-recapture studies. We found that differences in both movement patterns and detectability between males and females produce biased estimates of sex ratios. However, increasing the sampling effort or the number of sampling days improves the ability of passive or active capture methods to properly sample sex ratio. Thus, prior knowledge regarding movement patterns and detectability for species is important information to guide field studies aiming to understand sex ratio related patterns. PMID:27441554

  14. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1985-11-26

    A method is described for chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  15. Apparatus for use in sulfide chemiluminescence detection

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1987-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction.

  16. [Detection of protein-protein interactions by FRET and BRET methods].

    PubMed

    Matoulková, E; Vojtěšek, B

    2014-01-01

    Nowadays, in vivo protein-protein interaction studies have become preferable detecting meth-ods that enable to show or specify (already known) protein interactions and discover their inhibitors. They also facilitate detection of protein conformational changes and discovery or specification of signaling pathways in living cells. One group of in vivo methods enabling these findings is based on fluorescent resonance energy transfer (FRET) and its bio-luminescent modification (BRET). They are based on visualization of protein-protein interactions via light or enzymatic excitation of fluorescent or bio-luminescent proteins. These methods allow not only protein localization within the cell or its organelles (or small animals) but they also allow us to quantify fluorescent signals and to discover weak or strong interaction partners. In this review, we explain the principles of FRET and BRET, their applications in the characterization of protein-protein interactions and we describe several findings using these two methods that clarify molecular and cellular mechanisms and signals related to cancer biology.

  17. Rapid detection of human fecal Eubacterium species and related genera by nested PCR method.

    PubMed

    Kageyama, A; Benno, Y

    2001-01-01

    PCR procedures based on 16S rDNA gene sequence specific for seven Eubacterium spp. and Eggerthella lenta that predominate in the human intestinal tract were developed, and used for direct detection of these species in seven human feces samples. Three species of Eggerthella lenta, Eubacterium rectale, and Eubacterium eligens were detected from seven fecal samples. Eubacterium biforme was detected from six samples. It was reported that E. rectale, E. eligens, and E. biforme were difficult to detect by traditional culture method, but the nested PCR method is available for the detection of these species. This result shows that the nested PCR method utilizing a universal primer pair, followed by amplification with species-specific primers, would allow rapid detection of Eubacterium species in human feces.

  18. Method of generating chemiluminescent light

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1986-03-11

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction that generates chemiluminescent light and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  19. Method of generating chemiluminescent light

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1986-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction that generates chemiluminescent light and a specifically designed chemiluminescence detection cell for the reaction.

  20. Detection and differentiation of coxiella burnetii in biological fluids

    DOEpatents

    Frazier, Marvin E.; Mallavia, Louis P.; Samuel, James E.; Baca, Oswald G.

    1990-01-01

    Methods for detecting the presence of Coxiella burenetii in biological samples, as well as a method for differentiating strains of C. burnetii that are capable of causing acute disease from those strains capable of causing chronic disease are disclosed. The methods generally comprise treating cells contained within the biological sample to expose cellular DNA, and hybridizing the cellular DNA (specifically rickettsial DNA) with a C. burnetii-specific labeled DNA probe. Radioisotope and biotin labels are preferred, allowing detection through autoradiography and colorimetric assays, respectively.

  1. Detection and differentiation of coxiella burnetii in biological fluids

    DOEpatents

    Frazier, Marvin E.; Mallavia, Louis P.; Baca, Oswald G.; Samuel, James E.

    1989-01-01

    Methods for detecting the presence of Coxiella burnetii in biological samples, as well as a method for differentiating strains of C. burnetii that are capable of causing acute disease from those strains capable of causing chronic disease are disclosed. The methods generally comprise treating cells contained within the biological sample to expose cellular DNA, and hybridizing the cellular DNA (specifically rickettsial DNA) with a C. burnetii-specific labeled DNA probe. Radioisotope and biotin labels are preferred, allowing detection through autoradiography and colorimetric assays, respectively.

  2. Structure-property study of the Raman spectroscopy detection of fusaric acid and analogs

    USDA-ARS?s Scientific Manuscript database

    Food security can benefit from the development of selective methods to detect toxins. Fusaric acid is a mycotoxin produced by certain fungi occasionally found in agricultural commodities. Raman spectroscopy allows selective detection of analytes associated with certain spectral characteristics relat...

  3. A high-throughput multiplex method adapted for GMO detection.

    PubMed

    Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique

    2008-12-24

    A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.

  4. Flow cytometry combined with viSNE for the analysis of microbial biofilms and detection of microplastics

    PubMed Central

    Sgier, Linn; Freimann, Remo; Zupanic, Anze; Kroll, Alexandra

    2016-01-01

    Biofilms serve essential ecosystem functions and are used in different technical applications. Studies from stream ecology and waste-water treatment have shown that biofilm functionality depends to a great extent on community structure. Here we present a fast and easy-to-use method for individual cell-based analysis of stream biofilms, based on stain-free flow cytometry and visualization of the high-dimensional data by viSNE. The method allows the combined assessment of community structure, decay of phototrophic organisms and presence of abiotic particles. In laboratory experiments, it allows quantification of cellular decay and detection of survival of larger cells after temperature stress, while in the field it enables detection of community structure changes that correlate with known environmental drivers (flow conditions, dissolved organic carbon, calcium) and detection of microplastic contamination. The method can potentially be applied to other biofilm types, for example, for inferring community structure for environmental and industrial research and monitoring. PMID:27188265

  5. Method for universal detection of two-photon polarization entanglement

    NASA Astrophysics Data System (ADS)

    Bartkiewicz, Karol; Horodecki, Paweł; Lemr, Karel; Miranowicz, Adam; Życzkowski, Karol

    2015-03-01

    Detecting and quantifying quantum entanglement of a given unknown state poses problems that are fundamentally important for quantum information processing. Surprisingly, no direct (i.e., without quantum tomography) universal experimental implementation of a necessary and sufficient test of entanglement has been designed even for a general two-qubit state. Here we propose an experimental method for detecting a collective universal witness, which is a necessary and sufficient test of two-photon polarization entanglement. It allows us to detect entanglement for any two-qubit mixed state and to establish tight upper and lower bounds on its amount. A different element of this method is the sequential character of its main components, which allows us to obtain relatively complicated information about quantum correlations with the help of simple linear-optical elements. As such, this proposal realizes a universal two-qubit entanglement test within the present state of the art of quantum optics. We show the optimality of our setup with respect to the minimal number of measured quantities.

  6. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs.

    PubMed

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Zel, Jana; Gruden, Kristina

    2008-10-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1-25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification.

  7. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs

    PubMed Central

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Žel, Jana; Gruden, Kristina

    2008-01-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1–25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification. PMID:18710880

  8. Apparatus for use in sulfide chemiluminescence detection

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1987-01-06

    A method is described for chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  9. Methods for generation of reporter phages and immobilization of active bacteriophages on a polymer surface

    NASA Technical Reports Server (NTRS)

    Morgan, Mark Thomas (Inventor); Kothapalli, Aparna (Inventor); Applegate, Bruce Michael (Inventor); Perry, Lynda Louise (Inventor)

    2012-01-01

    Novel reporter bacteriophages are provided. Provided are compositions and methods that allow bacteriophages that are used for specific detection or killing of E. coli 0157:H7 to be propagated in nonpathogenic E. coli, thereby eliminating the safety and security risks of propagation in E. coli 0157:H7. Provided are compositions and methods for attaching active bacteriophages to the surface of a polymer in order to kill target bacteria with which the phage comes into contact. Provided are modified bacteriophages immobilized to a surface, which capture E. coli 0157:H7 and cause the captured cells to emit light or fluorescence, allowing detection of the bacteria in a sample.

  10. Sensitive and specific miRNA detection method using SplintR Ligase

    PubMed Central

    Jin, Jingmin; Vaud, Sophie; Zhelkovsky, Alexander M.; Posfai, Janos; McReynolds, Larry A.

    2016-01-01

    We describe a simple, specific and sensitive microRNA (miRNA) detection method that utilizes Chlorella virus DNA ligase (SplintR® Ligase). This two-step method involves ligation of adjacent DNA oligonucleotides hybridized to a miRNA followed by real-time quantitative PCR (qPCR). SplintR Ligase is 100X faster than either T4 DNA Ligase or T4 RNA Ligase 2 for RNA splinted DNA ligation. Only a 4–6 bp overlap between a DNA probe and miRNA was required for efficient ligation by SplintR Ligase. This property allows more flexibility in designing miRNA-specific ligation probes than methods that use reverse transcriptase for cDNA synthesis of miRNA. The qPCR SplintR ligation assay is sensitive; it can detect a few thousand molecules of miR-122. For miR-122 detection the SplintR qPCR assay, using a FAM labeled double quenched DNA probe, was at least 40× more sensitive than the TaqMan assay. The SplintR method, when coupled with NextGen sequencing, allowed multiplex detection of miRNAs from brain, kidney, testis and liver. The SplintR qPCR assay is specific; individual let-7 miRNAs that differ by one nucleotide are detected. The rapid kinetics and ability to ligate DNA probes hybridized to RNA with short complementary sequences makes SplintR Ligase a useful enzyme for miRNA detection. PMID:27154271

  11. Immunochemical Detection Methods for Gluten in Food Products: Where Do We Go from Here?

    PubMed

    Slot, I D Bruins; van der Fels-Klerx, H J; Bremer, M G E G; Hamer, R J

    2016-11-17

    Accurate and reliable quantification methods for gluten in food are necessary to ensure proper product labeling and thus safeguard the gluten sensitive consumer against exposure. Immunochemical detection is the method of choice, as it is sensitive, rapid and relatively easy to use. Although a wide range of detection kits are commercially available, there are still many difficulties in gluten detection that have not yet been overcome. This review gives an overview of the currently commercially available immunochemical detection methods, and discusses the problems that still exist in gluten detection in food. The largest problems are encountered in the extraction of gluten from food matrices, the choice of epitopes targeted by the detection method, and the use of a standardized reference material. By comparing the available techniques with the unmet needs in gluten detection, the possible benefit of a new multiplex immunoassay is investigated. This detection method would allow for the detection and quantification of multiple harmful gluten peptides at once and would, therefore, be a logical advancement in gluten detection in food.

  12. Dual Contrast CT Method Enables Diagnostics of Cartilage Injuries and Degeneration Using a Single CT Image.

    PubMed

    Saukko, Annina E A; Honkanen, Juuso T J; Xu, Wujun; Väänänen, Sami P; Jurvelin, Jukka S; Lehto, Vesa-Pekka; Töyräs, Juha

    2017-12-01

    Cartilage injuries may be detected using contrast-enhanced computed tomography (CECT) by observing variations in distribution of anionic contrast agent within cartilage. Currently, clinical CECT enables detection of injuries and related post-traumatic degeneration based on two subsequent CT scans. The first scan allows segmentation of articular surfaces and lesions while the latter scan allows evaluation of tissue properties. Segmentation of articular surfaces from the latter scan is difficult since the contrast agent diffusion diminishes the image contrast at surfaces. We hypothesize that this can be overcome by mixing anionic contrast agent (ioxaglate) with bismuth oxide nanoparticles (BINPs) too large to diffuse into cartilage, inducing a high contrast at the surfaces. Here, a dual contrast method employing this mixture is evaluated by determining the depth-wise X-ray attenuation profiles in intact, enzymatically degraded, and mechanically injured osteochondral samples (n = 3 × 10) using a microCT immediately and at 45 min after immersion in contrast agent. BiNPs were unable to diffuse into cartilage, producing high contrast at articular surfaces. Ioxaglate enabled the detection of enzymatic and mechanical degeneration. In conclusion, the dual contrast method allowed detection of injuries and degeneration simultaneously with accurate cartilage segmentation using a single scan conducted at 45 min after contrast agent administration.

  13. Standoff detection: distinction of bacteria by hyperspectral laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Walter, Arne; Duschek, Frank; Fellner, Lea; Grünewald, Karin M.; Hausmann, Anita; Julich, Sandra; Pargmann, Carsten; Tomaso, Herbert; Handke, Jürgen

    2016-05-01

    Sensitive detection and rapid identification of hazardous bioorganic material with high sensitivity and specificity are essential topics for defense and security. A single method can hardly cover these requirements. While point sensors allow a highly specific identification, they only provide localized information and are comparatively slow. Laser based standoff systems allow almost real-time detection and classification of potentially hazardous material in a wide area and can provide information on how the aerosol may spread. The coupling of both methods may be a promising solution to optimize the acquisition and identification of hazardous substances. The capability of the outdoor LIF system at DLR Lampoldshausen test facility as an online classification tool has already been demonstrated. Here, we present promising data for further differentiation among bacteria. Bacteria species can express unique fluorescence spectra after excitation at 280 nm and 355 nm. Upon deactivation, the spectral features change depending on the deactivation method.

  14. Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose

    PubMed Central

    Tehrani, Farshad; Bavarian, Behzad

    2016-01-01

    A novel and highly sensitive disposable glucose sensor strip was developed using direct laser engraved graphene (DLEG) decorated with pulse deposited copper nanocubes (CuNCs). The high reproducibility (96.8%), stability (97.4%) and low cost demonstrated by this 3-step fabrication method indicates that it could be used for high volume manufacturing of disposable glucose strips. The fabrication method also allows for a high degree of flexibility, allowing for control of the electrode size, design, and functionalization method. Additionally, the excellent selectivity and sensitivity (4,532.2 μA/mM.cm2), low detection limit (250 nM), and suitable linear range of 25 μM–4 mM, suggests that these sensors may be a great potential platform for glucose detection within the physiological range for tear, saliva, and/or sweat. PMID:27306706

  15. Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose

    NASA Astrophysics Data System (ADS)

    Tehrani, Farshad; Bavarian, Behzad

    2016-06-01

    A novel and highly sensitive disposable glucose sensor strip was developed using direct laser engraved graphene (DLEG) decorated with pulse deposited copper nanocubes (CuNCs). The high reproducibility (96.8%), stability (97.4%) and low cost demonstrated by this 3-step fabrication method indicates that it could be used for high volume manufacturing of disposable glucose strips. The fabrication method also allows for a high degree of flexibility, allowing for control of the electrode size, design, and functionalization method. Additionally, the excellent selectivity and sensitivity (4,532.2 μA/mM.cm2), low detection limit (250 nM), and suitable linear range of 25 μM-4 mM, suggests that these sensors may be a great potential platform for glucose detection within the physiological range for tear, saliva, and/or sweat.

  16. Studying Overt Word Reading and Speech Production with Event-Related fMRI: A Method for Detecting, Assessing, and Correcting Articulation-Induced Signal Changes and for Measuring Onset Time and Duration of Articulation

    ERIC Educational Resources Information Center

    Huang, Jie; Francis, Andrea P.; Carr, Thomas H.

    2008-01-01

    A quantitative method is introduced for detecting and correcting artifactual signal changes in BOLD time series data arising from the magnetic field warping caused by motion of the articulatory apparatus when speaking aloud, with extensions to detection of subvocal articulatory activity during silent reading. Whole-head images allow the large,…

  17. Dispersive detection of radio-frequency-dressed states

    NASA Astrophysics Data System (ADS)

    Jammi, Sindhu; Pyragius, Tadas; Bason, Mark G.; Florez, Hans Marin; Fernholz, Thomas

    2018-04-01

    We introduce a method to dispersively detect alkali-metal atoms in radio-frequency-dressed states. In particular, we use dressed detection to measure populations and population differences of atoms prepared in their clock states. Linear birefringence of the atomic medium enables atom number detection via polarization homodyning, a form of common path interferometry. In order to achieve low technical noise levels, we perform optical sideband detection after adiabatic transformation of bare states into dressed states. The balanced homodyne signal then oscillates independently of field fluctuations at twice the dressing frequency, thus allowing for robust, phase-locked detection that circumvents low-frequency noise. Using probe pulses of two optical frequencies, we can detect both clock states simultaneously and obtain population difference as well as the total atom number. The scheme also allows for difference measurements by direct subtraction of the homodyne signals at the balanced detector, which should technically enable quantum noise limited measurements with prospects for the preparation of spin squeezed states. The method extends to other Zeeman sublevels and can be employed in a range of atomic clock schemes, atom interferometers, and other experiments using dressed atoms.

  18. 76 FR 31369 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... detection instrumentation to operable status; establish alternate methods of monitoring RCS leakage when one... the RCS leakage detection instrumentation. These changes are consistent with NRC-approved Revision 3... requirements for the RCS leakage detection instrumentation and reduces the time allowed for the plant to...

  19. A method for detecting fungal contaminants in wall cavities.

    PubMed

    Spurgeon, Joe C

    2003-01-01

    This article describes a practical method for detecting the presence of both fungal spores and culturable fungi in wall cavities. Culturable fungi were collected in 25 mm cassettes containing 0.8 microm mixed cellulose ester filters using aggressive sampling conditions. Both culturable fungi and fungal spores were collected in modified slotted-disk cassettes. The sample volume was 4 L. The filters were examined microscopically and dilution plated onto multiple culture media. Collecting airborne samples in filter cassettes was an effective method for assessing wall cavities for fungal contaminants, especially because this method allowed the sample to be analyzed by both microscopy and culture media. Assessment criteria were developed that allowed the sample results to be used to classify wall cavities as either uncontaminated or contaminated. As a criterion, wall cavities with concentrations of culturable fungi below the limit of detection (LOD) were classified as uncontaminated, whereas those cavities with detectable concentrations of culturable fungi were classified as contaminated. A total of 150 wall cavities was sampled as part of a field project. The concentrations of culturable fungi were below the LOD in 34% of the samples, whereas Aspergillus and/or Penicillium were the only fungal genera detected in 69% of the samples in which culturable fungi were detected. Spore counting resulted in the detection of Stachybotrys-like spores in 25% of the samples that were analyzed, whereas Stachybotrys chartarum colonies were only detected on 2% of malt extract agar plates and on 6% of corn meal agar plates.

  20. Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data.

    PubMed

    Yip, Shun H; Sham, Pak Chung; Wang, Junwen

    2018-02-21

    Traditional RNA sequencing (RNA-seq) allows the detection of gene expression variations between two or more cell populations through differentially expressed gene (DEG) analysis. However, genes that contribute to cell-to-cell differences are not discoverable with RNA-seq because RNA-seq samples are obtained from a mixture of cells. Single-cell RNA-seq (scRNA-seq) allows the detection of gene expression in each cell. With scRNA-seq, highly variable gene (HVG) discovery allows the detection of genes that contribute strongly to cell-to-cell variation within a homogeneous cell population, such as a population of embryonic stem cells. This analysis is implemented in many software packages. In this study, we compare seven HVG methods from six software packages, including BASiCS, Brennecke, scLVM, scran, scVEGs and Seurat. Our results demonstrate that reproducibility in HVG analysis requires a larger sample size than DEG analysis. Discrepancies between methods and potential issues in these tools are discussed and recommendations are made.

  1. Application of a four-channel vibrometer system for detection of arterial stiffness

    NASA Astrophysics Data System (ADS)

    Campo, Adriaan; Waz, Adam; Dudzik, Grzegorz; Dirckx, Joris; Abramski, Krzysztof

    2016-06-01

    Cardiovascular diseases (CD) are the most important cause of death in the world and their prevalence is only rising. A significant aspect in the etiology of CD is the stiffening of the large arteries (arteriosclerosis) and plaque formation (atherosclerosis) in the common carotid artery (CCA) in the neck. As shown by increasing evidence, both conditions can be detected by assessing pulse wave velocity (PWV) in the CCA, and several approaches allow local detection of PWV, including ultrasound (US) and magnetic resonance imaging (MRI). In previous studies, laser Doppler vibrometry (LDV) was introduced as an approach to assess arterial stiffness. In the present work, a new, compact four-channel LDV system is used for PWV detection in four phantom arteries mimicking real life CCA conditions. The high sensitivity of the LDV system allowed PWV to be assessed, and even local changes in phantom architecture could be detected. This method has potential for cardiovascular screening, as it allows arteriosclerosis assessment and plaque detection.

  2. Microarrays--new possibilities for detecting biological factors hazardous for humans and animals, and for use in environmental protection.

    PubMed

    Mirski, Tomasz; Bartoszcze, Michał; Bielawska-Drózd, Agata; Gryko, Romuald; Kocik, Janusz; Niemcewicz, Marcin; Chomiczewski, Krzysztof

    2016-01-01

    Both the known biological agents that cause infectious diseases, as well as modified (ABF-Advanced Biological Factors) or new, emerging agents pose a significant diagnostic problem using previously applied methods, both classical, as well as based on molecular biology methods. The latter, such as PCR and real-time PCR, have significant limitations, both quantitative (low capacity), and qualitative (limited number of targets). The article discusses the results of studies on using the microarray method for the identification of viruses (e.g. Orthopoxvirus group, noroviruses, influenza A and B viruses, rhino- and enteroviruses responsible for the FRI (Febrile Respiratory Illness), European bunyaviruses, and SARS-causing viruses), and bacteria (Mycobacterium spp., Yersinia spp., Campylobacter spp., Streptococcus pneumoniae, Salmonella typhi, Salmonella enterica, Staphylococcus aureus, Neisseria meningitidis, Clostridium difficile , Helicobacter pylori), including multiple antibiotic-resistant strains. The method allows for the serotyping and genotyping of bacteria, and is useful in the diagnosis of genetically modified agents. It allows the testing of thousands of genes in one experiment. In addition to diagnosis, it is applicable for gene expression studies, analysis of the function of genes, microorganisms virulence, and allows the detection of even single mutations. The possibility of its operational application in epidemiological surveillance, and in the detection of disease outbreak agents is demonstrated.

  3. Estimation and detection information trade-off for x-ray system optimization

    NASA Astrophysics Data System (ADS)

    Cushing, Johnathan B.; Clarkson, Eric W.; Mandava, Sagar; Bilgin, Ali

    2016-05-01

    X-ray Computed Tomography (CT) systems perform complex imaging tasks to detect and estimate system parameters, such as a baggage imaging system performing threat detection and generating reconstructions. This leads to a desire to optimize both the detection and estimation performance of a system, but most metrics only focus on one of these aspects. When making design choices there is a need for a concise metric which considers both detection and estimation information parameters, and then provides the user with the collection of possible optimal outcomes. In this paper a graphical analysis of Estimation and Detection Information Trade-off (EDIT) will be explored. EDIT produces curves which allow for a decision to be made for system optimization based on design constraints and costs associated with estimation and detection. EDIT analyzes the system in the estimation information and detection information space where the user is free to pick their own method of calculating these measures. The user of EDIT can choose any desired figure of merit for detection information and estimation information then the EDIT curves will provide the collection of optimal outcomes. The paper will first look at two methods of creating EDIT curves. These curves can be calculated using a wide variety of systems and finding the optimal system by maximizing a figure of merit. EDIT could also be found as an upper bound of the information from a collection of system. These two methods allow for the user to choose a method of calculation which best fits the constraints of their actual system.

  4. Perspectives on the Future Search for Life on Mars and Beyond

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.

    1998-01-01

    One can view the search for life on Mars in two ways: first, as the initial step in the search for life elsewhere, and second, as the one place where in situ methods for life detection can be tested and proved via sample return. After Mars, most of the life detection will he done via in situ studies with data return. Mars offers us the opportunity to fine tune our methods - perhaps for a long time to come. Our group is involved in the development of methods for life detection that are independent of specific signals used for detection of life on Earth. These approaches include general indicators of metabolic activity and organismal structure and composition. Using such approaches, we hope to detect the signals of life (biosignatures) that are independent of preconceived notions and yet are convincing and unambiguous. The approaches we are focusing on include stable isotopic analyses of metals, mineral formation and disolution, and elemental analysis. These methods allow us to examine samples at a variety of scales, looking for nonequilibrium distribution of elements that serve as biosignatures. For futures studies of Mars and beyond, they, or some variation of them, should allow inference or proof of life in non-Earth locations.

  5. Automatic age-related macular degeneration detection and staging

    NASA Astrophysics Data System (ADS)

    van Grinsven, Mark J. J. P.; Lechanteur, Yara T. E.; van de Ven, Johannes P. H.; van Ginneken, Bram; Theelen, Thomas; Sánchez, Clara I.

    2013-03-01

    Age-related macular degeneration (AMD) is a degenerative disorder of the central part of the retina, which mainly affects older people and leads to permanent loss of vision in advanced stages of the disease. AMD grading of non-advanced AMD patients allows risk assessment for the development of advanced AMD and enables timely treatment of patients, to prevent vision loss. AMD grading is currently performed manually on color fundus images, which is time consuming and expensive. In this paper, we propose a supervised classification method to distinguish patients at high risk to develop advanced AMD from low risk patients and provide an exact AMD stage determination. The method is based on the analysis of the number and size of drusen on color fundus images, as drusen are the early characteristics of AMD. An automatic drusen detection algorithm is used to detect all drusen. A weighted histogram of the detected drusen is constructed to summarize the drusen extension and size and fed into a random forest classifier in order to separate low risk from high risk patients and to allow exact AMD stage determination. Experiments showed that the proposed method achieved similar performance as human observers in distinguishing low risk from high risk AMD patients, obtaining areas under the Receiver Operating Characteristic curve of 0.929 and 0.934. A weighted kappa agreement of 0.641 and 0.622 versus two observers were obtained for AMD stage evaluation. Our method allows for quick and reliable AMD staging at low costs.

  6. 40 CFR 434.64 - Procedure and method detection limit for measurement of settleable solids.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... thoroughly mixed sample. Allow to settle undisturbed for 45 minutes. Gently stir along the inside surface of the cone with a stirring rod. Allow to settle undisturbed for 15 minutes longer. Record the volume of...

  7. 40 CFR 434.64 - Procedure and method detection limit for measurement of settleable solids.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... thoroughly mixed sample. Allow to settle undisturbed for 45 minutes. Gently stir along the inside surface of the cone with a stirring rod. Allow to settle undisturbed for 15 minutes longer. Record the volume of...

  8. Methods to Detect Nitric Oxide and its Metabolites in Biological Samples

    PubMed Central

    Bryan, Nathan S.; Grisham, Matthew B.

    2007-01-01

    Nitric oxide (NO) methodology is a complex and often confusing science and the focus of many debates and discussion concerning NO biochemistry. NO is involved in many physiological processes including regulation of blood pressure, immune response and neural communication. Therefore its accurate detection and quantification is critical to understanding health and disease. Due to the extremely short physiological half life of this gaseous free radical, alternative strategies for the detection of reaction products of NO biochemistry have been developed. The quantification of NO metabolites in biological samples provides valuable information with regards to in vivo NO production, bioavailability and metabolism. Simply sampling a single compartment such as blood or plasma may not always provide an accurate assessment of whole body NO status, particularly in tissues. Therefore, extrapolation of plasma or blood NO status to specific tissues of interest is no longer a valid approach. As a result, methods continue to be developed and validated which allow the detection and quantification of NO and NO-related products/metabolites in multiple compartments of experimental animals in vivo. The methods described in this review is not an exhaustive or comprehensive discussion of all methods available for the detection of NO but rather a description of the most commonly used and practical methods which allow accurate and sensitive quantification of NO products/metabolites in multiple biological matrices under normal physiological conditions. PMID:17664129

  9. A new effective assay to detect antimicrobial activity of filamentous fungi.

    PubMed

    Pereira, Eric; Santos, Ana; Reis, Francisca; Tavares, Rui M; Baptista, Paula; Lino-Neto, Teresa; Almeida-Aguiar, Cristina

    2013-01-15

    The search for new antimicrobial compounds and the optimization of production methods turn the use of antimicrobial susceptibility tests a routine. The most frequently used methods are based on agar diffusion assays or on dilution in agar or broth. For filamentous fungi, the most common antimicrobial activity detection methods comprise the co-culture of two filamentous fungal strains or the use of fungal extracts to test against single-cell microorganisms. Here we report a rapid, effective and reproducible assay to detect fungal antimicrobial activity against single-cell microorganisms. This method allows an easy way of performing a fast antimicrobial screening of actively growing fungi directly against yeast. Because it makes use of an actively growing mycelium, this bioassay also provides a way for studying the production dynamics of antimicrobial compounds by filamentous fungi. The proposed assay is less time consuming and introduces the innovation of allowing the direct detection of fungal antimicrobial properties against single cell microorganisms without the prior isolation of the active substance(s). This is particularly useful when performing large screenings for fungal antimicrobial activity. With this bioassay, antimicrobial activity of Hypholoma fasciculare against yeast species was observed for the first time. Copyright © 2012 Elsevier GmbH. All rights reserved.

  10. Propidium monoazide reverse transcription PCR and RT-qPCR for detecting infectious enterovirus and norovirus

    EPA Science Inventory

    Presently there is no established cell line or small animal model that allows for the detection of infectious human norovirus. Current methods based on RT-PCR and RT-qPCR detect both infectious and non-infectious virus and thus the conclusions that may be drawn regarding the publ...

  11. Method for detecting the signature of noise-induced structures in spatiotemporal data sets: an application to excitable media

    NASA Astrophysics Data System (ADS)

    Huett, Marc-Thorsten

    2003-05-01

    We formulate mathematical tools for analyzing spatiotemporal data sets. The tools are based on nearest-neighbor considerations similar to cellular automata. One of the analysis tools allows for reconstructing the noise intensity in a data set and is an appropriate method for detecting a variety of noise-induced phenomena in spatiotemporal data. The functioning of these methods is illustrated on sample data generated with the forest fire model and with networks of nonlinear oscillators. It is seen that these methods allow the characterization of spatiotemporal stochastic resonance (STSR) in experimental data. Application of these tools to biological spatiotemporal patterns is discussed. For one specific example, the slime mold Dictyostelium discoideum, it is seen, how transitions between different patterns are clearly marked by changes in the spatiotemporal observables.

  12. Rapid identification and quantification of tumor cells using an electrocatalytic method based on gold nanoparticles.

    PubMed

    de la Escosura-Muñiz, Alfredo; Sánchez-Espinel, Christian; Díaz-Freitas, Belén; González-Fernández, Africa; Maltez-da Costa, Marisa; Merkoçi, Arben

    2009-12-15

    There is a high demand for simple, rapid, efficient, and user-friendly alternative methods for the detection of cells in general and, in particular, for the detection of cancer cells. A biosensor able to detect cells would be an all-in-one dream device for such applications. The successful integration of nanoparticles into cell detection assays could allow for the development of this novel class of cell sensors. Indeed, their application could well have a great future in diagnostics, as well as other fields. As an example of a novel biosensor, we report here an electrocatalytic device for the specific identification of tumor cells that quantifies gold nanoparticles (AuNPs) coupled with an electrotransducing platform/sensor. Proliferation and adherence of tumor cells are achieved on the electrotransducer/detector, which consists of a mass-produced screen-printed carbon electrode (SPCE). In situ identification/quantification of tumor cells is achieved with a detection limit of 4000 cells per 700 microL of suspension. This novel and selective cell-sensing device is based on the reaction of cell surface proteins with specific antibodies conjugated with AuNPs. Final detection requires only a couple of minutes, taking advantage of the catalytic properties of AuNPs on hydrogen evolution. The proposed detection method does not require the chemical agents used in most existing assays for the detection of AuNPs. It allows for the miniaturization of the system and is much cheaper than other expensive and sophisticated methods used for tumor cell detection. We envisage that this device could operate in a simple way as an immunosensor or DNA sensor. Moreover, it could be used, even by inexperienced staff, for the detection of protein molecules or DNA strands.

  13. Network analysis to detect common strategies in Italian foreign direct investment

    NASA Astrophysics Data System (ADS)

    De Masi, G.; Giovannetti, G.; Ricchiuti, G.

    2013-03-01

    In this paper we reconstruct and discuss the network of Italian firms investing abroad, exploiting information from complex network analysis. This method, detecting the key nodes of the system (both in terms of firms and countries of destination), allows us to single out the linkages among firms without ex-ante priors. Moreover, through the examination of affiliates’ economic activity, it allows us to highlight different internationalization strategies of “leaders” in different manufacturing sectors.

  14. Method and apparatus for phase for and amplitude detection

    DOEpatents

    Cernosek, Richard W.; Frye, Gregory C.; Martin, Stephen J.

    1998-06-09

    A new class of techniques been developed which allow inexpensive application of SAW-type chemical sensor devices while retaining high sensitivity (ppm) to chemical detection. The new techniques do not require that the sensor be part of an oscillatory circuit, allowing large concentrations of, e.g., chemical vapors in air, to be accurately measured without compromising the capacity to measure trace concentrations. Such devices have numerous potential applications in environmental monitoring, from manufacturing environments to environmental restoration.

  15. Detecting Earthquakes over a Seismic Network using Single-Station Similarity Measures

    NASA Astrophysics Data System (ADS)

    Bergen, Karianne J.; Beroza, Gregory C.

    2018-03-01

    New blind waveform-similarity-based detection methods, such as Fingerprint and Similarity Thresholding (FAST), have shown promise for detecting weak signals in long-duration, continuous waveform data. While blind detectors are capable of identifying similar or repeating waveforms without templates, they can also be susceptible to false detections due to local correlated noise. In this work, we present a set of three new methods that allow us to extend single-station similarity-based detection over a seismic network; event-pair extraction, pairwise pseudo-association, and event resolution complete a post-processing pipeline that combines single-station similarity measures (e.g. FAST sparse similarity matrix) from each station in a network into a list of candidate events. The core technique, pairwise pseudo-association, leverages the pairwise structure of event detections in its network detection model, which allows it to identify events observed at multiple stations in the network without modeling the expected move-out. Though our approach is general, we apply it to extend FAST over a sparse seismic network. We demonstrate that our network-based extension of FAST is both sensitive and maintains a low false detection rate. As a test case, we apply our approach to two weeks of continuous waveform data from five stations during the foreshock sequence prior to the 2014 Mw 8.2 Iquique earthquake. Our method identifies nearly five times as many events as the local seismicity catalog (including 95% of the catalog events), and less than 1% of these candidate events are false detections.

  16. Spatially-Aware Temporal Anomaly Mapping of Gamma Spectra

    NASA Astrophysics Data System (ADS)

    Reinhart, Alex; Athey, Alex; Biegalski, Steven

    2014-06-01

    For security, environmental, and regulatory purposes it is useful to continuously monitor wide areas for unexpected changes in radioactivity. We report on a temporal anomaly detection algorithm which uses mobile detectors to build a spatial map of background spectra, allowing sensitive detection of any anomalies through many days or months of monitoring. We adapt previously-developed anomaly detection methods, which compare spectral shape rather than count rate, to function with limited background data, allowing sensitive detection of small changes in spectral shape from day to day. To demonstrate this technique we collected daily observations over the period of six weeks on a 0.33 square mile research campus and performed source injection simulations.

  17. Validation of shortened 2-day sterility testing of mesenchymal stem cell-based therapeutic preparation on an automated culture system.

    PubMed

    Lysák, Daniel; Holubová, Monika; Bergerová, Tamara; Vávrová, Monika; Cangemi, Giuseppina Cristina; Ciccocioppo, Rachele; Kruzliak, Peter; Jindra, Pavel

    2016-03-01

    Cell therapy products represent a new trend of treatment in the field of immunotherapy and regenerative medicine. Their biological nature and multistep preparation procedure require the application of complex release criteria and quality control. Microbial contamination of cell therapy products is a potential source of morbidity in recipients. The automated blood culture systems are widely used for the detection of microorganisms in cell therapy products. However the standard 2-week cultivation period is too long for some cell-based treatments and alternative methods have to be devised. We tried to verify whether a shortened cultivation of the supernatant from the mesenchymal stem cell (MSC) culture obtained 2 days before the cell harvest could sufficiently detect microbial growth and allow the release of MSC for clinical application. We compared the standard Ph. Eur. cultivation method and the automated blood culture system BACTEC (Becton Dickinson). The time to detection (TTD) and the detection limit were analyzed for three bacterial and two fungal strains. The Staphylococcus aureus and Pseudomonas aeruginosa were recognized within 24 h with both methods (detection limit ~10 CFU). The time required for the detection of Bacillus subtilis was shorter with the automated method (TTD 10.3 vs. 60 h for 10-100 CFU). The BACTEC system reached significantly shorter times to the detection of Candida albicans and Aspergillus brasiliensis growth compared to the classical method (15.5 vs. 48 and 31.5 vs. 48 h, respectively; 10-100 CFU). The positivity was demonstrated within 48 h in all bottles, regardless of the size of the inoculum. This study validated the automated cultivation system as a method able to detect all tested microorganisms within a 48-h period with a detection limit of ~10 CFU. Only in case of B. subtilis, the lowest inoculum (~10 CFU) was not recognized. The 2-day cultivation technique is then capable of confirming the microbiological safety of MSC and allows their timely release for clinical application.

  18. Method for registration of solar cosmic rays by detecting neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, A. V.; Mordovskoy, M. V., E-mail: mvmordovsk@mail.ru; Skorkin, V. M.

    2016-12-15

    We consider a method of detecting the ionizing component of solar cosmic rays (SCRs) with energy from tens of MeV to tens of GeV by measuring the energy loss of SCR protons and light nuclei in scintillators and the multiplicity of the local neutron generation in a converter. Scintillation detectors based on stilbene, lithium glass, and solid-state photomultiplier tubes are capable of detecting fast neutrons with a temporal resolution of 10 ns and rejecting the gamma-ray background in the measuring system. The method will allow investigating the nucleon components of primary SCRs in circumterrestrial space.

  19. Rapid and improved gas-liquid chromatography technique for detection of hippurate hydrolysis by Campylobacter jejuni and Campylobacter coli.

    PubMed Central

    Bär, W; Fricke, G

    1987-01-01

    A gas-liquid chromatographic method which requires no chloroform extraction of the split products has been investigated for the detection of hippurate hydrolysis by Campylobacter spp. This technique gave better reproducibility than other tests also used in this study and allows the routine use of the gas-liquid chromatographic method for identification of Campylobacter isolates. PMID:3654950

  20. Smart accelerometer. [vibration damage detection

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.

  1. Detecting and evaluating communities in complex human and biological networks

    NASA Astrophysics Data System (ADS)

    Morrison, Greg; Mahadevan, L.

    2012-02-01

    We develop a simple method for detecting the community structure in a network can by utilizing a measure of closeness between nodes. This approach readily leads to a method of coarse graining the network, which allows the detection of the natural hierarchy (or hierarchies) of community structure without appealing to an unknown resolution parameter. The closeness measure can also be used to evaluate the robustness of an individual node's assignment to its community (rather than evaluating only the quality of the global structure). Each of these methods in community detection and evaluation are illustrated using a variety of real world networks of either biological or sociological importance and illustrate the power and flexibility of the approach.

  2. Development of Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid and Sensitive Identification of Ostrich Meat

    PubMed Central

    Abdulmawjood, Amir; Grabowski, Nils; Fohler, Svenja; Kittler, Sophie; Nagengast, Helga; Klein, Guenter

    2014-01-01

    Animal species identification is one of the primary duties of official food control. Since ostrich meat is difficult to be differentiated macroscopically from beef, therefore new analytical methods are needed. To enforce labeling regulations for the authentication of ostrich meat, it might be of importance to develop and evaluate a rapid and reliable assay. In the present study, a loop-mediated isothermal amplification (LAMP) assay based on the cytochrome b gene of the mitochondrial DNA of the species Struthio camelus was developed. The LAMP assay was used in combination with a real-time fluorometer. The developed system allowed the detection of 0.01% ostrich meat products. In parallel, a direct swab method without nucleic acid extraction using the HYPLEX LPTV buffer was also evaluated. This rapid processing method allowed detection of ostrich meat without major incubation steps. In summary, the LAMP assay had excellent sensitivity and specificity for detecting ostrich meat and could provide a sampling-to-result identification-time of 15 to 20 minutes. PMID:24963709

  3. Evaluation of Total Nitrite Pattern Visualization as an Improved Method for Gunshot Residue Detection and its Application to Casework Samples.

    PubMed

    Berger, Jason; Upton, Colin; Springer, Elyah

    2018-04-23

    Visualization of nitrite residues is essential in gunshot distance determination. Current protocols for the detection of nitrites include, among other tests, the Modified Griess Test (MGT). This method is limited as nitrite residues are unstable in the environment and limited to partially burned gunpowder. Previous research demonstrated the ability of alkaline hydrolysis to convert nitrates to nitrites, allowing visualization of unburned gunpowder particles using the MGT. This is referred to as Total Nitrite Pattern Visualization (TNV). TNV techniques were modified and a study conducted to streamline the procedure outlined in the literature to maximize the efficacy of the TNV in casework, while reducing the required time from 1 h to 5 min, and enhancing effectiveness on blood-soiled samples. The TNV method was found to provide significant improvement in the ability to detect significant nitrite residues, without sacrificing efficiency, that would allow for the determination of the muzzle-to-target distance. © 2018 American Academy of Forensic Sciences.

  4. Bayesian adaptive survey protocols for resource management

    USGS Publications Warehouse

    Halstead, Brian J.; Wylie, Glenn D.; Coates, Peter S.; Casazza, Michael L.

    2011-01-01

    Transparency in resource management decisions requires a proper accounting of uncertainty at multiple stages of the decision-making process. As information becomes available, periodic review and updating of resource management protocols reduces uncertainty and improves management decisions. One of the most basic steps to mitigating anthropogenic effects on populations is determining if a population of a species occurs in an area that will be affected by human activity. Species are rarely detected with certainty, however, and falsely declaring a species absent can cause improper conservation decisions or even extirpation of populations. We propose a method to design survey protocols for imperfectly detected species that accounts for multiple sources of uncertainty in the detection process, is capable of quantitatively incorporating expert opinion into the decision-making process, allows periodic updates to the protocol, and permits resource managers to weigh the severity of consequences if the species is falsely declared absent. We developed our method using the giant gartersnake (Thamnophis gigas), a threatened species precinctive to the Central Valley of California, as a case study. Survey date was negatively related to the probability of detecting the giant gartersnake, and water temperature was positively related to the probability of detecting the giant gartersnake at a sampled location. Reporting sampling effort, timing and duration of surveys, and water temperatures would allow resource managers to evaluate the probability that the giant gartersnake occurs at sampled sites where it is not detected. This information would also allow periodic updates and quantitative evaluation of changes to the giant gartersnake survey protocol. Because it naturally allows multiple sources of information and is predicated upon the idea of updating information, Bayesian analysis is well-suited to solving the problem of developing efficient sampling protocols for species of conservation concern.

  5. [Differential diagnosis for detection of hyphae in tissue].

    PubMed

    Tintelnot, K

    2013-11-01

    Usually the detection of hyphae in tissue is unmistakable evidence of a deep mycosis requiring antimycotic treatment. Micromorphology alone rarely allows a specific diagnosis, thus confusion is possible between Candida, Aspergillus, Alternaria and Fusarium species or several other fungal agents. If broad, nearly non-septated hyphae are detected histologically mucormycosis can be suspected. Detection of hyphae in tissue is always a cause for concern because therapeutic consequences must follow. Because therapeutic strategies may differ depending on the specific fungal agent, a suspected diagnosis should be supplemented by other methods, e.g. culture of unfixed specimens, by immunohistology or molecular biological methods.

  6. Method and apparatus for phase and amplitude detection

    DOEpatents

    Cernosek, R.W.; Frye, G.C.; Martin, S.J.

    1998-06-09

    A new class of techniques has been developed which allow inexpensive application of SAW-type chemical sensor devices while retaining high sensitivity (ppm) to chemical detection. The new techniques do not require that the sensor be part of an oscillatory circuit, allowing large concentrations of, e.g., chemical vapors in air, to be accurately measured without compromising the capacity to measure trace concentrations. Such devices have numerous potential applications in environmental monitoring, from manufacturing environments to environmental restoration. 12 figs.

  7. Detection and quantification system for monitoring instruments

    DOEpatents

    Dzenitis, John M [Danville, CA; Hertzog, Claudia K [Houston, TX; Makarewicz, Anthony J [Livermore, CA; Henderer, Bruce D [Livermore, CA; Riot, Vincent J [Oakland, CA

    2008-08-12

    A method of detecting real events by obtaining a set of recent signal results, calculating measures of the noise or variation based on the set of recent signal results, calculating an expected baseline value based on the set of recent signal results, determining sample deviation, calculating an allowable deviation by multiplying the sample deviation by a threshold factor, setting an alarm threshold from the baseline value plus or minus the allowable deviation, and determining whether the signal results exceed the alarm threshold.

  8. Moving human full body and body parts detection, tracking, and applications on human activity estimation, walking pattern and face recognition

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike

    2016-05-01

    We have developed a new way for detection and tracking of human full-body and body-parts with color (intensity) patch morphological segmentation and adaptive thresholding for security surveillance cameras. An adaptive threshold scheme has been developed for dealing with body size changes, illumination condition changes, and cross camera parameter changes. Tests with the PETS 2009 and 2014 datasets show that we can obtain high probability of detection and low probability of false alarm for full-body. Test results indicate that our human full-body detection method can considerably outperform the current state-of-the-art methods in both detection performance and computational complexity. Furthermore, in this paper, we have developed several methods using color features for detection and tracking of human body-parts (arms, legs, torso, and head, etc.). For example, we have developed a human skin color sub-patch segmentation algorithm by first conducting a RGB to YIQ transformation and then applying a Subtractive I/Q image Fusion with morphological operations. With this method, we can reliably detect and track human skin color related body-parts such as face, neck, arms, and legs. Reliable body-parts (e.g. head) detection allows us to continuously track the individual person even in the case that multiple closely spaced persons are merged. Accordingly, we have developed a new algorithm to split a merged detection blob back to individual detections based on the detected head positions. Detected body-parts also allow us to extract important local constellation features of the body-parts positions and angles related to the full-body. These features are useful for human walking gait pattern recognition and human pose (e.g. standing or falling down) estimation for potential abnormal behavior and accidental event detection, as evidenced with our experimental tests. Furthermore, based on the reliable head (face) tacking, we have applied a super-resolution algorithm to enhance the face resolution for improved human face recognition performance.

  9. Estimating site occupancy rates for aquatic plants using spatial sub-sampling designs when detection probabilities are less than one

    USGS Publications Warehouse

    Nielson, Ryan M.; Gray, Brian R.; McDonald, Lyman L.; Heglund, Patricia J.

    2011-01-01

    Estimation of site occupancy rates when detection probabilities are <1 is well established in wildlife science. Data from multiple visits to a sample of sites are used to estimate detection probabilities and the proportion of sites occupied by focal species. In this article we describe how site occupancy methods can be applied to estimate occupancy rates of plants and other sessile organisms. We illustrate this approach and the pitfalls of ignoring incomplete detection using spatial data for 2 aquatic vascular plants collected under the Upper Mississippi River's Long Term Resource Monitoring Program (LTRMP). Site occupancy models considered include: a naïve model that ignores incomplete detection, a simple site occupancy model assuming a constant occupancy rate and a constant probability of detection across sites, several models that allow site occupancy rates and probabilities of detection to vary with habitat characteristics, and mixture models that allow for unexplained variation in detection probabilities. We used information theoretic methods to rank competing models and bootstrapping to evaluate the goodness-of-fit of the final models. Results of our analysis confirm that ignoring incomplete detection can result in biased estimates of occupancy rates. Estimates of site occupancy rates for 2 aquatic plant species were 19–36% higher compared to naive estimates that ignored probabilities of detection <1. Simulations indicate that final models have little bias when 50 or more sites are sampled, and little gains in precision could be expected for sample sizes >300. We recommend applying site occupancy methods for monitoring presence of aquatic species.

  10. PCR detection of thermophilic spore-forming bacteria involved in canned food spoilage.

    PubMed

    Prevost, S; Andre, S; Remize, F

    2010-12-01

    Thermophilic bacteria that form highly heat-resistant spores constitute an important group of spoilage bacteria of low-acid canned food. A PCR assay was developed in order to rapidly trace these bacteria. Three PCR primer pairs were designed from rRNA gene sequences. These primers were evaluated for the specificity and the sensitivity of detection. Two primer pairs allowed detection at the species level of Geobacillus stearothermophilus and Moorella thermoacetica/thermoautrophica. The other pair allowed group-specific detection of anaerobic thermophilic bacteria of the genera Thermoanaerobacterium, Thermoanaerobacter, Caldanerobium and Caldanaerobacter. After a single enrichment step, these PCR assays allowed the detection of 28 thermophiles from 34 cans of spoiled low-acid food. In addition, 13 ingredients were screened for the presence of these bacteria. This PCR assay serves as a detection method for strains able to spoil low-acid canned food treated at 55°C. It will lead to better reactivity in the canning industry. Raw materials and ingredients might be qualified not only for quantitative spore contamination, but also for qualitative contamination by highly heat-resistant spores.

  11. Vision-based in-line fabric defect detection using yarn-specific shape features

    NASA Astrophysics Data System (ADS)

    Schneider, Dorian; Aach, Til

    2012-01-01

    We develop a methodology for automatic in-line flaw detection in industrial woven fabrics. Where state of the art detection algorithms apply texture analysis methods to operate on low-resolved ({200 ppi) image data, we describe here a process flow to segment single yarns in high-resolved ({1000 ppi) textile images. Four yarn shape features are extracted, allowing a precise detection and measurement of defects. The degree of precision reached allows a classification of detected defects according to their nature, providing an innovation in the field of automatic fabric flaw detection. The design has been carried out to meet real time requirements and face adverse conditions caused by loom vibrations and dirt. The entire process flow is discussed followed by an evaluation using a database with real-life industrial fabric images. This work pertains to the construction of an on-loom defect detection system to be used in manufacturing practice.

  12. A multistage approach to improve performance of computer-aided detection of pulmonary embolisms depicted on CT images: preliminary investigation.

    PubMed

    Park, Sang Cheol; Chapman, Brian E; Zheng, Bin

    2011-06-01

    This study developed a computer-aided detection (CAD) scheme for pulmonary embolism (PE) detection and investigated several approaches to improve CAD performance. In the study, 20 computed tomography examinations with various lung diseases were selected, which include 44 verified PE lesions. The proposed CAD scheme consists of five basic steps: 1) lung segmentation; 2) PE candidate extraction using an intensity mask and tobogganing region growing; 3) PE candidate feature extraction; 4) false-positive (FP) reduction using an artificial neural network (ANN); and 5) a multifeature-based k-nearest neighbor for positive/negative classification. In this study, we also investigated the following additional methods to improve CAD performance: 1) grouping 2-D detected features into a single 3-D object; 2) selecting features with a genetic algorithm (GA); and 3) limiting the number of allowed suspicious lesions to be cued in one examination. The results showed that 1) CAD scheme using tobogganing, an ANN, and grouping method achieved the maximum detection sensitivity of 79.2%; 2) the maximum scoring method achieved the superior performance over other scoring fusion methods; 3) GA was able to delete "redundant" features and further improve CAD performance; and 4) limiting the maximum number of cued lesions in an examination reduced FP rate by 5.3 times. Combining these approaches, CAD scheme achieved 63.2% detection sensitivity with 18.4 FP lesions per examination. The study suggested that performance of CAD schemes for PE detection depends on many factors that include 1) optimizing the 2-D region grouping and scoring methods; 2) selecting the optimal feature set; and 3) limiting the number of allowed cueing lesions per examination.

  13. Gel-based methods in redox proteomics.

    PubMed

    Charles, Rebecca; Jayawardhana, Tamani; Eaton, Philip

    2014-02-01

    The key to understanding the full significance of oxidants in health and disease is the development of tools and methods that allow the study of proteins that sense and transduce changes in cellular redox. Oxidant-reactive deprotonated thiols commonly operate as redox sensors in proteins and a variety of methods have been developed that allow us to monitor their oxidative modification. This outline review specifically focuses on gel-based methods used to detect, quantify and identify protein thiol oxidative modifications. The techniques we discuss fall into one of two broad categories. Firstly, methods that allow oxidation of thiols in specific proteins or the global cellular pool to be monitored are discussed. These typically utilise thiol-labelling reagents that add a reporter moiety (e.g. affinity tag, fluorophore, chromophore), in which loss of labelling signifies oxidation. Secondly, we outline methods that allow specific thiol oxidation states of proteins (e.g. S-sulfenylation, S-nitrosylation, S-thionylation and interprotein disulfide bond formation) to be investigated. A variety of different gel-based methods for identifying thiol proteins that are sensitive to oxidative modifications have been developed. These methods can aid the detection and quantification of thiol redox state, as well as identifying the sensor protein. By understanding how cellular redox is sensed and transduced to a functional effect by protein thiol redox sensors, this will help us better appreciate the role of oxidants in health and disease. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Methods for measuring exchangeable protons in glycosaminoglycans.

    PubMed

    Beecher, Consuelo N; Larive, Cynthia K

    2015-01-01

    Recent NMR studies of the exchangeable protons of GAGs in aqueous solution, including those of the amide, sulfamate, and hydroxyl moieties, have demonstrated potential for the detection of intramolecular hydrogen bonds, providing insights into secondary structure preferences. GAG amide protons are observable by NMR over wide pH and temperature ranges; however, specific solution conditions are required to reduce the exchange rate of the sulfamate and hydroxyl protons and allow their detection by NMR. Building on the vast body of knowledge on detection of hydrogen bonds in peptides and proteins, a variety of methods can be used to identify hydrogen bonds in GAGs including temperature coefficient measurements, evaluation of chemical shift differences between oligo- and monosaccharides, and relative exchange rates measured through line shape analysis and EXSY spectra. Emerging strategies to allow direct detection of hydrogen bonds through heteronuclear couplings offer promise for the future. Molecular dynamic simulations are important in this effort both to predict and confirm hydrogen bond donors and acceptors.

  15. Deep Learning Method for Denial of Service Attack Detection Based on Restricted Boltzmann Machine.

    PubMed

    Imamverdiyev, Yadigar; Abdullayeva, Fargana

    2018-06-01

    In this article, the application of the deep learning method based on Gaussian-Bernoulli type restricted Boltzmann machine (RBM) to the detection of denial of service (DoS) attacks is considered. To increase the DoS attack detection accuracy, seven additional layers are added between the visible and the hidden layers of the RBM. Accurate results in DoS attack detection are obtained by optimization of the hyperparameters of the proposed deep RBM model. The form of the RBM that allows application of the continuous data is used. In this type of RBM, the probability distribution of the visible layer is replaced by a Gaussian distribution. Comparative analysis of the accuracy of the proposed method with Bernoulli-Bernoulli RBM, Gaussian-Bernoulli RBM, deep belief network type deep learning methods on DoS attack detection is provided. Detection accuracy of the methods is verified on the NSL-KDD data set. Higher accuracy from the proposed multilayer deep Gaussian-Bernoulli type RBM is obtained.

  16. A robust and cost-effective approach to sequence and analyze complete genomes of small RNA viruses

    USDA-ARS?s Scientific Manuscript database

    Background: Next-generation sequencing (NGS) allows ultra-deep sequencing of nucleic acids. The use of sequence-independent amplification of viral nucleic acids without utilization of target-specific primers provides advantages over traditional sequencing methods and allows detection of unsuspected ...

  17. Probability of Detection (POD) as a statistical model for the validation of qualitative methods.

    PubMed

    Wehling, Paul; LaBudde, Robert A; Brunelle, Sharon L; Nelson, Maria T

    2011-01-01

    A statistical model is presented for use in validation of qualitative methods. This model, termed Probability of Detection (POD), harmonizes the statistical concepts and parameters between quantitative and qualitative method validation. POD characterizes method response with respect to concentration as a continuous variable. The POD model provides a tool for graphical representation of response curves for qualitative methods. In addition, the model allows comparisons between candidate and reference methods, and provides calculations of repeatability, reproducibility, and laboratory effects from collaborative study data. Single laboratory study and collaborative study examples are given.

  18. A fuzzy pattern matching method based on graph kernel for lithography hotspot detection

    NASA Astrophysics Data System (ADS)

    Nitta, Izumi; Kanazawa, Yuzi; Ishida, Tsutomu; Banno, Koji

    2017-03-01

    In advanced technology nodes, lithography hotspot detection has become one of the most significant issues in design for manufacturability. Recently, machine learning based lithography hotspot detection has been widely investigated, but it has trade-off between detection accuracy and false alarm. To apply machine learning based technique to the physical verification phase, designers require minimizing undetected hotspots to avoid yield degradation. They also need a ranking of similar known patterns with a detected hotspot to prioritize layout pattern to be corrected. To achieve high detection accuracy and to prioritize detected hotspots, we propose a novel lithography hotspot detection method using Delaunay triangulation and graph kernel based machine learning. Delaunay triangulation extracts features of hotspot patterns where polygons locate irregularly and closely one another, and graph kernel expresses inner structure of graphs. Additionally, our method provides similarity between two patterns and creates a list of similar training patterns with a detected hotspot. Experiments results on ICCAD 2012 benchmarks show that our method achieves high accuracy with allowable range of false alarm. We also show the ranking of the similar known patterns with a detected hotspot.

  19. Automated detection of irradiated food with the comet assay.

    PubMed

    Verbeek, F; Koppen, G; Schaeken, B; Verschaeve, L

    2008-01-01

    Food irradiation is the process of exposing food to ionising radiation in order to disinfect, sanitise, sterilise and preserve food or to provide insect disinfestation. Irradiated food should be adequately labelled according to international and national guidelines. In many countries, there are furthermore restrictions to the product-specific maximal dose that can be administered. Therefore, there is a need for methods that allow detection of irradiated food, as well as for methods that provide a reliable dose estimate. In recent years, the comet assay was proposed as a simple, rapid and inexpensive method to fulfil these goals, but further research is required to explore the full potential of this method. In this paper we describe the use of an automated image analysing system to measure DNA comets which allow the discrimination between irradiated and non-irradiated food as well as the set-up of standard dose-response curves, and hence a sufficiently accurate dose estimation.

  20. Detection methods and performance criteria for genetically modified organisms.

    PubMed

    Bertheau, Yves; Diolez, Annick; Kobilinsky, André; Magin, Kimberly

    2002-01-01

    Detection methods for genetically modified organisms (GMOs) are necessary for many applications, from seed purity assessment to compliance of food labeling in several countries. Numerous analytical methods are currently used or under development to support these needs. The currently used methods are bioassays and protein- and DNA-based detection protocols. To avoid discrepancy of results between such largely different methods and, for instance, the potential resulting legal actions, compatibility of the methods is urgently needed. Performance criteria of methods allow evaluation against a common standard. The more-common performance criteria for detection methods are precision, accuracy, sensitivity, and specificity, which together specifically address other terms used to describe the performance of a method, such as applicability, selectivity, calibration, trueness, precision, recovery, operating range, limit of quantitation, limit of detection, and ruggedness. Performance criteria should provide objective tools to accept or reject specific methods, to validate them, to ensure compatibility between validated methods, and be used on a routine basis to reject data outside an acceptable range of variability. When selecting a method of detection, it is also important to consider its applicability, its field of applications, and its limitations, by including factors such as its ability to detect the target analyte in a given matrix, the duration of the analyses, its cost effectiveness, and the necessary sample sizes for testing. Thus, the current GMO detection methods should be evaluated against a common set of performance criteria.

  1. Evaluation of seven aquatic sampling methods for amphibians and other aquatic fauna

    USGS Publications Warehouse

    Gunzburger, M.S.

    2007-01-01

    To design effective and efficient research and monitoring programs researchers must have a thorough understanding of the capabilities and limitations of their sampling methods. Few direct comparative studies exist for aquatic sampling methods for amphibians. The objective of this study was to simultaneously employ seven aquatic sampling methods in 10 wetlands to compare amphibian species richness and number of individuals detected with each method. Four sampling methods allowed counts of individuals (metal dipnet, D-frame dipnet, box trap, crayfish trap), whereas the other three methods allowed detection of species (visual encounter, aural, and froglogger). Amphibian species richness was greatest with froglogger, box trap, and aural samples. For anuran species, the sampling methods by which each life stage was detected was related to relative length of larval and breeding periods and tadpole size. Detection probability of amphibians varied across sampling methods. Box trap sampling resulted in the most precise amphibian count, but the precision of all four count-based methods was low (coefficient of variation > 145 for all methods). The efficacy of the four count sampling methods at sampling fish and aquatic invertebrates was also analyzed because these predatory taxa are known to be important predictors of amphibian habitat distribution. Species richness and counts were similar for fish with the four methods, whereas invertebrate species richness and counts were greatest in box traps. An effective wetland amphibian monitoring program in the southeastern United States should include multiple sampling methods to obtain the most accurate assessment of species community composition at each site. The combined use of frogloggers, crayfish traps, and dipnets may be the most efficient and effective amphibian monitoring protocol. ?? 2007 Brill Academic Publishers.

  2. Antibody modified gold nanoparticles for fast and selective, colorimetric T7 bacteriophage detection.

    PubMed

    Lesniewski, Adam; Los, Marcin; Jonsson-Niedziółka, Martin; Krajewska, Anna; Szot, Katarzyna; Los, Joanna M; Niedziolka-Jonsson, Joanna

    2014-04-16

    Herein, we report a colorimetric immunosensor for T7 bacteriophage based on gold nanoparticles modified with covalently bonded anti-T7 antibodies. The new immunosensor allows for a fast, simple, and selective detection of T7 virus. T7 virions form immunological complexes with the antibody modified gold nanoparticles which causes them to aggregate. The aggregation can be observed with the naked eye as a color change from red to purple, as well as with a UV-vis spectrophotometer. The aggregate formation was confirmed with SEM imaging. Sensor selectivity against the M13 bacteriophage was demonstrated. The limit of detection (LOD) is 1.08 × 10(10) PFU/mL (18 pM) T7. The new method was compared with a traditional plaque test. In contrast to biological tests the colorimetric method allows for detection of all T7 phages, not only those biologically active. This includes phage ghosts and fragments of virions. T7 virus has been chosen as a model organism for adenoviruses. The described method has several advantages over the traditional ones. It is much faster than a standard plaque test. It is more robust since no bacteria-virus interactions are utilized in the detection process. Since antibodies are available for a large variety of pathogenic viruses, the described concept is very flexible and can be adapted to detect many different viruses, not only bacteriophages. Contrary to the classical immunoassays, it is a one-step detection method, and no additional amplification, e.g., enzymatic, is needed to read the result.

  3. Rapid detection of Ganoderma-infected oil palms by microwave ergosterol extraction with HPLC and TLC.

    PubMed

    Muniroh, M S; Sariah, M; Zainal Abidin, M A; Lima, N; Paterson, R R M

    2014-05-01

    Detection of basal stem rot (BSR) by Ganoderma of oil palms was based on foliar symptoms and production of basidiomata. Enzyme-Linked Immunosorbent Assays-Polyclonal Antibody (ELISA-PAB) and PCR have been proposed as early detection methods for the disease. These techniques are complex, time consuming and have accuracy limitations. An ergosterol method was developed which correlated well with the degree of infection in oil palms, including samples growing in plantations. However, the method was capable of being optimised. This current study was designed to develop a simpler, more rapid and efficient ergosterol method with utility in the field that involved the use of microwave extraction. The optimised procedure involved extracting a small amount of Ganoderma, or Ganoderma-infected oil palm suspended in low volumes of solvent followed by irradiation in a conventional microwave oven at 70°C and medium high power for 30s, resulting in simultaneous extraction and saponification. Ergosterol was detected by thin layer chromatography (TLC) and quantified using high performance liquid chromatography with diode array detection. The TLC method was novel and provided a simple, inexpensive method with utility in the field. The new method was particularly effective at extracting high yields of ergosterol from infected oil palm and enables rapid analysis of field samples on site, allowing infected oil palms to be treated or culled very rapidly. Some limitations of the method are discussed herein. The procedures lend themselves to controlling the disease more effectively and allowing more effective use of land currently employed to grow oil palms, thereby reducing pressure to develop new plantations. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Microtiter format for simultaneous multianalyte detection and development of a PCR-chemiluminescent enzyme immunoassay for typing human papillomavirus DNAs.

    PubMed

    Roda, Aldo; Mirasoli, Mara; Venturoli, Simona; Cricca, Monica; Bonvicini, Francesca; Baraldini, Mario; Pasini, Patrizia; Zerbini, Marialuisa; Musiani, Monica

    2002-10-01

    To allow multianalyte binding assays, we have developed a novel polystyrene microtiter plate containing 24 main wells, each divided into 7 subwells. We explored its clinical potential by developing a PCR-chemiluminescent immunoassay (PCR-CLEIA) for simultaneous detection and typing of seven high oncogenic risk human papillomavirus (HPV) DNAs in one well. Seven different oligonucleotide probes, each specific for a high-risk HPV genotype, were separately immobilized in the subwells. Subsequently, a digoxigenin-labeled consensus PCR amplification product was added to the main well. The PCR product hybridized to the immobilized probe corresponding to its genotype and was subsequently detected by use of a peroxidase-labeled anti-digoxigenin antibody and chemiluminescence imaging with an ultrasensitive charge-coupled device camera. Results obtained for 50 cytologic samples were compared with those obtained with a conventional colorimetric PCR-ELISA. The method was specific and allowed detection of 50 genome copies of HPV 16, 18, 33, and 58, and 100 genome copies of HPV 31, 35, and 45. Intra- and interassay CVs for the method were 5.6% and 7.9%, respectively. All results obtained for clinical samples were confirmed by the conventional PCR-ELISA. PCR-CLEIA allows rapid, single-tube simultaneous detection and typing of seven high-risk HPV DNAs with small reagent volumes. The principle appears applicable to the development of other single-tube panels of tests.

  5. Love-Wave Sensors Combined with Microfluidics for Fast Detection of Biological Warfare Agents

    PubMed Central

    Matatagui, Daniel; Fontecha, José Luis; Fernández, María Jesús; Gràcia, Isabel; Cané, Carles; Santos, José Pedro; Horrillo, María Carmen

    2014-01-01

    The following paper examines a time-efficient method for detecting biological warfare agents (BWAs). The method is based on a system of a Love-wave immunosensor combined with a microfluidic chip which detects BWA samples in a dynamic mode. In this way a continuous flow-through of the sample is created, promoting the reaction between antigen and antibody and allowing a fast detection of the BWAs. In order to prove this method, static and dynamic modes have been simulated and different concentrations of BWA simulants have been tested with two immunoreactions: phage M13 has been detected using the mouse monoclonal antibody anti-M13 (AM13), and the rabbit immunoglobulin (Rabbit IgG) has been detected using the polyclonal antibody goat anti-rabbit (GAR). Finally, different concentrations of each BWA simulants have been detected with a fast response time and a desirable level of discrimination among them has been achieved. PMID:25029282

  6. Optimized velocity distributions for direct dark matter detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibarra, Alejandro; Rappelt, Andreas, E-mail: ibarra@tum.de, E-mail: andreas.rappelt@tum.de

    We present a method to calculate, without making assumptions about the local dark matter velocity distribution, the maximal and minimal number of signal events in a direct detection experiment given a set of constraints from other direct detection experiments and/or neutrino telescopes. The method also allows to determine the velocity distribution that optimizes the signal rates. We illustrate our method with three concrete applications: i) to derive a halo-independent upper limit on the cross section from a set of null results, ii) to confront in a halo-independent way a detection claim to a set of null results and iii) tomore » assess, in a halo-independent manner, the prospects for detection in a future experiment given a set of current null results.« less

  7. Automated Detection of Salt Marsh Platforms : a Topographic Method

    NASA Astrophysics Data System (ADS)

    Goodwin, G.; Mudd, S. M.; Clubb, F. J.

    2017-12-01

    Monitoring the topographic evolution of coastal marshes is a crucial step toward improving the management of these valuable landscapes under the pressure of relative sea level rise and anthropogenic modification. However, determining their geometrically complex boundaries currently relies on spectral vegetation detection methods or requires labour-intensive field surveys and digitisation.We propose a novel method to reproducibly isolate saltmarsh scarps and platforms from a DEM. Field observations and numerical models show that saltmarshes mature into sub-horizontal platforms delineated by sub-vertical scarps: based on this premise, we identify scarps as lines of local maxima on a slope*relief raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. Non-dimensional search parameters allow batch-processing of data without recalibration. We test our method using lidar-derived DEMs of six saltmarshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and automatic segregation exceeds 90% for resolutions of 1m, with all but one sites maintaining this performance for resolutions up to 3.5m. For resolutions of 1m, automatically detected platforms are comparable in surface area and elevation distribution to digitised platforms. We also find that our method allows the accurate detection of local bloc failures 3 times larger than the DEM resolution.Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, automatic detection classifies them as part of the tidal flat, causing an increase in false negatives and overall platform perimeter. This suggests our method would benefit from a combination with existing creek detection algorithms. Fallen blocs and pioneer zones are inconsistently identified, particularly in macro-tidal marshes, leading to differences between digitisation and the automated method: this also suggests that these areas must be carefully considered when analysing erosion and accretion processes. Ultimately, we have shown that automatic detection of marsh platforms from high-resolution topography is possible and sufficient to monitor and analyse topographic evolution.

  8. Sinc or Sine? The Band Excitation Method and Energy Dissipation Measurements by SPM

    NASA Astrophysics Data System (ADS)

    Jesse, Stephen; Kalinin, Sergei

    2007-03-01

    Quantitative energy dissipation measurements in force-based SPM is the key to understanding fundamental mechanisms of energy transformations on the nanoscale, molecular, and atomic levels. To date, these measurements are invariably based on either phase and amplitude detection in constant frequency mode, or as amplitude detection in frequency-tracking mode. The analysis in both cases implicitly assumes that amplitude is inversely proportional to the Q-factor and is not applicable when the driving force is position dependent, as is the case for virtually all SPM measurements. All current SPM methods sample only a single frequency in the Fourier domain of the system. Thus, only two out of three parameters (amplitude, resonance, and Q) can be determined independently. Here, we developed and implemented a new approach for SPM detection based on the excitation and detection of a signal having a finite amplitude over a selected region in the Fourier domain and allows simultaneous determination of all three parameters. This band excitation method allows acquisition of the local spectral response at a 10ms/pixel rate, compatible with fast imaging, and is illustrated for electromechanical and mechanical imaging and force-distance spectroscopy. The BE method thus represents a new paradigm in SPM, beyond traditional single-frequency excitation.

  9. Enhanced change detection index for disaster response, recovery assessment and monitoring of buildings and critical facilities-A case study for Muzzaffarabad, Pakistan

    NASA Astrophysics Data System (ADS)

    de Alwis Pitts, Dilkushi A.; So, Emily

    2017-12-01

    The availability of Very High Resolution (VHR) optical sensors and a growing image archive that is frequently updated, allows the use of change detection in post-disaster recovery and monitoring for robust and rapid results. The proposed semi-automated GIS object-based method uses readily available pre-disaster GIS data and adds existing knowledge into the processing to enhance change detection. It also allows targeting specific types of changes pertaining to similar man-made objects such as buildings and critical facilities. The change detection method is based on pre/post normalized index, gradient of intensity, texture and edge similarity filters within the object and a set of training data. More emphasis is put on the building edges to capture the structural damage in quantifying change after disaster. Once the change is quantified, based on training data, the method can be used automatically to detect change in order to observe recovery over time in potentially large areas. Analysis over time can also contribute to obtaining a full picture of the recovery and development after disaster, thereby giving managers a better understanding of productive management and recovery practices. The recovery and monitoring can be analyzed using the index in zones extending from to epicentre of disaster or administrative boundaries over time.

  10. A simple HPLC-DAD method for simultaneous detection of two organophosphates, profenofos and fenthion, and validation by soil microcosm experiment.

    PubMed

    Mahajan, Rishi; Chatterjee, Subhankar

    2018-05-05

    Indiscriminate use of two broad spectrum pesticides, profenofos and fenthion, in agricultural system, often results in their accumulation in a non-target niche and leaching into water bodies. The present study, therefore, aims at developing a simple and rapid HPLC method that allows simultaneous extraction and detection of these two pesticides, especially in run-off water. Extraction of the two pesticides from spiked water samples using dichloromethane resulted in recovery ranging between 80 and 90%. An HPLC run of 20 min under optimized chromatographic parameters (mobile phase: methanol (75%) and water (25%); flow rate of 0.8 ml min -1 ; diode array detector at wavelength 210 nm) resulted in a significant difference in retention times of two pesticides (4.593 min) which allows a window of opportunity to study any possible intermediates/transformants of the parent compounds while evaluating run-off waters from agricultural fields. The HPLC method developed allowed simultaneous detection of profenofos and fenthion with a single injection into the HPLC system with 0.0328 mg l -1 (32.83 ng ml -1 ) being the limit of detection (LOD) and 0.0995 mg l -1 (99.5 ng ml -1 ) as the limit of quantification (LOQ) for fenthion; for profenofos, LOD and LOQ were 0.104 mg l -1 (104.50 ng ml -1 ) and 0.316 mg l -1 (316.65 ng ml -1 ), respectively. The findings were further validated using the soil microcosm experiment that allowed simultaneous detection and quantification of profenofos and fenthion. The findings indicate towards the practical significance of the methodology developed as the soil microcosm experiment closely mimics the agricultural run-off water under natural environmental conditions.

  11. Method of detecting luminescent target ions with modified magnetic microspheres

    DOEpatents

    Shkrob, Ilya A; Kaminski, Michael D

    2014-05-13

    This invention provides methods of using modified magnetic microspheres to extract target ions from a sample in order to detect their presence in a microfluidic environment. In one or more embodiments, the microspheres are modified with molecules on the surface that allow the target ions in the sample to form complexes with specific ligand molecules on the microsphere surface. In one or more embodiments, the microspheres are modified with molecules that sequester the target ions from the sample, but specific ligand molecules in solution subsequently re-extract the target ions from the microspheres into the solution, where the complexes form independent of the microsphere surface. Once the complexes form, they are exposed to an excitation wavelength light source suitable for exciting the target ion to emit a luminescent signal pattern. Detection of the luminescent signal pattern allows for determination of the presence of the target ions in the sample.

  12. Handheld lasers allow efficient detection of fluorescent marked organisms in the field.

    PubMed

    Rice, Kevin B; Fleischer, Shelby J; De Moraes, Consuelo M; Mescher, Mark C; Tooker, John F; Gish, Moshe

    2015-01-01

    Marking organisms with fluorescent dyes and powders is a common technique used in ecological field studies that monitor movement of organisms to examine life history traits, behaviors, and population dynamics. External fluorescent marking is relatively inexpensive and can be readily employed to quickly mark large numbers of individuals; however, the ability to detect marked organisms in the field at night has been hampered by the limited detection distances provided by portable fluorescent ultraviolet lamps. In recent years, significant advances in LED lamp and laser technology have led to development of powerful, low-cost ultraviolet light sources. In this study, we evaluate the potential of these new technologies to improve detection of fluorescent-marked organisms in the field and to create new possibilities for tracking marked organisms in visually challenging environments such as tree canopies and aquatic habitats. Using handheld lasers, we document a method that provides a fivefold increase in detection distance over previously available technologies. This method allows easy scouting of tree canopies (from the ground), as well as shallow aquatic systems. This novel detection method for fluorescent-marked organisms thus promises to significantly enhance the use of fluorescent marking as a non-destructive technique for tracking organisms in natural environments, facilitating field studies that aim to document otherwise inaccessible aspects of the movement, behavior, and population dynamics of study organisms, including species with significant economic impacts or relevance for ecology and human health.

  13. Detecting earthquakes over a seismic network using single-station similarity measures

    NASA Astrophysics Data System (ADS)

    Bergen, Karianne J.; Beroza, Gregory C.

    2018-06-01

    New blind waveform-similarity-based detection methods, such as Fingerprint and Similarity Thresholding (FAST), have shown promise for detecting weak signals in long-duration, continuous waveform data. While blind detectors are capable of identifying similar or repeating waveforms without templates, they can also be susceptible to false detections due to local correlated noise. In this work, we present a set of three new methods that allow us to extend single-station similarity-based detection over a seismic network; event-pair extraction, pairwise pseudo-association, and event resolution complete a post-processing pipeline that combines single-station similarity measures (e.g. FAST sparse similarity matrix) from each station in a network into a list of candidate events. The core technique, pairwise pseudo-association, leverages the pairwise structure of event detections in its network detection model, which allows it to identify events observed at multiple stations in the network without modeling the expected moveout. Though our approach is general, we apply it to extend FAST over a sparse seismic network. We demonstrate that our network-based extension of FAST is both sensitive and maintains a low false detection rate. As a test case, we apply our approach to 2 weeks of continuous waveform data from five stations during the foreshock sequence prior to the 2014 Mw 8.2 Iquique earthquake. Our method identifies nearly five times as many events as the local seismicity catalogue (including 95 per cent of the catalogue events), and less than 1 per cent of these candidate events are false detections.

  14. Thermoelectric SQUID method for the detection of segregations

    NASA Astrophysics Data System (ADS)

    Hinken, Johann H.; Tavrin, Yury

    2000-05-01

    Aero engine turbine discs are most critical parts. Material inhomogeneities can cause disc fractures during the flight with fatal air disasters. Nondestructive testing (NDT) of the discs in various machining steps is necessary and performed as well as possible. Conventional NDT methods, however, like eddy current testing and ultrasonic testing have unacceptable limits. For example, subsurface segregations often cannot be detected directly but only indirectly in such cases when cracks already have developed from them. This may be too late. A new NDT method, which we call the Thermoelectric SQUID Method, has been developed. It allows for the detection of metallic inclusions within non-ferromagnetic metallic base material. This paper describes the results of a feasibility study on aero engine turbine discs made from Inconel® 718. These contained segregations that had been detected before by anodic etching. With the Thermoelectric SQUID Method, these segregations were detected again, and further segregations below the surfaces have been found, which had not been detected before. For this new NDT method the disc material is quasi-transparent. The Thermoelectric SQUID Method is also useful to detect distributed and localized inhomogeneities in pure metals like niobium sheets for particle accelerators.

  15. Applying ISO 11929:2010 Standard to detection limit calculation in least-squares based multi-nuclide gamma-ray spectrum evaluation

    NASA Astrophysics Data System (ADS)

    Kanisch, G.

    2017-05-01

    The concepts of ISO 11929 (2010) are applied to evaluation of radionuclide activities from more complex multi-nuclide gamma-ray spectra. From net peak areas estimated by peak fitting, activities and their standard uncertainties are calculated by weighted linear least-squares method with an additional step, where uncertainties of the design matrix elements are taken into account. A numerical treatment of the standard's uncertainty function, based on ISO 11929 Annex C.5, leads to a procedure for deriving decision threshold and detection limit values. The methods shown allow resolving interferences between radionuclide activities also in case of calculating detection limits where they can improve the latter by including more than one gamma line per radionuclide. The co"mmon single nuclide weighted mean is extended to an interference-corrected (generalized) weighted mean, which, combined with the least-squares method, allows faster detection limit calculations. In addition, a new grouped uncertainty budget was inferred, which for each radionuclide gives uncertainty budgets from seven main variables, such as net count rates, peak efficiencies, gamma emission intensities and others; grouping refers to summation over lists of peaks per radionuclide.

  16. Detection of Unknown Crypts under the Floor in the Holy Trinity Church (Dominican Monastery) in Krakow, Poland

    NASA Astrophysics Data System (ADS)

    Strzępowicz, Anna; Łyskowski, Mikołaj; Ziętek, Jerzy; Tomecka-Suchoń, Sylwia

    2018-03-01

    The GPR surveying method belongs to non-invasive and quick geophysical methods, applied also in archaeological prospection. It allows for detecting archaeological artefacts buried under historical layers, and also those which can be found within buildings of historical value. Most commonly, just as in this particular case, it is used in churches, where other non-invasive localisation methods cannot be applied. In a majority of cases, surveys bring about highly positive results, enabling the site and size of a specific object to be indicated. A good example are the results obtained from the measurements carried out in the Basilica of Holy Trinity, belonging to the Dominican Monastery in Krakow. They allowed for confirming the location of the already existing crypts and for indicating so-far unidentified objects.

  17. Regional Principal Color Based Saliency Detection

    PubMed Central

    Lou, Jing; Ren, Mingwu; Wang, Huan

    2014-01-01

    Saliency detection is widely used in many visual applications like image segmentation, object recognition and classification. In this paper, we will introduce a new method to detect salient objects in natural images. The approach is based on a regional principal color contrast modal, which incorporates low-level and medium-level visual cues. The method allows a simple computation of color features and two categories of spatial relationships to a saliency map, achieving higher F-measure rates. At the same time, we present an interpolation approach to evaluate resulting curves, and analyze parameters selection. Our method enables the effective computation of arbitrary resolution images. Experimental results on a saliency database show that our approach produces high quality saliency maps and performs favorably against ten saliency detection algorithms. PMID:25379960

  18. Detection of different South American hantaviruses.

    PubMed

    Guterres, Alexandro; de Oliveira, Renata Carvalho; Fernandes, Jorlan; Schrago, Carlos Guerra; de Lemos, Elba Regina Sampaio

    2015-12-02

    Hantaviruses are the etiologic agents of Hemorrhagic Fever with Renal Syndrome (HFRS) in Old World, and Hantavirus Pulmonary Syndrome (HPS)/Hantavirus Cardiopulmonary Syndrome (HCPS), in the New World. Serological methods are the most common approach used for laboratory diagnosis of HCPS, however theses methods do not allow the characterization of viral genotypes. The polymerase chain reaction (PCR) has been extensively used for diagnosis of viral infections, including those caused by hantaviruses, enabling detection of few target sequence copies in the sample. However, most studies proposed methods of PCR with species-specific primers. This study developed a simple and reliable diagnostic system by RT-PCR for different hantavirus detection. Using new primers set, we evaluated human and rodent hantavirus positive samples of various regions from Brazil. Besides, we performed computational analyzes to evaluate the detection of other South American hantaviruses. The diagnostic system by PCR proved to be a sensible and simple assay, allowing amplification of Juquitiba virus, Araraquara virus, Laguna Negra virus, Rio Mamore virus and Jabora virus, beyond of the possibility of the detecting Andes, Anajatuba, Bermejo, Choclo, Cano Delgadito, Lechiguanas, Maciel, Oran, Pergamino and Rio Mearim viruses. The primers sets designed in this study can detect hantaviruses from almost all known genetics lineages in Brazil and from others South America countries and also increases the possibility to detect new hantaviruses. These primers could easily be used both in diagnosis of suspected hantavirus infections in humans and also in studies with animals reservoirs. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Photoacoustic spectroscopy for chemical detection

    NASA Astrophysics Data System (ADS)

    Holthoff, Ellen L.; Pellegrino, Paul M.

    2012-06-01

    The Global War on Terror has made rapid detection and identification of chemical and biological agents a priority for Military and Homeland Defense applications. Reliable real-time detection of these threats is complicated by our enemy's use of a diverse range of materials. Therefore, an adaptable platform is necessary. Photoacoustic spectroscopy (PAS) is a useful monitoring technique that is well suited for trace detection of gaseous media. This method routinely exhibits detection limits at the parts-per-billion (ppb) or sub-ppb range. The versatility of PAS also allows for the investigation of solid and liquid analytes. Current research utilizes quantum cascade lasers (QCLs) in combination with an air-coupled solid-phase photoacoustic cell design for the detection of condensed phase material films deposited on a surface. Furthermore, variation of the QCL pulse repetition rate allows for identification and molecular discrimination of analytes based solely on photoacoustic spectra collected at different film depths.

  20. Multiplex surface plasmon resonance imaging platform for label-free detection of foodborne pathogens

    USDA-ARS?s Scientific Manuscript database

    Salmonellae are among the leading causes of foodborne outbreaks in the United States, and more rapid and efficient detection methods are needed. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multiple targets simultaneous...

  1. Surface plasmon resonance imaging for label-free detection of foodborne pathogens and toxins

    USDA-ARS?s Scientific Manuscript database

    More rapid and efficient detection methods for foodborne pathogenic bacteria and toxins are needed to address the long assay time and limitations in multiplex capacity. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multi...

  2. Comparison of ion chromatographic methods based on conductivity detection, post-column-reaction and on-line-coupling IC-ICP-MS for the determination of bromate.

    PubMed

    Schminke, G; Seubert, A

    2000-02-01

    An established method for the determination of the disinfection by-product bromate is ion chromatography (IC). This paper presents a comparison of three IC methods based on either conductivity detection (IC-CD), a post-column-reaction (IC-PCR-VIS) or the on-line-coupling with inductively coupled plasma mass spectrometry (IC-ICP-MS). Main characteristics of the methods such as method detection limits (MDL), time of analysis and sample pretreatment are compared and applicability for routine analysis is critically discussed. The most sensitive and rugged method is IC-ICP-MS, followed by IC-PCR-VIS. The photometric detection is subject to a minor interference in real world samples, presumably caused by carbonate. The lowest sensitivity is shown by the IC-CD method as slowest method compared, which, in addition, requires a sample pretreatment. The highest amount of information is delivered by IC-PCR-VIS, which allows the simultaneous determination of the seven standard anions and bromate.

  3. A Unimodal Model for Double Observer Distance Sampling Surveys.

    PubMed

    Becker, Earl F; Christ, Aaron M

    2015-01-01

    Distance sampling is a widely used method to estimate animal population size. Most distance sampling models utilize a monotonically decreasing detection function such as a half-normal. Recent advances in distance sampling modeling allow for the incorporation of covariates into the distance model, and the elimination of the assumption of perfect detection at some fixed distance (usually the transect line) with the use of double-observer models. The assumption of full observer independence in the double-observer model is problematic, but can be addressed by using the point independence assumption which assumes there is one distance, the apex of the detection function, where the 2 observers are assumed independent. Aerially collected distance sampling data can have a unimodal shape and have been successfully modeled with a gamma detection function. Covariates in gamma detection models cause the apex of detection to shift depending upon covariate levels, making this model incompatible with the point independence assumption when using double-observer data. This paper reports a unimodal detection model based on a two-piece normal distribution that allows covariates, has only one apex, and is consistent with the point independence assumption when double-observer data are utilized. An aerial line-transect survey of black bears in Alaska illustrate how this method can be applied.

  4. Single quantum dot analysis enables multiplexed point mutation detection by gap ligase chain reaction.

    PubMed

    Song, Yunke; Zhang, Yi; Wang, Tza-Huei

    2013-04-08

    Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and a tedious assay processes. In this report, an assay technology is proposed which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single-molecule coincidence detection, and the superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single-molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Method and device for detecting impact events on a security barrier which includes a hollow rebar allowing insertion and removal of an optical fiber

    DOEpatents

    Pies, Ross E.

    2016-03-29

    A method and device for the detection of impact events on a security barrier. A hollow rebar is farmed within a security barrier, whereby the hollow rebar is completely surrounded by the security barrier. An optical fiber passes through the interior of the hollow rebar. An optical transmitter and an optical receiver are both optically connected to the optical fiber and connected to optical electronics. The optical electronics are configured to provide notification upon the detection of an impact event at the security barrier based on the detection of disturbances within the optical fiber.

  6. PCR-Based Method for the Detection of Toxic Mushrooms Causing Food-Poisoning Incidents.

    PubMed

    Nomura, Chie; Masayama, Atsushi; Yamaguchi, Mizuka; Sakuma, Daisuke; Kajimura, Keiji

    2017-01-01

    In this study, species-specific identification of five toxic mushrooms, Chlorophyllum molybdites, Gymnopilus junonius, Hypholoma fasciculare, Pleurocybella porrigens, and Tricholoma ustale, which have been involved in food-poisoning incidents in Japan, was investigated. Specific primer pairs targeting internal transcribed spacer (ITS) regions were designed for PCR detection. The specific amplicons were obtained from fresh, cooked, and simulated gastric fluid (SGF)-treated samples. No amplicons were detected from other mushrooms with similar morphology. Our method using one-step extraction of mushrooms allows rapid detection within 2.5 hr. It could be utilized for rapid identification or screening of toxic mushrooms.

  7. Nanotunneling Junction-based Hyperspectal Polarimetric Photodetector and Detection Method

    NASA Technical Reports Server (NTRS)

    Son, Kyung-ah (Inventor); Moon, Jeongsun J. (Inventor); Chattopadhyay, Goutam (Inventor); Liao, Anna (Inventor); Ting, David (Inventor)

    2009-01-01

    A photodetector, detector array, and method of operation thereof in which nanojunctions are formed by crossing layers of nanowires. The crossing nanowires are separated by a few nm thick electrical barrier layer which allows tunneling. Each nanojunction is coupled to a slot antenna for efficient and frequency-selective coupling to photo signals. The nanojunctions formed at the intersection of the crossing wires defines a vertical tunneling diode that rectifies the AC signal from a coupled antenna and generates a DC signal suitable for reforming a video image. The nanojunction sensor allows multi/hyper spectral imaging of radiation within a spectral band ranging from terahertz to visible light, and including infrared (IR) radiation. This new detection approach also offers unprecedented speed, sensitivity and fidelity at room temperature.

  8. Canine Hip Dysplasia: Diagnostic Imaging.

    PubMed

    Butler, J Ryan; Gambino, Jennifer

    2017-07-01

    Diagnostic imaging is the principal method used to screen for and diagnose hip dysplasia in the canine patient. Multiple techniques are available, each having advantages, disadvantages, and limitations. Hip-extended radiography is the most used method and is best used as a screening tool and for assessment for osteoarthritis. Distraction radiographic methods such as the PennHip method allow for improved detection of laxity and improved ability to predict future osteoarthritis development. More advanced techniques such as MRI, although expensive and not widely available, may improve patient screening and allow for improved assessment of cartilage health. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Comparison of Sample and Detection Quantification Methods for Salmonella Enterica from Produce

    NASA Technical Reports Server (NTRS)

    Hummerick, M. P.; Khodadad, C.; Richards, J. T.; Dixit, A.; Spencer, L. M.; Larson, B.; Parrish, C., II; Birmele, M.; Wheeler, Raymond

    2014-01-01

    The purpose of this study was to identify and optimize fast and reliable sampling and detection methods for the identification of pathogens that may be present on produce grown in small vegetable production units on the International Space Station (ISS), thus a field setting. Microbiological testing is necessary before astronauts are allowed to consume produce grown on ISS where currently there are two vegetable production units deployed, Lada and Veggie.

  10. Immobilized lipid-bilayer materials

    DOEpatents

    Sasaki, Darryl Y.; Loy, Douglas A.; Yamanaka, Stacey A.

    2000-01-01

    A method for preparing encapsulated lipid-bilayer materials in a silica matrix comprising preparing a silica sol, mixing a lipid-bilayer material in the silica sol and allowing the mixture to gel to form the encapsulated lipid-bilayer material. The mild processing conditions allow quantitative entrapment of pre-formed lipid-bilayer materials without modification to the material's spectral characteristics. The method allows for the immobilization of lipid membranes to surfaces. The encapsulated lipid-bilayer materials perform as sensitive optical sensors for the detection of analytes such as heavy metal ions and can be used as drug delivery systems and as separation devices.

  11. Photopolymerization-based fabrication of chemical sensing films

    DOEpatents

    Yang, Xiaoguang; Swanson, Basil I.; Du, Xian-Xian

    2003-12-30

    A photopolymerization method is disclosed for attaching a chemical microsensor film to an oxide surface including the steps of pretreating the oxide surface to form a functionalized surface, coating the functionalized surface with a prepolymer solution, and polymerizing the prepolymer solution with ultraviolet light to form the chemical microsensor film. The method also allows the formation of molecular imprinted films by photopolymerization. Formation of multilayer sensing films and patterned films is allowed by the use of photomasking techniques to allow patterning of multiple regions of a selected sensing film, or creating a sensor surface containing several films designed to detect different compounds.

  12. CNV-seq, a new method to detect copy number variation using high-throughput sequencing.

    PubMed

    Xie, Chao; Tammi, Martti T

    2009-03-06

    DNA copy number variation (CNV) has been recognized as an important source of genetic variation. Array comparative genomic hybridization (aCGH) is commonly used for CNV detection, but the microarray platform has a number of inherent limitations. Here, we describe a method to detect copy number variation using shotgun sequencing, CNV-seq. The method is based on a robust statistical model that describes the complete analysis procedure and allows the computation of essential confidence values for detection of CNV. Our results show that the number of reads, not the length of the reads is the key factor determining the resolution of detection. This favors the next-generation sequencing methods that rapidly produce large amount of short reads. Simulation of various sequencing methods with coverage between 0.1x to 8x show overall specificity between 91.7 - 99.9%, and sensitivity between 72.2 - 96.5%. We also show the results for assessment of CNV between two individual human genomes.

  13. Development and validation of a 48-target analytical method for high-throughput monitoring of genetically modified organisms.

    PubMed

    Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang

    2015-01-05

    The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection.

  14. Development and Validation of A 48-Target Analytical Method for High-throughput Monitoring of Genetically Modified Organisms

    PubMed Central

    Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang

    2015-01-01

    The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection. PMID:25556930

  15. Seismic detection and analysis of icequakes at Columbia Glacier, Alaska

    USGS Publications Warehouse

    O'Neel, Shad; Marshall, Hans P.; McNamara, Daniel E.; Pfeffer, William Tad

    2007-01-01

    Contributions to sea level rise from rapidly retreating marine-terminating glaciers are large and increasing. Strong increases in iceberg calving occur during retreat, which allows mass transfer to the ocean at a much higher rate than possible through surface melt alone. To study this process, we deployed an 11-sensor passive seismic network at Columbia Glacier, Alaska, during 2004–2005. We show that calving events generate narrow-band seismic signals, allowing frequency domain detections. Detection parameters were determined using direct observations of calving and validated using three statistical methods and hypocenter locations. The 1–3 Hz detections provide a good measure of the temporal distribution and size of calving events. Possible source mechanisms for the unique waveforms are discussed, and we analyze potential forcings for the observed seismicity.

  16. System and method for detecting components of a mixture including a valving scheme for competition assays

    DOEpatents

    Koh, Chung-Yan; Piccini, Matthew E.; Singh, Anup K.

    2017-09-19

    Examples are described including measurement systems for conducting competition assays. A first chamber of an assay device may be loaded with a sample containing a target antigen. The target antigen in the sample may be allowed to bind to antibody-coated beads in the first chamber. A control layer separating the first chamber from a second chamber may then be opened to allow a labeling agent loaded in a first portion of the second chamber to bind to any unoccupied sites on the antibodies. A centrifugal force may then be applied to transport the beads through a density media to a detection region for measurement by a detection unit.

  17. System and method for detecting components of a mixture including a valving scheme for competition assays

    DOEpatents

    Koh, Chung-Yan; Piccini, Matthew E.; Singh, Anup K.

    2017-07-11

    Examples are described including measurement systems for conducting competition assays. A first chamber of an assay device may be loaded with a sample containing a target antigen. The target antigen in the sample may be allowed to bind to antibody-coated beads in the first chamber. A control layer separating the first chamber from a second chamber may then be opened to allow a labeling agent loaded in a first portion of the second chamber to bind to any unoccupied sites on the antibodies. A centrifugal force may then be applied to transport the beads through a density media to a detection region for measurement by a detection unit.

  18. Radioisotope Dating with Accelerators.

    ERIC Educational Resources Information Center

    Muller, Richard A.

    1979-01-01

    Explains a new method of detecting radioactive isotopes by counting their accelerated ions rather than the atoms that decay during the counting period. This method increases the sensitivity by several orders of magnitude, and allows one to find the ages of much older and smaller samples. (GA)

  19. Environmentally evaluated HPLC-ELSD method to monitor enzymatic synthesis of a non-ionic surfactant.

    PubMed

    Gaber, Yasser; Akerman, Cecilia Orellana; Hatti-Kaul, Rajni

    2014-01-01

    N-Lauroyl-N-methylglucamide is a biodegradable surfactant derived from renewable resources. In an earlier study, we presented an enzymatic solvent-free method for synthesis of this compound. In the present report, the HPLC method developed to follow the reaction between lauric acid/methyl laurate and N-methyl glucamine (MEG) and its environmental assessment are described. Use of ultraviolet (UV) absorption or refractive index (RI) detectors did not allow the detection of N-methyl glucamine (MEG). With Evaporative light scattering detector ELSD, it was possible to apply a gradient elution, and detect MEG with a limit of detection, LOD = 0.12 μg. A good separation of the peaks: MEG, lauric acid, product (amide) and by-product (amide-ester) was achieved with the gradient program with a run time of 40 min. The setting of ELSD detector was optimized using methyl laurate as the analyte. LC-MS/MS was used to confirm the amide and amide-ester peaks. We evaluated the greenness of the developed method using the freely available software HPLC-Environmental Assessment Tool (HPLC-EAT) and the method got a scoring of 73 HPLC-EAT units, implying that the analytical procedure was more environmentally benign compared to some other methods reported in literature whose HPLC-EAT values scored up to 182. Use of ELSD detector allowed the detection and quantification of the substrates and the reaction products of enzymatic synthesis of the surfactant, N-lauroyl-N-methylglucamide. The developed HPLC method has acceptable environmental profile based on HPLC-EAT evaluation.

  20. Environmentally evaluated HPLC-ELSD method to monitor enzymatic synthesis of a non-ionic surfactant

    PubMed Central

    2014-01-01

    Background N-Lauroyl-N-methylglucamide is a biodegradable surfactant derived from renewable resources. In an earlier study, we presented an enzymatic solvent-free method for synthesis of this compound. In the present report, the HPLC method developed to follow the reaction between lauric acid/methyl laurate and N-methyl glucamine (MEG) and its environmental assessment are described. Results Use of ultraviolet (UV) absorption or refractive index (RI) detectors did not allow the detection of N-methyl glucamine (MEG). With Evaporative light scattering detector ELSD, it was possible to apply a gradient elution, and detect MEG with a limit of detection, LOD = 0.12 μg. A good separation of the peaks: MEG, lauric acid, product (amide) and by-product (amide-ester) was achieved with the gradient program with a run time of 40 min. The setting of ELSD detector was optimized using methyl laurate as the analyte. LC-MS/MS was used to confirm the amide and amide-ester peaks. We evaluated the greenness of the developed method using the freely available software HPLC-Environmental Assessment Tool (HPLC-EAT) and the method got a scoring of 73 HPLC-EAT units, implying that the analytical procedure was more environmentally benign compared to some other methods reported in literature whose HPLC-EAT values scored up to 182. Conclusion Use of ELSD detector allowed the detection and quantification of the substrates and the reaction products of enzymatic synthesis of the surfactant, N-lauroyl-N-methylglucamide. The developed HPLC method has acceptable environmental profile based on HPLC-EAT evaluation. PMID:24914404

  1. SpeCond: a method to detect condition-specific gene expression

    PubMed Central

    2011-01-01

    Transcriptomic studies routinely measure expression levels across numerous conditions. These datasets allow identification of genes that are specifically expressed in a small number of conditions. However, there are currently no statistically robust methods for identifying such genes. Here we present SpeCond, a method to detect condition-specific genes that outperforms alternative approaches. We apply the method to a dataset of 32 human tissues to determine 2,673 specifically expressed genes. An implementation of SpeCond is freely available as a Bioconductor package at http://www.bioconductor.org/packages/release/bioc/html/SpeCond.html. PMID:22008066

  2. Immuno-PCR: Achievements and Perspectives.

    PubMed

    Ryazantsev, D Y; Voronina, D V; Zavriev, S K

    2016-12-01

    The immuno-PCR (iPCR) method combines advantages of enzyme-linked immunosorbent assay and polymerase chain reaction, which is used in iPCR as a method of "visualization" of antigen-antibody interaction. The use of iPCR provides classical PCR sensitivity to objects traditionally detected by ELISA. This method could be very sensitive and allow for detection of quantities of femtograms/ml order. However, iPCR is still not widely used. The aim of this review is to highlight the special features of the iPCR method and to show the main aspects of its development and application in recent years.

  3. Detection of Bacteria Using Inkjet-Printed Enzymatic Test Strips

    PubMed Central

    2015-01-01

    Low-cost diagnostics for drinking water contamination have the potential to save millions of lives. We report a method that uses inkjet printing to copattern an enzyme–nanoparticle sensor and substrate on a paper-based test strip for rapid detection of bacteria. A colorimetric response is generated on the paper substrate that allows visual detection of contamination without the need for expensive instrumentation. These strips demonstrate a viable nanomanufacturing strategy for low-cost bacterial detection. PMID:25318086

  4. Heterodyne effect in Hybrid CARS

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Zhang, Aihua; Zhi, Miaochan; Sokolov, Alexei; Welch, George; Scully, Marlan

    2009-10-01

    We study the interaction between the resonant Raman signal and non-Raman field, either the concomitant nonresonant four-wave-mixing (FWM) background or an applied external field, in our recently developed scheme of coherent Anti-Stokes Raman scattering, a hybrid CARS. Our technique combines instantaneous coherent excitation of several characteristic molecular vibrations with subsequent probing of these vibrations by an optimally shaped, time-delayed, narrowband laser pulse. This pulse configuration mitigates the non-resonant FWM background while maximizing the Raman-resonant signal, and allows rapid and highly specific detection even in the presence of multiple scattering. We apply this method to non-invasive monitoring of blood glucose levels. Under certain conditions we find that the measured signal is linearly proportional to the glucose concentration due to optical interference with the residual background light, which allows reliable detection of spectral signatures down to medically-relevant glucose levels. We also study the interference between the CARS field and an external field (the local oscillator) by controlling their relative phase and amplitude. This control allows direct observation of the real and imaginary components of the third-order nonlinear susceptibility (χ^(3)) of the sample. We demonstrate that the heterodyne method can be used to amplify the signal and thus increase detection sensitivity.

  5. Nonenzymatic chemiluminescent detection and quantitation of total protein on Western and slot blots allowing subsequent immunodetection and sequencing.

    PubMed

    Alba, F J; Daban, J R

    1997-10-01

    We have studied the light emission efficiency of proteins labeled with different fluorescent dyes chemically excited by the bis(2,4,6-trichlorophenyl)oxalate (TCPO)-H2O2 reaction. Using this peroxyoxalate chemiluminescence system, the best results were obtained with proteins covalently labeled with 2-methoxy-2,4-diphenyl-3(2H)-furanone (MDPF). Blotted proteins on polyvinylidene difluoride (PVDF) membranes can be labeled rapidly with MDPF. Our results demonstrate that energy from the excited intermediate produced in the TCPO-H2O2 reaction can be efficiently transferred to MDPF-labeled proteins in solution and on PVDF membranes. Although this nonenzymatic chemiluminescent system produces a background emission that reduces the sensitivity, the method developed in this work allows detection of 5 ng of protein in blots after 5 min exposure to X-ray film. Chemiluminescence of MDPF-labeled proteins on Western and slot blots may also be detected and quantified using a charge-coupled device (CCD) camera or a storage phosphor imaging system. This chemiluminescent method allows the staining of the total electrophoretic pattern but does not preclude further N-terminal sequencing and immunodetection of specific bands.

  6. A flow-cytometry-based method to simplify the analysis and quantification of protein association to chromatin in mammalian cells

    PubMed Central

    Forment, Josep V.; Jackson, Stephen P.

    2016-01-01

    Protein accumulation on chromatin has traditionally been studied using immunofluorescence microscopy or biochemical cellular fractionation followed by western immunoblot analysis. As a way to improve the reproducibility of this kind of analysis, make it easier to quantify and allow a stream-lined application in high-throughput screens, we recently combined a classical immunofluorescence microscopy detection technique with flow cytometry1. In addition to the features described above, and by combining it with detection of both DNA content and DNA replication, this method allows unequivocal and direct assignment of cell-cycle distribution of protein association to chromatin without the need for cell culture synchronization. Furthermore, it is relatively quick (no more than a working day from sample collection to quantification), requires less starting material compared to standard biochemical fractionation methods and overcomes the need for flat, adherent cell types that are required for immunofluorescence microscopy. PMID:26226461

  7. TINS, target immobilized NMR screening: an efficient and sensitive method for ligand discovery.

    PubMed

    Vanwetswinkel, Sophie; Heetebrij, Robert J; van Duynhoven, John; Hollander, Johan G; Filippov, Dmitri V; Hajduk, Philip J; Siegal, Gregg

    2005-02-01

    We propose a ligand screening method, called TINS (target immobilized NMR screening), which reduces the amount of target required for the fragment-based approach to drug discovery. Binding is detected by comparing 1D NMR spectra of compound mixtures in the presence of a target immobilized on a solid support to a control sample. The method has been validated by the detection of a variety of ligands for protein and nucleic acid targets (K(D) from 60 to 5000 muM). The ligand binding capacity of a protein was undiminished after 2000 different compounds had been applied, indicating the potential to apply the assay for screening typical fragment libraries. TINS can be used in competition mode, allowing rapid characterization of the ligand binding site. TINS may allow screening of targets that are difficult to produce or that are insoluble, such as membrane proteins.

  8. High-resolution melting-curve (HRM) analysis for C. meleagridis identification in stool samples.

    PubMed

    Chelbi, Hanen; Essid, Rym; Jelassi, Refka; Bouzekri, Nesrine; Zidi, Ines; Ben Salah, Hamza; Mrad, Ilhem; Ben Sghaier, Ines; Abdelmalek, Rym; Aissa, Sameh; Bouratbine, Aida; Aoun, Karim

    2018-02-01

    Cryptosporidiosis represents a major public health problem. This infection, caused by a protozoan parasite of the genus Cryptosporidium, has been reported worldwide as a frequent cause of diarrhoea. In the immunocompetent host, the typical watery diarrhea can be self-limiting. However, it is severe and chronic, in the immunocompromised host and may cause death. Cryptosporidium spp. are coccidians, which complete their life cycle in both humans and animals. The two species C. hominis and C. parvum are the major cause of human infection. Compared to studies on C. hominis and C. parvum, only a few studies have developed methods to identify C. meleagridis. To develop a new real time PCR-coupled High resolution melting assay allowing the detection for C. meleagridis, in addition of the other dominant species (C. hominis and C. parvum). The polymorphic sequence on the dihydrofolate reductase gene (DHFR) of three species was sequenced to design primers pair and establish a sensitive real-time PCR coupled to a high-resolution melting-curve (HRM) analysis method, allowing the detection of Cryptosporidium sp. and discrimination between three prevalent species in Tunisia. We analyzed a collection of 42 archived human isolates of the three studied species. Real-time PCR coupled to HRM assay allowed detection of Cryptosporidium, using the new designed primers, and basing on melting profile, we can distinguish C. meleagridis species in addition to C. parvum and C. hominis. We developed a qPCR-HRM assay that allows Cryptosporidium genotyping. This method is sensitive and able to distinguish three Cryptosporidium species. Copyright © 2017. Published by Elsevier Ltd.

  9. Long-term detection of methyltestosterone (ab-) use by a yeast transactivation system.

    PubMed

    Wolf, Sylvi; Diel, Patrick; Parr, Maria Kristina; Rataj, Felicitas; Schänzer, Willhelm; Vollmer, Günter; Zierau, Oliver

    2011-04-01

    The routinely used analytical method for detecting the abuse of anabolic steroids only allows the detection of molecules with known analytical properties. In our supplementary approach to structure-independent detection, substances are identified by their biological activity. In the present study, urines excreted after oral methyltestosterone (MT) administration were analyzed by a yeast androgen screen (YAS). The aim was to trace the excretion of MT or its metabolites in human urine samples and to compare the results with those from the established analytical method. MT and its two major metabolites were tested as pure compounds in the YAS. In a second step, the ability of the YAS to detect MT and its metabolites in urine samples was analyzed. For this purpose, a human volunteer ingested of a single dose of 5 mg methyltestosterone. Urine samples were collected after different time intervals (0-307 h) and were analyzed in the YAS and in parallel by GC/MS. Whereas the YAS was able to trace MT in urine samples at least for 14 days, the detection limits of the GC/MS method allowed follow-up until day six. In conclusion, our results demonstrate that the yeast reporter gene system could detect the activity of anabolic steroids like methyltestosterone with high sensitivity even in urine. Furthermore, the YAS was able to detect MT abuse for a longer period of time than classical GC/MS. Obviously, the system responds to long-lasting metabolites yet unidentified. Therefore, the YAS can be a powerful (pre-) screening tool with the potential that to be used to identify persistent or late screening metabolites of anabolic steroids, which could be used for an enhancement of the sensitivity of GC/MS detection techniques.

  10. Rapid and sensitive microRNA detection with laminar flow-assisted dendritic amplification on power-free microfluidic chip.

    PubMed

    Arata, Hideyuki; Komatsu, Hiroshi; Hosokawa, Kazuo; Maeda, Mizuo

    2012-01-01

    Detection of microRNAs, small noncoding single-stranded RNAs, is one of the key topics in the new generation of cancer research because cancer in the human body can be detected or even classified by microRNA detection. This report shows rapid and sensitive microRNA detection using a power-free microfluidic device, which is driven by degassed poly(dimethylsiloxane), thus eliminating the need for an external power supply. MicroRNA is detected by sandwich hybridization, and the signal is amplified by laminar flow-assisted dendritic amplification. This method allows us to detect microRNA of specific sequences at a limit of detection of 0.5 pM from a 0.5 µL sample solution with a detection time of 20 min. Together with the advantages of self-reliance of this device, this method might contribute substantially to future point-of-care early-stage cancer diagnosis.

  11. Peptide-activated gold nanoparticles for selective visual sensing of virus

    NASA Astrophysics Data System (ADS)

    Sajjanar, Basavaraj; Kakodia, Bhuvna; Bisht, Deepika; Saxena, Shikha; Singh, Arvind Kumar; Joshi, Vinay; Tiwari, Ashok Kumar; Kumar, Satish

    2015-05-01

    In this study, we report peptide-gold nanoparticles (AuNP)-based visual sensor for viruses. Citrate-stabilized AuNP (20 ± 1.9 nm) were functionalized with strong sulfur-gold interface using cysteinylated virus-specific peptide. Peptide-Cys-AuNP formed complexes with the viruses which made them to aggregate. The aggregation can be observed with naked eye and also with UV-Vis spectrophotometer as a color change from bright red to purple. The test allows for fast and selective detection of specific viruses. Spectroscopic measurements showed high linear correlation ( R 2 = 0.995) between the changes in optical density ratio (OD610/OD520) with the different concentrations of virus. The new method was compared with the hemagglutinating (HA) test for Newcastle disease virus (NDV). The results indicated that peptide-Cys-AuNP was more sensitive and can visually detect minimum number of virus particles present in the biological samples. The limit of detection for the NDV was 0.125 HA units of the virus. The method allows for selective detection and quantification of the NDV, and requires no isolation of viral RNA and PCR experiments. This strategy may be utilized for detection of other important human and animal viral pathogens.

  12. Analysis of pharmaceutical impurities using multi-heartcutting 2D LC coupled with UV-charged aerosol MS detection.

    PubMed

    Zhang, Kelly; Li, Yi; Tsang, Midco; Chetwyn, Nik P

    2013-09-01

    To overcome challenges in HPLC impurity analysis of pharmaceuticals, we developed an automated online multi-heartcutting 2D HPLC system with hyphenated UV-charged aerosol MS detection. The first dimension has a primary column and the second dimension has six orthogonal columns to enhance flexibility and selectivity. The two dimensions were interfaced by a pair of switching valves equipped with six trapping loops that allow multi-heartcutting of peaks of interest in the first dimension and also allow "peak parking." The hyphenated UV-charged aerosol MS detection provides comprehensive detection for compounds with and without UV chromophores, organics, and inorganics. It also provides structural information for impurity identification. A hidden degradation product that co-eluted with the drug main peak was revealed by RP × RP separation and thus enabled the stability-indicating method development. A poorly retained polar component with no UV chromophores was analyzed by RP × hydrophilic interaction liquid chromatography separation with charged aerosol detection. Furthermore, using this system, the structures of low-level impurities separated by a method using nonvolatile phosphate buffer were identified and tracked by MS in the second dimension. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Identification of spider-mite species and their endosymbionts using multiplex PCR.

    PubMed

    Zélé, Flore; Weill, Mylène; Magalhães, Sara

    2018-02-01

    Spider mites of the genus Tetranychidae are severe crop pests. In the Mediterranean a few species coexist, but they are difficult to identify based on morphological characters. Additionally, spider mites often harbour several species of endosymbiotic bacteria, which may affect the biology of their hosts. Here, we propose novel, cost-effective, multiplex diagnostic methods allowing a quick identification of spider-mite species as well as of the endosymbionts they carry. First, we developed, and successfully multiplexed in a single PCR, primers to identify Tetranychus urticae, T. evansi and T. ludeni, some of the most common tetranychids found in southwest Europe. Moreover, we demonstrated that this method allows detecting multiple species in a single pool, even at low frequencies (up to 1/100), and can be used on entire mites without DNA extraction. Second, we developed another set of primers to detect spider-mite endosymbionts, namely Wolbachia, Cardinium and Rickettsia in a multiplex PCR, along with a generalist spider-mite primer to control for potential failure of DNA amplification in each PCR. Overall, our method represents a simple, cost-effective and reliable method to identify spider-mite species and their symbionts in natural field populations, as well as to detect contaminations in laboratory rearings. This method may easily be extended to other species.

  14. Towards real-time detection of tumor margins using photothermal imaging of immune-targeted gold nanoparticles

    PubMed Central

    Jakobsohn, Kobi; Motiei, Menachem; Sinvani, Moshe; Popovtzer, Rachela

    2012-01-01

    Background One of the critical problems in cancer management is local recurrence of disease. Between 20% and 30% of patients who undergo tumor resection surgery require reoperation due to incomplete excision. Currently, there are no validated methods for intraoperative tumor margin detection. In the present work, we demonstrate the potential use of gold nanoparticles (GNPs) as a novel contrast agent for photothermal molecular imaging of cancer. Methods Phantoms containing different concentrations of GNPs were irradiated with continuous-wave laser and measured with a thermal imaging camera which detected the temperature field of the irradiated phantoms. Results The results clearly demonstrate the ability to distinguish between cancerous cells specifically targeted with GNPs and normal cells. This technique, which allows highly sensitive discrimination between adjacent low GNP concentrations, will allow tumor margin detection while the temperature increases by only a few degrees Celsius (for GNPs in relevant biological concentrations). Conclusion We expect this real-time intraoperative imaging technique to assist surgeons in determining clear tumor margins and to maximize the extent of tumor resection while sparing normal background tissue. PMID:22956871

  15. Depletion of highly abundant proteins in blood plasma by ammonium sulfate precipitation for 2D-PAGE analysis.

    PubMed

    Mahn, Andrea; Ismail, Maritza

    2011-11-15

    Ammonium sulfate precipitation (ASP) was explored as a method for depleting some highly abundant proteins from blood plasma, in order to reduce the dynamic range of protein concentration and to improve the detection of low abundance proteins by 2D-PAGE. 40% ammonium sulfate saturation was chosen since it allowed depleting 39% albumin and 82% α-1-antitrypsin. ASP-depletion showed high reproducibility in 2D-PAGE analysis (4.2% variation in relative abundance of albumin), similar to that offered by commercial affinity-depletion columns. Besides, it allowed detecting 59 spots per gel, very close to the number of spots detected in immuno-affinity-depleted plasma. Thus, ASP at 40% saturation is a reliable depletion method that may help in proteomic analysis of blood plasma. Finally, ASP-depletion seems to be complementary to hydrophobic interaction chromatography (HIC)-depletion, and therefore an ASP-step followed by a HIC-step could probably deplete the most highly abundant plasma proteins, thus improving the detection of low abundance proteins by 2D-PAGE. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Rapid Detection of Escherichia coli O157:H7 in Fresh Lettuce Based on Localized Surface Plasmon Resonance Combined with Immunomagnetic Separation.

    PubMed

    Lee, Nari; Choi, Sung-Wook; Chang, Hyun-Joo; Chun, Hyang Sook

    2018-05-01

    This study presents a method for rapid detection of Escherichia coli O157:H7 in fresh lettuce based on the properties of target separation and localized surface plasmon resonance of immunomagnetic nanoparticles. The multifunctional immunomagnetic nanoparticles enabling simultaneous separation and detection were prepared by synthesizing magnetic nanoparticles (ca. 10 nm in diameter) composed of an iron oxide (Fe 3 O 4 ) core and gold shell and then conjugating these nanoparticles with the anti- E. coli O157:H7 antibodies. The application of multifunctional immunomagnetic nanoparticles for detecting E. coli O157:H7 in a lettuce matrix allowed detection of the presence of <1 log CFU mL -1 without prior enrichment. In contrast, the detection limit of the conventional plating method was 2.74 log CFU mL -1 . The method, which requires no preenrichment, provides an alternative to conventional microbiological detection methods and can be used as a rapid screening tool for a large number of food samples.

  17. Duplicate document detection in DocBrowse

    NASA Astrophysics Data System (ADS)

    Chalana, Vikram; Bruce, Andrew G.; Nguyen, Thien

    1998-04-01

    Duplicate documents are frequently found in large databases of digital documents, such as those found in digital libraries or in the government declassification effort. Efficient duplicate document detection is important not only to allow querying for similar documents, but also to filter out redundant information in large document databases. We have designed three different algorithm to identify duplicate documents. The first algorithm is based on features extracted from the textual content of a document, the second algorithm is based on wavelet features extracted from the document image itself, and the third algorithm is a combination of the first two. These algorithms are integrated within the DocBrowse system for information retrieval from document images which is currently under development at MathSoft. DocBrowse supports duplicate document detection by allowing (1) automatic filtering to hide duplicate documents, and (2) ad hoc querying for similar or duplicate documents. We have tested the duplicate document detection algorithms on 171 documents and found that text-based method has an average 11-point precision of 97.7 percent while the image-based method has an average 11- point precision of 98.9 percent. However, in general, the text-based method performs better when the document contains enough high-quality machine printed text while the image- based method performs better when the document contains little or no quality machine readable text.

  18. Clinical evaluation of a Mucorales-specific real-time PCR assay in tissue and serum samples.

    PubMed

    Springer, Jan; Lackner, Michaela; Ensinger, Christian; Risslegger, Brigitte; Morton, Charles Oliver; Nachbaur, David; Lass-Flörl, Cornelia; Einsele, Hermann; Heinz, Werner J; Loeffler, Juergen

    2016-12-01

    Molecular diagnostic assays can accelerate the diagnosis of fungal infections and subsequently improve patient outcomes. In particular, the detection of infections due to Mucorales is still challenging for laboratories and physicians. The aim of this study was to evaluate a probe-based Mucorales-specific real-time PCR assay (Muc18S) using tissue and serum samples from patients suffering from invasive mucormycosis (IMM). This assay can detect a broad range of clinically relevant Mucorales species and can be used to complement existing diagnostic tests or to screen high-risk patients. An advantage of the Muc18S assay is that it exclusively detects Mucorales species allowing the diagnosis of Mucorales DNA without sequencing within a few hours. In paraffin-embedded tissue samples this PCR-based method allowed rapid identification of Mucorales in comparison with standard methods and showed 91 % sensitivity in the IMM tissue samples. We also evaluated serum samples, an easily accessible material, from patients at risk from IMM. Mucorales DNA was detected in all patients with probable/proven IMM (100 %) and in 29 % of the possible cases. Detection of IMM in serum could enable an earlier diagnosis (up to 21 days) than current methods including tissue samples, which were gained mainly post-mortem. A screening strategy for high-risk patients, which would enable targeted treatment to improve patient outcomes, is therefore possible.

  19. Handheld Lasers Allow Efficient Detection of Fluorescent Marked Organisms in the Field

    PubMed Central

    Fleischer, Shelby J.; De Moraes, Consuelo M.; Mescher, Mark C.; Tooker, John F.

    2015-01-01

    Marking organisms with fluorescent dyes and powders is a common technique used in ecological field studies that monitor movement of organisms to examine life history traits, behaviors, and population dynamics. External fluorescent marking is relatively inexpensive and can be readily employed to quickly mark large numbers of individuals; however, the ability to detect marked organisms in the field at night has been hampered by the limited detection distances provided by portable fluorescent ultraviolet lamps. In recent years, significant advances in LED lamp and laser technology have led to development of powerful, low-cost ultraviolet light sources. In this study, we evaluate the potential of these new technologies to improve detection of fluorescent-marked organisms in the field and to create new possibilities for tracking marked organisms in visually challenging environments such as tree canopies and aquatic habitats. Using handheld lasers, we document a method that provides a fivefold increase in detection distance over previously available technologies. This method allows easy scouting of tree canopies (from the ground), as well as shallow aquatic systems. This novel detection method for fluorescent-marked organisms thus promises to significantly enhance the use of fluorescent marking as a non-destructive technique for tracking organisms in natural environments, facilitating field studies that aim to document otherwise inaccessible aspects of the movement, behavior, and population dynamics of study organisms, including species with significant economic impacts or relevance for ecology and human health. PMID:26035303

  20. Rapid filtration separation-based sample preparation method for Bacillus spores in powdery and environmental matrices.

    PubMed

    Isabel, Sandra; Boissinot, Maurice; Charlebois, Isabelle; Fauvel, Chantal M; Shi, Lu-E; Lévesque, Julie-Christine; Paquin, Amélie T; Bastien, Martine; Stewart, Gale; Leblanc, Eric; Sato, Sachiko; Bergeron, Michel G

    2012-03-01

    Authorities frequently need to analyze suspicious powders and other samples for biothreat agents in order to assess environmental safety. Numerous nucleic acid detection technologies have been developed to detect and identify biowarfare agents in a timely fashion. The extraction of microbial nucleic acids from a wide variety of powdery and environmental samples to obtain a quality level adequate for these technologies still remains a technical challenge. We aimed to develop a rapid and versatile method of separating bacteria from these samples and then extracting their microbial DNA. Bacillus atrophaeus subsp. globigii was used as a simulant of Bacillus anthracis. We studied the effects of a broad variety of powdery and environmental samples on PCR detection and the steps required to alleviate their interference. With a benchmark DNA extraction procedure, 17 of the 23 samples investigated interfered with bacterial lysis and/or PCR-based detection. Therefore, we developed the dual-filter method for applied recovery of microbial particles from environmental and powdery samples (DARE). The DARE procedure allows the separation of bacteria from contaminating matrices that interfere with PCR detection. This procedure required only 2 min, while the DNA extraction process lasted 7 min, for a total of <10 min. This sample preparation procedure allowed the recovery of cleaned bacterial spores and relieved detection interference caused by a wide variety of samples. Our procedure was easily completed in a laboratory facility and is amenable to field application and automation.

  1. Rapid Filtration Separation-Based Sample Preparation Method for Bacillus Spores in Powdery and Environmental Matrices

    PubMed Central

    Isabel, Sandra; Boissinot, Maurice; Charlebois, Isabelle; Fauvel, Chantal M.; Shi, Lu-E; Lévesque, Julie-Christine; Paquin, Amélie T.; Bastien, Martine; Stewart, Gale; Leblanc, Éric; Sato, Sachiko

    2012-01-01

    Authorities frequently need to analyze suspicious powders and other samples for biothreat agents in order to assess environmental safety. Numerous nucleic acid detection technologies have been developed to detect and identify biowarfare agents in a timely fashion. The extraction of microbial nucleic acids from a wide variety of powdery and environmental samples to obtain a quality level adequate for these technologies still remains a technical challenge. We aimed to develop a rapid and versatile method of separating bacteria from these samples and then extracting their microbial DNA. Bacillus atrophaeus subsp. globigii was used as a simulant of Bacillus anthracis. We studied the effects of a broad variety of powdery and environmental samples on PCR detection and the steps required to alleviate their interference. With a benchmark DNA extraction procedure, 17 of the 23 samples investigated interfered with bacterial lysis and/or PCR-based detection. Therefore, we developed the dual-filter method for applied recovery of microbial particles from environmental and powdery samples (DARE). The DARE procedure allows the separation of bacteria from contaminating matrices that interfere with PCR detection. This procedure required only 2 min, while the DNA extraction process lasted 7 min, for a total of <10 min. This sample preparation procedure allowed the recovery of cleaned bacterial spores and relieved detection interference caused by a wide variety of samples. Our procedure was easily completed in a laboratory facility and is amenable to field application and automation. PMID:22210204

  2. Detection and mapping of trace explosives on surfaces under ambient conditions using multiphoton electron extraction spectroscopy (MEES).

    PubMed

    Tang, Shisong; Vinerot, Nataly; Fisher, Danny; Bulatov, Valery; Yavetz-Chen, Yehuda; Schechter, Israel

    2016-08-01

    Multiphoton electron extraction spectroscopy (MEES) is an analytical method in which UV laser pulses are utilized for extracting electrons from solid surfaces in multiphoton processes under ambient conditions. Counting the emitted electrons as a function of laser wavelength results in detailed spectral features, which can be used for material identification. The method has been applied to detection of trace explosives on a variety of surfaces. Detection was possible on dusty swabs spiked with explosives and also in the standard dry-transfer contamination procedure. Plastic explosives could also be detected. The analytical limits of detection (LODs) are in the sub pmole range, which indicates that MEES is one of the most sensitive detection methods for solid surface under ambient conditions. Scanning the surface with the laser allows for its imaging, such that explosives (as well as other materials) can be located. The imaging mode is also useful in forensic applications, such as detection of explosives in human fingerprints. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Polarization switching detection method using a ferroelectric liquid crystal for dichroic atomic vapor laser lock frequency stabilization techniques.

    PubMed

    Dudzik, Grzegorz; Rzepka, Janusz; Abramski, Krzysztof M

    2015-04-01

    We present a concept of the polarization switching detection method implemented for frequency-stabilized lasers, called the polarization switching dichroic atomic vapor laser lock (PSDAVLL) technique. It is a combination of the well-known dichroic atomic vapor laser lock method for laser frequency stabilization with a synchronous detection system based on the surface-stabilized ferroelectric liquid crystal (SSFLC).The SSFLC is a polarization switch and quarter wave-plate component. This technique provides a 9.6 dB better dynamic range ratio (DNR) than the well-known two-photodiode detection configuration known as the balanced polarimeter. This paper describes the proposed method used practically in the VCSEL laser frequency stabilization system. The applied PSDAVLL method has allowed us to obtain a frequency stability of 2.7×10⁻⁹ and a reproducibility of 1.2×10⁻⁸, with a DNR of detected signals of around 81 dB. It has been shown that PSDAVLL might be successfully used as a method for spectra-stable laser sources.

  4. Cross-checking of Large Evaluated and Experimental Nuclear Reaction Databases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeydina, O.; Koning, A.J.; Soppera, N.

    2014-06-15

    Automated methods are presented for the verification of large experimental and evaluated nuclear reaction databases (e.g. EXFOR, JEFF, TENDL). These methods allow an assessment of the overall consistency of the data and detect aberrant values in both evaluated and experimental databases.

  5. A dynamic sandwich assay on magnetic beads for selective detection of single-nucleotide mutations at room temperature.

    PubMed

    Wang, Junxiu; Xiong, Guoliang; Ma, Liang; Wang, Shihui; Zhou, Xu; Wang, Lei; Xiao, Lehui; Su, Xin; Yu, Changyuan

    2017-08-15

    Single-nucleotide mutation (SNM) has proven to be associated with a variety of human diseases. Development of reliable methods for the detection of SNM is crucial for molecular diagnosis and personalized medicine. The sandwich assays are widely used tools for detecting nucleic acid biomarkers due to their low cost and rapid signaling. However, the poor hybridization specificity of signal probe at room temperature hampers the discrimination of mutant and wild type. Here, we demonstrate a dynamic sandwich assay on magnetic beads for SNM detection based on the transient binding between signal probe and target. By taking the advantage of mismatch sensitive thermodynamics of transient DNA binding, the dynamic sandwich assay exhibits high discrimination factor for mutant with a broad range of salt concentration at room temperature. The beads used in this assay serve as a tool for separation, and might be helpful to enhance SNM selectivity. Flexible design of signal probe and facile magnetic separation allow multiple-mode downstream analysis including colorimetric detection and isothermal amplification. With this method, BRAF mutations in the genomic DNA extracted from cancer cell lines were tested, allowing sensitive detection of SNM at very low abundances (0.1-0.5% mutant/wild type). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Heap/stack guard pages using a wakeup unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gooding, Thomas M; Satterfield, David L; Steinmacher-Burow, Burkhard

    A method and system for providing a memory access check on a processor including the steps of detecting accesses to a memory device including level-1 cache using a wakeup unit. The method includes invalidating level-1 cache ranges corresponding to a guard page, and configuring a plurality of wakeup address compare (WAC) registers to allow access to selected WAC registers. The method selects one of the plurality of WAC registers, and sets up a WAC register related to the guard page. The method configures the wakeup unit to interrupt on access of the selected WAC register. The method detects access ofmore » the memory device using the wakeup unit when a guard page is violated. The method generates an interrupt to the core using the wakeup unit, and determines the source of the interrupt. The method detects the activated WAC registers assigned to the violated guard page, and initiates a response.« less

  7. Performance of OncoE6 cervical test with collection methods enabling self-sampling.

    PubMed

    Krings, Amrei; Dückelmann, Anna M; Moser, Lutz; Gollrad, Johannes; Wiegerinck, Maarten; Schweizer, Johannes; Kaufmann, Andreas M

    2018-05-21

    The paradigm shift from cytological screening to Human Papillomavirus (HPV)-based screening for cervical cancer allows the introduction of new technologies in sample collection and diagnostics. The OncoE6™ Cervical Test (OncoE6 Test) is a rapid, easy-to-use lateral flow method detecting HPV16/18 E6 oncoproteins that has proven to detect high-grade cervical lesions with high specificity. If compatible with self-collection samples, this technology might allow for decentralized screening of hard-to-reach populations. For technical validation, cervicovaginal lavages were collected from 20 patients with confirmed HPV16+ or HPV18+ invasive cervical cancer. Cervical smears were collected by polyester-tipped swabs and cytobrushes. All samples were applied to the OncoE6 Test and cytobrush samples additionally genotyped. Lavage, swab, and cytobrush revealed concordant outcome in 18/20 samples. HPV types corresponded with the HPV genotyping by GP5+/6+ PCR analyses. Due to a rare mutation found in the E6 antibody binding site one sample was not detected, another sample had very low cellularity. Overall, vaginal lavages are technically adequate for the OncoE6 Test. Combining self-sampling with oncoprotein rapid testing to detect women with highest risk for severe dysplasia or cancer may allow for secondary cancer prevention in settings where other screening modalities were unsuccessful to date.

  8. A highly sensitive and specific method for the screening detection of genetically modified organisms based on digital PCR without pretreatment

    PubMed Central

    Fu, Wei; Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Du, Zhixin; Tian, Wenying; Wang, Qin; Wang, Huiyu; Xu, Wentao; Zhu, Shuifang

    2015-01-01

    Digital PCR has developed rapidly since it was first reported in the 1990s. It was recently reported that an improved method facilitated the detection of genetically modified organisms (GMOs). However, to use this improved method, the samples must be pretreated, which could introduce inaccuracy into the results. In our study, we explored a pretreatment-free digital PCR detection method for the screening for GMOs. We chose the CaMV35s promoter and the NOS terminator as the templates in our assay. To determine the specificity of our method, 9 events of GMOs were collected, including MON810, MON863, TC1507, MIR604, MIR162, GA21, T25, NK603 and Bt176. Moreover, the sensitivity, intra-laboratory and inter-laboratory reproducibility of our detection method were assessed. The results showed that the limit of detection of our method was 0.1%, which was lower than the labeling threshold level of the EU. The specificity and stability among the 9 events were consistent, respectively. The intra-laboratory and inter-laboratory reproducibility were both good. Finally, the perfect fitness for the detection of eight double-blind samples indicated the good practicability of our method. In conclusion, the method in our study would allow more sensitive, specific and stable screening detection of the GMO content of international trading products. PMID:26239916

  9. A highly sensitive and specific method for the screening detection of genetically modified organisms based on digital PCR without pretreatment.

    PubMed

    Fu, Wei; Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Du, Zhixin; Tian, Wenying; Wang, Qin; Wang, Huiyu; Xu, Wentao; Zhu, Shuifang

    2015-08-04

    Digital PCR has developed rapidly since it was first reported in the 1990 s. It was recently reported that an improved method facilitated the detection of genetically modified organisms (GMOs). However, to use this improved method, the samples must be pretreated, which could introduce inaccuracy into the results. In our study, we explored a pretreatment-free digital PCR detection method for the screening for GMOs. We chose the CaMV35s promoter and the NOS terminator as the templates in our assay. To determine the specificity of our method, 9 events of GMOs were collected, including MON810, MON863, TC1507, MIR604, MIR162, GA21, T25, NK603 and Bt176. Moreover, the sensitivity, intra-laboratory and inter-laboratory reproducibility of our detection method were assessed. The results showed that the limit of detection of our method was 0.1%, which was lower than the labeling threshold level of the EU. The specificity and stability among the 9 events were consistent, respectively. The intra-laboratory and inter-laboratory reproducibility were both good. Finally, the perfect fitness for the detection of eight double-blind samples indicated the good practicability of our method. In conclusion, the method in our study would allow more sensitive, specific and stable screening detection of the GMO content of international trading products.

  10. PCR-Based Method for Detecting Viral Penetration of Medical Exam Gloves

    PubMed Central

    Broyles, John M.; O'Connell, Kevin P.; Korniewicz, Denise M.

    2002-01-01

    The test approved by the U.S. Food and Drug Administration for assessment of the barrier quality of medical exam gloves includes visual inspection and a water leak test. Neither method tests directly the ability of gloves to prevent penetration by microorganisms. Methods that use microorganisms (viruses and bacteria) to test gloves have been developed but require classical culturing of the organism to detect it. We have developed a PCR assay for bacteriophage φX174 that allows the rapid detection of penetration of gloves by this virus. The method is suitable for use with both latex and synthetic gloves. The presence of glove powder on either latex or synthetic gloves had no effect on the ability of the PCR assay to detect bacteriophage DNA. The assay is rapid, sensitive, and inexpensive; requires only small sample volumes; and can be automated. PMID:12149320

  11. Nano-sized Contrast Agents to Non-Invasively Detect Renal Inflammation by Magnetic Resonance Imaging

    PubMed Central

    Thurman, Joshua M.; Serkova, Natalie J.

    2013-01-01

    Several molecular imaging methods have been developed that employ nano-sized contrast agents to detect markers of inflammation within tissues. Renal inflammation contributes to disease progression in a wide range of autoimmune and inflammatory diseases, and a biopsy is currently the only method of definitively diagnosing active renal inflammation. However, the development of new molecular imaging methods that employ contrast agents capable of detecting particular immune cells or protein biomarkers will allow clinicians to evaluate inflammation throughout the kidneys, and to assess a patient's response to immunomodulatory drugs. These imaging tools will improve our ability to validate new therapies and to optimize the treatment of individual patients with existing therapies. This review describes the clinical need for new methods of monitoring renal inflammation, and recent advances in the development of nano-sized contrast agents for detection of inflammatory markers of renal disease. PMID:24206601

  12. Micrometastases in neuroblastoma: are they clinically important?

    PubMed Central

    Burchill, S A

    2004-01-01

    Despite advances in the treatment of neuroblastoma (NBL), recurrence and metastases continue to pose major problems in clinical management. The relation between micrometastases and the development of secondary disease is not fully understood. However, accurate methods to detect low numbers of tumour cells may allow the evaluation of their role in the disease process, and by implication the possible benefits of eliminating them. Although there is substantial evidence for the increased sensitivity of current molecular methods for the detection of NBL cells compared with more conventional cytology, the clinical relevance and usefulness of detecting this disease remain controversial. The primary goal of current translational research must be to evaluate the clinical relevance of micrometastatic disease detected by these methods in multicentre prospective clinical outcome studies. Only then can the clinical usefulness of these methods be defined so that they may be introduced into relevant clinical practice. PMID:14693828

  13. Method and apparatus for combinatorial logic signal processor in a digitally based high speed x-ray spectrometer

    DOEpatents

    Warburton, William K.; Zhou, Zhiquing

    1999-01-01

    A high speed, digitally based, signal processing system which accepts a digitized input signal and detects the presence of step-like pulses in the this data stream, extracts filtered estimates of their amplitudes, inspects for pulse pileup, and records input pulse rates and system livetime. The system has two parallel processing channels: a slow channel, which filters the data stream with a long time constant trapezoidal filter for good energy resolution; and a fast channel which filters the data stream with a short time constant trapezoidal filter, detects pulses, inspects for pileups, and captures peak values from the slow channel for good events. The presence of a simple digital interface allows the system to be easily integrated with a digital processor to produce accurate spectra at high count rates and allow all spectrometer functions to be fully automated. Because the method is digitally based, it allows pulses to be binned based on time related values, as well as on their amplitudes, if desired.

  14. [Comparative research into sensitivity and specificity of immune-enzyme analysis with chemiluminescence and colorimetric detection for detecting antigens and antibodies to avian influenza viruses and newcastle disease].

    PubMed

    Vitkova, O N; Kapustina, T P; Mikhailova, V V; Safonov, G A; Vlasova, N N; Belousova, R V

    2015-01-01

    The goal of this work was to demonstrate the results of the development of the enzyme-linked immunosorbent tests with chemiluminescence detection and colorimetric detection of specific viral antigens and antibodies for identifying the avian influenza and the Newcastle disease viruses: high sensitivity and specificity of the immuno- chemiluminescence assay, which are 10-50 times higher than those of the ELISA colorimetric method. The high effectiveness of the results and the automation of the process of laboratory testing (using a luminometer) allow these methods to be recommended for including in primary screening tests for these infectious diseases.

  15. In Situ Detection of MicroRNA Expression with RNAscope Probes.

    PubMed

    Yin, Viravuth P

    2018-01-01

    Elucidating the spatial resolution of gene transcripts provides important insight into potential gene function. MicroRNAs are short, singled-stranded noncoding RNAs that control gene expression through base-pair complementarity with target mRNAs in the 3' untranslated region (UTR) and inhibiting protein expression. However, given their small size of ~22- to 24-nt and low expression levels, standard in situ hybridization detection methods are not amendable for microRNA spatial resolution. Here, I describe a technique that employs RNAscope probe design and propriety amplification technology that provides simultaneous single molecule detection of individual microRNA and its target gene. This method allows for rapid and sensitive detection of noncoding RNA transcripts in frozen tissue sections.

  16. Finger tips detection for two handed gesture recognition

    NASA Astrophysics Data System (ADS)

    Bhuyan, M. K.; Kar, Mithun Kumar; Neog, Debanga Raj

    2011-10-01

    In this paper, a novel algorithm is proposed for fingertips detection in view of two-handed static hand pose recognition. In our method, finger tips of both hands are detected after detecting hand regions by skin color-based segmentation. At first, the face is removed in the image by using Haar classifier and subsequently, the regions corresponding to the gesturing hands are isolated by a region labeling technique. Next, the key geometric features characterizing gesturing hands are extracted for two hands. Finally, for all possible/allowable finger movements, a probabilistic model is developed for pose recognition. Proposed method can be employed in a variety of applications like sign language recognition and human-robot-interactions etc.

  17. Detection of Pseudomonas savastanoi pv. savastanoi in olive plants by enrichment and PCR.

    PubMed

    Penyalver, R; García, A; Ferrer, A; Bertolini, E; López, M M

    2000-06-01

    The sequence of the gene iaaL of Pseudomonas savastanoi EW2009 was used to design primers for PCR amplification. The iaaL-derived primers directed the amplification of a 454-bp fragment from genomic DNA isolated from 70 strains of P. savastanoi, whereas genomic DNA from 93 non-P. savastanoi isolates did not yield this amplified product. A previous bacterial enrichment in the semiselective liquid medium PVF-1 improved the PCR sensitivity level, allowing detection of 10 to 100 CFU/ml of plant extract. P. savastanoi was detected by the developed enrichment-PCR method in knots from different varieties of inoculated and naturally infected olive trees. Moreover, P. savastanoi was detected in symptomless stem tissues from naturally infected olive plants. This enrichment-PCR method is more sensitive and less cumbersome than the conventional isolation methods for detection of P. savastanoi.

  18. Invasive candidiasis: future directions in non-culture based diagnosis.

    PubMed

    Posch, Wilfried; Heimdörfer, David; Wilflingseder, Doris; Lass-Flörl, Cornelia

    2017-09-01

    Delayed initial antifungal therapy is associated with high mortality rates caused by invasive candida infections, since accurate detection of the opportunistic pathogenic yeast and its identification display a diagnostic challenge. diagnosis of candida infections relies on time-consuming methods such as blood cultures, serologic and histopathologic examination. to allow for fast detection and characterization of invasive candidiasis, there is a need to improve diagnostic tools. trends in diagnostics switch to non-culture-based methods, which allow specified diagnosis within significantly shorter periods of time in order to provide early and appropriate antifungal treatment. Areas covered: within this review comprise novel pathogen- and host-related testing methods, e.g. multiplex-PCR analyses, T2 magnetic resonance, fungus-specific DNA microarrays, microRNA characterization or analyses of IL-17 as biomarker for early detection of invasive candidiasis. Expert commentary: Early recognition and diagnosis of fungal infections is a key issue for improved patient management. As shown in this review, a broad range of novel molecular based tests for the detection and identification of Candida species is available. However, several assays are in-house assays and lack standardization, clinical validation as well as data on sensitivity and specificity. This underscores the need for the development of faster and more accurate diagnostic tests.

  19. Imaging and detection of early stage dental caries with an all-optical photoacoustic microscope

    NASA Astrophysics Data System (ADS)

    Hughes, D. A.; Sampathkumar, A.; Longbottom, C.; Kirk, K. J.

    2015-01-01

    Tooth decay, at its earliest stages, manifests itself as small, white, subsurface lesions in the enamel. Current methods for detection in the dental clinic are visual and tactile investigations, and bite-wing X-ray radiographs. These techniques suffer from poor sensitivity and specificity at the earliest (and reversible) stages of the disease due to the small size (<100μm) of the lesion. A fine-resolution (600 nm) ultra-broadband (200 MHz) all-optical photoacoustic microscopy system was is used to image the early signs of tooth decay. Ex-vivo tooth samples exhibiting white spot lesions were scanned and were found to generate a larger (one order of magnitude) photoacoustic (PA) signal in the lesion regions compared to healthy enamel. The high contrast in the PA images potentially allows lesions to be imaged and measured at a much earlier stage than current clinical techniques allow. PA images were cross referenced with histology photographs to validate our experimental results. Our PA system provides a noncontact method for early detection of white-spot lesions with a high detection bandwidth that offers advantages over previously demonstrated ultrasound methods. The technique provides the sensing depth of an ultrasound system, but with the spatial resolution of an optical system.

  20. Automated Discovery of Elementary Chemical Reaction Steps Using Freezing String and Berny Optimization Methods.

    PubMed

    Suleimanov, Yury V; Green, William H

    2015-09-08

    We present a simple protocol which allows fully automated discovery of elementary chemical reaction steps using in cooperation double- and single-ended transition-state optimization algorithms--the freezing string and Berny optimization methods, respectively. To demonstrate the utility of the proposed approach, the reactivity of several single-molecule systems of combustion and atmospheric chemistry importance is investigated. The proposed algorithm allowed us to detect without any human intervention not only "known" reaction pathways, manually detected in the previous studies, but also new, previously "unknown", reaction pathways which involve significant atom rearrangements. We believe that applying such a systematic approach to elementary reaction path finding will greatly accelerate the discovery of new chemistry and will lead to more accurate computer simulations of various chemical processes.

  1. Fundamentals and practice for ultrasensitive laser-induced fluorescence detection in microanalytical systems.

    PubMed

    Johnson, Mitchell E; Landers, James P

    2004-11-01

    Laser-induced fluorescence is an extremely sensitive method for detection in chemical separations. In addition, it is well-suited to detection in small volumes, and as such is widely used for capillary electrophoresis and microchip-based separations. This review explores the detailed instrumental conditions required for sub-zeptomole, sub-picomolar detection limits. The key to achieving the best sensitivity is to use an excitation and emission volume that is matched to the separation system and that, simultaneously, will keep scattering and luminescence background to a minimum. We discuss how this is accomplished with confocal detection, 90 degrees on-capillary detection, and sheath-flow detection. It is shown that each of these methods have their advantages and disadvantages, but that all can be used to produce extremely sensitive detectors for capillary- or microchip-based separations. Analysis of these capabilities allows prediction of the optimal means of achieving ultrasensitive detection on microchips.

  2. Evaluation of radiochemical neutron activation analysis methods for determination of arsenic in biological materials.

    PubMed

    Paul, Rick L

    2011-01-01

    Radiochemical neutron activation analysis (RNAA) with retention on hydrated manganese dioxide (HMD) has played a key role in the certification of As in biological materials at NIST. Although this method provides very high and reproducible yields and detection limits at low microgram/kilogram levels, counting geometry uncertainties may arise from unequal distribution of As in the HMD, and arsenic detection limits may not be optimal due to significant retention of other elements. An alternate RNAA procedure with separation of arsenic by solvent extraction has been investigated. After digestion of samples in nitric and perchloric acids, As(III) is extracted from 2 M sulfuric acid solution into a solution of zinc diethyldithiocarbamate in chloroform. Counting of (76)As allows quantitation of arsenic. Addition of an (77)As tracer solution prior to dissolution allows correction for chemical yield and counting geometries, further improving reproducibility. The HMD and solvent extraction procedures for arsenic were compared through analysis of SRMs 1577c (bovine liver), 1547 (peach leaves), and 1575a (pine needles). Both methods gave As results in agreement with certified values with comparable reproducibility. However, the solvent extraction method yields a factor of 3 improvement in detection limits and is less time-consuming than the HMD method. The new method shows great promise for use in As certification in reference materials.

  3. Novel Peptide Sequence (“IQ-tag”) with High Affinity for NIR Fluorochromes Allows Protein and Cell Specific Labeling for In Vivo Imaging

    PubMed Central

    McCarthy, Jason R.; Weissleder, Ralph

    2007-01-01

    Background Probes that allow site-specific protein labeling have become critical tools for visualizing biological processes. Methods Here we used phage display to identify a novel peptide sequence with nanomolar affinity for near infrared (NIR) (benz)indolium fluorochromes. The developed peptide sequence (“IQ-tag”) allows detection of NIR dyes in a wide range of assays including ELISA, flow cytometry, high throughput screens, microscopy, and optical in vivo imaging. Significance The described method is expected to have broad utility in numerous applications, namely site-specific protein imaging, target identification, cell tracking, and drug development. PMID:17653285

  4. Mobile nocturnal long-term monitoring of wheezing and cough.

    PubMed

    Gross, Volker; Reinke, Christian; Dette, Frank; Koch, Roland; Vasilescu, Dragos; Penzel, Thomas; Koehler, Ulrich

    2007-02-01

    Changes in normal lung sounds are an important sign of pathophysiological processes in the bronchial system and lung tissue. For the diagnosis of bronchial asthma, coughing and wheezing are important symptoms that indicate the existence of obstruction. In particular, nocturnal long-term acoustic monitoring and assessment make sense for qualitative and quantitative detection and documentation. Previous methods used for lung function diagnosis require active patient cooperation that is not possible during sleep. We developed a mobile device based on the CORSA standard that allows the recording of respiratory sounds throughout the night. To date, we have recorded 133 patients with different diagnoses (80 male, 53 female), of whom 38 were children. In 68 of the patients we could detect cough events and in 87 we detected wheezing. The recording method was tolerated by all participating adults and children. Our mobile system allows non-invasive and cooperation-independent nocturnal monitoring of acoustic symptoms in the domestic environment, especially at night, when most ailments occur.

  5. Evaluation of an alternative extraction procedure for enterotoxin determination in dairy products.

    PubMed

    Meyrand, A; Atrache, V; Bavai, C; Montet, M P; Vernozy-Rozand, C

    1999-06-01

    A concentration protocol based on trichloroacetic acid precipitation was evaluated and compared with the reference method using dialysis concentration. Different quantities of purified staphylococcal enterotoxins were added to pasteurized Camembert-type cheeses. Detection of enterotoxins in these cheeses was performed using an automated detection system. Raw goat milk Camembert-type cheeses involved in a staphylococcal food poisoning were also tested. Both enterotoxin extraction methods allowed detection of the lowest enterotoxin concentration level used in this study (0.5 ng g-1). Compared with the dialysis concentration method, TCA precipitation of staphylococcal enterotoxins was 'user-friendly' and less time-consuming. These results suggest that TCA precipitation is a rapid (1 h), simple and reliable method of extracting enterotoxin from food which gives excellent recovery from dairy products.

  6. New methods in iris recognition.

    PubMed

    Daugman, John

    2007-10-01

    This paper presents the following four advances in iris recognition: 1) more disciplined methods for detecting and faithfully modeling the iris inner and outer boundaries with active contours, leading to more flexible embedded coordinate systems; 2) Fourier-based methods for solving problems in iris trigonometry and projective geometry, allowing off-axis gaze to be handled by detecting it and "rotating" the eye into orthographic perspective; 3) statistical inference methods for detecting and excluding eyelashes; and 4) exploration of score normalizations, depending on the amount of iris data that is available in images and the required scale of database search. Statistical results are presented based on 200 billion iris cross-comparisons that were generated from 632500 irises in the United Arab Emirates database to analyze the normalization issues raised in different regions of receiver operating characteristic curves.

  7. Detection of bottled explosives by near infrared

    NASA Astrophysics Data System (ADS)

    Itozaki, Hideo; Sato-Akaba, Hideo

    2013-10-01

    Bottled liquids are not allowed through the security gate in the airport, because liquid explosives have been used by the terrorists. However, passengers have a lot of trouble if they cannot bring their own bottles. For example, a mother would like to carry her own milk in the airplane for her baby. Therefore the detection technology of liquid explosives should be developed as soon as possible. This paper shows that near infrared spectroscopy can detect bottled explosives quickly. The transmission method cannot deal with milk in the sense of liquid inspection. Here we examined the reflection method to the test of milk. The inspection method with light cannot make test for the metal can. We also use ultrasonic method to check metal can simultaneously in order to expand test targets.

  8. A cryopreservation method for Pasteurella multocida from wetland samples

    USGS Publications Warehouse

    Moore, Melody K.; Shadduck, D.J.; Goldberg, Diana R.; Samuel, M.D.

    1998-01-01

    A cryopreservation method and improved isolation techniques for detection of Pasteurella multocida from wetland samples were developed. Wetland water samples were collected in the field, diluted in dimethyl sulfoxide (DMSO, final concentration 10%), and frozen at -180 C in a liquid nitrogen vapor shipper. Frozen samples were transported to the laboratory where they were subsequently thawed and processed in Pasteurella multocida selective broth (PMSB) to isolate P. multocida. This method allowed for consistent isolation of 2 to 18 organisms/ml from water seeded with known concentrations of P. multocida. The method compared favorably with the standard mouse inoculation method and allowed for preservation of the samples until they could be processed in the laboratory.

  9. Single-tube analysis of DNA methylation with silica superparamagnetic beads.

    PubMed

    Bailey, Vasudev J; Zhang, Yi; Keeley, Brian P; Yin, Chao; Pelosky, Kristen L; Brock, Malcolm; Baylin, Stephen B; Herman, James G; Wang, Tza-Huei

    2010-06-01

    DNA promoter methylation is a signature for the silencing of tumor suppressor genes. Most widely used methods to detect DNA methylation involve 3 separate, independent processes: DNA extraction, bisulfite conversion, and methylation detection via a PCR method, such as methylation-specific PCR (MSP). This method includes many disconnected steps with associated losses of material, potentially reducing the analytical sensitivity required for analysis of challenging clinical samples. Methylation on beads (MOB) is a new technique that integrates DNA extraction, bisulfite conversion, and PCR in a single tube via the use of silica superparamagnetic beads (SSBs) as a common DNA carrier for facilitating cell debris removal and buffer exchange throughout the entire process. In addition, PCR buffer is used to directly elute bisulfite-treated DNA from SSBs for subsequent target amplifications. The diagnostic sensitivity of MOB was evaluated by methylation analysis of the CDKN2A [cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4); also known as p16(INK4a)] promoter in serum DNA of lung cancer patients and compared with that of conventional methods. Methylation analysis consisting of DNA extraction followed by bisulfite conversion and MSP was successfully carried out within 9 h in a single tube. The median pre-PCR DNA yield was 6.61-fold higher with the MOB technique than with conventional techniques. Furthermore, MOB increased the diagnostic sensitivity in our analysis of the CDKN2A promoter in patient serum by successfully detecting methylation in 74% of cancer patients, vs the 45% detection rate obtained with conventional techniques. The MOB technique successfully combined 3 processes into a single tube, thereby allowing ease in handling and an increased detection throughput. The increased pre-PCR yield in MOB allowed efficient, diagnostically sensitive methylation detection.

  10. Evaluation of fluorescence in situ hybridization techniques to study long non-coding RNA expression in cultured cells

    PubMed Central

    Soares, Ricardo J; Maglieri, Giulia; Gutschner, Tony; Lund, Anders H; Nielsen, Boye S

    2018-01-01

    Abstract Deciphering the functions of long non-coding RNAs (lncRNAs) is facilitated by visualization of their subcellular localization using in situ hybridization (ISH) techniques. We evaluated four different ISH methods for detection of MALAT1 and CYTOR in cultured cells: a multiple probe detection approach with or without enzymatic signal amplification, a branched-DNA (bDNA) probe and an LNA-modified probe with enzymatic signal amplification. All four methods adequately stained MALAT1 in the nucleus in all of three cell lines investigated, HeLa, NHDF and T47D, and three of the methods detected the less expressed CYTOR. The sensitivity of the four ISH methods was evaluated by image analysis. In all three cell lines, the two methods involving enzymatic amplification gave the most intense MALAT1 signal, but the signal-to-background ratios were not different. CYTOR was best detected using the bDNA method. All four ISH methods showed significantly reduced MALAT1 signal in knock-out cells, and siRNA-induced knock-down of CYTOR resulted in significantly reduced CYTOR ISH signal, indicating good specificity of the probe designs and detection systems. Our data suggest that the ISH methods allow detection of both abundant and less abundantly expressed lncRNAs, although the latter required the use of the most specific and sensitive probe detection system. PMID:29059327

  11. Detecting surface runoff location in a small catchment using distributed and simple observation method

    NASA Astrophysics Data System (ADS)

    Dehotin, Judicaël; Breil, Pascal; Braud, Isabelle; de Lavenne, Alban; Lagouy, Mickaël; Sarrazin, Benoît

    2015-06-01

    Surface runoff is one of the hydrological processes involved in floods, pollution transfer, soil erosion and mudslide. Many models allow the simulation and the mapping of surface runoff and erosion hazards. Field observations of this hydrological process are not common although they are crucial to evaluate surface runoff models and to investigate or assess different kinds of hazards linked to this process. In this study, a simple field monitoring network is implemented to assess the relevance of a surface runoff susceptibility mapping method. The network is based on spatially distributed observations (nine different locations in the catchment) of soil water content and rainfall events. These data are analyzed to determine if surface runoff occurs. Two surface runoff mechanisms are considered: surface runoff by saturation of the soil surface horizon and surface runoff by infiltration excess (also called hortonian runoff). The monitoring strategy includes continuous records of soil surface water content and rainfall with a 5 min time step. Soil infiltration capacity time series are calculated using field soil water content and in situ measurements of soil hydraulic conductivity. Comparison of soil infiltration capacity and rainfall intensity time series allows detecting the occurrence of surface runoff by infiltration-excess. Comparison of surface soil water content with saturated water content values allows detecting the occurrence of surface runoff by saturation of the soil surface horizon. Automatic records were complemented with direct field observations of surface runoff in the experimental catchment after each significant rainfall event. The presented observation method allows the identification of fast and short-lived surface runoff processes at a small spatial and temporal resolution in natural conditions. The results also highlight the relationship between surface runoff and factors usually integrated in surface runoff mapping such as topography, rainfall parameters, soil or land cover. This study opens interesting prospects for the use of spatially distributed measurement for surface runoff detection, spatially distributed hydrological models implementation and validation at a reasonable cost.

  12. Back-tracking of primary particle trajectories for muons detected at the Earth surface

    NASA Astrophysics Data System (ADS)

    Shutenko, V. V.

    2017-01-01

    Investigations of cosmic rays on the surface of the Earth allow to derive information of applied character on the conditions of the interplanetary magnetic field and of the geomagnetic field. For this purpose, it is necessary to collate trajectories of particles detected in the ground-based detector to trajectories of primary cosmic rays in the heliosphere. This problem is solved by means of various back-tracking methods. In this work, one of such methods is presented.

  13. High Resolution Viscosity Measurement by Thermal Noise Detection

    PubMed Central

    Aguilar Sandoval, Felipe; Sepúlveda, Manuel; Bellon, Ludovic; Melo, Francisco

    2015-01-01

    An interferometric method is implemented in order to accurately assess the thermal fluctuations of a micro-cantilever sensor in liquid environments. The power spectrum density (PSD) of thermal fluctuations together with Sader’s model of the cantilever allow for the indirect measurement of the liquid viscosity with good accuracy. The good quality of the deflection signal and the characteristic low noise of the instrument allow for the detection and corrections of drawbacks due to both the cantilever shape irregularities and the uncertainties on the position of the laser spot at the fluctuating end of the cantilever. Variation of viscosity below 0.03 mPa·s was detected with the alternative to achieve measurements with a volume as low as 50 μL. PMID:26540061

  14. High Resolution Viscosity Measurement by Thermal Noise Detection.

    PubMed

    Sandoval, Felipe Aguilar; Sepúlveda, Manuel; Bellon, Ludovic; Melo, Francisco

    2015-11-03

    An interferometric method is implemented in order to accurately assess the thermal fluctuations of a micro-cantilever sensor in liquid environments. The power spectrum density (PSD) of thermal fluctuations together with Sader's model of the cantilever allow for the indirect measurement of the liquid viscosity with good accuracy. The good quality of the deflection signal and the characteristic low noise of the instrument allow for the detection and corrections of drawbacks due to both the cantilever shape irregularities and the uncertainties on the position of the laser spot at the fluctuating end of the cantilever. Variation of viscosity below 0:03mPa·s was detected with the alternative to achieve measurements with a volume as low as 50 µL.

  15. Quantitation of secreted proteins using mCherry fusion constructs and a fluorescent microplate reader.

    PubMed

    Duellman, Tyler; Burnett, John; Yang, Jay

    2015-03-15

    Traditional assays for secreted proteins include methods such as Western blot and enzyme-linked immunosorbent assay (ELISA) detection of the protein in the cell culture medium. We describe a method for the detection of a secreted protein based on fluorescent measurement of an mCherry fusion reporter. This microplate reader-based mCherry fluorescence detection method has a wide dynamic range of 4.5 orders of magnitude and a sensitivity that allows detection of 1 to 2fmol fusion protein. Comparison with the Western blot detection method indicated greater linearity, wider dynamic range, and a similar lower detection threshold for the microplate-based fluorescent detection assay of secreted fusion proteins. An mCherry fusion protein of matrix metalloproteinase-9 (MMP-9), a secreted glycoprotein, was created and expressed by transfection of human embryonic kidney (HEK) 293 cells. The cell culture medium was assayed for the presence of the fluorescent signal up to 32 h after transfection. The secreted MMP-9-mCherry fusion protein was detected 6h after transfection with a linear increase in signal intensity over time. Treatment with chloroquine, a drug known to inhibit the secretion of many proteins, abolished the MMP-9-mCherry secretion, demonstrating the utility of this method in a biological experiment. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Separation and quantification of 15 carotenoids by reversed phase high performance liquid chromatography coupled to diode array detection with isosbestic wavelength approach.

    PubMed

    Mitrowska, Kamila; Vincent, Ursula; von Holst, Christoph

    2012-04-13

    The manuscript presents the development of a new reverse phase high performance liquid chromatography (RP-HPLC) photo diode array detection method allowing the separation and quantification of 15 carotenoids (adonirubin, adonixanthin, astaxanthin, astaxanthin dimethyl disuccinate, asteroidenone, beta-apo-8'-carotenal, beta-apo-8'-carotenoic acid ethyl ester, beta-carotene, canthaxanthin, capsanthin, citranaxanthin, echinenone, lutein, lycopene, and zeaxanthin), 10 of which are feed additives authorised within the European Union. The developed method allows for the reliable determination of the total carotenoid content in one run using the corresponding E-isomer as calibration standard while taking into account the E/Z-isomers composition. This is a key criterion for the application of the method, since for most of the analytes included in this study analytical standards are only available for the E-isomers. This goal was achieved by applying the isosbestic concept, in order to identify specific wavelengths, at which the absorption coefficients are identical for all stereoisomers concerned. The second target referred to the optimisation of the LC conditions. By means of an experimental design, an optimised RP-HPLC method was developed allowing for a sufficient chromatographic separation of all carotenoids. The selected method uses a Suplex pKb-100 HPLC column and applying a gradient with a mixture of acetonitrile, tert-butyl-methyl ether and water as mobile phases. The limits of detection and limits of quantification ranged from 0.06 mg L(-1) to 0.14 mg L(-1) and from 0.20 mg L(-1) to 0.48 mg L(-1), respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Molecular Imprinting of Macromolecules for Sensor Applications

    PubMed Central

    Saylan, Yeşeren; Yilmaz, Fatma; Özgür, Erdoğan; Derazshamshir, Ali; Yavuz, Handan; Denizli, Adil

    2017-01-01

    Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting. PMID:28422082

  18. Molecular Imprinting of Macromolecules for Sensor Applications.

    PubMed

    Saylan, Yeşeren; Yilmaz, Fatma; Özgür, Erdoğan; Derazshamshir, Ali; Yavuz, Handan; Denizli, Adil

    2017-04-19

    Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting.

  19. A spatial scan statistic for compound Poisson data.

    PubMed

    Rosychuk, Rhonda J; Chang, Hsing-Ming

    2013-12-20

    The topic of spatial cluster detection gained attention in statistics during the late 1980s and early 1990s. Effort has been devoted to the development of methods for detecting spatial clustering of cases and events in the biological sciences, astronomy and epidemiology. More recently, research has examined detecting clusters of correlated count data associated with health conditions of individuals. Such a method allows researchers to examine spatial relationships of disease-related events rather than just incident or prevalent cases. We introduce a spatial scan test that identifies clusters of events in a study region. Because an individual case may have multiple (repeated) events, we base the test on a compound Poisson model. We illustrate our method for cluster detection on emergency department visits, where individuals may make multiple disease-related visits. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Unsupervised Approaches for Post-Processing in Computationally Efficient Waveform-Similarity-Based Earthquake Detection

    NASA Astrophysics Data System (ADS)

    Bergen, K.; Yoon, C. E.; OReilly, O. J.; Beroza, G. C.

    2015-12-01

    Recent improvements in computational efficiency for waveform correlation-based detections achieved by new methods such as Fingerprint and Similarity Thresholding (FAST) promise to allow large-scale blind search for similar waveforms in long-duration continuous seismic data. Waveform similarity search applied to datasets of months to years of continuous seismic data will identify significantly more events than traditional detection methods. With the anticipated increase in number of detections and associated increase in false positives, manual inspection of the detection results will become infeasible. This motivates the need for new approaches to process the output of similarity-based detection. We explore data mining techniques for improved detection post-processing. We approach this by considering similarity-detector output as a sparse similarity graph with candidate events as vertices and similarities as weighted edges. Image processing techniques are leveraged to define candidate events and combine results individually processed at multiple stations. Clustering and graph analysis methods are used to identify groups of similar waveforms and assign a confidence score to candidate detections. Anomaly detection and classification are applied to waveform data for additional false detection removal. A comparison of methods will be presented and their performance will be demonstrated on a suspected induced and non-induced earthquake sequence.

  1. Label-Free Toxin Detection by Means of Time-Resolved Electrochemical Impedance Spectroscopy

    PubMed Central

    Chai, Changhoon; Takhistov, Paul

    2010-01-01

    The real-time detection of trace concentrations of biological toxins requires significant improvement of the detection methods from those reported in the literature. To develop a highly sensitive and selective detection device it is necessary to determine the optimal measuring conditions for the electrochemical sensor in three domains: time, frequency and polarization potential. In this work we utilized a time-resolved electrochemical impedance spectroscopy for the detection of trace concentrations of Staphylococcus enterotoxin B (SEB). An anti-SEB antibody has been attached to the nano-porous aluminum surface using 3-aminopropyltriethoxysilane/glutaraldehyde coupling system. This immobilization method allows fabrication of a highly reproducible and stable sensing device. Using developed immobilization procedure and optimized detection regime, it is possible to determine the presence of SEB at the levels as low as 10 pg/mL in 15 minutes. PMID:22315560

  2. Sensitive molecular diagnostics using surface-enhanced resonance Raman scattering (SERRS)

    NASA Astrophysics Data System (ADS)

    Faulds, Karen; Graham, Duncan; McKenzie, Fiona; MacRae, Douglas; Ricketts, Alastair; Dougan, Jennifer

    2009-02-01

    Surface enhanced resonance Raman scattering (SERRS) is an analytical technique with several advantages over competitive techniques in terms of improved sensitivity and multiplexing. We have made great progress in the development of SERRS as a quantitative analytical method, in particular for the detection of DNA. SERRS is an extremely sensitive and selective technique which when applied to the detection of labelled DNA sequences allows detection limits to be obtained which rival, and in most cases, are better than fluorescence. Here the conditions are explored which will enable the successful detection of DNA using SERRS. The enhancing surface which is used is crucial and in this case suspensions of nanoparticles were used as they allow quantitative behaviour to be achieved and allow analogous systems to current fluorescence based systems to be made. The aggregation conditions required to obtain SERRS of DNA are crucial and herein we describe the use of spermine as an aggregating agent. The nature of the label which is used, be it fluorescent, positively or negatively charged also effects the SERRS response and these conditions are again explored here. We have clearly demonstrated the ability to identify the components of a mixture of 5 analytes in solution by using two different excitation wavelengths and also of a 6-plex using data analysis techniques. These conditions will allow the use of SERRS for the detection of target DNA in a meaningful diagnostic assay.

  3. DuPont Qualicon BAX System polymerase chain reaction assay. Performance Tested Method 100201.

    PubMed

    Tice, George; Andaloro, Bridget; Fallon, Dawn; Wallace, F Morgan

    2009-01-01

    A recent outbreak of Salmonella in peanut butter has highlighted the need for validation of rapid detection methods. A multilaboratory study for detecting Salmonella in peanut butter was conducted as part of the AOAC Research Institute Emergency Response Validation program for methods that detect outbreak threats to food safety. Three sites tested spiked samples from the same master mix according to the U.S. Food and Drug Administration's Bacteriological Analytical Manual (FDA-BAM) method and the BAX System method. Salmonella Typhimurium (ATCC 14028) was grown in brain heart infusion for 24 h at 37 degrees C, then diluted to appropriate levels for sample inoculation. Master samples of peanut butter were spiked at high and low target levels, mixed, and allowed to equilibrate at room temperature for 2 weeks. Spike levels were low [1.08 most probable number (MPN)/25 g]; high (11.5 MPN/25 g) and unspiked to serve as negative controls. Each master sample was divided into 25 g portions and coded to blind the samples. Twenty portions of each spiked master sample and five portions of the unspiked sample were tested at each site. At each testing site, samples were blended in 25 g portions with 225 mL prewarmed lactose broth until thoroughly homogenized, then allowed to remain at room temperature for 55-65 min. Samples were adjusted to a pH of 6.8 +/- 0.2, if necessary, and incubated for 22-26 h at 35 degrees C. Across the three reporting laboratories, the BAX System detected Salmonella in 10/60 low-spike samples and 58/60 high-spike samples. The reference FDA-BAM method yielded positive results for 11/60 low-spike and 58/60 high-spike samples. Neither method demonstrated positive results for any of the 15 unspiked samples.

  4. Quantitative CT imaging for adipose tissue analysis in mouse model of obesity

    NASA Astrophysics Data System (ADS)

    Marchadier, A.; Vidal, C.; Tafani, J.-P.; Ordureau, S.; Lédée, R.; Léger, C.

    2011-03-01

    In obese humans CT imaging is a validated method for follow up studies of adipose tissue distribution and quantification of visceral and subcutaneous fat. Equivalent methods in murine models of obesity are still lacking. Current small animal micro-CT involves long-term X-ray exposure precluding longitudinal studies. We have overcome this limitation by using a human medical CT which allows very fast 3D imaging (2 sec) and minimal radiation exposure. This work presents novel methods fitted to in vivo investigations of mice model of obesity, allowing (i) automated detection of adipose tissue in abdominal regions of interest, (ii) quantification of visceral and subcutaneous fat. For each mouse, 1000 slices (100μm thickness, 160 μm resolution) were acquired in 2 sec using a Toshiba medical CT (135 kV, 400mAs). A Gaussian mixture model of the Hounsfield curve of 2D slices was computed with the Expectation Maximization algorithm. Identification of each Gaussian part allowed the automatic classification of adipose tissue voxels. The abdominal region of interest (umbilical) was automatically detected as the slice showing the highest ratio of the Gaussian proportion between adipose and lean tissues. Segmentation of visceral and subcutaneous fat compartments was achieved with 2D 1/2 level set methods. Our results show that the application of human clinical CT to mice is a promising approach for the study of obesity, allowing valuable comparison between species using the same imaging materials and software analysis.

  5. Highly Sensitive GMO Detection Using Real-Time PCR with a Large Amount of DNA Template: Single-Laboratory Validation.

    PubMed

    Mano, Junichi; Hatano, Shuko; Nagatomi, Yasuaki; Futo, Satoshi; Takabatake, Reona; Kitta, Kazumi

    2018-03-01

    Current genetically modified organism (GMO) detection methods allow for sensitive detection. However, a further increase in sensitivity will enable more efficient testing for large grain samples and reliable testing for processed foods. In this study, we investigated real-time PCR-based GMO detection methods using a large amount of DNA template. We selected target sequences that are commonly introduced into many kinds of GM crops, i.e., 35S promoter and nopaline synthase (NOS) terminator. This makes the newly developed method applicable to a wide range of GMOs, including some unauthorized ones. The estimated LOD of the new method was 0.005% of GM maize events; to the best of our knowledge, this method is the most sensitive among the GM maize detection methods for which the LOD was evaluated in terms of GMO content. A 10-fold increase in the DNA amount as compared with the amount used under common testing conditions gave an approximately 10-fold reduction in the LOD without PCR inhibition. Our method is applicable to various analytical samples, including processed foods. The use of other primers and fluorescence probes would permit highly sensitive detection of various recombinant DNA sequences besides the 35S promoter and NOS terminator.

  6. PCR-based detection of a rare linear DNA in cell culture.

    PubMed

    Saveliev, Sergei V.

    2002-11-11

    The described method allows for detection of rare linear DNA fragments generated during genomic deletions. The predicted limit of the detection is one DNA molecule per 10(7) or more cells. The method is based on anchor PCR and involves gel separation of the linear DNA fragment and chromosomal DNA before amplification. The detailed chemical structure of the ends of the linear DNA can be defined with the use of additional PCR-based protocols. The method was applied to study the short-lived linear DNA generated during programmed genomic deletions in a ciliate. It can be useful in studies of spontaneous DNA deletions in cell culture or for tracking intracellular modifications at the ends of transfected DNA during gene therapy trials.

  7. PCR-based detection of a rare linear DNA in cell culture

    PubMed Central

    2002-01-01

    The described method allows for detection of rare linear DNA fragments generated during genomic deletions. The predicted limit of the detection is one DNA molecule per 107 or more cells. The method is based on anchor PCR and involves gel separation of the linear DNA fragment and chromosomal DNA before amplification. The detailed chemical structure of the ends of the linear DNA can be defined with the use of additional PCR-based protocols. The method was applied to study the short-lived linear DNA generated during programmed genomic deletions in a ciliate. It can be useful in studies of spontaneous DNA deletions in cell culture or for tracking intracellular modifications at the ends of transfected DNA during gene therapy trials. PMID:12734566

  8. Processing of Nanostructured Devices Using Microfabrication Techniques

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C (Inventor); Kulis, Michael H (Inventor); Berger, Gordon M (Inventor); Hunter, Gary W (Inventor); Vander Wal, Randall L (Inventor); Evans, Laura J (Inventor)

    2014-01-01

    Systems and methods that incorporate nanostructures into microdevices are discussed herein. These systems and methods can allow for standard microfabrication techniques to be extended to the field of nanotechnology. Sensors incorporating nanostructures can be fabricated as described herein, and can be used to reliably detect a range of gases with high response.

  9. A Nanocoaxial-Based Electrochemical Sensor for the Detection of Cholera Toxin

    NASA Astrophysics Data System (ADS)

    Archibald, Michelle M.; Rizal, Binod; Connolly, Timothy; Burns, Michael J.; Naughton, Michael J.; Chiles, Thomas C.

    2015-03-01

    Sensitive, real-time detection of biomarkers is of critical importance for rapid and accurate diagnosis of disease for point of care (POC) technologies. Current methods do not allow for POC applications due to several limitations, including sophisticated instrumentation, high reagent consumption, limited multiplexing capability, and cost. Here, we report a nanocoaxial-based electrochemical sensor for the detection of bacterial toxins using an electrochemical enzyme-linked immunosorbent assay (ELISA) and differential pulse voltammetry (DPV). Proof-of-concept was demonstrated for the detection of cholera toxin (CT). The linear dynamic range of detection was 10 ng/ml - 1 μg/ml, and the limit of detection (LOD) was found to be 2 ng/ml. This level of sensitivity is comparable to the standard optical ELISA used widely in clinical applications. In addition to matching the detection profile of the standard ELISA, the nanocoaxial array provides a simple electrochemical readout and a miniaturized platform with multiplexing capabilities for the simultaneous detection of multiple biomarkers, giving the nanocoax a desirable advantage over the standard method towards POC applications. Sensitive, real-time detection of biomarkers is of critical importance for rapid and accurate diagnosis of disease for point of care (POC) technologies. Current methods do not allow for POC applications due to several limitations, including sophisticated instrumentation, high reagent consumption, limited multiplexing capability, and cost. Here, we report a nanocoaxial-based electrochemical sensor for the detection of bacterial toxins using an electrochemical enzyme-linked immunosorbent assay (ELISA) and differential pulse voltammetry (DPV). Proof-of-concept was demonstrated for the detection of cholera toxin (CT). The linear dynamic range of detection was 10 ng/ml - 1 μg/ml, and the limit of detection (LOD) was found to be 2 ng/ml. This level of sensitivity is comparable to the standard optical ELISA used widely in clinical applications. In addition to matching the detection profile of the standard ELISA, the nanocoaxial array provides a simple electrochemical readout and a miniaturized platform with multiplexing capabilities for the simultaneous detection of multiple biomarkers, giving the nanocoax a desirable advantage over the standard method towards POC applications. This work was supported by the National Institutes of Health (National Cancer Institute award No. CA137681 and National Institute of Allergy and Infectious Diseases Award No. AI100216).

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinosa-Paredes, Gilberto; Prieto-Guerrero, Alfonso; Nunez-Carrera, Alejandro

    This paper introduces a wavelet-based method to analyze instability events in a boiling water reactor (BWR) during transient phenomena. The methodology to analyze BWR signals includes the following: (a) the short-time Fourier transform (STFT) analysis, (b) decomposition using the continuous wavelet transform (CWT), and (c) application of multiresolution analysis (MRA) using discrete wavelet transform (DWT). STFT analysis permits the study, in time, of the spectral content of analyzed signals. The CWT provides information about ruptures, discontinuities, and fractal behavior. To detect these important features in the signal, a mother wavelet has to be chosen and applied at several scales tomore » obtain optimum results. MRA allows fast implementation of the DWT. Features like important frequencies, discontinuities, and transients can be detected with analysis at different levels of detail coefficients. The STFT was used to provide a comparison between a classic method and the wavelet-based method. The damping ratio, which is an important stability parameter, was calculated as a function of time. The transient behavior can be detected by analyzing the maximum contained in detail coefficients at different levels in the signal decomposition. This method allows analysis of both stationary signals and highly nonstationary signals in the timescale plane. This methodology has been tested with the benchmark power instability event of Laguna Verde nuclear power plant (NPP) Unit 1, which is a BWR-5 NPP.« less

  11. Potential applications of next generation DNA sequencing of 16S rRNA gene amplicons in microbial water quality monitoring

    PubMed Central

    Vierheilig, J.; Savio, D.; Ley, R. E.; Mach, R. L.; Farnleitner, A. H.

    2016-01-01

    The applicability of next generation DNA sequencing (NGS) methods for water quality assessment has so far not been broadly investigated. This study set out to evaluate the potential of an NGS-based approach in a complex catchment with importance for drinking water abstraction. In this multicompartment investigation, total bacterial communities in water, faeces, soil, and sediment samples were investigated by 454 pyrosequencing of bacterial 16S rRNA gene amplicons to assess the capabilities of this NGS method for (i) the development and evaluation of environmental molecular diagnostics, (ii) direct screening of the bulk bacterial communities, and (iii) the detection of faecal pollution in water. Results indicate that NGS methods can highlight potential target populations for diagnostics and will prove useful for the evaluation of existing and the development of novel DNA-based detection methods in the field of water microbiology. The used approach allowed unveiling of dominant bacterial populations but failed to detect populations with low abundances such as faecal indicators in surface waters. In combination with metadata, NGS data will also allow the identification of drivers of bacterial community composition during water treatment and distribution, highlighting the power of this approach for monitoring of bacterial regrowth and contamination in technical systems. PMID:26606090

  12. Efficient hemodynamic event detection utilizing relational databases and wavelet analysis

    NASA Technical Reports Server (NTRS)

    Saeed, M.; Mark, R. G.

    2001-01-01

    Development of a temporal query framework for time-oriented medical databases has hitherto been a challenging problem. We describe a novel method for the detection of hemodynamic events in multiparameter trends utilizing wavelet coefficients in a MySQL relational database. Storage of the wavelet coefficients allowed for a compact representation of the trends, and provided robust descriptors for the dynamics of the parameter time series. A data model was developed to allow for simplified queries along several dimensions and time scales. Of particular importance, the data model and wavelet framework allowed for queries to be processed with minimal table-join operations. A web-based search engine was developed to allow for user-defined queries. Typical queries required between 0.01 and 0.02 seconds, with at least two orders of magnitude improvement in speed over conventional queries. This powerful and innovative structure will facilitate research on large-scale time-oriented medical databases.

  13. Detection of Golden apples' climacteric peak by laser biospeckle measurements.

    PubMed

    Nassif, Rana; Nader, Christelle Abou; Afif, Charbel; Pellen, Fabrice; Le Brun, Guy; Le Jeune, Bernard; Abboud, Marie

    2014-12-10

    In this paper, we report a study in which a laser biospeckle technique is used to detect the climacteric peak indicating the optimal ripeness of fruits. We monitor two batches of harvested Golden apples going through the ripening phase in low- and room-temperature environments, determine speckle parameters, and measure the emitted ethylene concentration using gas chromatography as reference method. Speckle results are then correlated to the emitted ethylene concentration by a principal component analysis. From a practical point of view, this approach allows us to validate biospeckle as a noninvasive and alternative method to respiration rate and ethylene production for climacteric peak detection as a ripening index.

  14. Using dogs for tiger conservation and research.

    PubMed

    Kerley, Linda L

    2010-12-01

    This paper is a review of the history, development and efficacy of using dogs in wildlife studies and considers the use of dogs in the research and conservation of wild tigers (Panthera tigris Linnaeus, 1758). Using scat detection dogs, scent-matching dogs, law enforcement detection dogs and protection dogs are proven methods that can be effectively used on tigers. These methods all take advantage of the dog's extremely evolved sense of smell that allows them to detect animals or animal byproducts (often the focus of tiger studies). Dogs can be trained to communicate this information to their handlers. © 2010 ISZS, Blackwell Publishing and IOZ/CAS.

  15. Content recognition for telephone monitoring

    NASA Astrophysics Data System (ADS)

    Wenndt, Stanley J.; Harris, David M.; Cupples, Edward J.

    2001-02-01

    This research began due to federal inmates abusing their telephone privileges by committing serious offenses such as murder, drug dealing, and fraud. On average, about 1000 calls are made per day at each federal prison with a peak of over 4000. Current monitoring capabilities are very man- intensive and only allow for about 2-3% monitoring of inmate telephone conversations. One of the main deficiencies identified by prison officials is the need to flag phone conversations pertaining to criminal activity. This research looks at two unique voice-processing methods to detect phone conversion pertaining to criminal activity. These two methods are digit string detection and whisper detection.

  16. A new feature extraction method for signal classification applied to cord dorsum potentials detection

    PubMed Central

    Vidaurre, D.; Rodríguez, E. E.; Bielza, C.; Larrañaga, P.; Rudomin, P.

    2012-01-01

    In the spinal cord of the anesthetized cat, spontaneous cord dorsum potentials (CDPs) appear synchronously along the lumbo-sacral segments. These CDPs have different shapes and magnitudes. Previous work has indicated that some CDPs appear to be specially associated with the activation of spinal pathways that lead to primary afferent depolarization and presynaptic inhibition. Visual detection and classification of these CDPs provides relevant information on the functional organization of the neural networks involved in the control of sensory information and allows the characterization of the changes produced by acute nerve and spinal lesions. We now present a novel feature extraction approach for signal classification, applied to CDP detection. The method is based on an intuitive procedure. We first remove by convolution the noise from the CDPs recorded in each given spinal segment. Then, we assign a coefficient for each main local maximum of the signal using its amplitude and distance to the most important maximum of the signal. These coefficients will be the input for the subsequent classification algorithm. In particular, we employ gradient boosting classification trees. This combination of approaches allows a faster and more accurate discrimination of CDPs than is obtained by other methods. PMID:22929924

  17. A new feature extraction method for signal classification applied to cord dorsum potential detection.

    PubMed

    Vidaurre, D; Rodríguez, E E; Bielza, C; Larrañaga, P; Rudomin, P

    2012-10-01

    In the spinal cord of the anesthetized cat, spontaneous cord dorsum potentials (CDPs) appear synchronously along the lumbo-sacral segments. These CDPs have different shapes and magnitudes. Previous work has indicated that some CDPs appear to be specially associated with the activation of spinal pathways that lead to primary afferent depolarization and presynaptic inhibition. Visual detection and classification of these CDPs provides relevant information on the functional organization of the neural networks involved in the control of sensory information and allows the characterization of the changes produced by acute nerve and spinal lesions. We now present a novel feature extraction approach for signal classification, applied to CDP detection. The method is based on an intuitive procedure. We first remove by convolution the noise from the CDPs recorded in each given spinal segment. Then, we assign a coefficient for each main local maximum of the signal using its amplitude and distance to the most important maximum of the signal. These coefficients will be the input for the subsequent classification algorithm. In particular, we employ gradient boosting classification trees. This combination of approaches allows a faster and more accurate discrimination of CDPs than is obtained by other methods.

  18. Biological object recognition in μ-radiography images

    NASA Astrophysics Data System (ADS)

    Prochazka, A.; Dammer, J.; Weyda, F.; Sopko, V.; Benes, J.; Zeman, J.; Jandejsek, I.

    2015-03-01

    This study presents an applicability of real-time microradiography to biological objects, namely to horse chestnut leafminer, Cameraria ohridella (Insecta: Lepidoptera, Gracillariidae) and following image processing focusing on image segmentation and object recognition. The microradiography of insects (such as horse chestnut leafminer) provides a non-invasive imaging that leaves the organisms alive. The imaging requires a high spatial resolution (micrometer scale) radiographic system. Our radiographic system consists of a micro-focus X-ray tube and two types of detectors. The first is a charge integrating detector (Hamamatsu flat panel), the second is a pixel semiconductor detector (Medipix2 detector). The latter allows detection of single quantum photon of ionizing radiation. We obtained numerous horse chestnuts leafminer pupae in several microradiography images easy recognizable in automatic mode using the image processing methods. We implemented an algorithm that is able to count a number of dead and alive pupae in images. The algorithm was based on two methods: 1) noise reduction using mathematical morphology filters, 2) Canny edge detection. The accuracy of the algorithm is higher for the Medipix2 (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.83), than for the flat panel (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.77). Therefore, we conclude that Medipix2 has lower noise and better displays contours (edges) of biological objects. Our method allows automatic selection and calculation of dead and alive chestnut leafminer pupae. It leads to faster monitoring of the population of one of the world's important insect pest.

  19. Proper Image Subtraction—Optimal Transient Detection, Photometry, and Hypothesis Testing

    NASA Astrophysics Data System (ADS)

    Zackay, Barak; Ofek, Eran O.; Gal-Yam, Avishay

    2016-10-01

    Transient detection and flux measurement via image subtraction stand at the base of time domain astronomy. Due to the varying seeing conditions, the image subtraction process is non-trivial, and existing solutions suffer from a variety of problems. Starting from basic statistical principles, we develop the optimal statistic for transient detection, flux measurement, and any image-difference hypothesis testing. We derive a closed-form statistic that: (1) is mathematically proven to be the optimal transient detection statistic in the limit of background-dominated noise, (2) is numerically stable, (3) for accurately registered, adequately sampled images, does not leave subtraction or deconvolution artifacts, (4) allows automatic transient detection to the theoretical sensitivity limit by providing credible detection significance, (5) has uncorrelated white noise, (6) is a sufficient statistic for any further statistical test on the difference image, and, in particular, allows us to distinguish particle hits and other image artifacts from real transients, (7) is symmetric to the exchange of the new and reference images, (8) is at least an order of magnitude faster to compute than some popular methods, and (9) is straightforward to implement. Furthermore, we present extensions of this method that make it resilient to registration errors, color-refraction errors, and any noise source that can be modeled. In addition, we show that the optimal way to prepare a reference image is the proper image coaddition presented in Zackay & Ofek. We demonstrate this method on simulated data and real observations from the PTF data release 2. We provide an implementation of this algorithm in MATLAB and Python.

  20. AMICO: optimized detection of galaxy clusters in photometric surveys

    NASA Astrophysics Data System (ADS)

    Bellagamba, Fabio; Roncarelli, Mauro; Maturi, Matteo; Moscardini, Lauro

    2018-02-01

    We present Adaptive Matched Identifier of Clustered Objects (AMICO), a new algorithm for the detection of galaxy clusters in photometric surveys. AMICO is based on the Optimal Filtering technique, which allows to maximize the signal-to-noise ratio (S/N) of the clusters. In this work, we focus on the new iterative approach to the extraction of cluster candidates from the map produced by the filter. In particular, we provide a definition of membership probability for the galaxies close to any cluster candidate, which allows us to remove its imprint from the map, allowing the detection of smaller structures. As demonstrated in our tests, this method allows the deblending of close-by and aligned structures in more than 50 per cent of the cases for objects at radial distance equal to 0.5 × R200 or redshift distance equal to 2 × σz, being σz the typical uncertainty of photometric redshifts. Running AMICO on mocks derived from N-body simulations and semi-analytical modelling of the galaxy evolution, we obtain a consistent mass-amplitude relation through the redshift range of 0.3 < z < 1, with a logarithmic slope of ∼0.55 and a logarithmic scatter of ∼0.14. The fraction of false detections is steeply decreasing with S/N and negligible at S/N > 5.

  1. Culture-dependent enumeration methods failed to simultaneously detect disinfectant-injured and genetically modified Escherichia coli in drinking water.

    PubMed

    Li, Jing; Liu, Lu; Yang, Dong; Liu, Wei-Li; Shen, Zhi-Qiang; Qu, Hong-Mei; Qiu, Zhi-Gang; Hou, Ai-Ming; Wang, Da-Ning; Ding, Chen-Shi; Li, Jun-Wen; Guo, Jian-Hua; Jin, Min

    2017-05-24

    Underestimation of Escherichia coli in drinking water, an indicator microorganism of sanitary risk, may result in potential risks of waterborne diseases. However, the detection of disinfectant-injured or genetically modified (GM) E. coli has been largely overlooked so far. To evaluate the accuracy of culture-dependent enumeration with regard to disinfectant-injured and GM E. coli, chlorine- or ozone-injured wild-type (WT) and GM E. coli were prepared and characterized. Then, water samples contaminated with these E. coli strains were assayed by four widely used methods, including lactose tryptose broth-based multiple-tube fermentation (MTF), m-endo-based membrane filtration method (MFM), an enzyme substrate test (EST) known as Colilert, and Petrifilm-based testing slip method (TSM). It was found that MTF was the most effective method to detect disinfectant-injured WT E. coli (with 76.9% trials detecting all these bacteria), while this method could not effectively detect GM E. coli (with uninjured bacteria undetectable and a maximal detection rate of 21.5% for the injured). The EST was the only method which enabled considerable enumeration of uninjured GM E. coli, with a detection rate of over 93%. However, the detection rate declined to lower than 45.4% once the GM E. coli was injured by disinfectants. The MFM was invalid for both disinfectant-injured and GM E. coli. This is the first study to report the failure of these commonly used enumeration methods to simultaneously detect disinfectant-injured and GM E. coli. Thus, it highlights the urgent requirement for the development of a more accurate and versatile enumeration method which allows the detection of disinfectant-injured and GM E. coli on the assessment of microbial quality of drinking water.

  2. Droplet Microfluidic Device Fabrication and Use for Isothermal Amplification and Detection of MicroRNA.

    PubMed

    Giuffrida, Maria Chiara; D'Agata, Roberta; Spoto, Giuseppe

    2017-01-01

    Droplet microfluidics combined with the isothermal circular strand displacement polymerization (ICSDP) represents a powerful new technique to detect both single-stranded DNA and microRNA sequences. The method here described helps in overcoming some drawbacks of the lately introduced droplet polymerase chain reaction (PCR) amplification when implemented in microfluidic devices. The method also allows the detection of nanoliter droplets of nucleic acids sequences solutions, with a particular attention to microRNA sequences that are detected at the picomolar level. The integration of the ICSDP amplification protocol in droplet microfluidic devices reduces the time of analysis and the amount of sample required. In addition, there is also the possibility to design parallel analyses to be integrated in portable devices.

  3. A Fast, Reliable, and Sensitive Method for Detection and Quantification of Listeria monocytogenes and Escherichia coli O157:H7 in Ready-to-Eat Fresh-Cut Products by MPN-qPCR

    PubMed Central

    Russo, Pasquale; Botticella, Giuseppe; Capozzi, Vittorio; Massa, Salvatore; Spano, Giuseppe; Beneduce, Luciano

    2014-01-01

    In the present work we developed a MPN quantitative real-time PCR (MPN-qPCR) method for a fast and reliable detection and quantification of Listeria monocytogenes and Escherichia coli O157:H7 in minimally processed vegetables. In order to validate the proposed technique, the results were compared with conventional MPN followed by phenotypic and biochemical assays methods. When L. monocytogenes and E. coli O157:H7 were artificially inoculated in fresh-cut vegetables, a concentration as low as 1 CFU g−1 could be detected in 48 hours for both pathogens. qPCR alone allowed a limit of detection of 101 CFU g−1 after 2 hours of enrichment for L. monocytogenes and E. coli O157:H7. Since minimally processed ready-to-eat vegetables are characterized by very short shelf life, our method can potentially address the consistent reduction of time for microbial analysis, allowing a better management of quality control. Moreover, the occurrences of both pathogenic bacteria in mixed salad samples and fresh-cut melons were monitored in two production plants from the receipt of the raw materials to the early stages of shelf life. No sample was found to be contaminated by L. monocytogenes. One sample of raw mixed salad was found positive to an H7 enterohemorrhagic serotype. PMID:24949460

  4. A Combinatorial Approach to Detecting Gene-Gene and Gene-Environment Interactions in Family Studies

    PubMed Central

    Lou, Xiang-Yang; Chen, Guo-Bo; Yan, Lei; Ma, Jennie Z.; Mangold, Jamie E.; Zhu, Jun; Elston, Robert C.; Li, Ming D.

    2008-01-01

    Widespread multifactor interactions present a significant challenge in determining risk factors of complex diseases. Several combinatorial approaches, such as the multifactor dimensionality reduction (MDR) method, have emerged as a promising tool for better detecting gene-gene (G × G) and gene-environment (G × E) interactions. We recently developed a general combinatorial approach, namely the generalized multifactor dimensionality reduction (GMDR) method, which can entertain both qualitative and quantitative phenotypes and allows for both discrete and continuous covariates to detect G × G and G × E interactions in a sample of unrelated individuals. In this article, we report the development of an algorithm that can be used to study G × G and G × E interactions for family-based designs, called pedigree-based GMDR (PGMDR). Compared to the available method, our proposed method has several major improvements, including allowing for covariate adjustments and being applicable to arbitrary phenotypes, arbitrary pedigree structures, and arbitrary patterns of missing marker genotypes. Our Monte Carlo simulations provide evidence that the PGMDR method is superior in performance to identify epistatic loci compared to the MDR-pedigree disequilibrium test (PDT). Finally, we applied our proposed approach to a genetic data set on tobacco dependence and found a significant interaction between two taste receptor genes (i.e., TAS2R16 and TAS2R38) in affecting nicotine dependence. PMID:18834969

  5. A novel method of multiple nucleic acid detection: Real-time RT-PCR coupled with probe-melting curve analysis.

    PubMed

    Han, Yang; Hou, Shao-Yang; Ji, Shang-Zhi; Cheng, Juan; Zhang, Meng-Yue; He, Li-Juan; Ye, Xiang-Zhong; Li, Yi-Min; Zhang, Yi-Xuan

    2017-11-15

    A novel method, real-time reverse transcription PCR (real-time RT-PCR) coupled with probe-melting curve analysis, has been established to detect two kinds of samples within one fluorescence channel. Besides a conventional TaqMan probe, this method employs another specially designed melting-probe with a 5' terminus modification which meets the same label with the same fluorescent group. By using an asymmetric PCR method, the melting-probe is able to detect an extra sample in the melting stage effectively while it almost has little influence on the amplification detection. Thus, this method allows the availability of united employment of both amplification stage and melting stage for detecting samples in one reaction. The further demonstration by simultaneous detection of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) in one channel as a model system is presented in this essay. The sensitivity of detection by real-time RT-PCR coupled with probe-melting analysis was proved to be equal to that detected by conventional real-time RT-PCR. Because real-time RT-PCR coupled with probe-melting analysis can double the detection throughputs within one fluorescence channel, it is expected to be a good solution for the problem of low-throughput in current real-time PCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. An Off-Axis Four-Quadrant Phase Mask (FQPM) Coronagraph for Palomar: High-Contrast Near Bright Stars Imager

    NASA Technical Reports Server (NTRS)

    Haguenauer, Pierre; Serabyn, Eugene; Bloemhof, Eric E.; Troy, Mitchell; Wallace, James K.; Koresko, Chris D.; Mennesson, Bertrand

    2005-01-01

    Direct detection of planets around nearby stars requires the development of high-contrast imaging techniques because of the high difference between their respective fluxes. This led us to test a new coronagraphic approach based on the use of phase mask instead of dark occulting ones. Combined with high-level wavefront correction on an unobscured off-axis section of a large telescope, this method allows imaging very close to the star. Calculations indicate that for a given ground-based on-axis telescope, use of such an off-axis coronagraph provides a near-neighbor detection capability superior to that of a traditional coronagraph utilizing the full telescope aperture. Setting up a laboratory experiment working in near infrared allowed us to demonstrate the principle of the method, and a rejection of 2000:1 has already been achieved.

  7. Improved catalyzed reporter deposition, iCARD.

    PubMed

    Lohse, Jesper; Petersen, Kenneth Heesche; Woller, Nina Claire; Pedersen, Hans Christian; Skladtchikova, Galina; Jørgensen, Rikke Malene

    2014-06-18

    Novel reporters have been synthesized with extended hydrophilic linkers that in combination with polymerizing cross-linkers result in very efficient reporter deposition. By utilizing antibodies to stain HER2 proteins in a cell line model it is demonstrated that the method is highly specific and sensitive with virtually no background. The detection of HER2 proteins in tissue was used to visualize individual antigens as small dots visible in a microscope. Image analysis-assisted counting of fluorescent or colored dots allowed assessment of relative protein levels in tissue. Taken together, we have developed novel reporters that improve the CARD method allowing highly sensitive in situ detection of proteins in tissue. Our findings suggest that in situ protein quantification in biological samples can be performed by object recognition and enumeration of dots, rather than intensity-based fluorescent or colorimetric assays.

  8. Isolation of infectious chikungunya virus and dengue virus using anionic polymer-coated magnetic beads.

    PubMed

    Patramool, Sirilaksana; Bernard, Eric; Hamel, Rodolphe; Natthanej, Luplertlop; Chazal, Nathalie; Surasombatpattana, Pornapat; Ekchariyawat, Peeraya; Daoust, Simon; Thongrungkiat, Supatra; Thomas, Frédéric; Briant, Laurence; Missé, Dorothée

    2013-10-01

    Mosquitoes-borne viruses are a major threat for human populations. Among them, chikungunya virus (CHIKV) and dengue virus (DENV) cause thousands of cases worldwide. The recent propagation of mosquito vectors competent to transmit these viruses to temperate areas increases their potential impact on susceptible human populations. The development of sensitive methods allowing the detection and isolation of infectious viruses is of crucial interest for determination of virus contamination in humans and in competent mosquito vectors. However, simple and rapid method allowing the capture of infectious CHIKV and DENV from samples with low viral titers useful for further genetic and functional characterization of circulating strains is lacking. The present study reports a fast and sensitive isolation technique based on viral particles adsorption on magnetic beads coated with anionic polymer, poly(methyl vinyl ether-maleic anhydrate) and suitable for isolation of infectious CHIKV and DENV from the four serotypes. Starting from quite reduced biological material, this method was accurate to combine with conventional detection techniques, including qRT-PCR and immunoblotting and allowed isolation of infectious particles without resorting to a step of cultivation. The use of polymer-coated magnetic beads is therefore of high interest for rapid detection and isolation of CHIKV and DENV from samples with reduced viral loads and represents an accurate approach for the surveillance of mosquito vector in area at risk for arbovirus outbreaks. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Nonlinear multi-photon laser wave-mixing optical detection in microarrays and microchips for ultrasensitive detection and separation of biomarkers for cancer and neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Manna; Hetu, Marcel; Maxwell, Eric; Pradel, Jean S.; Ramos, Sashary; Tong, William G.

    2015-09-01

    Multi-photon degenerate four-wave mixing is demonstrated as an ultrasensitive absorption-based optical method for detection, separation and identification of biomarker proteins in the development of early diagnostic methods for HIV- 1, cancer and neurodegenerative diseases using compact, portable microarrays and capillary- or microchip-based chemical separation systems that offer high chemical specificity levels. The wave-mixing signal has a quadratic dependence on concentration, and hence, it allows more reliable monitoring of smaller changes in analyte properties. Our wave-mixing detection sensitivity is comparable or better than those of current methods including enzyme-linked immunoassay for clinical diagnostic and screening. Detection sensitivity is excellent since the wave-mixing signal is a coherent laser-like beam that can be collected with virtually 100% collection efficiency with high S/N. Our analysis time is short (1-15 minutes) for molecular weight-based protein separation as compared to that of a conventional separation technique, e.g., sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When ultrasensitive wavemixing detection is paired with high-resolution capillary- or microchip-based separation systems, biomarkers can be separated and identified at the zepto- and yocto-mole levels for a wide range of analytes. Specific analytes can be captured in a microchannel through the use of antibody-antigen interactions that provide better chemical specificity as compared to size-based separation alone. The technique can also be combined with immune-precipitation and a multichannel capillary array for high-throughput analysis of more complex protein samples. Wave mixing allows the use of chromophores and absorption-modifying tags, in addition to conventional fluorophores, for online detection of immunecomplexes related to cancer.

  10. Robust detrending, rereferencing, outlier detection, and inpainting for multichannel data.

    PubMed

    de Cheveigné, Alain; Arzounian, Dorothée

    2018-05-15

    Electroencephalography (EEG), magnetoencephalography (MEG) and related techniques are prone to glitches, slow drift, steps, etc., that contaminate the data and interfere with the analysis and interpretation. These artifacts are usually addressed in a preprocessing phase that attempts to remove them or minimize their impact. This paper offers a set of useful techniques for this purpose: robust detrending, robust rereferencing, outlier detection, data interpolation (inpainting), step removal, and filter ringing artifact removal. These techniques provide a less wasteful alternative to discarding corrupted trials or channels, and they are relatively immune to artifacts that disrupt alternative approaches such as filtering. Robust detrending allows slow drifts and common mode signals to be factored out while avoiding the deleterious effects of glitches. Robust rereferencing reduces the impact of artifacts on the reference. Inpainting allows corrupt data to be interpolated from intact parts based on the correlation structure estimated over the intact parts. Outlier detection allows the corrupt parts to be identified. Step removal fixes the high-amplitude flux jump artifacts that are common with some MEG systems. Ringing removal allows the ringing response of the antialiasing filter to glitches (steps, pulses) to be suppressed. The performance of the methods is illustrated and evaluated using synthetic data and data from real EEG and MEG systems. These methods, which are mainly automatic and require little tuning, can greatly improve the quality of the data. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults.

    PubMed

    Sun, Rui; Cheng, Qi; Wang, Guanyu; Ochieng, Washington Yotto

    2017-09-29

    The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs' flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate.

  12. A straightforward, validated liquid chromatography coupled to tandem mass spectrometry method for the simultaneous detection of nine drugs of abuse and their metabolites in hair and nails.

    PubMed

    Cappelle, Delphine; De Doncker, Mireille; Gys, Celine; Krysiak, Kamelia; De Keukeleire, Steven; Maho, Walid; Crunelle, Cleo L; Dom, Geert; Covaci, Adrian; van Nuijs, Alexander L N; Neels, Hugo

    2017-04-01

    Hair and nails allow for a stable accumulation of compounds over time and retrospective investigation of past exposure and/or consumption. Owing to their long window of detection (weeks to months), analysis of these matrices can provide information complementary to blood and urine analysis or can be used in standalone when e.g. elimination from the body has already occurred. Drugs of abuse are often used together and, therefore, multi-analyte methods capable of detecting several substances and their metabolites in a single run are of importance. This paper presents the development and validation of a method based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) for the simultaneous detection of nine drugs of abuse and their metabolites in hair and nails. We focused on a simple and straightforward sample preparation to reduce costs, and allow application in routine laboratory practice. Chromatographic and mass spectrometric parameters, such as column type, mobile phase, and multiple reaction monitoring transitions were optimized. The method was validated according to the European Medicine Agency guidelines with an assessment of specificity, limit of quantification (LOQ), linearity, accuracy, precision, carry-over, matrix effects, recovery, and process efficiency. Linearity ranged from 25 to 20 000 pg mg -1 hair and from 50 to 20 000 pg mg -1 nails, and the lowest calibration point achieved the requirements for the LOQ (25 pg mg -1 for hair and 50 pg mg -1 for nails). Although it was not the main focus of the article, the reliability of the method was proven through successful participation in a proficiency test, and by investigation of authentic hair and nail samples from self-reported drug users. In the future, the method should allow comparison between the two matrices to acquire an in-depth knowledge of nail analysis and to define cutoff levels for nail analysis, as they exist for hair. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Detecting vapour bubbles in simulations of metastable water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González, Miguel A.; Abascal, Jose L. F.; Valeriani, Chantal, E-mail: christoph.dellago@univie.ac.at, E-mail: cvaleriani@quim.ucm.es

    2014-11-14

    The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguishmore » between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.« less

  14. Teschoviruses as Indicators of Porcine Fecal Contamination of Surface Water

    PubMed Central

    Jiménez-Clavero, Miguel Angel; Fernández, Carlos; Ortiz, José Antonio; Pro, Javier; Carbonell, Gregoria; Tarazona, José Vicente; Roblas, Neftalí; Ley, Victoria

    2003-01-01

    Teschoviruses specifically infect pigs and are shed in pig feces. Hence, their presence in water should indicate contamination with pig fecal residues. To assess this hypothesis, we have developed a real-time reverse transcriptase PCR (RT-PCR) method that allows the quantitative detection of pig teschovirus (PTV) RNA. The method is able to detect 92 fg of PTV RNA per ml of sample. Using this method, we have detected the presence of PTV RNA in water and fecal samples from all pig farms examined (n = 5). Feces from other animal species (cattle, sheep, and goats) were negative in this test. To compare the PTV RNA detection method with conventional chemical determinations currently in use for evaluation of water contamination, we analyzed water samples collected downstream from a pig slurry spillage site. We have found a positive correlation within both types of determinations. The sensitivity of the PTV detection assay was similar to that achieved by unspecific organic matter determination and superior to all other conventional chemical analyses performed. Furthermore, the new method is highly specific, revealing the porcine origin of the contamination, a feature that is lacking in currently available methods for the assessment of water contamination. PMID:14532098

  15. An islanding detection methodology combining decision trees and Sandia frequency shift for inverter-based distributed generations

    DOE PAGES

    Azim, Riyasat; Li, Fangxing; Xue, Yaosuo; ...

    2017-07-14

    Distributed generations (DGs) for grid-connected applications require an accurate and reliable islanding detection methodology (IDM) for secure system operation. This paper presents an IDM for grid-connected inverter-based DGs. The proposed method is a combination of passive and active islanding detection techniques for aggregation of their advantages and elimination/minimisation of the drawbacks. In the proposed IDM, the passive method utilises critical system attributes extracted from local voltage measurements at target DG locations as well as employs decision tree-based classifiers for characterisation and detection of islanding events. The active method is based on Sandia frequency shift technique and is initiated only whenmore » the passive method is unable to differentiate islanding events from other system events. Thus, the power quality degradation introduced into the system by active islanding detection techniques can be minimised. Furthermore, a combination of active and passive techniques allows detection of islanding events under low power mismatch scenarios eliminating the disadvantage associated with the use of passive techniques alone. Finally, detailed case study results demonstrate the effectiveness of the proposed method in detection of islanding events under various power mismatch scenarios, load quality factors and in the presence of single or multiple grid-connected inverter-based DG units.« less

  16. An islanding detection methodology combining decision trees and Sandia frequency shift for inverter-based distributed generations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azim, Riyasat; Li, Fangxing; Xue, Yaosuo

    Distributed generations (DGs) for grid-connected applications require an accurate and reliable islanding detection methodology (IDM) for secure system operation. This paper presents an IDM for grid-connected inverter-based DGs. The proposed method is a combination of passive and active islanding detection techniques for aggregation of their advantages and elimination/minimisation of the drawbacks. In the proposed IDM, the passive method utilises critical system attributes extracted from local voltage measurements at target DG locations as well as employs decision tree-based classifiers for characterisation and detection of islanding events. The active method is based on Sandia frequency shift technique and is initiated only whenmore » the passive method is unable to differentiate islanding events from other system events. Thus, the power quality degradation introduced into the system by active islanding detection techniques can be minimised. Furthermore, a combination of active and passive techniques allows detection of islanding events under low power mismatch scenarios eliminating the disadvantage associated with the use of passive techniques alone. Finally, detailed case study results demonstrate the effectiveness of the proposed method in detection of islanding events under various power mismatch scenarios, load quality factors and in the presence of single or multiple grid-connected inverter-based DG units.« less

  17. Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics.

    PubMed

    Chokkalingam, Venkatachalam; Tel, Jurjen; Wimmers, Florian; Liu, Xin; Semenov, Sergey; Thiele, Julian; Figdor, Carl G; Huck, Wilhelm T S

    2013-12-21

    Here, we present a platform to detect cytokine (IL-2, IFN-γ, TNF-α) secretion of single, activated T-cells in droplets over time. We use a novel droplet-based microfluidic approach to encapsulate cells in monodisperse agarose droplets together with functionalized cytokine-capture beads for subsequent binding and detection of secreted cytokines from single cells. This method allows high-throughput detection of cellular heterogeneity and maps subsets within cell populations with specific functions.

  18. Unveiling combinatorial regulation through the combination of ChIP information and in silico cis-regulatory module detection

    PubMed Central

    Sun, Hong; Guns, Tias; Fierro, Ana Carolina; Thorrez, Lieven; Nijssen, Siegfried; Marchal, Kathleen

    2012-01-01

    Computationally retrieving biologically relevant cis-regulatory modules (CRMs) is not straightforward. Because of the large number of candidates and the imperfection of the screening methods, many spurious CRMs are detected that are as high scoring as the biologically true ones. Using ChIP-information allows not only to reduce the regions in which the binding sites of the assayed transcription factor (TF) should be located, but also allows restricting the valid CRMs to those that contain the assayed TF (here referred to as applying CRM detection in a query-based mode). In this study, we show that exploiting ChIP-information in a query-based way makes in silico CRM detection a much more feasible endeavor. To be able to handle the large datasets, the query-based setting and other specificities proper to CRM detection on ChIP-Seq based data, we developed a novel powerful CRM detection method ‘CPModule’. By applying it on a well-studied ChIP-Seq data set involved in self-renewal of mouse embryonic stem cells, we demonstrate how our tool can recover combinatorial regulation of five known TFs that are key in the self-renewal of mouse embryonic stem cells. Additionally, we make a number of new predictions on combinatorial regulation of these five key TFs with other TFs documented in TRANSFAC. PMID:22422841

  19. Single Fluorescence Channel-based Multiplex Detection of Avian Influenza Virus by Quantitative PCR with Intercalating Dye

    PubMed Central

    Ahberg, Christian D.; Manz, Andreas; Neuzil, Pavel

    2015-01-01

    Since its invention in 1985 the polymerase chain reaction (PCR) has become a well-established method for amplification and detection of segments of double-stranded DNA. Incorporation of fluorogenic probe or DNA intercalating dyes (such as SYBR Green) into the PCR mixture allowed real-time reaction monitoring and extraction of quantitative information (qPCR). Probes with different excitation spectra enable multiplex qPCR of several DNA segments using multi-channel optical detection systems. Here we show multiplex qPCR using an economical EvaGreen-based system with single optical channel detection. Previously reported non quantitative multiplex real-time PCR techniques based on intercalating dyes were conducted once the PCR is completed by performing melting curve analysis (MCA). The technique presented in this paper is both qualitative and quantitative as it provides information about the presence of multiple DNA strands as well as the number of starting copies in the tested sample. Besides important internal control, multiplex qPCR also allows detecting concentrations of more than one DNA strand within the same sample. Detection of the avian influenza virus H7N9 by PCR is a well established method. Multiplex qPCR greatly enhances its specificity as it is capable of distinguishing both haemagglutinin (HA) and neuraminidase (NA) genes as well as their ratio. PMID:26088868

  20. Competitive amplification of differentially melting amplicons (CADMA) enables sensitive and direct detection of all mutation types by high-resolution melting analysis.

    PubMed

    Kristensen, Lasse S; Andersen, Gitte B; Hager, Henrik; Hansen, Lise Lotte

    2012-01-01

    Sensitive and specific mutation detection is of particular importance in cancer diagnostics, prognostics, and individualized patient treatment. However, the majority of molecular methodologies that have been developed with the aim of increasing the sensitivity of mutation testing have drawbacks in terms of specificity, convenience, or costs. Here, we have established a new method, Competitive Amplification of Differentially Melting Amplicons (CADMA), which allows very sensitive and specific detection of all mutation types. The principle of the method is to amplify wild-type and mutated sequences simultaneously using a three-primer system. A mutation-specific primer is designed to introduce melting temperature decreasing mutations in the resulting mutated amplicon, while a second overlapping primer is designed to amplify both wild-type and mutated sequences. When combined with a third common primer very sensitive mutation detection becomes possible, when using high-resolution melting (HRM) as detection platform. The introduction of melting temperature decreasing mutations in the mutated amplicon also allows for further mutation enrichment by fast coamplification at lower denaturation temperature PCR (COLD-PCR). For proof-of-concept, we have designed CADMA assays for clinically relevant BRAF, EGFR, KRAS, and PIK3CA mutations, which are sensitive to, between 0.025% and 0.25%, mutated alleles in a wild-type background. In conclusion, CADMA enables highly sensitive and specific mutation detection by HRM analysis. © 2011 Wiley Periodicals, Inc.

  1. Instrumentation for noninvasive express-diagnostics bacteriophages and viruses by optical method

    NASA Astrophysics Data System (ADS)

    Moguilnaia, Tatiana A.; Andreev, Gleb I.; Agibalov, Andrey A.; Botikov, Andrey G.; Kosenkov, Evgeniy; Saguitova, Elena

    2004-03-01

    The theoretical and the experimental researches of spectra of absent-minded radiation in medium containing viruses were carried out. The information on spectra luminescence 31 viruses was written down.The new method the express - analysis of viruses in organism of the man was developed. It shall be mentioned that the proposed method of express diagnostics allows detection of infection agent in the organism several hours after infection. It makes it suitable for high efficient testing in blood services for detection and rejection of potential donors infected with such viruses as hepatitis, herpes, Epstein-Barre, cytomegalovirus, and immunodeficiency. Methods of serum diagnostics used for that purpose can detect antibodies to virus only 1-3 months after the person has been infected. The device for the express analysis of 31 viruses of the man was created.

  2. A new microcolumn-type microchip for examining the expression of chimeric fusion genes using a nucleic acid sandwich hybridization technique.

    PubMed

    Ohnishi, Michihiro; Sasaki, Naoyuki; Kishimoto, Takuya; Watanabe, Hidetoshi; Takagi, Masatoshi; Mizutani, Shuki; Kishii, Noriyuki; Yasuda, Akio

    2014-11-01

    We report a new type of microcolumn installed in a microchip. The architecture allows use of a nucleic acid sandwich hybridization technique to detect a messenger RNA (mRNA) chain as a target. Data are presented that demonstrate that the expression of a chimeric fusion gene can be detected. The microcolumn was filled with semi-transparent microbeads made of agarose gel that acted as carriers, allowing increased efficiency of the optical detection of fluorescence from the microcolumn. The hybrid between the target trapped on the microbeads and a probe DNA labeled with a fluorescent dye was detected by measuring the intensity of the fluorescence from the microcolumn directly. These results demonstrate an easy and simple method for determining the expression of chimeric fusion genes with no preamplification. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. A new strategy for fast radiofrequency CW EPR imaging: Direct detection with rapid scan and rotating gradients

    PubMed Central

    Subramanian, Sankaran; Koscielniak, Janusz W.; Devasahayam, Nallathamby; Pursley, Randall H.; Pohida, Thomas J.; Krishna, Murali C.

    2007-01-01

    Rapid field scan on the order of T/s using high frequency sinusoidal or triangular sweep fields superimposed on the main Zeeman field, was used for direct detection of signals without low-frequency field modulation. Simultaneous application of space-encoding rotating field gradients have been employed to perform fast CW EPR imaging using direct detection that could, in principle, approach the speed of pulsed FT EPR imaging. The method takes advantage of the well-known rapid-scan strategy in CW NMR and EPR that allows arbitrarily fast field sweep and the simultaneous application of spinning gradients that allows fast spatial encoding. This leads to fast functional EPR imaging and, depending on the spin concentration, spectrometer sensitivity and detection band width, can provide improved temporal resolution that is important to interrogate dynamics of spin perfusion, pharmacokinetics, spectral spatial imaging, dynamic oxymetry, etc. PMID:17350865

  4. Enhanced data validation strategy of air quality monitoring network.

    PubMed

    Harkat, Mohamed-Faouzi; Mansouri, Majdi; Nounou, Mohamed; Nounou, Hazem

    2018-01-01

    Quick validation and detection of faults in measured air quality data is a crucial step towards achieving the objectives of air quality networks. Therefore, the objectives of this paper are threefold: (i) to develop a modeling technique that can be used to predict the normal behavior of air quality variables and help provide accurate reference for monitoring purposes; (ii) to develop fault detection method that can effectively and quickly detect any anomalies in measured air quality data. For this purpose, a new fault detection method that is based on the combination of generalized likelihood ratio test (GLRT) and exponentially weighted moving average (EWMA) will be developed. GLRT is a well-known statistical fault detection method that relies on maximizing the detection probability for a given false alarm rate. In this paper, we propose to develop GLRT-based EWMA fault detection method that will be able to detect the changes in the values of certain air quality variables; (iii) to develop fault isolation and identification method that allows defining the fault source(s) in order to properly apply appropriate corrective actions. In this paper, reconstruction approach that is based on Midpoint-Radii Principal Component Analysis (MRPCA) model will be developed to handle the types of data and models associated with air quality monitoring networks. All air quality modeling, fault detection, fault isolation and reconstruction methods developed in this paper will be validated using real air quality data (such as particulate matter, ozone, nitrogen and carbon oxides measurement). Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Reverse transcription strand invasion based amplification (RT-SIBA): a method for rapid detection of influenza A and B.

    PubMed

    Eboigbodin, Kevin; Filén, Sanna; Ojalehto, Tuomas; Brummer, Mirko; Elf, Sonja; Pousi, Kirsi; Hoser, Mark

    2016-06-01

    Rapid and accurate diagnosis of influenza viruses plays an important role in infection control, as well as in preventing the misuse of antibiotics. Isothermal nucleic acid amplification methods offer significant advantages over the polymerase chain reaction (PCR), since they are more rapid and do not require the sophisticated instruments needed for thermal cycling. We previously described a novel isothermal nucleic acid amplification method, 'Strand Invasion Based Amplification' (SIBA®), with high analytical sensitivity and specificity, for the detection of DNA. In this study, we describe the development of a variant of the SIBA method, namely, reverse transcription SIBA (RT-SIBA), for the rapid detection of viral RNA targets. The RT-SIBA method includes a reverse transcriptase enzyme that allows one-step reverse transcription of RNA to complementary DNA (cDNA) and simultaneous amplification and detection of the cDNA by SIBA under isothermal reaction conditions. The RT-SIBA method was found to be more sensitive than PCR for the detection of influenza A and B and could detect 100 copies of influenza RNA within 15 min. The development of RT-SIBA will enable rapid and accurate diagnosis of viral RNA targets within point-of-care or central laboratory settings.

  6. Detection of buried magnetic objects by a SQUID gradiometer system

    NASA Astrophysics Data System (ADS)

    Meyer, Hans-Georg; Hartung, Konrad; Linzen, Sven; Schneider, Michael; Stolz, Ronny; Fried, Wolfgang; Hauspurg, Sebastian

    2009-05-01

    We present a magnetic detection system based on superconducting gradiometric sensors (SQUID gradiometers). The system provides a unique fast mapping of large areas with a high resolution of the magnetic field gradient as well as the local position. A main part of this work is the localization and classification of magnetic objects in the ground by automatic interpretation of geomagnetic field gradients, measured by the SQUID system. In accordance with specific features the field is decomposed into segments, which allow inferences to possible objects in the ground. The global consideration of object describing properties and their optimization using error minimization methods allows the reconstruction of superimposed features and detection of buried objects. The analysis system of measured geomagnetic fields works fully automatically. By a given surface of area-measured gradients the algorithm determines within numerical limits the absolute position of objects including depth with sub-pixel accuracy and allows an arbitrary position and attitude of sources. Several SQUID gradiometer data sets were used to show the applicability of the analysis algorithm.

  7. Continuous monitoring of regional function by a miniaturized ultrasound transducer allows early quantification of low-grade myocardial ischemia.

    PubMed

    Hyler, Stefan; Pischke, Søren E; Halvorsen, Per Steinar; Espinoza, Andreas; Bergsland, Jacob; Tønnessen, Tor Inge; Fosse, Erik; Skulstad, Helge

    2015-04-01

    Sensitive methods for the early detection of myocardial dysfunction are still needed, as ischemia is a leading cause of decreased ventricular function during and after heart surgery. The aim of this study was to test the hypothesis that low-grade ischemia could be detected quantitatively by a miniaturized epicardial ultrasound transducer (Ø = 3 mm), allowing continuous monitoring. In 10 pigs, transducers were positioned in the left anterior descending and circumflex coronary artery areas. Left ventricular pressure was obtained by a micromanometer. The left internal mammary artery was grafted to the left anterior descending coronary artery, which was occluded proximal to the anastomosis. Left internal mammary artery flow was stepwise reduced by 25%, 50%, and 75% for 18 min each. From the transducers, M-mode traces were obtained, allowing continuous tissue velocity traces and displacement measurements. Regional work was assessed as left ventricular pressure-displacement loop area. Tissue lactate measured from intramyocardial microdialysis was used as reference method to detect ischemia. All steps of coronary flow reduction demonstrated reduced peak systolic velocity (P < .05) and regional work (P < .01).The decreases in peak systolic velocity and regional work were closely related to the degree of ischemia, demonstrated by their correlations with lactate (R = -0.74, P < .01, and R = -0.64, P < .01, respectively). The circumflex coronary artery area was not affected by any of the interventions. The epicardially attached miniaturized ultrasound transducer allowed the precise detection of different levels of coronary flow reduction. The results also showed a quantitative and linear relationship among coronary flow, ischemia, and myocardial function. Thus, the ultrasound transducer has the potential to improve the monitoring of myocardial ischemia and to detect graft failure during and after heart surgery. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  8. Application of photostable quantum dots for indirect immunofluorescent detection of specific bacterial serotypes on small marine animals

    NASA Astrophysics Data System (ADS)

    Decho, Alan W.; Beckman, Erin M.; Chandler, G. Thomas; Kawaguchi, Tomohiro

    2008-06-01

    An indirect immunofluorescence approach was developed using semiconductor quantum dot nanocrystals to label and detect a specific bacterial serotype of the bacterial human pathogen Vibrio parahaemolyticus, attached to small marine animals (i.e. benthic harpacticoid copepods), which are suspected pathogen carriers. This photostable labeling method using nanotechnology will potentially allow specific serotypes of other bacterial pathogens to be detected with high sensitivity in a range of systems, and can be easily applied for sensitive detection to other Vibrio species such as Vibrio cholerae.

  9. Source Detection with Bayesian Inference on ROSAT All-Sky Survey Data Sample

    NASA Astrophysics Data System (ADS)

    Guglielmetti, F.; Voges, W.; Fischer, R.; Boese, G.; Dose, V.

    2004-07-01

    We employ Bayesian inference for the joint estimation of sources and background on ROSAT All-Sky Survey (RASS) data. The probabilistic method allows for detection improvement of faint extended celestial sources compared to the Standard Analysis Software System (SASS). Background maps were estimated in a single step together with the detection of sources without pixel censoring. Consistent uncertainties of background and sources are provided. The source probability is evaluated for single pixels as well as for pixel domains to enhance source detection of weak and extended sources.

  10. MALDI TOF imaging mass spectrometry in clinical pathology: a valuable tool for cancer diagnostics (review).

    PubMed

    Kriegsmann, Jörg; Kriegsmann, Mark; Casadonte, Rita

    2015-03-01

    Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) is an evolving technique in cancer diagnostics and combines the advantages of mass spectrometry (proteomics), detection of numerous molecules, and spatial resolution in histological tissue sections and cytological preparations. This method allows the detection of proteins, peptides, lipids, carbohydrates or glycoconjugates and small molecules.Formalin-fixed paraffin-embedded tissue can also be investigated by IMS, thus, this method seems to be an ideal tool for cancer diagnostics and biomarker discovery. It may add information to the identification of tumor margins and tumor heterogeneity. The technique allows tumor typing, especially identification of the tumor of origin in metastatic tissue, as well as grading and may provide prognostic information. IMS is a valuable method for the identification of biomarkers and can complement histology, immunohistology and molecular pathology in various fields of histopathological diagnostics, especially with regard to identification and grading of tumors.

  11. Studies on fatty acid-binding proteins. The detection and quantification of the protein from rat liver by using a fluorescent fatty acid analogue.

    PubMed Central

    Wilkinson, T C; Wilton, D C

    1986-01-01

    Fatty acid-binding protein from rat liver is shown to bind the fluorescent fatty acid probe dansyl undecanoic acid. Binding is accompanied by a shift in the fluorescence emission maximum from 550 nm to 500 nm and a 60-fold fluorescence enhancement at 500 nm. These spectral properties have allowed the use of this probe to detect and quantify microgram amounts of liver fatty acid-binding protein during purification procedures. In conjunction with h.p.l.c. the method allows the rapid estimation of liver fatty acid-binding protein in biological samples. The validity of the method is demonstrated by measuring the concentration of fatty acid-binding protein in livers from control and hypolipidaemic-drug-treated rats. The dramatic diurnal rhythm previously reported for this protein [Dempsey (1984) Curr. Top. Cell. Regul. 24, 63-86] was not observed with this method. Images Fig. 1. PMID:3800946

  12. Reviving common standards in point-count surveys for broad inference across studies

    USGS Publications Warehouse

    Matsuoka, Steven M.; Mahon, C. Lisa; Handel, Colleen M.; Solymos, Peter; Bayne, Erin M.; Fontaine, Patricia C.; Ralph, C.J.

    2014-01-01

    We revisit the common standards recommended by Ralph et al. (1993, 1995a) for conducting point-count surveys to assess the relative abundance of landbirds breeding in North America. The standards originated from discussions among ornithologists in 1991 and were developed so that point-count survey data could be broadly compared and jointly analyzed by national data centers with the goals of monitoring populations and managing habitat. Twenty years later, we revisit these standards because (1) they have not been universally followed and (2) new methods allow estimation of absolute abundance from point counts, but these methods generally require data beyond the original standards to account for imperfect detection. Lack of standardization and the complications it introduces for analysis become apparent from aggregated data. For example, only 3% of 196,000 point counts conducted during the period 1992-2011 across Alaska and Canada followed the standards recommended for the count period and count radius. Ten-minute, unlimited-count-radius surveys increased the number of birds detected by >300% over 3-minute, 50-m-radius surveys. This effect size, which could be eliminated by standardized sampling, was ≥10 times the published effect sizes of observers, time of day, and date of the surveys. We suggest that the recommendations by Ralph et al. (1995a) continue to form the common standards when conducting point counts. This protocol is inexpensive and easy to follow but still allows the surveys to be adjusted for detection probabilities. Investigators might optionally collect additional information so that they can analyze their data with more flexible forms of removal and time-of-detection models, distance sampling, multiple-observer methods, repeated counts, or combinations of these methods. Maintaining the common standards as a base protocol, even as these study-specific modifications are added, will maximize the value of point-count data, allowing compilation and analysis by regional and national data centers.

  13. Imaging different components of a tectonic tremor sequence in southwestern Japan using an automatic statistical detection and location method

    NASA Astrophysics Data System (ADS)

    Poiata, Natalia; Vilotte, Jean-Pierre; Bernard, Pascal; Satriano, Claudio; Obara, Kazushige

    2018-06-01

    In this study, we demonstrate the capability of an automatic network-based detection and location method to extract and analyse different components of tectonic tremor activity by analysing a 9-day energetic tectonic tremor sequence occurring at the downdip extension of the subducting slab in southwestern Japan. The applied method exploits the coherency of multiscale, frequency-selective characteristics of non-stationary signals recorded across the seismic network. Use of different characteristic functions, in the signal processing step of the method, allows to extract and locate the sources of short-duration impulsive signal transients associated with low-frequency earthquakes and of longer-duration energy transients during the tectonic tremor sequence. Frequency-dependent characteristic functions, based on higher-order statistics' properties of the seismic signals, are used for the detection and location of low-frequency earthquakes. This allows extracting a more complete (˜6.5 times more events) and time-resolved catalogue of low-frequency earthquakes than the routine catalogue provided by the Japan Meteorological Agency. As such, this catalogue allows resolving the space-time evolution of the low-frequency earthquakes activity in great detail, unravelling spatial and temporal clustering, modulation in response to tide, and different scales of space-time migration patterns. In the second part of the study, the detection and source location of longer-duration signal energy transients within the tectonic tremor sequence is performed using characteristic functions built from smoothed frequency-dependent energy envelopes. This leads to a catalogue of longer-duration energy sources during the tectonic tremor sequence, characterized by their durations and 3-D spatial likelihood maps of the energy-release source regions. The summary 3-D likelihood map for the 9-day tectonic tremor sequence, built from this catalogue, exhibits an along-strike spatial segmentation of the long-duration energy-release regions, matching the large-scale clustering features evidenced from the low-frequency earthquake's activity analysis. Further examination of the two catalogues showed that the extracted short-duration low-frequency earthquakes activity coincides in space, within about 10-15 km distance, with the longer-duration energy sources during the tectonic tremor sequence. This observation provides a potential constraint on the size of the longer-duration energy-radiating source region in relation with the clustering of low-frequency earthquakes activity during the analysed tectonic tremor sequence. We show that advanced statistical network-based methods offer new capabilities for automatic high-resolution detection, location and monitoring of different scale-components of tectonic tremor activity, enriching existing slow earthquakes catalogues. Systematic application of such methods to large continuous data sets will allow imaging the slow transient seismic energy-release activity at higher resolution, and therefore, provide new insights into the underlying multiscale mechanisms of slow earthquakes generation.

  14. Imaging different components of a tectonic tremor sequence in southwestern Japan using an automatic statistical detection and location method

    NASA Astrophysics Data System (ADS)

    Poiata, Natalia; Vilotte, Jean-Pierre; Bernard, Pascal; Satriano, Claudio; Obara, Kazushige

    2018-02-01

    In this study, we demonstrate the capability of an automatic network-based detection and location method to extract and analyse different components of tectonic tremor activity by analysing a 9-day energetic tectonic tremor sequence occurring at the down-dip extension of the subducting slab in southwestern Japan. The applied method exploits the coherency of multi-scale, frequency-selective characteristics of non-stationary signals recorded across the seismic network. Use of different characteristic functions, in the signal processing step of the method, allows to extract and locate the sources of short-duration impulsive signal transients associated with low-frequency earthquakes and of longer-duration energy transients during the tectonic tremor sequence. Frequency-dependent characteristic functions, based on higher-order statistics' properties of the seismic signals, are used for the detection and location of low-frequency earthquakes. This allows extracting a more complete (˜6.5 times more events) and time-resolved catalogue of low-frequency earthquakes than the routine catalogue provided by the Japan Meteorological Agency. As such, this catalogue allows resolving the space-time evolution of the low-frequency earthquakes activity in great detail, unravelling spatial and temporal clustering, modulation in response to tide, and different scales of space-time migration patterns. In the second part of the study, the detection and source location of longer-duration signal energy transients within the tectonic tremor sequence is performed using characteristic functions built from smoothed frequency-dependent energy envelopes. This leads to a catalogue of longer-duration energy sources during the tectonic tremor sequence, characterized by their durations and 3-D spatial likelihood maps of the energy-release source regions. The summary 3-D likelihood map for the 9-day tectonic tremor sequence, built from this catalogue, exhibits an along-strike spatial segmentation of the long-duration energy-release regions, matching the large-scale clustering features evidenced from the low-frequency earthquake's activity analysis. Further examination of the two catalogues showed that the extracted short-duration low-frequency earthquakes activity coincides in space, within about 10-15 km distance, with the longer-duration energy sources during the tectonic tremor sequence. This observation provides a potential constraint on the size of the longer-duration energy-radiating source region in relation with the clustering of low-frequency earthquakes activity during the analysed tectonic tremor sequence. We show that advanced statistical network-based methods offer new capabilities for automatic high-resolution detection, location and monitoring of different scale-components of tectonic tremor activity, enriching existing slow earthquakes catalogues. Systematic application of such methods to large continuous data sets will allow imaging the slow transient seismic energy-release activity at higher resolution, and therefore, provide new insights into the underlying multi-scale mechanisms of slow earthquakes generation.

  15. Evaluation of reinforced concrete structures using the electromagnetic method

    NASA Astrophysics Data System (ADS)

    Chady, Tomasz; Frankowski, Paweł; Waszczuk, Paweł; Zieliński, Adam

    2018-04-01

    Reinforced concrete has been a universally dominant construction material for over a century, although structures made of this material are often exposed to many types of damage and deterioration due to different causes and external conditions. The most important problem is corrosion of the reinforcement. Currently, most of the inspection methods of rebar in concrete are of an indirect nature or they are partially destructive. Moreover, none of the well-known systems allow for direct and non-destructive evaluation of the rebar corrosion. The purpose of this paper is to present the new, direct and non-destructive method, which allows detection of cracks and corrosion of the reinforcement bars.

  16. Identification of Escherichia coli O157 by Using a Novel Colorimetric Detection Method with DNA Microarrays

    PubMed Central

    Swimley, Michelle S.; Taylor, Amber W.; Dawson, Erica D.

    2011-01-01

    Abstract Shiga toxin–producing Escherichia coli O157 is a leading cause of foodborne illness worldwide. To evaluate better methods to rapidly detect and genotype E. coli O157 strains, the present study evaluated the use of ampliPHOX, a novel colorimetric detection method based on photopolymerization, for pathogen identification with DNA microarrays. A low-density DNA oligonucleotide microarray was designed to target stx1 and stx2 genes encoding Shiga toxin production, the eae gene coding for adherence membrane protein, and the per gene encoding the O157-antigen perosamine synthetase. Results from the validation experiments demonstrated that the use of ampliPHOX allowed the accurate genotyping of the tested E. coli strains, and positive hybridization signals were observed for only probes targeting virulence genes present in the reference strains. Quantification showed that the average signal-to-noise ratio values ranged from 47.73 ± 7.12 to 76.71 ± 8.33, whereas average signal-to-noise ratio values below 2.5 were determined for probes where no polymer was formed due to lack of specific hybridization. Sensitivity tests demonstrated that the sensitivity threshold for E. coli O157 detection was 100–1000 CFU/mL. Thus, the use of DNA microarrays in combination with photopolymerization allowed the rapid and accurate genotyping of E. coli O157 strains. PMID:21288130

  17. Detection and Characterization of Streptococcus thermophilus Bacteriophages by Use of the Antireceptor Gene Sequence

    PubMed Central

    Binetti, Ana G.; Del Río, Beatriz; Martín, M. Cruz; Álvarez, Miguel A.

    2005-01-01

    In the dairy industry, the characterization of Streptococcus thermophilus phage types is very important for the selection and use of efficient starter cultures. The aim of this study was to develop a characterization system useful in phage control programs in dairy plants. A comparative study of phages of different origins was initially performed based on their morphology, DNA restriction profiles, DNA homology, structural proteins, packaging mechanisms, and lifestyles and on the presence of a highly conserved DNA fragment of the replication module. However, these traditional criteria were of limited industrial value, mainly because there appeared to be no correlation between these variables and host ranges. We therefore developed a PCR method to amplify VR2, a variable region of the antireceptor gene, which allowed rapid detection of S. thermophilus phages and classification of these phages. This method has a significant advantage over other grouping criteria since our results suggest that there is a correlation between typing profiles and host ranges. This association could be valuable for the dairy industry by allowing a rational starter rotation system to be established and by helping in the selection of more suitable starter culture resistance mechanisms. The method described here is also a useful tool for phage detection, since specific PCR amplification was possible when phage-contaminated milk was used as a template (detection limit, 105 PFU ml−1). PMID:16204526

  18. Detection of Inter-chromosomal Stable Aberrations by Multiple Fluorescence In Situ Hybridization (mFISH) and Spectral Karyotyping (SKY) in Irradiated Mice

    PubMed Central

    Pathak, Rupak; Koturbash, Igor; Hauer-Jensen, Martin

    2017-01-01

    Ionizing radiation (IR) induces numerous stable and unstable chromosomal aberrations. Unstable aberrations, where chromosome morphology is substantially compromised, can easily be identified by conventional chromosome staining techniques. However, detection of stable aberrations, which involve exchange or translocation of genetic materials without considerable modification in the chromosome morphology, requires sophisticated chromosome painting techniques that rely on in situ hybridization of fluorescently labeled DNA probes, a chromosome painting technique popularly known as fluorescence in situ hybridization (FISH). FISH probes can be specific for whole chromosome/s or precise sub-region on chromosome/s. The method not only allows visualization of stable aberrations, but it can also allow detection of the chromosome/s or specific DNA sequence/s involved in a particular aberration formation. A variety of chromosome painting techniques are available in cytogenetics; here two highly sensitive methods, multiple fluorescence in situ hybridization (mFISH) and spectral karyotyping (SKY), are discussed to identify inter-chromosomal stable aberrations that form in the bone marrow cells of mice after exposure to total body irradiation. Although both techniques rely on fluorescent labeled DNA probes, the method of detection and the process of image acquisition of the fluorescent signals are different. These two techniques have been used in various research areas, such as radiation biology, cancer cytogenetics, retrospective radiation biodosimetry, clinical cytogenetics, evolutionary cytogenetics, and comparative cytogenetics. PMID:28117817

  19. Application of immobilized synthetic anti-lipopolysaccharide peptides for the isolation and detection of bacteria.

    PubMed

    Sandetskaya, N; Engelmann, B; Brandenburg, K; Kuhlmeier, D

    2015-08-01

    The molecular detection of microorganisms in liquid samples generally requires their enrichment or isolation. The aim of our study was to evaluate the capture and pre-concentration of bacteria by immobilized particular cationic antimicrobial peptides, called synthetic anti-lipopolysaccharide peptides (SALP). For the proof-of-concept and screening of different SALP, the peptides were covalently immobilized on glass slides, and the binding of bacteria was confirmed by microscopic examination of the slides or their scanning, in case of fluorescent bacterial cells. The most efficient SALP was further tethered to magnetic beads. SALP beads were used for the magnetic capture of Escherichia coli in liquid samples. The efficiency of this strategy was evaluated using polymerase chain reaction (PCR). Covalently immobilized SALP were capable of capturing bacteria in liquid samples. However, PCR was hampered by the unspecific binding of DNA to the positively charged peptide. We developed a method for DNA recovery by the enzymatic digestion of the peptide, which allowed for a successful PCR, though the method had its own adverse impact on the detection and, thus, did not allow for the reliable quantitative analysis of the pathogen enrichment. Immobilized SALP can be used as capture molecules for bacteria in liquid samples and can be recommended for the design of the assays or decontamination of the fluids. For the accurate subsequent detection of bacteria, DNA-independent methods should be used.

  20. Fusion of Local Statistical Parameters for Buried Underwater Mine Detection in Sonar Imaging

    NASA Astrophysics Data System (ADS)

    Maussang, F.; Rombaut, M.; Chanussot, J.; Hétet, A.; Amate, M.

    2008-12-01

    Detection of buried underwater objects, and especially mines, is a current crucial strategic task. Images provided by sonar systems allowing to penetrate in the sea floor, such as the synthetic aperture sonars (SASs), are of great interest for the detection and classification of such objects. However, the signal-to-noise ratio is fairly low and advanced information processing is required for a correct and reliable detection of the echoes generated by the objects. The detection method proposed in this paper is based on a data-fusion architecture using the belief theory. The input data of this architecture are local statistical characteristics extracted from SAS data corresponding to the first-, second-, third-, and fourth-order statistical properties of the sonar images, respectively. The interest of these parameters is derived from a statistical model of the sonar data. Numerical criteria are also proposed to estimate the detection performances and to validate the method.

  1. Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy.

    PubMed

    Ramgopal, Sriram; Thome-Souza, Sigride; Jackson, Michele; Kadish, Navah Ester; Sánchez Fernández, Iván; Klehm, Jacquelyn; Bosl, William; Reinsberger, Claus; Schachter, Steven; Loddenkemper, Tobias

    2014-08-01

    Nearly one-third of patients with epilepsy continue to have seizures despite optimal medication management. Systems employed to detect seizures may have the potential to improve outcomes in these patients by allowing more tailored therapies and might, additionally, have a role in accident and SUDEP prevention. Automated seizure detection and prediction require algorithms which employ feature computation and subsequent classification. Over the last few decades, methods have been developed to detect seizures utilizing scalp and intracranial EEG, electrocardiography, accelerometry and motion sensors, electrodermal activity, and audio/video captures. To date, it is unclear which combination of detection technologies yields the best results, and approaches may ultimately need to be individualized. This review presents an overview of seizure detection and related prediction methods and discusses their potential uses in closed-loop warning systems in epilepsy. Copyright © 2014. Published by Elsevier Inc.

  2. Double Threshold Energy Detection Based Cooperative Spectrum Sensing for Cognitive Radio Networks with QoS Guarantee

    NASA Astrophysics Data System (ADS)

    Hu, Hang; Yu, Hong; Zhang, Yongzhi

    2013-03-01

    Cooperative spectrum sensing, which can greatly improve the ability of discovering the spectrum opportunities, is regarded as an enabling mechanism for cognitive radio (CR) networks. In this paper, we employ a double threshold detection method in energy detector to perform spectrum sensing, only the CR users with reliable sensing information are allowed to transmit one bit local decision to the fusion center. Simulation results will show that our proposed double threshold detection method could not only improve the sensing performance but also save the bandwidth of the reporting channel compared with the conventional detection method with one threshold. By weighting the sensing performance and the consumption of system resources in a utility function that is maximized with respect to the number of CR users, it has been shown that the optimal number of CR users is related to the price of these Quality-of-Service (QoS) requirements.

  3. Likelihood of Brine and CO 2 Leak Detection using Magnetotellurics and Electrical Resistivity Tomography Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X.; Buscheck, T. A.; Mansoor, K.

    The US DOE National Risk Assessment Partnership (NRAP), funded through the Office of Fossil Energy and NETL, is developing methods to evaluate the effectiveness of monitoring techniques to detect brine and CO 2 leakage from legacy wells into underground sources of drinking water (USDW) overlying a CO 2 storage reservoir. As part of the NRAP Strategic Monitoring group, we have generated 140 simulations of aquifer impact data based on the Kimberlina site in California’s southern San Joaquin Basin, Kimberlina Rev. 1.1. CO 2 buoyancy allows some of the stored CO 2 to reach shallower permeable zones and is detectable withmore » surface geophysical sensors. We are using this simulated data set to evaluate effectiveness of electrical resistivity tomography (ERT) and magnetotellurics (MT) for leak detection. The evaluation of additional monitoring methods such as pressure, seismic and gravity is underway through a multi-lab collaboration.« less

  4. Using Informatics-, Bioinformatics- and Genomics-Based Approaches for the Molecular Surveillance and Detection of Biothreat Agents

    NASA Astrophysics Data System (ADS)

    Seto, Donald

    The convergence and wealth of informatics, bioinformatics and genomics methods and associated resources allow a comprehensive and rapid approach for the surveillance and detection of bacterial and viral organisms. Coupled with the continuing race for the fastest, most cost-efficient and highest-quality DNA sequencing technology, that is, "next generation sequencing", the detection of biological threat agents by `cheaper and faster' means is possible. With the application of improved bioinformatic tools for the understanding of these genomes and for parsing unique pathogen genome signatures, along with `state-of-the-art' informatics which include faster computational methods, equipment and databases, it is feasible to apply new algorithms to biothreat agent detection. Two such methods are high-throughput DNA sequencing-based and resequencing microarray-based identification. These are illustrated and validated by two examples involving human adenoviruses, both from real-world test beds.

  5. Modeling panel detection frequencies by queuing system theory: an application in gas chromatography olfactometry.

    PubMed

    Bult, Johannes H F; van Putten, Bram; Schifferstein, Hendrik N J; Roozen, Jacques P; Voragen, Alphons G J; Kroeze, Jan H A

    2004-10-01

    In continuous vigilance tasks, the number of coincident panel responses to stimuli provides an index of stimulus detectability. To determine whether this number is due to chance, panel noise levels have been approximated by the maximum coincidence level obtained in stimulus-free conditions. This study proposes an alternative method by which to assess noise levels, derived from queuing system theory (QST). Instead of critical coincidence levels, QST modeling estimates the duration of coinciding responses in the absence of stimuli. The proposed method has the advantage over previous approaches that it yields more reliable noise estimates and allows for statistical testing. The method was applied in an olfactory detection experiment using 16 panelists in stimulus-present and stimulus-free conditions. We propose that QST may be used as an alternative to signal detection theory for analyzing data from continuous vigilance tasks.

  6. L-RCA (ligation-rolling circle amplification): a general method for genotyping of single nucleotide polymorphisms (SNPs)

    PubMed Central

    Qi, Xiaoquan; Bakht, Saleha; Devos, Katrien M.; Gale, Mike D.; Osbourn, Anne

    2001-01-01

    A flexible, non-gel-based single nucleotide polymorphism (SNP) detection method is described. The method adopts thermostable ligation for allele discrimination and rolling circle amplification (RCA) for signal enhancement. Clear allelic discrimination was achieved after staining of the final reaction mixtures with Cybr-Gold and visualisation by UV illumination. The use of a compatible buffer system for all enzymes allows the reaction to be initiated and detected in the same tube or microplate well, so that the experiment can be scaled up easily for high-throughput detection. Only a small amount of DNA (i.e. 50 ng) is required per assay, and use of carefully designed short padlock probes coupled with generic primers and probes make the SNP detection cost effective. Biallelic assay by hybridisation of the RCA products with fluorescence dye-labelled probes is demonstrated, indicating that ligation-RCA (L-RCA) has potential for multiplexed assays. PMID:11713336

  7. Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction.

    PubMed

    Guo, Qiuping; Yang, Xiaohai; Wang, Kemin; Tan, Weihong; Li, Wei; Tang, Hongxing; Li, Huimin

    2009-02-01

    Here we have developed a sensitive DNA amplified detection method based on isothermal strand-displacement polymerization reaction. This method takes advantage of both the hybridization property of DNA and the strand-displacement property of polymerase. Importantly, we demonstrate that our method produces a circular polymerization reaction activated by the target, which essentially allows it to self-detect. Functionally, this DNA system consists of a hairpin fluorescence probe, a short primer and polymerase. Upon recognition and hybridization with the target ssDNA, the stem of the hairpin probe is opened, after which the opened probe anneals with the primer and triggers the polymerization reaction. During this process of the polymerization reaction, a complementary DNA is synthesized and the hybridized target is displaced. Finally, the displaced target recognizes and hybridizes with another probe, triggering the next round of polymerization reaction, reaching a target detection limit of 6.4 x 10(-15) M.

  8. Flag-based detection of weak gas signatures in long-wave infrared hyperspectral image sequences

    NASA Astrophysics Data System (ADS)

    Marrinan, Timothy; Beveridge, J. Ross; Draper, Bruce; Kirby, Michael; Peterson, Chris

    2016-05-01

    We present a flag manifold based method for detecting chemical plumes in long-wave infrared hyperspectral movies. The method encodes temporal and spatial information related to a hyperspectral pixel into a flag, or nested sequence of linear subspaces. The technique used to create the flags pushes information about the background clutter, ambient conditions, and potential chemical agents into the leading elements of the flags. Exploiting this temporal information allows for a detection algorithm that is sensitive to the presence of weak signals. This method is compared to existing techniques qualitatively on real data and quantitatively on synthetic data to show that the flag-based algorithm consistently performs better on data when the SINRdB is low, and beats the ACE and MF algorithms in probability of detection for low probabilities of false alarm even when the SINRdB is high.

  9. High effective algorithm of the detection and identification of substance using the noisy reflected THz pulse

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Trofimov, Vladislav V.; Tikhomirov, Vasily V.

    2015-08-01

    Principal limitations of the standard THz-TDS method for the detection and identification are demonstrated under real conditions (at long distance of about 3.5 m and at a high relative humidity more than 50%) using neutral substances thick paper bag, paper napkins and chocolate. We show also that the THz-TDS method detects spectral features of dangerous substances even if the THz signals were measured in laboratory conditions (at distance 30-40 cm from the receiver and at a low relative humidity less than 2%); silicon-based semiconductors were used as the samples. However, the integral correlation criteria, based on SDA method, allows us to detect the absence of dangerous substances in the neutral substances. The discussed algorithm shows high probability of the substance identification and a reliability of realization in practice, especially for security applications and non-destructive testing.

  10. Comparison of direct 13C and indirect 1H-[13C] MR detection methods for the study of dynamic metabolic turnover in the human brain

    NASA Astrophysics Data System (ADS)

    Chen, Hao; De Feyter, Henk M.; Brown, Peter B.; Rothman, Douglas L.; Cai, Shuhui; de Graaf, Robin A.

    2017-10-01

    A wide range of direct 13C and indirect 1H-[13C] MR detection methods exist to probe dynamic metabolic pathways in the human brain. Choosing an optimal detection method is difficult as sequence-specific features regarding spatial localization, broadband decoupling, spectral resolution, power requirements and sensitivity complicate a straightforward comparison. Here we combine density matrix simulations with experimentally determined values for intrinsic 1H and 13C sensitivity, T1 and T2 relaxation and transmit efficiency to allow selection of an optimal 13C MR detection method for a given application and magnetic field. The indirect proton-observed, carbon-edited (POCE) detection method provides the highest accuracy at reasonable RF power deposition both at 4 T and 7 T. The various polarization transfer methods all have comparable performances, but may become infeasible at 7 T due to the high RF power deposition. 2D MR methods have limited value for the metabolites considered (primarily glutamate, glutamine and γ-amino butyric acid (GABA)), but may prove valuable when additional information can be extracted, such as isotopomers or lipid composition. While providing the lowest accuracy, the detection of non-protonated carbons is the simplest to implement with the lowest RF power deposition. The magnetic field homogeneity is one of the most important parameters affecting the detection accuracy for all metabolites and all acquisition methods.

  11. Ultrasensitive detection of lysozyme in droplet-based microfluidic devices.

    PubMed

    Giuffrida, Maria Chiara; Cigliana, Giovanni; Spoto, Giuseppe

    2018-05-01

    Lysozyme (LYS) is a bacteriolytic enzyme, available in secretions such as saliva, tears and human milk. LYS is an important defence molecule of the innate immune system, and its overexpression can be a consequence of diseases such as leukemia, kidney disease and sarcoidosis. This paper reports on a digital microfluidic-based approach that combines the gold nanoparticle-enhanced chemiluminescence with aptamer interaction to detect human lysozyme into droplets 20 nanoliters in volume. The described method allows identifying LYS with a 44.6 femtomolar limit of detection, using sample volume as low as 1μL and detection time in the range of 10min. We used luminol to generate the chemiluminescence and demonstrated that the compartmentalization of LYS in droplets also comprising gold nanoparticles provided enhanced luminescence. We functionalized the gold nanoparticles with a thiolated aptamer to achieve the required selectivity that allowed us to detect LYS in human serum. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Cryptic intragenic deletion of the SHOX gene in a family with Léri-Weill dyschondrosteosis detected by Multiplex Ligation-Dependent Probe Amplification (MLPA).

    PubMed

    Funari, Mariana F A; Jorge, Alexander A L; Pinto, Emilia M; Arnhold, Ivo J P; Mendonca, Berenice B; Nishi, Mirian Y

    2008-11-01

    LWD is associated to SHOX haploinsufficiency, in most cases, due to gene deletion. Generally FISH and microsatellite analysis are used to identify SHOX deletion. MLPA is a new method of detecting gene copy variation, allowing simultaneous analysis of several regions. Here we describe the presence of a SHOX intragenic deletion in a family with LWD, analyzed through different methodologies. Genomic DNA of 11 subjects from one family were studied by microsatellite analysis, direct sequencing and MLPA. FISH was performed in two affected individuals. Microsatellite analysis showed that all affected members shared the same haplotype suggesting the involvement of SHOX. MLPA detected an intragenic deletion involving exons IV-VIa, which was not detected by FISH and microsatellite analysis. In conclusion, the MLPA technique was proved to be the best solution on detecting this small deletion, it has the advantage of being less laborious also allowing the analysis of several regions simultaneously.

  13. Detection and Characterization of Viral Species/Subspecies Using Isothermal Recombinase Polymerase Amplification (RPA) Assays.

    PubMed

    Glais, Laurent; Jacquot, Emmanuel

    2015-01-01

    Numerous molecular-based detection protocols include an amplification step of the targeted nucleic acids. This step is important to reach the expected sensitive detection of pathogens in diagnostic procedures. Amplifications of nucleic acid sequences are generally performed, in the presence of appropriate primers, using thermocyclers. However, the time requested to amplify molecular targets and the cost of the thermocycler machines could impair the use of these methods in routine diagnostics. Recombinase polymerase amplification (RPA) technique allows rapid (short-term incubation of sample and primers in an enzymatic mixture) and simple (isothermal) amplification of molecular targets. RPA protocol requires only basic molecular steps such as extraction procedures and agarose gel electrophoresis. Thus, RPA can be considered as an interesting alternative to standard molecular-based diagnostic tools. In this paper, the complete procedures to set up an RPA assay, applied to detection of RNA (Potato virus Y, Potyvirus) and DNA (Wheat dwarf virus, Mastrevirus) viruses, are described. The proposed procedure allows developing species- or subspecies-specific detection assay.

  14. Non destructive testing of works of art by terahertz analysis

    NASA Astrophysics Data System (ADS)

    Bodnar, Jean-Luc; Metayer, Jean-Jacques; Mouhoubi, Kamel; Detalle, Vincent

    2013-11-01

    Improvements in technologies and the growing security needs in airport terminals lead to the development of non destructive testing devices using terahertz waves. Indeed, these waves have the advantage of being, on one hand, relatively penetrating. They also have the asset of not being ionizing. It is thus potentially an interesting contribution in the non destructive testing field. With the help of the VISIOM Company, the possibilities of this new industrial analysis method in assisting the restoration of works of art were then approached. The results obtained within this framework are presented here and compared with those obtained by infrared thermography. The results obtained show first that the THZ method, like the stimulated infrared thermography allows the detection of delamination located in murals paintings or in marquetries. They show then that the THZ method seems to allow detecting defects located relatively deeply (10 mm) and defects potentially concealed by other defects. It is an advantage compared to the stimulated infra-red thermography which does not make it possible to obtain these results. Furthermore, they show that the method does not seem sensitive to the various pigments constituting the pictorial layer, to the presence of a layer of "Japan paper" and to the presence of a layer of whitewash. It is not the case of the stimulated infrared thermography. It is another advantage of the THZ method. Finally, they show that the THZ method is limited in the detection of low-size defects. It is a disadvantage compared to the stimulated infrared thermography.

  15. Method for analyzing nucleic acids by means of a substrate having a microchannel structure containing immobilized nucleic acid probes

    DOEpatents

    Ramsey, J. Michael; Foote, Robert S.

    2003-12-09

    A method and apparatus for analyzing nucleic acids includes immobilizing nucleic probes at specific sites within a microchannel structure and moving target nucleic acids into proximity to the probes in order to allow hybridization and fluorescence detection of specific target sequences.

  16. Method for analyzing nucleic acids by means of a substrate having a microchannel structure containing immobilized nucleic acid probes

    DOEpatents

    Ramsey, J. Michael; Foote, Robert S.

    2002-01-01

    A method and apparatus for analyzing nucleic acids includes immobilizing nucleic probes at specific sites within a microchannel structure and moving target nucleic acids into proximity to the probes in order to allow hybridization and fluorescence detection of specific target sequences.

  17. Synthesis of amino-rich silica coated magnetic nanoparticles and their application in the capture of DNA for PCR

    USDA-ARS?s Scientific Manuscript database

    Magnetic separation has great advantages over traditional bioseparation methods and has become popular in the development of methods for the detection of bacterial pathogens, viruses, and transgenic crops. Functionalization of magnetic nanoparticles is a key factor in allowing efficient capture of t...

  18. Comet Assay in Cancer Chemoprevention.

    PubMed

    Santoro, Raffaela; Ferraiuolo, Maria; Morgano, Gian Paolo; Muti, Paola; Strano, Sabrina

    2016-01-01

    The comet assay can be useful in monitoring DNA damage in single cells caused by exposure to genotoxic agents, such as those causing air, water, and soil pollution (e.g., pesticides, dioxins, electromagnetic fields) and chemo- and radiotherapy in cancer patients, or in the assessment of genoprotective effects of chemopreventive molecules. Therefore, it has particular importance in the fields of pharmacology and toxicology, and in both environmental and human biomonitoring. It allows the detection of single strand breaks as well as double-strand breaks and can be used in both normal and cancer cells. Here we describe the alkali method for comet assay, which allows to detect both single- and double-strand DNA breaks.

  19. Building and degradation of secondary cell walls: are there common patterns of lamellar assembly of cellulose microfibrils and cell wall delamination?

    PubMed

    De Micco, Veronica; Ruel, Katia; Joseleau, Jean-Paul; Aronne, Giovanna

    2010-08-01

    During cell wall formation and degradation, it is possible to detect cellulose microfibrils assembled into thicker and thinner lamellar structures, respectively, following inverse parallel patterns. The aim of this study was to analyse such patterns of microfibril aggregation and cell wall delamination. The thickness of microfibrils and lamellae was measured on digital images of both growing and degrading cell walls viewed by means of transmission electron microscopy. To objectively detect, measure and classify microfibrils and lamellae into thickness classes, a method based on the application of computerized image analysis combined with graphical and statistical methods was developed. The method allowed common classes of microfibrils and lamellae in cell walls to be identified from different origins. During both the formation and degradation of cell walls, a preferential formation of structures with specific thickness was evidenced. The results obtained with the developed method allowed objective analysis of patterns of microfibril aggregation and evidenced a trend of doubling/halving lamellar structures, during cell wall formation/degradation in materials from different origin and which have undergone different treatments.

  20. In-situ monitoring of H2O2 degradation by live cells using voltammetric detection in a lab-on-valve system.

    PubMed

    Lähdesmäki, Ilkka; Park, Young K; Carroll, Andrea D; Decuir, Michael; Ruzicka, Jaromir

    2007-08-01

    This paper describes a method for monitoring the degradation of hydrogen peroxide by cells immobilized on a beaded support. The detection is based on the voltammetric reduction of hydrogen peroxide on a mercury film working electrode, whilst combining the concept of sequential injection (SI) with the lab-on-valve (LOV) manifold allows the measurements to be carried out in real time and automatically, in well-defined conditions. The method is shown to be capable of simultaneously monitoring hydrogen peroxide in the 10-1000 microM range and oxygen in the 160-616 microM range. A correction algorithm has been used to ensure reliable H2O2 results in the presence of varying oxygen levels. The method has been successfully applied to monitoring the degradation of H2O2 by wild-type cells and by catalase-overexpressing mouse embryonic fibroblasts. Since the technique allows the monitoring of the initial response rate, it provides data not accessible by current methods that are end-point-based measurements.

  1. Rapid detection of microbes in the dialysis solution by the microcolony fluorescence staining method (Millflex quantum).

    PubMed

    Osono, Eiichi; Kobayashi, Eiko; Inoue, Yuki; Honda, Kazumi; Kumagai, Takuya; Negishi, Hideki; Okamatsu, Kentaro; Ichimura, Kyoko; Kamano, Chisako; Suzuki, Fumi; Norose, Yoshihiko; Takahashi, Megumi; Takaku, Shun; Fujioka, Noriaki; Hayama, Naoaki; Takizawa, Hideaki

    2014-01-01

    A chemiluminescence system, Milliflex Quantum (MFQ), to detect microcolonies, has been used in the pharmaceutical field. In this study, we investigated aquatic bacteria in hemodialysis solutions sampled from bioburden areas in 4 dialysis faculties. Using MFQ, microcolonies could be detected after a short incubation period. The colony count detected with MFQ after a 48-hour incubation was 92% ± 39%, compared to that after the conventionally used 7-14-day incubation period; in addition, the results also showed a linear correlation. Moreover, MFQ-based analysis allowed the visualization of damaged cells and of the high density due to the excessive amount of bacteria. These results suggested that MFQ had adequate sensitivity to detect microbacteria in dialysis solutions, and it was useful for validating the conditions of conventional culture methods.

  2. Improved Conflict Detection for Reducing Operational Errors in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Erzberger, Hainz

    2003-01-01

    An operational error is an incident in which an air traffic controller allows the separation between two aircraft to fall below the minimum separation standard. The rates of such errors in the US have increased significantly over the past few years. This paper proposes new detection methods that can help correct this trend by improving on the performance of Conflict Alert, the existing software in the Host Computer System that is intended to detect and warn controllers of imminent conflicts. In addition to the usual trajectory based on the flight plan, a "dead-reckoning" trajectory (current velocity projection) is also generated for each aircraft and checked for conflicts. Filters for reducing common types of false alerts were implemented. The new detection methods were tested in three different ways. First, a simple flightpath command language was developed t o generate precisely controlled encounters for the purpose of testing the detection software. Second, written reports and tracking data were obtained for actual operational errors that occurred in the field, and these were "replayed" to test the new detection algorithms. Finally, the detection methods were used to shadow live traffic, and performance was analysed, particularly with regard to the false-alert rate. The results indicate that the new detection methods can provide timely warnings of imminent conflicts more consistently than Conflict Alert.

  3. Robust Statistical Approaches for RSS-Based Floor Detection in Indoor Localization.

    PubMed

    Razavi, Alireza; Valkama, Mikko; Lohan, Elena Simona

    2016-05-31

    Floor detection for indoor 3D localization of mobile devices is currently an important challenge in the wireless world. Many approaches currently exist, but usually the robustness of such approaches is not addressed or investigated. The goal of this paper is to show how to robustify the floor estimation when probabilistic approaches with a low number of parameters are employed. Indeed, such an approach would allow a building-independent estimation and a lower computing power at the mobile side. Four robustified algorithms are to be presented: a robust weighted centroid localization method, a robust linear trilateration method, a robust nonlinear trilateration method, and a robust deconvolution method. The proposed approaches use the received signal strengths (RSS) measured by the Mobile Station (MS) from various heard WiFi access points (APs) and provide an estimate of the vertical position of the MS, which can be used for floor detection. We will show that robustification can indeed increase the performance of the RSS-based floor detection algorithms.

  4. Ratiometric spectral imaging for fast tumor detection and chemotherapy monitoring in vivo

    PubMed Central

    Hwang, Jae Youn; Gross, Zeev; Gray, Harry B.; Medina-Kauwe, Lali K.; Farkas, Daniel L.

    2011-01-01

    We report a novel in vivo spectral imaging approach to cancer detection and chemotherapy assessment. We describe and characterize a ratiometric spectral imaging and analysis method and evaluate its performance for tumor detection and delineation by quantitatively monitoring the specific accumulation of targeted gallium corrole (HerGa) into HER2-positive (HER2 +) breast tumors. HerGa temporal accumulation in nude mice bearing HER2 + breast tumors was monitored comparatively by a. this new ratiometric imaging and analysis method; b. established (reflectance and fluorescence) spectral imaging; c. more commonly used fluorescence intensity imaging. We also tested the feasibility of HerGa imaging in vivo using the ratiometric spectral imaging method for tumor detection and delineation. Our results show that the new method not only provides better quantitative information than typical spectral imaging, but also better specificity than standard fluorescence intensity imaging, thus allowing enhanced in vivo outlining of tumors and dynamic, quantitative monitoring of targeted chemotherapy agent accumulation into them. PMID:21721808

  5. Direct liquid chromatography method for the simultaneous quantification of hydroxytyrosol and tyrosol in red wines.

    PubMed

    Piñeiro, Zulema; Cantos-Villar, Emma; Palma, Miguel; Puertas, Belen

    2011-11-09

    A validated HPLC method with fluorescence detection for the simultaneous quantification of hydroxytyrosol and tyrosol in red wines is described. Detection conditions for both compounds were optimized (excitation at 279 and 278 and emission at 631 and 598 nm for hydroxytyrosol and tyrosol, respectively). The validation of the analytical method was based on selectivity, linearity, robustness, detection and quantification limits, repeatability, and recovery. The detection and quantification limits in red wines were set at 0.023 and 0.076 mg L(-1) for hydroxytyrosol and at 0.007 and 0.024 mg L(-1) for tyrosol determination, respectively. Precision values, both within-day and between-day (n = 5), remained below 3% for both compounds. In addition, a fractional factorial experimental design was developed to analyze the influence of six different conditions on analysis. The final optimized HPLC-fluorescence method allowed the analysis of 30 nonpretreated Spanish red wines to evaluate their hydroxytyrosol and tyrosol contents.

  6. A Photoluminescence-Based Field Method for Detection of Traces of Explosives

    PubMed Central

    Menzel, E. Roland; Menzel, Laird W.; Schwierking, Jake R.

    2004-01-01

    We report a photoluminescence-based field method for detecting traces of explosives. In its standard version, the method utilizes a commercially available color spot test kit for treating explosive traces on filter paper after swabbing. The colored products are fluorescent under illumination with a laser that operates on three C-size flashlight batteries and delivers light at 532 nm. In the fluorescence detection mode, by visual inspection, the typical sensitivity gain is a factor of 100. The method is applicable to a wide variety of explosives. In its time-resolved version, intended for in situ work, explosives are tagged with europium complexes. Instrumentation-wise, the time-resolved detection, again visual, can be accomplished in facile fashion. The europium luminescence excitation utilizes a laser operating at 355 nm. We demonstrate the feasibility of CdSe quantum dot sensitization of europium luminescence for time-resolved purposes. This would allow the use of the above 532 nm laser. PMID:15349512

  7. Genetics-based methods for detection of Salmonella spp. in foods.

    PubMed

    Mozola, Mark A

    2006-01-01

    Genetic methods are now at the forefront of foodborne pathogen testing. The sensitivity, specificity, and inclusivity advantages offered by deoxyribonucleic acid (DNA) probe technology have driven an intense effort in methods development over the past 20 years. DNA probe-based methods for Salmonella spp. and other pathogens have progressed from time-consuming procedures involving the use of radioisotopes to simple, high throughput, automated assays. The analytical sensitivity of nucleic acid amplification technology has facilitated a reduction in analysis time by allowing enriched samples to be tested for previously undetectable quantities of analyte. This article will trace the evolution of the development of genetic methods for detection of Salmonella in foods, review the basic assay formats and their advantages and limitations, and discuss method performance characteristics and considerations for selection of methods.

  8. Non-contact biomedical photoacoustic and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Rousseau, Guy; Gauthier, Bruno; Blouin, Alain; Monchalin, Jean-Pierre

    2012-06-01

    The detection of ultrasound in photoacoustic tomography (PAT) usually relies on ultrasonic transducers in contact with the biological tissue through a coupling medium. This is a major drawback for important potential applications such as surgery. Here we report the use of a remote optical method, derived from industrial laser-ultrasonics, to detect ultrasound in tissues. This approach enables non-contact PAT (NCPAT) without exceeding laser exposure safety limits. The sensitivity of the method is based on the use of suitably shaped detection laser pulses and a confocal Fabry-Perot interferometer in differential configuration. Reliable image reconstruction is obtained by measuring remotely the surface profile of the tissue with an optical coherence tomography system. The proposed method also allows non-contact ultrasound imaging (US) by applying a second reconstruction algorithm to the data acquired for NCPAT. Endogenous and exogenous inclusions exhibiting optical and acoustic contrasts were detected ex vivo in chicken breast and calf brain specimens. Inclusions down to 0.3 mm in size were detected at depths exceeding 1 cm. The method could expand the scope of photoacoustic and US to in-vivo biomedical applications where contact is impractical.

  9. Comparative evaluation of methods for the detection of 2-alkylcyclobutanones as indicators for irradiation treatment of cashew nuts and nutmeg.

    PubMed

    Breidbach, Andreas; Ulberth, Franz

    2016-06-15

    Irradiation of food products and ingredients must be indicated by proper labeling. This study evaluated the appropriateness of the European Standard EN 1785:2003 for the detection of 2-alkylcyclobutanones, which are radiolysis products of fatty acids, in cashew nuts and nutmeg and confirmed its suitability to detect irradiation of cashew nut samples at average absorbed doses of 1 kGy and above. An alternative method was developed, which is based on matrix solid phase dispersion and subsequent separation and detection of oxime derivatives of 2-alkylcyclobutanones by high performance-high resolution mass spectrometry. It is more rapid, less resource consuming, and more sensitive than EN 1785:2003. This method allowed detection of 2-alkylcyclobutanones in cashew nuts irradiated at 100 Gray and in nutmeg irradiated at 400 Gray. None of the 26 cashew nut and 14 nutmeg samples purchased in different EU Member States contained traces of 2-alkylcyclobutanones. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Comparison of floods non-stationarity detection methods: an Austrian case study

    NASA Astrophysics Data System (ADS)

    Salinas, Jose Luis; Viglione, Alberto; Blöschl, Günter

    2016-04-01

    Non-stationarities in flood regimes have a huge impact in any mid and long term flood management strategy. In particular the estimation of design floods is very sensitive to any kind of flood non-stationarity, as they should be linked to a return period, concept that can be ill defined in a non-stationary context. Therefore it is crucial when analyzing existent flood time series to detect and, where possible, attribute flood non-stationarities to changing hydroclimatic and land-use processes. This works presents the preliminary results of applying different non-stationarity detection methods on annual peak discharges time series over more than 400 gauging stations in Austria. The kind of non-stationarities analyzed include trends (linear and non-linear), breakpoints, clustering beyond stochastic randomness, and detection of flood rich/flood poor periods. Austria presents a large variety of landscapes, elevations and climates that allow us to interpret the spatial patterns obtained with the non-stationarity detection methods in terms of the dominant flood generation mechanisms.

  11. Site survey method and apparatus

    DOEpatents

    Oldham, James G.; Spencer, Charles R.; Begley, Carl L.; Meyer, H. Robert

    1991-06-18

    The disclosure of the invention is directed to a site survey ground vehicle based apparatus and method for automatically detecting source materials, such as radioactivity, marking the location of the source materials, such as with paint, and mapping the location of the source materials on a site. The apparatus of the invention is also useful for collecting and analyzing samples. The apparatus includes a ground vehicle, detectors mounted at the front of the ground vehicle, and individual detector supports which follow somewhat irregular terrain to allow consistent and accurate detection, and autolocation equipment.

  12. Site survey method and apparatus

    DOEpatents

    Oldham, J.G.; Spencer, C.R.; Begley, C.L.; Meyer, H.R.

    1991-06-18

    The disclosure of the invention is directed to a site survey ground vehicle based apparatus and method for automatically detecting source materials, such as radioactivity, marking the location of the source materials, such as with paint, and mapping the location of the source materials on a site. The apparatus of the invention is also useful for collecting and analyzing samples. The apparatus includes a ground vehicle, detectors mounted at the front of the ground vehicle, and individual detector supports which follow somewhat irregular terrain to allow consistent and accurate detection, and autolocation equipment. 19 figures.

  13. High-speed event detector for embedded nanopore bio-systems.

    PubMed

    Huang, Yiyun; Magierowski, Sebastian; Ghafar-Zadeh, Ebrahim; Wang, Chengjie

    2015-08-01

    Biological measurements of microscopic phenomena often deal with discrete-event signals. The ability to automatically carry out such measurements at high-speed in a miniature embedded system is desirable but compromised by high-frequency noise along with practical constraints on filter quality and sampler resolution. This paper presents a real-time event-detection method in the context of nanopore sensing that helps to mitigate these drawbacks and allows accurate signal processing in an embedded system. Simulations show at least a 10× improvement over existing on-line detection methods.

  14. Curvature methods of damage detection using digital image correlation

    NASA Astrophysics Data System (ADS)

    Helfrick, Mark N.; Niezrecki, Christopher; Avitabile, Peter

    2009-03-01

    Analytical models have shown that local damage in a structure can be detected by studying changes in the curvature of the structure's displaced shape while under an applied load. In order for damage to be detected, located, and quantified using curvature methods, a spatially dense set of measurement points is required on the structure of interest and the change in curvature must be measurable. Experimental testing done to validate the theory is often plagued by sparse data sets and experimental noise. Furthermore, the type of load, the location and severity of the damage, and the mechanical properties (material and geometry) of the structure have a significant effect on how much the curvature will change. Within this paper, three-dimensional (3D) Digital Image Correlation (DIC) as one possible method for detecting damage through curvature methods is investigated. 3D DIC is a non-contacting full-field measurement technique which uses a stereo pair of digital cameras to capture surface shape. This approach allows for an extremely dense data set across the entire visible surface of an object. A test is performed to validate the approach on an aluminum cantilever beam. A dynamic load is applied to the beam which allows for measurements to be made of the beam's response at each of its first three resonant frequencies, corresponding to the first three bending modes of the structure. DIC measurements are used with damage detection algorithms to predict damage location with varying levels of damage inflicted in the form of a crack with a prescribed depth. The testing demonstrated that this technique will likely only work with structures where a large displaced shape is easily achieved and in cases where the damage is relatively severe. Practical applications and limitations of the technique are discussed.

  15. Detection, Characterization, and Typing of Shiga Toxin-Producing Escherichia coli.

    PubMed

    Parsons, Brendon D; Zelyas, Nathan; Berenger, Byron M; Chui, Linda

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) are responsible for gastrointestinal diseases reported in numerous outbreaks around the world. Given the public health importance of STEC, effective detection, characterization and typing is critical to any medical laboratory system. While non-O157 serotypes account for the majority of STEC infections, frontline microbiology laboratories may only screen for STEC using O157-specific agar-based methods. As a result, non-O157 STEC infections are significantly under-reported. This review discusses recent advances on the detection, characterization and typing of STEC with emphasis on work performed at the Alberta Provincial Laboratory for Public Health (ProvLab). Candidates for the detection of all STEC serotypes include chromogenic agars, enzyme immunoassays (EIA) and quantitative real time polymerase chain reaction (qPCR). Culture methods allow further characterization of isolates, whereas qPCR provides the greatest sensitivity and specificity, followed by EIA. The virulence gene profiles using PCR arrays and stx gene subtypes can subsequently be determined. Different non-O157 serotypes exhibit markedly different virulence gene profiles and a greater prevalence of stx1 than stx2 subtypes compared to O157:H7 isolates. Finally, recent innovations in whole genome sequencing (WGS) have allowed it to emerge as a candidate for the characterization and typing of STEC in diagnostic surveillance isolates. Methods of whole genome analysis such as single nucleotide polymorphisms and k-mer analysis are concordant with epidemiological data and standard typing methods, such as pulsed-field gel electrophoresis and multiple-locus variable number tandem repeat analysis while offering additional strain differentiation. Together these findings highlight improved strategies for STEC detection using currently available systems and the development of novel approaches for future surveillance.

  16. Detection, Characterization, and Typing of Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Parsons, Brendon D.; Zelyas, Nathan; Berenger, Byron M.; Chui, Linda

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) are responsible for gastrointestinal diseases reported in numerous outbreaks around the world. Given the public health importance of STEC, effective detection, characterization and typing is critical to any medical laboratory system. While non-O157 serotypes account for the majority of STEC infections, frontline microbiology laboratories may only screen for STEC using O157-specific agar-based methods. As a result, non-O157 STEC infections are significantly under-reported. This review discusses recent advances on the detection, characterization and typing of STEC with emphasis on work performed at the Alberta Provincial Laboratory for Public Health (ProvLab). Candidates for the detection of all STEC serotypes include chromogenic agars, enzyme immunoassays (EIA) and quantitative real time polymerase chain reaction (qPCR). Culture methods allow further characterization of isolates, whereas qPCR provides the greatest sensitivity and specificity, followed by EIA. The virulence gene profiles using PCR arrays and stx gene subtypes can subsequently be determined. Different non-O157 serotypes exhibit markedly different virulence gene profiles and a greater prevalence of stx1 than stx2 subtypes compared to O157:H7 isolates. Finally, recent innovations in whole genome sequencing (WGS) have allowed it to emerge as a candidate for the characterization and typing of STEC in diagnostic surveillance isolates. Methods of whole genome analysis such as single nucleotide polymorphisms and k-mer analysis are concordant with epidemiological data and standard typing methods, such as pulsed-field gel electrophoresis and multiple-locus variable number tandem repeat analysis while offering additional strain differentiation. Together these findings highlight improved strategies for STEC detection using currently available systems and the development of novel approaches for future surveillance. PMID:27148176

  17. Optimization of scat detection methods for a social ungulate, the wild pig, and experimental evaluation of factors affecting detection of scat

    USGS Publications Warehouse

    Keiter, David A.; Cunningham, Fred L.; Rhodes, Olin E.; Irwin, Brian J.; Beasley, James

    2016-01-01

    Collection of scat samples is common in wildlife research, particularly for genetic capture-mark-recapture applications. Due to high degradation rates of genetic material in scat, large numbers of samples must be collected to generate robust estimates. Optimization of sampling approaches to account for taxa-specific patterns of scat deposition is, therefore, necessary to ensure sufficient sample collection. While scat collection methods have been widely studied in carnivores, research to maximize scat collection and noninvasive sampling efficiency for social ungulates is lacking. Further, environmental factors or scat morphology may influence detection of scat by observers. We contrasted performance of novel radial search protocols with existing adaptive cluster sampling protocols to quantify differences in observed amounts of wild pig (Sus scrofa) scat. We also evaluated the effects of environmental (percentage of vegetative ground cover and occurrence of rain immediately prior to sampling) and scat characteristics (fecal pellet size and number) on the detectability of scat by observers. We found that 15- and 20-m radial search protocols resulted in greater numbers of scats encountered than the previously used adaptive cluster sampling approach across habitat types, and that fecal pellet size, number of fecal pellets, percent vegetative ground cover, and recent rain events were significant predictors of scat detection. Our results suggest that use of a fixed-width radial search protocol may increase the number of scats detected for wild pigs, or other social ungulates, allowing more robust estimation of population metrics using noninvasive genetic sampling methods. Further, as fecal pellet size affected scat detection, juvenile or smaller-sized animals may be less detectable than adult or large animals, which could introduce bias into abundance estimates. Knowledge of relationships between environmental variables and scat detection may allow researchers to optimize sampling protocols to maximize utility of noninvasive sampling for wild pigs and other social ungulates.

  18. Optimization of scat detection methods for a social ungulate, the wild pig, and experimental evaluation of factors affecting detection of scat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, David A.; Cunningham, Fred L.; Rhodes, Jr., Olin E.

    Collection of scat samples is common in wildlife research, particularly for genetic capture-mark-recapture applications. Due to high degradation rates of genetic material in scat, large numbers of samples must be collected to generate robust estimates. Optimization of sampling approaches to account for taxa-specific patterns of scat deposition is, therefore, necessary to ensure sufficient sample collection. While scat collection methods have been widely studied in carnivores, research to maximize scat collection and noninvasive sampling efficiency for social ungulates is lacking. Further, environmental factors or scat morphology may influence detection of scat by observers. We contrasted performance of novel radial search protocolsmore » with existing adaptive cluster sampling protocols to quantify differences in observed amounts of wild pig ( Sus scrofa) scat. We also evaluated the effects of environmental (percentage of vegetative ground cover and occurrence of rain immediately prior to sampling) and scat characteristics (fecal pellet size and number) on the detectability of scat by observers. We found that 15- and 20-m radial search protocols resulted in greater numbers of scats encountered than the previously used adaptive cluster sampling approach across habitat types, and that fecal pellet size, number of fecal pellets, percent vegetative ground cover, and recent rain events were significant predictors of scat detection. Our results suggest that use of a fixed-width radial search protocol may increase the number of scats detected for wild pigs, or other social ungulates, allowing more robust estimation of population metrics using noninvasive genetic sampling methods. Further, as fecal pellet size affected scat detection, juvenile or smaller-sized animals may be less detectable than adult or large animals, which could introduce bias into abundance estimates. In conclusion, knowledge of relationships between environmental variables and scat detection may allow researchers to optimize sampling protocols to maximize utility of noninvasive sampling for wild pigs and other social ungulates.« less

  19. Optimization of Scat Detection Methods for a Social Ungulate, the Wild Pig, and Experimental Evaluation of Factors Affecting Detection of Scat.

    PubMed

    Keiter, David A; Cunningham, Fred L; Rhodes, Olin E; Irwin, Brian J; Beasley, James C

    2016-01-01

    Collection of scat samples is common in wildlife research, particularly for genetic capture-mark-recapture applications. Due to high degradation rates of genetic material in scat, large numbers of samples must be collected to generate robust estimates. Optimization of sampling approaches to account for taxa-specific patterns of scat deposition is, therefore, necessary to ensure sufficient sample collection. While scat collection methods have been widely studied in carnivores, research to maximize scat collection and noninvasive sampling efficiency for social ungulates is lacking. Further, environmental factors or scat morphology may influence detection of scat by observers. We contrasted performance of novel radial search protocols with existing adaptive cluster sampling protocols to quantify differences in observed amounts of wild pig (Sus scrofa) scat. We also evaluated the effects of environmental (percentage of vegetative ground cover and occurrence of rain immediately prior to sampling) and scat characteristics (fecal pellet size and number) on the detectability of scat by observers. We found that 15- and 20-m radial search protocols resulted in greater numbers of scats encountered than the previously used adaptive cluster sampling approach across habitat types, and that fecal pellet size, number of fecal pellets, percent vegetative ground cover, and recent rain events were significant predictors of scat detection. Our results suggest that use of a fixed-width radial search protocol may increase the number of scats detected for wild pigs, or other social ungulates, allowing more robust estimation of population metrics using noninvasive genetic sampling methods. Further, as fecal pellet size affected scat detection, juvenile or smaller-sized animals may be less detectable than adult or large animals, which could introduce bias into abundance estimates. Knowledge of relationships between environmental variables and scat detection may allow researchers to optimize sampling protocols to maximize utility of noninvasive sampling for wild pigs and other social ungulates.

  20. Optimization of scat detection methods for a social ungulate, the wild pig, and experimental evaluation of factors affecting detection of scat

    DOE PAGES

    Keiter, David A.; Cunningham, Fred L.; Rhodes, Jr., Olin E.; ...

    2016-05-25

    Collection of scat samples is common in wildlife research, particularly for genetic capture-mark-recapture applications. Due to high degradation rates of genetic material in scat, large numbers of samples must be collected to generate robust estimates. Optimization of sampling approaches to account for taxa-specific patterns of scat deposition is, therefore, necessary to ensure sufficient sample collection. While scat collection methods have been widely studied in carnivores, research to maximize scat collection and noninvasive sampling efficiency for social ungulates is lacking. Further, environmental factors or scat morphology may influence detection of scat by observers. We contrasted performance of novel radial search protocolsmore » with existing adaptive cluster sampling protocols to quantify differences in observed amounts of wild pig ( Sus scrofa) scat. We also evaluated the effects of environmental (percentage of vegetative ground cover and occurrence of rain immediately prior to sampling) and scat characteristics (fecal pellet size and number) on the detectability of scat by observers. We found that 15- and 20-m radial search protocols resulted in greater numbers of scats encountered than the previously used adaptive cluster sampling approach across habitat types, and that fecal pellet size, number of fecal pellets, percent vegetative ground cover, and recent rain events were significant predictors of scat detection. Our results suggest that use of a fixed-width radial search protocol may increase the number of scats detected for wild pigs, or other social ungulates, allowing more robust estimation of population metrics using noninvasive genetic sampling methods. Further, as fecal pellet size affected scat detection, juvenile or smaller-sized animals may be less detectable than adult or large animals, which could introduce bias into abundance estimates. In conclusion, knowledge of relationships between environmental variables and scat detection may allow researchers to optimize sampling protocols to maximize utility of noninvasive sampling for wild pigs and other social ungulates.« less

  1. Exploring representations of protein structure for automated remote homology detection and mapping of protein structure space

    PubMed Central

    2014-01-01

    Background Due to rapid sequencing of genomes, there are now millions of deposited protein sequences with no known function. Fast sequence-based comparisons allow detecting close homologs for a protein of interest to transfer functional information from the homologs to the given protein. Sequence-based comparison cannot detect remote homologs, in which evolution has adjusted the sequence while largely preserving structure. Structure-based comparisons can detect remote homologs but most methods for doing so are too expensive to apply at a large scale over structural databases of proteins. Recently, fragment-based structural representations have been proposed that allow fast detection of remote homologs with reasonable accuracy. These representations have also been used to obtain linearly-reducible maps of protein structure space. It has been shown, as additionally supported from analysis in this paper that such maps preserve functional co-localization of the protein structure space. Methods Inspired by a recent application of the Latent Dirichlet Allocation (LDA) model for conducting structural comparisons of proteins, we propose higher-order LDA-obtained topic-based representations of protein structures to provide an alternative route for remote homology detection and organization of the protein structure space in few dimensions. Various techniques based on natural language processing are proposed and employed to aid the analysis of topics in the protein structure domain. Results We show that a topic-based representation is just as effective as a fragment-based one at automated detection of remote homologs and organization of protein structure space. We conduct a detailed analysis of the information content in the topic-based representation, showing that topics have semantic meaning. The fragment-based and topic-based representations are also shown to allow prediction of superfamily membership. Conclusions This work opens exciting venues in designing novel representations to extract information about protein structures, as well as organizing and mining protein structure space with mature text mining tools. PMID:25080993

  2. Method and apparatus for combinatorial logic signal processor in a digitally based high speed x-ray spectrometer

    DOEpatents

    Warburton, W.K.

    1999-02-16

    A high speed, digitally based, signal processing system is disclosed which accepts a digitized input signal and detects the presence of step-like pulses in the this data stream, extracts filtered estimates of their amplitudes, inspects for pulse pileup, and records input pulse rates and system lifetime. The system has two parallel processing channels: a slow channel, which filters the data stream with a long time constant trapezoidal filter for good energy resolution; and a fast channel which filters the data stream with a short time constant trapezoidal filter, detects pulses, inspects for pileups, and captures peak values from the slow channel for good events. The presence of a simple digital interface allows the system to be easily integrated with a digital processor to produce accurate spectra at high count rates and allow all spectrometer functions to be fully automated. Because the method is digitally based, it allows pulses to be binned based on time related values, as well as on their amplitudes, if desired. 31 figs.

  3. Automatic identification of artifacts in electrodermal activity data.

    PubMed

    Taylor, Sara; Jaques, Natasha; Chen, Weixuan; Fedor, Szymon; Sano, Akane; Picard, Rosalind

    2015-01-01

    Recently, wearable devices have allowed for long term, ambulatory measurement of electrodermal activity (EDA). Despite the fact that ambulatory recording can be noisy, and recording artifacts can easily be mistaken for a physiological response during analysis, to date there is no automatic method for detecting artifacts. This paper describes the development of a machine learning algorithm for automatically detecting EDA artifacts, and provides an empirical evaluation of classification performance. We have encoded our results into a freely available web-based tool for artifact and peak detection.

  4. A Highly Sensitive Method for Quantitative Determination of Abscisic Acid 1

    PubMed Central

    Michler, Charles H.; Lineberger, R. Daniel; Chism, Grady W.

    1986-01-01

    An abscisic acid derivative was formed by reaction with pentafluorobenzyl bromide which allowed highly sensitive detection by gas-liquid chromatography with electron capture detection. In comparison to the methyl ester derivative, the pentafluorobenzyl derivative of abscisic acid was four times more sensitive to electron capture detection and was stable at room temperature in the presence of ultraviolet light. Derivatization was rapid and the molecular weight of the new compound was confirmed by gas-liquid chromatography-mass spectrometry. PMID:16665076

  5. A PCR method for the detection and differentiation of Lentinus edodes and Trametes versicolor in defined-mixed cultures used for wastewater treatment.

    PubMed

    García-Mena, Jaime; Cano-Ramirez, Claudia; Garibay-Orijel, Claudio; Ramirez-Canseco, Sergio; Poggi-Varaldo, Héctor M

    2005-06-01

    A PCR-based method for the quantitative detection of Lentinus edodes and Trametes versicolor, two ligninolytic fungi applied for wastewater treatment and bioremediation, was developed. Genomic DNA was used to optimize a PCR method targeting the conserved copper-binding sequence of laccase genes. The method allowed the quantitative detection and differentiation of these fungi in single and defined-mixed cultures after fractionation of the PCR products by electrophoresis in agarose gels. Amplified products of about 150 bp for L. edodes, and about 200 bp for T. versicolor were purified and cloned. The PCR method showed a linear detection response in the 1.0 microg-1 ng range. The same method was tested with genomic DNA from a third fungus (Phanerochaete chrysosporium), yielding a fragment of about 400 bp. Southern-blot and DNA sequence analysis indicated that a specific PCR product was amplified from each genome, and that these corresponded to sequences of laccase genes. This PCR protocol permits the detection and differentiation of three ligninolytic fungi by amplifying DNA fragments of different sizes using a single pair of primers, without further enzymatic restriction of the PCR products. This method has potential use in the monitoring, evaluation, and improvement of fungal cultures used in wastewater treatment processes.

  6. Optical method and apparatus for detection of defects and microstructural changes in ceramics and ceramic coatings

    DOEpatents

    Ellingson, William A.; Todd, Judith A.; Sun, Jiangang

    2001-01-01

    Apparatus detects defects and microstructural changes in hard translucent materials such as ceramic bulk compositions and ceramic coatings such as after use under load conditions. The beam from a tunable laser is directed onto the sample under study and light reflected by the sample is directed to two detectors, with light scattered with a small scatter angle directed to a first detector and light scattered with a larger scatter angle directed to a second detector for monitoring the scattering surface. The sum and ratio of the two detector outputs respectively provide a gray-scale, or "sum" image, and an indication of the lateral spread of the subsurface scatter, or "ratio" image. This two detector system allows for very high speed crack detection for on-line, real-time inspection of damage in ceramic components. Statistical image processing using a digital image processing approach allows for the quantative discrimination of the presence and distribution of small flaws in a sample while improving detection reliability. The tunable laser allows for the penetration of the sample to detect defects from the sample's surface to the laser's maximum depth of penetration. A layered optical fiber directs the incoming laser beam to the sample and transmits each scattered signal to a respective one of the two detectors.

  7. Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics

    DOEpatents

    Ellingson, William A.; Brada, Mark P.

    1995-01-01

    A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser's wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known "feature masks" of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects.

  8. Selective detection of target proteins by peptide-enabled graphene biosensor.

    PubMed

    Khatayevich, Dmitriy; Page, Tamon; Gresswell, Carolyn; Hayamizu, Yuhei; Grady, William; Sarikaya, Mehmet

    2014-04-24

    Direct molecular detection of biomarkers is a promising approach for diagnosis and monitoring of numerous diseases, as well as a cornerstone of modern molecular medicine and drug discovery. Currently, clinical applications of biomarkers are limited by the sensitivity, complexity and low selectivity of available indirect detection methods. Electronic 1D and 2D nano-materials such as carbon nanotubes and graphene, respectively, offer unique advantages as sensing substrates for simple, fast and ultrasensitive detection of biomolecular binding. Versatile methods, however, have yet to be developed for simultaneous functionalization and passivation of the sensor surface to allow for enhanced detection and selectivity of the device. Herein, we demonstrate selective detection of a model protein against a background of serum protein using a graphene sensor functionalized via self-assembling multifunctional short peptides. The two peptides are engineered to bind to graphene and undergo co-assembly in the form of an ordered monomolecular film on the substrate. While the probe peptide displays the bioactive molecule, the passivating peptide prevents non-specific protein adsorption onto the device surface, ensuring target selectivity. In particular, we demonstrate a graphene field effect transistor (gFET) biosensor which can detect streptavidin against a background of serum bovine albumin at less than 50 ng/ml. Our nano-sensor design, allows us to restore the graphene surface and utilize each sensor in multiple experiments. The peptide-enabled gFET device has great potential to address a variety of bio-sensing problems, such as studying ligand-receptor interactions, or detection of biomarkers in a clinical setting. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Analytical chemistry in water quality monitoring during manned space missions

    NASA Astrophysics Data System (ADS)

    Artemyeva, Anastasia A.

    2016-09-01

    Water quality monitoring during human spaceflights is essential. However, most of the traditional methods require sample collection with a subsequent ground analysis because of the limitations in volume, power, safety and gravity. The space missions are becoming longer-lasting; hence methods suitable for in-flight monitoring are demanded. Since 2009, water quality has been monitored in-flight with colorimetric methods allowing for detection of iodine and ionic silver. Organic compounds in water have been monitored with a second generation total organic carbon analyzer, which provides information on the amount of carbon in water at both the U.S. and Russian segments of the International Space Station since 2008. The disadvantage of this approach is the lack of compound-specific information. The recently developed methods and tools may potentially allow one to obtain in-flight a more detailed information on water quality. Namely, the microanalyzers based on potentiometric measurements were designed for online detection of chloride, potassium, nitrate ions and ammonia. The recent application of the current highly developed air quality monitoring system for water analysis was a logical step because most of the target analytes are the same in air and water. An electro-thermal vaporizer was designed, manufactured and coupled with the air quality control system. This development allowed for liberating the analytes from the aqueous matrix and further compound-specific analysis in the gas phase.

  10. Applications of broadband cavity enhanced spectroscopy for measurements of trace gases and aerosols

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Brock, C. A.; Brown, S. S.; Dube, W. P.; Flores, J. M.; Langford, A. O.; Min, K. E.; Rudich, Y.; Stutz, J.; Wagner, N.; Young, C.; Zarzana, K. J.

    2015-12-01

    Broadband cavity enhanced spectroscopy (BBCES) uses a broadband light source, optical cavity, and multichannel detector to measure light extinction with high sensitivity. This method differs from cavity ringdown spectroscopy, because it uses an inexpensive, incoherent light source and allows optical extinction to be determined simultaneously across a broad wavelength region.Spectral fitting methods can be used to retrieve multiple absorbers across the observed wavelength region. We have successfully used this method to measure glyoxal (CHOCHO), nitrous acid (HONO), and nitrogen dioxide (NO2) from ground-based and aircraft-based sampling platforms. The detection limit (2-sigma) in 5 s for retrievals of CHOCHO, HONO and NO2 is 32, 250 and 80 parts per trillion (pptv).Alternatively, gas-phase absorbers can be chemically removed to allow the accurate determination of aerosol extinction. In the laboratory, we have used the aerosol extinction measurements to determine scattering and absorption as a function of wavelength. We have deployed a ground-based field instrument to measure aerosol extinction, with a detection limit of approximately 0.2 Mm-1 in 1 min.BBCES methods are most widely used in the near-ultraviolet and visible spectral region. Recently, we have demonstrated measurements at 315-350 nm for formaldehyde (CH2O) and NO2. Extending the technique further into the ultraviolet spectral region will allow important additional measurements of trace gas species and aerosol extinction.

  11. In-situ characterization of nanoparticle beams focused with an aerodynamic lens by Laser-Induced Breakdown Detection

    PubMed Central

    Barreda, F.-A.; Nicolas, C.; Sirven, J.-B.; Ouf, F.-X.; Lacour, J.-L.; Robert, E.; Benkoula, S.; Yon, J.; Miron, C.; Sublemontier, O.

    2015-01-01

    The Laser-Induced Breakdown Detection technique (LIBD) was adapted to achieve fast in-situ characterization of nanoparticle beams focused under vacuum by an aerodynamic lens. The method employs a tightly focused, 21 μm, scanning laser microprobe which generates a local plasma induced by the laser interaction with a single particle. A counting mode optical detection allows the achievement of 2D mappings of the nanoparticle beams with a reduced analysis time thanks to the use of a high repetition rate infrared pulsed laser. As an example, the results obtained with Tryptophan nanoparticles are presented and the advantages of this method over existing ones are discussed. PMID:26498694

  12. Multiplex Detection of Toxigenic Penicillium Species.

    PubMed

    Rodríguez, Alicia; Córdoba, Juan J; Rodríguez, Mar; Andrade, María J

    2017-01-01

    Multiplex PCR-based methods for simultaneous detection and quantification of different mycotoxin-producing Penicillia are useful tools to be used in food safety programs. These rapid and sensitive techniques allow taking corrective actions during food processing or storage for avoiding accumulation of mycotoxins in them. In this chapter, three multiplex PCR-based methods to detect at least patulin- and ochratoxin A-producing Penicillia are detailed. Two of them are different multiplex real-time PCR suitable for monitoring and quantifying toxigenic Penicillium using the nonspecific dye SYBR Green and specific hydrolysis probes (TaqMan). All of them successfully use the same target genes involved in the biosynthesis of such mycotoxins for designing primers and/or probes.

  13. Method for detecting radiation dose utilizing thermoluminescent material

    DOEpatents

    Miller, Steven D.; McDonald, Joseph C.; Eichner, Fred N.; Durham, James S.

    1992-01-01

    The amount of ionizing radiation to which a thermoluminescent material has been exposed is determined by first cooling the thermoluminescent material and then optically stimulating the thermoluminescent material by exposure to light. Visible light emitted by the thermoluminescent material as it is allowed to warm up to room temperature is detected and counted. The thermoluminescent material may be annealed by exposure to ultraviolet light.

  14. Method for detecting radiation dose utilizing thermoluminescent material

    DOEpatents

    Miller, S.D.; McDonald, J.C.; Eichner, F.N.; Durham, J.S.

    1992-08-04

    The amount of ionizing radiation to which a thermoluminescent material has been exposed is determined by first cooling the thermoluminescent material and then optically stimulating the thermoluminescent material by exposure to light. Visible light emitted by the thermoluminescent material as it is allowed to warm up to room temperature is detected and counted. The thermoluminescent material may be annealed by exposure to ultraviolet light. 5 figs.

  15. Determination of acrylamide and methacrylamide by normal phase high performance liquid chromatography and UV detection.

    PubMed

    Paleologos, E K; Kontominas, M G

    2005-06-10

    A method using normal phase high performance liquid chromatography (NP-HPLC) with UV detection was developed for the analysis of acrylamide and methacrylamide. The method relies on the chromatographic separation of these analytes on a polar HPLC column designed for the separation of organic acids. Identification of acrylamide and methacrylamide is approached dually, that is directly in their protonated forms and as their hydrolysis products acrylic and methacrylic acid respectively, for confirmation. Detection and quantification is performed at 200 nm. The method is simple allowing for clear resolution of the target peaks from any interfering substances. Detection limits of 10 microg L(-1) were obtained for both analytes with the inter- and intra-day RSD for standard analysis lying below 1.0%. Use of acetonitrile in the elution solvent lowers detection limits and retention times, without impairing resolution of peaks. The method was applied for the determination of acrylamide and methacrylamide in spiked food samples without native acrylamide yielding recoveries between 95 and 103%. Finally, commercial samples of french and roasted fries, cookies, cocoa and coffee were analyzed to assess applicability of the method towards acrylamide, giving results similar with those reported in the literature.

  16. Detection of IgG aggregation by a high throughput method based on extrinsic fluorescence.

    PubMed

    He, Feng; Phan, Duke H; Hogan, Sabine; Bailey, Robert; Becker, Gerald W; Narhi, Linda O; Razinkov, Vladimir I

    2010-06-01

    The utility of extrinsic fluorescence as a tool for high throughput detection of monoclonal antibody aggregates was explored. Several IgG molecules were thermally stressed and the high molecular weight species were fractionated using size-exclusion chromatography (SEC). The isolated aggregates and monomers were studied by following the fluorescence of an extrinsic probe, SYPRO Orange. The dye displayed high sensitivity to structurally altered, aggregated IgG structures compared to the native form, which resulted in very low fluorescence in the presence of the dye. An example of the application is presented here to demonstrate the properties of this detection method. The fluorescence assay was shown to correlate with the SEC method in quantifying IgG aggregates. The fluorescent probe method appears to have potential to detect protein particles that could not be analyzed by SEC. This method may become a powerful high throughput tool to detect IgG aggregates in pharmaceutical solutions and to study other protein properties involving aggregation. It can also be used to study the kinetics of antibody particle formation, and perhaps allow identification of the species, which are the early building blocks of protein particles. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  17. Automated detection of photoreceptor disruption in mild diabetic retinopathy on volumetric optical coherence tomography

    PubMed Central

    Wang, Zhuo; Camino, Acner; Zhang, Miao; Wang, Jie; Hwang, Thomas S.; Wilson, David J.; Huang, David; Li, Dengwang; Jia, Yali

    2017-01-01

    Diabetic retinopathy is a pathology where microvascular circulation abnormalities ultimately result in photoreceptor disruption and, consequently, permanent loss of vision. Here, we developed a method that automatically detects photoreceptor disruption in mild diabetic retinopathy by mapping ellipsoid zone reflectance abnormalities from en face optical coherence tomography images. The algorithm uses a fuzzy c-means scheme with a redefined membership function to assign a defect severity level on each pixel and generate a probability map of defect category affiliation. A novel scheme of unsupervised clustering optimization allows accurate detection of the affected area. The achieved accuracy, sensitivity and specificity were about 90% on a population of thirteen diseased subjects. This method shows potential for accurate and fast detection of early biomarkers in diabetic retinopathy evolution. PMID:29296475

  18. Crack Detection in Concrete Tunnels Using a Gabor Filter Invariant to Rotation.

    PubMed

    Medina, Roberto; Llamas, José; Gómez-García-Bermejo, Jaime; Zalama, Eduardo; Segarra, Miguel José

    2017-07-20

    In this article, a system for the detection of cracks in concrete tunnel surfaces, based on image sensors, is presented. Both data acquisition and processing are covered. Linear cameras and proper lighting are used for data acquisition. The required resolution of the camera sensors and the number of cameras is discussed in terms of the crack size and the tunnel type. Data processing is done by applying a new method called Gabor filter invariant to rotation, allowing the detection of cracks in any direction. The parameter values of this filter are set by using a modified genetic algorithm based on the Differential Evolution optimization method. The detection of the pixels belonging to cracks is obtained to a balanced accuracy of 95.27%, thus improving the results of previous approaches.

  19. Optical and electrical nano eco-sensors using alternative deposition of charged layer

    NASA Astrophysics Data System (ADS)

    Ahmed, Syed Rahin; Hong, Seong Cheol; Lee, Jaebeom

    2011-03-01

    This review focuses on layer by layer (LBL) assembly-based nano ecological sensor (hereafter, eco-sensor) for pesticide detection, which is one of the most versatile methods. The effects of pesticides on human health and on the environment (air, water, soil, plants, and animals) are of great concern due to their increasing use. We highlight two of the most popular detecting methods, i.e., fluorescence and electrochemical detection of pesticides on an LBL assembly. Fluorescence materials are of great interest among researchers for their sensitivity and reliable detection, and electrochemical processes allow us to investigate synergistic interactions among film components through charge transfer mechanisms in LBL film at the molecular level. Then, we noted some prospective directions for development of different types of sensing systems.

  20. Automated detection of photoreceptor disruption in mild diabetic retinopathy on volumetric optical coherence tomography.

    PubMed

    Wang, Zhuo; Camino, Acner; Zhang, Miao; Wang, Jie; Hwang, Thomas S; Wilson, David J; Huang, David; Li, Dengwang; Jia, Yali

    2017-12-01

    Diabetic retinopathy is a pathology where microvascular circulation abnormalities ultimately result in photoreceptor disruption and, consequently, permanent loss of vision. Here, we developed a method that automatically detects photoreceptor disruption in mild diabetic retinopathy by mapping ellipsoid zone reflectance abnormalities from en face optical coherence tomography images. The algorithm uses a fuzzy c-means scheme with a redefined membership function to assign a defect severity level on each pixel and generate a probability map of defect category affiliation. A novel scheme of unsupervised clustering optimization allows accurate detection of the affected area. The achieved accuracy, sensitivity and specificity were about 90% on a population of thirteen diseased subjects. This method shows potential for accurate and fast detection of early biomarkers in diabetic retinopathy evolution.

  1. Bayesian least squares deconvolution

    NASA Astrophysics Data System (ADS)

    Asensio Ramos, A.; Petit, P.

    2015-11-01

    Aims: We develop a fully Bayesian least squares deconvolution (LSD) that can be applied to the reliable detection of magnetic signals in noise-limited stellar spectropolarimetric observations using multiline techniques. Methods: We consider LSD under the Bayesian framework and we introduce a flexible Gaussian process (GP) prior for the LSD profile. This prior allows the result to automatically adapt to the presence of signal. We exploit several linear algebra identities to accelerate the calculations. The final algorithm can deal with thousands of spectral lines in a few seconds. Results: We demonstrate the reliability of the method with synthetic experiments and we apply it to real spectropolarimetric observations of magnetic stars. We are able to recover the magnetic signals using a small number of spectral lines, together with the uncertainty at each velocity bin. This allows the user to consider if the detected signal is reliable. The code to compute the Bayesian LSD profile is freely available.

  2. Automatic Generation of Validated Specific Epitope Sets.

    PubMed

    Carrasco Pro, Sebastian; Sidney, John; Paul, Sinu; Lindestam Arlehamn, Cecilia; Weiskopf, Daniela; Peters, Bjoern; Sette, Alessandro

    2015-01-01

    Accurate measurement of B and T cell responses is a valuable tool to study autoimmunity, allergies, immunity to pathogens, and host-pathogen interactions and assist in the design and evaluation of T cell vaccines and immunotherapies. In this context, it is desirable to elucidate a method to select validated reference sets of epitopes to allow detection of T and B cells. However, the ever-growing information contained in the Immune Epitope Database (IEDB) and the differences in quality and subjects studied between epitope assays make this task complicated. In this study, we develop a novel method to automatically select reference epitope sets according to a categorization system employed by the IEDB. From the sets generated, three epitope sets (EBV, mycobacteria and dengue) were experimentally validated by detection of T cell reactivity ex vivo from human donors. Furthermore, a web application that will potentially be implemented in the IEDB was created to allow users the capacity to generate customized epitope sets.

  3. Robust Statistical Detection of Power-Law Cross-Correlation.

    PubMed

    Blythe, Duncan A J; Nikulin, Vadim V; Müller, Klaus-Robert

    2016-06-02

    We show that widely used approaches in statistical physics incorrectly indicate the existence of power-law cross-correlations between financial stock market fluctuations measured over several years and the neuronal activity of the human brain lasting for only a few minutes. While such cross-correlations are nonsensical, no current methodology allows them to be reliably discarded, leaving researchers at greater risk when the spurious nature of cross-correlations is not clear from the unrelated origin of the time series and rather requires careful statistical estimation. Here we propose a theory and method (PLCC-test) which allows us to rigorously and robustly test for power-law cross-correlations, correctly detecting genuine and discarding spurious cross-correlations, thus establishing meaningful relationships between processes in complex physical systems. Our method reveals for the first time the presence of power-law cross-correlations between amplitudes of the alpha and beta frequency ranges of the human electroencephalogram.

  4. Robust Statistical Detection of Power-Law Cross-Correlation

    PubMed Central

    Blythe, Duncan A. J.; Nikulin, Vadim V.; Müller, Klaus-Robert

    2016-01-01

    We show that widely used approaches in statistical physics incorrectly indicate the existence of power-law cross-correlations between financial stock market fluctuations measured over several years and the neuronal activity of the human brain lasting for only a few minutes. While such cross-correlations are nonsensical, no current methodology allows them to be reliably discarded, leaving researchers at greater risk when the spurious nature of cross-correlations is not clear from the unrelated origin of the time series and rather requires careful statistical estimation. Here we propose a theory and method (PLCC-test) which allows us to rigorously and robustly test for power-law cross-correlations, correctly detecting genuine and discarding spurious cross-correlations, thus establishing meaningful relationships between processes in complex physical systems. Our method reveals for the first time the presence of power-law cross-correlations between amplitudes of the alpha and beta frequency ranges of the human electroencephalogram. PMID:27250630

  5. Detection of ASC Speck Formation by Flow Cytometry and Chemical Cross-linking.

    PubMed

    Hoss, Florian; Rolfes, Verena; Davanso, Mariana R; Braga, Tarcio T; Franklin, Bernardo S

    2018-01-01

    Assembly of a relatively large protein aggregate or "speck" formed by the adaptor protein ASC is a common downstream step in the activation of most inflammasomes. This unique feature of ASC allows its visualization by several imaging techniques and constitutes a reliable and feasible readout for inflammasome activation in cells and tissues. We have previously described step-by-step protocols to generate immortalized cell lines stably expressing ASC fused to a fluorescent protein for measuring inflammasome activation by confocal microscopy, and immunofluorescence of endogenous ASC in primary cells. Here, we present two more methods to detect ASC speck formation: (1) Assessment of ASC speck formation by flow cytometry; and (2) Chemical cross-linking of ASC followed by immunoblotting. These methods allow for the discrimination of inflammasome-activated versus non-activated cells, the identification of lineage-specific inflammasome activation in complex cell mixtures, and sorting of inflammasome-activated cells for further analysis.

  6. FEM Techniques for High Stress Detection in Accelerated Fatigue Simulation

    NASA Astrophysics Data System (ADS)

    Veltri, M.

    2016-09-01

    This work presents the theory and a numerical validation study in support to a novel method for a priori identification of fatigue critical regions, with the aim to accelerate durability design in large FEM problems. The investigation is placed in the context of modern full-body structural durability analysis, where a computationally intensive dynamic solution could be required to identify areas with potential for fatigue damage initiation. The early detection of fatigue critical areas can drive a simplification of the problem size, leading to sensible improvement in solution time and model handling while allowing processing of the critical areas in higher detail. The proposed technique is applied to a real life industrial case in a comparative assessment with established practices. Synthetic damage prediction quantification and visualization techniques allow for a quick and efficient comparison between methods, outlining potential application benefits and boundaries.

  7. Investigation of Chemical Exchange at Intermediate Exchange Rates using a Combination of Chemical Exchange Saturation Transfer (CEST) and Spin-Locking methods (CESTrho)

    PubMed Central

    Kogan, Feliks; Singh, Anup; Cai, Keija; Haris, Mohammad; Hariharan, Hari; Reddy, Ravinder

    2011-01-01

    Proton exchange imaging is important as it allows for visualization and quantification of the distribution of specific metabolites with conventional MRI. Current exchange mediated MRI methods suffer from poor contrast as well as confounding factors that influence exchange rates. In this study we developed a new method to measure proton exchange which combines chemical exchange saturation transfer (CEST) and T1ρ magnetization preparation methods (CESTrho). We demonstrated that this new CESTrho sequence can detect proton exchange in the slow to intermediate exchange regimes. It has a linear dependence on proton concentration which allows it to be used to quantitatively measure changes in metabolite concentration. Additionally, the magnetization scheme of this new method can be customized to make it insensitive to changes in exchange rate while retaining its dependency on solute concentration. Finally, we showed the feasibility of using CESTrho in vivo. This sequence is able to detect proton exchange at intermediate exchange rates and is unaffected by the confounding factors that influence proton exchange rates thus making it ideal for the measurement of metabolites with exchangeable protons in this exchange regime. PMID:22009759

  8. Investigation of chemical exchange at intermediate exchange rates using a combination of chemical exchange saturation transfer (CEST) and spin-locking methods (CESTrho).

    PubMed

    Kogan, Feliks; Singh, Anup; Cai, Keija; Haris, Mohammad; Hariharan, Hari; Reddy, Ravinder

    2012-07-01

    Proton exchange imaging is important as it allows for visualization and quantification of the distribution of specific metabolites with conventional MRI. Current exchange mediated MRI methods suffer from poor contrast as well as confounding factors that influence exchange rates. In this study we developed a new method to measure proton exchange which combines chemical exchange saturation transfer and T(1)(ρ) magnetization preparation methods (CESTrho). We demonstrated that this new CESTrho sequence can detect proton exchange in the slow to intermediate exchange regimes. It has a linear dependence on proton concentration which allows it to be used to quantitatively measure changes in metabolite concentration. Additionally, the magnetization scheme of this new method can be customized to make it insensitive to changes in exchange rate while retaining its dependency on solute concentration. Finally, we showed the feasibility of using CESTrho in vivo. This sequence is able to detect proton exchange at intermediate exchange rates and is unaffected by the confounding factors that influence proton exchange rates thus making it ideal for the measurement of metabolites with exchangeable protons in this exchange regime. Copyright © 2011 Wiley Periodicals, Inc.

  9. Trainable multiscript orientation detection

    NASA Astrophysics Data System (ADS)

    Van Beusekom, Joost; Rangoni, Yves; Breuel, Thomas M.

    2010-01-01

    Detecting the correct orientation of document images is an important step in large scale digitization processes, as most subsequent document analysis and optical character recognition methods assume upright position of the document page. Many methods have been proposed to solve the problem, most of which base on ascender to descender ratio computation. Unfortunately, this cannot be used for scripts having no descenders nor ascenders. Therefore, we present a trainable method using character similarity to compute the correct orientation. A connected component based distance measure is computed to compare the characters of the document image to characters whose orientation is known. This allows to detect the orientation for which the distance is lowest as the correct orientation. Training is easily achieved by exchanging the reference characters by characters of the script to be analyzed. Evaluation of the proposed approach showed accuracy of above 99% for Latin and Japanese script from the public UW-III and UW-II datasets. An accuracy of 98.9% was obtained for Fraktur on a non-public dataset. Comparison of the proposed method to two methods using ascender / descender ratio based orientation detection shows a significant improvement.

  10. Rapid Change Detection Algorithm for Disaster Management

    NASA Astrophysics Data System (ADS)

    Michel, U.; Thunig, H.; Ehlers, M.; Reinartz, P.

    2012-07-01

    This paper focuses on change detection applications in areas where catastrophic events took place which resulted in rapid destruction especially of manmade objects. Standard methods for automated change detection prove not to be sufficient; therefore a new method was developed and tested. The presented method allows a fast detection and visualization of change in areas of crisis or catastrophes. While often new methods of remote sensing are developed without user oriented aspects, organizations and authorities are not able to use these methods because of absence of remote sensing know how. Therefore a semi-automated procedure was developed. Within a transferable framework, the developed algorithm can be implemented for a set of remote sensing data among different investigation areas. Several case studies are the base for the retrieved results. Within a coarse dividing into statistical parts and the segmentation in meaningful objects, the framework is able to deal with different types of change. By means of an elaborated Temporal Change Index (TCI) only panchromatic datasets are used to extract areas which are destroyed, areas which were not affected and in addition areas where rebuilding has already started.

  11. A novel approach for quantitation of nonderivatized sialic acid in protein therapeutics using hydrophilic interaction chromatographic separation and nano quantity analyte detection.

    PubMed

    Chemmalil, Letha; Suravajjala, Sreekanth; See, Kate; Jordan, Eric; Furtado, Marsha; Sun, Chong; Hosselet, Stephen

    2015-01-01

    This paper describes a novel approach for the quantitation of nonderivatized sialic acid in glycoproteins, separated by hydrophilic interaction chromatography, and detection by Nano Quantity Analyte Detector (NQAD). The detection technique of NQAD is based on measuring change in the size of dry aerosol and converting the particle count rate into chromatographic output signal. NQAD detector is suitable for the detection of sialic acid, which lacks sufficiently active chromophore or fluorophore. The water condensation particle counting technology allows the analyte to be enlarged using water vapor to provide highest sensitivity. Derivatization-free analysis of glycoproteins using HPLC/NQAD method with PolyGLYCOPLEX™ amide column is well correlated with HPLC method with precolumn derivatization using 1, 2-diamino-4, 5-methylenedioxybenzene (DMB) as well as the Dionex-based high-pH anion-exchange chromatography (or ion chromatography) with pulsed amperometric detection (HPAEC-PAD). With the elimination of derivatization step, HPLC/NQAD method is more efficient than HPLC/DMB method. HPLC/NQAD method is more reproducible than HPAEC-PAD method as HPAEC-PAD method suffers high variability because of electrode fouling during analysis. Overall, HPLC/NQAD method offers broad linear dynamic range as well as excellent precision, accuracy, repeatability, reliability, and ease of use, with acceptable comparability to the commonly used HPAEC-PAD and HPLC/DMB methods. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Short non-coding RNAs as bacteria species identifiers detected by surface plasmon resonance enhanced common path interferometry

    NASA Astrophysics Data System (ADS)

    Greef, Charles; Petropavlovskikh, Viatcheslav; Nilsen, Oyvind; Khattatov, Boris; Plam, Mikhail; Gardner, Patrick; Hall, John

    2008-04-01

    Small non-coding RNA sequences have recently been discovered as unique identifiers of certain bacterial species, raising the possibility that they can be used as highly specific Biowarfare Agent detection markers in automated field deployable integrated detection systems. Because they are present in high abundance they could allow genomic based bacterial species identification without the need for pre-assay amplification. Further, a direct detection method would obviate the need for chemical labeling, enabling a rapid, efficient, high sensitivity mechanism for bacterial detection. Surface Plasmon Resonance enhanced Common Path Interferometry (SPR-CPI) is a potentially market disruptive, high sensitivity dual technology that allows real-time direct multiplex measurement of biomolecule interactions, including small molecules, nucleic acids, proteins, and microbes. SPR-CPI measures differences in phase shift of reflected S and P polarized light under Total Internal Reflection (TIR) conditions at a surface, caused by changes in refractive index induced by biomolecular interactions within the evanescent field at the TIR interface. The measurement is performed on a microarray of discrete 2-dimensional areas functionalized with biomolecule capture reagents, allowing simultaneous measurement of up to 100 separate analytes. The optical beam encompasses the entire microarray, allowing a solid state detector system with no scanning requirement. Output consists of simultaneous voltage measurements proportional to the phase differences resulting from the refractive index changes from each microarray feature, and is automatically processed and displayed graphically or delivered to a decision making algorithm, enabling a fully automatic detection system capable of rapid detection and quantification of small nucleic acids at extremely sensitive levels. Proof-of-concept experiments on model systems and cell culture samples have demonstrated utility of the system, and efforts are in progress for full development and deployment of the device. The technology has broad applicability as a universal detection platform for BWA detection, medical diagnostics, and drug discovery research, and represents a new class of instrumentation as a rapid, high sensitivity, label-free methodology.

  13. Comparison of Real-Time PCR, Reverse Transcriptase Real-Time PCR, Loop-Mediated Isothermal Amplification, and the FDA Conventional Microbiological Method for the Detection of Salmonella spp. in Produce ▿ †

    PubMed Central

    Zhang, Guodong; Brown, Eric W.; González-Escalona, Narjol

    2011-01-01

    Contamination of foods, especially produce, with Salmonella spp. is a major concern for public health. Several methods are available for the detection of Salmonella in produce, but their relative efficiency for detecting Salmonella in commonly consumed vegetables, often associated with outbreaks of food poisoning, needs to be confirmed. In this study, the effectiveness of three molecular methods for detection of Salmonella in six produce matrices was evaluated and compared to the FDA microbiological detection method. Samples of cilantro (coriander leaves), lettuce, parsley, spinach, tomato, and jalapeno pepper were inoculated with Salmonella serovars at two different levels (105 and <101 CFU/25 g of produce). The inoculated produce was assayed by the FDA Salmonella culture method (Bacteriological Analytical Manual) and by three molecular methods: quantitative real-time PCR (qPCR), quantitative reverse transcriptase real-time PCR (RT-qPCR), and loop-mediated isothermal amplification (LAMP). Comparable results were obtained by these four methods, which all detected as little as 2 CFU of Salmonella cells/25 g of produce. All control samples (not inoculated) were negative by the four methods. RT-qPCR detects only live Salmonella cells, obviating the danger of false-positive results from nonviable cells. False negatives (inhibition of either qPCR or RT-qPCR) were avoided by the use of either a DNA or an RNA amplification internal control (IAC). Compared to the conventional culture method, the qPCR, RT-qPCR, and LAMP assays allowed faster and equally accurate detection of Salmonella spp. in six high-risk produce commodities. PMID:21803916

  14. A matched filter approach for blind joint detection of galaxy clusters in X-ray and SZ surveys

    NASA Astrophysics Data System (ADS)

    Tarrío, P.; Melin, J.-B.; Arnaud, M.

    2018-06-01

    The combination of X-ray and Sunyaev-Zeldovich (SZ) observations can potentially improve the cluster detection efficiency, when compared to using only one of these probes, since both probe the same medium, the hot ionized gas of the intra-cluster medium. We present a method based on matched multifrequency filters (MMF) for detecting galaxy clusters from SZ and X-ray surveys. This method builds on a previously proposed joint X-ray-SZ extraction method and allows the blind detection of clusters, that is finding new clusters without knowing their position, size, or redshift, by searching on SZ and X-ray maps simultaneously. The proposed method is tested using data from the ROSAT all-sky survey and from the Planck survey. The evaluation is done by comparison with existing cluster catalogues in the area of the sky covered by the deep SPT survey. Thanks to the addition of the X-ray information, the joint detection method is able to achieve simultaneously better purity, better detection efficiency, and better position accuracy than its predecessor Planck MMF, which is based on SZ maps alone. For a purity of 85%, the X-ray-SZ method detects 141 confirmed clusters in the SPT region; to detect the same number of confirmed clusters with Planck MMF, we would need to decrease its purity to 70%. We provide a catalogue of 225 sources selected by the proposed method in the SPT footprint, with masses ranging between 0.7 and 14.5 ×1014 M⊙ and redshifts between 0.01 and 1.2.

  15. Estimating site occupancy and detection probability parameters for meso- and large mammals in a coastal eosystem

    USGS Publications Warehouse

    O'Connell, Allan F.; Talancy, Neil W.; Bailey, Larissa L.; Sauer, John R.; Cook, Robert; Gilbert, Andrew T.

    2006-01-01

    Large-scale, multispecies monitoring programs are widely used to assess changes in wildlife populations but they often assume constant detectability when documenting species occurrence. This assumption is rarely met in practice because animal populations vary across time and space. As a result, detectability of a species can be influenced by a number of physical, biological, or anthropogenic factors (e.g., weather, seasonality, topography, biological rhythms, sampling methods). To evaluate some of these influences, we estimated site occupancy rates using species-specific detection probabilities for meso- and large terrestrial mammal species on Cape Cod, Massachusetts, USA. We used model selection to assess the influence of different sampling methods and major environmental factors on our ability to detect individual species. Remote cameras detected the most species (9), followed by cubby boxes (7) and hair traps (4) over a 13-month period. Estimated site occupancy rates were similar among sampling methods for most species when detection probabilities exceeded 0.15, but we question estimates obtained from methods with detection probabilities between 0.05 and 0.15, and we consider methods with lower probabilities unacceptable for occupancy estimation and inference. Estimated detection probabilities can be used to accommodate variation in sampling methods, which allows for comparison of monitoring programs using different protocols. Vegetation and seasonality produced species-specific differences in detectability and occupancy, but differences were not consistent within or among species, which suggests that our results should be considered in the context of local habitat features and life history traits for the target species. We believe that site occupancy is a useful state variable and suggest that monitoring programs for mammals using occupancy data consider detectability prior to making inferences about species distributions or population change.

  16. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes

    PubMed Central

    Rebelo, Ana Rita; Bortolaia, Valeria; Kjeldgaard, Jette S; Pedersen, Susanne K; Leekitcharoenphon, Pimlapas; Hansen, Inge M; Guerra, Beatriz; Malorny, Burkhard; Borowiak, Maria; Hammerl, Jens Andre; Battisti, Antonio; Franco, Alessia; Alba, Patricia; Perrin-Guyomard, Agnes; Granier, Sophie A; De Frutos Escobar, Cristina; Malhotra-Kumar, Surbhi; Villa, Laura; Carattoli, Alessandra; Hendriksen, Rene S

    2018-01-01

    Background and aim Plasmid-mediated colistin resistance mechanisms have been identified worldwide in the past years. A multiplex polymerase chain reaction (PCR) protocol for detection of all currently known transferable colistin resistance genes (mcr-1 to mcr-5, and variants) in Enterobacteriaceae was developed for surveillance or research purposes. Methods: We designed four new primer pairs to amplify mcr-1, mcr-2, mcr-3 and mcr-4 gene products and used the originally described primers for mcr-5 to obtain a stepwise separation of ca 200 bp between amplicons. The primer pairs and amplification conditions allow for single or multiple detection of all currently described mcr genes and their variants present in Enterobacteriaceae. The protocol was validated testing 49 European Escherichia coli and Salmonella isolates of animal origin. Results: Multiplex PCR results in bovine and porcine isolates from Spain, Germany, France and Italy showed full concordance with whole genome sequence data. The method was able to detect mcr-1, mcr-3 and mcr-4 as singletons or in different combinations as they were present in the test isolates. One new mcr-4 variant, mcr-4.3, was also identified. Conclusions: This method allows rapid identification of mcr-positive bacteria and overcomes the challenges of phenotypic detection of colistin resistance. The multiplex PCR should be particularly interesting in settings or laboratories with limited resources for performing genetic analysis as it provides information on the mechanism of colistin resistance without requiring genome sequencing. PMID:29439754

  17. Tracking single membrane targets of human autoantibodies using single nanoparticle imaging.

    PubMed

    Jézéquel, Julie; Dupuis, Julien P; Maingret, François; Groc, Laurent

    2018-04-21

    Over the past decade, an increasing number of neurological and neuropsychiatric diseases have been associated with the expression of autoantibodies directed against neuronal targets, including neurotransmitter receptors. Although cell-based assays are routinely used in clinics to detect the presence of immunoglobulins, such tests often provide heterogeneous outcomes due to their limited sensitivity, especially at low titers. Thus, there is an urging need for new methods allowing the detection of autoantibodies in seropositive patients that cannot always be clinically distinguished from seronegative ones. Here we make a case for single nanoparticle imaging approaches as a highly sensitive antibody detection assay. Through high-affinity interactions between functionalized nanoparticles and autoantibodies that recognize extracellular domains of membrane neuronal targets, single nanoparticle imaging allows a live surface staining of transmembrane proteins and gives access to their surface dynamics. We show here that this method is well-suited to detect low titers of purified immunoglobulin G (IgG) from first-episode psychotic patients and demonstrate that these IgG target glutamatergic N-Methyl-d-Aspartate receptors (NMDAR) in live hippocampal neurons. The molecular behaviors of targeted membrane receptors were indistinguishable from those of endogenous GluN1 NMDAR subunit and were virtually independent of the IgG concentration present in the sample contrary to classical cell-based assays. Single nanoparticle imaging emerges as a real-time sensitive method to detect IgG directed against neuronal surface proteins, which could be used as an additional step to rule out ambiguous seropositivity diagnoses. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Protein biomarker discovery and fast monitoring for the identification and detection of Anisakids by parallel reaction monitoring (PRM) mass spectrometry.

    PubMed

    Carrera, Mónica; Gallardo, José M; Pascual, Santiago; González, Ángel F; Medina, Isabel

    2016-06-16

    Anisakids are fish-borne parasites that are responsible for a large number of human infections and allergic reactions around the world. World health organizations and food safety authorities aim to control and prevent this emerging health problem. In the present work, a new method for the fast monitoring of these parasites is described. The strategy is divided in three steps: (i) purification of thermostable proteins from fish-borne parasites (Anisakids), (ii) in-solution HIFU trypsin digestion and (iii) monitoring of several peptide markers by parallel reaction monitoring (PRM) mass spectrometry. This methodology allows the fast detection of Anisakids in <2h. An affordable assay utilizing this methodology will facilitate testing for regulatory and safety applications. The work describes for the first time, the Protein Biomarker Discovery and the Fast Monitoring for the identification and detection of Anisakids in fishery products. The strategy is based on the purification of thermostable proteins, the use of accelerated in-solution trypsin digestions under an ultrasonic field provided by High-Intensity Focused Ultrasound (HIFU) and the monitoring of several peptide biomarkers by Parallel Reaction Monitoring (PRM) Mass Spectrometry in a linear ion trap mass spectrometer. The workflow allows the unequivocal detection of Anisakids, in <2h. The present strategy constitutes the fastest method for Anisakids detection, whose application in the food quality control area, could provide to the authorities an effective and rapid method to guarantee the safety to the consumers. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Selective Detection of Peptide-Oligonucleotide Heteroconjugates Utilizing Capillary HPLC-ICPMS

    NASA Astrophysics Data System (ADS)

    Catron, Brittany; Caruso, Joseph A.; Limbach, Patrick A.

    2012-06-01

    A method for the selective detection and quantification of peptide:oligonucleotide heteroconjugates, such as those generated by protein:nucleic acid cross-links, using capillary reversed-phase high performance liquid chromatography (cap-RPHPLC) coupled with inductively coupled plasma mass spectrometry detection (ICPMS) is described. The selective detection of phosphorus as 31P+, the only natural isotope, in peptide-oligonucleotide heteroconjugates is enabled by the elemental detection capabilities of the ICPMS. Mobile phase conditions that allow separation of heteroconjugates while maintaining ICPMS compatibility were investigated. We found that trifluoroacetic acid (TFA) mobile phases, used in conventional peptide separations, and hexafluoroisopropanol/triethylamine (HFIP/TEA) mobile phases, used in conventional oligonucleotide separations, both are compatible with ICPMS and enable heteroconjugate separation. The TFA-based separations yielded limits of detection (LOD) of ~40 ppb phosphorus, which is nearly seven times lower than the LOD for HFIP/TEA-based separations. Using the TFA mobile phase, 1-2 pmol of a model heteroconjugate were routinely separated and detected by this optimized capLC-ICPMS method.

  20. Miniaturized Sample Preparation and Rapid Detection of Arsenite in Contaminated Soil Using a Smartphone.

    PubMed

    Siddiqui, Mohd Farhan; Kim, Soocheol; Jeon, Hyoil; Kim, Taeho; Joo, Chulmin; Park, Seungkyung

    2018-03-04

    Conventional methods for analyzing heavy metal contamination in soil and water generally require laboratory equipped instruments, complex procedures, skilled personnel and a significant amount of time. With the advancement in computing and multitasking performances, smartphone-based sensors potentially allow the transition of the laboratory-based analytical processes to field applicable, simple methods. In the present work, we demonstrate the novel miniaturized setup for simultaneous sample preparation and smartphone-based optical sensing of arsenic As(III) in the contaminated soil. Colorimetric detection protocol utilizing aptamers, gold nanoparticles and NaCl have been optimized and tested on the PDMS-chip to obtain the high sensitivity with the limit of detection of 0.71 ppm (in the sample) and a correlation coefficient of 0.98. The performance of the device is further demonstrated through the comparative analysis of arsenic-spiked soil samples with standard laboratory method, and a good agreement with a correlation coefficient of 0.9917 and the average difference of 0.37 ppm, are experimentally achieved. With the android application on the device to run the experiment, the whole process from sample preparation to detection is completed within 3 hours without the necessity of skilled personnel. The approximate cost of setup is estimated around 1 USD, weight 55 g. Therefore, the presented method offers the simple, rapid, portable and cost-effective means for onsite sensing of arsenic in soil. Combined with the geometric information inside the smartphones, the system will allow the monitoring of the contamination status of soils in a nation-wide manner.

  1. Detection, Isolation, and Identification of Vibrio cholerae from the Environment

    PubMed Central

    Huq, Anwar; Haley, Bradd J.; Taviani, Elisa; Chen, Arlene; Hasan, Nur A.; Colwell, Rita R.

    2012-01-01

    Recent molecular advances in microbiology have greatly improved the detection of bacterial pathogens in the environment. Improvement and a downward trend in the cost of molecular detection methods have contributed to increased frequency of detection of pathogenic microorganisms where traditional culture-based detection methods have failed. Culture methods also have been greatly improved and the confluence of the two suites of methods provides a powerful tool for detection, isolation, and characterization of pathogens. While molecular detection provides data on the presence and type of pathogens, culturing methods allow a researcher to preserve the organism of interest for “–omics” studies, such as genomic, metabolomic, secretomic, and transcriptomic analysis, which are rapidly becoming more affordable. This has yielded a clearer understanding of the ecology and epidemiology of microorganisms that cause disease. Specifically, important advances have been made over the past several years on isolation, detection, and identification of Vibrio cholerae, the causative agent of cholera in humans. In this unit, we present commonly accepted methods for isolation, detection, and characterization of V. cholerae, providing more extensive knowledge of the ecology and epidemiology of this organism. This unit has been fully revised and updated from the earlier unit (Huq, Grim et al. 2006) with the latest knowledge and additional information not previously included. We have also taken into account of cost of reagents and equipment that may be prohibitive for many researchers and have, therefore, included protocols for all laboratories, including those with limited resources, likely to be located in regions of cholera endemicity. PMID:22875567

  2. A rapid method for preparation of the cerebrospinal fluid proteome.

    PubMed

    Larssen, Eivind; Brede, Cato; Hjelle, Anne Bjørnstad; Øysaed, Kjell Birger; Tjensvoll, Anne Bolette; Omdal, Roald; Ruoff, Peter

    2015-01-01

    The cerebrospinal fluid (CSF) proteome is of great interest for investigation of diseases and conditions involving the CNS. However, the presence of high-abundance proteins (HAPs) can interfere with the detection of low-abundance proteins, potentially hindering the discovery of new biomarkers. Therefore, an assessment of the CSF subproteome composition requires depletion strategies. Existing methods are time consuming, often involving multistep protocols. Here, we present a rapid, accurate, and reproducible method for preparing the CSF proteome, which allows the identification of a high number of proteins. This method involves acetonitrile (ACN) precipitation for depleting HAPs, followed by immediate trypsination. As an example, we demonstrate that this method allows discrimination between multiple sclerosis patients and healthy subjects. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A stereo-vision hazard-detection algorithm to increase planetary lander autonomy

    NASA Astrophysics Data System (ADS)

    Woicke, Svenja; Mooij, Erwin

    2016-05-01

    For future landings on any celestial body, increasing the lander autonomy as well as decreasing risk are primary objectives. Both risk reduction and an increase in autonomy can be achieved by including hazard detection and avoidance in the guidance, navigation, and control loop. One of the main challenges in hazard detection and avoidance is the reconstruction of accurate elevation models, as well as slope and roughness maps. Multiple methods for acquiring the inputs for hazard maps are available. The main distinction can be made between active and passive methods. Passive methods (cameras) have budgetary advantages compared to active sensors (radar, light detection and ranging). However, it is necessary to proof that these methods deliver sufficiently good maps. Therefore, this paper discusses hazard detection using stereo vision. To facilitate a successful landing not more than 1% wrong detections (hazards that are not identified) are allowed. Based on a sensitivity analysis it was found that using a stereo set-up at a baseline of ≤ 2 m is feasible at altitudes of ≤ 200 m defining false positives of less than 1%. It was thus shown that stereo-based hazard detection is an effective means to decrease the landing risk and increase the lander autonomy. In conclusion, the proposed algorithm is a promising candidate for future landers.

  4. Nondestructive testing of advanced materials using sensors with metamaterials

    NASA Astrophysics Data System (ADS)

    Rozina, Steigmann; Narcis Andrei, Danila; Nicoleta, Iftimie; Catalin-Andrei, Tugui; Frantisek, Novy; Stanislava, Fintova; Petrica, Vizureanu; Adriana, Savin

    2016-11-01

    This work presents a method for nondestructive evaluation (NDE) of advanced materials that makes use of the images in near field and the concentration of flux using the phenomenon of spatial resolution. The method allows the detection of flaws as crack, nonadhesion of coating, degradation or presence delamination stresses correlated with the response of electromagnetic sensor.

  5. Developing operation algorithms for vision subsystems in autonomous mobile robots

    NASA Astrophysics Data System (ADS)

    Shikhman, M. V.; Shidlovskiy, S. V.

    2018-05-01

    The paper analyzes algorithms for selecting keypoints on the image for the subsequent automatic detection of people and obstacles. The algorithm is based on the histogram of oriented gradients and the support vector method. The combination of these methods allows successful selection of dynamic and static objects. The algorithm can be applied in various autonomous mobile robots.

  6. Analysis and segmentation of images in case of solving problems of detecting and tracing objects on real-time video

    NASA Astrophysics Data System (ADS)

    Ezhova, Kseniia; Fedorenko, Dmitriy; Chuhlamov, Anton

    2016-04-01

    The article deals with the methods of image segmentation based on color space conversion, and allow the most efficient way to carry out the detection of a single color in a complex background and lighting, as well as detection of objects on a homogeneous background. The results of the analysis of segmentation algorithms of this type, the possibility of their implementation for creating software. The implemented algorithm is very time-consuming counting, making it a limited application for the analysis of the video, however, it allows us to solve the problem of analysis of objects in the image if there is no dictionary of images and knowledge bases, as well as the problem of choosing the optimal parameters of the frame quantization for video analysis.

  7. Aptamer-Functionalized Fluorescent Silica Nanoparticles for Highly Sensitive Detection of Leukemia Cells

    NASA Astrophysics Data System (ADS)

    Tan, Juntao; Yang, Nuo; Hu, Zixi; Su, Jing; Zhong, Jianhong; Yang, Yang; Yu, Yating; Zhu, Jianmeng; Xue, Dabin; Huang, Yingying; Lai, Zongqiang; Huang, Yong; Lu, Xiaoling; Zhao, Yongxiang

    2016-06-01

    A simple, highly sensitive method to detect leukemia cells has been developed based on aptamer-modified fluorescent silica nanoparticles (FSNPs). In this strategy, the amine-labeled Sgc8 aptamer was conjugated to carboxyl-modified FSNPs via amide coupling between amino and carboxyl groups. Sensitivity and specificity of Sgc8-FSNPs were assessed using flow cytometry and fluorescence microscopy. These results showed that Sgc8-FSNPs detected leukemia cells with high sensitivity and specificity. Aptamer-modified FSNPs hold promise for sensitive and specific detection of leukemia cells. Changing the aptamer may allow the FSNPs to detect other types of cancer cells.

  8. Determination of MDMA, MDEA and MDA in urine by high performance liquid chromatography with fluorescence detection.

    PubMed

    da Costa, José Luiz; da Matta Chasin, Alice Aparecida

    2004-11-05

    This paper describes the development and validation of analytical methodology for the determination of the use of MDMA, MDEA and MDA in urine. After a simple liquid extraction, the analyses were carried out on a high performance liquid chromatography (HPLC) in an octadecyl column, with fluorescence detection. The mobile phase using a sodium dodecyl sulfate ion-pairing reagent allows good separation and efficiency. The method showed good linearity and precision. Recovery was between 85 and 102% and detection limits were 10, 15 and 20 ng/ml for MDA, MDMA and MDEA, respectively. No interfering substances were detected with fluorescence detection.

  9. Viral Diagnostics in Plants Using Next Generation Sequencing: Computational Analysis in Practice.

    PubMed

    Jones, Susan; Baizan-Edge, Amanda; MacFarlane, Stuart; Torrance, Lesley

    2017-01-01

    Viruses cause significant yield and quality losses in a wide variety of cultivated crops. Hence, the detection and identification of viruses is a crucial facet of successful crop production and of great significance in terms of world food security. Whilst the adoption of molecular techniques such as RT-PCR has increased the speed and accuracy of viral diagnostics, such techniques only allow the detection of known viruses, i.e., each test is specific to one or a small number of related viruses. Therefore, unknown viruses can be missed and testing can be slow and expensive if molecular tests are unavailable. Methods for simultaneous detection of multiple viruses have been developed, and (NGS) is now a principal focus of this area, as it enables unbiased and hypothesis-free testing of plant samples. The development of NGS protocols capable of detecting multiple known and emergent viruses present in infected material is proving to be a major advance for crops, nuclear stocks or imported plants and germplasm, in which disease symptoms are absent, unspecific or only triggered by multiple viruses. Researchers want to answer the question "how many different viruses are present in this crop plant?" without knowing what they are looking for: RNA-sequencing (RNA-seq) of plant material allows this question to be addressed. As well as needing efficient nucleic acid extraction and enrichment protocols, virus detection using RNA-seq requires fast and robust bioinformatics methods to enable host sequence removal and virus classification. In this review recent studies that use RNA-seq for virus detection in a variety of crop plants are discussed with specific emphasis on the computational methods implemented. The main features of a number of specific bioinformatics workflows developed for virus detection from NGS data are also outlined and possible reasons why these have not yet been widely adopted are discussed. The review concludes by discussing the future directions of this field, including the use of bioinformatics tools for virus detection deployed in analytical environments using cloud computing.

  10. Detection and quantitation of HPV in genital and oral tissues and fluids by real time PCR

    PubMed Central

    2010-01-01

    Background Human papillomaviruses (HPVs) remain a serious world health problem due to their association with anogenital/oral cancers and warts. While over 100 HPV types have been identified, a subset is associated with malignancy. HPV16 and 18 are the most prevalent oncogenic types, while HPV6 and 11 are most commonly responsible for anogenital warts. While other quantitative PCR (qPCR) assays detect oncogenic HPV, there is no single tube assay distinguishing the most frequent oncogenic types and the most common types found in warts. Results A Sybr Green-based qPCR assay was developed utilizing degenerate primers to the highly conserved HPV E1 theoretically detecting any HPV type. A single tube multiplex qPCR assay was also developed using type-specific primer pairs and TaqMan probes that allowed for detection and quantitation of HPV6,11,16,18. Each HPV type was detected over a range from 2 × 101 to 2 × 106copies/reaction providing a reliable method of quantitating type-specific HPV in 140 anogenital/cutaneous/oral benign and malignant specimens. 35 oncogenic and low risk alpha genus HPV types were detected. Concordance was detected in previously typed specimens. Comparisons to the gold standard detected an overall sensitivity of 89% (95% CI: 77% - 96%) and specificity of 90% (95%CI: 52% - 98%). Conclusion There was good agreement between the ability of the qPCR assays described here to identify HPV types in malignancies previously typed using standard methods. These novel qPCR assays will allow rapid detection and quantitation of HPVs to assess their role in viral pathogenesis. PMID:20723234

  11. Simple, multiplexed, PCR-based barcoding of DNA enables sensitive mutation detection in liquid biopsies using sequencing.

    PubMed

    Ståhlberg, Anders; Krzyzanowski, Paul M; Jackson, Jennifer B; Egyud, Matthew; Stein, Lincoln; Godfrey, Tony E

    2016-06-20

    Detection of cell-free DNA in liquid biopsies offers great potential for use in non-invasive prenatal testing and as a cancer biomarker. Fetal and tumor DNA fractions however can be extremely low in these samples and ultra-sensitive methods are required for their detection. Here, we report an extremely simple and fast method for introduction of barcodes into DNA libraries made from 5 ng of DNA. Barcoded adapter primers are designed with an oligonucleotide hairpin structure to protect the molecular barcodes during the first rounds of polymerase chain reaction (PCR) and prevent them from participating in mis-priming events. Our approach enables high-level multiplexing and next-generation sequencing library construction with flexible library content. We show that uniform libraries of 1-, 5-, 13- and 31-plex can be generated. Utilizing the barcodes to generate consensus reads for each original DNA molecule reduces background sequencing noise and allows detection of variant alleles below 0.1% frequency in clonal cell line DNA and in cell-free plasma DNA. Thus, our approach bridges the gap between the highly sensitive but specific capabilities of digital PCR, which only allows a limited number of variants to be analyzed, with the broad target capability of next-generation sequencing which traditionally lacks the sensitivity to detect rare variants. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Sensing and enumerating rare circulating cells with diffuse light

    NASA Astrophysics Data System (ADS)

    Zettergren, Eric; Vickers, Dwayne; Niedre, Mark

    2011-02-01

    Detection and quantification of circulating cells in live animals is a challenging and important problem in many areas of biomedical research. Current methods involve extraction of blood samples and counting of cells ex-vivo. Since only small blood volumes are analyzed at specific time points, monitoring of changes in cell populations over time is difficult and rare cells often escape detection. The goal of this research is to develop a method for enumerating very rare circulating cells in the bloodstream non-invasively. This would have many applications in biomedical research, including monitoring of cancer metastasis and tracking of hematopoietic stem cells. In this work we describe the optical configuration of our instrument which allows fluorescence detection of single cells in diffusive media at the mesoscopic scale. Our instrument design consists of two continuous wave laser diode sources and an 8-channel fiber coupled multi-anode photon counting PMT. Fluorescence detector fibers were arranged circularly around the target in a miniaturized ring configuration. Cell-simulating fluorescent microspheres and fluorescently-labeled cells were passed through a limb mimicking phantom with similar optical properties and background fluorescence as a limb of a mouse. Our data shows that we are able to successfully detect and count these with high quantitative accuracy. Future work includes characterization of our instrument using fluorescently labeled cells in-vivo. If successful, this technique would allow several orders of magnitude in vivo detection sensitivity improvement versus current approaches.

  13. Bladed wheels damage detection through Non-Harmonic Fourier Analysis improved algorithm

    NASA Astrophysics Data System (ADS)

    Neri, P.

    2017-05-01

    Recent papers introduced the Non-Harmonic Fourier Analysis for bladed wheels damage detection. This technique showed its potential in estimating the frequency of sinusoidal signals even when the acquisition time is short with respect to the vibration period, provided that some hypothesis are fulfilled. Anyway, previously proposed algorithms showed severe limitations in cracks detection at their early stage. The present paper proposes an improved algorithm which allows to detect a blade vibration frequency shift due to a crack whose size is really small compared to the blade width. Such a technique could be implemented for condition-based maintenance, allowing to use non-contact methods for vibration measurements. A stator-fixed laser sensor could monitor all the blades as they pass in front of the spot, giving precious information about the wheel health. This configuration determines an acquisition time for each blade which become shorter as the machine rotational speed increases. In this situation, traditional Discrete Fourier Transform analysis results in poor frequency resolution, being not suitable for small frequency shift detection. Non-Harmonic Fourier Analysis instead showed high reliability in vibration frequency estimation even with data samples collected in a short time range. A description of the improved algorithm is provided in the paper, along with a comparison with the previous one. Finally, a validation of the method is presented, based on finite element simulations results.

  14. Non-Enzymatic Detection of Bacterial Genomic DNA Using the Bio-Barcode Assay

    PubMed Central

    Hill, Haley D.; Vega, Rafael A.; Mirkin, Chad A.

    2011-01-01

    The detection of bacterial genomic DNA through a non-enzymatic nanomaterials based amplification method, the bio-barcode assay, is reported. The assay utilizes oligonucleotide functionalized magnetic microparticles to capture the target of interest from the sample. A critical step in the new assay involves the use of blocking oligonucleotides during heat denaturation of the double stranded DNA. These blockers bind to specific regions of the target DNA upon cooling, and prevent the duplex DNA from re-hybridizing, which allows the particle probes to bind. Following target isolation using the magnetic particles, oligonucleotide functionalized gold nanoparticles act as target recognition agents. The oligonucleotides on the nanoparticle (barcodes) act as amplification surrogates. The barcodes are then detected using the Scanometric method. The limit of detection for this assay was determined to be 2.5 femtomolar, and this is the first demonstration of a barcode type assay for the detection of double stranded, genomic DNA. PMID:17927207

  15. Optimization of a Viability PCR Method for the Detection of Listeria monocytogenes in Food Samples.

    PubMed

    Agustí, Gemma; Fittipaldi, Mariana; Codony, Francesc

    2018-06-01

    Rapid detection of Listeria and other microbial pathogens in food is an essential part of quality control and it is critical for ensuring the safety of consumers. Culture-based methods for detecting foodborne pathogens are time-consuming, laborious and cannot detect viable but non-culturable microorganism, whereas viability PCR methodology provides quick results; it is able to detect viable but non-culturable cells, and allows for easier handling of large amount of samples. Although the most critical point to use viability PCR technique is achieving the complete exclusion of dead cell amplification signals, many improvements are being introduced to overcome this. In the present work, the yield of dead cell DNA neutralization was enhanced by incorporating two new sample treatment strategies: tube change combined with a double light treatment. This procedure was successfully tested using artificially contaminated food samples, showing improved neutralization of dead cell DNA.

  16. Rapid and Sensitive Detection of Lymphocystis Disease Virus Genotype VII by Loop-Mediated Isothermal Amplification.

    PubMed

    Valverde, Estefanía J; Cano, Irene; Castro, Dolores; Paley, Richard K; Borrego, Juan J

    2017-03-01

    Lymphocystis disease virus (LCDV) infections have been described in gilthead seabream (Sparus aurata L.) and Senegalese sole (Solea senegalensis, Kaup), two of the most important marine fish species in the Mediterranean aquaculture. In this study, a rapid, specific, and sensitive detection method for LCDV genotype VII based on loop-mediated isothermal amplification (LAMP) was developed. The LAMP assay, performed using an apparatus with real-time amplification monitoring, was able to specifically detect LCDV genotype VII from clinically positive samples in less than 12 min. In addition, the assay allowed the detection of LCDV in all asymptomatic carrier fish analysed, identified by qPCR, showing an analytical sensitivity of ten copies of viral DNA per reaction. The LCDV LAMP assay has proven to be a promising diagnostic method that can be used easily in fish farms to detect the presence and spread of this iridovirus.

  17. Multi-Detection Events, Probability Density Functions, and Reduced Location Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Schrom, Brian T.

    2016-03-01

    Abstract Several efforts have been made in the Comprehensive Nuclear-Test-Ban Treaty (CTBT) community to assess the benefits of combining detections of radionuclides to improve the location estimates available from atmospheric transport modeling (ATM) backtrack calculations. We present a Bayesian estimation approach rather than a simple dilution field of regard approach to allow xenon detections and non-detections to be combined mathematically. This system represents one possible probabilistic approach to radionuclide event formation. Application of this method to a recent interesting radionuclide event shows a substantial reduction in the location uncertainty of that event.

  18. Parallel Molecular Distributed Detection With Brownian Motion.

    PubMed

    Rogers, Uri; Koh, Min-Sung

    2016-12-01

    This paper explores the in vivo distributed detection of an undesired biological agent's (BAs) biomarkers by a group of biological sized nanomachines in an aqueous medium under drift. The term distributed, indicates that the system information relative to the BAs presence is dispersed across the collection of nanomachines, where each nanomachine possesses limited communication, computation, and movement capabilities. Using Brownian motion with drift, a probabilistic detection and optimal data fusion framework, coined molecular distributed detection, will be introduced that combines theory from both molecular communication and distributed detection. Using the optimal data fusion framework as a guide, simulation indicates that a sub-optimal fusion method exists, allowing for a significant reduction in implementation complexity while retaining BA detection accuracy.

  19. Development of a Loop Mediated Isothermal Amplification (LAMP) - Surface Enhanced Raman spectroscopy (SERS) Assay for the Detection of Salmonella Enterica Serotype Enteritidis.

    PubMed

    Draz, Mohamed Shehata; Lu, Xiaonan

    2016-01-01

    As a major foodborne pathogen, Salmonella enterica serotype Enteritidis is increasingly rising as a global health concern. Here, we developed an integrated assay that combines loop mediated isothermal amplification (LAMP) and surface enhanced Raman spectroscopy (SERS) for DNA detection of S. Enteritidis using specifically designed Raman active Au-nanoprobes. The target DNA was amplified by LAMP and then labeled with Au-nanoprobes comprised of gold nanoparticle-modified with specific cy5/DNA probes to allow the detection by SERS. The sensitivity of the developed LAMP-SERS detection assay (66 CFU/mL) was ~100-fold higher than the conventional polymerase chain reaction (PCR) method. Significantly, this technique allowed highly specific detection of the target DNA of S. Enteritidis and could differentiate it from the DNA of closely related bacterial species or non-specific contamination, making it more accurate and reliable than the standard LAMP technique. The applicability of detection of S. Enteritidis in milk samples using LAMP-SERS assay was validated as well. In sum, the developed LAMP-SERS assay is highly specific and sensitive, and has the potential to be applied for rapid detection of different foodborne pathogens and other microbial contaminants.

  20. Determination of 2-alkylcyclobutanones by combining precolumn derivatization with 1-naphthalenyl hydrazine and ultra-performance liquid chromatography with fluorescence detection.

    PubMed

    Meng, Xiangpeng; Tong, Tong; Wang, Lianrong; Liu, Hanxia; Chan, Wan

    2016-05-01

    2-Alkylcyclobutanones (2-ACBs) are uniquely formed when triglycerides-containing food products are exposed to ionizing radiation. Thus, 2-ACBs have been used as marker molecules to identify irradiated food. Most methods to determine 2-ACBs involve mass spectrometric detection after chromatographic separation. The spectrofluorometer is rarely used to determine 2-ACBs because these molecules do not fluoresce. In this study, we developed an ultra-performance liquid chromatography (UPLC) method to determine 2-ACBs. 2-ACBs were converted into fluorophores after reacting with 1-naphthalenyl hydrazine to facilitate their sensitive and selective detection using a fluorescence detector (FLD). Analysis of 2-ACBs using our developed UPLC-FLD method allows sensitive determination of 2-ACBs at a detection limit of 2 ng 2-ACBs per g of fat (30 pg/injection), which is significantly lower than that of existing analytical methods. After validation for trueness and precision, the method was applied to γ-irradiated chicken samples to determine their 2-ACB content. Comparative studies employing liquid chromatography-tandem mass spectrometric method revealed no systematic difference between the two methods, thereby demonstrating that the proposed UPLC-FLD method can be suitably used to determine 2-ACBs in irradiated foodstuffs. Graphical Abstract Determination of radiation-induced food-borne 2-dodecylcyclobutanone and 2-tetradecylcyclobutanone by combining 1-naphthalenyl hydrazine derivatization and ultra-performance liquid chromatography with fluorescence detection.

  1. Evaluation of a polymerase chain reaction-based system for detection of Salmonella enteritidis, Escherichia coli O157:H7, Listeria spp., and Listeria monocytogenes on fresh fruits and vegetables.

    PubMed

    Shearer, A E; Strapp, C M; Joerger, R D

    2001-06-01

    A polymerase chain reaction (PCR)-based detection system, BAX, was evaluated for its sensitivity in detecting Salmonella Enteritidis, Escherichia coli O157:H7, Listeria sp., and Listeria monocytogenes on fresh produce. Fifteen different types of produce (alfalfa sprouts, green peppers, parsley, white cabbage, radishes, onions, carrots, mushrooms, leaf lettuce, tomatoes, strawberries, cantaloupe, mango, apples, and oranges) were inoculated, in separate studies, with Salmonella Enteritidis, E. coli O157:H7, and L. monocytogenes down to the predicted level of 1 CFU per 25-g sample. Detection by BAX was compared to recovery of the inoculated bacteria by culture methods according to the Food and Drug Administration's (FDA) Bacteriological Analytical Manual (BAM). BAX was essentially as sensitive as the culture-based method in detecting Salmonella Enteritidis and L. monocytogenes and more sensitive than the culture-based method for the detection of E. coli O157:H7 on green pepper, carrot, radish, and sprout samples. Detection of the pathogenic bacteria in samples spiked with a predicted number of less than 10 CFU was possible for most produce samples, but both methods failed to detect L. monocytogenes on carrot samples and one of two mushroom and onion samples spiked with less than 100 CFU. Both BAX and the culture method were also unable to consistently recover low numbers of E. coli O157:H7 from alfalfa sprouts. The PCR method allowed detection of Salmonella Enteritidis, E. coli O157:H7, and L. monocytogenes at least 2 days earlier than the conventional culture methods.

  2. Reducing false-positive detections by combining two stage-1 computer-aided mass detection algorithms

    NASA Astrophysics Data System (ADS)

    Bedard, Noah D.; Sampat, Mehul P.; Stokes, Patrick A.; Markey, Mia K.

    2006-03-01

    In this paper we present a strategy for reducing the number of false-positives in computer-aided mass detection. Our approach is to only mark "consensus" detections from among the suspicious sites identified by different "stage-1" detection algorithms. By "stage-1" we mean that each of the Computer-aided Detection (CADe) algorithms is designed to operate with high sensitivity, allowing for a large number of false positives. In this study, two mass detection methods were used: (1) Heath and Bowyer's algorithm based on the average fraction under the minimum filter (AFUM) and (2) a low-threshold bi-lateral subtraction algorithm. The two methods were applied separately to a set of images from the Digital Database for Screening Mammography (DDSM) to obtain paired sets of mass candidates. The consensus mass candidates for each image were identified by a logical "and" operation of the two CADe algorithms so as to eliminate regions of suspicion that were not independently identified by both techniques. It was shown that by combining the evidence from the AFUM filter method with that obtained from bi-lateral subtraction, the same sensitivity could be reached with fewer false-positives per image relative to using the AFUM filter alone.

  3. Disposable microfluidic sensor arrays for discrimination of antioxidants.

    PubMed

    Park, Seong H; Maruniak, Autumn; Kim, Jisun; Yi, Gi-Ra; Lim, Sung H

    2016-06-01

    A microfluidic colorimetric sensor array was developed for detection and identification of various antioxidants. The sensor was fabricated by a photolithographic method, and consists of an array of printed cross-responsive indicators. The microfluidic design also incorporates pre-activation spots to allow printing of chemically incompatible components separately. Separately printed oxidizer allowed an oxidation of adjacent redox indicators only when aqueous sample was added to the sensor cartridge. Antioxidants were primarily detected by measuring the extent of inhibition of this oxidation reaction. Using this flow-based technique, a clear differentiation of 8 different antioxidants and 4 different teas has been demonstrated with 98.5% sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Method for detecting radiation dose utilizing thermoluminescent material

    DOEpatents

    Miller, Steven D.; McDonald, Joseph C.; Eichner, Fred N.; Tomeraasen, Paul L.

    1991-01-01

    The amount of ionizing radiation to which a thermoluminescent material has been exposed is determined by first cooling the thermoluminescent material to a cryogenic temperature. The thermoluminescent material is then optically stimulated by exposure to ultraviolet light. Visible light emitted by the thermoluminescent material as it is allowed to warm up to room temperature is detected and counted. The thermoluminescent material may be annealed by exposure to ultraviolet light.

  5. A Bayesian Method for the Detection of Item Preknowledge in CAT. Law School Admission Council Computerized Testing Report. LSAC Research Report Series.

    ERIC Educational Resources Information Center

    McLeod, Lori D.; Lewis, Charles; Thissen, David.

    With the increased use of computerized adaptive testing, which allows for continuous testing, new concerns about test security have evolved, one being the assurance that items in an item pool are safeguarded from theft. In this paper, the risk of score inflation and procedures to detect test takers using item preknowledge are explored. When test…

  6. 19 CFR 151.46 - Allowance for detectable moisture and impurities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Allowance for detectable moisture and impurities... Petroleum and Petroleum Products § 151.46 Allowance for detectable moisture and impurities. An allowance for all detectable moisture and impurities present in or upon imported petroleum or petroleum products...

  7. 19 CFR 151.46 - Allowance for detectable moisture and impurities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 2 2013-04-01 2013-04-01 false Allowance for detectable moisture and impurities... Petroleum and Petroleum Products § 151.46 Allowance for detectable moisture and impurities. An allowance for all detectable moisture and impurities present in or upon imported petroleum or petroleum products...

  8. 19 CFR 151.46 - Allowance for detectable moisture and impurities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 2 2014-04-01 2014-04-01 false Allowance for detectable moisture and impurities... Petroleum and Petroleum Products § 151.46 Allowance for detectable moisture and impurities. An allowance for all detectable moisture and impurities present in or upon imported petroleum or petroleum products...

  9. 19 CFR 151.46 - Allowance for detectable moisture and impurities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false Allowance for detectable moisture and impurities... Petroleum and Petroleum Products § 151.46 Allowance for detectable moisture and impurities. An allowance for all detectable moisture and impurities present in or upon imported petroleum or petroleum products...

  10. 19 CFR 151.46 - Allowance for detectable moisture and impurities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Allowance for detectable moisture and impurities... Petroleum and Petroleum Products § 151.46 Allowance for detectable moisture and impurities. An allowance for all detectable moisture and impurities present in or upon imported petroleum or petroleum products...

  11. Radiation sensitive area detection device and method

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Hecht, Diana L. (Inventor); Witherow, William K. (Inventor)

    1991-01-01

    A radiation sensitive area detection device for use in conjunction with an X ray, ultraviolet or other radiation source is provided which comprises a phosphor containing film which releases a stored diffraction pattern image in response to incoming light or other electromagnetic wave. A light source such as a helium-neon laser, an optical fiber capable of directing light from the laser source onto the phosphor film and also capable of channelling the fluoresced light from the phosphor film to an integrating sphere which directs the light to a signal processing means including a light receiving means such as a photomultiplier tube. The signal processing means allows translation of the fluoresced light in order to detect the original pattern caused by the diffraction of the radiation by the original sample. The optical fiber is retained directly in front of the phosphor screen by a thin metal holder which moves up and down across the phosphor screen and which features a replaceable pinhole which allows easy adjustment of the resolution of the light projected onto the phosphor film. The device produces near real time images with high spatial resolution and without the distortion that accompanies prior art devices employing photomultiplier tubes. A method is also provided for carrying out radiation area detection using the device of the invention.

  12. Bioluminescence-based system for rapid detection of natural transformation.

    PubMed

    Santala, Ville; Karp, Matti; Santala, Suvi

    2016-07-01

    Horizontal gene transfer plays a significant role in bacterial evolution and has major clinical importance. Thus, it is vital to understand the mechanisms and kinetics of genetic transformations. Natural transformation is the driving mechanism for horizontal gene transfer in diverse genera of bacteria. Our study introduces a simple and rapid method for the investigation of natural transformation. This highly sensitive system allows the detection of a transformation event directly from a bacterial population without any separation step or selection of cells. The system is based on the bacterial luciferase operon from Photorhabdus luminescens The studied molecular tools consist of the functional modules luxCDE and luxAB, which involve a replicative plasmid and an integrative gene cassette. A well-established host for bacterial genetic investigations, Acinetobacter baylyi ADP1, is used as the model bacterium. We show that natural transformation followed by homologous recombination or plasmid recircularization can be readily detected in both actively growing and static biofilm-like cultures, including very rare transformation events. The system allows the detection of natural transformation within 1 h of introducing sample DNA into the culture. The introduced method provides a convenient means to study the kinetics of natural transformation under variable conditions and perturbations. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Development of a novel single tube nested PCR for enhanced detection of cytomegalovirus DNA from dried blood spots.

    PubMed

    Atkinson, C; Emery, V C; Griffiths, P D

    2014-02-01

    Newborn screening for congenital cytomegalovirus (CCMV) using dried blood spots (DBS) has been proposed because many developed countries have DBS screening programmes in place for other diseases. The aim of this study was to develop a rapid, single tube nested polymerase chain reaction (PCR) method for enhanced detection of CMV from DBS compared to existing (single target) real time PCRs. The new method was compared with existing real time PCRs for sensitivity and specificity. Overall sensitivity of the single target PCR assays in both asymptomatic and symptomatic infants with laboratory confirmed congenital CMV was 69% (CMV PCR or culture positive before day 21 of life). In contrast, the single tube nested assay had an increased sensitivity of 81% with100% specificity. Overall the assay detected CMV from a DBS equivalent to an original blood sample which contained 500IU/ml. In conclusion this single tube nested methodology allows simultaneous amplification and detection of CMV DNA in 1.5h removing the associated contamination risk of a two step nested PCR. Owing to its increased sensitivity, it has the potential to be used as a screening assay and ultimately allow early identification and intervention for children with congenital CMV. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Segmentation of blurred objects using wavelet transform: application to x-ray images

    NASA Astrophysics Data System (ADS)

    Barat, Cecile S.; Ducottet, Christophe; Bilgot, Anne; Desbat, Laurent

    2004-02-01

    First, we present a wavelet-based algorithm for edge detection and characterization, which is an adaptation of Mallat and Hwang"s method. This algorithm relies on a modelization of contours as smoothed singularities of three particular types (transitions, peaks and lines). On the one hand, it allows to detect and locate edges at an adapted scale. On the other hand, it is able to identify the type of each detected edge point and to measure its amplitude and smoothing size. The latter parameters represent respectively the contrast and the smoothness level of the edge point. Second, we explain that this method has been integrated in a 3D bone surface reconstruction algorithm designed for computer-assisted and minimal invasive orthopaedic surgery. In order to decrease the dose to the patient and to obtain rapidly a 3D image, we propose to identify a bone shape from few X-ray projections by using statistical shape models registered to segmented X-ray projections. We apply this approach to pedicle screw insertion (scoliosis, fractures...) where ten to forty percent of the screws are known to be misplaced. In this context, the proposed edge detection algorithm allows to overcome the major problem of vertebrae segmentation in the X-ray images.

  15. Detection of Biological Pathogens Using Multiple Wireless Magnetoelastic Biosensors

    NASA Astrophysics Data System (ADS)

    Shen, Wen

    A number of recent, high-profile incidences of food-borne illness spreading through the food supply and the use of anthrax by terrorists after the September 11, 2001 attacks have demonstrated the need for new technologies that can rapidly detect the presence of biological pathogens. A bevy of biosensors show excellent detection sensitivity and specificity. However, false positive and false negative signals remain one of the primary reasons that many of these newly developed biosensors have not found application in the marketplace. The research described in this dissertation focuses on developing a free-standing magnetoelastic based bio-sensing system using a pulse method. This method allows fast detection, eliminates the bias magnetic field that is necessary in current methods, makes the system more simply and suitable for in-field detection. This system has two pairs of transformer coils, where a measurement sensor and a control sensor can be put in each pair of coils. The control sensor is used to compensate for environmental variables. The effect of pulse power on the performance of the magnetoelastic sensors in the pulse system is studied. The system is found to have excellent stability, good detection repeatability when used with multiple sensors. This research has investigated and demonstrated a multiple sensors approach. Because it will involve the simultaneous measurement of many sensors, it will significantly reduce problems encountered with false positive indications. The positioning and interference of sensors are investigated. By adding a multi-channel structure to the pulse detection system, the effect of sensor interference is minimized. The result of the repeatability test shows that the standard deviation when measuring three 1 mm magnetoelastic sensors is around 500 Hz, which is smaller than the minimum requirement for actual spores/bacteria detection. Magnetoelastic sensors immobilized with JRB7 phages and E2 phages have been used to specifically detect Bacillus anthracis spores and Salmonella typhimurium bacteria. The real-time monitoring of the detection of B. anthracis spores in a flowing system was performed using 2 mm sensors and 1 mm sensors. The detection of S. typhimurium in air has been performed using the pulse based system with both single and grouped sensors. Because grouped sensor detection involves the simultaneous measurement of many sensors, statistical evaluation shows that it can significantly reduce problems encountered with false positive indications. This method has been implemented in an investigation of a method that allows direct detection of S. typhimurium on cantaloupe surfaces. It has been demonstrated that multiple E2 phage based magnetoelastic sensors are able to detect Salmonella directly on fresh cantaloupe surfaces. Confirmation of the spore or bacteria binding to the sensor surfaces was achieved through SEM study of the sensor surfaces.

  16. Salmonella detection in poultry samples. Comparison of two commercial real-time PCR systems with culture methods for the detection of Salmonella spp. in environmental and fecal samples of poultry.

    PubMed

    Sommer, D; Enderlein, D; Antakli, A; Schönenbrücher, H; Slaghuis, J; Redmann, T; Lierz, M

    2012-01-01

    The efficiency of two commercial PCR methods based on real-time technology, the foodproof® Salmonella detection system and the BAX® PCR Assay Salmonella system was compared to standardized culture methods (EN ISO 6579:2002 - Annex D) for the detection of Salmonella spp. in poultry samples. Four sample matrices (feed, dust, boot swabs, feces) obtained directly from poultry flocks, as well as artificially spiked samples of the same matrices, were used. All samples were tested for Salmonella spp. using culture methods first as the gold standard. In addition samples spiked with Salmonella Enteridis were tested to evaluate the sensitivity of both PCR methods. Furthermore all methods were evaluated in an annual ring-trial of the National Salmonella Reference Laboratory of Germany. Salmonella detection in the matrices feed, dust and boot swabs were comparable in both PCR systems whereas the results from feces differed markedly. The quality, especially the freshness, of the fecal samples had an influence on the sensitivity of the real-time PCR and the results of the culture methods. In fresh fecal samples an initial spiking level of 100cfu/25g Salmonella Enteritidis was detected. Two-days-dried fecal samples allowed the detection of 14cfu/25g. Both real- time PCR protocols appear to be suitable for the detection of Salmonella spp. in all four matrices. The foodproof® system detected eight samples more to be positive compared to the BAX® system, but had a potential false positive result in one case. In 7-days-dried samples none of the methods was able to detect Salmonella likely through letal cell damage. In general the advantage of PCR analyses over the culture method is the reduction of working time from 4-5 days to only 2 days. However, especially for the analysis of fecal samples official validation should be conducted according to the requirement of EN ISO6579:2002 - Annex D.

  17. Automated detection of hospital outbreaks: A systematic review of methods.

    PubMed

    Leclère, Brice; Buckeridge, David L; Boëlle, Pierre-Yves; Astagneau, Pascal; Lepelletier, Didier

    2017-01-01

    Several automated algorithms for epidemiological surveillance in hospitals have been proposed. However, the usefulness of these methods to detect nosocomial outbreaks remains unclear. The goal of this review was to describe outbreak detection algorithms that have been tested within hospitals, consider how they were evaluated, and synthesize their results. We developed a search query using keywords associated with hospital outbreak detection and searched the MEDLINE database. To ensure the highest sensitivity, no limitations were initially imposed on publication languages and dates, although we subsequently excluded studies published before 2000. Every study that described a method to detect outbreaks within hospitals was included, without any exclusion based on study design. Additional studies were identified through citations in retrieved studies. Twenty-nine studies were included. The detection algorithms were grouped into 5 categories: simple thresholds (n = 6), statistical process control (n = 12), scan statistics (n = 6), traditional statistical models (n = 6), and data mining methods (n = 4). The evaluation of the algorithms was often solely descriptive (n = 15), but more complex epidemiological criteria were also investigated (n = 10). The performance measures varied widely between studies: e.g., the sensitivity of an algorithm in a real world setting could vary between 17 and 100%. Even if outbreak detection algorithms are useful complementary tools for traditional surveillance, the heterogeneity in results among published studies does not support quantitative synthesis of their performance. A standardized framework should be followed when evaluating outbreak detection methods to allow comparison of algorithms across studies and synthesis of results.

  18. Efficient IDUA Gene Mutation Detection with Combined Use of dHPLC and Dried Blood Samples

    PubMed Central

    Duarte, Ana Joana; Vieira, Luis

    2013-01-01

    Objectives. Development of a simple mutation directed method in order to allow lowering the cost of mutation testing using an easily obtainable biological material. Assessment of the feasibility of such method was tested using a GC-rich amplicon. Design and Methods. A method of denaturing high-performance liquid chromatography (dHPLC) was improved and implemented as a technique for the detection of variants in exon 9 of the IDUA gene. The optimized method was tested in 500 genomic DNA samples obtained from dried blood spots (DBS). Results. With this dHPLC approach it was possible to detect different variants, including the common p.Trp402Ter mutation in the IDUA gene. The high GC content did not interfere with the resolution and reliability of this technique, and discrimination of G-C transversions was also achieved. Conclusion. This PCR-based dHPLC method is proved to be a rapid, a sensitive, and an excellent option for screening numerous samples obtained from DBS. Furthermore, it resulted in the consistent detection of clearly distinguishable profiles of the common p.Trp402Ter IDUA mutation with an advantageous balance of cost and technical requirements. PMID:27335677

  19. A photometric high-throughput method for identification of electrochemically active bacteria using a WO3 nanocluster probe.

    PubMed

    Yuan, Shi-Jie; He, Hui; Sheng, Guo-Ping; Chen, Jie-Jie; Tong, Zhong-Hua; Cheng, Yuan-Yuan; Li, Wen-Wei; Lin, Zhi-Qi; Zhang, Feng; Yu, Han-Qing

    2013-01-01

    Electrochemically active bacteria (EAB) are ubiquitous in environment and have important application in the fields of biogeochemistry, environment, microbiology and bioenergy. However, rapid and sensitive methods for EAB identification and evaluation of their extracellular electron transfer ability are still lacking. Herein we report a novel photometric method for visual detection of EAB by using an electrochromic material, WO(3) nanoclusters, as the probe. This method allowed a rapid identification of EAB within 5 min and a quantitative evaluation of their extracellular electron transfer abilities. In addition, it was also successfully applied for isolation of EAB from environmental samples. Attributed to its rapidness, high reliability, easy operation and low cost, this method has high potential for practical implementation of EAB detection and investigations.

  20. Online two-stage association method for robust multiple people tracking

    NASA Astrophysics Data System (ADS)

    Lv, Jingqin; Fang, Jiangxiong; Yang, Jie

    2011-07-01

    Robust multiple people tracking is very important for many applications. It is a challenging problem due to occlusion and interaction in crowded scenarios. This paper proposes an online two-stage association method for robust multiple people tracking. In the first stage, short tracklets generated by linking people detection responses grow longer by particle filter based tracking, with detection confidence embedded into the observation model. And, an examining scheme runs at each frame for the reliability of tracking. In the second stage, multiple people tracking is achieved by linking tracklets to generate trajectories. An online tracklet association method is proposed to solve the linking problem, which allows applications in time-critical scenarios. This method is evaluated on the popular CAVIAR dataset. The experimental results show that our two-stage method is robust.

  1. Assessing and optimizing infrasound network performance: application to remote volcano monitoring

    NASA Astrophysics Data System (ADS)

    Tailpied, D.; LE Pichon, A.; Marchetti, E.; Kallel, M.; Ceranna, L.

    2014-12-01

    Infrasound is an efficient monitoring technique to remotely detect and characterize explosive sources such as volcanoes. Simulation methods incorporating realistic source and propagation effects have been developed to quantify the detection capability of any network. These methods can also be used to optimize the network configuration (number of stations, geographical location) in order to reduce the detection thresholds taking into account seasonal effects in infrasound propagation. Recent studies have shown that remote infrasound observations can provide useful information about the eruption chronology and the released acoustic energy. Comparisons with near-field recordings allow evaluating the potential of these observations to better constrain source parameters when other monitoring techniques (satellite, seismic, gas) are not available or cannot be made. Because of its regular activity, the well-instrumented Mount Etna is in Europe a unique natural repetitive source to test and optimize detection and simulation methods. The closest infrasound station part of the International Monitoring System is located in Tunisia (IS48). In summer, during the downwind season, it allows an unambiguous identification of signals associated with Etna eruptions. Under the European ARISE project (Atmospheric dynamics InfraStructure in Europe, FP7/2007-2013), experimental arrays have been installed in order to characterize infrasound propagation in different ranges of distance and direction. In addition, a small-aperture array, set up on the flank by the University of Firenze, has been operating since 2007. Such an experimental setting offers an opportunity to address the societal benefits that can be achieved through routine infrasound monitoring.

  2. Automated touch screen device for recording complex rodent behaviors

    PubMed Central

    Mabrouk, O.S.; Dripps, I.J.; Ramani, S.; Chang, C.; Han, J.L.; Rice, KC; Jutkiewicz, E.M.

    2016-01-01

    Background Monitoring mouse behavior is a critical step in the development of modern pharmacotherapies. New Method Here we describe the application of a novel method that utilizes a touch display computer (tablet) and software to detect, record, and report fine motor behaviors. A consumer-grade tablet device is placed in the bottom of a specially made acrylic cage allowing the animal to walk on the device (MouseTrapp). We describe its application in open field (for general locomotor studies) which measures step lengths and velocity. The device can perform light-dark (anxiety) tests by illuminating half of the screen and keeping the other half darkened. A divider is built into the lid of the device allowing the animal free access to either side. Results Treating mice with amphetamine and the delta opioid peptide receptor agonist SNC80 stimulated locomotor activity on the device. Amphetamine increased step velocity but not step length during its peak effect (40–70 min after treatment), thus indicating detection of subtle amphetamine-induced effects. Animals showed a preference (74% of time spent) for the darkened half compared to the illuminated side. Comparison with Existing Method Animals were videotaped within the chamber to compare quadrant crosses to detected motion on the device. The slope, duration and magnitude of quadrant crosses tightly correlated with overall locomotor activity as detected by Mousetrapp. Conclusions We suggest that modern touch display devices such as MouseTrapp will be an important step toward automation of behavioral analyses for characterizing phenotypes and drug effects. PMID:24952323

  3. Mass Spectrometry Based Ultrasensitive DNA Methylation Profiling Using Target Fragmentation Assay.

    PubMed

    Lin, Xiang-Cheng; Zhang, Ting; Liu, Lan; Tang, Hao; Yu, Ru-Qin; Jiang, Jian-Hui

    2016-01-19

    Efficient tools for profiling DNA methylation in specific genes are essential for epigenetics and clinical diagnostics. Current DNA methylation profiling techniques have been limited by inconvenient implementation, requirements of specific reagents, and inferior accuracy in quantifying methylation degree. We develop a novel mass spectrometry method, target fragmentation assay (TFA), which enable to profile methylation in specific sequences. This method combines selective capture of DNA target from restricted cleavage of genomic DNA using magnetic separation with MS detection of the nonenzymatic hydrolysates of target DNA. This method is shown to be highly sensitive with a detection limit as low as 0.056 amol, allowing direct profiling of methylation using genome DNA without preamplification. Moreover, this method offers a unique advantage in accurately determining DNA methylation level. The clinical applicability was demonstrated by DNA methylation analysis using prostate tissue samples, implying the potential of this method as a useful tool for DNA methylation profiling in early detection of related diseases.

  4. The Earthshine Project: Applications to the Search of Exoearths

    NASA Astrophysics Data System (ADS)

    Montañés-Rodríguez, P.; Pallé Bagó, E.

    2010-10-01

    To be able to detect a biosphere in an extrasolar planet, life in that planet should have been able to alter the original composition of the planetary atmosphere. In this way, an external observer could detect the chemical disequilibrium introduced by living organisms in the planet. The earthshine technique has allowed us to determine the best disk-integrated planetary features that we could use to find life in an exoplanet similar to Earth. Different observing methods have been investigated. In this poster, we summarize the scientific goals that could be reached using a variety of observational methods.

  5. Automatic Authorship Detection Using Textual Patterns Extracted from Integrated Syntactic Graphs

    PubMed Central

    Gómez-Adorno, Helena; Sidorov, Grigori; Pinto, David; Vilariño, Darnes; Gelbukh, Alexander

    2016-01-01

    We apply the integrated syntactic graph feature extraction methodology to the task of automatic authorship detection. This graph-based representation allows integrating different levels of language description into a single structure. We extract textual patterns based on features obtained from shortest path walks over integrated syntactic graphs and apply them to determine the authors of documents. On average, our method outperforms the state of the art approaches and gives consistently high results across different corpora, unlike existing methods. Our results show that our textual patterns are useful for the task of authorship attribution. PMID:27589740

  6. Automated detection of hospital outbreaks: A systematic review of methods

    PubMed Central

    Buckeridge, David L.; Lepelletier, Didier

    2017-01-01

    Objectives Several automated algorithms for epidemiological surveillance in hospitals have been proposed. However, the usefulness of these methods to detect nosocomial outbreaks remains unclear. The goal of this review was to describe outbreak detection algorithms that have been tested within hospitals, consider how they were evaluated, and synthesize their results. Methods We developed a search query using keywords associated with hospital outbreak detection and searched the MEDLINE database. To ensure the highest sensitivity, no limitations were initially imposed on publication languages and dates, although we subsequently excluded studies published before 2000. Every study that described a method to detect outbreaks within hospitals was included, without any exclusion based on study design. Additional studies were identified through citations in retrieved studies. Results Twenty-nine studies were included. The detection algorithms were grouped into 5 categories: simple thresholds (n = 6), statistical process control (n = 12), scan statistics (n = 6), traditional statistical models (n = 6), and data mining methods (n = 4). The evaluation of the algorithms was often solely descriptive (n = 15), but more complex epidemiological criteria were also investigated (n = 10). The performance measures varied widely between studies: e.g., the sensitivity of an algorithm in a real world setting could vary between 17 and 100%. Conclusion Even if outbreak detection algorithms are useful complementary tools for traditional surveillance, the heterogeneity in results among published studies does not support quantitative synthesis of their performance. A standardized framework should be followed when evaluating outbreak detection methods to allow comparison of algorithms across studies and synthesis of results. PMID:28441422

  7. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red

    NASA Astrophysics Data System (ADS)

    Maes, Thomas; Jessop, Rebecca; Wellner, Nikolaus; Haupt, Karsten; Mayes, Andrew G.

    2017-03-01

    A new approach is presented for analysis of microplastics in environmental samples, based on selective fluorescent staining using Nile Red (NR), followed by density-based extraction and filtration. The dye adsorbs onto plastic surfaces and renders them fluorescent when irradiated with blue light. Fluorescence emission is detected using simple photography through an orange filter. Image-analysis allows fluorescent particles to be identified and counted. Magnified images can be recorded and tiled to cover the whole filter area, allowing particles down to a few micrometres to be detected. The solvatochromic nature of Nile Red also offers the possibility of plastic categorisation based on surface polarity characteristics of identified particles. This article details the development of this staining method and its initial cross-validation by comparison with infrared (IR) microscopy. Microplastics of different sizes could be detected and counted in marine sediment samples. The fluorescence staining identified the same particles as those found by scanning a filter area with IR-microscopy.

  8. Nine-analyte detection using an array-based biosensor

    NASA Technical Reports Server (NTRS)

    Taitt, Chris Rowe; Anderson, George P.; Lingerfelt, Brian M.; Feldstein, s. Mark. J.; Ligler, Frances S.

    2002-01-01

    A fluorescence-based multianalyte immunosensor has been developed for simultaneous analysis of multiple samples. While the standard 6 x 6 format of the array sensor has been used to analyze six samples for six different analytes, this same format has the potential to allow a single sample to be tested for 36 different agents. The method described herein demonstrates proof of principle that the number of analytes detectable using a single array can be increased simply by using complementary mixtures of capture and tracer antibodies. Mixtures were optimized to allow detection of closely related analytes without significant cross-reactivity. Following this facile modification of patterning and assay procedures, the following nine targets could be detected in a single 3 x 3 array: Staphylococcal enterotoxin B, ricin, cholera toxin, Bacillus anthracis Sterne, Bacillus globigii, Francisella tularensis LVS, Yersiniapestis F1 antigen, MS2 coliphage, and Salmonella typhimurium. This work maximizes the efficiency and utility of the described array technology, increasing only reagent usage and cost; production and fabrication costs are not affected.

  9. Single photon detection and signal analysis for high sensitivity dosimetry based on optically stimulated luminescence with beryllium oxide

    NASA Astrophysics Data System (ADS)

    Radtke, J.; Sponner, J.; Jakobi, C.; Schneider, J.; Sommer, M.; Teichmann, T.; Ullrich, W.; Henniger, J.; Kormoll, T.

    2018-01-01

    Single photon detection applied to optically stimulated luminescence (OSL) dosimetry is a promising approach due to the low level of luminescence light and the known statistical behavior of single photon events. Time resolved detection allows to apply a variety of different and independent data analysis methods. Furthermore, using amplitude modulated stimulation impresses time- and frequency information into the OSL light and therefore allows for additional means of analysis. Considering the impressed frequency information, data analysis by using Fourier transform algorithms or other digital filters can be used for separating the OSL signal from unwanted light or events generated by other phenomena. This potentially lowers the detection limits of low dose measurements and might improve the reproducibility and stability of obtained data. In this work, an OSL system based on a single photon detector, a fast and accurate stimulation unit and an FPGA is presented. Different analysis algorithms which are applied to the single photon data are discussed.

  10. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red

    PubMed Central

    Maes, Thomas; Jessop, Rebecca; Wellner, Nikolaus; Haupt, Karsten; Mayes, Andrew G.

    2017-01-01

    A new approach is presented for analysis of microplastics in environmental samples, based on selective fluorescent staining using Nile Red (NR), followed by density-based extraction and filtration. The dye adsorbs onto plastic surfaces and renders them fluorescent when irradiated with blue light. Fluorescence emission is detected using simple photography through an orange filter. Image-analysis allows fluorescent particles to be identified and counted. Magnified images can be recorded and tiled to cover the whole filter area, allowing particles down to a few micrometres to be detected. The solvatochromic nature of Nile Red also offers the possibility of plastic categorisation based on surface polarity characteristics of identified particles. This article details the development of this staining method and its initial cross-validation by comparison with infrared (IR) microscopy. Microplastics of different sizes could be detected and counted in marine sediment samples. The fluorescence staining identified the same particles as those found by scanning a filter area with IR-microscopy. PMID:28300146

  11. Reducing health risk assigned to organic emissions from a chemical weapons incinerator.

    PubMed

    Laman, David M; Weiler, B Douglas; Skeen, Rodney S

    2013-03-01

    Organic emissions from a chemical weapons incinerator have been characterized with an improved set of analytical methods to reduce the human health risk assigned to operations of the facility. A gas chromatography/mass selective detection method with substantially reduced detection limits has been used in conjunction with scanning electron microscopy/energy dispersive X-ray spectrometry and Fourier transform infrared microscopy to improve the speciation of semi-volatile and non-volatile organics emitted from the incinerator. The reduced detection limits have allowed a significant reduction in the assumed polycyclic aromatic hydrocarbon (PAH) and aminobiphenyl (ABP) emission rates used as inputs to the human health risk assessment for the incinerator. A mean factor of 17 decrease in assigned human health risk is realized for six common local exposure scenarios as a result of the reduced PAH and ABP detection limits.

  12. Detection of ventricular fibrillation from multiple sensors

    NASA Astrophysics Data System (ADS)

    Lindsley, Stephanie A.; Ludeman, Lonnie C.

    1992-07-01

    Ventricular fibrillation is a potentially fatal medical condition in which the flow of blood through the body is terminated due to the lack of an organized electric potential in the heart. Automatic implantable defibrillators are becoming common as a means for helping patients confronted with repeated episodes of ventricular fibrillation. Defibrillators must first accurately detect ventricular fibrillation and then provide an electric shock to the heart to allow a normal sinus rhythm to resume. The detection of ventricular fibrillation by using an array of multiple sensors to distinguish between signals recorded from single (normal sinus rhythm) or multiple (ventricular fibrillation) sources is presented. An idealistic model is presented and the analysis of data generated by this model suggests that the method is promising as a method for accurately and quickly detecting ventricular fibrillation from signals recorded from sensors placed on the epicardium.

  13. Global Detection of Live Virtual Machine Migration Based on Cellular Neural Networks

    PubMed Central

    Xie, Kang; Yang, Yixian; Zhang, Ling; Jing, Maohua; Xin, Yang; Li, Zhongxian

    2014-01-01

    In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM) migration detection algorithm based on the cellular neural networks (CNNs), is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI) implementation allowing the VM migration detection to be performed better. PMID:24959631

  14. Global detection of live virtual machine migration based on cellular neural networks.

    PubMed

    Xie, Kang; Yang, Yixian; Zhang, Ling; Jing, Maohua; Xin, Yang; Li, Zhongxian

    2014-01-01

    In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM) migration detection algorithm based on the cellular neural networks (CNNs), is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI) implementation allowing the VM migration detection to be performed better.

  15. EVALUATION OF OPTICAL DETECTION METHODS FOR WATERBORNE SUSPENSIONS

    EPA Science Inventory

    Turbidimeters and optical paricle counters (OPCs) are used to monitor particulate matter in water. The response from these instruments is governed by the optical properties of the suspension and the instrument design. The recommended design criteria for turbidimeters allows for l...

  16. Application of the laser to the study of pathogenic fungi.

    PubMed

    Thibaut, M

    1979-05-15

    Laser microanalysis has been applied to the study of pathogenic fungi. Such a method allows chemical information to be obtained and permits the detection of 74 elements in the periodic system of Mendeleev from lithium (3) to uranium (92).

  17. A Real-Time Near-Infrared Fluorescence Imaging Method for the Detection of Oral Cancers in Mice Using an Indocyanine Green-Labeled Podoplanin Antibody.

    PubMed

    Ito, Akihiro; Ohta, Mitsuhiko; Kato, Yukinari; Inada, Shunko; Kato, Toshio; Nakata, Susumu; Yatabe, Yasushi; Goto, Mitsuo; Kaneda, Norio; Kurita, Kenichi; Nakanishi, Hayao; Yoshida, Kenji

    2018-01-01

    Podoplanin is distinctively overexpressed in oral squamous cell carcinoma than oral benign neoplasms and plays a crucial role in the pathogenesis and metastasis of oral squamous cell carcinoma but its diagnostic application is quite limited. Here, we report a new near-infrared fluorescence imaging method using an indocyanine green (ICG)-labeled anti-podoplanin antibody and a desktop/a handheld ICG detection device for the visualization of oral squamous cell carcinoma-xenografted tumors in nude mice. Both near-infrared imaging methods using a desktop (in vivo imaging system: IVIS) and a handheld device (photodynamic eye: PDE) successfully detected oral squamous cell carcinoma tumors in nude mice in a podoplanin expression-dependent manner with comparable sensitivity. Of these 2 devices, only near-infrared imaging methods using a handheld device visualized oral squamous cell carcinoma xenografts in mice in real time. Furthermore, near-infrared imaging methods using the handheld device (PDE) could detect smaller podoplanin-positive oral squamous cell carcinoma tumors than a non-near-infrared, autofluorescence-based imaging method. Based on these results, a near-infrared imaging method using an ICG-labeled anti-podoplanin antibody and a handheld detection device (PDE) allows the sensitive, semiquantitative, and real-time imaging of oral squamous cell carcinoma tumors and therefore represents a useful tool for the detection and subsequent monitoring of malignant oral neoplasms in both preclinical and some clinical settings.

  18. A Real-Time Near-Infrared Fluorescence Imaging Method for the Detection of Oral Cancers in Mice Using an Indocyanine Green–Labeled Podoplanin Antibody

    PubMed Central

    Ito, Akihiro; Ohta, Mitsuhiko; Kato, Yukinari; Inada, Shunko; Kato, Toshio; Nakata, Susumu; Yatabe, Yasushi; Goto, Mitsuo; Kaneda, Norio; Kurita, Kenichi; Nakanishi, Hayao; Yoshida, Kenji

    2018-01-01

    Podoplanin is distinctively overexpressed in oral squamous cell carcinoma than oral benign neoplasms and plays a crucial role in the pathogenesis and metastasis of oral squamous cell carcinoma but its diagnostic application is quite limited. Here, we report a new near-infrared fluorescence imaging method using an indocyanine green (ICG)–labeled anti-podoplanin antibody and a desktop/a handheld ICG detection device for the visualization of oral squamous cell carcinoma–xenografted tumors in nude mice. Both near-infrared imaging methods using a desktop (in vivo imaging system: IVIS) and a handheld device (photodynamic eye: PDE) successfully detected oral squamous cell carcinoma tumors in nude mice in a podoplanin expression–dependent manner with comparable sensitivity. Of these 2 devices, only near-infrared imaging methods using a handheld device visualized oral squamous cell carcinoma xenografts in mice in real time. Furthermore, near-infrared imaging methods using the handheld device (PDE) could detect smaller podoplanin-positive oral squamous cell carcinoma tumors than a non-near-infrared, autofluorescence-based imaging method. Based on these results, a near-infrared imaging method using an ICG-labeled anti-podoplanin antibody and a handheld detection device (PDE) allows the sensitive, semiquantitative, and real-time imaging of oral squamous cell carcinoma tumors and therefore represents a useful tool for the detection and subsequent monitoring of malignant oral neoplasms in both preclinical and some clinical settings. PMID:29649929

  19. Water-Tree Modelling and Detection for Underground Cables

    NASA Astrophysics Data System (ADS)

    Chen, Qi

    In recent years, aging infrastructure has become a major concern for the power industry. Since its inception in early 20th century, the electrical system has been the cornerstone of an industrial society. Stable and uninterrupted delivery of electrical power is now a base necessity for the modern world. As the times march-on, however, the electrical infrastructure ages and there is the inevitable need to renew and replace the existing system. Unfortunately, due to time and financial constraints, many electrical systems today are forced to operate beyond their original design and power utilities must find ways to prolong the lifespan of older equipment. Thus, the concept of preventative maintenance arises. Preventative maintenance allows old equipment to operate longer and at better efficiency, but in order to implement preventative maintenance, the operators must know minute details of the electrical system, especially some of the harder to assess issues such water-tree. Water-tree induced insulation degradation is a problem typically associated with older cable systems. It is a very high impedance phenomenon and it is difficult to detect using traditional methods such as Tan-Delta or Partial Discharge. The proposed dissertation studies water-tree development in underground cables, potential methods to detect water-tree location and water-tree severity estimation. The dissertation begins by developing mathematical models of water-tree using finite element analysis. The method focuses on surface-originated vented tree, the most prominent type of water-tree fault in the field. Using the standard operation parameters of North American electrical systems, the water-tree boundary conditions are defined. By applying finite element analysis technique, the complex water-tree structure is broken down to homogeneous components. The result is a generalized representation of water-tree capacitance at different stages of development. The result from the finite element analysis is used to model water-tree in large system. Both empirical measurements and the mathematical model show that the impedance of early-stage water-tree is extremely large. As the result, traditional detection methods such Tan-Delta or Partial Discharge are not effective due to the excessively high accuracy requirement. A high-frequency pulse detection method is developed instead. The water-tree impedance is capacitive in nature and it can be reduced to manageable level by high-frequency inputs. The method is able to determine the location of early-stage water-tree in long-distance cables using economically feasible equipment. A pattern recognition method is developed to estimate the severity of water-tree using its pulse response from the high-frequency test method. The early-warning system for water-tree appearance is a tool developed to assist the practical implementation of the high-frequency pulse detection method. Although the equipment used by the detection method is economically feasible, it is still a specialized test and not designed for constant monitoring of the system. The test also place heavy stress on the cable and it is most effective when the cable is taken offline. As the result, utilities need a method to estimate the likelihood of water-tree presence before subjecting the cable to the specialized test. The early-warning system takes advantage of naturally occurring high-frequency events in the system and uses a deviation-comparison method to estimate the probability of water-tree presence on the cable. If the likelihood is high, then the utility can use the high-frequency pulse detection method to obtain accurate results. Specific pulse response patterns can be used to calculate the capacitance of water-tree. The calculated result, however, is subjected to margins of error due to limitations from the real system. There are both long-term and short-term methods to improve the accuracy. Computation algorithm improvement allows immediate improvement on accuracy of the capacitance estimation. The probability distribution of the calculation solution showed that improvements in waveform time-step measurement allow fundamental improves to the overall result.

  20. Development of a Native Fractionation Antigen Microarray for Autoantibody Profiling in Breast Cancer

    DTIC Science & Technology

    2011-10-01

    Antigen Microarray for Autoantibody Profiling in Breast Cancer PRINCIPAL INVESTIGATOR: Brian C.-S. Liu, Ph.D...Profiling in Breast Cancer 5b. GRANT NUMBER W81XWH-09-1-0684 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Brian C.-S. Liu...NOTES 14. ABSTRACT The humoral response of a cancer patient may allow earlier detection of cancer than current methods allow. If so, the serum

  1. Method for curing polymers using variable-frequency microwave heating

    DOEpatents

    Lauf, R.J.; Bible, D.W.; Paulauskas, F.L.

    1998-02-24

    A method for curing polymers incorporating a variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity is disclosed. By varying the frequency of the microwave signal, non-uniformities within the cavity are minimized, thereby achieving a more uniform cure throughout the workpiece. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. The furnace cavity may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing. 15 figs.

  2. Novel detection method for chemiluminescence derived from the Kinase-Glo luminescent kinase assay platform: Advantages over traditional microplate luminometers.

    PubMed

    Bell, Ryan A V; Storey, Kenneth B

    2014-01-01

    The efficacy of cellular signal transduction is of paramount importance for the proper functioning of a cell and an organism as a whole. Protein kinases are responsible for much of this transmission and thus have been the focal point of extensive research. While there are numerous commercially available protein kinase assays, the Kinase-Glo luminescent kinase assay (Promega) provides an easy-to-use and high throughput platform for determining protein kinase activity. This assay is said to require the use of a microplate spectrophotometer capable of detecting a luminescent signal. This study shows that:•The ChemiGenius Bioimaging system (Syngene), typically used for visualizing chemiluminescence from Western blots, provides an alternative detection system for Kinase-Glo luminescence.•The novel detection system confers an advantage over traditional luminometers, in that it allows visualization of the luminescent wells, which allows for the real-time analysis and correction of experimental errors (i.e. bubble formation).•Determining kinase kinetics using this detection system produced comparable results to previous studies on the same enzyme (i.e. glycogen synthase kinase 3).

  3. Quantifying the effect of colorization enhancement on mammogram images

    NASA Astrophysics Data System (ADS)

    Wojnicki, Paul J.; Uyeda, Elizabeth; Micheli-Tzanakou, Evangelia

    2002-04-01

    Current methods of radiological displays provide only grayscale images of mammograms. The limitation of the image space to grayscale provides only luminance differences and textures as cues for object recognition within the image. However, color can be an important and significant cue in the detection of shapes and objects. Increasing detection ability allows the radiologist to interpret the images in more detail, improving object recognition and diagnostic accuracy. Color detection experiments using our stimulus system, have demonstrated that an observer can only detect an average of 140 levels of grayscale. An optimally colorized image can allow a user to distinguish 250 - 1000 different levels, hence increasing potential image feature detection by 2-7 times. By implementing a colorization map, which follows the luminance map of the original grayscale images, the luminance profile is preserved and color is isolated as the enhancement mechanism. The effect of this enhancement mechanism on the shape, frequency composition and statistical characteristics of the Visual Evoked Potential (VEP) are analyzed and presented. Thus, the effectiveness of the image colorization is measured quantitatively using the Visual Evoked Potential (VEP).

  4. A Rapid Protocol of Crude RNA/DNA Extraction for RT-qPCR Detection and Quantification of 'Candidatus Phytoplasma prunorum'

    PubMed Central

    Minguzzi, Stefano; Terlizzi, Federica; Lanzoni, Chiara; Poggi Pollini, Carlo; Ratti, Claudio

    2016-01-01

    Many efforts have been made to develop a rapid and sensitive method for phytoplasma and virus detection. Taking our cue from previous works, different rapid sample preparation methods have been tested and applied to Candidatus Phytoplasma prunorum (‘Ca. P. prunorum’) detection by RT-qPCR. A duplex RT-qPCR has been optimized using the crude sap as a template to simultaneously amplify a fragment of 16S rRNA of the pathogen and 18S rRNA of the host plant. The specific plant 18S rRNA internal control allows comparison and relative quantification of samples. A comparison between DNA and RNA contribution to qPCR detection is provided, showing higher contribution of the latter. The method presented here has been validated on more than a hundred samples of apricot, plum and peach trees. Since 2013, this method has been successfully applied to monitor ‘Ca. P. prunorum’ infections in field and nursery. A triplex RT-qPCR assay has also been optimized to simultaneously detect ‘Ca. P. prunorum’ and Plum pox virus (PPV) in Prunus. PMID:26742106

  5. Development and validation of a multiplex real-time PCR method to simultaneously detect 47 targets for the identification of genetically modified organisms.

    PubMed

    Cottenet, Geoffrey; Blancpain, Carine; Sonnard, Véronique; Chuah, Poh Fong

    2013-08-01

    Considering the increase of the total cultivated land area dedicated to genetically modified organisms (GMO), the consumers' perception toward GMO and the need to comply with various local GMO legislations, efficient and accurate analytical methods are needed for their detection and identification. Considered as the gold standard for GMO analysis, the real-time polymerase chain reaction (RTi-PCR) technology was optimised to produce a high-throughput GMO screening method. Based on simultaneous 24 multiplex RTi-PCR running on a ready-to-use 384-well plate, this new procedure allows the detection and identification of 47 targets on seven samples in duplicate. To comply with GMO analytical quality requirements, a negative and a positive control were analysed in parallel. In addition, an internal positive control was also included in each reaction well for the detection of potential PCR inhibition. Tested on non-GM materials, on different GM events and on proficiency test samples, the method offered high specificity and sensitivity with an absolute limit of detection between 1 and 16 copies depending on the target. Easy to use, fast and cost efficient, this multiplex approach fits the purpose of GMO testing laboratories.

  6. Thin wetting film lensless imaging

    NASA Astrophysics Data System (ADS)

    Allier, C. P.; Poher, V.; Coutard, J. G.; Hiernard, G.; Dinten, J. M.

    2011-03-01

    Lensless imaging has recently attracted a lot of attention as a compact, easy-to-use method to image or detect biological objects like cells, but failed at detecting micron size objects like bacteria that often do not scatter enough light. In order to detect single bacterium, we have developed a method based on a thin wetting film that produces a micro-lens effect. Compared with previously reported results, a large improvement in signal to noise ratio is obtained due to the presence of a micro-lens on top of each bacterium. In these conditions, standard CMOS sensors are able to detect single bacterium, e.g. E.coli, Bacillus subtilis and Bacillus thuringiensis, with a large signal to noise ratio. This paper presents our sensor optimization to enhance the SNR; improve the detection of sub-micron objects; and increase the imaging FOV, from 4.3 mm2 to 12 mm2 to 24 mm2, which allows the detection of bacteria contained in 0.5μl to 4μl to 10μl, respectively.

  7. Simultaneous Voltammetric Detection of Carbaryl and Paraquat Pesticides on Graphene-Modified Boron-Doped Diamond Electrode

    PubMed Central

    Pop, Aniela; Manea, Florica; Flueras, Adriana; Schoonman, Joop

    2017-01-01

    Monitoring of pesticide residues in food, beverages, and the environment requires fast, versatile, and sensitive analyzing methods. Direct electrochemical detection of pesticides could represent an efficient solution. Adequate electrode material, electrochemical technique, and optimal operation parameters define the detection method for practical application. In this study, cyclic voltammetric and differential pulse voltammetric techniques were used in order to individually and simultaneously detect two pesticides, i.e., carbaryl (CR) and paraquat (PQ), from an acetate buffer solution and also from natural apple juice. A graphene-modified boron-doped diamond electrode, denoted BDDGR, was obtained and successfully applied in the simultaneous detection of CR and PQ pesticides, using the differential pulse voltammetric technique with remarkable electroanalytical parameters in terms of sensitivity: 33.27 μA μM−1 cm−2 for CR and 31.83 μA μM−1 cm−2 for PQ. These outstanding results obtained in the acetate buffer supporting electrolyte allowed us to simultaneously detect the targeted pesticides in natural apple juice. PMID:28878151

  8. Mass sensing based on deterministic and stochastic responses of elastically coupled nanocantilevers.

    PubMed

    Gil-Santos, Eduardo; Ramos, Daniel; Jana, Anirban; Calleja, Montserrat; Raman, Arvind; Tamayo, Javier

    2009-12-01

    Coupled nanomechanical systems and their entangled eigenstates offer unique opportunities for the detection of ultrasmall masses. In this paper we show theoretically and experimentally that the stochastic and deterministic responses of a pair of coupled nanocantilevers provide different and complementary information about the added mass of an analyte and its location. This method allows the sensitive detection of minute quantities of mass even in the presence of large initial differences in the active masses of the two cantilevers. Finally, we show the fundamental limits in mass detection of this sensing paradigm.

  9. Automatic Residential/Commercial Classification of Parcels with Solar Panel Detections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, April M; Omitaomu, Olufemi A; Kotikot, Susan

    A computational method to automatically detect solar panels on rooftops to aid policy and financial assessment of solar distributed generation. The code automatically classifies parcels containing solar panels in the U.S. as residential or commercial. The code allows the user to specify an input dataset containing parcels and detected solar panels, and then uses information about the parcels and solar panels to automatically classify the rooftops as residential or commercial using machine learning techniques. The zip file containing the code includes sample input and output datasets for the Boston and DC areas.

  10. Note: Focus error detection device for thermal expansion-recovery microscopy (ThERM).

    PubMed

    Domené, E A; Martínez, O E

    2013-01-01

    An innovative focus error detection method is presented that is only sensitive to surface curvature variations, canceling both thermoreflectance and photodefelection effects. The detection scheme consists of an astigmatic probe laser and a four-quadrant detector. Nonlinear curve fitting of the defocusing signal allows the retrieval of a cutoff frequency, which only depends on the thermal diffusivity of the sample and the pump beam size. Therefore, a straightforward retrieval of the thermal diffusivity of the sample is possible with microscopic lateral resolution and high axial resolution (~100 pm).

  11. Portable dual field gradient force multichannel flow cytometer device with a dual wavelength low noise detection scheme

    DOEpatents

    James, Conrad D; Galambos, Paul C; Derzon, Mark S; Graf, Darin C; Pohl, Kenneth R; Bourdon, Chris J

    2012-10-23

    Systems and methods for combining dielectrophoresis, magnetic forces, and hydrodynamic forces to manipulate particles in channels formed on top of an electrode substrate are discussed. A magnet placed in contact under the electrode substrate while particles are flowing within the channel above the electrode substrate allows these three forces to be balanced when the system is in operation. An optical detection scheme using near-confocal microscopy for simultaneously detecting two wavelengths of light emitted from the flowing particles is also discussed.

  12. Unmasking Silent Endothelial Activation in the Cardiovascular System Using Molecular Magnetic Resonance Imaging.

    PubMed

    Belliere, Julie; Martinez de Lizarrondo, Sara; Choudhury, Robin P; Quenault, Aurélien; Le Béhot, Audrey; Delage, Christine; Chauveau, Dominique; Schanstra, Joost P; Bascands, Jean-Loup; Vivien, Denis; Gauberti, Maxime

    2015-01-01

    Endothelial activation is a hallmark of cardiovascular diseases, acting either as a cause or a consequence of organ injury. To date, we lack suitable methods to measure endothelial activation in vivo. In the present study, we developed a magnetic resonance imaging (MRI) method allowing non-invasive endothelial activation mapping in the vasculature of the main organs affected during cardiovascular diseases. In clinically relevant contexts in mice (including systemic inflammation, acute and chronic kidney diseases, diabetes mellitus and normal aging), we provided evidence that this method allows detecting endothelial activation before any clinical manifestation of organ failure in the brain, kidney and heart with an exceptional sensitivity. In particular, we demonstrated that diabetes mellitus induces chronic endothelial cells activation in the kidney and heart. Moreover, aged mice presented activated endothelial cells in the kidneys and the cerebrovasculature. Interestingly, depending on the underlying condition, the temporospatial patterns of endothelial activation in the vascular beds of the cardiovascular system were different. These results demonstrate the feasibility of detecting silent endothelial activation occurring in conditions associated with high cardiovascular risk using molecular MRI.

  13. Unmasking Silent Endothelial Activation in the Cardiovascular System Using Molecular Magnetic Resonance Imaging

    PubMed Central

    Belliere, Julie; Martinez de Lizarrondo, Sara; Choudhury, Robin P.; Quenault, Aurélien; Le Béhot, Audrey; Delage, Christine; Chauveau, Dominique; Schanstra, Joost P.; Bascands, Jean-Loup; Vivien, Denis; Gauberti, Maxime

    2015-01-01

    Endothelial activation is a hallmark of cardiovascular diseases, acting either as a cause or a consequence of organ injury. To date, we lack suitable methods to measure endothelial activation in vivo. In the present study, we developed a magnetic resonance imaging (MRI) method allowing non-invasive endothelial activation mapping in the vasculature of the main organs affected during cardiovascular diseases. In clinically relevant contexts in mice (including systemic inflammation, acute and chronic kidney diseases, diabetes mellitus and normal aging), we provided evidence that this method allows detecting endothelial activation before any clinical manifestation of organ failure in the brain, kidney and heart with an exceptional sensitivity. In particular, we demonstrated that diabetes mellitus induces chronic endothelial cells activation in the kidney and heart. Moreover, aged mice presented activated endothelial cells in the kidneys and the cerebrovasculature. Interestingly, depending on the underlying condition, the temporospatial patterns of endothelial activation in the vascular beds of the cardiovascular system were different. These results demonstrate the feasibility of detecting silent endothelial activation occurring in conditions associated with high cardiovascular risk using molecular MRI. PMID:26379785

  14. Multi-Harmony: detecting functional specificity from sequence alignment

    PubMed Central

    Brandt, Bernd W.; Feenstra, K. Anton; Heringa, Jaap

    2010-01-01

    Many protein families contain sub-families with functional specialization, such as binding different ligands or being involved in different protein–protein interactions. A small number of amino acids generally determine functional specificity. The identification of these residues can aid the understanding of protein function and help finding targets for experimental analysis. Here, we present multi-Harmony, an interactive web sever for detecting sub-type-specific sites in proteins starting from a multiple sequence alignment. Combining our Sequence Harmony (SH) and multi-Relief (mR) methods in one web server allows simultaneous analysis and comparison of specificity residues; furthermore, both methods have been significantly improved and extended. SH has been extended to cope with more than two sub-groups. mR has been changed from a sampling implementation to a deterministic one, making it more consistent and user friendly. For both methods Z-scores are reported. The multi-Harmony web server produces a dynamic output page, which includes interactive connections to the Jalview and Jmol applets, thereby allowing interactive analysis of the results. Multi-Harmony is available at http://www.ibi.vu.nl/ programs/shmrwww. PMID:20525785

  15. Secure steganography designed for mobile platforms

    NASA Astrophysics Data System (ADS)

    Agaian, Sos S.; Cherukuri, Ravindranath; Sifuentes, Ronnie R.

    2006-05-01

    Adaptive steganography, an intelligent approach to message hiding, integrated with matrix encoding and pn-sequences serves as a promising resolution to recent security assurance concerns. Incorporating the above data hiding concepts with established cryptographic protocols in wireless communication would greatly increase the security and privacy of transmitting sensitive information. We present an algorithm which will address the following problems: 1) low embedding capacity in mobile devices due to fixed image dimensions and memory constraints, 2) compatibility between mobile and land based desktop computers, and 3) detection of stego images by widely available steganalysis software [1-3]. Consistent with the smaller available memory, processor capabilities, and limited resolution associated with mobile devices, we propose a more magnified approach to steganography by focusing adaptive efforts at the pixel level. This deeper method, in comparison to the block processing techniques commonly found in existing adaptive methods, allows an increase in capacity while still offering a desired level of security. Based on computer simulations using high resolution, natural imagery and mobile device captured images, comparisons show that the proposed method securely allows an increased amount of embedding capacity but still avoids detection by varying steganalysis techniques.

  16. CH PLIF and PIV implementation using C-X (0,0) and intra-vibrational band filtered detection

    NASA Astrophysics Data System (ADS)

    Hammack, Stephen D.; Skiba, Aaron W.; Lee, Tonghun; Carter, Campbell D.

    2018-02-01

    This study demonstrates advancement in a low-pulse energy methylidyne (CH) planar laser-induced fluorescence (PLIF) method that facilitates its application alongside flows seeded for particle image velocimetry (PIV) or other particle scattering based methods, as well as in high scattering environments. The C-X (0,0) R-branch excitation and filtered detection are carefully selected such that the laser line frequency is heavily attenuated by an edge filter while allowing transmission of most of the (0,0) band fluorescence. There are strong OH A-X (0,0) lines in the vicinity, but they can be avoided or utilized through dye laser tuning. As a demonstration of efficacy, PIV is performed simultaneously with the PLIF imaging. Using the edge filter, particle scattering signal is reduced to sub-fluorescence levels, allowing for flame-front analysis. This achievement enables flame-front tracking at high repetition rates (due to the low-pulse energy required) in combination with a scattering method such as PIV or use in high scattering environments such as enclosed combustors or near burner surfaces.

  17. Photoacoustic sensor for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Wolff, Marcus; Groninga, Hinrich G.; Harde, Hermann

    2004-03-01

    The development of new optical sensor technologies has a major impact on the progress of diagnostic methods. Of the permanently increasing number of non-invasive breath tests, the 13C-Urea Breath Test (UBT) for the detection of Helicobacter pylori is the most prominent. However, many recent developments, like the detection of cancer by breath test, go beyond gastroenterological applications. We present a new detection scheme for breath analysis that employs an especially compact and simple set-up. Photoacoustic Spectroscopy (PAS) represents an offset-free technique that allows for short absorption paths and small sample cells. Using a single-frequency diode laser and taking advantage of acoustical resonances of the sample cell, we performed extremely sensitive and selective measurements. The smart data processing method contributes to the extraordinary sensitivity and selectivity as well. Also, the reasonable acquisition cost and low operational cost make this detection scheme attractive for many biomedical applications. The experimental set-up and data processing method, together with exemplary isotope-selective measurements on carbon dioxide, are presented.

  18. A new s-adenosylhomocysteine hydrolase-linked method for adenosine detection based on DNA-templated fluorescent Cu/Ag nanoclusters.

    PubMed

    Ahn, Jun Ki; Kim, Hyo Yong; Baek, Songyi; Park, Hyun Gyu

    2017-07-15

    We herein describe a novel fluorescent method for the rapid and selective detection of adenosine by utilizing DNA-templated Cu/Ag nanoclusters (NCs) and employing s-adenosylhomocysteine hydrolase (SAHH). SAHH is allowed to promote hydrolysis reaction of s-adenosylhomocysteine (SAH) and consequently produces homocysteine, which would quench the fluorescence signal from DNA-templated Cu/Ag nanoclusters employed as a signaling probe in this study. On the other hand, adenosine significantly inhibits the hydrolysis reaction and prevent the formation of homocysteine. Consequently, highly enhanced fluorescence signal from DNA-Cu/Ag NCs is retained, which could be used to identify the presence of adenosine. By employing this design principle, adenosine was sensitively detected down to 19nM with high specificity over other adenosine analogs such as AMP, ADP, ATP, cAMP, guanosine, cytidine, and urine. Finally, the diagnostic capability of this method was successfully verified by reliably detecting adenosine present in a real human serum sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Determination of BPA, BPB, BPF, BADGE and BFDGE in canned energy drinks by molecularly imprinted polymer cleaning up and UPLC with fluorescence detection.

    PubMed

    Gallo, Pasquale; Di Marco Pisciottano, Ilaria; Esposito, Francesco; Fasano, Evelina; Scognamiglio, Gelsomina; Mita, Gustavo Damiano; Cirillo, Teresa

    2017-04-01

    A new method for simultaneous determination of five bisphenols in canned energy drinks by UPLC with fluorescence detection, after clean up on molecularly imprinted polymers, is herein described. The method was validated at two concentration levels, calculating trueness, repeatability and within-laboratory reproducibility, specificity, linearity of detector response, the limits of quantifications and the limits of detection for each bisphenol. The method is specific, reliable and very sensitive, allowing for determination of bisphenol F diglycidyl ether (BFDGE), bisphenol A (BPA), bisphenol B (BPB), bisphenol F (BPF) and bisphenol A diglycidyl ether (BADGE) down to 0.50ng/mL; it was employed to determine contamination levels from these bisphenols in forty energy drinks of different brands, collected from the market in Naples. BPA was detected in 17 out of 40 samples (42.5%); in some energy drinks also BPF, BADGE and BFDGE were determined. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Nucleic Acid Detection Methods

    DOEpatents

    Smith, Cassandra L.; Yaar, Ron; Szafranski, Przemyslaw; Cantor, Charles R.

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3'-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated.

  1. Salivary biomarker development using genomic, proteomic and metabolomic approaches

    PubMed Central

    2012-01-01

    The use of saliva as a diagnostic sample provides a non-invasive, cost-efficient method of sample collection for disease screening without the need for highly trained professionals. Saliva collection is far more practical and safe compared with invasive methods of sample collection, because of the infection risk from contaminated needles during, for example, blood sampling. Furthermore, the use of saliva could increase the availability of accurate diagnostics for remote and impoverished regions. However, the development of salivary diagnostics has required technical innovation to allow stabilization and detection of analytes in the complex molecular mixture that is saliva. The recent development of cost-effective room temperature analyte stabilization methods, nucleic acid pre-amplification techniques and direct saliva transcriptomic analysis have allowed accurate detection and quantification of transcripts found in saliva. Novel protein stabilization methods have also facilitated improved proteomic analyses. Although candidate biomarkers have been discovered using epigenetic, transcriptomic, proteomic and metabolomic approaches, transcriptomic analyses have so far achieved the most progress in terms of sensitivity and specificity, and progress towards clinical implementation. Here, we review recent developments in salivary diagnostics that have been accomplished using genomic, transcriptomic, proteomic and metabolomic approaches. PMID:23114182

  2. Red Lesion Detection Using Dynamic Shape Features for Diabetic Retinopathy Screening.

    PubMed

    Seoud, Lama; Hurtut, Thomas; Chelbi, Jihed; Cheriet, Farida; Langlois, J M Pierre

    2016-04-01

    The development of an automatic telemedicine system for computer-aided screening and grading of diabetic retinopathy depends on reliable detection of retinal lesions in fundus images. In this paper, a novel method for automatic detection of both microaneurysms and hemorrhages in color fundus images is described and validated. The main contribution is a new set of shape features, called Dynamic Shape Features, that do not require precise segmentation of the regions to be classified. These features represent the evolution of the shape during image flooding and allow to discriminate between lesions and vessel segments. The method is validated per-lesion and per-image using six databases, four of which are publicly available. It proves to be robust with respect to variability in image resolution, quality and acquisition system. On the Retinopathy Online Challenge's database, the method achieves a FROC score of 0.420 which ranks it fourth. On the Messidor database, when detecting images with diabetic retinopathy, the proposed method achieves an area under the ROC curve of 0.899, comparable to the score of human experts, and it outperforms state-of-the-art approaches.

  3. Combining isothermal rolling circle amplification and electrochemiluminescence for highly sensitive point mutation detection

    NASA Astrophysics Data System (ADS)

    Su, Qiang; Zhou, Xiaoming

    2008-12-01

    Many pathogenic and genetic diseases are associated with changes in the sequence of particular genes. We describe here a rapid and highly efficient assay for the detection of point mutation. This method is a combination of isothermal rolling circle amplification (RCA) and high sensitive electrochemluminescence (ECL) detection. In the design, a circular template generated by ligation upon the recognition of a point mutation on DNA targets was amplified isothermally by the Phi29 polymerase using a biotinylated primer. The elongation products were hybridized with tris (bipyridine) ruthenium (TBR)-tagged probes and detected in a magnetic bead based ECL platform, indicating the mutation occurrence. P53 was chosen as a model for the identification of this method. The method allowed sensitive determination of the P53 mutation from wild-type and mutant samples. The main advantage of RCA-ECL is that it can be performed under isothermal conditions and avoids the generation of false-positive results. Furthermore, ECL provides a faster, more sensitive, and economical option to currently available electrophoresis-based methods.

  4. Development of a fractionation method for the detection and identification of oak ellagitannins in red wines.

    PubMed

    García-Estévez, Ignacio; Escribano-Bailón, M Teresa; Rivas-Gonzalo, Julián C; Alcalde-Eon, Cristina

    2010-02-15

    During maturation and ageing in oak barrels wines improve their organoleptic properties. Ellagitannins can be released from wood to the wine and be involved in oxidation reactions and seem to influence the astringency and colour properties of the wine. Nevertheless, the ellagitannins levels are lower than those of other wine constituents and, consequently, they are not easily detected. This study has developed a two-step fractionation method consisting of a solid phase extraction in C-18 Sep-Pak cartridges followed by size exclusion chromatography in hand-packed Sephadex LH-20 minicolumn for the detection of oak ellagitannins in different types of wines. An HPLC method has also been developed which allows the separation of compounds with the same m/z ratios, facilitating the ellagitannin identification by means of the mass spectrometric analyses. The main oak ellagitannins (grandinin, vescalagin, roburin E and castalagin) were isolated, detected separately and identified in a spiked wine and in three real ones, proving the usefulness of the fractionation method. Copyright 2009 Elsevier B.V. All rights reserved.

  5. DOA Estimation for Underwater Wideband Weak Targets Based on Coherent Signal Subspace and Compressed Sensing.

    PubMed

    Li, Jun; Lin, Qiu-Hua; Kang, Chun-Yu; Wang, Kai; Yang, Xiu-Ting

    2018-03-18

    Direction of arrival (DOA) estimation is the basis for underwater target localization and tracking using towed line array sonar devices. A method of DOA estimation for underwater wideband weak targets based on coherent signal subspace (CSS) processing and compressed sensing (CS) theory is proposed. Under the CSS processing framework, wideband frequency focusing is accompanied by a two-sided correlation transformation, allowing the DOA of underwater wideband targets to be estimated based on the spatial sparsity of the targets and the compressed sensing reconstruction algorithm. Through analysis and processing of simulation data and marine trial data, it is shown that this method can accomplish the DOA estimation of underwater wideband weak targets. Results also show that this method can considerably improve the spatial spectrum of weak target signals, enhancing the ability to detect them. It can solve the problems of low directional resolution and unreliable weak-target detection in traditional beamforming technology. Compared with the conventional minimum variance distortionless response beamformers (MVDR), this method has many advantages, such as higher directional resolution, wider detection range, fewer required snapshots and more accurate detection for weak targets.

  6. Rapid, Efficient Detection and Drug Susceptibility Testing of Mycobacterium tuberculosis in Sputum by Microscopic Observation of Broth Cultures

    PubMed Central

    Caviedes, Luz; Lee, Tien-Shun; Gilman, Robert H.; Sheen, Patricia; Spellman, Emily; Lee, Ellen H.; Berg, Douglas E.; Montenegro-James, Sonia

    2000-01-01

    Inexpensive, rapid, and reliable methods of detecting infection by and drug susceptibility of Mycobacterium tuberculosis (MTB) are crucial to the control of tuberculosis. The novel microscopic observation broth-drug susceptibility assay (MODS) detects early growth of MTB in liquid medium, allowing more timely diagnosis and drug susceptibility testing. Sputum samples from hospitalized patients in Peru were analyzed by using stains, culture, and PCR. Sensitivity of MODS (92%) compared favorably with the most sensitive of the other culture methods (93%). Sputum samples positive for tuberculosis were tested for susceptibility to isoniazid and rifampin with the microwell alamar blue assay (MABA) and MODS. In 89% of cases, there was concordance between MODS and MABA. Of the diagnostic and susceptibility testing methods used, MODS yielded results most rapidly (median, 9.0 and 9.5 days, respectively). MODS is a rapid, inexpensive, sensitive, and specific method for MTB detection and susceptibility testing; it is particularly appropriate for use in developing countries burdened by significant infection rates and increasing numbers of multiple-drug-resistant cases. PMID:10699023

  7. Rapid, efficient detection and drug susceptibility testing of Mycobacterium tuberculosis in sputum by microscopic observation of broth cultures. The Tuberculosis Working Group in Peru.

    PubMed

    Caviedes, L; Lee, T S; Gilman, R H; Sheen, P; Spellman, E; Lee, E H; Berg, D E; Montenegro-James, S

    2000-03-01

    Inexpensive, rapid, and reliable methods of detecting infection by and drug susceptibility of Mycobacterium tuberculosis (MTB) are crucial to the control of tuberculosis. The novel microscopic observation broth-drug susceptibility assay (MODS) detects early growth of MTB in liquid medium, allowing more timely diagnosis and drug susceptibility testing. Sputum samples from hospitalized patients in Peru were analyzed by using stains, culture, and PCR. Sensitivity of MODS (92%) compared favorably with the most sensitive of the other culture methods (93%). Sputum samples positive for tuberculosis were tested for susceptibility to isoniazid and rifampin with the microwell alamar blue assay (MABA) and MODS. In 89% of cases, there was concordance between MODS and MABA. Of the diagnostic and susceptibility testing methods used, MODS yielded results most rapidly (median, 9.0 and 9.5 days, respectively). MODS is a rapid, inexpensive, sensitive, and specific method for MTB detection and susceptibility testing; it is particularly appropriate for use in developing countries burdened by significant infection rates and increasing numbers of multiple-drug-resistant cases.

  8. Early Detection of Physical Activity for People With Type 1 Diabetes Mellitus.

    PubMed

    Dasanayake, Isuru S; Bevier, Wendy C; Castorino, Kristin; Pinsker, Jordan E; Seborg, Dale E; Doyle, Francis J; Dassau, Eyal

    2015-06-30

    Early detection of exercise in individuals with type 1 diabetes mellitus (T1DM) may allow changes in therapy to prevent hypoglycemia. Currently there is limited experience with automated methods that detect the onset and end of exercise in this population. We sought to develop a novel method to quickly and reliably detect the onset and end of exercise in these individuals before significant changes in blood glucose (BG) occur. Sixteen adults with T1DM were studied as outpatients using a diary, accelerometer, heart rate monitor, and continuous glucose monitor for 2 days. These data were used to develop a principal component analysis based exercise detection method. Subjects also performed 60 and 30 minute exercise sessions at 30% and 50% predicted heart rate reserve (HRR), respectively. The detection method was applied to the exercise sessions to determine how quickly the detection of start and end of exercise occurred relative to change in BG. Mild 30% HRR and moderate 50% HRR exercise onset was identified in 6 ± 3 and 5 ± 2 (mean ± SD) minutes, while completion was detected in 3 ± 8 and 6 ± 5 minutes, respectively. BG change from start of exercise to detection time was 1 ± 6 and -1 ± 3 mg/dL, and, from the end of exercise to detection time was 6 ± 4 and -17 ± 13 mg/dL, respectively, for the 2 exercise sessions. False positive and negative ratios were 4 ± 2% and 21 ± 22%. The novel method for exercise detection identified the onset and end of exercise in approximately 5 minutes, with an average BG change of only -6 mg/dL. © 2015 Diabetes Technology Society.

  9. In-Situ Real-Time Focus Detection during Laser Processing Using Double-Hole Masks and Advanced Image Sensor Software

    PubMed Central

    Hoang, Phuong Le; Ahn, Sanghoon; Kim, Jeng-o; Kang, Heeshin; Noh, Jiwhan

    2017-01-01

    In modern high-intensity ultrafast laser processing, detecting the focal position of the working laser beam, at which the intensity is the highest and the beam diameter is the lowest, and immediately locating the target sample at that point are challenging tasks. A system that allows in-situ real-time focus determination and fabrication using a high-power laser has been in high demand among both engineers and scientists. Conventional techniques require the complicated mathematical theory of wave optics, employing interference as well as diffraction phenomena to detect the focal position; however, these methods are ineffective and expensive for industrial application. Moreover, these techniques could not perform detection and fabrication simultaneously. In this paper, we propose an optical design capable of detecting the focal point and fabricating complex patterns on a planar sample surface simultaneously. In-situ real-time focus detection is performed using a bandpass filter, which only allows for the detection of laser transmission. The technique enables rapid, non-destructive, and precise detection of the focal point. Furthermore, it is sufficiently simple for application in both science and industry for mass production, and it is expected to contribute to the next generation of laser equipment, which can be used to fabricate micro-patterns with high complexity. PMID:28671566

  10. Current and New Approaches in GMO Detection: Challenges and Solutions

    PubMed Central

    Fraiture, Marie-Alice; Herman, Philippe; Taverniers, Isabel; Deforce, Dieter; Roosens, Nancy H.

    2015-01-01

    In many countries, genetically modified organisms (GMO) legislations have been established in order to guarantee the traceability of food/feed products on the market and to protect the consumer freedom of choice. Therefore, several GMO detection strategies, mainly based on DNA, have been developed to implement these legislations. Due to its numerous advantages, the quantitative PCR (qPCR) is the method of choice for the enforcement laboratories in GMO routine analysis. However, given the increasing number and diversity of GMO developed and put on the market around the world, some technical hurdles could be encountered with the qPCR technology, mainly owing to its inherent properties. To address these challenges, alternative GMO detection methods have been developed, allowing faster detections of single GM target (e.g., loop-mediated isothermal amplification), simultaneous detections of multiple GM targets (e.g., PCR capillary gel electrophoresis, microarray, and Luminex), more accurate quantification of GM targets (e.g., digital PCR), or characterization of partially known (e.g., DNA walking and Next Generation Sequencing (NGS)) or unknown (e.g., NGS) GMO. The benefits and drawbacks of these methods are discussed in this review. PMID:26550567

  11. Current and new approaches in GMO detection: challenges and solutions.

    PubMed

    Fraiture, Marie-Alice; Herman, Philippe; Taverniers, Isabel; De Loose, Marc; Deforce, Dieter; Roosens, Nancy H

    2015-01-01

    In many countries, genetically modified organisms (GMO) legislations have been established in order to guarantee the traceability of food/feed products on the market and to protect the consumer freedom of choice. Therefore, several GMO detection strategies, mainly based on DNA, have been developed to implement these legislations. Due to its numerous advantages, the quantitative PCR (qPCR) is the method of choice for the enforcement laboratories in GMO routine analysis. However, given the increasing number and diversity of GMO developed and put on the market around the world, some technical hurdles could be encountered with the qPCR technology, mainly owing to its inherent properties. To address these challenges, alternative GMO detection methods have been developed, allowing faster detections of single GM target (e.g., loop-mediated isothermal amplification), simultaneous detections of multiple GM targets (e.g., PCR capillary gel electrophoresis, microarray, and Luminex), more accurate quantification of GM targets (e.g., digital PCR), or characterization of partially known (e.g., DNA walking and Next Generation Sequencing (NGS)) or unknown (e.g., NGS) GMO. The benefits and drawbacks of these methods are discussed in this review.

  12. Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics

    DOEpatents

    Ellingson, W.A.; Brada, M.P.

    1995-06-20

    A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser`s wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known ``feature masks`` of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects. 29 figs.

  13. Meat authentication: a new HPLC-MS/MS based method for the fast and sensitive detection of horse and pork in highly processed food.

    PubMed

    von Bargen, Christoph; Brockmeyer, Jens; Humpf, Hans-Ulrich

    2014-10-01

    Fraudulent blending of food products with meat from undeclared species is a problem on a global scale, as exemplified by the European horse meat scandal in 2013. Routinely used methods such as ELISA and PCR can suffer from limited sensitivity or specificity when processed food samples are analyzed. In this study, we have developed an optimized method for the detection of horse and pork in different processed food matrices using MRM and MRM(3) detection of species-specific tryptic marker peptides. Identified marker peptides were sufficiently stable to resist thermal processing of different meat products and thus allow the sensitive and specific detection of pork or horse in processed food down to 0.24% in a beef matrix system. In addition, we were able to establish a rapid 2-min extraction protocol for the efficient protein extraction from processed food using high molar urea and thiourea buffers. Together, we present here the specific and sensitive detection of horse and pork meat in different processed food matrices using MRM-based detection of marker peptides. Notably, prefractionation of proteins using 2D-PAGE or off-gel fractionation is not necessary. The presented method is therefore easily applicable in analytical routine laboratories without dedicated proteomics background.

  14. Development and validation of a FISH-based method for the detection and quantification of E. coli and coliform bacteria in water samples.

    PubMed

    Hügler, Michael; Böckle, Karin; Eberhagen, Ingrid; Thelen, Karin; Beimfohr, Claudia; Hambsch, Beate

    2011-01-01

    Monitoring of microbiological contaminants in water supplies requires fast and sensitive methods for the specific detection of indicator organisms or pathogens. We developed a protocol for the simultaneous detection of E. coli and coliform bacteria based on the Fluorescence in situ Hybridization (FISH) technology. This protocol consists of two approaches. The first allows the direct detection of single E. coli and coliform bacterial cells on the filter membranes. The second approach includes incubation of the filter membranes on a nutrient agar plate and subsequent detection of the grown micro-colonies. Both approaches were validated using drinking water samples spiked with pure cultures and naturally contaminated water samples. The effects of heat, chlorine and UV disinfection were also investigated. The micro-colony approach yielded very good results for all samples and conditions tested, and thus can be thoroughly recommended for usage as an alternative method to detect E. coli and coliform bacteria in water samples. However, during this study, some limitations became visible for the single cell approach. The method cannot be applied for water samples which have been disinfected by UV irradiation. In addition, our results indicated that green fluorescent dyes are not suitable to be used with chlorine disinfected samples.

  15. Rapid detection of potyviruses from crude plant extracts.

    PubMed

    Silva, Gonçalo; Oyekanmi, Joshua; Nkere, Chukwuemeka K; Bömer, Moritz; Kumar, P Lava; Seal, Susan E

    2018-04-01

    Potyviruses (genus Potyvirus; family Potyviridae) are widely distributed and represent one of the most economically important genera of plant viruses. Therefore, their accurate detection is a key factor in developing efficient control strategies. However, this can sometimes be problematic particularly in plant species containing high amounts of polysaccharides and polyphenols such as yam (Dioscorea spp.). Here, we report the development of a reliable, rapid and cost-effective detection method for the two most important potyviruses infecting yam based on reverse transcription-recombinase polymerase amplification (RT-RPA). The developed method, named 'Direct RT-RPA', detects each target virus directly from plant leaf extracts prepared with a simple and inexpensive extraction method avoiding laborious extraction of high-quality RNA. Direct RT-RPA enables the detection of virus-positive samples in under 30 min at a single low operation temperature (37 °C) without the need for any expensive instrumentation. The Direct RT-RPA tests constitute robust, accurate, sensitive and quick methods for detection of potyviruses from recalcitrant plant species. The minimal sample preparation requirements and the possibility of storing RPA reagents without cold chain storage, allow Direct RT-RPA to be adopted in minimally equipped laboratories and with potential use in plant clinic laboratories and seed certification facilities worldwide. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Novel SHM method to locate damages in substructures based on VARX models

    NASA Astrophysics Data System (ADS)

    Ugalde, U.; Anduaga, J.; Martínez, F.; Iturrospe, A.

    2015-07-01

    A novel damage localization method is proposed, which is based on a substructuring approach and makes use of Vector Auto-Regressive with eXogenous input (VARX) models. The substructuring approach aims to divide the monitored structure into several multi-DOF isolated substructures. Later, each individual substructure is modelled as a VARX model, and the health of each substructure is determined analyzing the variation of the VARX model. The method allows to detect whether the isolated substructure is damaged, and besides allows to locate and quantify the damage within the substructure. It is not necessary to have a theoretical model of the structure and only the measured displacement data is required to estimate the isolated substructure's VARX model. The proposed method is validated by simulations of a two-dimensional lattice structure.

  17. A rapid method to visualize von willebrand factor multimers by using agarose gel electrophoresis, immunolocalization and luminographic detection.

    PubMed

    Krizek, D R; Rick, M E

    2000-03-15

    A highly sensitive and rapid clinical method for the visualization of the multimeric structure of von Willebrand Factor in plasma and platelets is described. The method utilizes submerged horizontal agarose gel electrophoresis, followed by transfer of the von Willebrand Factor onto a polyvinylidine fluoride membrane, and immunolocalization and luminographic visualization of the von Willebrand Factor multimeric pattern. This method distinguishes type 1 from types 2A and 2B von Willebrand disease, allowing timely evaluation and classification of von Willebrand Factor in patient plasma. It also allows visualization of the unusually high molecular weight multimers present in platelets. There are several major advantages to this method including rapid processing, simplicity of gel preparation, high sensitivity to low concentrations of von Willebrand Factor, and elimination of radioactivity.

  18. Dyes as bifunctional markers of DNA hybridization on surfaces and mutation detection.

    PubMed

    García-Mendiola, Tania; Cerro, María Ramos; López-Moreno, José María; Pariente, Félix; Lorenzo, Encarnación

    2016-10-01

    The interaction of small molecules with DNA has found diagnostic and therapeutic applications. In this work, we propose the use of two different dyes, in particular Azure A and Safranine, as bifunctional markers of on-surface DNA hybridization and potent tools for screening of specific gene mutations directly in real DNA PCR amplicons extracted from blood cells. By combining spectroscopic and electrochemical methods we demonstrate that both dyes can interact with single and double stranded DNA to a different extent, allowing reliable hybridization detection. From these data, we have also elucidated the nature of the interaction. We conclude that the binding mode is fundamentally intercalative with an electrostatic component. The dye fluorescence allows their use as nucleic acid stains for the detection of on-surfaces DNA hybridization. Its redox activity is exploited in the development of selective electrochemical DNA biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A more accurate detection of codon 72 polymorphism and LOH of the TP53 gene.

    PubMed

    Baccouche, Sami; Mabrouk, Imed; Said, Salem; Mosbah, Ali; Jlidi, Rachid; Gargouri, Ali

    2003-01-10

    The polymorphism at codon 72 of the TP53 gene has been extensively studied for its involvement in cancerogenesis and loss of heterozygosity (LOH) detection. Usually, the exon 4 of the TP53 gene is amplified by polymerase chain reaction (PCR) on DNA extracted from blood and tumor tissues, then digested by AccII. In the case of heterozygosity, the comparison of AccII profile from blood and tumor DNA PCR products allowed the identification of a potential LOH in the TP53 locus. This method can be hindered by a partial AccII digestion and/or DNA contamination of non-tumor cells. To circumvent these problems, we have developed a new approach by using the AccII restriction site between exon 4 and exon 6. The PCR amplification of exon 4-6, followed by AccII digestion allowed us to detect without ambiguity any LOH case.

  20. Superconducting resonator used as a beam phase detector.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharamentov, S. I.; Pardo, R. C.; Ostroumov, P. N.

    2003-05-01

    Beam-bunch arrival time has been measured for the first time by operating superconducting cavities, normally part of the linac accelerator array, in a bunch-detecting mode. The very high Q of the superconducting cavities provides high sensitivity and allows for phase-detecting low-current beams. In detecting mode, the resonator is operated at a very low field level comparable to the field induced by the bunched beam. Because of this, the rf field in the cavity is a superposition of a 'pure' (or reference) rf and the beam-induced signal. A new method of circular phase rotation (CPR), allowing extraction of the beam phasemore » information from the composite rf field was developed. Arrival time phase determination with CPR is better than 1{sup o} (at 48 MHz) for a beam current of 100 nA. The electronics design is described and experimental data are presented.« less

  1. Leucocyte classification for leukaemia detection using image processing techniques.

    PubMed

    Putzu, Lorenzo; Caocci, Giovanni; Di Ruberto, Cecilia

    2014-11-01

    The counting and classification of blood cells allow for the evaluation and diagnosis of a vast number of diseases. The analysis of white blood cells (WBCs) allows for the detection of acute lymphoblastic leukaemia (ALL), a blood cancer that can be fatal if left untreated. Currently, the morphological analysis of blood cells is performed manually by skilled operators. However, this method has numerous drawbacks, such as slow analysis, non-standard accuracy, and dependences on the operator's skill. Few examples of automated systems that can analyse and classify blood cells have been reported in the literature, and most of these systems are only partially developed. This paper presents a complete and fully automated method for WBC identification and classification using microscopic images. In contrast to other approaches that identify the nuclei first, which are more prominent than other components, the proposed approach isolates the whole leucocyte and then separates the nucleus and cytoplasm. This approach is necessary to analyse each cell component in detail. From each cell component, different features, such as shape, colour and texture, are extracted using a new approach for background pixel removal. This feature set was used to train different classification models in order to determine which one is most suitable for the detection of leukaemia. Using our method, 245 of 267 total leucocytes were properly identified (92% accuracy) from 33 images taken with the same camera and under the same lighting conditions. Performing this evaluation using different classification models allowed us to establish that the support vector machine with a Gaussian radial basis kernel is the most suitable model for the identification of ALL, with an accuracy of 93% and a sensitivity of 98%. Furthermore, we evaluated the goodness of our new feature set, which displayed better performance with each evaluated classification model. The proposed method permits the analysis of blood cells automatically via image processing techniques, and it represents a medical tool to avoid the numerous drawbacks associated with manual observation. This process could also be used for counting, as it provides excellent performance and allows for early diagnostic suspicion, which can then be confirmed by a haematologist through specialised techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Development of algorithms for tsunami detection by High Frequency Radar based on modeling tsunami case studies in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Grilli, Stéphan; Guérin, Charles-Antoine; Grosdidier, Samuel

    2015-04-01

    Where coastal tsunami hazard is governed by near-field sources, Submarine Mass Failures (SMFs) or earthquakes, tsunami propagation times may be too small for a detection based on deep or shallow water buoys. To offer sufficient warning time, it has been proposed by others to implement early warning systems relying on High Frequency Surface Wave Radar (HFSWR) remote sensing, that has a dense spatial coverage far offshore. A new HFSWR, referred to as STRADIVARIUS, has been recently deployed by Diginext Inc. to cover the "Golfe du Lion" (GDL) in the Western Mediterranean Sea. This radar, which operates at 4.5 MHz, uses a proprietary phase coding technology that allows detection up to 300 km in a bistatic configuration (with a baseline of about 100 km). Although the primary purpose of the radar is vessel detection in relation to homeland security, it can also be used for ocean current monitoring. The current caused by an arriving tsunami will shift the Bragg frequency by a value proportional to a component of its velocity, which can be easily obtained from the Doppler spectrum of the HFSWR signal. Using state of the art tsunami generation and propagation models, we modeled tsunami case studies in the western Mediterranean basin (both seismic and SMFs) and simulated the HFSWR backscattered signal that would be detected for the entire GDL and beyond. Based on simulated HFSWR signal, we developed two types of tsunami detection algorithms: (i) one based on standard Doppler spectra, for which we found that to be detectable within the environmental and background current noises, the Doppler shift requires tsunami currents to be at least 10-15 cm/s, which typically only occurs on the continental shelf in fairly shallow water; (ii) to allow earlier detection, a second algorithm computes correlations of the HFSWR signals at two distant locations, shifted in time by the tsunami propagation time between these locations (easily computed based on bathymetry). We found that this second method allowed detection for currents as low as 5 cm/s, i.e., in deeper water, beyond the shelf and further away from the coast, thus allowing an earlier detection.

  3. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay

    PubMed Central

    Zhao, Yong; Wang, Haoran; Zhang, Pingping; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Yang, Ruifu; Wang, Chengbin; Zhou, Lei

    2016-01-01

    The rapid high-throughput detection of foodborne pathogens is essential in controlling food safety. In this study, a 10-channel up-converting phosphor technology-based lateral flow (TC-UPT-LF) assay was established for the rapid and simultaneous detection of 10 epidemic foodborne pathogens. Ten different single-target UPT-LF strips were developed and integrated into one TC-UPT-LF disc with optimization. Without enrichment the TC-UPT-LF assay had a detection sensitivity of 104 CFU mL−1 or 105 CFU mL−1 for each pathogen, and after sample enrichment it was 10 CFU/0.6 mg. The assay also showed good linearity, allowing quantitative detection, with a linear fitting coefficient of determination (R2) of 0.916–0.998. The 10 detection channels did not cross-react, so multiple targets could be specifically detected. When 279 real food samples were tested, the assay was highly consistent (100%) with culture-based methods. The results for 110 food samples artificially contaminated with single or multiple targets showed a high detection rate (≥80%) for most target bacteria. Overall, the TC-UPT-LF assay allows the rapid, quantitative, and simultaneous detection of 10 kinds of foodborne pathogens within 20 min, and is especially suitable for the rapid detection and surveillance of foodborne pathogens in food and water. PMID:26884128

  4. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay.

    PubMed

    Zhao, Yong; Wang, Haoran; Zhang, Pingping; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Yang, Ruifu; Wang, Chengbin; Zhou, Lei

    2016-02-17

    The rapid high-throughput detection of foodborne pathogens is essential in controlling food safety. In this study, a 10-channel up-converting phosphor technology-based lateral flow (TC-UPT-LF) assay was established for the rapid and simultaneous detection of 10 epidemic foodborne pathogens. Ten different single-target UPT-LF strips were developed and integrated into one TC-UPT-LF disc with optimization. Without enrichment the TC-UPT-LF assay had a detection sensitivity of 10(4) CFU mL(-1) or 10(5) CFU mL(-1) for each pathogen, and after sample enrichment it was 10 CFU/0.6 mg. The assay also showed good linearity, allowing quantitative detection, with a linear fitting coefficient of determination (R(2)) of 0.916-0.998. The 10 detection channels did not cross-react, so multiple targets could be specifically detected. When 279 real food samples were tested, the assay was highly consistent (100%) with culture-based methods. The results for 110 food samples artificially contaminated with single or multiple targets showed a high detection rate (≥ 80%) for most target bacteria. Overall, the TC-UPT-LF assay allows the rapid, quantitative, and simultaneous detection of 10 kinds of foodborne pathogens within 20 min, and is especially suitable for the rapid detection and surveillance of foodborne pathogens in food and water.

  5. An In-Line Photonic Biosensor for Monitoring of Glucose Concentrations

    PubMed Central

    Al-Halhouli, Ala'aldeen; Demming, Stefanie; Alahmad, Laila; LIobera, Andreu; Büttgenbach, Stephanus

    2014-01-01

    This paper presents two PDMS photonic biosensor designs that can be used for continuous monitoring of glucose concentrations. The first design, the internally immobilized sensor, consists of a reactor chamber, micro-lenses and self-alignment structures for fiber optics positioning. This sensor design allows optical detection of glucose concentrations under continuous glucose flow conditions of 33 μL/h based on internal co-immobilization of glucose oxidase (GOX) and horseradish peroxidase (HRP) on the internal PDMS surface of the reactor chamber. For this design, two co-immobilization methods, the simple adsorption and the covalent binding (PEG) methods were tested. Experiments showed successful results when using the covalent binding (PEG) method, where glucose concentrations up to 5 mM with a coefficient of determination (R2) of 0.99 and a limit of detection of 0.26 mM are detectable. The second design is a modified version of the internally immobilized sensor, where a microbead chamber and a beads filling channel are integrated into the sensor. This modification enabled external co-immobilization of enzymes covalently onto functionalized silica microbeads and allows binding a huge amount of HRP and GOX enzymes on the microbeads surfaces which increases the interaction area between immobilized enzymes and the analyte. This has a positive effect on the amount and rate of chemical reactions taking place inside the chamber. The sensor was tested under continuous glucose flow conditions and was found to be able to detect glucose concentrations up to 10 mM with R2 of 0.98 and a limit of detection of 0.7 mM. Such results are very promising for the application in photonic LOC systems used for online analysis. PMID:25157552

  6. Comparison of Automated Microarray Detection with Real-Time PCR Assays for Detection of Respiratory Viruses in Specimens Obtained from Children▿

    PubMed Central

    Raymond, Frédéric; Carbonneau, Julie; Boucher, Nancy; Robitaille, Lynda; Boisvert, Sébastien; Wu, Whei-Kuo; De Serres, Gaston; Boivin, Guy; Corbeil, Jacques

    2009-01-01

    Respiratory virus infections are a major health concern and represent the primary cause of testing consultation and hospitalization for young children. We developed and compared two assays that allow the detection of up to 23 different respiratory viruses that frequently infect children. The first method consisted of single TaqMan quantitative real-time PCR assays in a 96-well-plate format. The second consisted of a multiplex PCR followed by primer extension and microarray hybridization in an integrated molecular diagnostic device, the Infiniti analyzer. Both of our assays can detect adenoviruses of groups A, B, C, and E; coronaviruses HKU1, 229E, NL63, and OC43; enteroviruses A, B, C, and D; rhinoviruses of genotypes A and B; influenza viruses A and B; human metapneumoviruses (HMPV) A and B, human respiratory syncytial viruses (HRSV) A and B; and parainfluenza viruses of types 1, 2, and 3. These tests were used to identify viruses in 221 nasopharyngeal aspirates obtained from children hospitalized for respiratory tract infections. Respiratory viruses were detected with at least one of the two methods in 81.4% of the 221 specimens: 10.0% were positive for HRSV A, 38.0% for HRSV B, 13.1% for influenzavirus A, 8.6% for any coronaviruses, 13.1% for rhinoviruses or enteroviruses, 7.2% for adenoviruses, 4.1% for HMPV, and 1.5% for parainfluenzaviruses. Multiple viral infections were found in 13.1% of the specimens. The two methods yielded concordant results for 94.1% of specimens. These tests allowed a thorough etiological assessment of respiratory viruses infecting children in hospital settings and would assist public health interventions. PMID:19158263

  7. Comparison of automated microarray detection with real-time PCR assays for detection of respiratory viruses in specimens obtained from children.

    PubMed

    Raymond, Frédéric; Carbonneau, Julie; Boucher, Nancy; Robitaille, Lynda; Boisvert, Sébastien; Wu, Whei-Kuo; De Serres, Gaston; Boivin, Guy; Corbeil, Jacques

    2009-03-01

    Respiratory virus infections are a major health concern and represent the primary cause of testing consultation and hospitalization for young children. We developed and compared two assays that allow the detection of up to 23 different respiratory viruses that frequently infect children. The first method consisted of single TaqMan quantitative real-time PCR assays in a 96-well-plate format. The second consisted of a multiplex PCR followed by primer extension and microarray hybridization in an integrated molecular diagnostic device, the Infiniti analyzer. Both of our assays can detect adenoviruses of groups A, B, C, and E; coronaviruses HKU1, 229E, NL63, and OC43; enteroviruses A, B, C, and D; rhinoviruses of genotypes A and B; influenza viruses A and B; human metapneumoviruses (HMPV) A and B, human respiratory syncytial viruses (HRSV) A and B; and parainfluenza viruses of types 1, 2, and 3. These tests were used to identify viruses in 221 nasopharyngeal aspirates obtained from children hospitalized for respiratory tract infections. Respiratory viruses were detected with at least one of the two methods in 81.4% of the 221 specimens: 10.0% were positive for HRSV A, 38.0% for HRSV B, 13.1% for influenzavirus A, 8.6% for any coronaviruses, 13.1% for rhinoviruses or enteroviruses, 7.2% for adenoviruses, 4.1% for HMPV, and 1.5% for parainfluenzaviruses. Multiple viral infections were found in 13.1% of the specimens. The two methods yielded concordant results for 94.1% of specimens. These tests allowed a thorough etiological assessment of respiratory viruses infecting children in hospital settings and would assist public health interventions.

  8. Highly sensitive screening method for nitroaromatic, nitramine and nitrate ester explosives by high performance liquid chromatography-atmospheric pressure ionization-mass spectrometry (HPLC-API-MS) in forensic applications.

    PubMed

    Xu, Xiaoma; van de Craats, Anick M; de Bruyn, Peter C A M

    2004-11-01

    A highly sensitive screening method based on high performance liquid chromatography atmospheric pressure ionization mass spectrometry (HPLC-API-MS) has been developed for the analysis of 21 nitroaromatic, nitramine and nitrate ester explosives, which include the explosives most commonly encountered in forensic science. Two atmospheric pressure ionization (API) methods, atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI), and various experimental conditions have been applied to allow for the detection of all 21 explosive compounds. The limit of detection (LOD) in the full-scan mode has been found to be 0.012-1.2 ng on column for the screening of most explosives investigated. For nitrobenzene, an LOD of 10 ng was found with the APCI method in the negative mode. Although the detection of nitrobenzene, 2-, 3-, and 4-nitrotoluene is hindered by the difficult ionization of these compounds, we have found that by forming an adduct with glycine, LOD values in the range of 3-16 ng on column can be achieved. Compared with previous screening methods with thermospray ionization, the API method has distinct advantages, including simplicity and stability of the method applied, an extended screening range and a low detection limit for the explosives studied.

  9. Adapting and Evaluating a Rapid, Low-Cost Method to Enumerate Flies in the Household Setting

    PubMed Central

    Wolfe, Marlene K.; Dentz, Holly N.; Achando, Beryl; Mureithi, MaryAnne; Wolfe, Tim; Null, Clair; Pickering, Amy J.

    2017-01-01

    Diarrhea is a leading cause of death among children under 5 years of age worldwide. Flies are important vectors of diarrheal pathogens in settings lacking networked sanitation services. There is no standardized method for measuring fly density in households; many methods are cumbersome and unvalidated. We adapted a rapid, low-cost fly enumeration technique previously developed for industrial settings, the Scudder fly grill, for field use in household settings. We evaluated its performance in comparison to a sticky tape fly trapping method at latrine and food preparation areas among households in rural Kenya. The grill method was more sensitive; it detected the presence of any flies at 80% (433/543) of sampling locations versus 64% (348/543) of locations by the sticky tape. We found poor concordance between the two methods, suggesting that standardizing protocols is important for comparison of fly densities between studies. Fly species identification was feasible with both methods; however, the sticky tape trap allowed for more nuanced identification. Both methods detected a greater presence of bottle flies near latrines compared with food preparation areas (P < 0.01). The grill method detected more flies at the food preparation area compared with near the latrine (P = 0.014) while the sticky tape method detected no difference. We recommend the Scudder grill as a sensitive fly enumeration tool that is rapid and low cost to implement. PMID:27956654

  10. Quantitative PCR detection of Batrachochytrium dendrobatidis DNA from sediments and water

    USGS Publications Warehouse

    Kirshtein, Julie D.; Anderson, Chauncey W.; Wood, J.S.; Longcore, Joyce E.; Voytek, Mary A.

    2007-01-01

    The fungal pathogen Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis, a disease implicated in amphibian declines on 5 continents. Polymerase chain reaction (PCR) primer sets exist with which amphibians can be tested for this disease, and advances in sampling techniques allow non-invasive testing of animals. We developed filtering and PCR based quantitative methods by modifying existing PCR assays to detect Bd DNA in water and sediments, without the need for testing amphibians; we tested the methods at 4 field sites. The SYBR based assay using Boyle primers (SYBR/Boyle assay) and the Taqman based assay using Wood primers performed similarly with samples generated in the laboratory (Bd spiked filters), but the SYBR/Boyle assay detected Bd DNA in more field samples. We detected Bd DNA in water from 3 of 4 sites tested, including one pond historically negative for chytridiomycosis. Zoospore equivalents in sampled water ranged from 19 to 454 l-1 (nominal detection limit is 10 DNA copies, or about 0.06 zoospore). We did not detect DNA of Bd from sediments collected at any sites. Our filtering and amplification methods provide a new tool to investigate critical aspects of Bd in the environment. ?? Inter-Research 2007.

  11. High-throughput analysis of sub-visible mAb aggregate particles using automated fluorescence microscopy imaging.

    PubMed

    Paul, Albert Jesuran; Bickel, Fabian; Röhm, Martina; Hospach, Lisa; Halder, Bettina; Rettich, Nina; Handrick, René; Herold, Eva Maria; Kiefer, Hans; Hesse, Friedemann

    2017-07-01

    Aggregation of therapeutic proteins is a major concern as aggregates lower the yield and can impact the efficacy of the drug as well as the patient's safety. It can occur in all production stages; thus, it is essential to perform a detailed analysis for protein aggregates. Several methods such as size exclusion high-performance liquid chromatography (SE-HPLC), light scattering, turbidity, light obscuration, and microscopy-based approaches are used to analyze aggregates. None of these methods allows determination of all types of higher molecular weight (HMW) species due to a limited size range. Furthermore, quantification and specification of different HMW species are often not possible. Moreover, automation is a perspective challenge coming up with automated robotic laboratory systems. Hence, there is a need for a fast, high-throughput-compatible method, which can detect a broad size range and enable quantification and classification. We describe a novel approach for the detection of aggregates in the size range 1 to 1000 μm combining fluorescent dyes for protein aggregate labelling and automated fluorescence microscope imaging (aFMI). After appropriate selection of the dye and method optimization, our method enabled us to detect various types of HMW species of monoclonal antibodies (mAbs). Using 10 μmol L -1 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonate (Bis-ANS) in combination with aFMI allowed the analysis of mAb aggregates induced by different stresses occurring during downstream processing, storage, and administration. Validation of our results was performed by SE-HPLC, UV-Vis spectroscopy, and dynamic light scattering. With this new approach, we could not only reliably detect different HMW species but also quantify and classify them in an automated approach. Our method achieves high-throughput requirements and the selection of various fluorescent dyes enables a broad range of applications.

  12. Bacteriophage-based nanoprobes for rapid bacteria separation

    NASA Astrophysics Data System (ADS)

    Chen, Juhong; Duncan, Bradley; Wang, Ziyuan; Wang, Li-Sheng; Rotello, Vincent M.; Nugen, Sam R.

    2015-10-01

    The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes.The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03779d

  13. An optical biosensor for detection of pathogen biomarkers from Shiga toxin-producing Escherichia coli in ground beef samples

    NASA Astrophysics Data System (ADS)

    Lamoureux, Loreen; Adams, Peter; Banisadr, Afsheen; Stromberg, Zachary; Graves, Steven; Montano, Gabriel; Moxley, Rodney; Mukundan, Harshini

    2014-03-01

    Shiga toxin-producing Escherichia coli (STEC) poses a serious threat to human health through the consumption of contaminated food products, particularly beef and produce. Early detection in the food chain, and discrimination from other non-pathogenic Escherichia coli (E. coli), is critical to preventing human outbreaks, and meeting current agricultural screening standards. These pathogens often present in low concentrations in contaminated samples, making discriminatory detection difficult without the use of costly, time-consuming methods (e.g. culture). Using multiple signal transduction schemes (including novel optical methods designed for amphiphiles), specific recognition antibodies, and a waveguide-based optical biosensor developed at Los Alamos National Laboratory, we have developed ultrasensitive detection methods for lipopolysaccharides (LPS), and protein biomarkers (Shiga toxin) of STEC in complex samples (e.g. beef lysates). Waveguides functionalized with phospholipid bilayers were used to pull down amphiphilic LPS, using methods (membrane insertion) developed by our team. The assay format exploits the amphiphilic biochemistry of lipoglycans, and allows for rapid, sensitive detection with a single fluorescent reporter. We have used a combination of biophysical methods (atomic force and fluorescence microscopy) to characterize the interaction of amphiphiles with lipid bilayers, to efficiently design these assays. Sandwich immunoassays were used for detection of protein toxins. Biomarkers were spiked into homogenated ground beef samples to determine performance and limit of detection. Future work will focus on the development of discriminatory antibodies for STEC serotypes, and using quantum dots as the fluorescence reporter to enable multiplex screening of biomarkers.

  14. Rapid chromatographic determination of caseins in milk with photometric and fluorimetric detection using a hydrophobic monolithic column.

    PubMed

    Ramírez-Palomino, P; Fernández-Romero, J M; Gómez-Hens, A

    2014-01-01

    Reverse-phase liquid chromatographic methods using a hydrophobic C18 monolithic column and on-line photometric and fluorimetric detection for the determination of the major casein (CN) proteins in milk are presented. The separation of αs1-CN, αs2-CN, β-CN and κ-CN was achieved in only five minutes. Fluorimetric detection enabled better analytical results than photometric detection. Thus, the dynamic ranges of the calibration graphs and detection limits obtained using fluorimetric detection were (mgmL(-)(1)): αs1-CN (0.74-10.0, 0.22), αs2-CN (0.15-10.0, 0.045), β-CN (0.68-10.0, 0.20) and κ-CN (0.21-10.0, 0.06). The analytical features of the photometric method, which does not allow the quantification of β-casein, were (mgmL(-)(1)): αs1-CN (1.5-9.0, 0.45), αs2-CN (1.4-10.0, 0.43) and κ-CN (0.4-9.0, 0.12). Precision data, expressed as relative standard deviation, ranged between 0.6% and 5.3% for the fluorimetric method and between 2.4% and 6.2% for the photometric method. Both methods were applied to the analysis of three different milk samples, obtaining recoveries in the ranges of 86.6-103.2% and 92.0-106.5% using fluorimetric and photometric detection, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Imaging with Mass Spectrometry of Bacteria on the Exoskeleton of Fungus-Growing Ants.

    PubMed

    Gemperline, Erin; Horn, Heidi A; DeLaney, Kellen; Currie, Cameron R; Li, Lingjun

    2017-08-18

    Mass spectrometry imaging is a powerful analytical technique for detecting and determining spatial distributions of molecules within a sample. Typically, mass spectrometry imaging is limited to the analysis of thin tissue sections taken from the middle of a sample. In this work, we present a mass spectrometry imaging method for the detection of compounds produced by bacteria on the outside surface of ant exoskeletons in response to pathogen exposure. Fungus-growing ants have a specialized mutualism with Pseudonocardia, a bacterium that lives on the ants' exoskeletons and helps protect their fungal garden food source from harmful pathogens. The developed method allows for visualization of bacterial-derived compounds on the ant exoskeleton. This method demonstrates the capability to detect compounds that are specifically localized to the bacterial patch on ant exoskeletons, shows good reproducibility across individual ants, and achieves accurate mass measurements within 5 ppm error when using a high-resolution, accurate-mass mass spectrometer.

  16. Automatically generated acceptance test: A software reliability experiment

    NASA Technical Reports Server (NTRS)

    Protzel, Peter W.

    1988-01-01

    This study presents results of a software reliability experiment investigating the feasibility of a new error detection method. The method can be used as an acceptance test and is solely based on empirical data about the behavior of internal states of a program. The experimental design uses the existing environment of a multi-version experiment previously conducted at the NASA Langley Research Center, in which the launch interceptor problem is used as a model. This allows the controlled experimental investigation of versions with well-known single and multiple faults, and the availability of an oracle permits the determination of the error detection performance of the test. Fault interaction phenomena are observed that have an amplifying effect on the number of error occurrences. Preliminary results indicate that all faults examined so far are detected by the acceptance test. This shows promise for further investigations, and for the employment of this test method on other applications.

  17. Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and Eddy Current Sensors

    PubMed Central

    Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah

    2016-01-01

    The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented. PMID:26891305

  18. Systematic cloning of human minisatellites from ordered array charomid libraries.

    PubMed

    Armour, J A; Povey, S; Jeremiah, S; Jeffreys, A J

    1990-11-01

    We present a rapid and efficient method for the isolation of minisatellite loci from human DNA. The method combines cloning a size-selected fraction of human MboI DNA fragments in a charomid vector with hybridization screening of the library in ordered array. Size-selection of large MboI fragments enriches for the longer, more variable minisatellites and reduces the size of the library required. The library was screened with a series of multi-locus probes known to detect a large number of hypervariable loci in human DNA. The gridded library allowed both the rapid processing of positive clones and the comparative evaluation of the different multi-locus probes used, in terms of both the relative success in detecting hypervariable loci and the degree of overlap between the sets of loci detected. We report 23 new human minisatellite loci isolated by this method, which map to 14 autosomes and the sex chromosomes.

  19. A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing.

    PubMed

    Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi

    2009-01-01

    Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs.

  20. A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing

    PubMed Central

    Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi

    2009-01-01

    Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs. PMID:22399990

  1. Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and Eddy Current Sensors.

    PubMed

    Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah

    2016-02-16

    The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented.

  2. Automated detection of diagnostically relevant regions in H&E stained digital pathology slides

    NASA Astrophysics Data System (ADS)

    Bahlmann, Claus; Patel, Amar; Johnson, Jeffrey; Ni, Jie; Chekkoury, Andrei; Khurd, Parmeshwar; Kamen, Ali; Grady, Leo; Krupinski, Elizabeth; Graham, Anna; Weinstein, Ronald

    2012-03-01

    We present a computationally efficient method for analyzing H&E stained digital pathology slides with the objective of discriminating diagnostically relevant vs. irrelevant regions. Such technology is useful for several applications: (1) It can speed up computer aided diagnosis (CAD) for histopathology based cancer detection and grading by an order of magnitude through a triage-like preprocessing and pruning. (2) It can improve the response time for an interactive digital pathology workstation (which is usually dealing with several GByte digital pathology slides), e.g., through controlling adaptive compression or prioritization algorithms. (3) It can support the detection and grading workflow for expert pathologists in a semi-automated diagnosis, hereby increasing throughput and accuracy. At the core of the presented method is the statistical characterization of tissue components that are indicative for the pathologist's decision about malignancy vs. benignity, such as, nuclei, tubules, cytoplasm, etc. In order to allow for effective yet computationally efficient processing, we propose visual descriptors that capture the distribution of color intensities observed for nuclei and cytoplasm. Discrimination between statistics of relevant vs. irrelevant regions is learned from annotated data, and inference is performed via linear classification. We validate the proposed method both qualitatively and quantitatively. Experiments show a cross validation error rate of 1.4%. We further show that the proposed method can prune ~90% of the area of pathological slides while maintaining 100% of all relevant information, which allows for a speedup of a factor of 10 for CAD systems.

  3. Coronary arteries segmentation based on the 3D discrete wavelet transform and 3D neutrosophic transform.

    PubMed

    Chen, Shuo-Tsung; Wang, Tzung-Dau; Lee, Wen-Jeng; Huang, Tsai-Wei; Hung, Pei-Kai; Wei, Cheng-Yu; Chen, Chung-Ming; Kung, Woon-Man

    2015-01-01

    Most applications in the field of medical image processing require precise estimation. To improve the accuracy of segmentation, this study aimed to propose a novel segmentation method for coronary arteries to allow for the automatic and accurate detection of coronary pathologies. The proposed segmentation method included 2 parts. First, 3D region growing was applied to give the initial segmentation of coronary arteries. Next, the location of vessel information, HHH subband coefficients of the 3D DWT, was detected by the proposed vessel-texture discrimination algorithm. Based on the initial segmentation, 3D DWT integrated with the 3D neutrosophic transformation could accurately detect the coronary arteries. Each subbranch of the segmented coronary arteries was segmented correctly by the proposed method. The obtained results are compared with those ground truth values obtained from the commercial software from GE Healthcare and the level-set method proposed by Yang et al., 2007. Results indicate that the proposed method is better in terms of efficiency analyzed. Based on the initial segmentation of coronary arteries obtained from 3D region growing, one-level 3D DWT and 3D neutrosophic transformation can be applied to detect coronary pathologies accurately.

  4. Removal of anti-Stokes emission background in STED microscopy by FPGA-based synchronous detection

    NASA Astrophysics Data System (ADS)

    Castello, M.; Tortarolo, G.; Coto Hernández, I.; Deguchi, T.; Diaspro, A.; Vicidomini, G.

    2017-05-01

    In stimulated emission depletion (STED) microscopy, the role of the STED beam is to de-excite, via stimulated emission, the fluorophores that have been previously excited by the excitation beam. This condition, together with specific beam intensity distributions, allows obtaining true sub-diffraction spatial resolution images. However, if the STED beam has a non-negligible probability to excite the fluorophores, a strong fluorescent background signal (anti-Stokes emission) reduces the effective resolution. For STED scanning microscopy, different synchronous detection methods have been proposed to remove this anti-Stokes emission background and recover the resolution. However, every method works only for a specific STED microscopy implementation. Here we present a user-friendly synchronous detection method compatible with any STED scanning microscope. It exploits a data acquisition (DAQ) card based on a field-programmable gate array (FPGA), which is progressively used in STED microscopy. In essence, the FPGA-based DAQ card synchronizes the fluorescent signal registration, the beam deflection, and the excitation beam interruption, providing a fully automatic pixel-by-pixel synchronous detection method. We validate the proposed method in both continuous wave and pulsed STED microscope systems.

  5. A novel method for detection of apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zagariya, Alexander M., E-mail: zagariya@uic.edu

    2012-04-15

    There are two different Angiotensin II (ANG II) peptides in nature: Human type (ANG II) and Bovine type (ANG II*). These eight amino acid peptides differ only at position 5 where Valine is replaced by Isoleucine in the Bovine type. They are present in all species studied so far. These amino acids are different by only one atom of carbon. This difference is so small, that it will allow any of ANG II, Bovine or Human antibodies to interact with all species and create a universal method for apoptosis detection. ANG II concentrations are found at substantially higher levels inmore » apoptotic, compared to non-apoptotic, tissues. ANG II accumulation can lead to DNA damage, mutations, carcinogenesis and cell death. We demonstrate that Bovine antiserum can be used for universal detection of apoptosis. In 2010, the worldwide market for apoptosis detection reached the $20 billion mark and significantly increases each year. Most commercially available methods are related to Annexin V and TUNNEL. Our new method based on ANG II is more widely known to physicians and scientists compared to previously used methods. Our approach offers a novel alternative for assessing apoptosis activity with enhanced sensitivity, at a lower cost and ease of use.« less

  6. Microwave or autoclave treatments destroy the infectivity of infectious bronchitis virus and avian pneumovirus but allow detection by reverse transcriptase-polymerase chain reaction.

    PubMed

    Elhafi, G; Naylor, C J; Savage, C E; Jones, R C

    2004-06-01

    A method is described for enabling safe transit of denatured virus samples for polymerase chain reaction (PCR) identification without the risk of unwanted viable viruses. Cotton swabs dipped in avian infectious bronchitis virus (IBV) or avian pneumovirus (APV) were allowed to dry. Newcastle disease virus and avian influenza viruses were used as controls. Autoclaving and microwave treatment for as little as 20 sec destroyed the infectivity of all four viruses. However, both IBV and APV could be detected by reverse transcriptase (RT)-PCR after autoclaving and as long as 5 min microwave treatment (Newcastle disease virus and avian influenza viruses were not tested). Double microwave treatment of IBV and APV with an interval of 2 to 7 days between was tested. After the second treatment, RT-PCR products were readily detected in all samples. Swabs from the tracheas and cloacas of chicks infected with IBV shown to contain infectious virus were microwaved. Swabs from both sources were positive by RT-PCR. Microwave treatment appears to be a satisfactory method of inactivating virus while preserving nucleic acid for PCR identification.

  7. Development of a Real-Time, TaqMan Reverse Transcription-PCR Assay for Detection and Differentiation of Lyssavirus Genotypes 1, 5, and 6

    PubMed Central

    Wakeley, P. R.; Johnson, N.; McElhinney, L. M.; Marston, D.; Sawyer, J.; Fooks, A. R.

    2005-01-01

    Several reverse transcription-PCR (RT-PCR) methods have been reported for the detection of rabies and rabies-related viruses. These methods invariably involve multiple transfers of nucleic acids between different tubes, with the risk of contamination leading to the production of false-positive results. Here we describe a single, closed-tube, nonnested RT-PCR with TaqMan technology that distinguishes between classical rabies virus (genotype 1) and European bat lyssaviruses 1 and 2 (genotypes 5 and 6) in real time. The TaqMan assay is rapid, sensitive, and specific and allows for the genotyping of unknown isolates concomitant with the RT-PCR. The assay can be applied quantitatively and the use of an internal control enables the quality of the isolated template to be assessed. Despite sequence heterogeneity in the N gene between the different genotypes, a universal forward and reverse primer set has been designed, allowing for the simplification of previously described assays. We propose that within a geographically constrained area, this assay will be a useful tool for the detection and differentiation of members of the Lyssavirus genus. PMID:15956398

  8. Diagnostic value of JC/BK virus antibody immunohistochemistry staining in urine samples from posttransplant immunosuppressed patients in relation to polyomavirus reactivation.

    PubMed

    Yuste, Rosario Sanchez; Frías, Carolina; López, Ana; Vallejo, Carlos; Martín, Paloma; Bellas, Carmen

    2008-01-01

    To compare the diagnostic value of cytology and immunohistochemistry staining (IHS) of urine samples for polyomavirus reactivation diagnosis. Sixty-eight urine samples collected from 18 immunosuppressed patients were analyzed by Papanicolaou and IHS with a JC/BK virus-specific monoclonal antibody. Overall, polyomavirus BK (BKV) was positive in 11 of 18 patients (61.1%) (3 of whom developed hemorrhagic cystitis) and in 23 of 68 urine samples (28%). Of 23 samples, 4 (17%) were positive by 1 of the 2 techniques, only. Of 23 samples, 19 (83%) were positive by both methods. In matching urine samples from the same patient, the number of BKV-infected positive cells detected by IHS in urine slides was higher than those detected by Papanicolaou staining (71.3%). The main advantage of LHS is that it allowed confirmation of BKV infection diagnosis in urine samples. IHS detected more BKV-infected cells in samples with few positive urothelial cells, which would have gone undetected if only Papanicolaou staining had been used as the BKV screening method. Urine samples testing for BKV by both techniques will improve diagnosis in asymptomatic patients, allowing early therapeutic intervention and a better clinical outcome.

  9. Dual-isotope PET using positron-gamma emitters.

    PubMed

    Andreyev, A; Celler, A

    2011-07-21

    Positron emission tomography (PET) is widely recognized as a highly effective functional imaging modality. Unfortunately, standard PET cannot be used for dual-isotope imaging (which would allow for simultaneous investigation of two different biological processes), because positron-electron annihilation products from different tracers are indistinguishable in terms of energy. Methods that have been proposed for dual-isotope PET rely on differences in half-lives of the participating isotopes; these approaches, however, require making assumptions concerning kinetic behavior of the tracers and may not lead to optimal results. In this paper we propose a novel approach for dual-isotope PET and investigate its performance using GATE simulations. Our method requires one of the two radioactive isotopes to be a pure positron emitter and the second isotope to emit an additional high-energy gamma in a cascade simultaneously with positron emission. Detection of this auxiliary prompt gamma in coincidence with the annihilation event allows us to identify the corresponding 511 keV photon pair as originating from the same isotope. Two list-mode datasets are created: a primary dataset that contains all detected 511 keV photon pairs from both isotopes, and a second, tagged (much smaller) dataset that contains only those PET events for which a coincident prompt gamma has also been detected. An image reconstructed from the tagged dataset reflects the distribution of the second positron-gamma radiotracer and serves as a prior for the reconstruction of the primary dataset. Our preliminary simulation study with partially overlapping (18)F/(22)Na and (18)F/(60)Cu radiotracer distributions showed that in these two cases the dual-isotope PET method allowed for separation of the two activity distributions and recovered total activities with relative errors of about 5%.

  10. Automated chromatographic laccase-mediator-system activity assay.

    PubMed

    Anders, Nico; Schelden, Maximilian; Roth, Simon; Spiess, Antje C

    2017-08-01

    To study the interaction of laccases, mediators, and substrates in laccase-mediator systems (LMS), an on-line measurement was developed using high performance anion exchange chromatography equipped with a CarboPac™ PA 100 column coupled to pulsed amperometric detection (HPAEC-PAD). The developed method was optimized for overall chromatographic run time (45 to 120 min) and automated sample drawing. As an example, the Trametes versicolor laccase induced oxidation of 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1,3-dihydroxypropane (adlerol) using 1-hydroxybenzotriazole (HBT) as mediator was measured and analyzed on-line. Since the Au electrode of the PAD detects only hydroxyl group containing substances with a limit of detection being in the milligram/liter range, not all products are measureable. Therefore, this method was applied for the quantification of adlerol, and-based on adlerol conversion-for the quantification of the LMS activity at a specific T. versicolor laccase/HBT ratio. The automated chromatographic activity assay allowed for a defined reaction start of all laccase-mediator-system reactions mixtures, and the LMS reaction progress was automatically monitored for 48 h. The automatization enabled an integrated monitoring overnight and over-weekend and minimized all manual errors such as pipetting of solutions accordingly. The activity of the LMS based on adlerol consumption was determined to 0.47 U/mg protein for a laccase/mediator ratio of 1.75 U laccase/g HBT. In the future, the automated method will allow for a fast screening of combinations of laccases, mediators, and substrates which are efficient for lignin modification. In particular, it allows for a fast and easy quantification of the oxidizing activity of an LMS on a lignin-related substrate which is not covered by typical colorimetric laccase assays. ᅟ.

  11. A novel technique for finding gas bubbles in the nuclear waste containers using Muon Scattering Tomography

    NASA Astrophysics Data System (ADS)

    Dobrowolska, M.; Velthuis, J.; Frazão, L.; Kikoła, D.

    2018-05-01

    Nuclear waste is deposited for many years in the concrete or bitumen-filled containers. With time hydrogen gas is produced, which can accumulate in bubbles. These pockets of gas may result in bitumen overflowing out of the waste containers and could result in spread of radioactivity. Muon Scattering Tomography is a non-invasive scanning method developed to examine the unknown content of nuclear waste drums. Here we present a method which allows us to successfully detect bubbles larger than 2 litres and determine their size with a relative uncertainty resolution of 1.55 ± 0.77%. Furthermore, the method allows to make a distinction between a conglomeration of bubbles and a few smaller gas volumes in different locations.

  12. Flow cytometry as a rapid test for detection of penicillin resistance directly in bacterial cells in Enterococcus faecalis and Staphylococcus aureus.

    PubMed

    Jarzembowski, T; Wiśniewska, K; Józwik, A; Bryl, E; Witkowski, J

    2008-08-01

    We studied the usefulness of flow cytometry for detection of penicillin resistance in E. faecalis and S. aureus by direct binding of commercially available fluorescent penicillin, Bocillin FL, to cells obtained from culture. There were significantly lower percentages of fluorescent cells and median and mean fluorescence values per particle in penicillin-resistant than in penicillin-sensitive strains of both species observed. The method allows rapid detection of penicillin resistance in S. aureus and E. faecalis. The results encourage further investigations on the detection of antibiotic resistance in bacteria using flow cytometry.

  13. Balanced detection for self-mixing interferometry.

    PubMed

    Li, Kun; Cavedo, Federico; Pesatori, Alessandro; Zhao, Changming; Norgia, Michele

    2017-01-15

    We propose a new detection scheme for self-mixing interferometry using two photodiodes for implementing a differential acquisition. The method is based on the phase opposition of the self-mixing signal measured between the two laser diode facet outputs. The subtraction of the two outputs implements a sort of balanced detection that improves the signal quality, and allows canceling of unwanted signals due to laser modulation and disturbances on laser supply and transimpedance amplifier. Experimental results demonstrate the benefits of differential acquisition in a system for both absolute distance and displacement-vibration measurement. This Letter provides guidance for the design of self-mixing interferometers using balanced detection.

  14. Mutual Comparative Filtering for Change Detection in Videos with Unstable Illumination Conditions

    NASA Astrophysics Data System (ADS)

    Sidyakin, Sergey V.; Vishnyakov, Boris V.; Vizilter, Yuri V.; Roslov, Nikolay I.

    2016-06-01

    In this paper we propose a new approach for change detection and moving objects detection in videos with unstable, abrupt illumination changes. This approach is based on mutual comparative filters and background normalization. We give the definitions of mutual comparative filters and outline their strong advantage for change detection purposes. Presented approach allows us to deal with changing illumination conditions in a simple and efficient way and does not have drawbacks, which exist in models that assume different color transformation laws. The proposed procedure can be used to improve a number of background modelling methods, which are not specifically designed to work under illumination changes.

  15. The best of both worlds: A combined approach for analyzing microalgal diversity via metabarcoding and morphology-based methods

    PubMed Central

    Kahlert, Maria; Fink, Patrick

    2017-01-01

    An increasing number of studies use next generation sequencing (NGS) to analyze complex communities, but is the method sensitive enough when it comes to identification and quantification of species? We compared NGS with morphology-based identification methods in an analysis of microalgal (periphyton) communities. We conducted a mesocosm experiment in which we allowed two benthic grazer species to feed upon benthic biofilms, which resulted in altered periphyton communities. Morphology-based identification and 454 (Roche) pyrosequencing of the V4 region in the small ribosomal unit (18S) rDNA gene were used to investigate the community change caused by grazing. Both the NGS-based data and the morphology-based method detected a marked shift in the biofilm composition, though the two methods varied strongly in their abilities to detect and quantify specific taxa, and neither method was able to detect all species in the biofilms. For quantitative analysis, we therefore recommend using both metabarcoding and microscopic identification when assessing the community composition of eukaryotic microorganisms. PMID:28234997

  16. Detecting subsurface fluid leaks in real-time using injection and production rates

    NASA Astrophysics Data System (ADS)

    Singh, Harpreet; Huerta, Nicolas J.

    2017-12-01

    CO2 injection into geologic formations for either enhanced oil recovery or carbon storage introduces a risk for undesired fluid leakage into overlying groundwater or to the surface. Despite decades of subsurface CO2 production and injection, the technologies and methods for detecting CO2 leaks are still costly and prone to large uncertainties. This is especially true for pressure-based monitoring methods, which require the use of simplified geological and reservoir flow models to simulate the pressure behavior as well as background noise affecting pressure measurements. In this study, we propose a method to detect the time and volume of fluid leakage based on real-time measurements of well injection and production rates. The approach utilizes analogies between fluid flow and capacitance-resistance modeling. Unlike other leak detection methods (e.g. pressure-based), the proposed method does not require geological and reservoir flow models to simulate the behavior that often carry significant sources of uncertainty; therefore, with our approach the leak can be detected with greater certainty. The method can be applied to detect when a leak begins by tracking a departure in fluid production rate from the expected pattern. The method has been tuned to detect the effect of boundary conditions and fluid compressibility on leakage. To highlight the utility of this approach we use our method to detect leaks for two scenarios. The first scenario simulates a fluid leak from the storage formation into an above-zone monitoring interval. The second scenario simulates intra-reservoir migration between two compartments. We illustrate this method to detect fluid leakage in three different reservoirs with varying levels of geological and structural complexity. The proposed leakage detection method has three novelties: i) requires only readily-available data (injection and production rates), ii) accounts for fluid compressibility and boundary effects, and iii) in addition to detecting the time when a leak is activated and the volume of that leakage, this method provides an insight about the leak location, and reservoir connectivity. We are proposing this as a complementary method that can be used with other, more expensive, methods early on in the injection process. This will allow an operator to conduct more expensive surveys less often because the proposed method can show if there are no leaks on a monthly basis that is cheap and fast.

  17. Electrochemical force microscopy

    DOEpatents

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  18. Quantification of DNA using the luminescent oxygen channeling assay.

    PubMed

    Patel, R; Pollner, R; de Keczer, S; Pease, J; Pirio, M; DeChene, N; Dafforn, A; Rose, S

    2000-09-01

    Simplified and cost-effective methods for the detection and quantification of nucleic acid targets are still a challenge in molecular diagnostics. Luminescent oxygen channeling assay (LOCI(TM)) latex particles can be conjugated to synthetic oligodeoxynucleotides and hybridized, via linking probes, to different DNA targets. These oligomer-conjugated LOCI particles survive thermocycling in a PCR reaction and allow quantified detection of DNA targets in both real-time and endpoint formats. The endpoint DNA quantification format utilized two sensitizer bead types that are sensitive to separate illumination wavelengths. These two bead types were uniquely annealed to target or control amplicons, and separate illuminations generated time-resolved chemiluminescence, which distinguished the two amplicon types. In the endpoint method, ratios of the two signals allowed determination of the target DNA concentration over a three-log range. The real-time format allowed quantification of the DNA target over a six-log range with a linear relationship between threshold cycle and log of the number of DNA targets. This is the first report of the use of an oligomer-labeled latex particle assay capable of producing DNA quantification and sequence-specific chemiluminescent signals in a homogeneous format. It is also the first report of the generation of two signals from a LOCI assay. The methods described here have been shown to be easily adaptable to new DNA targets because of the generic nature of the oligomer-labeled LOCI particles.

  19. A PCR procedure for the detection of Giardia intestinalis cysts and Escherichia coli in lettuce.

    PubMed

    Ramirez-Martinez, M L; Olmos-Ortiz, L M; Barajas-Mendiola, M A; Giono Cerezo, S; Avila, E E; Cuellar-Mata, P

    2015-06-01

    Giardia intestinalis is a pathogen associated with foodborne outbreaks and Escherichia coli is commonly used as a marker of faecal contamination. Implementation of routine identification methods of G. intestinalis is difficult for the analysis of vegetables and the microbiological detection of E. coli requires several days. This study proposes a PCR-based assay for the detection of E. coli and G. intestinalis cysts using crude DNA isolated from artificially contaminated lettuce. The G. intestinalis and E. coli PCR assays targeted the β-giardin and uidA genes, respectively, and were 100% specific. Forty lettuces from local markets were analysed by both PCR and light microscopy and no cysts were detected, the calculated detection limit was 20 cysts per gram of lettuce; however, by PCR, E. coli was detected in eight of ten randomly selected samples of lettuce. These data highlight the need to validate procedures for routine quality assurance. These PCR-based assays can be employed as alternative methods for the detection of G. intestinalis and E. coli and have the potential to allow for the automation and simultaneous detection of protozoa and bacterial pathogens in multiple samples. Significance and impact of the study: There are few studies for Giardia intestinalis detection in food because methods for its identification are difficult for routine implementation. Here, we developed a PCR-based method as an alternative to the direct observation of cysts in lettuce by light microscopy. Additionally, Escherichia coli was detected by PCR and the sanitary quality of lettuce was evaluated using molecular and standard microbiological methods. Using PCR, the detection probability of Giardia cysts inoculated onto samples of lettuce was improved compared to light microscopy, with the advantage of easy automation. These methods may be employed to perform timely and affordable detection of foodborne pathogens. © 2015 The Society for Applied Microbiology.

  20. Smart materials and structures

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.; Heyman, Joseph S.

    1993-01-01

    Embedded optical fibers allow not only the cure-monitoring and in-service lifetime measurements of composite materials, but the NDE of material damage and degradation with aging. The capabilities of such damage-detection systems have been extended to allow the quantitative determination of 2D strain in materials by several different methods, including the interferometric and the numerical. It remains to be seen, what effect the embedded fibers have on the strength of the 'smart' materials created through their incorporation.

  1. A high-throughput next-generation sequencing-based method for detecting the mutational fingerprint of carcinogens

    PubMed Central

    Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella

    2012-01-01

    Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue® mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents. PMID:22735701

  2. A high-throughput next-generation sequencing-based method for detecting the mutational fingerprint of carcinogens.

    PubMed

    Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella

    2012-08-01

    Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents.

  3. Methods for Detection of Mitochondrial and Cellular Reactive Oxygen Species

    PubMed Central

    Harrison, David G.

    2014-01-01

    Abstract Significance: Mitochondrial and cellular reactive oxygen species (ROS) play important roles in both physiological and pathological processes. Different ROS, such as superoxide (O2•−), hydrogen peroxide, and peroxynitrite (ONOO•−), stimulate distinct cell-signaling pathways and lead to diverse outcomes depending on their amount and subcellular localization. A variety of methods have been developed for ROS detection; however, many of these methods are not specific, do not allow subcellular localization, and can produce artifacts. In this review, we will critically analyze ROS detection and present advantages and the shortcomings of several available methods. Recent Advances: In the past decade, a number of new fluorescent probes, electron-spin resonance approaches, and immunoassays have been developed. These new state-of-the-art methods provide improved selectivity and subcellular resolution for ROS detection. Critical Issues: Although new methods for HPLC superoxide detection, application of fluorescent boronate-containing probes, use of cell-targeted hydroxylamine spin probes, and immunospin trapping have been available for several years, there has been lack of translation of these into biomedical research, limiting their widespread use. Future Directions: Additional studies to translate these new technologies from the test tube to physiological applications are needed and could lead to a wider application of these approaches to study mitochondrial and cellular ROS. Antioxid. Redox Signal. 20, 372–382. PMID:22978713

  4. Astrometric Research of Asteroidal Satellites

    NASA Astrophysics Data System (ADS)

    Kikwaya, J.-B.; Thuillot, W.; Rocher, P.; Vieira Martins, R.; Arlot, J.-E.; Angeli, Cl.

    2002-09-01

    Several observational methods have been applied in order to detect asteroidal satellites. Some of them were rather successful, such as the stellar occultations and mutual eclipse methods. Recently other techniques such as the space imaging, the adaptive optics and the radar imaging inferred a great improvement in the search for these objects. However several limitations appear in the type of data that each of them allow us to access. We propose to apply an astrometric method in order as well to detect new asteroidal satellites as to get complementary data of some already detected objects (mainly their orbital period). This method is founded on the search of the reflex effect of the primary object due to the orbital motion of a possible satellite. Such an astrometric signature, already searched by Monet & Monet (1998), may reach several tens of MAS. Only a spectral analysis could then detect this signal under good conditions of signal/noise ratio and thanks to high quality astrometric measurements and coverage by different sites of observation. We have applied such a method for several asteroids. A preliminary result is obtained thanks to 377 CCD observations of 146 Lucina made at the Haute-Provence Observatory in South of France. A periodical signal appears in this analysis, leading to data compatible with a first detection of a probable satellite made previously (Arlot et al. 1985) by the occultation method.

  5. Optimization and validation of sample preparation for metagenomic sequencing of viruses in clinical samples.

    PubMed

    Lewandowska, Dagmara W; Zagordi, Osvaldo; Geissberger, Fabienne-Desirée; Kufner, Verena; Schmutz, Stefan; Böni, Jürg; Metzner, Karin J; Trkola, Alexandra; Huber, Michael

    2017-08-08

    Sequence-specific PCR is the most common approach for virus identification in diagnostic laboratories. However, as specific PCR only detects pre-defined targets, novel virus strains or viruses not included in routine test panels will be missed. Recently, advances in high-throughput sequencing allow for virus-sequence-independent identification of entire virus populations in clinical samples, yet standardized protocols are needed to allow broad application in clinical diagnostics. Here, we describe a comprehensive sample preparation protocol for high-throughput metagenomic virus sequencing using random amplification of total nucleic acids from clinical samples. In order to optimize metagenomic sequencing for application in virus diagnostics, we tested different enrichment and amplification procedures on plasma samples spiked with RNA and DNA viruses. A protocol including filtration, nuclease digestion, and random amplification of RNA and DNA in separate reactions provided the best results, allowing reliable recovery of viral genomes and a good correlation of the relative number of sequencing reads with the virus input. We further validated our method by sequencing a multiplexed viral pathogen reagent containing a range of human viruses from different virus families. Our method proved successful in detecting the majority of the included viruses with high read numbers and compared well to other protocols in the field validated against the same reference reagent. Our sequencing protocol does work not only with plasma but also with other clinical samples such as urine and throat swabs. The workflow for virus metagenomic sequencing that we established proved successful in detecting a variety of viruses in different clinical samples. Our protocol supplements existing virus-specific detection strategies providing opportunities to identify atypical and novel viruses commonly not accounted for in routine diagnostic panels.

  6. A Hopfield neural network for image change detection.

    PubMed

    Pajares, Gonzalo

    2006-09-01

    This paper outlines an optimization relaxation approach based on the analog Hopfield neural network (HNN) for solving the image change detection problem between two images. A difference image is obtained by subtracting pixel by pixel both images. The network topology is built so that each pixel in the difference image is a node in the network. Each node is characterized by its state, which determines if a pixel has changed. An energy function is derived, so that the network converges to stable states. The analog Hopfield's model allows each node to take on analog state values. Unlike most widely used approaches, where binary labels (changed/unchanged) are assigned to each pixel, the analog property provides the strength of the change. The main contribution of this paper is reflected in the customization of the analog Hopfield neural network to derive an automatic image change detection approach. When a pixel is being processed, some existing image change detection procedures consider only interpixel relations on its neighborhood. The main drawback of such approaches is the labeling of this pixel as changed or unchanged according to the information supplied by its neighbors, where its own information is ignored. The Hopfield model overcomes this drawback and for each pixel allows a tradeoff between the influence of its neighborhood and its own criterion. This is mapped under the energy function to be minimized. The performance of the proposed method is illustrated by comparative analysis against some existing image change detection methods.

  7. Detection of kinetic change points in piece-wise linear single molecule motion

    NASA Astrophysics Data System (ADS)

    Hill, Flynn R.; van Oijen, Antoine M.; Duderstadt, Karl E.

    2018-03-01

    Single-molecule approaches present a powerful way to obtain detailed kinetic information at the molecular level. However, the identification of small rate changes is often hindered by the considerable noise present in such single-molecule kinetic data. We present a general method to detect such kinetic change points in trajectories of motion of processive single molecules having Gaussian noise, with a minimum number of parameters and without the need of an assumed kinetic model beyond piece-wise linearity of motion. Kinetic change points are detected using a likelihood ratio test in which the probability of no change is compared to the probability of a change occurring, given the experimental noise. A predetermined confidence interval minimizes the occurrence of false detections. Applying the method recursively to all sub-regions of a single molecule trajectory ensures that all kinetic change points are located. The algorithm presented allows rigorous and quantitative determination of kinetic change points in noisy single molecule observations without the need for filtering or binning, which reduce temporal resolution and obscure dynamics. The statistical framework for the approach and implementation details are discussed. The detection power of the algorithm is assessed using simulations with both single kinetic changes and multiple kinetic changes that typically arise in observations of single-molecule DNA-replication reactions. Implementations of the algorithm are provided in ImageJ plugin format written in Java and in the Julia language for numeric computing, with accompanying Jupyter Notebooks to allow reproduction of the analysis presented here.

  8. Nanoparticle-Enhanced Plasmonic Biosensor for Digital Biomarker Detection in a Microarray.

    PubMed

    Belushkin, Alexander; Yesilkoy, Filiz; Altug, Hatice

    2018-05-22

    Nanoplasmonic devices have become a paradigm for biomolecular detection enabled by enhanced light-matter interactions in the fields from biological and pharmaceutical research to medical diagnostics and global health. In this work, we present a bright-field imaging plasmonic biosensor that allows visualization of single subwavelength gold nanoparticles (NPs) on large-area gold nanohole arrays (Au-NHAs). The sensor generates image heatmaps that reveal the locations of single NPs as high-contrast spikes, enabling the detection of individual NP-labeled molecules. We implemented the proposed method in a sandwich immunoassay for the detection of biotinylated bovine serum albumin (bBSA) and human C-reactive protein (CRP), a clinical biomarker of acute inflammatory diseases. Our method can detect 10 pg/mL of bBSA and 27 pg/mL CRP in 2 h, which is at least 4 orders of magnitude lower than the clinically relevant concentrations. Our sensitive and rapid detection approach paired with the robust large-area plasmonic sensor chips, which are fabricated using scalable and low-cost manufacturing, provides a powerful platform for multiplexed biomarker detection in various settings.

  9. A detection method for X-ray images based on wavelet transforms: the case of the ROSAT PSPC.

    NASA Astrophysics Data System (ADS)

    Damiani, F.; Maggio, A.; Micela, G.; Sciortino, S.

    1996-02-01

    The authors have developed a method based on wavelet transforms (WT) to detect efficiently sources in PSPC X-ray images. The multiscale approach typical of WT can be used to detect sources with a large range of sizes, and to estimate their size and count rate. Significance thresholds for candidate detections (found as local WT maxima) have been derived from a detailed study of the probability distribution of the WT of a locally uniform background. The use of the exposure map allows good detection efficiency to be retained even near PSPC ribs and edges. The algorithm may also be used to get upper limits to the count rate of undetected objects. Simulations of realistic PSPC images containing either pure background or background+sources were used to test the overall algorithm performances, and to assess the frequency of spurious detections (vs. detection threshold) and the algorithm sensitivity. Actual PSPC images of galaxies and star clusters show the algorithm to have good performance even in cases of extended sources and crowded fields.

  10. Specific detection of the toxic dinoflagellates Alexandrium tamarense and Alexandrium catenella from single vegetative cells by a loop-mediated isothermal amplification method.

    PubMed

    Nagai, Satoshi; Itakura, Shigeru

    2012-09-01

    In this study, we succeeded in developing a loop-mediated isothermal amplification (LAMP) method that enables sensitive and specific detection of the toxic marine dinoflagellates Alexandrium tamarense and Alexandrium catenella from single cells of both laboratory cultures and naturally blooming cells within 25 min, by monitoring the turbidimeter from the start of the LAMP reaction. The fluorescence intensity was strong enough to allow discrimination between positive and negative results by naked eye under a UV lamp, even in amplified samples from a single cell, by using the LAMP method. Unambiguous detection by naked eye was possible even in half the volume of LAMP cocktail recommended by the manufacturer, suggesting the potential to significantly reduce the cost of Alexandrium monitoring. Therefore, we can conclude that this method is one of the most convenient, sensitive, and cost-effective molecular tools for Alexandrium monitoring. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Detection and manipulation of phosphoinositides.

    PubMed

    Idevall-Hagren, Olof; De Camilli, Pietro

    2015-06-01

    Phosphoinositides (PIs) are minor components of cell membranes, but play key roles in cell function. Recent refinements in techniques for their detection, together with imaging methods to study their distribution and changes, have greatly facilitated the study of these lipids. Such methods have been complemented by the parallel development of techniques for the acute manipulation of their levels, which in turn allow bypassing the long-term adaptive changes implicit in genetic perturbations. Collectively, these advancements have helped elucidate the role of PIs in physiology and the impact of the dysfunction of their metabolism in disease. Combining methods for detection and manipulation enables the identification of specific roles played by each of the PIs and may eventually lead to the complete deconstruction of the PI signaling network. Here, we review current techniques used for the study and manipulation of cellular PIs and also discuss advantages and disadvantages associated with the various methods. This article is part of a Special Issue entitled Phosphoinositides. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Detection and manipulation of phosphoinositides☆

    PubMed Central

    Idevall-Hagren, Olof; Camilli, Pietro De

    2016-01-01

    Phosphoinositides (PIs) are minor components of cell membranes, but play key roles in cell function. Recent refinements in techniques for their detection, together with imaging methods to study their distribution and changes, have greatly facilitated the study of these lipids. Such methods have been complemented by the parallel development of techniques for the acute manipulation of their levels, which in turn allow bypassing the long-term adaptive changes implicit in genetic perturbations. Collectively, these advancements have helped elucidate the role of PIs in physiology and the impact of the dysfunction of their metabolism in disease. Combining methods for detection and manipulation enables the identification of specific roles played by each of the PIs and may eventually lead to the complete deconstruction of the PI signaling network. Here, we review current techniques used for the study and manipulation of cellular PIs and also discuss advantages and disadvantages associated with the various methods. This article is part of a Special Issue entitled Phosphoinositides. PMID:25514766

  13. Design of an explosive detection system using Monte Carlo method.

    PubMed

    Hernández-Adame, Pablo Luis; Medina-Castro, Diego; Rodriguez-Ibarra, Johanna Lizbeth; Salas-Luevano, Miguel Angel; Vega-Carrillo, Hector Rene

    2016-11-01

    Regardless the motivation terrorism is the most important risk for the national security in many countries. Attacks with explosives are the most common method used by terrorists. Therefore several procedures to detect explosives are utilized; among these methods are the use of neutrons and photons. In this study the Monte Carlo method an explosive detection system using a 241 AmBe neutron source was designed. In the design light water, paraffin, polyethylene, and graphite were used as moderators. In the work the explosive RDX was used and the induced gamma rays due to neutron capture in the explosive was estimated using NaI(Tl) and HPGe detectors. When light water is used as moderator and HPGe as the detector the system has the best performance allowing distinguishing between the explosive and urea. For the final design the Ambient dose equivalent for neutrons and photons were estimated along the radial and axial axis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. WGA-based lectin affinity gel electrophoresis: A novel method for the detection of O-GlcNAc-modified proteins.

    PubMed

    Kubota, Yuji; Fujioka, Ko; Takekawa, Mutsuhiro

    2017-01-01

    Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc) occurs selectively on serine and/or threonine residues of cytoplasmic and nuclear proteins, and dynamically regulates their molecular functions. Since conventional strategies to evaluate the O-GlcNAcylation level of a specific protein require time-consuming steps, the development of a rapid and easy method for the detection and quantification of an O-GlcNAcylated protein has been a challenging issue. Here, we describe a novel method in which O-GlcNAcylated and non-O-GlcNAcylated forms of proteins are separated by lectin affinity gel electrophoresis using wheat germ agglutinin (WGA), which primarily binds to N-acetylglucosamine residues. Electrophoresis of cell lysates through a gel containing copolymerized WGA selectively induced retardation of the mobility of O-GlcNAcylated proteins, thereby allowing the simultaneous visualization of both the O-GlcNAcylated and the unmodified forms of proteins. This method is therefore useful for the quantitative detection of O-GlcNAcylated proteins.

  15. Comparison of optical and electrical investigations of meat ageing

    NASA Astrophysics Data System (ADS)

    Prokopyeva, Elena; Tománek, Pavel; Kocová, Lucie; Palai-Dany, Tomáš; Balík, Zdeněk.; Škarvada, Pavel; Grmela, Lubomír.

    2013-05-01

    Different ultrasonic, electromagnetic, electrical and optical methods are used for meat ageing detection. Muscles are turbid anisotropic media, they exhibit changes in electrical and optical properties according to the direction of the electrical and optical fields in the sample. The work assesses the feasibility of impedance measurements for meat ageing detection and their comparison with optical measurement of scattered light. The pork chop slices were used for their relative homogeneity. An investigation was carried out for the detection of the ageing of unpacked slices exposed directly to the air, and other packed in polyethylene bags. The electrical method is a promising method due to the possibility of getting much information and realizing cheap and fast enough measurement systems. The optical method allows measure the rotation of polarization plane in the range of 95 degrees within considered period. Nevertheless, further work has to be provided to determine closer relationships between optical scattering characteristics, electrical anisotropy in ageing-related tissue structural properties.

  16. Possibility of the detection and identification of substance at long distance using the noisy reflected THz pulse under real conditions

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Trofimov, Vladislav V.

    2015-05-01

    We show possibility of the detection and identification of substance at long distance (several metres, for example) using the THz pulse reflected from the object under the real conditions: at room temperature and humidity of about 70%. The main feature of this report consists in a demonstration of the detection and identification of substance using the computer processing of the noisy THz pulse. Amplitude of the useful signal is less than the amplitude of a noise. Nevertheless, it is possible to detect "fingerprint" frequencies of substance if these frequencies are known and the SDA method is used together with new assessments for probability estimation for presence of detected frequencies. Essential restrictions of the commonly used THz TDS method for the detection and identification under real conditions (at long distance about 3.5 m and at a high relative humidity more than 50%) are demonstrated using the physical experiment with chocolate bar and thick paper bag. We show also that the THz TDS method detects spectral features of dangerous substances even in the THz signals measured in laboratory conditions (at distance 30-40 cm from the receiver and at a low relative humidity less than 2%); the n-Si and p-Si semiconductors were used as neutral substances. However, the integral correlation and likeness criteria, based on SDA method, allow us to detect the absence of dangerous substances in the samples. Current results show feasibility of using the discussed method of the THz pulsed spectroscopy for the counter-terrorism problem.

  17. An Ultra-Trace Analysis Technique for SF6 Using Gas Chromatography with Negative Ion Chemical Ionization Mass Spectrometry.

    PubMed

    Jong, Edmund C; Macek, Paul V; Perera, Inoka E; Luxbacher, Kray D; McNair, Harold M

    2015-07-01

    Sulfur hexafluoride (SF6) is widely used as a tracer gas because of its detectability at low concentrations. This attribute of SF6 allows the quantification of both small-scale flows, such as leakage, and large-scale flows, such as atmospheric currents. SF6's high detection sensitivity also facilitates greater usage efficiency and lower operating cost for tracer deployments by reducing quantity requirements. The detectability of SF6 is produced by its high molecular electronegativity. This property provides a high potential for negative ion formation through electron capture thus naturally translating to selective detection using negative ion chemical ionization mass spectrometry (NCI-MS). This paper investigates the potential of using gas chromatography (GC) with NCI-MS for the detection of SF6. The experimental parameters for an ultra-trace SF6 detection method utilizing minimal customizations of the analytical instrument are detailed. A method for the detection of parts per trillion (ppt) level concentrations of SF6 for the purpose of underground ventilation tracer gas analysis was successfully developed in this study. The method utilized a Shimadzu gas chromatography with negative ion chemical ionization mass spectrometry system equipped with an Agilent J&W HP-porous layer open tubular column coated with an alumina oxide (Al2O3) S column. The method detection limit (MDL) analysis as defined by the Environmental Protection Agency of the tracer data showed the method MDL to be 5.2 ppt. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Direct Detection of Pharmaceuticals and Personal Care Products from Aqueous Samples with Thermally-Assisted Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Campbell, Ian S.; Ton, Alain T.; Mulligan, Christopher C.

    2011-07-01

    An ambient mass spectrometric method based on desorption electrospray ionization (DESI) has been developed to allow rapid, direct analysis of contaminated water samples, and the technique was evaluated through analysis of a wide array of pharmaceutical and personal care product (PPCP) contaminants. Incorporating direct infusion of aqueous sample and thermal assistance into the source design has allowed low ppt detection limits for the target analytes in drinking water matrices. With this methodology, mass spectral information can be collected in less than 1 min, consuming ~100 μL of total sample. Quantitative ability was also demonstrated without the use of an internal standard, yielding decent linearity and reproducibility. Initial results suggest that this source configuration is resistant to carryover effects and robust towards multi-component samples. The rapid, continuous analysis afforded by this method offers advantages in terms of sample analysis time and throughput over traditional hyphenated mass spectrometric techniques.

  19. SpatialEpiApp: A Shiny web application for the analysis of spatial and spatio-temporal disease data.

    PubMed

    Moraga, Paula

    2017-11-01

    During last years, public health surveillance has been facilitated by the existence of several packages implementing statistical methods for the analysis of spatial and spatio-temporal disease data. However, these methods are still inaccesible for many researchers lacking the adequate programming skills to effectively use the required software. In this paper we present SpatialEpiApp, a Shiny web application that integrate two of the most common approaches in health surveillance: disease mapping and detection of clusters. SpatialEpiApp is easy to use and does not require any programming knowledge. Given information about the cases, population and optionally covariates for each of the areas and dates of study, the application allows to fit Bayesian models to obtain disease risk estimates and their uncertainty by using R-INLA, and to detect disease clusters by using SaTScan. The application allows user interaction and the creation of interactive data visualizations and reports showing the analyses performed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Direct detection of pharmaceuticals and personal care products from aqueous samples with thermally-assisted desorption electrospray ionization mass spectrometry.

    PubMed

    Campbell, Ian S; Ton, Alain T; Mulligan, Christopher C

    2011-07-01

    An ambient mass spectrometric method based on desorption electrospray ionization (DESI) has been developed to allow rapid, direct analysis of contaminated water samples, and the technique was evaluated through analysis of a wide array of pharmaceutical and personal care product (PPCP) contaminants. Incorporating direct infusion of aqueous sample and thermal assistance into the source design has allowed low ppt detection limits for the target analytes in drinking water matrices. With this methodology, mass spectral information can be collected in less than 1 min, consuming ~100 μL of total sample. Quantitative ability was also demonstrated without the use of an internal standard, yielding decent linearity and reproducibility. Initial results suggest that this source configuration is resistant to carryover effects and robust towards multi-component samples. The rapid, continuous analysis afforded by this method offers advantages in terms of sample analysis time and throughput over traditional hyphenated mass spectrometric techniques.

Top