Sample records for method development applications

  1. Computational and mathematical methods in brain atlasing.

    PubMed

    Nowinski, Wieslaw L

    2017-12-01

    Brain atlases have a wide range of use from education to research to clinical applications. Mathematical methods as well as computational methods and tools play a major role in the process of brain atlas building and developing atlas-based applications. Computational methods and tools cover three areas: dedicated editors for brain model creation, brain navigators supporting multiple platforms, and atlas-assisted specific applications. Mathematical methods in atlas building and developing atlas-aided applications deal with problems in image segmentation, geometric body modelling, physical modelling, atlas-to-scan registration, visualisation, interaction and virtual reality. Here I overview computational and mathematical methods in atlas building and developing atlas-assisted applications, and share my contribution to and experience in this field.

  2. Nanoparticle-assisted laser desorption/ionization mass spectrometry: Novel sample preparation methods and nanoparticle screening for plant metabolite imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagnik, Gargey B.

    The main goal of the presented research is development of nanoparticle based matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS). This dissertation includes the application of previously developed data acquisition methods, development of novel sample preparation methods, application and comparison of novel nanoparticle matrices, and comparison of two nanoparticle matrix application methods for MALDI-MS and MALDI-MS imaging.

  3. Batch mode grid generation: An endangered species

    NASA Technical Reports Server (NTRS)

    Schuster, David M.

    1992-01-01

    Non-interactive grid generation schemes should thrive as emphasis shifts from development of numerical analysis and design methods to application of these tools to real engineering problems. A strong case is presented for the continued development and application of non-interactive geometry modeling methods. Guidelines, strategies, and techniques for developing and implementing these tools are presented using current non-interactive grid generation methods as examples. These schemes play an important role in the development of multidisciplinary analysis methods and some of these applications are also discussed.

  4. The Role of Participatory Design in Mobile Application Development

    NASA Astrophysics Data System (ADS)

    Hamzah, Almed

    2018-03-01

    Mobile devices are used by people worldwide. It becomes a common equipment to complete a day-to-day activity. Inside the devices, there are numerous mobile applications that have been built for various needs. Some of these are quite successful while the other are not. The development of successful mobile application faces several challenges. In this research, we want to explore the use of participatory design method in mobile application development. Particularly, the aim of the study is to answer the question whether participatory design method has a place in the realm of mobile application development. We established two sessions of workshop to accommodate the participant to take part in the development process of mobile application. The result shows that participatory design method can determine how the user will deal with the limitations of mobile devices. It helps user to create a particular form of interaction that meets mobile devices characteristics.

  5. The application of generalized, cyclic, and modified numerical integration algorithms to problems of satellite orbit computation

    NASA Technical Reports Server (NTRS)

    Chesler, L.; Pierce, S.

    1971-01-01

    Generalized, cyclic, and modified multistep numerical integration methods are developed and evaluated for application to problems of satellite orbit computation. Generalized methods are compared with the presently utilized Cowell methods; new cyclic methods are developed for special second-order differential equations; and several modified methods are developed and applied to orbit computation problems. Special computer programs were written to generate coefficients for these methods, and subroutines were written which allow use of these methods with NASA's GEOSTAR computer program.

  6. Application of geo-information science methods in ecotourism exploitation

    NASA Astrophysics Data System (ADS)

    Dong, Suocheng; Hou, Xiaoli

    2004-11-01

    Application of geo-information science methods in ecotourism development was discussed in the article. Since 1990s, geo-information science methods, which take the 3S (Geographic Information System, Global Positioning System, and Remote Sensing) as core techniques, has played an important role in resources reconnaissance, data management, environment monitoring, and regional planning. Geo-information science methods can easily analyze and convert geographic spatial data. The application of 3S methods is helpful to sustainable development in tourism. Various assignments are involved in the development of ecotourism, such as reconnaissance of ecotourism resources, drawing of tourism maps, dealing with mass data, and also tourism information inquire, employee management, quality management of products. The utilization of geo-information methods in ecotourism can make the development more efficient by promoting the sustainable development of tourism and the protection of eco-environment.

  7. Use of EPANET solver to manage water distribution in Smart City

    NASA Astrophysics Data System (ADS)

    Antonowicz, A.; Brodziak, R.; Bylka, J.; Mazurkiewicz, J.; Wojtecki, S.; Zakrzewski, P.

    2018-02-01

    Paper presents a method of using EPANET solver to support manage water distribution system in Smart City. The main task is to develop the application that allows remote access to the simulation model of the water distribution network developed in the EPANET environment. Application allows to perform both single and cyclic simulations with the specified step of changing the values of the selected process variables. In the paper the architecture of application was shown. The application supports the selection of the best device control algorithm using optimization methods. Optimization procedures are possible with following methods: brute force, SLSQP (Sequential Least SQuares Programming), Modified Powell Method. Article was supplemented by example of using developed computer tool.

  8. Recent trends in the determination of vitamin D.

    PubMed

    Gomes, Fabio P; Shaw, P Nicholas; Whitfield, Karen; Koorts, Pieter; Hewavitharana, Amitha K

    2013-12-01

    The occurrence of vitamin D deficiency has become an issue of serious concern in the worldwide population. As a result numerous analytical methods have been developed, for a variety of matrices, during the last few years to measure vitamin D analogs and metabolites. This review employs a comprehensive search of all vitamin D methods developed during the last 5 years for all applications, using ISI Web of Science(®), Scifinder(®), Science Direct, Scopus and PubMed. Particular emphasis is given to sample-preparation methods and the different forms of vitamin D measured across different fields of applications such as biological fluids, food and pharmaceutical preparations. This review compares and critically evaluates a wide range of approaches and methods, and hence it will enable readers to access developments across a number of applications and to select or develop the optimal analytical method for vitamin D for their particular application.

  9. Development and application of a statistical quality assessment method for dense-graded mixes.

    DOT National Transportation Integrated Search

    2004-08-01

    This report describes the development of the statistical quality assessment method and the procedure for mapping the measures obtained from the quality assessment method to a composite pay factor. The application to dense-graded mixes is demonstrated...

  10. DEVELOPMENT AND APPLICATION OF METHODS TO ASSESS HUMAN EXPOSURE TO PESTICIDES

    EPA Science Inventory

    Note: this task is schedule to end September 2003. Two tasks will take its place: method development for emerging pesticides including chiral chemistry applications, and in-house laboratory operations. Field sampling methods are covered under a new task proposed this year.
    <...

  11. Application of ICME Methods for the Development of Rapid Manufacturing Technologies

    NASA Astrophysics Data System (ADS)

    Maiwald-Immer, T.; Göhler, T.; Fischersworring-Bunk, A.; Körner, C.; Osmanlic, F.; Bauereiß, A.

    Rapid manufacturing technologies are lately gaining interest as alternative manufacturing method. Due to the large parameter sets applicable in these manufacturing methods and their impact on achievable material properties and quality, support of the manufacturing process development by the use of simulation is highly attractive. This is especially true for aerospace applications with their high quality demands and controlled scatter in the resulting material properties. The applicable simulation techniques to these manufacturing methods are manifold. The paper will focus on the melt pool simulation for a SLM (selective laser melting) process which was originally developed for EBM (electron beam melting). It will be discussed in the overall context of a multi-scale simulation within a virtual process chain.

  12. CSM Testbed Development and Large-Scale Structural Applications

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Gillian, R. E.; Mccleary, Susan L.; Lotts, C. G.; Poole, E. L.; Overman, A. L.; Macy, S. C.

    1989-01-01

    A research activity called Computational Structural Mechanics (CSM) conducted at the NASA Langley Research Center is described. This activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM Testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM Testbed methods development environment is presented and some new numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.

  13. Development and application of a biorelevant dissolution method using USP apparatus 4 in early phase formulation development.

    PubMed

    Fang, Jiang B; Robertson, Vivian K; Rawat, Archana; Flick, Tawnya; Tang, Zhe J; Cauchon, Nina S; McElvain, James S

    2010-10-04

    Dissolution testing is frequently used to determine the rate and extent at which a drug is released from a dosage form, and it plays many important roles throughout drug product development. However, the traditional dissolution approach often emphasizes its application in quality control testing and usually strives to obtain 100% drug release. As a result, dissolution methods are not necessarily biorelevant and meaningful application of traditional dissolution methods in the early phases of drug product development can be very limited. This article will describe the development of a biorelevant in vitro dissolution method using USP apparatus 4, biorelevant media, and real-time online UV analysis. Several case studies in the areas of formulation selection, lot-to-lot variability, and food effect will be presented to demonstrate the application of this method in early phase formulation development. This biorelevant dissolution method using USP apparatus 4 provides a valuable tool to predict certain aspects of the in vivo drug release. It can be used to facilitate the formulation development/selection for pharmacokinetic (PK) and clinical studies. It may also potentially be used to minimize the number of PK studies, and to aid in the design of more efficient PK and clinical studies.

  14. A Different Approach to Have Science and Technology Student-Teachers Gain Varied Methods in Laboratory Applications: A Sample of Computer Assisted POE Application

    ERIC Educational Resources Information Center

    Saka, Arzu

    2012-01-01

    The purpose of this study is to develop a new approach and assess the application for the science and technology student-teachers to gain varied laboratory methods in science and technology teaching. It is also aimed to describe the computer-assisted POE application in the subject of "Photosynthesis-Light" developed in the context of…

  15. Mobile Applications for Patient-centered Care Coordination: A Review of Human Factors Methods Applied to their Design, Development, and Evaluation

    PubMed Central

    Westbrook, J. I.

    2015-01-01

    Summary Objectives To examine if human factors methods were applied in the design, development, and evaluation of mobile applications developed to facilitate aspects of patient-centered care coordination. Methods We searched MEDLINE and EMBASE (2013-2014) for studies describing the design or the evaluation of a mobile health application that aimed to support patients’ active involvement in the coordination of their care. Results 34 papers met the inclusion criteria. Applications ranged from tools that supported self-management of specific conditions (e.g. asthma) to tools that provided coaching or education. Twelve of the 15 papers describing the design or development of an app reported the use of a human factors approach. The most frequently used methods were interviews and surveys, which often included an exploration of participants’ current use of information technology. Sixteen papers described the evaluation of a patient application in practice. All of them adopted a human factors approach, typically an examination of the use of app features and/or surveys or interviews which enquired about patients’ views of the effects of using the app on their behaviors (e.g. medication adherence), knowledge, and relationships with healthcare providers. No study in our review assessed the impact of mobile applications on health outcomes. Conclusion The potential of mobile health applications to assist patients to more actively engage in the management of their care has resulted in a large number of applications being developed. Our review showed that human factors approaches are nearly always adopted to some extent in the design, development, and evaluation of mobile applications. PMID:26293851

  16. A review on green synthesis of silver nanoparticles and their applications.

    PubMed

    Rafique, Muhammad; Sadaf, Iqra; Rafique, M Shahid; Tahir, M Bilal

    2017-11-01

    Development of reliable and eco-accommodating methods for the synthesis of nanoparticles is a vital step in the field of nanotechnology. Silver nanoparticles are important because of their exceptional chemical, physical, and biological properties, and hence applications. In the last decade, numerous efforts were made to develop green methods of synthesis to avoid the hazardous byproducts. This review describes the methods of green synthesis for Ag-NPs and their numerous applications. It also describes the comparison of efficient synthesis methods via green routes over physical and chemical methods, which provide strong evidence for the selection of suitable method for the synthesis of Ag-NPs.

  17. Empirical Distributional Semantics: Methods and Biomedical Applications

    PubMed Central

    Cohen, Trevor; Widdows, Dominic

    2009-01-01

    Over the past fifteen years, a range of methods have been developed that are able to learn human-like estimates of the semantic relatedness between terms from the way in which these terms are distributed in a corpus of unannotated natural language text. These methods have also been evaluated in a number of applications in the cognitive science, computational linguistics and the information retrieval literatures. In this paper, we review the available methodologies for derivation of semantic relatedness from free text, as well as their evaluation in a variety of biomedical and other applications. Recent methodological developments, and their applicability to several existing applications are also discussed. PMID:19232399

  18. Development, verification, and application of a simplified method to estimate total-streambed scour at bridge sites in Illinois

    USGS Publications Warehouse

    Holmes, Robert R.; Dunn, Chad J.

    1996-01-01

    A simplified method to estimate total-streambed scour was developed for application to bridges in the State of Illinois. Scour envelope curves, developed as empirical relations between calculated total scour and bridge-site chracteristics for 213 State highway bridges in Illinois, are used in the method to estimate the 500-year flood scour. These 213 bridges, geographically distributed throughout Illinois, had been previously evaluated for streambed scour with the application of conventional hydraulic and scour-analysis methods recommended by the Federal Highway Administration. The bridge characteristics necessary for application of the simplified bridge scour-analysis method can be obtained from an office review of bridge plans, examination of topographic maps, and reconnaissance-level site inspection. The estimates computed with the simplified method generally resulted in a larger value of 500-year flood total-streambed scour than with the more detailed conventional method. The simplified method was successfully verified with a separate data set of 106 State highway bridges, which are geographically distributed throughout Illinois, and 15 county highway bridges.

  19. Modeling of polymer networks for application to solid propellant formulating

    NASA Technical Reports Server (NTRS)

    Marsh, H. E.

    1979-01-01

    Methods for predicting the network structural characteristics formed by the curing of pourable elastomers were presented; as well as the logic which was applied in the development of mathematical models. A universal approach for modeling was developed and verified by comparison with other methods in application to a complex system. Several applications of network models to practical problems are described.

  20. Development and application of ab initio QM/MM methods for mechanistic simulation of reactions in solution and in enzymes

    PubMed Central

    Hu, Hao; Yang, Weitao

    2013-01-01

    Determining the free energies and mechanisms of chemical reactions in solution and enzymes is a major challenge. For such complex reaction processes, combined quantum mechanics/molecular mechanics (QM/MM) method is the most effective simulation method to provide an accurate and efficient theoretical description of the molecular system. The computational costs of ab initio QM methods, however, have limited the application of ab initio QM/MM methods. Recent advances in ab initio QM/MM methods allowed the accurate simulation of the free energies for reactions in solution and in enzymes and thus paved the way for broader application of the ab initio QM/MM methods. We review here the theoretical developments and applications of the ab initio QM/MM methods, focusing on the determination of reaction path and the free energies of the reaction processes in solution and enzymes. PMID:24146439

  1. Near surface illumination method to detect particle size information by optical calibration free remission measurements

    NASA Astrophysics Data System (ADS)

    Stocker, Sabrina; Foschum, Florian; Kienle, Alwin

    2017-07-01

    A calibration free method to detect particle size information is presented. A possible application for such measurements is the investigation of raw milk since there not only the fat and protein content varies but also the fat droplet size. The newly developed method is sensitive to the scattering phase function, which makes it applicable to many other applications, too. By simulating the light propagation by use of Monte Carlo simulations, a calibration free device can be developed from this principle.

  2. Recent Developments and Applications of the MMPBSA Method

    PubMed Central

    Wang, Changhao; Greene, D'Artagnan; Xiao, Li; Qi, Ruxi; Luo, Ray

    2018-01-01

    The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) approach has been widely applied as an efficient and reliable free energy simulation method to model molecular recognition, such as for protein-ligand binding interactions. In this review, we focus on recent developments and applications of the MMPBSA method. The methodology review covers solvation terms, the entropy term, extensions to membrane proteins and high-speed screening, and new automation toolkits. Recent applications in various important biomedical and chemical fields are also reviewed. We conclude with a few future directions aimed at making MMPBSA a more robust and efficient method. PMID:29367919

  3. Development and Application of a Soil Moisture Downscaling Method for Mobility Assessment

    DTIC Science & Technology

    2011-05-01

    instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send...REPORT Development and Application of a Soil Moisture Downscaling Method for Mobility Assessment 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Soil...cells). Thus, a method is required to downscale intermediate-resolution patterns to finer resolutions. Fortunately, fine-resolution variations in

  4. Development and evaluation of a suppository formulation containing Lactobacillus and its application in vaginal diseases.

    PubMed

    Kale, Vinita V; Trivedi, Rashmi V; Wate, Sanjay P; Bhusari, Kishor P

    2005-11-01

    Lactobacillus has long been considered the protective flora in the vagina that displaces and kills vaginal pathogens. Lactic acid, H2O2, and antibacterial agents such as lactocin and bacitracin produced by Lactobacillus act against the vaginal pathogens. The first objective of this research was to develop a local application pharmaceutical formulation of a vaginal suppository containing lyophilized culture of Lactobacillus. The second objective was to establish its in vivo performance by developing in vitro methods of evaluation. Lyophilized culture of Lactobacillus sporogenes was selected for this study. Three formulations of the suppositories were prepared by the molding method. Formulations I, II, and III contained cocoa butter, glycerinated gelatin, and PEG 1000 base, respectively. The prepared suppositories were characterized for physical properties. Assembly to simulate the application site was designed. Methods to evaluate the viability, production of lactic acid, and H2O2 produced by the released Lactobacillus at the application site were developed and the antagonistic activity was demonstrated. From the physical characteristics of the suppository formulations, the glycerinated gelatin suppository (formulation II) containing lyophilized Lactobacillus was found to be satisfactory. The developed assembly was satisfactory in simulating the application site. The Lactobacillus released was viable and exhibited the production of lactic acid, hydrogen peroxide, and antagonistic activity against the uropathogen. The suppository formulation containing Lactobacillus and the methods of its evaluation were successfully developed in this research work and have several applications in the vaginal diseases of women.

  5. Fault tolerant testbed evaluation, phase 1

    NASA Technical Reports Server (NTRS)

    Caluori, V., Jr.; Newberry, T.

    1993-01-01

    In recent years, avionics systems development costs have become the driving factor in the development of space systems, military aircraft, and commercial aircraft. A method of reducing avionics development costs is to utilize state-of-the-art software application generator (autocode) tools and methods. The recent maturity of application generator technology has the potential to dramatically reduce development costs by eliminating software development steps that have historically introduced errors and the need for re-work. Application generator tools have been demonstrated to be an effective method for autocoding non-redundant, relatively low-rate input/output (I/O) applications on the Space Station Freedom (SSF) program; however, they have not been demonstrated for fault tolerant, high-rate I/O, flight critical environments. This contract will evaluate the use of application generators in these harsh environments. Using Boeing's quad-redundant avionics system controller as the target system, Space Shuttle Guidance, Navigation, and Control (GN&C) software will be autocoded, tested, and evaluated in the Johnson (Space Center) Avionics Engineering Laboratory (JAEL). The response of the autocoded system will be shown to match the response of the existing Shuttle General Purpose Computers (GPC's), thereby demonstrating the viability of using autocode techniques in the development of future avionics systems.

  6. High-frequency surface waves method for agricultural applications

    USDA-ARS?s Scientific Manuscript database

    A high-frequency surface wave method has been recently developed to explore shallow soil in the vadose zone for agricultural applications. This method is a modification from the conventional multichannel analysis of surface wave (MASW) method that explores near surface soil properties from a couple ...

  7. Development and Applications Of Photosensitive Device Systems To Studies Of Biological And Organic Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruner, Sol

    2012-01-20

    The primary focus of the grant is the development of new x-ray detectors for biological and materials work at synchrotron sources, especially Pixel Array Detectors (PADs), and the training of students via research applications to problems in biophysics and materials science using novel x-ray methods. This Final Progress Report provides a high-level overview of the most important accomplishments. These major areas of accomplishment include: (1) Development and application of x-ray Pixel Array Detectors; (2) Development and application of methods of high pressure x-ray crystallography as applied to proteins; (3) Studies on the synthesis and structure of novel mesophase materials derivedmore » from block co-polymers.« less

  8. Integrated structural control design of large space structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, J.J.; Lauffer, J.P.

    1995-01-01

    Active control of structures has been under intensive development for the last ten years. Reference 2 reviews much of the identification and control technology for structural control developed during this time. The technology was initially focused on space structure and weapon applications; however, recently the technology is also being directed toward applications in manufacturing and transportation. Much of this technology focused on multiple-input/multiple-output (MIMO) identification and control methodology because many of the applications require a coordinated control involving multiple disturbances and control objectives where multiple actuators and sensors are necessary for high performance. There have been many optimal robust controlmore » methods developed for the design of MIMO robust control laws; however, there appears to be a significant gap between the theoretical development and experimental evaluation of control and identification methods to address structural control applications. Many methods have been developed for MIMO identification and control of structures, such as the Eigensystem Realization Algorithm (ERA), Q-Markov Covariance Equivalent Realization (Q-Markov COVER) for identification; and, Linear Quadratic Gaussian (LQG), Frequency Weighted LQG and H-/ii-synthesis methods for control. Upon implementation, many of the identification and control methods have shown limitations such as the excitation of unmodelled dynamics and sensitivity to system parameter variations. As a result, research on methods which address these problems have been conducted.« less

  9. Applications of AN OO Methodology and Case to a Daq System

    NASA Astrophysics Data System (ADS)

    Bee, C. P.; Eshghi, S.; Jones, R.; Kolos, S.; Magherini, C.; Maidantchik, C.; Mapelli, L.; Mornacchi, G.; Niculescu, M.; Patel, A.; Prigent, D.; Spiwoks, R.; Soloviev, I.; Caprini, M.; Duval, P. Y.; Etienne, F.; Ferrato, D.; Le van Suu, A.; Qian, Z.; Gaponenko, I.; Merzliakov, Y.; Ambrosini, G.; Ferrari, R.; Fumagalli, G.; Polesello, G.

    The RD13 project has evaluated the use of the Object Oriented Information Engineering (OOIE) method during the development of several software components connected to the DAQ system. The method is supported by a sophisticated commercial CASE tool (Object Management Workbench) and programming environment (Kappa) which covers the full life-cycle of the software including model simulation, code generation and application deployment. This paper gives an overview of the method, CASE tool, DAQ components which have been developed and we relate our experiences with the method and tool, its integration into our development environment and the spiral lifecycle it supports.

  10. Virtual screening methods as tools for drug lead discovery from large chemical libraries.

    PubMed

    Ma, X H; Zhu, F; Liu, X; Shi, Z; Zhang, J X; Yang, S Y; Wei, Y Q; Chen, Y Z

    2012-01-01

    Virtual screening methods have been developed and explored as useful tools for searching drug lead compounds from chemical libraries, including large libraries that have become publically available. In this review, we discussed the new developments in exploring virtual screening methods for enhanced performance in searching large chemical libraries, their applications in screening libraries of ~ 1 million or more compounds in the last five years, the difficulties in their applications, and the strategies for further improving these methods.

  11. [Development of selective determination methods for quinones with fluorescence and chemiluminescence detection and their application to environmental and biological samples].

    PubMed

    Kishikawa, Naoya

    2010-10-01

    Quinones are compounds that have various characteristics such as a biological electron transporter, an industrial product and a harmful environmental pollutant. Therefore, an effective determination method for quinones is required in many fields. This review describes the development of sensitive and selective determination methods for quinones based on some detection principles and their application to analyses in environmental, pharmaceutical and biological samples. Firstly, a fluorescence method was developed based on fluorogenic derivatization of quinones and applied to environmental analysis. Secondly, a luminol chemiluminescence method was developed based on generation of reactive oxygen species through the redox cycle of quinone and applied to pharmaceutical analysis. Thirdly, a photo-induced chemiluminescence method was developed based on formation of reactive oxygen species and fluorophore or chemiluminescence enhancer by the photoreaction of quinones and applied to biological and environmental analyses.

  12. Relaxation and Preconditioning for High Order Discontinuous Galerkin Methods with Applications to Aeroacoustics and High Speed Flows

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    2004-01-01

    This project is about the investigation of the development of the discontinuous Galerkin finite element methods, for general geometry and triangulations, for solving convection dominated problems, with applications to aeroacoustics. Other related issues in high order WENO finite difference and finite volume methods have also been investigated. methods are two classes of high order, high resolution methods suitable for convection dominated simulations with possible discontinuous or sharp gradient solutions. In [18], we first review these two classes of methods, pointing out their similarities and differences in algorithm formulation, theoretical properties, implementation issues, applicability, and relative advantages. We then present some quantitative comparisons of the third order finite volume WENO methods and discontinuous Galerkin methods for a series of test problems to assess their relative merits in accuracy and CPU timing. In [3], we review the development of the Runge-Kutta discontinuous Galerkin (RKDG) methods for non-linear convection-dominated problems. These robust and accurate methods have made their way into the main stream of computational fluid dynamics and are quickly finding use in a wide variety of applications. They combine a special class of Runge-Kutta time discretizations, that allows the method to be non-linearly stable regardless of its accuracy, with a finite element space discretization by discontinuous approximations, that incorporates the ideas of numerical fluxes and slope limiters coined during the remarkable development of the high-resolution finite difference and finite volume schemes. The resulting RKDG methods are stable, high-order accurate, and highly parallelizable schemes that can easily handle complicated geometries and boundary conditions. We review the theoretical and algorithmic aspects of these methods and show several applications including nonlinear conservation laws, the compressible and incompressible Navier-Stokes equations, and Hamilton-Jacobi-like equations.

  13. Characterization of Developer Application Methods Used in Fluorescent Penetrant Inspection

    NASA Astrophysics Data System (ADS)

    Brasche, L. J. H.; Lopez, R.; Eisenmann, D.

    2006-03-01

    Fluorescent penetrant inspection (FPI) is the most widely used inspection method for aviation components seeing use for production as well as an inservice inspection applications. FPI is a multiple step process requiring attention to the process parameters for each step in order to enable a successful inspection. A multiyear program is underway to evaluate the most important factors affecting the performance of FPI, to determine whether existing industry specifications adequately address control of the process parameters, and to provide the needed engineering data to the public domain. The final step prior to the inspection is the application of developer with typical aviation inspections involving the use of dry powder (form d) usually applied using either a pressure wand or dust storm chamber. Results from several typical dust storm chambers and wand applications have shown less than optimal performance. Measurements of indication brightness and recording of the UVA image, and in some cases, formal probability of detection (POD) studies were used to assess the developer application methods. Key conclusions and initial recommendations are provided.

  14. SDF technology in location and navigation procedures: a survey of applications

    NASA Astrophysics Data System (ADS)

    Kelner, Jan M.; Ziółkowski, Cezary

    2017-04-01

    The basis for development the Doppler location method, also called the signal Doppler frequency (SDF) method or technology is the analytical solution of the wave equation for a mobile source. This paper presents an overview of the simulations, numerical analysis and empirical studies of the possibilities and the range of SDF method applications. In the paper, the various applications from numerous publications are collected and described. They mainly focus on the use of SDF method in: emitter positioning, electronic warfare, crisis management, search and rescue, navigation. The developed method is characterized by an innovative, unique property among other location methods, because it allows the simultaneous location of the many radio emitters. Moreover, this is the first method based on the Doppler effect, which allows positioning of transmitters, using a single mobile platform. In the paper, the results of the using SDF method by the other teams are also presented.

  15. Wear consideration in gear design for space applications

    NASA Technical Reports Server (NTRS)

    Akin, Lee S.; Townsend, Dennis P.

    1989-01-01

    A procedure is described that was developed for evaluating the wear in a set of gears in mesh under high load and low rotational speed. The method can be used for any low-speed gear application, with nearly negligible oil film thickness, and is especially useful in space stepping mechanism applications where determination of pointing error due to wear is important, such as in long life sensor antenna drives. A method is developed for total wear depth at the ends of the line of action using a very simple formula with the slide to roll ratio V sub s/V sub r. A method is also developed that uses the wear results to calculate the transmission error also known as pointing error of a gear mesh.

  16. Keylogger Application to Monitoring Users Activity with Exact String Matching Algorithm

    NASA Astrophysics Data System (ADS)

    Rahim, Robbi; Nurdiyanto, Heri; Saleh A, Ansari; Abdullah, Dahlan; Hartama, Dedy; Napitupulu, Darmawan

    2018-01-01

    The development of technology is very fast, especially in the field of Internet technology that at any time experiencing significant changes, The development also supported by the ability of human resources, Keylogger is a tool that most developed because this application is very rarely recognized a malicious program by antivirus, keylogger will record all activities related to keystrokes, the recording process is accomplished by using string matching method. The application of string matching method in the process of recording the keyboard is to help the admin in knowing what the user accessed on the computer.

  17. From impedance theory to needle electrode guidance in tissue

    NASA Astrophysics Data System (ADS)

    Kalvøy, Håvard; Høyum, Per; Grimnes, Sverre; Martinsen, Ørjan G.

    2010-04-01

    Fast access to blood vessels or other tissues/organs can be crucial in clinical or acute medical treatment. We have developed a method for needle guidance for use in different types of applications. The feasibility of an automatic application for fast access to blood vessels during acute cardiac arrest, based on this method, has been evaluated. Suited electrode setups were found by development of needle electrode models used in simulation and sensitivity analyses. In vitro measurements were done both to determine the fundamental properties of the electrodes for use in the models and to confirm the simulation results. Development of algorithms for tissue characterization and differentiation was based on in vivo impedance measurement in porcine models and confirmed in human tissue in vivo. Feasibility was proven by application prototyping and impedance data presented as invasive Electrical Impedance Tomography (iEIT). Our conclusion is that this method can be utilized in a wide range of clinical applications.

  18. A Comparison of Traditional Worksheet and Linear Programming Methods for Teaching Manure Application Planning.

    ERIC Educational Resources Information Center

    Schmitt, M. A.; And Others

    1994-01-01

    Compares traditional manure application planning techniques calculated to meet agronomic nutrient needs on a field-by-field basis with plans developed using computer-assisted linear programming optimization methods. Linear programming provided the most economical and environmentally sound manure application strategy. (Contains 15 references.) (MDH)

  19. Diffusion Tensor Imaging: Application to the Study of the Developing Brain

    ERIC Educational Resources Information Center

    Cascio, Carissa J.; Gerig, Guido; Piven, Joseph

    2007-01-01

    Objective: To provide an overview of diffusion tensor imaging (DTI) and its application to the study of white matter in the developing brain in both healthy and clinical samples. Method: The development of DTI and its application to brain imaging of white matter tracts is discussed. Forty-eight studies using DTI to examine diffusion properties of…

  20. Forest Herbicide Washoff From Foliar Applications

    Treesearch

    J.L. Michael; Kevin L. Talley; H.C. Fishburn

    1992-01-01

    Field and laboratory experiments were conducted to develop and test methods for determining washoff of foliar applied herbicides typically used in forestry in the South.Preliminary results show good agreement between results of laboratory methods used and observations from field experiments on actual precipitation events. Methods included application of...

  1. [Baseflow separation methods in hydrological process research: a review].

    PubMed

    Xu, Lei-Lei; Liu, Jing-Lin; Jin, Chang-Jie; Wang, An-Zhi; Guan, De-Xin; Wu, Jia-Bing; Yuan, Feng-Hui

    2011-11-01

    Baseflow separation research is regarded as one of the most important and difficult issues in hydrology and ecohydrology, but lacked of unified standards in the concepts and methods. This paper introduced the theories of baseflow separation based on the definitions of baseflow components, and analyzed the development course of different baseflow separation methods. Among the methods developed, graph separation method is simple and applicable but arbitrary, balance method accords with hydrological mechanism but is difficult in application, whereas time series separation method and isotopic method can overcome the subjective and arbitrary defects caused by graph separation method, and thus can obtain the baseflow procedure quickly and efficiently. In recent years, hydrological modeling, digital filtering, and isotopic method are the main methods used for baseflow separation.

  2. Rotor dynamic simulation and system identification methods for application to vacuum whirl data

    NASA Technical Reports Server (NTRS)

    Berman, A.; Giansante, N.; Flannelly, W. G.

    1980-01-01

    Methods of using rotor vacuum whirl data to improve the ability to model helicopter rotors were developed. The work consisted of the formulation of the equations of motion of elastic blades on a hub using a Galerkin method; the development of a general computer program for simulation of these equations; the study and implementation of a procedure for determining physical parameters based on measured data; and the application of a method for computing the normal modes and natural frequencies based on test data.

  3. A Comparison Study of Rule Space Method and Neural Network Model for Classifying Individuals and an Application.

    ERIC Educational Resources Information Center

    Hayashi, Atsuhiro

    Both the Rule Space Method (RSM) and the Neural Network Model (NNM) are techniques of statistical pattern recognition and classification approaches developed for applications from different fields. RSM was developed in the domain of educational statistics. It started from the use of an incidence matrix Q that characterizes the underlying cognitive…

  4. DEVELOPMENT AND REVIEW OF MONITORING METHODS AND RISK ASSESSMENT MODELS USED TO DETERMINE THE EFFECTS OF BIOSOLIDS LAND APPLICATION ON HUMAN HEALTH AND THE ENVIRONMENT

    EPA Science Inventory

    Development and Review of monitoring methods and risk assessment models for biosolids land application impacts on air and land

    Ronald F Herrmann (NRMRL), Mike Broder (NCEA), and Mike Ware (NERL)

    Science Questions .

    MYP Science Question: What additional model...

  5. Systematic development of technical textiles

    NASA Astrophysics Data System (ADS)

    Beer, M.; Schrank, V.; Gloy, Y.-S.; Gries, T.

    2016-07-01

    Technical textiles are used in various fields of applications, ranging from small scale (e.g. medical applications) to large scale products (e.g. aerospace applications). The development of new products is often complex and time consuming, due to multiple interacting parameters. These interacting parameters are production process related and also a result of the textile structure and used material. A huge number of iteration steps are necessary to adjust the process parameter to finalize the new fabric structure. A design method is developed to support the systematic development of technical textiles and to reduce iteration steps. The design method is subdivided into six steps, starting from the identification of the requirements. The fabric characteristics vary depending on the field of application. If possible, benchmarks are tested. A suitable fabric production technology needs to be selected. The aim of the method is to support a development team within the technology selection without restricting the textile developer. After a suitable technology is selected, the transformation and correlation between input and output parameters follows. This generates the information for the production of the structure. Afterwards, the first prototype can be produced and tested. The resulting characteristics are compared with the initial product requirements.

  6. Recent advances in reduction methods for nonlinear problems. [in structural mechanics

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1981-01-01

    Status and some recent developments in the application of reduction methods to nonlinear structural mechanics problems are summarized. The aspects of reduction methods discussed herein include: (1) selection of basis vectors in nonlinear static and dynamic problems, (2) application of reduction methods in nonlinear static analysis of structures subjected to prescribed edge displacements, and (3) use of reduction methods in conjunction with mixed finite element models. Numerical examples are presented to demonstrate the effectiveness of reduction methods in nonlinear problems. Also, a number of research areas which have high potential for application of reduction methods are identified.

  7. Photogrammetry and Videogrammetry Methods Development for Solar Sail Structures. Masters Thesis awarded by George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S. (Technical Monitor); Black, Jonathan T.

    2003-01-01

    This report discusses the development and application of metrology methods called photogrammetry and videogrammetry that make accurate measurements from photographs. These methods have been adapted for the static and dynamic characterization of gossamer structures, as four specific solar sail applications demonstrate. The applications prove that high-resolution, full-field, non-contact static measurements of solar sails using dot projection photogrammetry are possible as well as full-field, non-contact, dynamic characterization using dot projection videogrammetry. The accuracy of the measurement of the resonant frequencies and operating deflection shapes that were extracted surpassed expectations. While other non-contact measurement methods exist, they are not full-field and require significantly more time to take data.

  8. Development of delineator testing standard.

    DOT National Transportation Integrated Search

    2015-02-01

    The objective of this project was to develop a new test method for evaluating the impact performance : of delineators for given applications. The researchers focused on developing a test method that was : reproducible and attempted to reproduce failu...

  9. Development of Advanced Verification and Validation Procedures and Tools for the Certification of Learning Systems in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen; Schumann, Johann; Gupta, Pramod; Richard, Michael; Guenther, Kurt; Soares, Fola

    2005-01-01

    Adaptive control technologies that incorporate learning algorithms have been proposed to enable automatic flight control and vehicle recovery, autonomous flight, and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments. In order for adaptive control systems to be used in safety-critical aerospace applications, they must be proven to be highly safe and reliable. Rigorous methods for adaptive software verification and validation must be developed to ensure that control system software failures will not occur. Of central importance in this regard is the need to establish reliable methods that guarantee convergent learning, rapid convergence (learning) rate, and algorithm stability. This paper presents the major problems of adaptive control systems that use learning to improve performance. The paper then presents the major procedures and tools presently developed or currently being developed to enable the verification, validation, and ultimate certification of these adaptive control systems. These technologies include the application of automated program analysis methods, techniques to improve the learning process, analytical methods to verify stability, methods to automatically synthesize code, simulation and test methods, and tools to provide on-line software assurance.

  10. Aircraft operability methods applied to space launch vehicles

    NASA Astrophysics Data System (ADS)

    Young, Douglas

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.

  11. A second-order shock-expansion method applicable to bodies of revolution near zero lift

    NASA Technical Reports Server (NTRS)

    1957-01-01

    A second-order shock-expansion method applicable to bodies of revolution is developed by the use of the predictions of the generalized shock-expansion method in combination with characteristics theory. Equations defining the zero-lift pressure distributions and the normal-force and pitching-moment derivatives are derived. Comparisons with experimental results show that the method is applicable at values of the similarity parameter, the ratio of free-stream Mach number to nose fineness ratio, from about 0.4 to 2.

  12. [Clinical applications of molecular imaging methods for patients with ischemic stroke].

    PubMed

    Yamauchi, Hiroshi; Fukuyama, Hidenao

    2007-02-01

    Several molecular imaging methods have been developed to visualize pathophysiology of cerebral ischemia in humans in vivo. PET and SPECT with specific ligands have been mainly used as diagnostic tools for the clinical usage of molecular imaging in patients with ischemic stroke. Recently, cellular MR imaging with specific contrast agents has been developed to visualize targeted cells in human stroke patients. This article reviews the current status in the clinical applications of those molecular imaging methods for patients with ischemic stroke.

  13. Metrology of fused silica

    NASA Astrophysics Data System (ADS)

    Nürnberg, F.; Kühn, B.; Rollmann, K.

    2016-12-01

    In over 100 years of quartz glass fabrication, the applications and the optical requirements for this type of optical material have significantly changed. Applications like spectroscopy, UV flash lamps, the Apollo missions as well as the growth in UV and IR applications have directed quartz glass development towards new products, technologies or methods of measurement. The boundaries of the original measurement methods have been achieved and more sensitive measurements with precise resolution for transmission, purity, radiation resistance, absorption, thermal and mechanical stability as well as optical properties like homogeneity, stress birefringence, striae and bubbles/inclusions had to be found. This article will provide an overview of the development of measuring methods of quartz glass, discuss their limits and accuracy and point out the parameters which are of high relevance for today's laser applications.

  14. Immunoaffinity chromatography: an introduction to applications and recent developments

    PubMed Central

    Moser, Annette C

    2010-01-01

    Immunoaffinity chromatography (IAC) combines the use of LC with the specific binding of antibodies or related agents. The resulting method can be used in assays for a particular target or for purification and concentration of analytes prior to further examination by another technique. This review discusses the history and principles of IAC and the various formats that can be used with this method. An overview is given of the general properties of antibodies and of antibody-production methods. The supports and immobilization methods used with antibodies in IAC and the selection of application and elution conditions for IAC are also discussed. Several applications of IAC are considered, including its use in purification, immunodepletion, direct sample analysis, chromatographic immunoassays and combined analysis methods. Recent developments include the use of IAC with CE or MS, ultrafast immunoextraction methods and the use of immunoaffinity columns in microanalytical systems. PMID:20640220

  15. Air-bridged Ohmic contact on vertically aligned si nanowire arrays: application to molecule sensors.

    PubMed

    Han, Hee; Kim, Jungkil; Shin, Ho Sun; Song, Jae Yong; Lee, Woo

    2012-05-02

    A simple, cost-effective, and highly reliable method for constructing an air-bridged electrical contact on large arrays of vertically aligned nanowires was developed. The present method may open up new opportunities for developing advanced nanowire-based devices for energy harvest and storage, power generation, and sensing applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Advances in hypersonic vehicle synthesis with application to studies of advanced thermal protection system

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the work entitled 'Advances in Hypersonic Vehicle Synthesis with Application to Studies of Advanced Thermal Protection Systems.' The effort was in two areas: (1) development of advanced methods of trajectory and propulsion system optimization; and (2) development of advanced methods of structural weight estimation. The majority of the effort was spent in the trajectory area.

  17. Systematic review of the application of the plan–do–study–act method to improve quality in healthcare

    PubMed Central

    Taylor, Michael J; McNicholas, Chris; Nicolay, Chris; Darzi, Ara; Bell, Derek; Reed, Julie E

    2014-01-01

    Background Plan–do–study–act (PDSA) cycles provide a structure for iterative testing of changes to improve quality of systems. The method is widely accepted in healthcare improvement; however there is little overarching evaluation of how the method is applied. This paper proposes a theoretical framework for assessing the quality of application of PDSA cycles and explores the consistency with which the method has been applied in peer-reviewed literature against this framework. Methods NHS Evidence and Cochrane databases were searched by three independent reviewers. Empirical studies were included that reported application of the PDSA method in healthcare. Application of PDSA cycles was assessed against key features of the method, including documentation characteristics, use of iterative cycles, prediction-based testing of change, initial small-scale testing and use of data over time. Results 73 of 409 individual articles identified met the inclusion criteria. Of the 73 articles, 47 documented PDSA cycles in sufficient detail for full analysis against the whole framework. Many of these studies reported application of the PDSA method that failed to accord with primary features of the method. Less than 20% (14/73) fully documented the application of a sequence of iterative cycles. Furthermore, a lack of adherence to the notion of small-scale change is apparent and only 15% (7/47) reported the use of quantitative data at monthly or more frequent data intervals to inform progression of cycles. Discussion To progress the development of the science of improvement, a greater understanding of the use of improvement methods, including PDSA, is essential to draw reliable conclusions about their effectiveness. This would be supported by the development of systematic and rigorous standards for the application and reporting of PDSAs. PMID:24025320

  18. A simplified method of performance indicators development for epidemiological surveillance networks--application to the RESAPATH surveillance network.

    PubMed

    Sorbe, A; Chazel, M; Gay, E; Haenni, M; Madec, J-Y; Hendrikx, P

    2011-06-01

    Develop and calculate performance indicators allows to continuously follow the operation of an epidemiological surveillance network. This is an internal evaluation method, implemented by the coordinators in collaboration with all the actors of the network. Its purpose is to detect weak points in order to optimize management. A method for the development of performance indicators of epidemiological surveillance networks was developed in 2004 and was applied to several networks. Its implementation requires a thorough description of the network environment and all its activities to define priority indicators. Since this method is considered to be complex, our objective consisted in developing a simplified approach and applying it to an epidemiological surveillance network. We applied the initial method to a theoretical network model to obtain a list of generic indicators that can be adapted to any surveillance network. We obtained a list of 25 generic performance indicators, intended to be reformulated and described according to the specificities of each network. It was used to develop performance indicators for RESAPATH, an epidemiological surveillance network of antimicrobial resistance in pathogenic bacteria of animal origin in France. This application allowed us to validate the simplified method, its value in terms of practical implementation, and its level of user acceptance. Its ease of use and speed of application compared to the initial method argue in favor of its use on broader scale. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  19. Machine learning in heart failure: ready for prime time.

    PubMed

    Awan, Saqib Ejaz; Sohel, Ferdous; Sanfilippo, Frank Mario; Bennamoun, Mohammed; Dwivedi, Girish

    2018-03-01

    The aim of this review is to present an up-to-date overview of the application of machine learning methods in heart failure including diagnosis, classification, readmissions and medication adherence. Recent studies have shown that the application of machine learning techniques may have the potential to improve heart failure outcomes and management, including cost savings by improving existing diagnostic and treatment support systems. Recently developed deep learning methods are expected to yield even better performance than traditional machine learning techniques in performing complex tasks by learning the intricate patterns hidden in big medical data. The review summarizes the recent developments in the application of machine and deep learning methods in heart failure management.

  20. Synthesis of NiFe2O4 nanoparticles for energy and environment applications

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Rimal, Gaurab; Tang, Jinke; Dai, Qilin

    2018-02-01

    Magnetic nanoparticles are of great interest due to their applications in energy and environment. In this work, we developed a chemical solution based method to synthesize NiFe2O4 (NFO) nanoparticles with different sizes and structures by organic ligands and studied their applications in magnetic electrolyte concentration cells and waste water treatment. NFO nanoparticle growth is controlled by the organic passivating ligand ratios, reaction temperatures, and reaction solution concentrations to achieve the control of NFO nanoparticle size ranging from 25 nm to 160 nm. The NFO growth mechanism is controlled by aggregation related mechanism, leading to tunable magnetic properties and concentration cell device performance. Magnetic biochar consisting of biochar/NFO composite was also obtained based on the developed method. Waste water containing Rhodamine B was tested by the synthesized magnetic biochar. We believe the method developed in this work about magnetic NFO nanoparticles and magnetic biochar will shed light on the application of magnetic nanoparticles in energy and environment.

  1. IMPROVEMENT IN AIR TOXICS METHODS FOR VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Innovative and customized monitoring methods for air toxic volatile organic compounds (VOCs) are being developed for applications in exposure and trends monitoring. This task addresses the following applications of specific interest:

    o Contributions to EPA Regional Monit...

  2. Agile informatics: application of agile project management to the development of a personal health application.

    PubMed

    Chung, Jeanhee; Pankey, Evan; Norris, Ryan J

    2007-10-11

    We describe the application of the Agile method-- a short iteration cycle, user responsive, measurable software development approach-- to the project management of a modular personal health record, iHealthSpace, to be deployed to the patients and providers of a large academic primary care practice.

  3. Medical devices early assessment methods: systematic literature review.

    PubMed

    Markiewicz, Katarzyna; van Til, Janine A; IJzerman, Maarten J

    2014-04-01

    The aim of this study was to get an overview of current theory and practice in early assessments of medical devices, and to identify aims and uses of early assessment methods used in practice. A systematic literature review was conducted in September 2013, using computerized databases (PubMed, Science Direct, and Scopus), and references list search. Selected articles were categorized based on their type, objective, and main target audience. The methods used in the application studies were extracted and mapped throughout the early stages of development and for their particular aims. Of 1,961 articles identified, eighty-three studies passed the inclusion criteria, and thirty were included by searching reference lists. There were thirty-one theoretical papers, and eighty-two application papers included. Most studies investigated potential applications/possible improvement of medical devices, developed early assessment framework or included stakeholder perspective in early development stages. Among multiple qualitative and quantitative methods identified, only few were used more than once. The methods aim to inform strategic considerations (e.g., literature review), economic evaluation (e.g., cost-effectiveness analysis), and clinical effectiveness (e.g., clinical trials). Medical devices were often in the prototype product development stage, and the results were usually aimed at informing manufacturers. This study showed converging aims yet widely diverging methods for early assessment during medical device development. For early assessment to become an integral part of activities in the development of medical devices, methods need to be clarified and standardized, and the aims and value of assessment itself must be demonstrated to the main stakeholders for assuring effective and efficient medical device development.

  4. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    NASA Technical Reports Server (NTRS)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  5. Application of LC/MS/MS Techniques to Development of US EPA Standardized Methods for Chemicals of Emerging Concern

    EPA Science Inventory

    This presentation will describe the U.S. EPA’s drinking water and ambient water method development program in relation to the process employed and the typical challenges encountered in developing standardized LC/MS/MS methods for chemicals of emerging concern. The EPA&rsquo...

  6. A VIKOR Technique with Applications Based on DEMATEL and ANP

    NASA Astrophysics Data System (ADS)

    Ou Yang, Yu-Ping; Shieh, How-Ming; Tzeng, Gwo-Hshiung

    In multiple criteria decision making (MCDM) methods, the compromise ranking method (named VIKOR) was introduced as one applicable technique to implement within MCDM. It was developed for multicriteria optimization of complex systems. However, few papers discuss conflicting (competing) criteria with dependence and feedback in the compromise solution method. Therefore, this study proposes and provides applications for a novel model using the VIKOR technique based on DEMATEL and the ANP to solve the problem of conflicting criteria with dependence and feedback. In addition, this research also uses DEMATEL to normalize the unweighted supermatrix of the ANP to suit the real world. An example is also presented to illustrate the proposed method with applications thereof. The results show the proposed method is suitable and effective in real-world applications.

  7. Development of deep-ultraviolet metal vapor lasers

    NASA Astrophysics Data System (ADS)

    Sabotinov, Nikola V.

    2004-06-01

    Deep ultraviolet laser generation is of great interest in connection with both the development of new industrial technologies and applications in medicine, biology, chemistry, etc. The development of metal vapor UV lasers oscillating in the pulsed mode with high pulse repetition frequencies and producing high average output powers is of particular interest for microprocessing of polymers, photolithography and fluorescence applications. At present, metal vapor lasers generate deep-UV radiation on the base of two methods. The first method is non-linear conversion of powerful laser generation from the visible region into the deep ultraviolet region. The second method is direct UV laser action on ion and atomic transitions of different metals.

  8. Illustrated structural application of universal first-order reliability method

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1994-01-01

    The general application of the proposed first-order reliability method was achieved through the universal normalization of engineering probability distribution data. The method superimposes prevailing deterministic techniques and practices on the first-order reliability method to surmount deficiencies of the deterministic method and provide benefits of reliability techniques and predictions. A reliability design factor is derived from the reliability criterion to satisfy a specified reliability and is analogous to the deterministic safety factor. Its application is numerically illustrated on several practical structural design and verification cases with interesting results and insights. Two concepts of reliability selection criteria are suggested. Though the method was developed to support affordable structures for access to space, the method should also be applicable for most high-performance air and surface transportation systems.

  9. Computational structural mechanics methods research using an evolving framework

    NASA Technical Reports Server (NTRS)

    Knight, N. F., Jr.; Lotts, C. G.; Gillian, R. E.

    1990-01-01

    Advanced structural analysis and computational methods that exploit high-performance computers are being developed in a computational structural mechanics research activity sponsored by the NASA Langley Research Center. These new methods are developed in an evolving framework and applied to representative complex structural analysis problems from the aerospace industry. An overview of the methods development environment is presented, and methods research areas are described. Selected application studies are also summarized.

  10. Application of finite element method in mechanical design of automotive parts

    NASA Astrophysics Data System (ADS)

    Gu, Suohai

    2017-09-01

    As an effective numerical analysis method, finite element method (FEM) has been widely used in mechanical design and other fields. In this paper, the development of FEM is introduced firstly, then the specific steps of FEM applications are illustrated and the difficulties of FEM are summarized in detail. Finally, applications of FEM in automobile components such as automobile wheel, steel plate spring, body frame, shaft parts and so on are summarized, compared with related research experiments.

  11. Application of computational aerodynamics methods to the design and analysis of transport aircraft

    NASA Technical Reports Server (NTRS)

    Da Costa, A. L.

    1978-01-01

    The application and validation of several computational aerodynamic methods in the design and analysis of transport aircraft is established. An assessment is made concerning more recently developed methods that solve three-dimensional transonic flow and boundary layers on wings. Capabilities of subsonic aerodynamic methods are demonstrated by several design and analysis efforts. Among the examples cited are the B747 Space Shuttle Carrier Aircraft analysis, nacelle integration for transport aircraft, and winglet optimization. The accuracy and applicability of a new three-dimensional viscous transonic method is demonstrated by comparison of computed results to experimental data

  12. Spectral methods for CFD

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Streett, Craig L.; Hussaini, M. Yousuff

    1989-01-01

    One of the objectives of these notes is to provide a basic introduction to spectral methods with a particular emphasis on applications to computational fluid dynamics. Another objective is to summarize some of the most important developments in spectral methods in the last two years. The fundamentals of spectral methods for simple problems will be covered in depth, and the essential elements of several fluid dynamical applications will be sketched.

  13. Application of probabilistic analysis/design methods in space programs - The approaches, the status, and the needs

    NASA Technical Reports Server (NTRS)

    Ryan, Robert S.; Townsend, John S.

    1993-01-01

    The prospective improvement of probabilistic methods for space program analysis/design entails the further development of theories, codes, and tools which match specific areas of application, the drawing of lessons from previous uses of probability and statistics data bases, the enlargement of data bases (especially in the field of structural failures), and the education of engineers and managers on the advantages of these methods. An evaluation is presently made of the current limitations of probabilistic engineering methods. Recommendations are made for specific applications.

  14. A Survey of Symplectic and Collocation Integration Methods for Orbit Propagation

    NASA Technical Reports Server (NTRS)

    Jones, Brandon A.; Anderson, Rodney L.

    2012-01-01

    Demands on numerical integration algorithms for astrodynamics applications continue to increase. Common methods, like explicit Runge-Kutta, meet the orbit propagation needs of most scenarios, but more specialized scenarios require new techniques to meet both computational efficiency and accuracy needs. This paper provides an extensive survey on the application of symplectic and collocation methods to astrodynamics. Both of these methods benefit from relatively recent theoretical developments, which improve their applicability to artificial satellite orbit propagation. This paper also details their implementation, with several tests demonstrating their advantages and disadvantages.

  15. Application of Quality by Design Approach to Bioanalysis: Development of a Method for Elvitegravir Quantification in Human Plasma.

    PubMed

    Baldelli, Sara; Marrubini, Giorgio; Cattaneo, Dario; Clementi, Emilio; Cerea, Matteo

    2017-10-01

    The application of Quality by Design (QbD) principles in clinical laboratories can help to develop an analytical method through a systematic approach, providing a significant advance over the traditional heuristic and empirical methodology. In this work, we applied for the first time the QbD concept in the development of a method for drug quantification in human plasma using elvitegravir as the test molecule. The goal of the study was to develop a fast and inexpensive quantification method, with precision and accuracy as requested by the European Medicines Agency guidelines on bioanalytical method validation. The method was divided into operative units, and for each unit critical variables affecting the results were identified. A risk analysis was performed to select critical process parameters that should be introduced in the design of experiments (DoEs). Different DoEs were used depending on the phase of advancement of the study. Protein precipitation and high-performance liquid chromatography-tandem mass spectrometry were selected as the techniques to be investigated. For every operative unit (sample preparation, chromatographic conditions, and detector settings), a model based on factors affecting the responses was developed and optimized. The obtained method was validated and clinically applied with success. To the best of our knowledge, this is the first investigation thoroughly addressing the application of QbD to the analysis of a drug in a biological matrix applied in a clinical laboratory. The extensive optimization process generated a robust method compliant with its intended use. The performance of the method is continuously monitored using control charts.

  16. A Review of Flow Analysis Methods for Determination of Radionuclides in Nuclear Wastes and Nuclear Reactor Coolants

    DOE PAGES

    Trojanowicz, Marek; Kolacinska, Kamila; Grate, Jay W.

    2018-02-13

    Here, the safety and security of nuclear power plant operations depend on the application of the most appropriate techniques and methods of chemical analysis, where modern flow analysis methods prevail. Nevertheless, the current status of the development of these methods is more limited than it might be expected based on their genuine advantages. The main aim of this paper is to review the automated flow analysis procedures developed with various detection methods for the nuclear energy industry. The flow analysis methods for the determination of radionuclides, that have been reported to date, are primarily focused on their environmental applications. Themore » benefits of the application of flow methods in both monitoring of the nuclear wastes and process analysis of the primary circuit coolants of light water nuclear reactors will also be discussed. The application of either continuous flow methods (CFA) or injection methods (FIA, SIA) of the flow analysis with the β–radiometric detection shortens the analysis time and improves the precision of determination due to mechanization of certain time-consuming operations of the sample processing. Compared to the radiometric detection, the mass spectrometry (MS) detection enables one to perform multicomponent analyses as well as the determination of transuranic isotopes with much better limits of detection.« less

  17. A Review of Flow Analysis Methods for Determination of Radionuclides in Nuclear Wastes and Nuclear Reactor Coolants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trojanowicz, Marek; Kolacinska, Kamila; Grate, Jay W.

    Here, the safety and security of nuclear power plant operations depend on the application of the most appropriate techniques and methods of chemical analysis, where modern flow analysis methods prevail. Nevertheless, the current status of the development of these methods is more limited than it might be expected based on their genuine advantages. The main aim of this paper is to review the automated flow analysis procedures developed with various detection methods for the nuclear energy industry. The flow analysis methods for the determination of radionuclides, that have been reported to date, are primarily focused on their environmental applications. Themore » benefits of the application of flow methods in both monitoring of the nuclear wastes and process analysis of the primary circuit coolants of light water nuclear reactors will also be discussed. The application of either continuous flow methods (CFA) or injection methods (FIA, SIA) of the flow analysis with the β–radiometric detection shortens the analysis time and improves the precision of determination due to mechanization of certain time-consuming operations of the sample processing. Compared to the radiometric detection, the mass spectrometry (MS) detection enables one to perform multicomponent analyses as well as the determination of transuranic isotopes with much better limits of detection.« less

  18. A review of flow analysis methods for determination of radionuclides in nuclear wastes and nuclear reactor coolants.

    PubMed

    Trojanowicz, Marek; Kołacińska, Kamila; Grate, Jay W

    2018-06-01

    The safety and security of nuclear power plant operations depend on the application of the most appropriate techniques and methods of chemical analysis, where modern flow analysis methods prevail. Nevertheless, the current status of the development of these methods is more limited than it might be expected based on their genuine advantages. The main aim of this paper is to review the automated flow analysis procedures developed with various detection methods for the nuclear energy industry. The flow analysis methods for the determination of radionuclides, that have been reported to date, are primarily focused on their environmental applications. The benefits of the application of flow methods in both monitoring of the nuclear wastes and process analysis of the primary circuit coolants of light water nuclear reactors will also be discussed. The application of either continuous flow methods (CFA) or injection methods (FIA, SIA) of the flow analysis with the β-radiometric detection shortens the analysis time and improves the precision of determination due to mechanization of certain time-consuming operations of the sample processing. Compared to the radiometric detection, the mass spectrometry (MS) detection enables one to perform multicomponent analyses as well as the determination of transuranic isotopes with much better limits of detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Development and application of a selective detection method for genetically modified soy and soy-derived products.

    PubMed

    Hoef, A M; Kok, E J; Bouw, E; Kuiper, H A; Keijer, J

    1998-10-01

    A method has been developed to distinguish between traditional soy beans and transgenic Roundup Ready soy beans, i.e. the glyphosate ('Roundup') resistant soy bean variety developed by Monsanto Company. Glyphosate resistance results from the incorporation of an Agrobacterium-derived 5-enol-pyruvyl-shikimate-3-phosphatesynthase (EPSPS) gene. The detection method developed is based on a nested Polymerase Chain Reaction (PCR) procedure. Ten femtograms of soy bean DNA can be detected, while, starting from whole soy beans, Roundup Ready DNA can be detected at a level of 1 Roundup Ready soy bean in 5000 non-GM soy beans (0.02% Roundup Ready soy bean). The method has been applied to samples of soy bean, soy-meal pellets and soy bean flour, as well as a number of processed complex products such as infant formula based on soy, tofu, tempeh, soy-based desserts, bakery products and complex meat and meat-replacing products. The results obtained are discussed with respect to practical application of the detection method developed.

  20. 75 FR 4573 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... clever new method developed by National Institute of Dental and Craniofacial Research (NIDCR) researchers... of Federally funded research and development. Foreign patent applications are filed on selected... of Invention: Researchers at the National Institutes of Health have recently developed a novel method...

  1. DEVELOPMENT OF AN ELECTROSPRAY MASS SPECTROMETRIC METHOD FOR DETERMINING PERCHLORATE IN FERTILIZERS

    EPA Science Inventory

    An electrospray mass spectrometric method has been developed for application to agricultural and horticultural fertilizers to determine perchlorate. After fertilizers are leached or dissolved in water, the method relies on the formation of stable ion pair complex of the perchlor...

  2. Potential markets for application of space medicine achievements

    NASA Astrophysics Data System (ADS)

    Orlov, Oleg; Belakovskiy, Mark; Kussmaul, Anna

    2014-11-01

    The Institute of Biomedical Problems (IBMP) is the lead institution of the Russian Federation in the area of space biology and medicine. It has successfully implemented a set of innovation-based activities and projects to develop and introduce promising space products and technologies into the practices of Earth health care. To this end, various investigative methods developed for the medical selection of cosmonauts have been successfully applied in ophthalmology, gastroenterology, and cardiology. Axial loading ;Regent; suits and soil simulators of bearing load have proved their efficiency in rehabilitating patients with motor disorders. Developmental prototypes of versatile training devices and technologies of their application are used for rehabilitation and purposeful development of physical status in people of various age groups. The application of telemedicine technologies allows one to diagnose and treat diseases in people who are in remote locations from medical centers or happen to be in extreme conditions. In cooperation with leading national medical institutions, other developments by the Institute have been also introduced into clinical practice: for example, the method of assessing the human functional state on the basis of computerized analysis of cardiac rhythm indices; methods of diagnosing, treating and preventing osteoporosis and metabolic osteopathias; methods of treating cardiorespiratory diseases using warmed-up heliox mixtures; methods of prophylactic examination and assessing the physical health status of the population; methods of monitoring the functional state and enhancing the physical capacity of athletes; developmental models of devices for simulating the effects of artificial gravity for refining methods of treatment and rehabilitation of patients; and systems of IV anesthesia with an option of a remote control. The effective management of innovation-based activities and the issues of commercialization of promising developments and objects of intellectual property are playing an ever-growing role in an effort to develop a scientific center in particular and a branch on the whole. The range and spectrum of applications of space medicine and biology achievements in sports, extreme, and rehabilitation medicine and preventive maintenance has expanded from year to year.

  3. A Topical Overview of Cumulative Risk Assessment Concepts, Methods, and Applications (2007–2016)

    EPA Science Inventory

    Cumulative risk assessments (CRAs) address combined risks from exposures to multiple chemical and nonchemical stressors and may focus on vulnerable communities or populations. Significant contributions have been made to the development of concepts, methods, and applications for C...

  4. Development of EPA OTM 10 for Landfill Applications

    EPA Science Inventory

    In 2006, the U.S. Environmental Protection Agency posted a new test method on its website called OTM 10 which describes direct measurement of pollutant mass emission flux from area sources using ground-based optical remote sensing. The method has validated application to relative...

  5. Sample presentation, sources of error and future perspectives on the application of vibrational spectroscopy in the wine industry.

    PubMed

    Cozzolino, Daniel

    2015-03-30

    Vibrational spectroscopy encompasses a number of techniques and methods including ultra-violet, visible, Fourier transform infrared or mid infrared, near infrared and Raman spectroscopy. The use and application of spectroscopy generates spectra containing hundreds of variables (absorbances at each wavenumbers or wavelengths), resulting in the production of large data sets representing the chemical and biochemical wine fingerprint. Multivariate data analysis techniques are then required to handle the large amount of data generated in order to interpret the spectra in a meaningful way in order to develop a specific application. This paper focuses on the developments of sample presentation and main sources of error when vibrational spectroscopy methods are applied in wine analysis. Recent and novel applications will be discussed as examples of these developments. © 2014 Society of Chemical Industry.

  6. Towards Efficient and Accurate Description of Many-Electron Problems: Developments of Static and Time-Dependent Electronic Structure Methods

    NASA Astrophysics Data System (ADS)

    Ding, Feizhi

    Understanding electronic behavior in molecular and nano-scale systems is fundamental to the development and design of novel technologies and materials for application in a variety of scientific contexts from fundamental research to energy conversion. This dissertation aims to provide insights into this goal by developing novel methods and applications of first-principle electronic structure theory. Specifically, we will present new methods and applications of excited state multi-electron dynamics based on the real-time (RT) time-dependent Hartree-Fock (TDHF) and time-dependent density functional theory (TDDFT) formalism, and new development of the multi-configuration self-consist field theory (MCSCF) for modeling ground-state electronic structure. The RT-TDHF/TDDFT based developments and applications can be categorized into three broad and coherently integrated research areas: (1) modeling of the interaction between moleculars and external electromagnetic perturbations. In this part we will first prove both analytically and numerically the gauge invariance of the TDHF/TDDFT formalisms, then we will present a novel, efficient method for calculating molecular nonlinear optical properties, and last we will study quantum coherent plasmon in metal namowires using RT-TDDFT; (2) modeling of excited-state charge transfer in molecules. In this part, we will investigate the mechanisms of bridge-mediated electron transfer, and then we will introduce a newly developed non-equilibrium quantum/continuum embedding method for studying charge transfer dynamics in solution; (3) developments of first-principles spin-dependent many-electron dynamics. In this part, we will present an ab initio non-relativistic spin dynamics method based on the two-component generalized Hartree-Fock approach, and then we will generalized it to the two-component TDDFT framework and combine it with the Ehrenfest molecular dynamics approach for modeling the interaction between electron spins and nuclear motion. All these developments and applications will open up new computational and theoretical tools to be applied to the development and understanding of chemical reactions, nonlinear optics, electromagnetism, and spintronics. Lastly, we present a new algorithm for large-scale MCSCF calculations that can utilize massively parallel machines while still maintaining optimal performance for each single processor. This will great improve the efficiency in the MCSCF calculations for studying chemical dissociation and high-accuracy quantum-mechanical simulations.

  7. Computer Graphics-aided systems analysis: application to well completion design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detamore, J.E.; Sarma, M.P.

    1985-03-01

    The development of an engineering tool (in the form of a computer model) for solving design and analysis problems related with oil and gas well production operations is discussed. The development of the method is based on integrating the concepts of ''Systems Analysis'' with the techniques of ''Computer Graphics''. The concepts behind the method are very general in nature. This paper, however, illustrates the application of the method in solving gas well completion design problems. The use of the method will save time and improve the efficiency of such design and analysis problems. The method can be extended to othermore » design and analysis aspects of oil and gas wells.« less

  8. Transient liquid phase diffusion bonding of Udimet 720 for Stirling power converter applications

    NASA Technical Reports Server (NTRS)

    Mittendorf, Donald L.; Baggenstoss, William G.

    1992-01-01

    Udimet 720 has been selected for use on Stirling power converters for space applications. Because Udimet 720 is generally considered susceptible to strain age cracking if traditional fusion welding is used, other joining methods are being considered. A process for transient liquid phase diffusion bonding of Udimet 720 has been theoretically developed in an effort to eliminate the strain age crack concern. This development has taken into account such variables as final grain size, joint homogenization, joint efficiency related to bonding aid material, bonding aid material application method, and thermal cycle.

  9. Research on Visualization Design Method in the Field of New Media Software Engineering

    NASA Astrophysics Data System (ADS)

    Deqiang, Hu

    2018-03-01

    In the new period of increasingly developed science and technology, with the increasingly fierce competition in the market and the increasing demand of the masses, new design and application methods have emerged in the field of new media software engineering, that is, the visualization design method. Applying the visualization design method to the field of new media software engineering can not only improve the actual operation efficiency of new media software engineering but more importantly the quality of software development can be enhanced by means of certain media of communication and transformation; on this basis, the progress and development of new media software engineering in China are also continuously promoted. Therefore, the application of visualization design method in the field of new media software engineering is analysed concretely in this article from the perspective of the overview of visualization design methods and on the basis of systematic analysis of the basic technology.

  10. Extended precision data types for the development of the original computer aided engineering applications

    NASA Astrophysics Data System (ADS)

    Pescaru, A.; Oanta, E.; Axinte, T.; Dascalescu, A.-D.

    2015-11-01

    Computer aided engineering is based on models of the phenomena which are expressed as algorithms. The implementations of the algorithms are usually software applications which are processing a large volume of numerical data, regardless the size of the input data. In this way, the finite element method applications used to have an input data generator which was creating the entire volume of geometrical data, starting from the initial geometrical information and the parameters stored in the input data file. Moreover, there were several data processing stages, such as: renumbering of the nodes meant to minimize the size of the band length of the system of equations to be solved, computation of the equivalent nodal forces, computation of the element stiffness matrix, assemblation of system of equations, solving the system of equations, computation of the secondary variables. The modern software application use pre-processing and post-processing programs to easily handle the information. Beside this example, CAE applications use various stages of complex computation, being very interesting the accuracy of the final results. Along time, the development of CAE applications was a constant concern of the authors and the accuracy of the results was a very important target. The paper presents the various computing techniques which were imagined and implemented in the resulting applications: finite element method programs, finite difference element method programs, applied general numerical methods applications, data generators, graphical applications, experimental data reduction programs. In this context, the use of the extended precision data types was one of the solutions, the limitations being imposed by the size of the memory which may be allocated. To avoid the memory-related problems the data was stored in files. To minimize the execution time, part of the file was accessed using the dynamic memory allocation facilities. One of the most important consequences of the paper is the design of a library which includes the optimized solutions previously tested, that may be used for the easily development of original CAE cross-platform applications. Last but not least, beside the generality of the data type solutions, there is targeted the development of a software library which may be used for the easily development of node-based CAE applications, each node having several known or unknown parameters, the system of equations being automatically generated and solved.

  11. A Simple Method Based on the Application of a CCD Camera as a Sensor to Detect Low Concentrations of Barium Sulfate in Suspension

    PubMed Central

    de Sena, Rodrigo Caciano; Soares, Matheus; Pereira, Maria Luiza Oliveira; da Silva, Rogério Cruz Domingues; do Rosário, Francisca Ferreira; da Silva, Joao Francisco Cajaiba

    2011-01-01

    The development of a simple, rapid and low cost method based on video image analysis and aimed at the detection of low concentrations of precipitated barium sulfate is described. The proposed system is basically composed of a webcam with a CCD sensor and a conventional dichroic lamp. For this purpose, software for processing and analyzing the digital images based on the RGB (Red, Green and Blue) color system was developed. The proposed method had shown very good repeatability and linearity and also presented higher sensitivity than the standard turbidimetric method. The developed method is presented as a simple alternative for future applications in the study of precipitations of inorganic salts and also for detecting the crystallization of organic compounds. PMID:22346607

  12. The development of a scalable parallel 3-D CFD algorithm for turbomachinery. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Luke, Edward Allen

    1993-01-01

    Two algorithms capable of computing a transonic 3-D inviscid flow field about rotating machines are considered for parallel implementation. During the study of these algorithms, a significant new method of measuring the performance of parallel algorithms is developed. The theory that supports this new method creates an empirical definition of scalable parallel algorithms that is used to produce quantifiable evidence that a scalable parallel application was developed. The implementation of the parallel application and an automated domain decomposition tool are also discussed.

  13. Fuel Cell Manufacturing Research and Development | Hydrogen and Fuel Cells

    Science.gov Websites

    methods to meet volume and cost targets for transportation and other applications. Fortunately, much can set Develop predictive models to help industry design better manufacturing processes and methods

  14. PARTNERING TO IMPROVE HUMAN EXPOSURE METHODS

    EPA Science Inventory

    Methods development research is an application-driven scientific area that addresses programmatic needs. The goals are to reduce measurement uncertainties, address data gaps, and improve existing analytical procedures for estimating human exposures. Partnerships have been develop...

  15. Develop applications based on android: Teacher Engagement Control of Health (TECH)

    NASA Astrophysics Data System (ADS)

    Sasmoko; Manalu, S. R.; Widhoyoko, S. A.; Indrianti, Y.; Suparto

    2018-03-01

    Physical and psychological condition of teachers is very important because it helped determine the realization of a positive school climate and productive so that they can run their profession optimally. This research is an advanced research on the design of ITEI application that able to see the profile of teacher’s engagement in Indonesia and to optimize the condition is needed an application that can detect the health of teachers both physically and psychologically. The research method used is the neuroresearch method combined with the development of IT system design for TECH which includes server design, database and android TECH application display. The study yielded 1) mental health benchmarks, 2) physical health benchmarks, and 3) the design of Android Application for Teacher Engagement Control of Health (TECH).

  16. Application of AI methods to aircraft guidance and control

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Mcmanus, John W.

    1988-01-01

    A research program for integrating artificial intelligence (AI) techniques with tools and methods used for aircraft flight control system design, development, and implementation is discussed. The application of the AI methods for the development and implementation of the logic software which operates with the control mode panel (CMP) of an aircraft is presented. The CMP is the pilot control panel for the automatic flight control system of a commercial-type research aircraft of Langley Research Center's Advanced Transport Operating Systems (ATOPS) program. A mouse-driven color-display emulation of the CMP, which was developed with AI methods and used to test the AI software logic implementation, is discussed. The operation of the CMP was enhanced with the addition of a display which was quickly developed with AI methods. The display advises the pilot of conditions not satisfied when a mode does not arm or engage. The implementation of the CMP software logic has shown that the time required to develop, implement, and modify software systems can be significantly reduced with the use of the AI methods.

  17. Model Robust Calibration: Method and Application to Electronically-Scanned Pressure Transducers

    NASA Technical Reports Server (NTRS)

    Walker, Eric L.; Starnes, B. Alden; Birch, Jeffery B.; Mays, James E.

    2010-01-01

    This article presents the application of a recently developed statistical regression method to the controlled instrument calibration problem. The statistical method of Model Robust Regression (MRR), developed by Mays, Birch, and Starnes, is shown to improve instrument calibration by reducing the reliance of the calibration on a predetermined parametric (e.g. polynomial, exponential, logarithmic) model. This is accomplished by allowing fits from the predetermined parametric model to be augmented by a certain portion of a fit to the residuals from the initial regression using a nonparametric (locally parametric) regression technique. The method is demonstrated for the absolute scale calibration of silicon-based pressure transducers.

  18. Development and application of a local linearization algorithm for the integration of quaternion rate equations in real-time flight simulation problems

    NASA Technical Reports Server (NTRS)

    Barker, L. E., Jr.; Bowles, R. L.; Williams, L. H.

    1973-01-01

    High angular rates encountered in real-time flight simulation problems may require a more stable and accurate integration method than the classical methods normally used. A study was made to develop a general local linearization procedure of integrating dynamic system equations when using a digital computer in real-time. The procedure is specifically applied to the integration of the quaternion rate equations. For this application, results are compared to a classical second-order method. The local linearization approach is shown to have desirable stability characteristics and gives significant improvement in accuracy over the classical second-order integration methods.

  19. Developing Deep Understanding about Language in Undergraduate Pre-Service Teacher Programs through the Application of Knowledge

    ERIC Educational Resources Information Center

    Fenwick, Lisl; Humphrey, Sally; Quinn, Marie; Endicott, Michele

    2014-01-01

    The development of deep understanding of theoretical knowledge is an essential element of successful tertiary-programs that prepare individuals to enter professions. This study investigates the extent to which an emphasis on the application of knowledge within curriculum design, teaching strategies and assessment methods developed deep knowledge…

  20. Robust Methods for Moderation Analysis with a Two-Level Regression Model.

    PubMed

    Yang, Miao; Yuan, Ke-Hai

    2016-01-01

    Moderation analysis has many applications in social sciences. Most widely used estimation methods for moderation analysis assume that errors are normally distributed and homoscedastic. When these assumptions are not met, the results from a classical moderation analysis can be misleading. For more reliable moderation analysis, this article proposes two robust methods with a two-level regression model when the predictors do not contain measurement error. One method is based on maximum likelihood with Student's t distribution and the other is based on M-estimators with Huber-type weights. An algorithm for obtaining the robust estimators is developed. Consistent estimates of standard errors of the robust estimators are provided. The robust approaches are compared against normal-distribution-based maximum likelihood (NML) with respect to power and accuracy of parameter estimates through a simulation study. Results show that the robust approaches outperform NML under various distributional conditions. Application of the robust methods is illustrated through a real data example. An R program is developed and documented to facilitate the application of the robust methods.

  1. The Microbial Fecal Indicator Paradigm: Tools in the Toolbox Applications in Recreational Waters

    EPA Science Inventory

    Summary of ORD’s recent research to develop tools for assessing microbial water quality in recreational waters. Methods discussed include the development of health associations between microbial fecal indicators and the development of culture, and molecular methods for fec...

  2. Nuclear Forensics Applications of Principal Component Analysis on Micro X-ray Fluorescence Images

    DTIC Science & Technology

    analysis on quantified micro x-ray fluorescence intensity values. This method is then applied to address goals of nuclear forensics . Thefirst...researchers in the development and validation of nuclear forensics methods. A method for determining material homogeneity is developed and demonstrated

  3. USDOT guidance summary for connected vehicle deployments : application deployment.

    DOT National Transportation Integrated Search

    2016-07-01

    This document provides guidance material in regards to the Application Deployment Plan for the CV Pilots DeploymentConcept Development Phase. Methods for application deployment are discussed with definitions for the successfulmanagement of each aspec...

  4. Geophysical methods in Geology. Second edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, P.V.

    This book presents an introduction to the methods of geophysics and their application to geological problems. The text emphasizes the broader aspects of geophysics, including the way in which geophysical methods help solve structural, correlational, and geochromological problems. Stress is laid on the principles and applications of methods rather than on instrumental techniques. This edition includes coverage of recent developments in geophysics and geology. New topics are introduced, including paleomagnetic methods, electromagnetic methods, microplate tectronics, and the use of multiple geophysical techniques.

  5. Fabrication and application of heterogeneous printed mouse phantoms for whole animal optical imaging

    PubMed Central

    Bentz, Brian Z.; Chavan, Anmol V.; Lin, Dergan; Tsai, Esther H. R.; Webb, Kevin J.

    2017-01-01

    This work demonstrates the usefulness of 3D printing for optical imaging applications. Progress in developing optical imaging for biomedical applications requires customizable and often complex objects for testing and evaluation. There is therefore high demand for what have become known as tissue-simulating “phantoms.” We present a new optical phantom fabricated using inexpensive 3D printing methods with multiple materials, allowing for the placement of complex inhomogeneities in complex or anatomically realistic geometries, as opposed to previous phantoms, which were limited to simple shapes formed by molds or machining. We use diffuse optical imaging to reconstruct optical parameters in 3D space within a printed mouse to show the applicability of the phantoms for developing whole animal optical imaging methods. This phantom fabrication approach is versatile, can be applied to optical imaging methods besides diffusive imaging, and can be used in the calibration of live animal imaging data. PMID:26835763

  6. An Application of Flipped Classroom Method in the Instructional Technologies and Material Development Course

    ERIC Educational Resources Information Center

    Özpinar, Ilknur; Yenmez, Arzu Aydogan; Gökçe, Semirhan

    2016-01-01

    A natural outcome of change in technology, new approaches towards teaching and learning have emerged and the applicability of the flipped classroom method, a new educational strategy, in the field of education has started to be discussed. It was aimed with the study to examine the effect of using flipped classroom method in academic achievements…

  7. Between practice and theory: Melanie Klein, Anna Freud and the development of child analysis.

    PubMed

    Donaldson, G

    1996-04-01

    An examination of the early history of child analysis in the writings of Melanie Klein and Anna Freud reveals how two different and opposing approaches to child analysis arose at the same time. The two methods of child analysis are rooted in a differential emphasis on psychoanalytic theory and practice. The Kleinian method derives from the application of technique while the Anna Freudian method is driven by theory. Furthermore, by holding to the Freudian theory of child development Anna Freud was forced to limit the scope of child analysis, while Klein's application of Freudian practice has led to new discoveries about the development of the infant psyche.

  8. 3D printed optical phantoms and deep tissue imaging for in vivo applications including oral surgery

    NASA Astrophysics Data System (ADS)

    Bentz, Brian Z.; Costas, Alfonso; Gaind, Vaibhav; Garcia, Jose M.; Webb, Kevin J.

    2017-03-01

    Progress in developing optical imaging for biomedical applications requires customizable and often complex objects known as "phantoms" for testing, evaluation, and calibration. This work demonstrates that 3D printing is an ideal method for fabricating such objects, allowing intricate inhomogeneities to be placed at exact locations in complex or anatomically realistic geometries, a process that is difficult or impossible using molds. We show printed mouse phantoms we have fabricated for developing deep tissue fluorescence imaging methods, and measurements of both their optical and mechanical properties. Additionally, we present a printed phantom of the human mouth that we use to develop an artery localization method to assist in oral surgery.

  9. Potential applications of computational fluid dynamics to biofluid analysis

    NASA Technical Reports Server (NTRS)

    Kwak, D.; Chang, J. L. C.; Rogers, S. E.; Rosenfeld, M.; Kwak, D.

    1988-01-01

    Computational fluid dynamics was developed to the stage where it has become an indispensable part of aerospace research and design. In view of advances made in aerospace applications, the computational approach can be used for biofluid mechanics research. Several flow simulation methods developed for aerospace problems are briefly discussed for potential applications to biofluids, especially to blood flow analysis.

  10. Fundamentals and applications of solar energy. Part 2

    NASA Astrophysics Data System (ADS)

    Faraq, I. H.; Melsheimer, S. S.

    Applications of techniques of chemical engineering to the development of materials, production methods, and performance optimization and evaluation of solar energy systems are discussed. Solar thermal storage systems using phase change materials, liquid phase Diels-Alder reactions, aquifers, and hydrocarbon oil were examined. Solar electric systems were explored in terms of a chlorophyll solar cell, the nonequilibrium electric field effects developed at photoelectrode/electrolyte interfaces, and designs for commercial scale processing of solar cells using continuous thin-film coating production methods. Solar coal gasification processes were considered, along with multilayer absorber coatings for solar concentrator receivers, solar thermal industrial applications, the kinetics of anaerobic digestion of crop residues to produce methane, and a procedure for developing a computer simulation of a solar cooling system.

  11. Network Analysis: Applications for the Developing Brain

    PubMed Central

    Chu-Shore, Catherine J.; Kramer, Mark A.; Bianchi, Matt T.; Caviness, Verne S.; Cash, Sydney S.

    2011-01-01

    Development of the human brain follows a complex trajectory of age-specific anatomical and physiological changes. The application of network analysis provides an illuminating perspective on the dynamic interregional and global properties of this intricate and complex system. Here, we provide a critical synopsis of methods of network analysis with a focus on developing brain networks. After discussing basic concepts and approaches to network analysis, we explore the primary events of anatomical cortical development from gestation through adolescence. Upon this framework, we describe early work revealing the evolution of age-specific functional brain networks in normal neurodevelopment. Finally, we review how these relationships can be altered in disease and perhaps even rectified with treatment. While this method of description and inquiry remains in early form, there is already substantial evidence that the application of network models and analysis to understanding normal and abnormal human neural development holds tremendous promise for future discovery. PMID:21303762

  12. Energy Conversion and Storage Program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  13. Development of the M. D. Anderson Cancer Center Gynecologic Applicators for the Treatment of Cervical Cancer: Historical Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yordy, John S., E-mail: john.yordy@utsouthwestern.edu; Almond, Peter R.; Delclos, Luis

    Purpose: To provide historical background on the development and initial studies of the gynecological (gyn) applicators developed by Dr. Gilbert H. Fletcher, a radiation oncologist and chairperson from 1948 to 1981 of the department at the M.D. Anderson Hospital (MDAH) for Cancer Research in Houston, TX, and to acknowledge the previously unrecognized contribution that Dr. Leonard G. Grimmett, a radiation physicist and chairperson from 1949 to 1951 of the physics department at MDAH, made to the development of the gynecological applicators. Methods and Materials: We reviewed archival materials from the Historical Resource Center and from the Department of Radiation Physicsmore » at University of Texas M. D. Anderson Cancer Center, as well as contemporary published papers, to trace the history of the applicators. Conclusions: Dr. Fletcher's work was influenced by the work on gynecologic applicators in the 1940s in Europe, especially work done at the Royal Cancer Hospital in London. Those efforts influenced not only Dr. Fletcher's approach to the design of the applicators but also the methods used to perform in vivo measurements and determine the dose distribution. Much of the initial development of the dosimetry techniques and measurements at MDAH were carried out by Dr. Grimmett.« less

  14. Highlights of NASA's Role in Developing State-of-the-Art Nondestructive Evaluation for Composites

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Since the 1970's, when the promise of composites was being pursued for aeronautics applications, NASA has had programs that addressed the development of NDE methods for composites. These efforts included both microscopic and macroscopic NDE. At the microscopic level, NDE investigations interrogated composites at the submicron to micron level to understand a composite's microstructure. A novel microfocus CT system was developed as well as the science underlying applications of acoustic microscopy to a composite's component material properties. On the macroscopic scale NDE techniques were developed that advanced the capabilities to be faster and more quantitative. Techniques such as stiffness imaging, ultrasonic arrays, laser based ultrasound, advanced acoustic emission, thermography, and novel health monitoring systems were researched. Underlying these methods has been a strong modeling capability that has aided in method development.

  15. Development of Impurity Profiling Methods Using Modern Analytical Techniques.

    PubMed

    Ramachandra, Bondigalla

    2017-01-02

    This review gives a brief introduction about the process- and product-related impurities and emphasizes on the development of novel analytical methods for their determination. It describes the application of modern analytical techniques, particularly the ultra-performance liquid chromatography (UPLC), liquid chromatography-mass spectrometry (LC-MS), high-resolution mass spectrometry (HRMS), gas chromatography-mass spectrometry (GC-MS) and high-performance thin layer chromatography (HPTLC). In addition to that, the application of nuclear magnetic resonance (NMR) spectroscopy was also discussed for the characterization of impurities and degradation products. The significance of the quality, efficacy and safety of drug substances/products, including the source of impurities, kinds of impurities, adverse effects by the presence of impurities, quality control of impurities, necessity for the development of impurity profiling methods, identification of impurities and regulatory aspects has been discussed. Other important aspects that have been discussed are forced degradation studies and the development of stability indicating assay methods.

  16. Development of test methods for textile composites

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Ifju, Peter G.; Fedro, Mark J.

    1993-01-01

    NASA's Advanced Composite Technology (ACT) Program was initiated in 1990 with the purpose of developing less costly composite aircraft structures. A number of innovative materials and processes were evaluated as a part of this effort. Chief among them are composite materials reinforced with textile preforms. These new forms of composite materials bring with them potential testing problems. Methods currently in practice were developed over the years for composite materials made from prepreg tape or simple 2-D woven fabrics. A wide variety of 2-D and 3-D braided, woven, stitched, and knit preforms were suggested for application in the ACT program. The applicability of existing test methods to the wide range of emerging materials bears investigation. The overriding concern is that the values measured are accurate representations of the true material response. The ultimate objective of this work is to establish a set of test methods to evaluate the textile composites developed for the ACT Program.

  17. Development of representative magnetic resonance imaging-based atlases of the canine brain and evaluation of three methods for atlas-based segmentation.

    PubMed

    Milne, Marjorie E; Steward, Christopher; Firestone, Simon M; Long, Sam N; O'Brien, Terrence J; Moffat, Bradford A

    2016-04-01

    To develop representative MRI atlases of the canine brain and to evaluate 3 methods of atlas-based segmentation (ABS). 62 dogs without clinical signs of epilepsy and without MRI evidence of structural brain disease. The MRI scans from 44 dogs were used to develop 4 templates on the basis of brain shape (brachycephalic, mesaticephalic, dolichocephalic, and combined mesaticephalic and dolichocephalic). Atlas labels were generated by segmenting the brain, ventricular system, hippocampal formation, and caudate nuclei. The MRI scans from the remaining 18 dogs were used to evaluate 3 methods of ABS (manual brain extraction and application of a brain shape-specific template [A], automatic brain extraction and application of a brain shape-specific template [B], and manual brain extraction and application of a combined template [C]). The performance of each ABS method was compared by calculation of the Dice and Jaccard coefficients, with manual segmentation used as the gold standard. Method A had the highest mean Jaccard coefficient and was the most accurate ABS method assessed. Measures of overlap for ABS methods that used manual brain extraction (A and C) ranged from 0.75 to 0.95 and compared favorably with repeated measures of overlap for manual extraction, which ranged from 0.88 to 0.97. Atlas-based segmentation was an accurate and repeatable method for segmentation of canine brain structures. It could be performed more rapidly than manual segmentation, which should allow the application of computer-assisted volumetry to large data sets and clinical cases and facilitate neuroimaging research and disease diagnosis.

  18. Analytical solution describing pesticide volatilization from soil affected by a change in surface condition.

    PubMed

    Yates, S R

    2009-01-01

    An analytical solution describing the fate and transport of pesticides applied to soils has been developed. Two pesticide application methods can be simulated: point-source applications, such as idealized shank or a hot-gas injection method, and a more realistic shank-source application method that includes a vertical pesticide distribution in the soil domain due to a soil fracture caused by a shank. The solutions allow determination of the volatilization rate and other information that could be important for understanding fumigant movement and in the development of regulatory permitting conditions. The solutions can be used to characterize differences in emissions relative to changes in the soil degradation rate, surface barrier conditions, application depth, and soil packing. In some cases, simple algebraic expressions are provided that can be used to obtain the total emissions and total soil degradation. The solutions provide a consistent methodology for determining the total emissions and can be used with other information, such as field and laboratory experimental data, to support the development of fumigant regulations. The uses of the models are illustrated by several examples.

  19. Generation and application of the equations of condition for high order Runge-Kutta methods

    NASA Technical Reports Server (NTRS)

    Haley, D. C.

    1972-01-01

    This thesis develops the equations of condition necessary for determining the coefficients for Runge-Kutta methods used in the solution of ordinary differential equations. The equations of condition are developed for Runge-Kutta methods of order four through order nine. Once developed, these equations are used in a comparison of the local truncation errors for several sets of Runge-Kutta coefficients for methods of order three up through methods of order eight.

  20. Developing a multimodal biometric authentication system using soft computing methods.

    PubMed

    Malcangi, Mario

    2015-01-01

    Robust personal authentication is becoming ever more important in computer-based applications. Among a variety of methods, biometric offers several advantages, mainly in embedded system applications. Hard and soft multi-biometric, combined with hard and soft computing methods, can be applied to improve the personal authentication process and to generalize the applicability. This chapter describes the embedded implementation of a multi-biometric (voiceprint and fingerprint) multimodal identification system based on hard computing methods (DSP) for feature extraction and matching, an artificial neural network (ANN) for soft feature pattern matching, and a fuzzy logic engine (FLE) for data fusion and decision.

  1. An introduction to Lie group integrators – basics, new developments and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celledoni, Elena, E-mail: elenac@math.ntnu.no; Marthinsen, Håkon, E-mail: hakonm@math.ntnu.no; Owren, Brynjulf, E-mail: bryn@math.ntnu.no

    2014-01-15

    We give a short and elementary introduction to Lie group methods. A selection of applications of Lie group integrators are discussed. Finally, a family of symplectic integrators on cotangent bundles of Lie groups is presented and the notion of discrete gradient methods is generalised to Lie groups.

  2. Influence of nitrogen rate and drip application method on pomegranate fruit yield and quality

    USDA-ARS?s Scientific Manuscript database

    Currently, 98% of domestic commercial pomegranate fruit (Punica granatum L.) are produced in California on over 13,000 ha. Developing more efficient methods of water and fertilizer application are important in reducing production costs. In 2012, a pomegranate orchard established in 2010 with a den...

  3. Current status of laser applications in urology

    NASA Astrophysics Data System (ADS)

    Knipper, Ansgar; Thomas, Stephen; Durek, C.; Jocham, Dieter

    1993-05-01

    The overall development of laser use in urology is recessing. The reasons are the refinement of methods of radical surgery and the continuing development of alternative technologies involving electric current. Taking the cost factor into account, are lasers still opportune in medicine? The answer is definitely yes. Cost reduction in medical practice without quality loss is only possible with effective methods of minimally invasive surgery. Continuing investigation of cutting, welding, coagulating and ablating instruments is justified. Competition of lasers to other technologies can only be beneficial to the cause. But where are the highlights of laser applications? The unsurpassed utilization of optical properties of lasers lie in the concept of photodynamic therapies and in optical feedback mechanisms for laser applications. The combination of lasers with three dimensional visualization of the treatment area by ultrasound (TULIP-procedure for benign prostatic hyperplasia) is a novel approach in laser application. The further development of these treatment modalities will reveal the true benefit of laser technology in urological applications.

  4. DEVELOPMENT OF ANALYTICAL METHODS FOR SPECIFIC LAWN- APPLIED PESTICIDES IN HOUSE DUST

    EPA Science Inventory

    Many pesticides have been developed for residential outdoor application, particularly for lawn care. Residues from these applications may be tracked into the home, where they become incorporated with house dust and persist for long periods of time. Consequently, potential human...

  5. A Mixed Prioritization Operators Strategy Using A Single Measurement Criterion For AHP Application Development

    NASA Astrophysics Data System (ADS)

    Yuen, Kevin Kam Fung

    2009-10-01

    The most appropriate prioritization method is still one of the unsettled issues of the Analytic Hierarchy Process, although many studies have been made and applied. Interestingly, many AHP applications apply only Saaty's Eigenvector method as many studies have found that this method may produce rank reversals and have proposed various prioritization methods as alternatives. Some methods have been proved to be better than the Eigenvector method. However, these methods seem not to attract the attention of researchers. In this paper, eight important prioritization methods are reviewed. A Mixed Prioritization Operators Strategy (MPOS) is developed to select a vector which is prioritized by the most appropriate prioritization operator. To verify this new method, a case study of high school selection is revised using the proposed method. The contribution is that MPOS is useful for solving prioritization problems in the AHP.

  6. Delivering spacecraft control centers with embedded knowledge-based systems: The methodology issue

    NASA Technical Reports Server (NTRS)

    Ayache, S.; Haziza, M.; Cayrac, D.

    1994-01-01

    Matra Marconi Space (MMS) occupies a leading place in Europe in the domain of satellite and space data processing systems. The maturity of the knowledge-based systems (KBS) technology, the theoretical and practical experience acquired in the development of prototype, pre-operational and operational applications, make it possible today to consider the wide operational deployment of KBS's in space applications. In this perspective, MMS has to prepare the introduction of the new methods and support tools that will form the basis of the development of such systems. This paper introduces elements of the MMS methodology initiatives in the domain and the main rationale that motivated the approach. These initiatives develop along two main axes: knowledge engineering methods and tools, and a hybrid method approach for coexisting knowledge-based and conventional developments.

  7. Chromatographic immunoassays: strategies and recent developments in the analysis of drugs and biological agents

    PubMed Central

    Matsuda, Ryan; Rodriguez, Elliott; Suresh, Doddavenkatanna; Hage, David S

    2015-01-01

    A chromatographic immunoassay is a technique in which an antibody or antibody-related agent is used as part of a chromatographic system for the isolation or measurement of a specific target. Various binding agents, detection methods, supports and assay formats have been developed for this group of methods, and applications have been reported that range from drugs, hormones and herbicides to peptides, proteins and bacteria. This review discusses the general principles and applications of chromatographic immunoassays, with an emphasis being given to methods and formats that have been developed for the analysis of drugs and biological agents. The relative advantages or limitations of each format are discussed. Recent developments and research in this field, as well as possible future directions, are also considered. PMID:26571109

  8. Femtosecond laser dissection in C. elegans neural circuits

    NASA Astrophysics Data System (ADS)

    Samuel, Aravinthan D. T.; Chung, Samuel H.; Clark, Damon A.; Gabel, Christopher V.; Chang, Chieh; Murthy, Venkatesh; Mazur, Eric

    2006-02-01

    The nematode C. elegans, a millimeter-long roundworm, is a well-established model organism for studies of neural development and behavior, however physiological methods to manipulate and monitor the activity of its neural network have lagged behind the development of powerful methods in genetics and molecular biology. The small size and transparency of C. elegans make the worm an ideal test-bed for the development of physiological methods derived from optics and microscopy. We present the development and application of a new physiological tool: femtosecond laser dissection, which allows us to selectively ablate segments of individual neural fibers within live C. elegans. Femtosecond laser dissection provides a scalpel with submicrometer resolution, and we discuss its application in studies of neural growth, regenerative growth, and the neural basis of behavior.

  9. The Development of Chromosome Microdissection and Microcloning Technique and its Applications in Genomic Research

    PubMed Central

    Zhou, Ruo-Nan; Hu, Zan-Min

    2007-01-01

    The technique of chromosome microdissection and microcloning has been developed for more than 20 years. As a bridge between cytogenetics and molecular genetics, it leads to a number of applications: chromosome painting probe isolation, genetic linkage map and physical map construction, and expressed sequence tags generation. During those 20 years, this technique has not only been benefited from other technological advances but also cross-fertilized with other techniques. Today, it becomes a practicality with extensive uses. The purpose of this article is to review the development of this technique and its application in the field of genomic research. Moreover, a new method of generating ESTs of specific chromosomes developed by our lab is introduced. By using this method, the technique of chromosome microdissection and microcloning would be more valuable in the advancement of genomic research. PMID:18645627

  10. Recent development of mass spectrometry and proteomics applications in identification and typing of bacteria.

    PubMed

    Cheng, Keding; Chui, Huixia; Domish, Larissa; Hernandez, Drexler; Wang, Gehua

    2016-04-01

    Identification and typing of bacteria occupy a large fraction of time and work in clinical microbiology laboratories. With the certification of some MS platforms in recent years, more applications and tests of MS-based diagnosis methods for bacteria identification and typing have been created, not only on well-accepted MALDI-TOF-MS-based fingerprint matches, but also on solving the insufficiencies of MALDI-TOF-MS-based platforms and advancing the technology to areas such as targeted MS identification and typing of bacteria, bacterial toxin identification, antibiotics susceptibility/resistance tests, and MS-based diagnostic method development on unique bacteria such as Clostridium and Mycobacteria. This review summarizes the recent development in MS platforms and applications in bacteria identification and typing of common pathogenic bacteria. © 2016 The Authors. PROTEOMICS - Clinical Applications Published by WILEY-VCH Verlag GmbH & Co. KGaA.

  11. Asymptotic approximation method of force reconstruction: Application and analysis of stationary random forces

    NASA Astrophysics Data System (ADS)

    Sanchez, J.

    2018-06-01

    In this paper, the application and analysis of the asymptotic approximation method to a single degree-of-freedom has recently been produced. The original concepts are summarized, and the necessary probabilistic concepts are developed and applied to single degree-of-freedom systems. Then, these concepts are united, and the theoretical and computational models are developed. To determine the viability of the proposed method in a probabilistic context, numerical experiments are conducted, and consist of a frequency analysis, analysis of the effects of measurement noise, and a statistical analysis. In addition, two examples are presented and discussed.

  12. Theory of the Trojan-Horse Method - From the Original Idea to Actual Applications

    NASA Astrophysics Data System (ADS)

    Typel, Stefan

    2018-01-01

    The origin and the main features of the Trojan-horse (TH) method are delineated starting with the original idea of Gerhard Baur. Basic theoretical considerations, general experimental conditions and possible problems are discussed. Significant steps in experimental studies towards the implementation of the TH method and the development of the theoretical description are presented. This lead to the successful application of the TH approach by Claudio Spitaleri and his group to determine low-energy cross section that are relevant for astrophysics. An outlook with possible developments in the future are given.

  13. Numerical methods for large-scale, time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Turkel, E.

    1979-01-01

    A survey of numerical methods for time dependent partial differential equations is presented. The emphasis is on practical applications to large scale problems. A discussion of new developments in high order methods and moving grids is given. The importance of boundary conditions is stressed for both internal and external flows. A description of implicit methods is presented including generalizations to multidimensions. Shocks, aerodynamics, meteorology, plasma physics and combustion applications are also briefly described.

  14. Modeling and Characterization of Near-Crack-Tip Plasticity from Micro- to Nano-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jacob; Smith, Stephen W.; Ransom, Jonathan B.; Yamakov, Vesselin; Gupta, Vipul

    2010-01-01

    Methodologies for understanding the plastic deformation mechanisms related to crack propagation at the nano-, meso- and micro-length scales are being developed. These efforts include the development and application of several computational methods including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity; and experimental methods including electron backscattered diffraction and video image correlation. Additionally, methodologies for multi-scale modeling and characterization that can be used to bridge the relevant length scales from nanometers to millimeters are being developed. The paper focuses on the discussion of newly developed methodologies in these areas and their application to understanding damage processes in aluminum and its alloys.

  15. Modeling and Characterization of Near-Crack-Tip Plasticity from Micro- to Nano-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jacob; Smith, Stephen W.; Ransom, Jonathan B.; Yamakov, Vesselin; Gupta, Vipul

    2011-01-01

    Methodologies for understanding the plastic deformation mechanisms related 10 crack propagation at the nano, meso- and micro-length scales are being developed. These efforts include the development and application of several computational methods including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity; and experimental methods including electron backscattered diffraction and video image correlation. Additionally, methodologies for multi-scale modeling and characterization that can be used to bridge the relevant length scales from nanometers to millimeters are being developed. The paper focuses on the discussion of newly developed methodologies in these areas and their application to understanding damage processes in aluminum and its alloys.

  16. Evaluating the dynamic response of in-flight thrust calculation techniques during throttle transients

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.

    1994-01-01

    New flight test maneuvers and analysis techniques for evaluating the dynamic response of in-flight thrust models during throttle transients have been developed and validated. The approach is based on the aircraft and engine performance relationship between thrust and drag. Two flight test maneuvers, a throttle step and a throttle frequency sweep, were developed and used in the study. Graphical analysis techniques, including a frequency domain analysis method, were also developed and evaluated. They provide quantitative and qualitative results. Four thrust calculation methods were used to demonstrate and validate the test technique. Flight test applications on two high-performance aircraft confirmed the test methods as valid and accurate. These maneuvers and analysis techniques were easy to implement and use. Flight test results indicate the analysis techniques can identify the combined effects of model error and instrumentation response limitations on the calculated thrust value. The methods developed in this report provide an accurate approach for evaluating, validating, or comparing thrust calculation methods for dynamic flight applications.

  17. Large-scale structural analysis: The structural analyst, the CSM Testbed and the NAS System

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Mccleary, Susan L.; Macy, Steven C.; Aminpour, Mohammad A.

    1989-01-01

    The Computational Structural Mechanics (CSM) activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM testbed methods development environment is presented and some numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.

  18. Field sampling and data analysis methods for development of ecological land classifications: an application on the Manistee National Forest.

    Treesearch

    George E. Host; Carl W. Ramm; Eunice A. Padley; Kurt S. Pregitzer; James B. Hart; David T. Cleland

    1992-01-01

    Presents technical documentation for development of an Ecological Classification System for the Manistee National Forest in northwest Lower Michigan, and suggests procedures applicable to other ecological land classification projects. Includes discussion of sampling design, field data collection, data summarization and analyses, development of classification units,...

  19. Decision Support Methods and Tools

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Alexandrov, Natalia M.; Brown, Sherilyn A.; Cerro, Jeffrey A.; Gumbert, Clyde r.; Sorokach, Michael R.; Burg, Cecile M.

    2006-01-01

    This paper is one of a set of papers, developed simultaneously and presented within a single conference session, that are intended to highlight systems analysis and design capabilities within the Systems Analysis and Concepts Directorate (SACD) of the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC). This paper focuses on the specific capabilities of uncertainty/risk analysis, quantification, propagation, decomposition, and management, robust/reliability design methods, and extensions of these capabilities into decision analysis methods within SACD. These disciplines are discussed together herein under the name of Decision Support Methods and Tools. Several examples are discussed which highlight the application of these methods within current or recent aerospace research at the NASA LaRC. Where applicable, commercially available, or government developed software tools are also discussed

  20. Carbon Nanotubes by CVD and Applications

    NASA Technical Reports Server (NTRS)

    Cassell, Alan; Delzeit, Lance; Nguyen, Cattien; Stevens, Ramsey; Han, Jie; Meyyappan, M.; Arnold, James O. (Technical Monitor)

    2001-01-01

    Carbon nanotube (CNT) exhibits extraordinary mechanical and unique electronic properties and offers significant potential for structural, sensor, and nanoelectronics applications. An overview of CNT, growth methods, properties and applications is provided. Single-wall, and multi-wall CNTs have been grown by chemical vapor deposition. Catalyst development and optimization has been accomplished using combinatorial optimization methods. CNT has also been grown from the tips of silicon cantilevers for use in atomic force microscopy.

  1. Development of method to characterize emissions from spray polyurethane foam insulation

    EPA Science Inventory

    This presentation updates symposium participants re EPA progress towards development of SPF insulation emissions characterization methods. The presentation highlights evaluation of experiments investigating emissions after application of SPF to substrates in micro chambers and i...

  2. Mathematical Geology

    ERIC Educational Resources Information Center

    Merriam, Daniel F.

    1978-01-01

    Geomathematics is a developing field that is being used in practical applications. Classification is an important element and the dynamic-cluster method (DCM), a nonhierarchial procedure, was introduced this past year. A method for testing the degree of cluster distinctness was developed also. (MA)

  3. MILCOM '85 - Military Communications Conference, Boston, MA, October 20-23, 1985, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    The present conference on the development status of communications systems in the context of electronic warfare gives attention to topics in spread spectrum code acquisition, digital speech technology, fiber-optics communications, free space optical communications, the networking of HF systems, and applications and evaluation methods for digital speech. Also treated are issues in local area network system design, coding techniques and applications, technology applications for HF systems, receiver technologies, software development status, channel simultion/prediction methods, C3 networking spread spectrum networks, the improvement of communication efficiency and reliability through technical control methods, mobile radio systems, and adaptive antenna arrays. Finally, communications system cost analyses, spread spectrum performance, voice and image coding, switched networks, and microwave GaAs ICs, are considered.

  4. Statistical comparison of leaching behavior of incineration bottom ash using seawater and deionized water: Significant findings based on several leaching methods.

    PubMed

    Yin, Ke; Dou, Xiaomin; Ren, Fei; Chan, Wei-Ping; Chang, Victor Wei-Chung

    2018-02-15

    Bottom ashes generated from municipal solid waste incineration have gained increasing popularity as alternative construction materials, however, they contains elevated heavy metals posing a challenge for its free usage. Different leaching methods are developed to quantify leaching potential of incineration bottom ashes meanwhile guide its environmentally friendly application. Yet, there are diverse IBA applications while the in situ environment is always complicated, challenging its legislation. In this study, leaching tests were conveyed using batch and column leaching methods with seawater as opposed to deionized water, to unveil the metal leaching potential of IBA subjected to salty environment, which is commonly encountered when using IBA in land reclamation yet not well understood. Statistical analysis for different leaching methods suggested disparate performance between seawater and deionized water primarily ascribed to ionic strength. Impacts of leachant are metal-specific dependent on leaching methods and have a function of intrinsic characteristics of incineration bottom ashes. Leaching performances were further compared on additional perspectives, e.g. leaching approach and liquid to solid ratio, indicating sophisticated leaching potentials dominated by combined geochemistry. It is necessary to develop application-oriented leaching methods with corresponding leaching criteria to preclude discriminations between different applications, e.g., terrestrial applications vs. land reclamation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The use of concept mapping in measurement development and evaluation: Application and future directions.

    PubMed

    Rosas, Scott R; Ridings, John W

    2017-02-01

    The past decade has seen an increase of measurement development research in social and health sciences that featured the use of concept mapping as a core technique. The purpose, application, and utility of concept mapping have varied across this emerging literature. Despite the variety of uses and range of outputs, little has been done to critically review how researchers have approached the application of concept mapping in the measurement development and evaluation process. This article focuses on a review of the current state of practice regarding the use of concept mapping as methodological tool in this process. We systematically reviewed 23 scale or measure development and evaluation studies, and detail the application of concept mapping in the context of traditional measurement development and psychometric testing processes. Although several limitations surfaced, we found several strengths in the contemporary application of the method. We determined concept mapping provides (a) a solid method for establishing content validity, (b) facilitates researcher decision-making, (c) insight into target population perspectives that are integrated a priori, and (d) a foundation for analytical and interpretative choices. Based on these results, we outline how concept mapping can be situated in the measurement development and evaluation processes for new instrumentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A Bridging Opportunities Work-frame to develop mobile applications for clinical decision making

    PubMed Central

    van Rooij, Tibor; Rix, Serena; Moore, James B; Marsh, Sharon

    2015-01-01

    Background: Mobile applications (apps) providing clinical decision support (CDS) may show the greatest promise when created by and for frontline clinicians. Our aim was to create a generic model enabling healthcare providers to direct the development of CDS apps. Methods: We combined Change Management with a three-tier information technology architecture to stimulate CDS app development. Results: A Bridging Opportunities Work-frame model was developed. A test case was used to successfully develop an app. Conclusion: Healthcare providers can re-use this globally applicable model to actively create and manage regional decision support applications to translate evidence-based medicine in the use of emerging medication or novel treatment regimens. PMID:28031883

  7. Chemometrics.

    ERIC Educational Resources Information Center

    Kowalski, Bruce R.

    1980-01-01

    Outlines recent advances in the development of the field of chemometrics, defined as the application of mathematical and statistical methods to chemical measurements. Emphasizes applications in the field. Cites 288 references. (CS)

  8. Forensic applications of ambient ionization mass spectrometry.

    PubMed

    Ifa, Demian R; Jackson, Ayanna U; Paglia, Giuseppe; Cooks, R Graham

    2009-08-01

    This review highlights and critically assesses forensic applications in the developing field of ambient ionization mass spectrometry. Ambient ionization methods permit the ionization of samples outside the mass spectrometer in the ordinary atmosphere, with minimal sample preparation. Several ambient ionization methods have been created since 2004 and they utilize different mechanisms to create ions for mass-spectrometric analysis. Forensic applications of these techniques--to the analysis of toxic industrial compounds, chemical warfare agents, illicit drugs and formulations, explosives, foodstuff, inks, fingerprints, and skin--are reviewed. The minimal sample pretreatment needed is illustrated with examples of analysis from complex matrices (e.g., food) on various substrates (e.g., paper). The low limits of detection achieved by most of the ambient ionization methods for compounds of forensic interest readily offer qualitative confirmation of chemical identity; in some cases quantitative data are also available. The forensic applications of ambient ionization methods are a growing research field and there are still many types of applications which remain to be explored, particularly those involving on-site analysis. Aspects of ambient ionization currently undergoing rapid development include molecular imaging and increased detection specificity through simultaneous chemical reaction and ionization by addition of appropriate chemical reagents.

  9. Extension of rezoned Eulerian-Lagrangian method to astrophysical plasma applications

    NASA Technical Reports Server (NTRS)

    Song, M. T.; Wu, S. T.; Dryer, Murray

    1993-01-01

    The rezoned Eulerian-Lagrangian procedure developed by Brackbill and Pracht (1973), which is limited to simple configurations of the magnetic fields, is modified in order to make it applicable to astrophysical plasma. For this purpose, two specific methods are introduced, which make it possible to determine the initial field topology for which no analytical expressions are available. Numerical examples illustrating these methods are presented.

  10. Dai-Kou type conjugate gradient methods with a line search only using gradient.

    PubMed

    Huang, Yuanyuan; Liu, Changhe

    2017-01-01

    In this paper, the Dai-Kou type conjugate gradient methods are developed to solve the optimality condition of an unconstrained optimization, they only utilize gradient information and have broader application scope. Under suitable conditions, the developed methods are globally convergent. Numerical tests and comparisons with the PRP+ conjugate gradient method only using gradient show that the methods are efficient.

  11. Application of the microboudin method to palaeodifferential stress analysis of deformed impure marbles from Syros, Greece: Implications for grain-size and calcite-twin palaeopiezometers

    NASA Astrophysics Data System (ADS)

    Masuda, Toshiaki; Miyake, Tomoya; Kimura, Nozomi; Okamoto, Atsushi

    2011-01-01

    Microboudinage structures developed within glaucophane are found in the calcite matrix of blueschist-facies impure marbles from Syros, Greece. The presence of these structures enables the successful application of the microboudin method for palaeodifferential stress analysis, which was originally developed for rocks with a quartzose matrix. Application of the microboudin method reveals that differential stress increased during exhumation of the marble; the estimated maximum palaeodifferential stress values are approximately 9-15 MPa, an order of magnitude lower than the values estimated using the calcite-twin palaeopiezometer. This discrepancy reflects the fact that the two methods assess differential stress at different stages in the deformation history. Differential stresses in the Syros samples estimated using three existing equations for grain-size palaeopiezometry show a high degree of scatter, and no reliable results were obtained by a comparison between the results of the microboudin method and grain-size palaeopiezometry.

  12. Creating wavelet-based models for real-time synthesis of perceptually convincing environmental sounds

    NASA Astrophysics Data System (ADS)

    Miner, Nadine Elizabeth

    1998-09-01

    This dissertation presents a new wavelet-based method for synthesizing perceptually convincing, dynamic sounds using parameterized sound models. The sound synthesis method is applicable to a variety of applications including Virtual Reality (VR), multi-media, entertainment, and the World Wide Web (WWW). A unique contribution of this research is the modeling of the stochastic, or non-pitched, sound components. This stochastic-based modeling approach leads to perceptually compelling sound synthesis. Two preliminary studies conducted provide data on multi-sensory interaction and audio-visual synchronization timing. These results contributed to the design of the new sound synthesis method. The method uses a four-phase development process, including analysis, parameterization, synthesis and validation, to create the wavelet-based sound models. A patent is pending for this dynamic sound synthesis method, which provides perceptually-realistic, real-time sound generation. This dissertation also presents a battery of perceptual experiments developed to verify the sound synthesis results. These experiments are applicable for validation of any sound synthesis technique.

  13. Acoustic methods for cavitation mapping in biomedical applications

    NASA Astrophysics Data System (ADS)

    Wan, M.; Xu, S.; Ding, T.; Hu, H.; Liu, R.; Bai, C.; Lu, S.

    2015-12-01

    In recent years, cavitation is increasingly utilized in a wide range of applications in biomedical field. Monitoring the spatial-temporal evolution of cavitation bubbles is of great significance for efficiency and safety in biomedical applications. In this paper, several acoustic methods for cavitation mapping proposed or modified on the basis of existing work will be presented. The proposed novel ultrasound line-by-line/plane-by-plane method can depict cavitation bubbles distribution with high spatial and temporal resolution and may be developed as a potential standard 2D/3D cavitation field mapping method. The modified ultrafast active cavitation mapping based upon plane wave transmission and reception as well as bubble wavelet and pulse inversion technique can apparently enhance the cavitation to tissue ratio in tissue and further assist in monitoring the cavitation mediated therapy with good spatial and temporal resolution. The methods presented in this paper will be a foundation to promote the research and development of cavitation imaging in non-transparent medium.

  14. Research on application of carbon fiber heating material in clothing

    NASA Astrophysics Data System (ADS)

    Yang, Huanhong

    2017-08-01

    With the development of society, the way of keeping warm clothing is also developing. Carbon fiber has the advantages of high efficiency, safety, mobility and comfort. As a heating element, it has good application prospect. In this paper, the main technology, application issues and design method of carbon fiber heating garment are analyzed, and the key problems in industrialization are also put forward.

  15. Methods of video and shearography inspection

    NASA Technical Reports Server (NTRS)

    Lansing, Matthew D.; Bullock, Michael W.; Gnacek, William J.

    1995-01-01

    The goal of this research effort was to study methods of video image correlation and electronic shearography for nondestructive evaluation of aerospace components. Methods of physical load application must be developed before interrogations with these methods may be used to qualify hardware. To that end, inspection procedures were developed for a variety of aerospace components and material systems. Experiments were also conducted from which the relationship between the control settings of the electronic shearography apparatus may be related to flaw detectability. A short feasibility study was conducted to determine the applicability of electronic shearography to the determination of the stress intensity factor of a Mode 1 crack tip by measurement of the localized zone of three dimensional plasticity

  16. Methods and tools for profiling and control of distributed systems

    NASA Astrophysics Data System (ADS)

    Sukharev, R.; Lukyanchikov, O.; Nikulchev, E.; Biryukov, D.; Ryadchikov, I.

    2018-02-01

    This article is devoted to the topic of profiling and control of distributed systems. Distributed systems have a complex architecture, applications are distributed among various computing nodes, and many network operations are performed. Therefore, today it is important to develop methods and tools for profiling distributed systems. The article analyzes and standardizes methods for profiling distributed systems that focus on simulation to conduct experiments and build a graph model of the system. The theory of queueing networks is used for simulation modeling of distributed systems, receiving and processing user requests. To automate the above method of profiling distributed systems the software application was developed with a modular structure and similar to a SCADA-system.

  17. Application of LC/MS/MS Techniques to Development of US ...

    EPA Pesticide Factsheets

    This presentation will describe the U.S. EPA’s drinking water and ambient water method development program in relation to the process employed and the typical challenges encountered in developing standardized LC/MS/MS methods for chemicals of emerging concern. The EPA’s Drinking Water Contaminant Candidate List and Unregulated Contaminant Monitoring Regulations, which are the driving forces behind drinking water method development, will be introduced. Three drinking water LC/MS/MS methods (Methods 537, 544 and a new method for nonylphenol) and two ambient water LC/MS/MS methods for cyanotoxins will be described that highlight some of the challenges encountered during development of these methods. This presentation will provide the audience with basic understanding of EPA's drinking water method development program and an introduction to two new ambient water EPA methods.

  18. Formal Methods Specification and Verification Guidebook for Software and Computer Systems. Volume 1; Planning and Technology Insertion

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Formal Methods Specification and Verification Guidebook for Software and Computer Systems describes a set of techniques called Formal Methods (FM), and outlines their use in the specification and verification of computer systems and software. Development of increasingly complex systems has created a need for improved specification and verification techniques. NASA's Safety and Mission Quality Office has supported the investigation of techniques such as FM, which are now an accepted method for enhancing the quality of aerospace applications. The guidebook provides information for managers and practitioners who are interested in integrating FM into an existing systems development process. Information includes technical and administrative considerations that must be addressed when establishing the use of FM on a specific project. The guidebook is intended to aid decision makers in the successful application of FM to the development of high-quality systems at reasonable cost. This is the first volume of a planned two-volume set. The current volume focuses on administrative and planning considerations for the successful application of FM.

  19. Deep Learning for Drug Design: an Artificial Intelligence Paradigm for Drug Discovery in the Big Data Era.

    PubMed

    Jing, Yankang; Bian, Yuemin; Hu, Ziheng; Wang, Lirong; Xie, Xiang-Qun Sean

    2018-03-30

    Over the last decade, deep learning (DL) methods have been extremely successful and widely used to develop artificial intelligence (AI) in almost every domain, especially after it achieved its proud record on computational Go. Compared to traditional machine learning (ML) algorithms, DL methods still have a long way to go to achieve recognition in small molecular drug discovery and development. And there is still lots of work to do for the popularization and application of DL for research purpose, e.g., for small molecule drug research and development. In this review, we mainly discussed several most powerful and mainstream architectures, including the convolutional neural network (CNN), recurrent neural network (RNN), and deep auto-encoder networks (DAENs), for supervised learning and nonsupervised learning; summarized most of the representative applications in small molecule drug design; and briefly introduced how DL methods were used in those applications. The discussion for the pros and cons of DL methods as well as the main challenges we need to tackle were also emphasized.

  20. [The application of methods of physical therapy in the military health resort].

    PubMed

    Titov, I G; Didenko, S V

    2015-03-01

    Presented the main guidelines concerning the application of methods and forms of physical therapy in the complex sanatorium treatment and rehabilitation in sanatoria and health resorts of the Ministry of Defence of the Russian Federation. It is concluded that the basis for the application and further development of forms and methods of physical therapy should be based on the methodological principle of a differentiated approach to the assessment of the severity of dysfunction cardiorespiratory and nervous system, musculoskeletal system, the mode of motor activity and exercise tolerance.

  1. Formalizing structured file services for the data storage and retrieval subsystem of the data management system for Spacestation Freedom

    NASA Technical Reports Server (NTRS)

    Jamsek, Damir A.

    1993-01-01

    A brief example of the use of formal methods techniques in the specification of a software system is presented. The report is part of a larger effort targeted at defining a formal methods pilot project for NASA. One possible application domain that may be used to demonstrate the effective use of formal methods techniques within the NASA environment is presented. It is not intended to provide a tutorial on either formal methods techniques or the application being addressed. It should, however, provide an indication that the application being considered is suitable for a formal methods by showing how such a task may be started. The particular system being addressed is the Structured File Services (SFS), which is a part of the Data Storage and Retrieval Subsystem (DSAR), which in turn is part of the Data Management System (DMS) onboard Spacestation Freedom. This is a software system that is currently under development for NASA. An informal mathematical development is presented. Section 3 contains the same development using Penelope (23), an Ada specification and verification system. The complete text of the English version Software Requirements Specification (SRS) is reproduced in Appendix A.

  2. Development of a nondestructive leak testing method utilizing the head space analyzer for ampoule products containing ethanol-based solutions.

    PubMed

    Sudo, Hirotaka; O'driscoll, Michael; Nishiwaki, Kenji; Kawamoto, Yuji; Gammell, Philip; Schramm, Gerhard; Wertli, Toni; Prinz, Heino; Mori, Atsuhide; Sako, Kazuhiro

    2012-01-01

    The application of a head space analyzer for oxygen concentration was examined to develop a novel ampoule leak test method. Studies using ampoules filled with ethanol-based solution and with nitrogen in the headspace demonstrated that the head space analysis (HSA) method showed sufficient sensitivity in detecting an ampoule crack. The proposed method is the use of HSA in conjunction with the pretreatment of an overpressurising process known as bombing to facilitate the oxygen flow through the crack in the ampoule. The method was examined in comparative studies with a conventional dye ingress method, and the results showed that the HSA method exhibits sensitivity superior to the dye method. The results indicate that the HSA method in combination with the bombing treatment provides potential application as a leak test for the detection of container defects not only for ampoule products with ethanol-based solutions, but also for testing lyophilized products in vials with nitrogen in the head space. The application of a head space analyzer for oxygen concentration was examined to develop a novel ampoule leak test method. The proposed method is the use of head space analysis (HSA) in conjunction with the pretreatment of an overpressurising process known as bombing to facilitate oxygen flow through the crack in the ampoule for use in routine production. The result of the comparative study with a conventional dye leak test method indicates that the HSA method in combination with the bombing treatment can be used as a leak test method, enabling detection of container defects.

  3. Development and Application of a Method for Toxicological Assessment of Occupational Exposures to Chemicals in Marine Operations. Addendum.

    DTIC Science & Technology

    1985-09-01

    AD-Ai63 316 DEVELOPMENT AND APPLICATION OF A METHOD FOR 1 /3 TOXICOLOGICAL ASSESSMENT OF 0 (U) SOUTHUEST RESEARCH INST SAN ANTONIO TX H L KAPLAN ET RL...I ~s ll11 i PA 1 16 02 ............................. WN SOUTHWEST RESEARCH INSTITUTE Post Office Drawer 28510, 6220 Culebra Road San Antonio, Texas...to Final Report - U. S. Coast November 1983-September 1985 2100 Second Street, S.W. 1 . Spnsoring Agency Cede Washington, D.C. 20593 15. Supplementary

  4. Developing a Self-Report-Based Sequential Analysis Method for Educational Technology Systems: A Process-Based Usability Evaluation

    ERIC Educational Resources Information Center

    Lin, Yi-Chun; Hsieh, Ya-Hui; Hou, Huei-Tse

    2015-01-01

    The development of a usability evaluation method for educational systems or applications, called the self-report-based sequential analysis, is described herein. The method aims to extend the current practice by proposing self-report-based sequential analysis as a new usability method, which integrates the advantages of self-report in survey…

  5. 78 FR 20299 - National Institute on Disability and Rehabilitation Research; Long-Range Plan for Fiscal Years...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... well-designed research and development activities using a range of appropriate methods. Adopt stages-of... research and development activities using a range of appropriate methods. Objective 2.1--Adopt a stages-of... range of well-designed research methods using a stages-of-research framework. When inviting applications...

  6. Gel integration for microfluidic applications.

    PubMed

    Zhang, Xuanqi; Li, Lingjun; Luo, Chunxiong

    2016-05-21

    Molecular diffusive membranes or materials are important for biological applications in microfluidic systems. Hydrogels are typical materials that offer several advantages, such as free diffusion for small molecules, biocompatibility with most cells, temperature sensitivity, relatively low cost, and ease of production. With the development of microfluidic applications, hydrogels can be integrated into microfluidic systems by soft lithography, flow-solid processes or UV cure methods. Due to their special properties, hydrogels are widely used as fluid control modules, biochemical reaction modules or biological application modules in different applications. Although hydrogels have been used in microfluidic systems for more than ten years, many hydrogels' properties and integrated techniques have not been carefully elaborated. Here, we systematically review the physical properties of hydrogels, general methods for gel-microfluidics integration and applications of this field. Advanced topics and the outlook of hydrogel fabrication and applications are also discussed. We hope this review can help researchers choose suitable methods for their applications using hydrogels.

  7. An overview of topic modeling and its current applications in bioinformatics.

    PubMed

    Liu, Lin; Tang, Lin; Dong, Wen; Yao, Shaowen; Zhou, Wei

    2016-01-01

    With the rapid accumulation of biological datasets, machine learning methods designed to automate data analysis are urgently needed. In recent years, so-called topic models that originated from the field of natural language processing have been receiving much attention in bioinformatics because of their interpretability. Our aim was to review the application and development of topic models for bioinformatics. This paper starts with the description of a topic model, with a focus on the understanding of topic modeling. A general outline is provided on how to build an application in a topic model and how to develop a topic model. Meanwhile, the literature on application of topic models to biological data was searched and analyzed in depth. According to the types of models and the analogy between the concept of document-topic-word and a biological object (as well as the tasks of a topic model), we categorized the related studies and provided an outlook on the use of topic models for the development of bioinformatics applications. Topic modeling is a useful method (in contrast to the traditional means of data reduction in bioinformatics) and enhances researchers' ability to interpret biological information. Nevertheless, due to the lack of topic models optimized for specific biological data, the studies on topic modeling in biological data still have a long and challenging road ahead. We believe that topic models are a promising method for various applications in bioinformatics research.

  8. Engineering applications of heuristic multilevel optimization methods

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.

    1988-01-01

    Some engineering applications of heuristic multilevel optimization methods are presented and the discussion focuses on the dependency matrix that indicates the relationship between problem functions and variables. Coordination of the subproblem optimizations is shown to be typically achieved through the use of exact or approximate sensitivity analysis. Areas for further development are identified.

  9. Engineering applications of heuristic multilevel optimization methods

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.

    1989-01-01

    Some engineering applications of heuristic multilevel optimization methods are presented and the discussion focuses on the dependency matrix that indicates the relationship between problem functions and variables. Coordination of the subproblem optimizations is shown to be typically achieved through the use of exact or approximate sensitivity analysis. Areas for further development are identified.

  10. A Brain-Computer Interface Project Applied in Computer Engineering

    ERIC Educational Resources Information Center

    Katona, Jozsef; Kovari, Attila

    2016-01-01

    Keeping up with novel methods and keeping abreast of new applications are crucial issues in engineering education. In brain research, one of the most significant research areas in recent decades, many developments have application in both modern engineering technology and education. New measurement methods in the observation of brain activity open…

  11. Recent development of mass spectrometry and proteomics applications in identification and typing of bacteria

    PubMed Central

    Chui, Huixia; Domish, Larissa; Hernandez, Drexler; Wang, Gehua

    2016-01-01

    Identification and typing of bacteria occupy a large fraction of time and work in clinical microbiology laboratories. With the certification of some MS platforms in recent years, more applications and tests of MS‐based diagnosis methods for bacteria identification and typing have been created, not only on well‐accepted MALDI‐TOF‐MS‐based fingerprint matches, but also on solving the insufficiencies of MALDI‐TOF‐MS‐based platforms and advancing the technology to areas such as targeted MS identification and typing of bacteria, bacterial toxin identification, antibiotics susceptibility/resistance tests, and MS‐based diagnostic method development on unique bacteria such as Clostridium and Mycobacteria. This review summarizes the recent development in MS platforms and applications in bacteria identification and typing of common pathogenic bacteria. PMID:26751976

  12. A Persuasive and Social mHealth Application for Physical Activity: A Usability and Feasibility Study

    PubMed Central

    Al Ayubi, Soleh U; Branch, Robert; Ding, Dan

    2014-01-01

    Background Advances in smartphones and the wide usage of social networking systems offer opportunities for the development of innovative interventions to promote physical activity. To that end, we developed a persuasive and social mHealth application designed to monitor and motivate users to walk more every day. Objective The objectives of this project were to conduct a focused review on the fundamental characteristics of mHealth for physical activity promotion, to develop an mHealth application that meets such characteristics, and to conduct a feasibility study to deploy the application in everyday life. Methods This project started as an analytical study to review the fundamental characteristics of the technologies used in physical activity monitoring and promotion. Then, it was followed by a technical development of the application. Next, a 4 week deployment was conducted where participants used the application as part of their daily life. A think-aloud method and in-depth semistructured interviews were conducted following the deployment. A qualitative description method was used to thematically analyze the interviews. Feasibility measures included, adherence to the program, user-system interactions, motivation to use, and experience with physical activity and online social interactions. Results There were seven fundamental characteristics of physical activity monitoring and promotion that were identified, which were then used as a foundation to develop the application. There were fourteen participants that enrolled in the application evaluation. The age range was from 24 to 45; body mass index ranged from 18.5 to 42.98, with 4 of the subjects falling into the category “obese”. Half of them were experienced with smartphones, and all were familiar with a social network system. There were thirteen participants that completed the study; one was excluded. Overall, participants gave high scores to almost all of the usability factors examined, with averages of 4.52 out of a 5.00 maximum. Over 29 days, participants used the application for a total of 119,380 minutes (average=7.57 hours/day/participant; SD 1.56). Conclusions Based on the fundamental characteristics, the application was successfully developed. The usability results suggest that the system is usable and user satisfaction was high. Deploying the application was shown to be feasible for the promotion of daily physical activity. PMID:25099928

  13. DEVELOPMENT AND APPLICATIONS OF CFD SIMULATIONS IN SUPPORT OF AIR QUALITY STUDIES INVOLVING BUILDINGS

    EPA Science Inventory

    There is a need to properly develop the application of Computational Fluid Dynamics (CFD) methods in support of air quality studies involving pollution sources near buildings at industrial sites. CFD models are emerging as a promising technology for such assessments, in part due ...

  14. Some Conceptual Deficiencies in "Developmental" Behavior Genetics.

    ERIC Educational Resources Information Center

    Gottlieb, Gilbert

    1995-01-01

    Criticizes the application of the statistical procedures of the population-genetic approach within evolutionary biology to the study of psychological development. Argues that the application of the statistical methods of population genetics--primarily the analysis of variance--to the causes of psychological development is bound to result in a…

  15. Source Data Applicability Impacts on Epistemic Uncertainty for Launch Vehicle Fault Tree Models

    NASA Technical Reports Server (NTRS)

    Al Hassan, Mohammad; Novack, Steven D.; Ring, Robert W.

    2016-01-01

    Launch vehicle systems are designed and developed using both heritage and new hardware. Design modifications to the heritage hardware to fit new functional system requirements can impact the applicability of heritage reliability data. Risk estimates for newly designed systems must be developed from generic data sources such as commercially available reliability databases using reliability prediction methodologies, such as those addressed in MIL-HDBK-217F. Failure estimates must be converted from the generic environment to the specific operating environment of the system where it is used. In addition, some qualification of applicability for the data source to the current system should be made. Characterizing data applicability under these circumstances is crucial to developing model estimations that support confident decisions on design changes and trade studies. This paper will demonstrate a data-source applicability classification method for assigning uncertainty to a target vehicle based on the source and operating environment of the originating data. The source applicability is determined using heuristic guidelines while translation of operating environments is accomplished by applying statistical methods to MIL-HDK-217F tables. The paper will provide a case study example by translating Ground Benign (GB) and Ground Mobile (GM) to the Airborne Uninhabited Fighter (AUF) environment for three electronic components often found in space launch vehicle control systems. The classification method will be followed by uncertainty-importance routines to assess the need to for more applicable data to reduce uncertainty.

  16. Turbulent heat transfer prediction method for application to scramjet engines

    NASA Technical Reports Server (NTRS)

    Pinckney, S. Z.

    1974-01-01

    An integral method for predicting boundary layer development in turbulent flow regions on two-dimensional or axisymmetric bodies was developed. The method has the capability of approximating nonequilibrium velocity profiles as well as the local surface friction in the presence of a pressure gradient. An approach was developed for the problem of predicting the heat transfer in a turbulent boundary layer in the presence of a high pressure gradient. The solution was derived with particular emphasis on its applicability to supersonic combustion; thus, the effects of real gas flows were included. The resulting integrodifferential boundary layer method permits the estimation of cooling reguirements for scramjet engines. Theoretical heat transfer results are compared with experimental combustor and noncombustor heat transfer data. The heat transfer method was used in the development of engine design concepts which will produce an engine with reduced cooling requirements. The Langley scramjet engine module was designed by utilizing these design concepts and this engine design is discussed along with its corresponding cooling requirements. The heat transfer method was also used to develop a combustor cooling correlation for a combustor whose local properties are computed one dimensionally by assuming a linear area variation and a given heat release schedule.

  17. Commercial transport aircraft composite structures

    NASA Technical Reports Server (NTRS)

    Mccarty, J. E.

    1983-01-01

    The role that analysis plays in the development, production, and substantiation of aircraft structures is discussed. The types, elements, and applications of failure that are used and needed; the current application of analysis methods to commercial aircraft advanced composite structures, along with a projection of future needs; and some personal thoughts on analysis development goals and the elements of an approach to analysis development are discussed.

  18. Balancing Chemical Reactions With Matrix Methods and Computer Assistance. Applications of Linear Algebra to Chemistry. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Unit 339.

    ERIC Educational Resources Information Center

    Grimaldi, Ralph P.

    This material was developed to provide an application of matrix mathematics in chemistry, and to show the concepts of linear independence and dependence in vector spaces of dimensions greater than three in a concrete setting. The techniques presented are not intended to be considered as replacements for such chemical methods as oxidation-reduction…

  19. Laser-based methods for the analysis of low molecular weight compounds in biological matrices.

    PubMed

    Kiss, András; Hopfgartner, Gérard

    2016-07-15

    Laser-based desorption and/or ionization methods play an important role in the field of the analysis of low molecular-weight compounds (LMWCs) because they allow direct analysis with high-throughput capabilities. In the recent years there were several new improvements in ionization methods with the emergence of novel atmospheric ion sources such as laser ablation electrospray ionization or laser diode thermal desorption and atmospheric pressure chemical ionization and in sample preparation methods with the development of new matrix compounds for matrix-assisted laser desorption/ionization (MALDI). Also, the combination of ion mobility separation with laser-based ionization methods starts to gain popularity with access to commercial systems. These developments have been driven mainly by the emergence of new application fields such as MS imaging and non-chromatographic analytical approaches for quantification. This review aims to present these new developments in laser-based methods for the analysis of low-molecular weight compounds by MS and several potential applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Applications of 3D-EDGE Detection for ALS Point Cloud

    NASA Astrophysics Data System (ADS)

    Ni, H.; Lin, X. G.; Zhang, J. X.

    2017-09-01

    Edge detection has been one of the major issues in the field of remote sensing and photogrammetry. With the fast development of sensor technology of laser scanning system, dense point clouds have become increasingly common. Precious 3D-edges are able to be detected from these point clouds and a great deal of edge or feature line extraction methods have been proposed. Among these methods, an easy-to-use 3D-edge detection method, AGPN (Analyzing Geometric Properties of Neighborhoods), has been proposed. The AGPN method detects edges based on the analysis of geometric properties of a query point's neighbourhood. The AGPN method detects two kinds of 3D-edges, including boundary elements and fold edges, and it has many applications. This paper presents three applications of AGPN, i.e., 3D line segment extraction, ground points filtering, and ground breakline extraction. Experiments show that the utilization of AGPN method gives a straightforward solution to these applications.

  1. Systematic methods for the design of a class of fuzzy logic controllers

    NASA Astrophysics Data System (ADS)

    Yasin, Saad Yaser

    2002-09-01

    Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental data, and a conversion algorithm, to develop a fuzzy-based control algorithm. Results were similar to those obtained by recently published conventional control based studies. The influence of the fuzzy inference operators and parameters on performance and stability of the fuzzy logic controller was studied Results indicated that, the selections of certain parameters or combinations of parameters, affect greatly the performance and stability of the fuzzy controller. Diagnostic guidelines used to tune or change certain factors or parameters to improve controller performance were developed based on knowledge gained from conventional control methods and knowledge gained from the experimental and the simulation results of this study.

  2. Probabilistic Scenario-based Seismic Risk Analysis for Critical Infrastructures Method and Application for a Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Klügel, J.

    2006-12-01

    Deterministic scenario-based seismic hazard analysis has a long tradition in earthquake engineering for developing the design basis of critical infrastructures like dams, transport infrastructures, chemical plants and nuclear power plants. For many applications besides of the design of infrastructures it is of interest to assess the efficiency of the design measures taken. These applications require a method allowing to perform a meaningful quantitative risk analysis. A new method for a probabilistic scenario-based seismic risk analysis has been developed based on a probabilistic extension of proven deterministic methods like the MCE- methodology. The input data required for the method are entirely based on the information which is necessary to perform any meaningful seismic hazard analysis. The method is based on the probabilistic risk analysis approach common for applications in nuclear technology developed originally by Kaplan & Garrick (1981). It is based (1) on a classification of earthquake events into different size classes (by magnitude), (2) the evaluation of the frequency of occurrence of events, assigned to the different classes (frequency of initiating events, (3) the development of bounding critical scenarios assigned to each class based on the solution of an optimization problem and (4) in the evaluation of the conditional probability of exceedance of critical design parameters (vulnerability analysis). The advantage of the method in comparison with traditional PSHA consists in (1) its flexibility, allowing to use different probabilistic models for earthquake occurrence as well as to incorporate advanced physical models into the analysis, (2) in the mathematically consistent treatment of uncertainties, and (3) in the explicit consideration of the lifetime of the critical structure as a criterion to formulate different risk goals. The method was applied for the evaluation of the risk of production interruption losses of a nuclear power plant during its residual lifetime.

  3. Objective measurement of bread crumb texture

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Coles, Graeme D.

    1995-01-01

    Evaluation of bread crumb texture plays an important role in judging bread quality. This paper discusses the application of image analysis methods to the objective measurement of the visual texture of bread crumb. The application of Fast Fourier Transform and mathematical morphology methods have been discussed by the authors in their previous work, and a commercial bread texture measurement system has been developed. Based on the nature of bread crumb texture, we compare the advantages and disadvantages of the two methods, and a third method based on features derived directly from statistics of edge density in local windows of the bread image. The analysis of various methods and experimental results provides an insight into the characteristics of the bread texture image and interconnection between texture measurement algorithms. The usefulness of the application of general stochastic process modelling of texture is thus revealed; it leads to more reliable and accurate evaluation of bread crumb texture. During the development of these methods, we also gained useful insights into how subjective judges form opinions about bread visual texture. These are discussed here.

  4. Nonlinear Constitutive Relations for High Temperature Application, 1984

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Nonlinear constitutive relations for high temperature applications were discussed. The state of the art in nonlinear constitutive modeling of high temperature materials was reviewed and the need for future research and development efforts in this area was identified. Considerable research efforts are urgently needed in the development of nonlinear constitutive relations for high temperature applications prompted by recent advances in high temperature materials technology and new demands on material and component performance. Topics discussed include: constitutive modeling, numerical methods, material testing, and structural applications.

  5. Forestry sector analysis for developing countries: issues and methods.

    Treesearch

    R.W. Haynes

    1993-01-01

    A satellite meeting of the 10th Forestry World Congress focused on the methods used for forest sector analysis and their applications in both developed and developing countries. The results of that meeting are summarized, and a general approach for forest sector modeling is proposed. The approach includes models derived from the existing...

  6. 24 CFR 35.1300 - Purpose and applicability.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Development LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Methods and Standards for Lead-Paint Hazard Evaluation and Hazard Reduction Activities § 35.1300 Purpose and applicability. The...

  7. 24 CFR 35.1300 - Purpose and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Development LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Methods and Standards for Lead-Paint Hazard Evaluation and Hazard Reduction Activities § 35.1300 Purpose and applicability. The...

  8. 24 CFR 35.1300 - Purpose and applicability.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Development LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Methods and Standards for Lead-Paint Hazard Evaluation and Hazard Reduction Activities § 35.1300 Purpose and applicability. The...

  9. 24 CFR 35.1300 - Purpose and applicability.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Development LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Methods and Standards for Lead-Paint Hazard Evaluation and Hazard Reduction Activities § 35.1300 Purpose and applicability. The...

  10. 24 CFR 35.1300 - Purpose and applicability.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Development LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Methods and Standards for Lead-Paint Hazard Evaluation and Hazard Reduction Activities § 35.1300 Purpose and applicability. The...

  11. The research of computer multimedia assistant in college English listening

    NASA Astrophysics Data System (ADS)

    Zhang, Qian

    2012-04-01

    With the technology development of network information, there exists more and more seriously questions to our education. Computer multimedia application breaks the traditional foreign language teaching and brings new challenges and opportunities for the education. Through the multiple media application, the teaching process is full of animation, image, voice, and characters. This can improve the learning initiative and objective with great development of learning efficiency. During the traditional foreign language teaching, people use characters learning. However, through this method, the theory performance is good but the practical application is low. During the long time computer multimedia application in the foreign language teaching, many teachers still have prejudice. Therefore, the method is not obtaining the effect. After all the above, the research has significant meaning for improving the teaching quality of foreign language.

  12. Techniques of EMG signal analysis: detection, processing, classification and applications

    PubMed Central

    Hussain, M.S.; Mohd-Yasin, F.

    2006-01-01

    Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications. PMID:16799694

  13. The current state of Bayesian methods in medical product development: survey results and recommendations from the DIA Bayesian Scientific Working Group.

    PubMed

    Natanegara, Fanni; Neuenschwander, Beat; Seaman, John W; Kinnersley, Nelson; Heilmann, Cory R; Ohlssen, David; Rochester, George

    2014-01-01

    Bayesian applications in medical product development have recently gained popularity. Despite many advances in Bayesian methodology and computations, increase in application across the various areas of medical product development has been modest. The DIA Bayesian Scientific Working Group (BSWG), which includes representatives from industry, regulatory agencies, and academia, has adopted the vision to ensure Bayesian methods are well understood, accepted more broadly, and appropriately utilized to improve decision making and enhance patient outcomes. As Bayesian applications in medical product development are wide ranging, several sub-teams were formed to focus on various topics such as patient safety, non-inferiority, prior specification, comparative effectiveness, joint modeling, program-wide decision making, analytical tools, and education. The focus of this paper is on the recent effort of the BSWG Education sub-team to administer a Bayesian survey to statisticians across 17 organizations involved in medical product development. We summarize results of this survey, from which we provide recommendations on how to accelerate progress in Bayesian applications throughout medical product development. The survey results support findings from the literature and provide additional insight on regulatory acceptance of Bayesian methods and information on the need for a Bayesian infrastructure within an organization. The survey findings support the claim that only modest progress in areas of education and implementation has been made recently, despite substantial progress in Bayesian statistical research and software availability. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Conceptual framework on the application of biomechanical measurement methods in driving behavior study

    NASA Astrophysics Data System (ADS)

    Sanjaya, Kadek Heri; Sya'bana, Yukhi Mustaqim Kusuma

    2017-01-01

    Research on eco-friendly vehicle development in Indonesia has largely neglected ergonomic study, despite the fact that traffic accidents have resulted in greater economic cost than fuel subsidy. We have performed a biomechanical experiment on human locomotion earlier. In this article, we describe the importance of implementing the biomechanical measurement methods in transportation ergonomic study. The instruments such as electromyogram (EMG), load cell, pressure sensor, and motion analysis methods as well as cross-correlation function analysis were explained, then the possibility of their application in driving behavior study is described. We describe the potentials and challenges of the biomechanical methods concerning the future vehicle development. The methods provide greater advantages in objective and accurate measurement not only in human task performance but also its correlation with vehicle performance.

  15. (abstract) Oblique Insonification Ultrasonic NDE of Composite Materials for Space Applications

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Lih, S. S.; Mal, A. K.

    1997-01-01

    In recent years, a great deal of research has been exerted to developing NDE methods for the characterization of the material properties of composites as well as other space structural materials. The need for information about such parameters as the elastic properties, density, and thickness are critical to the safe design and operation of such structural materials. Ultrasonics using immersion methods has played an important role in these efforts due to its capability, cost effectiveness, and ease of use. The authors designed a series of ultrasonic oblique insonification experiments in order to develop a practical field applicable NDE method for space structures.

  16. Spline Approximation of Thin Shell Dynamics

    NASA Technical Reports Server (NTRS)

    delRosario, R. C. H.; Smith, R. C.

    1996-01-01

    A spline-based method for approximating thin shell dynamics is presented here. While the method is developed in the context of the Donnell-Mushtari thin shell equations, it can be easily extended to the Byrne-Flugge-Lur'ye equations or other models for shells of revolution as warranted by applications. The primary requirements for the method include accuracy, flexibility and efficiency in smart material applications. To accomplish this, the method was designed to be flexible with regard to boundary conditions, material nonhomogeneities due to sensors and actuators, and inputs from smart material actuators such as piezoceramic patches. The accuracy of the method was also of primary concern, both to guarantee full resolution of structural dynamics and to facilitate the development of PDE-based controllers which ultimately require real-time implementation. Several numerical examples provide initial evidence demonstrating the efficacy of the method.

  17. The application of computer image analysis in life sciences and environmental engineering

    NASA Astrophysics Data System (ADS)

    Mazur, R.; Lewicki, A.; Przybył, K.; Zaborowicz, M.; Koszela, K.; Boniecki, P.; Mueller, W.; Raba, B.

    2014-04-01

    The main aim of the article was to present research on the application of computer image analysis in Life Science and Environmental Engineering. The authors used different methods of computer image analysis in developing of an innovative biotest in modern biomonitoring of water quality. Created tools were based on live organisms such as bioindicators Lemna minor L. and Hydra vulgaris Pallas as well as computer image analysis method in the assessment of negatives reactions during the exposition of the organisms to selected water toxicants. All of these methods belong to acute toxicity tests and are particularly essential in ecotoxicological assessment of water pollutants. Developed bioassays can be used not only in scientific research but are also applicable in environmental engineering and agriculture in the study of adverse effects on water quality of various compounds used in agriculture and industry.

  18. Adding intelligent services to an object oriented system

    NASA Technical Reports Server (NTRS)

    Robideaux, Bret R.; Metzler, Theodore A.

    1994-01-01

    As today's software becomes increasingly complex, the need grows for intelligence of one sort or another to becomes part of the application, often an intelligence that does not readily fit the paradigm of one's software development. There are many methods of developing software, but at this time, the most promising is the object oriented (OO) method. This method involves an analysis to abstract the problem into separate 'objects' that are unique in the data that describe them and the behavior that they exhibit, and eventually to convert this analysis into computer code using a programming language that was designed (or retrofitted) for OO implementation. This paper discusses the creation of three different applications that are analyzed, designed, and programmed using the Shlaer/Mellor method of OO development and C++ as the programming language. All three, however, require the use of an expert system to provide an intelligence that C++ (or any other 'traditional' language) is not directly suited to supply. The flexibility of CLIPS permitted us to make modifications to it that allow seamless integration with any of our applications that require an expert system. We illustrate this integration with the following applications: (1) an after action review (AAR) station that assists a reviewer in watching a simulated tank battle and developing an AAR to critique the performance of the participants in the battle; (2) an embedded training system and over-the-shoulder coach for howitzer crewmen; and (3) a system to identify various chemical compounds from their infrared absorption spectra.

  19. Moose: An Open-Source Framework to Enable Rapid Development of Collaborative, Multi-Scale, Multi-Physics Simulation Tools

    NASA Astrophysics Data System (ADS)

    Slaughter, A. E.; Permann, C.; Peterson, J. W.; Gaston, D.; Andrs, D.; Miller, J.

    2014-12-01

    The Idaho National Laboratory (INL)-developed Multiphysics Object Oriented Simulation Environment (MOOSE; www.mooseframework.org), is an open-source, parallel computational framework for enabling the solution of complex, fully implicit multiphysics systems. MOOSE provides a set of computational tools that scientists and engineers can use to create sophisticated multiphysics simulations. Applications built using MOOSE have computed solutions for chemical reaction and transport equations, computational fluid dynamics, solid mechanics, heat conduction, mesoscale materials modeling, geomechanics, and others. To facilitate the coupling of diverse and highly-coupled physical systems, MOOSE employs the Jacobian-free Newton-Krylov (JFNK) method when solving the coupled nonlinear systems of equations arising in multiphysics applications. The MOOSE framework is written in C++, and leverages other high-quality, open-source scientific software packages such as LibMesh, Hypre, and PETSc. MOOSE uses a "hybrid parallel" model which combines both shared memory (thread-based) and distributed memory (MPI-based) parallelism to ensure efficient resource utilization on a wide range of computational hardware. MOOSE-based applications are inherently modular, which allows for simulation expansion (via coupling of additional physics modules) and the creation of multi-scale simulations. Any application developed with MOOSE supports running (in parallel) any other MOOSE-based application. Each application can be developed independently, yet easily communicate with other applications (e.g., conductivity in a slope-scale model could be a constant input, or a complete phase-field micro-structure simulation) without additional code being written. This method of development has proven effective at INL and expedites the development of sophisticated, sustainable, and collaborative simulation tools.

  20. Study on thin wideband applicator for detecting blood characteristics in human body

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuki; Kuki, Takao; Nikawa, Yoshio

    2016-11-01

    Preventive care as well as early detection method and monitoring technique for diseases are highly attracted attention to increase quality of life. Noninvasive measurement method for blood characteristics in body is expected by patients with kidney dysfunction. Complex permittivity of blood is changed a few present at 6GHz. This change is caused by the change of water and albumin contents in blood. In this study, to detect blood characteristics in human body, experiments with phantom model has been performed using thin wideband applicator for examining microwave transmission up to 6GHz. The thin wideband applicator has advantages for detecting living body information in detail. The thin wideband applicator is designed based on Antipodal Vivaldi Antenna and is not required any balun and is very easy handling. Using developed Antipodal Vivaldi Antenna, transmission coefficient can be obtained as a function of thickness of phantom model with high sensitivity. Using this method, highly sensitive sensor for obtaining characteristics of blood in body can be developed.

  1. Multishaker modal testing

    NASA Technical Reports Server (NTRS)

    Craig, R. R., Jr.

    1985-01-01

    A component mode synthesis method for damped structures was developed and modal test methods were explored which could be employed to determine the relevant parameters required by the component mode synthesis method. Research was conducted on the following topics: (1) Development of a generalized time-domain component mode synthesis technique for damped systems; (2) Development of a frequency-domain component mode synthesis method for damped systems; and (3) Development of a system identification algorithm applicable to general damped systems. Abstracts are presented of the major publications which have been previously issued on these topics.

  2. Generating Sudoku puzzles and its applications in teaching mathematics

    NASA Astrophysics Data System (ADS)

    Evans, Ryan; Lindner, Brett; Shi, Yixun

    2011-07-01

    This article presents a few methods for generating Sudoku puzzles. These methods are developed based on the concepts of matrix, permutation, and modular functions, and therefore can be used to form application examples or student projects when teaching various mathematics courses. Mathematical properties of these methods are studied, connections between the methods are investigated, and student projects are suggested. Since most students tend to enjoy games, studies like this may help raising students' interests and enhance their problem-solving skills.

  3. Formal Methods for Life-Critical Software

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Johnson, Sally C.

    1993-01-01

    The use of computer software in life-critical applications, such as for civil air transports, demands the use of rigorous formal mathematical verification procedures. This paper demonstrates how to apply formal methods to the development and verification of software by leading the reader step-by-step through requirements analysis, design, implementation, and verification of an electronic phone book application. The current maturity and limitations of formal methods tools and techniques are then discussed, and a number of examples of the successful use of formal methods by industry are cited.

  4. Numerical Hydrodynamics in Special Relativity.

    PubMed

    Martí, J M; Müller, E

    1999-01-01

    This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results obtained with different numerical SRHD methods are compared, and two astrophysical applications of SRHD flows are discussed. An evaluation of the various numerical methods is given and future developments are analyzed. Supplementary material is available for this article at 10.12942/lrr-1999-3.

  5. The Latest Developments in the Field of University Teaching Methods: A View from the German Democratic Republic.

    ERIC Educational Resources Information Center

    Klose-Berger, Annelore; Mohle, Horst

    1989-01-01

    Several aspects of East German research on university teaching methods, with special reference to Karl Marx University, are discussed: the development of teaching methods as part of the educational sciences field; selected recent research results, and the application of research findings to practice in the training and retraining of university…

  6. Development and Validation of a Method for Determining Tridimensional Angular Displacements with Special Applications to Ice Hockey Motions.

    ERIC Educational Resources Information Center

    Gagnon, Micheline; And Others

    1983-01-01

    A method for determining the tridimensional angular displacement of skates during the two-legged stop in ice hockey was developed and validated. The angles were measured by geometry, using a cinecamera and specially equipped skates. The method provides a new tool for kinetic analyses of skating movements. (Authors/PP)

  7. Computer Simulation as an Aid for Management of an Information System.

    ERIC Educational Resources Information Center

    Simmonds, W. H.; And Others

    The aim of this study was to develop methods, based upon computer simulation, of designing information systems and illustrate the use of these methods by application to an information service. The method developed is based upon Monte Carlo and discrete event simulation techniques and is described in an earlier report - Sira report R412 Organizing…

  8. Polymerase Chain Reaction/Rapid Methods Are Gaining a Foothold in Developing Countries.

    PubMed

    Ragheb, Suzan Mohammed; Jimenez, Luis

    Detection of microbial contamination in pharmaceutical raw materials and finished products is a critical factor to guarantee their safety, stability, and potency. Rapid microbiological methods-such as polymerase chain reaction-have been widely applied to clinical and food quality control analysis. However, polymerase chain reaction applications to pharmaceutical quality control have been rather slow and sporadic. Successful implementation of these methods in pharmaceutical companies in developing countries requires important considerations to provide sensitive and robust assays that will comply with good manufacturing practices. In recent years several publications have encouraged the application of molecular techniques in the microbiological assessment of pharmaceuticals. One of these techniques is polymerase chain reaction (PCR). The successful application of PCR in the pharmaceutical industry in developing countries is governed by considerable factors and requirements. These factors include the setting up of a PCR laboratory and the choice of appropriate equipment and reagents. In addition, the presence of well-trained analysts and establishment of quality control and quality assurance programs are important requirements. The pharmaceutical firms should take into account these factors to allow better chances for regulatory acceptance and wide application of this technique. © PDA, Inc. 2014.

  9. An overview of the environmental applicability of vermicompost: from wastewater treatment to the development of sensitive analytical methods.

    PubMed

    Pereira, Madson de Godoi; Neta, Lourdes Cardoso de Souza; Fontes, Maurício Paulo Ferreira; Souza, Adriana Nascimento; Matos, Thaionara Carvalho; Sachdev, Raquel de Lima; dos Santos, Arnaud Victor; da Guarda Souza, Marluce Oliveira; de Andrade, Marta Valéria Almeida Santana; Paulo, Gabriela Marinho Maciel; Ribeiro, Joselito Nardy; Ribeiro, Araceli Verónica Flores Nardy

    2014-01-01

    The use of vermicompost (humified material) for treating wastewaters, remediating polluted soils, improving agricultural productivity, protecting crop production, and developing sensitive analytical methods is reviewed here, covering the past 17 years. The main advantages of vermicompost, considering all applications covered in this paper, comprise (i) easy acquisition, (ii) low costs, (iii) structural, chemical, and biological characteristics responsible for exceptional adsorptive capacities as well as pollutant degradation, and (iv) the promotion of biocontrol. Specifically, for wastewater decontamination, a considerable number of works have verified the adsorption of toxic metals, but the application of vermicompost is still scarce for the retention of organic compounds. Problems related to the final disposal of enriched vermicompost (after treatment steps) are often found, in spite of some successful destinations such as organic fertilizer. For decontaminating soils, the use of vermicompost is quite scarce, mainly for inorganic pollutants. In agricultural productivity and biocontrol, vermicompost imparts remarkable benefits regarding soil aggregation, plant nutrition, and the development of beneficial microorganisms against phytopathogens. Finally, the use of vermicompost in sensitive analytical methods for quantifying toxic metals is the newest application of this adsorbent.

  10. An Overview of the Environmental Applicability of Vermicompost: From Wastewater Treatment to the Development of Sensitive Analytical Methods

    PubMed Central

    Pereira, Madson de Godoi; Cardoso de Souza Neta, Lourdes; Fontes, Maurício Paulo Ferreira; Souza, Adriana Nascimento; Carvalho Matos, Thaionara; de Lima Sachdev, Raquel; dos Santos, Arnaud Victor; Oliveira da Guarda Souza, Marluce; de Andrade, Marta Valéria Almeida Santana; Marinho Maciel Paulo, Gabriela; Ribeiro, Joselito Nardy; Verónica Flores Nardy Ribeiro, Araceli

    2014-01-01

    The use of vermicompost (humified material) for treating wastewaters, remediating polluted soils, improving agricultural productivity, protecting crop production, and developing sensitive analytical methods is reviewed here, covering the past 17 years. The main advantages of vermicompost, considering all applications covered in this paper, comprise (i) easy acquisition, (ii) low costs, (iii) structural, chemical, and biological characteristics responsible for exceptional adsorptive capacities as well as pollutant degradation, and (iv) the promotion of biocontrol. Specifically, for wastewater decontamination, a considerable number of works have verified the adsorption of toxic metals, but the application of vermicompost is still scarce for the retention of organic compounds. Problems related to the final disposal of enriched vermicompost (after treatment steps) are often found, in spite of some successful destinations such as organic fertilizer. For decontaminating soils, the use of vermicompost is quite scarce, mainly for inorganic pollutants. In agricultural productivity and biocontrol, vermicompost imparts remarkable benefits regarding soil aggregation, plant nutrition, and the development of beneficial microorganisms against phytopathogens. Finally, the use of vermicompost in sensitive analytical methods for quantifying toxic metals is the newest application of this adsorbent. PMID:24578668

  11. Eleventh NASTRAN User's Colloquium

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASTRAN (NASA STRUCTURAL ANALYSIS) is a large, comprehensive, nonproprietary, general purpose finite element computer code for structural analysis which was developed under NASA sponsorship. The Eleventh Colloquium provides some comprehensive general papers on the application of finite element methods in engineering, comparisons with other approaches, unique applications, pre- and post-processing or auxiliary programs, and new methods of analysis with NASTRAN.

  12. Manual herbicide application methods for managing vegetation in Appalachian hardwood forests

    Treesearch

    Jeffrey D. Kochenderfer; James N. Kochenderfer; Gary W. Miller

    2012-01-01

    Four manual herbicide application methods are described for use in Appalachian hardwood forests. Stem injection, basal spray, cut-stump, and foliar spray techniques can be used to control interfering vegetation and promote the development of desirable reproduction and valuable crop trees in hardwood forests. Guidelines are presented to help the user select the...

  13. Trends and Lessons Learned in Interdisciplinary and Non-Business Case Method Application.

    ERIC Educational Resources Information Center

    Anyansi-Archibong, Chi; Czuchry, Andrew J.; House, Claudia S.; Cicirello, Tony

    2000-01-01

    Presents results of a survey designed to test the level of development and application of cases in non-business courses such as sciences, mathematics, engineering, health, and technology. Findings support the growing popularity of the case method of teaching and learning outside the business domain. Suggests a framework for establishing win-win…

  14. Path Analysis and Residual Plotting as Methods of Environmental Scanning in Higher Education: An Illustration with Applications and Enrollments.

    ERIC Educational Resources Information Center

    Morcol, Goktug; McLaughlin, Gerald W.

    1990-01-01

    The study proposes using path analysis and residual plotting as methods supporting environmental scanning in strategic planning for higher education institutions. Path models of three levels of independent variables are developed. Dependent variables measuring applications and enrollments at Virginia Polytechnic Institute and State University are…

  15. Advances in the application of genetic manipulation methods to apicomplexan parasites.

    PubMed

    Suarez, C E; Bishop, R P; Alzan, H F; Poole, W A; Cooke, B M

    2017-10-01

    Apicomplexan parasites such as Babesia, Theileria, Eimeria, Cryptosporidium and Toxoplasma greatly impact animal health globally, and improved, cost-effective measures to control them are urgently required. These parasites have complex multi-stage life cycles including obligate intracellular stages. Major gaps in our understanding of the biology of these relatively poorly characterised parasites and the diseases they cause severely limit options for designing novel control methods. Here we review potentially important shared aspects of the biology of these parasites, such as cell invasion, host cell modification, and asexual and sexual reproduction, and explore the potential of the application of relatively well-established or newly emerging genetic manipulation methods, such as classical transfection or gene editing, respectively, for closing important gaps in our knowledge of the function of specific genes and proteins, and the biology of these parasites. In addition, genetic manipulation methods impact the development of novel methods of control of the diseases caused by these economically important parasites. Transient and stable transfection methods, in conjunction with whole and deep genome sequencing, were initially instrumental in improving our understanding of the molecular biology of apicomplexan parasites and paved the way for the application of the more recently developed gene editing methods. The increasingly efficient and more recently developed gene editing methods, in particular those based on the CRISPR/Cas9 system and previous conceptually similar techniques, are already contributing to additional gene function discovery using reverse genetics and related approaches. However, gene editing methods are only possible due to the increasing availability of in vitro culture, transfection, and genome sequencing and analysis techniques. We envisage that rapid progress in the development of novel gene editing techniques applied to apicomplexan parasites of veterinary interest will ultimately lead to the development of novel and more efficient methods for disease control. Published by Elsevier Ltd.

  16. The ReaxFF reactive force-field: Development, applications, and future directions

    DOE PAGES

    Senftle, Thomas; Hong, Sungwook; Islam, Md Mahbubul; ...

    2016-03-04

    The reactive force-field (ReaxFF) interatomic potential is a powerful computational tool for exploring, developing and optimizing material properties. Methods based on the principles of quantum mechanics (QM), while offering valuable theoretical guidance at the electronic level, are often too computationally intense for simulations that consider the full dynamic evolution of a system. Alternatively, empirical interatomic potentials that are based on classical principles require significantly fewer computational resources, which enables simulations to better describe dynamic processes over longer timeframes and on larger scales. Such methods, however, typically require a predefined connectivity between atoms, precluding simulations that involve reactive events. The ReaxFFmore » method was developed to help bridge this gap. Approaching the gap from the classical side, ReaxFF casts the empirical interatomic potential within a bond-order formalism, thus implicitly describing chemical bonding without expensive QM calculations. As a result, this article provides an overview of the development, application, and future directions of the ReaxFF method.« less

  17. Space Station Application of Simulator-Developed Aircrew Coordination and Performance Measures

    NASA Technical Reports Server (NTRS)

    Murphy, Miles

    1985-01-01

    This paper summarizes a study in progress at NASA/Ames Research Center to develop measures of aircrew coordination and decision-making factors and to relate them to flight task performance, that is, to crew and system performance measures. The existence of some similar interpersonal process and task performance requirements suggests a potential application of these methods in space station crew research -- particularly research conducted in ground-based mock-ups. The secondary objective of this study should also be of interest: to develop information on crew process and performance for application in developing crew training programs.

  18. Benefits of object-oriented models and ModeliChart: modern tools and methods for the interdisciplinary research on smart biomedical technology.

    PubMed

    Gesenhues, Jonas; Hein, Marc; Ketelhut, Maike; Habigt, Moriz; Rüschen, Daniel; Mechelinck, Mare; Albin, Thivaharan; Leonhardt, Steffen; Schmitz-Rode, Thomas; Rossaint, Rolf; Autschbach, Rüdiger; Abel, Dirk

    2017-04-01

    Computational models of biophysical systems generally constitute an essential component in the realization of smart biomedical technological applications. Typically, the development process of such models is characterized by a great extent of collaboration between different interdisciplinary parties. Furthermore, due to the fact that many underlying mechanisms and the necessary degree of abstraction of biophysical system models are unknown beforehand, the steps of the development process of the application are iteratively repeated when the model is refined. This paper presents some methods and tools to facilitate the development process. First, the principle of object-oriented (OO) modeling is presented and the advantages over classical signal-oriented modeling are emphasized. Second, our self-developed simulation tool ModeliChart is presented. ModeliChart was designed specifically for clinical users and allows independently performing in silico studies in real time including intuitive interaction with the model. Furthermore, ModeliChart is capable of interacting with hardware such as sensors and actuators. Finally, it is presented how optimal control methods in combination with OO models can be used to realize clinically motivated control applications. All methods presented are illustrated on an exemplary clinically oriented use case of the artificial perfusion of the systemic circulation.

  19. The use of silver nanorod array based surface enhanced Raman scattering sensor for food safety applications

    USDA-ARS?s Scientific Manuscript database

    For the advancement of preventive strategies, it is critical to develop rapid and sensitive detection methods with nanotechnology for food safety applications. This article reports the recent development on the use of aligned silver nanorod (AgNR) arrays prepared by oblique angle deposition, as surf...

  20. Neutron activation analysis: trends in developments and applications

    NASA Astrophysics Data System (ADS)

    de Goeij, J. J.; Bode, P.

    1995-03-01

    New developments in instrumentation for, and methodology of, Instrumental Neutron Activation Analysis (INAA) may lead to new niches for this method of elemental analysis. This paper describes the possibilities of advanced detectors, automated irradiation and counting stations, and very large sample analysis. An overview is given of some typical new fields of application.

  1. Monitoring and Indentification Packet in Wireless With Deep Packet Inspection Method

    NASA Astrophysics Data System (ADS)

    Fali Oklilas, Ahmad; Tasmi

    2017-04-01

    Layer 2 and Layer 3 are used to make a process of network monitoring, but with the development of applications on the network such as the p2p file sharing, VoIP, encrypted, and many applications that already use the same port, it would require a system that can classify network traffics, not only based on port number classification. This paper reports the implementation of the deep packet inspection method to analyse data packets based on the packet header and payload to be used in packet data classification. If each application can be grouped based on the application layer, then we can determine the pattern of internet users and also to perform network management of computer science department. In this study, a prototype wireless network and applications SSO were developed to detect the active user. The focus is on the ability of open DPI and nDPI in detecting the payload of an application and the results are elaborated in this paper.

  2. [A reliability growth assessment method and its application in the development of equipment in space cabin].

    PubMed

    Chen, J D; Sun, H L

    1999-04-01

    Objective. To assess and predict reliability of an equipment dynamically by making full use of various test informations in the development of products. Method. A new reliability growth assessment method based on army material system analysis activity (AMSAA) model was developed. The method is composed of the AMSAA model and test data conversion technology. Result. The assessment and prediction results of a space-borne equipment conform to its expectations. Conclusion. It is suggested that this method should be further researched and popularized.

  3. STATISTICAL ANALYSIS OF SNAP 10A THERMOELECTRIC CONVERTER ELEMENT PROCESS DEVELOPMENT VARIABLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitch, S.H.; Morris, J.W.

    1962-12-15

    Statistical analysis, primarily analysis of variance, was applied to evaluate several factors involved in the development of suitable fabrication and processing techniques for the production of lead telluride thermoelectric elements for the SNAP 10A energy conversion system. The analysis methods are described as to their application for determining the effects of various processing steps, estabIishing the value of individual operations, and evaluating the significance of test results. The elimination of unnecessary or detrimental processing steps was accomplished and the number of required tests was substantially reduced by application of these statistical methods to the SNAP 10A production development effort. (auth)

  4. A Group Contribution Method for Estimating Cetane and Octane Numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubic, William Louis

    Much of the research on advanced biofuels is devoted to the study of novel chemical pathways for converting nonfood biomass into liquid fuels that can be blended with existing transportation fuels. Many compounds under consideration are not found in the existing fuel supplies. Often, the physical properties needed to assess the viability of a potential biofuel are not available. The only reliable information available may be the molecular structure. Group contribution methods for estimating physical properties from molecular structure have been used for more than 60 years. The most common application is estimation of thermodynamic properties. More recently, group contributionmore » methods have been developed for estimating rate dependent properties including cetane and octane numbers. Often, published group contribution methods are limited in terms of types of function groups and range of applicability. In this study, a new, broadly-applicable group contribution method based on an artificial neural network was developed to estimate cetane number research octane number, and motor octane numbers of hydrocarbons and oxygenated hydrocarbons. The new method is more accurate over a greater range molecular weights and structural complexity than existing group contribution methods for estimating cetane and octane numbers.« less

  5. Development of a probabilistic analysis methodology for structural reliability estimation

    NASA Technical Reports Server (NTRS)

    Torng, T. Y.; Wu, Y.-T.

    1991-01-01

    The novel probabilistic analysis method for assessment of structural reliability presented, which combines fast-convolution with an efficient structural reliability analysis, can after identifying the most important point of a limit state proceed to establish a quadratic-performance function. It then transforms the quadratic function into a linear one, and applies fast convolution. The method is applicable to problems requiring computer-intensive structural analysis. Five illustrative examples of the method's application are given.

  6. Increasing the volumetric efficiency of Diesel engines by intake pipes

    NASA Technical Reports Server (NTRS)

    List, Hans

    1933-01-01

    Development of a method for calculating the volumetric efficiency of piston engines with intake pipes. Application of this method to the scavenging pumps of two-stroke-cycle engines with crankcase scavenging and to four-stroke-cycle engines. The utility of the method is demonstrated by volumetric-efficiency tests of the two-stroke-cycle engines with crankcase scavenging. Its practical application to the calculation of intake pipes is illustrated by example.

  7. A review on recent contribution of meshfree methods to structure and fracture mechanics applications.

    PubMed

    Daxini, S D; Prajapati, J M

    2014-01-01

    Meshfree methods are viewed as next generation computational techniques. With evident limitations of conventional grid based methods, like FEM, in dealing with problems of fracture mechanics, large deformation, and simulation of manufacturing processes, meshfree methods have gained much attention by researchers. A number of meshfree methods have been proposed till now for analyzing complex problems in various fields of engineering. Present work attempts to review recent developments and some earlier applications of well-known meshfree methods like EFG and MLPG to various types of structure mechanics and fracture mechanics applications like bending, buckling, free vibration analysis, sensitivity analysis and topology optimization, single and mixed mode crack problems, fatigue crack growth, and dynamic crack analysis and some typical applications like vibration of cracked structures, thermoelastic crack problems, and failure transition in impact problems. Due to complex nature of meshfree shape functions and evaluation of integrals in domain, meshless methods are computationally expensive as compared to conventional mesh based methods. Some improved versions of original meshfree methods and other techniques suggested by researchers to improve computational efficiency of meshfree methods are also reviewed here.

  8. Comparison of chemical and heating methods to enhance latent fingerprint deposits on thermal paper.

    PubMed

    Bond, John W

    2014-03-01

    A comparison is made of proprietary methods to develop latent fingerprint deposits on the inked side of thermal paper using either chemical treatment (Thermanin) or the application of heat to the paper (Hot Print System). Results with a trial of five donors show that the application of heat produces statistically significantly more fingerprint ridge detail than the chemical treatment for both fingerprint deposits aged up to 4 weeks and for a nine sequence depletion series. Subjecting the thermal paper to heat treatment with the Hot Print System did not inhibit subsequent ninhydrin chemical development of fingerprint deposits on the noninked side of the paper. A further benefit of the application of heat is the rapid development of fingerprint deposits (less than a minute) compared with up to 12 h for the Thermanin chemical treatment.

  9. Method Development in Forensic Toxicology.

    PubMed

    Peters, Frank T; Wissenbach, Dirk K; Busardo, Francesco Paolo; Marchei, Emilia; Pichini, Simona

    2017-01-01

    In the field of forensic toxicology, the quality of analytical methods is of great importance to ensure the reliability of results and to avoid unjustified legal consequences. A key to high quality analytical methods is a thorough method development. The presented article will provide an overview on the process of developing methods for forensic applications. This includes the definition of the method's purpose (e.g. qualitative vs quantitative) and the analytes to be included, choosing an appropriate sample matrix, setting up separation and detection systems as well as establishing a versatile sample preparation. Method development is concluded by an optimization process after which the new method is subject to method validation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. A taxonomy of behaviour change methods: an Intervention Mapping approach.

    PubMed

    Kok, Gerjo; Gottlieb, Nell H; Peters, Gjalt-Jorn Y; Mullen, Patricia Dolan; Parcel, Guy S; Ruiter, Robert A C; Fernández, María E; Markham, Christine; Bartholomew, L Kay

    2016-09-01

    In this paper, we introduce the Intervention Mapping (IM) taxonomy of behaviour change methods and its potential to be developed into a coding taxonomy. That is, although IM and its taxonomy of behaviour change methods are not in fact new, because IM was originally developed as a tool for intervention development, this potential was not immediately apparent. Second, in explaining the IM taxonomy and defining the relevant constructs, we call attention to the existence of parameters for effectiveness of methods, and explicate the related distinction between theory-based methods and practical applications and the probability that poor translation of methods may lead to erroneous conclusions as to method-effectiveness. Third, we recommend a minimal set of intervention characteristics that may be reported when intervention descriptions and evaluations are published. Specifying these characteristics can greatly enhance the quality of our meta-analyses and other literature syntheses. In conclusion, the dynamics of behaviour change are such that any taxonomy of methods of behaviour change needs to acknowledge the importance of, and provide instruments for dealing with, three conditions for effectiveness for behaviour change methods. For a behaviour change method to be effective: (1) it must target a determinant that predicts behaviour; (2) it must be able to change that determinant; (3) it must be translated into a practical application in a way that preserves the parameters for effectiveness and fits with the target population, culture, and context. Thus, taxonomies of methods of behaviour change must distinguish the specific determinants that are targeted, practical, specific applications, and the theory-based methods they embody. In addition, taxonomies should acknowledge that the lists of behaviour change methods will be used by, and should be used by, intervention developers. Ideally, the taxonomy should be readily usable for this goal; but alternatively, it should be clear how the information in the taxonomy can be used in practice. The IM taxonomy satisfies these requirements, and it would be beneficial if other taxonomies would be extended to also meet these needs.

  11. A study of alternative methods for reclaiming oxygen from carbon dioxide and water by a solid-electrolyte process for spacecraft applications

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Two alternative technical approaches were studied for application of an electrochemical process using a solid oxide electrolyte (zirconia stabilized by yttria or scandia) to oxygen reclamation from carbon dioxide and water, for spacecraft life support systems. Among the topics considered are the advisability of proceeding to engineering prototype development and fabrication of a full scale model for the system concept, the optimum choice of method or approach to be carried into prototype development, and the technical problem areas which exist.

  12. Biopharmaceutical production: Applications of surface plasmon resonance biosensors.

    PubMed

    Thillaivinayagalingam, Pranavan; Gommeaux, Julien; McLoughlin, Michael; Collins, David; Newcombe, Anthony R

    2010-01-15

    Surface plasmon resonance (SPR) permits the quantitative analysis of therapeutic antibody concentrations and impurities including bacteria, Protein A, Protein G and small molecule ligands leached from chromatography media. The use of surface plasmon resonance has gained popularity within the biopharmaceutical industry due to the automated, label free, real time interaction that may be exploited when using this method. The application areas to assess protein interactions and develop analytical methods for biopharmaceutical downstream process development, quality control, and in-process monitoring are reviewed. 2009 Elsevier B.V. All rights reserved.

  13. Development of the general interpolants method for the CYBER 200 series of supercomputers

    NASA Technical Reports Server (NTRS)

    Stalnaker, J. F.; Robinson, M. A.; Spradley, L. W.; Kurzius, S. C.; Thoenes, J.

    1988-01-01

    The General Interpolants Method (GIM) is a 3-D, time-dependent, hybrid procedure for generating numerical analogs of the conservation laws. This study is directed toward the development and application of the GIM computer code for fluid dynamic research applications as implemented for the Cyber 200 series of supercomputers. An elliptic and quasi-parabolic version of the GIM code are discussed. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and an implicit finite difference scheme are also included.

  14. Recent advances in immunosensor for narcotic drug detection

    PubMed Central

    Gandhi, Sonu; Suman, Pankaj; Kumar, Ashok; Sharma, Prince; Capalash, Neena; Suri, C. Raman

    2015-01-01

    Introduction: Immunosensor for illicit drugs have gained immense interest and have found several applications for drug abuse monitoring. This technology has offered a low cost detection of narcotics; thereby, providing a confirmatory platform to compliment the existing analytical methods. Methods: In this minireview, we define the basic concept of transducer for immunosensor development that utilizes antibodies and low molecular mass hapten (opiate) molecules. Results: This article emphasizes on recent advances in immunoanalytical techniques for monitoring of opiate drugs. Our results demonstrate that high quality antibodies can be used for immunosensor development against target analyte with greater sensitivity, specificity and precision than other available analytical methods. Conclusion: In this review we highlight the fundamentals of different transducer technologies and its applications for immunosensor development currently being developed in our laboratory using rapid screening via immunochromatographic kit, label free optical detection via enzyme, fluorescence, gold nanoparticles and carbon nanotubes based immunosensing for sensitive and specific monitoring of opiates. PMID:26929925

  15. Agile methods in biomedical software development: a multi-site experience report.

    PubMed

    Kane, David W; Hohman, Moses M; Cerami, Ethan G; McCormick, Michael W; Kuhlmman, Karl F; Byrd, Jeff A

    2006-05-30

    Agile is an iterative approach to software development that relies on strong collaboration and automation to keep pace with dynamic environments. We have successfully used agile development approaches to create and maintain biomedical software, including software for bioinformatics. This paper reports on a qualitative study of our experiences using these methods. We have found that agile methods are well suited to the exploratory and iterative nature of scientific inquiry. They provide a robust framework for reproducing scientific results and for developing clinical support systems. The agile development approach also provides a model for collaboration between software engineers and researchers. We present our experience using agile methodologies in projects at six different biomedical software development organizations. The organizations include academic, commercial and government development teams, and included both bioinformatics and clinical support applications. We found that agile practices were a match for the needs of our biomedical projects and contributed to the success of our organizations. We found that the agile development approach was a good fit for our organizations, and that these practices should be applicable and valuable to other biomedical software development efforts. Although we found differences in how agile methods were used, we were also able to identify a set of core practices that were common to all of the groups, and that could be a focus for others seeking to adopt these methods.

  16. Agile methods in biomedical software development: a multi-site experience report

    PubMed Central

    Kane, David W; Hohman, Moses M; Cerami, Ethan G; McCormick, Michael W; Kuhlmman, Karl F; Byrd, Jeff A

    2006-01-01

    Background Agile is an iterative approach to software development that relies on strong collaboration and automation to keep pace with dynamic environments. We have successfully used agile development approaches to create and maintain biomedical software, including software for bioinformatics. This paper reports on a qualitative study of our experiences using these methods. Results We have found that agile methods are well suited to the exploratory and iterative nature of scientific inquiry. They provide a robust framework for reproducing scientific results and for developing clinical support systems. The agile development approach also provides a model for collaboration between software engineers and researchers. We present our experience using agile methodologies in projects at six different biomedical software development organizations. The organizations include academic, commercial and government development teams, and included both bioinformatics and clinical support applications. We found that agile practices were a match for the needs of our biomedical projects and contributed to the success of our organizations. Conclusion We found that the agile development approach was a good fit for our organizations, and that these practices should be applicable and valuable to other biomedical software development efforts. Although we found differences in how agile methods were used, we were also able to identify a set of core practices that were common to all of the groups, and that could be a focus for others seeking to adopt these methods. PMID:16734914

  17. Flexible, Photopatterned, Colloidal CdSe Semiconductor Nanocrystal Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Stinner, F. Scott

    As semiconductor manufacturing pushes towards smaller and faster transistors, a parallel goal exists to create transistors which are not nearly as small. These transistors are not intended to match the performance of traditional crystalline semiconductors; they are designed to be significantly lower in cost and manufactured using methods that can make them physically flexible for applications where form is more important than speed. One of the developing technologies for this application is semiconductor nanocrystals. We first explore methods to develop CdSe nanocrystal semiconducting "inks" into large-scale, high-speed integrated circuits. We demonstrate photopatterned transistors with mobilities of 10 cm2/Vs on Kapton substrates. We develop new methods for vertical interconnect access holes to demonstrate multi-device integrated circuits including inverting amplifiers with 7 kHz bandwidths, ring oscillators with <10 micros stage delays, and NAND and NOR logic gates. In order to produce higher performance and more consistent transistors, we develop a new hybrid procedure for processing the CdSe nanocrystals. This procedure produces transistors with repeatable performance exceeding 40 cm2/Vs when fabricated on silicon wafers and 16 cm 2/vs when fabricated as part of photopatterned integrated circuits on Kapton substrates. In order to demonstrate the full potential of these transistors, methods to create high-frequency oscillators were developed. These methods allow for transistors to operate at higher voltages as well as provide a means for wirebonding to the Kapton substrate, both of which are required for operating and probing high-frequency oscillators. Simulations of this system show the potential for operation at MHz frequencies. Demonstration of these transistors in this frequency range would open the door for development of CdSe integrated circuits for high-performance sensor, display, and audio applications. To develop further applications of electronics on flexible substrates, procedures are developed for the integration of polychromatic displays on polyethylene terephthalate (PET) substrates and a commercial near field communication (NFC) link. The device draws its power from the NFC transmitter common on smartphones and eliminates the need for a fixed battery. This allows for the mass deployment of flexible, interactive displays on product packaging.

  18. IEEE/NASA Workshop on Leveraging Applications of Formal Methods, Verification, and Validation

    NASA Technical Reports Server (NTRS)

    Margaria, Tiziana (Editor); Steffen, Bernhard (Editor); Hichey, Michael G.

    2005-01-01

    This volume contains the Preliminary Proceedings of the 2005 IEEE ISoLA Workshop on Leveraging Applications of Formal Methods, Verification, and Validation, with a special track on the theme of Formal Methods in Human and Robotic Space Exploration. The workshop was held on 23-24 September 2005 at the Loyola College Graduate Center, Columbia, MD, USA. The idea behind the Workshop arose from the experience and feedback of ISoLA 2004, the 1st International Symposium on Leveraging Applications of Formal Methods held in Paphos (Cyprus) last October-November. ISoLA 2004 served the need of providing a forum for developers, users, and researchers to discuss issues related to the adoption and use of rigorous tools and methods for the specification, analysis, verification, certification, construction, test, and maintenance of systems from the point of view of their different application domains.

  19. Multirate sampled-data yaw-damper and modal suppression system design

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Mason, Gregory S.

    1990-01-01

    A multirate control law synthesized algorithm based on an infinite-time quadratic cost function, was developed along with a method for analyzing the robustness of multirate systems. A generalized multirate sampled-data control law structure (GMCLS) was introduced. A new infinite-time-based parameter optimization multirate sampled-data control law synthesis method and solution algorithm were developed. A singular-value-based method for determining gain and phase margins for multirate systems was also developed. The finite-time-based parameter optimization multirate sampled-data control law synthesis algorithm originally intended to be applied to the aircraft problem was instead demonstrated by application to a simpler problem involving the control of the tip position of a two-link robot arm. The GMCLS, the infinite-time-based parameter optimization multirate control law synthesis method and solution algorithm, and the singular-value based method for determining gain and phase margins were all demonstrated by application to the aircraft control problem originally proposed for this project.

  20. Developing Carbon Nanotube Standards at NASA

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pasha; Arepalli, Sivaram; Sosa, Edward; Gorelik, Olga; Yowell, Leonard

    2007-01-01

    Single wall carbon nanotubes (SWCNTs) are currently being produced and processed by several methods. Many researchers are continuously modifying existing methods and developing new methods to incorporate carbon nanotubes into other materials and utilize the phenomenal properties of SWCNTs. These applications require availability of SWCNTs with known properties and there is a need to characterize these materials in a consistent manner. In order to monitor such progress, it is critical to establish a means by which to define the quality of SWCNT material and develop characterization standards to evaluate of nanotube quality across the board. Such characterization standards should be applicable to as-produced materials as well as processed SWCNT materials. In order to address this issue, NASA Johnson Space Center has developed a protocol for purity and dispersion characterization of SWCNTs (Ref.1). The NASA JSC group is currently working with NIST, ANSI and ISO to establish purity and dispersion standards for SWCNT material. A practice guide for nanotube characterization is being developed in cooperation with NIST (Ref.2). Furthermore, work is in progress to incorporate additional characterization methods for electrical, mechanical, thermal, optical and other properties of SWCNTs.

  1. Developing Carbon Nanotube Standards at NASA

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pasha; Arepalli, Sivaram; Sosa, Edward; Gorelik, Olga; Yowell, Leonard

    2007-01-01

    Single wall carbon nanotubes (SWCNTs) are currently being produced and processed by several methods. Many researchers are continuously modifying existing methods and developing new methods to incorporate carbon nanotubes into other materials and utilize the phenomenal properties of SWCNTs. These applications require availability of SWCNTs with known properties and there is a need to characterize these materials in a consistent manner. In order to monitor such progress, it is critical to establish a means by which to define the quality of SWCNT material and develop characterization standards to evaluate of nanotube quality across the board. Such characterization standards should be applicable to as-produced materials as well as processed SWCNT materials. In order to address this issue, NASA Johnson Space Center has developed a protocol for purity and dispersion characterization of SWCNTs. The NASA JSC group is currently working with NIST, ANSI and ISO to establish purity and dispersion standards for SWCNT material. A practice guide for nanotube characterization is being developed in cooperation with NIST. Furthermore, work is in progress to incorporate additional characterization methods for electrical, mechanical, thermal, optical and other properties of SWCNTs.

  2. Toxicity and bioaccumulation of sediment-associated contaminants using freshwater invertebrates: A review of methods and applications

    USGS Publications Warehouse

    Ingersoll, C.G.; Ankley, G.T.; Benoit, D.A.; Brunson, E.L.; Burton, G.A.; Dwyer, F.J.; Hoke, R.A.; Landrum, P.F.; Norberg-King, T. J.; Winger, P.V.

    1995-01-01

    This paper reviews recent developments in methods for evaluating the toxicity and bioaccumulation of contaminants associated with freshwater sediments and summarizes example case studies demonstrating the application of these methods. Over the past decade, research has emphasized development of more specific testing procedures for conducting 10-d toxicity tests with the amphipod Hyalella azteca and the midge Chironomus tentans. Toxicity endpoints measured in these tests are survival for H. azteca and survival and growth for C. tentans. Guidance has also been developed for conducting 28-d bioaccumulation tests with the oligochaete Lumbriculus variegatus, including determination of bioaccumulation kinetics for different compound classes. These methods have been applied to a variety of sediments to address issues ranging from site assessments to bioavailability of organic and inorganic contaminants using field-collected and laboratory-spiked samples. Survival and growth of controls routinely meet or exceed test acceptability criteria. Results of laboratory bioaccumulation studies with L. variegatus have been confirmed with comparisons to residues (PCBs, PAHs, DDT) present from synoptically collected field populations of oligochaetes. Additional method development is currently underway to develop chronic toxicity tests and to provide additional data-confirming responses observed in laboratory sediment tests with natural benthic populations.

  3. Teaching Analytical Method Development in an Undergraduate Instrumental Analysis Course

    ERIC Educational Resources Information Center

    Lanigan, Katherine C.

    2008-01-01

    Method development and assessment, central components of carrying out chemical research, require problem-solving skills. This article describes a pedagogical approach for teaching these skills through the adaptation of published experiments and application of group-meeting style discussions to the curriculum of an undergraduate instrumental…

  4. A Relational Metric, Its Application to Domain Analysis, and an Example Analysis and Model of a Remote Sensing Domain

    DOT National Transportation Integrated Search

    1995-07-01

    An objective and quantitative method has been developed for deriving models of complex and specialized spheres of activity (domains) from domain-generated verbal data. The method was developed for analysis of interview transcripts, incident reports, ...

  5. Development of the CODER System: A Testbed for Artificial Intelligence Methods in Information Retrieval.

    ERIC Educational Resources Information Center

    Fox, Edward A.

    1987-01-01

    Discusses the CODER system, which was developed to investigate the application of artificial intelligence methods to increase the effectiveness of information retrieval systems, particularly those involving heterogeneous documents. Highlights include the use of PROLOG programing, blackboard-based designs, knowledge engineering, lexicological…

  6. The Development of Mobile Application to Introduce Historical Monuments in Manado

    NASA Astrophysics Data System (ADS)

    Rupilu, Moshe Markhasi; Suyoto; Santoso, Albertus Joko

    2018-02-01

    Learning the historical value of a monument is important because it preserves cultural and historical values, as well as expanding our personal insight. In Indonesia, particularly in Manado, North Sulawesi, there are many monuments. The monuments are erected for history, religion, culture and past war, however these aren't written in detail in the monuments. To get information on specific monument, manual search was required, i.e. asking related people or sources. Based on the problem, the development of an application which can utilize LBS (Location Based Service) method and some algorithmic methods specifically designed for mobile devices such as Smartphone, was required so that information on every monument in Manado can be displayed in detail using GPS coordinate. The application was developed by KNN method with K-means algorithm and collaborative filtering to recommend monument information to tourist. Tourists will get recommended options filtered by distance. Then, this method was also used to look for the closest monument from user. KNN algorithm determines the closest location by making comparisons according to calculation of longitude and latitude of several monuments tourist wants to visit. With this application, tourists who want to know and find information on monuments in Manado can do them easily and quickly because monument information is recommended directly to user without having to make selection. Moreover, tourist can see recommended monument information and search several monuments in Manado in real time.

  7. Potential of electric discharge plasma methods in abatement of volatile organic compounds originating from the food industry.

    PubMed

    Preis, S; Klauson, D; Gregor, A

    2013-01-15

    Increased volatile organic compounds emissions and commensurate tightening of applicable legislation mean that the development and application of effective, cost-efficient abatement methods are areas of growing concern. This paper reviews the last two decades' publications on organic vapour emissions from food processing, their sources, impacts and treatment methods. An overview of the latest developments in conventional air treatment methods is presented, followed by the main focus of the paper, non-thermal plasma technology. The results of the review suggest that non-thermal plasma technology, in its pulsed corona discharge configuration, is an emerging treatment method with potential for low-cost, effective abatement of a wide spectrum of organic air pollutants. It is found that the combination of plasma treatment with catalysis is a development trend that demonstrates considerable potential. The as yet relatively small number of plasma treatment applications is considered to be due to the novelty of pulsed electric discharge techniques and a lack of reliable pulse generators and reactors. Other issues acting as barriers to widespread adoption of the technique include the possible formation of stable oxidation by-products, residual ozone and nitrogen oxides, and sensitivity towards air humidity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. 40 CFR 86.001-21 - Application for certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... number of continuous UDDS cycles, determined from the fuel economy on the UDDS applicable to the test... evaporative and/or evaporative/refueling emission family, and a description of the method used to develop...

  9. A SEU-Hard Flip-Flop for Antifuse FPGAs

    NASA Technical Reports Server (NTRS)

    Katz, R.; Wang, J. J.; McCollum, J.; Cronquist, B.; Chan, R.; Yu, D.; Kleyner, I.; Day, John H. (Technical Monitor)

    2001-01-01

    A single event upset (SEU)-hardened flip-flop has been designed and developed for antifuse Field Programmable Gate Array (FPGA) application. Design and application issues, testability, test methods, simulation, and results are discussed.

  10. A method of mobile video transmission based on J2ee

    NASA Astrophysics Data System (ADS)

    Guo, Jian-xin; Zhao, Ji-chun; Gong, Jing; Chun, Yang

    2013-03-01

    As 3G (3rd-generation) networks evolve worldwide, the rising demand for mobile video services and the enormous growth of video on the internet is creating major new revenue opportunities for mobile network operators and application developers. The text introduced a method of mobile video transmission based on J2ME, giving the method of video compressing, then describing the video compressing standard, and then describing the software design. The proposed mobile video method based on J2EE is a typical mobile multimedia application, which has a higher availability and a wide range of applications. The users can get the video through terminal devices such as phone.

  11. Graphene Inks with Cellulosic Dispersants: Development and Applications for Printed Electronics

    NASA Astrophysics Data System (ADS)

    Secor, Ethan Benjamin

    Graphene offers promising opportunities for applications in printed and flexible electronic devices due to its high electrical and thermal conductivity, mechanical flexibility and strength, and chemical and environmental stability. However, scalable production and processing of graphene presents a critical technological challenge preventing the application of graphene for flexible electronic interconnects, electrochemical energy storage, and chemically robust electrical contacts. In this thesis, a promising and versatile platform for the production, patterning, and application of graphene inks is presented based on cellulosic dispersants. Graphene is produced from flake graphite using scalable liquid-phase exfoliation methods, using the polymers ethyl cellulose and nitrocellulose as multifunctional dispersing agents. These cellulose derivatives offer high colloidal stability and broadly tunable rheology for graphene dispersions, providing an effective and tunable platform for graphene ink development. Thermal or photonic annealing decomposes the polymer dispersant to yield high conductivity, flexible graphene patterns for various electronics applications. In particular, the chemical stability of graphene enables robust electrical contacts for ceramic, metallic, organic and electrolytic materials, validating the diverse applicability of graphene in printed electronics. Overall, the strategy for graphene ink design presented here offers a simple, efficient, and versatile method for integrating graphene in a wide range of printed devices and systems, providing both fundamental insight for nanomaterial ink development and realistic opportunities for practical applications.

  12. Application of fluorescence resonance energy transfer in protein studies

    PubMed Central

    Ma, Linlin; Yang, Fan; Zheng, Jie

    2014-01-01

    Since the physical process of fluorescence resonance energy transfer (FRET) was elucidated more than six decades ago, this peculiar fluorescence phenomenon has turned into a powerful tool for biomedical research due to its compatibility in scale with biological molecules as well as rapid developments in novel fluorophores and optical detection techniques. A wide variety of FRET approaches have been devised, each with its own advantages and drawbacks. Especially in the last decade or so, we are witnessing a flourish of FRET applications in biological investigations, many of which exemplify clever experimental design and rigorous analysis. Here we review the current stage of FRET methods development with the main focus on its applications in protein studies in biological systems, by summarizing the basic components of FRET techniques, most established quantification methods, as well as potential pitfalls, illustrated by example applications. PMID:25368432

  13. A comparative study of novel spectrophotometric methods based on isosbestic points; application on a pharmaceutical ternary mixture

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Saleh, Sarah S.; Hassan, Nagiba Y.; Salem, Hesham

    This work represents the application of the isosbestic points present in different absorption spectra. Three novel spectrophotometric methods were developed, the first method is the absorption subtraction method (AS) utilizing the isosbestic point in zero-order absorption spectra; the second method is the amplitude modulation method (AM) utilizing the isosbestic point in ratio spectra; and third method is the amplitude summation method (A-Sum) utilizing the isosbestic point in derivative spectra. The three methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The components at the isosbestic point were determined using the corresponding unified regression equation at this point with no need for a complementary method. The obtained results were statistically compared to each other and to that of the developed PLS model. The specificity of the developed methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed.

  14. Testing Web Applications with Mutation Analysis

    ERIC Educational Resources Information Center

    Praphamontripong, Upsorn

    2017-01-01

    Web application software uses new technologies that have novel methods for integration and state maintenance that amount to new control flow mechanisms and new variables scoping. While modern web development technologies enhance the capabilities of web applications, they introduce challenges that current testing techniques do not adequately test…

  15. Development of a HPLC method for determination of four UV filters in sunscreen and its application to skin penetration studies.

    PubMed

    Souza, Carla; Maia Campos, Patrícia M B G

    2017-12-01

    This study describes the development, validation and application of a high-performance liquid chromatography (HPLC) method for the simultaneous determination of the in vitro skin penetration profile of four UV filters on porcine skin. Experiments were carried out on a gel-cream formulation containing the following UV filters: diethylamino hydroxybenzoyl hexyl benzoate (DHHB), bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT) and ethylhexyl triazone (EHT). The HPLC method demonstrated suitable selectivity, linearity (10.0-50.0 μg/mL), precision, accuracy and recovery from porcine skin and sunscreen formulation. The in vitro skin penetration profile was evaluated using Franz vertical diffusion cells for 24 h after application on porcine ear skin. None of the UV filters penetrated the porcine skin. Most of them stayed on the skin surface (>90%) and only BEMT, EHT and DHHB reached the dermis plus epidermis layer. These results are in agreement with previous results in the literature. Therefore, the analytical method was useful to evaluate the in vitro skin penetration of the UV filters and may help the development of safer and effective sunscreen products. Copyright © 2017 John Wiley & Sons, Ltd.

  16. David W. Templeton | NREL

    Science.gov Websites

    and algal biomass analysis methods and applications of these methods to different processes. Templeton , internally funded research project to develop microalgal compositional analysis methods that included setting methods Closing mass and component balances around pretreatment, saccharification, and fermentation unit

  17. The application of quadratic optimal cooperative control synthesis to a CH-47 helicopter

    NASA Technical Reports Server (NTRS)

    Townsend, Barbara K.

    1987-01-01

    A control-system design method, quadratic optimal cooperative control synthesis (CCS), is applied to the design of a stability and control augmentation system (SCAS). The CCS design method is different from other design methods in that it does not require detailed a priori design criteria, but instead relies on an explicit optimal pilot-model to create desired performance. The design method, which was developed previously for fixed-wing aircraft, is simplified and modified for application to a Boeing CH-47 helicopter. Two SCAS designs are developed using the CCS design methodology. The resulting CCS designs are then compared with designs obtained using classical/frequency-domain methods and linear quadratic regulator (LQR) theory in a piloted fixed-base simulation. Results indicate that the CCS method, with slight modifications, can be used to produce controller designs which compare favorably with the frequency-domain approach.

  18. Wet refractivity tomography with an improved Kalman-Filter method

    NASA Astrophysics Data System (ADS)

    Cao, Yunchang; Chen, Yongqi; Li, Pingwha

    2006-10-01

    An improved retrieval method, which uses the solution with a Gaussian constraint as the initial state variables for the Kalman Filtering (KF) method, was developed to retrieve the wet refractivity profiles from slant wet delays (SWD) extracted by the double-differenced (DD) GPS method. The accuracy of the GPS-derived SWDs is also tested in this study against the measurements of a water vapor radiometer (WVR) and a weather model. It is concluded that the GPS-derived SWDs have similar accuracy to those measured with WVR and are much higher in quality than those derived from the weather model used. The developed method is used to retrieve the 3D wet refractivity distribution in the Hong Kong region. The retrieved profiles agree well with the radiosonde observations, with a difference of about 4 mm km-1 in the low levels. The accurate profiles obtained with this method are applicable in a number of meteorological applications.

  19. Development and application of a multilocus sequence analysis method for the identification of genotypes within genus Bradyrhizobium and for establishing nodule occupancy of soybean (Glycine max L. Merr)

    USDA-ARS?s Scientific Manuscript database

    A Multilocus Sequence Typing (MLST) method based on allelic variation of 7 chromosomal loci was developed for characterizing genotypes within the genus Bradyrhizobium. With the method 29 distinct multilocus genotypes (GTs) were identified among 191 culture collection soybean strains. The occupancy ...

  20. B-spline Method in Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Botella, Olivier; Shariff, Karim; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    B-spline functions are bases for piecewise polynomials that possess attractive properties for complex flow simulations : they have compact support, provide a straightforward handling of boundary conditions and grid nonuniformities, and yield numerical schemes with high resolving power, where the order of accuracy is a mere input parameter. This paper reviews the progress made on the development and application of B-spline numerical methods to computational fluid dynamics problems. Basic B-spline approximation properties is investigated, and their relationship with conventional numerical methods is reviewed. Some fundamental developments towards efficient complex geometry spline methods are covered, such as local interpolation methods, fast solution algorithms on cartesian grid, non-conformal block-structured discretization, formulation of spline bases of higher continuity over triangulation, and treatment of pressure oscillations in Navier-Stokes equations. Application of some of these techniques to the computation of viscous incompressible flows is presented.

  1. Analysis of complex decisionmaking processes. [with application to jet engine development

    NASA Technical Reports Server (NTRS)

    Hill, J. D.; Ollila, R. G.

    1978-01-01

    The analysis of corporate decisionmaking processes related to major system developments is unusually difficult because of the number of decisionmakers involved in the process and the long development cycle. A method for analyzing such decision processes is developed and illustrated through its application to the analysis of the commercial jet engine development process. The method uses interaction matrices as the key tool for structuring the problem, recording data, and analyzing the data to establish the rank order of the major factors affecting development decisions. In the example, the use of interaction matrices permitted analysts to collect and analyze approximately 50 factors that influenced decisions during the four phases of the development cycle, and to determine the key influencers of decisions at each development phase. The results of this study indicate that the cost of new technology installed on an aircraft is the prime concern of the engine manufacturer.

  2. Trends in HFE Methods and Tools and Their Applicability to Safety Reviews

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, J.M.; Plott, C.; Milanski, J.

    2009-09-30

    The U.S. Nuclear Regulatory Commission's (NRC) conducts human factors engineering (HFE) safety reviews of applicant submittals for new plants and for changes to existing plants. The reviews include the evaluation of the methods and tools (M&T) used by applicants as part of their HFE program. The technology used to perform HFE activities has been rapidly evolving, resulting in a whole new generation of HFE M&Ts. The objectives of this research were to identify the current trends in HFE methods and tools, determine their applicability to NRC safety reviews, and identify topics for which the NRC may need additional guidance tomore » support the NRC's safety reviews. We conducted a survey that identified over 100 new HFE M&Ts. The M&Ts were assessed to identify general trends. Seven trends were identified: Computer Applications for Performing Traditional Analyses, Computer-Aided Design, Integration of HFE Methods and Tools, Rapid Development Engineering, Analysis of Cognitive Tasks, Use of Virtual Environments and Visualizations, and Application of Human Performance Models. We assessed each trend to determine its applicability to the NRC's review by considering (1) whether the nuclear industry is making use of M&Ts for each trend, and (2) whether M&Ts reflecting the trend can be reviewed using the current design review guidance. We concluded that M&T trends that are applicable to the commercial nuclear industry and are expected to impact safety reviews may be considered for review guidance development. Three trends fell into this category: Analysis of Cognitive Tasks, Use of Virtual Environments and Visualizations, and Application of Human Performance Models. The other trends do not need to be addressed at this time.« less

  3. Electromagnetic Imaging Methods for Nondestructive Evaluation Applications

    PubMed Central

    Deng, Yiming; Liu, Xin

    2011-01-01

    Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions. PMID:22247693

  4. Applicability of bioanalysis of multiple analytes in drug discovery and development: review of select case studies including assay development considerations.

    PubMed

    Srinivas, Nuggehally R

    2006-05-01

    The development of sound bioanalytical method(s) is of paramount importance during the process of drug discovery and development culminating in a marketing approval. Although the bioanalytical procedure(s) originally developed during the discovery stage may not necessarily be fit to support the drug development scenario, they may be suitably modified and validated, as deemed necessary. Several reviews have appeared over the years describing analytical approaches including various techniques, detection systems, automation tools that are available for an effective separation, enhanced selectivity and sensitivity for quantitation of many analytes. The intention of this review is to cover various key areas where analytical method development becomes necessary during different stages of drug discovery research and development process. The key areas covered in this article with relevant case studies include: (a) simultaneous assay for parent compound and metabolites that are purported to display pharmacological activity; (b) bioanalytical procedures for determination of multiple drugs in combating a disease; (c) analytical measurement of chirality aspects in the pharmacokinetics, metabolism and biotransformation investigations; (d) drug monitoring for therapeutic benefits and/or occupational hazard; (e) analysis of drugs from complex and/or less frequently used matrices; (f) analytical determination during in vitro experiments (metabolism and permeability related) and in situ intestinal perfusion experiments; (g) determination of a major metabolite as a surrogate for the parent molecule; (h) analytical approaches for universal determination of CYP450 probe substrates and metabolites; (i) analytical applicability to prodrug evaluations-simultaneous determination of prodrug, parent and metabolites; (j) quantitative determination of parent compound and/or phase II metabolite(s) via direct or indirect approaches; (k) applicability in analysis of multiple compounds in select disease areas and/or in clinically important drug-drug interaction studies. A tabular representation of select examples of analysis is provided covering areas of separation conditions, validation aspects and applicable conclusion. A limited discussion is provided on relevant aspects of the need for developing bioanalytical procedures for speedy drug discovery and development. Additionally, some key elements such as internal standard selection, likely issues of mass detection, matrix effect, chiral aspects etc. are provided for consideration during method development.

  5. DEVELOPMENT OF AN EMISSION FACTOR FOR AMMONIA EMISSIONS FROM U.S. SWINE FARMS BASED ON FIELD TESTS AND APPLICATION OF A MASS BALANCE METHOD

    EPA Science Inventory

    This paper summarizes and discusses recent available U.S. and European information on
    ammonia (NH3) emissions from swine farms and assesses the applicability for general use
    in the United States. The emission rates for the swine barns calculated by various methods show
    g...

  6. Developing a Measure of Therapist Adherence to Contingency Management: An Application of the Many-Facet Rasch Model

    ERIC Educational Resources Information Center

    Chapman, Jason E.; Sheidow, Ashli J.; Henggeler, Scott W.; Halliday-Boykins, Colleen A.; Cunningham, Phillippe B.

    2008-01-01

    A unique application of the Many-Facet Rasch Model (MFRM) is introduced as the preferred method for evaluating the psychometric properties of a measure of therapist adherence to Contingency Management (CM) treatment of adolescent substance use. The utility of psychometric methods based in Classical Test Theory was limited by complexities of the…

  7. Iterative computation of generalized inverses, with an application to CMG steering laws

    NASA Technical Reports Server (NTRS)

    Steincamp, J. W.

    1971-01-01

    A cubically convergent iterative method for computing the generalized inverse of an arbitrary M X N matrix A is developed and a FORTRAN subroutine by which the method was implemented for real matrices on a CDC 3200 is given, with a numerical example to illustrate accuracy. Application to a redundant single-gimbal CMG assembly steering law is discussed.

  8. Applicability of integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) for the simultaneous detection of the four human enteric enterovirus species in disinfection studies

    EPA Science Inventory

    A newly developed integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) method and its applicability in UV disinfection studies is described. This method utilizes a singular cell culture system coupled with four RTqPCR assays to detect infectious serotypes t...

  9. CAreDroid: Adaptation Framework for Android Context-Aware Applications

    PubMed Central

    Elmalaki, Salma; Wanner, Lucas; Srivastava, Mani

    2015-01-01

    Context-awareness is the ability of software systems to sense and adapt to their physical environment. Many contemporary mobile applications adapt to changing locations, connectivity states, available computational and energy resources, and proximity to other users and devices. Nevertheless, there is little systematic support for context-awareness in contemporary mobile operating systems. Because of this, application developers must build their own context-awareness adaptation engines, dealing directly with sensors and polluting application code with complex adaptation decisions. In this paper, we introduce CAreDroid, which is a framework that is designed to decouple the application logic from the complex adaptation decisions in Android context-aware applications. In this framework, developers are required— only—to focus on the application logic by providing a list of methods that are sensitive to certain contexts along with the permissible operating ranges under those contexts. At run time, CAreDroid monitors the context of the physical environment and intercepts calls to sensitive methods, activating only the blocks of code that best fit the current physical context. CAreDroid is implemented as part of the Android runtime system. By pushing context monitoring and adaptation into the runtime system, CAreDroid eases the development of context-aware applications and increases their efficiency. In particular, case study applications implemented using CAre-Droid are shown to have: (1) at least half lines of code fewer and (2) at least 10× more efficient in execution time compared to equivalent context-aware applications that use only standard Android APIs. PMID:26834512

  10. CAreDroid: Adaptation Framework for Android Context-Aware Applications.

    PubMed

    Elmalaki, Salma; Wanner, Lucas; Srivastava, Mani

    2015-09-01

    Context-awareness is the ability of software systems to sense and adapt to their physical environment. Many contemporary mobile applications adapt to changing locations, connectivity states, available computational and energy resources, and proximity to other users and devices. Nevertheless, there is little systematic support for context-awareness in contemporary mobile operating systems. Because of this, application developers must build their own context-awareness adaptation engines, dealing directly with sensors and polluting application code with complex adaptation decisions. In this paper, we introduce CAreDroid, which is a framework that is designed to decouple the application logic from the complex adaptation decisions in Android context-aware applications. In this framework, developers are required- only-to focus on the application logic by providing a list of methods that are sensitive to certain contexts along with the permissible operating ranges under those contexts. At run time, CAreDroid monitors the context of the physical environment and intercepts calls to sensitive methods, activating only the blocks of code that best fit the current physical context. CAreDroid is implemented as part of the Android runtime system. By pushing context monitoring and adaptation into the runtime system, CAreDroid eases the development of context-aware applications and increases their efficiency. In particular, case study applications implemented using CAre-Droid are shown to have: (1) at least half lines of code fewer and (2) at least 10× more efficient in execution time compared to equivalent context-aware applications that use only standard Android APIs.

  11. Development of a Prototype Human Resources Data Handbook for Systems Engineering: An Application to Fire Control Systems. Final Report for Period October 1971-June 1975.

    ERIC Educational Resources Information Center

    Reed, Lawrence E.; And Others

    The methods and problems encountered in the development of a prototype human resources data handbook are discussed. The goal of the research was to determine whether it was feasible to consolidate, in a single comprehensive handbook, human resources data applicable to system design and development. Selected for this purpose were data on the…

  12. The application of contraction theory to an iterative formulation of electromagnetic scattering

    NASA Technical Reports Server (NTRS)

    Brand, J. C.; Kauffman, J. F.

    1985-01-01

    Contraction theory is applied to an iterative formulation of electromagnetic scattering from periodic structures and a computational method for insuring convergence is developed. A short history of spectral (or k-space) formulation is presented with an emphasis on application to periodic surfaces. To insure a convergent solution of the iterative equation, a process called the contraction corrector method is developed. Convergence properties of previously presented iterative solutions to one-dimensional problems are examined utilizing contraction theory and the general conditions for achieving a convergent solution are explored. The contraction corrector method is then applied to several scattering problems including an infinite grating of thin wires with the solution data compared to previous works.

  13. Development of speckle-free channel-cut crystal optics using plasma chemical vaporization machining for coherent x-ray applications.

    PubMed

    Hirano, Takashi; Osaka, Taito; Sano, Yasuhisa; Inubushi, Yuichi; Matsuyama, Satoshi; Tono, Kensuke; Ishikawa, Tetsuya; Yabashi, Makina; Yamauchi, Kazuto

    2016-06-01

    We have developed a method of fabricating speckle-free channel-cut crystal optics with plasma chemical vaporization machining, an etching method using atmospheric-pressure plasma, for coherent X-ray applications. We investigated the etching characteristics to silicon crystals and achieved a small surface roughness of less than 1 nm rms at a removal depth of >10 μm, which satisfies the requirements for eliminating subsurface damage while suppressing diffuse scattering from rough surfaces. We applied this method for fabricating channel-cut Si(220) crystals for a hard X-ray split-and-delay optical system and confirmed that the crystals provided speckle-free reflection profiles under coherent X-ray illumination.

  14. Progress in biocatalysis with immobilized viable whole cells: systems development, reaction engineering and applications.

    PubMed

    Polakovič, Milan; Švitel, Juraj; Bučko, Marek; Filip, Jaroslav; Neděla, Vilém; Ansorge-Schumacher, Marion B; Gemeiner, Peter

    2017-05-01

    Viable microbial cells are important biocatalysts in the production of fine chemicals and biofuels, in environmental applications and also in emerging applications such as biosensors or medicine. Their increasing significance is driven mainly by the intensive development of high performance recombinant strains supplying multienzyme cascade reaction pathways, and by advances in preservation of the native state and stability of whole-cell biocatalysts throughout their application. In many cases, the stability and performance of whole-cell biocatalysts can be highly improved by controlled immobilization techniques. This review summarizes the current progress in the development of immobilized whole-cell biocatalysts, the immobilization methods as well as in the bioreaction engineering aspects and economical aspects of their biocatalytic applications.

  15. Development of a novel method to enhance the therapeutic effect on tumours by simultaneous action of radiation and heating.

    PubMed

    Kosterev, Vladimir V; Kramer-Ageev, Evgeny A; Mazokhin, Vladimir N; van Rhoon, Gerard C; Crezee, Johannes

    2015-06-01

    This paper describes the development of a new type of electromagnetic hyperthermia applicator delivering dose control within large application fields and increased effectiveness by providing simultaneous action of radiation and heating (SRH) in malignant tumours, and development of a dosimetric feedback method to support SRH. Single and phased arrays of flexible applicators have been developed to allow simultaneous hyperthermia and external beam therapy. A frequency of 434 MHz is used to heat near-surface and moderately deep-seated tumours and 70 MHz for deep-seated tumours. Phase and amplitude control allows focusing of electromagnetic energy (EM) to deep-seated tumours. The specific absorption rate (SAR) dose distribution can be modified to achieve uniform heating of tumours with complex shapes and heterogeneous tissue properties. A lithium fluoride thermoluminescent dosimeter (TLD) in a flexible film cassette has been developed for real-time dose measurement. Four types of 434 MHz applicators were manufactured with 3, 4, 9 or 12 independent applicators. Two types of 70 MHz applicators were made with 4 or 6 independent applicators. Phantom tests demonstrated the ability to control the SAR pattern by phase and amplitude control. Placement of the dosimeter between bolus and phantom increased the phantom surface temperature up to 3 °C and showed that the ratio of absorbed energy in TLD to dose in water approaches (0.83 ± 3%) for photon energies >60 keV. Simultaneous and controlled radiation and local hyperthermia is technically feasible in a preclinical setting, a clinical feasibility test is the next step.

  16. Holographic Methods Of Dynamic Particulate Measurements ¬â€?Current Status

    NASA Astrophysics Data System (ADS)

    Thompson, Brian J.

    1983-03-01

    The field of holographic particulate measurements continues to be very active with many new applications in such diverse fields as bubble chamber recording and contaminant measurements in small vials. The methods have also been extended to measure velocity distributions of particles within a volume, particularly by the application of subsequent image processing methods. These techniques could be coupled with hybrid systems to become near real time. The current status of these more recent developments is reviewed.

  17. Analysis of Biological Interactions by Affinity Chromatography: Clinical and Pharmaceutical Applications

    PubMed Central

    Hage, David S.

    2017-01-01

    BACKGROUND The interactions between biochemical and chemical agents in the body are important in many clinical processes. Affinity chromatography and high-performance affinity chromatography (HPAC), in which a column contains an immobilized biologically-related binding agent, are two methods that can be used to study these interactions. CONTENT This review looks at various approaches that can be used in affinity chromatography and HPAC to characterize the strength or rate of a biological interaction, the number and types of sites that are involved in this process, and the interactions between multiple solutes for the same binding agent. A number of applications for these methods are examined, with an emphasis on recent developments and high-performance affinity methods. These applications include the use of these techniques for fundamental studies of biological interactions, high-throughput screening of drugs, work with modified proteins, tools for personalized medicine, and studies of drug-drug competition for a common binding agent. SUMMARY The wide range of formats and detection methods that can be used with affinity chromatography and HPAC for examining biological interactions makes these tools attractive for various clinical and pharmaceutical applications. Future directions in the development of small-scale columns and the coupling of these methods with other techniques, such as mass spectrometry or other separation methods, should continue to increase the flexibility and ease with which these approaches can be used in work involving clinical or pharmaceutical samples. PMID:28396561

  18. Safety assessment in plant layout design using indexing approach: implementing inherent safety perspective. Part 1 - guideword applicability and method description.

    PubMed

    Tugnoli, Alessandro; Khan, Faisal; Amyotte, Paul; Cozzani, Valerio

    2008-12-15

    Layout planning plays a key role in the inherent safety performance of process plants since this design feature controls the possibility of accidental chain-events and the magnitude of possible consequences. A lack of suitable methods to promote the effective implementation of inherent safety in layout design calls for the development of new techniques and methods. In the present paper, a safety assessment approach suitable for layout design in the critical early phase is proposed. The concept of inherent safety is implemented within this safety assessment; the approach is based on an integrated assessment of inherent safety guideword applicability within the constraints typically present in layout design. Application of these guidewords is evaluated along with unit hazards and control devices to quantitatively map the safety performance of different layout options. Moreover, the economic aspects related to safety and inherent safety are evaluated by the method. Specific sub-indices are developed within the integrated safety assessment system to analyze and quantify the hazard related to domino effects. The proposed approach is quick in application, auditable and shares a common framework applicable in other phases of the design lifecycle (e.g. process design). The present work is divided in two parts: Part 1 (current paper) presents the application of inherent safety guidelines in layout design and the index method for safety assessment; Part 2 (accompanying paper) describes the domino hazard sub-index and demonstrates the proposed approach with a case study, thus evidencing the introduction of inherent safety features in layout design.

  19. Development of Standardized Clinical Training Cases for Diagnosis of Sexual Abuse using a Secure Telehealth Application

    ERIC Educational Resources Information Center

    Frasier, Lori D.; Thraen, Ioana; Kaplan, Rich; Goede, Patricia

    2012-01-01

    Objectives: The training of physicians, nurse examiners, social workers and other health professional on the evidentiary findings of sexual abuse in children is challenging. Our objective was to develop peer reviewed training cases for medical examiners of child sexual abuse, using a secure web based telehealth application (TeleCAM). Methods:…

  20. Current Standardization and Cooperative Efforts Related to Industrial Information Infrastructures.

    DTIC Science & Technology

    1993-05-01

    Data Management Systems: Components used to store, manage, and retrieve data. Data management includes knowledge bases, database management...Application Development Tools and Methods X/Open and POSIX APIs Integrated Design Support System (IDS) Knowledge -Based Systems (KBS) Application...IDEFlx) Yourdon Jackson System Design (JSD) Knowledge -Based Systems (KBSs) Structured Systems Development (SSD) Semantic Unification Meta-Model

  1. Development of a Handmade Conductivity Measurement Device for a Thin-Film Semiconductor and Its Application to Polypyrrole

    ERIC Educational Resources Information Center

    Seng, Set; Shinpei, Tomita; Yoshihiko, Inada; Masakazu, Kita

    2014-01-01

    The precise measurement of conductivity of a semiconductor film such as polypyrrole (Ppy) should be carried out by the four-point probe method; however, this is difficult for classroom application. This article describes the development of a new, convenient, handmade conductivity device from inexpensive materials that can measure the conductivity…

  2. Physical Education Pre-Service Teachers' Understanding, Application, and Development of Critical Thinking

    ERIC Educational Resources Information Center

    Liu, Jiling; McBride, Ron E.; Xiang, Ping; Scarmardo-Rhodes, Melissa

    2018-01-01

    To better prepare physical education (PE) teachers, this study explored a group of pre-service teachers' understanding, application, and development of critical thinking (CT) in a capstone methods course. Participants were 12 pre-service teachers from a PE teacher education (PETE) program at a large university in the southwestern United States.…

  3. Evaluating Students' Perception of Group Work for Mobile Application Development Learning, Productivity, Enjoyment and Confidence in Quality

    ERIC Educational Resources Information Center

    Powell, Loreen M.; Wimmer, Hayden

    2016-01-01

    Teaching programming and mobile application development concepts can be challenging for instructors; however, teaching an interdisciplinary class with varied skill levels amplifies this challenge. To encompass a broad range of students, many instructors have sought to improve their lessons and methods by experimenting with group/team programming.…

  4. THE THEME-CONCEPT UNIT IN LITERATURE.

    ERIC Educational Resources Information Center

    HILLOCKS, GEORGE, JR.

    A SUGGESTED UNIT FRAMEWORK WAS DEVELOPED AS A METHOD OF TEACHING SEVENTH-GRADE LITERATURE AT EUCLID CENTRAL JUNIOR HIGH SCHOOL IN EUCLID, OHIO. THE UNIT WAS DIVIDED INTO SIX MAJOR SECTIONS--(1) DEVELOPMENT OF THE CONCEPT, (2) APPLICATION OF THE CONCEPT UNDER THE GUIDANCE OF A TEACHER, (3) REVISION OF THE CONCEPT, (4) APPLICATION OF THE CONCEPT BY…

  5. Development and application of colorimetric microassay for determining boron-containing compounds

    Treesearch

    S. Nami Kartal; Frederick Green

    2002-01-01

    This paper describes the development of a microsssay for boron and the application of this microassay for evaluating leachability of boron by post-treatment of southern pine with the calcium precipitating agent NHA (N'N-napthaloylhydroxylamine). The microsssay method for quantitative estimation of boron content in treated wood and leachates is a microadaptation of...

  6. 76 FR 42168 - Health Services Research and Development Service Merit Review Board; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... testing of new methods of health care delivery and management, and nursing research. Applications are... Management; HSR 2--Determinants of Patient Response to Care; HSR 3--Informatics and Research Methods... DEPARTMENT OF VETERANS AFFAIRS Health Services Research and Development Service Merit Review Board...

  7. Validation in context of bioanalytical research papers.

    PubMed

    Rogatsky, Eduard; Tomuta, Vlad; Stein, Daniel T

    2006-11-01

    We have noticed the growing amount of application papers, mainly focused on detailed description of analytical assay validation with limited discussion of method development and optimization in top-ranked chromatographic journals. We analyze the implications of this trend and suggest a re-emphasis on the intellectual component in method development.

  8. Putting Writing Research into Practice: Applications for Teacher Professional Development

    ERIC Educational Resources Information Center

    Troia, Gary A., Ed.; Shankland, Rebecca K., Ed.; Heintz, Anne, Ed.

    2010-01-01

    What are the most effective methods for teaching writing across grade levels and student populations? What kind of training do teachers need to put research-validated methods into practice? This unique volume combines the latest writing research with clear-cut recommendations for designing high-quality professional development efforts. Prominent…

  9. Report: Eleven Years After Agreement, EPA Has Not Developed Reliable Emission Estimation Methods to Determine Whether Animal Feeding Operations Comply With Clean Air Act and Other Statutes

    EPA Pesticide Factsheets

    Report #17-P-0396, September 19, 2017. Until the EPA develops sound methods to estimate emissions, the agency cannot reliably determine whether animal feeding operations comply with applicable Clean Air Act requirements.

  10. Recent trends related to the use of formal methods in software engineering

    NASA Technical Reports Server (NTRS)

    Prehn, Soren

    1986-01-01

    An account is given of some recent developments and trends related to the development and use of formal methods in software engineering. Ongoing activities in Europe are focussed on, since there seems to be a notable difference in attitude towards industrial usage of formal methods in Europe and in the U.S. A more detailed account is given of the currently most widespread formal method in Europe: the Vienna Development Method. Finally, the use of Ada is discussed in relation to the application of formal methods, and the potential for constructing Ada-specific tools based on that method is considered.

  11. How applicable is even-aged silviculture in the northeast?

    Treesearch

    Ralph H. Griffin

    1977-01-01

    The applicability of even-aged silviculture in the management of forest stands in the Northeast is examined through consideration of the forest stand, stand development, intermediate cuttings, and regeneration methods. It is concluded that even-aged silviculture is quite applicable in the management of forest stands in the Northeast.

  12. Applications of statistical physics methods in economics: Current state and perspectives

    NASA Astrophysics Data System (ADS)

    Lux, Thomas

    2016-12-01

    This note discusses the development of applications of statistical physics to economics since the beginning of the `econophysics' movement about twenty years ago. I attempt to assess which of these applications appear particularly valuable and successful, and where important overlaps exist between research conducted by economist and `econophysicists'.

  13. A new diagnostic method for separating airborne and structureborne noise radiated by plates with applications for propeller driven aircraft

    NASA Technical Reports Server (NTRS)

    Mcgary, Michael C.

    1988-01-01

    The anticipated application of advanced turboprop propulsion systems is expected to increase the interior noise of future aircraft to unacceptably high levels. The absence of technically and economically feasible noise source-path diagnostic tools has been a prime obstacle in the development of efficient noise control treatments for propeller-driven aircraft. A new diagnostic method that permits the separation and prediction of the fully coherent airborne and structureborne components of the sound radiated by plates or thin shells has been developed. Analytical and experimental studies of the proposed method were performed on an aluminum plate. The results of the study indicate that the proposed method could be used in flight, and has fewer encumbrances than the other diagnostic tools currently available.

  14. Ultrasonography in gastroenterology.

    PubMed

    Ødegaard, Svein; Nesje, Lars B; Hausken, Trygve; Gilja, Odd Helge

    2015-06-01

    Ultrasonography (US) is a safe and available real-time, high-resolution imaging method, which during the last decades has been increasingly integrated as a clinical tool in gastroenterology. New US applications have emerged with enforced data software and new technical solutions, including strain evaluation, three-dimensional imaging and use of ultrasound contrast agents. Specific gastroenterologic applications have been developed by combining US with other diagnostic or therapeutic methods, such as endoscopy, manometry, puncture needles, diathermy and stents. US provides detailed structural information about visceral organs without hazard to the patients and can play an important clinical role by reducing the need for invasive procedures. This paper presents different aspects of US in gastroenterology, with a special emphasis on the contribution from Nordic scientists in developing clinical applications.

  15. Development of management information system for land in mine area based on MapInfo

    NASA Astrophysics Data System (ADS)

    Wang, Shi-Dong; Liu, Chuang-Hua; Wang, Xin-Chuang; Pan, Yan-Yu

    2008-10-01

    MapInfo is current a popular GIS software. This paper introduces characters of MapInfo and GIS second development methods offered by MapInfo, which include three ones based on MapBasic, OLE automation, and MapX control usage respectively. Taking development of land management information system in mine area for example, in the paper, the method of developing GIS applications based on MapX has been discussed, as well as development of land management information system in mine area has been introduced in detail, including development environment, overall design, design and realization of every function module, and simple application of system, etc. The system uses MapX 5.0 and Visual Basic 6.0 as development platform, takes SQL Server 2005 as back-end database, and adopts Matlab 6.5 to calculate number in back-end. On the basis of integrated design, the system develops eight modules including start-up, layer control, spatial query, spatial analysis, data editing, application model, document management, results output. The system can be used in mine area for cadastral management, land use structure optimization, land reclamation, land evaluation, analysis and forecasting for land in mine area and environmental disruption, thematic mapping, and so on.

  16. Nektar++: An open-source spectral/ hp element framework

    NASA Astrophysics Data System (ADS)

    Cantwell, C. D.; Moxey, D.; Comerford, A.; Bolis, A.; Rocco, G.; Mengaldo, G.; De Grazia, D.; Yakovlev, S.; Lombard, J.-E.; Ekelschot, D.; Jordi, B.; Xu, H.; Mohamied, Y.; Eskilsson, C.; Nelson, B.; Vos, P.; Biotto, C.; Kirby, R. M.; Sherwin, S. J.

    2015-07-01

    Nektar++ is an open-source software framework designed to support the development of high-performance scalable solvers for partial differential equations using the spectral/ hp element method. High-order methods are gaining prominence in several engineering and biomedical applications due to their improved accuracy over low-order techniques at reduced computational cost for a given number of degrees of freedom. However, their proliferation is often limited by their complexity, which makes these methods challenging to implement and use. Nektar++ is an initiative to overcome this limitation by encapsulating the mathematical complexities of the underlying method within an efficient C++ framework, making the techniques more accessible to the broader scientific and industrial communities. The software supports a variety of discretisation techniques and implementation strategies, supporting methods research as well as application-focused computation, and the multi-layered structure of the framework allows the user to embrace as much or as little of the complexity as they need. The libraries capture the mathematical constructs of spectral/ hp element methods, while the associated collection of pre-written PDE solvers provides out-of-the-box application-level functionality and a template for users who wish to develop solutions for addressing questions in their own scientific domains.

  17. Risk assessment for construction projects of transport infrastructure objects

    NASA Astrophysics Data System (ADS)

    Titarenko, Boris

    2017-10-01

    The paper analyzes and compares different methods of risk assessment for construction projects of transport objects. The management of such type of projects demands application of special probabilistic methods due to large level of uncertainty of their implementation. Risk management in the projects requires the use of probabilistic and statistical methods. The aim of the work is to develop a methodology for using traditional methods in combination with robust methods that allow obtaining reliable risk assessments in projects. The robust approach is based on the principle of maximum likelihood and in assessing the risk allows the researcher to obtain reliable results in situations of great uncertainty. The application of robust procedures allows to carry out a quantitative assessment of the main risk indicators of projects when solving the tasks of managing innovation-investment projects. Calculation of damage from the onset of a risky event is possible by any competent specialist. And an assessment of the probability of occurrence of a risky event requires the involvement of special probabilistic methods based on the proposed robust approaches. Practice shows the effectiveness and reliability of results. The methodology developed in the article can be used to create information technologies and their application in automated control systems for complex projects.

  18. The Development of a Robot-Based Learning Companion: A User-Centered Design Approach

    ERIC Educational Resources Information Center

    Hsieh, Yi-Zeng; Su, Mu-Chun; Chen, Sherry Y.; Chen, Gow-Dong

    2015-01-01

    A computer-vision-based method is widely employed to support the development of a variety of applications. In this vein, this study uses a computer-vision-based method to develop a playful learning system, which is a robot-based learning companion named RobotTell. Unlike existing playful learning systems, a user-centered design (UCD) approach is…

  19. Development and Content Validation of the Transition Readiness Inventory Item Pool for Adolescent and Young Adult Survivors of Childhood Cancer.

    PubMed

    Schwartz, Lisa A; Hamilton, Jessica L; Brumley, Lauren D; Barakat, Lamia P; Deatrick, Janet A; Szalda, Dava E; Bevans, Katherine B; Tucker, Carole A; Daniel, Lauren C; Butler, Eliana; Kazak, Anne E; Hobbie, Wendy L; Ginsberg, Jill P; Psihogios, Alexandra M; Ver Hoeve, Elizabeth; Tuchman, Lisa K

    2017-10-01

    The development of the Transition Readiness Inventory (TRI) item pool for adolescent and young adult childhood cancer survivors is described, aiming to both advance transition research and provide an example of the application of NIH Patient Reported Outcomes Information System methods. Using rigorous measurement development methods including mixed methods, patient and parent versions of the TRI item pool were created based on the Social-ecological Model of Adolescent and young adult Readiness for Transition (SMART). Each stage informed development and refinement of the item pool. Content validity ratings and cognitive interviews resulted in 81 content valid items for the patient version and 85 items for the parent version. TRI represents the first multi-informant, rigorously developed transition readiness item pool that comprehensively measures the social-ecological components of transition readiness. Discussion includes clinical implications, the application of TRI and the methods to develop the item pool to other populations, and next steps for further validation and refinement. © The Author 2017. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  20. Application of augmented-Lagrangian methods in meteorology: Comparison of different conjugate-gradient codes for large-scale minimization

    NASA Technical Reports Server (NTRS)

    Navon, I. M.

    1984-01-01

    A Lagrange multiplier method using techniques developed by Bertsekas (1982) was applied to solving the problem of enforcing simultaneous conservation of the nonlinear integral invariants of the shallow water equations on a limited area domain. This application of nonlinear constrained optimization is of the large dimensional type and the conjugate gradient method was found to be the only computationally viable method for the unconstrained minimization. Several conjugate-gradient codes were tested and compared for increasing accuracy requirements. Robustness and computational efficiency were the principal criteria.

  1. Application of integrated fluid-thermal-structural analysis methods

    NASA Technical Reports Server (NTRS)

    Wieting, Allan R.; Dechaumphai, Pramote; Bey, Kim S.; Thornton, Earl A.; Morgan, Ken

    1988-01-01

    Hypersonic vehicles operate in a hostile aerothermal environment which has a significant impact on their aerothermostructural performance. Significant coupling occurs between the aerodynamic flow field, structural heat transfer, and structural response creating a multidisciplinary interaction. Interfacing state-of-the-art disciplinary analysis methods is not efficient, hence interdisciplinary analysis methods integrated into a single aerothermostructural analyzer are needed. The NASA Langley Research Center is developing such methods in an analyzer called LIFTS (Langley Integrated Fluid-Thermal-Structural) analyzer. The evolution and status of LIFTS is reviewed and illustrated through applications.

  2. Instrumentation for Measurement of Gas Permeability of Polymeric Membranes

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T.; Wood, George M.; Brown, Kenneth G.; Burns, Karen S.

    1993-01-01

    A mass spectrometric 'Dynamic Delta' method for the measurement of gas permeability of polymeric membranes has been developed. The method is universally applicable for measurement of the permeability of any gas through polymeric membrane materials. The usual large sample size of more than 100 square centimeters required for other methods is not necessary for this new method which requires a size less than one square centimeter. The new method should fulfill requirements and find applicability for industrial materials such as food packaging, contact lenses and other commercial materials where gas permeability or permselectivity properties are important.

  3. Energy conversion and storage program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: (1) production of new synthetic fuels; (2) development of high-performance rechargeable batteries and fuel cells; (3) development of advanced thermochemical processes for energy conversion; (4) characterization of complex chemical processes; and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  4. Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Taehun

    2015-10-20

    The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations,more » better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.« less

  5. Application of high level wavefunction methods in quantum mechanics/molecular mechanics hybrid schemes.

    PubMed

    Mata, Ricardo A

    2010-05-21

    In this Perspective, several developments in the field of quantum mechanics/molecular mechanics (QM/MM) approaches are reviewed. Emphasis is placed on the use of correlated wavefunction theory and new state of the art methods for the treatment of large quantum systems. Until recently, computational chemistry approaches to large/complex chemical problems have seldom been considered as tools for quantitative predictions. However, due to the tremendous development of computational resources and new quantum chemical methods, it is nowadays possible to describe the electronic structure of biomolecules at levels of theory which a decade ago were only possible for system sizes of up to 20 atoms. These advances are here outlined in the context of QM/MM. The article concludes with a short outlook on upcoming developments and possible bottlenecks for future applications.

  6. Development and evaluation of thermal model reduction algorithms for spacecraft

    NASA Astrophysics Data System (ADS)

    Deiml, Michael; Suderland, Martin; Reiss, Philipp; Czupalla, Markus

    2015-05-01

    This paper is concerned with the topic of the reduction of thermal models of spacecraft. The work presented here has been conducted in cooperation with the company OHB AG, formerly Kayser-Threde GmbH, and the Institute of Astronautics at Technische Universität München with the goal to shorten and automatize the time-consuming and manual process of thermal model reduction. The reduction of thermal models can be divided into the simplification of the geometry model for calculation of external heat flows and radiative couplings and into the reduction of the underlying mathematical model. For simplification a method has been developed which approximates the reduced geometry model with the help of an optimization algorithm. Different linear and nonlinear model reduction techniques have been evaluated for their applicability in reduction of the mathematical model. Thereby the compatibility with the thermal analysis tool ESATAN-TMS is of major concern, which restricts the useful application of these methods. Additional model reduction methods have been developed, which account to these constraints. The Matrix Reduction method allows the approximation of the differential equation to reference values exactly expect for numerical errors. The summation method enables a useful, applicable reduction of thermal models that can be used in industry. In this work a framework for model reduction of thermal models has been created, which can be used together with a newly developed graphical user interface for the reduction of thermal models in industry.

  7. The construction of airfoil pressure models by the plate method: Achievements, current research, technology development and potential applications

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.

    1985-01-01

    A method of constructing airfoils by inscribing pressure channels on the face of opposing plates, bonding them together to form one plate with integral channels, and contour machining this plate to form an airfoil model is described. The research and development program to develop the bonding technology is described as well as the construction and testing of an airfoil model. Sample aerodynamic data sets are presented and discussed. Also, work currently under way to produce thin airfoils with camber is presented. Samples of the aft section of a 6 percent airfoil with complete pressure instrumentation including the trailing edge are pictured and described. This technique is particularly useful in fabricating models for transonic cryogenic testing, but it should find application in a wide ange of model construction projects, as well as the fabrication of fuel injectors, space hardware, and other applications requiring advanced bonding technology and intricate fluid passages.

  8. RINGMesh: A programming library for developing mesh-based geomodeling applications

    NASA Astrophysics Data System (ADS)

    Pellerin, Jeanne; Botella, Arnaud; Bonneau, François; Mazuyer, Antoine; Chauvin, Benjamin; Lévy, Bruno; Caumon, Guillaume

    2017-07-01

    RINGMesh is a C++ open-source programming library for manipulating discretized geological models. It is designed to ease the development of applications and workflows that use discretized 3D models. It is neither a geomodeler, nor a meshing software. RINGMesh implements functionalities to read discretized surface-based or volumetric structural models and to check their validity. The models can be then exported in various file formats. RINGMesh provides data structures to represent geological structural models, either defined by their discretized boundary surfaces, and/or by discretized volumes. A programming interface allows to develop of new geomodeling methods, and to plug in external software. The goal of RINGMesh is to help researchers to focus on the implementation of their specific method rather than on tedious tasks common to many applications. The documented code is open-source and distributed under the modified BSD license. It is available at https://www.ring-team.org/index.php/software/ringmesh.

  9. WE-A-18C-01: Emerging and Innovative Ultrasound Technology in Diagnosis and Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emelianov, S; Oraevsky, A; Stafford, R

    The application of new ultrasound-based technologies in medicine has expanded in recent years. One area of rapid growth has been the combination of ultrasound with other methods of image generation and imaging modalities to produce hybrid approaches for diagnostic imaging and noninvasive therapeutic intervention. The presentations associated with this session will provide an overview of two emerging technologies that are currently being developed and implemented to enhance ultrasound-related diagnostic imaging and therapy: the utilization of optically-induced ultrasound imaging (optoacoustic / photoacoustic imaging) and the use of magnetic resonance imaging to guide the use of high-intensity focused ultrasound for therapeutic applications.more » Learning Objectives: Develop a general understanding of the underlying technologies associated with optoacoustic / photoacoustic tomography and MRguided high-intensity focused ultrasound. Develop an understanding of the current methods of these new ultrasound-based technologies in preclinical research and clinical applications.« less

  10. Genetic data simulators and their applications: an overview

    PubMed Central

    Peng, Bo; Chen, Huann-Sheng; Mechanic, Leah E.; Racine, Ben; Clarke, John; Gillanders, Elizabeth; Feuer, Eric J.

    2016-01-01

    Computer simulations have played an indispensable role in the development and application of statistical models and methods for genetic studies across multiple disciplines. The need to simulate complex evolutionary scenarios and pseudo-datasets for various studies has fueled the development of dozens of computer programs with varying reliability, performance, and application areas. To help researchers compare and choose the most appropriate simulators for their studies, we have created the Genetic Simulation Resources (GSR) website, which allows authors of simulation software to register their applications and describe them with more than 160 defined attributes. This article summarizes the properties of 93 simulators currently registered at GSR and provides an overview of the development and applications of genetic simulators. Unlike other review articles that address technical issues or compare simulators for particular application areas, we focus on software development, maintenance, and features of simulators, often from a historical perspective. Publications that cite these simulators are used to summarize both the applications of genetic simulations and the utilization of simulators. PMID:25504286

  11. Qualitative methods: what are they and why use them?

    PubMed Central

    Sofaer, S

    1999-01-01

    OBJECTIVE: To provide an overview of reasons why qualitative methods have been used and can be used in health services and health policy research, to describe a range of specific methods, and to give examples of their application. DATA SOURCES: Classic and contemporary descriptions of the underpinnings and applications of qualitative research methods and studies that have used such methods to examine important health services and health policy issues. PRINCIPAL FINDINGS: Qualitative research methods are valuable in providing rich descriptions of complex phenomena; tracking unique or unexpected events; illuminating the experience and interpretation of events by actors with widely differing stakes and roles; giving voice to those whose views are rarely heard; conducting initial explorations to develop theories and to generate and even test hypotheses; and moving toward explanations. Qualitative and quantitative methods can be complementary, used in sequence or in tandem. The best qualitative research is systematic and rigorous, and it seeks to reduce bias and error and to identify evidence that disconfirms initial or emergent hypotheses. CONCLUSIONS: Qualitative methods have much to contribute to health services and health policy research, especially as such research deals with rapid change and develops a more fully integrated theory base and research agenda. However, the field must build on the best traditions and techniques of qualitative methods and must recognize that special training and experience are essential to the application of these methods. PMID:10591275

  12. Energy minimization in medical image analysis: Methodologies and applications.

    PubMed

    Zhao, Feng; Xie, Xianghua

    2016-02-01

    Energy minimization is of particular interest in medical image analysis. In the past two decades, a variety of optimization schemes have been developed. In this paper, we present a comprehensive survey of the state-of-the-art optimization approaches. These algorithms are mainly classified into two categories: continuous method and discrete method. The former includes Newton-Raphson method, gradient descent method, conjugate gradient method, proximal gradient method, coordinate descent method, and genetic algorithm-based method, while the latter covers graph cuts method, belief propagation method, tree-reweighted message passing method, linear programming method, maximum margin learning method, simulated annealing method, and iterated conditional modes method. We also discuss the minimal surface method, primal-dual method, and the multi-objective optimization method. In addition, we review several comparative studies that evaluate the performance of different minimization techniques in terms of accuracy, efficiency, or complexity. These optimization techniques are widely used in many medical applications, for example, image segmentation, registration, reconstruction, motion tracking, and compressed sensing. We thus give an overview on those applications as well. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Fish genome manipulation and directional breeding.

    PubMed

    Ye, Ding; Zhu, ZuoYan; Sun, YongHua

    2015-02-01

    Aquaculture is one of the fastest developing agricultural industries worldwide. One of the most important factors for sustainable aquaculture is the development of high performing culture strains. Genome manipulation offers a powerful method to achieve rapid and directional breeding in fish. We review the history of fish breeding methods based on classical genome manipulation, including polyploidy breeding and nuclear transfer. Then, we discuss the advances and applications of fish directional breeding based on transgenic technology and recently developed genome editing technologies. These methods offer increased efficiency, precision and predictability in genetic improvement over traditional methods.

  14. A method for determining spiral-bevel gear tooth geometry for finite element analysis

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Litvin, Faydor L.

    1991-01-01

    An analytical method was developed to determine gear tooth surface coordinates of face-milled spiral bevel gears. The method uses the basic gear design parameters in conjunction with the kinematical aspects of spiral bevel gear manufacturing machinery. A computer program, SURFACE, was developed. The computer program calculates the surface coordinates and outputs 3-D model data that can be used for finite element analysis. Development of the modeling method and an example case are presented. This analysis method could also find application for gear inspection and near-net-shape gear forging die design.

  15. Regeneration of Nicotinamide Coenzymes: Principles and Applications for the Synthesis of Chiral Compounds

    NASA Astrophysics Data System (ADS)

    Weckbecker, Andrea; Gröger, Harald; Hummel, Werner

    Dehydrogenases which depend on nicotinamide coenzymes are of increasing interest for the preparation of chiral compounds, either by reduction of a prochiral precursor or by oxidative resolution of their racemate. The regeneration of oxidized and reduced nicotinamide cofactors is a very crucial step because the use of these cofactors in stoichiometric amounts is too expensive for application. There are several possibilities to regenerate nicotinamide cofactors: established methods such as formate/formate dehydrogenase (FDH) for the regeneration of NADH, recently developed electrochemical methods based on new mediator structures, or the application of gene cloning methods for the construction of "designed" cells by heterologous expression of appropriate genes.

  16. An improved design method for EPC middleware

    NASA Astrophysics Data System (ADS)

    Lou, Guohuan; Xu, Ran; Yang, Chunming

    2014-04-01

    For currently existed problems and difficulties during the small and medium enterprises use EPC (Electronic Product Code) ALE (Application Level Events) specification to achieved middleware, based on the analysis of principle of EPC Middleware, an improved design method for EPC middleware is presented. This method combines the powerful function of MySQL database, uses database to connect reader-writer with upper application system, instead of development of ALE application program interface to achieve a middleware with general function. This structure is simple and easy to implement and maintain. Under this structure, different types of reader-writers added can be configured conveniently and the expandability of the system is improved.

  17. Multiphase Fluid Dynamics for Spacecraft Applications

    NASA Astrophysics Data System (ADS)

    Shyy, W.; Sim, J.

    2011-09-01

    Multiphase flows involving moving interfaces between different fluids/phases are observed in nature as well as in a wide range of engineering applications. With the recent development of high fidelity computational techniques, a number of challenging multiphase flow problems can now be computed. We introduce the basic notion of the main categories of multiphase flow computation; Lagrangian, Eulerian, and Eulerian-Lagrangian techniques to represent and follow interface, and sharp and continuous interface methods to model interfacial dynamics. The marker-based adaptive Eulerian-Lagrangian method, which is one of the most popular methods, is highlighted with microgravity and space applications including droplet collision and spacecraft liquid fuel tank surface stability.

  18. Review on the progress in synthesis and application of magnetic carbon nanocomposites.

    PubMed

    Zhu, Maiyong; Diao, Guowang

    2011-07-01

    This review focuses on the synthesis and application of nanostructured composites containing magnetic nanostructures and carbon-based materials. Great progress in fabrication of magnetic carbon nanocomposites has been made by developing methods including filling process, template-based synthesis, chemical vapor deposition, hydrothermal/solvothermal method, pyrolysis procedure, sol-gel process, detonation induced reaction, self-assembly method, etc. The applications of magnetic carbon nanocomposites expanded to a wide range of fields such as environmental treatment, microwave absorption, magnetic recording media, electrochemical sensor, catalysis, separation/recognization of biomolecules and drug delivery are discussed. Finally, some future trends and perspectives in this research area are outlined.

  19. Review on the progress in synthesis and application of magnetic carbon nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhu, Maiyong; Diao, Guowang

    2011-07-01

    This review focuses on the synthesis and application of nanostructured composites containing magnetic nanostructures and carbon-based materials. Great progress in fabrication of magnetic carbon nanocomposites has been made by developing methods including filling process, template-based synthesis, chemical vapor deposition, hydrothermal/solvothermal method, pyrolysis procedure, sol-gel process, detonation induced reaction, self-assembly method, etc. The applications of magnetic carbon nanocomposites expanded to a wide range of fields such as environmental treatment, microwave absorption, magnetic recording media, electrochemical sensor, catalysis, separation/recognization of biomolecules and drug delivery are discussed. Finally, some future trends and perspectives in this research area are outlined.

  20. Applications of single kernel conventional and hyperspectral imaging near infrared spectroscopy in cereals.

    PubMed

    Fox, Glen; Manley, Marena

    2014-01-30

    Single kernel (SK) near infrared (NIR) reflectance and transmittance technologies have been developed during the last two decades for a range of cereal grain physical quality and chemical traits as well as detecting and predicting levels of toxins produced by fungi. Challenges during the development of single kernel near infrared (SK-NIR) spectroscopy applications are modifications of existing NIR technology to present single kernels for scanning as well as modifying reference methods for the trait of interest. Numerous applications have been developed, and cover almost all cereals although most have been for key traits including moisture, protein, starch and oil in the globally important food grains, i.e. maize, wheat, rice and barley. An additional benefit in developing SK-NIR applications has been to demonstrate the value in sorting grain infected with a fungus or mycotoxins such as deoxynivalenol, fumonisins and aflatoxins. However, there is still a need to develop cost-effective technologies for high-speed sorting which can be used for small grain samples such as those from breeding programmes or commercial sorting; capable of sorting tonnes per hour. Development of SK-NIR technologies also includes standardisation of SK reference methods to analyse single kernels. For protein content, the use of the Dumas method would require minimal standardisation; for starch or oil content, considerable development would be required. SK-NIR, including the use of hyperspectral imaging, will improve our understanding of grain quality and the inherent variation in the range of a trait. In the area of food safety, this technology will benefit farmers, industry and consumers if it enables contaminated grain to be removed from the human food chain. © 2013 Society of Chemical Industry.

  1. Construction of Response Surface with Higher Order Continuity and Its Application to Reliability Engineering

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, T.; Romero, V. J.

    2002-01-01

    The usefulness of piecewise polynomials with C1 and C2 derivative continuity for response surface construction method is examined. A Moving Least Squares (MLS) method is developed and compared with four other interpolation methods, including kriging. First the selected methods are applied and compared with one another in a two-design variables problem with a known theoretical response function. Next the methods are tested in a four-design variables problem from a reliability-based design application. In general the piecewise polynomial with higher order derivative continuity methods produce less error in the response prediction. The MLS method was found to be superior for response surface construction among the methods evaluated.

  2. High-precision Non-Contact Measurement of Creep of Ultra-High Temperature Materials for Aerospace

    NASA Technical Reports Server (NTRS)

    Rogers, Jan R.; Hyers, Robert

    2008-01-01

    For high-temperature applications (greater than 2,000 C) such as solid rocket motors, hypersonic aircraft, nuclear electric/thermal propulsion for spacecraft, and more efficient jet engines, creep becomes one of the most important design factors to be considered. Conventional creep-testing methods, where the specimen and test apparatus are in contact with each other, are limited to temperatures approximately 1,700 C. Development of alloys for higher-temperature applications is limited by the availability of testing methods at temperatures above 2000 C. Development of alloys for applications requiring a long service life at temperatures as low as 1500 C, such as the next generation of jet turbine superalloys, is limited by the difficulty of accelerated testing at temperatures above 1700 C. For these reasons, a new, non-contact creep-measurement technique is needed for higher temperature applications. A new non-contact method for creep measurements of ultra-high-temperature metals and ceramics has been developed and validated. Using the electrostatic levitation (ESL) facility at NASA Marshall Space Flight Center, a spherical sample is rotated quickly enough to cause creep deformation due to centrifugal acceleration. Very accurate measurement of the deformed shape through digital image analysis allows the stress exponent n to be determined very precisely from a single test, rather than from numerous conventional tests. Validation tests on single-crystal niobium spheres showed excellent agreement with conventional tests at 1985 C; however the non-contact method provides much greater precision while using only about 40 milligrams of material. This method is being applied to materials including metals and ceramics for non-eroding throats in solid rockets and next-generation superalloys for turbine engines. Recent advances in the method and the current state of these new measurements will be presented.

  3. Analysis of International Space Station Materials on MISSE-3 and MISSE-4

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria M.; Golden, Johnny L.; O'Rourke, Mary Jane

    2008-01-01

    For high-temperature applications (> 2,000 C) such as solid rocket motors, hypersonic aircraft, nuclear electric/thermal propulsion for spacecraft, and more efficient jet engines, creep becomes one of the most important design factors to be considered. Conventional creep-testing methods, where the specimen and test apparatus are in contact with each other, are limited to temperatures 1,700 deg. C. Development of alloys for higher-temperature applications is limited by the availability of testing methods at temperatures above 2000 C. Development of alloys for applications requiring a long service life at temperatures as low as 1500 C, such as the next generation of jet turbine superalloys, is limited by the difficulty of accelerated testing at temperatures above 1700 0c. For these reasons, a new, non-contact creep-measurement technique is needed for higher temperature applications. A new non-contact method for creep measurements of ultra-high-temperature metals and ceramics has been developed and validated. Using the electrostatic levitation (ESL) facility at NASA Marshall Space Flight Center, a spherical sample is rotated quickly enough to cause creep deformation due to centrifugal acceleration. Very accurate measurement of the deformed shape through digital image analysis allows the stress exponent n to be determined very precisely from a single test, rather than from numerous conventional tests. Validation tests on single-crystal niobium spheres showed excellent agreement with conventional tests at 1985 C; however the non-contact method provides much greater precision while using only about 40 milligrams of material. This method is being applied to materials including metals and ceramics for noneroding throats in solid rockets and next-generation superalloys for turbine engines. Recent advances in the method and the current state of these new measurements will be presented.

  4. Research on the Applicable Method of Valuation of Pure Electric Used vehicles

    NASA Astrophysics Data System (ADS)

    Cai, yun; Tan, zhengping; Wang, yidong; Mao, pan

    2018-03-01

    With the rapid growth in the ownership of pure electric vehicles, the research on the valuation of used electric vehicles has become the key to the development of the pure electric used vehicle market. The paper analyzed the application of the three value assessment methods, current market price method, capitalized earning method and replacement cost method, in pure electric used vehicles, and draws a conclusion that the replacement cost method is more suitable for pure electric used car. At the same time, the article also conducted a parametric correction exploration research, aiming at the characteristics of pure electric vehicles and replacement cost of the constituent factors. Through the analysis of the applicability parameters of physical devaluation, functional devaluation and economic devaluation, the revised replacement cost method can be used for the valuation of purely used electric vehicles for private use.

  5. Development of Educational Methods and Techniques Adapted to the Specific Conditions of the Developing Countries. Peer Tutoring: Operational Description of Various Systems and Their Applications.

    ERIC Educational Resources Information Center

    Charconnet, Marie-George

    This study describes various patterns of peer tutoring and is based on the use of cultural traditions and endogenous methods, on techniques and equipment acquired from other cultures, on problems presented by the adoption of educational technologies, and on methods needing little sophisticated equipment. A dozen peer tutoring systems are…

  6. Formal functional test designs with a test representation language

    NASA Technical Reports Server (NTRS)

    Hops, J. M.

    1993-01-01

    The application of the category-partition method to the test design phase of hardware, software, or system test development is discussed. The method provides a formal framework for reducing the total number of possible test cases to a minimum logical subset for effective testing. An automatic tool and a formal language were developed to implement the method and produce the specification of test cases.

  7. Merging Applicability Domains for in Silico Assessment of Chemical Mutagenicity

    DTIC Science & Technology

    2014-02-04

    molecular fingerprints as descriptors for developing quantitative structure−activity relationship ( QSAR ) models and defining applicability domains with...used to define and quantify an applicability domain for either method. The importance of using applicability domains in QSAR modeling cannot be...domain from roughly 80% to 90%. These results indicated that the proposed QSAR protocol constituted a highly robust chemical mutagenicity prediction

  8. PC graphics generation and management tool for real-time applications

    NASA Technical Reports Server (NTRS)

    Truong, Long V.

    1992-01-01

    A graphics tool was designed and developed for easy generation and management of personal computer graphics. It also provides methods and 'run-time' software for many common artificial intelligence (AI) or expert system (ES) applications.

  9. Recent developments in optical detection methods for microchip separations.

    PubMed

    Götz, Sebastian; Karst, Uwe

    2007-01-01

    This paper summarizes the features and performances of optical detection systems currently applied in order to monitor separations on microchip devices. Fluorescence detection, which delivers very high sensitivity and selectivity, is still the most widely applied method of detection. Instruments utilizing laser-induced fluorescence (LIF) and lamp-based fluorescence along with recent applications of light-emitting diodes (LED) as excitation sources are also covered in this paper. Since chemiluminescence detection can be achieved using extremely simple devices which no longer require light sources and optical components for focusing and collimation, interesting approaches based on this technique are presented, too. Although UV/vis absorbance is a detection method that is commonly used in standard desktop electrophoresis and liquid chromatography instruments, it has not yet reached the same level of popularity for microchip applications. Current applications of UV/vis absorbance detection to microchip separations and innovative approaches that increase sensitivity are described. This article, which contains 85 references, focuses on developments and applications published within the last three years, points out exciting new approaches, and provides future perspectives on this field.

  10. Development of numerical methods for overset grids with applications for the integrated Space Shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    1995-01-01

    Algorithms and computer code developments were performed for the overset grid approach to solving computational fluid dynamics problems. The techniques developed are applicable to compressible Navier-Stokes flow for any general complex configurations. The computer codes developed were tested on different complex configurations with the Space Shuttle launch vehicle configuration as the primary test bed. General, efficient and user-friendly codes were produced for grid generation, flow solution and force and moment computation.

  11. Development and application of deep convolutional neural network in target detection

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaowei; Wang, Chunping; Fu, Qiang

    2018-04-01

    With the development of big data and algorithms, deep convolution neural networks with more hidden layers have more powerful feature learning and feature expression ability than traditional machine learning methods, making artificial intelligence surpass human level in many fields. This paper first reviews the development and application of deep convolutional neural networks in the field of object detection in recent years, then briefly summarizes and ponders some existing problems in the current research, and the future development of deep convolutional neural network is prospected.

  12. Possibility of Exosome-Based Therapeutics and Challenges in Production of Exosomes Eligible for Therapeutic Application.

    PubMed

    Yamashita, Takuma; Takahashi, Yuki; Takakura, Yoshinobu

    2018-01-01

    Exosomes are cell-derived vesicles with a diameter 30-120 nm. Exosomes contain endogenous proteins and nucleic acids; delivery of these molecules to exosome-recipient cells causes biological effects. Exosomes derived from some types of cells such as mesenchymal stem cells and dendritic cells have therapeutic potential and may be biocompatible and efficient agents against various disorders such as organ injury. However, there are many challenges for the development of exosome-based therapeutics. In particular, producing exosomal formulations is the major barrier for therapeutic application because of their heterogeneity and low productivity. Development and optimization of producing methods, including methods for isolation and storage of exosome formulations, are required for realizing exosome-based therapeutics. In addition, improvement of therapeutic potential and delivery efficiency of exosomes are important for their therapeutic application. In this review, we summarize current knowledge about therapeutic application of exosomes and discuss some challenges in their successful use.

  13. Convenience of Statistical Approach in Studies of Architectural Ornament and Other Decorative Elements Specific Application

    NASA Astrophysics Data System (ADS)

    Priemetz, O.; Samoilov, K.; Mukasheva, M.

    2017-11-01

    An ornament is an actual phenomenon of the architecture modern theory, a common element in the practice of design and construction. It has been an important aspect of shaping for millennia. The description of the methods of its application occupies a large place in the studies on the theory and practice of architecture. However, the problem of the saturation of compositions with ornamentation, the specificity of its themes and forms have not been sufficiently studied yet. This aspect requires accumulation of additional knowledge. The application of quantitative methods for the plastic solutions types and a thematic diversity of facade compositions of buildings constructed in different periods creates another tool for an objective analysis of ornament development. It demonstrates the application of this approach for studying the features of the architectural development in Kazakhstan at the end of the XIX - XXI centuries.

  14. Design of pressure-driven microfluidic networks using electric circuit analogy.

    PubMed

    Oh, Kwang W; Lee, Kangsun; Ahn, Byungwook; Furlani, Edward P

    2012-02-07

    This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.

  15. Data Applicability of Heritage and New Hardware for Launch Vehicle System Reliability Models

    NASA Technical Reports Server (NTRS)

    Al Hassan Mohammad; Novack, Steven

    2015-01-01

    Many launch vehicle systems are designed and developed using heritage and new hardware. In most cases, the heritage hardware undergoes modifications to fit new functional system requirements, impacting the failure rates and, ultimately, the reliability data. New hardware, which lacks historical data, is often compared to like systems when estimating failure rates. Some qualification of applicability for the data source to the current system should be made. Accurately characterizing the reliability data applicability and quality under these circumstances is crucial to developing model estimations that support confident decisions on design changes and trade studies. This presentation will demonstrate a data-source classification method that ranks reliability data according to applicability and quality criteria to a new launch vehicle. This method accounts for similarities/dissimilarities in source and applicability, as well as operating environments like vibrations, acoustic regime, and shock. This classification approach will be followed by uncertainty-importance routines to assess the need for additional data to reduce uncertainty.

  16. Physicochemical cleaning and recovery of coal

    NASA Astrophysics Data System (ADS)

    Wheelock, T. D.

    1982-03-01

    The development and demonstration of a method of depressing iron pyrites which is applicable to both the froth flotation and oil agglomeration methods of cleaning and recoverying fine-size coal are described.

  17. Second Colloquim on the Scattering of Ultrasonic Waves (Deuxieme Colloque sur la Diffusion des Ondes Ultrasonores).

    DTIC Science & Technology

    1985-01-29

    France. I specially hope that out of our studies on resonances, and of the related experiments, new methods and applications will be developed in the...say so, such an echo in France. I specially hope that out of our studies on resonances, and of the related experiments, new methods and applications...length, due to the non-separability of this problem, results for the eigenfrequencies can nevertheless be obtained here by the use of special methods

  18. Application of Neural Networks to Wind tunnel Data Response Surface Methods

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Zhao, J. L.; DeLoach, Richard

    2000-01-01

    The integration of nonlinear neural network methods with conventional linear regression techniques is demonstrated for representative wind tunnel force balance data modeling. This work was motivated by a desire to formulate precision intervals for response surfaces produced by neural networks. Applications are demonstrated for representative wind tunnel data acquired at NASA Langley Research Center and the Arnold Engineering Development Center in Tullahoma, TN.

  19. Some basic mathematical methods of diffusion theory. [emphasis on atmospheric applications

    NASA Technical Reports Server (NTRS)

    Giere, A. C.

    1977-01-01

    An introductory treatment of the fundamentals of diffusion theory is presented, starting with molecular diffusion and leading up to the statistical methods of turbulent diffusion. A multilayer diffusion model, designed to permit concentration and dosage calculations downwind of toxic clouds from rocket vehicles, is described. The concepts and equations of diffusion are developed on an elementary level, with emphasis on atmospheric applications.

  20. Application of the QSDC procedure to the formulation of space shuttle design criteria. Volume 2: Applications guide

    NASA Technical Reports Server (NTRS)

    Bouton, I.; Martin, G. L.

    1972-01-01

    Criteria to determine the probability of aircraft structural failure were established according to the Quantitative Structural Design Criteria by Statistical Methods, the QSDC Procedure. This criteria method was applied to the design of the space shuttle during this contract. An Applications Guide was developed to demonstrate the utilization of the QSDC Procedure, with examples of the application to a hypothetical space shuttle illustrating the application to specific design problems. Discussions of the basic parameters of the QSDC Procedure: the Limit and Omega Conditions, and the strength scatter, have been included. Available data pertinent to the estimation of the strength scatter have also been included.

  1. The new applications of sputtering and ion plating

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1977-01-01

    The potential industrial applications of sputtering and ion plating are strictly governed by the unique features these methods possess. The outstanding features of each method, the resultant coating characteristics and the various sputtering modes and configurations are discussed. New, more complex coatings and deposits can be developed such as graded composition structures (metal-ceramic seals), laminated and dispersion strengthened composites which improve the mechanical properties and high temperature stability. Specific industrial areas where future effort of sputtering and ion plating will concentrate to develop intricate alloy or compound coatings and solve difficult problem areas are discussed.

  2. [Modern research progress of traditional Chinese medicine based on integrative pharmacology].

    PubMed

    Wang, Ping; Tang, Shi-Huan; Su, Jin; Zhang, Jia-Qi; Cui, Ru-Yi; Xu, Hai-Yu; Yang, Hong-Jun

    2018-04-01

    Integrative pharmacology (IP) is a discipline that studies the interaction, integration and principle of action of multiple components with the body, emphasizing the integrations of multi-level and multi-link, such as "whole and part", " in vivo and in vitro ", " in vivo process and activity evaluation". After four years of development and practice, the theory and method of IP has received extensive attention and application.In order to better promote the development of IP, this paper systematically reviews the concepts, research contents, research methods and application fields about IP. Copyright© by the Chinese Pharmaceutical Association.

  3. Algebraic multigrid methods applied to problems in computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Mccormick, Steve; Ruge, John

    1989-01-01

    The development of algebraic multigrid (AMG) methods and their application to certain problems in structural mechanics are described with emphasis on two- and three-dimensional linear elasticity equations and the 'jacket problems' (three-dimensional beam structures). Various possible extensions of AMG are also described. The basic idea of AMG is to develop the discretization sequence based on the target matrix and not the differential equation. Therefore, the matrix is analyzed for certain dependencies that permit the proper construction of coarser matrices and attendant transfer operators. In this manner, AMG appears to be adaptable to structural analysis applications.

  4. On the use and computation of the Jordan canonical form in system theory

    NASA Technical Reports Server (NTRS)

    Sridhar, B.; Jordan, D.

    1974-01-01

    This paper investigates various aspects of the application of the Jordan canonical form of a matrix in system theory and develops a computational approach to determining the Jordan form for a given matrix. Applications include pole placement, controllability and observability studies, serving as an intermediate step in yielding other canonical forms, and theorem proving. The computational method developed in this paper is both simple and efficient. The method is based on the definition of a generalized eigenvector and a natural extension of Gauss elimination techniques. Examples are included for demonstration purposes.

  5. Data structures supporting multi-region adaptive isogeometric analysis

    NASA Astrophysics Data System (ADS)

    Perduta, Anna; Putanowicz, Roman

    2018-01-01

    Since the first paper published in 2005 Isogeometric Analysis (IGA) has gained strong interest and found applications in many engineering problems. Despite the advancement of the method, there are still far fewer software implementations comparing to Finite Element Method. The paper presents an approach to the development of data structures that can support multi-region IGA with local mesh refinement (patch-based) and possible application in IGA-FEM models. The purpose of this paper is to share original design concepts, that authors have created while developing an IGA package, which other researchers may find beneficial for their own simulation codes.

  6. Background Oriented Schlieren (BOS) and other Flow Visualization Developments and Applications at GRC

    NASA Technical Reports Server (NTRS)

    Clem, Michelle; Woike, Mark

    2013-01-01

    This is a presentation to be given at an internal NASA Advanced Schlieren Working Group Meeting. The presentation will cover the recent developments and applications of flow visualization methods at GRC. The topics being discussed will include the use of Background Oriented Schlieren (BOS) in the study of screech and its associated shock spacing as well as in the investigation of broadband shock noise reduction in the Jet-Surface Interaction Tests. In addition, other flow visualiztion methods will be discussed in an on-going study comparing schlieren, shadowgraph, BOS, and focusing schlieren.

  7. Development and Application of On-line Monitor for the ZLW-1 Axis Cracks

    NASA Astrophysics Data System (ADS)

    Shi-jun, Yang; Qian-hui, Yang; Jian-guo, Jin

    2018-03-01

    This article mainly introduces a method that uses acoustic emission techniques to achieve on-line monitor for the shaft cracks and crack growth. According to this method, axis crack monitor is produced by acoustic emission techniques. This instrument can apply to all the pressure vessels, pipelines and rotor machines that can bear buckling load. It has the online real-time monitoring, automatic recording, printing, sound and light alarm, collecting crack information function. After a series of tests in both laboratory and field, it shows that this instrument is very versatile and possesses broad prospects of development and application.

  8. The application of quadratic optimal cooperative control synthesis to a CH-47 helicopter

    NASA Technical Reports Server (NTRS)

    Townsend, Barbara K.

    1986-01-01

    A control-system design method, Quadratic Optimal Cooperative Control Synthesis (CCS), is applied to the design of a Stability and Control Augmentation Systems (SCAS). The CCS design method is different from other design methods in that it does not require detailed a priori design criteria, but instead relies on an explicit optimal pilot-model to create desired performance. The design model, which was developed previously for fixed-wing aircraft, is simplified and modified for application to a Boeing Vertol CH-47 helicopter. Two SCAS designs are developed using the CCS design methodology. The resulting CCS designs are then compared with designs obtained using classical/frequency-domain methods and Linear Quadratic Regulator (LQR) theory in a piloted fixed-base simulation. Results indicate that the CCS method, with slight modifications, can be used to produce controller designs which compare favorably with the frequency-domain approach.

  9. Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems

    NASA Astrophysics Data System (ADS)

    Peng, Juan-juan; Wang, Jian-qiang; Wang, Jing; Zhang, Hong-yu; Chen, Xiao-hong

    2016-07-01

    As a variation of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been developed to represent uncertain, imprecise, incomplete and inconsistent information that exists in the real world. Simplified neutrosophic sets (SNSs) have been proposed for the main purpose of addressing issues with a set of specific numbers. However, there are certain problems regarding the existing operations of SNSs, as well as their aggregation operators and the comparison methods. Therefore, this paper defines the novel operations of simplified neutrosophic numbers (SNNs) and develops a comparison method based on the related research of intuitionistic fuzzy numbers. On the basis of these operations and the comparison method, some SNN aggregation operators are proposed. Additionally, an approach for multi-criteria group decision-making (MCGDM) problems is explored by applying these aggregation operators. Finally, an example to illustrate the applicability of the proposed method is provided and a comparison with some other methods is made.

  10. A mixed method Poisson solver for three-dimensional self-gravitating astrophysical fluid dynamical systems

    NASA Technical Reports Server (NTRS)

    Duncan, Comer; Jones, Jim

    1993-01-01

    A key ingredient in the simulation of self-gravitating astrophysical fluid dynamical systems is the gravitational potential and its gradient. This paper focuses on the development of a mixed method multigrid solver of the Poisson equation formulated so that both the potential and the Cartesian components of its gradient are self-consistently and accurately generated. The method achieves this goal by formulating the problem as a system of four equations for the gravitational potential and the three Cartesian components of the gradient and solves them using a distributed relaxation technique combined with conventional full multigrid V-cycles. The method is described, some tests are presented, and the accuracy of the method is assessed. We also describe how the method has been incorporated into our three-dimensional hydrodynamics code and give an example of an application to the collision of two stars. We end with some remarks about the future developments of the method and some of the applications in which it will be used in astrophysics.

  11. A "building block" approach to application development for education and decision support in radiology: implications for integrated clinical information systems environments.

    PubMed

    Greenes, R A

    1991-11-01

    Education and decision-support resources useful to radiologists are proliferating for the personal computer/workstation user or are potentially accessible via high-speed networks. These resources are typically made available through a set of application programs that tend to be developed in isolation and operate independently. Nonetheless, there is a growing need for an integrated environment for access to these resources in the context of professional work, during clinical problem-solving and decision-making activities, and for use in conjunction with other information resources. New application development environments are required to provide these capabilities. One such architecture for applications, which we have implemented in a prototype environment called DeSyGNER, is based on separately delineating the component information resources required for an application, termed entities, and the user interface and organizational paradigms, or composition methods, by which the entities are used to provide particular kinds of capability. Examples include composition methods to support query, book browsing, hyperlinking, tutorials, simulations, or question/answer testing. Future steps must address true integration of such applications with existing clinical information systems. We believe that the most viable approach for evolving this capability is based on the use of new software engineering methodologies, open systems, client-server communication, and delineation of standard message protocols.

  12. Quantifying the benefits to the national economy from secondary applications of NASA technology, executive summary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The feasibility of systematically quantifying the economic benefits of secondary applications of NASA related R and D was investigated. Based upon the tools of economic theory and econometric analysis, a set of empirical methods was developed and selected applications were made to demonstrate their workability. Analyses of the technological developments related to integrated circuits, cryogenic insulation, gas turbines, and computer programs for structural analysis indicated substantial secondary benefits accruing from NASA's R and D in these areas.

  13. Quantifying the benefits to the national economy from secondary applications of NASA technology

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The feasibility of systematically quantifying the economic benefits of secondary applications of NASA related R and D is investigated. Based upon the tools of economic theory and econometric analysis, it develops a set of empirical methods and makes selected applications to demonstrate their workability. Analyses of the technological developments related to integrated circuits, cryogenic insulation, gas turbines, and computer programs for structural analysis indicated substantial secondary benefits accruing from NASA's R and D in these areas.

  14. CELL-SELEX: Novel Perspectives of Aptamer-Based Therapeutics

    PubMed Central

    Guo, Ke-Tai; Paul, Angela; Schichor, Christian; Ziemer, Gerhard; Wendel, Hans P.

    2008-01-01

    Aptamers, single stranded DNA or RNA molecules, generated by a method called SELEX (systematic evolution of ligands by exponential enrichment) have been widely used in various biomedical applications. The newly developed Cell-SELEX (cell based-SELEX) targeting whole living cells has raised great expectations for cancer biology, -therapy and regenerative medicine. Combining nanobiotechnology with aptamers, this technology opens the way to more sophisticated applications in molecular diagnosis. This paper gives a review of recent developments in SELEX technologies and new applications of aptamers. PMID:19325777

  15. TRIGRS Application for landslide susceptibility mapping

    NASA Astrophysics Data System (ADS)

    Sugiarti, K.; Sukristiyanti, S.

    2018-02-01

    Research on landslide susceptibility has been carried out using several different methods. TRIGRS is a modeling program for landslide susceptibility by considering pore water pressure changes due to infiltration of rainfall. This paper aims to present a current state-of-the-art science on the development and application of TRIGRS. Some limitations of TRIGRS, some developments of it to improve its modeling capability, and some examples of the applications of some versions of it to model the effect of rainfall variation on landslide susceptibility are reviewed and discussed.

  16. Progress of Mimetic Enzymes and Their Applications in Chemical Sensors.

    PubMed

    Yang, Bin; Li, Jianping; Deng, Huan; Zhang, Lianming

    2016-11-01

    The need to develop innovative and reformative approaches to synthesize chemical sensors has increased in recent years because of demands for selectivity, stability, and reproducibility. Mimetic enzymes provide an efficient and convenient method for chemical sensors. This review summarizes the application of mimetic enzymes in chemical sensors. Mimetic enzymes can be classified into five categories: hydrolases, oxidoreductases, transferases, isomerases, and induced enzymes. Potential and recent applications of mimetic enzymes in chemical sensors are reviewed in detail, and the outlook of profound development has been illustrated.

  17. Anticipating forest and range land development in central Oregon (USA) for landscape analysis, with an example application involving mule deer

    Treesearch

    Jeffrey D. Kline; Alissa Moses; Theresa Burcsu

    2010-01-01

    Forest policymakers, public lands managers, and scientists in the Pacific Northwest (USA) seek ways to evaluate the landscape-level effects of policies and management through the multidisciplinary development and application of spatially explicit methods and models. The Interagency Mapping and Analysis Project (IMAP) is an ongoing effort to generate landscape-wide...

  18. e-Research and Learning Theory: What Do Sequence and Process Mining Methods Contribute?

    ERIC Educational Resources Information Center

    Reimann, Peter; Markauskaite, Lina; Bannert, Maria

    2014-01-01

    This paper discusses the fundamental question of how data-intensive e-research methods could contribute to the development of learning theories. Using methodological developments in research on self-regulated learning as an example, it argues that current applications of data-driven analytical techniques, such as educational data mining and its…

  19. Method Development and Application to Determine Potential Plant Uptake of Antibiotics and Other Drugs in Irrigated Crop Production Systems

    EPA Science Inventory

    Recent studies have shown the detection of pharmaceuticals in surface waters across the United States. The objective of this study was to develop methods, and apply them, to evaluate the potential for food chain transfer when pharmaceutical containing wastewaters are used for cr...

  20. Motivating Power System Protection Course Students by Practical and Computer-Based Activities

    ERIC Educational Resources Information Center

    Shahnia, Farhad; Moghbel, Moayed; Yengejeh, Hadi Hosseinian

    2016-01-01

    This paper presents several methods for motivating students taking a power system protection (PSP) course. The paper reviews the laboratory activities developed for the PSP course at Curtin University, Australia; these methods are applicable and can be used for PSP course instruction at any institution. These activities were developed to improve…

  1. COMPUTER-ASSISTED HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY METHOD DEVELOPMENT WITH APPLICATIONS TO THE ISOLATION AND ANALYSIS OF PHYTOPLANKTON PIGMENTS. (R826944)

    EPA Science Inventory

    We used chromatography modeling software to assist in HPLC method development, with the goal
    of enhancing separations through the exclusive use of gradient time and column temperature. We
    surveyed nine stationary phases for their utility in pigment purification and natur...

  2. Multi-Input Multi-Output Flight Control System Design for the YF-16 Using Nonlinear QFT and Pilot Compensation

    DTIC Science & Technology

    1990-12-01

    methods are implemented in MATRIXx with the programs SISOTF and MIMOTF respectively. Following the mathe - matical development, the application of these...intent is not to teach any of the methods , it has been written in a manner to significantly assist an individual attempting follow on work. I would...equivalent plant models. A detailed mathematical development of the method used to develop these equivalent LTI plant models is provided. After this inner

  3. Protein immobilization onto various surfaces using a polymer-bound isocyanate

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Jin; Cha, Eun Ji; Park, Hee-Deung

    2015-01-01

    Silane coupling agents have been widely used for immobilizing proteins onto inorganic surfaces. However, the immobilization method using silane coupling agents requires several treatment steps, and its application is limited to only surfaces containing hydroxyl groups. The aim of this study was to develop a novel method to overcome the limitations of the silane-based immobilization method using a polymer-bound isocyanate. Initially, polymer-bound isocyanate was dissolved in organic solvent and then was used to dip-coat inorganic surfaces. Proteins were then immobilized onto the dip-coated surfaces by the formation of urea bonds between the isocyanate groups of the polymer and the amine groups of the protein. The reaction was verified by FT-IR in which NCO stretching peaks disappeared, and CO and NH stretching peaks appeared after immobilization. The immobilization efficiency of the newly developed method was insensitive to reaction temperatures (4-50 °C), but the efficiency increased with reaction time and reached a maximum after 4 h. Furthermore, the method showed comparable immobilization efficiency to the silane-based immobilization method and was applicable to surfaces that cannot form hydroxyl groups. Taken together, the newly developed method provides a simple and efficient platform for immobilizing proteins onto surfaces.

  4. Capillary zone electrophoresis method for a highly glycosylated and sialylated recombinant protein: development, characterization and application for process development.

    PubMed

    Zhang, Le; Lawson, Ken; Yeung, Bernice; Wypych, Jette

    2015-01-06

    A purity method based on capillary zone electrophoresis (CZE) has been developed for the separation of isoforms of a highly glycosylated protein. The separation was found to be driven by the number of sialic acids attached to each isoform. The method has been characterized using orthogonal assays and shown to have excellent specificity, precision and accuracy. We have demonstrated the CZE method is a useful in-process assay to support cell culture and purification development of this glycoprotein. Compared to isoelectric focusing (IEF), the CZE method provides more quantitative results and higher sample throughput with excellent accuracy, qualities that are required for process development. In addition, the CZE method has been applied in the stability testing of purified glycoprotein samples.

  5. Different Technical Applications of Carbon Nanotubes.

    PubMed

    Abdalla, S; Al-Marzouki, F; Al-Ghamdi, Ahmed A; Abdel-Daiem, A

    2015-12-01

    Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacitor, field-emitting devices, transistors, nanoprobes and sensors, composite material, templates, etc. For commercial applications, large quantities and high purity of carbon nanotubes are needed. Different types of carbon nanotubes can be synthesized in various ways. The most common techniques currently practiced are arc discharge, laser ablation, and chemical vapor deposition and flame synthesis. The purification of CNTs is carried out using various techniques mainly oxidation, acid treatment, annealing, sonication, filtering chemical functionalization, etc. However, high-purity purification techniques still have to be developed. Real applications are still under development. This paper addresses the current research on the challenges that are associated with synthesis methods, purification methods, and dispersion and toxicity of CNTs within the scope of different engineering applications, energy, and environmental impact.

  6. Development of methods for predicting large crack growth in elastic-plastic work-hardening materials in fully plastic conditions

    NASA Technical Reports Server (NTRS)

    Ford, Hugh; Turner, C. E.; Fenner, R. T.; Curr, R. M.; Ivankovic, A.

    1995-01-01

    The objects of the first, exploratory, stage of the project were listed as: (1) to make a detailed and critical review of the Boundary Element method as already published and with regard to elastic-plastic fracture mechanics, to assess its potential for handling present concepts in two-dimensional and three-dimensional cases. To this was subsequently added the Finite Volume method and certain aspects of the Finite Element method for comparative purposes; (2) to assess the further steps needed to apply the methods so far developed to the general field, covering a practical range of geometries, work hardening materials, and composites: to consider their application under higher temperature conditions; (3) to re-assess the present stage of development of the energy dissipation rate, crack tip opening angle and J-integral models in relation to the possibilities of producing a unified technology with the previous two items; and (4) to report on the feasibility and promise of this combined approach and, if appropriate, make recommendations for the second stage aimed at developing a generalized crack growth technology for its application to real-life problems.

  7. Specification and Preliminary Validation of IAT (Integrated Analysis Techniques) Methods: Executive Summary.

    DTIC Science & Technology

    1985-03-01

    conceptual framwork , and preliminary validation of IAT concepts. Planned work for FY85, including more extensive validation, is also described. 20...Developments: Required Capabilities .... ......... 10 2-1 IAT Conceptual Framework - FY85 (FEO) ..... ........... 11 2-2 Recursive Nature of Decomposition...approach: 1) Identify needs & requirements for IAT. 2) Develop IAT conceptual framework. 3) Validate IAT methods. 4) Develop applications materials. To

  8. Sign Language Translator Application Using OpenCV

    NASA Astrophysics Data System (ADS)

    Triyono, L.; Pratisto, E. H.; Bawono, S. A. T.; Purnomo, F. A.; Yudhanto, Y.; Raharjo, B.

    2018-03-01

    This research focuses on the development of sign language translator application using OpenCV Android based, this application is based on the difference in color. The author also utilizes Support Machine Learning to predict the label. Results of the research showed that the coordinates of the fingertip search methods can be used to recognize a hand gesture to the conditions contained open arms while to figure gesture with the hand clenched using search methods Hu Moments value. Fingertip methods more resilient in gesture recognition with a higher success rate is 95% on the distance variation is 35 cm and 55 cm and variations of light intensity of approximately 90 lux and 100 lux and light green background plain condition compared with the Hu Moments method with the same parameters and the percentage of success of 40%. While the background of outdoor environment applications still can not be used with a success rate of only 6 managed and the rest failed.

  9. Trial Sequential Methods for Meta-Analysis

    ERIC Educational Resources Information Center

    Kulinskaya, Elena; Wood, John

    2014-01-01

    Statistical methods for sequential meta-analysis have applications also for the design of new trials. Existing methods are based on group sequential methods developed for single trials and start with the calculation of a required information size. This works satisfactorily within the framework of fixed effects meta-analysis, but conceptual…

  10. Methodology of development and students' perceptions of a psychiatry educational smartphone application.

    PubMed

    Zhang, Melvyn W B; Ho, Cyrus S H; Ho, Roger C M

    2014-01-01

    The usage of Smartphones and smartphone applications in the recent decade has indeed become more prevalent. Previous research has highlighted the lack of critical appraisal of new applications. In addition, previous research has highlighted a method of using just the Internet Browser and a text editor to create an application, but this does not eliminate the challenges faced by clinicians. In addition, even though there has been a high rate of smartphone applications usage and acceptance, it is common knowledge that it would cost clinicians as well as their centers a lot to develop smartphone applications that could be catered to their needs, and help them in their daily educational needs. The objectives of the current research are thus to highlight a cost-effective methodology of development of interactive education smartphone applications, and also to determine whether medical students are receptive towards having smartphone applications and their perspectives with regards to the contents within. In this study, we will elaborate how the Mastering Psychiatry Online Portal and web-based mobile application were developed using HTML5 as the core programming language. The online portal and web-based application was launched in July 2012 and usage data were obtained. Subsequently, a native application was developed, as it was funded by an educational grant and students are recruited after their end of posting clinical examination to fill up a survey questionnaire relating to perspectives. Our initial analytical results showed that since inception to date, for the online portal, there have been a total of 15,803 views, with a total of 2,109 copies of the online textbook being downloaded. As for the online videos, 5,895 viewers have watched the training videos from the start till the end. 722 users have accessed the mobile textbook application. A total of 185 students participated in the perspective survey, with the majority having positive perspectives about the implementation of a smartphone application in psychiatry. This is one of the few studies that describe how an educational application could be developed using a simple and cost effective methodology and this study has also demonstrated students' perspectives towards Smartphone in psychiatric education. Our methods might apply to future research involving the use of technology in education.

  11. A method to assess social sustainability of capture fisheries: An application to a Norwegian trawler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veldhuizen, L.J.L., E-mail: linda.veldhuizen@wur.nl; Berentsen, P.B.M.; Bokkers, E.A.M.

    Social sustainability assessment of capture fisheries is, both in terms of method development and measurement, not well developed. The objective of this study, therefore, was to develop a method consisting of indicators and rubrics (i.e. categories that articulate levels of performance) to assess social sustainability of capture fisheries. This method was applied to a Norwegian trawler that targets cod and haddock in the northeast Atlantic. Based on previous research, 13 social sustainability issues were selected. To measure the state of these issues, 17 process and outcome indicators were determined. To interpret indicator values, rubrics were developed for each indicator, usingmore » standards set by international conventions or data retrieved from national statistics, industry agreements or scientific publications that explore rubric scales. The indicators and rubrics were subsequently used in a social sustainability assessment of a Norwegian trawler. This assessment indicated that overall, social sustainability of this trawler is relatively high, with high rubric scores, for example, for worker safety, provisions aboard for the crew and companies' salary levels. The assessment also indicated that the trawler could improve on healthy working environment, product freshness and fish welfare during capture. This application demonstrated that our method provides insight into social sustainability at the level of the vessel and can be used to identify potential room for improvement. This method is also promising for social sustainability assessment of other capture fisheries. - Highlights: • A method was developed for social sustainability assessment of capture fisheries. • This method entailed determining outcome and process indicators for important issues. • To interpret indicator values, a rubric was developed for each indicator. • Use of this method gives insight into social sustainability and improvement options. • This method is promising for social sustainability assessment of capture fisheries.« less

  12. [Development of sample pretreatment techniques-rapid detection coupling methods for food security analysis].

    PubMed

    Huang, Yichun; Ding, Weiwei; Zhang, Zhuomin; Li, Gongke

    2013-07-01

    This paper summarizes the recent developments of the rapid detection methods for food security, such as sensors, optical techniques, portable spectral analysis, enzyme-linked immunosorbent assay, portable gas chromatograph, etc. Additionally, the applications of these rapid detection methods coupled with sample pretreatment techniques in real food security analysis are reviewed. The coupling technique has the potential to provide references to establish the selective, precise and quantitative rapid detection methods in food security analysis.

  13. The dream interview method in addiction recovery. A treatment guide.

    PubMed

    Flowers, L K; Zweben, J E

    1996-01-01

    The Dream Interview Method is a recently developed tool for dream interpretation that can facilitate work on addiction issues at all stages of recovery. This paper describes the method in detail and discusses examples of its application in a group composed of individuals in varying stages of the recovery process. It permits the therapist to accelerate the development of insight, and once the method is learned, it can be applied in self-help formats.

  14. Applying formal methods and object-oriented analysis to existing flight software

    NASA Technical Reports Server (NTRS)

    Cheng, Betty H. C.; Auernheimer, Brent

    1993-01-01

    Correctness is paramount for safety-critical software control systems. Critical software failures in medical radiation treatment, communications, and defense are familiar to the public. The significant quantity of software malfunctions regularly reported to the software engineering community, the laws concerning liability, and a recent NRC Aeronautics and Space Engineering Board report additionally motivate the use of error-reducing and defect detection software development techniques. The benefits of formal methods in requirements driven software development ('forward engineering') is well documented. One advantage of rigorously engineering software is that formal notations are precise, verifiable, and facilitate automated processing. This paper describes the application of formal methods to reverse engineering, where formal specifications are developed for a portion of the shuttle on-orbit digital autopilot (DAP). Three objectives of the project were to: demonstrate the use of formal methods on a shuttle application, facilitate the incorporation and validation of new requirements for the system, and verify the safety-critical properties to be exhibited by the software.

  15. Development of a multiple-parameter nonlinear perturbation procedure for transonic turbomachinery flows: Preliminary application to design/optimization problems

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Elliott, J. P.; Spreiter, J. R.

    1983-01-01

    An investigation was conducted to continue the development of perturbation procedures and associated computational codes for rapidly determining approximations to nonlinear flow solutions, with the purpose of establishing a method for minimizing computational requirements associated with parametric design studies of transonic flows in turbomachines. The results reported here concern the extension of the previously developed successful method for single parameter perturbations to simultaneous multiple-parameter perturbations, and the preliminary application of the multiple-parameter procedure in combination with an optimization method to blade design/optimization problem. In order to provide as severe a test as possible of the method, attention is focused in particular on transonic flows which are highly supercritical. Flows past both isolated blades and compressor cascades, involving simultaneous changes in both flow and geometric parameters, are considered. Comparisons with the corresponding exact nonlinear solutions display remarkable accuracy and range of validity, in direct correspondence with previous results for single-parameter perturbations.

  16. Development of the Next Generation of Biogeochemistry Simulations Using EMSL's NWChem Molecular Modeling Software

    NASA Astrophysics Data System (ADS)

    Bylaska, E. J.; Kowalski, K.; Apra, E.; Govind, N.; Valiev, M.

    2017-12-01

    Methods of directly simulating the behavior of complex strongly interacting atomic systems (molecular dynamics, Monte Carlo) have provided important insight into the behavior of nanoparticles, biogeochemical systems, mineral/fluid systems, nanoparticles, actinide systems and geofluids. The limitation of these methods to even wider applications is the difficulty of developing accurate potential interactions in these systems at the molecular level that capture their complex chemistry. The well-developed tools of quantum chemistry and physics have been shown to approach the accuracy required. However, despite the continuous effort being put into improving their accuracy and efficiency, these tools will be of little value to condensed matter problems without continued improvements in techniques to traverse and sample the high-dimensional phase space needed to span the ˜10^12 time scale differences between molecular simulation and chemical events. In recent years, we have made considerable progress in developing electronic structure and AIMD methods tailored to treat biochemical and geochemical problems, including very efficient implementations of many-body methods, fast exact exchange methods, electron-transfer methods, excited state methods, QM/MM, and new parallel algorithms that scale to +100,000 cores. The poster will focus on the fundamentals of these methods and the realities in terms of system size, computational requirements and simulation times that are required for their application to complex biogeochemical systems.

  17. A high precision extrapolation method in multiphase-field model for simulating dendrite growth

    NASA Astrophysics Data System (ADS)

    Yang, Cong; Xu, Qingyan; Liu, Baicheng

    2018-05-01

    The phase-field method coupling with thermodynamic data has become a trend for predicting the microstructure formation in technical alloys. Nevertheless, the frequent access to thermodynamic database and calculation of local equilibrium conditions can be time intensive. The extrapolation methods, which are derived based on Taylor expansion, can provide approximation results with a high computational efficiency, and have been proven successful in applications. This paper presents a high precision second order extrapolation method for calculating the driving force in phase transformation. To obtain the phase compositions, different methods in solving the quasi-equilibrium condition are tested, and the M-slope approach is chosen for its best accuracy. The developed second order extrapolation method along with the M-slope approach and the first order extrapolation method are applied to simulate dendrite growth in a Ni-Al-Cr ternary alloy. The results of the extrapolation methods are compared with the exact solution with respect to the composition profile and dendrite tip position, which demonstrate the high precision and efficiency of the newly developed algorithm. To accelerate the phase-field and extrapolation computation, the graphic processing unit (GPU) based parallel computing scheme is developed. The application to large-scale simulation of multi-dendrite growth in an isothermal cross-section has demonstrated the ability of the developed GPU-accelerated second order extrapolation approach for multiphase-field model.

  18. The development, deployment, and impact of the virtual observatory, Part II

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2015-06-01

    This is the second special issue of Astronomy and Computing devoted to the Virtual Observatory, and we again see a combination of papers covering various aspects of the VO, from infrastructure to applications to programmatics. The critical role of data models is described by Louys, and the method by which applications communicate amongst each other through the Simple Applications Messaging Protocol (SAMP) is described by Taylor et al. Demleitner et al. explain the client interfaces to the VO registry, that is, how applications developers can query the registry for information about VO-compliant data collections and services.1

  19. 6 CFR 25.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; and (3) Uses or attempts to use instrumentalities, weapons or other methods designed or intended to... Technology” or “QATT” means any Technology (including information technology) designed, developed, modified... Department under this part (including Applications, Pre-Applications, other forms, supporting documents and...

  20. 6 CFR 25.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; and (3) Uses or attempts to use instrumentalities, weapons or other methods designed or intended to... Technology” or “QATT” means any Technology (including information technology) designed, developed, modified... Department under this part (including Applications, Pre-Applications, other forms, supporting documents and...

  1. 6 CFR 25.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...; and (3) Uses or attempts to use instrumentalities, weapons or other methods designed or intended to... Technology” or “QATT” means any Technology (including information technology) designed, developed, modified... Department under this part (including Applications, Pre-Applications, other forms, supporting documents and...

  2. The Ulam Index: Methods of Theoretical Computer Science Help in Identifying Chemical Substances

    NASA Technical Reports Server (NTRS)

    Beltran, Adriana; Salvador, James

    1997-01-01

    In this paper, we show how methods developed for solving a theoretical computer problem of graph isomorphism are used in structural chemistry. We also discuss potential applications of these methods to exobiology: the search for life outside Earth.

  3. Field methods to measure surface displacement and strain with the Video Image Correlation method

    NASA Technical Reports Server (NTRS)

    Maddux, Gary A.; Horton, Charles M.; Mcneill, Stephen R.; Lansing, Matthew D.

    1994-01-01

    The objective of this project was to develop methods and application procedures to measure displacement and strain fields during the structural testing of aerospace components using paint speckle in conjunction with the Video Image Correlation (VIC) system.

  4. Development of Mobile Electronic Health Records Application in a Secondary General Hospital in Korea

    PubMed Central

    Park, Min Ah; Hong, Eunseok; Kim, Sunhyu; Ahn, Ryeok; Hong, Jungseok; Song, Seungyeol; Kim, Tak; Kim, Jeongkeun; Yeo, Seongwoon

    2013-01-01

    Objectives The recent evolution of mobile devices has opened new possibilities of providing strongly integrated mobile services in healthcare. The objective of this paper is to describe the decision driver, development, and implementation of an integrated mobile Electronic Health Record (EHR) application at Ulsan University Hospital. This application helps healthcare providers view patients' medical records and information without a stationary computer workstation. Methods We developed an integrated mobile application prototype that aimed to improve the mobility and usability of healthcare providers during their daily medical activities. The Android and iOS platform was used to create the mobile EHR application. The first working version was completed in 5 months and required 1,080 development hours. Results The mobile EHR application provides patient vital signs, patient data, text communication, and integrated EHR. The application allows our healthcare providers to know the status of patients within and outside the hospital environment. The application provides a consistent user environment on several compatible Android and iOS devices. A group of 10 beta testers has consistently used and maintained our copy of the application, suggesting user acceptance. Conclusions We are developing the integrated mobile EHR application with the goals of implementing an environment that is user-friendly, implementing a patient-centered system, and increasing the hospital's competitiveness. PMID:24523996

  5. A systematic approach to the application of Automation, Robotics, and Machine Intelligence Systems /ARAMIS/ to future space projects

    NASA Technical Reports Server (NTRS)

    Smith, D. B. S.

    1982-01-01

    The potential applications of Automation, Robotics, and Machine Intelligence Systems (ARAMIS) to space projects are investigated, through a systematic method. In this method selected space projects are broken down into space project tasks, and 69 of these tasks are selected for study. Candidate ARAMIS options are defined for each task. The relative merits of these options are evaluated according to seven indices of performance. Logical sequences of ARAMIS development are also defined. Based on this data, promising applications of ARAMIS are

  6. G2 Autonomous Control for Cryogenic Delivery Systems

    NASA Technical Reports Server (NTRS)

    Dito, Scott J.

    2014-01-01

    The Independent System Health Management-Autonomous Control (ISHM-AC) application development for cryogenic delivery systems is intended to create an expert system that will require minimal operator involvement and ultimately allow for complete autonomy when fueling a space vehicle in the time prior to launch. The G2-Autonomous Control project is the development of a model, simulation, and ultimately a working application that will control and monitor the cryogenic fluid delivery to a rocket for testing purposes. To develop this application, the project is using the programming language/environment Gensym G2. The environment is an all-inclusive application that allows development, testing, modeling, and finally operation of the unique application through graphical and programmatic methods. We have learned G2 through training classes and subsequent application development, and are now in the process of building the application that will soon be used to test on cryogenic loading equipment here at the Kennedy Space Center Cryogenics Test Laboratory (CTL). The G2 ISHM-AC application will bring with it a safer and more efficient propellant loading system for the future launches at Kennedy Space Center and eventually mobile launches from all over the world.

  7. FPA Depot - Web Application

    NASA Technical Reports Server (NTRS)

    Avila, Edwin M. Martinez; Muniz, Ricardo; Szafran, Jamie; Dalton, Adam

    2011-01-01

    Lines of code (LOC) analysis is one of the methods used to measure programmer productivity and estimate schedules of programming projects. The Launch Control System (LCS) had previously used this method to estimate the amount of work and to plan development efforts. The disadvantage of using LOC as a measure of effort is that one can only measure 30% to 35% of the total effort of software projects involves coding [8]. In the application, instead of using the LOC we are using function point for a better estimation of hours in each software to develop. Because of these disadvantages, Jamie Szafran of the System Software Branch of Control And Data Systems (NE-C3) at Kennedy Space Canter developed a web application called Function Point Analysis (FPA) Depot. The objective of this web application is that the LCS software architecture team can use the data to more accurately estimate the effort required to implement customer requirements. This paper describes the evolution of the domain model used for function point analysis as project managers continually strive to generate more accurate estimates.

  8. The Application of Determining Students’ Graduation Status of STMIK Palangkaraya Using K-Nearest Neighbors Method

    NASA Astrophysics Data System (ADS)

    Rusdiana, Lili; Marfuah

    2017-12-01

    K-Nearest Neighbors method is one of methods used for classification which calculate a value to find out the closest in distance. It is used to group a set of data such as students’ graduation status that are got from the amount of course credits taken by them, the grade point average (AVG), and the mini-thesis grade. The study is conducted to know the results of using K-Nearest Neighbors method on the application of determining students’ graduation status, so it can be analyzed from the method used, the data, and the application constructed. The aim of this study is to find out the application results by using K-Nearest Neighbors concept to determine students’ graduation status using the data of STMIK Palangkaraya students. The development of the software used Extreme Programming, since it was appropriate and precise for this study which was to quickly finish the project. The application was created using Microsoft Office Excel 2007 for the training data and Matlab 7 to implement the application. The result of K-Nearest Neighbors method on the application of determining students’ graduation status was 92.5%. It could determine the predicate graduation of 94 data used from the initial data before the processing as many as 136 data which the maximal training data was 50data. The K-Nearest Neighbors method is one of methods used to group a set of data based on the closest value, so that using K-Nearest Neighbors method agreed with this study. The results of K-Nearest Neighbors method on the application of determining students’ graduation status was 92.5% could determine the predicate graduation which is the maximal training data. The K-Nearest Neighbors method is one of methods used to group a set of data based on the closest value, so that using K-Nearest Neighbors method agreed with this study.

  9. Pilot TMDL Applications Using the Impervious Cover Method

    EPA Pesticide Factsheets

    This report provides a description of the Impervious Cover (IC) method and tests its feasibility as a total maximum daily load (TMDL) development tool using watersheds nominated by five New England States.

  10. Knowledge-based system verification and validation

    NASA Technical Reports Server (NTRS)

    Johnson, Sally C.

    1990-01-01

    The objective of this task is to develop and evaluate a methodology for verification and validation (V&V) of knowledge-based systems (KBS) for space station applications with high reliability requirements. The approach consists of three interrelated tasks. The first task is to evaluate the effectiveness of various validation methods for space station applications. The second task is to recommend requirements for KBS V&V for Space Station Freedom (SSF). The third task is to recommend modifications to the SSF to support the development of KBS using effectiveness software engineering and validation techniques. To accomplish the first task, three complementary techniques will be evaluated: (1) Sensitivity Analysis (Worchester Polytechnic Institute); (2) Formal Verification of Safety Properties (SRI International); and (3) Consistency and Completeness Checking (Lockheed AI Center). During FY89 and FY90, each contractor will independently demonstrate the user of his technique on the fault detection, isolation, and reconfiguration (FDIR) KBS or the manned maneuvering unit (MMU), a rule-based system implemented in LISP. During FY91, the application of each of the techniques to other knowledge representations and KBS architectures will be addressed. After evaluation of the results of the first task and examination of Space Station Freedom V&V requirements for conventional software, a comprehensive KBS V&V methodology will be developed and documented. Development of highly reliable KBS's cannot be accomplished without effective software engineering methods. Using the results of current in-house research to develop and assess software engineering methods for KBS's as well as assessment of techniques being developed elsewhere, an effective software engineering methodology for space station KBS's will be developed, and modification of the SSF to support these tools and methods will be addressed.

  11. A new approach to applying feedforward neural networks to the prediction of musculoskeletal disorder risk.

    PubMed

    Chen, C L; Kaber, D B; Dempsey, P G

    2000-06-01

    A new and improved method to feedforward neural network (FNN) development for application to data classification problems, such as the prediction of levels of low-back disorder (LBD) risk associated with industrial jobs, is presented. Background on FNN development for data classification is provided along with discussions of previous research and neighborhood (local) solution search methods for hard combinatorial problems. An analytical study is presented which compared prediction accuracy of a FNN based on an error-back propagation (EBP) algorithm with the accuracy of a FNN developed by considering results of local solution search (simulated annealing) for classifying industrial jobs as posing low or high risk for LBDs. The comparison demonstrated superior performance of the FNN generated using the new method. The architecture of this FNN included fewer input (predictor) variables and hidden neurons than the FNN developed based on the EBP algorithm. Independent variable selection methods and the phenomenon of 'overfitting' in FNN (and statistical model) generation for data classification are discussed. The results are supportive of the use of the new approach to FNN development for applications to musculoskeletal disorders and risk forecasting in other domains.

  12. Sensitivity-Uncertainty Based Nuclear Criticality Safety Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.

    2016-09-20

    These are slides from a seminar given to the University of Mexico Nuclear Engineering Department. Whisper is a statistical analysis package developed to support nuclear criticality safety validation. It uses the sensitivity profile data for an application as computed by MCNP6 along with covariance files for the nuclear data to determine a baseline upper-subcritical-limit for the application. Whisper and its associated benchmark files are developed and maintained as part of MCNP6, and will be distributed with all future releases of MCNP6. Although sensitivity-uncertainty methods for NCS validation have been under development for 20 years, continuous-energy Monte Carlo codes such asmore » MCNP could not determine the required adjoint-weighted tallies for sensitivity profiles. The recent introduction of the iterated fission probability method into MCNP led to the rapid development of sensitivity analysis capabilities for MCNP6 and the development of Whisper. Sensitivity-uncertainty based methods represent the future for NCS validation – making full use of today’s computer power to codify past approaches based largely on expert judgment. Validation results are defensible, auditable, and repeatable as needed with different assumptions and process models. The new methods can supplement, support, and extend traditional validation approaches.« less

  13. The biospeckle method for the investigation of agricultural crops: A review

    NASA Astrophysics Data System (ADS)

    Zdunek, Artur; Adamiak, Anna; Pieczywek, Piotr M.; Kurenda, Andrzej

    2014-01-01

    Biospeckle is a nondestructive method for the evaluation of living objects. It has been applied to medicine, agriculture and microbiology for monitoring processes related to the movement of material particles. Recently, this method is extensively used for evaluation of quality of agricultural crops. In the case of botanical materials, the sources of apparent biospeckle activity are the Brownian motions and biological processes such as cyclosis, growth, transport, etc. Several different applications have been shown to monitor aging and maturation of samples, organ development and the detection and development of defects and diseases. This review will focus on three aspects: on the image analysis and mathematical methods for biospeckle activity evaluation, on published applications to botanical samples, with special attention to agricultural crops, and on interpretation of the phenomena from a biological point of view.

  14. Emergency medicine clerkship curriculum in a high-income developing country: methods for development and application.

    PubMed

    Cevik, Arif Alper; Cakal, Elif Dilek; Abu-Zidan, Fikri M

    2018-06-07

    The published recommendations for international emergency medicine curricula cover the content, but exclude teaching and learning methods, assessment, and evaluation. We aim to provide an overview on available emergency medicine clerkship curricula and report the development and application experience of our own curriculum. Our curriculum is an outcome-based education, enriched by e-learning and various up-to-date pedagogic principles. Teaching and learning methods, assessment, and evaluation are described. The theory behind our practice in the light of recent literature is discussed aiming to help other colleagues from developing countries to have a clear map for developing and tailoring their own curricula depending on their needs. The details of our emergency medicine clerkship will serve as an example for developing and developed countries having immature undergraduate emergency medicine clerkship curricula. However, these recommendations will differ in various settings depending on available resources. The main concept of curriculum development is to create a curriculum having learning outcomes and content relevant to the local context, and then align the teaching and learning activities, assessments, and evaluations to be in harmony. This may assure favorable educational outcome even in resource limited settings.

  15. NASA Perspective on Requirements for Development of Advanced Methods Predicting Unsteady Aerodynamics and Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Schuster, David M.

    2008-01-01

    Over the past three years, the National Aeronautics and Space Administration (NASA) has initiated design, development, and testing of a new human-rated space exploration system under the Constellation Program. Initial designs within the Constellation Program are scheduled to replace the present Space Shuttle, which is slated for retirement within the next three years. The development of vehicles for the Constellation system has encountered several unsteady aerodynamics challenges that have bearing on more traditional unsteady aerodynamic and aeroelastic analysis. This paper focuses on the synergy between the present NASA challenges and the ongoing challenges that have historically been the subject of research and method development. There are specific similarities in the flows required to be analyzed for the space exploration problems and those required for some of the more nonlinear unsteady aerodynamic and aeroelastic problems encountered on aircraft. The aggressive schedule, significant technical challenge, and high-priority status of the exploration system development is forcing engineers to implement existing tools and techniques in a design and application environment that is significantly stretching the capability of their methods. While these methods afford the users with the ability to rapidly turn around designs and analyses, their aggressive implementation comes at a price. The relative immaturity of the techniques for specific flow problems and the inexperience with their broad application to them, particularly on manned spacecraft flight system, has resulted in the implementation of an extensive wind tunnel and flight test program to reduce uncertainty and improve the experience base in the application of these methods. This provides a unique opportunity for unsteady aerodynamics and aeroelastic method developers to test and evaluate new analysis techniques on problems with high potential for acquisition of test and even flight data against which they can be evaluated. However, researchers may be required to alter the geometries typically used in their analyses, the types of flows analyzed, and even the techniques by which computational tools are verified and validated. This paper discusses these issues and provides some perspective on the potential for new and innovative approaches to the development of methods to attack problems in nonlinear unsteady aerodynamics.

  16. Construction of crystal structure prototype database: methods and applications.

    PubMed

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-26

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  17. A gradient method for the quantitative analysis of cell movement and tissue flow and its application to the analysis of multicellular Dictyostelium development.

    PubMed

    Siegert, F; Weijer, C J; Nomura, A; Miike, H

    1994-01-01

    We describe the application of a novel image processing method, which allows quantitative analysis of cell and tissue movement in a series of digitized video images. The result is a vector velocity field showing average direction and velocity of movement for every pixel in the frame. We apply this method to the analysis of cell movement during different stages of the Dictyostelium developmental cycle. We analysed time-lapse video recordings of cell movement in single cells, mounds and slugs. The program can correctly assess the speed and direction of movement of either unlabelled or labelled cells in a time series of video images depending on the illumination conditions. Our analysis of cell movement during multicellular development shows that the entire morphogenesis of Dictyostelium is characterized by rotational cell movement. The analysis of cell and tissue movement by the velocity field method should be applicable to the analysis of morphogenetic processes in other systems such as gastrulation and neurulation in vertebrate embryos.

  18. Construction of crystal structure prototype database: methods and applications

    NASA Astrophysics Data System (ADS)

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-01

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  19. Recent developments of post-modification of biochar for electrochemical energy storage.

    PubMed

    Cheng, Bin-Hai; Zeng, Raymond J; Jiang, Hong

    2017-12-01

    Biochar is a common byproduct from thermochemical conversion of biomass to produce bioenergy. However, the biochar features, such as morphology, porosity and surface chemistry, cannot be well controlled in conventional conversion approaches, limiting the wide application of raw biochar. Aiming to meet the specific requirements, post-modification of raw biochar was frequently conducted to improve the quality. In this review, recent developments regarding post-modification methods of biochar are presented and discussed. Progresses on the applications of post modified biochar as electrode materials for supercapacitors are intensively summarized. This review aims to reveal the key factors that affecting the performance of biochar-based supercapacitors, and provide guidance for rationalizing the modification methods to expand the applications of biochar-based functional materials in supercapacitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Single-cell analysis of the transcriptome and its application in the characterization of stem cells and early embryos.

    PubMed

    Liu, Na; Liu, Lin; Pan, Xinghua

    2014-07-01

    Cellular heterogeneity within a cell population is a common phenomenon in multicellular organisms, tissues, cultured cells, and even FACS-sorted subpopulations. Important information may be masked if the cells are studied as a mass. Transcriptome profiling is a parameter that has been intensively studied, and relatively easier to address than protein composition. To understand the basis and importance of heterogeneity and stochastic aspects of the cell function and its mechanisms, it is essential to examine transcriptomes of a panel of single cells. High-throughput technologies, starting from microarrays and now RNA-seq, provide a full view of the expression of transcriptomes but are limited by the amount of RNA for analysis. Recently, several new approaches for amplification and sequencing the transcriptome of single cells or a limited low number of cells have been developed and applied. In this review, we summarize these major strategies, such as PCR-based methods, IVT-based methods, phi29-DNA polymerase-based methods, and several other methods, including their principles, characteristics, advantages, and limitations, with representative applications in cancer stem cells, early development, and embryonic stem cells. The prospects for development of future technology and application of transcriptome analysis in a single cell are also discussed.

  1. Applications of polymeric smart materials to environmental problems.

    PubMed Central

    Gray, H N; Bergbreiter, D E

    1997-01-01

    New methods for the reduction and remediation of hazardous wastes like carcinogenic organic solvents, toxic materials, and nuclear contamination are vital to environmental health. Procedures for effective waste reduction, detection, and removal are important components of any such methods. Toward this end, polymeric smart materials are finding useful applications. Polymer-bound smart catalysts are useful in waste minimization, catalyst recovery, and catalyst reuse. Polymeric smart coatings have been developed that are capable of both detecting and removing hazardous nuclear contaminants. Such applications of smart materials involving catalysis chemistry, sensor chemistry, and chemistry relevant to decontamination methodology are especially applicable to environmental problems. PMID:9114277

  2. Introduction: Special issue on advances in topobathymetric mapping, models, and applications

    USGS Publications Warehouse

    Gesch, Dean B.; Brock, John C.; Parrish, Christopher E.; Rogers, Jeffrey N.; Wright, C. Wayne

    2016-01-01

    Detailed knowledge of near-shore topography and bathymetry is required for many geospatial data applications in the coastal environment. New data sources and processing methods are facilitating development of seamless, regional-scale topobathymetric digital elevation models. These elevation models integrate disparate multi-sensor, multi-temporal topographic and bathymetric datasets to provide a coherent base layer for coastal science applications such as wetlands mapping and monitoring, sea-level rise assessment, benthic habitat mapping, erosion monitoring, and storm impact assessment. The focus of this special issue is on recent advances in the source data, data processing and integration methods, and applications of topobathymetric datasets.

  3. Performance analysis of distributed applications using automatic classification of communication inefficiencies

    DOEpatents

    Vetter, Jeffrey S.

    2005-02-01

    The method and system described herein presents a technique for performance analysis that helps users understand the communication behavior of their message passing applications. The method and system described herein may automatically classifies individual communication operations and reveal the cause of communication inefficiencies in the application. This classification allows the developer to quickly focus on the culprits of truly inefficient behavior, rather than manually foraging through massive amounts of performance data. Specifically, the method and system described herein trace the message operations of Message Passing Interface (MPI) applications and then classify each individual communication event using a supervised learning technique: decision tree classification. The decision tree may be trained using microbenchmarks that demonstrate both efficient and inefficient communication. Since the method and system described herein adapt to the target system's configuration through these microbenchmarks, they simultaneously automate the performance analysis process and improve classification accuracy. The method and system described herein may improve the accuracy of performance analysis and dramatically reduce the amount of data that users must encounter.

  4. Application of maximum likelihood methods to laser Thomson scattering measurements of low density plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washeleski, Robert L.; Meyer, Edmond J. IV; King, Lyon B.

    2013-10-15

    Laser Thomson scattering (LTS) is an established plasma diagnostic technique that has seen recent application to low density plasmas. It is difficult to perform LTS measurements when the scattered signal is weak as a result of low electron number density, poor optical access to the plasma, or both. Photon counting methods are often implemented in order to perform measurements in these low signal conditions. However, photon counting measurements performed with photo-multiplier tubes are time consuming and multi-photon arrivals are incorrectly recorded. In order to overcome these shortcomings a new data analysis method based on maximum likelihood estimation was developed. Themore » key feature of this new data processing method is the inclusion of non-arrival events in determining the scattered Thomson signal. Maximum likelihood estimation and its application to Thomson scattering at low signal levels is presented and application of the new processing method to LTS measurements performed in the plume of a 2-kW Hall-effect thruster is discussed.« less

  5. Application of maximum likelihood methods to laser Thomson scattering measurements of low density plasmas.

    PubMed

    Washeleski, Robert L; Meyer, Edmond J; King, Lyon B

    2013-10-01

    Laser Thomson scattering (LTS) is an established plasma diagnostic technique that has seen recent application to low density plasmas. It is difficult to perform LTS measurements when the scattered signal is weak as a result of low electron number density, poor optical access to the plasma, or both. Photon counting methods are often implemented in order to perform measurements in these low signal conditions. However, photon counting measurements performed with photo-multiplier tubes are time consuming and multi-photon arrivals are incorrectly recorded. In order to overcome these shortcomings a new data analysis method based on maximum likelihood estimation was developed. The key feature of this new data processing method is the inclusion of non-arrival events in determining the scattered Thomson signal. Maximum likelihood estimation and its application to Thomson scattering at low signal levels is presented and application of the new processing method to LTS measurements performed in the plume of a 2-kW Hall-effect thruster is discussed.

  6. Machine learning plus optical flow: a simple and sensitive method to detect cardioactive drugs

    NASA Astrophysics Data System (ADS)

    Lee, Eugene K.; Kurokawa, Yosuke K.; Tu, Robin; George, Steven C.; Khine, Michelle

    2015-07-01

    Current preclinical screening methods do not adequately detect cardiotoxicity. Using human induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs), more physiologically relevant preclinical or patient-specific screening to detect potential cardiotoxic effects of drug candidates may be possible. However, one of the persistent challenges for developing a high-throughput drug screening platform using iPS-CMs is the need to develop a simple and reliable method to measure key electrophysiological and contractile parameters. To address this need, we have developed a platform that combines machine learning paired with brightfield optical flow as a simple and robust tool that can automate the detection of cardiomyocyte drug effects. Using three cardioactive drugs of different mechanisms, including those with primarily electrophysiological effects, we demonstrate the general applicability of this screening method to detect subtle changes in cardiomyocyte contraction. Requiring only brightfield images of cardiomyocyte contractions, we detect changes in cardiomyocyte contraction comparable to - and even superior to - fluorescence readouts. This automated method serves as a widely applicable screening tool to characterize the effects of drugs on cardiomyocyte function.

  7. Generalization of the Poincare sphere to process 2D displacement signals

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Lamberti, Luciano

    2017-06-01

    Traditionally the multiple phase method has been considered as an essential tool for phase information recovery. The in-quadrature phase method that theoretically is an alternative pathway to achieve the same goal failed in actual applications. The authors in a previous paper dealing with 1D signals have shown that properly implemented the in-quadrature method yields phase values with the same accuracy than the multiple phase method. The present paper extends the methodology developed in 1D to 2D. This extension is not a straight forward process and requires the introduction of a number of additional concepts and developments. The concept of monogenic function provides the necessary tools required for the extension process. The monogenic function has a graphic representation through the Poincare sphere familiar in the field of Photoelasticity and through the developments introduced in this paper connected to the analysis of displacement fringe patterns. The paper is illustrated with examples of application that show that multiple phases method and the in-quadrature are two aspects of the same basic theoretical model.

  8. Rapid Induction of Cerebral Organoids From Human Induced Pluripotent Stem Cells Using a Chemically Defined Hydrogel and Defined Cell Culture Medium.

    PubMed

    Lindborg, Beth A; Brekke, John H; Vegoe, Amanda L; Ulrich, Connor B; Haider, Kerri T; Subramaniam, Sandhya; Venhuizen, Scott L; Eide, Cindy R; Orchard, Paul J; Chen, Weili; Wang, Qi; Pelaez, Francisco; Scott, Carolyn M; Kokkoli, Efrosini; Keirstead, Susan A; Dutton, James R; Tolar, Jakub; O'Brien, Timothy D

    2016-07-01

    Tissue organoids are a promising technology that may accelerate development of the societal and NIH mandate for precision medicine. Here we describe a robust and simple method for generating cerebral organoids (cOrgs) from human pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. By using no additional neural induction components, cOrgs appeared on the hydrogel surface within 10-14 days, and under static culture conditions, they attained sizes up to 3 mm in greatest dimension by day 28. Histologically, the organoids showed neural rosette and neural tube-like structures and evidence of early corticogenesis. Immunostaining and quantitative reverse-transcription polymerase chain reaction demonstrated protein and gene expression representative of forebrain, midbrain, and hindbrain development. Physiologic studies showed responses to glutamate and depolarization in many cells, consistent with neural behavior. The method of cerebral organoid generation described here facilitates access to this technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable. Tissue organoids are a promising technology with many potential applications, such as pharmaceutical screens and development of in vitro disease models, particularly for human polygenic conditions where animal models are insufficient. This work describes a robust and simple method for generating cerebral organoids from human induced pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. This method, by virtue of its simplicity and use of defined materials, greatly facilitates access to cerebral organoid technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable. ©AlphaMed Press.

  9. Experimental design and multiple response optimization. Using the desirability function in analytical methods development.

    PubMed

    Candioti, Luciana Vera; De Zan, María M; Cámara, María S; Goicoechea, Héctor C

    2014-06-01

    A review about the application of response surface methodology (RSM) when several responses have to be simultaneously optimized in the field of analytical methods development is presented. Several critical issues like response transformation, multiple response optimization and modeling with least squares and artificial neural networks are discussed. Most recent analytical applications are presented in the context of analytLaboratorio de Control de Calidad de Medicamentos (LCCM), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242, S3000ZAA Santa Fe, ArgentinaLaboratorio de Control de Calidad de Medicamentos (LCCM), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242, S3000ZAA Santa Fe, Argentinaical methods development, especially in multiple response optimization procedures using the desirability function. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Detection of the Dinozoans Pfiesteria piscicida and P. shumwayae: a review of detection methods and geographic distribution.

    PubMed

    Rublee, Parke A; Remington, David L; Schaefer, Eric F; Marshall, Michael M

    2005-01-01

    Molecular methods, including conventional PCR, real-time PCR, denaturing gradient gel electrophoresis, fluorescent fragment detection PCR, and fluorescent in situ hybridization, have all been developed for use in identifying and studying the distribution of the toxic dinoflagellates Pfiesteria piscicida and P. shumwayae. Application of the methods has demonstrated a worldwide distribution of both species and provided insight into their environmental tolerance range and temporal changes in distribution. Genetic variability among geographic locations generally appears low in rDNA genes, and detection of the organisms in ballast water is consistent with rapid dispersal or high gene flow among populations, but additional sequence data are needed to verify this hypothesis. The rapid development and application of these tools serves as a model for study of other microbial taxa and provides a basis for future development of tools that can simultaneously detect multiple targets.

  11. Comprehensive rotorcraft analysis methods

    NASA Technical Reports Server (NTRS)

    Stephens, Wendell B.; Austin, Edward E.

    1988-01-01

    The development and application of comprehensive rotorcraft analysis methods in the field of rotorcraft technology are described. These large scale analyses and the resulting computer programs are intended to treat the complex aeromechanical phenomena that describe the behavior of rotorcraft. They may be used to predict rotor aerodynamics, acoustic, performance, stability and control, handling qualities, loads and vibrations, structures, dynamics, and aeroelastic stability characteristics for a variety of applications including research, preliminary and detail design, and evaluation and treatment of field problems. The principal comprehensive methods developed or under development in recent years and generally available to the rotorcraft community because of US Army Aviation Research and Technology Activity (ARTA) sponsorship of all or part of the software systems are the Rotorcraft Flight Simulation (C81), Dynamic System Coupler (DYSCO), Coupled Rotor/Airframe Vibration Analysis Program (SIMVIB), Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD), General Rotorcraft Aeromechanical Stability Program (GRASP), and Second Generation Comprehensive Helicopter Analysis System (2GCHAS).

  12. Application of Raman spectroscopy for cervical dysplasia diagnosis

    PubMed Central

    Kanter, Elizabeth M.; Vargis, Elizabeth; Majumder, Shovan; Keller, Matthew D.; Woeste, Emily; Rao, Gautam G.; Mahadevan-Jansen, Anita

    2014-01-01

    Cervical cancer is the second most common malignancy among women worldwide, with over 490000 cases diagnosed and 274000 deaths each year. Although current screening methods have dramatically reduced cervical cancer incidence and mortality in developed countries, a “See and Treat” method would be preferred, especially in developing countries. Results from our previous work have suggested that Raman spectroscopy can be used to detect cervical precancers; however, with a classification accuracy of 88%, it was not clinically applicable. In this paper, we describe how incorporating a woman's hormonal status, particularly the point in menstrual cycle and menopausal state, into our previously developed classification algorithm improves the accuracy of our method to 94%. The results of this paper bring Raman spectroscopy one step closer to being utilized in a clinical setting to diagnose cervical dysplasia. Posterior probabilities of class membership, as determined by MRDF-SMLR, for patients regardless of menopausal status, and for pre-menopausal patients only PMID:19343687

  13. Statistical Methodologies to Integrate Experimental and Computational Research

    NASA Technical Reports Server (NTRS)

    Parker, P. A.; Johnson, R. T.; Montgomery, D. C.

    2008-01-01

    Development of advanced algorithms for simulating engine flow paths requires the integration of fundamental experiments with the validation of enhanced mathematical models. In this paper, we provide an overview of statistical methods to strategically and efficiently conduct experiments and computational model refinement. Moreover, the integration of experimental and computational research efforts is emphasized. With a statistical engineering perspective, scientific and engineering expertise is combined with statistical sciences to gain deeper insights into experimental phenomenon and code development performance; supporting the overall research objectives. The particular statistical methods discussed are design of experiments, response surface methodology, and uncertainty analysis and planning. Their application is illustrated with a coaxial free jet experiment and a turbulence model refinement investigation. Our goal is to provide an overview, focusing on concepts rather than practice, to demonstrate the benefits of using statistical methods in research and development, thereby encouraging their broader and more systematic application.

  14. Strengthening of bridges by post-tensioning using monostrands in substituted cable ducts

    NASA Astrophysics Data System (ADS)

    Klusáček, Ladislav; Svoboda, Adam

    2017-09-01

    Post-tensioning is suitable, reliable and durable method of strengthening existing engineering structures, especially bridges. The high efficiency of post-tensioning can be seen in many applications throughout the world. In this paper the method is extended by a structural system of substituted cable ducts, which allows for significantly widening application of prestressing so it’s convenient mostly for application on beam bridges or slab bridges (built in years 1920 - 1960). The method of substituted cable ducts is based on theoretical knowledge and technical procedures, which were made possible through the development in prestressing systems, particularly the development of prestressing tendons (monostrands) and encased anchorages, as well as progress in drilling technology. This technique is highly recommended due to minimization of interventions into the constructions, unseen method of cable arrangement and hence the absence of impact on appearance, which is appreciated not only in case of valuable historical structures but also in general. It is possible to summarise that posttensioning by monostrands in substituted cable ducts is a highly effective method of strengthening existing bridges in order to increase their load capacities in terms of current traffic load and to extend their service life.

  15. A Practical, Robust and Fast Method for Location Localization in Range-Based Systems.

    PubMed

    Huang, Shiping; Wu, Zhifeng; Misra, Anil

    2017-12-11

    Location localization technology is used in a number of industrial and civil applications. Real time location localization accuracy is highly dependent on the quality of the distance measurements and efficiency of solving the localization equations. In this paper, we provide a novel approach to solve the nonlinear localization equations efficiently and simultaneously eliminate the bad measurement data in range-based systems. A geometric intersection model was developed to narrow the target search area, where Newton's Method and the Direct Search Method are used to search for the unknown position. Not only does the geometric intersection model offer a small bounded search domain for Newton's Method and the Direct Search Method, but also it can self-correct bad measurement data. The Direct Search Method is useful for the coarse localization or small target search domain, while the Newton's Method can be used for accurate localization. For accurate localization, by utilizing the proposed Modified Newton's Method (MNM), challenges of avoiding the local extrema, singularities, and initial value choice are addressed. The applicability and robustness of the developed method has been demonstrated by experiments with an indoor system.

  16. Low electrical resistivity carbon nanotube and polyethylene nanocomposites for aerospace and energy exploration applications

    NASA Astrophysics Data System (ADS)

    Moloney, Padraig G.

    An investigation was conducted towards the development and optimization of low electrical resistivity carbon nanotube (CNT) and thermoplastic composites as potential materials for future wire and cable applications in aerospace and energy exploration. Fundamental properties of the polymer, medium density polyethylene (MDPE), such as crystallinity were studied and improved for composite use. A parallel effort was undertaken on a broad selection of CNT, including single wall, double wall and multi wall carbon nanotubes, and included research of material aspects relevant to composite application and low resistivity such as purity, diameter and chirality. With an emphasis on scalability, manufacturing and purification methods were developed, and a solvent-based composite fabrication method was optimized. CNT MDPE composites were characterized via thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Raman spectroscopy, and multiple routes of electron microscopy. Techniques including annealing and pressure treatments were used to further improve the composites' resulting electrical performance. Enhancement of conductivity was explored via exposure to a focused microwave beam. A novel doping method was developed using antimony pentafluoride (SbF5) to reduce the resistivity of the bulk CNT. Flexible composites, malleable under heat and pressure, were produced with exceptional electrical resistivities reaching as low as 2*10-6O·m (5*105S/m). A unique gas sensor application utilizing the unique electrical resistivities of the produced CNT-MDPE composites was developed. The materials proved suitable as a low weight and low energy sensing material for dimethyl methylphosphonate (DMMP), a nerve gas simulant.

  17. Optics for coherent X-ray applications.

    PubMed

    Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

    2014-09-01

    Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed.

  18. Development of an Algorithm for Satellite Remote Sensing of Sea and Lake Ice

    NASA Astrophysics Data System (ADS)

    Dorofy, Peter T.

    Satellite remote sensing of snow and ice has a long history. The traditional method for many snow and ice detection algorithms has been the use of the Normalized Difference Snow Index (NDSI). This manuscript is composed of two parts. Chapter 1, Development of a Mid-Infrared Sea and Lake Ice Index (MISI) using the GOES Imager, discusses the desirability, development, and implementation of alternative index for an ice detection algorithm, application of the algorithm to the detection of lake ice, and qualitative validation against other ice mapping products; such as, the Ice Mapping System (IMS). Chapter 2, Application of Dynamic Threshold in a Lake Ice Detection Algorithm, continues with a discussion of the development of a method that considers the variable viewing and illumination geometry of observations throughout the day. The method is an alternative to Bidirectional Reflectance Distribution Function (BRDF) models. Evaluation of the performance of the algorithm is introduced by aggregating classified pixels within geometrical boundaries designated by IMS and obtaining sensitivity and specificity statistical measures.

  19. Lab-on-a-chip nucleic-acid analysis towards point-of-care applications

    NASA Astrophysics Data System (ADS)

    Kopparthy, Varun Lingaiah

    Recent infectious disease outbreaks, such as Ebola in 2013, highlight the need for fast and accurate diagnostic tools to combat the global spread of the disease. Detection and identification of the disease-causing viruses and bacteria at the genetic level is required for accurate diagnosis of the disease. Nucleic acid analysis systems have shown promise in identifying diseases such as HIV, anthrax, and Ebola in the past. Conventional nucleic acid analysis systems are still time consuming, and are not suitable for point-ofcare applications. Miniaturized nucleic acid systems has shown great promise for rapid analysis, but they have not been commercialized due to several factors such as footprint, complexity, portability, and power consumption. This dissertation presents the development of technologies and methods for a labon-a-chip nucleic acid analysis towards point-of-care applications. An oscillatory-flow PCR methodology in a thermal gradient is developed which provides real-time analysis of nucleic-acid samples. Oscillating flow PCR was performed in the microfluidic device under thermal gradient in 40 minutes. Reverse transcription PCR (RT-PCR) was achieved in the system without an additional heating element for incubation to perform reverse transcription step. A novel method is developed for the simultaneous pattering and bonding of all-glass microfluidic devices in a microwave oven. Glass microfluidic devices were fabricated in less than 4 minutes. Towards an integrated system for the detection of amplified products, a thermal sensing method is studied for the optimization of the sensor output. Calorimetric sensing method is characterized to identify design considerations and optimal parameters such as placement of the sensor, steady state response, and flow velocity for improved performance. An understanding of these developed technologies and methods will facilitate the development of lab-on-a-chip systems for point-of-care analysis.

  20. Multicenter Validation of a Customizable Scoring Tool for Selection of Trainees for a Residency or Fellowship Program. The EAST-IST Study.

    PubMed

    Bosslet, Gabriel T; Carlos, W Graham; Tybor, David J; McCallister, Jennifer; Huebert, Candace; Henderson, Ashley; Miles, Matthew C; Twigg, Homer; Sears, Catherine R; Brown, Cynthia; Farber, Mark O; Lahm, Tim; Buckley, John D

    2017-04-01

    Few data have been published regarding scoring tools for selection of postgraduate medical trainee candidates that have wide applicability. The authors present a novel scoring tool developed to assist postgraduate programs in generating an institution-specific rank list derived from selected elements of the U.S. Electronic Residency Application System (ERAS) application. The authors developed and validated an ERAS and interview day scoring tool at five pulmonary and critical care fellowship programs: the ERAS Application Scoring Tool-Interview Scoring Tool. This scoring tool was then tested for intrarater correlation versus subjective rankings of ERAS applications. The process for development of the tool was performed at four other institutions, and it was performed alongside and compared with the "traditional" ranking methods at the five programs and compared with the submitted National Residency Match Program rank list. The ERAS Application Scoring Tool correlated highly with subjective faculty rankings at the primary institution (average Spearman's r = 0.77). The ERAS Application Scoring Tool-Interview Scoring Tool method correlated well with traditional ranking methodology at all five institutions (Spearman's r = 0.54, 0.65, 0.72, 0.77, and 0.84). This study validates a process for selecting and weighting components of the ERAS application and interview day to create a customizable, institution-specific tool for ranking candidates to postgraduate medical education programs. This scoring system can be used in future studies to compare the outcomes of fellowship training.

  1. Infinitely many symmetries and conservation laws for quad-graph equations via the Gardner method

    NASA Astrophysics Data System (ADS)

    Rasin, Alexander G.

    2010-06-01

    The application of the Gardner method for the generation of conservation laws to all the ABS equations is considered. It is shown that all the necessary information for the application of the Gardner method, namely Bäcklund transformations and initial conservation laws, follows from the multidimensional consistency of ABS equations. We also apply the Gardner method to an asymmetric equation which is not included in the ABS classification. An analog of the Gardner method for the generation of symmetries is developed and applied to the discrete Korteweg-de Vries equation. It can also be applied to all the other ABS equations.

  2. Generalized Ordinary Differential Equation Models 1

    PubMed Central

    Miao, Hongyu; Wu, Hulin; Xue, Hongqi

    2014-01-01

    Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method. PMID:25544787

  3. Generalized Ordinary Differential Equation Models.

    PubMed

    Miao, Hongyu; Wu, Hulin; Xue, Hongqi

    2014-10-01

    Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method.

  4. Developing integrated methods to address complex resource and environmental issues

    USGS Publications Warehouse

    Smith, Kathleen S.; Phillips, Jeffrey D.; McCafferty, Anne E.; Clark, Roger N.

    2016-02-08

    IntroductionThis circular provides an overview of selected activities that were conducted within the U.S. Geological Survey (USGS) Integrated Methods Development Project, an interdisciplinary project designed to develop new tools and conduct innovative research requiring integration of geologic, geophysical, geochemical, and remote-sensing expertise. The project was supported by the USGS Mineral Resources Program, and its products and acquired capabilities have broad applications to missions throughout the USGS and beyond.In addressing challenges associated with understanding the location, quantity, and quality of mineral resources, and in investigating the potential environmental consequences of resource development, a number of field and laboratory capabilities and interpretative methodologies evolved from the project that have applications to traditional resource studies as well as to studies related to ecosystem health, human health, disaster and hazard assessment, and planetary science. New or improved tools and research findings developed within the project have been applied to other projects and activities. Specifically, geophysical equipment and techniques have been applied to a variety of traditional and nontraditional mineral- and energy-resource studies, military applications, environmental investigations, and applied research activities that involve climate change, mapping techniques, and monitoring capabilities. Diverse applied geochemistry activities provide a process-level understanding of the mobility, chemical speciation, and bioavailability of elements, particularly metals and metalloids, in a variety of environmental settings. Imaging spectroscopy capabilities maintained and developed within the project have been applied to traditional resource studies as well as to studies related to ecosystem health, human health, disaster assessment, and planetary science. Brief descriptions of capabilities and laboratory facilities and summaries of some applications of project products and research findings are included in this circular. The work helped support the USGS mission to “provide reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life.” Activities within the project include the following:Spanned scales from microscopic to planetary;Demonstrated broad applications across disciplines;Included life-cycle studies of mineral resources;Incorporated specialized areas of expertise in applied geochemistry including mineralogy, hydrogeology, analytical chemistry, aqueous geochemistry, biogeochemistry, microbiology, aquatic toxicology, and public health; andIncorporated specialized areas of expertise in geophysics including magnetics, gravity, radiometrics, electromagnetics, seismic, ground-penetrating radar, borehole radar, and imaging spectroscopy.This circular consists of eight sections that contain summaries of various activities under the project. The eight sections are listed below:Laboratory Facilities and Capabilities, which includes brief descriptions of the various types of laboratories and capabilities used for the project;Method and Software Development, which includes summaries of remote-sensing, geophysical, and mineralogical methods developed or enhanced by the project;Instrument Development, which includes descriptions of geophysical instruments developed under the project;Minerals, Energy, and Climate, which includes summaries of research that applies to mineral or energy resources, environmental processes and monitoring, and carbon sequestration by earth materials;Element Cycling, Toxicity, and Health, which includes summaries of several process-oriented geochemical and biogeochemical studies and health-related research activities;Hydrogeology and Water Quality, which includes descriptions of innovative geophysical, remote-sensing, and geochemical research pertaining to hydrogeology and water-quality applications;Hazards and Disaster Assessment, which includes summaries of research and method development that were applied to natural hazards, human-caused hazards, and disaster assessments; andDatabases and Framework Studies, which includes descriptions of fundamental applications of geophysical studies and of the importance of archived data.

  5. Development of TWO HD Vapor Exposure Techniques in a Rabbit Ocular Model: A Pilot Study

    DTIC Science & Technology

    2008-05-01

    descriptive pathology report was performed; however, scores were given as outlined in the Methods section for corneal ulceration, necrosis ...regardless of vapor application method. Corneal epithelial necrosis was reported in only one rabbit (#21), the 4-minute VC. There appeared to be no...corneal endothelium damage or stromal necrosis associated with either duration of HD exposure or vapor application, indicating that although damages to

  6. La Aplicacion de las Bases de Datos al Estudio Historico del Espanol (The Application of Databases to the Historical Study of Spanish).

    ERIC Educational Resources Information Center

    Nadal, Gloria Claveria; Lancis, Carlos Sanchez

    1997-01-01

    Notes that the employment of databases to the study of the history of a language is a method that allows for substantial improvement in investigative quality. Illustrates this with the example of the application of this method to two studies of the history of Spanish developed in the Language and Information Seminary of the Independent University…

  7. Generalizability Assessment of Autocorrelated Direct Observation Data: The Applicability of the Tiao-Tan Method and Alternative.

    ERIC Educational Resources Information Center

    Suen, Hoi K.; And Others

    The applicability is explored of the Bayesian random-effect analysis of variance (ANOVA) model developed by G. C. Tiao and W. Y. Tan (1966) and a method suggested by H. K. Suen and P. S. Lee (1987) for the generalizability analysis of autocorrelated data. According to Tiao and Tan, if time series data could be described as a first-order…

  8. New technology in dietary assessment: a review of digital methods in improving food record accuracy.

    PubMed

    Stumbo, Phyllis J

    2013-02-01

    Methods for conducting dietary assessment in the United States date back to the early twentieth century. Methods of assessment encompassed dietary records, written and spoken dietary recalls, FFQ using pencil and paper and more recently computer and internet applications. Emerging innovations involve camera and mobile telephone technology to capture food and meal images. This paper describes six projects sponsored by the United States National Institutes of Health that use digital methods to improve food records and two mobile phone applications using crowdsourcing. The techniques under development show promise for improving accuracy of food records.

  9. Laser processing for manufacturing nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Van, Hai Hoang

    CNTs have been considered as the excellent candidate to revolutionize a broad range of applications. There have been many method developed to manipulate the chemistry and the structure of CNTs. Laser with non-contact treatment capability exhibits many processing advantages, including solid-state treatment, extremely fast processing rate, and high processing resolution. In addition, the outstanding monochromatic, coherent, and directional beam generates the powerful energy absorption and the resultant extreme processing conditions. In my research, a unique laser scanning method was developed to process CNTs, controlling the oxidation and the graphitization. The achieved controllability of this method was applied to address the important issues of the current CNT processing methods for three applications. The controllable oxidation of CNTs by laser scanning method was applied to cut CNT films to produce high-performance cathodes for FE devices. The production method includes two important self-developed techniques to produce the cold cathodes: the production of highly oriented and uniformly distributed CNT sheets and the precise laser trimming process. Laser cutting is the unique method to produce the cathodes with remarkable features, including ultrathin freestanding structure (~200 nm), greatly high aspect ratio, hybrid CNT-GNR emitter arrays, even emitter separation, and directional emitter alignment. This unique cathode structure was unachievable by other methods. The developed FE devices successfully solved the screening effect issue encounter by current FE devices. The laser-control oxidation method was further developed to sequentially remove graphitic walls of CNTs. The laser oxidation process was directed to occur along the CNT axes by the laser scanning direction. Additionally, the oxidation was further assisted by the curvature stress and the thermal expansion of the graphitic nanotubes, ultimately opening (namely unzipping) the tubular structure to produce GNRs. Therefore the developed laser scanning method optimally exploited the thermal laser-CNT interaction, successfully transforming CNTs into 2D GNRs. The solid-state laser unzipping process effectively addressed the issues of contamination and scalability encountered by the current unzipping methods. Additionally, the produced GNRs were uniquely featured with the freestanding structure and the smooth surfaces. If the scanning process was performed in an inert environment without the appearance of oxygen, the oxidation of CNTs would not happen. Instead, the greatly mobile carbon atoms of the heated CNTs would reorganize the crystal structure, inducing the graphitization process to improve the crystallinity. Many observations showing the structural improvement of CNTs under laser irradiation has been reported, confirming the capability of laser to heal graphitic defects. Laser methods were more time-efficient and energy-efficient than other annealing methods because laser can quickly heat CNTs to generate graphitization in less than one second. This subsecond heating process of laser irradiation was more effective than other heating methods because it avoided the undesired coalescence of CNTs. In my research, the laser scanning method was applied to generate the graphitization, healing the structural defects of CNTs. Different from the reported laser methods, the laser scanning directed the locally annealed areas to move along the CNT axes, migrating and coalescencing the graphitic defects to achieve better healing results. The critical information describing the CNT structural transformation caused by the moving laser irradiation was explored from the successful applications of the developed laser method. This knowledge inspires an important method to modifiy the general graphitic structure for important applications, such as carbon fiber production, CNT self-assembly process and CNT welding. This method will be effective, facile, versatile, and adaptable for laboratory and industrial facilities.

  10. A taxonomy of behaviour change methods: an Intervention Mapping approach

    PubMed Central

    Kok, Gerjo; Gottlieb, Nell H.; Peters, Gjalt-Jorn Y.; Mullen, Patricia Dolan; Parcel, Guy S.; Ruiter, Robert A.C.; Fernández, María E.; Markham, Christine; Bartholomew, L. Kay

    2016-01-01

    ABSTRACT In this paper, we introduce the Intervention Mapping (IM) taxonomy of behaviour change methods and its potential to be developed into a coding taxonomy. That is, although IM and its taxonomy of behaviour change methods are not in fact new, because IM was originally developed as a tool for intervention development, this potential was not immediately apparent. Second, in explaining the IM taxonomy and defining the relevant constructs, we call attention to the existence of parameters for effectiveness of methods, and explicate the related distinction between theory-based methods and practical applications and the probability that poor translation of methods may lead to erroneous conclusions as to method-effectiveness. Third, we recommend a minimal set of intervention characteristics that may be reported when intervention descriptions and evaluations are published. Specifying these characteristics can greatly enhance the quality of our meta-analyses and other literature syntheses. In conclusion, the dynamics of behaviour change are such that any taxonomy of methods of behaviour change needs to acknowledge the importance of, and provide instruments for dealing with, three conditions for effectiveness for behaviour change methods. For a behaviour change method to be effective: (1) it must target a determinant that predicts behaviour; (2) it must be able to change that determinant; (3) it must be translated into a practical application in a way that preserves the parameters for effectiveness and fits with the target population, culture, and context. Thus, taxonomies of methods of behaviour change must distinguish the specific determinants that are targeted, practical, specific applications, and the theory-based methods they embody. In addition, taxonomies should acknowledge that the lists of behaviour change methods will be used by, and should be used by, intervention developers. Ideally, the taxonomy should be readily usable for this goal; but alternatively, it should be clear how the information in the taxonomy can be used in practice. The IM taxonomy satisfies these requirements, and it would be beneficial if other taxonomies would be extended to also meet these needs. PMID:26262912

  11. Development and validation of a multi-locus DNA metabarcoding method to identify endangered species in complex samples

    PubMed Central

    Arulandhu, Alfred J.; Staats, Martijn; Hagelaar, Rico; Voorhuijzen, Marleen M.; Prins, Theo W.; Scholtens, Ingrid; Costessi, Adalberto; Duijsings, Danny; Rechenmann, François; Gaspar, Frédéric B.; Barreto Crespo, Maria Teresa; Holst-Jensen, Arne; Birck, Matthew; Burns, Malcolm; Haynes, Edward; Hochegger, Rupert; Klingl, Alexander; Lundberg, Lisa; Natale, Chiara; Niekamp, Hauke; Perri, Elena; Barbante, Alessandra; Rosec, Jean-Philippe; Seyfarth, Ralf; Sovová, Tereza; Van Moorleghem, Christoff; van Ruth, Saskia; Peelen, Tamara

    2017-01-01

    Abstract DNA metabarcoding provides great potential for species identification in complex samples such as food supplements and traditional medicines. Such a method would aid Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) enforcement officers to combat wildlife crime by preventing illegal trade of endangered plant and animal species. The objective of this research was to develop a multi-locus DNA metabarcoding method for forensic wildlife species identification and to evaluate the applicability and reproducibility of this approach across different laboratories. A DNA metabarcoding method was developed that makes use of 12 DNA barcode markers that have demonstrated universal applicability across a wide range of plant and animal taxa and that facilitate the identification of species in samples containing degraded DNA. The DNA metabarcoding method was developed based on Illumina MiSeq amplicon sequencing of well-defined experimental mixtures, for which a bioinformatics pipeline with user-friendly web-interface was developed. The performance of the DNA metabarcoding method was assessed in an international validation trial by 16 laboratories, in which the method was found to be highly reproducible and sensitive enough to identify species present in a mixture at 1% dry weight content. The advanced multi-locus DNA metabarcoding method assessed in this study provides reliable and detailed data on the composition of complex food products, including information on the presence of CITES-listed species. The method can provide improved resolution for species identification, while verifying species with multiple DNA barcodes contributes to an enhanced quality assurance. PMID:29020743

  12. Development and validation of a multi-locus DNA metabarcoding method to identify endangered species in complex samples.

    PubMed

    Arulandhu, Alfred J; Staats, Martijn; Hagelaar, Rico; Voorhuijzen, Marleen M; Prins, Theo W; Scholtens, Ingrid; Costessi, Adalberto; Duijsings, Danny; Rechenmann, François; Gaspar, Frédéric B; Barreto Crespo, Maria Teresa; Holst-Jensen, Arne; Birck, Matthew; Burns, Malcolm; Haynes, Edward; Hochegger, Rupert; Klingl, Alexander; Lundberg, Lisa; Natale, Chiara; Niekamp, Hauke; Perri, Elena; Barbante, Alessandra; Rosec, Jean-Philippe; Seyfarth, Ralf; Sovová, Tereza; Van Moorleghem, Christoff; van Ruth, Saskia; Peelen, Tamara; Kok, Esther

    2017-10-01

    DNA metabarcoding provides great potential for species identification in complex samples such as food supplements and traditional medicines. Such a method would aid Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) enforcement officers to combat wildlife crime by preventing illegal trade of endangered plant and animal species. The objective of this research was to develop a multi-locus DNA metabarcoding method for forensic wildlife species identification and to evaluate the applicability and reproducibility of this approach across different laboratories. A DNA metabarcoding method was developed that makes use of 12 DNA barcode markers that have demonstrated universal applicability across a wide range of plant and animal taxa and that facilitate the identification of species in samples containing degraded DNA. The DNA metabarcoding method was developed based on Illumina MiSeq amplicon sequencing of well-defined experimental mixtures, for which a bioinformatics pipeline with user-friendly web-interface was developed. The performance of the DNA metabarcoding method was assessed in an international validation trial by 16 laboratories, in which the method was found to be highly reproducible and sensitive enough to identify species present in a mixture at 1% dry weight content. The advanced multi-locus DNA metabarcoding method assessed in this study provides reliable and detailed data on the composition of complex food products, including information on the presence of CITES-listed species. The method can provide improved resolution for species identification, while verifying species with multiple DNA barcodes contributes to an enhanced quality assurance. © The Authors 2017. Published by Oxford University Press.

  13. Method of forming biaxially textured alloy substrates and devices thereon

    DOEpatents

    Goyal, Amit; Specht, Eliot D.; Kroeger, Donald M.; Paranthaman, Mariappan

    2000-01-01

    Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.

  14. 78 FR 23961 - Request for Steering Committee Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ... development of a methods research agenda and coordination of methods research in support of using electronic... surveillance, and methods research and application for scientific professionals. 3. IMEDS-Evaluation: Applies... transparent way to create exciting new research projects to advance regulatory science. The Foundation acts as...

  15. Application of a Permethrin Immunosorbent Assay Method to Residential Soil and Dust Samples

    EPA Science Inventory

    A low-cost, high throughput bioanalytical screening method was developed for monitoring cis/trans-permethrin in dust and soil samples. The method consisted of a simple sample preparation procedure [sonication with dichloromethane followed by a solvent exchange into methanol:wate...

  16. Chemical Mixtures Health Risk Assessment of Environmental Contaminants: Concepts, Methods, Applications

    EPA Science Inventory

    This problems-based, introductory workshop focuses on methods to assess health risks posed by exposures to chemical mixtures in the environment. Chemical mixtures health risk assessment methods continue to be developed and evolve to address concerns over health risks from multic...

  17. 42 CFR 86.13 - Project requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the applicant has established good cause for its omission. (1) Provision of a method for development... method for implementation of the needed training; (3) Provision of an evaluation methodology, including... the training program; and (4) Provision of a method by which trainees will be selected. (b) In...

  18. 42 CFR 86.13 - Project requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the applicant has established good cause for its omission. (1) Provision of a method for development... method for implementation of the needed training; (3) Provision of an evaluation methodology, including... the training program; and (4) Provision of a method by which trainees will be selected. (b) In...

  19. 42 CFR 86.13 - Project requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the applicant has established good cause for its omission. (1) Provision of a method for development... method for implementation of the needed training; (3) Provision of an evaluation methodology, including... the training program; and (4) Provision of a method by which trainees will be selected. (b) In...

  20. 42 CFR 86.13 - Project requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the applicant has established good cause for its omission. (1) Provision of a method for development... method for implementation of the needed training; (3) Provision of an evaluation methodology, including... the training program; and (4) Provision of a method by which trainees will be selected. (b) In...

  1. Chemical Mixtures Health Risk Assessment of Environmental Contaminants: Concepts, Methods, And Applications

    EPA Science Inventory

    This problems-based, introductory workshop focuses on methods to assess health risks posed by exposures to chemical mixtures in the environment. Chemical mixtures health risk assessment methods continue to be developed and evolve to address concerns over health risks from multic...

  2. Development of an energy storage tank model

    NASA Astrophysics Data System (ADS)

    Buckley, Robert Christopher

    A linearized, one-dimensional finite difference model employing an implicit finite difference method for energy storage tanks is developed, programmed with MATLAB, and demonstrated for different applications. A set of nodal energy equations is developed by considering the energy interactions on a small control volume. The general method of solving these equations is described as are other features of the simulation program. Two modeling applications are presented: the first using a hot water storage tank with a solar collector and an absorption chiller to cool a building in the summer, the second using a molten salt storage system with a solar collector and steam power plant to generate electricity. Recommendations for further study as well as all of the source code generated in the project are also provided.

  3. Principles and Applications of Ultrasonic-Based Nondestructive Methods for Self-Healing in Cementitious Materials

    PubMed Central

    Ahn, Eunjong; Kim, Hyunjun; Sim, Sung-Han; Shin, Sung Woo; Shin, Myoungsu

    2017-01-01

    Recently, self-healing technologies have emerged as a promising approach to extend the service life of social infrastructure in the field of concrete construction. However, current evaluations of the self-healing technologies developed for cementitious materials are mostly limited to lab-scale experiments to inspect changes in surface crack width (by optical microscopy) and permeability. Furthermore, there is a universal lack of unified test methods to assess the effectiveness of self-healing technologies. Particularly, with respect to the self-healing of concrete applied in actual construction, nondestructive test methods are required to avoid interrupting the use of the structures under evaluation. This paper presents a review of all existing research on the principles of ultrasonic test methods and case studies pertaining to self-healing concrete. The main objective of the study is to examine the applicability and limitation of various ultrasonic test methods in assessing the self-healing performance. Finally, future directions on the development of reliable assessment methods for self-healing cementitious materials are suggested. PMID:28772640

  4. Protein loop modeling using a new hybrid energy function and its application to modeling in inaccurate structural environments.

    PubMed

    Park, Hahnbeom; Lee, Gyu Rie; Heo, Lim; Seok, Chaok

    2014-01-01

    Protein loop modeling is a tool for predicting protein local structures of particular interest, providing opportunities for applications involving protein structure prediction and de novo protein design. Until recently, the majority of loop modeling methods have been developed and tested by reconstructing loops in frameworks of experimentally resolved structures. In many practical applications, however, the protein loops to be modeled are located in inaccurate structural environments. These include loops in model structures, low-resolution experimental structures, or experimental structures of different functional forms. Accordingly, discrepancies in the accuracy of the structural environment assumed in development of the method and that in practical applications present additional challenges to modern loop modeling methods. This study demonstrates a new strategy for employing a hybrid energy function combining physics-based and knowledge-based components to help tackle this challenge. The hybrid energy function is designed to combine the strengths of each energy component, simultaneously maintaining accurate loop structure prediction in a high-resolution framework structure and tolerating minor environmental errors in low-resolution structures. A loop modeling method based on global optimization of this new energy function is tested on loop targets situated in different levels of environmental errors, ranging from experimental structures to structures perturbed in backbone as well as side chains and template-based model structures. The new method performs comparably to force field-based approaches in loop reconstruction in crystal structures and better in loop prediction in inaccurate framework structures. This result suggests that higher-accuracy predictions would be possible for a broader range of applications. The web server for this method is available at http://galaxy.seoklab.org/loop with the PS2 option for the scoring function.

  5. Investigation of translaminar fracture in fibrereinforced composite laminates---applicability of linear elastic fracture mechanics and cohesive-zone model

    NASA Astrophysics Data System (ADS)

    Hou, Fang

    With the extensive application of fiber-reinforced composite laminates in industry, research on the fracture mechanisms of this type of materials have drawn more and more attentions. A variety of fracture theories and models have been developed. Among them, the linear elastic fracture mechanics (LEFM) and cohesive-zone model (CZM) are two widely-accepted fracture models, which have already shown applicability in the fracture analysis of fiber-reinforced composite laminates. However, there remain challenges which prevent further applications of the two fracture models, such as the experimental measurement of fracture resistance. This dissertation primarily focused on the study of the applicability of LEFM and CZM for the fracture analysis of translaminar fracture in fibre-reinforced composite laminates. The research for each fracture model consisted of two sections: the analytical characterization of crack-tip fields and the experimental measurement of fracture resistance parameters. In the study of LEFM, an experimental investigation based on full-field crack-tip displacement measurements was carried out as a way to characterize the subcritical and steady-state crack advances in translaminar fracture of fiber-reinforced composite laminates. Here, the fiber-reinforced composite laminates were approximated as anisotropic solids. The experimental investigation relied on the LEFM theory with a modification with respect to the material anisotropy. Firstly, the full-field crack-tip displacement fields were measured by Digital Image Correlation (DIC). Then two methods, separately based on the stress intensity approach and the energy approach, were developed to measure the crack-tip field parameters from crack-tip displacement fields. The studied crack-tip field parameters included the stress intensity factor, energy release rate and effective crack length. Moreover, the crack-growth resistance curves (R-curves) were constructed with the measured crack-tip field parameters. In addition, an error analysis was carried out with an emphasis on the influence of out-of-plane rotation of specimen. In the study of CZM, two analytical inverse methods, namely the field projection method (FPM) and the separable nonlinear least-squares method, were developed for the extraction of cohesive fracture properties from crack-tip full-field displacements. Firstly, analytical characterizations of the elastic fields around a crack-tip cohesive zone and the cohesive variables within the cohesive zone were derived in terms of an eigenfunction expansion. Then both of the inverse methods were developed based on the analytical characterization. With the analytical inverse methods, the cohesive-zone law (CZL), cohesive-zone size and position can be inversely computed from the cohesive-crack-tip displacement fields. In the study, comprehensive numerical tests were carried out to investigate the applicability and robustness of two inverse methods. From the numerical tests, it was found that the field projection method was very sensitive to noise and thus had limited applicability in practice. On the other hand, the separable nonlinear least-squares method was found to be more noise-resistant and less ill-conditioned. Subsequently, the applicability of separable nonlinear least-squares method was validated with the same translaminar fracture experiment for the study of LEFM. Eventually, it was found that the experimental measurements of R-curves and CZL showed a great agreement, in both of the fracture energy and the predicted load carrying capability. It thus demonstrated the validity of present research for the translaminar fracture of fiber-reinforced composite laminates.

  6. The Pixon Method for Data Compression Image Classification, and Image Reconstruction

    NASA Technical Reports Server (NTRS)

    Puetter, Richard; Yahil, Amos

    2002-01-01

    As initially proposed, this program had three goals: (1) continue to develop the highly successful Pixon method for image reconstruction and support other scientist in implementing this technique for their applications; (2) develop image compression techniques based on the Pixon method; and (3) develop artificial intelligence algorithms for image classification based on the Pixon approach for simplifying neural networks. Subsequent to proposal review the scope of the program was greatly reduced and it was decided to investigate the ability of the Pixon method to provide superior restorations of images compressed with standard image compression schemes, specifically JPEG-compressed images.

  7. Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go

    PubMed Central

    Moitessier, N; Englebienne, P; Lee, D; Lawandi, J; Corbeil, C R

    2008-01-01

    Accelerating the drug discovery process requires predictive computational protocols capable of reducing or simplifying the synthetic and/or combinatorial challenge. Docking-based virtual screening methods have been developed and successfully applied to a number of pharmaceutical targets. In this review, we first present the current status of docking and scoring methods, with exhaustive lists of these. We next discuss reported comparative studies, outlining criteria for their interpretation. In the final section, we describe some of the remaining developments that would potentially lead to a universally applicable docking/scoring method. PMID:18037925

  8. Development of a time-dependent incompressible Navier-Stokes solver based on a fractional-step method

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Moshe

    1990-01-01

    The development, validation and application of a fractional step solution method of the time-dependent incompressible Navier-Stokes equations in generalized coordinate systems are discussed. A solution method that combines a finite-volume discretization with a novel choice of the dependent variables and a fractional step splitting to obtain accurate solutions in arbitrary geometries was previously developed for fixed-grids. In the present research effort, this solution method is extended to include more general situations, including cases with moving grids. The numerical techniques are enhanced to gain efficiency and generality.

  9. Automatic Hypocenter Determination Method in JMA Catalog and its Application

    NASA Astrophysics Data System (ADS)

    Tamaribuchi, K.

    2017-12-01

    The number of detectable earthquakes around Japan has increased by developing the high-sensitivity seismic observation network. After the 2011 Tohoku-oki earthquake, the number of detectable earthquakes have dramatically increased due to its aftershocks and induced earthquakes. This enormous number of earthquakes caused inability of manually determination of all the hypocenters. The Japan Meteorological Agency (JMA), which produces the earthquake catalog in Japan, has developed a new automatic hypocenter determination method and started its operation from April 1, 2016. This method (named PF method; Phase combination Forward search method) can determine the hypocenters of earthquakes that occur simultaneously by searching for the optimal combination of P- and S-wave arrival times and the maximum amplitudes using a Bayesian estimation technique. In the 2016 Kumamoto earthquake sequence, we successfully detected about 70,000 aftershocks automatically during the period from April 14 to the end of May, and this method contributed to the real-time monitoring of the seismic activity. Furthermore, this method can be also applied to the Earthquake Early Warning (EEW). Application of this method for EEW is called the IPF method and has been used as the hypocenter determination method of the EEW system in JMA from December 2016. By developing this method further, it is possible to contribute to not only speeding up the catalog production, but also improving reliability of the early warning.

  10. The ACGT Master Ontology and its applications – Towards an ontology-driven cancer research and management system

    PubMed Central

    Brochhausen, Mathias; Spear, Andrew D.; Cocos, Cristian; Weiler, Gabriele; Martín, Luis; Anguita, Alberto; Stenzhorn, Holger; Daskalaki, Evangelia; Schera, Fatima; Schwarz, Ulf; Sfakianakis, Stelios; Kiefer, Stephan; Dörr, Martin; Graf, Norbert; Tsiknakis, Manolis

    2017-01-01

    Objective This paper introduces the objectives, methods and results of ontology development in the EU co-funded project Advancing Clinico-genomic Trials on Cancer – Open Grid Services for Improving Medical Knowledge Discovery (ACGT). While the available data in the life sciences has recently grown both in amount and quality, the full exploitation of it is being hindered by the use of different underlying technologies, coding systems, category schemes and reporting methods on the part of different research groups. The goal of the ACGT project is to contribute to the resolution of these problems by developing an ontology-driven, semantic grid services infrastructure that will enable efficient execution of discovery-driven scientific workflows in the context of multi-centric, post-genomic clinical trials. The focus of the present paper is the ACGT Master Ontology (MO). Methods ACGT project researchers undertook a systematic review of existing domain and upper-level ontologies, as well as of existing ontology design software, implementation methods, and end-user interfaces. This included the careful study of best practices, design principles and evaluation methods for ontology design, maintenance, implementation, and versioning, as well as for use on the part of domain experts and clinicians. Results To date, the results of the ACGT project include (i) the development of a master ontology (the ACGT-MO) based on clearly defined principles of ontology development and evaluation; (ii) the development of a technical infra-structure (the ACGT Platform) that implements the ACGT-MO utilizing independent tools, components and resources that have been developed based on open architectural standards, and which includes an application updating and evolving the ontology efficiently in response to end-user needs; and (iii) the development of an Ontology-based Trial Management Application (ObTiMA) that integrates the ACGT-MO into the design process of clinical trials in order to guarantee automatic semantic integration without the need to perform a separate mapping process. PMID:20438862

  11. Establishment of an evaluation method to detect drug distribution in hair follicles.

    PubMed

    Abe, Akinari; Saito, Miyuki; Kadhum, Wesam R; Todo, Hiroaki; Sugibayashi, Kenji

    2018-05-05

    Development of an appropriate method to evaluate drug disposition or targeting ability in hair follicles (HFs) is urgently needed in order to develop useful pharmaceutical products with pharmacological effects in HFs. In the present study, a cyanoacrylate biopsy (CB) method was used to measure drug disposition in HFs using a model hydrophilic drug, caffeine (CAF), and a lipophilic drug, 4-butylresorcinol (BR), in excised porcine skin. As a result, the height of HF replicas and the recovery ratio decreased with an increase in the application times of the CB method. HF replicas with a length of approximately 175 µm were obtained using a single application of the CB method. Drug distribution in the HF was detected even 5 min after topical application regardless of the lipophilicity of the drugs, although no drug disposition was observed in the deeper layers of the stratum corneum at the same time (5 min). Furthermore, significantly higher amounts of BR were observed in the stratum corneum and HF, compared with those of CAF. These results suggested that the CB method could be useful to evaluate the safety and efficacy as well as the disposition of topically applied chemicals, especially for HF-targeting drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Precursor-Based Synthesis of Porous Colloidal Particles towards Highly Efficient Catalysts.

    PubMed

    Zheng, Yun; Geng, Hongbo; Zhang, Yufei; Chen, Libao; Li, Cheng Chao

    2018-04-02

    In recent years, porous colloidal particles have found promising applications in catalytic fields, such as photocatalysis, electrocatalysis, industrial and automotive byproducts removal, as well as biomass upgrading. These applications are critical for alleviating the energy crisis and environmental pollution. Porous colloidal particles have remarkable specific areas and abundant reactive sites, which can significantly improve the mass/charge transport and reaction rate in catalysis. Precursor-based synthesis is among the most facile and widely-adopted methods to achieve monodisperse and homogeneous porous colloidal particles. In the current review, we briefly introduce the general catalytic applications of porous colloidal particles. The conventional precursor-based methods are reviewed to design state-of-the-art porous colloidal particles as highly efficient catalysts. The recent development of porous colloidal particles derived from metal-organic frameworks (MOFs), glycerates, carbonate precursors, and ion exchange methods are reviewed. In the end, the current concerns and future development of porous colloidal particles are outlined. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ultrasound elastographic techniques in focal liver lesions

    PubMed Central

    Conti, Clara Benedetta; Cavalcoli, Federica; Fraquelli, Mirella; Conte, Dario; Massironi, Sara

    2016-01-01

    Elastographic techniques are new ultrasound-based imaging techniques developed to estimate tissue deformability/stiffness. Several ultrasound elastographic approaches have been developed, such as static elastography, transient elastography and acoustic radiation force imaging methods, which include point shear wave and shear wave imaging elastography. The application of these methods in clinical practice aims at estimating the mechanical tissues properties. One of the main settings for the application of these tools has been liver stiffness assessment in chronic liver disease, which has been studied mainly using transient elastography. Another field of application for these techniques is the assessment of focal lesions, detected by ultrasound in organs such as pancreas, prostate, breast, thyroid, lymph nodes. Considering the frequency and importance of the detection of focal liver lesions through routine ultrasound, some studies have also aimed to assess the role that elestography can play in studying the stiffness of different types of liver lesions, in order to predict their nature and thus offer valuable non-invasive methods for the diagnosis of liver masses. PMID:26973405

  14. Ultrasound elastographic techniques in focal liver lesions.

    PubMed

    Conti, Clara Benedetta; Cavalcoli, Federica; Fraquelli, Mirella; Conte, Dario; Massironi, Sara

    2016-03-07

    Elastographic techniques are new ultrasound-based imaging techniques developed to estimate tissue deformability/stiffness. Several ultrasound elastographic approaches have been developed, such as static elastography, transient elastography and acoustic radiation force imaging methods, which include point shear wave and shear wave imaging elastography. The application of these methods in clinical practice aims at estimating the mechanical tissues properties. One of the main settings for the application of these tools has been liver stiffness assessment in chronic liver disease, which has been studied mainly using transient elastography. Another field of application for these techniques is the assessment of focal lesions, detected by ultrasound in organs such as pancreas, prostate, breast, thyroid, lymph nodes. Considering the frequency and importance of the detection of focal liver lesions through routine ultrasound, some studies have also aimed to assess the role that elestography can play in studying the stiffness of different types of liver lesions, in order to predict their nature and thus offer valuable non-invasive methods for the diagnosis of liver masses.

  15. Rapid monitoring of glycerol in fermentation growth media: Facilitating crude glycerol bioprocess development.

    PubMed

    Abad, Sergi; Pérez, Xavier; Planas, Antoni; Turon, Xavier

    2014-04-01

    Recently, the need for crude glycerol valorisation from the biodiesel industry has generated many studies for practical and economic applications. Amongst them, fermentations based on glycerol media for the production of high value metabolites are prominent applications. This has generated a need to develop analytical techniques which allow fast and simple glycerol monitoring during fermentation. The methodology should be fast and inexpensive to be adopted in research, as well as in industrial applications. In this study three different methods were analysed and compared: two common methodologies based on liquid chromatography and enzymatic kits, and the new method based on a DotBlot assay coupled with image analysis. The new methodology is faster and cheaper than the other conventional methods, with comparable performance. Good linearity, precision and accuracy were achieved in the lower range (10 or 15 g/L to depletion), the most common range of glycerol concentrations to monitor fermentations in terms of growth kinetics. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Sequential Pattern Analysis: Method and Application in Exploring How Students Develop Concept Maps

    ERIC Educational Resources Information Center

    Chiu, Chiung-Hui; Lin, Chien-Liang

    2012-01-01

    Concept mapping is a technique that represents knowledge in graphs. It has been widely adopted in science education and cognitive psychology to aid learning and assessment. To realize the sequential manner in which students develop concept maps, most research relies upon human-dependent, qualitative approaches. This article proposes a method for…

  17. Application of the Spectral Element Method to Interior Noise Problems

    NASA Technical Reports Server (NTRS)

    Doyle, James F.

    1998-01-01

    The primary effort of this research project was focused the development of analytical methods for the accurate prediction of structural acoustic noise and response. Of particular interest was the development of curved frame and shell spectral elements for the efficient computational of structural response and of schemes to match this to the surrounding fluid.

  18. New directions for Artificial Intelligence (AI) methods in optimum design

    NASA Technical Reports Server (NTRS)

    Hajela, Prabhat

    1989-01-01

    Developments and applications of artificial intelligence (AI) methods in the design of structural systems is reviewed. Principal shortcomings in the current approach are emphasized, and the need for some degree of formalism in the development environment for such design tools is underscored. Emphasis is placed on efforts to integrate algorithmic computations in expert systems.

  19. Thinking Through Computational Exposure as an Evolving Paradign Shift for Exposure Science: Development and Application of Predictive Models from Big Data

    EPA Science Inventory

    Symposium Abstract: Exposure science has evolved from a time when the primary focus was on measurements of environmental and biological media and the development of enabling field and laboratory methods. The Total Exposure Assessment Method (TEAM) studies of the 1980s were class...

  20. Development of Critical Thinking through Aesthetic Experience: The Case of Students of an Educational Department

    ERIC Educational Resources Information Center

    Raikou, Natassa

    2016-01-01

    This article addresses an application performed in tertiary education--a department of pedagogical and educational sciences--of a contemporary method, Transformative Learning through Aesthetic Experience. The method is based on the use of art and aims to reinforce and promote the development of critical thinking within educational settings.…

  1. Development of methods to detect occurrence and effects of endocrine-disrupting chemicals: A fundamental shift in regulatory ecotoxicology

    EPA Science Inventory

    This is an editorial in ET&C describing the newer pathway-specific test methods for EDCs and their effect on ecotoxicology. Work conducted to support the development and application of these types of assays promises to be an important catalyst to advance the field of ecotoxicolo...

  2. HPLC-MS/MS method for dexmedetomidine quantification with Design of Experiments approach: application to pediatric pharmacokinetic study.

    PubMed

    Szerkus, Oliwia; Struck-Lewicka, Wiktoria; Kordalewska, Marta; Bartosińska, Ewa; Bujak, Renata; Borsuk, Agnieszka; Bienert, Agnieszka; Bartkowska-Śniatkowska, Alicja; Warzybok, Justyna; Wiczling, Paweł; Nasal, Antoni; Kaliszan, Roman; Markuszewski, Michał Jan; Siluk, Danuta

    2017-02-01

    The purpose of this work was to develop and validate a rapid and robust LC-MS/MS method for the determination of dexmedetomidine (DEX) in plasma, suitable for analysis of a large number of samples. Systematic approach, Design of Experiments, was applied to optimize ESI source parameters and to evaluate method robustness, therefore, a rapid, stable and cost-effective assay was developed. The method was validated according to US FDA guidelines. LLOQ was determined at 5 pg/ml. The assay was linear over the examined concentration range (5-2500 pg/ml), Results: Experimental design approach was applied for optimization of ESI source parameters and evaluation of method robustness. The method was validated according to the US FDA guidelines. LLOQ was determined at 5 pg/ml. The assay was linear over the examined concentration range (R 2 > 0.98). The accuracies, intra- and interday precisions were less than 15%. The stability data confirmed reliable behavior of DEX under tested conditions. Application of Design of Experiments approach allowed for fast and efficient analytical method development and validation as well as for reduced usage of chemicals necessary for regular method optimization. The proposed technique was applied to determination of DEX pharmacokinetics in pediatric patients undergoing long-term sedation in the intensive care unit.

  3. Women's preferences for vaginal antimicrobial contraceptives. III. Choice of a formulation, applicator, and packaging.

    PubMed

    Hardy, E; Jiménez, A L; de Pádua, K S; Zaneveld, L J

    1998-10-01

    Novel vaginal formulations are under development to combat the increasing incidence of sexually transmitted diseases, including AIDS, and also unplanned pregnancies. A study was performed to determine women's preferences for different dosage forms (gel, cream, ovule/suppository, film, foam, tablet), width, length, and color of an applicator, and various types of packages. The study was conducted in Campinas, Brazil. A total of 635 women were interviewed, including both adolescents and adults and low and middle-high socioeconomic groups. The large majority of the women preferred a gel over a cream; both were preferred over the other methods. When asked which method they would not use, the film was most frequently identified, followed by the tablet and ovule. The primary reasons for selecting a particular dosage form were ease of use, absence of odor or the presence of a pleasant one, absence of color, and insertion with an applicator. The major reasons for not using a method were discomfort, "plastic" appearance, distrust of effectiveness, difficulty with insertion, messiness, and rigidity/hardness. The majority of the women liked the applicator shown. The prefilled single dose applicator was by far the preferred packaging. This information should aid in the development of consumer-friendly, vaginal formulations.

  4. Genome-Wide Profiling of DNA Double-Strand Breaks by the BLESS and BLISS Methods.

    PubMed

    Mirzazadeh, Reza; Kallas, Tomasz; Bienko, Magda; Crosetto, Nicola

    2018-01-01

    DNA double-strand breaks (DSBs) are major DNA lesions that are constantly formed during physiological processes such as DNA replication, transcription, and recombination, or as a result of exogenous agents such as ionizing radiation, radiomimetic drugs, and genome editing nucleases. Unrepaired DSBs threaten genomic stability by leading to the formation of potentially oncogenic rearrangements such as translocations. In past few years, several methods based on next-generation sequencing (NGS) have been developed to study the genome-wide distribution of DSBs or their conversion to translocation events. We developed Breaks Labeling, Enrichment on Streptavidin, and Sequencing (BLESS), which was the first method for direct labeling of DSBs in situ followed by their genome-wide mapping at nucleotide resolution (Crosetto et al., Nat Methods 10:361-365, 2013). Recently, we have further expanded the quantitative nature, applicability, and scalability of BLESS by developing Breaks Labeling In Situ and Sequencing (BLISS) (Yan et al., Nat Commun 8:15058, 2017). Here, we first present an overview of existing methods for genome-wide localization of DSBs, and then focus on the BLESS and BLISS methods, discussing different assay design options depending on the sample type and application.

  5. Development of a method for measuring femoral torsion using real-time ultrasound.

    PubMed

    Hafiz, Eliza; Hiller, Claire E; Nicholson, Leslie L; Nightingale, E Jean; Clarke, Jillian L; Grimaldi, Alison; Eisenhuth, John P; Refshauge, Kathryn M

    2014-07-01

    Excessive femoral torsion has been associated with various musculoskeletal and neurological problems. To explore this relationship, it is essential to be able to measure femoral torsion in the clinic accurately. Computerized tomography (CT) and magnetic resonance imaging (MRI) are thought to provide the most accurate measurements but CT involves significant radiation exposure and MRI is expensive. The aim of this study was to design a method for measuring femoral torsion in the clinic, and to determine the reliability of this method. Details of design process, including construction of a jig, the protocol developed and the reliability of the method are presented. The protocol developed used ultrasound to image a ridge on the greater trochanter, and a customized jig placed on the femoral condyles as reference points. An inclinometer attached to the customized jig allowed quantification of the degree of femoral torsion. Measurements taken with this protocol had excellent intra- and inter-rater reliability (ICC2,1 = 0.98 and 0.97, respectively). This method of measuring femoral torsion also permitted measurement of femoral torsion with a high degree of accuracy. This method is applicable to the research setting and, with minor adjustments, will be applicable to the clinical setting.

  6. Aerodynamic aircraft design methods and their notable applications: Survey of the activity in Japan

    NASA Technical Reports Server (NTRS)

    Fujii, Kozo; Takanashi, Susumu

    1991-01-01

    An overview of aerodynamic aircraft design methods and their recent applications in Japan is presented. A design code which was developed at the National Aerospace Laboratory (NAL) and is in use now is discussed, hence, most of the examples are the result of the collaborative work between heavy industry and the National Aerospace Laboratory. A wide variety of applications in transonic to supersonic flow regimes are presented. Although design of aircraft elements for external flows are the main focus, some of the internal flow applications are also presented. Recent applications of the design code, using the Navier Stokes and Euler equations in the analysis mode, include the design of HOPE (a space vehicle) and Upper Surface Blowing (USB) aircraft configurations.

  7. Developing prehospital clinical practice guidelines for resource limited settings: why re-invent the wheel?

    PubMed

    McCaul, Michael; de Waal, Ben; Hodkinson, Peter; Pigoga, Jennifer L; Young, Taryn; Wallis, Lee A

    2018-02-05

    Methods on developing new (de novo) clinical practice guidelines (CPGs) have received substantial attention. However, the volume of literature is not matched by research into alternative methods of CPG development using existing CPG documents-a specific issue for guideline development groups in low- and middle-income countries. We report on how we developed a context specific prehospital CPG using an alternative guideline development method. Difficulties experienced and lessons learnt in applying existing global guidelines' recommendations to a national context are highlighted. The project produced the first emergency care CPG for prehospital providers in Africa. It included > 270 CPGs and produced over 1000 recommendations for prehospital emergency care. We encountered various difficulties, including (1) applicability issues: few pre-hospital CPGs applicable to Africa, (2) evidence synthesis: heterogeneous levels of evidence classifications and (3) guideline quality. Learning points included (1) focusing on key CPGs and evidence mapping, (2) searching other resources for CPGs, (3) broad representation on CPG advisory boards and (4) transparency and knowledge translation. Re-inventing the wheel to produce CPGs is not always feasible. We hope this paper will encourage further projects to use existing CPGs in developing guidance to improve patient care in resource-limited settings.

  8. Validity in Mixed Methods Research in Education: The Application of Habermas' Critical Theory

    ERIC Educational Resources Information Center

    Long, Haiying

    2017-01-01

    Mixed methods approach has developed into the third methodological movement in educational research. Validity in mixed methods research as an important issue, however, has not been examined as extensively as that of quantitative and qualitative research. Additionally, the previous discussions of validity in mixed methods research focus on research…

  9. Fluorescent Nanomaterials for the Development of Latent Fingerprints in Forensic Sciences

    PubMed Central

    Li, Ming; Yu, Aoyang; Zhu, Ye

    2018-01-01

    This review presents an overview on the application of latent fingerprint development techniques in forensic sciences. At present, traditional developing methods such as powder dusting, cyanoacrylate fuming, chemical method, and small particle reagent method, have all been gradually compromised given their emerging drawbacks such as low contrast, sensitivity, and selectivity, as well as high toxicity. Recently, much attention has been paid to the use of fluorescent nanomaterials including quantum dots (QDs) and rare earth upconversion fluorescent nanomaterials (UCNMs) due to their unique optical and chemical properties. Thus, this review lays emphasis on latent fingerprint development based on QDs and UCNMs. Compared to latent fingerprint development by traditional methods, the new methods using fluorescent nanomaterials can achieve high contrast, sensitivity, and selectivity while showing reduced toxicity. Overall, this review provides a systematic overview on such methods. PMID:29657570

  10. Development of a new lattice physics code robin for PWR application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.; Chen, G.

    2013-07-01

    This paper presents a description of methodologies and preliminary verification results of a new lattice physics code ROBIN, being developed for PWR application at Shanghai NuStar Nuclear Power Technology Co., Ltd. The methods used in ROBIN to fulfill various tasks of lattice physics analysis are an integration of historical methods and new methods that came into being very recently. Not only these methods like equivalence theory for resonance treatment and method of characteristics for neutron transport calculation are adopted, as they are applied in many of today's production-level LWR lattice codes, but also very useful new methods like the enhancedmore » neutron current method for Dancoff correction in large and complicated geometry and the log linear rate constant power depletion method for Gd-bearing fuel are implemented in the code. A small sample of verification results are provided to illustrate the type of accuracy achievable using ROBIN. It is demonstrated that ROBIN is capable of satisfying most of the needs for PWR lattice analysis and has the potential to become a production quality code in the future. (authors)« less

  11. The Study on Development of Light-Weight Foamed Mortar for Tunnel Backfill

    NASA Astrophysics Data System (ADS)

    Ma, Sang-Joon; Kang, Eun-Gu; Kim, Dong-Min

    This study was intended to develop the Light-Weight Foamed Mortar which is used for NATM Composite lining backfill. In the wake of the study, the mixing method which satisfies the requirements for compressive strength, permeability coefficient, fluidity, specific gravity and settlement was developed and moreover field applicability was verified through the model test. Thus the mixing of Light-Weight Foamed Mortar developed in this study is expected to be applicable to NATM Composite lining, thereby making commitment to improving the stability and drainage performance of lining.

  12. Advanced scanning probe lithography.

    PubMed

    Garcia, Ricardo; Knoll, Armin W; Riedo, Elisa

    2014-08-01

    The nanoscale control afforded by scanning probe microscopes has prompted the development of a wide variety of scanning-probe-based patterning methods. Some of these methods have demonstrated a high degree of robustness and patterning capabilities that are unmatched by other lithographic techniques. However, the limited throughput of scanning probe lithography has prevented its exploitation in technological applications. Here, we review the fundamentals of scanning probe lithography and its use in materials science and nanotechnology. We focus on robust methods, such as those based on thermal effects, chemical reactions and voltage-induced processes, that demonstrate a potential for applications.

  13. Estimating Logistics Support of Reusable Launch Vehicles During Conceptual Design

    NASA Technical Reports Server (NTRS)

    Morris, W. D.; White, N. H.; Davies, W. T.; Ebeling, C. E.

    1997-01-01

    Methods exist to define the logistics support requirements for new aircraft concepts but are not directly applicable to new launch vehicle concepts. In order to define the support requirements and to discriminate among new technologies and processing choices for these systems, NASA Langley Research Center (LaRC) is developing new analysis methods. This paper describes several methods under development, gives their current status, and discusses the benefits and limitations associated with their use.

  14. Evolution of the SCS curve number method and its applications to continuous runoff simulation

    USDA-ARS?s Scientific Manuscript database

    The Natural Resources Conservation Service (NRCS) [previously Soil Conservation Service (SCS)] developed the SCS runoff curve-number (CN) method for estimating direct runoff from storm rainfall. The NRCS uses the CN method for designing structures and for evaluating their effectiveness. Structural...

  15. Chemical Mixtures Health Risk Assessment of Environmental Contaminants: Concepts, Methods, Applications: Handbook

    EPA Science Inventory

    This problems-based, half-day, introductory workshop focuses on methods to assess health risks posed by exposures to chemical mixtures in the environment. Chemical mixtures health risk assessment methods continue to be developed and evolve to address concerns over health risks f...

  16. Quantitative estimation of minimum offset for multichannel surface-wave survey with actively exciting source

    USGS Publications Warehouse

    Xu, Y.; Xia, J.; Miller, R.D.

    2006-01-01

    Multichannel analysis of surface waves is a developing method widely used in shallow subsurface investigations. The field procedures and related parameters are very important for successful applications. Among these parameters, the source-receiver offset range is seldom discussed in theory and normally determined by empirical or semi-quantitative methods in current practice. This paper discusses the problem from a theoretical perspective. A formula for quantitatively evaluating a layered homogenous elastic model was developed. The analytical results based on simple models and experimental data demonstrate that the formula is correct for surface wave surveys for near-surface applications. ?? 2005 Elsevier B.V. All rights reserved.

  17. Scientific Computation Application Partnerships in Materials and Chemical Sciences, Charge Transfer and Charge Transport in Photoactivated Systems, Developing Electron-Correlated Methods for Excited State Structure and Dynamics in the NWChem Software Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, Christopher J.

    Charge transfer and charge transport in photoactivated systems are fundamental processes that underlie solar energy capture, solar energy conversion, and photoactivated catalysis, both organometallic and enzymatic. We developed methods, algorithms, and software tools needed for reliable treatment of the underlying physics for charge transfer and charge transport, an undertaking with broad applicability to the goals of the fundamental-interaction component of the Department of Energy Office of Basic Energy Sciences and the exascale initiative of the Office of Advanced Scientific Computing Research.

  18. Developing stereo image based robot control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suprijadi,; Pambudi, I. R.; Woran, M.

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based onmore » stereovision captures.« less

  19. Photothermoplastic recording media and its application in the holographic method of determination of the refractive index of liquid objects.

    PubMed

    Davidenko, N A; Davidenko, I I; Pavlov, V A; Chuprina, N G; Kravchenko, V V; Kuranda, N N; Mokrinskaya, E V; Studzinsky, S L

    2018-03-10

    The photothermoplastic medium based on the films of photosensitive polymeric composites with semiconductor properties is developed for application in optical information recording and storage, in holographic interferometry, as well as for medical purposes. This medium was used in the modified holographic device for determination of changes of the refractive index of homogeneous and inhomogeneous liquid objects. The technique and holographic equipment were modified by employing the specially developed and produced transparent cuvette of special shape and the phase shifting interferometry method. Experimentally demonstrated precision of the measurements is not less than 10 -5 .

  20. Applications of lasers and electro-optics

    NASA Astrophysics Data System (ADS)

    Tan, B. C.; Low, K. S.; Chen, Y. H.; Ahmad, Harith; Tou, T. Y.

    Supported by the IRPA Programme on Laser Technology and Applications, many types of lasers have been designed, constructed and applied in various areas of science, medicine and industries. Amongst these lasers constructed were high power carbon dioxide lasers, rare gas halide excimer lasers, solid state Neodymium-YAG lasers, nitrogen lasers, flashlamp pumped dye lasers and nitrogen and excimer laser pumped dye lasers. These lasers and the associated electro-optics system, some with computer controlled, are designed and developed for the following areas of applications: (1) industrial applications of high power carbon dioxide lasers for making of i.c. components and other materials processing purposes -- prototype operational systems have been developed; (2) Medical applications of lasers for cancer treatment using the technique of photodynamic therapy -- a new and more effective treatment protocol has been proposed; (3) agricultural applications of lasers in palm oil and palm fruit-fluorescence diagnostic studies -- fruit ripeness signature has been developed and palm oil oxidation level were investigated; (4) development of atmospheric pollution monitoring systems using laser lidar techniques -- laboratory scale systems were developed; and (5) other applications of lasers including laser holographic and interferometric methods for the non destructive testing of materials.

  1. Fire retardancy with structural materials

    NASA Technical Reports Server (NTRS)

    Gardner, R. E.

    1971-01-01

    Impregnating wood with chemicals to reduce or prevent combustion is discussed. Basic types of materials for fireproofing purposes and methods of applications are described. It is concluded that effective fireproofing materials have been developed and their application to wooden structures represents acceptable safety management procedures.

  2. Probabilistic Prediction of Riverine Bathymetry

    DTIC Science & Technology

    2011-09-30

    planned a substantial data field collection effort on the Hanford Reach of the Columbia River near Richland, WA, which represents an ideal testing...4 Figure 2. 82-km Hanford Reach of the Columbia River (WA) IMPACT/APPLICATIONS The developed methods are directly applicable to video

  3. Current progress of targetron technology: development, improvement and application in metabolic engineering.

    PubMed

    Liu, Ya-Jun; Zhang, Jie; Cui, Gu-Zhen; Cui, Qiu

    2015-06-01

    Targetrons are mobile group II introns that can recognize their DNA target sites by base-pairing RNA-DNA interactions with the aid of site-specific binding reverse transcriptases. Targetron technology stands out from recently developed gene targeting methods because of the flexibility, feasibility, and efficiency, and is particularly suitable for the genetic engineering of difficult microorganisms, including cellulolytic bacteria that are considered promising candidates for biomass conversion via consolidated bioprocessing. Along with the development of the thermotargetron method for thermophiles, targetron technology becomes increasingly important for the metabolic engineering of industrial microorganisms aiming at biofuel/chemical production. To summarize the current progress of targetron technology and provide new insights on the use of the technology, this paper reviews the retrohoming mechanisms of both mesophilic and thermophilic targetron methods based on various group II introns, investigates the improvement of targetron tools for high target efficiency and specificity, and discusses the current applications in the metabolic engineering for bacterial producers. Although there are still intellectual property and technical restrictions in targetron applications, we propose that targetron technology will contribute to both biochemistry research and the metabolic engineering for industrial productions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Molecularly Imprinted Polymers: Novel Discovery for Drug Delivery.

    PubMed

    Dhanashree, Surve; Priyanka, Mohite; Manisha, Karpe; Vilasrao, Kadam

    2016-01-01

    Molecularly imprinted polymers (MIP) are novel carriers synthesized by imprinting of a template over a polymer. This paper presents the recent application of MIP for diagnostic and therapeutic drug delivery. MIP owing to their 3D polymeric structures and due to bond formation with the template serves as a reservoir of active causing stimuli sensitive, enantioselective, targetted and/or controlled release. The review elaborates about key factors for optimization of MIP, controlled release by MIP for various administration routes various forms like patches, contact lenses, nanowires along with illustrations. To overcome the limitation of organic solvent usage causing increased cost, water compatible MIP and use of supercritical fluid technology for molecular imprinting were developed. Novel methods for developing water compatible MIP like pickering emulsion polymerization, co-precipitation method, cyclodextrin imprinting, surface grafting, controlled/living radical chain polymerization methods are described with illustration in this review. Various protein imprinting methods like bulk, epitope and surface imprinting are described along with illustrations. Further, application of MIP in microdevices as biomimetic sensing element for personalized therapy is elaborated. Although development and application of MIP in drug delivery is still at its infancy, constant efforts of researchers will lead to a novel intelligent drug delivery with commercial value. Efforts should be directed in developing solid oral dosage forms consisting of MIP for therapeutic protein and peptide delivery and targeted release of potent drugs addressing life threatening disease like cancer. Amalgamation of bio-engineering and pharmaceutical techniques can make these future prospects into reality.

  5. Advances in medical image computing.

    PubMed

    Tolxdorff, T; Deserno, T M; Handels, H; Meinzer, H-P

    2009-01-01

    Medical image computing has become a key technology in high-tech applications in medicine and an ubiquitous part of modern imaging systems and the related processes of clinical diagnosis and intervention. Over the past years significant progress has been made in the field, both on methodological and on application level. Despite this progress there are still big challenges to meet in order to establish image processing routinely in health care. In this issue, selected contributions of the German Conference on Medical Image Processing (BVM) are assembled to present latest advances in the field of medical image computing. The winners of scientific awards of the German Conference on Medical Image Processing (BVM) 2008 were invited to submit a manuscript on their latest developments and results for possible publication in Methods of Information in Medicine. Finally, seven excellent papers were selected to describe important aspects of recent advances in the field of medical image processing. The selected papers give an impression of the breadth and heterogeneity of new developments. New methods for improved image segmentation, non-linear image registration and modeling of organs are presented together with applications of image analysis methods in different medical disciplines. Furthermore, state-of-the-art tools and techniques to support the development and evaluation of medical image processing systems in practice are described. The selected articles describe different aspects of the intense development in medical image computing. The image processing methods presented enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.

  6. Development and application of traffic flow information collecting and analysis system based on multi-type video

    NASA Astrophysics Data System (ADS)

    Lu, Mujie; Shang, Wenjie; Ji, Xinkai; Hua, Mingzhuang; Cheng, Kuo

    2015-12-01

    Nowadays, intelligent transportation system (ITS) has already become the new direction of transportation development. Traffic data, as a fundamental part of intelligent transportation system, is having a more and more crucial status. In recent years, video observation technology has been widely used in the field of traffic information collecting. Traffic flow information contained in video data has many advantages which is comprehensive and can be stored for a long time, but there are still many problems, such as low precision and high cost in the process of collecting information. This paper aiming at these problems, proposes a kind of traffic target detection method with broad applicability. Based on three different ways of getting video data, such as aerial photography, fixed camera and handheld camera, we develop a kind of intelligent analysis software which can be used to extract the macroscopic, microscopic traffic flow information in the video, and the information can be used for traffic analysis and transportation planning. For road intersections, the system uses frame difference method to extract traffic information, for freeway sections, the system uses optical flow method to track the vehicles. The system was applied in Nanjing, Jiangsu province, and the application shows that the system for extracting different types of traffic flow information has a high accuracy, it can meet the needs of traffic engineering observations and has a good application prospect.

  7. Methodology, status and plans for development and assessment of HEXTRAN, TRAB and APROS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanttola, T.; Rajamaeki, M.; Tiihonen, O.

    1997-07-01

    A number of transient and accident analysis codes have been developed in Finland during the past twenty years mainly for the needs of their own power plants, but some of the codes have also been utilized elsewhere. The continuous validation, simultaneous development and experiences obtained in commercial applications have considerably improved the performance and range of application of the codes. At present, the methods allow fairly covering accident analysis of the Finnish nuclear power plants.

  8. Automated real-time software development

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Walker, Carrie K.; Turkovich, John J.

    1993-01-01

    A Computer-Aided Software Engineering (CASE) system has been developed at the Charles Stark Draper Laboratory (CSDL) under the direction of the NASA Langley Research Center. The CSDL CASE tool provides an automated method of generating source code and hard copy documentation from functional application engineering specifications. The goal is to significantly reduce the cost of developing and maintaining real-time scientific and engineering software while increasing system reliability. This paper describes CSDL CASE and discusses demonstrations that used the tool to automatically generate real-time application code.

  9. The progress of sub-pixel imaging methods

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Wen, Desheng

    2014-02-01

    This paper reviews the Sub-pixel imaging technology principles, characteristics, the current development status at home and abroad and the latest research developments. As Sub-pixel imaging technology has achieved the advantages of high resolution of optical remote sensor, flexible working ways and being miniaturized with no moving parts. The imaging system is suitable for the application of space remote sensor. Its application prospect is very extensive. It is quite possible to be the research development direction of future space optical remote sensing technology.

  10. Application of machine learning methods in bioinformatics

    NASA Astrophysics Data System (ADS)

    Yang, Haoyu; An, Zheng; Zhou, Haotian; Hou, Yawen

    2018-05-01

    Faced with the development of bioinformatics, high-throughput genomic technology have enabled biology to enter the era of big data. [1] Bioinformatics is an interdisciplinary, including the acquisition, management, analysis, interpretation and application of biological information, etc. It derives from the Human Genome Project. The field of machine learning, which aims to develop computer algorithms that improve with experience, holds promise to enable computers to assist humans in the analysis of large, complex data sets.[2]. This paper analyzes and compares various algorithms of machine learning and their applications in bioinformatics.

  11. Reference earth orbital research and applications investigations (blue book). Volume 7: Technology

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The candidate experiment program for manned space stations with specific application to technology disciplines is presented. The five functional program elements are devoted to the development of new technology for application to future generation spacecraft and experiments. The functional program elements are as follows: (1) monitor and trace movement of external contaminants to determine methods for controlling contamination, (2) analysis of fundamentals of fluid systems management, (3) extravehicular activity, (4) advanced spacecraft systems tests, and (5) development of teleoperator system for use with space activities.

  12. Electron tubes for industrial applications

    NASA Astrophysics Data System (ADS)

    Gellert, Bernd

    1994-05-01

    This report reviews research and development efforts within the last years for vacuum electron tubes, in particular power grid tubes for industrial applications. Physical and chemical effects are discussed that determine the performance of todays devices. Due to the progress made in the fundamental understanding of materials and newly developed processes the reliability and reproducibility of power grid tubes could be improved considerably. Modern computer controlled manufacturing methods ensure a high reproducibility of production and continuous quality certification according to ISO 9001 guarantees future high quality standards. Some typical applications of these tubes are given as an example.

  13. Novel developments and applications of two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Yeonju; Noda, Isao; Jung, Young Mee

    2016-11-01

    A comprehensive survey review of new and noteworthy developments of 2D correlation spectroscopy (2DCOS) and its applications for the last two years is compiled. This review covers not only journal articles and book chapters but also books, proceedings, and review articles published on 2DCOS, numerous significant new concepts of 2DCOS, patents and publication trends. Noteworthy experimental practices in the field of 2DCOS, including types of analytical probes employed, various perturbation methods used in experiments, and pertinent examples of fundamental and practical applications, are also reviewed.

  14. Earth Science Mobile App Development for Non-Programmers

    NASA Astrophysics Data System (ADS)

    Oostra, D.; Crecelius, S.; Lewis, P.; Chambers, L. H.

    2012-08-01

    A number of cloud based visual development tools have emerged that provide methods for developing mobile applications quickly and without previous programming experience. The MY NASA DATA (MND) team would like to begin a discussion on how we can best leverage current mobile app technologies and available Earth science datasets. The MY NASA DATA team is developing an approach based on two main ideas. The first is to teach our constituents how to create mobile applications that interact with NASA datasets; the second is to provide web services or Application Programming Interfaces (APIs) that create sources of data that educators, students and scientists can use in their own mobile app development. This framework allows data providers to foster mobile application development and interaction while not becoming a software clearing house. MY NASA DATA's research has included meetings with local data providers, educators, libraries and individuals. A high level of interest has been identified from initial discussions and interviews. This overt interest combined with the marked popularity of mobile applications in our societies has created a new channel for outreach and communications with and between the science and educational communities.

  15. Application of industry-standard guidelines for the validation of avionics software

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Shagnea, Anita M.

    1990-01-01

    The application of industry standards to the development of avionics software is discussed, focusing on verification and validation activities. It is pointed out that the procedures that guide the avionics software development and testing process are under increased scrutiny. The DO-178A guidelines, Software Considerations in Airborne Systems and Equipment Certification, are used by the FAA for certifying avionics software. To investigate the effectiveness of the DO-178A guidelines for improving the quality of avionics software, guidance and control software (GCS) is being developed according to the DO-178A development method. It is noted that, due to the extent of the data collection and configuration management procedures, any phase in the life cycle of a GCS implementation can be reconstructed. Hence, a fundamental development and testing platform has been established that is suitable for investigating the adequacy of various software development processes. In particular, the overall effectiveness and efficiency of the development method recommended by the DO-178A guidelines are being closely examined.

  16. Usability testing for the rest of us: the application of discount usability principles in the development of an online communications assessment application.

    PubMed

    Brock, Douglas; Kim, Sara; Palmer, Odawni; Gallagher, Thomas; Holmboe, Eric

    2013-01-01

    Usability evaluation provides developers and educators with the means to understand user needs, improve overall product utility, and increase user satisfaction. The application of "discount usability" principles developed to make usability testing more practical and useful may improve user experience at minimal cost and require little existing expertise to conduct. We describe an application of discount usability to a high-fidelity online communications assessment application developed by the University of Washington for the American Board of Internal Medicine. Eight internal medicine physicians completed a discount usability test. Sessions were recorded and the videos analyzed for significant usability concerns. Concerns were identified, summarized, discussed, and prioritized by the authors in collaboration with the software developers before implementing any changes to the interface. Thirty-eight significant usability issues were detected and four technical problems were identified. Each issue was responded to through modification of the software, by providing additional instruction, or delayed for a later version to be developed. Discount usability can be easily implemented in academic developmental activities. Our study resulted in the discovery and remediation of significant user problems, in addition to giving important insight into the novel methods built into the application.

  17. METHODS FOR MULTI-SPATIAL SCALE CHARACTERIZATION OF RIPARIAN CORRIDORS

    EPA Science Inventory

    This paper describes the application of aerial photography and GIS technology to develop flexible and transferable methods for multi-spatial scale characterization and analysis of riparian corridors. Relationships between structural attributes of riparian corridors and indicator...

  18. Marshall Barber and the century of microinjection: from cloning of bacteria to cloning of everything.

    PubMed

    Korzh, Vladimir; Strähle, Uwe

    2002-08-01

    A hundred years ago, Dr. Marshall A. Barber proposed a new technique - the microinjection technique. He developed this method initially to clone bacteria and to confirm the germ theory of Koch and Pasteur. Later on, he refined his approach and was able to manipulate nuclei in protozoa and to implant bacteria into plant cells. Continuous improvement and adaptation of this method to new applications dramatically changed experimental embryology and cytology and led to the formation of several new scientific disciplines including animal cloning as one of its latest applications. Interestingly, microinjection originated as a method at the crossroad of bacteriology and plant biology, demonstrating once again the unforeseen impact that basic research in an unrelated field can have on the development of entirely different disciplines.

  19. Prediction Interval Development for Wind-Tunnel Balance Check-Loading

    NASA Technical Reports Server (NTRS)

    Landman, Drew; Toro, Kenneth G.; Commo, Sean A.; Lynn, Keith C.

    2014-01-01

    Results from the Facility Analysis Verification and Operational Reliability project revealed a critical gap in capability in ground-based aeronautics research applications. Without a standardized process for check-loading the wind-tunnel balance or the model system, the quality of the aerodynamic force data collected varied significantly between facilities. A prediction interval is required in order to confirm a check-loading. The prediction interval provides an expected upper and lower bound on balance load prediction at a given confidence level. A method has been developed which accounts for sources of variability due to calibration and check-load application. The prediction interval method of calculation and a case study demonstrating its use is provided. Validation of the methods is demonstrated for the case study based on the probability of capture of confirmation points.

  20. Identifying Obstacles and Research Gaps of Telemedicine Projects: Approach for a State-of-the-Art Analysis.

    PubMed

    Harst, Lorenz; Timpel, Patrick; Otto, Lena; Wollschlaeger, Bastian; Richter, Peggy; Schlieter, Hannes

    2018-01-01

    This paper presents an approach for an evaluation of finished telemedicine projects using qualitative methods. Telemedicine applications are said to improve the performance of health care systems. While there are countless telemedicine projects, the vast majority never makes the threshold from testing to implementation and diffusion. Projects were collected from German project databases in the area of telemedicine following systematically developed criteria. In a testing phase, ten projects were subject to a qualitative content analysis to identify limitations, need for further research, and lessons learned. Using Mayring's method of inductive category development, six categories of possible future research were derived. Thus, the proposed method is an important contribution to diffusion and translation research regarding telemedicine, as it is applicable to a systematic research of databases.

Top