ERIC Educational Resources Information Center
Donnelly, Lisa A.; Kazempour, Mahsa; Amirshokoohi, Aidin
2009-01-01
Evolution is an important and sometimes controversial component of high school biology. In this study, we used a mixed methods approach to explore students' evolution acceptance and views of evolution teaching and learning. Students explained their acceptance and rejection of evolution in terms of evidence and conflicts with religion and…
ERIC Educational Resources Information Center
Fabian, Carole Ann
2004-01-01
A university in Buffalo introduced its students to evolution by providing them with information on evidence of evolution, mechanisms for evolution, principles of genetics, selection, adaptation, evolution and sociobiology. This method of teaching with technology enabled students to improve and expand their learning opportunities.
Solar Energy Evolution and Diffusion Studies | Solar Research | NREL
industry-wide studies that use data-driven and evidence-based methods to identify characteristics developed models of U.S. household PV adoption. The project also conducted two market pilots to test methods
Evolution of Humans: Understanding the Nature and Methods of Science through Cooperative Learning
ERIC Educational Resources Information Center
Lee, Yeung Chung
2011-01-01
This article describes the use of an enquiry-based approach to the study of human evolution in a practical context, integrating role-playing, jigsaw cooperative learning and scientific argumentation. The activity seeks to unravel the evolutionary relationships of five hominids and one ape from rather "messy" evidence. This approach enhanced the…
Wilson, Laura A B; Colombo, Marco; Sánchez-Villagra, Marcelo R; Salzburger, Walter
2015-11-20
Phenotype-environment correlations and the evolution of trait interactions in adaptive radiations have been widely studied to gain insight into the dynamics underpinning rapid species diversification. In this study we explore the phenotype-environment correlation and evolution of operculum shape in cichlid fishes using an outline-based geometric morphometric approach combined with stable isotope indicators of macrohabitat and trophic niche. We then apply our method to a sample of extinct saurichthyid fishes, a highly diverse and near globally distributed group of actinopterygians occurring throughout the Triassic, to assess the utility of extant data to inform our understanding of ecomorphological evolution in extinct species flocks. A series of comparative methods were used to analyze shape data for 54 extant species of cichlids (N = 416), and 6 extinct species of saurichthyids (N = 44). Results provide evidence for a relationship between operculum shape and feeding ecology, a concentration in shape evolution towards present along with evidence for convergence in form, and significant correlation between the major axes of shape change and measures of gut length and body elongation. The operculum is one of few features that can be compared in extant and extinct groups, enabling reconstruction of phenotype-environment interactions and modes of evolutionary diversification in deep time.
Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution.
Zanno, Lindsay E; Makovicky, Peter J
2011-01-04
Interpreting key ecological parameters, such as diet, of extinct organisms without the benefit of direct observation or explicit fossil evidence poses a formidable challenge for paleobiological studies. To date, dietary categorizations of extinct taxa are largely generated by means of modern analogs; however, for many species the method is subject to considerable ambiguity. Here we present a refined approach for assessing trophic habits in fossil taxa and apply the method to coelurosaurian dinosaurs--a clade for which diet is particularly controversial. Our findings detect 21 morphological features that exhibit statistically significant correlations with extrinsic fossil evidence of coelurosaurian herbivory, such as stomach contents and a gastric mill. These traits represent quantitative, extrinsically founded proxies for identifying herbivorous ecomorphology in fossils and are robust despite uncertainty in phylogenetic relationships among major coelurosaurian subclades. The distribution of these features suggests that herbivory was widespread among coelurosaurians, with six major subclades displaying morphological evidence of the diet, and that contrary to previous thought, hypercarnivory was relatively rare and potentially secondarily derived. Given the potential for repeated, independent evolution of herbivory in Coelurosauria, we also test for repetitive patterns in the appearance of herbivorous traits within sublineages using rank concordance analysis. We find evidence for a common succession of increasing specialization to herbivory in the subclades Ornithomimosauria and Oviraptorosauria, perhaps underlain by intrinsic functional and/or developmental constraints, as well as evidence indicating that the early evolution of a beak in coelurosaurians correlates with an herbivorous diet.
Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution
Zanno, Lindsay E.; Makovicky, Peter J.
2011-01-01
Interpreting key ecological parameters, such as diet, of extinct organisms without the benefit of direct observation or explicit fossil evidence poses a formidable challenge for paleobiological studies. To date, dietary categorizations of extinct taxa are largely generated by means of modern analogs; however, for many species the method is subject to considerable ambiguity. Here we present a refined approach for assessing trophic habits in fossil taxa and apply the method to coelurosaurian dinosaurs—a clade for which diet is particularly controversial. Our findings detect 21 morphological features that exhibit statistically significant correlations with extrinsic fossil evidence of coelurosaurian herbivory, such as stomach contents and a gastric mill. These traits represent quantitative, extrinsically founded proxies for identifying herbivorous ecomorphology in fossils and are robust despite uncertainty in phylogenetic relationships among major coelurosaurian subclades. The distribution of these features suggests that herbivory was widespread among coelurosaurians, with six major subclades displaying morphological evidence of the diet, and that contrary to previous thought, hypercarnivory was relatively rare and potentially secondarily derived. Given the potential for repeated, independent evolution of herbivory in Coelurosauria, we also test for repetitive patterns in the appearance of herbivorous traits within sublineages using rank concordance analysis. We find evidence for a common succession of increasing specialization to herbivory in the subclades Ornithomimosauria and Oviraptorosauria, perhaps underlain by intrinsic functional and/or developmental constraints, as well as evidence indicating that the early evolution of a beak in coelurosaurians correlates with an herbivorous diet. PMID:21173263
Slater, Graham J; Harmon, Luke J; Wegmann, Daniel; Joyce, Paul; Revell, Liam J; Alfaro, Michael E
2012-03-01
In recent years, a suite of methods has been developed to fit multiple rate models to phylogenetic comparative data. However, most methods have limited utility at broad phylogenetic scales because they typically require complete sampling of both the tree and the associated phenotypic data. Here, we develop and implement a new, tree-based method called MECCA (Modeling Evolution of Continuous Characters using ABC) that uses a hybrid likelihood/approximate Bayesian computation (ABC)-Markov-Chain Monte Carlo approach to simultaneously infer rates of diversification and trait evolution from incompletely sampled phylogenies and trait data. We demonstrate via simulation that MECCA has considerable power to choose among single versus multiple evolutionary rate models, and thus can be used to test hypotheses about changes in the rate of trait evolution across an incomplete tree of life. We finally apply MECCA to an empirical example of body size evolution in carnivores, and show that there is no evidence for an elevated rate of body size evolution in the pinnipeds relative to terrestrial carnivores. ABC approaches can provide a useful alternative set of tools for future macroevolutionary studies where likelihood-dependent approaches are lacking. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Statistical evidence for common ancestry: Application to primates.
Baum, David A; Ané, Cécile; Larget, Bret; Solís-Lemus, Claudia; Ho, Lam Si Tung; Boone, Peggy; Drummond, Chloe P; Bontrager, Martin; Hunter, Steven J; Saucier, William
2016-06-01
Since Darwin, biologists have come to recognize that the theory of descent from common ancestry (CA) is very well supported by diverse lines of evidence. However, while the qualitative evidence is overwhelming, we also need formal methods for quantifying the evidential support for CA over the alternative hypothesis of separate ancestry (SA). In this article, we explore a diversity of statistical methods using data from the primates. We focus on two alternatives to CA, species SA (the separate origin of each named species) and family SA (the separate origin of each family). We implemented statistical tests based on morphological, molecular, and biogeographic data and developed two new methods: one that tests for phylogenetic autocorrelation while correcting for variation due to confounding ecological traits and a method for examining whether fossil taxa have fewer derived differences than living taxa. We overwhelmingly rejected both species and family SA with infinitesimal P values. We compare these results with those from two companion papers, which also found tremendously strong support for the CA of all primates, and discuss future directions and general philosophical issues that pertain to statistical testing of historical hypotheses such as CA. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Reticulate evolution and the human past: an anthropological perspective.
Winder, Isabelle C; Winder, Nick P
2014-01-01
The evidence is mounting that reticulate (web-like) evolution has shaped the biological histories of many macroscopic plants and animals, including non-human primates closely related to Homo sapiens, but the implications of this non-hierarchical evolution for anthropological enquiry are not yet fully understood. When they are understood, the result may be a paradigm shift in evolutionary anthropology. This paper reviews the evidence for reticulated evolution in the non-human primates and human lineage. Then it makes the case for extrapolating this sort of patterning to Homo sapiens and other hominins and explores the implications this would have for research design, method and understandings of evolution in anthropology. Reticulation was significant in human evolutionary history and continues to influence societies today. Anthropologists and human scientists-whether working on ancient or modern populations-thus need to consider the implications of non-hierarchic evolution, particularly where molecular clocks, mathematical models and simplifying assumptions about evolutionary processes are used. This is not just a problem for palaeoanthropology. The simple fact of different mating systems among modern human groups, for example, may demand that more attention is paid to the potential for complexity in human genetic and cultural histories.
Evolution of semilocal string networks. II. Velocity estimators
NASA Astrophysics Data System (ADS)
Lopez-Eiguren, A.; Urrestilla, J.; Achúcarro, A.; Avgoustidis, A.; Martins, C. J. A. P.
2017-07-01
We continue a comprehensive numerical study of semilocal string networks and their cosmological evolution. These can be thought of as hybrid networks comprised of (nontopological) string segments, whose core structure is similar to that of Abelian Higgs vortices, and whose ends have long-range interactions and behavior similar to that of global monopoles. Our study provides further evidence of a linear scaling regime, already reported in previous studies, for the typical length scale and velocity of the network. We introduce a new algorithm to identify the position of the segment cores. This allows us to determine the length and velocity of each individual segment and follow their evolution in time. We study the statistical distribution of segment lengths and velocities for radiation- and matter-dominated evolution in the regime where the strings are stable. Our segment detection algorithm gives higher length values than previous studies based on indirect detection methods. The statistical distribution shows no evidence of (anti)correlation between the speed and the length of the segments.
Archeological insights into hominin cognitive evolution.
Wynn, Thomas; Coolidge, Frederick L
2016-07-01
How did the human mind evolve? How and when did we come to think in the ways we do? The last thirty years have seen an explosion in research related to the brain and cognition. This research has encompassed a range of biological and social sciences, from epigenetics and cognitive neuroscience to social and developmental psychology. Following naturally on this efflorescence has been a heightened interest in the evolution of the brain and cognition. Evolutionary scholars, including paleoanthropologists, have deployed the standard array of evolutionary methods. Ethological and experimental evidence has added significantly to our understanding of nonhuman brains and cognition, especially those of nonhuman primates. Studies of fossil brains through endocasts and sophisticated imaging techniques have revealed evolutionary changes in gross neural anatomy. Psychologists have also gotten into the game through application of reverse engineering to experimentally based descriptions of cognitive functions. For hominin evolution, there is another rich source of evidence of cognition, the archeological record. Using the methods of Paleolithic archeology and the theories and models of cognitive science, evolutionary cognitive archeology documents developments in the hominin mind that would otherwise be inaccessible. © 2016 Wiley Periodicals, Inc.
2013-01-01
Cochrane systematic reviews have proven to be beneficial for decision making processes, both on a practitioner and a policy level, and there are current initiatives to extend the types of evidence used by them, including qualitative research. In this article we outline the major achievements of the Cochrane Qualitative and Implementation Methods Group. Although the Group has encountered numerous challenges in dealing with the evolution of qualitative evidence synthesis, both outside and within the Cochrane Collaboration, it has successfully responded to the challenges posed in terms of incorporating qualitative evidence in systematic reviews. The Methods Group will continue to advocate for more flexible and inclusive approaches to evidence synthesis in order to meet the exciting challenges and opportunities presented by mixed methods systematic reviews and reviews of complex interventions. PMID:24135194
Rubinoff, Daniel; Le Roux, Johannes J.
2008-01-01
Background Saltational evolution in which a particular lineage undergoes relatively rapid, significant, and unparalleled change as compared with its closest relatives is rarely invoked as an alternative model to the dominant paradigm of gradualistic evolution. Identifying saltational events is an important first-step in assessing the importance of this discontinuous model in generating evolutionary novelty. We offer evidence for three independent instances of saltational evolution in a charismatic moth genus with only eight species. Methodology/Principal Findings Maximum parsimony, maximum likelihood and Bayesian search criteria offered congruent, well supported phylogenies based on 1,965 base pairs of DNA sequence using the mitochondrial gene cytochrome oxidase subunit I, and the nuclear genes elongation factor-1 alpha and wingless. Using a comparative methods approach, we examined three taxa exhibiting novelty in the form of Batesian mimicry, host plant shift, and dramatic physiological differences in light of the phylogenetic data. All three traits appear to have evolved relatively rapidly and independently in three different species of Proserpinus. Each saltational species exhibits a markedly different and discrete example of discontinuous trait evolution while remaining canalized for other typical traits shared by the rest of the genus. All three saltational taxa show insignificantly different levels of overall genetic change as compared with their congeners, implying that their divergence is targeted to particular traits and not genome-wide. Conclusions/Significance Such rapid evolution of novel traits in individual species suggests that the pace of evolution can be quick, dramatic, and isolated—even on the species level. These results may be applicable to other groups in which specific taxa have generated pronounced evolutionary novelty. Genetic mechanisms and methods for assessing such relatively rapid changes are postulated. PMID:19107205
Rubinoff, Daniel; Le Roux, Johannes J
2008-01-01
Saltational evolution in which a particular lineage undergoes relatively rapid, significant, and unparalleled change as compared with its closest relatives is rarely invoked as an alternative model to the dominant paradigm of gradualistic evolution. Identifying saltational events is an important first-step in assessing the importance of this discontinuous model in generating evolutionary novelty. We offer evidence for three independent instances of saltational evolution in a charismatic moth genus with only eight species. Maximum parsimony, maximum likelihood and Bayesian search criteria offered congruent, well supported phylogenies based on 1,965 base pairs of DNA sequence using the mitochondrial gene cytochrome oxidase subunit I, and the nuclear genes elongation factor-1 alpha and wingless. Using a comparative methods approach, we examined three taxa exhibiting novelty in the form of Batesian mimicry, host plant shift, and dramatic physiological differences in light of the phylogenetic data. All three traits appear to have evolved relatively rapidly and independently in three different species of Proserpinus. Each saltational species exhibits a markedly different and discrete example of discontinuous trait evolution while remaining canalized for other typical traits shared by the rest of the genus. All three saltational taxa show insignificantly different levels of overall genetic change as compared with their congeners, implying that their divergence is targeted to particular traits and not genome-wide. Such rapid evolution of novel traits in individual species suggests that the pace of evolution can be quick, dramatic, and isolated--even on the species level. These results may be applicable to other groups in which specific taxa have generated pronounced evolutionary novelty. Genetic mechanisms and methods for assessing such relatively rapid changes are postulated.
The early evolution of Jean Piaget's clinical method.
Mayer, Susan Jean
2005-11-01
This article analyzes the early evolution of Jean Piaget's renowned "clinical method" in order to investigate the method's strikingly original and generative character. Throughout his 1st decade in the field, Piaget frequently discussed and justified the many different approaches to data collection he used. Analysis of his methodological progression during this period reveals that Piaget's determination to access the genuine convictions of children eventually led him to combine 3 distinct traditions in which he had been trained-naturalistic observation, psychometrics, and the psychiatric clinical examination. It was in this amalgam, first evident in his 4th text, that Piaget discovered the clinical dynamic that would drive the classic experiments for which he is most well known.
Evolution of neurotransmitter receptor systems.
Venter, J C; di Porzio, U; Robinson, D A; Shreeve, S M; Lai, J; Kerlavage, A R; Fracek, S P; Lentes, K U; Fraser, C M
1988-01-01
The presence of hormones, neurotransmitters, their receptors and biosynthetic and degradative enzymes is clearly not only associated with the present and the recent past but with the past several hundred million years. Evidence is mounting which indicates substantial conservation of protein structure and function of these receptors and enzymes over these tremendous periods of time. These findings indicate that the evolution and development of the nervous system was not dependent upon the formation of new or better transmitter substances, receptor proteins, transducers and effector proteins but involved better utilization of these highly developed elements in creating advanced and refined circuitry. This is not a new concept; it is one that is now substantiated by increasingly sophisticated studies. In a 1953 article discussing chemical aspects of evolution (Danielli, 1953) Danielli quotes Medawar, "... endocrine evolution is not an evolution of hormones but an evolution of the uses to which they are put; an evolution not, to put it crudely, of chemical formulae but of reactivities, reaction patterns and tissue competences." To also quote Danielli, "In terms of comparative biochemistry, one must ask to what extent the evolution of these reactivities, reaction patterns and competences is conditional upon the evolution of methods of synthesis of new proteins, etc., and to what extent the proteins, etc., are always within the synthetic competence of an organism. In the latter case evolution is the history of changing uses of molecules, and not of changing synthetic abilities." (Danielli, 1953). Figure 4 outlines a phylogenetic tree together with an indication of where evidence exists for both the enzymes that determine the biosynthesis and metabolism of the cholinergic and adrenergic transmitters and their specific cholinergic and adrenergic receptors. This figure illustrates a number of important points. For example, the evidence appears to show that the transmitters and their associated enzymes existed for a substantial period before their respective receptor proteins. While the transmitters and enzymes appear to exist in single cellular organisms, there is no solid evidence for the presence of adrenergic or cholinergic receptors until multicellular organisms where the receptors appear to be clearly associated with specific cellular and neuronal communication (Fig. 4). One can only speculate as to the possible role for acetylcholine and the catecholamine in single cell organisms.(ABSTRACT TRUNCATED AT 400 WORDS)
Ord, Terry J.; Garcia-Porta, Joan
2012-01-01
Complex social communication is expected to evolve whenever animals engage in many and varied social interactions; that is, sociality should promote communicative complexity. Yet, informal comparisons among phylogenetically independent taxonomic groups seem to cast doubt on the putative role of social factors in the evolution of complex communication. Here, we provide a formal test of the sociality hypothesis alongside alternative explanations for the evolution of communicative complexity. We compiled data documenting variations in signal complexity among closely related species for several case study groups—ants, frogs, lizards and birds—and used new phylogenetic methods to investigate the factors underlying communication evolution. Social factors were only implicated in the evolution of complex visual signals in lizards. Ecology, and to some degree allometry, were most likely explanations for complexity in the vocal signals of frogs (ecology) and birds (ecology and allometry). There was some evidence for adaptive evolution in the pheromone complexity of ants, although no compelling selection pressure was identified. For most taxa, phylogenetic null models were consistently ranked above adaptive models and, for some taxa, signal complexity seems to have accumulated in species via incremental or random changes over long periods of evolutionary time. Becoming social presumably leads to the origin of social communication in animals, but its subsequent influence on the trajectory of signal evolution has been neither clear-cut nor general among taxonomic groups. PMID:22641820
Testing inferences in developmental evolution: the forensic evidence principle.
Larsson, Hans C E; Wagner, Günter P
2012-09-01
Developmental evolution (DE) examines the influence of developmental mechanisms on biological evolution. Here we consider the question: "what is the evidence that allows us to decide whether a certain developmental scenario for an evolutionary change is in fact "correct" or at least falsifiable?" We argue that the comparative method linked with what we call the "forensic evidence principle" (FEP) is sufficient to conduct rigorous tests of DE scenarios. The FEP states that different genetically mediated developmental causes of an evolutionary transformation will leave different signatures in the development of the derived character. Although similar inference rules have been used in practically every empirical science, we expand this approach here in two ways: (1) we justify the validity of this principle with reference to a well-known result from mathematical physics, known as the symmetry principle, and (2) propose a specific form of the FEP for DE: given two or more developmental explanations for a certain evolutionary event, say an evolutionary novelty, then the evidence discriminating between these hypotheses will be found in the most proximal internal drivers of the derived character. Hence, a detailed description of the ancestral and derived states, and their most proximal developmental drivers are necessary to discriminate between various evolutionary developmental hypotheses. We discuss how this stepwise order of testing is necessary, establishes a formal test, and how skipping this order of examination may violate a more accurate examination of DE. We illustrate the approach with an example from avian digit evolution. © 2012 Wiley Periodicals, Inc.
Ochoa, David; García-Gutiérrez, Ponciano; Juan, David; Valencia, Alfonso; Pazos, Florencio
2013-01-27
A widespread family of methods for studying and predicting protein interactions using sequence information is based on co-evolution, quantified as similarity of phylogenetic trees. Part of the co-evolution observed between interacting proteins could be due to co-adaptation caused by inter-protein contacts. In this case, the co-evolution is expected to be more evident when evaluated on the surface of the proteins or the internal layers close to it. In this work we study the effect of incorporating information on predicted solvent accessibility to three methods for predicting protein interactions based on similarity of phylogenetic trees. We evaluate the performance of these methods in predicting different types of protein associations when trees based on positions with different characteristics of predicted accessibility are used as input. We found that predicted accessibility improves the results of two recent versions of the mirrortree methodology in predicting direct binary physical interactions, while it neither improves these methods, nor the original mirrortree method, in predicting other types of interactions. That improvement comes at no cost in terms of applicability since accessibility can be predicted for any sequence. We also found that predictions of protein-protein interactions are improved when multiple sequence alignments with a richer representation of sequences (including paralogs) are incorporated in the accessibility prediction.
Automatic Clustering Using FSDE-Forced Strategy Differential Evolution
NASA Astrophysics Data System (ADS)
Yasid, A.
2018-01-01
Clustering analysis is important in datamining for unsupervised data, cause no adequate prior knowledge. One of the important tasks is defining the number of clusters without user involvement that is known as automatic clustering. This study intends on acquiring cluster number automatically utilizing forced strategy differential evolution (AC-FSDE). Two mutation parameters, namely: constant parameter and variable parameter are employed to boost differential evolution performance. Four well-known benchmark datasets were used to evaluate the algorithm. Moreover, the result is compared with other state of the art automatic clustering methods. The experiment results evidence that AC-FSDE is better or competitive with other existing automatic clustering algorithm.
Beyond DNA: integrating inclusive inheritance into an extended theory of evolution.
Danchin, Étienne; Charmantier, Anne; Champagne, Frances A; Mesoudi, Alex; Pujol, Benoit; Blanchet, Simon
2011-06-17
Many biologists are calling for an 'extended evolutionary synthesis' that would 'modernize the modern synthesis' of evolution. Biological information is typically considered as being transmitted across generations by the DNA sequence alone, but accumulating evidence indicates that both genetic and non-genetic inheritance, and the interactions between them, have important effects on evolutionary outcomes. We review the evidence for such effects of epigenetic, ecological and cultural inheritance and parental effects, and outline methods that quantify the relative contributions of genetic and non-genetic heritability to the transmission of phenotypic variation across generations. These issues have implications for diverse areas, from the question of missing heritability in human complex-trait genetics to the basis of major evolutionary transitions.
ERIC Educational Resources Information Center
Stover, Shawn K.; McArthur, Laurence B.; Mabry, Michelle L.
2013-01-01
Although evidence supporting anthropogenic global warming and evolution by natural selection is considerable, the public does not embrace these concepts. The current study explores the hypothesis that individuals will become more receptive to scientific viewpoints if evidence for evolution and implications of global warming are presented as issues…
Waller, John T; Svensson, Erik I
2017-09-01
We integrate field data and phylogenetic comparative analyses to investigate causes of body size evolution and stasis in an old insect order: odonates ("dragonflies and damselflies"). Fossil evidence for "Cope's Rule" in odonates is weak or nonexistent since the last major extinction event 65 million years ago, yet selection studies show consistent positive selection for increased body size among adults. In particular, we find that large males in natural populations of the banded demoiselle (Calopteryx splendens) over several generations have consistent fitness benefits both in terms of survival and mating success. Additionally, there was no evidence for stabilizing or conflicting selection between fitness components within the adult life-stage. This lack of stabilizing selection during the adult life-stage was independently supported by a literature survey on different male and female fitness components from several odonate species. We did detect several significant body size shifts among extant taxa using comparative methods and a large new molecular phylogeny for odonates. We suggest that the lack of Cope's rule in odonates results from conflicting selection between fitness advantages of large adult size and costs of long larval development. We also discuss competing explanations for body size stasis in this insect group. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
ERIC Educational Resources Information Center
Almquist, Alan J.; Cronin, John E.
This Chautauqua-type short course in human evolution is divided into two parts: The Biochemical Evidence for Human Evolution, and the Fossil Evidence for Human Evolution. The first part covers the comparison of macromolecular differences between species. This includes comparison of DNA base-ratios and amino acid substitution in enzymes and other…
Dynamics of entanglement between two atomic samples with spontaneous scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Lisi, Antonio; De Siena, Silvio; Illuminati, Fabrizio
2004-07-01
We investigate the effects of spontaneous scattering on the evolution of entanglement of two atomic samples, probed by phase-shift measurements on optical beams interacting with both samples. We develop a formalism of conditional quantum evolutions and present a wave function analysis implemented in numerical simulations of the state vector dynamics. This method allows us to track the evolution of entanglement and to compare it with the predictions obtained when spontaneous scattering is neglected. We provide numerical evidence that the interferometric scheme to entangle atomic samples is only marginally affected by the presence of spontaneous scattering and should thus be robustmore » even in more realistic situations.« less
Manafo, Elizabeth; Petermann, Lisa; Mason-Lai, Ping; Vandall-Walker, Virginia
2018-02-07
Over the last 10 years, patient engagement in health research has emerged as the next evolution in healthcare research. However, limited evidence about the clear role and scope of patient engagement in health research and a lack of evidence about its impact have influenced the uptake, implementation and ongoing evolution of patient engagement. The present study aims to conduct a scoping review to identify methods for and outcomes of patient engagement in health research. An adaptation of the scoping review methodology originally described by Arksey and O'Malley and updated by Levac, Colquhoun and O'Brien was applied. Sources from a formal database search and relevant documents from a grey literature search were compiled into data extraction tables. Articles were synthesised into key themes according to the (1) methods and (2) outcomes of patient engagement in health research. The total yield for the scoping review was 55 records from across Canada, the United Kingdom and the United States. While evidence about the methods used to engage patients in health research is increasing, stronger evidence of specific patient and healthcare system outcomes is required. This necessitates further mobilisation of research that explores outcomes and that validates specific tools to evaluate engagement. Additionally, theoretical frameworks that can better inform and sustain patient engagement across the lifecycle of health research are lacking. Further increasing the volume and reach of evidence about patient engagement in health research will support the paradigmatic shift needed to normalise the patient's role in research beyond 'subject' or 'participant', so as to ultimately improve patient health outcomes and better address healthcare reform in Canada.
Berlin, Sofia; Smith, Nick G C
2005-11-10
Adaptive evolution appears to be a common feature of reproductive proteins across a very wide range of organisms. A promising way of addressing the evolutionary forces responsible for this general phenomenon is to test for adaptive evolution in the same gene but among groups of species, which differ in their reproductive biology. One can then test evolutionary hypotheses by asking whether the variation in adaptive evolution is consistent with the variation in reproductive biology. We have attempted to apply this approach to the study of a female reproductive protein, zona pellucida C (ZPC), which has been previously shown by the use of likelihood ratio tests (LRTs) to be under positive selection in mammals. We tested for evidence of adaptive evolution of ZPC in 15 mammalian species, in 11 avian species and in six fish species using three different LRTs (M1a-M2a, M7-M8, and M8a-M8). The only significant findings of adaptive evolution came from the M7-M8 test in mammals and fishes. Since LRTs of adaptive evolution may yield false positives in some situations, we examined the properties of the LRTs by several different simulation methods. When we simulated data to test the robustness of the LRTs, we found that the pattern of evolution in ZPC generates an excess of false positives for the M7-M8 LRT but not for the M1a-M2a or M8a-M8 LRTs. This bias is strong enough to have generated the significant M7-M8 results for mammals and fishes. We conclude that there is no strong evidence for adaptive evolution of ZPC in any of the vertebrate groups we studied, and that the M7-M8 LRT can be biased towards false inference of adaptive evolution by certain patterns of non-adaptive evolution.
NASA Astrophysics Data System (ADS)
Kamiński, Mirosław
2016-06-01
Podhale is a region in southern Poland, which is the northernmost part of the Central Carpathian Mountains. It is characterized by the presence of a large number of landslides that threaten the local infrastructure. In an article presents application of LiDAR data and geostatistical methods to assess landslides susceptibility map. Landslide inventory map were performed using LiDAR data and field work. The Weights of Evidence method was applied to assess landslides susceptibility map. Used factors for modeling: slope gradient, slope aspect, elevation, drainage density, faults density, lithology and curvature. All maps were subdivided into different classes. Then were converted to grid format in the ArcGIS 10.0. The conditional independence test was carried out to determine factors that are conditionally independent of each other with landslides. As a result, chi-square test for further GIS analysis used only five factors: slope gradient, slope aspect, elevation, drainage density and lithology. The final prediction results, it is concluded that the susceptibility map gives useful information both on present instability of the area and its possible future evolution in agreement with the morphological evolution of the area.
Thermography detection on the fatigue damage
NASA Astrophysics Data System (ADS)
Yang, Bing
It has always been a great temptation in finding new methods to in-situ "watch" the material fatigue-damage processes so that in-time reparations will be possible, and failures or losses can be minimized to the maximum extent. Realizing that temperature patterns may serve as fingerprints for stress-strain behaviors of materials, a state-of-art infrared (IR) thermography camera has been used to "watch" the temperature evolutions of both crystalline and amorphous materials "cycle by cycle" during fatigue experiments in the current research. The two-dimensional (2D) thermography technique records the surface-temperature evolutions of materials. Since all plastic deformations are related to heat dissipations, thermography provides an innovative method to in-situ monitor the heat-evolution processes, including plastic-deformation, mechanical-damage, and phase-transformation characteristics. With the understanding of the temperature evolutions during fatigue, thermography could provide the direct information and evidence of the stress-strain distribution, crack initiation and propagation, shear-band growth, and plastic-zone evolution, which will open up wide applications in studying the structural integrity of engineering components in service. In the current research, theoretical models combining thermodynamics and heat-conduction theory have been developed. Key issues in fatigue, such as in-situ stress-strain states, cyclic softening and hardening observations, and fatigue-life predictions, have been resolved by simply monitoring the specimen-temperature variation during fatigue. Furthermore, in-situ visulizations as well as qualitative and quantitative analyses of fatigue-damage processes, such as Luders-band evolutions, crack propagation, plastic zones, and final fracture, have been performed by thermography. As a method requiring no special sample preparation or surface contact by sensors, thermography provides an innovative and convenient method to in-situ monitor and analyze the mechanical-damage processes of materials and components.
Top 10 Lines of Evidence for Human Evolution.
ERIC Educational Resources Information Center
Nickels, Martin
2001-01-01
Provides 10 lines of evidence that support the theory of human evolution. The evidence relates to hierarchical taxonomic classification, comparative anatomy, comparative embryology and development, comparative biochemistry, adaptive compromises, vestigial structures, biogeography, the fossil sequence, ecological coherence of fossil assemblages,…
Harris, Jeffrey S; Glass, Lee S; Mueller, Kathryn L; Genovese, Elizabeth
2004-05-01
In this article, we review the evolution and application of evidence based medicine and the results of the literature reviews and syntheses incorporated in the second edition of the guidelines. Our intent is to disseminate this information to practitioners treating injured workers and those managing and financing such care and disability management. Use of proven diagnostic, causality, testing,and treatment methods should markedly improve the quality of occupational medical care and make that care more cost effective.
NASA Technical Reports Server (NTRS)
Gunn, J. E.
1982-01-01
The recent observational evidence on the evolution of galaxies is reviewed and related to the framework of current ideas for galaxy formation from primordial density fluctuations. Recent strong evidence for the evolution of the stellar population in ellipticals is presented, as well as evidence that not all ellipticals behave as predicted by any simple theory. The status of counts of faint galaxies and the implications for the evolution of spirals is discussed, together with a discussion of recent work on the redshift distribution of galaxies at faint magnitudes and a spectroscopic investigation of the Butcher-Oemler blue cluster galaxies. Finally a new picture for the formation and evolution of disk galaxies which may explain most of the features of the Hubble sequence is outlined.
Evolution and Religion: Adaptation in Process?
ERIC Educational Resources Information Center
Binder, Michael; Crowther, Christopher
2014-01-01
There have been many revolutions in the past 500 years but none quite so sustained and "society changing" as the march of secularisation and the move from a theocentric perspective to a scientific world view. The age of scientific discovery has led to the scientific method--put simply, evidence that can be sustained by rigorous…
Widespread Signals of Convergent Adaptation to High Altitude in Asia and America
Foll, Matthieu; Gaggiotti, Oscar E.; Daub, Josephine T.; Vatsiou, Alexandra; Excoffier, Laurent
2014-01-01
Living at high altitude is one of the most difficult challenges that humans had to cope with during their evolution. Whereas several genomic studies have revealed some of the genetic bases of adaptations in Tibetan, Andean, and Ethiopian populations, relatively little evidence of convergent evolution to altitude in different continents has accumulated. This lack of evidence can be due to truly different evolutionary responses, but it can also be due to the low power of former studies that have mainly focused on populations from a single geographical region or performed separate analyses on multiple pairs of populations to avoid problems linked to shared histories between some populations. We introduce here a hierarchical Bayesian method to detect local adaptation that can deal with complex demographic histories. Our method can identify selection occurring at different scales, as well as convergent adaptation in different regions. We apply our approach to the analysis of a large SNP data set from low- and high-altitude human populations from America and Asia. The simultaneous analysis of these two geographic areas allows us to identify several candidate genome regions for altitudinal selection, and we show that convergent evolution among continents has been quite common. In addition to identifying several genes and biological processes involved in high-altitude adaptation, we identify two specific biological pathways that could have evolved in both continents to counter toxic effects induced by hypoxia. PMID:25262650
Nagy, László G; Urban, Alexander; Orstadius, Leif; Papp, Tamás; Larsson, Ellen; Vágvölgyi, Csaba
2010-12-01
Recently developed comparative phylogenetic methods offer a wide spectrum of applications in evolutionary biology, although it is generally accepted that their statistical properties are incompletely known. Here, we examine and compare the statistical power of the ML and Bayesian methods with regard to selection of best-fit models of fruiting-body evolution and hypothesis testing of ancestral states on a real-life data set of a physiological trait (autodigestion) in the family Psathyrellaceae. Our phylogenies are based on the first multigene data set generated for the family. Two different coding regimes (binary and multistate) and two data sets differing in taxon sampling density are examined. The Bayesian method outperformed Maximum Likelihood with regard to statistical power in all analyses. This is particularly evident if the signal in the data is weak, i.e. in cases when the ML approach does not provide support to choose among competing hypotheses. Results based on binary and multistate coding differed only modestly, although it was evident that multistate analyses were less conclusive in all cases. It seems that increased taxon sampling density has favourable effects on inference of ancestral states, while model parameters are influenced to a smaller extent. The model best fitting our data implies that the rate of losses of deliquescence equals zero, although model selection in ML does not provide proper support to reject three of the four candidate models. The results also support the hypothesis that non-deliquescence (lack of autodigestion) has been ancestral in Psathyrellaceae, and that deliquescent fruiting bodies represent the preferred state, having evolved independently several times during evolution. Copyright © 2010 Elsevier Inc. All rights reserved.
Hoffmann, Sebastian; Hartung, Thomas; Stephens, Martin
Evidence-based toxicology (EBT) was introduced independently by two groups in 2005, in the context of toxicological risk assessment and causation as well as based on parallels between the evaluation of test methods in toxicology and evidence-based assessment of diagnostics tests in medicine. The role model of evidence-based medicine (EBM) motivated both proposals and guided the evolution of EBT, whereas especially systematic reviews and evidence quality assessment attract considerable attention in toxicology.Regarding test assessment, in the search of solutions for various problems related to validation, such as the imperfectness of the reference standard or the challenge to comprehensively evaluate tests, the field of Diagnostic Test Assessment (DTA) was identified as a potential resource. DTA being an EBM discipline, test method assessment/validation therefore became one of the main drivers spurring the development of EBT.In the context of pathway-based toxicology, EBT approaches, given their objectivity, transparency and consistency, have been proposed to be used for carrying out a (retrospective) mechanistic validation.In summary, implementation of more evidence-based approaches may provide the tools necessary to adapt the assessment/validation of toxicological test methods and testing strategies to face the challenges of toxicology in the twenty first century.
Evidence for contemporary evolution during Darwin's lifetime.
Hart, Adam G; Stafford, Richard; Smith, Angela L; Goodenough, Anne E
2010-02-09
Darwin's On the Origin of Species[1] introduced the world to the most fundamental concept in biological sciences - evolution. However, in the 150 years following publication of his seminal work, much has been made of the fact that Darwin was missing at least one crucial link in his chain of evidence - he had no evidence for contemporary evolution through natural selection. Indeed, as one commentator noted on the centenary of the publication of Origin, "Had Darwin observed industrial melanism he would have seen evolution occurring not in thousands of years but in thousands of days - well within his lifetime. He would have witnessed the consummation and confirmation of his life's work"[2].
Language evolution and human history: what a difference a date makes.
Gray, Russell D; Atkinson, Quentin D; Greenhill, Simon J
2011-04-12
Historical inference is at its most powerful when independent lines of evidence can be integrated into a coherent account. Dating linguistic and cultural lineages can potentially play a vital role in the integration of evidence from linguistics, anthropology, archaeology and genetics. Unfortunately, although the comparative method in historical linguistics can provide a relative chronology, it cannot provide absolute date estimates and an alternative approach, called glottochronology, is fundamentally flawed. In this paper we outline how computational phylogenetic methods can reliably estimate language divergence dates and thus help resolve long-standing debates about human prehistory ranging from the origin of the Indo-European language family to the peopling of the Pacific.
Language evolution and human history: what a difference a date makes
Gray, Russell D.; Atkinson, Quentin D.; Greenhill, Simon J.
2011-01-01
Historical inference is at its most powerful when independent lines of evidence can be integrated into a coherent account. Dating linguistic and cultural lineages can potentially play a vital role in the integration of evidence from linguistics, anthropology, archaeology and genetics. Unfortunately, although the comparative method in historical linguistics can provide a relative chronology, it cannot provide absolute date estimates and an alternative approach, called glottochronology, is fundamentally flawed. In this paper we outline how computational phylogenetic methods can reliably estimate language divergence dates and thus help resolve long-standing debates about human prehistory ranging from the origin of the Indo-European language family to the peopling of the Pacific. PMID:21357231
ERIC Educational Resources Information Center
Rosselli, Hilda, Ed.; Girod, Mark, Ed.; Brodsky, Meredith, Ed.
2011-01-01
As accountability in education has become an increasingly prominent topic, teacher preparation programs are being asked to provide credible evidence that their teacher candidates can impact student learning. Teacher Work Samples, first developed 30 years ago, have emerged as an effective method of quantifying the complex set of tasks that comprise…
Evidence Combination From an Evolutionary Game Theory Perspective.
Deng, Xinyang; Han, Deqiang; Dezert, Jean; Deng, Yong; Shyr, Yu
2016-09-01
Dempster-Shafer evidence theory is a primary methodology for multisource information fusion because it is good at dealing with uncertain information. This theory provides a Dempster's rule of combination to synthesize multiple evidences from various information sources. However, in some cases, counter-intuitive results may be obtained based on that combination rule. Numerous new or improved methods have been proposed to suppress these counter-intuitive results based on perspectives, such as minimizing the information loss or deviation. Inspired by evolutionary game theory, this paper considers a biological and evolutionary perspective to study the combination of evidences. An evolutionary combination rule (ECR) is proposed to help find the most biologically supported proposition in a multievidence system. Within the proposed ECR, we develop a Jaccard matrix game to formalize the interaction between propositions in evidences, and utilize the replicator dynamics to mimick the evolution of propositions. Experimental results show that the proposed ECR can effectively suppress the counter-intuitive behaviors appeared in typical paradoxes of evidence theory, compared with many existing methods. Properties of the ECR, such as solution's stability and convergence, have been mathematically proved as well.
Oakley, Paul A.; Harrison, Donald D.; Harrison, Deed E.; Haas, Jason W.
2005-01-01
BACKGROUND Although practice protocols exist for SMT and functional rehabilitation, no practice protocols exist for structural rehabilitation. Traditional chiropractic practice guidelines have been limited to acute and chronic pain treatment, with limited inclusion of functional and exclusion of structural rehabilitation procedures. OBJECTIVE (1) To derive an evidence-based practice protocol for structural rehabilitation from publications on Clinical Biomechanics of Posture (CBP®) methods, and (2) to compare the evidence for Diversified, SMT, and CBP®. METHODS Clinical control trials utilizing CBP® methods and spinal manipulative therapy (SMT) were obtained from searches in Mantis, CINAHL, and Index Medicus. Using data from SMT review articles, evidence for Diversified Technique (as taught in chiropractic colleges), SMT, and CBP® were rated and compared. RESULTS From the evidence from Clinical Control Trials on SMT and CBP®, there is very little evidence support for Diversified (our rating = 18), as taught in chiropractic colleges, for the treatment of pain subjects, while CBP® (our rating = 46) and SMT for neck pain (rating = 58) and low back pain (our rating = 202) have evidence-based support. CONCLUSIONS While CBP® Technique has approximately as much evidence-based support as SMT for neck pain, CBP® has more evidence to support its methods than the Diversified technique taught in chiropractic colleges, but not as much as SMT for low back pain. The evolution of chiropractic specialization has occurred, and doctors providing structural-based chiropractic care require protocol guidelines for patient quality assurance and standardization. A structural rehabilitation protocol was developed based on evidence from CBP® publications. PMID:17549209
Variation in promiscuity and sexual selection drives avian rate of Faster-Z evolution.
Wright, Alison E; Harrison, Peter W; Zimmer, Fabian; Montgomery, Stephen H; Pointer, Marie A; Mank, Judith E
2015-03-01
Higher rates of coding sequence evolution have been observed on the Z chromosome relative to the autosomes across a wide range of species. However, despite a considerable body of theory, we lack empirical evidence explaining variation in the strength of the Faster-Z Effect. To assess the magnitude and drivers of Faster-Z Evolution, we assembled six de novo transcriptomes, spanning 90 million years of avian evolution. Our analysis combines expression, sequence and polymorphism data with measures of sperm competition and promiscuity. In doing so, we present the first empirical evidence demonstrating the positive relationship between Faster-Z Effect and measures of promiscuity, and therefore variance in male mating success. Our results from multiple lines of evidence indicate that selection is less effective on the Z chromosome, particularly in promiscuous species, and that Faster-Z Evolution in birds is due primarily to genetic drift. Our results reveal the power of mating system and sexual selection in shaping broad patterns in genome evolution. © 2015 John Wiley & Sons Ltd.
Galaxy Zoo: evidence for rapid, recent quenching within a population of AGN host galaxies
NASA Astrophysics Data System (ADS)
Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Bamford, S. P.; Cardamone, C. N.; Kruk, S. J.; Masters, K. L.; Urry, C. M.; Willett, K. W.; Wong, O. I.
2016-12-01
We present a population study of the star formation history of 1244 Type 2 active galactic nuclei (AGN) host galaxies, compared to 6107 inactive galaxies. A Bayesian method is used to determine individual galaxy star formation histories, which are then collated to visualize the distribution for quenching and quenched galaxies within each population. We find evidence for some of the Type 2 AGN host galaxies having undergone a rapid drop in their star formation rate within the last 2 Gyr. AGN feedback is therefore important at least for this population of galaxies. This result is not seen for the quenching and quenched inactive galaxies whose star formation histories are dominated by the effects of downsizing at earlier epochs, a secondary effect for the AGN host galaxies. We show that histories of rapid quenching cannot account fully for the quenching of all the star formation in a galaxy's lifetime across the population of quenched AGN host galaxies, and that histories of slower quenching, attributed to secular (non-violent) evolution, are also key in their evolution. This is in agreement with recent results showing that both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes. The availability of gas in the reservoirs of a galaxy, and its ability to be replenished, appear to be the key drivers behind this co-evolution.
King, Benedict; Lee, Michael S Y
2015-09-01
A broad scale analysis of the evolution of viviparity across nearly 4,000 species of squamates revealed that origins increase in frequency toward the present, raising the question of whether rates of change have accelerated. We here use simulations to show that the increased frequency is within the range expected given that the number of squamate lineages also increases with time. Novel, epoch-based methods implemented in BEAST (which allow rates of discrete character evolution to vary across time-slices) also give congruent results, with recent epochs having very similar rates to older epochs. Thus, contrary to expectations, there was no accelerated burst of origins of viviparity in response to global cooling during the Cenozoic or glacial cycles during the Plio-Pleistocene. However, if one accepts the conventional view that viviparity is more likely to evolve than to be lost, and also the evidence here that viviparity has evolved with similar regularity throughout the last 200 Ma, then the absence of large, ancient clades of viviparous squamates (analogs to therian mammals) requires explanation. Viviparous squamate lineages might be more prone to extinction than are oviparous lineages, due to their prevalance at high elevations and latitudes and thus greater susceptibility to climate fluctuations. If so, the directional bias in character evolution would be offset by the bias in extinction rates. © 2015 Wiley Periodicals, Inc.
Enemy at the gates: Rapid defensive trait diversification in an adaptive radiation of lizards.
Broeckhoven, Chris; Diedericks, Genevieve; Hui, Cang; Makhubo, Buyisile G; Mouton, P le Fras N
2016-11-01
Adaptive radiation (AR), the product of rapid diversification of an ancestral species into novel adaptive zones, has become pivotal in our understanding of biodiversity. Although it has widely been accepted that predators may drive the process of AR by creating ecological opportunity (e.g., enemy-free space), the role of predators as selective agents in defensive trait diversification remains controversial. Using phylogenetic comparative methods, we provide evidence for an "early burst" in the diversification of antipredator phenotypes in Cordylinae, a relatively small AR of morphologically diverse southern African lizards. The evolution of body armor appears to have been initially rapid, but slowed down over time, consistent with the ecological niche-filling model. We suggest that the observed "early burst" pattern could be attributed to shifts in vulnerability to different types of predators (i.e., aerial versus terrestrial) associated with thermal habitat partitioning. These results provide empirical evidence supporting the hypothesis that predators or the interaction therewith might be key components of ecological opportunity, although the way in which predators influence morphological diversification requires further study. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte
Matsunaga, Kelly K. S.; Tomescu, Alexandru M. F.
2016-01-01
Background and Aims The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology. Methods Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian–Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions. Key Results The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme. Conclusions This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant–substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily uncoupled in lycophytes, and challenge the hypothesis that roots evolved from branches of the above-ground axial system, suggesting instead that lycophyte roots arose as a novel organ. PMID:26921730
Adapting clinical paradigms to the challenges of cancer clonal evolution.
Murugaesu, Nirupa; Chew, Su Kit; Swanton, Charles
2013-06-01
Emerging evidence suggests that cancer branched evolution may affect biomarker validation, clinical outcome, and emergence of drug resistance. The changing spatial and temporal nature of cancer subclonal architecture during the disease course suggests the need for longitudinal prospective studies of cancer evolution and robust and clinically implementable pathologic definitions of intratumor heterogeneity, genetic diversity, and chromosomal instability. Furthermore, subclonal heterogeneous events in tumors may evade detection through conventional biomarker strategies and influence clinical outcome. Minimally invasive methods for the study of cancer evolution and new approaches to clinical study design, incorporating understanding of the dynamics of tumor clonal architectures through treatment and during acquisition of drug resistance, have been suggested as important areas for development. Coordinated efforts will be required by the scientific and clinical trial communities to adapt to the challenges of detecting infrequently occurring somatic events that may influence clinical outcome and to understand the dynamics of cancer evolution and the waxing and waning of tumor subclones over time in advanced metastatic epithelial malignancies. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Recent advances in understanding the role of nutrition in human genome evolution.
Ye, Kaixiong; Gu, Zhenglong
2011-11-01
Dietary transitions in human history have been suggested to play important roles in the evolution of mankind. Genetic variations caused by adaptation to diet during human evolution could have important health consequences in current society. The advance of sequencing technologies and the rapid accumulation of genome information provide an unprecedented opportunity to comprehensively characterize genetic variations in human populations and unravel the genetic basis of human evolution. Series of selection detection methods, based on various theoretical models and exploiting different aspects of selection signatures, have been developed. Their applications at the species and population levels have respectively led to the identification of human specific selection events that distinguish human from nonhuman primates and local adaptation events that contribute to human diversity. Scrutiny of candidate genes has revealed paradigms of adaptations to specific nutritional components and genome-wide selection scans have verified the prevalence of diet-related selection events and provided many more candidates awaiting further investigation. Understanding the role of diet in human evolution is fundamental for the development of evidence-based, genome-informed nutritional practices in the era of personal genomics.
Evidence Combination From an Evolutionary Game Theory Perspective
Deng, Xinyang; Han, Deqiang; Dezert, Jean; Deng, Yong; Shyr, Yu
2017-01-01
Dempster-Shafer evidence theory is a primary methodology for multi-source information fusion because it is good at dealing with uncertain information. This theory provides a Dempster’s rule of combination to synthesize multiple evidences from various information sources. However, in some cases, counter-intuitive results may be obtained based on that combination rule. Numerous new or improved methods have been proposed to suppress these counter-intuitive results based on perspectives, such as minimizing the information loss or deviation. Inspired by evolutionary game theory, this paper considers a biological and evolutionary perspective to study the combination of evidences. An evolutionary combination rule (ECR) is proposed to help find the most biologically supported proposition in a multi-evidence system. Within the proposed ECR, we develop a Jaccard matrix game (JMG) to formalize the interaction between propositions in evidences, and utilize the replicator dynamics to mimick the evolution of propositions. Experimental results show that the proposed ECR can effectively suppress the counter-intuitive behaviors appeared in typical paradoxes of evidence theory, compared with many existing methods. Properties of the ECR, such as solution’s stability and convergence, have been mathematically proved as well. PMID:26285231
Poe, Steven; de Oca, Adrián Nieto-Montes; Torres-Carvajal, Omar; de Queiroz, Kevin; Velasco, Julián A; Truett, Brad; Gray, Levi N; Ryan, Mason J; Köhler, Gunther; Ayala-Varela, Fernando; Latella, Ian
2018-06-01
Adaptive radiation is a widely recognized pattern of evolution wherein substantial phenotypic change accompanies rapid speciation. Adaptive radiation may be triggered by environmental opportunities resulting from dispersal to new areas or via the evolution of traits, called key innovations, that allow for invasion of new niches. Species sampling is a known source of bias in many comparative analyses, yet classic adaptive radiations have not been studied comparatively with comprehensively sampled phylogenies. In this study, we use unprecedented comprehensive phylogenetic sampling of Anolis lizard species to examine comparative evolution in this well-studied adaptive radiation. We compare adaptive radiation models within Anolis and in the Anolis clade and a potential sister lineage, the Corytophanidae. We find evidence for island (i.e., opportunity) effects and no evidence for trait (i.e., key innovation) effects causing accelerated body size evolution within Anolis. However, island effects are scale dependent: when Anolis and Corytophanidae are analyzed together, no island effect is evident. We find no evidence for an island effect on speciation rate and tenuous evidence for greater speciation rate due to trait effects. These results suggest the need for precision in treatments of classic adaptive radiations such as Anolis and further refinement of the concept of adaptive radiation.
Pilote, Alex J; Donovan, Lisa A
2016-12-01
Patterns of plant stem traits are expected to align with a "fast-slow" plant economic spectrum across taxa. Although broad patterns support such tradeoffs in field studies, tests of hypothesized correlated trait evolution and adaptive differentiation are more robust when taxa relatedness and environment are taken into consideration. Here we test for correlated evolution of stem and leaf traits and their adaptive differentiation across environments in the herbaceous genus, Helianthus. Stem and leaf traits of 14 species of Helianthus (28 populations) were assessed in a common garden greenhouse study. Phylogenetically independent contrasts were used to test for evidence of correlated evolution of stem hydraulic and biomechanical properties, correlated evolution of stem and leaf traits, and adaptive differentiation associated with source habitat environments. Among stem traits, there was evidence for correlated evolution of some hydraulic and biomechanical properties, supporting an expected tradeoff between stem theoretical hydraulic efficiency and resistance to bending stress. Population differentiation for suites of stem and leaf traits was found to be consistent with a "fast-slow" resource-use axis for traits related to water transport and use. Associations of population traits with source habitat characteristics supported repeated evolution of a resource-acquisitive "drought-escape" strategy in arid environments. This study provides evidence of correlated evolution of stem and leaf traits consistent with the fast-slow spectrum of trait combinations related to water transport and use along the stem-to-leaf pathway. Correlations of traits with source habitat characteristics further indicate that the correlated evolution is associated, at least in part, with adaptive differentiation of Helianthus populations among native habitats differing in climate. © 2016 Botanical Society of America.
Hopkins, Melanie J; Smith, Andrew B
2015-03-24
How ecological and morphological diversity accrues over geological time has been much debated by paleobiologists. Evidence from the fossil record suggests that many clades reach maximal diversity early in their evolutionary history, followed by a decline in evolutionary rates as ecological space fills or due to internal constraints. Here, we apply recently developed methods for estimating rates of morphological evolution during the post-Paleozoic history of a major invertebrate clade, the Echinoidea. Contrary to expectation, rates of evolution were lowest during the initial phase of diversification following the Permo-Triassic mass extinction and increased over time. Furthermore, although several subclades show high initial rates and net decreases in rates of evolution, consistent with "early bursts" of morphological diversification, at more inclusive taxonomic levels, these bursts appear as episodic peaks. Peak rates coincided with major shifts in ecological morphology, primarily associated with innovations in feeding strategies. Despite having similar numbers of species in today's oceans, regular echinoids have accrued far less morphological diversity than irregular echinoids due to lower intrinsic rates of morphological evolution and less morphological innovation, the latter indicative of constrained or bounded evolution. These results indicate that rates of evolution are extremely heterogenous through time and their interpretation depends on the temporal and taxonomic scale of analysis.
Foundational Issues in Evolution Education.
ERIC Educational Resources Information Center
Smith, Mike U.; And Others
1995-01-01
Reviews evidence that demonstrates the need for effective evolution education and analyzes the foundational, semantic, epistemological, and philosophical issues involved. Emphasizes the scientific meaning of the terms theory, hypothesis, fact, proof, evidence, and truth, and focuses on the difference between religious belief and acceptance of…
The Goal of Evolution Instruction: Belief or Literacy?
ERIC Educational Resources Information Center
Cooper, Robert A.
2001-01-01
Discusses issues regarding evolution instruction in public schools and focuses on misconceptions such as the use of the word "belief", lack of evidence for theories of evolution, and the belief that teaching evolution as fact is proselytizing students. Presents teaching approaches to the topic of evolution. (Contains 33 references.) (YDS)
Sexual selection and genital evolution: an overview.
Shamloul, Rany; el-Sakka, Ahmed; Bella, Anthony J
2010-05-01
Genital morphology (especially male) among the animal kingdom is characterized by extensive differences that even members of closely related species with similar general morphology may have remarkably diverse genitalia. To present the sexual medicine specialist with a basic understanding of the current hypotheses on genital evolution with an emphasis on the sexual selection theories. A review of current literature on the theories of genital evolution. Analysis of the supporting evidence for the sexual selection theories of genital evolution. Several theories have been proposed to explain genital evolution. Currently, the sexual selection theories are being considered to present valid and solid evidence explaining genital evolution. However, other theories, including sexual conflict, are still being investigated. All theories of genital evolution have their own weaknesses and strengths. Given that many complex biological mechanisms, mostly unknown yet, are involved in the process of genital evolution, it is thus reasonable to conclude that not one theory can independently explain genital evolution. It is likely that these mechanisms may prove to have synergistic rather than exclusive effects.
The evolution of methods for establishing evolutionary timescales
2016-01-01
The fossil record is well known to be incomplete. Read literally, it provides a distorted view of the history of species divergence and extinction, because different species have different propensities to fossilize, the amount of rock fluctuates over geological timescales, as does the nature of the environments that it preserves. Even so, patterns in the fossil evidence allow us to assess the incompleteness of the fossil record. While the molecular clock can be used to extend the time estimates from fossil species to lineages not represented in the fossil record, fossils are the only source of information concerning absolute (geological) times in molecular dating analysis. We review different ways of incorporating fossil evidence in modern clock dating analyses, including node-calibrations where lineage divergence times are constrained using probability densities and tip-calibrations where fossil species at the tips of the tree are assigned dates from dated rock strata. While node-calibrations are often constructed by a crude assessment of the fossil evidence and thus involves arbitrariness, tip-calibrations may be too sensitive to the prior on divergence times or the branching process and influenced unduly affected by well-known problems of morphological character evolution, such as environmental influence on morphological phenotypes, correlation among traits, and convergent evolution in disparate species. We discuss the utility of time information from fossils in phylogeny estimation and the search for ancestors in the fossil record. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325838
The evolution of methods for establishing evolutionary timescales.
Donoghue, Philip C J; Yang, Ziheng
2016-07-19
The fossil record is well known to be incomplete. Read literally, it provides a distorted view of the history of species divergence and extinction, because different species have different propensities to fossilize, the amount of rock fluctuates over geological timescales, as does the nature of the environments that it preserves. Even so, patterns in the fossil evidence allow us to assess the incompleteness of the fossil record. While the molecular clock can be used to extend the time estimates from fossil species to lineages not represented in the fossil record, fossils are the only source of information concerning absolute (geological) times in molecular dating analysis. We review different ways of incorporating fossil evidence in modern clock dating analyses, including node-calibrations where lineage divergence times are constrained using probability densities and tip-calibrations where fossil species at the tips of the tree are assigned dates from dated rock strata. While node-calibrations are often constructed by a crude assessment of the fossil evidence and thus involves arbitrariness, tip-calibrations may be too sensitive to the prior on divergence times or the branching process and influenced unduly affected by well-known problems of morphological character evolution, such as environmental influence on morphological phenotypes, correlation among traits, and convergent evolution in disparate species. We discuss the utility of time information from fossils in phylogeny estimation and the search for ancestors in the fossil record.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Authors.
Faster-X evolution: Theory and evidence from Drosophila.
Charlesworth, Brian; Campos, José L; Jackson, Benjamin C
2018-02-12
A faster rate of adaptive evolution of X-linked genes compared with autosomal genes can be caused by the fixation of recessive or partially recessive advantageous mutations, due to the full expression of X-linked mutations in hemizygous males. Other processes, including recombination rate and mutation rate differences between X chromosomes and autosomes, may also cause faster evolution of X-linked genes. We review population genetics theory concerning the expected relative values of variability and rates of evolution of X-linked and autosomal DNA sequences. The theoretical predictions are compared with data from population genomic studies of several species of Drosophila. We conclude that there is evidence for adaptive faster-X evolution of several classes of functionally significant nucleotides. We also find evidence for potential differences in mutation rates between X-linked and autosomal genes, due to differences in mutational bias towards GC to AT mutations. Many aspects of the data are consistent with the male hemizygosity model, although not all possible confounding factors can be excluded. © 2018 John Wiley & Sons Ltd.
[Ancient methods of animal disease prevention in Belgium].
Mammerickx, M
1994-06-01
The author describes traditional methods of animal disease control in Belgium and the evolution of these methods up to the present time. Evidence is drawn mainly from Belgian law. The principles of hygienic prophylaxis, which have required little modification over the passage of time, were set out at the beginning of the 18th century by Lancisi and Bates, physicians to Pope Clement XI and King George I of Great Britain, respectively. These principles were immediately incorporated into Belgian law. However, it was not until the second half of the 19th century that they were applied correctly and with success.
Clonal evolution in hematologic malignancies and therapeutic implications
Landau, Dan A.; Carter, Scott L.; Getz, Gad; Wu, Catherine J.
2014-01-01
The ability of cancer to evolve and adapt is a principal challenge to therapy in general, and to the paradigm of targeted therapy in particular. This ability is fueled by the co-existence of multiple, genetically heterogeneous subpopulations within the cancer cell population. Increasing evidence has supported the idea that these subpopulations are selected in a Darwinian fashion, by which the genetic landscape of the tumor is continuously reshaped. Massively parallel sequencing has enabled a recent surge in our ability to study this process, adding to previous efforts using cytogenetic methods and targeted sequencing. Altogether, these studies reveal the complex evolutionary trajectories occurring across individual hematological malignancies. They also suggest that while clonal evolution may contribute to resistance to therapy, treatment may also hasten the evolutionary process. New insights into this process challenge us to understand the impact of treatment on clonal evolution, and inspire the development of novel prognostic and therapeutic strategies. PMID:23979521
The Use of Weighted Graphs for Large-Scale Genome Analysis
Zhou, Fang; Toivonen, Hannu; King, Ross D.
2014-01-01
There is an acute need for better tools to extract knowledge from the growing flood of sequence data. For example, thousands of complete genomes have been sequenced, and their metabolic networks inferred. Such data should enable a better understanding of evolution. However, most existing network analysis methods are based on pair-wise comparisons, and these do not scale to thousands of genomes. Here we propose the use of weighted graphs as a data structure to enable large-scale phylogenetic analysis of networks. We have developed three types of weighted graph for enzymes: taxonomic (these summarize phylogenetic importance), isoenzymatic (these summarize enzymatic variety/redundancy), and sequence-similarity (these summarize sequence conservation); and we applied these types of weighted graph to survey prokaryotic metabolism. To demonstrate the utility of this approach we have compared and contrasted the large-scale evolution of metabolism in Archaea and Eubacteria. Our results provide evidence for limits to the contingency of evolution. PMID:24619061
Slater, Graham J; Pennell, Matthew W
2014-05-01
A central prediction of much theory on adaptive radiations is that traits should evolve rapidly during the early stages of a clade's history and subsequently slowdown in rate as niches become saturated--a so-called "Early Burst." Although a common pattern in the fossil record, evidence for early bursts of trait evolution in phylogenetic comparative data has been equivocal at best. We show here that this may not necessarily be due to the absence of this pattern in nature. Rather, commonly used methods to infer its presence perform poorly when when the strength of the burst--the rate at which phenotypic evolution declines--is small, and when some morphological convergence is present within the clade. We present two modifications to existing comparative methods that allow greater power to detect early bursts in simulated datasets. First, we develop posterior predictive simulation approaches and show that they outperform maximum likelihood approaches at identifying early bursts at moderate strength. Second, we use a robust regression procedure that allows for the identification and down-weighting of convergent taxa, leading to moderate increases in method performance. We demonstrate the utility and power of these approach by investigating the evolution of body size in cetaceans. Model fitting using maximum likelihood is equivocal with regards the mode of cetacean body size evolution. However, posterior predictive simulation combined with a robust node height test return low support for Brownian motion or rate shift models, but not the early burst model. While the jury is still out on whether early bursts are actually common in nature, our approach will hopefully facilitate more robust testing of this hypothesis. We advocate the adoption of similar posterior predictive approaches to improve the fit and to assess the adequacy of macroevolutionary models in general.
Evidence for a scaling solution in cosmic-string evolution
NASA Technical Reports Server (NTRS)
Bennett, David P.; Bouchet, Francois R.
1988-01-01
Numerical simulations are used to study the most fundamental issue of cosmic-string evolution: the existence of a scaling solution. Strong evidence is found that a scaling solution does indeed exist. This justifies the main assumption on which the cosmic-string theories of galaxy formation is based. The main conclusion coincides with that of Albrecht and Turok (1985) but the results are not consistent with theirs. In fact, the results indicate that the details of string evolution are very different from the standard dogma.
Elevated rates of morphological and functional diversification in reef-dwelling haemulid fishes.
Price, Samantha A; Tavera, Jose J; Near, Thomas J; Wainwright, Peter C
2013-02-01
The relationship between habitat complexity and species richness is well established but comparatively little is known about the evolution of morphological diversity in complex habitats. Reefs are structurally complex, highly productive shallow-water marine ecosystems found in tropical (coral reefs) and temperate zones (rocky reefs) that harbor exceptional levels of biodiversity. We investigated whether reef habitats promote the evolution of morphological diversity in the feeding and locomotion systems of grunts (Haemulidae), a group of predominantly nocturnal fishes that live on both temperate and tropical reefs. Using phylogenetic comparative methods and statistical analyses that take into account uncertainty in phylogeny and the evolutionary history of reef living, we demonstrate that rates of morphological evolution are faster in reef-dwelling haemulids. The magnitude of this effect depends on the type of trait; on average, traits involved in the functional systems for prey capture and processing evolve twice as fast on reefs as locomotor traits. This result, along with the observation that haemulids do not exploit unique feeding niches on reefs, suggests that fine-scale trophic niche partitioning and character displacement may be driving higher rates of morphological evolution. Whatever the cause, there is growing evidence that reef habitats stimulate morphological and functional diversification in teleost fishes. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
ERIC Educational Resources Information Center
Stebbins, G. Ledyard
1973-01-01
Describes the basic logic behind the modern view of evolution theory. Despite gaps in fossil records, evidence is indicative of the origin of life from nonliving molecules and evolution of higher forms of life from simpler forms. (PS)
Gómez, José María; Perfectti, Francisco; Klingenberg, Christian Peter
2014-01-01
Flowers of animal-pollinated plants are integrated structures shaped by the action of pollinator-mediated selection. It is widely assumed that pollination specialization increases the magnitude of floral integration. However, empirical evidence is still inconclusive. In this study, we explored the role of pollinator diversity in shaping the evolution of corolla-shape integration in Erysimum, a plant genus with generalized pollination systems. We quantified floral integration in Erysimum using geometric morphometrics and explored its evolution using phylogenetic comparative methods. Corolla-shape integration was low but significantly different from zero in all study species. Spatial autocorrelation and phylogenetic signal in corolla-shape integration were not detected. In addition, integration in Erysimum seems to have evolved in a way that is consistent with Brownian motion, but with frequent convergent evolution. Corolla-shape integration was negatively associated with the number of pollinators visiting the flowers of each Erysimum species. That is, it was lower in those species having a more generalized pollination system. This negative association may occur because the co-occurrence of many pollinators imposes conflicting selection and cancels out any consistent selection on specific floral traits, preventing the evolution of highly integrated flowers. PMID:25002702
A bizarre new toothed mysticete (Cetacea) from Australia and the early evolution of baleen whales.
Fitzgerald, Erich M G
2006-12-07
Extant baleen whales (Cetacea, Mysticeti) are all large filter-feeding marine mammals that lack teeth as adults, instead possessing baleen, and feed on small marine animals in bulk. The early evolution of these superlative mammals, and their unique feeding method, has hitherto remained enigmatic. Here, I report a new toothed mysticete from the Late Oligocene of Australia that is more archaic than any previously described. Unlike all other mysticetes, this new whale was small, had enormous eyes and lacked derived adaptations for bulk filter-feeding. Several morphological features suggest that this mysticete was a macrophagous predator, being convergent on some Mesozoic marine reptiles and the extant leopard seal (Hydrurga leptonyx). It thus refutes the notions that all stem mysticetes were filter-feeders, and that the origins and initial radiation of mysticetes was linked to the evolution of filter-feeding. Mysticetes evidently radiated into a variety of disparate forms and feeding ecologies before the evolution of baleen or filter-feeding. The phylogenetic context of the new whale indicates that basal mysticetes were macrophagous predators that did not employ filter-feeding or echolocation, and that the evolution of characters associated with bulk filter-feeding was gradual.
A bizarre new toothed mysticete (Cetacea) from Australia and the early evolution of baleen whales
Fitzgerald, Erich M.G
2006-01-01
Extant baleen whales (Cetacea, Mysticeti) are all large filter-feeding marine mammals that lack teeth as adults, instead possessing baleen, and feed on small marine animals in bulk. The early evolution of these superlative mammals, and their unique feeding method, has hitherto remained enigmatic. Here, I report a new toothed mysticete from the Late Oligocene of Australia that is more archaic than any previously described. Unlike all other mysticetes, this new whale was small, had enormous eyes and lacked derived adaptations for bulk filter-feeding. Several morphological features suggest that this mysticete was a macrophagous predator, being convergent on some Mesozoic marine reptiles and the extant leopard seal (Hydrurga leptonyx). It thus refutes the notions that all stem mysticetes were filter-feeders, and that the origins and initial radiation of mysticetes was linked to the evolution of filter-feeding. Mysticetes evidently radiated into a variety of disparate forms and feeding ecologies before the evolution of baleen or filter-feeding. The phylogenetic context of the new whale indicates that basal mysticetes were macrophagous predators that did not employ filter-feeding or echolocation, and that the evolution of characters associated with bulk filter-feeding was gradual. PMID:17015308
Hopkins, Melanie J.; Smith, Andrew B.
2015-01-01
How ecological and morphological diversity accrues over geological time has been much debated by paleobiologists. Evidence from the fossil record suggests that many clades reach maximal diversity early in their evolutionary history, followed by a decline in evolutionary rates as ecological space fills or due to internal constraints. Here, we apply recently developed methods for estimating rates of morphological evolution during the post-Paleozoic history of a major invertebrate clade, the Echinoidea. Contrary to expectation, rates of evolution were lowest during the initial phase of diversification following the Permo-Triassic mass extinction and increased over time. Furthermore, although several subclades show high initial rates and net decreases in rates of evolution, consistent with “early bursts” of morphological diversification, at more inclusive taxonomic levels, these bursts appear as episodic peaks. Peak rates coincided with major shifts in ecological morphology, primarily associated with innovations in feeding strategies. Despite having similar numbers of species in today’s oceans, regular echinoids have accrued far less morphological diversity than irregular echinoids due to lower intrinsic rates of morphological evolution and less morphological innovation, the latter indicative of constrained or bounded evolution. These results indicate that rates of evolution are extremely heterogenous through time and their interpretation depends on the temporal and taxonomic scale of analysis. PMID:25713369
Interpreting Evidence: An Approach to Teaching Human Evolution in the Classroom
ERIC Educational Resources Information Center
DeSilva, Jeremy
2004-01-01
Paleoanthropology, which is the study of human evolution through fossil records, can be used as a tool for teaching human evolution in the classrooms. An updated approach to teaching human evolution and a model for explaining what is science and how it is done, is presented.
The origin and early evolution of vascular plant shoots and leaves.
Harrison, C Jill; Morris, Jennifer L
2018-02-05
The morphology of plant fossils from the Rhynie chert has generated longstanding questions about vascular plant shoot and leaf evolution, for instance, which morphologies were ancestral within land plants, when did vascular plants first arise and did leaves have multiple evolutionary origins? Recent advances combining insights from molecular phylogeny, palaeobotany and evo-devo research address these questions and suggest the sequence of morphological innovation during vascular plant shoot and leaf evolution. The evidence pinpoints testable developmental and genetic hypotheses relating to the origin of branching and indeterminate shoot architectures prior to the evolution of leaves, and demonstrates underestimation of polyphyly in the evolution of leaves from branching forms in 'telome theory' hypotheses of leaf evolution. This review discusses fossil, developmental and genetic evidence relating to the evolution of vascular plant shoots and leaves in a phylogenetic framework.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'. © 2017 The Authors.
Chromosome Evolution in Connection with Repetitive Sequences and Epigenetics in Plants.
Li, Shu-Fen; Su, Ting; Cheng, Guang-Qian; Wang, Bing-Xiao; Li, Xu; Deng, Chuan-Liang; Gao, Wu-Jun
2017-10-24
Chromosome evolution is a fundamental aspect of evolutionary biology. The evolution of chromosome size, structure and shape, number, and the change in DNA composition suggest the high plasticity of nuclear genomes at the chromosomal level. Repetitive DNA sequences, which represent a conspicuous fraction of every eukaryotic genome, particularly in plants, are found to be tightly linked with plant chromosome evolution. Different classes of repetitive sequences have distinct distribution patterns on the chromosomes. Mounting evidence shows that repetitive sequences may play multiple generative roles in shaping the chromosome karyotypes in plants. Furthermore, recent development in our understanding of the repetitive sequences and plant chromosome evolution has elucidated the involvement of a spectrum of epigenetic modification. In this review, we focused on the recent evidence relating to the distribution pattern of repetitive sequences in plant chromosomes and highlighted their potential relevance to chromosome evolution in plants. We also discussed the possible connections between evolution and epigenetic alterations in chromosome structure and repatterning, such as heterochromatin formation, centromere function, and epigenetic-associated transposable element inactivation.
Evolution of the Blue and Far-Infrared Galaxy Luminosity Functions
NASA Technical Reports Server (NTRS)
Lonsdale, Carol J.; Chokshi, Arati
1993-01-01
The space density of blue-selected galaxies at moderate redshifts is determined here directly by deriving the luminosity function. Evidence is found for density evolution for moderate luminosity galaxies at a rate of (1+z) exp delta, with a best fit of delta + 4 +/- 2, between the current epoch and Z greater than about 0.1. At M(b) less than -22 evidence is found for about 0.5-1.5 mag of luminosity evolution in addition to the density evolution, corresponding to an evolutionary rate of about (1+z) exp gamma, with gamma = 0.5-2.5, but a redshift of about 0.4. Assuming a steeper faint end slope of alpha = -1.3 similar to that observed in the Virgo cluster, could explain the data with a luminosity evolution rate of gamma = 1-2, without need for any density evolution. Acceptable fits are found by comparing composite density and luminosity evolution models to faint IRAS 60 micron source counts, implying that the blue and far-IR evolutionary rates may be similar.
The origin and early evolution of vascular plant shoots and leaves
2018-01-01
The morphology of plant fossils from the Rhynie chert has generated longstanding questions about vascular plant shoot and leaf evolution, for instance, which morphologies were ancestral within land plants, when did vascular plants first arise and did leaves have multiple evolutionary origins? Recent advances combining insights from molecular phylogeny, palaeobotany and evo–devo research address these questions and suggest the sequence of morphological innovation during vascular plant shoot and leaf evolution. The evidence pinpoints testable developmental and genetic hypotheses relating to the origin of branching and indeterminate shoot architectures prior to the evolution of leaves, and demonstrates underestimation of polyphyly in the evolution of leaves from branching forms in ‘telome theory’ hypotheses of leaf evolution. This review discusses fossil, developmental and genetic evidence relating to the evolution of vascular plant shoots and leaves in a phylogenetic framework. This article is part of a discussion meeting issue ‘The Rhynie cherts: our earliest terrestrial ecosystem revisited’. PMID:29254961
Diversification and cumulative evolution in New Caledonian crow tool manufacture.
Hunt, Gavin R; Gray, Russell D
2003-01-01
Many animals use tools but only humans are generally considered to have the cognitive sophistication required for cumulative technological evolution. Three important characteristics of cumulative technological evolution are: (i) the diversification of tool design; (ii) cumulative change; and (iii) high-fidelity social transmission. We present evidence that crows have diversified and cumulatively changed the design of their pandanus tools. In 2000 we carried out an intensive survey in New Caledonia to establish the geographical variation in the manufacture of these tools. We documented the shapes of 5550 tools from 21 sites throughout the range of pandanus tool manufacture. We found three distinct pandanus tool designs: wide tools, narrow tools and stepped tools. The lack of ecological correlates of the three tool designs and their different, continuous and overlapping geographical distributions make it unlikely that they evolved independently. The similarities in the manufacture method of each design further suggest that pandanus tools have gone through a process of cumulative change from a common historical origin. We propose a plausible scenario for this rudimentary cumulative evolution. PMID:12737666
Learning about evolution from sequence data
NASA Astrophysics Data System (ADS)
Dayarian, Adel; Shraiman, Boris
2012-02-01
Recent advances in sequencing and in laboratory evolution experiments have made possible to obtain quantitative data on genetic diversity of populations and on the dynamics of evolution. This dynamics is shaped by the interplay between selection acting on beneficial and deleterious mutations and recombination which reshuffles genotypes. Mounting evidence suggests that natural populations harbor extensive fitness diversity, yet most of the currently available tools for analyzing polymorphism data are based on the neutral theory. Our aim is to develop methods to analyze genomic data for populations in the presence of the above-mentioned factors. We consider different evolutionary regimes - Muller's ratchet, mutation-recombination-selection balance and positive adaption rate - and revisit a number of observables considered in the nearly-neutral theory of evolution. In particular, we examine the coalescent structure in the presence of recombination and calculate quantities such as the distribution of the coalescent times along the genome, the distribution of haplotype block sizes and the correlation between ancestors of different loci along the genome. In addition, we characterize the probability and time of fixation of mutations as a function of their fitness effect.
Evolutionary connections of biological kingdoms based on protein and nucleic acid sequence evidence
NASA Technical Reports Server (NTRS)
Dayhoff, M. O.
1983-01-01
Prokaryotic and eukaryotic evolutionary trees are developed from protein and nucleic-acid sequences by the methods of numerical taxonomy. Trees are presented for bacterial ferredoxins, 5S ribosomal RNA, c-type cytochromes , cytochromes c2 and c', and 5.8S ribosomal RNA; the implications for early evolution are discussed; and a composite tree showing the branching of the anaerobes, aerobes, archaebacteria, and eukaryotes is shown. Single lines are found for all oxygen-evolving photosynthetic forms and for the salt-loving and high-temperature forms of archaebacteria. It is argued that the eukaryote mitochondria, chloroplasts, and cytoplasmic host material are descended from free-living prokaryotes that formed symbiotic associations, with more than one symbiotic event involved in the evolution of each organelle.
A Growing Consensus for Change in Interpretation of Clinical Research Evidence.
Wilkerson, Gary B; Denegar, Craig R
2018-03-01
The paradigm of evidence-based practice (EBP) is well established among the health care professions, but perspectives on the best methods for acquiring, analyzing, appraising, and using research evidence are evolving. The EBP paradigm has shifted away from a hierarchy of research-evidence quality to recognize that multiple research methods can yield evidence to guide clinicians and patients through a decision-making process. Whereas the "frequentist" approach to data interpretation through hypothesis testing has been the dominant analytical method used by and taught to athletic training students and scholars, this approach is not optimal for integrating evidence into routine clinical practice. Moreover, the dichotomy of rejecting, or failing to reject, a null hypothesis is inconsistent with the Bayesian-like clinical decision-making process that skilled health care providers intuitively use. We propose that data derived from multiple research methods can be best interpreted by reporting a credible lower limit that represents the smallest treatment effect at a specified level of certainty, which should be judged in relation to the smallest effect considered to be clinically meaningful. Such an approach can provide a quantifiable estimate of certainty that an individual patient needs follow-up attention to prevent an adverse outcome or that a meaningful level of therapeutic benefit will be derived from a given intervention. The practice of athletic training will be influenced by the evolution of the EBP paradigm. Contemporary practice will require clinicians to expand their critical-appraisal skills to effectively integrate the results derived from clinical research into the care of individual patients. Proper interpretation of a credible lower limit value for a magnitude ratio has the potential to increase the likelihood of favorable patient outcomes, thereby advancing the practice of evidence-based athletic training.
Zhu, Yuan O; Aw, Pauline P K; de Sessions, Paola Florez; Hong, Shuzhen; See, Lee Xian; Hong, Lewis Z; Wilm, Andreas; Li, Chen Hao; Hue, Stephane; Lim, Seng Gee; Nagarajan, Niranjan; Burkholder, William F; Hibberd, Martin
2017-10-27
Viral populations are complex, dynamic, and fast evolving. The evolution of groups of closely related viruses in a competitive environment is termed quasispecies. To fully understand the role that quasispecies play in viral evolution, characterizing the trajectories of viral genotypes in an evolving population is the key. In particular, long-range haplotype information for thousands of individual viruses is critical; yet generating this information is non-trivial. Popular deep sequencing methods generate relatively short reads that do not preserve linkage information, while third generation sequencing methods have higher error rates that make detection of low frequency mutations a bioinformatics challenge. Here we applied BAsE-Seq, an Illumina-based single-virion sequencing technology, to eight samples from four chronic hepatitis B (CHB) patients - once before antiviral treatment and once after viral rebound due to resistance. With single-virion sequencing, we obtained 248-8796 single-virion sequences per sample, which allowed us to find evidence for both hard and soft selective sweeps. We were able to reconstruct population demographic history that was independently verified by clinically collected data. We further verified four of the samples independently through PacBio SMRT and Illumina Pooled deep sequencing. Overall, we showed that single-virion sequencing yields insight into viral evolution and population dynamics in an efficient and high throughput manner. We believe that single-virion sequencing is widely applicable to the study of viral evolution in the context of drug resistance and host adaptation, allows differentiation between soft or hard selective sweeps, and may be useful in the reconstruction of intra-host viral population demographic history.
The Singular Quest for a Universal Tree of Life
2013-01-01
Carl Woese developed a unique research program, based on rRNA, for discerning bacterial relationships and constructing a universal tree of life. Woese's interest in the evolution of the genetic code led to him to investigate the deep roots of evolution, develop the concept of the progenote, and conceive of the Archaea. In so doing, he and his colleagues at the University of Illinois in Urbana revolutionized microbiology and brought the classification of microbes into an evolutionary framework. Woese also provided definitive evidence for the role of symbiosis in the evolution of the eukaryotic cell while underscoring the importance of lateral gene transfer in microbial evolution. Woese and colleagues' proposal of three fundamental domains of life was brought forward in direct conflict with the prokaryote-eukaryote dichotomy. Together with several colleagues and associates, he brought together diverse evidence to support the rRNA evidence for the fundamentally tripartite nature of life. This paper aims to provide insight into his accomplishments, how he achieved them, and his place in the history of biology. PMID:24296570
ERIC Educational Resources Information Center
Oppedisano, Veruska; Turati, Gilberto
2015-01-01
This paper provides evidence on the sources of differences in inequality in educational scores and their evolution over time in four European countries. Using Programme for International Student Assessment data from the 2000 and the 2006 waves, the paper shows that inequality decreased in Germany and Spain (two "decentralised" schooling…
A code of ethics for evidence-based research with ancient human remains.
Kreissl Lonfat, Bettina M; Kaufmann, Ina Maria; Rühli, Frank
2015-06-01
As clinical research constantly advances and the concept of evolution becomes a strong and influential part of basic medical research, the absence of a discourse that deals with the use of ancient human remains in evidence-based research is becoming unbearable. While topics such as exhibition and excavation of human remains are established ethical fields of discourse, when faced with instrumentalization of ancient human remains for research (i.e., ancient DNA extractions for disease marker analyses) the answers from traditional ethics or even more practical fields of bio-ethics or more specific biomedical ethics are rare to non-existent. The Centre for Evolutionary Medicine at the University of Zurich solved their needs for discursive action through the writing of a self-given code of ethics which was written in dialogue with the researchers at the Institute and was published online in Sept. 2011: http://evolutionäremedizin.ch/coe/. The philosophico-ethical basis for this a code of conduct and ethics and the methods are published in this article. © 2015 Wiley Periodicals, Inc.
The macroevolution of size and complexity in insect male genitalia
Rudoy, Andrey
2016-01-01
The evolution of insect male genitalia has received much attention, but there is still a lack of data on the macroevolutionary origin of its extraordinary variation. We used a calibrated molecular phylogeny of 71 of the 150 known species of the beetle genus Limnebius to study the evolution of the size and complexity of the male genitalia in its two subgenera, Bilimneus, with small species with simple genitalia, and Limnebius s.str., with a much larger variation in size and complexity. We reconstructed ancestral values of complexity (perimeter and fractal dimension of the aedeagus) and genital and body size with Bayesian methods. Complexity evolved more in agreement with a Brownian model, although with evidence of weak directional selection to a decrease or increase in complexity in the two subgenera respectively, as measured with an excess of branches with negative or positive change. On the contrary, aedeagus size, the variable with the highest rates of evolution, had a lower phylogenetic signal, without significant differences between the two subgenera in the average change of the individual branches of the tree. Aedeagus size also had a lower correlation with time and no evidence of directional selection. Rather than to directional selection, it thus seems that the higher diversity of the male genitalia in Limnebius s.str. is mostly due to the larger variance of the phenotypic change in the individual branches of the tree for all measured variables. PMID:27114865
Chromosome Evolution in Connection with Repetitive Sequences and Epigenetics in Plants
Li, Shu-Fen; Su, Ting; Cheng, Guang-Qian; Wang, Bing-Xiao; Li, Xu; Deng, Chuan-Liang; Gao, Wu-Jun
2017-01-01
Chromosome evolution is a fundamental aspect of evolutionary biology. The evolution of chromosome size, structure and shape, number, and the change in DNA composition suggest the high plasticity of nuclear genomes at the chromosomal level. Repetitive DNA sequences, which represent a conspicuous fraction of every eukaryotic genome, particularly in plants, are found to be tightly linked with plant chromosome evolution. Different classes of repetitive sequences have distinct distribution patterns on the chromosomes. Mounting evidence shows that repetitive sequences may play multiple generative roles in shaping the chromosome karyotypes in plants. Furthermore, recent development in our understanding of the repetitive sequences and plant chromosome evolution has elucidated the involvement of a spectrum of epigenetic modification. In this review, we focused on the recent evidence relating to the distribution pattern of repetitive sequences in plant chromosomes and highlighted their potential relevance to chromosome evolution in plants. We also discussed the possible connections between evolution and epigenetic alterations in chromosome structure and repatterning, such as heterochromatin formation, centromere function, and epigenetic-associated transposable element inactivation. PMID:29064432
Perron, Gabriel G.; Lee, Alexander E. G.; Wang, Yun; Huang, Wei E.; Barraclough, Timothy G.
2012-01-01
Bacterial recombination is believed to be a major factor explaining the prevalence of multi-drug-resistance (MDR) among pathogenic bacteria. Despite extensive evidence for exchange of resistance genes from retrospective sequence analyses, experimental evidence for the evolutionary benefits of bacterial recombination is scarce. We compared the evolution of MDR between populations of Acinetobacter baylyi in which we manipulated both the recombination rate and the initial diversity of strains with resistance to single drugs. In populations lacking recombination, the initial presence of multiple strains resistant to different antibiotics inhibits the evolution of MDR. However, in populations with recombination, the inhibitory effect of standing diversity is alleviated and MDR evolves rapidly. Moreover, only the presence of DNA harbouring resistance genes promotes the evolution of resistance, ruling out other proposed benefits for recombination. Together, these results provide direct evidence for the fitness benefits of bacterial recombination and show that this occurs by mitigation of functional interference between genotypes resistant to single antibiotics. Although analogous to previously described mechanisms of clonal interference among alternative beneficial mutations, our results actually highlight a different mechanism by which interactions among co-occurring strains determine the benefits of recombination for bacterial evolution. PMID:22048956
Gómez, José María; Perfectti, Francisco; Klingenberg, Christian Peter
2014-08-19
Flowers of animal-pollinated plants are integrated structures shaped by the action of pollinator-mediated selection. It is widely assumed that pollination specialization increases the magnitude of floral integration. However, empirical evidence is still inconclusive. In this study, we explored the role of pollinator diversity in shaping the evolution of corolla-shape integration in Erysimum, a plant genus with generalized pollination systems. We quantified floral integration in Erysimum using geometric morphometrics and explored its evolution using phylogenetic comparative methods. Corolla-shape integration was low but significantly different from zero in all study species. Spatial autocorrelation and phylogenetic signal in corolla-shape integration were not detected. In addition, integration in Erysimum seems to have evolved in a way that is consistent with Brownian motion, but with frequent convergent evolution. Corolla-shape integration was negatively associated with the number of pollinators visiting the flowers of each Erysimum species. That is, it was lower in those species having a more generalized pollination system. This negative association may occur because the co-occurrence of many pollinators imposes conflicting selection and cancels out any consistent selection on specific floral traits, preventing the evolution of highly integrated flowers. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Evidence for adaptive radiation from a phylogenetic study of plant defenses
Agrawal, Anurag A.; Fishbein, Mark; Halitschke, Rayko; Hastings, Amy P.; Rabosky, Daniel L.; Rasmann, Sergio
2009-01-01
One signature of adaptive radiation is a high level of trait change early during the diversification process and a plateau toward the end of the radiation. Although the study of the tempo of evolution has historically been the domain of paleontologists, recently developed phylogenetic tools allow for the rigorous examination of trait evolution in a tremendous diversity of organisms. Enemy-driven adaptive radiation was a key prediction of Ehrlich and Raven's coevolutionary hypothesis [Ehrlich PR, Raven PH (1964) Evolution 18:586–608], yet has remained largely untested. Here we examine patterns of trait evolution in 51 North American milkweed species (Asclepias), using maximum likelihood methods. We study 7 traits of the milkweeds, ranging from seed size and foliar physiological traits to defense traits (cardenolides, latex, and trichomes) previously shown to impact herbivores, including the monarch butterfly. We compare the fit of simple random-walk models of trait evolution to models that incorporate stabilizing selection (Ornstein-Ulenbeck process), as well as time-varying rates of trait evolution. Early bursts of trait evolution were implicated for 2 traits, while stabilizing selection was implicated for several others. We further modeled the relationship between trait change and species diversification while allowing rates of trait evolution to vary during the radiation. Species-rich lineages underwent a proportionately greater decline in latex and cardenolides relative to species-poor lineages, and the rate of trait change was most rapid early in the radiation. An interpretation of this result is that reduced investment in defensive traits accelerated diversification, and disproportionately so, early in the adaptive radiation of milkweeds. PMID:19805160
Miller, Christopher A; White, Brian S; Dees, Nathan D; Griffith, Malachi; Welch, John S; Griffith, Obi L; Vij, Ravi; Tomasson, Michael H; Graubert, Timothy A; Walter, Matthew J; Ellis, Matthew J; Schierding, William; DiPersio, John F; Ley, Timothy J; Mardis, Elaine R; Wilson, Richard K; Ding, Li
2014-08-01
The sensitivity of massively-parallel sequencing has confirmed that most cancers are oligoclonal, with subpopulations of neoplastic cells harboring distinct mutations. A fine resolution view of this clonal architecture provides insight into tumor heterogeneity, evolution, and treatment response, all of which may have clinical implications. Single tumor analysis already contributes to understanding these phenomena. However, cryptic subclones are frequently revealed by additional patient samples (e.g., collected at relapse or following treatment), indicating that accurately characterizing a tumor requires analyzing multiple samples from the same patient. To address this need, we present SciClone, a computational method that identifies the number and genetic composition of subclones by analyzing the variant allele frequencies of somatic mutations. We use it to detect subclones in acute myeloid leukemia and breast cancer samples that, though present at disease onset, are not evident from a single primary tumor sample. By doing so, we can track tumor evolution and identify the spatial origins of cells resisting therapy.
Dees, Nathan D.; Griffith, Malachi; Welch, John S.; Griffith, Obi L.; Vij, Ravi; Tomasson, Michael H.; Graubert, Timothy A.; Walter, Matthew J.; Ellis, Matthew J.; Schierding, William; DiPersio, John F.; Ley, Timothy J.; Mardis, Elaine R.; Wilson, Richard K.; Ding, Li
2014-01-01
The sensitivity of massively-parallel sequencing has confirmed that most cancers are oligoclonal, with subpopulations of neoplastic cells harboring distinct mutations. A fine resolution view of this clonal architecture provides insight into tumor heterogeneity, evolution, and treatment response, all of which may have clinical implications. Single tumor analysis already contributes to understanding these phenomena. However, cryptic subclones are frequently revealed by additional patient samples (e.g., collected at relapse or following treatment), indicating that accurately characterizing a tumor requires analyzing multiple samples from the same patient. To address this need, we present SciClone, a computational method that identifies the number and genetic composition of subclones by analyzing the variant allele frequencies of somatic mutations. We use it to detect subclones in acute myeloid leukemia and breast cancer samples that, though present at disease onset, are not evident from a single primary tumor sample. By doing so, we can track tumor evolution and identify the spatial origins of cells resisting therapy. PMID:25102416
Environmental Influence on the Evolution of Morphological Complexity in Machines
Auerbach, Joshua E.; Bongard, Josh C.
2014-01-01
Whether, when, how, and why increased complexity evolves in biological populations is a longstanding open question. In this work we combine a recently developed method for evolving virtual organisms with an information-theoretic metric of morphological complexity in order to investigate how the complexity of morphologies, which are evolved for locomotion, varies across different environments. We first demonstrate that selection for locomotion results in the evolution of organisms with morphologies that increase in complexity over evolutionary time beyond what would be expected due to random chance. This provides evidence that the increase in complexity observed is a result of a driven rather than a passive trend. In subsequent experiments we demonstrate that morphologies having greater complexity evolve in complex environments, when compared to a simple environment when a cost of complexity is imposed. This suggests that in some niches, evolution may act to complexify the body plans of organisms while in other niches selection favors simpler body plans. PMID:24391483
Hsieh, Tsung-Yu; Huang, Chi-Kai; Su, Tzu-Sen; Hong, Cheng-You; Wei, Tzu-Chien
2017-03-15
Crystal morphology and structure are important for improving the organic-inorganic lead halide perovskite semiconductor property in optoelectronic, electronic, and photovoltaic devices. In particular, crystal growth and dissolution are two major phenomena in determining the morphology of methylammonium lead iodide perovskite in the sequential deposition method for fabricating a perovskite solar cell. In this report, the effect of immersion time in the second step, i.e., methlyammonium iodide immersion in the morphological, structural, optical, and photovoltaic evolution, is extensively investigated. Supported by experimental evidence, a five-staged, time-dependent evolution of the morphology of methylammonium lead iodide perovskite crystals is established and is well connected to the photovoltaic performance. This result is beneficial for engineering optimal time for methylammonium iodide immersion and converging the solar cell performance in the sequential deposition route. Meanwhile, our result suggests that large, well-faceted methylammonium lead iodide perovskite single crystal may be incubated by solution process. This offers a low cost route for synthesizing perovskite single crystal.
Wing serial homologs and the origin and evolution of the insect wing.
Ohde, Takahiro; Yaginuma, Toshinobu; Niimi, Teruyuki
2014-04-01
The origin and evolution of insect wings has been the subject of extensive debate. The issue has remained controversial largely because of the absence of definitive fossil evidence or direct developmental evidence of homology between wings and a putative wing origin. Recent identification of wing serial homologs (WSHs) has provided researchers with a potential strategy for identifying WSHs in other species. Future comparative developmental analyses between wings and WSHs may clarify the important steps underlying the evolution of insect wings. Copyright © 2013 The Authors. Published by Elsevier GmbH.. All rights reserved.
Pathogen evolution and the immunological niche
Cobey, Sarah
2014-01-01
Host immunity is a major driver of pathogen evolution and thus a major determinant of pathogen diversity. Explanations for pathogen diversity traditionally assume simple interactions between pathogens and the immune system, a view encapsulated by the susceptible–infected–recovered (SIR) model. However, there is growing evidence that the complexity of many host–pathogen interactions is dynamically important. This revised perspective requires broadening the definition of a pathogen's immunological phenotype, or what can be thought of as its immunological niche. After reviewing evidence that interactions between pathogens and host immunity drive much of pathogen evolution, I introduce the concept of a pathogen's immunological phenotype. Models that depart from the SIR paradigm demonstrate the utility of this perspective and show that it is particularly useful in understanding vaccine-induced evolution. This paper highlights questions in immunology, evolution, and ecology that must be answered to advance theories of pathogen diversity. PMID:25040161
Genome dynamics and evolution in yeasts: A long-term yeast-bacteria competition experiment
Katz, Michael; Knecht, Wolfgang; Compagno, Concetta; Piškur, Jure
2018-01-01
There is an enormous genetic diversity evident in modern yeasts, but our understanding of the ecological basis of such diversifications in nature remains at best fragmented so far. Here we report a long-term experiment mimicking a primordial competitive environment, in which yeast and bacteria co-exist and compete against each other. Eighteen yeasts covering a wide phylogenetic background spanning approximately 250 million years of evolutionary history were used to establish independent evolution lines for at most 130 passages. Our collection of hundreds of modified strains generated through such a rare two-species cross-kingdom competition experiment re-created the appearance of large-scale genomic rearrangements and altered phenotypes important in the diversification history of yeasts. At the same time, the methodology employed in this evolutionary study would also be a non-gene-technological method of reprogramming yeast genomes and then selecting yeast strains with desired traits. Cross-kingdom competition may therefore be a method of significant value to generate industrially useful yeast strains with new metabolic traits. PMID:29624585
Cognitive Demands of Lower Paleolithic Toolmaking
Stout, Dietrich; Hecht, Erin; Khreisheh, Nada; Bradley, Bruce; Chaminade, Thierry
2015-01-01
Stone tools provide some of the most abundant, continuous, and high resolution evidence of behavioral change over human evolution, but their implications for cognitive evolution have remained unclear. We investigated the neurophysiological demands of stone toolmaking by training modern subjects in known Paleolithic methods (“Oldowan”, “Acheulean”) and collecting structural and functional brain imaging data as they made technical judgments (outcome prediction, strategic appropriateness) about planned actions on partially completed tools. Results show that this task affected neural activity and functional connectivity in dorsal prefrontal cortex, that effect magnitude correlated with the frequency of correct strategic judgments, and that the frequency of correct strategic judgments was predictive of success in Acheulean, but not Oldowan, toolmaking. This corroborates hypothesized cognitive control demands of Acheulean toolmaking, specifically including information monitoring and manipulation functions attributed to the "central executive" of working memory. More broadly, it develops empirical methods for assessing the differential cognitive demands of Paleolithic technologies, and expands the scope of evolutionary hypotheses that can be tested using the available archaeological record. PMID:25875283
A Universal Trend among Proteomes Indicates an Oily Last Common Ancestor
Mannige, Ranjan V.; Brooks, Charles L.; Shakhnovich, Eugene I.
2012-01-01
Despite progresses in ancestral protein sequence reconstruction, much needs to be unraveled about the nature of the putative last common ancestral proteome that served as the prototype of all extant lifeforms. Here, we present data that indicate a steady decline (oil escape) in proteome hydrophobicity over species evolvedness (node number) evident in 272 diverse proteomes, which indicates a highly hydrophobic (oily) last common ancestor (LCA). This trend, obtained from simple considerations (free from sequence reconstruction methods), was corroborated by regression studies within homologous and orthologous protein clusters as well as phylogenetic estimates of the ancestral oil content. While indicating an inherent irreversibility in molecular evolution, oil escape also serves as a rare and universal reaction-coordinate for evolution (reinforcing Darwin's principle of Common Descent), and may prove important in matters such as (i) explaining the emergence of intrinsically disordered proteins, (ii) developing composition- and speciation-based “global” molecular clocks, and (iii) improving the statistical methods for ancestral sequence reconstruction. PMID:23300421
Osada, Naoki; Akashi, Hiroshi
2012-01-01
Accelerated rates of mitochondrial protein evolution have been proposed to reflect Darwinian coadaptation for efficient energy production for mammalian flight and brain activity. However, several features of mammalian mtDNA (absence of recombination, small effective population size, and high mutation rate) promote genome degradation through the accumulation of weakly deleterious mutations. Here, we present evidence for "compensatory" adaptive substitutions in nuclear DNA- (nDNA) encoded mitochondrial proteins to prevent fitness decline in primate mitochondrial protein complexes. We show that high mutation rate and small effective population size, key features of primate mitochondrial genomes, can accelerate compensatory adaptive evolution in nDNA-encoded genes. We combine phylogenetic information and the 3D structure of the cytochrome c oxidase (COX) complex to test for accelerated compensatory changes among interacting sites. Physical interactions among mtDNA- and nDNA-encoded components are critical in COX evolution; amino acids in close physical proximity in the 3D structure show a strong tendency for correlated evolution among lineages. Only nuclear-encoded components of COX show evidence for positive selection and adaptive nDNA-encoded changes tend to follow mtDNA-encoded amino acid changes at nearby sites in the 3D structure. This bias in the temporal order of substitutions supports compensatory weak selection as a major factor in accelerated primate COX evolution.
ERIC Educational Resources Information Center
McGhee, Robert
2002-01-01
Discusses the role of techniques of DNA analysis in assessing the genetic relationships between various species. Focuses on wolf-dog evolution using DNA evidence and historical data about human/wolf-dog relationships. (DDR)
Guimarães, Raphael Mendonça; Meira, Karina Cardoso; Paz, Elisabete Pimenta Araújo; Dutra, Viviane Gomes Parreira; Campos, Carlos Eduardo Aguilera
2017-05-01
This article examines the evolution of health surveillance policies as actions, models and systems, as well as contributing to the debate about the constitution of the National Health Surveillance Policy (PNVS). The article discusses conceptual elements regarding the notion of health surveillance and its evolution in Brazil and a trajectory is provided in relation to the construction of care models, particularly after the creation of the Unified Health System (SUS). The possibility of using the framework of public policies based on evidence, and methods for analyzing health situations, such as spatial analysis and time series, are highlighted. To conclude, questions are raised regarding the effective creation of the PNVS, and the challenges that the federal executive faces in driving this process.
Science Standards, Science Achievement, and Attitudes about Evolution
ERIC Educational Resources Information Center
Belin, Charlie M.; Kisida, Brian
2015-01-01
This article explores the relationships between (a) the quality of state science standards and student science achievement, (b) the public's belief in teaching evolution and the quality of state standards, and (c) the public's belief in teaching evolution and student science achievement. Using multiple measures, we find no evidence of a…
Delaye, Luis; Ruiz-Ruiz, Susana; Calderon, Enrique; Tarazona, Sonia; Conesa, Ana; Moya, Andrés
2018-06-01
Pneumocystis species are ascomycete fungi adapted to live inside the lungs of mammals. These ascomycetes show extensive stenoxenism, meaning that each species of Pneumocystis infects a single species of host. Here, we study the effect exerted by natural selection on gene evolution in the genomes of three Pneumocystis species. We show that genes involved in host interaction evolve under positive selection. In the first place, we found strong evidence of episodic diversifying selection in Major surface glycoproteins (Msg). These proteins are located on the surface of Pneumocystis and are used for host attachment and probably for immune system evasion. Consistent with their function as antigens, most sites under diversifying selection in Msg code for residues with large relative surface accessibility areas. We also found evidence of positive selection in part of the cell machinery used to export Msg to the cell surface. Specifically, we found that genes participating in glycosylphosphatidylinositol (GPI) biosynthesis show an increased rate of nonsynonymous substitutions (dN) versus synonymous substitutions (dS). GPI is a molecule synthesized in the endoplasmic reticulum that is used to anchor proteins to membranes. We interpret the aforementioned findings as evidence of selective pressure exerted by the host immune system on Pneumocystis species, shaping the evolution of Msg and several proteins involved in GPI biosynthesis. We suggest that genome evolution in Pneumocystis is well described by the Red-Queen hypothesis whereby genes relevant for biotic interactions show accelerated rates of evolution.
Assessment of Recombination in the S-segment Genome of Crimean-Congo Hemorrhagic Fever Virus in Iran
Chinikar, Sadegh; Shah-Hosseini, Nariman; Bouzari, Saeid; Shokrgozar, Mohammad Ali; Mostafavi, Ehsan; Jalali, Tahmineh; Khakifirouz, Sahar; Groschup, Martin H; Niedrig, Matthias
2016-01-01
Background: Crimean-Congo Hemorrhagic Fever Virus (CCHFV) belongs to genus Nairovirus and family Bunyaviridae. The main aim of this study was to investigate the extent of recombination in S-segment genome of CCHFV in Iran. Methods: Samples were isolated from Iranian patients and those available in GenBank, and analyzed by phylogenetic and bootscan methods. Results: Through comparison of the phylogenetic trees based on full length sequences and partial fragments in the S-segment genome of CCHFV, genetic switch was evident, due to recombination event. Moreover, evidence of multiple recombination events was detected in query isolates when bootscan analysis was used by SimPlot software. Conclusion: Switch of different genomic regions between different strains by recombination could contribute to CCHFV diversification and evolution. The occurrence of recombination in CCHFV has a critical impact on epidemiological investigations and vaccine design. PMID:27047968
Phase and amplitude analysis in time-frequency space--application to voluntary finger movement.
Ginter, J; Blinowska, K J; Kamiński, M; Durka, P J
2001-09-30
Two methods operating in time-frequency space were applied to analysis of EEG activity accompanying voluntary finger movements. The first one, based on matching pursuit approach provided high-resolution distributions of power in time-frequency space. The phenomena of event related desynchronization (ERD) and synchronization (ERS) were investigated without the need of band-pass filtering. Time evolution of mu- and beta-components was observed in a detailed way. The second method was based on a multichannel autoregressive model (MVAR) adapted for investigation of short-time changes in EEG signal. The direction and spectral content of the EEG activity propagation was estimated by means of short-time directed transfer function (SDTF). The evidence of 'cross-talk' between different areas of motor and sensory cortex was found. The earlier known phenomena, connected with voluntary movements, were confirmed and a new evidence concerning focal ERD/surround ERS and beta activity post-movement synchronization was found.
Cortez, Michael H; Ellner, Stephen P
2010-11-01
The accumulation of evidence that ecologically important traits often evolve at the same time and rate as ecological dynamics (e.g., changes in species' abundances or spatial distributions) has outpaced theory describing the interplay between ecological and evolutionary processes with comparable timescales. The disparity between experiment and theory is partially due to the high dimensionality of models that include both evolutionary and ecological dynamics. Here we show how the theory of fast-slow dynamical systems can be used to reduce model dimension, and we use that body of theory to study a general predator-prey system exhibiting fast evolution in either the predator or the prey. Our approach yields graphical methods with predictive power about when new and unique dynamics (e.g., completely out-of-phase oscillations and cryptic dynamics) can arise in ecological systems exhibiting fast evolution. In addition, we derive analytical expressions for determining when such behavior arises and how evolution affects qualitative properties of the ecological dynamics. Finally, while the theory requires a separation of timescales between the ecological and evolutionary processes, our approach yields insight into systems where the rates of those processes are comparable and thus is a step toward creating a general ecoevolutionary theory.
HIGH RATES OF EVOLUTION PRECEDED THE ORIGIN OF BIRDS
Puttick, Mark N; Thomas, Gavin H; Benton, Michael J; Polly, P David
2014-01-01
The origin of birds (Aves) is one of the great evolutionary transitions. Fossils show that many unique morphological features of modern birds, such as feathers, reduction in body size, and the semilunate carpal, long preceded the origin of clade Aves, but some may be unique to Aves, such as relative elongation of the forelimb. We study the evolution of body size and forelimb length across the phylogeny of coelurosaurian theropods and Mesozoic Aves. Using recently developed phylogenetic comparative methods, we find an increase in rates of body size and body size dependent forelimb evolution leading to small body size relative to forelimb length in Paraves, the wider clade comprising Aves and Deinonychosauria. The high evolutionary rates arose primarily from a reduction in body size, as there were no increased rates of forelimb evolution. In line with a recent study, we find evidence that Aves appear to have a unique relationship between body size and forelimb dimensions. Traits associated with Aves evolved before their origin, at high rates, and support the notion that numerous lineages of paravians were experimenting with different modes of flight through the Late Jurassic and Early Cretaceous. PMID:24471891
An experimental evaluation of drug-induced mutational meltdown as an antiviral treatment strategy.
Bank, Claudia; Renzette, Nicholas; Liu, Ping; Matuszewski, Sebastian; Shim, Hyunjin; Foll, Matthieu; Bolon, Daniel N A; Zeldovich, Konstantin B; Kowalik, Timothy F; Finberg, Robert W; Wang, Jennifer P; Jensen, Jeffrey D
2016-11-01
The rapid evolution of drug resistance remains a critical public health concern. The treatment of influenza A virus (IAV) has proven particularly challenging, due to the ability of the virus to develop resistance against current antivirals and vaccines. Here, we evaluate a novel antiviral drug therapy, favipiravir, for which the mechanism of action in IAV involves an interaction with the viral RNA-dependent RNA polymerase resulting in an effective increase in the viral mutation rate. We used an experimental evolution framework, combined with novel population genetic method development for inference from time-sampled data, to evaluate the effectiveness of favipiravir against IAV. Evaluating whole genome polymorphism data across 15 time points under multiple drug concentrations and in controls, we present the first evidence for the ability of IAV populations to effectively adapt to low concentrations of favipiravir. In contrast, under high concentrations, we observe population extinction, indicative of mutational meltdown. We discuss the observed dynamics with respect to the evolutionary forces at play and emphasize the utility of evolutionary theory to inform drug development. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Postcopulatory sexual selection influences baculum evolution in primates and carnivores.
Brindle, Matilda; Opie, Christopher
2016-12-14
The extreme morphological variability of the baculum across mammals is thought to be the result of sexual selection (particularly, high levels of postcopulatory selection). However, the evolutionary trajectory of the mammalian baculum is little studied and evidence for the adaptive function of the baculum has so far been elusive. Here, we use Markov chain Monte Carlo methods implemented in a Bayesian phylogenetic framework to reconstruct baculum evolution across the mammalian class and investigate the rate of baculum length evolution within the primate order. We then test the effects of testes mass (postcopulatory sexual selection), polygamy, seasonal breeding and intromission duration on the baculum in primates and carnivores. The ancestral mammal did not have a baculum, but both ancestral primates and carnivores did. No relationship was found between testes mass and baculum length in either primates or carnivores. Intromission duration correlated with baculum presence over the course of primate evolution, and prolonged intromission predicts significantly longer bacula in extant primates and carnivores. Both polygamous and seasonal breeding systems predict significantly longer bacula in primates. These results suggest the baculum plays an important role in facilitating reproductive strategies in populations with high levels of postcopulatory sexual selection. © 2016 The Authors.
Postcopulatory sexual selection influences baculum evolution in primates and carnivores
Brindle, Matilda
2016-01-01
The extreme morphological variability of the baculum across mammals is thought to be the result of sexual selection (particularly, high levels of postcopulatory selection). However, the evolutionary trajectory of the mammalian baculum is little studied and evidence for the adaptive function of the baculum has so far been elusive. Here, we use Markov chain Monte Carlo methods implemented in a Bayesian phylogenetic framework to reconstruct baculum evolution across the mammalian class and investigate the rate of baculum length evolution within the primate order. We then test the effects of testes mass (postcopulatory sexual selection), polygamy, seasonal breeding and intromission duration on the baculum in primates and carnivores. The ancestral mammal did not have a baculum, but both ancestral primates and carnivores did. No relationship was found between testes mass and baculum length in either primates or carnivores. Intromission duration correlated with baculum presence over the course of primate evolution, and prolonged intromission predicts significantly longer bacula in extant primates and carnivores. Both polygamous and seasonal breeding systems predict significantly longer bacula in primates. These results suggest the baculum plays an important role in facilitating reproductive strategies in populations with high levels of postcopulatory sexual selection. PMID:27974519
Sun, J-T; Jin, P-Y; Hoffmann, A A; Duan, X-Z; Dai, J; Hu, G; Xue, X-F; Hong, X-Y
2018-05-24
There is increasing evidence that mitochondrial genomes (mitogenomes) can be under selection, whereas the selective regimes shaping mitogenome evolution remain largely unclear. To test for mitochondrial genome evolution in relation to the climate adaptation, we explored mtDNA variation in two spider mite (Tetranychus) species, which distribute across different climates. We sequenced 26 complete mitogenomes of T. truncatus which occurs in both warm and cold regions, and 9 complete mitogenomes of T. pueraricola which is only restricted in warm regions. Patterns of evolution in the two species mitogenomes were compared through a series of d N /d S methods and physicochemical profiles of amino acid replacements. We found that (1) the mitogenomes of both species were under widespread purifying selection. (2) Elevated directional adaptive selection was observed in the T. truncatus mitogenome, perhaps linked to the cold climates adaptation of T. truncatus. (3) The strength of selection varied across genes, and diversifying positive selection detected on ND4 and ATP6 pointed to their crucial roles during adaptation to different climatic conditions. This study gained insight into the mitogenome evolution in relation to the climate adaptation. This article is protected by copyright. All rights reserved. © 2018 The Royal Entomological Society.
ERIC Educational Resources Information Center
Peker, Deniz; Comert, Gulsum Gul; Kence, Aykut
2010-01-01
Even though in the early years of the Republic of Turkey Darwin's theory of evolution was treated as a scientific theory and taught fairly in schools, despite all the substantial evidence accumulated supporting the theory of evolution since then, Darwin and his ideas today have been scorned by curriculum and education policy makers. Furthermore,…
Beauregard-Racine, Julie; Bicep, Cédric; Schliep, Klaus; Lopez, Philippe; Lapointe, François-Joseph; Bapteste, Eric
2011-07-20
We introduce several forest-based and network-based methods for exploring microbial evolution, and apply them to the study of thousands of genes from 30 strains of E. coli. This case study illustrates how additional analyses could offer fast heuristic alternatives to standard tree of life (TOL) approaches. We use gene networks to identify genes with atypical modes of evolution, and genome networks to characterize the evolution of genetic partnerships between E. coli and mobile genetic elements. We develop a novel polychromatic quartet method to capture patterns of recombination within E. coli, to update the clanistic toolkit, and to search for the impact of lateral gene transfer and of pathogenicity on gene evolution in two large forests of trees bearing E. coli. We unravel high rates of lateral gene transfer involving E. coli (about 40% of the trees under study), and show that both core genes and shell genes of E. coli are affected by non-tree-like evolutionary processes. We show that pathogenic lifestyle impacted the structure of 30% of the gene trees, and that pathogenic strains are more likely to transfer genes with one another than with non-pathogenic strains. In addition, we propose five groups of genes as candidate mobile modules of pathogenicity. We also present strong evidence for recent lateral gene transfer between E. coli and mobile genetic elements. Depending on which evolutionary questions biologists want to address (i.e. the identification of modules, genetic partnerships, recombination, lateral gene transfer, or genes with atypical evolutionary modes, etc.), forest-based and network-based methods are preferable to the reconstruction of a single tree, because they provide insights and produce hypotheses about the dynamics of genome evolution, rather than the relative branching order of species and lineages. Such a methodological pluralism - the use of woods and webs - is to be encouraged to analyse the evolutionary processes at play in microbial evolution.This manuscript was reviewed by: Ford Doolittle, Tal Pupko, Richard Burian, James McInerney, Didier Raoult, and Yan Boucher.
A Bird’s Eye View of Human Language Evolution
Berwick, Robert C.; Beckers, Gabriël J. L.; Okanoya, Kazuo; Bolhuis, Johan J.
2012-01-01
Comparative studies of linguistic faculties in animals pose an evolutionary paradox: language involves certain perceptual and motor abilities, but it is not clear that this serves as more than an input–output channel for the externalization of language proper. Strikingly, the capability for auditory–vocal learning is not shared with our closest relatives, the apes, but is present in such remotely related groups as songbirds and marine mammals. There is increasing evidence for behavioral, neural, and genetic similarities between speech acquisition and birdsong learning. At the same time, researchers have applied formal linguistic analysis to the vocalizations of both primates and songbirds. What have all these studies taught us about the evolution of language? Is the comparative study of an apparently species-specific trait like language feasible? We argue that comparative analysis remains an important method for the evolutionary reconstruction and causal analysis of the mechanisms underlying language. On the one hand, common descent has been important in the evolution of the brain, such that avian and mammalian brains may be largely homologous, particularly in the case of brain regions involved in auditory perception, vocalization, and auditory memory. On the other hand, there has been convergent evolution of the capacity for auditory–vocal learning, and possibly for structuring of external vocalizations, such that apes lack the abilities that are shared between songbirds and humans. However, significant limitations to this comparative analysis remain. While all birdsong may be classified in terms of a particularly simple kind of concatenation system, the regular languages, there is no compelling evidence to date that birdsong matches the characteristic syntactic complexity of human language, arising from the composition of smaller forms like words and phrases into larger ones. PMID:22518103
Mesozoic mammals from Arizona: new evidence on Mammalian evolution.
Jenkins, F A; Crompton, A W; Downs, W R
1983-12-16
Knowledge of early mammalian evolution has been based on Old World Late Triassic-Early Jurassic faunas. The discovery of mammalian fossils of approximately equivalent age in the Kayenta Formation of northeastern Arizona gives evidence of greater diversity than known previously. A new taxon documents the development of an angular region of the jaw as a neomorphic process, and represents an intermediate stage in the origin of mammalian jaw musculature.
Inventing Homo gardarensis: prestige, pressure, and human evolution in interwar Scandinavia.
Kjaergaard, Peter C
2014-06-01
In the 1920s there were still very few fossil human remains to support an evolutionary explanation of human origins. Nonetheless, evolution as an explanatory framework was widely accepted. This led to a search for ancestors in several continents with fierce international competition. With so little fossil evidence available and the idea of a Missing Link as a crucial piece of evidence in human evolution still intact, many actors participated in the scientific race to identify the human ancestor. The curious case of Homo gardarensis serves as an example of how personal ambitions and national pride were deeply interconnected as scientific concerns were sometimes slighted in interwar palaeoanthropology.
Uesugi, Akane; Connallon, Tim; Kessler, André; Monro, Keyne
2017-06-01
Insect herbivores are important mediators of selection on traits that impact plant defense against herbivory and competitive ability. Although recent experiments demonstrate a central role for herbivory in driving rapid evolution of defense and competition-mediating traits, whether and how herbivory shapes heritable variation in these traits remains poorly understood. Here, we evaluate the structure and evolutionary stability of the G matrix for plant metabolites that are involved in defense and allelopathy in the tall goldenrod, Solidago altissima. We show that G has evolutionarily diverged between experimentally replicated populations that evolved in the presence versus the absence of ambient herbivory, providing direct evidence for the evolution of G by natural selection. Specifically, evolution in an herbivore-free habitat altered the orientation of G, revealing a negative genetic covariation between defense- and competition-related metabolites that is typically masked in herbivore-exposed populations. Our results may be explained by predictions of classical quantitative genetic theory, as well as the theory of acquisition-allocation trade-offs. The study provides compelling evidence that herbivory drives the evolution of plant genetic architecture. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Insights into hominid evolution from the gorilla genome sequence
Scally, Aylwyn; Dutheil, Julien Y.; Hillier, LaDeana W.; Jordan, Greg E.; Goodhead, Ian; Herrero, Javier; Hobolth, Asger; Lappalainen, Tuuli; Mailund, Thomas; Marques-Bonet, Tomas; McCarthy, Shane; Montgomery, Stephen H.; Schwalie, Petra C.; Tang, Y. Amy; Ward, Michelle C.; Xue, Yali; Yngvadottir, Bryndis; Alkan, Can; Andersen, Lars N.; Ayub, Qasim; Ball, Edward V.; Beal, Kathryn; Bradley, Brenda J.; Chen, Yuan; Clee, Chris M.; Fitzgerald, Stephen; Graves, Tina A.; Gu, Yong; Heath, Paul; Heger, Andreas; Karakoc, Emre; Kolb-Kokocinski, Anja; Laird, Gavin K.; Lunter, Gerton; Meader, Stephen; Mort, Matthew; Mullikin, James C.; Munch, Kasper; O’Connor, Timothy D.; Phillips, Andrew D.; Prado-Martinez, Javier; Rogers, Anthony S.; Sajjadian, Saba; Schmidt, Dominic; Shaw, Katy; Simpson, Jared T.; Stenson, Peter D.; Turner, Daniel J.; Vigilant, Linda; Vilella, Albert J.; Whitener, Weldon; Zhu, Baoli; Cooper, David N.; de Jong, Pieter; Dermitzakis, Emmanouil T.; Eichler, Evan E.; Flicek, Paul; Goldman, Nick; Mundy, Nicholas I.; Ning, Zemin; Odom, Duncan T.; Ponting, Chris P.; Quail, Michael A.; Ryder, Oliver A.; Searle, Stephen M.; Warren, Wesley C.; Wilson, Richard K.; Schierup, Mikkel H.; Rogers, Jane; Tyler-Smith, Chris; Durbin, Richard
2012-01-01
Summary Gorillas are humans’ closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago (Mya). In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution. PMID:22398555
The Experimental Detection of an Emotional Response to the Idea of Evolution
ERIC Educational Resources Information Center
Bland, Mark W.; Morrison, Elizabeth
2015-01-01
Evolution is widely regarded as biology's unifying theme, yet rates of rejection of evolutionary science remain high. Anecdotal evidence suggests that cognitive dissonance leading to an emotional response is a barrier to learning about and accepting evolution. We explored the hypothesis that students whose worldviews may be inconsistent with the…
Bayer, Chris N; Luberda, Michael
2016-01-01
Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab's learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab's scientific process. Third, the lab's exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom's taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects.
NASA Astrophysics Data System (ADS)
Anderson, R. E.; Huber, J. A.; Parsons, C.; Stüeken, E.
2017-12-01
Since the origin of life over 4 billion years ago, life has fundamentally altered the habitability of Earth. Similarly, the environment molds the evolutionary trajectory of life itself through natural selection. Microbial genomes retain a "memory" of the co-evolution of life and Earth and can be analyzed to better understand trends and events in both the recent and distant past. To examine evolutionary trends in the more recent past, we have used metagenomics analyses to investigate which environmental factors play the strongest role in driving the evolution of microbes in deep-sea hydrothermal vents, which are thought to have been important habitats in the earliest stages of life's evolution. We have shown that microbial populations in a deep, basalt-hosted system appear to be under stronger purifying selection than populations inhabiting a cooler serpentinizing system less than 20 km away, suggesting that environmental context and geochemistry have an important impact on evolutionary rates and trends. We also found evidence that viruses play an important role in driving evolution in these habitats. Changing environmental conditions may also effect long-term evolutionary trends in Earth's distant past, as revealed by comparative genomics. By reconciling phylogenetic trees for microbial species with trees of metabolic genes, we can determine approximately when crucial metabolic genes began to spread across the tree of life through horizontal gene transfer. Using these methods, we conducted an analysis of the relative timing of the spread of genes related to the nitrogen cycle. Our results indicate that the rate of horizontal gene transfer for important genes related to denitrification increased after the Great Oxidation Event, concurrent with geochemical evidence for increasing availability of nitrate, suggesting that the oxygenation of the atmosphere and surface ocean may have been an important determining factor for the spread of denitrification genes across the tree of life. In contrast, genes related to nitrogen fixation display much more consistent rates of horizontal gene transfer throughout Earth's history. Studies that couple genomics approaches with geochemistry have the potential to reveal insights into the co-evolution of life and Earth both in the recent and distant past.
Kinetic Rate Kernels via Hierarchical Liouville-Space Projection Operator Approach.
Zhang, Hou-Dao; Yan, YiJing
2016-05-19
Kinetic rate kernels in general multisite systems are formulated on the basis of a nonperturbative quantum dissipation theory, the hierarchical equations of motion (HEOM) formalism, together with the Nakajima-Zwanzig projection operator technique. The present approach exploits the HEOM-space linear algebra. The quantum non-Markovian site-to-site transfer rate can be faithfully evaluated via projected HEOM dynamics. The developed method is exact, as evident by the comparison to the direct HEOM evaluation results on the population evolution.
The Contribution of Genetic Recombination to CRISPR Array Evolution
Kupczok, Anne; Landan, Giddy; Dagan, Tal
2015-01-01
CRISPR (clustered regularly interspaced short palindromic repeats) is a microbial immune system against foreign DNA. Recognition sequences (spacers) encoded within the CRISPR array mediate the immune reaction in a sequence-specific manner. The known mechanisms for the evolution of CRISPR arrays include spacer acquisition from foreign DNA elements at the time of invasion and array erosion through spacer deletion. Here, we consider the contribution of genetic recombination between homologous CRISPR arrays to the evolution of spacer repertoire. Acquisition of spacers from exogenic arrays via recombination may confer the recipient with immunity against unencountered antagonists. For this purpose, we develop a novel method for the detection of recombination in CRISPR arrays by modeling the spacer order in arrays from multiple strains from the same species. Because the evolutionary signal of spacer recombination may be similar to that of pervasive spacer deletions or independent spacer acquisition, our method entails a robustness analysis of the recombination inference by a statistical comparison to resampled and perturbed data sets. We analyze CRISPR data sets from four bacterial species: two Gammaproteobacteria species harboring CRISPR type I and two Streptococcus species harboring CRISPR type II loci. We find that CRISPR array evolution in Escherichia coli and Streptococcus agalactiae can be explained solely by vertical inheritance and differential spacer deletion. In Pseudomonas aeruginosa, we find an excess of single spacers potentially incorporated into the CRISPR locus during independent acquisition events. In Streptococcus thermophilus, evidence for spacer acquisition by recombination is present in 5 out of 70 strains. Genetic recombination has been proposed to accelerate adaptation by combining beneficial mutations that arose in independent lineages. However, for most species under study, we find that CRISPR evolution is shaped mainly by spacer acquisition and loss rather than recombination. Since the evolution of spacer content is characterized by a rapid turnover, it is likely that recombination is not beneficial for improving phage resistance in the strains under study, or that it cannot be detected in the resolution of intraspecies comparisons. PMID:26085541
NASA Astrophysics Data System (ADS)
Prince, K.; Laya, J. C.; Betzler, C.; Eberli, G. P.; Zarikian, C.; Swart, P. K.; Blättler, C. L.; Reolid, J.; Reijmer, J.
2017-12-01
The Maldives record nearly continuous carbonate deposition from the Eocene to the Holocene, and its stable tectonic regime and lack of clastic input make it an ideal example for understanding the depositional and diagenetic dynamics of isolated carbonate platforms. The Kardiva platform ultimately drowned, but the amplitude and frequency of sea-level changes in the Miocene make it likely that subaerial exposure occurred during its evolution. Abundant moldic porosity has been interpreted as meteoric diagenesis, but stable isotope evidence to support this has not been reported. Using bulk stable isotope analyses and petrographic methods, we sought to identify evidence of meteoric diagenesis by investigating the variations in grains, cements, porosity, δ13C, and δ18O at IODP Sites U1645, U1469, and U1470. Within the platform, grain distribution is variable with algae, benthic foraminifera, and corals representing the most abundant grain types. Cement abundance generally increases while porosity decreases with depth, with some variability. δ18O and δ13C range from -7.0‰ to 3.2‰ and -7‰ to 2.5‰, respectively. Petrography and isotope values show evidence for subaerial exposure and alteration by meteoric fluids, with a cross-plot of δ13C and δ18O showing the characteristic inverted "J" trend associated with dissolution and precipitation reactions mediated by meteoric fluids, resulting in more negative values. These results are compared to isotopic values for unaltered red algae and corals to account for the possibility of vital effects, but vital effects alone do not yield such low values. This evidence for meteoric diagenesis of the Kardiva Platform indicates variation between wet and dry periods, and also potential high-amplitude sea-level fluctuations during the Miocene in the Indo-Pacific region.
Why are there so many explanations for primate brain evolution?
2017-01-01
The question as to why primates have evolved unusually large brains has received much attention, with many alternative proposals all supported by evidence. We review the main hypotheses, the assumptions they make and the evidence for and against them. Taking as our starting point the fact that every hypothesis has sound empirical evidence to support it, we argue that the hypotheses are best interpreted in terms of a framework of evolutionary causes (selection factors), consequences (evolutionary windows of opportunity) and constraints (usually physiological limitations requiring resolution if large brains are to evolve). Explanations for brain evolution in birds and mammals generally, and primates in particular, have to be seen against the backdrop of the challenges involved with the evolution of coordinated, cohesive, bonded social groups that require novel social behaviours for their resolution, together with the specialized cognition and neural substrates that underpin this. A crucial, but frequently overlooked, issue is that fact that the evolution of large brains required energetic, physiological and time budget constraints to be overcome. In some cases, this was reflected in the evolution of ‘smart foraging’ and technical intelligence, but in many cases required the evolution of behavioural competences (such as coalition formation) that required novel cognitive skills. These may all have been supported by a domain-general form of cognition that can be used in many different contexts. This article is part of the themed issue ‘Physiological determinants of social behaviour in animals’. PMID:28673920
Pathogen evolution and the immunological niche.
Cobey, Sarah
2014-07-01
Host immunity is a major driver of pathogen evolution and thus a major determinant of pathogen diversity. Explanations for pathogen diversity traditionally assume simple interactions between pathogens and the immune system, a view encapsulated by the susceptible-infected-recovered (SIR) model. However, there is growing evidence that the complexity of many host-pathogen interactions is dynamically important. This revised perspective requires broadening the definition of a pathogen's immunological phenotype, or what can be thought of as its immunological niche. After reviewing evidence that interactions between pathogens and host immunity drive much of pathogen evolution, I introduce the concept of a pathogen's immunological phenotype. Models that depart from the SIR paradigm demonstrate the utility of this perspective and show that it is particularly useful in understanding vaccine-induced evolution. This paper highlights questions in immunology, evolution, and ecology that must be answered to advance theories of pathogen diversity. © 2014 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.
Wollenberg Valero, Katharina C.; Garcia-Porta, Joan; Rodríguez, Ariel; Arias, Mónica; Shah, Abhijeet; Randrianiaina, Roger Daniel; Brown, Jason L.; Glaw, Frank; Amat, Felix; Künzel, Sven; Metzler, Dirk; Isokpehi, Raphael D.; Vences, Miguel
2017-01-01
Anuran amphibians undergo major morphological transitions during development, but the contribution of their markedly different life-history phases to macroevolution has rarely been analysed. Here we generate testable predictions for coupling versus uncoupling of phenotypic evolution of tadpole and adult life-history phases, and for the underlying expression of genes related to morphological feature formation. We test these predictions by combining evidence from gene expression in two distantly related frogs, Xenopus laevis and Mantidactylus betsileanus, with patterns of morphological evolution in the entire radiation of Madagascan mantellid frogs. Genes linked to morphological structure formation are expressed in a highly phase-specific pattern, suggesting uncoupling of phenotypic evolution across life-history phases. This gene expression pattern agrees with uncoupled rates of trait evolution among life-history phases in the mantellids, which we show to have undergone an adaptive radiation. Our results validate a prevalence of uncoupling in the evolution of tadpole and adult phenotypes of frogs. PMID:28504275
Fehrer, J
1996-01-01
Cardueline finches (Passeriformes: Fringillidae, Carduelinae) provide an example of unresolved species relationships despite decades of extensive study of the group. Existing morphological studies suffer from numerous cases of assumed parallel evolution due to a conflicting character distribution in different lineages. In this study, results of assumed parallel evolution due to a conflicting character distribution in different lineages. In this study, results of cytochrome b sequence analysis are compared with species relationships suggested by morphological and behavioral evidence. In the molecular analyses, species clusters mutually excluding each other were observed, lowering the statistical support of the internodes, i.e., the branches could not be resolved convincingly. Despite these difficulties, some phylogenetic signal was present in the molecular data as well as in the other approaches. In particular, any species or genus relationship suggested by cytochrome b sequence analysis was reflected by some other evidence. Based on this general congruence of the different data sets and on a considerable cytochrome b tree stability observed independent of species combination, choice of outgroup and tree-generating method, the short internodes are interpreted to reflect a historical reality. A model of cardueline evolution is proposed which assumes a population of cardueline ancestors with considerable polymorphism concerning the mitochondrial DNA and morphological characters alike. Retention of ancestral character states in different lineages and a subsequent rapid radiation are suggested to explain the conflicting character distributions observed in different fields of investigation.
Real-time evolution of a large-scale relativistic jet
NASA Astrophysics Data System (ADS)
Martí, Josep; Luque-Escamilla, Pedro L.; Romero, Gustavo E.; Sánchez-Sutil, Juan R.; Muñoz-Arjonilla, Álvaro J.
2015-06-01
Context. Astrophysical jets are ubiquitous in the Universe on all scales, but their large-scale dynamics and evolution in time are hard to observe since they usually develop at a very slow pace. Aims: We aim to obtain the first observational proof of the expected large-scale evolution and interaction with the environment in an astrophysical jet. Only jets from microquasars offer a chance to witness the real-time, full-jet evolution within a human lifetime, since they combine a "short", few parsec length with relativistic velocities. Methods: The methodology of this work is based on a systematic recalibraton of interferometric radio observations of microquasars available in public archives. In particular, radio observations of the microquasar GRS 1758-258 over less than two decades have provided the most striking results. Results: Significant morphological variations in the extended jet structure of GRS 1758-258 are reported here that were previously missed. Its northern radio lobe underwent a major morphological variation that rendered the hotspot undetectable in 2001 and reappeared again in the following years. The reported changes confirm the Galactic nature of the source. We tentatively interpret them in terms of the growth of instabilities in the jet flow. There is also evidence of surrounding cocoon. These results can provide a testbed for models accounting for the evolution of jets and their interaction with the environment.
Methods and Systems for Measurement and Estimation of Normalized Contrast in Infrared Thermography
NASA Technical Reports Server (NTRS)
Koshti, Ajay M. (Inventor)
2017-01-01
Methods and systems for converting an image contrast evolution of an object to a temperature contrast evolution and vice versa are disclosed, including methods for assessing an emissivity of the object; calculating an afterglow heat flux evolution; calculating a measurement region of interest temperature change; calculating a reference region of interest temperature change; calculating a reflection temperature change; calculating the image contrast evolution or the temperature contrast evolution; and converting the image contrast evolution to the temperature contrast evolution or vice versa, respectively.
Methods and Systems for Measurement and Estimation of Normalized Contrast in Infrared Thermography
NASA Technical Reports Server (NTRS)
Koshti, Ajay M. (Inventor)
2015-01-01
Methods and systems for converting an image contrast evolution of an object to a temperature contrast evolution and vice versa are disclosed, including methods for assessing an emissivity of the object; calculating an afterglow heat flux evolution; calculating a measurement region of interest temperature change; calculating a reference region of interest temperature change; calculating a reflection temperature change; calculating the image contrast evolution or the temperature contrast evolution; and converting the image contrast evolution to the temperature contrast evolution or vice versa, respectively.
NASA Astrophysics Data System (ADS)
Blasevski, D.; Del-Castillo-Negrete, D.
2012-10-01
Heat transport in magnetized plasmas is a problem of fundamental interest in controlled fusion. In Ref.footnotetext D. del-Castillo-Negrete, and L. Chac'on, Phys. Rev. Lett., 106, 195004 (2011); Phys. Plasmas 19, 056112 (2012). we proposed a Lagrangian-Green's function (LG) method to study this problem in the strongly anisotropic (χ=0) regime. The LG method bypasses the need to discretize the transport operators on a grid and it is applicable to general parallel flux closures and 3-D magnetic fields. Here we apply the LG method to parallel transport (with local and nonlocal parallel flux closures) in reversed shear magnetic field configurations known to exhibit robust transport barriers in the vicinity of the extrema of the q-profile. By shearless Cantori (SC) we mean the invariant Cantor sets remaining after the destruction of toroidal flux surfaces with zero magnetic shear, q^'=0. We provide numerical evidence of the role of SC in the anomalously slow relaxation of radial temperature gradients in chaotic magnetic fields with no transport barriers. The spatio-temporal evolution of temperature pulses localized in the reversed shear region exhibits non-diffusive self-similar evolution and nonlocal effective radial transport.
Articulatory capacity of Neanderthals, a very recent and human-like fossil hominin
Barney, Anna; Martelli, Sandra; Serrurier, Antoine; Steele, James
2012-01-01
Scientists seek to use fossil and archaeological evidence to constrain models of the coevolution of human language and tool use. We focus on Neanderthals, for whom indirect evidence from tool use and ancient DNA appears consistent with an adaptation to complex vocal-auditory communication. We summarize existing arguments that the articulatory apparatus for speech had not yet come under intense positive selection pressure in Neanderthals, and we outline some recent evidence and analyses that challenge such arguments. We then provide new anatomical results from our own attempt to reconstruct vocal tract (VT) morphology in Neanderthals, and document our simulations of the acoustic and articulatory potential of this reconstructed Neanderthal VT. Our purpose in this paper is not to polarize debate about whether or not Neanderthals were human-like in all relevant respects, but to contribute to the development of methods that can be used to make further incremental advances in our understanding of the evolution of speech based on fossil and archaeological evidence. PMID:22106429
Landau-Zener-Stückelberg-Majorana interference in a 3D transmon driven by a chirped microwave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Ming; Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045; Zhou, Yu
2016-03-14
By driving a 3D transmon with microwave fields, we generate an effective avoided energy-level crossing. Then we chirp microwave frequency, which is equivalent to driving the system through the avoided energy-level crossing by sweeping the avoided crossing. A double-passage chirp produces Landau-Zener-Stückelberg-Majorana (LZSM) interference that agree well with the numerical results, especially with the initial state being an eigen-energy state in the center of an avoided level crossing. A time-resolved state tomography measurement is performed in the evolution of LZSM interference, showing an experimental evidence for the dynamical evolution of quantum state. Our method is fully applicable to other quantummore » systems that contain no intrinsic avoided level crossing, providing an alternative approach for quantum control and quantum simulation.« less
An Inverse Problem for a Class of Conditional Probability Measure-Dependent Evolution Equations
Mirzaev, Inom; Byrne, Erin C.; Bortz, David M.
2016-01-01
We investigate the inverse problem of identifying a conditional probability measure in measure-dependent evolution equations arising in size-structured population modeling. We formulate the inverse problem as a least squares problem for the probability measure estimation. Using the Prohorov metric framework, we prove existence and consistency of the least squares estimates and outline a discretization scheme for approximating a conditional probability measure. For this scheme, we prove general method stability. The work is motivated by Partial Differential Equation (PDE) models of flocculation for which the shape of the post-fragmentation conditional probability measure greatly impacts the solution dynamics. To illustrate our methodology, we apply the theory to a particular PDE model that arises in the study of population dynamics for flocculating bacterial aggregates in suspension, and provide numerical evidence for the utility of the approach. PMID:28316360
State-of-the-art Instruments for Detecting Extraterrestrial Life
NASA Technical Reports Server (NTRS)
Bada, Jeffrey L.
2003-01-01
In the coming decades, state-of-the-art spacecraft-based instruments that can detect key components associated with life as we know it on Earth will directly search for extinct or extant extraterrestrial life in our solar system. Advances in our analytical and detection capabilities, especially those based on microscale technologies, will be important in enhancing the abilities of these instruments. Remote sensing investigations of the atmospheres of extrasolar planets could provide evidence of photosynthetic-based life outside our solar system, although less advanced life will remain undetectable by these methods. Finding evidence of extraterrestrial life would have profound consequences both with respect to our understanding of chemical and biological evolution, and whether the biochemistry on Earth is unique in the universe.
ERIC Educational Resources Information Center
Dodick, Jeff; Orion, Nir
2003-01-01
Discusses challenges faced in the teaching and learning of evolution. Presents a curricular program and a case study on evolutionary biology. Investigates students' conceptual knowledge after exposure to the program "From Dinosaurs to Darwin," which focuses on fossil records as evidence of evolution. (Contains 32 references.) (YDS)
ERIC Educational Resources Information Center
Day, Robert
2006-01-01
This paper will discuss the ongoing controversy surrounding a particular Ohio Department of Education tenth grade lesson plan titled "Critical Analysis of Evolution" (Ohio Department of Education identification L10H23). The lesson professes to encourage students to "critically examine" evidences for and against evolution and…
2013-10-31
Evidence from NASA Wide-field Infrared Survey Explorer and Galaxy Evolution Explorer missions provide support for the inside-out theory of galaxy evolution, which holds that star formation starts at the core of the galaxy and spreads outward.
Genetic exchange in eukaryotes through horizontal transfer: connected by the mobilome.
Wallau, Gabriel Luz; Vieira, Cristina; Loreto, Élgion Lúcio Silva
2018-01-01
All living species contain genetic information that was once shared by their common ancestor. DNA is being inherited through generations by vertical transmission (VT) from parents to offspring and from ancestor to descendant species. This process was considered the sole pathway by which biological entities exchange inheritable information. However, Horizontal Transfer (HT), the exchange of genetic information by other means than parents to offspring, was discovered in prokaryotes along with strong evidence showing that it is a very important process by which prokaryotes acquire new genes. For some time now, it has been a scientific consensus that HT events were rare and non-relevant for evolution of eukaryotic species, but there is growing evidence supporting that HT is an important and frequent phenomenon in eukaryotes as well. Here, we will discuss the latest findings regarding HT among eukaryotes, mainly HT of transposons (HTT), establishing HTT once and for all as an important phenomenon that should be taken into consideration to fully understand eukaryotes genome evolution. In addition, we will discuss the latest development methods to detect such events in a broader scale and highlight the new approaches which should be pursued by researchers to fill the knowledge gaps regarding HTT among eukaryotes.
NASA Astrophysics Data System (ADS)
Aguillard, Donald Wayne
Louisiana public school biology teachers were surveyed to investigate their attitudes toward biological evolution. A mixed method investigation was employed using a questionnaire and open-ended interviews. Results obtained from 64 percent of the sample receiving the questionnaire indicate that although teachers endorse the study of evolution as important, instructional time allocated to evolution is disproportionate with its status as a unifying concept of science. Two variables, number of college courses specifically devoted to evolution and number of semester credit hours in biology, produced a significant correlation with emphasis placed on evolution. The data suggest that teachers' knowledge base emerged as the most significant factor in determining degree of classroom emphasis on evolution. The data suggest a need for substantive changes in the training of biology teachers. Thirty-five percent of teachers reported pursuing fewer than 20 semester credit hours in biology and 68 percent reported fewer than three college courses in which evolution was specifically discussed. Fifty percent reported a willingness to undergo additional training about evolution. In spite of the fact that evolution has been identified as a major conceptual theme across all of the sciences, there is strong evidence that Louisiana biology teachers de-emphasize evolutionary theory. Even when biology teachers allocate instructional time to evolutionary theory, many avoid discussion of human evolution. The research data show that only ten percent of teachers reported allocating more than sixty minutes of instructional time to human evolution. Louisiana biology teachers were found to hold extreme views on the subject of creationism as a component of the biology curriculum. Twenty-nine percent indicated that creationism should be taught in high school biology and 25--35 percent allocated instructional time to discussions of creationism. Contributing to the de-emphasis of evolutionary theory, as a unifying theme of biology, is the courtesy extended to classroom teachers to determine what topics are emphasized. The inclusion of evolution in curriculum documents is not sufficient to ensure that evolutionary theory is regarded as a unifying theme of biology. School administrators, science supervisors, and local school boards have a clear responsibility to articulate strong support for requiring classroom discussions of evolutionary theory.
The Genomic Signature of Crop-Wild Introgression in Maize
Hufford, Matthew B.; Lubinksy, Pesach; Pyhäjärvi, Tanja; Devengenzo, Michael T.; Ellstrand, Norman C.; Ross-Ibarra, Jeffrey
2013-01-01
The evolutionary significance of hybridization and subsequent introgression has long been appreciated, but evaluation of the genome-wide effects of these phenomena has only recently become possible. Crop-wild study systems represent ideal opportunities to examine evolution through hybridization. For example, maize and the conspecific wild teosinte Zea mays ssp. mexicana (hereafter, mexicana) are known to hybridize in the fields of highland Mexico. Despite widespread evidence of gene flow, maize and mexicana maintain distinct morphologies and have done so in sympatry for thousands of years. Neither the genomic extent nor the evolutionary importance of introgression between these taxa is understood. In this study we assessed patterns of genome-wide introgression based on 39,029 single nucleotide polymorphisms genotyped in 189 individuals from nine sympatric maize-mexicana populations and reference allopatric populations. While portions of the maize and mexicana genomes appeared resistant to introgression (notably near known cross-incompatibility and domestication loci), we detected widespread evidence for introgression in both directions of gene flow. Through further characterization of these genomic regions and preliminary growth chamber experiments, we found evidence suggestive of the incorporation of adaptive mexicana alleles into maize during its expansion to the highlands of central Mexico. In contrast, very little evidence was found for adaptive introgression from maize to mexicana. The methods we have applied here can be replicated widely, and such analyses have the potential to greatly inform our understanding of evolution through introgressive hybridization. Crop species, due to their exceptional genomic resources and frequent histories of spread into sympatry with relatives, should be particularly influential in these studies. PMID:23671421
Novel Random Mutagenesis Method for Directed Evolution.
Feng, Hong; Wang, Hai-Yan; Zhao, Hong-Yan
2017-01-01
Directed evolution is a powerful strategy for gene mutagenesis, and has been used for protein engineering both in scientific research and in the biotechnology industry. The routine method for directed evolution was developed by Stemmer in 1994 (Stemmer, Proc Natl Acad Sci USA 91, 10747-10751, 1994; Stemmer, Nature 370, 389-391, 1994). Since then, various methods have been introduced, each of which has advantages and limitations depending upon the targeted genes and procedure. In this chapter, a novel alternative directed evolution method which combines mutagenesis PCR with dITP and fragmentation by endonuclease V is described. The kanamycin resistance gene is used as a reporter gene to verify the novel method for directed evolution. This method for directed evolution has been demonstrated to be efficient, reproducible, and easy to manipulate in practice.
The Contribution of Genetic Recombination to CRISPR Array Evolution.
Kupczok, Anne; Landan, Giddy; Dagan, Tal
2015-06-16
CRISPR (clustered regularly interspaced short palindromic repeats) is a microbial immune system against foreign DNA. Recognition sequences (spacers) encoded within the CRISPR array mediate the immune reaction in a sequence-specific manner. The known mechanisms for the evolution of CRISPR arrays include spacer acquisition from foreign DNA elements at the time of invasion and array erosion through spacer deletion. Here, we consider the contribution of genetic recombination between homologous CRISPR arrays to the evolution of spacer repertoire. Acquisition of spacers from exogenic arrays via recombination may confer the recipient with immunity against unencountered antagonists. For this purpose, we develop a novel method for the detection of recombination in CRISPR arrays by modeling the spacer order in arrays from multiple strains from the same species. Because the evolutionary signal of spacer recombination may be similar to that of pervasive spacer deletions or independent spacer acquisition, our method entails a robustness analysis of the recombination inference by a statistical comparison to resampled and perturbed data sets. We analyze CRISPR data sets from four bacterial species: two Gammaproteobacteria species harboring CRISPR type I and two Streptococcus species harboring CRISPR type II loci. We find that CRISPR array evolution in Escherichia coli and Streptococcus agalactiae can be explained solely by vertical inheritance and differential spacer deletion. In Pseudomonas aeruginosa, we find an excess of single spacers potentially incorporated into the CRISPR locus during independent acquisition events. In Streptococcus thermophilus, evidence for spacer acquisition by recombination is present in 5 out of 70 strains. Genetic recombination has been proposed to accelerate adaptation by combining beneficial mutations that arose in independent lineages. However, for most species under study, we find that CRISPR evolution is shaped mainly by spacer acquisition and loss rather than recombination. Since the evolution of spacer content is characterized by a rapid turnover, it is likely that recombination is not beneficial for improving phage resistance in the strains under study, or that it cannot be detected in the resolution of intraspecies comparisons. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Gene regulation in amphioxus: An insight from transgenic studies in amphioxus and vertebrates.
Kozmikova, Iryna; Kozmik, Zbynek
2015-12-01
Cephalochordates, commonly known as amphioxus or lancelets, are the most basal subphylum of chordates. Cephalochordates are thus key to understanding the origin of vertebrates and molecular mechanisms underlying vertebrate evolution. The evolution of developmental control mechanisms during invertebrate-to-vertebrate transition involved not only gene duplication events, but also specific changes in spatial and temporal expression of many genes. To get insight into the spatiotemporal regulation of gene expression during invertebrate-to-vertebrate transition, functional studies of amphioxus gene regulatory elements are highly warranted. Here, we review transgenic studies performed in amphioxus and vertebrates using promoters and enhancers derived from the genome of Branchiostoma floridae. We describe the current methods of transgenesis in amphioxus, provide evidence of Tol2 transposon-generated transgenic embryos of Branchiostoma lanceolatum and discuss possible future directions. We envision that comparative transgenic analysis of gene regulatory sequences in the context of amphioxus and vertebrate embryos will likely provide an important mechanistic insight into the evolution of vertebrate body plan. Copyright © 2015 Elsevier B.V. All rights reserved.
2012-01-01
Background Anecdotal evidence points to variations in individual students’ evolving confidence in clinical and patient communication skills during a clinical internship. A better understanding of the specific aspects of internships that contribute to increasing or decreasing confidence is needed to best support students during the clinical component of their study. Methods A multi-method approach, combining two large-scale surveys with 269 students and three in-depth individual interviews with a sub-sample of 29 students, was used to investigate the evolution of change in student confidence during a 10-month long internship. Change in levels of confidence in patient communication and clinical skills was measured and relationship to demographic factors were explored. The interviews elicited students’ accounts and reflections on what affected the evolution of their confidence during the internship. Results At the start of their internship, students were more confident in their patient communication skills than their clinical skills but prior experience was significantly related to confidence in both. Initial confidence in patient communication skills was also related to age and prior qualification but not gender whilst confidence in clinical skills was related to gender but not age or prior qualification. These influences were maintained over time. Overall, students’ levels of confidence in patient communication and clinical skills confidence increased significantly over the duration of the internship with evidence that change over time in these two aspects were inter-related. To explore how specific aspects of the internship contributed to changing levels of confidence, two extreme sub-groups of interviewees were identified, those with the least increase and those with the highest increase in professional confidence over time. A number of key factors affecting the development of confidence were identified, including among others, interactions with clinicians and patients, personal agency and maturing as a student clinician. Conclusion This study provides insight into the factors perceived by students as affecting the development of professional confidence during internships. One particularly promising area for educational intervention may be the promotion of a pro-active approach to professional learning. PMID:22713168
A Ratio Explanation for Evolution.
ERIC Educational Resources Information Center
Riss, Pam Helfers
1993-01-01
Describes hands-on physical anthropology activities for teaching students about evolution. Using evidence found in hominid skulls, students conduct investigations that involve calculating ratios. Eight full-page photographs of skulls from the program Stones and Bones are included. (PR)
Bacterial flagella and Type III secretion: case studies in the evolution of complexity.
Pallen, M J; Gophna, U
2007-01-01
Bacterial flagella at first sight appear uniquely sophisticated in structure, so much so that they have even been considered 'irreducibly complex' by the intelligent design movement. However, a more detailed analysis reveals that these remarkable pieces of molecular machinery are the product of processes that are fully compatible with Darwinian evolution. In this chapter we present evidence for such processes, based on a review of experimental studies, molecular phylogeny and microbial genomics. Several processes have played important roles in flagellar evolution: self-assembly of simple repeating subunits, gene duplication with subsequent divergence, recruitment of elements from other systems ('molecular bricolage'), and recombination. We also discuss additional tentative new assignments of homology (FliG with MgtE, FliO with YscJ). In conclusion, rather than providing evidence of intelligent design, flagellar and non-flagellar Type III secretion systems instead provide excellent case studies in the evolution of complex systems from simpler components.
Sharma, M; Shukla, Y
2009-11-01
The discovery of Precambrian microfossils in 1954 opened a new vista of investigations in the field of evolution of life. Although the Precambrian encompasses 87% of the earth's history, the pace of organismal evolution was quite slow. The life forms as categorised today in the three principal domains viz. the Bacteria, the Archaea and the Eucarya evolved during this period. In this paper, we review the advancements made in the Precambrian palaeontology and its contribution in understanding the evolution of life forms on earth. These studies have enriched the data base on the Precambrian life. Most of the direct evidence includes fossil prokaryotes, protists, advanced algal fossils, acritarchs, and the indirect evidence is represented by the stromatolites, trace fossils and geochemical fossils signatures. The Precambrian fossils are preserved in the form of compressions, impressions, and permineralized and biomineralized remains.
The Evolution and Fossil History of Sensory Perception in Amniote Vertebrates
NASA Astrophysics Data System (ADS)
Müller, Johannes; Bickelmann, Constanze; Sobral, Gabriela
2018-05-01
Sensory perception is of crucial importance for animals to interact with their biotic and abiotic environment. In amniotes, the clade including modern mammals (Synapsida), modern reptiles (Reptilia), and their fossil relatives, the evolution of sensory perception took place in a stepwise manner after amniotes appeared in the Carboniferous. Fossil evidence suggests that Paleozoic taxa had only a limited amount of sensory capacities relative to later forms, with the majority of more sophisticated types of sensing evolving during the Triassic and Jurassic. Alongside the evolution of improved sensory capacities, various types of social communication evolved across different groups. At present there is no definitive evidence for a relationship between sensory evolution and species diversification. It cannot be excluded, however, that selection for improved sensing was partially triggered by biotic interactions, e.g., in the context of niche competition, whereas ecospace expansion, especially during the Mesozoic, might also have played an important role.
Paillot, Romain; Steward, Karen F.; Webb, Katy; Ainslie, Fern; Jourdan, Thibaud; Bason, Nathalie C.; Holroyd, Nancy E.; Mungall, Karen; Quail, Michael A.; Sanders, Mandy; Simmonds, Mark; Willey, David; Brooks, Karen; Aanensen, David M.; Spratt, Brian G.; Jolley, Keith A.; Maiden, Martin C. J.; Kehoe, Michael; Chanter, Neil; Bentley, Stephen D.; Robinson, Carl; Maskell, Duncan J.; Parkhill, Julian; Waller, Andrew S.
2009-01-01
The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci. PMID:19325880
ERIC Educational Resources Information Center
Nunez, Elvis Enrique; Pringle, Rose M.; Showalter, Kevin Tyler
2012-01-01
A survey of the literature on evolution instruction provides evidence that teachers' personal views and understandings can shape instructional approaches and content delivered in science classrooms regardless of established science standards. This study is the first to quantify evolutionary worldviews of in-service teachers in the Caribbean,…
NASA Astrophysics Data System (ADS)
Bera, Sumit; Behera, P.; Mishra, A. K.; Krishnan, M.; Patidar, M. M.; Singh, D.; Gangrade, M.; Venkatesh, R.; Deshpande, U. P.; Phase, D. M.; Ganesan, V.
2018-04-01
Structural, morphological and spectroscopic properties of Bi2Se3 nanoparticles synthesized by microwave assisted solvothermal method were investigated systematically. A controlled synthesis of different morphologies by a small variation in synthesis procedure is demonstrated. Powder X-ray diffraction (XRD) confirmed the formation of single phase. Crystallite and particle size reductions were studied with XRD and AFM (Atomic Force Microscopy). Different morphologies such as hexagonal nanoflakes with cross section of around˜6µm, nanoflower and octahedral agglomerated crystals of nearly ˜60 nm size have been observed in scanning electron microscope while varying the microwave assisted synthesis procedures. A significant blue shift observed in diffuse reflectance spectroscopy evidences the energy gap tuning as a result of morphological evolution. The difference in morphology observed in this three fast, facile and scalable synthesis is advantageous for tuning the thermoelectric figure of merit and for probing the surface states of these topological insulators. Low temperature resistivity remains similar for all three variants depicting a 2D character as evidenced by a -lnT term of localization.
Lawing, A Michelle; Polly, P David; Hews, Diana K; Martins, Emília P
2016-08-01
Fossils and other paleontological information can improve phylogenetic comparative method estimates of phenotypic evolution and generate hypotheses related to species diversification. Here, we use fossil information to calibrate ancestral reconstructions of suitable climate for Sceloporus lizards in North America. Integrating data from the fossil record, general circulation models of paleoclimate during the Miocene, climate envelope modeling, and phylogenetic comparative methods provides a geographically and temporally explicit species distribution model of Sceloporus-suitable habitat through time. We provide evidence to support the historic biogeographic hypothesis of Sceloporus diversification in warm North American deserts and suggest a relatively recent Sceloporus invasion into Mexico around 6 Ma. We use a physiological model to map extinction risk. We suggest that the number of hours of restriction to a thermal refuge limited Sceloporus from inhabiting Mexico until the climate cooled enough to provide suitable habitat at approximately 6 Ma. If the future climate returns to the hotter climates of the past, Mexico, the place of highest modern Sceloporus richness, will no longer provide suitable habitats for Sceloporus to survive and reproduce.
Evolution and Education: Lessons from Thomas Huxley
NASA Astrophysics Data System (ADS)
Lyons, Sherrie Lynne
2010-05-01
Thomas Huxley more than anyone else was responsible for disseminating Darwin’s theory in the western world and maintained that investigating the history of life should be regarded as a purely scientific question free of theological speculation. The content and rhetorical strategy of Huxley’s defense of evolution is analyzed. Huxley argued that the classification of humans should be determined independent of any theories of origination of species. Besides providing evidence that demonstrated the close relationship between apes and humans, he also argued that a pithecoid ancestry in no way degraded humankind. In his broader defense of evolution he drew on his agnosticism to define what science could and could not explain. Theology made empirical claims and needed to be subject to the same standards of evidence as scientific claims. He maintained that even most scientific objections to evolution were religiously based. The objections to the theory fundamentally remain the same as in the nineteenth century and much can be learned from Huxley to develop effective strategies for educating the public about evolution. Huxley’s own scientific articles as well as his popular writings provide numerous examples that could be harnessed not only for the teaching of evolution, but also for understanding science as a process.
Sánchez-Baracaldo, Patricia; Thomas, Gavin H.
2014-01-01
The recent uplift of the tropical Andes (since the late Pliocene or early Pleistocene) provided extensive ecological opportunity for evolutionary radiations. We test for phylogenetic and morphological evidence of adaptive radiation and convergent evolution to novel habitats (exposed, high-altitude páramo habitats) in the Andean fern genera Jamesonia and Eriosorus. We construct time-calibrated phylogenies for the Jamesonia-Eriosorus clade. We then use recent phylogenetic comparative methods to test for evolutionary transitions among habitats, associations between habitat and leaf morphology, and ecologically driven variation in the rate of morphological evolution. Páramo species (Jamesonia) display morphological adaptations consistent with convergent evolution in response to the demands of a highly exposed environment but these adaptations are associated with microhabitat use rather than the páramo per se. Species that are associated with exposed microhabitats (including Jamesonia and Eriorsorus) are characterized by many but short pinnae per frond whereas species occupying sheltered microhabitats (primarily Eriosorus) have few but long pinnae per frond. Pinnae length declines more rapidly with altitude in sheltered species. Rates of speciation are significantly higher among páramo than non-páramo lineages supporting the hypothesis of adaptation and divergence in the unique Páramo biodiversity hotspot. PMID:25340770
Sánchez-Baracaldo, Patricia; Thomas, Gavin H
2014-01-01
The recent uplift of the tropical Andes (since the late Pliocene or early Pleistocene) provided extensive ecological opportunity for evolutionary radiations. We test for phylogenetic and morphological evidence of adaptive radiation and convergent evolution to novel habitats (exposed, high-altitude páramo habitats) in the Andean fern genera Jamesonia and Eriosorus. We construct time-calibrated phylogenies for the Jamesonia-Eriosorus clade. We then use recent phylogenetic comparative methods to test for evolutionary transitions among habitats, associations between habitat and leaf morphology, and ecologically driven variation in the rate of morphological evolution. Páramo species (Jamesonia) display morphological adaptations consistent with convergent evolution in response to the demands of a highly exposed environment but these adaptations are associated with microhabitat use rather than the páramo per se. Species that are associated with exposed microhabitats (including Jamesonia and Eriorsorus) are characterized by many but short pinnae per frond whereas species occupying sheltered microhabitats (primarily Eriosorus) have few but long pinnae per frond. Pinnae length declines more rapidly with altitude in sheltered species. Rates of speciation are significantly higher among páramo than non-páramo lineages supporting the hypothesis of adaptation and divergence in the unique Páramo biodiversity hotspot.
Colautti, Robert I; Lau, Jennifer A
2015-05-01
Biological invasions are 'natural' experiments that can improve our understanding of contemporary evolution. We evaluate evidence for population differentiation, natural selection and adaptive evolution of invading plants and animals at two nested spatial scales: (i) among introduced populations (ii) between native and introduced genotypes. Evolution during invasion is frequently inferred, but rarely confirmed as adaptive. In common garden studies, quantitative trait differentiation is only marginally lower (~3.5%) among introduced relative to native populations, despite genetic bottlenecks and shorter timescales (i.e. millennia vs. decades). However, differentiation between genotypes from the native vs. introduced range is less clear and confounded by nonrandom geographic sampling; simulations suggest this causes a high false-positive discovery rate (>50%) in geographically structured populations. Selection differentials (¦s¦) are stronger in introduced than in native species, although selection gradients (¦β¦) are not, consistent with introduced species experiencing weaker genetic constraints. This could facilitate rapid adaptation, but evidence is limited. For example, rapid phenotypic evolution often manifests as geographical clines, but simulations demonstrate that nonadaptive trait clines can evolve frequently during colonization (~two-thirds of simulations). Additionally, QST-FST studies may often misrepresent the strength and form of natural selection acting during invasion. Instead, classic approaches in evolutionary ecology (e.g. selection analysis, reciprocal transplant, artificial selection) are necessary to determine the frequency of adaptive evolution during invasion and its influence on establishment, spread and impact of invasive species. These studies are rare but crucial for managing biological invasions in the context of global change. © 2015 John Wiley & Sons Ltd.
McDowell, Andrew; Nagy, István; Magyari, Márta; Barnard, Emma; Patrick, Sheila
2013-01-01
We previously described a Multilocus Sequence Typing (MLST) scheme based on eight genes that facilitates population genetic and evolutionary analysis of P. acnes. While MLST is a portable method for unambiguous typing of bacteria, it is expensive and labour intensive. Against this background, we now describe a refined version of this scheme based on two housekeeping (aroE; guaA) and two putative virulence (tly; camp2) genes (MLST4) that correctly predicted the phylogroup (IA1, IA2, IB, IC, II, III), clonal complex (CC) and sequence type (ST) (novel or described) status for 91% isolates (n = 372) via cross-referencing of the four gene allelic profiles to the full eight gene versions available in the MLST database (http://pubmlst.org/pacnes/). Even in the small number of cases where specific STs were not completely resolved, the MLST4 method still correctly determined phylogroup and CC membership. Examination of nucleotide changes within all the MLST loci provides evidence that point mutations generate new alleles approximately 1.5 times as frequently as recombination; although the latter still plays an important role in the bacterium's evolution. The secreted/cell-associated ‘virulence’ factors tly and camp2 show no clear evidence of episodic or pervasive positive selection and have diversified at a rate similar to housekeeping loci. The co-evolution of these genes with the core genome might also indicate a role in commensal/normal existence constraining their diversity and preventing their loss from the P. acnes population. The possibility that members of the expanded CAMP factor protein family, including camp2, may have been lost from other propionibacteria, but not P. acnes, would further argue for a possible role in niche/host adaption leading to their retention within the genome. These evolutionary insights may prove important for discussions surrounding camp2 as an immunotherapy target for acne, and the effect such treatments may have on commensal lineages. PMID:24058439
NASA Astrophysics Data System (ADS)
Sier, Mark; Langereis, Cor; Dupont-Nivet, Guillaume; Feibel, Craig; Jordeens, Jose; van der Lubbe, Jeroen; Beck, Catherine; Olago, Daniel; Cohen, Andrew
2017-04-01
One of the major challenges in understanding the evolution of our own species is identifying the role climate change has played in the evolution of earlier hominin species. To clarify the influence of climate, we need long and continuous high-resolution paleoclimate records, preferably obtained from hominin-bearing sediments, that are well-dated by tephro- and magnetostratigraphy and other methods. This is hindered, however, by the fact that fossil-bearing sediments are often discontinuous, and subject to weathering, which may lead to oxidation and remagnetization. To obtain fresh, unweathered sediments, the Hominin Sites and Paleolakes Drilling Project (HSPDP) collected a 216- meter core (WTK13) in 2013 from deposits of Early Pleistocene paleolake Lorenyang in the western Turkana Basin (Kenya). Here, we present the magnetostratigraphy of the core. Rock magnetic analyses reveal the presence of iron sulphides carrying the remanent magnetizations. To recover polarity orientation from the near-equatorial WTK13 core drilled at 5°N, we developed and successfully applied two independent drill-core reorientation methods taking advantage of (1) the sedimentary fabric as expressed in the Anisotropy of Magnetic Susceptibility (AMS) and (2) the occurrence of a viscous component oriented in the present day field. The reoriented directions reveal a normal to reversed polarity reversal identified as the top of the Olduvai subchron. From this excellent record, we find no evidence for the 'Vrica subchron' previously reported in the area. We suggest that outcrop-based interpretations supporting the presence of the Vrica subchron have been affected by the oxidation of iron sulphides initially present in the sediments as evident in the core record, and by subsequent remagnetization. Based on our new high-resolution magnetostratigraphy and stratigraphic markers, we provide constraints for an initial age model of the WTK13 core. We discuss the implications of the observed geomagnetic record for human evolution studies.
Luberda, Michael
2016-01-01
Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab’s learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab’s scientific process. Third, the lab’s exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom’s taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects. PMID:27513927
Primate feedstock for the evolution of consonants.
Lameira, Adriano R; Maddieson, Ian; Zuberbühler, Klaus
2014-02-01
The evolution of speech remains an elusive scientific problem. A widespread notion is that vocal learning, underlined by vocal-fold control, is a key prerequisite for speech evolution. Although present in birds and non-primate mammals, vocal learning is ostensibly absent in non-human primates. Here we argue that the main road to speech evolution has been through controlling the supralaryngeal vocal tract, for which we find evidence for evolutionary continuity within the great apes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Extraterrestrial intelligence? Not likely.
DeVore, I
2001-12-01
The possibility that there exist extraterrestrial creatures with advanced intelligence is considered by examining major events in mammalian, primate, and human evolution on earth. The overwhelming evidence is that the evolution of intelligence in creatures elsewhere who have the capability to communicate with us is vanishingly small. The history of the evolution of advanced forms of life on this planet is so beset by adventitious, unpredictable events and multiple contingencies that the evolution of human-level intelligence is highly unlikely on any planet, including earth.
Secular Evolution in Barred Galaxies: Observations
NASA Astrophysics Data System (ADS)
Merrifield, M.
2002-12-01
This paper describes a framework for studying galaxy morphology, particularly bar strength, in a quantitative manner, and presents applications of this approach that reveal observational evidence for secular evolution in bar morphology. The distribution of bar strength in galaxies is quite strongly bimodal, suggesting that barred and unbarred systems are distinct entities, and that any evolution between these two states must occur on a relatively rapid timescale. Bars' strengths appear to be correlated with their pattern speeds, implying that these structures weaken as they start to slow, and disappear entirely before the bars have slowed significantly. There is also tantalizing evidence that bars are rare beyond a redshift of z ~ 0.7, indicating that galaxies have only recently evolved to a point where bars can readily form.
Chenoweth, Stephen F; Rundle, Howard D; Blows, Mark W
2010-06-01
Indirect genetics effects (IGEs)--when the genotype of one individual affects the phenotypic expression of a trait in another--may alter evolutionary trajectories beyond that predicted by standard quantitative genetic theory as a consequence of genotypic evolution of the social environment. For IGEs to occur, the trait of interest must respond to one or more indicator traits in interacting conspecifics. In quantitative genetic models of IGEs, these responses (reaction norms) are termed interaction effect coefficients and are represented by the parameter psi (Psi). The extent to which Psi exhibits genetic variation within a population, and may therefore itself evolve, is unknown. Using an experimental evolution approach, we provide evidence for a genetic basis to the phenotypic response caused by IGEs on sexual display traits in Drosophila serrata. We show that evolution of the response is affected by sexual but not natural selection when flies adapt to a novel environment. Our results indicate a further mechanism by which IGEs can alter evolutionary trajectories--the evolution of interaction effects themselves.
Impact constraints on the environment for chemical evolution and the continuity of life
NASA Technical Reports Server (NTRS)
Oberbeck, Verne R.; Fogleman, Guy
1990-01-01
The moon and the earth were bombarded heavily by planetesimals and asteroids that were capable of interfering with chemical evolution and the origin of life. This paper explores the frequency of giant terrestrial impacts able to stop prebiotic chemistry in the probable regions of chemical evolution. The limited time available between impacts disruptive to prebiotic chemistry at the time of the oldest evidence of life suggests the need for a rapid process for chemical evolution of life. On the other hand, rapid chemical evolution in cloud systems and lakes or other shallow evaporating water bodies would have been possible because reactants could have been concentrated and polymerized rapidly in this environment. Thus life probably could have originated near the surface between frequent surface-sterilizing impacts. There may not have been continuity of life depending on sunlight because there is evidence that life, existing as early as 3.8 Gyr ago, may have been destroyed by giant impacts. The first such organisms on earth were probably not the ancestors of present life.
NASA Astrophysics Data System (ADS)
Losh, Susan Carol; Nzekwe, Brandon
2011-05-01
Faculty have long expressed concern about pseudoscience belief among students. Most US research on such beliefs examines evolution-creation issues among liberal arts students, the general public, and occasionally science educators. Because of their future influence on youth, we examined basic science knowledge and several pseudoscience beliefs among 540 female and 123 male upperclass preservice teachers, comparing them with representative samples of comparably educated American adults. Future teachers resembled national adults on basic science knowledge. Their scores on evolution; creationism; intelligent design; fantastic beasts; magic; and extraterrestrials indices depended on the topic. Exempting science education, preservice teachers rejected evolution, accepting Biblical creation and intelligent design accounts. Sizable minorities "awaited more evidence" about fantastic beasts, magic, or extraterrestrials. Although gender, disciplinary major, grade point average, science knowledge, and two religiosity measures related to beliefs about evolution-creation, these factors were generally unassociated with the other indices. The findings suggest more training is needed for preservice educators in the critical evaluation of material evidence. We also discuss the judicious use of pseudoscience beliefs in such training.
Inda, Luis A.; Pimentel, Manuel; Chase, Mark W.
2012-01-01
Background and aims Tribe Orchideae (Orchidaceae: Orchidoideae) comprises around 62 mostly terrestrial genera, which are well represented in the Northern Temperate Zone and less frequently in tropical areas of both the Old and New Worlds. Phylogenetic relationships within this tribe have been studied previously using only nuclear ribosomal DNA (nuclear ribosomal internal transcribed spacer, nrITS). However, different parts of the phylogenetic tree in these analyses were weakly supported, and integrating information from different plant genomes is clearly necessary in orchids, where reticulate evolution events are putatively common. The aims of this study were to: (1) obtain a well-supported and dated phylogenetic hypothesis for tribe Orchideae, (ii) assess appropriateness of recent nomenclatural changes in this tribe in the last decade, (3) detect possible examples of reticulate evolution and (4) analyse in a temporal context evolutionary trends for subtribe Orchidinae with special emphasis on pollination systems. Methods The analyses included 118 samples, belonging to 103 species and 25 genera, for three DNA regions (nrITS, mitochondrial cox1 intron and plastid rpl16 intron). Bayesian and maximum-parsimony methods were used to construct a well-supported and dated tree. Evolutionary trends in the subtribe were analysed using Bayesian and maximum-likelihood methods of character evolution. Key Results The dated phylogenetic tree strongly supported the recently recircumscribed generic concepts of Bateman and collaborators. Moreover, it was found that Orchidinae have diversified in the Mediterranean basin during the last 15 million years, and one potential example of reticulate evolution in the subtribe was identified. In Orchidinae, pollination systems have shifted on numerous occasions during the last 23 million years. Conclusions The results indicate that ancestral Orchidinae were hymenopteran-pollinated, food-deceptive plants and that these traits have been dominant throughout the evolutionary history of the subtribe in the Mediterranean. Evidence was also obtained that the onset of sexual deception might be linked to an increase in labellum size, and the possibility is discussed that diversification in Orchidinae developed in parallel with diversification of bees and wasps from the Miocene onwards. PMID:22539542
Student world view as a framework for learning genetics and evolution in high school biology
NASA Astrophysics Data System (ADS)
McCoy, Roger Wesley
Statement of the problem. Few studies in biology education have examined the underlying presuppositions which guide thinking and concept learning in adolescents. The purpose of this study was to describe and understand the biological world views of a variety of high school students before they take biology courses. Specifically, the study examined student world views in the domains of Classification, Relationship and Causation related to the concepts of heredity, evolution and biotechnology. The following served as guiding questions: (1) What are the personal world views of high school students entering biology classes, related to the domain of Classification, Relationship and Causality? (2) How do these student world views confound or enhance the learning of basic concepts in genetics and evolution? Methods. An interpretive method was chosen for this study. The six student participants were ninth graders and represented a wide range of world view backgrounds. A series of three interviews was conducted with each participant, with a focus group used for triangulation of data. The constant comparative method was used to categorize the data and facilitate the search for meaningful patterns. The analysis included a thick description of each student's personal views of classification, evolution and the appropriate use of biotechnology. Results. The study demonstrates that world view is the basis upon which students build knowledge in biology. The logic of their everyday thinking may not match that of scientists. The words they use are sometimes inconsistent with scientific terminology. This study provides evidence that students voice different opinions depending on the social situation, since they are strongly influenced by peers. Students classify animals based on behaviors. They largely believe that the natural world is unpredictable, and that humans are not really part of that world. Half are unlikely to accept the evolution of humans, but may accept it in other species. Their views on causation of evolution vary widely, focusing on intentional changes made by animals. Students who hold world views which differ from scientific world views may become marginalized unless differences in world view are addressed. Researchers and teachers must be mindful of social pressures which cause students to reject certain ideas which may appear to be in opposition to their existing world view.
Evolution of prokaryote and eukaryote lines inferred from sequence evidence
NASA Technical Reports Server (NTRS)
Hunt, L. T.; George, D. G.; Yeh, L.-S.; Dayhoff, M. O.
1984-01-01
This paper describes the evolution of prokaryotes and early eukaryotes, including their symbiotic relationships, as inferred from phylogenetic trees of bacterial ferredoxin, 5S ribosomal RNA, ribulose-1,5-biphosphate carboxylase large chain, and mitochondrial cytochrome oxidase polypeptide II.
The early evolution of feathers: fossil evidence from Cretaceous amber of France
Perrichot, Vincent; Marion, Loïc; Néraudeau, Didier; Vullo, Romain; Tafforeau, Paul
2008-01-01
The developmental stages of feathers are of major importance in the evolution of body covering and the origin of avian flight. Until now, there were significant gaps in knowledge of early morphologies in theoretical stages of feathers as well as in palaeontological material. Here we report fossil evidence of an intermediate and critical stage in the incremental evolution of feathers which has been predicted by developmental theories but hitherto undocumented by evidence from both the recent and the fossil records. Seven feathers have been found in an Early Cretaceous (Late Albian, ca 100 Myr) amber of western France, which display a flattened shaft composed by the still distinct and incompletely fused bases of the barbs forming two irregular vanes. Considering their remarkably primitive features, and since recent discoveries have yielded feathers of modern type in some derived theropod dinosaurs, the Albian feathers from France might have been derived either from an early bird or from a non-avian dinosaur. PMID:18285280
Constraints in cancer evolution.
Venkatesan, Subramanian; Birkbak, Nicolai J; Swanton, Charles
2017-02-08
Next-generation deep genome sequencing has only recently allowed us to quantitatively dissect the extent of heterogeneity within a tumour, resolving patterns of cancer evolution. Intratumour heterogeneity and natural selection contribute to resistance to anticancer therapies in the advanced setting. Recent evidence has also revealed that cancer evolution might be constrained. In this review, we discuss the origins of intratumour heterogeneity and subsequently focus on constraints imposed upon cancer evolution. The presence of (1) parallel evolution, (2) convergent evolution and (3) the biological impact of acquiring mutations in specific orders suggest that cancer evolution may be exploitable. These constraints on cancer evolution may help us identify cancer evolutionary rule books, which could eventually inform both diagnostic and therapeutic approaches to improve survival outcomes. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Reflections on the evolution of health technology assessment in Europe.
Sorenson, Corinna; Chalkidou, Kalipso
2012-01-01
Health technology assessment (HTA) has assumed an increasing role in health systems in recent years, with many countries establishing agencies or programmes to evaluate health technology and other interventions to inform policy decisions and clinical practice. This paper reflects upon its development and evolution in Europe over the last decade, with a focus on England, France, Germany and Sweden. In particular, we explore how HTA has evolved over time as well as its impact on policy and practice. While countries share many of the same objectives, there are differences in the way HTA agencies and programmes are organised, operate, and influence decision making. Despite these differences, all systems are faced with opportunities and challenges related to stakeholder involvement and acceptance, the suitability and transparency of assessment requirements and methods, balancing evidence and values in decision making, and demonstrating impact. © Cambridge University Press 2012
Phylogenetic approach to the evolution of color term systems
Haynie, Hannah J.
2016-01-01
The naming of colors has long been a topic of interest in the study of human culture and cognition. Color term research has asked diverse questions about thought and communication, but no previous research has used an evolutionary framework. We show that there is broad support for the most influential theory of color term development (that most strongly represented by Berlin and Kay [Berlin B, Kay P (1969) (Univ of California Press, Berkeley, CA)]); however, we find extensive evidence for the loss (as well as gain) of color terms. We find alternative trajectories of color term evolution beyond those considered in the standard theories. These results not only refine our knowledge of how humans lexicalize the color space and how the systems change over time; they illustrate the promise of phylogenetic methods within the domain of cognitive science, and they show how language change interacts with human perception. PMID:27849594
The Evolution of Human Genetic Studies of Cleft Lip and Cleft Palate
Marazita, Mary L.
2013-01-01
Orofacial clefts (OFCs)—primarily cleft lip and cleft palate—are among the most common birth defects in all populations worldwide, and have notable population, ethnicity, and gender differences in birth prevalence. Interest in these birth defects goes back centuries, as does formal scientific interest; scientists often used OFCs as examples or evidence during paradigm shifts in human genetics, and have also used virtually every new method of human genetic analysis to deepen our understanding of OFC. This review traces the evolution of human genetic investigations of OFC, highlights the specific insights gained about OFC through the years, and culminates in a review of recent key OFC genetic findings resulting from the powerful tools of the genomics era. Notably, OFC represents a major success for genome-wide approaches, and the field is poised for further breakthroughs in the near future. PMID:22703175
Seasonal modulation of the 7Be solar neutrino rate in Borexino
NASA Astrophysics Data System (ADS)
Agostini, M.; Altenmüller, K.; Appel, S.; Atroshchenko, V.; Basilico, D.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Borodikhina, L.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Caprioli, S.; Carlini, M.; Cavalcante, P.; Chepurnov, A.; Choi, K.; D'Angelo, D.; Davini, S.; Derbin, A.; Ding, X. F.; Di Noto, L.; Drachnev, I.; Fomenko, K.; Franco, D.; Froborg, F.; Gabriele, F.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, T.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jany, A.; Jeschke, D.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lehnert, B.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Manuzio, G.; Marcocci, S.; Martyn, J.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Muratova, V.; Neumair, B.; Oberauer, L.; Opitz, B.; Ortica, F.; Pallavicini, M.; Papp, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Semenov, D.; Shakina, P.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stokes, L. F. F.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Vishneva, A.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.; Borexino Collaboration
2017-06-01
We present the evidence for the seasonal modulation of the 7Be neutrino interaction rate with the Borexino detector at the Laboratori Nazionali del Gran Sasso in Italy. The period, amplitude, and phase of the observed time evolution of the signal are consistent with its solar origin, and the absence of an annual modulation is rejected at 99.99% C.L. The data are analyzed using three methods: the analytical fit to event rate, the Lomb-Scargle and the Empirical Mode Decomposition techniques, which all yield results in excellent agreement.
Zhao, Lei; Zhang, Ning; Ma, Peng-Fei; Liu, Qi; Li, De-Zhu; Guo, Zhen-Hua
2013-01-01
BEP clade of the grass family (Poaceae) is composed of three subfamilies, i.e. Bambusoideae, Ehrhartoideae, and Pooideae. Controversies on the phylogenetic relationships among three subfamilies still persist in spite of great efforts. However, previous evidence was mainly provided from plastid genes with only a few nuclear genes utilized. Given different evolutionary histories recorded by plastid and nuclear genes, it is indispensable to uncover their relationships based on nuclear genes. Here, eleven species with whole-sequenced genome and six species with transcriptomic data were included in this study. A total of 121 one-to-one orthologous groups (OGs) were identified and phylogenetic trees were reconstructed by different tree-building methods. Genes which might have undergone positive selection and played important roles in adaptive evolution were also investigated from 314 and 173 one-to-one OGs in two bamboo species and 14 grass species, respectively. Our results support the ((B, P) E) topology with high supporting values. Besides, our findings also indicate that 24 and nine orthologs with statistically significant evidence of positive selection are mainly involved in abiotic and biotic stress response, reproduction and development, plant metabolism and enzyme etc. from two bamboo species and 14 grass species, respectively. In summary, this study demonstrates the power of phylogenomic approach to shed lights on the evolutionary relationships within the BEP clade, and offers valuable insights into adaptive evolution of the grass family.
Zhao, Lei; Zhang, Ning; Ma, Peng-Fei; Liu, Qi; Li, De-Zhu; Guo, Zhen-Hua
2013-01-01
BEP clade of the grass family (Poaceae) is composed of three subfamilies, i.e. Bambusoideae, Ehrhartoideae, and Pooideae. Controversies on the phylogenetic relationships among three subfamilies still persist in spite of great efforts. However, previous evidence was mainly provided from plastid genes with only a few nuclear genes utilized. Given different evolutionary histories recorded by plastid and nuclear genes, it is indispensable to uncover their relationships based on nuclear genes. Here, eleven species with whole-sequenced genome and six species with transcriptomic data were included in this study. A total of 121 one-to-one orthologous groups (OGs) were identified and phylogenetic trees were reconstructed by different tree-building methods. Genes which might have undergone positive selection and played important roles in adaptive evolution were also investigated from 314 and 173 one-to-one OGs in two bamboo species and 14 grass species, respectively. Our results support the ((B, P) E) topology with high supporting values. Besides, our findings also indicate that 24 and nine orthologs with statistically significant evidence of positive selection are mainly involved in abiotic and biotic stress response, reproduction and development, plant metabolism and enzyme etc. from two bamboo species and 14 grass species, respectively. In summary, this study demonstrates the power of phylogenomic approach to shed lights on the evolutionary relationships within the BEP clade, and offers valuable insights into adaptive evolution of the grass family. PMID:23734211
Admixture, evolution, and variation in reproductive isolation in the Boechera puberula clade.
Schilling, Martin P; Gompert, Zachariah; Li, Fay-Wei; Windham, Michael D; Wolf, Paul G
2018-04-25
Hybridization is very common in plants, and the incorporation of new alleles into existing lineages (i.e. admixture) can blur species boundaries. However, admixture also has the potential to increase standing genetic variation. With new sequencing methods, we can now study admixture and reproductive isolation at a much finer scale than in the past. The genus Boechera is an extraordinary example of admixture, with over 400 hybrid derivates of varying ploidy levels. Yet, few studies have assessed admixture in this genus on a genomic scale. In this study, we used Genotyping-by-Sequencing (GBS) to clarify the evolution of the Boechera puberula clade, whose six members are scattered across the western United States. We further assessed patterns of admixture and reproductive isolation within the group, including two additional species (B. stricta and B. retrofracta) that are widespread across North America. Based on 14,815 common genetic variants, we found evidence for some cases of hybridization. We find evidence of both recent and more ancient admixture, and that levels of admixture vary across species. We present evidence for a monophyletic origin of the B. puberula group, and a split of B. puberula into two subspecies. Further, when inferring reproductive isolation on the basis of presence and absence of admixture, we found that the accumulation of reproductive isolation between species does not seem to occur linearly with time since divergence in this system. We discuss our results in the context of sexuality and asexuality in Boechera.
What is knowledge and when should it be implemented?
O'Grady, Laura
2012-10-01
A primary purpose of research is to generate new knowledge. Scientific advances have progressively identified optimal ways to achieve this purpose. Included in this evolution are the notions of evidence-based medicine, decision aids, shared decision making, measurement and evaluation as well as implementation. The importance of including qualitative and quantitative methods in our research is now understood. We have debated the meaning of evidence and how to implement it. However, we have yet to consider how to include in our study findings other types of information such as tacit and experiential knowledge. This key consideration needs to take place before we translate new findings or 'knowledge' into clinical practice. This article critiques assumptions regarding the nature of knowledge and suggests a framework for implementing research findings into practice. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Blegen, N.; Jicha, B.
2017-12-01
The Middle to Late Pleistocene (780-10 ka) of East Africa records significant behavioral change, the earliest fossils of Homo sapiens and the dispersals of our species across and out of Africa. Studying human evolution in the Middle to Late Pleistocene thus requires an extensive and precise chronology relating the appearances of various behaviors preserved in archaeological sequences to aspects of hominin biology and evidence of past environments preserved in the fossils and geological sequences. Tephrochronology provides the chronostratigraphic resolution to achieve this through correlation and dating of volcanic ashes. The tephrochronology of the Kapthurin Formation presented here, based on tephra correlations and 40Ar/ 39Ar dates, provides new ages between 396.3 ± 3.4 ka and 465.3 ± 1.0 ka for nine sites showing some of the earliest evidence of diverse blade and Levallois methods of core reduction. These are >110 kyr older than previously known in East Africa. New 40Ar/ 39Ar dates provide a refined age of 222.5 ± 0.6 ka for early evidence of long-distance obsidian transport at the Sibilo School Road Site. Long-distance tephra correlation between the Baringo and Lake Victoria basins also provides a new date of 100 ka for the Middle Stone Age site of Keraswanin. By providing new or older dates for 11 sites containing several important aspects of hominin behavior and extending the chronology of the Kapthurin Formation forward by 130,000 years, the tephrochronology presented here contributes one of the longest and most refined chronostratigraphic frameworks relevant to modern human evolution. In conjunction with recent archaeological and paleoenvironmental data, this tephrochronology provides the foundation to understand the process of modern human behavioral evolution through the East African Middle and Late Pleistocene as it relates to biological and paleoenvironmental circumstances.
The modern theory of biological evolution: an expanded synthesis.
Kutschera, Ulrich; Niklas, Karl J
2004-06-01
In 1858, two naturalists, Charles Darwin and Alfred Russel Wallace, independently proposed natural selection as the basic mechanism responsible for the origin of new phenotypic variants and, ultimately, new species. A large body of evidence for this hypothesis was published in Darwin's Origin of Species one year later, the appearance of which provoked other leading scientists like August Weismann to adopt and amplify Darwin's perspective. Weismann's neo-Darwinian theory of evolution was further elaborated, most notably in a series of books by Theodosius Dobzhansky, Ernst Mayr, Julian Huxley and others. In this article we first summarize the history of life on Earth and provide recent evidence demonstrating that Darwin's dilemma (the apparent missing Precambrian record of life) has been resolved. Next, the historical development and structure of the "modern synthesis" is described within the context of the following topics: paleobiology and rates of evolution, mass extinctions and species selection, macroevolution and punctuated equilibrium, sexual reproduction and recombination, sexual selection and altruism, endosymbiosis and eukaryotic cell evolution, evolutionary developmental biology, phenotypic plasticity, epigenetic inheritance and molecular evolution, experimental bacterial evolution, and computer simulations (in silico evolution of digital organisms). In addition, we discuss the expansion of the modern synthesis, embracing all branches of scientific disciplines. It is concluded that the basic tenets of the synthetic theory have survived, but in modified form. These sub-theories require continued elaboration, particularly in light of molecular biology, to answer open-ended questions concerning the mechanisms of evolution in all five kingdoms of life.
The modern theory of biological evolution: an expanded synthesis
NASA Astrophysics Data System (ADS)
Kutschera, Ulrich; Niklas, Karl J.
In 1858, two naturalists, Charles Darwin and Alfred Russel Wallace, independently proposed natural selection as the basic mechanism responsible for the origin of new phenotypic variants and, ultimately, new species. A large body of evidence for this hypothesis was published in Darwin's Origin of Species one year later, the appearance of which provoked other leading scientists like August Weismann to adopt and amplify Darwin's perspective. Weismann's neo-Darwinian theory of evolution was further elaborated, most notably in a series of books by Theodosius Dobzhansky, Ernst Mayr, Julian Huxley and others. In this article we first summarize the history of life on Earth and provide recent evidence demonstrating that Darwin's dilemma (the apparent missing Precambrian record of life) has been resolved. Next, the historical development and structure of the ``modern synthesis'' is described within the context of the following topics: paleobiology and rates of evolution, mass extinctions and species selection, macroevolution and punctuated equilibrium, sexual reproduction and recombination, sexual selection and altruism, endosymbiosis and eukaryotic cell evolution, evolutionary developmental biology, phenotypic plasticity, epigenetic inheritance and molecular evolution, experimental bacterial evolution, and computer simulations (in silico evolution of digital organisms). In addition, we discuss the expansion of the modern synthesis, embracing all branches of scientific disciplines. It is concluded that the basic tenets of the synthetic theory have survived, but in modified form. These sub-theories require continued elaboration, particularly in light of molecular biology, to answer open-ended questions concerning the mechanisms of evolution in all five kingdoms of life.
Newman, Daniel P; Loughnane, Gerard M; Kelly, Simon P; O'Connell, Redmond G; Bellgrove, Mark A
2017-03-22
Healthy subjects tend to exhibit a bias of visual attention whereby left hemifield stimuli are processed more quickly and accurately than stimuli appearing in the right hemifield. It has long been held that this phenomenon arises from the dominant role of the right cerebral hemisphere in regulating attention. However, methods that would enable more precise understanding of the mechanisms underpinning visuospatial bias have remained elusive. We sought to finely trace the temporal evolution of spatial biases by leveraging a novel bilateral dot motion detection paradigm. In combination with electroencephalography, this paradigm enables researchers to isolate discrete neural signals reflecting the key neural processes needed for making these detection decisions. These include signals for spatial attention, early target selection, evidence accumulation, and motor preparation. Using this method, we established that three key neural markers accounted for unique between-subject variation in visuospatial bias: hemispheric asymmetry in posterior α power measured before target onset, which is related to the distribution of preparatory attention across the visual field; asymmetry in the peak latency of the early N2c target-selection signal; and, finally, asymmetry in the onset time of the subsequent neural evidence-accumulation process with earlier onsets for left hemifield targets. Our development of a single paradigm to dissociate distinct processing components that track the temporal evolution of spatial biases not only advances our understanding of the neural mechanisms underpinning normal visuospatial attention bias, but may also in the future aid differential diagnoses in disorders of spatial attention. SIGNIFICANCE STATEMENT The significance of this research is twofold. First, it shows that individual differences in how humans direct their attention between left and right space reflects physiological differences in how early the brain starts to accumulate evidence for the existence of a visual target. Second, the novel methods developed here may have particular relevance to disorders of attention, such as unilateral spatial neglect. In the case of spatial neglect, pathological inattention to left space could have multiple underlying causes, including biased attention, impaired decision formation, or a motor deficit related to one side of space. Our development of a single paradigm to dissociate each of these components may aid in supporting more precise differential diagnosis in such heterogeneous disorders. Copyright © 2017 the authors 0270-6474/17/373378-08$15.00/0.
NASA Technical Reports Server (NTRS)
Chang, S.
1981-01-01
The course of organic chemical evolution preceding the emergence of life on earth is discussed based on evidence of processes occurring in interstellar space, the solar system and the primitive earth. Following a brief review of the equilibrium condensation model for the origin and evolution of the solar system, consideration is given to the nature and organic chemistry of interstellar clouds, comets, Jupiter, meteorites, Venus and Mars, and the prebiotic earth. Major issues to be resolved in the study of organic chemical evolution on earth are identified regarding condensation and accretion in the solar nebula, early geological evolution, the origin and evolution of the atmosphere, organic production rates, organic-inorganic interactions, environmental fluctuations, phase separation and molecular selectivity.
Blegen, Nick
2017-02-01
This study presents the earliest evidence of long-distance obsidian transport at the ∼200 ka Sibilo School Road Site (SSRS), an early Middle Stone Age site in the Kapthurin Formation, Kenya. The later Middle Pleistocene of East Africa (130-400 ka) spans significant and interrelated behavioral and biological changes in human evolution including the first appearance of Homo sapiens. Despite the importance of the later Middle Pleistocene, there are relatively few archaeological sites in well-dated contexts (n < 10) that document hominin behavior from this time period. In particular, geochemically informed evidence of long-distance obsidian transport, important for investigating expansion of intergroup interactions in hominin evolution, is rare from the Middle Pleistocene record of Africa. The SSRS offers a unique contribution to this small but growing dataset. Tephrostratigraphic analysis of tuffs encasing the SSRS provides a minimum age of ∼200 ka for the site. Levallois points and methods of core preparation demonstrate characteristic Middle Stone Age lithic technologies present at the SSRS. A significant portion (43%) of the lithic assemblage is obsidian. The SSRS obsidian comes from three different sources located at distances of 25 km, 140 km and 166 km from the site. The majority of obsidian derives from the farthest source, 166 km to the south of the site. The SSRS thus provides important new evidence that long-distance raw material transport, and the expansion of hominin intergroup interactions that this entails, was a significant feature of hominin behavior ∼200 ka, the time of the first appearance of H. sapiens, and ∼150,000 years before similar behaviors were previously documented in the region. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evidence of Twisted Flux-Tube Emergence in Active Regions
NASA Astrophysics Data System (ADS)
Poisson, M.; Mandrini, C. H.; Démoulin, P.; López Fuentes, M.
2015-03-01
Elongated magnetic polarities are observed during the emergence phase of bipolar active regions (ARs). These extended features, called magnetic tongues, are interpreted as a consequence of the azimuthal component of the magnetic flux in the toroidal flux-tubes that form ARs. We develop a new systematic and user-independent method to identify AR tongues. Our method is based on determining and analyzing the evolution of the AR main polarity inversion line (PIL). The effect of the tongues is quantified by measuring the acute angle [ τ] between the orientation of the PIL and the direction orthogonal to the AR main bipolar axis. We apply a simple model to simulate the emergence of a bipolar AR. This model lets us interpret the effect of magnetic tongues on parameters that characterize ARs ( e.g. the PIL inclination and the tilt angles, and their evolution). In this idealized kinematic emergence model, τ is a monotonically increasing function of the twist and has the same sign as the magnetic helicity. We systematically apply our procedure to a set of bipolar ARs (41 ARs) that were observed emerging in line-of-sight magnetograms over eight years. For most of the cases studied, the tongues only have a small influence on the AR tilt angle since tongues have a much lower magnetic flux than the more concentrated main polarities. From the observed evolution of τ, corrected for the temporal evolution of the tilt angle and its final value when the AR is fully emerged, we estimate the average number of turns in the subphotospherically emerging flux-rope. These values for the 41 observed ARs are below unity, except for one. This indicates that subphotospheric flux-ropes typically have a low amount of twist, i.e. highly twisted flux-tubes are rare. Our results demonstrate that the evolution of the PIL is a robust indicator of the presence of tongues and constrains the amount of twist in emerging flux-tubes.
A model of directional selection applied to the evolution of drug resistance in HIV-1.
Seoighe, Cathal; Ketwaroo, Farahnaz; Pillay, Visva; Scheffler, Konrad; Wood, Natasha; Duffet, Rodger; Zvelebil, Marketa; Martinson, Neil; McIntyre, James; Morris, Lynn; Hide, Winston
2007-04-01
Understanding how pathogens acquire resistance to drugs is important for the design of treatment strategies, particularly for rapidly evolving viruses such as HIV-1. Drug treatment can exert strong selective pressures and sites within targeted genes that confer resistance frequently evolve far more rapidly than the neutral rate. Rapid evolution at sites that confer resistance to drugs can be used to help elucidate the mechanisms of evolution of drug resistance and to discover or corroborate novel resistance mutations. We have implemented standard maximum likelihood methods that are used to detect diversifying selection and adapted them for use with serially sampled reverse transcriptase (RT) coding sequences isolated from a group of 300 HIV-1 subtype C-infected women before and after single-dose nevirapine (sdNVP) to prevent mother-to-child transmission. We have also extended the standard models of codon evolution for application to the detection of directional selection. Through simulation, we show that the directional selection model can provide a substantial improvement in sensitivity over models of diversifying selection. Five of the sites within the RT gene that are known to harbor mutations that confer resistance to nevirapine (NVP) strongly supported the directional selection model. There was no evidence that other mutations that are known to confer NVP resistance were selected in this cohort. The directional selection model, applied to serially sampled sequences, also had more power than the diversifying selection model to detect selection resulting from factors other than drug resistance. Because inference of selection from serial samples is unlikely to be adversely affected by recombination, the methods we describe may have general applicability to the analysis of positive selection affecting recombining coding sequences when serially sampled data are available.
Evidence for a high mutation rate at rapidly evolving yeast centromeres.
Bensasson, Douda
2011-07-18
Although their role in cell division is essential, centromeres evolve rapidly in animals, plants and yeasts. Unlike the complex centromeres of plants and aminals, the point centromeres of Saccharomcyes yeasts can be readily sequenced to distinguish amongst the possible explanations for fast centromere evolution. Using DNA sequences of all 16 centromeres from 34 strains of Saccharomyces cerevisiae and population genomic data from Saccharomyces paradoxus, I show that centromeres in both species evolve 3 times more rapidly even than selectively unconstrained DNA. Exceptionally high levels of polymorphism seen in multiple yeast populations suggest that rapid centromere evolution does not result from the repeated selective sweeps expected under meiotic drive. I further show that there is little evidence for crossing-over or gene conversion within centromeres, although there is clear evidence for recombination in their immediate vicinity. Finally I show that the mutation spectrum at centromeres is consistent with the pattern of spontaneous mutation elsewhere in the genome. These results indicate that rapid centromere evolution is a common phenomenon in yeast species. Furthermore, these results suggest that rapid centromere evolution does not result from the mutagenic effect of gene conversion, but from a generalised increase in the mutation rate, perhaps arising from the unusual chromatin structure at centromeres in yeast and other eukaryotes.
Evidence for a high mutation rate at rapidly evolving yeast centromeres
2011-01-01
Background Although their role in cell division is essential, centromeres evolve rapidly in animals, plants and yeasts. Unlike the complex centromeres of plants and aminals, the point centromeres of Saccharomcyes yeasts can be readily sequenced to distinguish amongst the possible explanations for fast centromere evolution. Results Using DNA sequences of all 16 centromeres from 34 strains of Saccharomyces cerevisiae and population genomic data from Saccharomyces paradoxus, I show that centromeres in both species evolve 3 times more rapidly even than selectively unconstrained DNA. Exceptionally high levels of polymorphism seen in multiple yeast populations suggest that rapid centromere evolution does not result from the repeated selective sweeps expected under meiotic drive. I further show that there is little evidence for crossing-over or gene conversion within centromeres, although there is clear evidence for recombination in their immediate vicinity. Finally I show that the mutation spectrum at centromeres is consistent with the pattern of spontaneous mutation elsewhere in the genome. Conclusions These results indicate that rapid centromere evolution is a common phenomenon in yeast species. Furthermore, these results suggest that rapid centromere evolution does not result from the mutagenic effect of gene conversion, but from a generalised increase in the mutation rate, perhaps arising from the unusual chromatin structure at centromeres in yeast and other eukaryotes. PMID:21767380
ERIC Educational Resources Information Center
Skoog, Gerald
2005-01-01
Efforts to eliminate or neutralize the coverage of evolution in high school biology textbooks in the United States have persisted with varying degrees of intensity and success since the 1920s. In particular, the coverage of human evolution has been impacted by these efforts. Evidence of the success of these efforts can be chronicled by the…
Historical perspectives on evidence-based nursing.
Beyea, Suzanne C; Slattery, Mary Jo
2013-04-01
The authors of this article offer a review and historical perspective on research utilization and evidence-based practice in nursing. They present the evolution of research utilization to the more contemporary framework of evidence-based nursing practice. The authors address the role of qualitative research in the context of evidence-based practice. Finally, some approaches and resources for learning more about the fundamentals of evidence-based healthcare are provided.
Vigeland, Magnus D; Spannagl, Manuel; Asp, Torben; Paina, Cristiana; Rudi, Heidi; Rognli, Odd-Arne; Fjellheim, Siri; Sandve, Simen R
2013-09-01
Adaptation to temperate environments is common in the grass subfamily Pooideae, suggesting an ancestral origin of cold climate adaptation. Here, we investigated substitution rates of genes involved in low-temperature-induced (LTI) stress responses to test the hypothesis that adaptive molecular evolution of LTI pathway genes was important for Pooideae evolution. Substitution rates and signatures of positive selection were analyzed using 4330 gene trees including three warm climate-adapted species (maize (Zea mays), sorghum (Sorghum bicolor), and rice (Oryza sativa)) and five temperate Pooideae species (Brachypodium distachyon, wheat (Triticum aestivum), barley (Hordeum vulgare), Lolium perenne and Festuca pratensis). Nonsynonymous substitution rate differences between Pooideae and warm habitat-adapted species were elevated in LTI trees compared with all trees. Furthermore, signatures of positive selection were significantly stronger in LTI trees after the rice and Pooideae split but before the Brachypodium divergence (P < 0.05). Genome-wide heterogeneity in substitution rates was also observed, reflecting divergent genome evolution processes within these grasses. Our results provide evidence for a link between adaptation to cold habitats and adaptive evolution of LTI stress responses in early Pooideae evolution and shed light on a poorly understood chapter in the evolutionary history of some of the world's most important temperate crops. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Miyake, Keiko; Olson, Matthew S
2009-06-01
After over a half century of empirical and theoretical research regarding the evolution and maintenance of gynodioecy in plants, unexplored factors influencing the relative fitnesses of females and hermaphrodites remain. Theoretical studies suggest that hermaphrodite self-fertilization (selfing) rate influences the maintenance of gynodioecy and we hypothesized that population sex ratio may influence hermaphrodite selfing rate. An experimental test for frequency-dependent self-fertilization was conducted using replicated populations constructed with different sex ratios of the gynodioecious plant Silene vulgaris. We found that hermaphrodite selfing increased with decreased hermaphrodite frequency, whereas evidence for increased inbreeding depression was equivocal. We argue that incorporation of context dependent inbreeding into future models of the evolution of gynodioecy is likely to yield novel insights into sex ratio evolution.
Jackson, Benjamin C.; Campos, José L.; Haddrill, Penelope R.; Charlesworth, Brian
2017-01-01
Four-fold degenerate coding sites form a major component of the genome, and are often used to make inferences about selection and demography, so that understanding their evolution is important. Despite previous efforts, many questions regarding the causes of base composition changes at these sites in Drosophila remain unanswered. To shed further light on this issue, we obtained a new whole-genome polymorphism data set from D. simulans. We analyzed samples from the putatively ancestral range of D. simulans, as well as an existing polymorphism data set from an African population of D. melanogaster. By using D. yakuba as an outgroup, we found clear evidence for selection on 4-fold sites along both lineages over a substantial period, with the intensity of selection increasing with GC content. Based on an explicit model of base composition evolution, we suggest that the observed AT-biased substitution pattern in both lineages is probably due to an ancestral reduction in selection intensity, and is unlikely to be the result of an increase in mutational bias towards AT alone. By using two polymorphism-based methods for estimating selection coefficients over different timescales, we show that the selection intensity on codon usage has been rather stable in D. simulans in the recent past, but the long-term estimates in D. melanogaster are much higher than the short-term ones, indicating a continuing decline in selection intensity, to such an extent that the short-term estimates suggest that selection is only active in the most GC-rich parts of the genome. Finally, we provide evidence for complex evolutionary patterns in the putatively neutral short introns, which cannot be explained by the standard GC-biased gene conversion model. These results reveal a dynamic picture of base composition evolution. PMID:28082609
The Molecular Basis of Human Brain Evolution.
Enard, Wolfgang
2016-10-24
Humans are a remarkable species, especially because of the remarkable properties of their brain. Since the split from the chimpanzee lineage, the human brain has increased three-fold in size and has acquired abilities for vocal learning, language and intense cooperation. To better understand the molecular basis of these changes is of great biological and biomedical interest. However, all the about 16 million fixed genetic changes that occurred during human evolution are fully correlated with all molecular, cellular, anatomical and behavioral changes that occurred during this time. Hence, as humans and chimpanzees cannot be crossed or genetically manipulated, no direct evidence for linking particular genetic and molecular changes to human brain evolution can be obtained. Here, I sketch a framework how indirect evidence can be obtained and review findings related to the molecular basis of human cognition, vocal learning and brain size. In particular, I discuss how a comprehensive comparative approach, leveraging cellular systems and genomic technologies, could inform the evolution of our brain in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Role of transcriptional regulation in the evolution of plant phenotype: A dynamic systems approach.
Rodríguez-Mega, Emiliano; Piñeyro-Nelson, Alma; Gutierrez, Crisanto; García-Ponce, Berenice; Sánchez, María De La Paz; Zluhan-Martínez, Estephania; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana
2015-03-02
A growing body of evidence suggests that alterations in transcriptional regulation of genes involved in modulating development are an important part of phenotypic evolution, and this can be documented among species and within populations. While the effects of differential transcriptional regulation in organismal development have been preferentially studied in animal systems, this phenomenon has also been addressed in plants. In this review, we summarize evidence for cis-regulatory mutations, trans-regulatory changes and epigenetic modifications as molecular events underlying important phenotypic alterations, and thus shaping the evolution of plant development. We postulate that a mechanistic understanding of why such molecular alterations have a key role in development, morphology and evolution will have to rely on dynamic models of complex regulatory networks that consider the concerted action of genetic and nongenetic components, and that also incorporate the restrictions underlying the genotype to phenotype mapping process. Developmental Dynamics, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Nakao, Hisashi; Tamura, Kohei; Arimatsu, Yui; Nakagawa, Tomomi; Matsumoto, Naoko; Matsugi, Takehiko
2016-03-01
Whether man is predisposed to lethal violence, ranging from homicide to warfare, and how that may have impacted human evolution, are among the most controversial topics of debate on human evolution. Although recent studies on the evolution of warfare have been based on various archaeological and ethnographic data, they have reported mixed results: it is unclear whether or not warfare among prehistoric hunter-gatherers was common enough to be a component of human nature and a selective pressure for the evolution of human behaviour. This paper reports the mortality attributable to violence, and the spatio-temporal pattern of violence thus shown among ancient hunter-gatherers using skeletal evidence in prehistoric Japan (the Jomon period: 13 000 cal BC-800 cal BC). Our results suggest that the mortality due to violence was low and spatio-temporally highly restricted in the Jomon period, which implies that violence including warfare in prehistoric Japan was not common. © 2016 The Author(s).
Nakao, Hisashi; Tamura, Kohei; Arimatsu, Yui; Nakagawa, Tomomi; Matsumoto, Naoko; Matsugi, Takehiko
2016-01-01
Whether man is predisposed to lethal violence, ranging from homicide to warfare, and how that may have impacted human evolution, are among the most controversial topics of debate on human evolution. Although recent studies on the evolution of warfare have been based on various archaeological and ethnographic data, they have reported mixed results: it is unclear whether or not warfare among prehistoric hunter–gatherers was common enough to be a component of human nature and a selective pressure for the evolution of human behaviour. This paper reports the mortality attributable to violence, and the spatio-temporal pattern of violence thus shown among ancient hunter–gatherers using skeletal evidence in prehistoric Japan (the Jomon period: 13 000 cal BC–800 cal BC). Our results suggest that the mortality due to violence was low and spatio-temporally highly restricted in the Jomon period, which implies that violence including warfare in prehistoric Japan was not common. PMID:27029838
Reconstructing human evolution: Achievements, challenges, and opportunities
Wood, Bernard
2010-01-01
This contribution reviews the evidence that has resolved the branching structure of the higher primate part of the tree of life and the substantial body of fossil evidence for human evolution. It considers some of the problems faced by those who try to interpret the taxonomy and systematics of the human fossil record. How do you to tell an early human taxon from one in a closely related clade? How do you determine the number of taxa represented in the human clade? How can homoplasy be recognized and factored into attempts to recover phylogeny? PMID:20445105
Evolution of biological complexity
Adami, Christoph; Ofria, Charles; Collier, Travis C.
2000-01-01
To make a case for or against a trend in the evolution of complexity in biological evolution, complexity needs to be both rigorously defined and measurable. A recent information-theoretic (but intuitively evident) definition identifies genomic complexity with the amount of information a sequence stores about its environment. We investigate the evolution of genomic complexity in populations of digital organisms and monitor in detail the evolutionary transitions that increase complexity. We show that, because natural selection forces genomes to behave as a natural “Maxwell Demon,” within a fixed environment, genomic complexity is forced to increase. PMID:10781045
Workshop on Early Crustal Genesis: Implications from Earth
NASA Technical Reports Server (NTRS)
Phinney, W. C. (Compiler)
1981-01-01
Ways to foster increased study of the early evolution of the Earth, considering the planet as a whole, were explored and recommendations were made to NASA with the intent of exploring optimal ways for integrating Archean studies with problems of planetary evolution. Major themes addressed include: (1) Archean contribution to constraints for modeling planetary evolution; (2) Archean surface conditions and processes as clues to early planetary history; and (3) Archean evidence for physical, chemical and isotopic transfer processes in early planetary crusts. Ten early crustal evolution problems are outlined.
Within-host evolution of Staphylococcus aureus during asymptomatic carriage.
Golubchik, Tanya; Batty, Elizabeth M; Miller, Ruth R; Farr, Helen; Young, Bernadette C; Larner-Svensson, Hanna; Fung, Rowena; Godwin, Heather; Knox, Kyle; Votintseva, Antonina; Everitt, Richard G; Street, Teresa; Cule, Madeleine; Ip, Camilla L C; Didelot, Xavier; Peto, Timothy E A; Harding, Rosalind M; Wilson, Daniel J; Crook, Derrick W; Bowden, Rory
2013-01-01
Staphylococcus aureus is a major cause of healthcare associated mortality, but like many important bacterial pathogens, it is a common constituent of the normal human body flora. Around a third of healthy adults are carriers. Recent evidence suggests that evolution of S. aureus during nasal carriage may be associated with progression to invasive disease. However, a more detailed understanding of within-host evolution under natural conditions is required to appreciate the evolutionary and mechanistic reasons why commensal bacteria such as S. aureus cause disease. Therefore we examined in detail the evolutionary dynamics of normal, asymptomatic carriage. Sequencing a total of 131 genomes across 13 singly colonized hosts using the Illumina platform, we investigated diversity, selection, population dynamics and transmission during the short-term evolution of S. aureus. We characterized the processes by which the raw material for evolution is generated: micro-mutation (point mutation and small insertions/deletions), macro-mutation (large insertions/deletions) and the loss or acquisition of mobile elements (plasmids and bacteriophages). Through an analysis of synonymous, non-synonymous and intergenic mutations we discovered a fitness landscape dominated by purifying selection, with rare examples of adaptive change in genes encoding surface-anchored proteins and an enterotoxin. We found evidence for dramatic, hundred-fold fluctuations in the size of the within-host population over time, which we related to the cycle of colonization and clearance. Using a newly-developed population genetics approach to detect recent transmission among hosts, we revealed evidence for recent transmission between some of our subjects, including a husband and wife both carrying populations of methicillin-resistant S. aureus (MRSA). This investigation begins to paint a picture of the within-host evolution of an important bacterial pathogen during its prevailing natural state, asymptomatic carriage. These results also have wider significance as a benchmark for future systematic studies of evolution during invasive S. aureus disease.
Belief versus acceptance: why do people not believe in evolution?
Williams, James D
2009-11-01
Despite being an established and accepted scientific theory for 150 years, repeated public polls show that evolution is not believed by large numbers of people. This essay examines why people do not accept evolution and argues that its poor representation in some science textbooks allows misconceptions, established and reinforced in early childhood, to take hold. There is also a lack of up-to-date examples of evidence for evolution in school textbooks. Poor understanding by science graduates and teachers of the nature of science and incorrect definitions by them of key terminology, serve only to undermine efforts to improve public understanding of evolution. This paper has several recommendations, including the introduction of evolution to primary age children and a call to bring evolution back as the central tenet of biology.
Evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus
NASA Technical Reports Server (NTRS)
Miller, S. R.; Castenholz, R. W.
2000-01-01
The extension of ecological tolerance limits may be an important mechanism by which microorganisms adapt to novel environments, but it may come at the evolutionary cost of reduced performance under ancestral conditions. We combined a comparative physiological approach with phylogenetic analyses to study the evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus. Among the 20 laboratory clones of Synechococcus isolated from collections made along an Oregon hot spring thermal gradient, four different 16S rRNA gene sequences were identified. Phylogenies constructed by using the sequence data indicated that the clones were polyphyletic but that three of the four sequence groups formed a clade. Differences in thermotolerance were observed for clones with different 16S rRNA gene sequences, and comparison of these physiological differences within a phylogenetic framework provided evidence that more thermotolerant lineages of Synechococcus evolved from less thermotolerant ancestors. The extension of the thermal limit in these bacteria was correlated with a reduction in the breadth of the temperature range for growth, which provides evidence that enhanced thermotolerance has come at the evolutionary cost of increased thermal specialization. This study illustrates the utility of using phylogenetic comparative methods to investigate how evolutionary processes have shaped historical patterns of ecological diversification in microorganisms.
Science - and Antiscience - in the Climate and Evolution Debates
NASA Astrophysics Data System (ADS)
Neff, T.; Ammann, C.; Grinspoon, D.; Tans, P.
2011-09-01
The Enlightenment is more than 300 years old. Those of us lucky enough to live in a developed country find ourselves entirely dependent on an array of technologies empowered by the cumulative advances of science. Yet surveys repeatedly show a large percentage of Americans to be either ignorant of science and the scientific method or outright dubious of them. Gallup polls have consistently found that more than four in 10 respondents believe that God created man in its present form. An October 2009 poll by the Pew Research Center for the People and the Press found that just 36 percent of Americans surveyed believed there was "solid evidence the Earth is warming," down from 47 percent in April 2008. The scientific evidence supporting evolution and anthropogenic climate change is overwhelming. Yet nowhere has the battle of science versus ignorance and skepticism been more pitched than in these realms. What forces drive these antiscientific world views? How can scientists and their allies counter them? What can education and public outreach experts in one of science's most publicly digestible realms - space and astronomy - learn from those who have been in the trenches? How can you help build a more scientifically literate society at a time when elected leaders have needed a rational support base like never before?
The mystery of language evolution
Hauser, Marc D.; Yang, Charles; Berwick, Robert C.; Tattersall, Ian; Ryan, Michael J.; Watumull, Jeffrey; Chomsky, Noam; Lewontin, Richard C.
2014-01-01
Understanding the evolution of language requires evidence regarding origins and processes that led to change. In the last 40 years, there has been an explosion of research on this problem as well as a sense that considerable progress has been made. We argue instead that the richness of ideas is accompanied by a poverty of evidence, with essentially no explanation of how and why our linguistic computations and representations evolved. We show that, to date, (1) studies of nonhuman animals provide virtually no relevant parallels to human linguistic communication, and none to the underlying biological capacity; (2) the fossil and archaeological evidence does not inform our understanding of the computations and representations of our earliest ancestors, leaving details of origins and selective pressure unresolved; (3) our understanding of the genetics of language is so impoverished that there is little hope of connecting genes to linguistic processes any time soon; (4) all modeling attempts have made unfounded assumptions, and have provided no empirical tests, thus leaving any insights into language's origins unverifiable. Based on the current state of evidence, we submit that the most fundamental questions about the origins and evolution of our linguistic capacity remain as mysterious as ever, with considerable uncertainty about the discovery of either relevant or conclusive evidence that can adjudicate among the many open hypotheses. We conclude by presenting some suggestions about possible paths forward. PMID:24847300
The mystery of language evolution.
Hauser, Marc D; Yang, Charles; Berwick, Robert C; Tattersall, Ian; Ryan, Michael J; Watumull, Jeffrey; Chomsky, Noam; Lewontin, Richard C
2014-01-01
Understanding the evolution of language requires evidence regarding origins and processes that led to change. In the last 40 years, there has been an explosion of research on this problem as well as a sense that considerable progress has been made. We argue instead that the richness of ideas is accompanied by a poverty of evidence, with essentially no explanation of how and why our linguistic computations and representations evolved. We show that, to date, (1) studies of nonhuman animals provide virtually no relevant parallels to human linguistic communication, and none to the underlying biological capacity; (2) the fossil and archaeological evidence does not inform our understanding of the computations and representations of our earliest ancestors, leaving details of origins and selective pressure unresolved; (3) our understanding of the genetics of language is so impoverished that there is little hope of connecting genes to linguistic processes any time soon; (4) all modeling attempts have made unfounded assumptions, and have provided no empirical tests, thus leaving any insights into language's origins unverifiable. Based on the current state of evidence, we submit that the most fundamental questions about the origins and evolution of our linguistic capacity remain as mysterious as ever, with considerable uncertainty about the discovery of either relevant or conclusive evidence that can adjudicate among the many open hypotheses. We conclude by presenting some suggestions about possible paths forward.
Evidence for Widespread Reticulate Evolution within Human Duplicons
Jackson, Michael S. ; Oliver, Karen ; Loveland, Jane ; Humphray, Sean ; Dunham, Ian ; Rocchi, Mariano ; Viggiano, Luigi ; Park, Jonathan P. ; Hurles, Matthew E. ; Santibanez-Koref, Mauro
2005-01-01
Approximately 5% of the human genome consists of segmental duplications that can cause genomic mutations and may play a role in gene innovation. Reticulate evolutionary processes, such as unequal crossing-over and gene conversion, are known to occur within specific duplicon families, but the broader contribution of these processes to the evolution of human duplications remains poorly characterized. Here, we use phylogenetic profiling to analyze multiple alignments of 24 human duplicon families that span >8 Mb of DNA. Our results indicate that none of them are evolving independently, with all alignments showing sharp discontinuities in phylogenetic signal consistent with reticulation. To analyze these results in more detail, we have developed a quartet method that estimates the relative contribution of nucleotide substitution and reticulate processes to sequence evolution. Our data indicate that most of the duplications show a highly significant excess of sites consistent with reticulate evolution, compared with the number expected by nucleotide substitution alone, with 15 of 30 alignments showing a >20-fold excess over that expected. Using permutation tests, we also show that at least 5% of the total sequence shares 100% sequence identity because of reticulation, a figure that includes 74 independent tracts of perfect identity >2 kb in length. Furthermore, analysis of a subset of alignments indicates that the density of reticulation events is as high as 1 every 4 kb. These results indicate that phylogenetic relationships within recently duplicated human DNA can be rapidly disrupted by reticulate evolution. This finding has important implications for efforts to finish the human genome sequence, complicates comparative sequence analysis of duplicon families, and could profoundly influence the tempo of gene-family evolution. PMID:16252241
The evolutionary origins of Syngnathidae: pipefishes and seahorses.
Wilson, A B; Orr, J W
2011-06-01
Despite their importance as evolutionary and ecological model systems, the phylogenetic relationships among gasterosteiforms remain poorly understood, complicating efforts to understand the evolutionary origins of the exceptional morphological and behavioural diversity of this group. The present review summarizes current knowledge on the origin and evolution of syngnathids, a gasterosteiform family with a highly developed form of male parental care, combining inferences based on morphological and molecular data with paleontological evidence documenting the evolutionary history of the group. Molecular methods have provided new tools for the study of syngnathid relationships and have played an important role in recent conservation efforts. Despite recent insights into syngnathid evolution, however, a survey of the literature reveals a strong taxonomic bias towards studies on the species-rich genera Hippocampus and Syngnathus, with a lack of data for many morphologically unique members of the family. The study of the evolutionary pressures responsible for generating the high diversity of syngnathids would benefit from a wider perspective, providing a comparative framework in which to investigate the evolution of the genetic, morphological and behavioural traits of the group as a whole. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
Cognitive ornithology: the evolution of avian intelligence
Emery, Nathan J
2005-01-01
Comparative psychologists interested in the evolution of intelligence have focused their attention on social primates, whereas birds tend to be used as models of associative learning. However, corvids and parrots, which have forebrains relatively the same size as apes, live in complex social groups and have a long developmental period before becoming independent, have demonstrated ape-like intelligence. Although, ornithologists have documented thousands of hours observing birds in their natural habitat, they have focused their attention on avian behaviour and ecology, rather than intelligence. This review discusses recent studies of avian cognition contrasting two different approaches; the anthropocentric approach and the adaptive specialization approach. It is argued that the most productive method is to combine the two approaches. This is discussed with respects to recent investigations of two supposedly unique aspects of human cognition; episodic memory and theory of mind. In reviewing the evidence for avian intelligence, corvids and parrots appear to be cognitively superior to other birds and in many cases even apes. This suggests that complex cognition has evolved in species with very different brains through a process of convergent evolution rather than shared ancestry, although the notion that birds and mammals may share common neural connectivity patterns is discussed. PMID:16553307
Causal evidence between monsoon and evolution of rhizomyine rodents
López-Antoñanzas, Raquel; Knoll, Fabien; Wan, Shiming; Flynn, Lawrence J.
2015-01-01
The modern Asian monsoonal systems are currently believed to have originated around the end of the Oligocene following a crucial step of uplift of the Tibetan-Himalayan highlands. Although monsoon possibly drove the evolution of many mammal lineages during the Neogene, no evidence thereof has been provided so far. We examined the evolutionary history of a clade of rodents, the Rhizomyinae, in conjunction with our current knowledge of monsoon fluctuations over time. The macroevolutionary dynamics of rhizomyines were analyzed within a well-constrained phylogenetic framework coupled with biogeographic and evolutionary rate studies. The evolutionary novelties developed by these rodents were surveyed in parallel with the fluctuations of the Indian monsoon so as to evaluate synchroneity and postulate causal relationships. We showed the existence of three drops in biodiversity during the evolution of rhizomyines, all of which reflected elevated extinction rates. Our results demonstrated linkage of monsoon variations with the evolution and biogeography of rhizomyines. Paradoxically, the evolution of rhizomyines was accelerated during the phases of weakening of the monsoons, not of strengthening, most probably because at those intervals forest habitats declined, which triggered extinction and progressive specialization toward a burrowing existence. PMID:25759260
Causal evidence between monsoon and evolution of rhizomyine rodents.
López-Antoñanzas, Raquel; Knoll, Fabien; Wan, Shiming; Flynn, Lawrence J
2015-03-11
The modern Asian monsoonal systems are currently believed to have originated around the end of the Oligocene following a crucial step of uplift of the Tibetan-Himalayan highlands. Although monsoon possibly drove the evolution of many mammal lineages during the Neogene, no evidence thereof has been provided so far. We examined the evolutionary history of a clade of rodents, the Rhizomyinae, in conjunction with our current knowledge of monsoon fluctuations over time. The macroevolutionary dynamics of rhizomyines were analyzed within a well-constrained phylogenetic framework coupled with biogeographic and evolutionary rate studies. The evolutionary novelties developed by these rodents were surveyed in parallel with the fluctuations of the Indian monsoon so as to evaluate synchroneity and postulate causal relationships. We showed the existence of three drops in biodiversity during the evolution of rhizomyines, all of which reflected elevated extinction rates. Our results demonstrated linkage of monsoon variations with the evolution and biogeography of rhizomyines. Paradoxically, the evolution of rhizomyines was accelerated during the phases of weakening of the monsoons, not of strengthening, most probably because at those intervals forest habitats declined, which triggered extinction and progressive specialization toward a burrowing existence.
Interspecific Plastome Recombination Reflects Ancient Reticulate Evolution in Picea (Pinaceae).
Sullivan, Alexis R; Schiffthaler, Bastian; Thompson, Stacey Lee; Street, Nathaniel R; Wang, Xiao-Ru
2017-07-01
Plastid sequences are a cornerstone in plant systematic studies and key aspects of their evolution, such as uniparental inheritance and absent recombination, are often treated as axioms. While exceptions to these assumptions can profoundly influence evolutionary inference, detecting them can require extensive sampling, abundant sequence data, and detailed testing. Using advancements in high-throughput sequencing, we analyzed the whole plastomes of 65 accessions of Picea, a genus of ∼35 coniferous forest tree species, to test for deviations from canonical plastome evolution. Using complementary hypothesis and data-driven tests, we found evidence for chimeric plastomes generated by interspecific hybridization and recombination in the clade comprising Norway spruce (P. abies) and 10 other species. Support for interspecific recombination remained after controlling for sequence saturation, positive selection, and potential alignment artifacts. These results reconcile previous conflicting plastid-based phylogenies and strengthen the mounting evidence of reticulate evolution in Picea. Given the relatively high frequency of hybridization and biparental plastid inheritance in plants, we suggest interspecific plastome recombination may be more widespread than currently appreciated and could underlie reported cases of discordant plastid phylogenies. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Nandy, B; Gupta, V; Udaykumar, N; Samant, M A; Sen, S; Prasad, N G
2014-02-01
A number of studies have documented the evolution of female resistance to mate-harm in response to the alteration of intersexual conflict in the populations. However, the life-history consequence of such evolution is still a subject of debate. In this study, we subjected replicate populations of Drosophila melanogaster to different levels of sexual conflict (generated by altering the operational sex ratio) for over 45 generations. Our results suggest that females from populations experiencing higher level of intersexual conflict evolved increased resistance to mate-harm, in terms of both longevity and progeny production. Females from the populations with low conflict were significantly heavier at eclosion and were more susceptible to mate-harm in terms of progeny production under continuous exposure to the males. However, these females produced more progeny upon single mating and had significantly higher longevity in absence of any male exposure-a potential evidence of trade-offs between resistance-related traits and other life-history traits, such as fecundity and longevity. We also report tentative evidence, suggesting an increased male cost of interacting with more resistant females. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Coelho, V N; Coelho, I M; Souza, M J F; Oliveira, T A; Cota, L P; Haddad, M N; Mladenovic, N; Silva, R C P; Guimarães, F G
2016-01-01
This article presents an Evolution Strategy (ES)--based algorithm, designed to self-adapt its mutation operators, guiding the search into the solution space using a Self-Adaptive Reduced Variable Neighborhood Search procedure. In view of the specific local search operators for each individual, the proposed population-based approach also fits into the context of the Memetic Algorithms. The proposed variant uses the Greedy Randomized Adaptive Search Procedure with different greedy parameters for generating its initial population, providing an interesting exploration-exploitation balance. To validate the proposal, this framework is applied to solve three different [Formula: see text]-Hard combinatorial optimization problems: an Open-Pit-Mining Operational Planning Problem with dynamic allocation of trucks, an Unrelated Parallel Machine Scheduling Problem with Setup Times, and the calibration of a hybrid fuzzy model for Short-Term Load Forecasting. Computational results point out the convergence of the proposed model and highlight its ability in combining the application of move operations from distinct neighborhood structures along the optimization. The results gathered and reported in this article represent a collective evidence of the performance of the method in challenging combinatorial optimization problems from different application domains. The proposed evolution strategy demonstrates an ability of adapting the strength of the mutation disturbance during the generations of its evolution process. The effectiveness of the proposal motivates the application of this novel evolutionary framework for solving other combinatorial optimization problems.
The evolution of ambulatory ECG monitoring.
Kennedy, Harold L
2013-01-01
Ambulatory Holter electrocardiographic (ECG) monitoring has undergone continuous technological evolution since its invention and development in the 1950s era. With commercial introduction in 1963, there has been an evolution of Holter recorders from 1 channel to 12 channel recorders with increasingly smaller storage media, and there has evolved Holter analysis systems employing increasingly technologically advanced electronics providing a myriad of data displays. This evolution of smaller physical instruments with increasing technological capacity has characterized the development of electronics over the past 50 years. Currently the technology has been focused upon the conventional continuous 24 to 48 hour ambulatory ECG examination, and conventional extended ambulatory monitoring strategies for infrequent to rare arrhythmic events. However, the emergence of the Internet, Wi-Fi, cellular networks, and broad-band transmission has positioned these modalities at the doorway of the digital world. This has led to an adoption of more cost-effective strategies to these conventional methods of performing the examination. As a result, the emergence of the mobile smartphone coupled with this digital capacity is leading to the recent development of Holter smartphone applications. The potential of point-of-care applications utilizing the Holter smartphone and a vast array of new non-invasive sensors is evident in the not too distant future. The Holter smartphone is anticipated to contribute significantly in the future to the field of global health. © 2013.
Koch, Robin; Kupczok, Anne; Stucken, Karina; Ilhan, Judith; Hammerschmidt, Katrin; Dagan, Tal
2017-08-31
Filamentous cyanobacteria that differentiate multiple cell types are considered the peak of prokaryotic complexity and their evolution has been studied in the context of multicellularity origins. Species that form true-branching filaments exemplify the most complex cyanobacteria. However, the mechanisms underlying the true-branching morphology remain poorly understood despite of several investigations that focused on the identification of novel genes or pathways. An alternative route for the evolution of novel traits is based on existing phenotypic plasticity. According to that scenario - termed genetic assimilation - the fixation of a novel phenotype precedes the fixation of the genotype. Here we show that the evolution of transcriptional regulatory elements constitutes a major mechanism for the evolution of new traits. We found that supplementation with sucrose reconstitutes the ancestral branchless phenotype of two true-branching Fischerella species and compared the transcription start sites (TSSs) between the two phenotypic states. Our analysis uncovers several orthologous TSSs whose transcription level is correlated with the true-branching phenotype. These TSSs are found in genes that encode components of the septosome and elongasome (e.g., fraC and mreB). The concept of genetic assimilation supplies a tenable explanation for the evolution of novel traits but testing its feasibility is hindered by the inability to recreate and study the evolution of present-day traits. We present a novel approach to examine transcription data for the plasticity first route and provide evidence for its occurrence during the evolution of complex colony morphology in true-branching cyanobacteria. Our results reveal a route for evolution of the true-branching phenotype in cyanobacteria via modification of the transcription level of pre-existing genes. Our study supplies evidence for the 'plasticity-first' hypothesis and highlights the importance of transcriptional regulation in the evolution of novel traits.
Genetics of Cerebellar and Neocortical Expansion in Anthropoid Primates: A Comparative Approach
Harrison, Peter W.; Montgomery, Stephen H.
2017-01-01
What adaptive changes in brain structure and function underpin the evolution of increased cognitive performance in humans and our close relatives? Identifying the genetic basis of brain evolution has become a major tool in answering this question. Numerous cases of positive selection, altered gene expression or gene duplication have been identified that may contribute to the evolution of the neocortex, which is widely assumed to play a predominant role in cognitive evolution. However, the components of the neocortex co-evolve with other functionally interdependent regions of the brain, most notably in the cerebellum. The cerebellum is linked to a range of cognitive tasks and expanded rapidly during hominoid evolution. Here we present data that suggest that, across anthropoid primates, protein-coding genes with known roles in cerebellum development were just as likely to be targeted by selection as genes linked to cortical development. Indeed, based on currently available gene ontology data, protein-coding genes with known roles in cerebellum development are more likely to have evolved adaptively during hominoid evolution. This is consistent with phenotypic data suggesting an accelerated rate of cerebellar expansion in apes that is beyond that predicted from scaling with the neocortex in other primates. Finally, we present evidence that the strength of selection on specific genes is associated with variation in the volume of either the neocortex or the cerebellum, but not both. This result provides preliminary evidence that co-variation between these brain components during anthropoid evolution may be at least partly regulated by selection on independent loci, a conclusion that is consistent with recent intraspecific genetic analyses and a mosaic model of brain evolution that predicts adaptive evolution of brain structure. PMID:28683440
Melters, Daniël P; Bradnam, Keith R; Young, Hugh A; Telis, Natalie; May, Michael R; Ruby, J Graham; Sebra, Robert; Peluso, Paul; Eid, John; Rank, David; Garcia, José Fernando; DeRisi, Joseph L; Smith, Timothy; Tobias, Christian; Ross-Ibarra, Jeffrey; Korf, Ian; Chan, Simon W L
2013-01-30
Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution. While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.
2013-01-01
Background Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. Results Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution. Conclusions While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes. PMID:23363705
Nelson, Craig E
2008-08-01
The strength of the evidence supporting evolution has increased markedly since the discovery of DNA but, paradoxically, public resistance to accepting evolution seems to have become stronger. A key dilemma is that science faculty have often continued to teach evolution ineffectively, even as the evidence that traditional ways of teaching are inferior has become stronger and stronger. Three pedagogical strategies that together can make a large difference in students' understanding and acceptance of evolution are extensive use of interactive engagement, a focus on critical thinking in science (especially on comparisons and explicit criteria) and using both of these in helping the students actively compare their initial conceptions (and publicly popular misconceptions) with more fully scientific conceptions. The conclusion that students' misconceptions must be dealt with systematically can be difficult for faculty who are teaching evolution since much of the students' resistance is framed in religious terms and one might be reluctant to address religious ideas in class. Applications to teaching evolution are illustrated with examples that address criteria and critical thinking, standard geology versus flood geology, evolutionary developmental biology versus organs of extreme perfection, and the importance of using humans as a central example. It is also helpful to bridge the false dichotomy, seen by many students, between atheistic evolution versus religious creationism. These applications are developed in detail and are intended to be sufficient to allow others to use these approaches in their teaching. Students and other faculty were quite supportive of these approaches as implemented in my classes.
Proponents of Creationism but not Proponents of Evolution Frame the Origins Debate in Terms of Proof
NASA Astrophysics Data System (ADS)
Barnes, Ralph M.; Church, Rebecca A.
2013-03-01
In Study 1, 72 internet documents containing creationism, ID (intelligent design), or evolution content were selected for analysis. All instances of proof cognates (the word "proof" and related terms such as "proven", "disproof", etc.) contained within these documents were identified and labeled in terms of the manner in which the terms were used. In Study 2, frequency counts for six terms (proof, evidence, establish, experiment, test, trial) were conducted on a sample of peer-reviewed research articles in the journal Science and the 72 internet documents included in Study 1. Quantitative and qualitative analyses revealed that proponents of creationism were much more likely than proponents of evolution to frame the creationism/evolution issue in terms of proof (ID proponents fell partway between the other two). Proponents of creationism frequently described empirical data favoring their position as proof of their position. Even more frequently, proponents of creationism described evolutionary scientists as being engaged in failed attempts to prove the truth of the evolutionary position. Evolution documents included fewer proof cognates than creationism or ID documents and the few proof cognates found in evolution documents were rarely used to describe the status of the theory of evolution. Qualitative data analysis indicated that proof cognates were often used to indicate certainty. The asymmetry between evolution and creationism documents was limited primarily to proof cognates; there were no major asymmetries for the terms evidence, establish, experiment, test, and trial. The results may reveal differences in the epistemological commitments of the involved parties.
Powell, Jeff R; Parrent, Jeri L; Hart, Miranda M; Klironomos, John N; Rillig, Matthias C; Maherali, Hafiz
2009-12-07
The diversity of functional and life-history traits of organisms depends on adaptation as well as the legacy of shared ancestry. Although the evolution of traits in macro-organisms is well studied, relatively little is known about character evolution in micro-organisms. Here, we surveyed an ancient and ecologically important group of microbial plant symbionts, the arbuscular mycorrhizal (AM) fungi, and tested hypotheses about the evolution of functional and life-history traits. Variation in the extent of root and soil colonization by AM fungi is constrained to a few nodes basal to the most diverse groups within the phylum, with relatively little variation associated with recent divergences. We found no evidence for a trade-off in biomass allocated to root versus soil colonization in three published glasshouse experiments; rather these traits were positively correlated. Partial support was observed for correlated evolution between fungal colonization strategies and functional benefits of the symbiosis to host plants. The evolution of increased soil colonization was positively correlated with total plant biomass and shoot phosphorus content. Although the effect of AM fungi on infection by root pathogens was phylogenetically conserved, there was no evidence for correlated evolution between the extent of AM fungal root colonization and pathogen infection. Variability in colonization strategies evolved early in the diversification of AM fungi, and we propose that these strategies were influenced by functional interactions with host plants, resulting in an evolutionary stasis resembling trait conservatism.
The use of fire and human distribution
MacDonald, Katharine
2017-01-01
ABSTRACT Humans today live in a wide range of environments from the iciest to the hottest, thanks to diverse cultural solutions that buffer temperature extremes. The prehistory of this relationship between human distribution, cultural solutions and temperature conditions may help us to understand the evolution of human biological adaptations to cold temperature. Fire has long been seen as an important factor in human evolution and range expansion, particularly into temperate latitudes. Nevertheless, the earliest evidence for hominin presence in Eurasia, and middle latitudes in northern Europe, substantially predates convincing evidence for fire use in these regions. This review outlines the current state of knowledge of the chronology of hominin dispersal into temperate latitudes, from the earliest occupants to our own species, and the archeological evidence for fire use. Given continuing disagreement about this chronology and limitations to the archeological evidence, new, complementary approaches are worthwhile and would benefit from information from studies of current human temperature regulation. PMID:28680931
USDA-ARS?s Scientific Manuscript database
Plant evolution is largely driven by adaptations in seed protection and dispersal strategies that allow diversification into new niches. This is evident by the tremendous variation in flowering and fruiting structures present both across and within different plant lineages. Within a single plant f...
The Theory of Evolution: An Educational Perspective.
ERIC Educational Resources Information Center
Johnson, William L.; Johnson, Annabel M.
The article's thesis is that evolution's intellectual foundations have been steadily eroding, and that few new findings in embryology, taxonomy, fossil remains, and molecular biology are bringing us very near to a formal, logical disproof of Darwinian claims. The paper begins by discussing the evidence of a prehistoric world, then they discuss…
Traveling waves in discretized Balitsky Kovchegov evolution
NASA Astrophysics Data System (ADS)
Marquet, C.; Peschanski, R.; Soyez, G.; Bialas, A.
2006-02-01
We study the asymptotic solutions of a version of the Balitsky-Kovchegov evolution with discrete steps in rapidity. We derive a closed iterative equation in momentum space. We show that it possesses traveling-wave solutions and extract their properties. We find no evidence for chaotic behaviour due to discretization.
Autosomal origin of sex chromosome in a polyploid plant
USDA-ARS?s Scientific Manuscript database
While theory on sex chromosome evolution is well developed, evidence of the early stages of this process remains elusive, in part because this process unfolded in many animals so long ago. The relatively recent and repeated evolution of separate sexes (dioecy) and sex chromosomes in plants, however,...
Tobias, Joseph A; Seddon, Nathalie
2009-12-01
Natural selection is known to produce convergent phenotypes through mimicry or ecological adaptation. It has also been proposed that social selection--i.e., selection exerted by social competition--may drive convergent evolution in signals mediating interspecific communication, yet this idea remains controversial. Here, we use color spectrophotometry, acoustic analyses, and playback experiments to assess the hypothesis of adaptive signal convergence in two competing nonsister taxa, Hypocnemis peruviana and H. subflava (Aves: Thamnophilidae). We show that the structure of territorial songs in males overlaps in sympatry, with some evidence of convergent character displacement. Conversely, nonterritorial vocal and visual signals in males are strikingly diagnostic, in line with 6.8% divergence in mtDNA sequences. The same pattern of variation applies to females. Finally, we show that songs in both sexes elicit strong territorial responses within and between species, whereas songs of a third, allopatric and more closely related species (H. striata) are structurally divergent and elicit weaker responses. Taken together, our results provide compelling evidence that social selection can act across species boundaries to drive convergent or parallel evolution in taxa competing for space and resources.
Chinikar, Sadegh; Shah-Hosseini, Nariman; Bouzari, Saeid; Shokrgozar, Mohammad Ali; Mostafavi, Ehsan; Jalali, Tahmineh; Khakifirouz, Sahar; Groschup, Martin H; Niedrig, Matthias
2016-03-01
Crimean-Congo Hemorrhagic Fever Virus (CCHFV) belongs to genus Nairovirus and family Bunyaviridae. The main aim of this study was to investigate the extent of recombination in S-segment genome of CCHFV in Iran. Samples were isolated from Iranian patients and those available in GenBank, and analyzed by phylogenetic and bootscan methods. Through comparison of the phylogenetic trees based on full length sequences and partial fragments in the S-segment genome of CCHFV, genetic switch was evident, due to recombination event. Moreover, evidence of multiple recombination events was detected in query isolates when bootscan analysis was used by SimPlot software. Switch of different genomic regions between different strains by recombination could contribute to CCHFV diversification and evolution. The occurrence of recombination in CCHFV has a critical impact on epidemiological investigations and vaccine design.
NASA Astrophysics Data System (ADS)
Wang, Gang-Jin; Xie, Chi; Han, Feng; Sun, Bo
2012-08-01
In this study, we employ a dynamic time warping method to study the topology of similarity networks among 35 major currencies in international foreign exchange (FX) markets, measured by the minimal spanning tree (MST) approach, which is expected to overcome the synchronous restriction of the Pearson correlation coefficient. In the empirical process, firstly, we subdivide the analysis period from June 2005 to May 2011 into three sub-periods: before, during, and after the US sub-prime crisis. Secondly, we choose NZD (New Zealand dollar) as the numeraire and then, analyze the topology evolution of FX markets in terms of the structure changes of MSTs during the above periods. We also present the hierarchical tree associated with the MST to study the currency clusters in each sub-period. Our results confirm that USD and EUR are the predominant world currencies. But USD gradually loses the most central position while EUR acts as a stable center in the MST passing through the crisis. Furthermore, an interesting finding is that, after the crisis, SGD (Singapore dollar) becomes a new center currency for the network.
Evolution across the Curriculum: Microbiology
Burmeister, Alita R.; Smith, James J.
2016-01-01
An integrated understanding of microbiology and evolutionary biology is essential for students pursuing careers in microbiology and healthcare fields. In this Perspective, we discuss the usefulness of evolutionary concepts and an overall evolutionary framework for students enrolled in microbiology courses. Further, we propose a set of learning goals for students studying microbial evolution concepts. We then describe some barriers to microbial evolution teaching and learning and encourage the continued incorporation of evidence-based teaching practices into microbiology courses at all levels. Next, we review the current status of microbial evolution assessment tools and describe some education resources available for teaching microbial evolution. Successful microbial evolution education will require that evolution be taught across the undergraduate biology curriculum, with a continued focus on applications and applied careers, while aligning with national biology education reform initiatives. Journal of Microbiology & Biology Education PMID:27158306
Chemical evolution and the preservation of organic compounds on Mars
NASA Technical Reports Server (NTRS)
Kanavarioti, Anastassia; Mancinelli, Rocco L.
1989-01-01
Several lines of evidence suggest that the environment on early Mars and early Earth were very similar. Since life is abundant on Earth, it seems likely that conditions on early Earth were conducive to chemical evolution and the origin of life. The similarity between early Mars and early Earth encourages the hypothesis that chemical evolution might have also occurred on Mars, but that decreasing temperatures and the loss of its atmosphere brought the evolution to a halt. The possibility of finding on Mars remnants of organic material dating back to this early clement period is addressed.
Tai, Sara; Turkington, Douglas
2009-09-01
Cognitive behavior therapy (CBT) evolved from behavioral theory and developed to focus more on cognitive models that incorporated reappraisal of thinking errors and schema change strategies. This article will describe the key elements of CBT for schizophrenia and the current evidence of its efficacy and effectiveness. We conclude with a description of recent concepts that extend the theoretical basis of practice and expand the range of CBT strategies for use in schizophrenia. Mindfulness, meta-cognitive approaches, compassionate mind training, and method of levels are postulated as useful adjuncts for CBT with psychotic patients.
NASA Technical Reports Server (NTRS)
Weber, Renee C.
2013-01-01
A variety of geophysical measurements made from Earth, from spacecraft in orbit around the Moon, and by astronauts on the lunar surface allow us to probe beyond the lunar surface to learn about its interior. Similarly to the Earth, the Moon is thought to consist of a distinct crust, mantle, and core. The crust is globally asymmetric in thickness, the mantle is largely homogeneous, and the core is probably layered, with evidence for molten material. This chapter will review a range of methods used to infer the Moon's internal structure, and briefly discuss the implications for the Moon's formation and evolution.
Tai, Sara; Turkington, Douglas
2009-01-01
Cognitive behavior therapy (CBT) evolved from behavioral theory and developed to focus more on cognitive models that incorporated reappraisal of thinking errors and schema change strategies. This article will describe the key elements of CBT for schizophrenia and the current evidence of its efficacy and effectiveness. We conclude with a description of recent concepts that extend the theoretical basis of practice and expand the range of CBT strategies for use in schizophrenia. Mindfulness, meta-cognitive approaches, compassionate mind training, and method of levels are postulated as useful adjuncts for CBT with psychotic patients. PMID:19661198
A cytogenetic view of sex chromosome evolution in plants.
Armstrong, S J; Filatov, D A
2008-01-01
The recent origin of sex chromosomes in plant species provides an opportunity to study the early stages of sex chromosome evolution. This review focuses on the cytogenetic aspects of the analysis of sex chromosome evolution in plants and in particular, on the best-studied case, the sex chromosomes in Silene latifolia. We discuss the emerging picture of sex chromosome evolution in plants and the further work that is required to gain better understanding of the similarities and differences between the trends in animal and plant sex chromosome evolution. Similar to mammals, suppression of recombination between the X and Y in S. latifolia species has occurred in several steps, however there is little evidence that inversions on the S. latifolia Y chromosome have played a role in cessation of X/Y recombination. Secondly, in S. latifolia there is a lack of evidence for genetic degeneration of the Y chromosome, unlike the events documented in mammalian sex chromosomes. The insufficient number of genes isolated from this and other plant sex chromosomes does not allow us to generalize whether the trends revealed on S. latifolia Y chromosome are general for other dioecious plants. Isolation of more plant sex-linked genes and their cytogenetic mapping with fluorescent in situ hybridisation (FISH) will ultimately lead to a much better understanding of the processes driving sex chromosome evolution in plants. 2008 S. Karger AG, Basel
Evolutionary change in physiological phenotypes along the human lineage.
Vining, Alexander Q; Nunn, Charles L
2016-01-01
Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.
Is Mutation Random or Targeted?: No Evidence for Hypermutability in Snail Toxin Genes.
Roy, Scott W
2016-10-01
Ever since Luria and Delbruck, the notion that mutation is random with respect to fitness has been foundational to modern biology. However, various studies have claimed striking exceptions to this rule. One influential case involves toxin-encoding genes in snails of the genus Conus, termed conotoxins, a large gene family that undergoes rapid diversification of their protein-coding sequences by positive selection. Previous reconstructions of the sequence evolution of conotoxin genes claimed striking patterns: (1) elevated synonymous change, interpreted as being due to targeted "hypermutation" in this region; (2) elevated transversion-to-transition ratios, interpreted as reflective of the particular mechanism of hypermutation; and (3) much lower rates of synonymous change in the codons encoding several highly conserved cysteine residues, interpreted as strong position-specific codon bias. This work has spawned a variety of studies on the potential mechanisms of hypermutation and on causes for cysteine codon bias, and has inspired hypermutation hypotheses for various other fast-evolving genes. Here, I show that all three findings are likely to be artifacts of statistical reconstruction. First, by simulating nonsynonymous change I show that high rates of dN can lead to overestimation of dS. Second, I show that there is no evidence for any of these three patterns in comparisons of closely related conotoxin sequences, suggesting that the reported findings are due to breakdown of statistical methods at high levels of sequence divergence. The current findings suggest that mutation and codon bias in conotoxin genes may not be atypical, and that random mutation and selection can explain the evolution of even these exceptional loci. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Seven new dolphin mitochondrial genomes and a time-calibrated phylogeny of whales
Xiong, Ye; Brandley, Matthew C; Xu, Shixia; Zhou, Kaiya; Yang, Guang
2009-01-01
Background The phylogeny of Cetacea (whales) is not fully resolved with substantial support. The ambiguous and conflicting results of multiple phylogenetic studies may be the result of the use of too little data, phylogenetic methods that do not adequately capture the complex nature of DNA evolution, or both. In addition, there is also evidence that the generic taxonomy of Delphinidae (dolphins) underestimates its diversity. To remedy these problems, we sequenced the complete mitochondrial genomes of seven dolphins and analyzed these data with partitioned Bayesian analyses. Moreover, we incorporate a newly-developed "relaxed" molecular clock to model heterogenous rates of evolution among cetacean lineages. Results The "deep" phylogenetic relationships are well supported including the monophyly of Cetacea and Odontoceti. However, there is ambiguity in the phylogenetic affinities of two of the river dolphin clades Platanistidae (Indian River dolphins) and Lipotidae (Yangtze River dolphins). The phylogenetic analyses support a sister relationship between Delphinidae and Monodontidae + Phocoenidae. Additionally, there is statistically significant support for the paraphyly of Tursiops (bottlenose dolphins) and Stenella (spotted dolphins). Conclusion Our phylogenetic analysis of complete mitochondrial genomes using recently developed models of rate autocorrelation resolved the phylogenetic relationships of the major Cetacean lineages with a high degree of confidence. Our results indicate that a rapid radiation of lineages explains the lack of support the placement of Platanistidae and Lipotidae. Moreover, our estimation of molecular divergence dates indicates that these radiations occurred in the Middle to Late Oligocene and Middle Miocene, respectively. Furthermore, by collecting and analyzing seven new mitochondrial genomes, we provide strong evidence that the delphinid genera Tursiops and Stenella are not monophyletic, and the current taxonomy masks potentially interesting patterns of morphological, physiological, behavioral, and ecological evolution. PMID:19166626
Evidence for dust grain growth in young circumstellar disks.
Throop, H B; Bally, J; Esposito, L W; McCaughrean, M J
2001-06-01
Hundreds of circumstellar disks in the Orion nebula are being rapidly destroyed by the intense ultraviolet radiation produced by nearby bright stars. These young, million-year-old disks may not survive long enough to form planetary systems. Nevertheless, the first stage of planet formation-the growth of dust grains into larger particles-may have begun in these systems. Observational evidence for these large particles in Orion's disks is presented. A model of grain evolution in externally irradiated protoplanetary disks is developed and predicts rapid particle size evolution and sharp outer disk boundaries. We discuss implications for the formation rates of planetary systems.
The Effects of Predator Evolution and Genetic Variation on Predator-Prey Population-Level Dynamics.
Cortez, Michael H; Patel, Swati
2017-07-01
This paper explores how predator evolution and the magnitude of predator genetic variation alter the population-level dynamics of predator-prey systems. We do this by analyzing a general eco-evolutionary predator-prey model using four methods: Method 1 identifies how eco-evolutionary feedbacks alter system stability in the fast and slow evolution limits; Method 2 identifies how the amount of standing predator genetic variation alters system stability; Method 3 identifies how the phase lags in predator-prey cycles depend on the amount of genetic variation; and Method 4 determines conditions for different cycle shapes in the fast and slow evolution limits using geometric singular perturbation theory. With these four methods, we identify the conditions under which predator evolution alters system stability and shapes of predator-prey cycles, and how those effect depend on the amount of genetic variation in the predator population. We discuss the advantages and disadvantages of each method and the relations between the four methods. This work shows how the four methods can be used in tandem to make general predictions about eco-evolutionary dynamics and feedbacks.
Selection methods regulate evolution of cooperation in digital evolution
Lichocki, Paweł; Floreano, Dario; Keller, Laurent
2014-01-01
A key, yet often neglected, component of digital evolution and evolutionary models is the ‘selection method’ which assigns fitness (number of offspring) to individuals based on their performance scores (efficiency in performing tasks). Here, we study with formal analysis and numerical experiments the evolution of cooperation under the five most common selection methods (proportionate, rank, truncation-proportionate, truncation-uniform and tournament). We consider related individuals engaging in a Prisoner's Dilemma game where individuals can either cooperate or defect. A cooperator pays a cost, whereas its partner receives a benefit, which affect their performance scores. These performance scores are translated into fitness by one of the five selection methods. We show that cooperation is positively associated with the relatedness between individuals under all selection methods. By contrast, the change in the performance benefit of cooperation affects the populations’ average level of cooperation only under the proportionate methods. We also demonstrate that the truncation and tournament methods may introduce negative frequency-dependence and lead to the evolution of polymorphic populations. Using the example of the evolution of cooperation, we show that the choice of selection method, though it is often marginalized, can considerably affect the evolutionary dynamics. PMID:24152811
Effect of the stellar spin history on the tidal evolution of close-in planets
NASA Astrophysics Data System (ADS)
Bolmont, E.; Raymond, S. N.; Leconte, J.; Matt, S. P.
2012-08-01
Context. The spin rate of stars evolves substantially during their lifetime, owing to the evolution of their internal structure and to external torques arising from the interaction of stars with their environments and stellar winds. Aims: We investigate how the evolution of the stellar spin rate affects, and is affected by, planets in close orbits via star-planet tidal interactions. Methods: We used a standard equilibrium tidal model to compute the orbital evolution of single planets orbiting both Sun-like stars and very low-mass stars (0.1 M⊙). We tested two stellar spin evolution profiles, one with fast initial rotation (1.2 day rotation period) and one with slow initial rotation (8 day period). We tested the effect of varying the stellar and planetary dissipations, and the planet's mass and initial orbital radius. Results: For Sun-like stars, the different tidal evolution between initially rapidly and slowly rotating stars is only evident for extremely close-in gas giants orbiting highly dissipative stars. However, for very low-mass stars the effect of the initial rotation of the star on the planet's evolution is apparent for less massive (1 M⊕) planets and typical dissipation values. We also find that planetary evolution can have significant effects on the stellar spin history. In particular, when a planet falls onto the star, it can cause the star to spin up. Conclusions: Tidal evolution allows us to differentiate between the early behaviors of extremely close-in planets orbiting either a rapidly rotating star or a slowly rotating star. The early spin-up of the star allows the close-in planets around fast rotators to survive the early evolution. For planets around M-dwarfs, surviving the early evolution means surviving on Gyr timescales, whereas for Sun-like stars the spin-down brings about late mergers of Jupiter planets. In the light of this study, we can say that differentiating one type of spin evolution from another given the present position of planets can be very tricky. Unless we can observe some markers of former evolution, it is nearly impossible to distinguish the two very different spin profiles, let alone intermediate spin-profiles. Nevertheless, some conclusions can still be drawn about statistical distributions of planets around fully convective M-dwarfs. If tidal evolution brings about a merger late in the stellar history, it can also entail a noticeable acceleration of the star at late ages, so that it is possible to have old stars that spin rapidly. This raises the question of how the age of stars can be more tightly constrained.
NASA Astrophysics Data System (ADS)
Peker, Deniz; Comert, Gulsum Gul; Kence, Aykut
2010-06-01
Even though in the early years of the Republic of Turkey Darwin’s theory of evolution was treated as a scientific theory and taught fairly in schools, despite all the substantial evidence accumulated supporting the theory of evolution since then, Darwin and his ideas today have been scorned by curriculum and education policy makers. Furthermore, Turkish students and academics have been faced with unprecedented creationist propaganda for many years. In this paper, we first provide a glimpse of the theory of evolution and creationism in Turkey, we then report the results of our survey study ( N = 1,098) about the undergraduates’ acceptance and understanding of Darwinian evolution and some of the socioeconomic variables affecting those measures. Our cross sectional study shows that acceptance and understanding of the theory of evolution is quite low. We criticize the current state of evolution education in Turkey and call for a change towards a scientific treatment of the theory evolution in schools.
Leimu, Roosa; Koricheva, Julia
2004-01-01
Temporal changes in the magnitude of research findings have recently been recognized as a general phenomenon in ecology, and have been attributed to the delayed publication of non-significant results and disconfirming evidence. Here we introduce a method of cumulative meta-analysis which allows detection of both temporal trends and publication bias in the ecological literature. To illustrate the application of the method, we used two datasets from recently conducted meta-analyses of studies testing two plant defence theories. Our results revealed three phases in the evolution of the treatment effects. Early studies strongly supported the hypothesis tested, but the magnitude of the effect decreased considerably in later studies. In the latest studies, a trend towards an increase in effect size was observed. In one of the datasets, a cumulative meta-analysis revealed publication bias against studies reporting disconfirming evidence; such studies were published in journals with a lower impact factor compared to studies with results supporting the hypothesis tested. Correlation analysis revealed neither temporal trends nor evidence of publication bias in the datasets analysed. We thus suggest that cumulative meta-analysis should be used as a visual aid to detect temporal trends and publication bias in research findings in ecology in addition to the correlative approach. PMID:15347521
The Biology and Evolution of Music: A Comparative Perspective
ERIC Educational Resources Information Center
Fitch, W. Tecumseh
2006-01-01
Studies of the biology of music (as of language) are highly interdisciplinary and demand the integration of diverse strands of evidence. In this paper, I present a comparative perspective on the biology and evolution of music, stressing the value of comparisons both with human language, and with those animal communication systems traditionally…
ERIC Educational Resources Information Center
Johnson, Norman A.; Smith, James J.; Pobiner, Briana; Schrein, Caitlin
2012-01-01
Teachers may be posed with such questions as, "If we evolved from chimps, why are there still chimps?" We provide teachers with answers to this and related questions in the context of the latest genetic, fossil, and behavioral evidence. We also provide references they can use to further students' understanding of human evolution and evolution in…
Scopes II. The Great Debate. Creation vs. Evolution.
ERIC Educational Resources Information Center
Keith, Bill
This book, written by a member of the Louisiana State Legislature (who authored a bill during the 1981 legislative session mandating balanced treatment for creation-science wherever evolution-science is taught to public school children), takes a step toward answering the question: Should the scientific evidences for creation be given equal time…
A Missing Link in the Evolution of the Cumulative Recorder
ERIC Educational Resources Information Center
Asano, Toshio; Lattal, Kennon A.
2012-01-01
A recently recovered cumulative recorder provides a missing link in the evolution of the cumulative recorder from a modified kymograph to a reliably operating, scientifically and commercially successful instrument. The recorder, the only physical evidence of such an early precommercial cumulative recorder yet found, was sent to Keio University in…
Science Denial and the Science Classroom
ERIC Educational Resources Information Center
Liu, Dennis W. C.
2012-01-01
Biology teachers are accustomed to engaging individuals who do not accept biological evolution. Denial of evolution ranges from ignorance of the evidence to outright denial or distortion of data. The list of science denial topics has grown alarmingly over the years to include: HIV as the cause of AIDS, exaggeration of the health and environmental…
USDA-ARS?s Scientific Manuscript database
Interferons (IFNs) are key cytokines identified in vertebrates, and evolutionary dominance of intronless IFN genes in amniotes is a signature event in IFN evolution. For the first time, we show that the emergence and expansion of intronless IFN genes is evident in amphibians, shown by 24-37 intronle...
The language-ready head: Evolutionary considerations.
Boeckx, Cedric
2017-02-01
This article offers a succinct overview of the hypothesis that the evolution of cognition could benefit from a close examination of brain changes reflected in the shape of the neurocranium. I provide both neurological and genetic evidence in support of this hypothesis, and conclude that the study of language evolution need not be regarded as a mystery.
Vestibular evidence for the evolution of aquatic behaviour in early cetaceans.
Spoor, F; Bajpai, S; Hussain, S T; Kumar, K; Thewissen, J G M
2002-05-09
Early cetaceans evolved from terrestrial quadrupeds to obligate swimmers, a change that is traditionally studied by functional analysis of the postcranial skeleton. Here we assess the evolution of cetacean locomotor behaviour from an independent perspective by looking at the semicircular canal system, one of the main sense organs involved in neural control of locomotion. Extant cetaceans are found to be unique in that their canal arc size, corrected for body mass, is approximately three times smaller than in other mammals. This reduces the sensitivity of the canal system, most plausibly to match the fast body rotations that characterize cetacean behaviour. Eocene fossils show that the new sensory regime, incompatible with terrestrial competence, developed quickly and early in cetacean evolution, as soon as the taxa are associated with marine environments. Dedicated agile swimming of cetaceans thus appeared to have originated as a rapid and fundamental shift in locomotion rather than as the gradual transition suggested by postcranial evidence. We hypothesize that the unparalleled modification of the semicircular canal system represented a key 'point of no return' event in early cetacean evolution, leading to full independence from life on land.
The orbital evolution of NEA 30825 1900 TG1
NASA Astrophysics Data System (ADS)
Timoshkova, E. I.
2008-02-01
The orbital evolution of the near-Earth asteroid (NEA) 30825 1990 TG1 has been studied by numerical integration of the equations of its motion over the 100 000-year time interval with allowance for perturbations from eight major planets and Pluto, and the variations in its osculating orbit over this time interval were determined. The numerical integrations were performed using two methods: the Bulirsch-Stoer method and the Everhart method. The comparative analysis of the two resulting orbital evolutions of motion is presented for the time interval examined. The evolution of the asteroid motion is qualitatively the same for both variants, but the rate of evolution of the orbital elements is different. Our research confirms the known fact that the application of different integrators to the study of the long-term evolution of the NEA orbit may lead to different evolution tracks.
Yu, Guoqin; Olsen, Kenneth M; Schaal, Barbara A
2011-01-01
The evolution of metabolic pathways is a fundamental but poorly understood aspect of evolutionary change. One approach for understanding the complexity of pathway evolution is to examine the molecular evolution of genes that together comprise an integrated metabolic pathway. The rice endosperm starch biosynthetic pathway is one of the most thoroughly characterized metabolic pathways in plants, and starch is a trait that has evolved in response to strong selection during rice domestication. In this study, we have examined six key genes (AGPL2, AGPS2b, SSIIa, SBEIIb, GBSSI, ISA1) in the rice endosperm starch biosynthesis pathway to investigate the evolution of these genes before and after rice domestication. Genome-wide sequence tagged sites data were used as a neutral reference to overcome the problems of detecting selection in species with complex demographic histories such as rice. Five variety groups of Oryza sativa (aus, indica, tropical japonica, temperate japonica, aromatic) and its wild ancestor (O. rufipogon) were sampled. Our results showed evidence of purifying selection at AGPL2 in O. rufipogon and strong evidence of positive selection at GBSSI in temperate japonica and tropical japonica varieties and at GBSSI and SBEIIb in aromatic varieties. All the other genes showed a pattern consistent with neutral evolution in both cultivated rice and its wild ancestor. These results indicate the important role of positive selection in the evolution of starch genes during rice domestication. We discuss the role of SBEIIb and GBSSI in the evolution of starch quality during rice domestication and the power and limitation of detecting selection using genome-wide data as a neutral reference.
Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong
2016-01-01
Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes. PMID:27401230
Hecimovich, Mark; Volet, Simone
2012-06-19
Anecdotal evidence points to variations in individual students' evolving confidence in clinical and patient communication skills during a clinical internship. A better understanding of the specific aspects of internships that contribute to increasing or decreasing confidence is needed to best support students during the clinical component of their study. A multi-method approach, combining two large-scale surveys with 269 students and three in-depth individual interviews with a sub-sample of 29 students, was used to investigate the evolution of change in student confidence during a 10-month long internship. Change in levels of confidence in patient communication and clinical skills was measured and relationship to demographic factors were explored. The interviews elicited students' accounts and reflections on what affected the evolution of their confidence during the internship. At the start of their internship, students were more confident in their patient communication skills than their clinical skills but prior experience was significantly related to confidence in both. Initial confidence in patient communication skills was also related to age and prior qualification but not gender whilst confidence in clinical skills was related to gender but not age or prior qualification. These influences were maintained over time. Overall, students' levels of confidence in patient communication and clinical skills confidence increased significantly over the duration of the internship with evidence that change over time in these two aspects were inter-related. To explore how specific aspects of the internship contributed to changing levels of confidence, two extreme sub-groups of interviewees were identified, those with the least increase and those with the highest increase in professional confidence over time. A number of key factors affecting the development of confidence were identified, including among others, interactions with clinicians and patients, personal agency and maturing as a student clinician. This study provides insight into the factors perceived by students as affecting the development of professional confidence during internships. One particularly promising area for educational intervention may be the promotion of a pro-active approach to professional learning.
Zhu, Lei; Yin, Qiuyuan; Irwin, David M; Zhang, Shuyi
2015-01-01
Bats are an ideal mammalian group for exploring adaptations to fasting due to their large variety of diets and because fasting is a regular part of their life cycle. Mammals fed on a carbohydrate-rich diet experience a rapid decrease in blood glucose levels during a fast, thus, the development of mechanisms to resist the consequences of regular fasts, experienced on a daily basis, must have been crucial in the evolution of frugivorous bats. Phosphoenolpyruvate carboxykinase 1 (PEPCK1, encoded by the Pck1 gene) is the rate-limiting enzyme in gluconeogenesis and is largely responsible for the maintenance of glucose homeostasis during fasting in fruit-eating bats. To test whether Pck1 has experienced adaptive evolution in frugivorous bats, we obtained Pck1 coding sequence from 20 species of bats, including five Old World fruit bats (OWFBs) (Pteropodidae) and two New World fruit bats (NWFBs) (Phyllostomidae). Our molecular evolutionary analyses of these sequences revealed that Pck1 was under purifying selection in both Old World and New World fruit bats with no evidence of positive selection detected in either ancestral branch leading to fruit bats. Interestingly, however, six specific amino acid substitutions were detected on the ancestral lineage of OWFBs. In addition, we found considerable evidence for parallel evolution, at the amino acid level, between the PEPCK1 sequences of Old World fruit bats and New World fruit bats. Test for parallel evolution showed that four parallel substitutions (Q276R, R503H, I558V and Q593R) were driven by natural selection. Our study provides evidence that Pck1 underwent parallel evolution between Old World and New World fruit bats, two lineages of mammals that feed on a carbohydrate-rich diet and experience regular periods of fasting as part of their life cycle.
Irwin, David M.; Zhang, Shuyi
2015-01-01
Bats are an ideal mammalian group for exploring adaptations to fasting due to their large variety of diets and because fasting is a regular part of their life cycle. Mammals fed on a carbohydrate-rich diet experience a rapid decrease in blood glucose levels during a fast, thus, the development of mechanisms to resist the consequences of regular fasts, experienced on a daily basis, must have been crucial in the evolution of frugivorous bats. Phosphoenolpyruvate carboxykinase 1 (PEPCK1, encoded by the Pck1 gene) is the rate-limiting enzyme in gluconeogenesis and is largely responsible for the maintenance of glucose homeostasis during fasting in fruit-eating bats. To test whether Pck1 has experienced adaptive evolution in frugivorous bats, we obtained Pck1 coding sequence from 20 species of bats, including five Old World fruit bats (OWFBs) (Pteropodidae) and two New World fruit bats (NWFBs) (Phyllostomidae). Our molecular evolutionary analyses of these sequences revealed that Pck1 was under purifying selection in both Old World and New World fruit bats with no evidence of positive selection detected in either ancestral branch leading to fruit bats. Interestingly, however, six specific amino acid substitutions were detected on the ancestral lineage of OWFBs. In addition, we found considerable evidence for parallel evolution, at the amino acid level, between the PEPCK1 sequences of Old World fruit bats and New World fruit bats. Test for parallel evolution showed that four parallel substitutions (Q276R, R503H, I558V and Q593R) were driven by natural selection. Our study provides evidence that Pck1 underwent parallel evolution between Old World and New World fruit bats, two lineages of mammals that feed on a carbohydrate-rich diet and experience regular periods of fasting as part of their life cycle. PMID:25807515
'Hurrah for the missing link!': a history of apes, ancestors and a crucial piece of evidence.
Kjaergaard, Peter C
2011-03-20
In the nineteenth century the idea of a 'missing link' connecting humans with the rest of the animal kingdom was eagerly embraced by professional scientists and popularizers. After the publication of Charles Darwin's Origin of Species in 1859, many tied the idea and subsequent search for a crucial piece of evidence to Darwin and his formulation of the theory of evolution by natural selection. This article demonstrates that the expression was widely used and that the framework for discussions about human's relation to the apes and gaps in the fossil record were well in place and widely debated long before Origin of Species became the standard reference for discussing human evolution. In the second half of the century the missing link gradually became the ultimate prize in palaeoanthropology and grew into one of the most powerful, celebrated and criticized icons of human evolution.
Atmospheric carbon dioxide: a driver of photosynthetic eukaryote evolution for over a billion years?
Beerling, David J.
2012-01-01
Exciting evidence from diverse fields, including physiology, evolutionary biology, palaeontology, geosciences and molecular genetics, is providing an increasingly secure basis for robustly formulating and evaluating hypotheses concerning the role of atmospheric carbon dioxide (CO2) in the evolution of photosynthetic eukaryotes. Such studies span over a billion years of evolutionary change, from the origins of eukaryotic algae through to the evolution of our present-day terrestrial floras, and have relevance for plant and ecosystem responses to future global CO2 increases. The papers in this issue reflect the breadth and depth of approaches being adopted to address this issue. They reveal new discoveries pointing to deep evidence for the role of CO2 in shaping evolutionary changes in plants and ecosystems, and establish an exciting cross-disciplinary research agenda for uncovering new insights into feedbacks between biology and the Earth system. PMID:22232760
Atmospheric carbon dioxide: a driver of photosynthetic eukaryote evolution for over a billion years?
Beerling, David J
2012-02-19
Exciting evidence from diverse fields, including physiology, evolutionary biology, palaeontology, geosciences and molecular genetics, is providing an increasingly secure basis for robustly formulating and evaluating hypotheses concerning the role of atmospheric carbon dioxide (CO(2)) in the evolution of photosynthetic eukaryotes. Such studies span over a billion years of evolutionary change, from the origins of eukaryotic algae through to the evolution of our present-day terrestrial floras, and have relevance for plant and ecosystem responses to future global CO(2) increases. The papers in this issue reflect the breadth and depth of approaches being adopted to address this issue. They reveal new discoveries pointing to deep evidence for the role of CO(2) in shaping evolutionary changes in plants and ecosystems, and establish an exciting cross-disciplinary research agenda for uncovering new insights into feedbacks between biology and the Earth system.
Parasite transmission among relatives halts Red Queen dynamics.
Greenspoon, Philip B; Mideo, Nicole
2017-03-01
The theory that coevolving hosts and parasites create a fluctuating selective environment for one another (i.e., produce Red Queen dynamics) has deep roots in evolutionary biology; yet empirical evidence for Red Queen dynamics remains scarce. Fluctuating coevolutionary dynamics underpin the Red Queen hypothesis for the evolution of sex, as well as hypotheses explaining the persistence of genetic variation under sexual selection, local parasite adaptation, the evolution of mutation rate, and the evolution of nonrandom mating. Coevolutionary models that exhibit Red Queen dynamics typically assume that hosts and parasites encounter one another randomly. However, if related individuals aggregate into family groups or are clustered spatially, related hosts will be more likely to encounter parasites transmitted by genetically similar individuals. Using a model that incorporates familial parasite transmission, we show that a slight degree of familial parasite transmission is sufficient to halt coevolutionary fluctuations. Our results predict that evidence for Red Queen dynamics, and its evolutionary consequences, are most likely to be found in biological systems in which hosts and parasites mix mainly at random, and are less likely to be found in systems with familial aggregation. This presents a challenge to the Red Queen hypothesis and other hypotheses that depend on coevolutionary cycling. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Rapid evolution of reproductive isolation between incipient outcrossing and selfing Clarkia species.
Briscoe Runquist, Ryan D; Chu, Eric; Iverson, Justin L; Kopp, Jason C; Moeller, David A
2014-10-01
A major goal of speciation research is to understand the processes involved in the earliest stages of the evolution of reproductive isolation (RI). One important challenge has been to identify systems where lineages have very recently diverged and opportunities for hybridization are present. We conducted a comprehensive examination of the components of RI across the life cycle of two subspecies of Clarkia xantiana, which diverged recently (ca. 65,000 bp). One subspecies is primarily outcrossing, but self-compatible, whereas the other is primarily selfing. The subspecies co-occur in a zone of sympatry but hybrids are rarely observed. Premating barriers resulted in nearly complete isolation in both subspecies with flowering time and pollinator preference (for the outcrosser over the selfer) as the strongest barriers. We found that the outcrosser had consistently more competitive pollen, facilitating hybridization in one direction, but no evidence for pollen-pistil interactions as an isolating barrier. Surprisingly, postzygotic isolation was detected at the stage of hybrid seed development, but in no subsequent life stages. This crossing barrier was asymmetric with crosses from the selfer to outcrosser most frequently failing. Collectively, the results provide evidence for rapid evolution of multiple premating and postzygotic barriers despite a very recent divergence time. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
A key ecological trait drove the evolution of biparental care and monogamy in an amphibian.
Brown, Jason L; Morales, Victor; Summers, Kyle
2010-04-01
Linking specific ecological factors to the evolution of parental care pattern and mating system is a difficult task of key importance. We provide evidence from comparative analyses that an ecological factor (breeding pool size) is associated with the evolution of parental care across all frogs. We further show that the most intensive form of parental care (trophic egg feeding) evolved in concert with the use of small pools for tadpole deposition and that egg feeding was associated with the evolution of biparental care. Previous research on two Peruvian poison frogs (Ranitomeya imitator and Ranitomeya variabilis) revealed similar life histories, with the exception of breeding pool size. This key ecological difference led to divergence in parental care patterns and mating systems. We present ecological field experiments that demonstrate that biparental care is essential to tadpole survival in small (but not large) pools. Field observations demonstrate social monogamy in R. imitator, the species that uses small pools. Molecular analyses demonstrate genetic monogamy in R. imitator, the first example of genetic monogamy in an amphibian. In total, this evidence constitutes the most complete documentation to date that a single ecological factor drove the evolution of biparental care and genetic and social monogamy in an animal.
Ritual human sacrifice promoted and sustained the evolution of stratified societies.
Watts, Joseph; Sheehan, Oliver; Atkinson, Quentin D; Bulbulia, Joseph; Gray, Russell D
2016-04-14
Evidence for human sacrifice is found throughout the archaeological record of early civilizations, the ethnographic records of indigenous world cultures, and the texts of the most prolific contemporary religions. According to the social control hypothesis, human sacrifice legitimizes political authority and social class systems, functioning to stabilize such social stratification. Support for the social control hypothesis is largely limited to historical anecdotes of human sacrifice, where the causal claims have not been subject to rigorous quantitative cross-cultural tests. Here we test the social control hypothesis by applying Bayesian phylogenetic methods to a geographically and socially diverse sample of 93 traditional Austronesian cultures. We find strong support for models in which human sacrifice stabilizes social stratification once stratification has arisen, and promotes a shift to strictly inherited class systems. Whilst evolutionary theories of religion have focused on the functionality of prosocial and moral beliefs, our results reveal a darker link between religion and the evolution of modern hierarchical societies.
New insight into the shape coexistence and shape evolution of {sup 157}Yb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, C.; Hua, H.; Li, X. Q.
2011-01-15
High-spin states in {sup 157}Yb have been populated in the {sup 144}Sm({sup 16}O,3n){sup 157}Yb fusion-evaporation reaction at a beam energy of 85 MeV. Two rotational bands built on the {nu}f{sub 7/2} and {nu}h{sub 9/2} intrinsic states, respectively, have been established for the first time. The newly observed {nu}f{sub 7/2} band and previously known {nu}i{sub 13/2} band in {sup 157}Yb are discussed in terms of total Routhian surface methods and compared with the structures in the neighboring N = 87 isotones. The structural characters observed in {sup 157}Yb provide evidence for shape coexistence of three distinct shapes: prolate, triaxial, and oblate.more » At higher spins, both the {nu}f{sub 7/2} band and {nu}i{sub 13/2} band in {sup 157}Yb undergo a shape evolution with sizable alignments occurring.« less
Isotope geochronology of the Precambrian
NASA Astrophysics Data System (ADS)
Levskii, L. K.; Levchenkov, O. A.
This symposium discusses the use of isotope methods for establishing the geochronology of Precambrian formations, with special consideration given to geochronological studies of the early phases of the earth's core evolution in the Baltic and Vitim-Aldan shields and the Enderby Land (Antarctica). Attention is also given to the Early Archean Vodlozero gneiss complex and its structural-metamorphic evolution, the influence of geological events during the Proterozoic on the state of the U-Pb and Rb-Sr systems in the Archean postkinematic granites of Karelia, the Rb-Sr systems in the andesite basalts of the Suna-Semch' region (Karelia), and the geochronology of the Karelian granite-greenstone region. Also discussed are the petrogenesis and age of the rocks from the Kola ultradeep borehole, the isotope-geochronological evidence for the early Precambrian history of the Aldan-Olekma region, the Rb-Sr systems in metasedimentary rocks of the Khani graben, and the U-Pb ages of zircons from polymetamorphic rocks of the Archean granulite complex of Enderby Land.
NASA Astrophysics Data System (ADS)
Ruffell, Alastair; McKinley, Jennifer
2014-02-01
Geomorphology plays a critical role in two areas of geoforensics: searching the land for surface or buried objects and sampling scenes of crime and control locations as evidence. Associated geoscience disciplines have substantial bodies of work dedicated to their relevance in forensic investigations, yet geomorphology (specifically landforms, their mapping and evolution, soils and relationship to geology and biogeography) have not had similar public exposure. This is strange considering how fundamental to legal enquiries the location of a crime and its evolution are, as this article will demonstrate. This work aims to redress the balance by showing how geomorphology featured in one of the earliest works on forensic science methods, and has continued to play a role in the sociology, archaeology, criminalistics and geoforensics of crime. Traditional landscape interpretation from aerial photography is used to demonstrate how a geomorphological approach saved police time in the search for a clandestine grave. The application geomorphology has in military/humanitarian geography and environmental/engineering forensics is briefly discussed as these are also regularly reviewed in courts of law.
Misuses of biology in the context of the paranormal.
Hewitt, G C
1988-04-15
Public suspicion of science stems from science's challenging of perceptions and myths about reality, and a public fear of new technology. The result is a susceptibility to pseudoscience. In claiming that creation 'science' is as valid as evolution the creationists misquote scientists and seek to spread their own 'scientific' myths concerning a young age for the earth, an act of creation based on a particular literalist interpretation of the Christian Bible and a single worldwide flood. They use methods of debate and politics, rather than scientific research. A selection of their arguments is examined and the nature of the evidence for evolution is discussed. Problems with the creation 'science' model are noted. In the myth of the hundredth monkey phenomenon, original research is misquoted to denigrate scientific research and support sentimental ideas of paranormal events. The misuse of science is seen as damaging to society because it reduces the effective gathering and application of scientific information. However, pseudoscience provides a valuable guide to gaps in public scientific education.
Multi-level human evolution: ecological patterns in hominin phylogeny.
Parravicini, Andrea; Pievani, Telmo
2016-06-20
Evolution is a process that occurs at many different levels, from genes to ecosystems. Genetic variations and ecological pressures are hence two sides of the same coin; but due both to fragmentary evidence and to the influence of a gene-centered and gradualistic approach to evolutionary phenomena, the field of paleoanthropology has been slow to take the role of macro-evolutionary patterns (i.e. ecological and biogeographical at large scale) seriously. However, several very recent findings in paleoanthropology stress both climate instability and ecological disturbance as key factors affecting the highly branching hominin phylogeny, from the earliest hominins to the appearance of cognitively modern humans. Allopatric speciation due to geographic displacement, turnover-pulses of species, adaptive radiation, mosaic evolution of traits in several coeval species, bursts of behavioral innovation, serial dispersals out of Africa, are just some of the macro-evolutionary patterns emerging from the field. The multilevel approach to evolution proposed by paleontologist Niles Eldredge is adopted here as interpretative tool, and has yielded a larger picture of human evolution that integrates different levels of evolutionary change, from local adaptations in limited ecological niches to dispersal phenotypes able to colonize an unprecedented range of ecosystems. Changes in global climate and Earth's surface most greatly affected human evolution. Precisely because it is cognitively hard for us to appreciate the long-term common destiny we share with the whole biosphere, it is particularly valuable to highlight the accumulating evidence that human evolution has been deeply affected by global ecological changes that transformed our African continent of origin.
Kwantes, Michiel; Liebsch, Daniela; Verelst, Wim
2012-01-01
Land plants have a remarkable life cycle that alternates between a diploid sporophytic and a haploid gametophytic generation, both of which are multicellular and changed drastically during evolution. Classical MIKC MADS-domain (MIKCC) transcription factors are famous for their role in sporophytic development and are considered crucial for its evolution. About the regulation of gametophyte development, in contrast, little is known. Recent evidence indicated that the closely related MIKC* MADS-domain proteins are important for the functioning of the Arabidopsis thaliana male gametophyte (pollen). Furthermore, also in bryophytes, several MIKC* genes are expressed in the haploid generation. Therefore, that MIKC* genes have a similar role in the evolution of the gametophytic phase as MIKCC genes have in the sporophyte is a tempting hypothesis. To get a comprehensive view of the involvement of MIKC* genes in gametophyte evolution, we isolated them from a broad variety of vascular plants, including the lycophyte Selaginella moellendorffii, the fern Ceratopteris richardii, and representatives of several flowering plant lineages. Phylogenetic analysis revealed an extraordinary conservation not found in MIKCC genes. Moreover, expression and interaction studies suggest that a conserved and characteristic network operates in the gametophytes of all tested model organisms. Additionally, we found that MIKC* genes probably evolved from an ancestral MIKCC-like gene by a duplication in the Keratin-like region. We propose that this event facilitated the independent evolution of MIKC* and MIKCC protein networks and argue that whereas MIKCC genes diversified and attained new functions, MIKC* genes retained a conserved role in the gametophyte during land plant evolution.
Adaptive Patterns of Mitogenome Evolution Are Associated with the Loss of Shell Scutes in Turtles.
Escalona, Tibisay; Weadick, Cameron J; Antunes, Agostinho
2017-10-01
The mitochondrial genome encodes several protein components of the oxidative phosphorylation (OXPHOS) pathway and is critical for aerobic respiration. These proteins have evolved adaptively in many taxa, but linking molecular-level patterns with higher-level attributes (e.g., morphology, physiology) remains a challenge. Turtles are a promising system for exploring mitochondrial genome evolution as different species face distinct respiratory challenges and employ multiple strategies for ensuring efficient respiration. One prominent adaptation to a highly aquatic lifestyle in turtles is the secondary loss of keratenized shell scutes (i.e., soft-shells), which is associated with enhanced swimming ability and, in some species, cutaneous respiration. We used codon models to examine patterns of selection on mitochondrial protein-coding genes along the three turtle lineages that independently evolved soft-shells. We found strong evidence for positive selection along the branches leading to the pig-nosed turtle (Carettochelys insculpta) and the softshells clade (Trionychidae), but only weak evidence for the leatherback (Dermochelys coriacea) branch. Positively selected sites were found to be particularly prevalent in OXPHOS Complex I proteins, especially subunit ND2, along both positively selected lineages, consistent with convergent adaptive evolution. Structural analysis showed that many of the identified sites are within key regions or near residues involved in proton transport, indicating that positive selection may have precipitated substantial changes in mitochondrial function. Overall, our study provides evidence that physiological challenges associated with adaptation to a highly aquatic lifestyle have shaped the evolution of the turtle mitochondrial genome in a lineage-specific manner. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Clinical management of resistance evolution in a bacterial infection: A case study.
Woods, Robert J; Read, Andrew F
2015-10-10
We report the case of a patient with a chronic bacterial infection that could not be cured. Drug treatment became progressively less effective due to antibiotic resistance, and the patient died, in effect from overwhelming evolution. Even though the evolution of drug resistance was recognized as a major threat, and the fundamentals of drug resistance evolution are well understood, it was impossible to make evidence-based decisions about the evolutionary risks associated with the various treatment options. We present this case to illustrate the urgent need for translational research in the evolutionary medicine of antibiotic resistance. © The Author(s) 2015. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.
Molecular evolution and the latitudinal biodiversity gradient.
Dowle, E J; Morgan-Richards, M; Trewick, S A
2013-06-01
Species density is higher in the tropics (low latitude) than in temperate regions (high latitude) resulting in a latitudinal biodiversity gradient (LBG). The LBG must be generated by differential rates of speciation and/or extinction and/or immigration among regions, but the role of each of these processes is still unclear. Recent studies examining differences in rates of molecular evolution have inferred a direct link between rate of molecular evolution and rate of speciation, and postulated these as important drivers of the LBG. Here we review the molecular genetic evidence and examine the factors that might be responsible for differences in rates of molecular evolution. Critical to this is the directionality of the relationship between speciation rates and rates of molecular evolution.
Dungan, Sarah Z; Kosyakov, Alexander; Chang, Belinda S W
2016-02-01
Cetaceans have undergone a remarkable evolutionary transition that was accompanied by many sensory adaptations, including modification of the visual system for underwater environments. Recent sequencing of cetacean genomes has made it possible to begin exploring the molecular basis of these adaptations. In this study we use in vitro expression methods to experimentally characterize the first step of the visual transduction cascade, the light activation of rhodopsin, for the killer whale. To investigate the spectral effects of amino acid substitutions thought to correspond with absorbance shifts relative to terrestrial mammals, we used the orca gene as a background for the first site-directed mutagenesis experiments in a cetacean rhodopsin. The S292A mutation had the largest effect, and was responsible for the majority of the spectral difference between killer whale and bovine (terrestrial) rhodopsin. Using codon-based likelihood models, we also found significant evidence for positive selection in cetacean rhodopsin sequences, including on spectral tuning sites we experimentally mutated. We then investigated patterns of ecological divergence that may be correlated with rhodopsin functional variation by using a series of clade models that partitioned the data set according to phylogeny, habitat, and foraging depth zone. Only the model partitioning according to depth was significant. This suggests that foraging dives might be a selective regime influencing cetacean rhodopsin divergence, and our experimental results indicate that spectral tuning may be playing an adaptive role in this process. Our study demonstrates that combining computational and experimental methods is crucial for gaining insight into the selection pressures underlying molecular evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sallam, Hesham M; Seiffert, Erik R
2016-01-01
The Fayum Depression of Egypt has yielded fossils of hystricognathous rodents from multiple Eocene and Oligocene horizons that range in age from ∼37 to ∼30 Ma and document several phases in the early evolution of crown Hystricognathi and one of its major subclades, Phiomorpha. Here we describe two new genera and species of basal phiomorphs, Birkamys korai and Mubhammys vadumensis, based on rostra and maxillary and mandibular remains from the terminal Eocene (∼34 Ma) Fayum Locality 41 (L-41). Birkamys is the smallest known Paleogene hystricognath, has very simple molars, and, like derived Oligocene-to-Recent phiomorphs (but unlike contemporaneous and older taxa) apparently retained dP(4)∕4 late into life, with no evidence for P(4)∕4 eruption or formation. Mubhammys is very similar in dental morphology to Birkamys, and also shows no evidence for P(4)∕4 formation or eruption, but is considerably larger. Though parsimony analysis with all characters equally weighted places Birkamys and Mubhammys as sister taxa of extant Thryonomys to the exclusion of much younger relatives of that genus, all other methods (standard Bayesian inference, Bayesian "tip-dating," and parsimony analysis with scaled transitions between "fixed" and polymorphic states) place these species in more basal positions within Hystricognathi, as sister taxa of Oligocene-to-Recent phiomorphs. We also employ tip-dating as a means for estimating the ages of early hystricognath-bearing localities, many of which are not well-constrained by geological, geochronological, or biostratigraphic evidence. By simultaneously taking into account phylogeny, evolutionary rates, and uniform priors that appropriately encompass the range of possible ages for fossil localities, dating of tips in this Bayesian framework allows paleontologists to move beyond vague and assumption-laden "stage of evolution" arguments in biochronology to provide relatively rigorous age assessments of poorly-constrained faunas. This approach should become increasingly robust as estimates are combined from multiple independent analyses of distantly related clades, and is broadly applicable across the tree of life; as such it is deserving of paleontologists' close attention. Notably, in the example provided here, hystricognathous rodents from Libya and Namibia that are controversially considered to be of middle Eocene age are instead estimated to be of late Eocene and late Oligocene age, respectively. Finally, we reconstruct the evolution of first lower molar size among Paleogene African hystricognaths using a Bayesian approach; the results of this analysis reconstruct a rapid latest Eocene dwarfing event along the lineage leading to Birkamys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang; Sun, Xin
Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang; Sun, Xin
Complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field (PF) method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the PF method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiated nuclearmore » materials are reviewed. The review shows that 1) FP models can correctly describe important phenomena such as spatial dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; 2) The PF method can qualitatively and quantitatively simulate 2-D and 3-D microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and 3) The FP method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the PF method, as applied to irradiation effects in nuclear materials.« less
Li, Yulan; Hu, Shenyang; Sun, Xin; ...
2017-04-14
Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less
Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong
2016-10-01
Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
A Syst-OMICS Approach to Ensuring Food Safety and Reducing the Economic Burden of Salmonellosis.
Emond-Rheault, Jean-Guillaume; Jeukens, Julie; Freschi, Luca; Kukavica-Ibrulj, Irena; Boyle, Brian; Dupont, Marie-Josée; Colavecchio, Anna; Barrere, Virginie; Cadieux, Brigitte; Arya, Gitanjali; Bekal, Sadjia; Berry, Chrystal; Burnett, Elton; Cavestri, Camille; Chapin, Travis K; Crouse, Alanna; Daigle, France; Danyluk, Michelle D; Delaquis, Pascal; Dewar, Ken; Doualla-Bell, Florence; Fliss, Ismail; Fong, Karen; Fournier, Eric; Franz, Eelco; Garduno, Rafael; Gill, Alexander; Gruenheid, Samantha; Harris, Linda; Huang, Carol B; Huang, Hongsheng; Johnson, Roger; Joly, Yann; Kerhoas, Maud; Kong, Nguyet; Lapointe, Gisèle; Larivière, Line; Loignon, Stéphanie; Malo, Danielle; Moineau, Sylvain; Mottawea, Walid; Mukhopadhyay, Kakali; Nadon, Céline; Nash, John; Ngueng Feze, Ida; Ogunremi, Dele; Perets, Ann; Pilar, Ana V; Reimer, Aleisha R; Robertson, James; Rohde, John; Sanderson, Kenneth E; Song, Lingqiao; Stephan, Roger; Tamber, Sandeep; Thomassin, Paul; Tremblay, Denise; Usongo, Valentine; Vincent, Caroline; Wang, Siyun; Weadge, Joel T; Wiedmann, Martin; Wijnands, Lucas; Wilson, Emily D; Wittum, Thomas; Yoshida, Catherine; Youfsi, Khadija; Zhu, Lei; Weimer, Bart C; Goodridge, Lawrence; Levesque, Roger C
2017-01-01
The Salmonella Syst-OMICS consortium is sequencing 4,500 Salmonella genomes and building an analysis pipeline for the study of Salmonella genome evolution, antibiotic resistance and virulence genes. Metadata, including phenotypic as well as genomic data, for isolates of the collection are provided through the Salmonella Foodborne Syst-OMICS database (SalFoS), at https://salfos.ibis.ulaval.ca/. Here, we present our strategy and the analysis of the first 3,377 genomes. Our data will be used to draw potential links between strains found in fresh produce, humans, animals and the environment. The ultimate goals are to understand how Salmonella evolves over time, improve the accuracy of diagnostic methods, develop control methods in the field, and identify prognostic markers for evidence-based decisions in epidemiology and surveillance.
NASA Technical Reports Server (NTRS)
Fu, L.-L.; Chelton, D. B.
1985-01-01
A new method is developed for studying large-scale temporal variability of ocean currents from satellite altimetric sea level measurements at intersections (crossovers) of ascending and descending orbit ground tracks. Using this method, sea level time series can be constructed from crossover sea level differences in small sample areas where altimetric crossovers are clustered. The method is applied to Seasat altimeter data to study the temporal evolution of the Antarctic Circumpolar Current (ACC) over the 3-month Seasat mission (July-October 1978). The results reveal a generally eastward acceleration of the ACC around the Southern Ocean with meridional disturbances which appear to be associated with bottom topographic features. This is the first direct observational evidence for large-scale coherence in the temporal variability of the ACC. It demonstrates the great potential of satellite altimetry for synoptic observation of temporal variability of the world ocean circulation.
Photodynamic therapy in dermatology: past, present, and future
NASA Astrophysics Data System (ADS)
Darlenski, Razvigor; Fluhr, Joachim W.
2013-06-01
Photodynamic therapy (PDT) is a noninvasive therapeutic method first introduced in the field of dermatology. It is mainly used for the treatment of precancerous and superficial malignant skin tumors. Today PDT finds new applications not only for nononcologic dermatoses but also in the field of other medical specialties such as otorhinolaryngology, ophthalmology, neurology, gastroenterology, and urology. We are witnessing a broadening of the spectrum of skin diseases that are treated by PDT. Since its introduction, PDT protocol has evolved significantly in terms of increasing method efficacy and patient safety. In this era of evidence-based medicine, it is expected that much effort will be put into creating a worldwide accepted consensus on PDT. A review on the current knowledge of PDT is given, and the historical basis of the method's evolution since its introduction in the 1900s is presented. At the end, future challenges of PDT are focused on discussing gaps that exist for research in the field.
Fluid dynamic modeling of nano-thermite reactions
NASA Astrophysics Data System (ADS)
Martirosyan, Karen S.; Zyskin, Maxim; Jenkins, Charles M.; Yuki Horie, Yasuyuki
2014-03-01
This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stage of reaction and allows the investigation of "slower" reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor.
Fluid dynamic modeling of nano-thermite reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martirosyan, Karen S., E-mail: karen.martirosyan@utb.edu; Zyskin, Maxim; Jenkins, Charles M.
2014-03-14
This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stagemore » of reaction and allows the investigation of “slower” reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor.« less
Examining the evidence for dynamical dark energy.
Zhao, Gong-Bo; Crittenden, Robert G; Pogosian, Levon; Zhang, Xinmin
2012-10-26
We apply a new nonparametric Bayesian method for reconstructing the evolution history of the equation of state w of dark energy, based on applying a correlated prior for w(z), to a collection of cosmological data. We combine the latest supernova (SNLS 3 year or Union 2.1), cosmic microwave background, redshift space distortion, and the baryonic acoustic oscillation measurements (including BOSS, WiggleZ, and 6dF) and find that the cosmological constant appears consistent with current data, but that a dynamical dark energy model which evolves from w<-1 at z~0.25 to w>-1 at higher redshift is mildly favored. Estimates of the Bayesian evidence show little preference between the cosmological constant model and the dynamical model for a range of correlated prior choices. Looking towards future data, we find that the best fit models for current data could be well distinguished from the ΛCDM model by observations such as Planck and Euclid-like surveys.
Direct evidence of the recombination of silicon interstitial atoms at the silicon surface
NASA Astrophysics Data System (ADS)
Lamrani, Y.; Cristiano, F.; Colombeau, B.; Scheid, E.; Calvo, P.; Schäfer, H.; Claverie, Alain
2004-02-01
In this experiment, a Si wafer containing four lightly doped B marker layers epitaxially grown by CVD has been implanted with 100 keV Si + ions to a dose of 2 × 10 14 ions/cm 2 and annealed at 850 °C for several times in an RTA system in flowing N 2. TEM and SIMS analysis, in conjunction with a transient enhanced diffusion (TED) evaluation method based on the kick-out diffusion mechanism, have allowed us to accurately study the boron TED evolution in presence of extended defects. We show that the silicon surface plays a key role in the recombination of Si interstitial atoms by providing the first experimental evidence of the resulting Si ints supersaturation gradient between the defect region and the surface. Our results indicate an upper limit of about 200 nm for the surface recombination length of Si interstitials at 850 °C in a N 2 ambient.
Direct evidence of milk consumption from ancient human dental calculus.
Warinner, C; Hendy, J; Speller, C; Cappellini, E; Fischer, R; Trachsel, C; Arneborg, J; Lynnerup, N; Craig, O E; Swallow, D M; Fotakis, A; Christensen, R J; Olsen, J V; Liebert, A; Montalva, N; Fiddyment, S; Charlton, S; Mackie, M; Canci, A; Bouwman, A; Rühli, F; Gilbert, M T P; Collins, M J
2014-11-27
Milk is a major food of global economic importance, and its consumption is regarded as a classic example of gene-culture evolution. Humans have exploited animal milk as a food resource for at least 8500 years, but the origins, spread, and scale of dairying remain poorly understood. Indirect lines of evidence, such as lipid isotopic ratios of pottery residues, faunal mortality profiles, and lactase persistence allele frequencies, provide a partial picture of this process; however, in order to understand how, where, and when humans consumed milk products, it is necessary to link evidence of consumption directly to individuals and their dairy livestock. Here we report the first direct evidence of milk consumption, the whey protein β-lactoglobulin (BLG), preserved in human dental calculus from the Bronze Age (ca. 3000 BCE) to the present day. Using protein tandem mass spectrometry, we demonstrate that BLG is a species-specific biomarker of dairy consumption, and we identify individuals consuming cattle, sheep, and goat milk products in the archaeological record. We then apply this method to human dental calculus from Greenland's medieval Norse colonies, and report a decline of this biomarker leading up to the abandonment of the Norse Greenland colonies in the 15(th) century CE.
Hallett, Timothy B; Gregson, Simon; Mugurungi, Owen; Gonese, Elizabeth; Garnett, Geoff P
2009-06-01
Determining whether interventions to reduce HIV transmission have worked is essential, but complicated by the potential for generalised epidemics to evolve over time without individuals changing risk behaviour. We aimed to develop a method to evaluate evidence for changes in risk behaviour altering the course of an HIV epidemic. We developed a mathematical model of HIV transmission, incorporating the potential for natural changes in the epidemic as it matures and the introduction of antiretroviral treatment, and applied a Bayesian Melding framework, in which the model and observed trends in prevalence can be compared. We applied the model to Zimbabwe, using HIV prevalence estimates from antenatal clinic surveillance and house-hold based surveys, and basing model parameters on data from sexual behaviour surveys. There was strong evidence for reductions in risk behaviour stemming HIV transmission. We estimate these changes occurred between 1999 and 2004 and averted 660,000 (95% credible interval: 460,000-860,000) infections by 2008. The model and associated analysis framework provide a robust way to evaluate the evidence for changes in risk behaviour affecting the course of HIV epidemics, avoiding confounding by the natural evolution of HIV epidemics.
Toward a Transdisciplinary Model of Evidence-Based Practice
Satterfield, Jason M; Spring, Bonnie; Brownson, Ross C; Mullen, Edward J; Newhouse, Robin P; Walker, Barbara B; Whitlock, Evelyn P
2009-01-01
Context This article describes the historical context and current developments in evidence-based practice (EBP) for medicine, nursing, psychology, social work, and public health, as well as the evolution of the seminal “three circles” model of evidence-based medicine, highlighting changes in EBP content, processes, and philosophies across disciplines. Methods The core issues and challenges in EBP are identified by comparing and contrasting EBP models across various health disciplines. Then a unified, transdisciplinary EBP model is presented, drawing on the strengths and compensating for the weaknesses of each discipline. Findings Common challenges across disciplines include (1) how “evidence” should be defined and comparatively weighted; (2) how and when the patient's and/or other contextual factors should enter the clinical decision-making process; (3) the definition and role of the “expert”; and (4) what other variables should be considered when selecting an evidence-based practice, such as age, social class, community resources, and local expertise. Conclusions A unified, transdisciplinary EBP model would address historical shortcomings by redefining the contents of each model circle, clarifying the practitioner's expertise and competencies, emphasizing shared decision making, and adding both environmental and organizational contexts. Implications for academia, practice, and policy also are discussed. PMID:19523122
Direct evidence of milk consumption from ancient human dental calculus
Warinner, C.; Hendy, J.; Speller, C.; Cappellini, E.; Fischer, R.; Trachsel, C.; Arneborg, J.; Lynnerup, N.; Craig, O. E.; Swallow, D. M.; Fotakis, A.; Christensen, R. J.; Olsen, J. V.; Liebert, A.; Montalva, N.; Fiddyment, S.; Charlton, S.; Mackie, M.; Canci, A.; Bouwman, A.; Rühli, F.; Gilbert, M. T. P.; Collins, M. J.
2014-01-01
Milk is a major food of global economic importance, and its consumption is regarded as a classic example of gene-culture evolution. Humans have exploited animal milk as a food resource for at least 8500 years, but the origins, spread, and scale of dairying remain poorly understood. Indirect lines of evidence, such as lipid isotopic ratios of pottery residues, faunal mortality profiles, and lactase persistence allele frequencies, provide a partial picture of this process; however, in order to understand how, where, and when humans consumed milk products, it is necessary to link evidence of consumption directly to individuals and their dairy livestock. Here we report the first direct evidence of milk consumption, the whey protein β-lactoglobulin (BLG), preserved in human dental calculus from the Bronze Age (ca. 3000 BCE) to the present day. Using protein tandem mass spectrometry, we demonstrate that BLG is a species-specific biomarker of dairy consumption, and we identify individuals consuming cattle, sheep, and goat milk products in the archaeological record. We then apply this method to human dental calculus from Greenland's medieval Norse colonies, and report a decline of this biomarker leading up to the abandonment of the Norse Greenland colonies in the 15th century CE. PMID:25429530
Panspermia and horizontal gene transfer
NASA Astrophysics Data System (ADS)
Klyce, Brig
2009-08-01
Evidence that extremophiles are hardy and ubiquitous is helping to make panspermia a respectable theory. But even if life on Earth originally came from space, biologists assume that the subsequent evolution of life is still governed by the darwinian paradigm. In this review we show how panspermia could amend darwinism and point to a cosmic source for, not only extremophiles but, all of life. This version of panspermia can be called "strong panspermia." To support this theory we will discuss recent evidence pertaining to horizontal gene transfer, viruses, genes apparently older than the Earthly evolution of the features they encode, and primate-specific genes without identifiable precursors.
Evidence from Biochemical Pathways in Favor of Unfinished Evolution Rather than Intelligent Design
ERIC Educational Resources Information Center
Behrman, Edward J.; Marzluf, George A.
2004-01-01
An argument is made in favor of imperfect or unfinished evolution based on some metabolic pathways in which it seems that intelligent design would have done better. The case studies noted indicate the absence of highly intelligent design and are not intended as comprehensive collection but as a limited sample of inefficient situations in…
P-type ATPase superfamily: evidence for critical roles for kingdom evolution.
Okamura, Hideyuki; Denawa, Masatsugu; Ohniwa, Ryosuke; Takeyasu, Kunio
2003-04-01
The P-type ATPase has become a protein superfamily. On the basis of sequence similarities, the phylogenetic analyses, and substrate specificities, this superfamily can be classified into 5 families and 11 subfamilies. A comparative phylogenetic analysis demonstrates the relationship between the molecular evolution of these subfamilies and the establishment of the kingdoms of living things.
ERIC Educational Resources Information Center
Freeland, Peter
2013-01-01
Charles Darwin supposed that evolution involved a process of gradual change, generated randomly, with the selection and retention over many generations of survival-promoting features. Some theists have never accepted this idea. "Intelligent design" is a relatively recent theory, supposedly based on scientific evidence, which attempts to…
Gaps in the Rock and Fossil Records and Implications for the Rate and Mode of Evolution.
ERIC Educational Resources Information Center
Smith, Grant Sackett
1988-01-01
Examines three types of gaps in the fossil record: real gaps, imaginary gaps, and temporary gaps. Reviews some recent evidence concerning evolution from the paleontological record of microfossils, invertebrates, and vertebrates in order to make some general conclusions regarding the manner in which life evolved on earth. (CW)
ERIC Educational Resources Information Center
West, Elizabeth A.; McCollow, Meaghan; Umbarger, Gardner; Kidwell, James; Cote, Debra L.
2013-01-01
The purpose of this paper is to provide a current look at the status of evidence-based practice (EBP) for students with intellectual disability and autism spectrum disorders. Specifically, this paper will (1) provide an introduction to the history and evolution of the use of levels of evidence, (2) discuss the importance of EBPs, (3) identify…
NASA Astrophysics Data System (ADS)
Valsecchi, Francesca
Binary star systems hosting black holes, neutron stars, and white dwarfs are unique laboratories for investigating both extreme physical conditions, and stellar and binary evolution. Black holes and neutron stars are observed in X-ray binaries, where mass accretion from a stellar companion renders them X-ray bright. Although instruments like Chandra have revolutionized the field of X-ray binaries, our theoretical understanding of their origin and formation lags behind. Progress can be made by unravelling the evolutionary history of observed systems. As part of my thesis work, I have developed an analysis method that uses detailed stellar models and all the observational constraints of a system to reconstruct its evolutionary path. This analysis models the orbital evolution from compact-object formation to the present time, the binary orbital dynamics due to explosive mass loss and a possible kick at core collapse, and the evolution from the progenitor's Zero Age Main Sequence to compact-object formation. This method led to a theoretical model for M33 X-7, one of the most massive X-ray binaries known and originally marked as an evolutionary challenge. Compact objects are also expected gravitational wave (GW) sources. In particular, double white dwarfs are both guaranteed GW sources and observed electromagnetically. Although known systems show evidence of tidal deformation and a successful GW astronomy requires realistic models of the sources, detached double white dwarfs are generally approximated to point masses. For the first time, I used realistic models to study tidally-driven periastron precession in eccentric binaries. I demonstrated that its imprint on the GW signal yields constrains on the components' masses and that the source would be misclassified if tides are neglected. Beyond this adiabatic precession, tidal dissipation creates a sink of orbital angular momentum. Its efficiency is strongest when tides are dynamic and excite the components' free oscillation modes. Accounting for this effect will determine whether our interpretation of current and future observations will constrain the sources' true physical properties. To investigate dynamic tides I have developed CAFein, a novel code that calculates forced non-adiabatic stellar oscillations using a highly stable and efficient numerical method.
The predictability of evolution: glimpses into a post-Darwinian world.
Conway Morris, Simon
2009-11-01
The very success of the Darwinian explanation, in not only demonstrating evolution from multiple lines of evidence but also in providing some plausible explanations, paradoxically seems to have served to have stifled explorations into other areas of investigation. The fact of evolution is now almost universally yoked to the assumption that its outcomes are random, trends are little more than drunkard's walks, and most evolutionary products are masterpieces of improvisation and far from perfect. But is this correct? Let us consider some alternatives. Is there evidence that evolution could in anyway be predictable? Can we identify alternative forms of biological organizations and if so how viable are they? Why are some molecules so extraordinarily versatile, while others can be spoken of as "molecules of choice"? How fortuitous are the major transitions in the history of life? What implications might this have for the Tree of Life? To what extent is evolutionary diversification constrained or facilitated by prior states? Are evolutionary outcomes merely sufficient or alternatively are they highly efficient, even superb? Here I argue that in sharp contradistinction to an orthodox Darwinian view, not only is evolution much more predictable than generally assumed but also investigation of its organizational substrates, including those of sensory systems, which indicates that it is possible to identify a predictability to the process and outcomes of evolution. If correct, the implications may be of some significance, not least in separating the unexceptional Darwinian mechanisms from underlying organizational principles, which may indicate evolutionary inevitabilities.
The evolution of rotating very massive stars with LMC composition
NASA Astrophysics Data System (ADS)
Köhler, K.; Langer, N.; de Koter, A.; de Mink, S. E.; Crowther, P. A.; Evans, C. J.; Gräfener, G.; Sana, H.; Sanyal, D.; Schneider, F. R. N.; Vink, J. S.
2015-01-01
Context. With growing evidence for the existence of very massive stars at subsolar metallicity, there is an increased need for corresponding stellar evolution models. Aims: We present a dense model grid with a tailored input chemical composition appropriate for the Large Magellanic Cloud (LMC). Methods: We use a one-dimensional hydrodynamic stellar evolution code, which accounts for rotation, transport of angular momentum by magnetic fields, and stellar wind mass loss to compute our detailed models. We calculate stellar evolution models with initial masses from 70 to 500 M⊙ and with initial surface rotational velocities from 0 to 550 km s-1, covering the core-hydrogen burning phase of evolution. Results: We find our rapid rotators to be strongly influenced by rotationally induced mixing of helium, with quasi-chemically homogeneous evolution occurring for the fastest rotating models. Above 160 M⊙, homogeneous evolution is also established through mass loss, producing pure helium stars at core hydrogen exhaustion independent of the initial rotation rate. Surface nitrogen enrichment is also found for slower rotators, even for stars that lose only a small fraction of their initial mass. For models above ~150 M⊙ at zero age, and for models in the whole considered mass range later on, we find a considerable envelope inflation due to the proximity of these models to their Eddington limit. This leads to a maximum ZAMS surface temperature of ~56 000 K, at ~180 M⊙, and to an evolution of stars in the mass range 50 M⊙...100 M⊙ to the regime of luminous blue variables in the Hertzsprung-Russell diagram with high internal Eddington factors. Inflation also leads to decreasing surface temperatures during the chemically homogeneous evolution of stars above ~180 M⊙. Conclusions: The cool surface temperatures due to the envelope inflation in our models lead to an enhanced mass loss, which prevents stars at LMC metallicity from evolving into pair-instability supernovae. The corresponding spin-down will also prevent very massive LMC stars to produce long-duration gamma-ray bursts, which might, however, originate from lower masses. The dataset of the presented stellar evolution models is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A71Appendices are available in electronic form at http://www.aanda.org
Evolution of the mitochondrial genome in snakes: Gene rearrangements and phylogenetic relationships
Yan, Jie; Li, Hongdan; Zhou, Kaiya
2008-01-01
Background Snakes as a major reptile group display a variety of morphological characteristics pertaining to their diverse behaviours. Despite abundant analyses of morphological characters, molecular studies using mitochondrial and nuclear genes are limited. As a result, the phylogeny of snakes remains controversial. Previous studies on mitochondrial genomes of snakes have demonstrated duplication of the control region and translocation of trnL to be two notable features of the alethinophidian (all serpents except blindsnakes and threadsnakes) mtDNAs. Our purpose is to further investigate the gene organizations, evolution of the snake mitochondrial genome, and phylogenetic relationships among several major snake families. Results The mitochondrial genomes were sequenced for four taxa representing four different families, and each had a different gene arrangement. Comparative analyses with other snake mitochondrial genomes allowed us to summarize six types of mitochondrial gene arrangement in snakes. Phylogenetic reconstruction with commonly used methods of phylogenetic inference (BI, ML, MP, NJ) arrived at a similar topology, which was used to reconstruct the evolution of mitochondrial gene arrangements in snakes. Conclusion The phylogenetic relationships among the major families of snakes are in accordance with the mitochondrial genomes in terms of gene arrangements. The gene arrangement in Ramphotyphlops braminus mtDNA is inferred to be ancestral for snakes. After the divergence of the early Ramphotyphlops lineage, three types of rearrangements occurred. These changes involve translocations within the IQM tRNA gene cluster and the duplication of the CR. All phylogenetic methods support the placement of Enhydris plumbea outside of the (Colubridae + Elapidae) cluster, providing mitochondrial genomic evidence for the familial rank of Homalopsidae. PMID:19038056
Evolution of the Class IV HD-Zip Gene Family in Streptophytes
Zalewski, Christopher S.; Floyd, Sandra K.; Furumizu, Chihiro; Sakakibara, Keiko; Stevenson, Dennis W.; Bowman, John L.
2013-01-01
Class IV homeodomain leucine zipper (C4HDZ) genes are plant-specific transcription factors that, based on phenotypes in Arabidopsis thaliana, play an important role in epidermal development. In this study, we sampled all major extant lineages and their closest algal relatives for C4HDZ homologs and phylogenetic analyses result in a gene tree that mirrors land plant evolution with evidence for gene duplications in many lineages, but minimal evidence for gene losses. Our analysis suggests an ancestral C4HDZ gene originated in an algal ancestor of land plants and a single ancestral gene was present in the last common ancestor of land plants. Independent gene duplications are evident within several lineages including mosses, lycophytes, euphyllophytes, seed plants, and, most notably, angiosperms. In recently evolved angiosperm paralogs, we find evidence of pseudogenization via mutations in both coding and regulatory sequences. The increasing complexity of the C4HDZ gene family through the diversification of land plants correlates to increasing complexity in epidermal characters. PMID:23894141
Plasma-Assisted Growth of Silicon Nanowires by Sn Catalyst: Step-by-Step Observation
NASA Astrophysics Data System (ADS)
Tang, Jian; Maurice, Jean-Luc; Chen, Wanghua; Misra, Soumyadeep; Foldyna, Martin; Johnson, Erik V.; Roca i Cabarrocas, Pere
2016-10-01
A comprehensive study of the silicon nanowire growth process has been carried out. Silicon nanowires were grown by plasma-assisted-vapor-solid method using tin as a catalyst. We have focused on the evolution of the silicon nanowire density, morphology, and crystallinity. For the first time, the initial growth stage, which determines the nanowire (NW) density and growth direction, has been observed step by step. We provide direct evidence of the merging of Sn catalyst droplets and the formation of Si nanowires during the first 10 s of growth. We found that the density of Sn droplets decreases from 9000 Sn droplets/μm2 to 2000 droplets/μm2 after just 10 s of growth. Moreover, the long and straight nanowire density decreases from 170/μm2 after 2 min of growth to less than 10/μm2 after 90 min. This strong reduction in nanowire density is accompanied by an evolution of their morphology from cylindrical to conical, then to bend conical, and finally, to a bend inverted conical shape. Moreover, the changes in the crystalline structure of nanowires are from (i) monocrystalline to (ii) monocrystalline core/defective crystalline shell and then to (iii) monocrystalline core/defective crystalline shell/amorphous shell. The evolutions of NW properties have been explained in detail.
Rates and Patterns of Chromosomal Evolution in Drosophila pseudoobscura and D. miranda
Bartolomé, Carolina; Charlesworth, Brian
2006-01-01
Comparisons of gene orders between species permit estimation of the rate of chromosomal evolution since their divergence from a common ancestor. We have compared gene orders on three chromosomes of Drosophila pseudoobscura with its close relative, D. miranda, and the distant outgroup species, D. melanogaster, by using the public genome sequences of D. pseudoobscura and D. melanogaster and ∼50 in situ hybridizations of gene probes in D. miranda. We find no evidence for extensive transfer of genes among chromosomes in D. miranda. The rates of chromosomal rearrangements between D. miranda and D. pseudoobscura are far higher than those found before in Drosophila and approach those for nematodes, the fastest rates among higher eukaryotes. In addition, we find that the D. pseudoobscura chromosome with the highest level of inversion polymorphism (Muller's element C) does not show an unusually fast rate of evolution with respect to chromosome structure, suggesting that this classic case of inversion polymorphism reflects selection rather than mutational processes. On the basis of our results, we propose possible ancestral arrangements for the D. pseudoobscura C chromosome, which are different from those in the current literature. We also describe a new method for correcting for rearrangements that are not detected with a limited set of markers. PMID:16547107
Huang, Di-Ying; Bechly, Günter; Nel, Patricia; Engel, Michael S.; Prokop, Jakub; Azar, Dany; Cai, Chen-Yang; van de Kamp, Thomas; Staniczek, Arnold H.; Garrouste, Romain; Krogmann, Lars; dos Santos Rolo, Tomy; Baumbach, Tilo; Ohlhoff, Rainer; Shmakov, Alexey S.; Bourgoin, Thierry; Nel, André
2016-01-01
With nearly 100,000 species, the Acercaria (lice, plant lices, thrips, bugs) including number of economically important species is one of the most successful insect lineages. However, its phylogeny and evolution of mouthparts among other issues remain debatable. Here new methods of preparation permitted the comprehensive anatomical description of insect inclusions from mid-Cretaceous Burmese amber in astonishing detail. These “missing links” fossils, attributed to a new order Permopsocida, provide crucial evidence for reconstructing the phylogenetic relationships in the Acercaria, supporting its monophyly, and questioning the position of Psocodea as sister group of holometabolans in the most recent phylogenomic study. Permopsocida resolves as sister group of Thripida + Hemiptera and represents an evolutionary link documenting the transition from chewing to piercing mouthparts in relation to suction feeding. Identification of gut contents as angiosperm pollen documents an ecological role of Permopsocida as early pollen feeders with relatively unspecialized mouthparts. This group existed for 185 million years, but has never been diverse and was superseded by new pollenivorous pollinators during the Cretaceous co-evolution of insects and flowers. The key innovation of suction feeding with piercing mouthparts is identified as main event that triggered the huge post-Carboniferous radiation of hemipterans, and facilitated the spreading of pathogenic vectors. PMID:26961785
Is competition needed for ecological character displacement? Does displacement decrease competition?
Abrams, Peter A; Cortez, Michael H
2015-12-01
Interspecific competition for resources is generally considered to be the selective force driving ecological character displacement, and displacement is assumed to reduce competition. Skeptics of the prevalence of character displacement often cite lack of evidence of competition. The present article uses a simple model to examine whether competition is needed for character displacement and whether displacement reduces competition. It treats systems with competing resources, and considers cases when only one consumer evolves. It quantifies competition using several different measures. The analysis shows that selection for divergence of consumers occurs regardless of the level of between-resource competition or whether the indirect interaction between the consumers is competition (-,-), mutualism (+,+), or contramensalism (+,-). Also, divergent evolution always decreases the equilibrium population size of the evolving consumer. Whether divergence of one consumer reduces or increases the impact of a subsequent perturbation of the other consumer depends on the parameters and the method chosen for measuring competition. Divergence in mutualistic interactions may reduce beneficial effects of subsequent increases in the other consumer's population. The evolutionary response is driven by an increase in the relative abundance of the resource the consumer catches more rapidly. Such an increase can occur under several types of interaction. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Huang, Di-Ying; Bechly, Günter; Nel, Patricia; Engel, Michael S.; Prokop, Jakub; Azar, Dany; Cai, Chen-Yang; van de Kamp, Thomas; Staniczek, Arnold H.; Garrouste, Romain; Krogmann, Lars; Dos Santos Rolo, Tomy; Baumbach, Tilo; Ohlhoff, Rainer; Shmakov, Alexey S.; Bourgoin, Thierry; Nel, André
2016-03-01
With nearly 100,000 species, the Acercaria (lice, plant lices, thrips, bugs) including number of economically important species is one of the most successful insect lineages. However, its phylogeny and evolution of mouthparts among other issues remain debatable. Here new methods of preparation permitted the comprehensive anatomical description of insect inclusions from mid-Cretaceous Burmese amber in astonishing detail. These “missing links” fossils, attributed to a new order Permopsocida, provide crucial evidence for reconstructing the phylogenetic relationships in the Acercaria, supporting its monophyly, and questioning the position of Psocodea as sister group of holometabolans in the most recent phylogenomic study. Permopsocida resolves as sister group of Thripida + Hemiptera and represents an evolutionary link documenting the transition from chewing to piercing mouthparts in relation to suction feeding. Identification of gut contents as angiosperm pollen documents an ecological role of Permopsocida as early pollen feeders with relatively unspecialized mouthparts. This group existed for 185 million years, but has never been diverse and was superseded by new pollenivorous pollinators during the Cretaceous co-evolution of insects and flowers. The key innovation of suction feeding with piercing mouthparts is identified as main event that triggered the huge post-Carboniferous radiation of hemipterans, and facilitated the spreading of pathogenic vectors.
Evolutionary Association of Stomatal Traits with Leaf Vein Density in Paphiopedilum, Orchidaceae
Sun, Mei; Zhang, Juan-Juan; Cao, Kun-Fang; Hu, Hong
2012-01-01
Background Both leaf attributes and stomatal traits are linked to water economy in land plants. However, it is unclear whether these two components are associated evolutionarily. Methodology/Principal Findings In characterizing the possible effect of phylogeny on leaf attributes and stomatal traits, we hypothesized that a correlated evolution exists between the two. Using a phylogenetic comparative method, we analyzed 14 leaf attributes and stomatal traits for 17 species in Paphiopedilum. Stomatal length (SL), stomatal area (SA), upper cuticular thickness (UCT), and total cuticular thickness (TCT) showed strong phylogenetic conservatism whereas stomatal density (SD) and stomatal index (SI) were significantly convergent. Leaf vein density was correlated with SL and SD whether or not phylogeny was considered. The lower epidermal thickness (LET) was correlated positively with SL, SA, and stomatal width but negatively with SD when phylogeny was not considered. When this phylogenetic influence was factored in, only the significant correlation between SL and LET remained. Conclusion/Significance Our results support the hypothesis for correlated evolution between stomatal traits and vein density in Paphiopedilum. However, they do not provide evidence for an evolutionary association between stomata and leaf thickness. These findings lend insight into the evolution of traits related to water economy for orchids under natural selection. PMID:22768224
Huang, Di-Ying; Bechly, Günter; Nel, Patricia; Engel, Michael S; Prokop, Jakub; Azar, Dany; Cai, Chen-Yang; van de Kamp, Thomas; Staniczek, Arnold H; Garrouste, Romain; Krogmann, Lars; Dos Santos Rolo, Tomy; Baumbach, Tilo; Ohlhoff, Rainer; Shmakov, Alexey S; Bourgoin, Thierry; Nel, André
2016-03-10
With nearly 100,000 species, the Acercaria (lice, plant lices, thrips, bugs) including number of economically important species is one of the most successful insect lineages. However, its phylogeny and evolution of mouthparts among other issues remain debatable. Here new methods of preparation permitted the comprehensive anatomical description of insect inclusions from mid-Cretaceous Burmese amber in astonishing detail. These "missing links" fossils, attributed to a new order Permopsocida, provide crucial evidence for reconstructing the phylogenetic relationships in the Acercaria, supporting its monophyly, and questioning the position of Psocodea as sister group of holometabolans in the most recent phylogenomic study. Permopsocida resolves as sister group of Thripida + Hemiptera and represents an evolutionary link documenting the transition from chewing to piercing mouthparts in relation to suction feeding. Identification of gut contents as angiosperm pollen documents an ecological role of Permopsocida as early pollen feeders with relatively unspecialized mouthparts. This group existed for 185 million years, but has never been diverse and was superseded by new pollenivorous pollinators during the Cretaceous co-evolution of insects and flowers. The key innovation of suction feeding with piercing mouthparts is identified as main event that triggered the huge post-Carboniferous radiation of hemipterans, and facilitated the spreading of pathogenic vectors.
NASA Astrophysics Data System (ADS)
Walter, Emily Marie
This study investigated the influence of pedagogical content knowledge (PCK) for teaching macroevolution on non-science majors' knowledge of macroevolution and evolution acceptance. The nature and sources of an experienced faculty member's PCK and instruction as enacted PCK (Park & Oliver, 2008) were examined to consider the influence of these components on students' knowledge of macroevolution and evolution acceptance. The study used a mixed methods approach to understand how PCK influences student outcomes, and is one of the first to examine the influence of PCK on student outcomes at the post-secondary level. In addition, the study is one of few to document a significant relationship between knowledge of evolution and evolution acceptance, including how instruction influenced these outcomes. The case selected for study was a general education biology class: 270 students and their instructor. To examine the nature and sources of the instructor's PCK for teaching macroevolution, the course was observed in its entirety, the instructor was interviewed before, during, and after the evolution unit, and artifacts were collected from the evolution unit. Interview and observational protocols for the instructor were developed based on the Magnussson, Kracjik, & Borko (1999) model of PCK. The instructor was found to have deep knowledge of learners, and this knowledge in turn informed the other components of her PCK. Her knowledge of learners was built through reflecting on student exam outcomes, referencing the pedagogical literature, interactions with students, and discussions with colleagues. These findings have implications for faculty professional development. The influence of the course was examined both quantitatively and qualitatively. Students were surveyed using the Measure of Understanding of Macroevolution (Nadelson & Southerland, 2010a) the Measure of Acceptance of the Theory of Evolution (Rutledge & Warden, 1999, 2007). From pre- to post-test, students became significantly more accepting of evolution (p < .0001) and made significant gains in understanding macroevolution ( p < .0001). Knowledge of macroevolution and evolution acceptance were also significantly correlated (r[268] = .47, p < .01). Twelve students initially scoring low on both instruments also interviewed to examine how the instruction influenced their responses on the instruments. Nine of the students became more accepting of evolution, which they attributed to learning about the volume of evidence for evolution (especially transitional fossils) and learning about the history of life. These findings have important implications for evolution education policy and practice at the post-secondary level.
Obscuration-dependent Evolution of Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Buchner, Johannes; Georgakakis, Antonis; Nandra, Kirpal; Brightman, Murray; Menzel, Marie-Luise; Liu, Zhu; Hsu, Li-Ting; Salvato, Mara; Rangel, Cyprian; Aird, James; Merloni, Andrea; Ross, Nicholas
2015-04-01
We aim to constrain the evolution of active galactic nuclei (AGNs) as a function of obscuration using an X-ray-selected sample of ~2000 AGNs from a multi-tiered survey including the CDFS, AEGIS-XD, COSMOS, and XMM-XXL fields. The spectra of individual X-ray sources are analyzed using a Bayesian methodology with a physically realistic model to infer the posterior distribution of the hydrogen column density and intrinsic X-ray luminosity. We develop a novel non-parametric method that allows us to robustly infer the distribution of the AGN population in X-ray luminosity, redshift, and obscuring column density, relying only on minimal smoothness assumptions. Our analysis properly incorporates uncertainties from low count spectra, photometric redshift measurements, association incompleteness, and the limited sample size. We find that obscured AGNs with N H > 1022 cm-2 account for {77}+4-5% of the number density and luminosity density of the accretion supermassive black hole population with L X > 1043 erg s-1, averaged over cosmic time. Compton-thick AGNs account for approximately half the number and luminosity density of the obscured population, and {38}+8-7% of the total. We also find evidence that the evolution is obscuration dependent, with the strongest evolution around N H ≈ 1023 cm-2. We highlight this by measuring the obscured fraction in Compton-thin AGNs, which increases toward z ~ 3, where it is 25% higher than the local value. In contrast, the fraction of Compton-thick AGNs is consistent with being constant at ≈35%, independent of redshift and accretion luminosity. We discuss our findings in the context of existing models and conclude that the observed evolution is, to first order, a side effect of anti-hierarchical growth.
Identifying Major Transitions in the Evolution of Lithic Cutting Edge Production Rates
Clarkson, Chris
2016-01-01
The notion that the evolution of core reduction strategies involved increasing efficiency in cutting edge production is prevalent in narratives of hominin technological evolution. Yet a number of studies comparing two different knapping technologies have found no significant differences in edge production. Using digital analysis methods we present an investigation of raw material efficiency in eight core technologies broadly representative of the long-term evolution of lithic technology. These are bipolar, multiplatform, discoidal, biface, Levallois, prismatic blade, punch blade and pressure blade production. Raw material efficiency is assessed by the ratio of cutting edge length to original core mass. We also examine which flake attributes contribute to maximising raw material efficiency, as well as compare the difference between expert and intermediate knappers in terms of cutting edge produced per gram of core. We identify a gradual increase in raw material efficiency over the broad sweep of lithic technological evolution. The results indicate that the most significant transition in efficiency likely took place with the introduction of small foliate biface, Levallois and prismatic blade knapping, all introduced in the Middle Stone Age / Middle Palaeolithic among early Homo sapiens and Neanderthals. This suggests that no difference in raw material efficiency existed between these species. With prismatic blade technology securely dated to the Middle Palaeolithic, by including the more recent punch and pressure blade technology our results dispel the notion that the transition to the Upper Palaeolithic was accompanied by an increase in efficiency. However, further increases in cutting edge efficiency are evident, with pressure blades possessing the highest efficiency in this study, indicating that late/epi-Palaeolithic and Neolithic blade technologies further increased efficiency. PMID:27936135
Identifying Major Transitions in the Evolution of Lithic Cutting Edge Production Rates.
Muller, Antoine; Clarkson, Chris
2016-01-01
The notion that the evolution of core reduction strategies involved increasing efficiency in cutting edge production is prevalent in narratives of hominin technological evolution. Yet a number of studies comparing two different knapping technologies have found no significant differences in edge production. Using digital analysis methods we present an investigation of raw material efficiency in eight core technologies broadly representative of the long-term evolution of lithic technology. These are bipolar, multiplatform, discoidal, biface, Levallois, prismatic blade, punch blade and pressure blade production. Raw material efficiency is assessed by the ratio of cutting edge length to original core mass. We also examine which flake attributes contribute to maximising raw material efficiency, as well as compare the difference between expert and intermediate knappers in terms of cutting edge produced per gram of core. We identify a gradual increase in raw material efficiency over the broad sweep of lithic technological evolution. The results indicate that the most significant transition in efficiency likely took place with the introduction of small foliate biface, Levallois and prismatic blade knapping, all introduced in the Middle Stone Age / Middle Palaeolithic among early Homo sapiens and Neanderthals. This suggests that no difference in raw material efficiency existed between these species. With prismatic blade technology securely dated to the Middle Palaeolithic, by including the more recent punch and pressure blade technology our results dispel the notion that the transition to the Upper Palaeolithic was accompanied by an increase in efficiency. However, further increases in cutting edge efficiency are evident, with pressure blades possessing the highest efficiency in this study, indicating that late/epi-Palaeolithic and Neolithic blade technologies further increased efficiency.
Niche evolution and diversification in a Neotropical radiation of birds (Aves: Furnariidae).
Seeholzer, Glenn F; Claramunt, Santiago; Brumfield, Robb T
2017-03-01
Rapid diversification may be caused by ecological adaptive radiation via niche divergence. In this model, speciation is coupled with niche divergence and lineage diversification is predicted to be correlated with rates of niche evolution. Studies of the role of niche evolution in diversification have generally focused on ecomorphological diversification but climatic-niche evolution may also be important. We tested these alternatives using a phylogeny of 298 species of ovenbirds (Aves: Furnariidae). We found that within Furnariidae, variation in species richness and diversification rates of subclades were best predicted by rate of climatic-niche evolution than ecomorphological evolution. Although both are clearly important, univariate regression and multivariate model averaging more consistently supported the climatic-niche as the best predictor of lineage diversification. Our study adds to the growing body of evidence, suggesting that climatic-niche divergence may be an important driver of rapid diversification in addition to ecomorphological evolution. However, this pattern may depend on the phylogenetic scale at which rate heterogeneity is examined. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Expression Divergence Is Correlated with Sequence Evolution but Not Positive Selection in Conifers.
Hodgins, Kathryn A; Yeaman, Sam; Nurkowski, Kristin A; Rieseberg, Loren H; Aitken, Sally N
2016-06-01
The evolutionary and genomic determinants of sequence evolution in conifers are poorly understood, and previous studies have found only limited evidence for positive selection. Using RNAseq data, we compared gene expression profiles to patterns of divergence and polymorphism in 44 seedlings of lodgepole pine (Pinus contorta) and 39 seedlings of interior spruce (Picea glauca × engelmannii) to elucidate the evolutionary forces that shape their genomes and their plastic responses to abiotic stress. We found that rapidly diverging genes tend to have greater expression divergence, lower expression levels, reduced levels of synonymous site diversity, and longer proteins than slowly diverging genes. Similar patterns were identified for the untranslated regions, but with some exceptions. We found evidence that genes with low expression levels had a larger fraction of nearly neutral sites, suggesting a primary role for negative selection in determining the association between evolutionary rate and expression level. There was limited evidence for differences in the rate of positive selection among genes with divergent versus conserved expression profiles and some evidence supporting relaxed selection in genes diverging in expression between the species. Finally, we identified a small number of genes that showed evidence of site-specific positive selection using divergence data alone. However, estimates of the proportion of sites fixed by positive selection (α) were in the range of other plant species with large effective population sizes suggesting relatively high rates of adaptive divergence among conifers. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Methods of geometrical integration in accelerator physics
NASA Astrophysics Data System (ADS)
Andrianov, S. N.
2016-12-01
In the paper we consider a method of geometric integration for a long evolution of the particle beam in cyclic accelerators, based on the matrix representation of the operator of particles evolution. This method allows us to calculate the corresponding beam evolution in terms of two-dimensional matrices including for nonlinear effects. The ideology of the geometric integration introduces in appropriate computational algorithms amendments which are necessary for preserving the qualitative properties of maps presented in the form of the truncated series generated by the operator of evolution. This formalism extends both on polarized and intense beams. Examples of practical applications are described.
Oakley, Todd H; Gu, Zhenglong; Abouheif, Ehab; Patel, Nipam H; Li, Wen-Hsiung
2005-01-01
Understanding the evolution of gene function is a primary challenge of modern evolutionary biology. Despite an expanding database from genomic and developmental studies, we are lacking quantitative methods for analyzing the evolution of some important measures of gene function, such as gene-expression patterns. Here, we introduce phylogenetic comparative methods to compare different models of gene-expression evolution in a maximum-likelihood framework. We find that expression of duplicated genes has evolved according to a nonphylogenetic model, where closely related genes are no more likely than more distantly related genes to share common expression patterns. These results are consistent with previous studies that found rapid evolution of gene expression during the history of yeast. The comparative methods presented here are general enough to test a wide range of evolutionary hypotheses using genomic-scale data from any organism.
Analytic Evolution of Singular Distribution Amplitudes in QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tandogan Kunkel, Asli
2014-08-01
Distribution amplitudes (DAs) are the basic functions that contain information about the quark momentum. DAs are necessary to describe hard exclusive processes in quantum chromodynamics. We describe a method of analytic evolution of DAs that have singularities such as nonzero values at the end points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a at (constant) DA, antisymmetric at DA, and then use the method for evolution of the two-photon generalized distribution amplitude. Our approach to DA evolution has advantages over the standardmore » method of expansion in Gegenbauer polynomials [1, 2] and over a straightforward iteration of an initial distribution with evolution kernel. Expansion in Gegenbauer polynomials requires an infinite number of terms in order to accurately reproduce functions in the vicinity of singular points. Straightforward iteration of an initial distribution produces logarithmically divergent terms at each iteration. In our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve. Afterwards, in order to get precise results, only one or two iterations are needed.« less
The evolution of complex and higher organisms
NASA Technical Reports Server (NTRS)
Milne, D. (Editor); Raup, D. (Editor); Billingham, J. (Editor); Niklaus, K. (Editor); Padian, K. (Editor)
1985-01-01
The evolution of Phanerozoic life has probably been influenced by extraterrestrial events and properties of the Earth-Moon system that have not, until now, been widely recognized. Tide range, gravitational strength, the Earth's axial tilt, and other planetary properties provide background conditions whose effects on evolution may be difficult to distinguish. Solar flares, asteroid impacts, supernovae, and passage of the solar system through galactic clouds can provide catastrophic changes on the Earth with consequent characteristic extinctions. Study of the fossil record and the evolution of complex Phanerozoic life can reveal evidence of past disturbances in space near the Earth. Conversely, better understanding of environmental influences caused by extraterrestrial factors and properties of the solar system can clarify aspects of evolution, and may aid in visualizing life on other planets with different properties.
Probiotics in Asthma and Allergy Prevention
Mennini, Maurizio; Dahdah, Lamia; Artesani, Maria Cristina; Fiocchi, Alessandro; Martelli, Alberto
2017-01-01
Interest in probiotic research and its potential benefits in infant foods are relatively recent but significantly increasing. The evolution of the knowledge in the last 20 years demonstrated that alterations in the microbiome may be a consequence of events occurring during infancy or childhood, including prematurity, cesarean section, and nosocomial infections. Several pieces of evidence prove that a “healthy” intestinal microbiota facilitates the development of immune tolerance. Interventional studies suggest that probiotics could be protective against the development of many diseases. Nevertheless, many factors complicate the analysis of dysbiosis in subjects with food allergy. Comparison in-between studies are difficult, because of considerable heterogeneity in study design, sample size, age at fecal collection, methods of analysis of gut microbiome, and geographic location. Currently, there is no positive recommendation from scientific societies to use pre- or probiotics for treatment of food allergy or other allergic manifestations, while their use in prevention is being custom-cleared. However, the recommendation is still based on little evidence. Although there is valid scientific evidence in vitro, there is no sufficient information to suggest the use of specific probiotics in allergy and asthma prevention. PMID:28824889
Blegen, Nick; Jicha, Brian R; McBrearty, Sally
2018-05-09
The Middle to Late Pleistocene (780-10 ka) of East Africa records evidence of significant behavioral change, early fossils of Homo sapiens, and the dispersals of our species across and out of Africa. Studying human evolution in this time period thus requires an extensive and precise chronology relating behavioral evidence from archaeological sequences to aspects of hominin biology and evidence of past environments from fossils and geological sequences. Tephrochronology provides the chronostratigraphic resolution to achieve this through correlation and dating of volcanic ashes. The tephrochronology of the Kapthurin Formation presented here, based on tephra correlations and 40 Ar/ 39 Ar dates, provides new ages between 395.6 ± 3.5 ka and 465.3 ± 1.0 ka for nine sites showing diverse blade and Levallois methods of core reduction. These are >110 kyr older than previously known in East Africa. New 40 Ar/ 39 Ar dates provide a refined age of 222.5 ± 0.6 ka for early evidence of long-distance (166 km) obsidian transport at the Sibilo School Road Site. A tephra correlation between the Baringo and Victoria basins also provides a new date of ∼100 ka for the Middle Stone Age site of Keraswanin. By providing new and older dates for 11 sites containing several important aspects of hominin behavior and extending the chronology of the Kapthurin Formation forward by ∼130,000 years, the tephrochronology presented here contributes one of the longest and most refined chronostratigraphic frameworks of Middle through Late Pleistocene East Africa. This tephrochronology thus provides the foundation to understand the process of modern human behavioral evolution as it relates to biological and paleoenvironmental circumstances. Copyright © 2018 Elsevier Ltd. All rights reserved.
An archaeal origin of eukaryotes supports only two primary domains of life.
Williams, Tom A; Foster, Peter G; Cox, Cymon J; Embley, T Martin
2013-12-12
The discovery of the Archaea and the proposal of the three-domains 'universal' tree, based on ribosomal RNA and core genes mainly involved in protein translation, catalysed new ideas for cellular evolution and eukaryotic origins. However, accumulating evidence suggests that the three-domains tree may be incorrect: evolutionary trees made using newer methods place eukaryotic core genes within the Archaea, supporting hypotheses in which an archaeon participated in eukaryotic origins by founding the host lineage for the mitochondrial endosymbiont. These results provide support for only two primary domains of life--Archaea and Bacteria--because eukaryotes arose through partnership between them.
Studies on protozoa in ancient remains - A Review
Frías, Liesbeth; Leles, Daniela; Araújo, Adauto
2013-01-01
Paleoparasitological research has made important contributions to the understanding of parasite evolution and ecology. Although parasitic protozoa exhibit a worldwide distribution, recovering these organisms from an archaeological context is still exceptional and relies on the availability and distribution of evidence, the ecology of infectious diseases and adequate detection techniques. Here, we present a review of the findings related to protozoa in ancient remains, with an emphasis on their geographical distribution in the past and the methodologies used for their retrieval. The development of more sensitive detection methods has increased the number of identified parasitic species, promising interesting insights from research in the future. PMID:23440107
NASA Astrophysics Data System (ADS)
Li, Yuqing; Yue, Ming; Zhao, Guoping; Zhang, Hongguo
2018-01-01
The effects of soft phase with different particle sizes and distributions on the Nd2Fe14B/α-Fe nanocomposite magnets have been studied by the micro-magnetism simulation. The calculated results show that smaller and/or scattered distribution of soft phase can benefit to the coercivity (H ci) of the nanocomposite magnets. The magnetization moment evolution during magnetic reversal is systematically analyzed. On the other hand, magnetic properties of anisotropic Nd-Fe-B/α-Fe nanocomposite magnets prepared by hot pressing and hot deformation methods also provide evidences for the calculated results.
Promyelocytic blast crisis of chronic myelogenous leukaemia with translocations (9;22) and (15;17).
Scolnik, M P; Palacios, M F; Acevedo, S H; Castuma, M V; Larripa, I B; Palumbo, A; Moiraghi, E B; Sasot, A M; Huberman, A B
1998-09-01
The promyelocytic blast crisis is a rare form of transformation during the evolution of chronic myeloid leukaemia (CML). We report a case of promyelocytic blast crisis with t(15;17) in addition to t(9;22). The morphology and immunophenotype of the blasts were similar to those seen in acute promyelocytic leukaemia (APL). The t(15;17) was confirmed by FISH. The patient had evidence of coagulopathy with clinical and laboratory findings of disseminated intravascular coagulation (DIC). This report highlights the importance of correlating the results of multiple diagnostic methods in order to establish a correct diagnosis of the promyelocytic blast crisis of CML.
Notzer, Netta; Abramovitz, Ruth
2012-01-01
The Anatomy Department at Tel-Aviv University Medical School offers its students an elective course of 26 didactic hours on human evolution. The course is open to students from all faculties, who must fulfill all academic requirements, without a prerequisite of a background in anatomy. Approximately 120 students attend annually, a third of them are nonmedical students who major in philosophy, archeology, and sociology. This article discusses the course's contributions to students' understanding of a scientific concept that a scientific theory can be contradicted by new evidence, because facts govern science. Also, research methods of applying scientific principles establish the understanding of the human body, which evidently contributes to health and medicine. In the classes, the students are divided into mini-groups of 2-3 students, while the lecturer moves among students to examine fossils. In addition, analogies, open-discussions, and explanations accompany the tangible experiences. The lecturer of the course is an experienced anthropologist-anatomist researcher. He is a role-model and a mentor, sharing with the students his belief that a scientist should be persistent in his research to overcome difficult circumstances. Students, regardless of their backgrounds, express high appreciation of the course in their feedback questionnaires. The message conveyed by this course is that not only knowledge counts but also its integration with scientific principles. This course teaches us that science can bring students from different areas to study together and share ideas. In conclusion, this is a unique course in the eyes of the faculty and students alike. Copyright © 2012 American Association of Anatomists.
The evolution of lycopsid rooting structures: conservatism and disparity.
Hetherington, Alexander J; Dolan, Liam
2017-07-01
Contents 538 I. 538 II. 539 III. 541 IV. 542 543 References 543 SUMMARY: The evolution of rooting structures was a crucial event in Earth's history, increasing the ability of plants to extract water, mine for nutrients and anchor above-ground shoot systems. Fossil evidence indicates that roots evolved at least twice among vascular plants, in the euphyllophytes and independently in the lycophytes. Here, we review the anatomy and evolution of lycopsid rooting structures. Highlighting recent discoveries made with fossils we suggest that the evolution of lycopsid rooting structures displays two contrasting patterns - conservatism and disparity. The structures termed roots have remained structurally similar despite hundreds of millions of years of evolution - an example of remarkable conservatism. By contrast, and over the same time period, the organs that give rise to roots have diversified, resulting in the evolution of numerous novel and disparate organs. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Social evolution. Genomic signatures of evolutionary transitions from solitary to group living.
Kapheim, Karen M; Pan, Hailin; Li, Cai; Salzberg, Steven L; Puiu, Daniela; Magoc, Tanja; Robertson, Hugh M; Hudson, Matthew E; Venkat, Aarti; Fischman, Brielle J; Hernandez, Alvaro; Yandell, Mark; Ence, Daniel; Holt, Carson; Yocum, George D; Kemp, William P; Bosch, Jordi; Waterhouse, Robert M; Zdobnov, Evgeny M; Stolle, Eckart; Kraus, F Bernhard; Helbing, Sophie; Moritz, Robin F A; Glastad, Karl M; Hunt, Brendan G; Goodisman, Michael A D; Hauser, Frank; Grimmelikhuijzen, Cornelis J P; Pinheiro, Daniel Guariz; Nunes, Francis Morais Franco; Soares, Michelle Prioli Miranda; Tanaka, Érica Donato; Simões, Zilá Luz Paulino; Hartfelder, Klaus; Evans, Jay D; Barribeau, Seth M; Johnson, Reed M; Massey, Jonathan H; Southey, Bruce R; Hasselmann, Martin; Hamacher, Daniel; Biewer, Matthias; Kent, Clement F; Zayed, Amro; Blatti, Charles; Sinha, Saurabh; Johnston, J Spencer; Hanrahan, Shawn J; Kocher, Sarah D; Wang, Jun; Robinson, Gene E; Zhang, Guojie
2015-06-05
The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks. Copyright © 2015, American Association for the Advancement of Science.
Lunar initial Nd-143/Nd-144 - Differential evolution of the lunar crust and mantle
NASA Technical Reports Server (NTRS)
Lugmair, G. W.; Marti, K.
1978-01-01
The Sm-Nd evolution of Apollo 15 green glass is discussed. The ICE age (intercept with chondritic evolution) of 3.8 + or - 0.4 eons overlaps the range of reported (Ar-39)-(Ar-40) ages and implies a distinct source region for green glass, characterized by very low and unfractionated REE abundances. Evidence is presented that LINd (lunar initial Nd) is compatible with a 'chondritic'-type Nd isotopic evolution as observed in the Juvinas meteorite. This normalization is used to study the Sm-Nd system of various lunar rock types. The results obtained from a limited number of rocks clearly indicate differential Sm-Nd evolution for the lunar crust and mantle. High-Ti basalts returned by the Apollo 11 and 17 missions were derived from distinct source regions. The Nd-143 evolution in KREEP requires a source region which is clearly distinct from any mantle reservoir.
Evidence of a Conserved Molecular Response to Selection for Increased Brain Size in Primates
Harrison, Peter W.; Caravas, Jason A.; Raghanti, Mary Ann; Phillips, Kimberley A.; Mundy, Nicholas I.
2017-01-01
The adaptive significance of human brain evolution has been frequently studied through comparisons with other primates. However, the evolution of increased brain size is not restricted to the human lineage but is a general characteristic of primate evolution. Whether or not these independent episodes of increased brain size share a common genetic basis is unclear. We sequenced and de novo assembled the transcriptome from the neocortical tissue of the most highly encephalized nonhuman primate, the tufted capuchin monkey (Cebus apella). Using this novel data set, we conducted a genome-wide analysis of orthologous brain-expressed protein coding genes to identify evidence of conserved gene–phenotype associations and species-specific adaptations during three independent episodes of brain size increase. We identify a greater number of genes associated with either total brain mass or relative brain size across these six species than show species-specific accelerated rates of evolution in individual large-brained lineages. We test the robustness of these associations in an expanded data set of 13 species, through permutation tests and by analyzing how genome-wide patterns of substitution co-vary with brain size. Many of the genes targeted by selection during brain expansion have glutamatergic functions or roles in cell cycle dynamics. We also identify accelerated evolution in a number of individual capuchin genes whose human orthologs are associated with human neuropsychiatric disorders. These findings demonstrate the value of phenotypically informed genome analyses, and suggest at least some aspects of human brain evolution have occurred through conserved gene–phenotype associations. Understanding these commonalities is essential for distinguishing human-specific selection events from general trends in brain evolution. PMID:28391320
Pseudogene redux with new biological significance.
Salmena, Leonardo
2014-01-01
The study of pseudogenes, originally dismissed as genomic relics of evolutionary selection, has seen a resurgence in scientific literature, in addition to being a peculiar topic of discussion in theological debates. For a long time, pseudogenes have been touted as a beacon of natural selection and a definitive proof of evolution due to the slow mutation rate that differentiated them from their parental genes and ultimately caused their genetic demise as functional genes. It now seems that "creationists" have co-opted some recent reports identifying unheralded biological functions to pseudogens and other noncoding RNAs as evidence to undermine the existence of evolution and supporting intelligent design. This issue of Methods in Molecular Biology focused on pseudogenes will certainly not end, nor enter this debate; however, scientists who are also genomics and pseudogene enthusiasts will certainly appreciate that many scientists are thinking about these particular genetic elements in new and interesting ways. With this new interest in a biological significance and "non-junk" role for pseudogenes and other noncoding RNAs, new methods and approaches are being developed to unlock the mystery of these ancient artifacts we know as pseudogenes. In this brief introductory chapter we highlight the renewed interest in pseudogenes and review a rationale for intensification of pseudogene-related research.
Niche conservatism as an emerging principle in ecology and conservation biology.
Wiens, John J; Ackerly, David D; Allen, Andrew P; Anacker, Brian L; Buckley, Lauren B; Cornell, Howard V; Damschen, Ellen I; Jonathan Davies, T; Grytnes, John-Arvid; Harrison, Susan P; Hawkins, Bradford A; Holt, Robert D; McCain, Christy M; Stephens, Patrick R
2010-10-01
The diversity of life is ultimately generated by evolution, and much attention has focused on the rapid evolution of ecological traits. Yet, the tendency for many ecological traits to instead remain similar over time [niche conservatism (NC)] has many consequences for the fundamental patterns and processes studied in ecology and conservation biology. Here, we describe the mounting evidence for the importance of NC to major topics in ecology (e.g. species richness, ecosystem function) and conservation (e.g. climate change, invasive species). We also review other areas where it may be important but has generally been overlooked, in both ecology (e.g. food webs, disease ecology, mutualistic interactions) and conservation (e.g. habitat modification). We summarize methods for testing for NC, and suggest that a commonly used and advocated method (involving a test for phylogenetic signal) is potentially problematic, and describe alternative approaches. We suggest that considering NC: (1) focuses attention on the within-species processes that cause traits to be conserved over time, (2) emphasizes connections between questions and research areas that are not obviously related (e.g. invasives, global warming, tropical richness), and (3) suggests new areas for research (e.g. why are some clades largely nocturnal? why do related species share diseases?). 2010 Blackwell Publishing Ltd/CNRS.
Pappalardo, Lucia; D'Auria, Luca; Cavallo, Andrea; Fiore, Stefano
2014-01-01
Abrupt transitions in style and intensity are common during volcanic eruptions, with an immediate impact on the surrounding territory and its population. Defining the factors trigger such sudden shifts in the eruptive behavior as well as developing methods to predict such changes during volcanic crises are crucial goals in volcanology. In our research, the combined investigation of both petrological and seismic indicators has been applied for the first time to a Vesuvius eruption, that of March 1944 that caused the present dormant state of the volcano. Our results contribute to elucidate the evolution of the conduit dynamics that generated a drastic increase in the Volcanic Explosivity Index, associated to the ejection of huge amount of volcanic ash. Remarkably, our study shows that the main paroxysm was announced by robust changes in petrology consistent with seismology, thus suggesting that the development of monitoring methods to assess the nature of ejected juvenile material combined with conventional geophysical techniques can represent a powerful tool for forecasting the evolution of an eruption towards violent behavior. This in turn is a major goal in volcanology because this evidence can help decision-makers to implement an efficient safety strategy during the emergency (scale and pace of evacuation). PMID:25199537
Detecting gene subnetworks under selection in biological pathways.
Gouy, Alexandre; Daub, Joséphine T; Excoffier, Laurent
2017-09-19
Advances in high throughput sequencing technologies have created a gap between data production and functional data analysis. Indeed, phenotypes result from interactions between numerous genes, but traditional methods treat loci independently, missing important knowledge brought by network-level emerging properties. Therefore, detecting selection acting on multiple genes affecting the evolution of complex traits remains challenging. In this context, gene network analysis provides a powerful framework to study the evolution of adaptive traits and facilitates the interpretation of genome-wide data. We developed a method to analyse gene networks that is suitable to evidence polygenic selection. The general idea is to search biological pathways for subnetworks of genes that directly interact with each other and that present unusual evolutionary features. Subnetwork search is a typical combinatorial optimization problem that we solve using a simulated annealing approach. We have applied our methodology to find signals of adaptation to high-altitude in human populations. We show that this adaptation has a clear polygenic basis and is influenced by many genetic components. Our approach, implemented in the R package signet, improves on gene-level classical tests for selection by identifying both new candidate genes and new biological processes involved in adaptation to altitude. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yang; Li, Si-Yu; Li, Yong-Ping
The study of reionization history plays an important role in understanding the evolution of our universe. It is commonly believed that the intergalactic medium (IGM) in our universe are fully ionized today, however the reionizing process remains to be mysterious. A simple instantaneous reionization process is usually adopted in modern cosmology without direct observational evidence. However, the history of ionization fraction, x{sub e}(z) will influence CMB observables and constraints on optical depth τ. With the mocked future data sets based on featured reionization model, we find the bias on τ introduced by instantaneous model can not be neglected. In thismore » paper, we study the cosmic reionization history in a model independent way, the so called principle component analysis (PCA) method, and reconstruct x{sub e} (z) at different redshift z with the data sets of Planck, WMAP 9 years temperature and polarization power spectra, combining with the baryon acoustic oscillation (BAO) from galaxy survey and type Ia supernovae (SN) Union 2.1 sample respectively. The results show that reconstructed x{sub e}(z) is consistent with instantaneous behavior, however, there exists slight deviation from this behavior at some epoch. With PCA method, after abandoning the noisy modes, we get stronger constraints, and the hints for featured x{sub e}(z) evolution could become a little more obvious.« less
ERIC Educational Resources Information Center
Yasri, Pratchayapong; Mancy, Rebecca
2016-01-01
Student positions on the relationship between biological evolution and divine creation have been examined in a range of contexts, and although there is evidence that students can change their position on the relationship over a period of study, these changes have not been well characterized or fully quantified. To investigate student changes in…
Avoiding Mixed Metaphor: The Pedagogy of the Debate over Evolution and Intelligent Design
ERIC Educational Resources Information Center
Carter, Kenneth L.; Welsh, Jeni
2010-01-01
For more than a century, the debate over evolution and creationism has affected academia at nearly every level. Although it distracts from core issues in many academic contexts, the debate can sometimes be pedagogically useful. It can be used pedagogically to examine how scientific predictions are made, how evidence is applied, and how it is…
Riesch, Rüdiger; Martin, Ryan A; Langerhans, R Brian
2013-01-01
Populations experiencing consistent differences in predation risk and resource availability are expected to follow divergent evolutionary trajectories. For example, live-history theory makes specific predictions for how predation should drive life-history evolution, and according to the Trexler-DeAngelis model for the evolution of matrotrophy, postfertilization maternal provisioning is most likely to evolve in environments with consistent, high levels of resource availability. Using the model system of Bahamas mosquitofish (Gambusia hubbsi) inhabiting blue holes with and without the piscivorous bigmouth sleeper (Gobiomorus dormitor), we provide some of the strongest tests of these predictions to date, as resource availability does not covary with predation regime in this system, and we examine numerous (14) isolated natural populations. We found clear evidence for the expected life-history divergence between predation regimes and empirical support of the Trexler-DeAngelis model. Moreover, based on molecular and lab-rearing data, our study offers strong evidence for convergent evolution of similar life histories in similar predation regimes, largely matching previous phenotypic patterns observed in other poeciliid lineages (Brachyrhaphis spp., Poecilia reticulata), and further supports the notion that matrotrophy is most likely to evolve in stable high-resource environments.
Paternal care and litter size coevolution in mammals.
Stockley, Paula; Hobson, Liane
2016-04-27
Biparental care of offspring occurs in diverse mammalian genera and is particularly common among species with socially monogamous mating systems. Despite numerous well-documented examples, however, the evolutionary causes and consequences of paternal care in mammals are not well understood. Here, we investigate the evolution of paternal care in relation to offspring production. Using comparative analyses to test for evidence of evolutionary associations between male care and life-history traits, we explore if biparental care is likely to have evolved because of the importance of male care to offspring survival, or if evolutionary increases in offspring production are likely to result from the evolution of biparental care. Overall, we find no evidence that paternal care has evolved in response to benefits of supporting females to rear particularly costly large offspring or litters. Rather, our findings suggest that increases in offspring production are more likely to follow the evolution of paternal care, specifically where males contribute depreciable investment such as provisioning young. Through coevolution with litter size, we conclude that paternal care in mammals is likely to play an important role in stabilizing monogamous mating systems and could ultimately promote the evolution of complex social behaviours. © 2016 The Authors.
Paternal care and litter size coevolution in mammals
Hobson, Liane
2016-01-01
Biparental care of offspring occurs in diverse mammalian genera and is particularly common among species with socially monogamous mating systems. Despite numerous well-documented examples, however, the evolutionary causes and consequences of paternal care in mammals are not well understood. Here, we investigate the evolution of paternal care in relation to offspring production. Using comparative analyses to test for evidence of evolutionary associations between male care and life-history traits, we explore if biparental care is likely to have evolved because of the importance of male care to offspring survival, or if evolutionary increases in offspring production are likely to result from the evolution of biparental care. Overall, we find no evidence that paternal care has evolved in response to benefits of supporting females to rear particularly costly large offspring or litters. Rather, our findings suggest that increases in offspring production are more likely to follow the evolution of paternal care, specifically where males contribute depreciable investment such as provisioning young. Through coevolution with litter size, we conclude that paternal care in mammals is likely to play an important role in stabilizing monogamous mating systems and could ultimately promote the evolution of complex social behaviours. PMID:27097924
Meta-analysis suggests choosy females get sexy sons more than "good genes".
Prokop, Zofia M; Michalczyk, Łukasz; Drobniak, Szymon M; Herdegen, Magdalena; Radwan, Jacek
2012-09-01
Female preferences for specific male phenotypes have been documented across a wide range of animal taxa, including numerous species where males contribute only gametes to offspring production. Yet, selective pressures maintaining such preferences are among the major unknowns of evolutionary biology. Theoretical studies suggest that preferences can evolve if they confer genetic benefits in terms of increased attractiveness of sons ("Fisherian" models) or overall fitness of offspring ("good genes" models). These two types of models predict, respectively, that male attractiveness is heritable and genetically correlated with fitness. In this meta-analysis, we draw general conclusions from over two decades worth of empirical studies testing these predictions (90 studies on 55 species in total). We found evidence for heritability of male attractiveness. However, attractiveness showed no association with traits directly associated with fitness (life-history traits). Interestingly, it did show a positive correlation with physiological traits, which include immunocompetence and condition. In conclusion, our results support "Fisherian" models of preference evolution, while providing equivocal evidence for "good genes." We pinpoint research directions that should stimulate progress in our understanding of the evolution of female choice. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Genetic adaptations of the plateau zokor in high-elevation burrows.
Shao, Yong; Li, Jin-Xiu; Ge, Ri-Li; Zhong, Li; Irwin, David M; Murphy, Robert W; Zhang, Ya-Ping
2015-11-25
The plateau zokor (Myospalax baileyi) spends its entire life underground in sealed burrows. Confronting limited oxygen and high carbon dioxide concentrations, and complete darkness, they epitomize a successful physiological adaptation. Here, we employ transcriptome sequencing to explore the genetic underpinnings of their adaptations to this unique habitat. Compared to Rattus norvegicus, genes belonging to GO categories related to energy metabolism (e.g. mitochondrion and fatty acid beta-oxidation) underwent accelerated evolution in the plateau zokor. Furthermore, the numbers of positively selected genes were significantly enriched in the gene categories involved in ATPase activity, blood vessel development and respiratory gaseous exchange, functional categories that are relevant to adaptation to high altitudes. Among the 787 genes with evidence of parallel evolution, and thus identified as candidate genes, several GO categories (e.g. response to hypoxia, oxygen homeostasis and erythrocyte homeostasis) are significantly enriched, are two genes, EPAS1 and AJUBA, involved in the response to hypoxia, where the parallel evolved sites are at positions that are highly conserved in sequence alignments from multiple species. Thus, accelerated evolution of GO categories, positive selection and parallel evolution at the molecular level provide evidences to parse the genetic adaptations of the plateau zokor for living in high-elevation burrows.
Chaw, R. Crystal; Collin, Matthew; Wimmer, Marjorie; Helmrick, Kara-Leigh; Hayashi, Cheryl Y.
2017-01-01
Spiders swath their eggs with silk to protect developing embryos and hatchlings. Egg case silks, like other fibrous spider silks, are primarily composed of proteins called spidroins (spidroin = spider-fibroin). Silks, and thus spidroins, are important throughout the lives of spiders, yet the evolution of spidroin genes has been relatively understudied. Spidroin genes are notoriously difficult to sequence because they are typically very long (≥ 10 kb of coding sequence) and highly repetitive. Here, we investigate the evolution of spider silk genes through long-read sequencing of Bacterial Artificial Chromosome (BAC) clones. We demonstrate that the silver garden spider Argiope argentata has multiple egg case spidroin loci with a loss of function at one locus. We also use degenerate PCR primers to search the genomic DNA of congeneric species and find evidence for multiple egg case spidroin loci in other Argiope spiders. Comparative analyses show that these multiple loci are more similar at the nucleotide level within a species than between species. This pattern is consistent with concerted evolution homogenizing gene copies within a genome. More complicated explanations include convergent evolution or recent independent gene duplications within each species. PMID:29127108
Linking research to practice: the rise of evidence-based health sciences librarianship*
Marshall, Joanne Gard
2014-01-01
Purpose: The lecture explores the origins of evidence-based practice (EBP) in health sciences librarianship beginning with examples from the work of Janet Doe and past Doe lecturers. Additional sources of evidence are used to document the rise of research and EBP as integral components of our professional work. Methods: Four sources of evidence are used to examine the rise of EBP: (1) a publication by Doe and research-related content in past Doe lectures, (2) research-related word usage in articles in the Bulletin of the Medical Library Association and Journal of the Medical Library Association between 1961 and 2010, (3) Medical Library Association activities, and (4) EBP as an international movement. Results: These sources of evidence confirm the rise of EBP in health sciences librarianship. International initiatives sparked the rise of evidence-based librarianship and continue to characterize the movement. This review shows the emergence of a unique form of EBP that, although inspired by evidence-based medicine (EBM), has developed its own view of evidence and its application in library and information practice. Implications: Health sciences librarians have played a key role in initiating, nurturing, and spreading EBP in other branches of our profession. Our close association with EBM set the stage for developing our own EBP. While we relied on EBM as a model for our early efforts, we can observe the continuing evolution of our own unique approach to using, creating, and applying evidence from a variety of sources to improve the quality of health information services. PMID:24415915
When ideas have sex: the role of exchange in cultural evolution.
Ridley, M W
2009-01-01
Human economic and technological progress has been dominated for the last 100,000 years by natural selection among variants of cultures, rather than among variants of genes. Evidence suggests that cultural evolution depends on exchange and trade to bring together ideas in much the same way that genetic evolution depends on sex to spread genetic mutations, or in the case of bacteria, on horizontal gene transfer. When starved of access to a large "collective brain" by isolation from trade and exchange, people may experience not just less innovation, but even regress. The capacity for ideas to have sex on the Internet is likely to accelerate cultural evolution still further.
Rothwell, Gar W; Wyatt, Sarah E; Tomescu, Alexandru M F
2014-06-01
Paleontology yields essential evidence for inferring not only the pattern of evolution, but also the genetic basis of evolution within an ontogenetic framework. Plant fossils provide evidence for the pattern of plant evolution in the form of transformational series of structure through time. Developmentally diagnostic structural features that serve as "fingerprints" of regulatory genetic pathways also are preserved by plant fossils, and here we provide examples of how those fingerprints can be used to infer the mechanisms by which plant form and development have evolved. When coupled with an understanding of variations and systematic distributions of specific regulatory genetic pathways, this approach provides an avenue for testing evolutionary hypotheses at the organismal level that is analogous to employing bioinformatics to explore genetics at the genomic level. The positions where specific genes, gene families, and developmental regulatory mechanisms first appear in phylogenies are correlated with the positions where fossils with the corresponding structures occur on the tree, thereby yielding testable hypotheses that extend our understanding of the role of developmental changes in the evolution of the body plans of vascular plant sporophytes. As a result, we now have new and powerful methodologies for characterizing major evolutionary changes in morphology, anatomy, and physiology that have resulted from combinations of genetic regulatory changes and that have produced the synapomorphies by which we recognize major clades of plants. © 2014 Botanical Society of America, Inc.
Adaptive Evolution of the Venom-Targeted vWF Protein in Opossums that Eat Pitvipers
Jansa, Sharon A.; Voss, Robert S.
2011-01-01
The rapid evolution of venom toxin genes is often explained as the result of a biochemical arms race between venomous animals and their prey. However, it is not clear that an arms race analogy is appropriate in this context because there is no published evidence for rapid evolution in genes that might confer toxin resistance among routinely envenomed species. Here we report such evidence from an unusual predator-prey relationship between opossums (Marsupialia: Didelphidae) and pitvipers (Serpentes: Crotalinae). In particular, we found high ratios of replacement to silent substitutions in the gene encoding von Willebrand Factor (vWF), a venom-targeted hemostatic blood protein, in a clade of opossums known to eat pitvipers and to be resistant to their hemorrhagic venom. Observed amino-acid substitutions in venom-resistant opossums include changes in net charge and hydrophobicity that are hypothesized to weaken the bond between vWF and one of its toxic snake-venom ligands, the C-type lectin-like protein botrocetin. Our results provide the first example of rapid adaptive evolution in any venom-targeted molecule, and they support the notion that an evolutionary arms race might be driving the rapid evolution of snake venoms. However, in the arms race implied by our results, venomous snakes are prey, and their venom has a correspondingly defensive function in addition to its usual trophic role. PMID:21731638
Evidence for Evolution from the Vertebrate Fossil Record.
ERIC Educational Resources Information Center
Gingerich, Philip D.
1983-01-01
Discusses three examples of evolutionary transition in the vertebrate fossil record, considering evolutionary transitions at the species level. Uses archaic squirrel-like Paleocine primates, the earliest primates of modern aspect, as examples. Also reviews new evidence on the origin of whales and their transition from land to sea. (JN)
Echo movement and evolution from real-time processing.
NASA Technical Reports Server (NTRS)
Schaffner, M. R.
1972-01-01
Preliminary experimental data on the effectiveness of conventional radars in measuring the movement and evolution of meteorological echoes when the radar is connected to a programmable real-time processor are examined. In the processor programming is accomplished by conceiving abstract machines which constitute the actual programs used in the methods employed. An analysis of these methods, such as the center of gravity method, the contour-displacement method, the method of slope, the cross-section method, the contour crosscorrelation method, the method of echo evolution at each point, and three-dimensional measurements, shows that the motions deduced from them may differ notably (since each method determines different quantities) but the plurality of measurement may give additional information on the characteristics of the precipitation.
Cognition and the evolution of music: pitfalls and prospects.
Honing, Henkjan; Ploeger, Annemie
2012-10-01
What was the role of music in the evolutionary history of human beings? We address this question from the point of view that musicality can be defined as a cognitive trait. Although it has been argued that we will never know how cognitive traits evolved (Lewontin, 1998), we argue that we may know the evolution of music by investigating the fundamental cognitive mechanisms of musicality, for example, relative pitch, tonal encoding of pitch, and beat induction. In addition, we show that a nomological network of evidence (Schmitt & Pilcher, 2004) can be built around the hypothesis that musicality is a cognitive adaptation. Within this network, different modes of evidence are gathered to support a specific evolutionary hypothesis. We show that the combination of psychological, medical, physiological, genetic, phylogenetic, hunter-gatherer, and cross-cultural evidence indicates that musicality is a cognitive adaptation. Copyright © 2012 Cognitive Science Society, Inc.
A screen for immunity genes evolving under positive selection in Drosophila.
Jiggins, F M; Kim, K W
2007-05-01
Genes involved in the immune system tend to have higher rates of adaptive evolution than other genes in the genome, probably because they are coevolving with pathogens. We have screened a sample of Drosophila genes to identify those evolving under positive selection. First, we identified rapidly evolving immunity genes by comparing 140 loci in Drosophila erecta and D. yakuba. Secondly, we resequenced 23 of the fastest evolving genes from the independent species pair D. melanogaster and D. simulans, and identified those under positive selection using a McDonald-Kreitman test. There was strong evidence of adaptive evolution in two serine proteases (persephone and spirit) and a homolog of the Anopheles serpin SRPN6, and weaker evidence in another serine protease and the death domain protein dFADD. These results add to mounting evidence that immune signalling pathway molecules often evolve rapidly, possibly because they are sites of host-parasite coevolution.
Tripp, Erin A; Tsai, Yi-Hsin Erica
2017-01-01
It has long been hypothesized that biotic interactions are important drivers of biodiversity evolution, yet such interactions have been relatively less studied than abiotic factors owing to the inherent complexity in and the number of types of such interactions. Amongst the most prominent of biotic interactions worldwide are those between plants and pollinators. In the Neotropics, the most biodiverse region on Earth, hummingbird and bee pollination have contributed substantially to plant fitness. Using comparative methods, we test the macroevolutionary consequences of bird and bee pollination within a species rich lineage of flowering plants: Ruellia. We additionally explore impacts of species occupancy of ever-wet rainforests vs. dry ecosystems including cerrado and seasonally dry tropical forests. We compared outcomes based on two different methods of model selection: a traditional approach that utilizes a series of transitive likelihood ratio tests as well as a weighted model averaging approach. Analyses yield evidence for increased net diversification rates among Neotropical Ruellia (compared to Paleotropical lineages) as well as among hummingbird-adapted species. In contrast, we recovered no evidence of higher diversification rates among either bee- or non-bee-adapted lineages and no evidence for higher rates among wet or dry habitat lineages. Understanding fully the factors that have contributed to biases in biodiversity across the planet will ultimately depend upon incorporating knowledge of biotic interactions as well as connecting microevolutionary processes to macroevolutionary patterns.
Tsai, Yi-Hsin Erica
2017-01-01
It has long been hypothesized that biotic interactions are important drivers of biodiversity evolution, yet such interactions have been relatively less studied than abiotic factors owing to the inherent complexity in and the number of types of such interactions. Amongst the most prominent of biotic interactions worldwide are those between plants and pollinators. In the Neotropics, the most biodiverse region on Earth, hummingbird and bee pollination have contributed substantially to plant fitness. Using comparative methods, we test the macroevolutionary consequences of bird and bee pollination within a species rich lineage of flowering plants: Ruellia. We additionally explore impacts of species occupancy of ever-wet rainforests vs. dry ecosystems including cerrado and seasonally dry tropical forests. We compared outcomes based on two different methods of model selection: a traditional approach that utilizes a series of transitive likelihood ratio tests as well as a weighted model averaging approach. Analyses yield evidence for increased net diversification rates among Neotropical Ruellia (compared to Paleotropical lineages) as well as among hummingbird-adapted species. In contrast, we recovered no evidence of higher diversification rates among either bee- or non-bee-adapted lineages and no evidence for higher rates among wet or dry habitat lineages. Understanding fully the factors that have contributed to biases in biodiversity across the planet will ultimately depend upon incorporating knowledge of biotic interactions as well as connecting microevolutionary processes to macroevolutionary patterns. PMID:28472046
Evidence of Archaean life - A brief appraisal
NASA Technical Reports Server (NTRS)
Schopf, J. W.
1976-01-01
Attention is called to the question of whether the meagerness of the Archaean fossil record is a function of a sparsity of preserved, cratonal, fossiliferous facies, or whether the abrupt break in the known fossil record near the Archaean-Proterozoic boundary reflects a major event in biological evolution. The paper then reviews the currently available geochemical and paleobiological data on Archaean biota. The occurrence of stromatolites in the Archaean, and the carbon isotopic composition of Archaean organic matter, both suggest strongly the existence of an Archaean biota. The presence of relatively abundant and morphologically complex microorganisms in deposits of early Proterozoic age seems to be certain evidence for a prior episode of Archaean evolution.
Hendricson, William D
2012-01-01
This article describes the evolution of thinking, primarily over the past fifteen years, within the academic dentistry community concerning teaching and learning strategies to facilitate students' acquisition of competence. Readers are encouraged to consider four issues. First, looking back to the time of the Institute of Medicine report Dental Education at the Crossroads: Challenges and Change fifteen years ago, in the mid-1990s, where did we think we would be now, in 2011, in regard to the structure of the predoctoral curriculum and use of specific educational methodologies, and to what extent have those predictions come true? The author's own crystal ball predictions from the 1990s are used to kick off a discussion of what connected and what did not among numerous advocated educational reforms, many of them transformative in nature. Second, what is the nature of the evidence supporting our ongoing search for educational best practices, and why are advocacy for educational best practices and prediction of down-the-road outcomes so treacherous? This section distinguishes types of evidence that provide limited guidance for dental educators from evidence that is more helpful for designing educational strategies that might make a difference in student learning, focusing on factors that provide a "perfect intersection" of student, teacher, educational method, and learning environment. Third, readers are asked to revisit four not-so-new teaching/learning methods that are still worthy of consideration in dental education in light of best evidence, upcoming events, and technology that has finally matched its potential. Fourth, a specific rate-limiting factor that hinders the best efforts of both teachers and students in virtually all U.S. dental schools is discussed, concluding with a plea to find a better way so that the good works of dental educators and their students can be more evident.
Adapting HIV prevention evidence-based interventions in practice settings: an interview study
2009-01-01
Background Evidence-based interventions that are being delivered in real-world settings are adapted to enhance the external validity of these interventions. The purpose of this study was to examine multiple intervention adaptations made during pre-implementation, implementation, maintenance, and evolution phases of human immunodeficiency virus HIV prevention technology transfer. We examined two important categories of adaptations -- modifications to key characteristics, such as activities or delivery methods of interventions and reinvention of the interventions including addition and deletion of core elements. Methods Study participants were thirty-four community-based organization staff who were implementing evidence-based interventions in Los Angeles, California. Participants were interviewed twice and interviews were professionally transcribed. Transcriptions were coded by two coders with good inter-rater reliability (kappa coefficient = 0.73). Sixty-two open-ended codes for adaptation activities, which were linked to 229 transcript segments, were categorized as modifications of key characteristics or reinvention. Results Participants described activities considered modifications to key characteristics and reinvention of evidence-based interventions during pre-implementation, implementation, and maintenance phases. None of the participants reported accessing technical assistance or guidance when reinventing their interventions. Staff executed many of the recommended steps for sound adaptation of these interventions for new populations and settings. Conclusion Staff reported modifying and reinventing interventions when translating HIV prevention programs into practice. Targeted technical assistance for formative evaluation should be focused on the pre-implementation phase during which frequent modifications occur. Continuous or repeated measurements of fidelity are recommended. Increased technical assistance and guidance are needed to ensure that reinventions are evaluated and consistent with the aims of the original interventions. Providing strategic technical assistance and written guidance can facilitate effective HIV prevention technology transfer of evidence-based interventions. PMID:19930653
Uniparental Inheritance Promotes Adaptive Evolution in Cytoplasmic Genomes
Christie, Joshua R.; Beekman, Madeleine
2017-01-01
Eukaryotes carry numerous asexual cytoplasmic genomes (mitochondria and plastids). Lacking recombination, asexual genomes should theoretically suffer from impaired adaptive evolution. Yet, empirical evidence indicates that cytoplasmic genomes experience higher levels of adaptive evolution than predicted by theory. In this study, we use a computational model to show that the unique biology of cytoplasmic genomes—specifically their organization into host cells and their uniparental (maternal) inheritance—enable them to undergo effective adaptive evolution. Uniparental inheritance of cytoplasmic genomes decreases competition between different beneficial substitutions (clonal interference), promoting the accumulation of beneficial substitutions. Uniparental inheritance also facilitates selection against deleterious cytoplasmic substitutions, slowing Muller’s ratchet. In addition, uniparental inheritance generally reduces genetic hitchhiking of deleterious substitutions during selective sweeps. Overall, uniparental inheritance promotes adaptive evolution by increasing the level of beneficial substitutions relative to deleterious substitutions. When we assume that cytoplasmic genome inheritance is biparental, decreasing the number of genomes transmitted during gametogenesis (bottleneck) aids adaptive evolution. Nevertheless, adaptive evolution is always more efficient when inheritance is uniparental. Our findings explain empirical observations that cytoplasmic genomes—despite their asexual mode of reproduction—can readily undergo adaptive evolution. PMID:28025277
Evolution of life in urban environments.
Johnson, Marc T J; Munshi-South, Jason
2017-11-03
Our planet is an increasingly urbanized landscape, with over half of the human population residing in cities. Despite advances in urban ecology, we do not adequately understand how urbanization affects the evolution of organisms, nor how this evolution may affect ecosystems and human health. Here, we review evidence for the effects of urbanization on the evolution of microbes, plants, and animals that inhabit cities. Urbanization affects adaptive and nonadaptive evolutionary processes that shape the genetic diversity within and between populations. Rapid adaptation has facilitated the success of some native species in urban areas, but it has also allowed human pests and disease to spread more rapidly. The nascent field of urban evolution brings together efforts to understand evolution in response to environmental change while developing new hypotheses concerning adaptation to urban infrastructure and human socioeconomic activity. The next generation of research on urban evolution will provide critical insight into the importance of evolution for sustainable interactions between humans and our city environments. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Bejan, A.; Charles, J. D.; Lorente, S.
2014-07-01
The prevailing view is that we cannot witness biological evolution because it occurred on a time scale immensely greater than our lifetime. Here, we show that we can witness evolution in our lifetime by watching the evolution of the flying human-and-machine species: the airplane. We document this evolution, and we also predict it based on a physics principle: the constructal law. We show that the airplanes must obey theoretical allometric rules that unite them with the birds and other animals. For example, the larger airplanes are faster, more efficient as vehicles, and have greater range. The engine mass is proportional to the body size: this scaling is analogous to animal design, where the mass of the motive organs (muscle, heart, lung) is proportional to the body size. Large or small, airplanes exhibit a proportionality between wing span and fuselage length, and between fuel load and body size. The animal-design counterparts of these features are evident. The view that emerges is that the evolution phenomenon is broader than biological evolution. The evolution of technology, river basins, and animal design is one phenomenon, and it belongs in physics.
Ogbunugafor, C Brandon; Hartl, Daniel
2016-01-25
The study of reverse evolution from resistant to susceptible phenotypes can reveal constraints on biological evolution, a topic for which evolutionary theory has relatively few general principles. The public health catastrophe of antimicrobial resistance in malaria has brought these constraints on evolution into a practical realm, with one proposed solution: withdrawing anti-malarial medication use in high resistance settings, built on the assumption that reverse evolution occurs readily enough that populations of pathogens may revert to their susceptible states. While past studies have suggested limits to reverse evolution, there have been few attempts to properly dissect its mechanistic constraints. Growth rates were determined from empirical data on the growth and resistance from a set of combinatorially complete set of mutants of a resistance protein (dihydrofolate reductase) in Plasmodium vivax, to construct reverse evolution trajectories. The fitness effects of individual mutations were calculated as a function of drug environment, revealing the magnitude of epistatic interactions between mutations and genetic backgrounds. Evolution across the landscape was simulated in two settings: starting from the population fixed for the quadruple mutant, and from a polymorphic population evenly distributed between double mutants. A single mutation of large effect (S117N) serves as a pivot point for evolution to high resistance regions of the landscape. Through epistatic interactions with other mutations, this pivot creates an epistatic ratchet against reverse evolution towards the wild type ancestor, even in environments where the wild type is the most fit of all genotypes. This pivot mutation underlies the directional bias in evolution across the landscape, where evolution towards the ancestor is precluded across all examined drug concentrations from various starting points in the landscape. The presence of pivot mutations can dictate dynamics of evolution across adaptive landscape through epistatic interactions within a protein, leaving a population trapped on local fitness peaks in an adaptive landscape, unable to locate ancestral genotypes. This irreversibility suggests that the structure of an adaptive landscape for a resistance protein should be understood before considering resistance management strategies. This proposed mechanism for constraints on reverse evolution corroborates evidence from the field indicating that phenotypic reversal often occurs via compensatory mutation at sites independent of those associated with the forward evolution of resistance. Because of this, molecular methods that identify resistance patterns via single SNPs in resistance-associated markers might be missing signals for resistance and compensatory mutation throughout the genome. In these settings, whole genome sequencing efforts should be used to identify resistance patterns, and will likely reveal a more complicated genomic signature for resistance and susceptibility, especially in settings where anti-malarial medications have been used intermittently. Lastly, the findings suggest that, given their role in dictating the dynamics of evolution across the landscape, pivot mutations might serve as future targets for therapy.
The Nature of the Arguments for Creationism, Intelligent Design, and Evolution
NASA Astrophysics Data System (ADS)
Barnes, Ralph M.; Church, Rebecca A.; Draznin-Nagy, Samuel
2017-03-01
Seventy-two Internet documents promoting creationism, intelligent design (I.D.), or evolution were selected for analysis. The primary goal of each of the 72 documents was to present arguments for creationism, I.D., or evolution. We first identified all arguments in these documents. Each argument was then coded in terms of both argument type (appeal to authority, appeal to empirical evidence, appeal to reason, etc.) and argument topic (age of earth, mechanism of descent with modification, etc.). We then provided a quantitative summary of each argument type and topic for each of the three positions. Three clear patterns were revealed by the data. First, websites promoting evolution were characterized by a narrow focus on appeals to empirical evidence, whereas websites promoting creationism and I.D. were quite heterogeneous in regards to argument type. Second, websites promoting evolution relied primarily on a small number of empirical examples (e.g., fossils, biogeography, homology, etc.), while websites promoting creationism and I.D. used a far greater range of arguments. Finally, websites promoting evolution were narrowly focused on the topic of descent with modification. In contrast, websites promoting creationism tackled a broad range of topics, while websites promoting I.D. were narrowly focused on the issue of the existence of God. The current study provides a quantitative summary of a systematic content analysis of argument type and topic across a large number of frequently accessed websites dealing with origins. The analysis we have used may prove fruitful in identifying and understanding argumentation trends in scientific writing and pseudo-scientific writing.
Song evolution, speciation, and vocal learning in passerine birds.
Mason, Nicholas A; Burns, Kevin J; Tobias, Joseph A; Claramunt, Santiago; Seddon, Nathalie; Derryberry, Elizabeth P
2017-03-01
Phenotypic divergence can promote reproductive isolation and speciation, suggesting a possible link between rates of phenotypic evolution and the tempo of speciation at multiple evolutionary scales. To date, most macroevolutionary studies of diversification have focused on morphological traits, whereas behavioral traits─including vocal signals─are rarely considered. Thus, although behavioral traits often mediate mate choice and gene flow, we have a limited understanding of how behavioral evolution contributes to diversification. Furthermore, the developmental mode by which behavioral traits are acquired may affect rates of behavioral evolution, although this hypothesis is seldom tested in a phylogenetic framework. Here, we examine evidence for rate shifts in vocal evolution and speciation across two major radiations of codistributed passerines: one oscine clade with learned songs (Thraupidae) and one suboscine clade with innate songs (Furnariidae). We find that evolutionary bursts in rates of speciation and song evolution are coincident in both thraupids and furnariids. Further, overall rates of vocal evolution are higher among taxa with learned rather than innate songs. Taken together, these findings suggest an association between macroevolutionary bursts in speciation and vocal evolution, and that the tempo of behavioral evolution can be influenced by variation in developmental modes among lineages. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Elastic energy storage in the shoulder and the evolution of high-speed throwing in Homo
Roach, Neil T.; Venkadesan, Madhusudhan; Rainbow, Michael J.; Lieberman, Daniel E.
2013-01-01
Although some primates, including chimpanzees, throw objects occasionally1,2, only humans regularly throw projectiles with high speed and great accuracy. Darwin noted that humans’ unique throwing abilities, made possible when bipedalism emancipated the arms, enabled foragers to effectively hunt using projectiles3. However, there has been little consideration of the evolution of throwing in the years since Darwin made his observations, in part because of a lack of evidence on when, how, and why hominins evolved the ability to generate high-speed throws4-8. Here, we show using experimental studies of throwers that human throwing capabilities largely result from several derived anatomical features that enable elastic energy storage and release at the shoulder. These features first appear together approximately two million years ago in the species Homo erectus. Given archaeological evidence that suggests hunting activity intensified around this time9, we conclude that selection for throwing in order to hunt likely played an important role in the evolution of the human genus. PMID:23803849
Kinship and the evolution of social behaviours in the sea
Kamel, Stephanie J.; Grosberg, Richard K.
2013-01-01
Until recently, little attention has been paid to the existence of kin structure in the sea, despite the fact that many marine organisms are sessile or sedentary. This lack of attention to kin structure, and its impacts on social evolution, historically stems from the pervasive assumption that the dispersal of gametes and larvae is almost always sufficient to prevent any persistent associations of closely related offspring or adults. However, growing evidence, both theoretical and empirical, casts doubt on the generality of this assumption, not only in species with limited dispersal, but also in species with long dispersive phases. Moreover, many marine organisms either internally brood their progeny or package them in nurseries, both of which provide ample opportunities for kinship to influence the nature and outcomes of social interactions among family members. As the evidence for kin structure within marine populations mounts, it follows that kin selection may play a far greater role in the evolution of both behaviours and life histories of marine organisms than is presently appreciated. PMID:24132095
Kinship and the evolution of social behaviours in the sea.
Kamel, Stephanie J; Grosberg, Richard K
2013-01-01
Until recently, little attention has been paid to the existence of kin structure in the sea, despite the fact that many marine organisms are sessile or sedentary. This lack of attention to kin structure, and its impacts on social evolution, historically stems from the pervasive assumption that the dispersal of gametes and larvae is almost always sufficient to prevent any persistent associations of closely related offspring or adults. However, growing evidence, both theoretical and empirical, casts doubt on the generality of this assumption, not only in species with limited dispersal, but also in species with long dispersive phases. Moreover, many marine organisms either internally brood their progeny or package them in nurseries, both of which provide ample opportunities for kinship to influence the nature and outcomes of social interactions among family members. As the evidence for kin structure within marine populations mounts, it follows that kin selection may play a far greater role in the evolution of both behaviours and life histories of marine organisms than is presently appreciated.
Creationism as a Misconception: Socio-cognitive conflict in the teaching of evolution
NASA Astrophysics Data System (ADS)
Foster, Colin
2012-09-01
This position paper argues that students' understanding and acceptance of evolution may be supported, rather than hindered, by classroom discussion of creationism. Parallels are drawn between creationism and other scientific misconceptions, both of the scientific community in the past and of students in the present. Science teachers frequently handle their students' misconceptions as they arise by offering appropriate socio-cognitive conflict, which highlights reasons to disbelieve one idea and to believe another. It is argued that this way of working, rather than outlawing discussion, is more scientific and more honest. Scientific truth does not win the day by attempting to deny its opponents a voice but by engaging them with evidence. Teachers can be confident that evolution has nothing to fear from a free and frank discussion in which claims can be rebutted with evidence. Such an approach is accessible to children of all ages and is ultimately more likely to drive out pre-scientific superstitions. It also models the scientific process more authentically and develops students' ability to think critically.
Bartels, Melissa; French, Roy; Graybosch, Robert A; Tatineni, Satyanarayana
2016-05-01
An infectious cDNA clone of Triticum mosaic virus (TriMV) (genus Poacevirus; family Potyviridae) was used to establish three independent lineages in wheat to examine intra-host population diversity levels within protein 1 (P1) and coat protein (CP) cistrons over time. Genetic variation was assessed at passages 9, 18 and 24 by single-strand conformation polymorphism, followed by nucleotide sequencing. The founding P1 region genotype was retained at high frequencies in most lineage/passage populations, while the founding CP genotype disappeared after passage 18 in two lineages. We found that rare TriMV genotypes were present only transiently and lineages followed independent evolutionary trajectories, suggesting that genetic drift dominates TriMV evolution. These results further suggest that experimental populations of TriMV exhibit lower mutant frequencies than that of Wheat streak mosaic virus (genus Tritimovirus; family Potyviridae) in wheat. Nevertheless, there was evidence for parallel evolution at a synonymous site in the TriMV CP cistron. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Peterson, L.; Lawrence, K. T.; Mauriello, H.; Wilson, J.; Holte, L.
2015-12-01
New sea surface temperature (SST) records from the southern Pacific and southern Atlantic Oceans allow assessment of similarities and differences in climate evolution across ocean basins, hemispheres, and latitudes over the last 5 million years. Our high-resolution, alkenone-derived SST records from ODP Sites 1088 (South Atlantic, 41°S) and 1125 (South Pacific, 42°S) share strong structural similarities. When compared with SST records from the mid-latitudes of the northern hemisphere, these records provide compelling evidence for broadly hemispherically symmetrical open-ocean temperature evolution in both ocean basins as tropical warm pools contracted over the Plio-Pleistocene. This symmetry in temperature evolution occurs despite strong asymmetries in the development of the cryosphere over this interval, which was marked by extensive northern hemisphere ice sheet growth. Parallel SST evolution across ocean basins and hemispheres suggests that on longterm (>105 yr) timescales, many regions of the world ocean are more sensitive to the global energy budget than to local or regional climate dynamics, although important exceptions include coastal upwelling zone SSTs, high latitude SSTs, and benthic δ18O. Our analysis further reveals that throughout the last 5 Ma, temperature evolution in the extra-tropical Pacific of both hemispheres is very similar to the evolution of SST in the eastern equatorial Pacific upwelling zone, revealing tight coupling between the growth of meridional and equatorial Pacific zonal temperature gradients over this interval as both the extra-tropics and the eastern equatorial Pacific cold tongue underwent cooling. Finally, while long term temperature evolution is broadly consistent across latitudes and ocean basins throughout the entire Plio-Pleistocene, we see evidence that climate coupling on orbital timescales strengthened significantly at 2.7 Ma, at which point obliquity-band coherence emerges among diverse SST records. We attribute this emergence of coherence to a strengthened greenhouse gas feedback at the obliquity frequency that was initiated with the intensification of northern hemisphere glaciation, as proposed by Herbert et al. (2010).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Li, Dongsheng; Xu, Wei
2015-04-01
In atom probe tomography (APT), accurate reconstruction of the spatial positions of field evaporated ions from measured detector patterns depends upon a correct understanding of the dynamic tip shape evolution and evaporation laws of component atoms. Artifacts in APT reconstructions of heterogeneous materials can be attributed to the assumption of homogeneous evaporation of all the elements in the material in addition to the assumption of a steady state hemispherical dynamic tip shape evolution. A level set method based specimen shape evolution model is developed in this study to simulate the evaporation of synthetic layered-structured APT tips. The simulation results ofmore » the shape evolution by the level set model qualitatively agree with the finite element method and the literature data using the finite difference method. The asymmetric evolving shape predicted by the level set model demonstrates the complex evaporation behavior of heterogeneous tip and the interface curvature can potentially lead to the artifacts in the APT reconstruction of such materials. Compared with other APT simulation methods, the new method provides smoother interface representation with the aid of the intrinsic sub-grid accuracy. Two evaporation models (linear and exponential evaporation laws) are implemented in the level set simulations and the effect of evaporation laws on the tip shape evolution is also presented.« less
Role of forensic odontologist in post mortem person identification
Pramod, Jahagirdar B.; Marya, Anand; Sharma, Vidhii
2012-01-01
The natural teeth are the most durable organs in the bodies of vertebrates, and humankind's understanding of their own past and evolution relies heavily upon remnant dental evidence found as fossils. The use of features unique to the human dentition as an aid to personal identification is widely accepted within the forensic field. Comparative dental identifications play a major role in identifying the victims of violence, disaster or other mass tragedies. The comparison of ante-mortem and postmortem dental records to determine human identity has long been established. Indeed, it is still a major identification method in criminal investigations, mass disasters, grossly decomposed or traumatized bodies, and in other situations where visual identification is neither possible nor desirable. This article has comprehensively described some of the methods, and additional factors aiding in postmortem person identification. PMID:23559914
Evolution in population parameters: density-dependent selection or density-dependent fitness?
Travis, Joseph; Leips, Jeff; Rodd, F Helen
2013-05-01
Density-dependent selection is one of earliest topics of joint interest to both ecologists and evolutionary biologists and thus occupies an important position in the histories of these disciplines. This joint interest is driven by the fact that density-dependent selection is the simplest form of feedback between an ecological effect of an organism's own making (crowding due to sustained population growth) and the selective response to the resulting conditions. This makes density-dependent selection perhaps the simplest process through which we see the full reciprocity between ecology and evolution. In this article, we begin by tracing the history of studying the reciprocity between ecology and evolution, which we see as combining the questions of evolutionary ecology with the assumptions and approaches of ecological genetics. In particular, density-dependent fitness and density-dependent selection were critical concepts underlying ideas about adaptation to biotic selection pressures and the coadaptation of interacting species. However, theory points to a critical distinction between density-dependent fitness and density-dependent selection in their influences on complex evolutionary and ecological interactions among coexisting species. Although density-dependent fitness is manifestly evident in empirical studies, evidence of density-dependent selection is much less common. This leads to the larger question of how prevalent and important density-dependent selection might really be. Life-history variation in the least killifish Heterandria formosa appears to reflect the action of density-dependent selection, and yet compelling evidence is elusive, even in this well-studied system, which suggests some important challenges for understanding density-driven feedbacks between ecology and evolution.
Online Planetary Science Courses at Athabasca University
NASA Astrophysics Data System (ADS)
Connors, Martin; Munyikwa, Ken; Bredeson, Christy
2016-01-01
Athabasca University offers distance education courses in science, at freshman and higher levels. It has a number of geology and astronomy courses, and recently opened a planetary science course as the first upper division astronomy course after many years of offering freshman astronomy. Astronomy 310, Planetary Science, focuses on process in the Solar System on bodies other than Earth. This process-oriented course uses W. F. Hartmann's "Moons and Planets" as its textbook. It primarily approaches the subject from an astronomy and physics perspective. Geology 415, Earth's Origin and Early Evolution, is based on the same textbook, but explores the evidence for the various processes, events, and materials involved in the formation and evolution of Earth. The course provides an overview of objects in the Solar System, including the Sun, the planets, asteroids, comets, and meteoroids. Earth's place in the solar system is examined and physical laws that govern the motion of objects in the universe are looked at. Various geochemical tools and techniques used by geologists to reveal and interpret the evidence for the formation and evolution of bodies in the solar system as well as the age of earth are also explored. After looking at lines of evidence used to reconstruct the evolution of the solar system, processes involved in the formation of planets and stars are examined. The course concludes with a look at the origin and nature of Earth's internal structure. GEOL415 is a senior undergraduate course and enrols about 15-30 students annually. The courses are delivered online via Moodle and student evaluation is conducted through assignments and invigilated examinations.
The Rate of Evolution of Postmating-Prezygotic Reproductive Isolation in Drosophila
Turissini, David A; McGirr, Joseph A; Patel, Sonali S; David, Jean R; Matute, Daniel R
2018-01-01
Abstract Reproductive isolation is an intrinsic aspect of species formation. For that reason, the identification of the precise isolating traits, and the rates at which they evolve, is crucial to understanding how species originate and persist. Previous work has measured the rates of evolution of prezygotic and postzygotic barriers to gene flow, yet no systematic analysis has studied the rates of evolution of postmating-prezygotic (PMPZ) barriers. We measured the magnitude of two barriers to gene flow that act after mating occurs but before fertilization. We also measured the magnitude of a premating barrier (female mating rate in nonchoice experiments) and two postzygotic barriers (hybrid inviability and hybrid sterility) for all pairwise crosses of all nine known extant species within the melanogaster subgroup. Our results indicate that PMPZ isolation evolves faster than hybrid inviability but slower than premating isolation. Next, we partition postzygotic isolation into different components and find that, as expected, hybrid sterility evolves faster than hybrid inviability. These results lend support for the hypothesis that, in Drosophila, reproductive isolation mechanisms (RIMs) that act early in reproduction (or in development) tend to evolve faster than those that act later in the reproductive cycle. Finally, we tested whether there was evidence for reinforcing selection at any RIM. We found no evidence for generalized evolution of reproductive isolation via reinforcement which indicates that there is no pervasive evidence of this evolutionary process. Our results indicate that PMPZ RIMs might have important evolutionary consequences in initiating speciation and in the persistence of new species. PMID:29048573
Griffith, Oliver W; Blackburn, Daniel G; Brandley, Matthew C; Van Dyke, James U; Whittington, Camilla M; Thompson, Michael B
2015-09-01
To understand evolutionary transformations it is necessary to identify the character states of extinct ancestors. Ancestral character state reconstruction is inherently difficult because it requires an accurate phylogeny, character state data, and a statistical model of transition rates and is fundamentally constrained by missing data such as extinct taxa. We argue that model based ancestral character state reconstruction should be used to generate hypotheses but should not be considered an analytical endpoint. Using the evolution of viviparity and reversals to oviparity in squamates as a case study, we show how anatomical, physiological, and ecological data can be used to evaluate hypotheses about evolutionary transitions. The evolution of squamate viviparity requires changes to the timing of reproductive events and the successive loss of features responsible for building an eggshell. A reversal to oviparity requires that those lost traits re-evolve. We argue that the re-evolution of oviparity is inherently more difficult than the reverse. We outline how the inviability of intermediate phenotypes might present physiological barriers to reversals from viviparity to oviparity. Finally, we show that ecological data supports an oviparous ancestral state for squamates and multiple transitions to viviparity. In summary, we conclude that the first squamates were oviparous, that frequent transitions to viviparity have occurred, and that reversals to oviparity in viviparous lineages either have not occurred or are exceedingly rare. As this evidence supports conclusions that differ from previous ancestral state reconstructions, our paper highlights the importance of incorporating biological evidence to evaluate model-generated hypotheses. © 2015 Wiley Periodicals, Inc.
Sexual selection and the adaptive evolution of PKDREJ protein in primates and rodents
Vicens, Alberto; Gómez Montoto, Laura; Couso-Ferrer, Francisco; Sutton, Keith A.; Roldan, Eduardo R.S.
2015-01-01
PKDREJ is a testis-specific protein thought to be located on the sperm surface. Functional studies in the mouse revealed that loss of PKDREJ has effects on sperm transport and the ability to undergo an induced acrosome reaction. Thus, PKDREJ has been considered a potential target of post-copulatory sexual selection in the form of sperm competition. Proteins involved in reproductive processes often show accelerated evolution. In many cases, this rapid divergence is promoted by positive selection which may be driven, at least in part, by post-copulatory sexual selection. We analysed the evolution of the PKDREJ protein in primates and rodents and assessed whether PKDREJ divergence is associated with testes mass relative to body mass, which is a reliable proxy of sperm competition levels. Evidence of an association between the evolutionary rate of the PKDREJ gene and testes mass relative to body mass was not found in primates. Among rodents, evidence of positive selection was detected in the Pkdrej gene in the family Cricetidae but not in Muridae. We then assessed whether Pkdrej divergence is associated with episodes of sperm competition in these families. We detected a positive significant correlation between the evolutionary rates of Pkdrej and testes mass relative to body mass in cricetids. These findings constitute the first evidence of post-copulatory sexual selection influencing the evolution of a protein that participates in the mechanisms regulating sperm transport and the acrosome reaction, strongly suggesting that positive selection may act on these fertilization steps, leading to advantages in situations of sperm competition. PMID:25304980
NASA Astrophysics Data System (ADS)
Natta, A.
Contents 1 Introduction 2 Collapse of molecular cores 2.1 Giant molecular clouds and cores 2.2 Conditions for collapse 2.3 Free-fall collapse 2.4 Collapse of an isothermal sphere of gas 2.5 Collapse of a slowly rotating core 3 Observable properties of protostars 3.1 Evidence of infall from molecular line profiles 3.2 SEDs of protostars 3.3 The line spectrumof a protostar 4 Protostellar and pre-main-sequence evolution 4.1 The protostellar phase 4.2 Pre-main-sequence evolution 4.3 The birthline 5 Circumstellar disks 5.1 Accretion disks 5.2 Properties of steady accretion disks 5.3 Reprocessing disks 5.4 Disk-star interaction 6 SEDs of disks 6.1 Power-law disks 6.2 Long-wavelength flux and disk mass 6.3 Comparison with TTS observations: Heating mechanism 7 Disk properties from observations 7.1 Mass accretion rate 7.2 Inner radius 7.3 Masses 7.4 Sizes 8 Disk lifetimes 8.1 Ground-based near and mid-infrared surveys 8.2 Mid-infrared ISOCAMsurveys 8.3 ISOPHOT 60 microm survey 8.4 Surveys at millimeter wavelengths 9 Disk evolution 9.1 Can we observe the early planet formation phase? 9.2 Evidence for grain growth 9.3 Evidence of planetesimals 9.4 Where is the diskmass? 10 Secondary or debris disks 11 Summary
Pair-bonding, romantic love, and evolution: the curious case of Homo sapiens.
Fletcher, Garth J O; Simpson, Jeffry A; Campbell, Lorne; Overall, Nickola C
2015-01-01
This article evaluates a thesis containing three interconnected propositions. First, romantic love is a "commitment device" for motivating pair-bonding in humans. Second, pair-bonding facilitated the idiosyncratic life history of hominins, helping to provide the massive investment required to rear children. Third, managing long-term pair bonds (along with family relationships) facilitated the evolution of social intelligence and cooperative skills. We evaluate this thesis by integrating evidence from a broad range of scientific disciplines. First, consistent with the claim that romantic love is an evolved commitment device, our review suggests that it is universal; suppresses mate-search mechanisms; has specific behavioral, hormonal, and neuropsychological signatures; and is linked to better health and survival. Second, we consider challenges to this thesis posed by the existence of arranged marriage, polygyny, divorce, and infidelity. Third, we show how the intimate relationship mind seems to be built to regulate and monitor relationships. Fourth, we review comparative evidence concerning links among mating systems, reproductive biology, and brain size. Finally, we discuss evidence regarding the evolutionary timing of shifts to pair-bonding in hominins. We conclude there is interdisciplinary support for the claim that romantic love and pair-bonding, along with alloparenting, played critical roles in the evolution of Homo sapiens. © The Author(s) 2014.
Workshop on the Archean Mantle
NASA Technical Reports Server (NTRS)
Ashwal, L. D. (Editor)
1989-01-01
The Workshop on the Archaen mantle considers and discusses evidence for the nature of earth's Archaen mantle, including its composition, age and structure, influence on the origin and evolution of earth's crust, and relationship to mantle and crustal evolution of the other terrestrial planets. The summaries of presentations and discussions are based on recordings made during the workshop and on notes taken by those who agreed to serve as summarizers.
Uniparental Inheritance Promotes Adaptive Evolution in Cytoplasmic Genomes.
Christie, Joshua R; Beekman, Madeleine
2017-03-01
Eukaryotes carry numerous asexual cytoplasmic genomes (mitochondria and plastids). Lacking recombination, asexual genomes should theoretically suffer from impaired adaptive evolution. Yet, empirical evidence indicates that cytoplasmic genomes experience higher levels of adaptive evolution than predicted by theory. In this study, we use a computational model to show that the unique biology of cytoplasmic genomes-specifically their organization into host cells and their uniparental (maternal) inheritance-enable them to undergo effective adaptive evolution. Uniparental inheritance of cytoplasmic genomes decreases competition between different beneficial substitutions (clonal interference), promoting the accumulation of beneficial substitutions. Uniparental inheritance also facilitates selection against deleterious cytoplasmic substitutions, slowing Muller's ratchet. In addition, uniparental inheritance generally reduces genetic hitchhiking of deleterious substitutions during selective sweeps. Overall, uniparental inheritance promotes adaptive evolution by increasing the level of beneficial substitutions relative to deleterious substitutions. When we assume that cytoplasmic genome inheritance is biparental, decreasing the number of genomes transmitted during gametogenesis (bottleneck) aids adaptive evolution. Nevertheless, adaptive evolution is always more efficient when inheritance is uniparental. Our findings explain empirical observations that cytoplasmic genomes-despite their asexual mode of reproduction-can readily undergo adaptive evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Disclosures and refutations: clinical psychoanalysis as a logic of enquiry.
Ahumada, J L
1997-12-01
The author argues that the empirical status of psychoanalysis has been distorted by the controversy surrounding Aristotelian and Galilean-Newtonian schemes of science, whose core ideas, respectively, are scientific concepts or forms and scientific laws. Bound by the Euclidian axiomatic tradition, Newtonian-style 'laws' do not obtain in the social sciences, and in biology they apply only at near-molecular levels, not at the level of mind. Continuing the traditional Aristotelian reliance on 'exemplars', neither Freud's nor Darwin's work fits the deductivist, infallibilistic scientific criteria used by philosophers such as Tarski, Popper or Grünbaum. Rebutting the charge that the workings of psychoanalysis are not explicit enough, this paper unfolds the logic of enquiry it utilises. In contrast to Newtonian inductivism, Popper's method of conjectures and refutations and Lakatos's method of proofs and refutations, clinical psychoanalysis employs a 'practical logic' of disclosures and refutations, a constantly evolving enquiry of multi-layered and tentative evidence of discordance and analogy. Such epistemic fallibilism, relying on a build-up of ostensive evidences rather than on 'certainties', is illustrated in the text by Moore's famous 'two-hands' argument, is held to fit in with the workings of everyday discernment and, arguably, with Darwinian evolution.
Geographic integration of hepatitis C virus: A global threat
Daw, Mohamed A; El-Bouzedi, Abdallah A; Ahmed, Mohamed O; Dau, Aghnyia A; Agnan, Mohamed M; Drah, Aisha M
2016-01-01
AIM To assess hepatitis C virus (HCV) geographic integration, evaluate the spatial and temporal evolution of HCV worldwide and propose how to diminish its burden. METHODS A literature search of published articles was performed using PubMed, MEDLINE and other related databases up to December 2015. A critical data assessment and analysis regarding the epidemiological integration of HCV was carried out using the meta-analysis method. RESULTS The data indicated that HCV has been integrated immensely over time and through various geographical regions worldwide. The history of HCV goes back to 1535 but between 1935 and 1965 it exhibited a rapid, exponential spread. This integration is clearly seen in the geo-epidemiology and phylogeography of HCV. HCV integration can be mirrored either as intra-continental or trans-continental. Migration, drug trafficking and HCV co-infection, together with other potential risk factors, have acted as a vehicle for this integration. Evidence shows that the geographic integration of HCV has been important in the global and regional distribution of HCV. CONCLUSION HCV geographic integration is clearly evident and this should be reflected in the prevention and treatment of this ongoing pandemic. PMID:27878104
New paleomagnetic constraints on the lunar magnetic field evolution
NASA Astrophysics Data System (ADS)
Lepaulard, C.; Gattacceca, J.; Weiss, B. P.
2017-12-01
In the 1970s, the first paleomagnetic analyses of lunar samples from the Apollo missions allowed a glimpse of the global evolution of the Moon's magnetic field over time, with evidence for a past dynamo activity [Fuller et Cisowski, 1987]. During the last a decade, a new set of paleomagnetic studies has provided a more refined view of the evolution of the lunar dynamo activity (chronology, intensity) [Weiss et Tikoo, 2014]. The aim of this study is to further refine the knowledge of the lunar dynamo by providing new paleomagnetic data. Based on measurements of the natural remanent magnetization of the main masses of 135 Apollo samples (mass between 50 g and 5 kg) with a portable magnetometer, we have selected nine samples for laboratory analyzes. The selected Apollo samples are: 10018, 15505, 61195 (regolith breccia); 61015 (dimict breccia); 14169 (crystalline matrix breccia); 65055 (basaltic impact melt); 12005, 12021 and 15529 (basalts). Paleointensity of the lunar magnetic fields were obtained by demagnetization by alternative field and normalization with laboratory magnetizations; as well as thermal demagnetization under controlled oxygen fugacity (Thellier-Thellier method) for selected samples. Preliminary results indicate that only three samples (10018, 15505, and 15529) possess a stable high coercivity / high temperature component of magnetization. We estimated the following paleointensities: 1.5 µT for 15505, 13 µT for 15529 (both with alternating field-based methods), and 1 µT for 10018 (thermal demagnetization with the Thellier-Thellier method). The other samples provide only an upper limit for the lunar surface field. These data will be discussed in view of the age of the samples (ages from the literature, and additional dating in progress). References :Fuller, M., and S.M. Cisowski, 1987. Lunar paleomagnetism. Geomagnetism 2, 307-455. Weiss, B.P., and S.M. Tikoo, 2014. The lunar dynamo. Science, 346, doi: 10.1126/science.1246753.
Wang, De-Ming; Xu, Hong-He; Xue, Jin-Zhuang; Wang, Qi; Liu, Le
2015-01-01
Background and Aims With the exception of angiosperms, the main euphyllophyte lineages (i.e. ferns sensu lato, progymnosperms and gymnosperms) had evolved laminate leaves by the Late Devonian. The evolution of laminate leaves, however, remains unclear for early-diverging ferns, largely represented by fern-like plants. This study presents a novel fern-like taxon with pinnules, which provides new insights into the early evolution of laminate leaves in early-diverging ferns. Methods Macrofossil specimens were collected from the Upper Devonian (Famennian) Wutong Formation of Anhui and Jiangsu Provinces, South China. A standard degagement technique was employed to uncover compressed plant portions within the rock matrix. Key Results A new fern-like taxon, Shougangia bella gen. et sp. nov., is described and represents an early-diverging fern with highly derived features. It has a partially creeping stem with adventitious roots only on one side, upright primary and secondary branches arranged in helices, tertiary branches borne alternately or (sub)oppositely, laminate and usually lobed leaves with divergent veins, and complex fertile organs terminating tertiary branches and possessing multiple divisions and numerous terminal sporangia. Conclusions Shougangia bella provides unequivocal fossil evidence for laminate leaves in early-diverging ferns. It suggests that fern-like plants, along with other euphyllophyte lineages, had independently evolved megaphylls by the Late Devonian, possibly in response to a significant decline in atmospheric CO2 concentration. Among fern-like plants, planate ultimate appendages are homologous with laminate pinnules, and in the evolution of megaphylls, fertile organs tend to become complex. PMID:25979918
NASA Astrophysics Data System (ADS)
Goff, Kevin David
This pilot study evaluated the validity of a new quantitative, closed-response instrument for assessing student conceptual change regarding the theory of evolution. The instrument has two distinguishing design features. First, it is designed not only to gauge student mastery of the scientific model of evolution, but also to elicit a trio of deeply intuitive tendencies that are known to compromise many students' understanding: the projection of intentional agency, teleological directionality, and immutable essences onto biological phenomena. Second, in addition to a section of conventional multiple choice questions, the instrument contains a series of items where students may simultaneously endorse both scientifically normative propositions and intuitively appealing yet unscientific propositions, without having to choose between them. These features allow for the hypothesized possibility that the three intuitions are partly innate, themselves products of cognitive evolution in our hominin ancestors, and thus may continue to inform students' thinking even after instruction and conceptual change. The test was piloted with 340 high school students from diverse schools and communities. Confirmatory factor analysis and other statistical methods provided evidence that the instrument already has strong potential for validly distinguishing students who hold a correct scientific understanding from those who do not, but that revision and retesting are needed to render it valid for gauging students' adherence to intuitive misconceptions. Ultimately the instrument holds promise as a tool for classroom intervention studies by conceptual change researchers, for diagnostic testing and data gathering by instructional leaders, and for provoking classroom dialogue and debate by science teachers.
Divergent positive selection in rhodopsin from lake and riverine cichlid fishes.
Schott, Ryan K; Refvik, Shannon P; Hauser, Frances E; López-Fernández, Hernán; Chang, Belinda S W
2014-05-01
Studies of cichlid evolution have highlighted the importance of visual pigment genes in the spectacular radiation of the African rift lake cichlids. Recent work, however, has also provided strong evidence for adaptive diversification of riverine cichlids in the Neotropics, which inhabit environments of markedly different spectral properties from the African rift lakes. These ecological and/or biogeographic differences may have imposed divergent selective pressures on the evolution of the cichlid visual system. To test these hypotheses, we investigated the molecular evolution of the dim-light visual pigment, rhodopsin. We sequenced rhodopsin from Neotropical and African riverine cichlids and combined these data with published sequences from African cichlids. We found significant evidence for positive selection using random sites codon models in all cichlid groups, with the highest levels in African lake cichlids. Tests using branch-site and clade models that partitioned the data along ecological (lake, river) and/or biogeographic (African, Neotropical) boundaries found significant evidence of divergent selective pressures among cichlid groups. However, statistical comparisons among these models suggest that ecological, rather than biogeographic, factors may be responsible for divergent selective pressures that have shaped the evolution of the visual system in cichlids. We found that branch-site models did not perform as well as clade models for our data set, in which there was evidence for positive selection in the background. One of our most intriguing results is that the amino acid sites found to be under positive selection in Neotropical and African lake cichlids were largely nonoverlapping, despite falling into the same three functional categories: spectral tuning, retinal uptake/release, and rhodopsin dimerization. Taken together, these results would imply divergent selection across cichlid clades, but targeting similar functions. This study highlights the importance of molecular investigations of ecologically important groups and the flexibility of clade models in explicitly testing ecological hypotheses.
Reply to Efford on ‘Integrating resource selection information with spatial capture-recapture’
Royle, Andy; Chandler, Richard; Sun, Catherine C.; Fuller, Angela K.
2014-01-01
3. A key point of Royle et al. (Methods in Ecology and Evolution, 2013, 4) was that active resource selection induces heterogeneity in encounter probability which, if unaccounted for, should bias estimates of population size or density. The models of Royle et al. (Methods in Ecology and Evolution, 2013, 4) and Efford (Methods in Ecology and Evolution, 2014, 000, 000) merely amount to alternative models of resource selection, and hence varying amounts of heterogeneity in encounter probability.
Hillslope Evolution by Bedrock Landslides
Densmore; Anderson; McAdoo; Ellis
1997-01-17
Bedrock landsliding is a dominant geomorphic process in a number of high-relief landscapes, yet is neglected in landscape evolution models. A physical model of sliding in beans is presented, in which incremental lowering of one wall simulates baselevel fall and generates slides. Frequent small slides produce irregular hillslopes, on which steep toes and head scarps persist until being cleared by infrequent large slides. These steep segments are observed on hillslopes in high-relief landscapes and have been interpreted as evidence for increases in tectonic or climatic process rates. In certain cases, they may instead reflect normal hillslope evolution by landsliding.
Cryptic genetic variation, evolution's hidden substrate
Paaby, Annalise B.; Rockman, Matthew V.
2016-01-01
Cryptic genetic variation is invisible under normal conditions but fuel for evolution when circumstances change. In theory, CGV can represent a massive cache of adaptive potential or a pool of deleterious alleles in need of constant suppression. CGV emerges from both neutral and selective processes and it may inform how human populations respond to change. In experimental settings, CGV facilitates adaptation, but does it play an important role in the real world? We review the empirical support for widespread CGV in natural populations, including its potential role in emerging human diseases and the growing evidence of its contribution to evolution. PMID:24614309
The geologic evolution of the moon
NASA Technical Reports Server (NTRS)
Lowman, P. D., Jr.
1971-01-01
A synthesis of pre- and post-Apollo 11 studies is presented to produce an outline of the moon's geologic evolution from three lines of evidence: (1) relative ages of lunar landforms and rock types, (2) absolute ages of returned lunar samples, and (3) petrography, chemistry, and isotopic ratios of lunar rocks and soils. It is assumed that the ray craters, circular mare basins, and most intermediate circular landforms are primarily of impact origin, although many other landforms are volcanic or of hybrid origin. The moon's evolution is divided into four main stages, each including several distinct but overlapping events or processes.
Footprints reveal direct evidence of group behavior and locomotion in Homo erectus
Hatala, Kevin G.; Roach, Neil T.; Ostrofsky, Kelly R.; Wunderlich, Roshna E.; Dingwall, Heather L.; Villmoare, Brian A.; Green, David J.; Harris, John W. K.; Braun, David R.; Richmond, Brian G.
2016-01-01
Bipedalism is a defining feature of the human lineage. Despite evidence that walking on two feet dates back 6–7 Ma, reconstructing hominin gait evolution is complicated by a sparse fossil record and challenges in inferring biomechanical patterns from isolated and fragmentary bones. Similarly, patterns of social behavior that distinguish modern humans from other living primates likely played significant roles in our evolution, but it is exceedingly difficult to understand the social behaviors of fossil hominins directly from fossil data. Footprints preserve direct records of gait biomechanics and behavior but they have been rare in the early human fossil record. Here we present analyses of an unprecedented discovery of 1.5-million-year-old footprint assemblages, produced by 20+ Homo erectus individuals. These footprints provide the oldest direct evidence for modern human-like weight transfer and confirm the presence of an energy-saving longitudinally arched foot in H. erectus. Further, print size analyses suggest that these H. erectus individuals lived and moved in cooperative multi-male groups, offering direct evidence consistent with human-like social behaviors in H. erectus. PMID:27403790
Re-Evaluating Clonal Dominance in Cancer Evolution.
Burrell, Rebecca A; Swanton, Charles
2016-05-01
Tumours are composed of genetically heterogeneous subclones which may diverge early during tumour growth. However, our strategies for treating and assessing outcome for patients are overwhelmingly based upon the classical linear paradigm for cancer evolution. Increasing numbers of studies are finding that minor subclones can determine clinical disease course, and that temporal and spatial heterogeneity needs to be considered in disease management. In this article we review evidence for cancer clonal heterogeneity, evaluating the importance of tumour subclones and their growth through both Darwinian and neutral evolution. Major shifts in current clinical practice and trial designs, aimed at understanding cancer evolution on a patient-by-patient basis, may be necessary to achieve more successful treatment of heterogeneous metastatic disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Exact traveling wave solutions for system of nonlinear evolution equations.
Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H
2016-01-01
In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis.
Campos, José Luis; Johnston, Keira; Charlesworth, Brian
2017-12-08
A faster rate of adaptive evolution of X-linked genes compared with autosomal genes (the faster-X effect) can be caused by the fixation of recessive or partially recessive advantageous mutations. This effect should be largest for advantageous mutations that affect only male fitness, and least for mutations that affect only female fitness. We tested these predictions in Drosophila melanogaster by using coding and functionally significant non-coding sequences of genes with different levels of sex-biased expression. Consistent with theory, nonsynonymous substitutions in most male-biased and unbiased genes show faster adaptive evolution on the X. However, genes with very low recombination rates do not show such an effect, possibly as a consequence of Hill-Robertson interference. Contrary to expectation, there was a substantial faster-X effect for female-biased genes. After correcting for recombination rate differences, however, female-biased genes did not show a faster X-effect. Similar analyses of non-coding UTRs and long introns showed a faster-X effect for all groups of genes, other than introns of female-biased genes. Given the strong evidence that deleterious mutations are mostly recessive or partially recessive, we would expect a slower rate of evolution of X-linked genes for slightly deleterious mutations that become fixed by genetic drift. Surprisingly, we found little evidence for this after correcting for recombination rate, implying that weakly deleterious mutations are mostly close to being semidominant. This is consistent with evidence from polymorphism data, which we use to test how models of selection that assume semidominance with no sex-specific fitness effects may bias estimates of purifying selection. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Genome-scale analysis of positionally relocated genes
Bhutkar, Arjun; Russo, Susan M.; Smith, Temple F.; Gelbart, William M.
2007-01-01
During evolution, genome reorganization includes large-scale events such as inversions, translocations, and segmental or even whole-genome duplications, as well as fine-scale events such as the relocation of individual genes. This latter category, which we will refer to as positionally relocated genes (PRGs), is the subject of this report. Assessment of the magnitude of such PRGs and of possible contributing mechanisms is aided by a comparative analysis of related genomes, where conserved chromosomal organization can aid in identifying genes that have acquired a new location in a lineage of these genomes. Here we utilize two methods to comprehensively identify relocated protein-coding genes in the recently sequenced genomes of 12 species of genus Drosophila. We use exceptions to the general rule of maintenance of chromosome arm (Muller element) association for most Drosophila genes to identify one major class of PRGs. We also identify a partially overlapping set of PRGs among “embedded genes,” located within the extents of other surrounding genes. We provide evidence that PRG movements have at least two different origins: Some events occur via retrotransposition of processed RNAs and others via a DNA-based transposition mechanism. Overall, we identify several hundred PRGs that arose within a lineage of the genus Drosophila phylogeny and provide suggestive evidence that a few thousand such events have occurred within the radiation of the insect order Diptera, thereby illustrating the magnitude of the contribution of PRG movement to chromosomal reorganization during evolution. PMID:17989252
Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, D. Christopher; Darvish, Behnam; Seibert, Mark
We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observedmore » colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.« less
Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution
NASA Astrophysics Data System (ADS)
Martin, D. Christopher; Gonçalves, Thiago S.; Darvish, Behnam; Seibert, Mark; Schiminovich, David
2017-06-01
We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.
Katvala, M; Rönn, J L; Arnqvist, G
2008-03-01
Sperm competition theory suggests that female remating rate determines the selective regime that dictates the evolution of male ejaculate allocation. To test for correlated evolution between female remating behaviour and male ejaculate traits, we subjected detailed experimental data on female and male reproductive traits in seven-seed beetle species to phylogenetic comparative analyses. The evolution of a larger first ejaculate was positively correlated with the evolution of a more rapid decline in ejaculate size over successive matings. Further, as predicted by theory, an increase in female remating rate correlated with the evolution of larger male testes but smaller ejaculates. However, an increase in female remating was associated with the evolution of a less even allocation of ejaculate resources over successive matings, contrary to classic sperm competition theory. We failed to find any evidence for coevolution between the pattern of male ejaculate allocation and variation in female quality and we conclude that some patterns of correlated evolution are congruent with current theory, whereas some are not. We suggest that this may reflect the fact that much sperm competition theory does not fully incorporate other factors that may affect the evolution of male and female traits, such as trade-offs between ejaculate expenditure and other competing demands and the evolution of resource acquisition.
Darwin's legacy: why biology is not physics, or why evolution has not become a common sense.
Singh, Rama S
2011-10-01
Cosmology and evolution together have enabled us to look deep into the past and comprehend evolution-from the big bang to the cosmos, from molecules to humans. Here, I compare the nature of theories in biology and physics and ask why physical theories get accepted by the public without necessarily comprehending them but biological theories do not. Darwin's theory of natural selection, utterly simple in its premises but profound in its consequences, is not accepted widely. Organized religions, and creationists in particularly, have been the major critic of evolution, but not all opposition to evolution comes from organized religions. A great many people, between evolutionary biologists on one hand and creationists on the other, many academics included, who may not be logically opposed to evolution nevertheless do not accept it. This is because the process of and the evidence for evolution are invisible to a nonspecialist, or the theory may look too simple to explain complex traits to some, or because people compare evolution against God and find evolutionary explanations threatening to their beliefs. Considering how evolution affects our lives, including health and the environment to give just two examples, a basic course in evolution should become a required component of all our college and university educational systems.
Paz-Y-Miño-C, Guillermo; Espinosa, Avelina
2015-06-01
The incompatibility between science and the belief in supernatural causation helps us understand why people do not accept evolution. Belief disrupts, distorts, delays, or stops (3Ds + S) the acceptance of scientific evidence. Here we examine the evolution controversy under three predictions of the incompatibility hypothesis. First, chronological-conflict-and-accommodation, which explains the historical re-emergence of antagonism between evolution and religion when advances in science continue to threaten the belief in supernatural causation; in such situations, creationists' rejection of and subsequent partial acceptance of the new scientific discoveries are expected. Second, change in evolution's acceptance as function of educational attainment, which explains the positive association between acceptance of evolution and level of education. And third, change in evolution's acceptance as function of religiosity, which explains the negative association between acceptance of evolution and level of religious beliefs. We rely on an ample assessment of the attitudes toward evolution by highly-educated audiences (i.e. research faculty, educators of prospective teachers, and college students in the United States) to characterize the associations among the understanding of science and evolution, personal religious convictions, and conservative ideology. We emphasize that harmonious coexistence between science and religion is illusory. If co-persisting in society, their relationship will fluctuate from moderate to intense antagonism.
Paz-y-Miño-C, Guillermo; Espinosa, Avelina
2016-01-01
The incompatibility between science and the belief in supernatural causation helps us understand why people do not accept evolution. Belief disrupts, distorts, delays, or stops (3Ds + S) the acceptance of scientific evidence. Here we examine the evolution controversy under three predictions of the incompatibility hypothesis. First, chronological-conflict-and-accommodation, which explains the historical re-emergence of antagonism between evolution and religion when advances in science continue to threaten the belief in supernatural causation; in such situations, creationists’ rejection of and subsequent partial acceptance of the new scientific discoveries are expected. Second, change in evolution's acceptance as function of educational attainment, which explains the positive association between acceptance of evolution and level of education. And third, change in evolution's acceptance as function of religiosity, which explains the negative association between acceptance of evolution and level of religious beliefs. We rely on an ample assessment of the attitudes toward evolution by highly-educated audiences (i.e. research faculty, educators of prospective teachers, and college students in the United States) to characterize the associations among the understanding of science and evolution, personal religious convictions, and conservative ideology. We emphasize that harmonious coexistence between science and religion is illusory. If co-persisting in society, their relationship will fluctuate from moderate to intense antagonism. PMID:26877774
Tran, Lucy A P
2014-04-22
Exceptional species and phenotypic diversity commonly are attributed to ecological opportunity (EO). The conventional EO model predicts that rates of lineage diversification and phenotypic evolution are elevated early in a radiation only to decline later in response to niche availability. Foregut fermentation is hypothesized to be a key innovation that allowed colobine monkeys (subfamily Colobinae), the only primates with this trait, to successfully colonize folivore adaptive zones unavailable to other herbivorous species. Therefore, diversification rates also are expected to be strongly linked with the evolution of traits related to folivory in these monkeys. Using dated molecular phylogenies and a dataset of feeding morphology, I test predictions of the EO model to evaluate the role of EO conferred by foregut fermentation in shaping the African and Asian colobine radiations. Findings from diversification methods coupled with colobine biogeographic history provide compelling evidence that decreasing availability of new adaptive zones during colonization of Asia together with constraints presented by dietary specialization underlie temporal changes in diversification in the Asian but not African clade. Additionally, departures from the EO model likely reflect iterative diversification events in Asia.
Tomographic Constraints on High-Energy Neutrinos of Hadronuclear Origin
NASA Astrophysics Data System (ADS)
Ando, Shin'ichiro; Tamborra, Irene; Zandanel, Fabio
2015-11-01
Mounting evidence suggests that the TeV-PeV neutrino flux detected by the IceCube telescope has mainly an extragalactic origin. If such neutrinos are primarily produced by a single class of astrophysical sources via hadronuclear (p p ) interactions, a similar flux of gamma-ray photons is expected. For the first time, we employ tomographic constraints to pinpoint the origin of the IceCube neutrino events by analyzing recent measurements of the cross correlation between the distribution of GeV gamma rays, detected by the Fermi satellite, and several galaxy catalogs in different redshift ranges. We find that the corresponding bounds on the neutrino luminosity density are up to 1 order of magnitude tighter than those obtained by using only the spectrum of the gamma-ray background, especially for sources with mild redshift evolution. In particular, our method excludes any hadronuclear source with a spectrum softer than E-2.1 as a main component of the neutrino background, if its evolution is slower than (1 +z )3. Starburst galaxies, if able to accelerate and confine cosmic rays efficiently, satisfy both spectral and tomographic constraints.
Unraveling Deformation Mechanisms in Gradient Structured Metals
NASA Astrophysics Data System (ADS)
Moering, Jordan Alexander
Gradient structures have demonstrated high strength and high ductility, introducing new mechanisms to challenge conventional mechanics. This work develops a method for characterizing the shear strain in gradient structured steel and presents evidence of a texture gradient that develops in Surface Mechanical Attrition Treatment (SMAT). Mechanics underlying some theories of the strengthening mechanisms in gradient structured metals are introduced, followed by the fabrication and testing of gradient structured aluminum rod. The round geometry is intrinsically different from its flat counterparts, which leads to a multiaxial stress state evolving in tension. The aluminum exhibits strengthening beyond rule of mixtures, and texture evolution in the post-mortem sample indicates that out of plane stresses operate within the gradient. Finally, another gradient structured aluminum rod is shown to exhibit higher strength and higher elongation to failure in a variety of sample diameters and processing conditions. The GND density and microstructural evolution showed no significant changes during mechanical testing, and high resolution strain mapping was successfully completed within the core of the material. These discoveries and contributions to the field should help continue unraveling the deformation mechanisms of gradient structured metals.
Sigmund Freud's evolution from neurology to psychiatry: evidence from his La Salpêtrière library.
Bogousslavsky, Julien
2011-10-04
To analyze the parallel between the scientific evolution of Sigmund Freud and his French library during and after his stay with Jean-Martin Charcot at La Salpêtrière in 1885-1886. Systematic review of all identified volumes of Freud's personal library, and comparison with his life data and publications. The largest part of Freud's 125 French medical books up to 1900 (of 3,725 books overall) are devoted to hysteria and hypnotism, published mainly between 1885 and 1895. Over one-third (50) of the neurology (94) and alienism (22) books have Charcot or one of his direct pupils (Janet, Féré, Babinski, Gilles de la Tourette, Richer, Pitres, Sollier, Raymond, Marie, Binet, Ball, Bourneville, Blocq, Berbez, Guinon, and Souques) as author. During that period, Freud evolved from the clinical-anatomic method (after mainly experimental histologic studies) to theoretical neurology (using hysteria and aphasia models) and psychology, a process which subsequently led to the birth of psychoanalysis. The library of Freud gives an interesting account on his own evolving thinking, which led him to leave neurology for psychology and psychoanalysis.
From Darwin to constructivism: the evolution of grounded theory.
Hall, Helen; Griffiths, Debra; McKenna, Lisa
2013-01-01
To explore the evolution of grounded theory and equip the reader with a greater understanding of the diverse conceptual positioning that is evident in the methodology. Grounded theory was developed during the modernist phase of research to develop theories that are derived from data and explain human interaction. Its philosophical foundations derive from symbolic interactionism and were influenced by a range of scholars including Charles Darwin and George Mead. Rather than a rigid set of rules and procedures, grounded theory is a way of conceptualising data. Researchers demonstrate a range of perspectives and there is significant variation in the way the methodology is interpreted and executed. Some grounded theorists continue to align closely with the original post-positivist view, while others take a more constructivist approach. Although the diverse interpretations accommodate flexibility, they may also result in confusion. The grounded theory approach enables researchers to align to their own particular world view and use methods that are flexible and practical. With an appreciation of the diverse philosophical approaches to grounded theory, researchers are enabled to use and appraise the methodology more effectively.
Tomographic Constraints on High-Energy Neutrinos of Hadronuclear Origin.
Ando, Shin'ichiro; Tamborra, Irene; Zandanel, Fabio
2015-11-27
Mounting evidence suggests that the TeV-PeV neutrino flux detected by the IceCube telescope has mainly an extragalactic origin. If such neutrinos are primarily produced by a single class of astrophysical sources via hadronuclear (pp) interactions, a similar flux of gamma-ray photons is expected. For the first time, we employ tomographic constraints to pinpoint the origin of the IceCube neutrino events by analyzing recent measurements of the cross correlation between the distribution of GeV gamma rays, detected by the Fermi satellite, and several galaxy catalogs in different redshift ranges. We find that the corresponding bounds on the neutrino luminosity density are up to 1 order of magnitude tighter than those obtained by using only the spectrum of the gamma-ray background, especially for sources with mild redshift evolution. In particular, our method excludes any hadronuclear source with a spectrum softer than E^{-2.1} as a main component of the neutrino background, if its evolution is slower than (1+z)^{3}. Starburst galaxies, if able to accelerate and confine cosmic rays efficiently, satisfy both spectral and tomographic constraints.
Precise genotyping and recombination detection of Enterovirus
2015-01-01
Enteroviruses (EV) with different genotypes cause diverse infectious diseases in humans and mammals. A correct EV typing result is crucial for effective medical treatment and disease control; however, the emergence of novel viral strains has impaired the performance of available diagnostic tools. Here, we present a web-based tool, named EVIDENCE (EnteroVirus In DEep conception, http://symbiont.iis.sinica.edu.tw/evidence), for EV genotyping and recombination detection. We introduce the idea of using mixed-ranking scores to evaluate the fitness of prototypes based on relatedness and on the genome regions of interest. Using phylogenetic methods, the most possible genotype is determined based on the closest neighbor among the selected references. To detect possible recombination events, EVIDENCE calculates the sequence distance and phylogenetic relationship among sequences of all sliding windows scanning over the whole genome. Detected recombination events are plotted in an interactive figure for viewing of fine details. In addition, all EV sequences available in GenBank were collected and revised using the latest classification and nomenclature of EV in EVIDENCE. These sequences are built into the database and are retrieved in an indexed catalog, or can be searched for by keywords or by sequence similarity. EVIDENCE is the first web-based tool containing pipelines for genotyping and recombination detection, with updated, built-in, and complete reference sequences to improve sensitivity and specificity. The use of EVIDENCE can accelerate genotype identification, aiding clinical diagnosis and enhancing our understanding of EV evolution. PMID:26678286
Recurrent Innovation at Genes Required for Telomere Integrity in Drosophila.
Lee, Yuh Chwen G; Leek, Courtney; Levine, Mia T
2017-02-01
Telomeres are nucleoprotein complexes at the ends of linear chromosomes. These specialized structures ensure genome integrity and faithful chromosome inheritance. Recurrent addition of repetitive, telomere-specific DNA elements to chromosome ends combats end-attrition, while specialized telomere-associated proteins protect naked, double-stranded chromosome ends from promiscuous repair into end-to-end fusions. Although telomere length homeostasis and end-protection are ubiquitous across eukaryotes, there is sporadic but building evidence that the molecular machinery supporting these essential processes evolves rapidly. Nevertheless, no global analysis of the evolutionary forces that shape these fast-evolving proteins has been performed on any eukaryote. The abundant population and comparative genomic resources of Drosophila melanogaster and its close relatives offer us a unique opportunity to fill this gap. Here we leverage population genetics, molecular evolution, and phylogenomics to define the scope and evolutionary mechanisms driving fast evolution of genes required for telomere integrity. We uncover evidence of pervasive positive selection across multiple evolutionary timescales. We also document prolific expansion, turnover, and expression evolution in gene families founded by telomeric proteins. Motivated by the mutant phenotypes and molecular roles of these fast-evolving genes, we put forward four alternative, but not mutually exclusive, models of intra-genomic conflict that may play out at very termini of eukaryotic chromosomes. Our findings set the stage for investigating both the genetic causes and functional consequences of telomere protein evolution in Drosophila and beyond. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
The evolution of Internet addiction: A global perspective.
Griffiths, Mark D; Kuss, Daria J; Billieux, Joël; Pontes, Halley M
2016-02-01
Kimberly Young's initial work on Internet addiction (IA) was pioneering and her early writings on the topic inspired many others to carry out research in the area. Young's (2015) recent paper on the 'evolution of Internet addiction' featured very little European research, and did not consider the main international evidence that has contributed to our current knowledge about the conceptualization, epidemiology, etiology, and course of Internet-related disorders. This short commentary paper elaborates on important literature omitted by Young that the present authors believe may be of use to researchers. We also address statements made in Young's (2015) commentary that are incorrect (and therefore misleading) and not systematically substantiated by empirical evidence. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rodriguez-Roche, Rosmari; Villegas, Elci; Cook, Shelley; Poh Kim, Pauline A.W.; Hinojosa, Yoandri; Rosario, Delfina; Villalobos, Iris; Bendezu, Herminia; Hibberd, Martin L.; Guzman, Maria G.
2012-01-01
During the past three decades there has been a notable increase in dengue disease severity in Venezuela. Nevertheless, the population structure of the viruses being transmitted in this country is not well understood. Here, we present a molecular epidemiological study on dengue viruses (DENV) circulating in Aragua State, Venezuela during 2006–2007. Twenty-one DENV full-length genomes representing all of the four serotypes were amplified and sequenced directly from the serum samples. Notably, only DENV-2 was associated with severe disease. Phylogenetic trees constructed using Bayesian methods indicated that only one genotype was circulating for each serotype. However, extensive viral genetic diversity was found in DENV isolated from the same area during the same period, indicating significant in situ evolution since the introduction of these genotypes. Collectively, the results suggest that the non-structural (NS) proteins may play an important role in DENV evolution, particularly NS1, NS2A and NS4B proteins. The phylogenetic data provide evidence to suggest that multiple introductions of DENV have occurred from the Latin American region into Venezuela and vice versa. The implications of the significant viral genetic diversity generated during hyperendemic transmission, particularly in NS protein are discussed and considered in the context of future development and use of human monoclonal antibodies as antivirals and tetravalent vaccines. PMID:22197765
Johnson, Marc T J; Fitzjohn, Richard G; Smith, Stacey D; Rausher, Mark D; Otto, Sarah P
2011-11-01
The loss of sexual recombination and segregation in asexual organisms has been portrayed as an irreversible process that commits asexually reproducing lineages to reduced diversification. We test this hypothesis by estimating rates of speciation, extinction, and transition between sexuality and functional asexuality in the evening primroses. Specifically, we estimate these rates using the recently developed BiSSE (Binary State Speciation and Extinction) phylogenetic comparative method, which employs maximum likelihood and Bayesian techniques. We infer that net diversification rates (speciation minus extinction) in functionally asexual evening primrose lineages are roughly eight times faster than diversification rates in sexual lineages, largely due to higher speciation rates in asexual lineages. We further reject the hypothesis that a loss of recombination and segregation is irreversible because the transition rate from functional asexuality to sexuality is significantly greater than zero and in fact exceeded the reverse rate. These results provide the first empirical evidence in support of the alternative theoretical prediction that asexual populations should instead diversify more rapidly than sexual populations because they are free from the homogenizing effects of sexual recombination and segregation. Although asexual reproduction may often constrain adaptive evolution, our results show that the loss of recombination and segregation need not be an evolutionary dead end in terms of diversification of lineages. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Introduction: integrating genetic and cultural evolutionary approaches to language.
Mesoudi, Alex; McElligott, Alan G; Adger, David
2011-04-01
The papers in this special issue of Human Biology address recent research in the field of language evolution, both the genetic evolution of the language faculty and the cultural evolution of specific languages. While both of these areas have received increasing interest in recent years, there is also a need to integrate these somewhat separate efforts and explore the relevant gene-culture coevolutionary interactions. Here we summarize the individual contributions, set them in the context of the wider literature, and identify outstanding future research questions. The first set of papers concerns the comparative study of nonhuman communication in primates and birds from both a behavioral and neurobiological perspective, revealing evidence for several common language-related traits in various nonhuman species and providing clues as to the evolutionary origin and function of the human language faculty. The second set of papers discusses the consequences of viewing language as a culturally evolving system in its own right, including claims that this removes the need for strong genetic biases for language acquisition, and that phylogenetic evolutionary methods can be used to reconstruct language histories. We conclude by highlighting outstanding areas for future research, including identifying the precise selection pressures that gave rise to the language faculty in ancestral hominin species, and determining the strength, domain specificity, and origin of the cultural transmission biases that shape languages as they pass along successive generations of language learners.
Longa, Victor Manuel
2013-01-01
While language was traditionally considered a purely cultural trait, the advent of Noam Chomsky's Generative Grammar in the second half of the twentieth century dramatically challenged that view. According to that theory, language is an innate feature, part of the human biological endowment. If language is indeed innate, it had to biologically evolve. This review has two main objectives: firstly, it characterizes from a Chomskyan perspective the evolutionary processes by which language could have come into being. Secondly, it proposes a new method for interpreting the archaeological record that radically differs from the usual types of evidence Paleoanthropology has concentrated on when dealing with language evolution: while archaeological remains have usually been regarded from the view of the behavior they could be associated with, the paper will consider archaeological remains from the view of the computational processes and capabilities at work for their production. This computational approach, illustrated with a computational analysis of prehistoric geometric engravings, will be used to challenge the usual generative thinking on language evolution, based on the high specificity of language. The paper argues that the biological machinery of language is neither specifically linguistic nor specifically human, although language itself can still be considered a species-specific innate trait. From such a view, language would be one of the consequences of a slight modification operated on an ancestral architecture shared with vertebrates.
Carlson, David E; Hedin, Marshal
2017-01-01
Next-generation sequencing technology is rapidly transforming the landscape of evolutionary biology, and has become a cost-effective and efficient means of collecting exome information for non-model organisms. Due to their taxonomic diversity, production of interesting venom and silk proteins, and the relative scarcity of existing genomic resources, spiders in particular are excellent targets for next-generation sequencing (NGS) methods. In this study, the transcriptomes of six entelegyne spider species from three genera (Cicurina travisae, C. vibora, Habronattus signatus, H. ustulatus, Nesticus bishopi, and N. cooperi) were sequenced and de novo assembled. Each assembly was assessed for quality and completeness and functionally annotated using gene ontology information. Approximately 100 transcripts with evidence of homology to venom proteins were discovered. After identifying more than 3,000 putatively orthologous genes across all six taxa, we used comparative analyses to identify 24 instances of positively selected genes. In addition, between ~ 550 and 1,100 unique orphan genes were found in each genus. These unique, uncharacterized genes exhibited elevated rates of amino acid substitution, potentially consistent with lineage-specific adaptive evolution. The data generated for this study represent a valuable resource for future phylogenetic and molecular evolutionary research, and our results provide new insight into the forces driving genome evolution in taxa that span the root of entelegyne spider phylogeny.
ERIC Educational Resources Information Center
Notzer, Netta; Abramovitz, Ruth
2012-01-01
The Anatomy Department at Tel-Aviv University Medical School offers its students an elective course of 26 didactic hours on human evolution. The course is open to students from all faculties, who must fulfill all academic requirements, without a prerequisite of a background in anatomy. Approximately 120 students attend annually, a third of them…
A statistical test of unbiased evolution of body size in birds.
Bokma, Folmer
2002-12-01
Of the approximately 9500 bird species, the vast majority is small-bodied. That is a general feature of evolutionary lineages, also observed for instance in mammals and plants. The avian interspecific body size distribution is right-skewed even on a logarithmic scale. That has previously been interpreted as evidence that body size evolution has been biased. However, a procedure to test for unbiased evolution from the shape of body size distributions was lacking. In the present paper unbiased body size evolution is defined precisely, and a statistical test is developed based on Monte Carlo simulation of unbiased evolution. Application of the test to birds suggests that it is highly unlikely that avian body size evolution has been unbiased as defined. Several possible explanations for this result are discussed. A plausible explanation is that the general model of unbiased evolution assumes that population size and generation time do not affect the evolutionary variability of body size; that is, that micro- and macroevolution are decoupled, which theory suggests is not likely to be the case.
McMahon, Dino P.; Hayward, Alexander; Kathirithamby, Jeyaraney
2011-01-01
A comprehensive model of evolution requires an understanding of the relationship between selection at the molecular and phenotypic level. We investigate this in Strepsiptera, an order of endoparasitic insects whose evolutionary biology is poorly studied. We present the first molecular phylogeny of Strepsiptera, and use this as a framework to investigate the association between parasitism and molecular evolution. We find evidence of a significant burst in the rate of molecular evolution in the early history of Strepsiptera. The evolution of morphological traits linked to parasitism is significantly correlated with the pattern in molecular rate. The correlated burst in genotypic-phenotypic evolution precedes the main phase of strepsipteran diversification, which is characterised by the return to a low and even molecular rate, and a period of relative morphological stability. These findings suggest that the transition to endoparasitism led to relaxation of selective constraint in the strepsipteran genome. Our results indicate that a parasitic lifestyle can affect the rate of molecular evolution, although other causal life-history traits correlated with parasitism may also play an important role. PMID:21738621
Convergent evolution of ribonuclease h in LTR retrotransposons and retroviruses.
Ustyantsev, Kirill; Novikova, Olga; Blinov, Alexander; Smyshlyaev, Georgy
2015-05-01
Ty3/Gypsy long terminals repeat (LTR) retrotransposons are structurally and phylogenetically close to retroviruses. Two notable structural differences between these groups of genetic elements are 1) the presence in retroviruses of an additional envelope gene, env, which mediates infection, and 2) a specific dual ribonuclease H (RNH) domain encoded by the retroviral pol gene. However, similar to retroviruses, many Ty3/Gypsy LTR retrotransposons harbor additional env-like genes, promoting concepts of the infective mode of these retrotransposons. Here, we provide a further line of evidence of similarity between retroviruses and some Ty3/Gypsy LTR retrotransposons. We identify that, together with their additional genes, plant Ty3/Gypsy LTR retrotransposons of the Tat group have a second RNH, as do retroviruses. Most importantly, we show that the resulting dual RNHs of Tat LTR retrotransposons and retroviruses emerged independently, providing strong evidence for their convergent evolution. The convergent resemblance of Tat LTR retrotransposons and retroviruses may indicate similar selection pressures acting on these diverse groups of elements and reveal potential evolutionary constraints on their structure. We speculate that dual RNH is required to accelerate retrotransposon evolution through increased rates of strand transfer events and subsequent recombination events. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Neutral biogeography and the evolution of climatic niches.
Boucher, Florian C; Thuiller, Wilfried; Davies, T Jonathan; Lavergne, Sébastien
2014-05-01
Recent debate on whether climatic niches are conserved through time has focused on how phylogenetic niche conservatism can be measured by deviations from a Brownian motion model of evolutionary change. However, there has been no evaluation of this methodological approach. In particular, the fact that climatic niches are usually obtained from distribution data and are thus heavily influenced by biogeographic factors has largely been overlooked. Our main objective here was to test whether patterns of climatic niche evolution that are frequently observed might arise from neutral dynamics rather than from adaptive scenarios. We developed a model inspired by neutral biodiversity theory, where individuals disperse, compete, and undergo speciation independently of climate. We then sampled the climatic niches of species according to their geographic position and showed that even when species evolve independently of climate, their niches can nonetheless exhibit evolutionary patterns strongly differing from Brownian motion. Indeed, climatic niche evolution is better captured by a model of punctuated evolution with constraints due to landscape boundaries, two features that are traditionally interpreted as evidence for selective processes acting on the niche. We therefore suggest that deviation from Brownian motion alone should not be used as evidence for phylogenetic niche conservatism but that information on phenotypic traits directly linked to physiology is required to demonstrate that climatic niches have been conserved through time.
Gabriel, Edith; Leatherbarrow, Andrew J.H.; Cheesbrough, John; Gee, Steven; Bolton, Eric; Fox, Andrew; Hart, C. Anthony; Diggle, Peter J.; Fearnhead, Paul
2009-01-01
Responsible for the majority of bacterial gastroenteritis in the developed world, Campylobacter jejuni is a pervasive pathogen of humans and animals, but its evolution is obscure. In this paper, we exploit contemporary genetic diversity and empirical evidence to piece together the evolutionary history of C. jejuni and quantify its evolutionary potential. Our combined population genetics–phylogenetics approach reveals a surprising picture. Campylobacter jejuni is a rapidly evolving species, subject to intense purifying selection that purges 60% of novel variation, but possessing a massive evolutionary potential. The low mutation rate is offset by a large effective population size so that a mutation at any site can occur somewhere in the population within the space of a week. Recombination has a fundamental role, generating diversity at twice the rate of de novo mutation, and facilitating gene flow between C. jejuni and its sister species Campylobacter coli. We attempt to calibrate the rate of molecular evolution in C. jejuni based solely on within-species variation. The rates we obtain are up to 1,000 times faster than conventional estimates, placing the C. jejuni–C. coli split at the time of the Neolithic revolution. We weigh the plausibility of such recent bacterial evolution against alternative explanations and discuss the evidence required to settle the issue. PMID:19008526
Neutral biogeography and the evolution of climatic niches
Boucher, Florian C.; Thuiller, Wilfried; Davies, T. Jonathan; Lavergne, Sébastien
2014-01-01
Recent debate on whether climatic niches are conserved through time has focused on how phylogenetic niche conservatism can be measured by deviations from a Brownian motion model of evolutionary change. However, there has been no evaluation of this methodological approach. In particular, the fact that climatic niches are usually obtained from distribution data and are thus heavily influenced by biogeographic factors has largely been overlooked. Our main objective here was to test whether patterns of climatic niche evolution that are frequently observed might arise from neutral dynamics rather than adaptive scenarios. We develop a model inspired by Neutral Biodiversity Theory, where individuals disperse, compete, and undergo speciation independently of climate. We then sample the climatic niches of species according to their geographic position and show that even when species evolved independently of climate, their niches can nonetheless exhibit evolutionary patterns strongly differing from Brownian motion. Indeed, climatic niche evolution is better captured by a model of punctuated evolution with constraints due to landscape boundaries, two features that are traditionally interpreted as evidence for selective processes acting on the niche. We therefore suggest that deviation from Brownian motion alone should not be used as evidence for phylogenetic niche conservatism, but that information on phenotypic traits directly linked to physiology is required to demonstrate that climatic niches have been conserved through time. PMID:24739191
The role of experiments in understanding fishery-induced evolution
Conover, David O; Baumann, Hannes
2009-01-01
Evidence of fishery-induced evolution has been accumulating rapidly from various avenues of investigation. Here we review the knowledge gained from experimental approaches. The strength of experiments is in their ability to disentangle genetic from environmental differences. Common garden experiments have provided direct evidence of adaptive divergence in the wild and therefore the evolvability of various traits that influence production in numerous species. Most of these cases involve countergradient variation in physiological, life history, and behavioral traits. Selection experiments have provided examples of rapid life history evolution and, more importantly, that fishery-induced selection pressures cause simultaneous divergence of not one but a cluster of genetically and phenotypically correlated traits that include physiology, behavior, reproduction, and other life history characters. The drawbacks of experiments are uncertainties in the scale-up from small, simple environments to larger and more complex systems; the concern that taxons with short life cycles used for experimental research are atypical of those of harvested species; and the difficulty of adequately simulating selection due to fishing. Despite these limitations, experiments have contributed greatly to our understanding of fishery-induced evolution on both empirical and theoretical levels. Future advances will depend on integrating knowledge from experiments with those from modeling, field studies, and molecular genetic approaches. PMID:25567880
Allaby, Robin G; Kistler, Logan; Gutaker, Rafal M; Ware, Roselyn; Kitchen, James L; Smith, Oliver; Clarke, Andrew C
2015-02-01
The colonization of the human environment by plants, and the consequent evolution of domesticated forms is increasingly being viewed as a co-evolutionary plant-human process that occurred over a long time period, with evidence for the co-evolutionary relationship between plants and humans reaching ever deeper into the hominin past. This developing view is characterized by a change in emphasis on the drivers of evolution in the case of plants. Rather than individual species being passive recipients of artificial selection pressures and ultimately becoming domesticates, entire plant communities adapted to the human environment. This evolutionary scenario leads to systems level genetic expectations from models that can be explored through ancient DNA and Next Generation Sequencing approaches. Emerging evidence suggests that domesticated genomes fit well with these expectations, with periods of stable complex evolution characterized by large amounts of change associated with relatively small selective value, punctuated by periods in which changes in one-half of the plant-hominin relationship cause rapid, low-complexity adaptation in the other. A corollary of a single plant-hominin co-evolutionary process is that clues about the initiation of the domestication process may well lie deep within the hominin lineage. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Diet manuals to practice manuals: the evolution of nutrition care.
Chima, Cinda S
2007-02-01
Although the role of nutrition as a therapy for the sick has been recognized for centuries, the science of nutrition is a relatively young discipline. The first modern attempt to document and standardize appropriate nutrition care was the diet manual. The evolution from "diet manual" to "practice manual" is less a change in purpose than an expansion of scope. This paper reviews the history of diet manuals in the United States, focusing on the evolution of nutrition therapy and the transformation of diet manuals into practice manuals for nutrition care providers. Included is a practice-oriented summary of 7 diet manuals published by Cleveland Metropolitan General Hospital in Cleveland from 1939 to 1984, when the hospital began using nationally distributed practice manuals. These manuals exemplify changes in the practice of medicine and in the role of nutrition providers on the healthcare team. A review of the evolution of clinical decision-making as documented in diet and practice manuals reflects increasing rigor in referencing scientific evidence. Nutrition therapies that seem quaint to us now reflect the traditional origins of many medical practices that persist today. Knowledge of this history should motivate us to critically evaluate the research base that supports all aspects of nutrition therapy, develop protocols to assess practices that remain unexamined, and embrace the discipline of evidence-based practice.
Cierco-Ayrolles, Christine; Dejean, Sébastien; Legarra, Andrés; Gilbert, Hélène; Druet, Tom; Ytournel, Florence; Estivals, Delphine; Oumouhou, Naïma; Mangin, Brigitte
2010-10-22
Since 2001, the use of more and more dense maps has made researchers aware that combining linkage and linkage disequilibrium enhances the feasibility of fine-mapping genes of interest. So, various method types have been derived to include concepts of population genetics in the analyses. One major drawback of many of these methods is their computational cost, which is very significant when many markers are considered. Recent advances in technology, such as SNP genotyping, have made it possible to deal with huge amount of data. Thus the challenge that remains is to find accurate and efficient methods that are not too time consuming. The study reported here specifically focuses on the half-sib family animal design. Our objective was to determine whether modelling of linkage disequilibrium evolution improved the mapping accuracy of a quantitative trait locus of agricultural interest in these populations. We compared two methods of fine-mapping. The first one was an association analysis. In this method, we did not model linkage disequilibrium evolution. Therefore, the modelling of the evolution of linkage disequilibrium was a deterministic process; it was complete at time 0 and remained complete during the following generations. In the second method, the modelling of the evolution of population allele frequencies was derived from a Wright-Fisher model. We simulated a wide range of scenarios adapted to animal populations and compared these two methods for each scenario. Our results indicated that the improvement produced by probabilistic modelling of linkage disequilibrium evolution was not significant. Both methods led to similar results concerning the location accuracy of quantitative trait loci which appeared to be mainly improved by using four flanking markers instead of two. Therefore, in animal half-sib designs, modelling linkage disequilibrium evolution using a Wright-Fisher model does not significantly improve the accuracy of the QTL location when compared to a simpler method assuming complete and constant linkage between the QTL and the marker alleles. Finally, given the high marker density available nowadays, the simpler method should be preferred as it gives accurate results in a reasonable computing time.
Age of acquisition predicts rate of lexical evolution.
Monaghan, Padraic
2014-12-01
The processes taking place during language acquisition are proposed to influence language evolution. However, evidence demonstrating the link between language learning and language evolution is, at best, indirect, constituting studies of laboratory-based artificial language learning studies or computational simulations of diachronic change. In the current study, a direct link between acquisition and evolution is established, showing that for two hundred fundamental vocabulary items, the age at which words are acquired is a predictor of the rate at which they have changed in studies of language evolution. Early-acquired words are more salient and easier to process than late-acquired words, and these early-acquired words are also more stably represented within the community's language. Analysing the properties of these early-acquired words potentially provides insight into the origins of communication, highlighting features of words that have been ultra-conserved in language. Copyright © 2014 Elsevier B.V. All rights reserved.
Genomic signatures of evolutionary transitions from solitary to group living
Kapheim, Karen M.; Pan, Hailin; Li, Cai; Salzberg, Steven L.; Puiu, Daniela; Magoc, Tanja; Robertson, Hugh M.; Hudson, Matthew E.; Venkat, Aarti; Fischman, Brielle J.; Hernandez, Alvaro; Yandell, Mark; Ence, Daniel; Holt, Carson; Yocum, George D.; Kemp, William P.; Bosch, Jordi; Waterhouse, Robert M.; Zdobnov, Evgeny M.; Stolle, Eckart; Kraus, F. Bernhard; Helbing, Sophie; Moritz, Robin F. A.; Glastad, Karl M.; Hunt, Brendan G.; Goodisman, Michael A. D.; Hauser, Frank; Grimmelikhuijzen, Cornelis J. P.; Pinheiro, Daniel Guariz; Nunes, Francis Morais Franco; Soares, Michelle Prioli Miranda; Tanaka, Érica Donato; Simões, Zilá Luz Paulino; Hartfelder, Klaus; Evans, Jay D.; Barribeau, Seth M.; Johnson, Reed M.; Massey, Jonathan H.; Southey, Bruce R.; Hasselmann, Martin; Hamacher, Daniel; Biewer, Matthias; Kent, Clement F.; Zayed, Amro; Blatti, Charles; Sinha, Saurabh; Johnston, J. Spencer; Hanrahan, Shawn J.; Kocher, Sarah D.; Wang, Jun; Robinson, Gene E.; Zhang, Guojie
2017-01-01
The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks. PMID:25977371
Experimental evolution reveals hidden diversity in evolutionary pathways.
Lind, Peter A; Farr, Andrew D; Rainey, Paul B
2015-03-25
Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader morph of Pseudomonas fluorescens arises repeatedly during experimental evolution. The mutational causes reside exclusively within three pathways. By eliminating these, 13 new mutational pathways were discovered with the newly arising WS types having fitnesses similar to those arising from the commonly passaged routes. Our findings show that parallel genetic evolution is strongly biased by constraints and we reveal the genetic bases. From such knowledge, and in instances where new phenotypes arise via gene activation, we suggest a set of principles: evolution proceeds firstly via pathways subject to negative regulation, then via promoter mutations and gene fusions, and finally via activation by intragenic gain-of-function mutations. These principles inform evolutionary forecasting and have relevance to interpreting the diverse array of mutations associated with clinically identical instances of disease in humans.
New Gene Evolution: Little Did We Know
Long, Manyuan; VanKuren, Nicholas W.; Chen, Sidi; Vibranovski, Maria D.
2014-01-01
Genes are perpetually added to and deleted from genomes during evolution. Thus, it is important to understand how new genes are formed and evolve as critical components of the genetic systems determining the biological diversity of life. Two decades of effort have shed light on the process of new gene origination, and have contributed to an emerging comprehensive picture of how new genes are added to genomes, ranging from the mechanisms that generate new gene structures to the presence of new genes in different organisms to the rates and patterns of new gene origination and the roles of new genes in phenotypic evolution. We review each of these aspects of new gene evolution, summarizing the main evidence for the origination and importance of new genes in evolution. We highlight findings showing that new genes rapidly change existing genetic systems that govern various molecular, cellular and phenotypic functions. PMID:24050177
The effect of relationship status on health with dynamic health and persistent relationships.
Kohn, Jennifer L; Averett, Susan L
2014-07-01
The dynamic evolution of health and persistent relationship status pose econometric challenges to disentangling the causal effect of relationships on health from the selection effect of health on relationship choice. Using a new econometric strategy we find that marriage is not universally better for health. Rather, cohabitation benefits the health of men and women over 45, being never married is no worse for health, and only divorce marginally harms the health of younger men. We find strong evidence that unobservable health-related factors can confound estimates. Our method can be applied to other research questions with dynamic dependent and multivariate endogenous variables. Copyright © 2014 Elsevier B.V. All rights reserved.
How is the rate of climatic-niche evolution related to climatic-niche breadth?
Fisher-Reid, M Caitlin; Kozak, Kenneth H; Wiens, John J
2012-12-01
The rate of climatic-niche evolution is important to many research areas in ecology, evolution, and conservation biology, including responses of species to global climate change, spread of invasive species, speciation, biogeography, and patterns of species richness. Previous studies have implied that clades with higher rates of climatic-niche evolution among species should have species with narrower niche breadths, but there is also evidence suggesting the opposite pattern. However, the relationships between rate and breadth have not been explicitly analyzed. Here, we examine the relationships between the rate of climatic-niche evolution and climatic-niche breadth using phylogenetic and climatic data for 250 species in the salamander family Plethodontidae, a group showing considerable variation in both rates of climatic-niche evolution and climatic-niche breadths. Contrary to some expectations, we find no general relationship between climatic-niche breadth and the rate of climatic-niche evolution. Climatic-niche breadths for some ecologically important climatic variables considered separately (temperature seasonality and annual precipitation) do show significant relationships with the rate of climatic-niche evolution, but rates are faster in clades in which species have broader (not narrower) niche breadths. In summary, our results show that narrower niche breadths are not necessarily associated with faster rates of niche evolution. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Naegle, Erin
Evolution education is a critical yet challenging component of teaching and learning biology. There is frequently an emphasis on natural selection when teaching about evolution and conducting educational research. A full understanding of evolution, however, integrates evolutionary processes, such as natural selection, with the resulting evolutionary patterns, such as species divergence. Phylogenetic trees are models of evolutionary patterns. The perspective gained from understanding biology through phylogenetic analyses is referred to as tree thinking. Due to the increasing prevalence of tree thinking in biology, understanding how to read phylogenetic trees is an important skill for students to learn. Interpreting graphics is not an intuitive process, as graphical representations are semiotic objects. This is certainly true concerning phylogenetic tree interpretation. Previous research and anecdotal evidence report that students struggle to correctly interpret trees. The objective of this research was to describe and investigate the rationale underpinning the prior knowledge of introductory biology students' tree thinking Understanding prior knowledge is valuable as prior knowledge influences future learning. In Chapter 1, qualitative methods such as semi-structured interviews were used to explore patterns of student rationale in regard to tree thinking. Seven common tree thinking misconceptions are described: (1) Equating the degree of trait similarity with the extent of relatedness, (2) Environmental change is a necessary prerequisite to evolution, (3) Essentialism of species, (4) Evolution is inherently progressive, (5) Evolution is a linear process, (6) Not all species are related, and (7) Trees portray evolution through the hybridization of species. These misconceptions are based in students' incomplete or incorrect understanding of evolution. These misconceptions are often reinforced by the misapplication of cultural conventions to make sense of trees. Chapter 2 explores the construction, validity, and reliability of a tree thinking concept inventory. Concept inventories are research based instruments that diagnose faulty reasoning among students. Such inventories are tools for improving teaching and learning of concepts. Test scores indicate that tree thinking misconceptions are held by novice and intermediate biology students. Finally, Chapter 3 presents a tree thinking rubric. The rubric aids teachers in selecting and improving introductory tree thinking learning exercises that address students' tree thinking misconceptions.
NASA Technical Reports Server (NTRS)
Nakagawa, Y.
1980-01-01
A method of analysis for the MHD initial-boundary problem is presented in which the model's formulation is based on the method of nearcharacteristics developed by Werner (1968) and modified by Shin and Kot (1978). With this method, the physical causality relationship can be traced from the perturbation to the response as in the method of characteristics, while achieving the advantage of a considerable reduction in mathematical procedures. The method offers the advantage of examining not only the evolution of nonforce free fields, but also the changes of physical conditions in the atmosphere accompanying the evolution of magnetic fields. The physical validity of the method is demonstrated with examples, and their significance in interpreting observations is discussed.
Black hole evolution by spectral methods
NASA Astrophysics Data System (ADS)
Kidder, Lawrence E.; Scheel, Mark A.; Teukolsky, Saul A.; Carlson, Eric D.; Cook, Gregory B.
2000-10-01
Current methods of evolving a spacetime containing one or more black holes are plagued by instabilities that prohibit long-term evolution. Some of these instabilities may be due to the numerical method used, traditionally finite differencing. In this paper, we explore the use of a pseudospectral collocation (PSC) method for the evolution of a spherically symmetric black hole spacetime in one dimension using a hyperbolic formulation of Einstein's equations. We demonstrate that our PSC method is able to evolve a spherically symmetric black hole spacetime forever without enforcing constraints, even if we add dynamics via a Klein-Gordon scalar field. We find that, in contrast with finite-differencing methods, black hole excision is a trivial operation using PSC applied to a hyperbolic formulation of Einstein's equations. We discuss the extension of this method to three spatial dimensions.
Research on social communication network evolution based on topology potential distribution
NASA Astrophysics Data System (ADS)
Zhao, Dongjie; Jiang, Jian; Li, Deyi; Zhang, Haisu; Chen, Guisheng
2011-12-01
Aiming at the problem of social communication network evolution, first, topology potential is introduced to measure the local influence among nodes in networks. Second, from the perspective of topology potential distribution the method of network evolution description based on topology potential distribution is presented, which takes the artificial intelligence with uncertainty as basic theory and local influence among nodes as essentiality. Then, a social communication network is constructed by enron email dataset, the method presented is used to analyze the characteristic of the social communication network evolution and some useful conclusions are got, implying that the method is effective, which shows that topology potential distribution can effectively describe the characteristic of sociology and detect the local changes in social communication network.
Senter, P
2010-08-01
It is important to demonstrate evolutionary principles in such a way that they cannot be countered by creation science. One such way is to use creation science itself to demonstrate evolutionary principles. Some creation scientists use classic multidimensional scaling (CMDS) to quantify and visualize morphological gaps or continuity between taxa, accepting gaps as evidence of independent creation and accepting continuity as evidence of genetic relatedness. Here, I apply CMDS to a phylogenetic analysis of coelurosaurian dinosaurs and show that it reveals morphological continuity between Archaeopteryx, other early birds, and a wide range of nonavian coelurosaurs. Creation scientists who use CMDS must therefore accept that these animals are genetically related. Other uses of CMDS for evolutionary biologists include the identification of taxa with much missing evolutionary history and the tracing of the progressive filling of morphological gaps in the fossil record through successive years of discovery.
Media Effects in Youth Exposed to Terrorist Incidents: a Historical Perspective.
Pfefferbaum, Betty; Tucker, Phebe; Pfefferbaum, Rose L; Nelson, Summer D; Nitiéma, Pascal; Newman, Elana
2018-03-05
This paper reviews the evidence on the relationship between contact with media coverage of terrorist incidents and psychological outcomes in children and adolescents while tracing the evolution in research methodology. Studies of recent events in the USA have moved from correlational cross-sectional studies examining primarily television coverage and posttraumatic stress reactions to longitudinal studies that address multiple media forms and a range of psychological outcomes including depression and anxiety. Studies of events in the USA-the 1995 Oklahoma City bombing, the September 11 attacks, and the 2013 Boston Marathon bombing-and elsewhere have used increasingly sophisticated research methods to document a relationship between contact with various media forms and adverse psychological outcomes in children with different event exposures. Although adverse outcomes are associated with reports of greater contact with terrorism coverage in cross-sectional studies, there is insufficient evidence at this time to assume a causal relationship. Additional research is needed to investigate a host of issues such as newer media forms, high-risk populations, and contextual factors.
NASA Astrophysics Data System (ADS)
Ma, Pengcheng; Li, Daye; Li, Shuo
2016-02-01
Using one minute high-frequency data of the Shanghai Composite Index (SHCI) and the Shenzhen Composite Index (SZCI) (2007-2008), we employ the detrended fluctuation analysis (DFA) and the detrended cross correlation analysis (DCCA) with rolling window approach to observe the evolution of market efficiency and cross-correlation in pre-crisis and crisis period. Considering the fat-tail distribution of return time series, statistical test based on shuffling method is conducted to verify the null hypothesis of no long-term dependence. Our empirical research displays three main findings. First Shanghai equity market efficiency deteriorated while Shenzhen equity market efficiency improved with the advent of financial crisis. Second the highly positive dependence between SHCI and SZCI varies with time scale. Third financial crisis saw a significant increase of dependence between SHCI and SZCI at shorter time scales but a lack of significant change at longer time scales, providing evidence of contagion and absence of interdependence during crisis.
NASA Technical Reports Server (NTRS)
Sabatier, P. C.
1972-01-01
The progressive realization of the consequences of nonuniqueness imply an evolution of both the methods and the centers of interest in inverse problems. This evolution is schematically described together with the various mathematical methods used. A comparative description is given of inverse methods in scientific research, with examples taken from mathematics, quantum and classical physics, seismology, transport theory, radiative transfer, electromagnetic scattering, electrocardiology, etc. It is hoped that this paper will pave the way for an interdisciplinary study of inverse problems.
Science and Creationism: A View from the National Academy of Sciences.
ERIC Educational Resources Information Center
National Academy of Sciences, Washington, DC.
Five central scientific issues are critical to consideration of the treatment in school curricula of the origin and evolution of the universe and of life on earth. These issues are: (1) the nature of science; (2) scientific evidence on the origin of the universe and the earth; (3) the consistent and validated scientific evidence for biological…
ERIC Educational Resources Information Center
Horvath, Kathy J.; Tumosa, Nina; Thielke, Stephen; Moorer, Julie; Huh, Terri; Cooley, Susan; Craft, Suzanne; Burns, Theressa
2011-01-01
Clinicians experience great pressures to provide timely, effective, and evidence-based medical care. Educators can aid these clinicians through the development of new tools that can facilitate timely completion of clinical tasks. These tools should summarize evidence-based information in a convenient format that allows easy use. This article…
Did Humans Live with Dinosaurs? Excavating "Man Tracks" along the Paluxy River
ERIC Educational Resources Information Center
Moore, Randy
2014-01-01
The alleged "man tracks" beside dinosaur tracks near Glen Rose, Texas, are among the most enduring pieces of evidence used by young-Earth creationists to reject evolution. Despite the tracks' fame, their most persistent advocate--that is, Carl Baugh of the Creation Evidence Museum--has published neither (1) peer-reviewed papers in…
ERIC Educational Resources Information Center
Kerns, Suzanne E. U.; Cevasco, Molly; Comtois, Katherine A.; Dorsey, Shannon; King, Kevin; McMahon, Robert; Sedlar, Georganna; Lee, Terry G.; Mazza, James J.; Lengua, Liliana; Davis, Carol; Evans-Campbell, Tessa; Trupin, Eric W.
2016-01-01
States and jurisdictions are under increased pressure to demonstrate the use of evidence-based treatments (EBTs) for children's mental health, increasing the demand for a workforce trained in these practices. Universities are a critical pipeline for this workforce. This article describes the genesis and evolution of a university-based initiative…
Has It Always Been This Way? Tracing the Evolution of Teacher Quality Gaps in U.S. Public Schools
ERIC Educational Resources Information Center
Goldhaber, Dan; Quince, Vanessa; Theobald, Roddy
2018-01-01
There is mounting evidence of substantial "teacher quality gaps" (TQGs) between advantaged and disadvantaged students but practically no empirical evidence about their history. We use longitudinal data on public school students, teachers, and schools from two states--North Carolina and Washington--to provide a descriptive history of the…
Sexual selection and the adaptive evolution of PKDREJ protein in primates and rodents.
Vicens, Alberto; Gómez Montoto, Laura; Couso-Ferrer, Francisco; Sutton, Keith A; Roldan, Eduardo R S
2015-02-01
PKDREJ is a testis-specific protein thought to be located on the sperm surface. Functional studies in the mouse revealed that loss of PKDREJ has effects on sperm transport and the ability to undergo an induced acrosome reaction. Thus, PKDREJ has been considered a potential target of post-copulatory sexual selection in the form of sperm competition. Proteins involved in reproductive processes often show accelerated evolution. In many cases, this rapid divergence is promoted by positive selection which may be driven, at least in part, by post-copulatory sexual selection. We analysed the evolution of the PKDREJ protein in primates and rodents and assessed whether PKDREJ divergence is associated with testes mass relative to body mass, which is a reliable proxy of sperm competition levels. Evidence of an association between the evolutionary rate of the PKDREJ gene and testes mass relative to body mass was not found in primates. Among rodents, evidence of positive selection was detected in the Pkdrej gene in the family Cricetidae but not in Muridae. We then assessed whether Pkdrej divergence is associated with episodes of sperm competition in these families. We detected a positive significant correlation between the evolutionary rates of Pkdrej and testes mass relative to body mass in cricetids. These findings constitute the first evidence of post-copulatory sexual selection influencing the evolution of a protein that participates in the mechanisms regulating sperm transport and the acrosome reaction, strongly suggesting that positive selection may act on these fertilization steps, leading to advantages in situations of sperm competition. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
OncoNEM: inferring tumor evolution from single-cell sequencing data.
Ross, Edith M; Markowetz, Florian
2016-04-15
Single-cell sequencing promises a high-resolution view of genetic heterogeneity and clonal evolution in cancer. However, methods to infer tumor evolution from single-cell sequencing data lag behind methods developed for bulk-sequencing data. Here, we present OncoNEM, a probabilistic method for inferring intra-tumor evolutionary lineage trees from somatic single nucleotide variants of single cells. OncoNEM identifies homogeneous cellular subpopulations and infers their genotypes as well as a tree describing their evolutionary relationships. In simulation studies, we assess OncoNEM's robustness and benchmark its performance against competing methods. Finally, we show its applicability in case studies of muscle-invasive bladder cancer and essential thrombocythemia.
Bergmann, Philip J; Irschick, Duncan J
2010-06-01
Body shape has a fundamental impact on organismal function, but it is unknown how functional morphology and locomotor performance and kinematics relate across a diverse array of body shapes. We showed that although patterns of body shape evolution differed considerably between lizards of the Phrynosomatinae and Lerista, patterns of locomotor evolution coincided between clades. Specifically, we found that the phrynosomatines evolved a stocky phenotype through body widening and limb shortening, whereas Lerista evolved elongation through body lengthening and limb shortening. In both clades, relative limb length played a key role in locomotor evolution and kinematic strategies, with long-limbed species moving faster and taking longer strides. In Lerista, the body axis also influenced locomotor evolution. Similar patterns of locomotor evolution were likely due to constraints on how the body can move. However, these common patterns of locomotor evolution between the two clades resulted in different kinematic strategies and levels of performance among species because of their morphological differences. Furthermore, we found no evidence that distinct body shapes are adaptations to different substrates, as locomotor kinematics did not change on loose or solid substrates. Our findings illustrate the importance of studying kinematics to understand the mechanisms of locomotor evolution and phenotype-function relationships.
Ellner, Stephen P; Geber, Monica A; Hairston, Nelson G
2011-06-01
Rapid contemporary evolution due to natural selection is common in the wild, but it remains uncertain whether its effects are an essential component of community and ecosystem structure and function. Previously we showed how to partition change in a population, community or ecosystem property into contributions from environmental and trait change, when trait change is entirely caused by evolution (Hairston et al. 2005). However, when substantial non-heritable trait change occurs (e.g. due to phenotypic plasticity or change in population structure) that approach can mis-estimate both contributions. Here, we demonstrate how to disentangle ecological impacts of evolution vs. non-heritable trait change by combining our previous approach with the Price Equation. This yields a three-way partitioning into effects of evolution, non-heritable phenotypic change and environment. We extend the approach to cases where ecological consequences of trait change are mediated through interspecific interactions. We analyse empirical examples involving fish, birds and zooplankton, finding that the proportional contribution of rapid evolution varies widely (even among different ecological properties affected by the same trait), and that rapid evolution can be important when it acts to oppose and mitigate phenotypic effects of environmental change. Paradoxically, rapid evolution may be most important when it is least evident. © 2011 Blackwell Publishing Ltd/CNRS.
36 CFR 62.5 - Natural landmark criteria.
Code of Federal Regulations, 2013 CFR
2013-07-01
... history; and fossil evidence of biological evolution. Because the general character of natural diversity... more rare, threatened, or endangered species Badlands, including strata that contain rare fossils...
36 CFR 62.5 - Natural landmark criteria.
Code of Federal Regulations, 2010 CFR
2010-07-01
... history; and fossil evidence of biological evolution. Because the general character of natural diversity... more rare, threatened, or endangered species Badlands, including strata that contain rare fossils...
36 CFR 62.5 - Natural landmark criteria.
Code of Federal Regulations, 2011 CFR
2011-07-01
... history; and fossil evidence of biological evolution. Because the general character of natural diversity... more rare, threatened, or endangered species Badlands, including strata that contain rare fossils...
36 CFR 62.5 - Natural landmark criteria.
Code of Federal Regulations, 2012 CFR
2012-07-01
... history; and fossil evidence of biological evolution. Because the general character of natural diversity... more rare, threatened, or endangered species Badlands, including strata that contain rare fossils...
36 CFR 62.5 - Natural landmark criteria.
Code of Federal Regulations, 2014 CFR
2014-07-01
... history; and fossil evidence of biological evolution. Because the general character of natural diversity... more rare, threatened, or endangered species Badlands, including strata that contain rare fossils...
Space evolution model and empirical analysis of an urban public transport network
NASA Astrophysics Data System (ADS)
Sui, Yi; Shao, Feng-jing; Sun, Ren-cheng; Li, Shu-jing
2012-07-01
This study explores the space evolution of an urban public transport network, using empirical evidence and a simulation model validated on that data. Public transport patterns primarily depend on traffic spatial-distribution, demands of passengers and expected utility of investors. Evolution is an iterative process of satisfying the needs of passengers and investors based on a given traffic spatial-distribution. The temporal change of urban public transport network is evaluated both using topological measures and spatial ones. The simulation model is validated using empirical data from nine big cities in China. Statistical analyses on topological and spatial attributes suggest that an evolution network with traffic demands characterized by power-law numerical values which distribute in a mode of concentric circles tallies well with these nine cities.
The stratospheric QBO signal in the NCEP reanalysis, 1958-2001
NASA Astrophysics Data System (ADS)
Ribera, Pedro; Gallego, David; Peña-Ortiz, Cristina; Gimeno, Luis; Garcia-Herrera, Ricardo; Hernandez, Emiliano; Calvo, Natalia
2003-07-01
The spatiotemporal evolution of the zonal wind in the stratosphere is analyzed based on the use of the NCEP reanalysis (1958-2001). MultiTaper Method-Singular Value Decomposition (MTM-SVD), a frequency-domain analysis method, is applied to isolate significant spatially-coherent variability with narrowband oscillatory character. A quasibiennial oscillation is detected as the most intense coherent signal in the stratosphere, the signal being less intense in the lower levels. There is a clear downward propagation of the signal with time at low latitudes, not evident at mid and high latitudes. There are differences in the behavior of the signal over both hemispheres, being much weaker over the SH. In the NH an anomaly in the zonal wind field, in phase with the equatorial signal, is detected at approximately 60°N. Two different areas at subtropical latitudes are detected to be characterized by wind anomalies opposed to that of the equator.
Network Analysis: Applications for the Developing Brain
Chu-Shore, Catherine J.; Kramer, Mark A.; Bianchi, Matt T.; Caviness, Verne S.; Cash, Sydney S.
2011-01-01
Development of the human brain follows a complex trajectory of age-specific anatomical and physiological changes. The application of network analysis provides an illuminating perspective on the dynamic interregional and global properties of this intricate and complex system. Here, we provide a critical synopsis of methods of network analysis with a focus on developing brain networks. After discussing basic concepts and approaches to network analysis, we explore the primary events of anatomical cortical development from gestation through adolescence. Upon this framework, we describe early work revealing the evolution of age-specific functional brain networks in normal neurodevelopment. Finally, we review how these relationships can be altered in disease and perhaps even rectified with treatment. While this method of description and inquiry remains in early form, there is already substantial evidence that the application of network models and analysis to understanding normal and abnormal human neural development holds tremendous promise for future discovery. PMID:21303762
Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae
Mikkelsen, Maria D.; Harholt, Jesper; Ulvskov, Peter; Johansen, Ida E.; Fangel, Jonatan U.; Doblin, Monika S.; Bacic, Antony; Willats, William G. T.
2014-01-01
Background and Aims The charophyte green algae (CGA) are thought to be the closest living relatives to the land plants, and ancestral CGA were unique in giving rise to the land plant lineage. The cell wall has been suggested to be a defining structure that enabled the green algal ancestor to colonize land. These cell walls provide support and protection, are a source of signalling molecules, and provide developmental cues for cell differentiation and elongation. The cell wall of land plants is a highly complex fibre composite, characterized by cellulose cross-linked by non-cellulosic polysaccharides, such as xyloglucan, embedded in a matrix of pectic polysaccharides. How the land plant cell wall evolved is currently unknown: early-divergent chlorophyte and prasinophyte algae genomes contain a low number of glycosyl transferases (GTs), while land plants contain hundreds. The number of GTs in CGA is currently unknown, as no genomes are available, so this study sought to give insight into the evolution of the biosynthetic machinery of CGA through an analysis of available transcriptomes. Methods Available CGA transcriptomes were mined for cell wall biosynthesis GTs and compared with GTs characterized in land plants. In addition, gene cloning was employed in two cases to answer important evolutionary questions. Key Results Genetic evidence was obtained indicating that many of the most important core cell wall polysaccharides have their evolutionary origins in the CGA, including cellulose, mannan, xyloglucan, xylan and pectin, as well as arabino-galactan protein. Moreover, two putative cellulose synthase-like D family genes (CSLDs) from the CGA species Coleochaete orbicularis and a fragment of a putative CSLA/K-like sequence from a CGA Spirogyra species were cloned, providing the first evidence that all the cellulose synthase/-like genes present in early-divergent land plants were already present in CGA. Conclusions The results provide new insights into the evolution of cell walls and support the notion that the CGA were pre-adapted to life on land by virtue of the their cell wall biosynthetic capacity. These findings are highly significant for understanding plant cell wall evolution as they imply that some features of land plant cell walls evolved prior to the transition to land, rather than having evolved as a result of selection pressures inherent in this transition. PMID:25204387
Strain Characterization and Microstructure Evolution Under Deformation in 2060 Alloy
NASA Astrophysics Data System (ADS)
Jin, X.; Zhang, G. D.; Zhao, Y. F.; Xue, F.
2018-05-01
A new method of DIC combined with EBSD is developed for the characterization of strain and microstructure evolution during bending. The traditional microhardness point and DIC methods are used to study the microstructure evolution in 2060 alloy during bending; the interested area suffers under tensile stress, the microstructure evolution is collected by SEM, EBSD, digital image correlation (DIC) method during bending. The results shows that the DIC method can both realize the strain tensor characterization of the interested area, and can also express the local strain tensor in the micro-area even more. The degree of grain division in the process of deformation is related to the strain in this region; the grains have larger strain of small angle grain boundary (SLGBs), which results in a new micro-organizational structure. The misorientation is smaller with larger strain degree while the misorientation is larger with smaller strain.
Satler, Jordan D; Carstens, Bryan C
2016-05-01
Comparative phylogeographic investigations have identified congruent phylogeographic breaks in co-distributed species in nearly every region of the world. The qualitative assessments of phylogeographic patterns traditionally used to identify such breaks, however, are limited because they rely on identifying monophyletic groups across species and do not account for coalescent stochasticity. Only long-standing phylogeographic breaks are likely to be obvious; many species could have had a concerted response to more recent landscape events, yet possess subtle signs of phylogeographic congruence because ancestral polymorphism has not completely sorted. Here, we introduce Phylogeographic Concordance Factors (PCFs), a novel method for quantifying phylogeographic congruence across species. We apply this method to the Sarracenia alata pitcher plant system, a carnivorous plant with a diverse array of commensal organisms. We explore whether a group of ecologically associated arthropods have co-diversified with the host pitcher plant, and identify if there is a positive correlation between ecological interaction and PCFs. Results demonstrate that multiple arthropods share congruent phylogeographic breaks with S. alata, and provide evidence that the level of ecological association can be used to predict the degree of similarity in the phylogeographic pattern. This study outlines an approach for quantifying phylogeographic congruence, a central concept in biogeographic research. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
RNA interference can be used to disrupt gene function in tardigrades
Tenlen, Jennifer R.; McCaskill, Shaina; Goldstein, Bob
2012-01-01
How morphological diversity arises is a key question in evolutionary developmental biology. As a long-term approach to address this question, we are developing the water bear Hypsibius dujardini (Phylum Tardigrada) as a model system. We expect that using a close relative of two well-studied models, Drosophila (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda), will facilitate identifying genetic pathways relevant to understanding the evolution of development. Tardigrades are also valuable research subjects for investigating how organisms and biological materials can survive extreme conditions. Methods to disrupt gene activity are essential to each of these efforts, but no such method yet exists for the Phylum Tardigrada. We developed a protocol to disrupt tardigrade gene functions by double-stranded RNA-mediated RNA interference (RNAi). We show that targeting tardigrade homologs of essential developmental genes by RNAi produced embryonic lethality, whereas targeting green fluorescent protein did not. Disruption of gene functions appears to be relatively specific by two criteria: targeting distinct genes resulted in distinct phenotypes that were consistent with predicted gene functions, and by RT-PCR, RNAi reduced the level of a target mRNA and not a control mRNA. These studies represent the first evidence that gene functions can be disrupted by RNAi in the phylum Tardigrada. Our results form a platform for dissecting tardigrade gene functions for understanding the evolution of developmental mechanisms and survival in extreme environments. PMID:23187800
RNA interference can be used to disrupt gene function in tardigrades.
Tenlen, Jennifer R; McCaskill, Shaina; Goldstein, Bob
2013-05-01
How morphological diversity arises is a key question in evolutionary developmental biology. As a long-term approach to address this question, we are developing the water bear Hypsibius dujardini (Phylum Tardigrada) as a model system. We expect that using a close relative of two well-studied models, Drosophila (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda), will facilitate identifying genetic pathways relevant to understanding the evolution of development. Tardigrades are also valuable research subjects for investigating how organisms and biological materials can survive extreme conditions. Methods to disrupt gene activity are essential to each of these efforts, but no such method yet exists for the Phylum Tardigrada. We developed a protocol to disrupt tardigrade gene functions by double-stranded RNA-mediated RNA interference (RNAi). We showed that targeting tardigrade homologs of essential developmental genes by RNAi produced embryonic lethality, whereas targeting green fluorescent protein did not. Disruption of gene functions appears to be relatively specific by two criteria: targeting distinct genes resulted in distinct phenotypes that were consistent with predicted gene functions and by RT-PCR, RNAi reduced the level of a target mRNA and not a control mRNA. These studies represent the first evidence that gene functions can be disrupted by RNAi in the phylum Tardigrada. Our results form a platform for dissecting tardigrade gene functions for understanding the evolution of developmental mechanisms and survival in extreme environments.
Evolution and outcomes of a quality improvement program.
Thor, Johan; Herrlin, Bo; Wittlöv, Karin; Øvretveit, John; Brommels, Mats
2010-01-01
The purpose of this paper is to examine the outcomes and evolution over a five-year period of a Swedish university hospital quality improvement program in light of enduring uncertainty regarding the effectiveness of such programs in healthcare and how best to evaluate it. The paper takes the form of a case study, using data collected as part of the program, including quality indicators from clinical improvement projects and participants' program evaluations. Overall, 58 percent of the program's projects (39/67) demonstrated success. A greater proportion of projects led by female doctors demonstrated success (91 percent, n=11) than projects led by male doctors (51 percent, n=55). Facilitators at the hospital continuously adapted the improvement methods to the local context. A lack of dedicated time for improvement efforts was the participants' biggest difficulty. The dominant benefits included an increased ability to see the "bigger picture" and the improvements achieved for patients and employees. Quality measurement, which is important for conducting and evaluating improvement efforts, was weak with limited reliability. Nevertheless, the present study adds evidence about the effectiveness of healthcare improvement programs. Gender differences in improvement team leadership merit further study. Improvement program evaluation should assess the extent to which improvement methods are locally adapted and applied. This case study reports the outcomes of all improvement projects undertaken in one healthcare organization over a five-year period and provides in-depth insight into an improvement program's changeable nature.
Pohl, Mary E D; Piperno, Dolores R; Pope, Kevin O; Jones, John G
2007-04-17
The history of maize (Zea mays L.) is one of the most debated topics in New World archaeology. Molecular and genetic studies indicate that maize domestication took place in tropical southwest Mexico. Although archaeological evidence for the evolution of maize from its wild ancestor teosinte has yet to be found in that poorly studied region, other research combining paleoecology and archaeology is documenting the nature and timing of maize domestication and dispersals. Here we report a phytolith analysis of sediments from San Andrés, Tabasco, that confirms the spread of maize cultivation to the tropical Mexican Gulf Coast >7,000 years ago ( approximately 7,300 calendar years before present). We review the different methods used in sampling, identifying, and dating fossil maize remains and compare their strengths and weaknesses. Finally, we examine how San Andrés amplifies the present evidence for widespread maize dispersals into Central and South America. Multiple data sets from many sites indicate that maize was brought under cultivation and domesticated and had spread rapidly out of its domestication cradle in tropical southwest Mexico by the eighth millennium before the present.
Evidence for expansion of the precuneus in human evolution.
Bruner, Emiliano; Preuss, Todd M; Chen, Xu; Rilling, James K
2017-03-01
The evolution of neurocranial morphology in Homo sapiens is characterized by bulging of the parietal region, a feature unique to our species. In modern humans, expansion of the parietal surface occurs during the first year of life, in a morphogenetic stage which is absent in chimpanzees and Neandertals. A similar variation in brain shape among living adult humans is associated with expansion of the precuneus. Using MRI-derived structural brain templates, we compare medial brain morphology between humans and chimpanzees through shape analysis and geometrical modeling. We find that the main spatial difference is a prominent expansion of the precuneus in our species, providing further evidence of evolutionary changes associated with this area. The precuneus is a major hub of brain organization, a central node of the default-mode network, and plays an essential role in visuospatial integration. Together, the comparative neuroanatomical and paleontological evidence suggest that precuneus expansion is a neurological specialization of H. sapiens that evolved in the last 150,000 years that may be associated with recent human cognitive specializations.
Rhys Evans, P H; Cameron, M
2017-11-01
For over a century, otolaryngologists have recognised the condition of aural exostoses, but their significance and aetiology remains obscure, although they tend to be associated with frequent swimming and cold water immersion of the auditory canal. The fact that this condition is usually bilateral is predictable since both ears are immersed in water. However, why do exostoses only grow in swimmers and why do they grow in the deep bony meatus at two or three constant sites? Furthermore, from an evolutionary point of view, what is or was the purpose and function of these rather incongruous protrusions? In recent decades, paleoanthropological evidence has challenged ideas about early hominid evolution. In 1992 the senior author suggested that aural exostoses were evolved in early hominid Man for protection of the delicate tympanic membrane during swimming and diving by narrowing the ear canal in a similar fashion to other semiaquatic species. We now provide evidence for this theory and propose an aetiological explanation for the formation of exostoses.
The Evolution of Holistic Processing of Faces
Burke, Darren; Sulikowski, Danielle
2013-01-01
In this paper we examine the holistic processing of faces from an evolutionary perspective, clarifying what such an approach entails, and evaluating the extent to which the evidence currently available permits any strong conclusions. While it seems clear that the holistic processing of faces depends on mechanisms evolved to perform that task, our review of the comparative literature reveals that there is currently insufficient evidence (or sometimes insufficiently compelling evidence) to decide when in our evolutionary past such processing may have arisen. It is also difficult to assess what kinds of selection pressures may have led to evolution of such a mechanism, or even what kinds of information holistic processing may have originally evolved to extract, given that many sources of socially relevant face-based information other than identity depend on integrating information across different regions of the face – judgments of expression, behavioral intent, attractiveness, sex, age, etc. We suggest some directions for future research that would help to answer these important questions. PMID:23382721
Mikhalevich, Irina
2017-01-01
Behavioural flexibility is often treated as the gold standard of evidence for more sophisticated or complex forms of animal cognition, such as planning, metacognition and mindreading. However, the evidential link between behavioural flexibility and complex cognition has not been explicitly or systematically defended. Such a defence is particularly pressing because observed flexible behaviours can frequently be explained by putatively simpler cognitive mechanisms. This leaves complex cognition hypotheses open to ‘deflationary’ challenges that are accorded greater evidential weight precisely because they offer putatively simpler explanations of equal explanatory power. This paper challenges the blanket preference for simpler explanations, and shows that once this preference is dispensed with, and the full spectrum of evidence—including evolutionary, ecological and phylogenetic data—is accorded its proper weight, an argument in support of the prevailing assumption that behavioural flexibility can serve as evidence for complex cognitive mechanisms may begin to take shape. An adaptive model of cognitive-behavioural evolution is proposed, according to which the existence of convergent trait–environment clusters in phylogenetically disparate lineages may serve as evidence for the same trait–environment clusters in other lineages. This, in turn, could permit inferences of cognitive complexity in cases of experimental underdetermination, thereby placing the common view that behavioural flexibility can serve as evidence for complex cognition on firmer grounds. PMID:28479981
Cryptic genetic variation: evolution's hidden substrate.
Paaby, Annalise B; Rockman, Matthew V
2014-04-01
Cryptic genetic variation (CGV) is invisible under normal conditions, but it can fuel evolution when circumstances change. In theory, CGV can represent a massive cache of adaptive potential or a pool of deleterious alleles that are in need of constant suppression. CGV emerges from both neutral and selective processes, and it may inform about how human populations respond to change. CGV facilitates adaptation in experimental settings, but does it have an important role in the real world? Here, we review the empirical support for widespread CGV in natural populations, including its potential role in emerging human diseases and the growing evidence of its contribution to evolution.
Studies of the evolution of the x ray emission of clusters of galaxies
NASA Technical Reports Server (NTRS)
Henry, J. Patrick
1990-01-01
The x ray luminosity function of clusters of galaxies was determined at different cosmic epoches using data from the Einstein Observatory Extended Medium Survey. The sample consisted of 67 x ray selected clusters that were grouped into three redshift shells. Evolution was detected in the x ray properties of clusters. The present volume density of high luminosity clusters was found to be greater than it was in the past. This result is the first convincing evidence for evolution in the x ray properties of clusters. Investigations into the constraints provided by these data on various Cold Dark Matter models are underway.
Marzluff, John
2017-01-01
Emerging evidence that cities drive micro-evolution raises the question of whether rapid urbanization of Earth might impact ecosystems by causing systemic changes in functional traits that regulate urban ecosystems' productivity and stability. Intraspecific trait variation—variation in organisms' morphological, physiological or behavioural characteristics stemming from genetic variability and phenotypic plasticity—has significant implications for ecological functions such as nutrient cycling and primary productivity. While it is well established that changes in ecological conditions can drive evolutionary change in species' traits that, in turn, can alter ecosystem function, an understanding of the reciprocal and simultaneous processes associated with such interactions is only beginning to emerge. In urban settings, the potential for rapid trait change may be exacerbated by multiple selection pressures operating simultaneously. This paper reviews evidence on mechanisms linking urban development patterns to rapid phenotypic changes, and differentiates phenotypic changes for which there is evidence of micro-evolution versus phenotypic changes which may represent plasticity. Studying how humans mediate phenotypic trait changes through urbanization could shed light on fundamental concepts in ecological and evolutionary theory. It can also contribute to our understanding of eco-evolutionary feedback and provide insights for maintaining ecosystem function over the long term. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’. PMID:27920374
Kovaliski, John; Sinclair, Ron; Mutze, Greg; Peacock, David; Strive, Tanja; Abrantes, Joana; Esteves, Pedro J.; Holmes, Edward C.
2015-01-01
Rabbit Haemorrhagic Disease Virus (RHDV) was introduced into Australia in 1995 as a biological control agent against the wild European rabbit (Oryctolagus cuniculus). We evaluated its evolution over a 16 year period (1995–2011) by examining 50 isolates collected throughout Australia, as well as the original inoculum strains. Phylogenetic analysis of capsid protein VP60 sequences of the Australian isolates, compared to those sampled globally, revealed that they form a monophyletic group with the inoculum strains (CAPM V-351 and RHDV351INOC). Strikingly, despite more than 3000 re-releases of RHDV351INOC since 1995, only a single viral lineage has sustained its transmission in the long-term, indicative of a major competitive advantage. In addition, we find evidence for widespread viral gene flow, in which multiple lineages entered individual geographic locations, resulting in a marked turnover of viral lineages with time, as well as a continual increase in viral genetic diversity. The rate of RHDV evolution recorded in Australia – 4.0 (3.3 – 4.7) × 10−3 nucleotide substitutions per site per year – was higher than previously observed in RHDV, and evidence for adaptive evolution was obtained at two VP60 residues. Finally, more intensive study of a single rabbit population (Turretfield) in South Australia provided no evidence for viral persistence between outbreaks, with genetic diversity instead generated by continual strain importation. PMID:24251353
Could Bertrand Russell's barber have bitten his own teeth? A problem of logic and definitions.
Aitken, Kenneth John
2014-08-01
Guiding the positive evolution of behavior is an admirable goal. Wilson et al.'s arguments are based largely on studies of problem correction. The methodology is sound, but not the post hoc ergo procter hoc extrapolation. What is required is evidence that it can proactively generate positive change. The evolution of human behavior to date has been affected by many factors that include unmalleable and unpredicted environmental changes.
The Martian Paleoenvironment and the Evolution of Macroorganisms
NASA Astrophysics Data System (ADS)
Trego, Kent D.
1983-04-01
The Viking biology experiments have revealed the possibility that life in the form of microorganisms may exist on Mars (Levin and Straat, 1981). However, the Viking landers did not provide evidence of the presence of macroorganisms. There are many speculative reasons why macroorganisms are not present while microorganisms might exist. Recent developments in the research of Martian geology, however, might offer an explanation why the evolution of macroorganisms would not take place on Mars.
ERIC Educational Resources Information Center
Figueiredo, Eliane L.; Sisto, Fermino F.
The evolution of creative thought was examined, an examination that resulted in the construction of universal criteria for analysis and detailed evidence for the evolution of novelty, i.e. how children create knowledge. The collected data came from 200 students from the United States and 200 from Brazil. Each of the 10 age groups (from 4 to 13…
O'Brien, Haley D; Faith, J Tyler; Jenkins, Kirsten E; Peppe, Daniel J; Plummer, Thomas W; Jacobs, Zenobia L; Li, Bo; Joannes-Boyau, Renaud; Price, Gilbert; Feng, Yue-Xing; Tryon, Christian A
2016-02-22
The fossil record provides tangible, historical evidence for the mode and operation of evolution across deep time. Striking patterns of convergence are some of the strongest examples of these operations, whereby, over time, similar environmental and/or behavioral pressures precipitate similarity in form and function between disparately related taxa. Here we present fossil evidence for an unexpected convergence between gregarious plant-eating mammals and dinosaurs. Recent excavations of Late Pleistocene deposits on Rusinga Island, Kenya, have uncovered a catastrophic assemblage of the wildebeest-like bovid Rusingoryx atopocranion. Previously known from fragmentary material, these new specimens reveal large, hollow, osseous nasal crests: a craniofacial novelty for mammals that is remarkably comparable to the nasal crests of lambeosaurine hadrosaur dinosaurs. Using adult and juvenile material from this assemblage, as well as computed tomographic imaging, we investigate this convergence from morphological, developmental, functional, and paleoenvironmental perspectives. Our detailed analyses reveal broad parallels between R. atopocranion and basal Lambeosaurinae, suggesting that osseous nasal crests may require a highly specific combination of ontogeny, evolution, and environmental pressures in order to develop. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Manipulative Complexity of Lower Paleolithic Stone Toolmaking
Faisal, Aldo; Stout, Dietrich; Apel, Jan; Bradley, Bruce
2010-01-01
Background Early stone tools provide direct evidence of human cognitive and behavioral evolution that is otherwise unavailable. Proper interpretation of these data requires a robust interpretive framework linking archaeological evidence to specific behavioral and cognitive actions. Methodology/Principal Findings Here we employ a data glove to record manual joint angles in a modern experimental toolmaker (the 4th author) replicating ancient tool forms in order to characterize and compare the manipulative complexity of two major Lower Paleolithic technologies (Oldowan and Acheulean). To this end we used a principled and general measure of behavioral complexity based on the statistics of joint movements. Conclusions/Significance This allowed us to confirm that previously observed differences in brain activation associated with Oldowan versus Acheulean technologies reflect higher-level behavior organization rather than lower-level differences in manipulative complexity. This conclusion is consistent with a scenario in which the earliest stages of human technological evolution depended on novel perceptual-motor capacities (such as the control of joint stiffness) whereas later developments increasingly relied on enhanced mechanisms for cognitive control. This further suggests possible links between toolmaking and language evolution. PMID:21072164
Fossils and the Evolution of the Arthropod Brain.
Strausfeld, Nicholas J; Ma, Xiaoya; Edgecombe, Gregory D
2016-10-24
The discovery of fossilized brains and ventral nerve cords in lower and mid-Cambrian arthropods has led to crucial insights about the evolution of their central nervous system, the segmental identity of head appendages and the early evolution of eyes and their underlying visual systems. Fundamental ground patterns of lower Cambrian arthropod brains and nervous systems correspond to the ground patterns of brains and nervous systems belonging to three of four major extant panarthropod lineages. These findings demonstrate the evolutionary stability of early neural arrangements over an immense time span. Here, we put these fossil discoveries in the context of evidence from cladistics, as well as developmental and comparative neuroanatomy, which together suggest that despite many evolved modifications of neuropil centers within arthropod brains and ganglia, highly conserved arrangements have been retained. Recent phylogenies of the arthropods, based on fossil and molecular evidence, and estimates of divergence dates, suggest that neural ground patterns characterizing onychophorans, chelicerates and mandibulates are likely to have diverged between the terminal Ediacaran and earliest Cambrian, heralding the exuberant diversification of body forms that account for the Cambrian Explosion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lovejoy, David A; Michalec, Ola M; Hogg, David W; Wosnick, David I
2018-08-01
The cartilaginous fishes (Class Chondrichthyes) comprise two morphologically distinct subclasses; Elasmobranchii and Holocephali. Evidence indicates early divergence of these subclasses, suggesting monophyly of their lineage. However, such a phylogenetic understanding is not yet developed within two highly conserved peptide lineages, GnRH and CRF. Various GnRH forms exist across the Chondrichthyes. Although 4-7 immunoreactive forms have been described in Elasmobranchii, only one has been elucidated in Holocephali. In contrast, Chondrichthyan CRF phylogeny follows a pattern more consistent with vertebrate evolution. For example, three forms are expressed within the lamprey, with similar peptides present within the genome of the Callorhinchus milii, a holocephalan. Although these findings are consistent with recent evidence regarding the phylogenetic age of Chondrichthyan lineages, CRF evolution in vertebrates remains elusive. Assuming that the Elasmobranchii and Holocephali are part of a monocladistic clade within the Chondrichthyes, we interpret the findings of GnRH and CRF to be products of their respective lineages. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Independent Molecular Basis of Convergent Highland Adaptation in Maize
Takuno, Shohei; Ralph, Peter; Swarts, Kelly; Elshire, Rob J.; Glaubitz, Jeffrey C.; Buckler, Edward S.; Hufford, Matthew B.; Ross-Ibarra, Jeffrey
2015-01-01
Convergent evolution is the independent evolution of similar traits in different species or lineages of the same species; this often is a result of adaptation to similar environments, a process referred to as convergent adaptation. We investigate here the molecular basis of convergent adaptation in maize to highland climates in Mesoamerica and South America, using genome-wide SNP data. Taking advantage of archaeological data on the arrival of maize to the highlands, we infer demographic models for both populations, identifying evidence of a strong bottleneck and rapid expansion in South America. We use these models to then identify loci showing an excess of differentiation as a means of identifying putative targets of natural selection and compare our results to expectations from recently developed theory on convergent adaptation. Consistent with predictions across a wide parameter space, we see limited evidence for convergent evolution at the nucleotide level in spite of strong similarities in overall phenotypes. Instead, we show that selection appears to have predominantly acted on standing genetic variation and that introgression from wild teosinte populations appears to have played a role in highland adaptation in Mexican maize. PMID:26078279
Fossil evidence for the early ant evolution
NASA Astrophysics Data System (ADS)
Perrichot, Vincent; Lacau, Sébastien; Néraudeau, Didier; Nel, André
2008-02-01
Ants are one of the most studied insects in the world; and the literature devoted to their origin and evolution, systematics, ecology, or interactions with plants, fungi and other organisms is prolific. However, no consensus yet exists on the age estimate of the first Formicidae or on the origin of their eusociality. We review the fossil and biogeographical record of all known Cretaceous ants. We discuss the possible origin of the Formicidae with emphasis on the most primitive subfamily Sphecomyrminae according to its distribution and the Early Cretaceous palaeogeography. And we review the evidence of true castes and eusociality of the early ants regarding their morphological features and their manner of preservation in amber. The mid-Cretaceous amber forest from south-western France where some of the oldest known ants lived, corresponded to a moist tropical forest close to the shore with a dominance of gymnosperm trees but where angiosperms (flowering plants) were already diversified. This palaeoenvironmental reconstruction supports an initial radiation of ants in forest ground litter coincident with the rise of angiosperms, as recently proposed as an ecological explanation for their origin and successful evolution.
Ye, Lidan; Yang, Chengcheng; Yu, Hongwei
2018-01-01
With increasing concerns in sustainable development, biocatalysis has been recognized as a competitive alternative to traditional chemical routes in the past decades. As nature's biocatalysts, enzymes are able to catalyze a broad range of chemical transformations, not only with mild reaction conditions but also with high activity and selectivity. However, the insufficient activity or enantioselectivity of natural enzymes toward non-natural substrates limits their industrial application, while directed evolution provides a potent solution to this problem, thanks to its independence on detailed knowledge about the relationship between sequence, structure, and mechanism/function of the enzymes. A proper high-throughput screening (HTS) method is the key to successful and efficient directed evolution. In recent years, huge varieties of HTS methods have been developed for rapid evaluation of mutant libraries, ranging from in vitro screening to in vivo selection, from indicator addition to multi-enzyme system construction, and from plate screening to computation- or machine-assisted screening. Recently, there is a tendency to integrate directed evolution with metabolic engineering in biosynthesis, using metabolites as HTS indicators, which implies that directed evolution has transformed from molecular engineering to process engineering. This paper aims to provide an overview of HTS methods categorized based on the reaction principles or types by summarizing related studies published in recent years including the work from our group, to discuss assay design strategies and typical examples of HTS methods, and to share our understanding on HTS method development for directed evolution of enzymes involved in specific catalytic reactions or metabolic pathways.
Adult lactose digestion status and effects on disease
Szilagyi, Andrew
2015-01-01
BACKGROUND: Adult assimilation of lactose divides humans into dominant lactase-persistent and recessive nonpersistent phenotypes. OBJECTIVES: To review three medical parameters of lactose digestion, namely: the changing concept of lactose intolerance; the possible impact on diseases of microbial adaptation in lactase-nonpersistent populations; and the possibility that the evolution of lactase has influenced some disease pattern distributions. METHODS: A PubMed, Google Scholar and manual review of articles were used to provide a narrative review of the topic. RESULTS: The concept of lactose intolerance is changing and merging with food intolerances. Microbial adaptation to regular lactose consumption in lactase-nonpersistent individuals is supported by limited evidence. There is evidence suggestive of a relationship among geographical distributions of latitude, sunhine exposure and lactase proportional distributions worldwide. DISCUSSION: The definition of lactose intolerance has shifted away from association with lactose maldigestion. Lactose sensitivity is described equally in lactose digesters and maldigesters. The important medical consequence of withholding dairy foods could have a detrimental impact on several diseases; in addition, microbial adaptation in lactase-nonpersistent populations may alter risk for some diseases. There is suggestive evidence that the emergence of lactase persistence, together with human migrations before and after the emergence of lactase persistence, have impacted modern-day diseases. CONCLUSIONS: Lactose maldigestion and lactose intolerance are not synonymous. Withholding dairy foods is a poor method to treat lactose intolerance. Further epidemiological work could shed light on the possible effects of microbial adaptation in lactose maldigesters. The evolutionary impact of lactase may be still ongoing. PMID:25855879
Remington, David L
2015-12-01
Perspectives on the role of large-effect quantitative trait loci (QTL) in the evolution of complex traits have shifted back and forth over the past few decades. Different sets of studies have produced contradictory insights on the evolution of genetic architecture. I argue that much of the confusion results from a failure to distinguish mutational and allelic effects, a limitation of using the Fisherian model of adaptive evolution as the lens through which the evolution of adaptive variation is examined. A molecular-based perspective reveals that allelic differences can involve the cumulative effects of many mutations plus intragenic recombination, a model that is supported by extensive empirical evidence. I discuss how different selection regimes could produce very different architectures of allelic effects under a molecular-based model, which may explain conflicting insights on genetic architecture from studies of variation within populations versus between divergently selected populations. I address shortcomings of genome-wide association study (GWAS) practices in light of more suitable models of allelic evolution, and suggest alternate GWAS strategies to generate more valid inferences about genetic architecture. Finally, I discuss how adopting more suitable models of allelic evolution could help redirect research on complex trait evolution toward addressing more meaningful questions in evolutionary biology. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Turcotte, Martin M; Reznick, David N; Daniel Hare, J
2013-05-01
An eco-evolutionary feedback loop is defined as the reciprocal impacts of ecology on evolutionary dynamics and evolution on ecological dynamics on contemporary timescales. We experimentally tested for an eco-evolutionary feedback loop in the green peach aphid, Myzus persicae, by manipulating initial densities and evolution. We found strong evidence that initial aphid density alters the rate and direction of evolution, as measured by changes in genotype frequencies through time. We also found that evolution of aphids within only 16 days, or approximately three generations, alters the rate of population growth and predicts density compared to nonevolving controls. The impact of evolution on population dynamics also depended on density. In one evolution treatment, evolution accelerated population growth by up to 10.3% at high initial density or reduced it by up to 6.4% at low initial density. The impact of evolution on population growth was as strong as or stronger than that caused by a threefold change in intraspecific density. We found that, taken together, ecological condition, here intraspecific density, alters evolutionary dynamics, which in turn alter concurrent population growth rate (ecological dynamics) in an eco-evolutionary feedback loop. Our results suggest that ignoring evolution in studies predicting population dynamics might lead us to over- or underestimate population density and that we cannot predict the evolutionary outcome within aphid populations without considering population size.
Havird, Justin C; Whitehill, Nicholas S; Snow, Christopher D; Sloan, Daniel B
2015-12-01
Interactions between nuclear and mitochondrial gene products are critical for eukaryotic cell function. Nuclear genes encoding mitochondrial-targeted proteins (N-mt genes) experience elevated rates of evolution, which has often been interpreted as evidence of nuclear compensation in response to elevated mitochondrial mutation rates. However, N-mt genes may be under relaxed functional constraints, which could also explain observed increases in their evolutionary rate. To disentangle these hypotheses, we examined patterns of sequence and structural evolution in nuclear- and mitochondrial-encoded oxidative phosphorylation proteins from species in the angiosperm genus Silene with vastly different mitochondrial mutation rates. We found correlated increases in N-mt gene evolution in species with fast-evolving mitochondrial DNA. Structural modeling revealed an overrepresentation of N-mt substitutions at positions that directly contact mutated residues in mitochondrial-encoded proteins, despite overall patterns of conservative structural evolution. These findings support the hypothesis that selection for compensatory changes in response to mitochondrial mutations contributes to the elevated rate of evolution in N-mt genes. We discuss these results in light of theories implicating mitochondrial mutation rates and mitonuclear coevolution as drivers of speciation and suggest comparative and experimental approaches that could take advantage of heterogeneity in rates of mtDNA evolution across eukaryotes to evaluate such theories. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Evolution of Advection Upstream Splitting Method Schemes
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
2010-01-01
This paper focuses on the evolution of advection upstream splitting method(AUSM) schemes. The main ingredients that have led to the development of modern computational fluid dynamics (CFD) methods have been reviewed, thus the ideas behind AUSM. First and foremost is the concept of upwinding. Second, the use of Riemann problem in constructing the numerical flux in the finite-volume setting. Third, the necessity of including all physical processes, as characterised by the linear (convection) and nonlinear (acoustic) fields. Fourth, the realisation of separating the flux into convection and pressure fluxes. The rest of this review briefly outlines the technical evolution of AUSM and more details can be found in the cited references. Keywords: Computational fluid dynamics methods, hyperbolic systems, advection upstream splitting method, conservation laws, upwinding, CFD
Molecular Evolution of Ultraspiracle Protein (USP/RXR) in Insects
Hult, Ekaterina F.; Tobe, Stephen S.; Chang, Belinda S. W.
2011-01-01
Ultraspiracle protein/retinoid X receptor (USP/RXR) is a nuclear receptor and transcription factor which is an essential component of a heterodimeric receptor complex with the ecdysone receptor (EcR). In insects this complex binds ecdysteroids and plays an important role in the regulation of growth, development, metamorphosis and reproduction. In some holometabolous insects, including Lepidoptera and Diptera, USP/RXR is thought to have experienced several important shifts in function. These include the acquisition of novel ligand-binding properties and an expanded dimerization interface with EcR. In light of these recent hypotheses, we implemented codon-based likelihood methods to investigate if the proposed shifts in function are reflected in changes in site-specific evolutionary rates across functional and structural motifs in insect USP/RXR sequences, and if there is any evidence for positive selection at functionally important sites. Our results reveal evidence of positive selection acting on sites within the loop connecting helices H1 and H3, the ligand-binding pocket, and the dimer interface in the holometabolous lineage leading to the Lepidoptera/Diptera/Trichoptera. Similar analyses conducted using EcR sequences did not indicate positive selection. However, analyses allowing for variation across sites demonstrated elevated non-synonymous/synonymous rate ratios (d N/d S), suggesting relaxed constraint, within the dimerization interface of both USP/RXR and EcR as well as within the coactivator binding groove and helix H12 of USP/RXR. Since the above methods are based on the assumption that d S is constant among sites, we also used more recent models which relax this assumption and obtained results consistent with traditional random-sites models. Overall our findings support the evolution of novel function in USP/RXR of more derived holometabolous insects, and are consistent with shifts in structure and function which may have increased USP/RXR reliance on EcR for cofactor recruitment. Moreover, these findings raise important questions regarding hypotheses which suggest the independent activation of USP/RXR by its own ligand. PMID:21901121
Coupled forward-backward trajectory approach for nonequilibrium electron-ion dynamics
NASA Astrophysics Data System (ADS)
Sato, Shunsuke A.; Kelly, Aaron; Rubio, Angel
2018-04-01
We introduce a simple ansatz for the wave function of a many-body system based on coupled forward and backward propagating semiclassical trajectories. This method is primarily aimed at, but not limited to, treating nonequilibrium dynamics in electron-phonon systems. The time evolution of the system is obtained from the Euler-Lagrange variational principle, and we show that this ansatz yields Ehrenfest mean-field theory in the limit that the forward and backward trajectories are orthogonal, and in the limit that they coalesce. We investigate accuracy and performance of this method by simulating electronic relaxation in the spin-boson model and the Holstein model. Although this method involves only pairs of semiclassical trajectories, it shows a substantial improvement over mean-field theory, capturing quantum coherence of nuclear dynamics as well as electron-nuclear correlations. This improvement is particularly evident in nonadiabatic systems, where the accuracy of this coupled trajectory method extends well beyond the perturbative electron-phonon coupling regime. This approach thus provides an attractive route forward to the ab initio description of relaxation processes, such as thermalization, in condensed phase systems.
The advantages and limitations of guideline adaptation frameworks.
Wang, Zhicheng; Norris, Susan L; Bero, Lisa
2018-05-29
The implementation of evidence-based guidelines can improve clinical and public health outcomes by helping health professionals practice in the most effective manner, as well as assisting policy-makers in designing optimal programs. Adaptation of a guideline to suit the context in which it is intended to be applied can be a key step in the implementation process. Without taking the local context into account, certain interventions recommended in evidence-based guidelines may be infeasible under local conditions. Guideline adaptation frameworks provide a systematic way of approaching adaptation, and their use may increase transparency, methodological rigor, and the quality of the adapted guideline. This paper presents a number of adaptation frameworks that are currently available. We aim to compare the advantages and limitations of their processes, methods, and resource implications. These insights into adaptation frameworks can inform the future development of guidelines and systematic methods to optimize their adaptation. Recent adaptation frameworks show an evolution from adapting entire existing guidelines, to adapting specific recommendations extracted from an existing guideline, to constructing evidence tables for each recommendation that needs to be adapted. This is a move towards more recommendation-focused, context-specific processes and considerations. There are still many gaps in knowledge about guideline adaptation. Most of the frameworks reviewed lack any evaluation of the adaptation process and outcomes, including user satisfaction and resources expended. The validity, usability, and health impact of guidelines developed via an adaptation process have not been studied. Lastly, adaptation frameworks have not been evaluated for use in low-income countries. Despite the limitations in frameworks, a more systematic approach to adaptation based on a framework is valuable, as it helps to ensure that the recommendations stay true to the evidence while taking local needs into account. The utilization of frameworks in the guideline implementation process can be optimized by increasing the understanding and upfront estimation of resource and time needed, capacity building in adaptation methods, and increasing the adaptability of the source recommendation document.
A Nonstationary Markov Model Detects Directional Evolution in Hymenopteran Morphology.
Klopfstein, Seraina; Vilhelmsen, Lars; Ronquist, Fredrik
2015-11-01
Directional evolution has played an important role in shaping the morphological, ecological, and molecular diversity of life. However, standard substitution models assume stationarity of the evolutionary process over the time scale examined, thus impeding the study of directionality. Here we explore a simple, nonstationary model of evolution for discrete data, which assumes that the state frequencies at the root differ from the equilibrium frequencies of the homogeneous evolutionary process along the rest of the tree (i.e., the process is nonstationary, nonreversible, but homogeneous). Within this framework, we develop a Bayesian approach for testing directional versus stationary evolution using a reversible-jump algorithm. Simulations show that when only data from extant taxa are available, the success in inferring directionality is strongly dependent on the evolutionary rate, the shape of the tree, the relative branch lengths, and the number of taxa. Given suitable evolutionary rates (0.1-0.5 expected substitutions between root and tips), accounting for directionality improves tree inference and often allows correct rooting of the tree without the use of an outgroup. As an empirical test, we apply our method to study directional evolution in hymenopteran morphology. We focus on three character systems: wing veins, muscles, and sclerites. We find strong support for a trend toward loss of wing veins and muscles, while stationarity cannot be ruled out for sclerites. Adding fossil and time information in a total-evidence dating approach, we show that accounting for directionality results in more precise estimates not only of the ancestral state at the root of the tree, but also of the divergence times. Our model relaxes the assumption of stationarity and reversibility by adding a minimum of additional parameters, and is thus well suited to studying the nature of the evolutionary process in data sets of limited size, such as morphology and ecology. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Motsa, S. S.; Magagula, V. M.; Sibanda, P.
2014-01-01
This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature. PMID:25254252
Motsa, S S; Magagula, V M; Sibanda, P
2014-01-01
This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.
Parasitic plants have increased rates of molecular evolution across all three genomes
2013-01-01
Background Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. Results We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Conclusions Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic plants tend to be smaller than their non-parasitic relatives, which may result in more cell generations per year, thus a higher rate of mutations arising from DNA copy errors per unit time. Demonstration that adoption of a parasitic lifestyle influences the rate of genomic evolution is relevant to attempts to infer molecular phylogenies of parasitic plants and to estimate their evolutionary divergence times using sequence data. PMID:23782527
Parasitic plants have increased rates of molecular evolution across all three genomes.
Bromham, Lindell; Cowman, Peter F; Lanfear, Robert
2013-06-19
Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic plants tend to be smaller than their non-parasitic relatives, which may result in more cell generations per year, thus a higher rate of mutations arising from DNA copy errors per unit time. Demonstration that adoption of a parasitic lifestyle influences the rate of genomic evolution is relevant to attempts to infer molecular phylogenies of parasitic plants and to estimate their evolutionary divergence times using sequence data.
The Quiet Revolution: A New Synthesis of Biological Knowledge
ERIC Educational Resources Information Center
Dyer, K. F.
1971-01-01
Reviews evidence from molecular genetics and biochemistry, which supports the idea of some evolution, due to chance and selectively neutral mutations, occurring independently of natural selection. (AL)
ERIC Educational Resources Information Center
Washburn, Sherwood L.
1978-01-01
Discusses recent fossil evidence indicating that human-like creatures branched off from other primates over four million years ago. Homo sapiens is believed to have appeared only 100,000 years ago. (MA)
Evolution of speech-specific cognitive adaptations.
de Boer, Bart
2015-01-01
This paper argues that an evolutionary perspective is natural when investigating cognitive adaptations related to language. This is because there appears to be correspondence between traits that linguists consider interesting and traits that have undergone selective pressure related to language. The paper briefly reviews theoretical results that shed light on what kind of adaptations we can expect to have evolved and then reviews concrete work related to the evolution of adaptations for combinatorial speech. It turns out that there is as yet no strong direct evidence for cognitive traits that have undergone selection related to speech, but there is indirect evidence that indicates selection. However, the traits that may have undergone selection are expected to be continuously variable ones, rather than the discrete ones that linguists have focused on traditionally.